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Abstract— We obtain long binary sequences by concatenat-
ing the columns of (0,1)-matrices derived from permutation
sequences. We then prove that these binary sequences are subsets
of the Levenshtein codes, capable of correcting insertion/deletion
errors and subsets of the higher order spectral nulls codes, with
spectral nulls at certain frequencies.

I. INTRODUCTION

Recent work in power-line communications [1], [2] has
renewed interest in permutation codes, which led to several
papers regarding permutation mappings [3], [4]. In this paper
we investigate some interesting properties of binary sequences
which are derived from permutation codes.

Related work was done by Ferreira et al [5], where it was
proved that the higher order spectral null (HOSN) codes are
subcodes of the balanced Levenshtein codes. In this paper we
will show that the binary sequences obtained from permutation
sequences are both subsets of the Levenshtein codes and the
HOSN codes.

We consider permutation sequences written in the passive
form, such as 12 . . . M , where each of the symbols are written
as a binary sequence of length M zeros, with the symbol value
indicating where a 1 is to appear. As example for M = 3 we
have

1 → 100
2 → 010
3 → 001

. (1)

The permutation sequences for M = 3 are thus changed to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

123
132
213
231
312
321

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

100010001
100001010
010100001
010001100
001100010
001010100

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2)

Therefore, each of the M ! permutation sequences can be
converted to binary sequences of length M2.

An alternative representation is that of (0, 1)-matrices,
where only one 1 is allowed in every column and every row.

As example, the permutation sequence 2431 will be

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

and the binary sequence is then constructed by concatenating
the columns to form 0100000100101000. We will use ω = 1
to denote that only one 1 is allowed in each row and each
column.

After converting all the permutation sequences of length M
to binary sequences, we define the binary permutation code,
P1(M), as the code containing all these binary sequences of
length M2. The cardinality of P1(M) is |P1(M)| = M !.

Similarly, (0, 1)-matrices with ω 1s in every column and
every row can be regarded as an extension of permutations.
For ω = 2, we can have (12)(13)(24)(34), which is

⎡
⎢⎢⎣

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎤
⎥⎥⎦ ,

and by permuting the columns we can get other possible
matrices. More specifically, for M = 4 and ω = 2 we have
six unique “sequences”, namely

(12)(13)(24)(34)
(12)(14)(23)(34)
(13)(14)(23)(24)
(12)(12)(34)(34)
(13)(13)(24)(24)
(14)(14)(23)(23)

and when these are permuted in all the possible ways, then all
the possible matrices with two 1s in every column and every
row are obtained.

In general, we will use Pω(M) to denote the code con-
taining all the possible binary sequences that is obtained from
(0, 1)-matrices with ω ones in each row and each column.
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II. LEVENSHTEIN CODES

Levenshtein [6] showed that the 2n binary sequences of
length n can be partitioned into codebooks, each capable
of correcting a single insertion or deletion error. If x =
x1x2 · · ·xn, then the binary sequences can be partitioned by
using

n∑
i=1

ixi ≡ a (mod m),

for a fixed a, where 0 ≤ a ≤ m − 1. The sequences are thus
partitioned into m distinct codebooks where each codebook is
denoted by the integer a. Let La(n) denote the Levenshtein
codebook in partition a. For Levenshtein’s first class of codes,
we require that m ≥ n + 1. To simplify the calculations to
follow, we let σ =

∑n
i=1 ixi.

A. Sequences with ω = 1

As example, for the P1(3) sequences 100010001 we get

σ = 1 + 6 + 9 = 15,

which can be verified for the other sequences in (2) as well.
With n = M2 = 9 and m = n + 1 = 10, we have σ ≡ a
(mod 10) which results in all the sequences being a subset of
the Levenshtein code words in the a = 5 partition.

We will now prove for the general case that P1(M) ⊂
La(n), with n = M2, m = n + 1 and some a, 0 ≤ a ≤ n.

