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Abstract. In this paper, a new algorithm for particle swarm optimisation (PSO) 
is proposed. In this algorithm, the particles are divided into two groups. The 
two groups have different focuses when all the particles are searching the 
problem space. The first group of particles will search the area around the best 
experience of their neighbours. The particles in the second group are influenced 
by the best experience of their neighbors and the individual best experience, 
which is the same as the standard PSO. Simulation results and comparisons 
with the standard PSO 2007 demonstrate that the proposed algorithm 
effectively enhances searching efficiency and improves the quality of searching. 
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1 Introduction of PSO 

PSO is an evolutionary computation technique developed by Kennedy and Eberhart 
[1] in 1995: it is a population-based optimisation technique, inspired by the motion of 
bird’s flocking, or fish schooling. The particle swarms are social organizations whose 
overall behavior relies on some sort of communication amongst members, and 
cooperation. All members obey a set of simple rules that model the communication 
within the flock, between the flocks and the environment. Each solution is a “bird” in 
the flock and is referred to as a “particle”. PSO is not largely affected by the size and 
nonlinearity of the problem, and can converge to the optimal solution in many 
problems [2-5] where most analytical methods fail to converge. It can, therefore, be 
effectively applied to different optimisation problems.  

The standard particle swarm algorithm works by iteratively searching in a region 
and is concerned with the best previous success of each particle, the best previous 
success of the particle swarm as a whole, the current position and the velocity of each 
particle [4]. The particle searches the domain of the problem, according to 

1 1 2 2( 1) ( ) ( ( )) ( ( )),i i i i g iV t V t c R P X t c R P X tω+ = + − + −              (1) 

( 1) ( ) ( 1)i i iX t X t V t+ = + +                          (2) 
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where 1 2, , n
i i i iV v v v=  is the velocity of particle i ; 1 2, , n

i i i iX x x x=  

represents the position of particle i ; iP  represents the best previous position of 

particle i  (indicating the best discoveries or previous experience of particle i ); gP  

represents the best previous position among all particles (indicating the best discovery 
or previous experience of the social swarm); ω  is the inertia weight that controls the 
impact of the previous velocity of the particle on its current velocity and is sometimes 
adaptive. 1R  and 2R  are two random weights whose components 1

jr and 2
jr  

( 1,2 , , )j n=  are chosen uniformly within the interval [0,1]  which might not 

guarantee the convergence of the particle trajectory; 1c  and 2c  are the positive 

constant parameters. Generally the value of each component in iV  should be clamped 

to the range max max[ , ]v v−  to control excessive roaming of particles outside the search 

space.  
Among these parameters, the inertia weight ω plays an important role and affects 

the global and local search ability of PSOs.  If the value of ω  is too big, the global 
search ability of PSO will be improved, but its local search ability will not be 
adequate. Otherwise, if the value of ω is small, the global search ability will decrease 
and the particles easily fall in premature. Some parameters of adaptive PSOs has been 
proposed but these usually change the inertia weight: ω  is large at the beginning of 
the search procedure and ω  decreases as time increased [7, 13]. However, there is a 
similar problem with the fixed inertia weight method: 1) at the beginning, the local 
search ability is not effective as ω  is big; while 2) the global search ability is not 
satisfactory at the end of the search procedure as ω  becomes small. To balance the 
local search and global search ability at the same time, a new particle swarm 
optimisation algorithm is proposed which can perform the local and global search es 
simultaneously.  

In the proposed algorithm, the particles are divided into two groups. The velocity 
of the first group of particles is only influenced by the best experience of its 
neighbors. And the velocity of the second group is influenced by both the best 
experience of its neighbors and its own best experience. The rest of this paper is 
arranged as follows: In Section 2, the proposed algorithm is described.  Section 3 
describes the problems used to evaluate the new algorithm and the results are 
obtained. Finally, the concluding remarks appear in Section 4. 

