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Abstract. In this paper, a new model for multi-objective particle swarm
optimization (MOPSO) is proposed. In this model, each particle’s behav-
ior is influenced by the best experience among its neighbors, its own best
experience and all its components. The influence among different compo-
nents of particles is implemented by the on-line training of a multi-input
Multi-output back propagation (BP) neural network. The inputs and
outputs of the BP neural network are the particle position and its the
’gradient descent’ direction vector to the less objective value according to
the definition of no-domination, respectively. Therefore, the new struc-
tured MOPSO model is called a fully connected multi-objective particle
swarm optimizer (FCMOPSO). Simulation results and comparisons with
exiting MOPSOs demonstrate that the proposed FCMOPSO is more sta-
ble and can improve the optimization performance.

Keywords: Multi-objective Optimization, Particle Swarm Optimiza-
tion, Neural Network, Pareto Front, non-domination.

1 Introduction

The single-objective Particle Swarm Optimization (SOPSO), first introduced by
[1], is a stochastic optimization technique that can be likened to the behavior
of a flock of birds or the sociological behavior of a group of people. It has been
used to solve a range of optimization problems, including neural network training
[2] and function minimization [3]. In a particle swarm optimizer the individuals
are evolved by cooperation among the individuals through generations. Every
particle finds its personal best position and the group’s best position through
iteration, and then modifies their progressing direction and speed to rapidly
reach optimum position. Particle swarm algorithms have been used to success-
fully optimize a wide range of problems [4]. Later, the SOPSO was extended to
deal with multi-objective Optimization [5] [6]. The searching processes of the
multi-objective PSO (MOPSO) are similar with SOPSO. During the search pro-
cess, each particle can be regarded as an independent agent, which searches the
problem space based on its own experience and the experiences of its peers. The
former is the cognitive part of the particle update formula, while the latter is

D.-S. Huang et al. (Eds.): ICIC 2011, LNCS 6838, pp. 170–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Fully Connected Multi-Objective Particle Swarm Optimizer 171

the social part of the particle update formula. Both play crucial roles to guide
the particle’s search.

There are no connections among particle components for most PSOs. But the
relationships among the variables of optimization problems can affect the opti-
mization performance as the variables are coupled for most of the optimization
problems. There are many classic optimization algorithms in the literature such
as Quasi-Newton Methods [7], Gauss-Newton Method, Levenberg–Marquardt
Method [8], and so on. In these optimization algorithms, the search direction is
determined by all variables of the optimization function. Many intelligent op-
timization methods are proposed based on all components of the optimization
problem such as Hopfield Neural Networks [9].

Moreover, the PSOs only use little information of past experience, such as
the individual best position, the group’s best position and so on. Most of the
past information will be given up. The neural network is very powerful as it
can memorize the information or characteristics of a complicated system. To
improve the optimization performance of SOPSO, Sun et al. proposed the full
connected PSO for single-objective optimization problems [10] based on neural
network which was used to memorize the tendency to a less value of fitness func-
tion at different positions which is the most important difference between the
full connected PSO and other hybrid PSO-BP algorithms such as references [11],
[12], and so on. It showed a good optimization performance. However, the full
connected single-objective PSO cannot be directly used for multi-objective opti-
mization problems as there are several optimization objectives, and the choices
of the own experience and the swarm experience are different. The present pa-
per aims at proposing a multi-objective version of full connected particle swarm
optimization.

The remainder of this paper is organized as follows: Section 2 is an introduc-
tion of the multi-objective particle swarm optimization algorithm and BP neural
network. Section 3 proposes the multi-objective version of full connected particle
swarm optimization. Numerical results and comparisons are provided in Section
4. Finally, the concluding remarks appear in Section 5.

