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Abstract. To improve the production ability of a three-phase submerged arc furnace (SAF), it 

is necessary to maximize the power input; minimize the supply voltage unbalances to reduce 

the side effect of the power grids. In this paper, maximizing the power input and minimum the 

supply voltage unbalances based on a proposed multi-swarm multi-objective particle swarm 

optimization algorithm are focused on. It is necessary to have objective functions when an 

optimization algorithm is applied. However, it is difficult to get the mathematic model of a 

three-phase submerged arc furnace according to its mechanisms because the system is complex 

and there are many disturbances. The neural networks (NN) have been applied since its ability 

can be used as an arbitrary function approximation mechanism based on the observed data. 

Based on the Pareto front, a multi-swarm multi-objective particle swarm optimization is pro-

posed, which can be used to optimize the NN model of the three-phase SAF. The optimization 

results showed the efficiency of the proposed method. 

Keywords: Multi-objective Optimization, Particle Swarm Optimization, Submerged Arc 

Furnace, Power optimization, Supply voltage unbalances 

1 INTRODUCTION 

In the past decades there has been a drastic increment in the number and size of 

Submerged Arc Furnaces (SAF) constructed for the production of Ferro-chromium 

and Ferro-manganese alloys. The economic benefit caused the use of larger furnaces 

which are relatively large, e.g. 48 MVA for ferro-chromium, and up to 81 MVA for 

ferro-manganese, with currents ranging from about 50 to 130KA [1].  With the incre-

ment of the furnaces’ power, it is important to consider the side effects on the power 

grim such as supply voltage unbalances for three-phase submerged arc furnaces. 

Hence we have to consider the constraints or other objectives when furnaces are op-
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timally controlled. There are many parameters or variables about three-phase sub-

merged arc furnace and the most important variables are voltages, equivalent re-

sistance and temperature, for determining power of SAFs. However, it is difficult to 

construct a mathematical model SAF according to the mechanisms of the actual fur-

nace plant system due to its complexity and many disturbances; and the neural net-

work is a good option to model SAF as it is easy to use in modeling nonlinear func-

tions based on the observed data. Neural networks have been widely used for model-

ing complicated systems and achieve good results [2],[3]. Hence, the optimization 

algorithm can be applied based on the neural network model of for three-phase sub-

merged arc furnaces to get the control signals. Here, a proposed multi-swarm multi-

objective particle swarm optimization algorithm was used to optimize the power and 

supply voltage unbalances. 

The rest parts of the paper are organized as follows. Section II the multi-objective 

particle swarm optimization was reviewed and a multi-swarm multi-objective particle 

swarm optimization (MSMOPSO) method was proposed. Section III investigated the 

three-phase SAF.  Three-phase SAF was modeled by BP neural network in Section 

IV. Section V presents MSMOPSO based power and voltage unbalances optimiza-

tion. The concluding remarks were given in the last section. 

2 MULTI-SWARM MULTI-OBJECTIVE PARTICLE 

SWARM OPTIMIZATION 

In general the single objective optimization algorithms will terminate when an op-

timal solution is obtained. But for most MOO problems, there can be a number of 

optimal solutions. A multi-objective optimization (MOO) problem can be described 

by 

      1Min ( ) ( ( ), , ( ))mF x f x f x                                                    (1) 

      Subject to  x . 

Here   is the variable space, mR is the objective space, and : mF R  consists of 

m  real-valued objective functions.   

If there is no information regarding the preference of objectives, a ranking scheme 

based upon the Pareto optimality is regarded as an appropriate for MOO [4]. The 

solution to the MOO problem is described by a Pareto front set.  For the more details 

related to Pareto front set, please refer to reference [5]. 

A good MOO algorithm should guarantee a high probability of finding the Pareto 

optimal set. Among the MOO algorithms, the multi-objective particle swarm optimi-

zation algorithm has been proven to be a promising algorithm [6]. To achieve good 

optimization performance, the particles can be divided to several swarms. If a multi-

ple-swarm PSO employs an over large number of swarms, it will have a better chance 

of obtaining possible good solutions that lead to the optimal Pareto set, but it can also 

suffer from an undesirable computational cost. There are some multiple-swarm PSO 

algorithms, such as reference [6], [7], which used the adaptive swarm size methods. 

