
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/151782

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43599034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/151782

Int J Softw Tools Technol Transfer (2016) 18:93–108
DOI 10.1007/s10009-015-0374-1

REGULAR PAPER

Evaluating the effect of a lightweight formal technique in industry

Ammar Osaiweran1 · Mathijs Schuts2 · Jozef Hooman3,4 · Jan Friso Groote1 ·
Bart van Rijnsoever2

Published online: 2 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We evaluate the effect of applying the commer-
cial formal technique Analytical Software Design (ASD) to
an industrial project. InASD, interfaces and software designs
are modelled using a formal tabular notation. The ASD tool
set supports formal checks of these models, such as deadlock
freedom and interface compliance. In addition, full code can
be generated from design models. ASD has been applied at
Philips Healthcare to develop parts of the software of inter-
ventional X-ray systems. We report about the experiences
with the embedding of ASD into the development processes.
The quality of the resulting code and the productivity has
been analysed and compared to code developed with other
techniques. We observe that the use of ASD leads to a strong
reduction of the number of defects and an increase in produc-
tivity. The results are also compared to the literature about
standards and related projects at other companies.

B Ammar Osaiweran
osaiweran@gmail.com

Mathijs Schuts
mathijs.schuts@philips.com

Jozef Hooman
jozef.hooman@tno.nl

Jan Friso Groote
j.f.groote@tue.nl

Bart van Rijnsoever
bart.van.rijnsoever@philips.com

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

2 Philips Healthcare, Best, The Netherlands

3 Embedded Systems Innovation by TNO, Eindhoven,
The Netherlands

4 Radboud University, Nijmegen, The Netherlands

Keywords Formal methods · Industrial application ·
Code generation · Component-based design ·
Compositional verification

1 Introduction

The use of formal techniques in software engineering has
been advocated for many years, with many arguments, see,
e.g. [25]. The main aim is to detect design flaws early using
techniques with a solid mathematical basis. The industrial
application of such techniques, however, is not trivial. It
might easily lead to large efforts on modelling and analy-
sis, requiring experts in logic. Moreover, scalability is a
well-known problem of many techniques. Hence, the use
of lightweight formal methods has been promoted [24,31].
These methods hide a lot of the mathematical details from
the user and do not aim at generic modelling and analysis
techniques. By specializing on a particular type of design
and a particular set of properties, more efficient and effective
approaches can be developed. Additionally, the possibility to
generate code from formal models is important for industrial
acceptance. This avoids the error prone manual translation
frommodels to code and is expected to improve productivity.

In this article, we evaluate the Analytical Software Design
(ASD) [8,28]methodwhich can be classified as a lightweight
formal technique, since it is based on a set of well-chosen
restrictions which make it possible to combine model check-
ing and code generation. We list the main characteristics
(more explanation can be found in Sect. 3):

– The approach is restricted to control components where
decisions depend on incoming events and not on the
data parameters of these events. Interface specifica-
tions and models of the implementation of components

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0374-1&domain=pdf

94 A. Osaiweran et al.

(called design models) are expressed in a limited form
of state-transition tables. The underlying formal models
that define the semantics of the models are invisible to
the user.

– Only a pre-defined set of properties can be checked. The
underlying formal model checker is hidden for the user;
counterexamples are shown using sequence diagrams.
The restrictions of ASD enable fully automated verifi-
cation.

– Scalability is obtained by verifying a design model using
only the interfaces of the components it uses, without
knowing their implementation.

– From design models, full code can be generated, includ-
ing logging and tracing facilities.

The method is supported by the commercial tool ASD:Suite
from the company Verum [43]. Typically, a 2-day course of
Verum is sufficient to start applying the method.

The aim of our research is to investigate whether the use of
ASD results in tangible improvements. Our goal is to answer
the following questions:

– Can ASD deliver product code of good quality?
– Does ASD always produce near zero-defect software? If
not, which types of defects can be expected?

– Does ASD require more development time compared to
traditional methods? What about the productivity using
ASD?

To answer these questions, we discuss the experiences in
an industrial project at Philips Healthcare in which the ASD
method has been used.We compare the collected quantitative
facts to other development projects at Philips Healthcare and
related projects from the literature.

This paper is structured as follows. Section 2 contains a
discussion of related work. In Sect. 3, the ASD approach is
introduced as far as needed to understand our study. InSect. 4,
we briefly sketch the industrial context. Section 5 provides
details about the industrial development process using ASD,
including the main issues and limitations encountered, and
data about the developed ASD models. Facts about the gen-
erated code and defects found during testing are presented
in Sect. 6. In Sect. 7, we analyse the cause and the type of
defects that could escape the formal techniques. Section 8
compares the results of the ASD code with other code devel-
oped at Philips and the industry standards worldwide. An
overview of related projects using formal techniques can be
found in Sect. 9. Finally, Sect. 10 contains our conclusions.

2 Related work

There are a number of formal techniques that can be applied
to source code. Relevant for the application domain of this
paper is the bounded model checker CBMC for C and

C++ programs [10], which supports both fixed checks (e.g.,
array bounds, safety) and user-specified assertions. A related
checker for C is CPAchecker [11]. Since Philips aims at a
more model-based development with well-defined interfaces
between independently developed components, this type of
formal techniques has not been selected.

