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RESEARCH ARTICLE

N-terminal acetylation and replicative age affect proteasome
localization and cell fitness during aging

Sjoerd van Deventer1, Victoria Menendez-Benito1,*, Fred van Leeuwen2 and Jacques Neefjes1,`

ABSTRACT

Specific degradation of proteins is essential for virtually all cellular

processes and is carried out predominantly by the proteasome. The

proteasome is important for clearance of damaged cellular proteins.

Damaged proteins accumulate over time and excess damaged

proteins can aggregate and induce the death of old cells. In yeast,

the localization of the proteasome changes dramatically during

aging, possibly in response to altered proteasome activity

requirements. We followed two key parameters of this process:

the distribution of proteasomes in nuclear and cytosolic

compartments, and the formation of cytoplasmic aggregate-like

structures called proteasome storage granules (PSGs). Whereas

replicative young cells efficiently relocalized proteasomes from the

nucleus to the cytoplasm and formed PSGs, replicative old cells

were less efficient in relocalizing the proteasome and had less

PSGs. By using a microscopy-based genome-wide screen, we

identified genetic factors involved in these processes. Both

relocalization of the proteasome and PSG formation were affected

by two of the three N-acetylation complexes. These N-acetylation

complexes also had different effects on the longevity of cells,

indicating that each N-acetylation complex has different roles in

proteasome location and aging.

KEY WORDS: Proteasome, Intracellular location, N-acetylation,

Replicative age, Aging

INTRODUCTION
The proteasome is a major intracellular protease and controls

many processes, including protein quality control. Protein quality

control is required to prevent accumulation of damaged proteins

during the lifespan of a cell (Amm et al., 2014; Koga et al., 2011).

Insufficient recognition and clearance of damaged proteins can

yield harmful protein aggregates (Powers et al., 2009; Schmidt

and Finley, 2014). A proper functioning ubiquitin-proteasome

system (UPS) might prevent protein aggregation and counteract

cellular aging.

Several studies report an age-dependent decline in UPS activity

in various model systems (Carrard et al., 2002; Dasuri et al., 2009;

Lee et al., 1999; Vernace et al., 2007a; Vernace et al., 2007b).

Other studies suggest a causative relation between UPS activity

and aging. Enhancing proteasome activity by overexpression of the

proteasome assembly chaperone Ump1 improves budding yeast

longevity under starvation conditions (Chen et al., 2006).

Increasing proteasome levels by overexpressing Rpn4, a protein

which drives the transcription of the proteasome subunits, also

increases the replicative lifespan in S. cerevisiae (Kruegel et al.,

2011). These studies suggest that the UPS system decays with age

and limits the lifespan of cells and organisms. Manipulating UPS

therefore might have dramatic effects on the aging process.

For several reasons, S. cerevisiae is an important model organism

to elucidate the molecular basis of processes related to aging. First,

cell division is asymmetrical with a distinguishable mother and

daughter cell. This allows tracking of a single cell over time, even

during division. Second, the number of cell divisions can be

quantified by counting the bud scars left on the mother cell after

budding of a new generation. The asymmetrical cell division

defines two forms of aging; chronological aging and replicative

aging (Kaeberlein, 2010; Michal Jazwinski et al., 1989).

Chronological aging is defined as the time between the budding

from the mother, the birth, until the daughter cell dies. This aging is

usually addressed on a population level by measuring the viability

of a liquid culture upon starvation (Kaeberlein, 2010). Replicative

aging is aging as a result of cell division and defined by the number

of daughter cells produced by an individual mother cell. Replicative

aging in yeast is used to model aging of mitotically active

mammalian cells (Kaeberlein, 2010; Mortimer and Johnston, 1959).

Chronological and replicative aging are overlapping processes

(Delaney et al., 2013; Kennedy et al., 1994; Murakami et al., 2012),

exemplified by the observation that, during starvation of a liquid

yeast culture, the replicative age of a cell at the start of starvation

highly affects the chronological age that will be reached (Allen

et al., 2006; Aragon et al., 2008). The studies in yeast have revealed

many insights into the various molecular processes underlying

aging and is expected to provide handles to manipulate aging

related diseases such as neurodegenerative disorders (Clay and

Barral, 2013; Tenreiro and Outeiro, 2010).

