
A Note on Non-Binary Multiple Insertion/Deletion
Correcting Codes

Filip Palunčić∗, Theo G. Swart∗, Jos H. Weber†, Hendrik C. Ferreira∗ and Willem A. Clarke∗
∗Department of Electrical and Electronic Engineering Science,

University of Johannesburg, Auckland Park, 2006, South Africa
Emails: {fpaluncic, tgswart, hcferreira, willemc}@uj.ac.za

†Delft University of Technology, IRCTR/CWPC
Mekelweg 4, 2628 CD Delft, The Netherlands

Email:j.h.weber@tudelft.nl

Abstract— We propose the construction of a non-binary multi-
ple insertion/deletion correcting code based on a binary multiple
insertion/deletion correcting code. In essence, it is a generalisation
of Tenengol’ts’ non-binary single insertion/deletion correcting
code. We evaluate the cardinality of the proposed construction
based on the asymptotic upper bound on the cardinality of
a maximal binary multiple insertion/deletion correcting code
derived by Levenshtein.

I. INTRODUCTION

The Levenshtein code construction is remarkable for a num-
ber of reasons. This single insertion/deletion correcting code
is based on a construction originally developed by Varshamov
and Tenengol’ts [1] to correct a single asymmetric error. Sub-
sequently, Levenshtein [2] realised that this construction is also
a single insertion/deletion correcting code. Levenshtein [2]
showed that his code is asymptotically optimal and, later,
Sloane [3] showed that the Levenshtein code was optimal
for codeword length less than or equal to 9. Furthermore,
Sloane [3] conjectured that the Levenshtein code is optimal
for all codeword lengths.

The Levenshtein code consists of all binary vectors xn =
(x1x2 . . . xn) that satisfy

∑n
i=1 ixi ≡ a(mod m), for particu-

lar pairs of a and m, where m ≥ n + 1.
Building on this important result by Levenshtein, Tenen-

gol’ts [4] showed how the Levenshtein code can be utilised
in the construction of a non-binary single insertion/deletion
correcting code. Furthermore, Tenengol’ts [4] derived an as-
ymptotic upper bound on the cardinality of an optimal non-
binary code capable of correcting a single insertion/deletion
error, which showed that his construction is close to asymptotic
optimality.

However, progress with respect to binary multiple inser-
tion/deletion correcting codes has been limited and slow.
An important generalisation of the Levenshtein code is the
Helberg code [5]1. However, the Helberg code suffers from a
low cardinality.

To construct a non-binary multiple insertion/deletion cor-
recting code, we will use a generalisation of the approach
used by Tenengol’ts [4]. Our construction is based on any

1Note that it has been proven that the Helberg code is indeed a multiple
insertion/deletion correcting code in [6].

TABLE I
OVERVIEW OF INSERTION/DELETION CORRECTING CODES

Binary Non-binary

Single Ins./Del. Correction Levenshtein [2] Tenengol’ts [4]

Multiple Ins./Del. Correction Helberg [5] Proposed Construction
Method (This Paper)

binary multiple insertion/deletion correcting code, such as the
Helberg code. Table I places our construction in context in
comparison to other insertion/deletion correcting codes.

The paper is organised as follows. In Section II, we
give a description of Tenengol’ts’ non-binary single inser-
tion/deletion correcting code. In Section III, we give the
generalisation of Tenengol’ts’ construction for a non-binary
multiple insertion/deletion correcting code. Since we believe
that the Helberg code has a low cardinality, we will evaluate
in Section IV the cardinality of the proposed code using a
conjectured cardinality of a binary multiple insertion/deletion
correcting code based on the asymptotic upper bound on the
cardinality of such codes [2]. Finally, we conclude the paper
in Section V.