Proposition 1 The P1(M) code is a subset of the Levenshtein
code, La(n), as follows

1) If M is even, then P1(M) ⊂ L0(n).
2) If M is odd, then P1(M) ⊂ LM2+1

2
(n).

Proof: As we saw in (1), each sequence of length
M2 consists of M subsequences of length M . Since it is a
permutation, these subsequences will always be present, just
in different positions. Therefore, each subsequence is shifted
multiples of M relative to each other in the large sequence. If
we use any arbitrary permutation sequence, p1p2 . . . pM , then
we have

σ = p1 + (p2 + M) + (p3 + 2M)+
(p4 + 3M) + · · · + (pM + (M − 1)M)

= (p1 + p2 + p3 + · · · + pM )+
(M + 2M + 3M + · · · + (M − 1)M),

also showing that the actual position of the symbols in the
permutation plays no role in the sum.

We have for

M = 2 → σ = (1 + 2) + 2
M = 3 → σ = (1 + 2 + 3) + 3(1 + 2)
M = 4 → σ = (1 + 2 + 3 + 4) + 4(1 + 2 + 3)

...

For M in general we have

σ =
M∑
i=1

i + M
M∑
i=1

(i − 1)

=
M(M + 1)

2
+

M2(M − 1)
2

=
M

2
(M2 + 1).

For Levenshtein codes, σ ≡ a (mod n+1), then with n =
M2 we require that

M

2
(M2 + 1) ≡ a (mod M2 + 1).

1) If M is even, then M/2 will be some integer, say r, and
σ will be divisible by M2 + 1 such that

r(M2 + 1) ≡ a (mod M2 + 1) ⇒ a = 0.

Thus, for M even, P1(M) ⊂ La(n) with a = 0.
2) If M is odd, then M/2 will be some value, say r +1/2

where r is some integer. Then,

σ = r(M2 + 1) +
M2 + 1

2

and

(r +
1
2
)(M2 + 1) ≡ a (mod M2 + 1) ⇒ a =

M2 + 1
2

.

Thus, for M odd, P1(M) ⊂ La(n) with a = M2+1
2 .

B. Sequences with any ω

In a similar manner, we can show that (0, 1)-matrices with
other ω-values are also subsets of the Levenshtein code.

Proposition 2 The Pω(M) code is a subset of the Levenshtein
code, La(n), as follows

1) If M is even and ω ∈ {1, 2, . . . M −1}, then Pω(M) ⊂
L0(n) with a = 0,

2) If M is odd and ω ∈ {2, 4, . . . M − 1}, then Pω(M) ⊂
L0(n) with a = 0,

3) If M is odd and ω ∈ {1, 3, . . . M − 2}, then Pω(M) ⊂
LM2+1

2
(n) with a = M2+1

2 .

Proof: Any ω = 2 (0, 1)-matrix can be constructed from
two ω = 1 (0, 1)-matrices by XORing them, as in⎡

⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ (3)

or equivalently 1000010000100001 ⊕ 0001100001000010 =
100111000110001 for the binary sequences. For each ω = 1
sequence we know that σ = M(M2 + 1)/2 and thus for any
ω = 2 sequence we will have σ = M(M2 + 1). For ω in
general, σ = ωM(M2+1)/2, therefore we require ωM(M2+
1)/2 ≡ a (mod M2 + 1).
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1) As before, with M even, M/2 will be some integer r,
then

ωr(M2 + 1) ≡ a (mod M2 + 1) ⇒ a = 0.

Thus, for M even and ω ∈ {1, 2, . . . M −1}, Pω(M) ⊂
La(n) with a = 0.

2) Similarly, with M odd, M/2 will be some value r+1/2
where r is some integer, then

σ = ω(r +
1
2
)(M2 + 1)

= ωr(M2 + 1) +
ω

2
(M2 + 1)

= ωr(M2 + 1) + q(M2 + 1),

with ω/2 being some integer q if ω is even, resulting in

(ωr + q)(M2 + 1) ≡ a (mod M2 + 1) ⇒ a = 0.

