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Abstract: A new insertion/deletion correction scheme is presented for standard convolutional codes 

that makes use of multiple parallel-interconnected Viterbi decoders. Whenever an insertion or 

deletion error occurs, the connections between different Viterbi decoders ensure that decoding will 

proceed from the decoder that is in synchronization. In this way, a larger Viterbi decoder is created 

that can correct insertion and/or deletion errors by extending the Viterbi algorithm to encompass all 

parallel decoders. Further, it is shown how the performance can be improved by inverting certain bits 

during the encoding of the convolutional codes. This lowers the frequency of occurrence of repeating 

sequences, which is detrimental to synchronization when dealing with insertions/deletions. 
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1. INTRODUCTION 

The majority of error correcting codes are designed to 

correct reversal errors, also known as additive errors, 

where a received bit differs from the transmitted bit, e.g. 

in the binary case where a transmitted 0 is received as a 1 

or vice versa. 

Additionally, incorrect synchronization can also cause 

errors to occur. In this case, insertion and/or deletion 

errors can be used to model synchronization loss. When 

an insertion occurs, a random bit is received which was 

not transmitted and when a deletion occurs a transmitted 

bit is not received at all. Any synchronization loss 

because of these types of errors will result in bursts of 

reversal errors, if the synchronization is left uncorrected. 

In the field of insertion/deletion correction most work has 

been done for block codes. See e.g. Levenstein [1], Bours 

[2], Davey and MacKay [3], Helberg and Ferreira [4], 

Swart and Ferreira [5] and references listed in these. On 

the other hand, relatively little research has been done in 

using convolutional codes to correct insertion/deletion 

errors. See e.g. Mori and Imai [6], Swart and Ferreira [7] 

and Dos Santos et al [8], [9]. 

The new scheme will be presented, along with the notion 

of bit inverting sequences, which improves the 

performance in some cases. Several factors are evaluated 

in the simulation results to be presented, where the 

performance of the new scheme is investigated. 

2. PREVIOUS WORK 

In this section a short review is given of some methods to 

correct synchronization in convolutional codes, as well as 

previous schemes upon which the new scheme is based. 

As mentioned earlier, a synchronization error results in a 

burst of reversal errors. In the Viterbi algorithm, this 

causes all the error metrics to have a high rate of change. 

Synchronization is recovered by letting the framing shift 

a few bits while monitoring the error metrics. As soon as 

the error metrics’ rate of change decreases significantly, 

synchronization has been recovered. Any data received 

while the Viterbi decoder is trying to recover is lost [10]. 

Based on this, Dos Santos et al [8], [9] proposed to use 

multiple, parallel Viterbi decoders, with each decoder one 

bit out of sync with the others, in order to correct 

insertions/deletions. By monitoring the rate of change for 

the accumulated error metrics, one is able to ascertain 

which of the Viterbi decoders is in synchronization. The 

output is selected from the decoder that is considered to 

be in sync. Although this improves on the previous 

method where data were lost, this scheme did not exactly 

determine the position of the error. Thus synchronization 

correction still resulted in short bursts of reversal errors, 

which was then corrected by using Reed Solomon codes 

in a concatenated approach. 

The advantage of using this method, as well as the new 

scheme to be presented, over others, e.g. [7], is that 

existing convolutional codes are used, as well as standard 

encoding and decoding methods. Only the decoder is 

slightly modified. This scheme also makes use of the 

Hamming distance to correct insertion/deletion errors and 

not the Levenshtein distance which is normally associated 

with these types of errors and is more complex to 

calculate. 

The scheme presented here is similar to a watermark 

extraction scheme proposed by Mansour and Tewfik [11]. 

Watermarks are inserted into regions with a high masking 

threshold, but after possible processing these regions can 
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change, causing extraction from incorrectly identified 

regions. These incorrect regions can be considered 

similar to insertion errors. 

3. PARALLEL-INTERCONNECTED VITERBI 

DECODERS 

The new scheme makes use of multiple parallel Viterbi 

decoders, each one bit out of sync with the others. 