Here, we followed two proteasome-related processes that occur

during chronological aging in yeast: nuclear-cytoplasmic

relocalization of proteasomes, and the formation of cytoplasmic

proteasome storage granules (PSGs). PSGs are aggregate-like

structures that contain the proteasome and form early during yeast

starvation (Laporte et al., 2008). The replicative age of cells had a

major effect on these processes. Replicative young cells

efficiently relocalized the proteasome from the nucleus and

formed PSGs, unlike replicative old cells. A genome-wide

knockout screen revealed that proteasome relocalization and
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PSG formation involves two of the three N-acetylation
complexes, each having a particular effect on proteasome

localization. The N-acetylation complexes were found to affect
cell fitness in different ways. One N-acetylation complex, NatC,
both affected proteasome location and fitness of old cells.

RESULTS
Proteasome localization during starvation correlates with
replicative age
Proteasomes equally distribute over the nucleus and cytoplasm in
mammalian cells (Reits et al., 1997). In the budding yeast
Saccharomyces cerevisiae, proteasomes accumulate in the

nucleus when cells have sufficient nutrients (Russell et al.,
1999). This changes when yeast cells exhaust glucose in the
growth medium, a process that leads to starvation. During

starvation, cells relocalize their proteasome from the nucleus into
the cytosol and form cytoplasmic PSGs (Laporte et al., 2008).

Starvation is apparently a factor controlling the intracellular
distribution of proteasomes.

We visualized proteasomes in live yeast cells by tagging the
catalytically active b1 subunit (Pre3) of the proteasome with
GFP. Efficient and quantitative introduction of the b1–GFP in
20S proteasomes was confirmed by native gel electrophoresis

(supplementary material Fig. S1). The GFP-labeled proteasomes
had a similar distribution during starvation as reported for non-
modified proteasomes previously (Laporte et al., 2008). We

observed that cells in starvation show a wide heterogeneity in
proteasome localization (Fig. 1A). Based on proteasome
localization, we defined four localization phenotypes: (1) cells

with proteasome accumulation in the nucleus (Nuclear); (2) cells
displaying dots of cytoplasmic proteasome clusters (PSG); (3)
cells displaying both PSGs and a nuclear accumulation of

proteasomes (Nuclear + PSG); and (4) cells without any of
these phenotypes, where proteasomes are approximately equally

Fig. 1. Proteasome localization in nutrient-starved cells correlates with replicative age. (A) Live-cell microscopy of yeast cells in starvation shows various
20S proteasome localizations as is visualized by endogenous expression of a GFP-tagged b1 subunit (Pre3). Cells were stained with CFW to assess the
replicative age of individual cells. (B) b1–GFP localization and Hoechst 33342 staining was used to define four different phenotypes: cells with cytosolic PSGs
(PSG), cells with nuclear enrichment of proteasomes (Nuclear), cells that display both a nuclear enrichment of proteasomes and PSGs (Nuclear + PSG), and
cells without a clear enrichment of proteasomes in PSGs or nuclei (Equal). (C) Based on CFW staining of bud scars, three different replicative age groups
were defined: virgin daughter cells without bud scars (V); young mother cells with 1–2 bud scars (YM); and old mother cells with more than two bud scars (OM).
(D) The prevalence of the different proteasome phenotypes in living cells from each age group was calculated by dividing the number of cells with a certain
phenotype in a particular age group over the total number of cells in this age group. Results are mean6s.d. based on three independent experiments.
Significance was calculated with a paired, two-tailed Student’s t-test (*P,0.05, **P,0.01). Scale bars: 5 mm.
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distributed between the cytoplasmic and nuclear compartments
(Equal) (Fig. 1B). In a typical 5-day starvation experiment the

majority of the cells are either PSG or Equal, whereas a small
portion of the cells is Nuclear or Nuclear + PSG.

Given that these cells are genetically identical and grow under
identical conditions, it is expected that other factors should be

responsible for this heterogeneity. These could include replicative
aging. Replicative aging results from asymmetrical cell division of
budding yeasts in which damaged cell components are typically

retained in the mother cell (Kaeberlein, 2010). After each cell
division, chitinous scar tissue is left on the cell wall of the mother,
which is called a bud scar. The number of bud scars can be

visualized with Calcofluor White (CFW), which marks the
replicative age (Pringle, 1991). CFW staining distinguishes three
age groups: (1) virgin cells without bud scars; (2) young mother cells

with one or two bud scars, and (3) old mothers with more than two
bud scars (Fig. 1C). We quantified the respective proteasome
localization phenotypes per age group. PSG formation inversely
related to age as ,30% of the old mothers, ,60% of the young

mothers and ,65% of the virgin cells displayed this phenotype
(Fig. 1D). Nuclear accumulation of proteasomes correlated with
replicative age in the small population of yeast where this phenotype

was observed. This suggests that impairment of proteasome
relocalization and/or PSG formation can be associated with
replicative age. The prevalence of the other two phenotypes did

not differ significantly between the different age groups. Similar
results were found in yeasts expressing proteasomes labeled through
another 20S subunit [a2-–GFP (Pre8)] or a 19S subunit (Rpn1–GFP)

(supplementary material Fig. S2).