2 Local and Global Search Based PSO Algorithm 

Referring to equation (1), the right side consists of three parts: the first is the previous 
velocity of the particle; the second and third are those parts contributing to the change 
in the velocity of a particle. As explained in [7], without these two parts, the particles 
will keep on flying at the current speed in the same direction until they hit the 
boundary. PSO will not find an acceptable solution unless there are acceptable 
solutions on their flying trajectories. But this is a rare case. On the other hand, 
referring to equation (1) without the first part, the flying particles’ velocities are only 
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determined by their current positions and their best positions in its history. At the 
same time, each other particle will be flying toward its weighted centroid of its own 
best position and the global best position of the population [8]. Some authors have 
suggested adjustments to the parameters of the PSO algorithm: adding a random 
component to the inertia weight [9, 10], using a secondary PSO to find the optimal 
parameters of a primary PSO [11], and adaptive critics [12]. From our literature study 
and simulation experience, the optimum is often found near the global best experience 
in various optimisation problems. To help the particles to enhance searching the 
region around the global best experience, the first group particles are separated from 
the whole set of particles to search the area around the global best experience. Then 
equations (1) and (2) will be altered to 

1 1 2 2( 1) 0.5 ( ) ( ( )) ( ( )),i i g i g iV t V t c R P X t c R P X tω+ = × × + − + −            (3) 

( 1) ( ) ( 1).i i iX t X t V t+ = + +                       (4) 

As can be seen from equation (3), the particles will focus on searching the area 
around the best experience among their neighbors. 

The particles in the second group will continue to the search the global experience 
of the swarm and its own best experience according to equations (1) and (2), which 
are the same as the standard PSO. 

The following procedure can be used for implementing the proposed particle 
swarm algorithm: 

1) Initialize the swarm, assign a random position in the problem hyperspace to each 
particle and calculate the fitness function which is yielded by the optimisation 
problem whose variables are corresponding to the elements of particle position 
coordinates.  

2) The particles in the first group search the area according to equations (3) and 
(4). Meanwhile, those in the second group search the area according to equations (1) 
and (2). 

3) Evaluate the fitness function for each particle. 
4) For each individual particle, compare the particle's fitness value with its 

previous best fitness value. For each individual particle, compare the particle's fitness 
value with its previous best fitness value. If the current value Xi is better than the 
previous best value iP , then set iP  as iX . 

5) Repeat steps 2) - 4) until the criterion for stopping is met (e.g., maximum 
number of iterations or a sufficiently good fitness value). 

3 Numerical Simulation 

To demonstrate the efficiency of the proposed technique, six well-known benchmarks 
are used to compare the proposed method and the standard PSO 2007 (Matlab version 
compiled in 2011) [14]. These six optimisation problems were used as shown in  
Table 1. Their parameters are given in Table 2. These six are famous test functions for  
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minimization methods; each of them has several local minima. In the numerical 
simulation of the proposed LGPSO method and standard PSO, the particle swarm 

population size is set floor(10 2 D+ ). Here D is the dimension of  the optimisation 
problems and the function floor(A) rounds the elements of float number A to the 
nearest integers less than or equal to A. The rest of the parameters are as follows: 

inertia weight 
1

0.7213
(2 log 2)

ω = ≈ , learning rates 1 2 0.5 log 2c c= = + , and 

velocity Vmax set to the dynamic range of the particle in each dimension.  
The topology of LGPSO is the same as the standard PSO 2007 (SPSO 2011) [14].  
It should be noted that the initial variables are set random float numbers in the range 
[0, 1] to check the effect of big search range. The maximum number of function 
evaluations is 2000 for these two methods with 100 independent runs. The 
optimisation statistical analysis of these two algorithms is reported in Table 3.  
The evolutionary curves of LGPSO and the standard PSO 2007 are depicted in 
Figures 1-6. 
 

Table 1. Functions used to test the effects of the LGPSO method 

Problem Objective functions  

Rosenbrock 2 2
1

1

( ) (100( )) ( 1) )
D

i i i
i

f x x x x+
=

= − + −   

 
Ackley 

 

2

1 1

1 1 1
cos(2 )

5
( ) 20 20

D D

i i
i i

x x
D D

f x e e e
π

= =

− −

= + − −   

Griewank 2

1
1

( 100)1
( ) ( 100) cos( ) 1

4000

D
D i

i i
i

x
f x x

i=
=

−
= − − +∏  

 
Salomon 

2 2

1 1

( ) cos(2 ) 0.1 1
D D

i i
i i

f x x xπ
= =

= + +   

 
Rotated-hyper-ellipsoid 

 
Quartic function 

2

1 1

( ) ( )
D i

j
i j

f x x
= =

=  

4

1

( ) ()
D

i
i

f x ix rand
=

= +  

 