II. TENENGOL’TS CODE

Let Aq = {0, 1, . . . , q − 1} be an alphabet of size q. Let
xn = (x1x2 . . . xn) be a q-ary vector of length n, i.e. xi ∈ Aq

for 1 ≤ i ≤ n. For the Tenengol’ts construction, the following
mapping is important. Let f(xn) = (f(x1)f(x2) . . . f(xn)),
where f : An

q → An
2 , f(x1) can be 0 or 1 and

f(xi) =

{
1, if xi ≥ xi−1

0, if xi < xi−1

(1)

for 2 ≤ i ≤ n. We will refer to the binary sequence f(xn) as
a relational sequence. Then the Tenengol’ts code consists of
all q-ary vectors xn = (x1x2 . . . xn) that satisfy

n∑
i=1

xi ≡ β(mod q) (2)

n∑
i=1

(i− 1)f(xi) ≡ γ(mod n), (3)

2011 IEEE Information Theory Workshop

978-1-4577-0437-6/11/$26.00 ©2011 IEEE 683



for fixed values of β and γ. The purpose of (2) is to determine
the value of the symbol that was deleted or inserted. The
constraint in (3) essentially corresponds to the Levenshtein
code. To see why this is so, consider the mapping g(xn) =
(g(x1)g(x2) . . . g(xn−1)), where g : An

q → An−1
2 and

g(xi) =

{
1, if xi+1 ≥ xi

0, if xi+1 < xi.
(4)

Therefore, g(xn) corresponds to the last n − 1 elements of
f(xn). Let L(n) denote a Levenshtein codebook consisting
of codewords of length n for m = n+1. Then, the constraint
in (3) can be stated equivalently as g(xn) ∈ L(n− 1).

To understand how the Tenengol’ts code works, consider
the case where a single deletion occurs. The first thing to note
is that a single deletion in xn results in a single deletion in
f(xn). To see why, consider the sequence

. . . xj−1

f(xj)̂ xj

f(xj+1)̂ xj+1 . . .

Assume that the symbol xj is deleted. If f(xj) = f(xj+1),
then xj−1 and xj+1 have the same relation to each other as
f(xj) (i.e. if f(xj) = f(xj+1) = 1, then xj−1 ≤ xj and
xj ≤ xj+1, and so xj−1 ≤ xj+1). Therefore, in the relational
sequence f(xn), a single bit is deleted. If f(xj) 6= f(xj+1),
then the relation between xj−1 and xj+1 can correspond to
either f(xj) or f(xj+1). Again, in the relational sequence,
there is a single bit that is deleted.

Let x′n−1 correspond to xn after a single deletion. Since
f(x′n−1) corresponds to f(xn) after a single deletion, us-
ing (3) we can reconstruct f(xn). Using (2), we can determine
the value of the deleted symbol. Then, all that we have to
determine is the exact position of the deleted q-ary symbol
based on the recovered relational sequence. The position of
the deleted q-ary symbol corresponds to the run where the
bit was deleted from the relational sequence f(xn) or to
the bit preceding that run (a run refers to a maximal length
substring consisting of consecutive like symbols). Since a
run in the relational sequence corresponds to a sequence
of monotonically increasing (decreasing) symbols in xn, the
precise location of the deleted symbol can be determined.

III. GENERALISATION OF THE TENENGOL’TS CODE

In this section, we will show how Tenengol’ts’ approach can
be extended to multiple insertion/deletion correcting codes.
Such a construction is based upon a binary multiple inser-
tion/deletion correcting code. Let s denote the maximal inser-
tion/deletion correcting capability of a code. A codebook is
referred to as an s insertion/deletion correcting codebook if it
is capable of correcting s or fewer insertion/deletion errors. Let
Cs(n) denote a binary s insertion/deletion correcting codebook
consisting of codewords of length n.

We wish to construct a q-ary code Ts(q, n, (β1, β2, . . . , βs)),
which is capable of correcting s or fewer insertion/deletion
errors. We will consider the case where s or fewer deletion
errors occur. Any code capable of correcting s deletion errors
is also an s insertion/deletion correcting code [2].

Corresponding to the constraint in (3) for the Tenengol’ts
code, we require that for xn ∈ Ts(q, n, (β1, β2, . . . , βs)), that
g(xn) ∈ Cs(n − 1). Therefore, in the relational sequence we
are able to correct s or fewer binary insertion/deletion errors.

We also need to generalise the constraint in (2). To achieve
this, we will use the following set of s congruencies:

n∑
i=1

xi ≡ β1(mod p),

n∑
i=1

x2
i ≡ β2(mod p),

...
n∑

i=1

xs
i ≡ βs(mod p). (5)

These constraints are used to determine the values of the s or
fewer deleted symbols.