Thus, for M odd and ω even, Pω(M) ⊂ La(n) with
a = 0.

3) If ω is odd, ω/2 will be some value q + 1/2 where q is
some integer, then

σ = ωr(M2 + 1) + (q +
1
2
)(M2 + 1)

= (ωr + q)(M2 + 1) +
1
2
(M2 + 1),

with

(ωr+
q

2
)(M2+1) ≡ a (mod M2+1) ⇒ a =

M2 + 1
2

.

Thus, for M odd and ω odd, Pω(M) ⊂ La(n) with
a = M2+1

2 .

It is interesting to note that for M even and ω any integer,
1 ≤ ω ≤ M − 1, all the binary sequences are a subset of the
Levenshtein code in partition a = 0. Thus, for M even, we
have

P1(M) ∩ P2(M) ∩ · · · ∩ PM−1(M) ⊂ L0(n).

For M odd, the binary sequences are split between partitions
a = 0 and a = M2+1

2 , depending on ω being even or odd. For
M odd we have

P2(M) ∩ P4(M) ∩ · · · ∩ PM−1(M) ⊂ L0(n),

P1(M) ∩ P3(M) ∩ · · · ∩ PM−2(M) ⊂ LM2+1
2

(n).

III. HIGHER ORDER SPECTRAL NULL CODES

The technique of designing a baseband data stream to have
a spectrum with nulls occurring at certain frequencies [5],
is the same as having the power spectral density function
(PSD) equal to zero at those frequencies [7]. Usually for
simplification we choose the codeword length n as an integer
multiple of N , where f = r/N represents the spectral nulls
at rational submultiples r/N of the symbol frequency. The

parameter N can be chosen either prime or not prime and
divides n [8], i.e.

n = Nz.

In the case where N is a prime number, we have to satisfy

A0 = A1 = · · · = AN , (4)

where

Ai =
z−1∑
λ=0

xi+λN , i = 1, 2, . . . , N. (5)

In the case where N is not prime we we have to suppose that
N = cd, where c and d are integer factors of N . The equation,
which leads to nulls, is

Au = Au+vc,

where u = 1, 2, . . . , c, v = 1, 2, . . . , d− 1 and Au is the same
as in (5).

A. Sequences with ω = 1
Proposition 3 The P1(M) code is a subset of the HOSN
codes with nulls at the frequency f = r/M and they are
not dc-free, except for M = 2 which is dc-free.

Proof: For P1(M) we have n = M2, N = M and
z = M .

Using an arbitrary permutation, p1p2 . . . pM , we convert
each symbol to a binary sequences (as in (1)) such that
pi → bi1bi2 . . . biM , 1 ≤ i ≤ M with

bij =
{

1, j = pi

0, otherwise.

This results in the matrix⎡
⎢⎢⎢⎣

b11 b21 · · · bM1

b12 b22 · · · bM2

...
...

. . .
...

b1M b2M · · · bMM

⎤
⎥⎥⎥⎦ .

When we concatenate the columns we obtain a P1(M) se-
quence, x, as in

x = x1x2 . . . xM2

= b11 . . . b1M︸ ︷︷ ︸
p1

b21 . . . b2M︸ ︷︷ ︸
p2

. . . bM1 . . . bMM︸ ︷︷ ︸
pM

, (6)

where
xj+(i−1)M = bij . (7)

We know that for each matrix the sum of each row and
column are the same, thus the sum Rj for the j-th row is

Rj =
M∑
i=1

bij , 1 ≤ j ≤ M.

Using (7), this sum becomes

Rj =
M∑
i=1

xj+(i−1)M
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and this is the same as the sum in (5). Therefore,

A1 = A2 = · · · = AM ,

irrespective of M being prime or not, proving that P1(M) is
a HOSN code.