Identification of genes affecting proteasome localization
during starvation
To identify genetic factors controlling proteasome localization
during starvation, we performed a microscopy-based yeast
knockout screen. We considered two explanations for the

maintenance of nuclear enrichment of the proteasome during
starvation: altered proteasome biogenesis in the nucleus or altered

nuclear retention of the proteasome. Therefore, we tagged the b1
subunit (Pre3) of the proteasome with a fluorescent recombination
induced tag exchange (RITE) cassette (Verzijlbergen et al., 2010),
to differentially label new and old proteasomes. Integration of the

RITE cassette behind the b1 gene results in a GFP-tagged
proteasome produced before tag exchange, whereas new
proteasomes [produced after tag exchange due to translocation of

an estrogen receptor (ER)-coupled Cre-recombinase to the nucleus
after addition of b-estradiol (Verzijlbergen et al., 2010)] will be
labeled with mRFP. The genetic GFP-for-mRFP swapping is

permanent and induced after two days of starvation. When
recombination was induced at this time point little or no
synthesis of proteasomes was detected in wild-type (WT) cells.

Similar results have been obtained by Menendez-Benito et al. for
several other proteins in these starvation conditions (Menendez-
Benito et al., 2013).

To obtain a screening library, the b1–RITE strain was crossed

with the MATa haploid knockout (KO) collection (Thermo
Scientific) using SGA technology (Tong et al., 2001) (Fig. 2A1).
This high-throughput crossing yielded 4263 knockout strains

containing a RITE-tagged proteasome. These strains were
subjected to a 5-day starvation protocol, including the induction of
tag exchange (switch) at day 2 (Fig. 2A2). To efficiently analyze

thousands of samples by microscopy, cells were fixed, stained with
Hoechst 33342 and spotted on an object glass using a DNA
microarray printer (Narayanaswamy et al., 2006) (Fig. 2A3). Each

spot, typically consisting of ,2000 cells, was imaged by confocal
microscopy (Fig. 2A4). A CellProfiler image analysis pipeline was
designed for quantification of the proteasome phenotypes of interest
(Carpenter et al., 2006) (Fig. 2A5). This pipeline assessed the

nuclear cytosolic distribution of the proteasome by dividing the
mean GFP fluorescence in the nucleus over the mean GFP
fluorescence in the cytoplasm. Three successive rounds of

Fig. 2. A genome-wide screen identifying genes affecting nuclear proteasome localization during starvation. (A) Schematic overview of the screening.
(1) A yeast knockout library was crossed with a b1–GFPRmRFP RITE strain. (2) Tag recombination (switch) was performed after 2 days during a 5-day
starvation experiment. (3) Samples were fixed, stained with Hoechst 33342 and printed on yeast arrays. (4) Microscopic imaging of GFP (old proteasomes), RFP
(new proteasomes) and Hoechst 33342 (nuclei) was performed. (5) Images were analyzed by CellProfiler. (6) mak10D was one of the hits for a nuclear
proteasome enrichment. (B) Confocal microscopy images of three hits showing nuclear enrichment of GFP-labeled proteasome in the nucleus: hul5D, mak10D

and uba3D. Only background signal is observed for the mRFP proteasome. (C) Quantification of nuclear:cytosolic ratios of GFP in WTand nuclear retention hits.
Results are mean6s.d. based on five independent experiments. Significance was calculated with a paired, two tailed Student’s t-test (*P,0.05, **P,0.01).
Scale bar: 5 mm.
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screening identified three hits with a nuclear retention phenotype of
the proteasome: hul5D, uba3D and mak10D (Fig. 2A6; Fig. 2B).