Lemma 1: The set of congruencies in (5) for a fixed value
of (β1, β2, . . . , βs) can uniquely determine the values of s or
fewer randomly deleted symbols provided that p is prime and
p > max(q − 1, s).

Proof: Consider some xn = (x1x2 . . . xn) that cor-
responds to an arbitrary, but fixed (β1, β2, . . . , βs) in (5).
Assume that the symbols xi1 , xi2 , . . . , xis

, where 1 ≤ i1 <
i2 < · · · < is ≤ n, are deleted from xn, resulting in
x′n−s = (x′1x

′
2 . . . x′n−s). Let q1 = xi1 , q2 = xi2 , . . . , qs =

xis
. Furthermore, let

n−s∑
i=1

x′
j
i ≡ β′

j(mod p),

for 1 ≤ j ≤ s. Let β′′
j = βj − β′

j . Then

β′′
j ≡ qj

1 + qj
2 + . . . + qj

s(mod p). (6)

Therefore, we have s congruency equations in s unknowns.
It is known that the equations in (6) have a unique solution
provided that p is prime and p > max(q − 1, s), which is
precisely the set {q1, q2, . . . , qs} (see for example [7], [8]).

Suppose that s′ < s deletions occur. Then, to determine
the values of the s′ symbols deleted, the first s′ congruency
equations are sufficient.

Now consider the set T̂s(q, n, (β1, β2, . . . , βs)), which is
defined as

T̂s(q, n, (β1, β2, . . . , βs)) =
{
xn = (x1x2 . . . xn) ∈ An

q :

g(xn) ∈ Cs(n− 1),
n∑

i=1

xi ≡ β1(mod p),

n∑
i=1

x2
i ≡ β2(mod p),

...
n∑

i=1

xs
i ≡ βs(mod p)

}
, (7)

2011 IEEE Information Theory Workshop

684



where p is prime and p > max(q − 1, s). It turns out
that T̂s(q, n, (β1, β2, . . . , βs)) is not an s insertion/deletion
correcting code for s 6= 1. To understand why, consider the
following example.

Example 1: Consider the case s = 2, q = 6 and n = 7.
Therefore, p = 7 is the minimum possible value of p, as
p needs to be a prime number. Assume that the codeword
x7 = (3244015) ∈ T̂2(6, 7, (5, 1)) is transmitted, for which
f(x7) = (×011011) (the sign × is used to represent a “don’t
care” condition, either a 0 or a 1). Assume that the second
and second last symbols are deleted, and so x′5 = (34405)
is received. Then, f(x′5) = (×1101). At receiver, we can
recover f(x7) as g(x7) ∈ C2(6). Furthermore, we know that
the symbols 2 and 1 were deleted due to the constraints
in (5). However, we do not know which symbol came first in
the original codeword x7. This is where ambiguity originates
from. Let us attempt to perform decoding symbol by symbol.
Since, at the receiver, we know that f(x7) = (×011011), we
know that the second bit and a bit in the last run were deleted.
The question is: which symbol is to be associated with which
deleted bit in the relational sequence? In this particular case,
there are two options:

1) The deleted symbol 1 is associated with the bit 0
deleted from the relational sequence and the deleted
symbol 2 is associated with the bit 1 deleted from the
relational sequence. Decoding symbol by symbol we
obtain the following result. Firstly, the symbol 1: then
f(x′6) = (×01101). Therefore the symbol could only
have been deleted from the first or second position of
the original codeword. Then x′6 = (314405). Secondly,
the symbol 2: then f(x7) = (×011011). Therefore
the symbol could only have been deleted from fifth,
sixth or seventh position of the original codeword. Then
x7 = (3144025).

2) The deleted symbol 2 is associated with the bit 0
deleted from the relational sequence and the deleted
symbol 1 is associated with the bit 1 deleted from the
relational sequence. Decoding symbol by symbol we
obtain the following result. Firstly, the symbol 2: then
f(x′6) = (×01101). Therefore the symbol could only
have been deleted from the first or second position of
the original codeword. Then x′6 = (324405). Secondly,
the symbol 1: then f(x7) = (×011011). Therefore
the symbol could only have been deleted from fifth,
sixth or seventh position of the original codeword. Then
x7 = (3244015).

