
Vol.97(2) June 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 151

INSERTION/DELETION CORRECTION BY USING PARALLEL-

INTERCONNECTED VITERBI DECODERS

T.G. Swart, H.C. Ferreira and M.P.F. dos Santos

Dept. of Electrical and Electronic Engineering Science, University of Johannesburg, P O Box 542,

Auckland Park, 2006, South Africa

Abstract: A new insertion/deletion correction scheme is presented for standard convolutional codes

that makes use of multiple parallel-interconnected Viterbi decoders. Whenever an insertion or

deletion error occurs, the connections between different Viterbi decoders ensure that decoding will

proceed from the decoder that is in synchronization. In this way, a larger Viterbi decoder is created

that can correct insertion and/or deletion errors by extending the Viterbi algorithm to encompass all

parallel decoders. Further, it is shown how the performance can be improved by inverting certain bits

during the encoding of the convolutional codes. This lowers the frequency of occurrence of repeating

sequences, which is detrimental to synchronization when dealing with insertions/deletions.

Key words: Convolutional codes, error-correcting coding, synchronization.

1. INTRODUCTION

The majority of error correcting codes are designed to

correct reversal errors, also known as additive errors,

where a received bit differs from the transmitted bit, e.g.

in the binary case where a transmitted 0 is received as a 1

or vice versa.

Additionally, incorrect synchronization can also cause

errors to occur. In this case, insertion and/or deletion

errors can be used to model synchronization loss. When

an insertion occurs, a random bit is received which was

not transmitted and when a deletion occurs a transmitted

bit is not received at all. Any synchronization loss

because of these types of errors will result in bursts of

reversal errors, if the synchronization is left uncorrected.

In the field of insertion/deletion correction most work has

been done for block codes. See e.g. Levenstein [1], Bours

[2], Davey and MacKay [3], Helberg and Ferreira [4],

Swart and Ferreira [5] and references listed in these. On

the other hand, relatively little research has been done in

using convolutional codes to correct insertion/deletion

errors. See e.g. Mori and Imai [6], Swart and Ferreira [7]

and Dos Santos et al [8], [9].

The new scheme will be presented, along with the notion

of bit inverting sequences, which improves the

performance in some cases. Several factors are evaluated

in the simulation results to be presented, where the

performance of the new scheme is investigated.

2. PREVIOUS WORK

In this section a short review is given of some methods to

correct synchronization in convolutional codes, as well as

previous schemes upon which the new scheme is based.

As mentioned earlier, a synchronization error results in a

burst of reversal errors. In the Viterbi algorithm, this

causes all the error metrics to have a high rate of change.

Synchronization is recovered by letting the framing shift

a few bits while monitoring the error metrics. As soon as

the error metrics’ rate of change decreases significantly,

synchronization has been recovered. Any data received

while the Viterbi decoder is trying to recover is lost [10].

Based on this, Dos Santos et al [8], [9] proposed to use

multiple, parallel Viterbi decoders, with each decoder one

bit out of sync with the others, in order to correct

insertions/deletions. By monitoring the rate of change for

the accumulated error metrics, one is able to ascertain

which of the Viterbi decoders is in synchronization. The

output is selected from the decoder that is considered to

be in sync. Although this improves on the previous

method where data were lost, this scheme did not exactly

determine the position of the error. Thus synchronization

correction still resulted in short bursts of reversal errors,

which was then corrected by using Reed Solomon codes

in a concatenated approach.

The advantage of using this method, as well as the new

scheme to be presented, over others, e.g. [7], is that

existing convolutional codes are used, as well as standard

encoding and decoding methods. Only the decoder is

slightly modified. This scheme also makes use of the

Hamming distance to correct insertion/deletion errors and

not the Levenshtein distance which is normally associated

with these types of errors and is more complex to

calculate.

The scheme presented here is similar to a watermark

extraction scheme proposed by Mansour and Tewfik [11].

Watermarks are inserted into regions with a high masking

threshold, but after possible processing these regions can

Copyright  2004 IEEE: An earlier version of this paper was first published in AFRICON '04, 15-17 September 2004, Gaborone, Botswana.

152 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(2) June 2006

change, causing extraction from incorrectly identified

regions. These incorrect regions can be considered

similar to insertion errors.

3. PARALLEL-INTERCONNECTED VITERBI

DECODERS

The new scheme makes use of multiple parallel Viterbi

decoders, each one bit out of sync with the others.