However, each of these decoders is also interconnected to 

the decoder next to it. By doing this, a larger Viterbi 

decoder is created that can correct insertion and/or 

deletion errors by extending the Viterbi algorithm to 

encompass all the parallel decoders. 

Thus, where the previous scheme of Dos Santos et al
made use of the rate of change in the error metrics to 

choose which decoder is in sync, this scheme integrates 

this into a modified Viterbi algorithm, which finds the 

most likely path through the super trellis. In Figure 1, this 

super trellis is illustrated using an R = 1/3 code with two 

states as a simple example. 

0

1

0

1

0

1

0

1

0

1

0

1

0

1 1

0

1

-1:

0:

+1:

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

…

…

…
0

Figure 1: Representation of super trellis 

For clarity, the entire decoder is referred to as the super 

decoder and the respective parallel decoders as the sub 

decoders. Each sub decoder is assigned an integer 

denoting its sync relative to the sub decoder that is 

assumed to be in sync, e.g. the sub decoder that is in sync 

is denoted by 0, the sub decoder lagging by one bit is 

denoted by −1 and the sub decoder leading by one bit is 

denoted by +1. 

The interconnections between sub decoders (dashed paths 

in Figure 1) are biased so that irrespective of the received 

data, they will always contribute n units of distance to the 

error metric. This is to ensure that a path leading to 

another sub decoder is not mistakenly chosen unless an 

insertion or deletion occurred. During decoding the usual 

5m decoding delay is used, with m the memory length, 

although some of the results will show that this choice of 

delay does not always produce the best performance. 

In Figure 2, an example of decoding is shown. For 

simplicity only the survivor paths and the output path (in 

bold) are shown. Decoding has proceeded normally up to 

this point (Figure 2(a)). When the super decoder finds 

that an output indicates a switch from one sub decoder to 

another (Figure 2(b)), the decoder has to go back 5 time 

intervals (the delay used in this example), resynchronize 

and recalculate all the error metrics and survivor paths 

(Figure 2(c)). In this example it is found that the −1 sub 

decoder is now in sync. The −1 sub decoder becomes the 

0 sub decoder and the 0 sub decoder becomes the +1 sub 

decoder. At this point all error metrics are set to zero and 

the next 5 time intervals can be recalculated from where 

normal decoding can resume. 

Figure 2: Trellis example of resyncing after a deletion 

The insertion/deletion correction ability depends on the 

configuration and number of sub decoders used. When 

n − 1 sub decoders are used, this scheme can correct 

n/2 , n odd, and (n − 1)/2 , n even, consecutive 

deletions and/or insertions on a channel with mixed 

errors, i.e. insertions and deletions. When only one type 

of error is expected to occur and n − 1 sub decoders are 

used, then n − 1 consecutive errors can be corrected. In 

both cases, a guard space of at least D × n code bits with 

no errors is needed after the errors, where D denotes the 

delay used in the Viterbi decoder. In some instances this 
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ability can be improved on, though no guarantees can be 

given. 

4. BIT INVERTING 

Although this scheme works when using existing codes, 

better performance can be achieved by making slight 

changes to the encoder. 

Considering for example the all zero path in the trellis, 

one would realize that an insertion/deletion in a long run 

of zeros would not be detected immediately. Inverting 

certain bits during encoding can easily eliminate this. As 

this is done for each word, the distance profile of the 

convolutional code remains unchanged, however it 

ensures that there is enough distance between paths that 

are shifted by one bit, which is exactly what the scheme 

relies on. This has previously been researched, see e.g. 

Baumert et al [12]. 

It can also be noted that the structure of the convolutional 

code repeats every n bits. Whenever n deletions or 

insertions occur, a whole word is lost or gained which the 

decoder will not pick up. Also, when both insertions and 

deletions occur, it is possible for s deletions to look like 

n − s insertions. For example, using a code with n = 3, if 

2 deletions occur, the decoder would detect and decode 

this as 1 insertion. Because convolutional code words are 

relatively short, this severely hampers the error correction 

ability of the decoder. 