2 A Brief Introduction of Multi-Objective Particle
Swarm Optimization

The canonical particle swarm algorithm works by iteratively searching in a re-
gion and is concerned with the best previous success of each particle, the best
previous success of the particle swarm and the current position and velocity of
each particle [1]. Every candidate solution is called a “particle”. A particle sta-
tus on the search space is characterized by two factors: its position and velocity,
which are updated by following equations.

Vi(t + 1) = ωVi(t) + c1R1(Pi − Xi(t)) + c2R2(Pg − Xi(t)), (1)
Xi(t + 1) = Xi(t) + Vi(t + 1), (2)
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where Vi = [v1
i , v2

i , . . . , vn
i ] is the velocity vector of particle i; Xi = [x1

i , x
2
i , . . . , x

n
i ]

represents the position of particle i; Pi represents the best previous position of
particle i (indicating the best discoveries or previous experience of particle i);
Pg represents the best previous position among all particles (indicating the best
discovery or previous experience of the social swarm); ω is the inertia weight
that controls the impact of the previous velocity of the particle on its current
velocity and is sometimes adaptive; R1 and R2 are two random weights whose
components rj

1 and rj
2 (j = 1, 2, . . . , n) are chosen uniformly within the interval

[0, 1] which might not guarantee the convergence of the particle trajectory; c1

and c2 are positive constant parameters. Generally the value of each component
in Vi should be clamped to the range [−Vmax, Vmax] to control excessive roaming
of particles outside the search space.

The difference between single-objective optimization and multi-objective op-
timization is that there are more than one objectives to be optimized for multi-
objective optimization, that is, a multi-objective optimization problem can be
described as:

Find: XT = [x1, x2, · · · , xn],
Minimize: F (X) = (f1(X), · · · , fm(X),
subject to: X ∈ Ω.

(3)

Here, Rm is the objective space, and F : Ω −→ Rm consists of m real-valued
objective functions. The analogy of PSO with evolutionary algorithms makes
evident the notion that using a Pareto ranking scheme [6] could be the straight-
forward way to extend the approach to handle multiobjective optimization prob-
lems. The solution to the multi-objective optimization problem exists in the form
of an alternate tradeoff known as a Pareto optimal set. Each objective component
of any non-dominated solution in the Pareto optimal set can only be improved
by degrading at least one of its other objective components. A vector Fa is said
to dominate another vector Fb, denoted as

Fa < Fb, ifffa,i < fb,i ∀i = {1, 2, · · · , m} and ∃j ∈ {1, 2, · · · , m} where fa,j < fb,j

(4)
For the more details about MMPSO, please refer to references [6] and [13].

3 Full Connected Multi-Objective Particle Swarm
Optimization

As can be seen from equations (1) and (2), the position of a particle, the best
experience among its neighbors and its own best experience are connected by
fixed variables and random parameters. There exists a linear relationship be-
tween these elements. As every particle can be seen as the model of a single fish
or a single bird, the position chosen by the particle can be regarded as a state
of a neural network with a random synaptic connection. According to equations
(1)–(2), the position components of particle i can be thought of as the output
of a neural network as shown in Fig. 1(a) [10].
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However, the relationship and influence only relies on the corresponding di-
mensional components of the particle swarm which is easily seen in Fig. 1(a).
For example, the component x1

i (t + 1) is only influenced by x1
i (t), v

1
i (t), p1

i (t)
and p1

g(t), but does not directly get information from the other components
x2

i (t), x
3
i (t) . . . xn

i (t), v2
i (t), v3

i (t), . . . vn
i (t), p2

i (t), p
3
i (t), . . . p

n
i (t) and p2

g(t), p3
g(t),

. . . pn
g (t). To show the relationship among different components, neural networks

can be used to model the characteristics of the gradient descent direction of the
optimization problem. The inputs and outputs of the neural network are the
positions of the particles and the gradient descent direction vector of the better
experience of the particles, respectively. Here the back propagation neural net-
work is used to learn the dynamics at different positions and the “Levenberg–
Marquardt Method” [8] is chosen to train back propagation neural network..
The fully connected particle swarm structure based on multi-input multi-output
BP neural network is therefore proposed which is shown in Fig. 1(b). In this
structure, all the components of each particle are the inputs of the back prop-
agation neural networks. The output of the back propagation neural network,
�Xi = [�x1

