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Abstract This article introduces a new chaotic sys-
tem of 4-D autonomous ordinary differential equa-
tions, which has no equilibrium. This system shows
a hyper-chaotic attractor. There is no sink in this sys-
tem as there is no equilibrium. The proposed system is
investigated through numerical simulations and anal-
yses including time phase portraits, Lyapunov expo-
nents, and Poincaré maps. There is little difference be-
tween this chaotic system and other chaotic systems
with one or several equilibria shown by phase por-
traits, Lyapunov exponents and time series methods,
but the Poincaré maps show this system is a chaotic
system with more complicated dynamics. Moreover,
the circuit realization is also presented.
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1 Introduction

Recently, it has been found that chaos is useful in
many application fields such as engineering, medicine,
secure communications, and so on. Up to now, a lot of
research results have been achieved such as in refer-
ences [1–3]. Many chaotic systems have been discov-
ered. The most famous chaotic system is Lorenz sys-
tem from meteorology [4]. Another one is the Chen
system [1], which was generated via a state feedback
to the second equation in Lorenz system. Both Lorenz
system and Chen system possess a two-wing attractor.
Another example is the chaotic attractor with one equi-
librium [5]. There are many other multiwing chaotic
systems such as three wings and/or four wings [6, 7].
The equilibrium is very important for showing chaotic
attractors, especially for showing multiple wings or
scrolls.

In the theory of nonlinear systems, the equilib-
rium plays important roles. One of the most impor-
tant methods to analyze chaotic system is Shil’nikov
method, which has been used to check whether one
system is chaotic or not [8], and construct chaos sys-
tem for autonomous systems [5]. On the other hand,
it should be noted that one commonly used analytic
criterion for proving chaos in autonomous systems is
based on the fundamental work of Šil’nikov [9, 10],
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and its subsequent embellishment and slight exten-
sion [8, 11]. This is known as the Šil’nikov method or
Šil’nikov criterion today, and its role is in some sense
equivalent to that of the Li–Yorke lemma in the dis-
crete setting [12, 13]. Dynamics around equilibria or
hyperbolic saddle focus plays important role to create
chaotic attractors.

In a 3-D nonlinear dynamical system, a saddle point
is an equilibrium point on which the equivalent lin-
earized model has at least one eigenvalue in the stable
region and one in the unstable region. In the same sys-
tem, a saddle point is called the saddle point of index 1,
if one of the eigenvalues is unstable and others are sta-
ble. Also, a saddle point of index 2 is a saddle point
with one stable eigenvalue and two unstable ones. For
the multiscroll chaotic systems, it is shown that scrolls
are generated only around the saddle points of index 2.
Moreover, the saddle points of index 1 are responsi-
ble only for connecting scrolls [8, 14, 15]. The logical
question is what will happen if there is no equilibrium
in the chaotic systems. Although one chaotic system
without equilibrium was proposed in [16], no analysis
was proposed. In this paper, a new hyperchaotic sys-
tem without equilibrium is proposed and analyzed. It
is analyzed through phase portraits, Lyapunov expo-
nents, and Poincare maps. Finally, the circuit realiza-
tion is presented.

2 New hyperchaotic system without equilibrium

The new 4-D chaotic system is described by a system
of first-order ordinary differential equations:

ẋ = y,

ẏ = −x + yz + axzw,

ż = 1 − y2,

ẇ = z + bxz + cxyz.

(1)

Here, a, b, and c are constant parameters of the sys-
tem. If there are equilibria for system (1), they can be
obtained by solving ẋ = 0, ẏ = 0, ż = 0, and ẇ = 0,
that is,

y = 0, (2)

−x − yz + axzw = 0, (3)

1 − y2 = 0, (4)

z + bxz + cxyz = 0. (5)

As can be seen from (4), y = ±1 which is inconsistent
with (2). Hence, in system (1), there is no equilibrium
and there are no characteristics as the common chaotic
systems such as pitchfork bifurcation, Hopf bifurca-
tion, and so on. Moreover, there is no sink for this sys-
tem as there is no equilibrium.

2.1 Hyperchaotic system without equilibrium

When a = 8, b = −2.5, and c = −30, the initial con-
dition is (0.1,0.1,0.1,0.1) and the simulation time is
800 s, the 3-D phase portraits are shown in Fig. 1.
The projections of the phase portrait on x–w, y–w,
and z–w planes are shown in Fig. 1(a)–(c), respec-
tively, and the x–y–z 3-D chaotic attractor is shown
in Fig. 1(d).

If the efficient QR based method [17] is used to cal-
culate the Lyapunov exponents, the simulation time is
set as 15000 s and the sampling time-step is 0.0005 s,
the Lyapunov exponents of system (1) are λ1 = 0.87,
λ2 = 0.03, λ3 = 0.00, and λ4 = −1.01 which show the
system is hyperchaotic.