An interesting model checker in the domain of embedded
systems isUppaal [42]. It uses an attractive visual representa-
tion of timed automata which can be simulated and checked
using user-defined properties. In many respects, Uppaal is
rather complementary to ASD; a comparison between the
two methods can be found in [16]. The main drawback of
Uppaal for Philips is that it does not support code generation
and for large systems it easily suffers from the well-known
state explosion problem.

Clearly, there are many tools that support code gener-
ation from models. For instance, the Rational Rhapsody
Developer [29] supports code generation for a number of
programming languages based on UML diagrams. Matlab
[36], which is often used for model-based development in the
embedded domain, also supports code generation for several
targets based on graphical models. These type of tools, how-
ever, have no or only limited support for formal verification.

Related to ASD is the commercial tool VDMTools [14]
which supports code generation frommodels specified using
the VDM++ language [19]. VDM (The Vienna Develop-
ment Method) is based on a formal specification language
which became an ISO standard in 1996. VDM++ is an
extensionwhich supports object orientation and concurrency.
Likewise, the tool Atelier B [12] has been used to develop
a number of safety-critical systems using the B method [1].
The SCADE Suite [17] provides formal techniques for spec-
ification, verification and code generation. These techniques
are quite generic and the correctness proofs for VDM and
B models may require interactive theorem proving. ASD is
much more restricted than the approaches mentioned above
to achieve a high level of automation and to support compo-
sitional verification.

Note that the authors of this paper were not involved in
the decision of Philips to use ASD. Besides the characteris-
tics of ASD in comparison to other tools, this decision was
also based on non-scientific aspects such as costs, the local
availability of training and support, and the possibility to
influence the future direction of the tool development. The
authors were also not involved in the development of ASD
and are not associated to the company Verum. They have
only used ASD or observed its use at Philips.

3 Analytical software design

In this section, we provide a short exposition of the ASD
approach. ASD [8,28] is a component-based technology that

123

Evaluating the effect of a lightweight... 95

Fig. 1 Overview of the Camera
example

Camera

Battery

ASD Queue

Shutter

SwitchOn(): valued
SwitchOff():void
Click([in]exposureTime:int):void

BatteryOn():void
BatteryOff():void
CheckBattery():valued

PowerOn(): valued
PowerOff():void
Click([in]exposureTime:int):void

aims at enabling the application of formal methods into
industrial practice by a combination of the Box Structure
Development Method [40] and the Communicating Sequen-
tial Processes (CSP) formalism [23]. The ASD:Suite is a
development tool that embeds the ASD technology into a
software design environment.

The ASD approach distinguishes two types of models
which are both described by a similar tabular notation: ASD
interface models and ASD Design Models. These models are
state machines described in a tabular format, following the
Sequence-Based Specification technique, to force consistent
and complete specifications [9].

The interface model specifies the external behaviour of a
component without referring to any internal behaviour. This
forms the formal contract of interaction between the com-
ponent and its clients. A design model implements a certain
interface model, and typically uses services of other compo-
nents by referring to their interface models.

The model checker of ASD:Suite verifies that calls to
these so-called server components are correct with respect
to their interface models. Moreover, it checks that the design
model conforms to the implemented interface model. The
tool ASD:Suite allows code generation from design models
to a number of programming languages (C, C++, C#, Java).

It is not needed that server components are realized using
ASD. Since the approach is intended for control compo-
nents, server components that involve data manipulations
will be implemented by other techniques; such components
are called foreign components. The ASD approach is compo-
sitional [26], because verification of a designmodel uses only
external interfaces of server components, without knowing
their internal implementation.

In ASD, communication between client and server com-
ponents is asymmetric, using synchronous calls and asyn-
chronous callbacks. On the one hand, clients issue synchro-
nous calls to server components, where the client is blocked
until the server accepts the call and eventually returns it to the
client. The return of a call may either be void or valued. On
the other hand, a server can communicate with its clients by
asynchronous callbacks. Callbacks are stored in a so-called
ASD callback queue (FIFO).

We explain the ASD technology in more detail using
a small Camera example. It consists of a Camera compo-
nent that controls a Shutter and a Battery component, see
Fig. 1. The Camera component may receive three requests
from external users, namely PowerOn to start-up the device,
PowerOff to shutdown the device and Click to take a picture.

We use this example to explain the ASD interface models
in Sect. 3.1 and design models in Sect. 3.2. Formal verifica-
tion is described briefly in Sect. 3.3.

3.1 ASD interface models

To develop an ASD component, first an interface model has
to be specified. The interface model is used as a formal
means to describe the allowed sequences of method calls and
replies. The interfacemodel specifies the interaction protocol
between a component and its clients. All internal behaviour
which is not visible to client components is excluded from
the interface specification.

An example of the tabular specification of an ASD inter-
face model is depicted in Fig. 2, which shows the interface
model of the Camera component. This interface model con-
tains four states: Off, SwitchingOn, On, and TakingPicture.
An interface model must be complete in the sense that in
each state the response to all input stimuli must be defined.
Each row, also called a rule case, specifies the response to a
certain stimulus and the next state. Input stimuli that are not
allowed in a state are declared Illegal in the Actions field.