i ,�x2
i , . . . ,�x1

n, ], reflects the gradient descent unit vector of the
particle i. In order to take advantage of each component of the particle itself,
the gradient descent unit vector �Xi(t) is added to equation (2). In our pro-
posed fully connected particle swarm optimization, when the previous position
was dominated by a position, a back propagation neural network is used to get
the gradient descent unit vector at different position of the particle. The inputs
of the training neural network are each component of the particle’s position,
Xi(t). The output of the training neural network is

� xj
i =

Xj
i (t1) − Xj

i (t0)
||Xi(t1) − Xi(t0)|| . (5)

Here, Xj
i (t1) is the current position in problem space if the current position

dominates the objective values related to Xi(t0) in objective space; Xi(t0) is up-
dated with Xj

i (t0) when Xj
i (t1) is changed. For the improvement index ΔXj

i (t),
a random part is introduced to improve the search ability. Based on trial and
error, the parameter α can be chosen in the range [0.01, 0.2], in this paper, 0.01
is used. When the particles get trapped into local minima, the random part helps
the particles to escape from the local minima. The jth component of particle i
is described as

ΔXj
i (t) = g(�xj

i ) =
α ∗ rand(1) � xj

i

generations
. (6)

Equations (2) is therefore changed into the following equations:

Xi(t + 1) = Xi(t) + Vi(t + 1) + ΔXi(t), (7)

The following procedure can be used for implementing the proposed particle
swarm algorithm:

– 1) Initialize the BP neural network (the BP neural network can be trained
using the existing data firstly), the swarm and assign a random position in
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Fig. 1. Structures of Particle swarm optimization

the problem hyperspace to each particle and calculate the fitness function
which is given by the optimization problem whose variables are correspond-
ing to the elements of particle position coordinates.

– 2) Synchronously update the positions of all the particles according to equa-
tions (2), (8), and change the two states every iteration.

– 3) Evaluate the fitness function for each particle.
– 4) Find the non-dominated Pareto front and store it in the repository set.

(The data from the first 50 iterations is used to train the neural network
using 20 epochs before it is switched into the loop where it is trained online
during each iteration using 5 epochs).

– 5) Repeat steps 2)–4) until a stopping criterion is met (e.g., maximum num-
ber of iterations).

4 Comparison between FCMOPSO and MOPSO

4.1 Test Problems

The test problems are Shaffer, Deb 2, ZDT1 and ZDT 4. For the Schaffer function
[14][13], the Pareto front is convex and connected. The Pareto front of Deb 2
[13] is disconnected and convex. The Pareto front of ZDT1 [14][13] is convex.
The Pareto front of ZDT4 [14][13] is connected and non-convex. All of them are
typical benchmark functions.
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In this section, the performance of this proposed method is compared with
multi-objective PSO [6]. In these examples, the total number of fitness function
evaluations was set to 20 000. The particle number of particles is 100. A random
initial population was created for each of the 20 runs on each test problem. The
maximum number of external repository particles is 100.

Using the full connected multi-objective PSO and the multi-objective PSO in
reference [6], the Pareto fronts are the ’o’ symbols and the ’�’ symbols in Figs.
2(a)-2(d), respectively. From Figs. 2(a)-2(d), it can be seen that the proposed
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Fig. 2. Pareto fronts

method performs better than the algorithm in reference [6]. It would be better
to use some performance metrics to find the comparison results other than just
the figures as it is more convincing.

4.2 Performance Metrics

In order to provide a quantitative assessment for the performance of MO opti-
mizer, two metrics are often taken into consideration, i.e., Generational Distance
and Spacing metric [6] [13].
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1)The metric of generational distance (GD) gives a good indication of the
gap between the discovered Pareto front and the true Pareto front. The GD
comparison of FCMOPSO and MOPSO [6] is shown in Table 1.