However, this problem can be overcome to some extent 

by inverting the bits in every second time interval. In 

every even time interval, the data is encoded as normal 

and in every odd time interval, the data is encoded and 

then the bits are inverted. Using this method, the 

convolutional code’s structure repeats every 2n bits 

instead of every n bits, thereby increasing the error 

correcting capability of the decoder. The effect of these 

inverting bits will be illustrated in the results of the next 

section. 

5. RESULTS 

In this section, selected results will be presented to 

demonstrate the performance of the codes, as well as to 

highlight some of the key issues encountered. 

The channel model used for the simulations is a 

symmetric reversal, insertion and deletion (RID) channel, 

which is a simplification of the general RID channel used 

by Swart [13] and similar to the channel of [3]. Similar to 

the Binary Symmetric Channel, this model is memory-

less with statistically independent errors. 

Convolutional codes with R = 1/2, R = 1/3 and R = 2/3 

and m = 1 and m = 2 were used to generate the results 

presented. All simulations were performed using input 

data lengths of 1000 bits, unless otherwise indicated. 

Several thousand of these 1000 bit packets were sent over 

the channel. Perfect sync is assumed between each packet 

and in practice this can be achieved by using markers, see 

[14] and [15]. 

In Figures 3−5 the deletion error rate (DER) is shown 

against the bit error rate (BER). Whenever a decoding 

error occurred, the resulting burst of reversal errors was 

also included in the calculation of the bit error rate. The 

bit inverting sequence used for the different codes is 

shown in square brackets in the legend and D indicates 

the delay that was used. The graphs denoted as “normal” 

indicate the performance when the convolutional code is 

used without synchronization correction. 

In Figure 3, the performance of the R = 1/3 convolutional 

codes is shown. A delay of D = 5 is used for the m = 1 

codes and a delay of D = 10 is used for the m = 2 codes. 

One can see that the codes with the [00 0 00 1] inverting 

bits perform much better that the others at high deletion 

error rates. However, for very low deletion error rates the 

other codes’ performance increases significantly and one 

sees that the m = 2 codes’ performance start to coincide. 

A possible explanation for this will be provided shortly. 

Figure 4 shows the performance of the R = 1/2 

convolutional codes. For high deletion error rates the two 

codes are almost the same, however for lower deletion 

error rates the m = 2 code starts to perform slightly better. 
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Figure 3: Bit error rate for R = 1/3 convolutional codes 
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Figure 5: Bit error rate for R = 2/3 convolutional codes 

In Figure 5, the performance of the R = 2/3 convolutional 

codes is shown. One can see that the m = 1 code with the 

[00 0 00 1] inverting sequence performs much better than 

the others; further research is being done to investigate 

this occurrence. For the other codes, one sees that the 

m = 2 codes perform slightly better than the m = 1 codes. 

These graphs illustrate that there is an improvement in bit 

error rates when deletion errors are corrected. However, 

some of these graphs also show an error floor, where the 

bit error rate does not decrease significantly even though 

the deletion error rate is low. An investigation into this 

revealed that even though the deletions are corrected, a 

certain amount of deletions would contribute to single bit 

errors occurring. 

In Figures 6–8 the delay length of the Viterbi decoder is 

shown against the bit error rate for various deletion error 

rates. Only specific codes were selected for these results 

to emphasize certain aspects. 

Figure 6 shows the performance of an R = 1/3, m = 1 

convolutional code with a [001] bit inverting sequence. A 

significant decrease in the bit error rate for D  4 is 

observed, since the code is not able to build enough 

distance between paths for low delays. A general upward 

trend in the bit error rates for larger delays is observed. 

As mentioned in the previous section, a guard space of 

D × n bits is needed, thus a larger delay causes a larger 

guard space which leads to the decreased performance. 

Figure 7 shows the similar performance of an R = 1/3, 

m = 2 convolutional code with a [001] bit inverting 

sequence. In this case however, a larger delay is 

necessary before the code reaches its best performance. 

The bit error rates again show a slow increase as the 

delay gets larger. 