Therefore, we obtain two possible codewords, both in
T̂2(6, 7, (5, 1)), and have no way of knowing which was the
originally transmitted codeword.

For the general case of the set T̂s(q, n, (β1, β2, . . . , βs)),
it turns out there are never more than s! of such possible
codewords. This is the purpose of the following lemma.

Lemma 2: If s symbols are deleted from a codeword
xn ∈ T̂s(q, n, (β1, β2, . . . , βs)) for an arbitrary, but fixed
(β1, β2, . . . , βs) to obtain x′n−s, then from x′n−s one can re-
cover at most s! codewords (including the original codeword)

that are in T̂s(q, n, (β1, β2, . . . , βs)).
Proof: Assume that s symbols, {q1, q2, . . . , qs}, are

deleted from a codeword xn ∈ T̂s(q, n, (β1, β2, . . . , βs)), for
an arbitrary, but fixed (β1, β2, . . . , βs), resulting in x′n−s.
Therefore, f(x′n−s) is obtained from f(xn) through s dele-
tions. Since g(xn) ∈ Cs(n− 1), g(xn) can be recovered from
g(x′n−s), which implies that f(xn) can also be recovered. Fur-
thermore, due to the constraints in (5), the set {q1, q2, . . . , qs}
can also be recovered, although the ordering of this set within
the original codeword xn is unknown.

Each deleted symbol from the set {q1, q2, . . . , qs} can be
associated with a particular bit of the s bits deleted from
f(xn). There are at most s! such possible associations.

To prove the lemma, we will use the approach of decoding
symbol by symbol. In other words, select a random symbol,
and insert the bit associated with this symbol into f(x′n−s),
thereby obtaining f(x′n−s+1). Insert the symbol into x′n−s

to obtain x′n−s+1 that corresponds to the above relational
sequence. Then, select another random deleted symbol, and
repeat the above process until all s deleted symbols have been
used and xn is obtained. Note that this xn need not be the
same as the original codeword.

Now we want to show that for a particular association
between a deleted symbol from xn and a deleted bit from
f(xn) there is at most one possible correction. Again consider
the sequence

. . . xj−1

f(xj)̂ xj

f(xj+1)̂ xj+1 . . .

Assume that the bit xj is deleted. If f(xj) = f(xj+1), then
xj−1 and xj+1 will have the same relation as f(xj) and so the
position of the deleted symbol in xn will correspond to one of
the positions in the run where the corresponding bit has been
deleted in f(xn). If, on the other hand, f(xj) 6= f(xj+1), then
the relation between xj−1 and xj+1 can correspond to either
f(xj) or f(xj+1). For example, if f(xj) = 0, f(xj+1) = 1
and xj−1 > xj+1, then the position of the deleted symbol in
xn actually corresponds to the bit just before the run where
the corresponding bit has been deleted in f(xn). If the deleted
symbol in xn is associated with the correct2 deleted bit in
f(xn), then, due to Tenengol’ts [4], we know that there is
only one possible correction. On the other hand, if the deleted
symbol in xn is associated with an incorrect3 deleted bit in
f(xn), then there is at most one possible correction. This
follows because a run in f(xn) corresponds to a monotonically
increasing (decreasing) sequence in xn.

Finally, we need to show that, for a particular set of
associations between deleted symbols from xn and deleted bits
from f(xn), the order in which the symbols are corrected from
x′n−s up to xn do not alter the final sequence xn obtained.
Consider some q-ary codeword xn and assume that after s
deletions we obtain x′n−s. It is obvious that no matter in which
order the symbols are deleted, the same vector x′n−s will be

2By “correct”, we mean that the particular deleted symbol in xn is that
symbol that is actually responsible for the corresponding deleted bit in f(xn).

3By “incorrect”, we mean the opposite of “correct” in the previous footnote.

2011 IEEE Information Theory Workshop

685



obtained. Since this is the reverse process of correction (where
we insert the deleted symbols) symbol by symbol, it follows
that the same xn will be obtained from x′n−s, irrespective of
the order in which the symbols are inserted.