These results were verified by repeating the experiment with
independently made knockout strains. Loss of HUL5, UBA3 or
MAK10 increased the population of cells with nuclear accumulation
of proteasomes (Fig. 2C). Little or no synthesis of new (mRFP

tagged) b1 was detected in either WT or KO cells, thus implying that
the nuclear enrichment is not due to de novo synthesis. A plating
assay before and after recombination confirmed the successful

genetic recombination (GFP to mRFP) in these cells (supplementary
material Fig. S3A). When recombination is induced at an earlier
time point in starvation (after 1 day), synthesis of new (mRFP

tagged) proteasomes could be observed in both WT cells and the
three screen hits (supplementary material Fig. S3B). The RITE
technology was only used for identifying the hits.

Loss of N-acetylation by NatC causes nuclear enrichment of
the proteasome without affecting PSG formation, and both
phenotypes are affected by replicative age
The Mak10 protein is a subunit of the N-acetyltransferase C (NatC)
complex. NatC associates to the ribosome for co-translational

N-terminal acetylation of a subset of proteins (Starheim et al.,
2012). The NatC complex further consists of Mak31 and the

catalytic subunit Mak3 (Polevoda and Sherman, 2000). In our
screening, Mak3 and Mak31 were just below the threshold, but
independently generated knockouts of all three individual NatC
subunits showed increased nuclear retention of proteasomes during

starvation, whereas the number of cells displaying PSGs was not
significantly altered (Fig. 3A,C; supplementary material Fig. S4A,B),
indicating a specific role for the NatC complex in the nuclear

enrichment of the proteasome. The presence of cells with both
nuclear enrichment of proteasomes and cytoplasmic PSGs means that
PSG formation has been uncoupled from the nuclear-to-cytosolic

relocalization of proteasomes (Fig. 3A,B). A catalytically inactive
NatC mutant (Mak3 N123A and Y130A) (Polevoda and Sherman,
2000) showed the same phenotype (Fig. 3A,B). NatC activity is

apparently involved in the nuclear-to-cytosolic relocalization of
proteasomes under starvation conditions. CFW staining was used to
assess a potential correlation of proteasome localization with
replicative age. Nuclear enrichment of proteasomes correlated with

replicative age, whereas PSG formation correlated negatively with
replicative age (Fig. 3C,D). Cells displaying both nuclear enrichment

Fig. 3. Loss of N-acetylation by NatC causes
nuclear retention of the proteasome without
affecting PSG formation with both phenotypes
being affected by replicative age. (A) Fixed-cell
microscopy of Hoechst-33342-stained mak3D cells or
cells expressing a catalytically inactive Mak3 (MAK3-
CD) showing an increased population of cells
displaying nuclear retention of proteasomes after a 5-
day starvation period. (B) The prevalence of the
different phenotypes in the total population was scored
in three independent experiments. (C) Live-cell
microscopy of mak3D cells stained with CFW after a 5-
day starvation period. (D) The prevalence of each
proteasome phenotype in living cells was scored in the
three different age groups (V, virgin daughter cells;
YM, young mother cells; OM, old mother cells).
Results are mean6s.d. based on three independent
experiments. Significance was calculated with a paired
two-tailed Student’s t-tests (*P,0.05, **P,0.01).
Scale bars: 5 mm.
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and PSG formation also showed a weak correlation, but ‘Equal’ cells
did not. Similar results with respect to the correlation between

replicative age and proteasome localization and the effect of NatC
deficiency were found for a2–GFP- (Pre8) and Rpn1–GFP-
expressing cells (supplementary material Fig. S2). These results are
similar to those observed for WT cells (Fig. 1D), indicating that NatC

does not affect aging related relocalization of proteasomes.

Nuclear-to-cytosolic relocalization of the proteasome during
starvation requires NatB and NatC, PSG formation requires
only NatB
The main N-terminal acetyltransferases in yeast are NatA, NatB

and NatC, contributing to respectively ,50%, ,20% and ,20% of
the N-terminal acetylome. Each of these complexes recognizes
specific substrates depending on their N-terminal sequences

(Starheim et al., 2012). To test whether nuclear enrichment of
proteasomes only depends on NatC-mediated N-acetylation, the
subunits of the NatA (Ard1, Nat1 and Nat5) and the NatB (Nat3
and Mdm20) complex were knocked out. Deficiency of NatA

subunits did not alter proteasome distribution following starvation
(Fig. 4A,B;supplementary material Fig. S4C,D). However,
deletion of the various NatB subunits increased the population

with nuclear proteasomes and reduced the cells displaying PSGs
(Fig. 4A,B; supplementary material Fig. S4E,F). Although both
NatB and NatC knockouts induced nuclear proteasome

enrichment, they had different effects on the cytoplasmic
proteasome pool. NatC inactivation still allowed PSG formation,
whereas NatB inactivation prevented formation of PSGs

(Fig. 4A,B; supplementary material Fig. S4C–F). This suggests a
specific role of the NatB complex in PSG formation. Cells with
both PSGs and nuclear retention were hardly detected among
NatB-knockout cells (Fig. 4B). As for WT and NatC-deficient

cells, nuclear enrichment induced by NatB inactivation correlated
with replicative age, whereas the prevalence of ‘Equal’ cells
decreased with replicative age. (Fig. 4C,D; compare to Fig. 3D).