However, the existing MSMOPSOs do not use the information of the found Pareto 



front set to allocate the swarms. For most of the continuous optimization problems, 

the good results may be discovered if the particles search around the Pareto front. 

Based on this finding, we propose a MSMO optimization method. Several swarms are 

used to search regions around certain points of the Pareto front set. These swarms are 

called Pareto front swarms. There is still another swarm, which is called spare swarm 

and searches other spaces far away from the Pareto front to ensure all the particles are 

spread around the whole objective space. The main contributions of the proposed 

algorithm are: 

1) Pareto front swarms are used to search different regions around some points 

of Pareto front, and the velocity update equation is 

1 1 2 2 3 3( 1) ( ) ( ( )) ( ( )) ( ( ) ( ))i i i i g i iV t V t c R P X t c R P X t c R Core m X t            (2) 

( 1) ( ) ( 1)i i iX t X t V t                                                        (3) 

Here, ( )Core m  is central point of the mth swarm and is chosen dynamically, the rela-

tionship between m and i is floor( ) 1
g

i
m

num
  , 

gnum  is the particle number of the 

mth swarm and floor( )A  rounds the elements of A to the nearest integers less than or 

equal to A . The number of the cores equals the number of the Pareto front swarms. 

The cores are from the Pareto front set and using the same way as choosing the Pareto 

front set. 

2)   The particles of the spare swarm are updated using 

 
1 1 2 2 4 4( 1) ( ) ( ( )) ( ( )) ( ( ) ( ))i i i i g i iV t V t c R P X t c R P X t c R Core m X t            (4) 

( 1) ( ) ( 1)i i iX t X t V t                                     (5) 

Here, 
4c  is determined by the sharing function [8] according to the distance be-

tween particle i and core particles, 

4

1
( )

g

R rand
m

                                              (6) 

and gm  is the number of Pareto front swarms. 

3) To avoid the premature of PSO, small disturbance is added, that is, 

( 1, ) ( 1, ) v

i i

g

R
V t irand V t irand

m
                                        (7) 

Here, vR is a random number within an interval of [ 1,1] . 

The method of choosing 
iP  and gP  is described in ref. [9]. 

The following procedure can be used for the proposed particle swarm algorithm: 

1) Initialize the parameters of particles. 

2) Evaluate the fitness functions for each particle. 

3) Find the non-dominated Pareto front particles and store them in the repository 

set. 

4) Determine the cores of Pareto front swarms and dynamically set up the relation-

ship among the swarms and the cores. 

5) Using (2) and (3); or (4), (7) and (5) to update particles. 



6) Repeat steps (2)-(6) until a stopping criterion is met (e.g., maximum number of 

iterations or a sufficiently good fitness value). 

3 THREE-PHASE SUBMERGED ARC FURNACES  

A typical three-phase SAF consists of a fixed circular bath and three electrodes sub-

merged in a charge of raw materials projected into it. The operation of the SAF in-

volves trying to maintain the maximum real power input to the furnace within the 

constraints or limits of the associated equipment of the furnace [10]. To control the 

input power, the input voltage can be changed by the transformers. The transformers 

for the furnaces are different from the standard power system transformers in that the 

secondary winding has to supply very high currents at low voltages as shown in Fig. 

1. Furnace transformers are used to step down from voltages between 11KV and 33 

kV to levels of several hundred volts and control the input voltage of the furnace. 

 

Figure 1 A single phase furnace transformer [12] 

 

There are also constraints and limits for the operation of the three-phase SAF, for 

example, the voltage unbalance must be considered. The voltage unbalance occurs in 

SAFs, when current consumption is not balanced during the 3 cycle of processing 

(operation) or during a faulty condition before tripping. They impact negatively on 

three phase asynchronous motors by causing overheating and a tripping of protective 

devices. A voltage unbalance is a ratio of the negative sequence component to the 

positive sequence component and it can be determined by the following formulas [11] 

and the unbalance voltage, uu , is given as: 

 max ( )100%, 1,2,3
i avg

u i

avg

U U
u i

U


                                               (8) 

where iU  is the phase voltage, and 

3

1

1

3
avg i

i

U U


  . 