However, each of these decoders is also interconnected to

the decoder next to it. By doing this, a larger Viterbi

decoder is created that can correct insertion and/or

deletion errors by extending the Viterbi algorithm to

encompass all the parallel decoders.

Thus, where the previous scheme of Dos Santos et al
made use of the rate of change in the error metrics to

choose which decoder is in sync, this scheme integrates

this into a modified Viterbi algorithm, which finds the

most likely path through the super trellis. In Figure 1, this

super trellis is illustrated using an R = 1/3 code with two

states as a simple example.

0

1

0

1

0

1

0

1

0

1

0

1

0

1 1

0

1

-1:

0:

+1:

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

000(0)
111(1)

100(1)
01
1(0
)

…

…

…
0

Figure 1: Representation of super trellis

For clarity, the entire decoder is referred to as the super

decoder and the respective parallel decoders as the sub

decoders. Each sub decoder is assigned an integer

denoting its sync relative to the sub decoder that is

assumed to be in sync, e.g. the sub decoder that is in sync

is denoted by 0, the sub decoder lagging by one bit is

denoted by −1 and the sub decoder leading by one bit is

denoted by +1.

The interconnections between sub decoders (dashed paths

in Figure 1) are biased so that irrespective of the received

data, they will always contribute n units of distance to the

error metric. This is to ensure that a path leading to

another sub decoder is not mistakenly chosen unless an

insertion or deletion occurred. During decoding the usual

5m decoding delay is used, with m the memory length,

although some of the results will show that this choice of

delay does not always produce the best performance.

In Figure 2, an example of decoding is shown. For

simplicity only the survivor paths and the output path (in

bold) are shown. Decoding has proceeded normally up to

this point (Figure 2(a)). When the super decoder finds

that an output indicates a switch from one sub decoder to

another (Figure 2(b)), the decoder has to go back 5 time

intervals (the delay used in this example), resynchronize

and recalculate all the error metrics and survivor paths

(Figure 2(c)). In this example it is found that the −1 sub

decoder is now in sync. The −1 sub decoder becomes the

0 sub decoder and the 0 sub decoder becomes the +1 sub

decoder. At this point all error metrics are set to zero and

the next 5 time intervals can be recalculated from where

normal decoding can resume.

Figure 2: Trellis example of resyncing after a deletion

The insertion/deletion correction ability depends on the

configuration and number of sub decoders used. When

n − 1 sub decoders are used, this scheme can correct

n/2 , n odd, and (n − 1)/2 , n even, consecutive

deletions and/or insertions on a channel with mixed

errors, i.e. insertions and deletions. When only one type

of error is expected to occur and n − 1 sub decoders are

used, then n − 1 consecutive errors can be corrected. In

both cases, a guard space of at least D × n code bits with

no errors is needed after the errors, where D denotes the

delay used in the Viterbi decoder. In some instances this

Vol.97(2) June 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 153

ability can be improved on, though no guarantees can be

given.

4. BIT INVERTING

Although this scheme works when using existing codes,

better performance can be achieved by making slight

changes to the encoder.

Considering for example the all zero path in the trellis,

one would realize that an insertion/deletion in a long run

of zeros would not be detected immediately. Inverting

certain bits during encoding can easily eliminate this. As

this is done for each word, the distance profile of the

convolutional code remains unchanged, however it

ensures that there is enough distance between paths that

are shifted by one bit, which is exactly what the scheme

relies on. This has previously been researched, see e.g.

Baumert et al [12].

It can also be noted that the structure of the convolutional

code repeats every n bits. Whenever n deletions or

insertions occur, a whole word is lost or gained which the

decoder will not pick up. Also, when both insertions and

deletions occur, it is possible for s deletions to look like

n − s insertions. For example, using a code with n = 3, if

2 deletions occur, the decoder would detect and decode

this as 1 insertion. Because convolutional code words are

relatively short, this severely hampers the error correction

ability of the decoder.

However, this problem can be overcome to some extent

by inverting the bits in every second time interval. In

every even time interval, the data is encoded as normal

and in every odd time interval, the data is encoded and

then the bits are inverted. Using this method, the

convolutional code’s structure repeats every 2n bits

instead of every n bits, thereby increasing the error

correcting capability of the decoder. The effect of these

inverting bits will be illustrated in the results of the next

section.

5. RESULTS

In this section, selected results will be presented to

demonstrate the performance of the codes, as well as to

highlight some of the key issues encountered.