The above lemma shows that if s symbols are deleted from
xn ∈ T̂s(q, n, (β1, β2, . . . , βs)), decoding x′n−s symbol by
symbol will lead to at most s! codewords that are also in
T̂s(q, n, (β1, β2, . . . , βs)). Denote these σ ≤ s! codewords by
the set {x(1)

n ,x(2)
n , . . . ,x(σ)

n }, amongst which is the original
codeword xn.

Example 2: Consider again x7 = (3244015) from Exam-
ple 1. Assume that the fourth and sixth symbols are deleted.
Then x′5 = (32405) and f(x′5) = (×0101). At the receiver,
we know that f(x7) = (×011011) and that the symbols 4 and
1 were deleted. First associate the deleted symbol 1 with the
bit deleted from the second run in f(x7) and the symbol 4
with the bit deleted from the last run. Then,

1 : f(x′6) = (×01101) → x′6 = (312405),

and
4 : f(x7) = (×011011) → x7 = (3124045).

Now, reverse the order of correction. Then,

4 : f(x′6) = (×01011) → x′6 = (324045),

and
1 : f(x7) = (×011011) → x7 = (3124045).

Now, associate the deleted symbol 4 with the bit deleted from
the second run in f(x7) and 1 with the bit deleted from the
last. Then,

4 : f(x′6) = (×01101) → x′6 = (324405),

and
1 : f(x7) = (×011011) → x7 = (3244015).

Then, reverse the order of correction, so that

1 : f(x′6) = (×01011) → x′6 = (324015),

and
4 : f(x7) = (×011011) → x7 = (3244015).

For a given association between the deleted symbols from x7

and deleted bits from f(x7), the same decoded codeword is
obtained irrespective of the ordering in which the symbols are
corrected. For this example, we have that x(1)

7 = (3124045)
and x(2)

7 = (3244015).
We wish to construct Ts(q, n, (β1, β2, . . . , βs)) from

T̂s(q, n, (β1, β2, . . . , βs)) such that Ts(q, n, (β1, β2, . . . , βs))
is an s insertion/deletion correcting code. This will be achieved
through a purging process. This is done in the following
manner:

1) Select any xn ∈ T̂s(q, n, (β1, β2, . . . , βs)). For all possi-
ble combinations of s deletions in xn, determine the sets
D = {x(1)

n ,x(2)
n , . . . ,x(σ)

n }, where σ ≤ s!. We will refer
to the set D as a decoding set. For all such sets D, purge

the codewords in D from T̂s(q, n, (β1, β2, . . . , βs)) ex-
cept xn.

2) Select a codeword yn ∈ T̂s(q, n, (β1, β2, . . . , βs)) such
that yn is not equal to any of the previously selected
codewords or any of the previously purged codewords.
Then repeat the purging process as in Step 1.

3) Repeat Step 2 until there are no codewords left in
T̂s(q, n, (β1, β2, . . . , βs)) that can be selected.

It should be noted that during the purging process at Step 2,
it can never happen that a previously selected codeword is
purged. To see why, let yn represent the currently selected
codeword and let xn represent some previously selected
codeword. For all possible combinations of s deletions in
xn, the codewords in D = {x(1)

n ,x(2)
n , . . . ,x(σ)

n }, except xn,
have been purged at some previous step. The codeword yn is
selected such that yn 6= xn and yn /∈ D, for all possible sets
D. Therefore, it follows that, if D′ represents some decoding
set after s deletions in yn, then xn /∈ D′ for all such possible
sets.

Theorem 1: The set Ts(q, n, (β1, β2, . . . , βs)) is an s inser-
tion/deletion correcting code.

Proof: In order to prove that Ts(q, n, (β1, β2, . . . , βs))
is an s insertion/deletion correcting code, we will prove that
Ts(q, n, (β1, β2, . . . , βs)) is an s deletion correcting code. The
result then follows because it is known, due to Levenshtein [2],
that any s deletion (or insertion) correcting code is also an s
insertion/deletion correcting code.