Hence to achieve good control performance of the three-phase SAF, there are at 

least two objectives: 1) maximum the power input; 2) minimum the voltage unbalanc-

es. Of course, there are other constraints or limits such as harmonics, which should be 

considered when the SAF system is optimized/controlled. In this study, we only focus 

on these two objectives. 



4 NEURAL NETWORK BASED MODELLING OF THREE-

PHASE SAF  

One of the most commonly used supervised neural networks is the back-

propagation network which uses the back-propagation learning algorithm [13], [14], 

[15]. It was first proposed by Paul Werbos in 1974, but it wasn’t until 1986, through 

the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams [16], 

that it gained recognition, which led to a “renaissance” in the field of artificial neural 

network research. The back propagation neural network is essentially a network of 

simple processing elements working together to produce a complex output. The com-

bination of weights which minimises the error function is considered to be a solution 

of the learning problem. 

    Here, the Neural Network Model is of two-layer feed-forward network with the 

default tan-sigmoid transfer function in the hidden layer with 45 neurons and the line-

ar transfer function in the output layer. The units in each layer receive their inputs 

units of a layer directly below and send their output to units in a layer directly above 

the unit. There are no connections within a layer and the inputs are fed into the layer 

of the hidden units. The input units are merely “fan out”, meaning that no processing 

taking place in them. The activation of the hidden layer is a function of the weighted 

inputs plus a bias. The design SAF model is trained using the Levenberg-Marquardt 

back-propagation method. To test the performance of the proposed SAF neural net-

work model, a set of electro-thermal variables from the 45 MW SAF Wonderkop 

Chrome Processing Plant (WCP) was used [12]. The input vectors (equivalent re-

sistances, voltages and temperature) and the target vector (power) comprise of 120 

samples each. It should be noted that only the first 90 samples are used to train neural 

network and the last 30 samples are used to validate and test the trained neural net-

work. 

The Neural Network Fitting Tool GUI is utilized to construct and train the neural 

network based on the software MATLAB 2009a. The linear regression performance 

between the obtained NN model outputs and the corresponding targets (power) shows 

that the model’s output tracks the targets very well for training and validation as 

shown in Fig. 2, which means that the trained neural network model is acceptable. 

 



 
Figure 2: Simulated Regression Characteristics 

The output of the SAF NN model and the real power data reveal some similarities 

explicitly. The real furnace power samples and the trained neural network model out-

put are shown in in Fig. 3. As can be seen from Fig. 3, the obtained neural network 

model showed similar characteristics of the real samples although the last 30 samples 

were not used to train the BP neural network. Hence this NN model can be used as the 

representative of the real SAF system. 

5 MULTI-SWARM MULTI-OBJECTIVE PSO BASED 

POWER AND VOLTAGE UNBALANCES OPTIZATION 

OF THREE-PHASE SAF 

As the data is from the 45 MW SAF Wonderkop Chrome Processing Plant (WCP), 

the theoretic input power can be 45 MW. However, as can be seen from Fig. 3, the 

real sample input power is much lower than the theoretic value (the highest input 

sample power is about 35 MW). Hence, there should be space to improve the input 

power based on the optimization algorithm although the voltage unbalances to be 

considered. As mentioned in Section 3, to optimize the performance of this three-

phase SAF, the optimization problem can be described by 



 

 
Figure 3 SAF neural network output versus real output data (power). 

Min 1 2( ) ( ( ), ( ))F x f x f x                                            (9) 

Subject to x                                                       (10) 

 

where, 
1( )f x  and 

2 ( )f x  are the input power and the voltage unbalance, respective-

ly, and 1 2 3 1 2 3[ , , , , , , ]x R R R U U U T , 
1 2 3, ,R R R  are three phase equivalent re-

sistances, 1 2 3, ,U U U  are three input phase voltages, and T is the furnace tempera-

ture.  Since we cannot get the mathematical model of the input power, the neural net-

work model obtained in Section 4 can be used as 1( )f x . It should be noted that there 

is a minus sign before 1( )f x  since the first objective is to maximum the input power. 