Table 1. GD comparison of FCMOPSO and MOPSO [6]

Problem Method Max Mean Min std.dev

Schaffer MOPSO 2.194 ∗ 10−47.117 ∗ 10−5 3.244 ∗ 10−5 8.257 ∗ 10−5

Schaffer FCPSO 2.210 ∗ 10−51.022 ∗ 10−5 2.792 ∗ 10−6 4.952 ∗ 10−6

Deb2 MOPSO 1.102 ∗ 10−49.817 ∗ 10−5 5.440 ∗ 10−5 9.510 ∗ 10−6

Deb2 FCMOPSO 9.412e − 05 6.700 ∗ 10−5 4.170 ∗ 10−5 7.243 ∗ 10−6

ZDT1 MOPSO 0.0048 0.0023 0(Pareto front converges to a point) 0.0023

ZDT1 FCMOPSO1.927 ∗ 10−42.001 ∗ 10−4 2.054 ∗ 10−4 7.131 ∗ 10−6

ZDT4 MOPSO 2.177 ∗ 10−41.010 ∗ 10−3 2.177 ∗ 10−4 9.138 ∗ 10−4

ZDT4 FCMOPSO3.127 ∗ 10−41.017 ∗ 10−4 4.950 ∗ 10−5 5.831 ∗ 10−5

2)To measure the distribution of vectors throughout the non-dominated vec-
tors found so far, the spacing metric is often used [6]. This metric can show how
well the Pareto front found is if all the points are on or very close to the real
Pareto front. At this situation, the smaller the spacing metric is, the better the
particles are spread along the Pareto front. It would be better to use the spacing
metric together with the Pareto front figure; otherwise it would be difficult to
conclude the performance just according to the spacing metric. For example, all
the Pareto front points converged to one point and the space metric is 0 in one
simulation. The spacing metric comparison of FCMOPSO and MOPSO [6] is
shown in Table 2.

Table 2. Spacing metric comparison of FCMOPSO and MOPSO [6]

Problem Method Max Mean Min std.dev

Schaffer MOPSO 0.0124 0.0071 0.0009 0.0044

Schaffer FCPSO 7.221 ∗ 10−43.267 ∗ 10−4 2.961 ∗ 10−4 1.249 ∗ 10−4

Deb2 MOPSO 0.0175 0.0096 0.0044 0.0021

Deb2 FCMOPSO 0.0062 0.0045 0.0037 0.0016

ZDT1 MOPSO 0.0472 0.0230 0 (Pareto front converges to a point) 0.0211

ZDT1 FCMOPSO 0.0034 0.0033 0.0030 3.1426 ∗ 10−5

ZDT4 MOPSO 0.0349 0.0071 0.0068 0.0163

ZDT4 FCMOPSO 0.0141 0.0124 0.0112 0.0015

As can be seen from the statistic Tables 1 and 2, the proposed method can
achieve better Pareto front than the classic MOPSO [6] for Schaffer, Deb2 and
ZDT1 optimization problems. Although according to Table 2 the spacing metric
of FCMOPSO is not better than the one of MOPSO, it can be shown that the
obtained Pareto front is better than the one of MOPSO as shown in Fig. 2(d).
The reason for the spacing metric of ZDT4 is that the Pareto front of MOPSO
shrinks as it is away from the true Pareto front.
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5 Conclusion

A fully connected multi-objective particle swarm optimization (FCMOPSO)
model was proposed to improve the optimization performance of the MOPSO.
For this new model, all components of each particle are directly participating in
the evolutionary optimization process. The effect among different components of
each particle was implemented via the back propagation (BP) neural network.
Although the complexity is higher than the existing MOPSO algorithms, the
performance of the proposed FCMOPSO is more stable and more accurate than
the classic MOPSO.
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