Consider some xn ∈ Ts(q, n, (β1, β2, . . . , βs)), for an
arbitrary, but fixed vector (β1, β2, . . . , βs). Assume that s
random deletions occur in xn, thereby giving x′n−s. Let Q =
{q1, q2, . . . , qs} represent the values of the s deleted symbols.
We need to show that we can uniquely decode xn from x′n−s.

We can recover f(xn) from f(x′n−s) as g(xn) ∈ Cs(n −
1). Furthermore, we can determine the set Q, as shown in
Lemma 1. By decoding symbol by symbol, we obtain a
decoding set D = {x(1)

n ,x(2)
n , . . . ,x(σ)

n }, where σ ≤ s!, D ⊂
T̂s(q, n, (β1, β2, . . . , βs)) and x(i)

n = xn for some 1 ≤ i ≤ σ
(see Lemma 2). Due to the purging process used to obtain
Ts(q, n, (β1, β2, . . . , βs)) from T̂s(q, n, (β1, β2, . . . , βs)), we
know that (D\{xn}) ∩ Ts(q, n, (β1, β2, . . . , βs)) = ∅. There-
fore, we can uniquely decode xn.

It is clear that T1(q, n, β) is in fact the Tenengol’ts code.
Therefore, Ts(q, n, (β1, β2, . . . , βs)) is a generalisation of
Tenengol’ts’ construction.

The use of a purging process in constructing
Ts(q, n, (β1, β2, . . . , βs)) from T̂s(q, n, (β1, β2, . . . , βs))
is a drawback of the construction of the code
Ts(q, n, (β1, β2, . . . , βs)), especially for larger n. It is
possible that there exists an additional constraint that creates
Ts(q, n, (β1, β2, . . . , βs)) from T̂s(q, n, (β1, β2, . . . , βs))4.

IV. SOME THOUGHTS REGARDING CARDINALITY

Let Ms(q, n) denote the cardinality of a maximal q-ary
code with codewords of length n capable of correcting s

4Up till now, the attempts by the authors to find such a constraint have
been futile.

2011 IEEE Information Theory Workshop

686



insertion/deletion errors. Levenshtein [9] showed that, for a
fixed s and q, and as n →∞5

(s!)2qn+s

(q − 1)2sn2s
. Ms(q, n) .

s!qn

(q − 1)sns
. (8)

Therefore, (8) gives an asymptotic lower and upper bound on
Ms(q, n).

The cardinality of Ts(q, n)6 is dependent on the cardinality
of the code Cs(n−1). Since the cardinality of the Helberg code
is low7, we will give a conjecture regarding the cardinality of
Cs(n) based on an upper bound of a maximal binary multiple
insertion/deletion correcting code derived by Levenshtein [2],
upon which we will examine the cardinality of Ts(q, n).
Needless to say, these results are hypothetical, but instructive
nevertheless.

Conjecture 1: There exists a sequence of codes that are
constructed by partitioning An

2 into c(n + 1)s codebooks,
where c is some fixed positive integer, such that each codebook
is capable of correcting s insertion/deletion errors.

The above conjecture essentially describes a code that
would be a generalisation of Levenshtein’s code. Note that
the above conjecture implies that |Cs(n)| ≥ 2n/c(n + 1)s,
where |Cs(n)| is the cardinality of Cs(n)8, and that according
to (8), Ms(2, n) . s!2n/ns. The bounds that are derived next
are based on the above conjecture.

If q is a prime number, then

|T̂s(q, n)| ≥ qn

cqsns
. (9)

During the purging process used to construct Ts(q, n) from
T̂s(q, n), for some selected codeword xn ∈ T̂s(q, n), at most
(s!− 1)

(
n
s

)
codewords are purged. Therefore

|Ts(q, n)| > |T̂s(q, n)|
ns

, (10)

since s!
(
n
s

)
< ns. Hence, for q prime

|Ts(q, n)| > qn

cqsn2s
. (11)

Then the ratio of the asymptotic lower bound in (8) to the
expression on the right-hand side of (11) is c(s!)2q2s/(q−1)2s.
Therefore, for the case where q is prime, we see that the lower
bound on the cardinality of Ts(q, n) in (11) is within a constant
factor from the asymptotic lower bound on Ms(q, n) in (8),
for a fixed s and q.