The second objective is  

2 ( ) min max ( ) 100%
i avg

i

avg

U U
f x

U

 
  

 
 

.                         (11) 

Altough there are 7 variables in the NN SAF model, only 1 2 3, ,U U U  are looked 

as control variable and 1 2 3, , ,R R R T  can be looked as time-variant parameters since 

this system is a slow response system can 1 2 3, , ,R R R T  can be measured or calculat-

ed in real time. For the condition (10), we can choose 

1 2 3276 300;100 290;100 263U U U       based on the samples. Table 1 gives 

the first 5 sets of samples and the simulation will be implement to verify the proposed 

method base on these 5 sets of samples. 

 

 

 

Table 1 5 sets of samples [12] 
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RESISTANCE VOLTAGE (V) 

Temp.  

 (oC) 
POWER   

     (KW) 

R1 R2 R3 U1 U2 U3 T  P 

S1 
2.1 2.1 2.77 289 158 188 2349 

29417.31 

S2 
2.73 2.27 4.21 286 187 200 2200 

28363.93 

S3 
2.14 2.12 1.29 299 197 263 2670 

33450.08 

S4 
4.27 4.18 2.09 300 100 100 2717 

15914.31 

S5 
2.14 1.75 1.28 284 290 163 2706 

31734.41 

 

In the simulation, the total number of fitness function evaluations was set to 10 

000. The particle number is 200. The number of Pareto front swarms is 20 and each 

swarm has 8 particles. A random initial population was created for each of the 20 runs 

on each test problem. The maximum number of external repository particles is 100. 

Parameters are set as 
1 2 2c c   and 0.5 ( )rand   . 

Using the proposed method, the Pareto fronts were obtained and they are shown in 

Fig. 4, 5, 6, 7 and 8 for S1, S2, S3, S4 and S5, respectively. Here S1, S2, S3, S4 and 

S5 are referring to the underlined parameters in Table 1. As can be seen from Fig. 4, 

5, 6, 7 and 8, the Pareto front is smooth and uniform which means the proposed multi-

swarm multi-objective PSO works well.   

Only considering the Figures 4, 5, 6, 7 and 8, higher input power may be obtained. 

However there are two limitations, which limit the increment of input power: 1) the 

voltage unbalance is acceptable if it is not more than 0.02 for long time; for short 

time, the voltage unbalance 0.04 is acceptable; 2) the input power cannot be more 

than 45 MW since this is a 45 MW SAF. For the first limitation and considering the 

real situation, the voltage unbalance 0.025 can be chosen to determine the power in-

puts based on the achieved Pareto front, and we can obtain the input voltages and the 

corresponding input power which are listed in Table 2. Consider the limitation 2), the 

maximum input power for S3 and S5 is 45 MW. In the real system, the input power 

more than 45 MW cannot be achieved due to the other limitations or constraints of the 

physical system. Comparing Table 1 and Table 2, the input power is similar with each 

other for S2, but the voltage unbalance was reduced. Hence the proposed method can 

improve the performance of three-phase SAF. 



 
             Figure 4 Pareto front for S1           Figure 5 Pareto front for S2          

 

 

 
     Figure 6 Pareto front for S3              Figure 7 Pareto front for S4          
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Figure 8 Pareto front for S5          

 

. 

Table 2 Optimization result based on the five sets of samples 

 
  

RESISTANCE VOLTAGE (V) 

Temp. 

 (oC) 
POWER  

     (KW) 

R1 R2 R3 U1 U2 U3 T  P 

2.1 2.1 2.77 276 276.5 257.1 2349 29906 

2.73 2.27 4.21 283.3 283.1 263 2200 28275 

2.14 2.12 1.29 276 276 263 2670 45000 

4.27 4.18 2.09 276 276 256 2717 34936 

2.14 1.75 1.28 276 276 263 2706 45000 

 

6 Conclusion 

The power and voltage unbalance of three-phase SAF were optimized based on a 

proposed multi-swarm multi-objective particle swarm optimization (MSMOPSO). A 

back-propagation neural network was used to model the three-phase SAF, and then 

MSMOPSO was implemented on the obtained neural network model. The achieved 

Pareto fronts are smooth and uniform which means the proposed multi-swarm multi-

objective PSO works well.  Moreover, the simulation result showed the efficiency of 

the proposed method to improve the performance of three-phase SAF. In our future 

research, the more constraints such as harmonics, power factor, and so on, will be 

considered to make the optimization be used in the real SAF plants. 
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