To show that the codes are not dc-free, we use the mapping
{0, 1} → {−1,+1} and calculate the running digital sum
(RDS) as

RDS =
M2∑
i=1

xi

= R1 + R2 + · · · + RM

= MR1

= M [1 − (M − 1)]
= M(2 − M),

For M = 2 we have RDS = 0 and M > 2 we have RDS 
=
0, proving the proposition.

As example, for P1(3) with 123 written as 100010001 and
mapping {0, 1} → {−1,+1} we find

A1 = 1 + (−1) + (−1) = −1
A2 = (−1) + 1 + (−1) = −1
A3 = (−1) + (−1) + 1 = −1,

and checking all sequences in P1(3), we get

A1 = A2 = A3.

In the case of M not a prime number, we have as example
M = 4, c = 2 and d = 2, where for 1234 written as
1000010000100001 and mapping {0, 1} → {−1,+1} we find

A1 = 1 + (−1) + (−1) + (−1) = −2
A2 = (−1) + 1 + (−1) + (−1) = −2
A3 = (−1) + (−1) + 1 + (−1) = −2
A4 = (−1) + (−1) + (−1) + 1 = −2,

and for all sequences in P1(4), we have

A1 = A3

A2 = A4

}
⇒ A1 = A2 = A3 = A4.

It is clear that for P1(3) and P1(4), we have HOSN codes
with nulls at frequency multiples of 1/3 and 1/4 respectively,
as depicted in Fig. 1 and 2, as well as not being dc-free.

B. Sequences with any ω

Proposition 4 The Pω(M) code, with ω ∈ {1, 2, . . . , M−1},
is a subset of the HOSN codes with nulls at the frequency
f = r/M and they are not dc-free codes, except when M is
even and ω = M/2, then PM/2(M) is dc-free as well.

Proof: As before, the sum of the rows and columns of
the matrices are going to be the same, however this time it is

Rj = ω − (M − ω) = 2ω − M, 1 ≤ j ≤ M. (8)

Using the same approach to the previous proof, we find
A1 = A2 = · · · = AM , proving that Pω(M) is a HOSN code.
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Fig. 1. Power spectral density of P1(3)
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Fig. 2. Power spectral density of P1(4)
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Fig. 3. Power spectral density of P2(4)

Using (8), the RDS for this case is derived as

RDS = M(2ω − M).

Clearly when M is even and ω = M/2 we have RDS = 0,
proving that PM/2(M) are dc-free codes.

As example, for P2(4) with the sequence (12)(23)(34)(14),
(which is the matrix in (3)) and mapping {0, 1} → {−1,+1},
we have

A1 = 1 + 1 + (−1) + (−1) = 0
A2 = (−1) + 1 + 1 + (−1) = 0
A3 = (−1) + (−1) + 1 + 1 = 0
A4 = 1 + (−1) + (−1) + 1 = 0,

and checking all sequences in P2(4), we get

A1 = A2 = A3 = A4.

Fig. 3 shows that the P2(4) code is dc-free, in addition to
having nulls at multiples of f = 1/4.

IV. CONCLUSION

We showed how (0,1)-matrices of permutation sequences
of length M can be represented as binary sequences of length
M2 and proved that these binary sequences are subsets of
the Levenshtein and HOSN codes, as well as generalizing the
(0,1)-matrices to include those containing more than one 1 in
each row and column. Although we did not include P0(M)
and PM (M) (all zeros and all ones sequences, respectively),
both are also subsets of the Levenshtein and HOSN codes.
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Though trivial, these sequences are also subsets of constant
weight codes and run-length limited codes.

We conclude with a summary of the properties of Pω(M):
• minimum Hamming distance of 4,
• constant weight ωM sequences,
• subset of the Levenshtein codes, with minimum Leven-

shtein distance of 4,
• HOSN codes, with nulls at multiples of f = 1/M .
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