The channel model used for the simulations is a

symmetric reversal, insertion and deletion (RID) channel,

which is a simplification of the general RID channel used

by Swart [13] and similar to the channel of [3]. Similar to

the Binary Symmetric Channel, this model is memory-

less with statistically independent errors.

Convolutional codes with R = 1/2, R = 1/3 and R = 2/3

and m = 1 and m = 2 were used to generate the results

presented. All simulations were performed using input

data lengths of 1000 bits, unless otherwise indicated.

Several thousand of these 1000 bit packets were sent over

the channel. Perfect sync is assumed between each packet

and in practice this can be achieved by using markers, see

[14] and [15].

In Figures 3−5 the deletion error rate (DER) is shown

against the bit error rate (BER). Whenever a decoding

error occurred, the resulting burst of reversal errors was

also included in the calculation of the bit error rate. The

bit inverting sequence used for the different codes is

shown in square brackets in the legend and D indicates

the delay that was used. The graphs denoted as “normal”

indicate the performance when the convolutional code is

used without synchronization correction.

In Figure 3, the performance of the R = 1/3 convolutional

codes is shown. A delay of D = 5 is used for the m = 1

codes and a delay of D = 10 is used for the m = 2 codes.

One can see that the codes with the [00 0 00 1] inverting

bits perform much better that the others at high deletion

error rates. However, for very low deletion error rates the

other codes’ performance increases significantly and one

sees that the m = 2 codes’ performance start to coincide.

A possible explanation for this will be provided shortly.

Figure 4 shows the performance of the R = 1/2

convolutional codes. For high deletion error rates the two

codes are almost the same, however for lower deletion

error rates the m = 2 code starts to perform slightly better.

10-410-310-2
10-6

10-5

10-4

10-3

10-2

10-1

1

DER

B
E

R

m = 1, D = 5 (normal)

m = 2, D = 10 (normal)

m = 1, D = 5, [000]

m = 1, D = 5, [001]

m = 1, D = 5, [000 001]

m = 2, D = 10, [000]

m = 2, D = 10, [001]

m = 2, D = 10, [000 001]

Figure 3: Bit error rate for R = 1/3 convolutional codes

10-410-310-2
10-5

10-4

10-3

10-2

10-1

1

DER

B
E

R

m = 1, D = 5 (normal)

m = 2, D = 10 (normal)

m = 1, D = 5, [00 01]

m = 2, D = 10, [00 01]

Figure 4: Bit error rate for R = 1/2 convolutional codes

154 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(2) June 2006

10-410-310-2
10-4

10-3

10-2

10-1

1

DER

B
E

R

m = 1, D = 5 (normal)

m = 2, D = 10 (normal)

m = 1, D = 5, [00 0]

m = 1, D = 5, [00 0 10 0]

m = 1, D = 5, [00 0 00 1]

m = 2, D = 10, [00 0]

m = 2, D = 10, [00 0 10 0]

m = 2, D = 10, [00 0 00 1]

Figure 5: Bit error rate for R = 2/3 convolutional codes

In Figure 5, the performance of the R = 2/3 convolutional

codes is shown. One can see that the m = 1 code with the

[00 0 00 1] inverting sequence performs much better than

the others; further research is being done to investigate

this occurrence. For the other codes, one sees that the

m = 2 codes perform slightly better than the m = 1 codes.

These graphs illustrate that there is an improvement in bit

error rates when deletion errors are corrected. However,

some of these graphs also show an error floor, where the

bit error rate does not decrease significantly even though

the deletion error rate is low. An investigation into this

revealed that even though the deletions are corrected, a

certain amount of deletions would contribute to single bit

errors occurring.

In Figures 6–8 the delay length of the Viterbi decoder is

shown against the bit error rate for various deletion error

rates. Only specific codes were selected for these results

to emphasize certain aspects.

Figure 6 shows the performance of an R = 1/3, m = 1

convolutional code with a [001] bit inverting sequence. A

significant decrease in the bit error rate for D 4 is

observed, since the code is not able to build enough

distance between paths for low delays. A general upward

trend in the bit error rates for larger delays is observed.

As mentioned in the previous section, a guard space of

D × n bits is needed, thus a larger delay causes a larger

guard space which leads to the decreased performance.

Figure 7 shows the similar performance of an R = 1/3,

m = 2 convolutional code with a [001] bit inverting

sequence. In this case however, a larger delay is

necessary before the code reaches its best performance.

The bit error rates again show a slow increase as the

delay gets larger.