In Figure 8, the performance of an R = 2/3, m = 1 

convolutional code with a [00 0 00 1] bit inverting 

sequence can be seen. In contrast to the previous two 

codes, this code shows an overall decrease in bit error 

rates as the delay gets larger. 
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Figure 6: Bit error rate for R = 1/3 convolutional code 

with m = 1 and [001] 
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Figure 7: Bit error rate for R = 1/3 convolutional code 

with m = 2 and [001] 
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Figure 8: Bit error rate for R = 2/3 convolutional code 

with m = 1 and [00 0 00 1] 

As was stated earlier, several thousand packets were sent 

during the simulations and the synchronization loss 

probability is used to show how many of these packets 

could not be corrected. A high synchronization loss 

probability will indicate that synchronization was lost in 

most packets, while a low synchronization loss 

probability will indicate that synchronization was kept or 
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recovered in most packets. The results show that the 

synchronization loss probability graphs are very similar 

to the bit error rates graphs. This is to be expected, since 

the two concepts are closely related: synchronization loss 

leads directly to bit errors. 

In Figure 9, the synchronization loss probability of an 

R = 1/3, m = 1 convolutional code with no bit inverting 

sequence is shown. A similar trend to the bit error rate 

graph is observed. As the delay gets larger, the 

probability of losing synchronization slowly increases. 

This again can be attributed to the larger guard space 

necessary for larger delay lengths. 

Figure 10 shows the synchronization loss probability of 

an R = 2/3, m = 1 convolutional code with no bit 

inverting sequence. In this case, the probability of losing 

synchronization decreases as the delay gets larger. This 

code needs a large delay length for its error correcting 

capabilities to be effective, even though it means that a 

larger guard space is necessary. It is possible that this 

code will also show the trend of increasing 

synchronization loss probability, but only at very large 

delay lengths. 

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-4

10-3

10-2

10-1

1

Delay, D

S
y
n
c
 lo

s
s
 p

ro
b
a

b
ili

ty

DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 9: Synchronization loss probability for R = 1/3 

convolutional code with m = 1 and [000]. 
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Figure 10: Synchronization loss probability for R = 2/3 

convolutional code with m = 1 and [00 0]. 
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Figure 11: Synchronization loss probability for R = 1/2 

convolutional code with m = 1, D = 5 and [00 01]. 

Finally, in Figure 11, we investigate the synchronization 

loss probability of an R = 1/2, m = 1 convolutional code 

with a delay length of 5 and a [00 01] bit inverting 

sequence. Again, the graphs denoted as “normal” indicate 

the performance without synchronization correction. In 

this case, input data lengths of 1000 bits and 10000 bits 

were used. Longer input lengths result in decreased 

performance, as a larger number of errors will occur in a 

packet, thereby increasing the probability of 

synchronization loss. 

6. CONCLUSION AND FUTURE WORK 

A new insertion/deletion correction scheme was 

presented and its performance investigated. The results 

showed that the scheme significantly reduces the 

synchronization loss probability. The results also showed 

that the bit error rate is lower compared to decoding 

without synchronization correction, although an error 

floor is encountered in some instances. Also, it was 

observed that the delay length of the Viterbi decoder 

plays an important role in the performance of the codes. 

Generally, 5m is an accepted delay length for normal 

convolutional codes, however, in this scheme this is not 

always effective. Longer delay lengths for normal 

convolutional codes increases the performance, even if 

very slightly, but in this scheme longer delays are 

detrimental to the performance. Simulation results such 

as the ones presented can be used to determine the 

optimum delay length for a code to achieve the best 

performance. 

The performance of other codes with different rates, 

constraint lengths and bit inverting patterns can lead to 

codes with even better performance. Also, a theoretical 

analysis of codes to predict the performance of any 

convolutional code for different bit inverting patterns 

without having to do a simulation could be done. Finally, 

when a decoding error occurs in this scheme, it usually 

takes the form of a deletion or insertion in the output. An 

investigation into the possibility of concatenating two of 

these schemes is being done. A low rate inner 

convolutional code is used to correct insertions/deletions 
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occurring on the channel while a high rate outer 

convolutional code is used to correct further 

insertions/deletions in the output of the first super 

decoder. A preliminary simulation based on this 

concatenation has however showed no improvement, 

since the choice of codes seems to play an important role. 

More simulations with different inner and outer codes are 

planned. 
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