Surprisingly, NatA-deficient cells did show a WT-like prevalence
of the different proteasome phenotypes in the total population, but
there was no correlation of these phenotypes with replicative age.

These results would suggest that the mechanism underlying the
different proteasome localizations in cells involves selective N-
acetylation and can be (at least partially) uncoupled from aging
effects that also require N-acetylation. NatB and NatC, unlike

NatA, are involved in the effects on proteasome distribution.
Their combined inactivation might further accelerate these
effects, and a NatB+NatC double knockout strain was made.

This double knockout (unlike the single knockouts) had severe
growth defects, preventing a fair comparison with the single
knockout strains. Given that the affects on nuclear enrichment of

the proteasome were specific to NatB and NatC, N-acetylation of
one or more NatB and NatC substrates must be involved in
nuclear-to-cytosolic proteasome distribution. Based on the N-

terminal sequence requirements of each Nat complex a list of
potential substrates were defined in the yeast proteome (Arnesen
et al., 2009; Polevoda and Sherman, 2003). The role of N-
acetylation of selected candidate substrates was tested by making

an N-terminal MX- to MP- (X2P) mutation, resulting in an N-
terminus that cannot be N-acetylated (Polevoda and Sherman,
2003). Preventing N-acetylation of a5 (Pup2), a6 (Pre5), Rpn9,

Fub1, Avo2, Hul5 or Nup100 failed to phenotypically mimic cells
lacking NatB or NatC (supplementary material Fig. S4G).
Whether NatB and NatC act on proteasome distribution by

modifying a single target or many, is as yet unclear.

NatA and NatB control general cell fitness during starvation
and NatC fitness of old cells only
As proteasome composition and activity was found to influence
longevity in starvation, we wondered whether proteasome
localization would also correlate with cell fitness. Cellular
fitness in starvation can be determined by assaying the ability

of cells to restart their cell cycle when nutrients are added. This is
determined by plating equal numbers of cells and quantifying the
number of colony-forming units (CFUs). When grown in the

presence of sufficient nutrients, the reproductive capacity of
NatA- and NatC-deficient cells is similar to WT cells, whereas
NatB-deficient cells show a lower reproductive capacity

(Fig. 5A) (Polevoda et al., 1999). After a 5-day starvation
period, both NatA- and NatB-deficient cells showed lower CFUs
than wild-type cells, whereas the reproductive capacity in NatC-

deficient cells seemed to be unaffected (Fig. 5B). Proteasome
localization in NatA-deficient cells was similar to WT, unlike that
in NatB-deficient cells. Given that NatA and NatB deficiency
both decrease the number of CFUs measured, proteasome

localization cannot be directly related to reproductive capacity
in starvation.

Given that NatC-deficient cells show a strong correlation of

proteasome localization with replicative age, we wondered
whether NatC also affected reproductive capacity in an age-
dependent manner. We determined the fitness of old versus young

cells in a starved population of the various mutant yeast strains by
staining the yeast cells with CFW and then separating young and
old yeast cells by FACS sorting (Pringle, 1991). Microscopy on

the sorted populations verified separation of virgin and old
mother cells (Fig. 5C). Equal numbers of cells from the different
populations were subsequently plated and the number of CFUs
determined. About 75% of the young WT cells and ,30% of the

old WT cells were able to form colonies upon plating (Fig. 5D).
This correlation between replicative age and cell fitness is similar
to results previously reported by Allen et al. (Allen et al., 2006).

The low number of CFUs measured for old as well as young
NatA- and NatB-deficient cells was expected, based on their
general effects on cell fitness (Fig. 5B) and is in agreement with

findings for NatA by Aragon et al. (Aragon et al., 2008).
Surprisingly, WT and NatC-knockout young cells were equally
fit, whereas the fitness of the old NatC-knockout cells was
reduced to only 30% of old WT cells. NatC deficiency not only

affected localization of proteasomes in replicative old cells, but it
also had a selective effect on the fitness of old mothers.