2.2 Poincaré map of the four-wing chaotic attractor

As an important analysis technique, the Poincaré map
can reflect bifurcation and folding properties of chaos.
When a = 8, b = −2.5, and c = −30, one may take
x = 0 and y = 0 as crossing planes, respectively. Fig-
ure 2 shows the Poincaré map in the y–z–w 3-D space
when x = 0. Figure 3 shows the Poincaré mapping
in the x–z–w 3-D space and on several other planes
when y = 0. It is clear that some sheets are folded and
indicates that the system has extremely rich dynam-
ics. As can be seen from Fig. 2 and Fig. 3, there is no
regular limbs, which further indicates that the system
has extremely rich dynamics and it is different from
the normal chaotic systems with one or more equilib-
ria. The reason for the differences of Poincaré maps
between this hyperchaotic system without equilibrium
and other normal chaotic or hyperchaotic systems are
that there is no limitation of equilibriums for the non-
equilibrium chaotic attractor. In [8, 14, 15], it is shown
that scrolls are generated only around the saddle points
of index 2. Moreover, the saddle points of index 1 are
responsible only for connecting scrolls. The results in
these references mean that the attractors always sur-
round the equilibriums. However, there is different dy-
namics in the proposed system as there is not equilib-
rium.
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Fig. 1 Hyperchaotic
attractor without
equilibrium, with a = 8,
c = −2.5, and c = −30

Fig. 2 Poincaré map in the y–z–w 3-D space x = 0 with a = 8,
b = −2.5, and c = −30

2.3 Frequency spectral analysis

Frequency spectra can be used to analyze chaotic at-
tractors since they can reveal how random signals are.
The frequency spectra of signals, generated numeri-
cally from the hyperchaotic systems (1) proposed in
this paper, are shown in Fig. 4. For calculation pur-
poses, the Runge–Kutta method is used to solve all
systems, with sampling time-step 0.0005 s, running
time 0–800 s, and all spectra are normalized. As can be

seen from Fig. 4, the frequency spectra are continuous
and have noise-like background, which means the sys-
tem (1) is chaotic. The chaos of the signal of states of
system (1) can also be shown by their time sequences.
The time sequences of the variables x, y, z and w of
the hyperchaotic attractor (1), with a = 8, b = −2.5
and c = −30, are shown in Fig. 5(a)–(d), respectively.
As can be seen from Fig. 5, the time sequences of
the system variables are neither sink nor periodic, and
similar to stochastic signal which is one of the prop-
erties of chaos. As can be seen from Fig. 4, the fre-
quency spectra of states x and z, corresponding to
Fig. 4(a) and Fig. 4(c) are narrower than the frequency
spectra of states y and w, corresponding to Fig. 4(b)
and Fig. 4(d). This result is caused by simpler parts
about ẋ and ż of system (1) which only include vari-
able y.

2.4 Circuit realization

In this section, an electronic circuit is designed to re-
alize system (1). To prevent the operational amplifiers
and analog multipliers from saturating, the transfor-
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Fig. 3 Hyperchaotic
attractor Poincaré mappings
of system (1) when y = 0
with a = 8, b = −2.5, and
c = −30

Fig. 4 The frequency
spectra generated
numerically from the
proposed hyperchaotic
system (1), with a = 8,
b = −2.5, and c = −30
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Fig. 5 The time sequence
of the hyperchaotic attractor
(1) with a = 8, b = −2.5,
and c = −30

mation x = 2xm, y = 2ym, z = 2zm and w = 2wm can
be used and the minification is 2.

The system (1) will be changed to

ẋm = ym,

ẏm = −xm + 2ymzm + 4axmzmwm,

żm = 0.5 − 2y2
m,

ẇm = zm + 2bxmzm + 4cxmymzm

(6)

which has the similar properties with system (1). The
designed circuit realizing (6) is presented in Fig. 6.

If the value of capacitor is not small enough, the fre-
quency of the signal will be too small to be displayed
on the oscilloscope. Here, all capacitors are taken to be
10 nF and all operational amplifiers and analog mul-
tipliers are chosen as LF347 and AD633JN, respec-
tively. The value of the resistor can be set as

R11 = R13 = R21 = R24 = R31 = R33 = R41

= R43 = 100 k�,

R12 = R42 = 100 �, R22 = 6.25 k�,

R23 = 200 �, R25 = 100 M�, R32 = 50 �,

R34 = 50 M�, R45 = 20 M�,

R44 = 5/6 M�.

The circuit is realized in EWB and the simulation
results of phase diagrams on the ym–wm and zm–wm

planes are shown in Fig. 7 which are similar with the
ones of Fig. 1.

3 Conclusion

A hyperchaotic attractor has been analyzed in this ar-
ticle. The analyses have shown that there is no equilib-
rium and no sink for this hyper-chaotic system. Other
numerical methods have also been used to prove that
the nonlinear system shows chaotic dynamics. These
numerical methods include phase portraits, Lyapunov
exponents, time series, and Poincaré maps. There is
little difference between this chaotic system without
equilibrium and other chaotic systems with one or sev-
eral equilibria if only phase portraits, Lyapunov expo-
nents and time series methods are used. However, the
Poincaré maps indicates that the system without the
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Fig. 6 Circuitry realization of the chaotic system (6)

limitation of equilibrium has extremely richer dynam-
ics than the normal hyperchaotic systems. The poten-

tial significance to study this hyperchaotic system is
that the proposed hyperchaotic system can be used in
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Fig. 7 Phase diagram of (6)

some engineering applications especially in the area
of information encryption as there is no limitation of
equilibrium. Moreover, the circuit realization was also
proposed. Future research work will focus on the the-
ory and the application about the chaotic system with-
out equilibrium.
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