In Figure 8, the performance of an R = 2/3, m = 1

convolutional code with a [00 0 00 1] bit inverting

sequence can be seen. In contrast to the previous two

codes, this code shows an overall decrease in bit error

rates as the delay gets larger.

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-5

10-4

10-3

10-2

10-1

1

Delay, D

B
E

R

DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 6: Bit error rate for R = 1/3 convolutional code

with m = 1 and [001]

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-6

10-5

10-4

10-3

10-2

10-1

1

Delay, D

B
E

R
DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 7: Bit error rate for R = 1/3 convolutional code

with m = 2 and [001]

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-4

10-3

10-2

10-1

1

Delay, D

B
E

R

DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 8: Bit error rate for R = 2/3 convolutional code

with m = 1 and [00 0 00 1]

As was stated earlier, several thousand packets were sent

during the simulations and the synchronization loss

probability is used to show how many of these packets

could not be corrected. A high synchronization loss

probability will indicate that synchronization was lost in

most packets, while a low synchronization loss

probability will indicate that synchronization was kept or

Vol.97(2) June 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 155

recovered in most packets. The results show that the

synchronization loss probability graphs are very similar

to the bit error rates graphs. This is to be expected, since

the two concepts are closely related: synchronization loss

leads directly to bit errors.

In Figure 9, the synchronization loss probability of an

R = 1/3, m = 1 convolutional code with no bit inverting

sequence is shown. A similar trend to the bit error rate

graph is observed. As the delay gets larger, the

probability of losing synchronization slowly increases.

This again can be attributed to the larger guard space

necessary for larger delay lengths.

Figure 10 shows the synchronization loss probability of

an R = 2/3, m = 1 convolutional code with no bit

inverting sequence. In this case, the probability of losing

synchronization decreases as the delay gets larger. This

code needs a large delay length for its error correcting

capabilities to be effective, even though it means that a

larger guard space is necessary. It is possible that this

code will also show the trend of increasing

synchronization loss probability, but only at very large

delay lengths.

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-4

10-3

10-2

10-1

1

Delay, D

S
y
n
c
 lo

s
s
 p

ro
b
a

b
ili

ty

DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 9: Synchronization loss probability for R = 1/3

convolutional code with m = 1 and [000].

2 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 152 3 4 5 6 7 8 9 10 11 12 13 14 15
10-3

10-2

10-1

1

Delay, D

S
y
n
c
 lo

s
s
 p

ro
b
a

b
ili

ty

DER = 10-2.00

DER = 10-2.25

DER = 10-2.50

DER = 10-2.75

DER = 10-3.00

DER = 10-3.25

DER = 10-3.50

DER = 10-3.75

DER = 10-4.00

DER = 10-4.25

Figure 10: Synchronization loss probability for R = 2/3

convolutional code with m = 1 and [00 0].

10-410-310-2
10-6

10-5

10-4

10-3

10-2

10-1

1

DER

S
y
n
c
 lo

s
s
 p

ro
b
a

b
ili

ty

L = 1000 (normal)

L = 10000 (normal)

L = 1000

L = 10000

Figure 11: Synchronization loss probability for R = 1/2

convolutional code with m = 1, D = 5 and [00 01].

Finally, in Figure 11, we investigate the synchronization

loss probability of an R = 1/2, m = 1 convolutional code

with a delay length of 5 and a [00 01] bit inverting

sequence. Again, the graphs denoted as “normal” indicate

the performance without synchronization correction. In

this case, input data lengths of 1000 bits and 10000 bits

were used. Longer input lengths result in decreased

performance, as a larger number of errors will occur in a

packet, thereby increasing the probability of

synchronization loss.

6. CONCLUSION AND FUTURE WORK

A new insertion/deletion correction scheme was

presented and its performance investigated. The results

showed that the scheme significantly reduces the

synchronization loss probability. The results also showed

that the bit error rate is lower compared to decoding

without synchronization correction, although an error

floor is encountered in some instances. Also, it was

observed that the delay length of the Viterbi decoder

plays an important role in the performance of the codes.

Generally, 5m is an accepted delay length for normal

convolutional codes, however, in this scheme this is not

always effective. Longer delay lengths for normal

convolutional codes increases the performance, even if

very slightly, but in this scheme longer delays are

detrimental to the performance. Simulation results such

as the ones presented can be used to determine the

optimum delay length for a code to achieve the best

performance.