DISCUSSION
The proteasome is located in both the cytosol and nucleosol. Its
subunits are made in the cytosol where proteasomes are

assembled in precursor complexes that can be imported into the
nucleus for full formation of the complex (Lehmann et al., 2002).
Nuclear import and export of mature proteasomes is a very slow

process in mammalian cells and the details of this process are
poorly understood (Reits et al., 1997). Given that the nuclear
envelope disintegrates during mitosis in mammalian cells, the
boundary between the two pools of proteasomes is lost and

nuclear proteasomes mix with cytosolic proteasomes. Nuclear
proteasomes could thus have a cytosolic origin and vice versa.
This should be different in budding yeast, where the nuclear

envelope is maintained during cell division and proteasomes tend
to accumulate in the nucleus. However, nuclear-to-cytosolic
relocalization of proteasomes is observed upon glucose

exhaustion, which is followed by rapid nuclear import of
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Fig. 4. Nuclear-to-cytosolic relocalization of the proteasome during starvation requires N-acetylation by NatB and NatC. (A) Fixed-cell microscopy
of starved ard1D (NatA deficient), nat3D (NatB deficient) andmak3D (NatC deficient) cells. Nuclei were visualized with a Hoechst 33342 staining. (B) Prevalence
of the different proteasome localization phenotypes was scored in the total population. Results are mean6s.d. and are based on a biological triplicate. (C) Live-
cell imaging of starved ard1D and nat3D cells. Cells were stained with CalcoFluor White to assess their replicative age. (D) Prevalence of the different
proteasome phenotypes in the three age groups in living cells was quantified (mean6s.d.) in three independent experiments and significance was calculated
with a paired two-tailed Student’s t-test. (*P,0.05, **P,0.01). Scale bars: 5 mm.
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mature proteasomes upon re-addition of nutrients. It would
therefore be expected that proteasome distribution is under some

kind of control (Laporte et al., 2008).
We report that nuclear-to-cytosolic relocalization of the

proteasome upon starvation correlates with the replicative age
of yeast cells. Young cells are better capable of relocalizing the

proteasome from the nucleus and of forming cytosolic PSGs,
whereas old mother cells usually fail to do so. This correlation
might be due to an age-dependent defect in the proteasome

relocalization machinery, but could also be due to asymmetrical
division of damaged cell components upon cell division. In
general, damaged protein accumulates in mother cells leaving

daughter cells with a fresh set of proteins (Henderson and
Gottschling, 2008; Kaeberlein, 2010; Nyström and Liu, 2014).
Perhaps a low amount of damaged proteins allows young cells to

store their proteasomes in PSGs, whereas old cells might need to
maintain a larger pool of active proteasomes to handle
accumulated protein damage at the cost of PSGs. A nuclear
enrichment of the proteasome might help replicative old cells to

handle protein stress in the nucleus (Gardner et al., 2005) but it
might also contribute to protein quality control in the cytosol
(Heck et al., 2010; Prasad et al., 2010).

The reported association between the capacity of the ubiquitin
proteasome system and viability during aging (Carrard et al., 2002;
Kruegel et al., 2011; Tonoki et al., 2009; Vernace et al., 2007b)

suggests that the localization of the proteasome also affects
viability. This can only be tested in a system where proteasome
localization can be manipulated during the aging process. We
performed a microscopy-based screen to identify proteins that

control proteasome localization in yeast cells. We identified two
of the three complexes involved in N-terminal acetylation of
proteins as controlling nuclear-to-cytosolic relocalization of the

proteasome. About half of the yeast proteome can be N-acetylated
by these complexes (Starheim et al., 2012). N-acetylation can both
stabilize and de-stabilize proteins as well as affect the intracellular

localization and activity of proteins (Arnesen, 2011; Hwang et al.,
2010; Scott et al., 2011). Given that the acetylation complexes
NatB and NatC but not NatA control the nuclear-to-cytosolic

relocalization of proteasomes, a selective set of substrates rather
than the general N-acetylation process seems to be responsible.
The different phenotypes for the NatB and NatC knockouts

allowed testing of the link between nuclear-to-cytosolic
relocalization of proteasomes and the formation of