5The notation a(n) . b(n) denotes that limn→∞ a(n)/b(n) ≤ 1
(see [2]).

6In this section, we will use Ts(q, n) as a shortened notation
of Ts(q, n, (β1, β2, . . . , βs)). Similarly, also T̂s(q, n) for
T̂s(q, n, (β1, β2, . . . , βs)).

7Note that it is shown in [10] that 2dn/se+1 is an upper bound on the
cardinality of the Helberg code. Furthermore, for a fixed s and sufficiently
large n, this loose upper bound is less than the lower asymptotic bound
from (8) for q = 2.

8Note that in [11] it is shown that there exists a C2(n) such that |C2(n)| ≥
2n/(n + 1)2 (i.e. where c = 1) for n ≤ 12.

For the case where q is not a prime,

|Ts(q, n)| > qn

c(2q)sn2s
. (12)

This follows from Bertrand’s Postulate [12], which states that
there exists at least one prime number p such that q < p ≤ 2q.

V. CONCLUSION

In this paper we have described a code construction which
is a generalisation of Tenengol’ts’ non-binary single inser-
tion/deletion correcting code. Such a construction is based
on a binary multiple insertion/deletion correcting code. We
have proven that such a construction is a non-binary multi-
ple insertion/deletion correcting code. Furthermore, we have
shown that the cardinality of this construction is at least
within a constant factor of the asymptotic lower bound on the
cardinality of a maximal non-binary multiple insertion/deletion
correcting code provided that there exists a near optimal binary
multiple insertion/deletion correcting code.

REFERENCES

[1] R. R. Varshamov and G. M. Tenengol’ts, “Codes which correct single
asymmetric errors,” Automation and Remote Control, vol. 26, no. 2,
pp. 286–290, 1965, originally published in Avtomatika i Telemekhanika,
vol. 26, no. 2, pp. 288–292, 1965 (in Russian).

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics-Doklady, vol. 10, no. 8, pp. 707–
710, Feb. 1966, originally published in Doklady Akademmi Nauk SSSR,
vol. 162, no. 4, pp. 845–848, 1965 (in Russian).

[3] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs, K. T. Arasu and A. Seress, Eds. Walter de Gruyter, Berlin:
Ray-Chaudhuri Festschrift, 2002, pp. 273–291. [Online]. Available:
http://www2.research.att.com/∼njas/doc/dijen.ps

[4] G. M. Tenengol’ts, “Nonbinary codes, correcting single deletion or
insertion,” IEEE Trans. Inform. Theory, vol. 30, no. 5, pp. 766–769,
Sept. 1984.

[5] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans. Inform. Theory, vol. 48, no. 1, pp. 305–
308, Jan. 2002.

[6] K. A. S. Abdel-Ghaffar, F. Palunčić, H. C. Ferreira, and W. A. Clarke,
“Some notes on the Helberg code,” submitted to IEEE Trans. Inf. Theory.

[7] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Ex-
plicit constructions and prefixing methods,” SIAM Journal on Discrete
Mathematics, vol. 23, no. 4, pp. 2120–2146, Jan. 2010.

[8] R. R. Varshamov, “A class of codes for asymmetric channels and a
problem from the additive theory of numbers,” IEEE Trans. Inform.
Theory, vol. 19, no. 1, pp. 92–95, Jan. 1973.

[9] V. I. Levenshtein, “Bounds for deletion/insertion correcting codes,” in
Proceedings of the 2002 IEEE International Symposium on Information
Theory, Lausanne, Switzerland, June 30–July 5, 2002, p. 370.

[10] F. Palunčić, K. A. S. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke,
“A multiple insertion/deletion correcting code for run-length limited
sequences,” submitted to IEEE Trans. Inf. Theory.

[11] T. G. Swart and H. C. Ferreira, “A note on double insertion/deletion
correcting codes,” IEEE Trans. Inform. Theory, vol. 49, no. 1, pp. 269–
273, Jan. 2003.

[12] G. H. Hardy and E. M. Wright, An Introduction to The Theory of
Numbers, 5th ed. London: Oxford University Press, 1979.

2011 IEEE Information Theory Workshop

687