The performance of other codes with different rates,

constraint lengths and bit inverting patterns can lead to

codes with even better performance. Also, a theoretical

analysis of codes to predict the performance of any

convolutional code for different bit inverting patterns

without having to do a simulation could be done. Finally,

when a decoding error occurs in this scheme, it usually

takes the form of a deletion or insertion in the output. An

investigation into the possibility of concatenating two of

these schemes is being done. A low rate inner

convolutional code is used to correct insertions/deletions

156 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(2) June 2006

occurring on the channel while a high rate outer

convolutional code is used to correct further

insertions/deletions in the output of the first super

decoder. A preliminary simulation based on this

concatenation has however showed no improvement,

since the choice of codes seems to play an important role.

More simulations with different inner and outer codes are

planned.

7. REFERENCES

[1] V.I. Levenshtein, “Binary codes capable of correcting

deletions, insertions and reversals,” (in Russian) Dokl.

Akad. Nauk SSSR, vol. 162, no. 4, pp. 845-848, 1965.

English translation in Sov. Phys.-Dokl., vol. 10, no. 8,

pp. 707−710, February 1966.

[2] P.A.H. Bours, “Codes for correcting insertion and de-

letion errors,” Ph.D. Thesis, Technische Universiteit

Eindhoven, Eindhoven, The Netherlands, June 1994.

[3] M.C. Davey and D.J.C. MacKay, “Reliable com-

munications over channels with insertions, deletions

and substitutions,” IEEE Transactions on Information

Theory, vol. 47, no. 2, pp. 687−698, February 2001.

[4] A.S.J. Helberg and H.C. Ferreira, “On multiple inser-

tion/deletion correcting codes,” IEEE Transactions on

Information Theory, vol. 48, no. 1, pp. 305−308, Janu-

ary 2002.

[5] T.G. Swart and H.C. Ferreira, “A note on double in-

sertion/deletion correcting codes,” IEEE Transactions

on Information Theory, vol. 49, no. 1, pp. 269−273,

January 2003.

[6] T. Mori and H. Imai, “Viterbi decoding considering

synchronization errors,” IEICE Transactions Funda-

mentals, vol. E79-A, no. 9, pp. 1324−1329, September

1996.

[7] T.G. Swart and H.C. Ferreira, “Insertion/deletion

correcting coding schemes based upon convolution-

al coding,” Electronics Letters, vol. 38, no. 16, pp.

871−873, August 2002.

[8] M.P.F. dos Santos, W.A. Clarke, H.C. Ferreira and

T.G. Swart, “Correction of insertions/deletions using

standard convolutional codes and the Viterbi decod-

ing algorithm,” Proceedings of the 2003 Information

Theory Workshop, Paris, France, pp. 187−190, 31

March – 4 April 2003.

[9] M.P.F. dos Santos, W.A. Clarke, H.C. Ferreira and

T.G. Swart, “Correction of insertions/deletions using

standard convolutional codes and the Viterbi decod-

ing algorithm,” SAIEE Transactions, vol. 95, no. 4,

pp. 265−269, December 2004.

[10] S. Lin and D.J. Costello, Jr., Error Control Coding:

Fundamentals and Applications, Prentice Hall Inc.,

New Jersey, First Edition, 1983.

[11] M.F. Mansour and A.H. Tew� k, “Ef� cient decod-

ing of watermarking schemes in the presence of false

alarms,” Proceedings of the 2001 IEEE Fourth Work-

shop on Multimedia and Signal Processing, Cannes,

France, pp. 523−528, 3−5 October 2001.

[12] L.D. Baumert, R.J. McEliece and H.C.A. van Tilborg,

“Symbol synchronization in convolutionally coded

systems,” IEEE Transactions on Information Theory,

vol. IT-25, no. 3, pp. 362−365, May 1979.

[13] T.G. Swart, “Coding and bounds for correcting inser-

tion/deletion errors,” M.Eng. Thesis, Rand Afrikaans

University, Johannesburg, South Africa, March

2001.

[14] F.F. Sellers, “Bit loss and gain correction code,” IRE

Transactions on Information Theory, vol. IT-8, pp.

35−38, January 1962.

[15] H.C. Ferreira, W.A. Clarke, A.S.J. Helberg, K.A.S.

Abdel-Ghaffar and A.J.H. Vinck, “Insertion/deletion

correction with spectral nulls,” IEEE Transactions

on Information Theory, vol. 43, no. 2, pp. 722−732,

March 1997.