Alpine 

1

( ) sin( ) 0.1
D

i i i
i

f x x x x
=

= +  
 

Levy 

( ) ( )

2
1

1
2 2

1

2 2
1 1

( ) sin ( )

1 1 10sin ( 1)

( 1) (1 sin (2 ))

D

i i
i

D D

f x x

x x

y x

π

π

π

−

=

− −

=

− + +
+

+ − +
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Table 2. Functions parameters for the test problems 

Problem Dimension Search range  Initial range 

Rosenbrock 30 500±        [0, 1] 

Ackley 30 500±        [0, 1] 

Griewank 30 500±        [0, 1] 

Salomon 30 500±        [0, 1] 

Rotated-hyper-ellipsoid 
Quartic function 

30 
30 

500±        [0, 1] 
500±        [0, 1] 

Alpine 
Levy 

30 
30 

500±        [0, 1] 
500±        [0, 1] 

 

Table 3. Comparison between standard PSO 2007 and LGPSO 

Problem Method best Mean 

 

Std.dev Worst 

Rosenbrock Standard 

PSO 2007 

122.3422 222.7063 31.1602 343.6297 

Rosenbrock LGPSO 122.0898 183.5776 24.3594 261.8783 

Ackley Standard 

PSO 2007 

1.8158 2.3669 0.2861 3.0259 

Ackley LGPSO 1.2924 2.0563 0.3337 2.9711 

Griewank Standard 

PSO 2007 

0.0411 0.0788 0.0226 0.1827 

Griewank LGPSO 0.0247 0.0584 0.0172 0.1110 

Salomon Standard 

PSO 2007 

0.2999 0.2999 1.0235e-004 0.3005 

Salomon LGPSO 0.2999 0.2999 6.9229e-006 0.2999 

Rotated hyper-ellipsoid Standard 

PSO 2007 

38.1115 144.2199 67.4747 432.1835 

Rotated hyper-ellipsoid LGPSO 12.1226 48.0499 30.0913 143.8851 

Quartic function Standard 

PSO 2007 

1.8093 5.8692 2.5883 15.6572 

Quartic function LGPSO 1.3892 3.7318 1.5546 8.2722 

Alpine function Standard 

PSO 2007 

0.9011 1.9667 0.6130 4.0312 

Alpine function LGPSO 0.4702 1.4589 0.5381 3.5732 

Levy function Standard 

PSO 2007 

0.4363 0.7213 0.1312 1.1353 

Levy function LGPSO 0.2605 0.5791 0.1267 0.8630 
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Fig. 1. Comparison for Rosenbrock function Fig. 2. Comparison for Ackley function 
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Fig. 3. Comparison for Griewank function Fig. 4. Comparison for Salomon function 
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Fig. 7. Comparison for Alpine function Fig. 8. Comparison for Levy function 

As can be seen from Table 3, for the test functions, the best, mean, standard 
deviation and worst results obtained by the LGPSO are better than the results gained 
from the standard PSO 2007. The optimization performance of the proposed method 
is also more stable than the standard PSO 2007 according to the statistical analysis of 
mean and standard deviation. From Figures 1-8, the optimisation performance is 
better when the procedure begins, as the local search is added into the algorithms. The 
simulation results obtained by the LGPSO are better than the results from the standard 
PSO 2007, which means the final solutions obtained from the LGPSO are more 
closely focused on the best solution than those from the standard PSO 2007. 

4 Conclusion 

In this paper, a local and global search based particle swarm optimisation (LGPSO) 
method was proposed to improve the optimisation performance of the PSO. In this 
new model, the first group of particles focused on the search around the global best 
experience while the second group particles are influenced by both the best 
experience of their group and their own best experience. The simulations showed that 
the proposed method can achieve good optimisation performance no matter whether 
at the beginning or at the end of the search period. Moreover, the complexity of  
the proposed algorithm is not increased over that of the Standard PSO 2007 while the 
performance of the proposed FCPSO is more stable and more accurate than the 
Standard PSO 2007.  
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