PSGs. Although NatC-deficient old mother cells accumulated
significantly more nuclear proteasomes, the prevalence of
cytosolic PSGs was unaffected. In addition, a population of cells
with both nuclear retention and PSG formation was observed. Both

observations suggest that nuclear accumulation of proteasomes in
older mothers does not necessarily prevent formation of cytosolic
PSGs. This suggests that the mere enrichment of proteasomes in

the cytosolic compartment is not a prerequisite for PSG formation.
As proteasome localization during aging can be manipulated

by inactivation of either NatB or NatC, the effect on cell fitness

during aging can be determined. Although NatA and NatB
deficiency strongly affected cell fitness in all age groups tested,
NatC deficiency selectively affected fitness of old mothers. As for

the localization of the proteasome, the different Nat complexes
affected cell fitness in a Nat-complex-specific manner. Whether
this is the result of modification of part of the proteome or of one
defined substrate, is at present unclear. We excluded some

proteins that were potentially involved, like Hul5 (supplementary
material Fig. S4G), another hit in our screening, as single
candidates but that does not exclude other proteins.

Acetylation of lysine side chains of various proteins has been
connected to the aging process. This is exemplified by the yeast
deacetylase Sir2. Sir2 reduces lifespan upon deletion and

prolongs it upon overexpression (Wierman and Smith, 2014).
Homologs of Sir2 in several other organisms, including the SIRT
proteins in mammals, have been linked to aging and age-related
diseases (Donmez and Guarente, 2010). Furthermore, calorific

restriction can increase age and has been associated with altered
acetylation status of many mitochondrial proteins (Hebert et al.,
2013), which has been extensively studied in neurodegeneration

diseases (Guedes-Dias and Oliveira, 2013). These examples
indicate a role of acetyl modifications of lysine side chains in
processes associated with aging. Here, we have shown that N-

terminal acetylation, a different, stable and often co-translational
modification with the same chemical group, is associated with
proteasome distribution and fitness during aging. The

mechanisms controlling proteasome localization and fitness at
old age involve specific N-acetylation complexes and result in a
further expansion of the role of the small acetyl modification.

Fig. 5. In starvation, loss of NatA and NatB has a general
effect on reproductive capacity, whereas loss of NatC
specifically affects old cells. The reproductive capacity of the
different strains in log phase (A) and starvation (B) was assessed
by a plating assay. Loss of NatA and NatB compromised
reproductive capacity in starved cells, whereas loss of NatC did
not. A representative plating assay from three independent
experiments is shown. (C) After CFW staining of a starved culture,
the cells with the lowest (negative) and highest (positive) CFW
signal were sorted to obtain populations of virgin cells and old
mothers, respectively. The CFW image is the maximum projection
of a 5-mm Z-stack, the DIC image is a single scan in the middle
of the Z-stacks. (D) CFUs were counted for old mother (old) and
virgin (young) cells. Loss of NatC affects the reproductive capacity
of old cells, whereas loss of NatA and NatB reduce the
reproductive capacity of both young and old cells. Results are
mean6s.d. based on on three independent experiments.
Significance was calculated with a paired two-tailed Student’s
t-test. (*5P,0.05, **5P,0.01).
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MATERIALS AND METHODS
Yeast strains and plasmids
With the exception of the strains used for screening, all strains were

derived from NKI4103 (Verzijlbergen et al., 2010). Gene knockouts were

made by PCR-mediated gene disruption based on pRS plasmids (Baker

Brachmann et al., 1998). N-terminal mutations were made by PCR

amplification of the pYM-N10 and pYM-N11 plasmids using the S1 and

S4 primers extended with 40 bp of sequence homologous to the

endogenous sequence (Janke et al., 2004). The N-terminal mutation

was introduced in the 40 bp endogenous sequence. The two mutations for

the catalytically inactive N123A-Y130A-Mak3 were generated by Delitto

Perfetto technology (Storici and Resnick, 2006). All strains are described

in supplementary material Table S1.

Growth Conditions
Yeast cells were grown in liquid YEPD cultures of 5 ml at 30 C̊. To

prevent recombination of the RITE cassette, cells were grown in presence

of Hygromycin (200 mg/ml, Invitrogen). Liquid cultures were starved by

inoculating 5 ml of YEPD with 0.5 ml of an overnight culture followed

by a 5-day starvation period.

Library construction
NKI4103 (Verzijlbergen et al., 2010) was crossed with the MATa

haploid knockout collection (ThermoScientific) by Synthetic Genetic

Array analysis (Tong and Boone, 2006) using a RoToR HAD (Singer

Instruments) with the following modifications. After mating, diploids

were selected and kept on Hygromycin, G418 and CloNat triple selection

on rich medium for 1 night. After 2 weeks on sporulation medium, MATa

haploid clones containing both a gene knockout and the RITE tagging

system were selected. The first two rounds of selection generated haploid

MATa cells (YC-His+Can+SAEC) (van Leeuwen and Gottschling,

2002). The next two selection rounds selected the knockout and the

RITE system (YC-His+Can+SAEC+MSG+ Hygromycin, G418 and

CloNat).

Microscopy and image analysis
Fixed microscopy samples were prepared by fixing ,108 cells in 4%

formaldehyde and mounted in Vectashield (Vector Laboratories) on

ConA-coated coverslips. Live-cell samples were prepared by

resuspending ,108 cells in 100 ml 40 C̊ 1% UltraPureTM LMP Agarose

(Invitrogen) in PBS which is squeezed between a cover glass and an

object glass. Imaging was performed at room temperature within 1 hour

after mounting. Hoechst 33342 (Invitrogen, 1 mg/ml) or Calcofluor White

(CFW, Sigma-Aldrich, 2 mg/ml) staining was performed before mounting

the sample. Images were made on a Leica SP5 (Leica Microsystems),

using a 636 objective and a 405-nm laser to excite Hoechst 33342 and

CFW, a 488 nm laser for GFP and 561 nm for mRFP. 5 mm thick Z-

stacks were made with 15 slides. Image analysis was performed on

maximum Z-projections by scoring different phenotypes, counting 200–

500 cells per biological replicate.

Screening
The screening of the b1-RITE + KO library was performed in batches of

384 strains. A RoToR HAD (Singer Instruments) was used to transfer the

strains from 384-well glycerol stocks to a YEPD+Hygromycin agar plate.

120 ml start cultures in 96-well plates were inoculated from the YEPD

plate, grown overnight and used to start a 4 ml culture. A 2-day

starvation period was followed with a switch assay as described by

Verzijlbergen et al. (Verzijlbergen et al., 2010) and another 3-day

starvation period. Samples were then fixed in 4% formaldehyde, stained

with Hoechst and spotted on a yeast array (Narayanaswamy et al., 2006).

Microscopic analysis was performed on a Leica AOBS LSCM (Leica

Microsystems) using 405-, 488- and 561-nm laser light to excite Hoechst

33342, GFP and mRFP respectively. High-throughput image analysis was

performed using CellProfiler software (Carpenter et al., 2006). The

screening results of selected candidates were validated by two additional

rounds of analysis and independent generation of the knockout yeast

strains.

Flow-based sorting of old and young cells
To isolate replicative old and young cells, ,26107 cells of a starved

culture were stained with CFW and FACS sorted on a MoFlo-Astrios

(Beckman Coulter) using 405 nm excitation and collecting fluorescence

emission with a 450 nm (30-nm bandpass) filter. The 2.5% of the cells

with the highest and lowest CFW signal were isolated and ,250 yeasts

were subsequently plated on YEPD plates (Allen et al., 2006). CFUs were

counted after 3 days culture at 30 C̊.

Protein extraction and native gel analysis
Native protein samples were made by washing a cell pellet of ,108 cells

in PBS plus protease inhibitors (1 mM PMSF, 5 mM benzamidine, 1 mg/

ml pepstatin, 1 mg/ml leupepting) and resuspended in buffer A (20 mM

Tris-HCl pH 7.4, 5 mM MgCl2, 1 mM DTT, 1 mM ATP) plus protease

inhibitors. Cells were lysed in buffer A by using glass beads, which were

removed before addition of a blue loading buffer (56; 50% glycerol and

Bromophenol Blue). Samples were loaded on a NativePAGETM 3–12%

Bis-Tris gel (Life Technologies) and ran in NativePAGETM running

buffer (Life Technologies). GFP fluorescence was visualized on a

ProXPRESS (Perkin Elmer) machine with 480 nm (30-nm bandpass)

excitation and 550 nm (40-nm bandpass) emission filters. To visualize

untagged proteasomes, the gel was incubated with 100 mM suc-LLVY-

AMC (Enzo Life Sciences) in the presence of 1 mM ATP, 1 mM DTT

and 0.02% SDS (Elsasser et al., 2005). Gel scans were made with 390 nm

(70-nm bandpass) excitation and 450 nm (20-nm bandpass) emission

filters.
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