A stimulus event may have an “+” postfix to indicate
that the call has a valued reply. The values of the reply are
specified in the Actions field. To model non-deterministic
cases, a rule case can be duplicated; see for instance rule
cases 3 and 4 of Fig. 2. In rule case 3, the Camera component
receives a PowerOn request which returns with value OnOK
and then transits to the SwitchingOn state. In rule case 4 the
component fails on the request and remains in the Off state.

To model internal events, such as internal callbacks, rules
can be triggered by so-called modelling events (prefixed by
‘INT ’ in the Interface columns in Fig. 2). When a mod-
elling event cannot happen, aDisabled action is assigned. For
instance, in the SwitchingOn state three of the four modelling

123

96 A. Osaiweran et al.

Fig. 2 The ASD interface
model of the Camera component
(ICamera)

Fig. 3 The ASD interface
model of the Battery component
(IBattery)

events may happen. They abstract from internal behaviour
related to initializing internal components.

Similarly, Figs. 3 and4depict theASD interfacemodels of
the Battery (IBattery) and the Shutter (IShutter) components.
They both describe the external behaviour available for client
components (in this case the Camera component). In these
figures, the Illegal and the Disabled rule cases are hidden.

3.2 ASD design models

Once the interface model of a component is completed, the
designmodel can be created. The ASD designmodel extends
the interface model with more detailed internal behaviour. It
is deterministic and may include method invocations to its
server components.

123

Evaluating the effect of a lightweight... 97

Fig. 4 The ASD interface
model of the Shutter component
(IShutter)

Fig. 5 DCamera: ASD design
model

Figure 5 depicts the design model that uses the interfaces
of the Battery and the Shutter components. The specifica-
tion is straightforward and refines the interface model of
Fig. 2 with all required internal details. For instance, rule
case 3 specifies that when the Camera component receives
a PowerOn request, it checks the internal status of the Bat-
tery by sending the CheckBattery call and then transits to the
CheckingBattery state where two return values are expected.
Based on the return value from the Battery, the Camera com-
ponent sends either theOnOK orOnFailed value to its client
and then transits to a next state.

The semantics of a design model is such that callbacks
from server components are non-blocking and can always be
received. For this, they are put into an ASD callback queue
(one callback queue per component). Incoming calls from
clients are serialized, that is, at any point in time at most one
call is executed until completion. Callbacks from server com-

ponents have priority over client calls. After the completion
of a rule case, the callback queue is inspected. If the queue is
not empty, the rule case corresponding to the first callback at
the head of the queue is executed. When the callback queue
is empty and no client call is being processed, a new client
call is accepted. Invoking a call or callback which is illegal
will halt the component.

3.3 Formal verification using model checking

Formal verification can be applied to a set of interface and
designmodels, such as themodels for theCamera component
in Fig. 6. The ASD:Suite automatically translates the ASD
tabular specifications to corresponding CSP models and ver-
ifies them using the formal refinement checker FDR2 [18]
(FDR is an abbreviation of Failures-DivergenceRefinement).
All CSP and FDR2 details are hidden from end-users.

123

98 A. Osaiweran et al.

Fig. 6 Structure of ASD models related to the Camera component

The ASD:Suite provides a fixed set of properties that can
be be verified. The main checks performed by the ASD:Suite
are:

– Checking behavioural correctness: this checks whether
the design model correctly uses its server interfaces. This
is accomplished by detecting and correcting deadlocks,
livelocks, illegal calls, and checking for determinism of
the design model. For our Camera example this means
that the above checks will be applied to the DCamera
design model in combination with IShutter and IBattery
interface models.

– Checking refinement of the implemented interface: this
checks whether the interface model of a component is
correctly refined by the design model in combination
with the server interfaces. For our Camera example, this
checks whether theDCamera design model, in combina-
tion with the IShutter and IBattery, refines the top-level
interface model ICamera. Hence, ICamera can be used
by another top design model without considering the
details of the lower level components. This composi-
tional way of verification avoids the well-known state
space explosion problem and enables industrial scalabil-
ity, because components can be checked in isolation. It
requires, however, a careful design of the system such
that the components themselves are kept small.

4 Description of the project

We describe a development project of Philips Healthcare in
which ASD has been used. Philips Healthcare develops a
number of highly sophisticated medical systems, used for
various clinical applications. Our study concerns the devel-
opment of an interventional X-ray (iXR) system, which is
depicted in Fig. 7. These systems are used for minimally
invasive surgery. For instance, guided by X-ray images a
surgeon can place a stent via a catheter, thus avoiding open
heart surgery.

The software architecture of the iXR system is divided into
a number of subsystems, including the so-called Frontend
(FE) subsystem. The FE is responsible for creating X-ray
images by controlling andmanaging physical hardware, such
as the X-ray generator, the X-ray detector, the patient table,
and the stand that holds the generator and the detector, see
Fig. 7.

Fig. 7 An interventional X-ray system

Previously, the FE subsystem was developed based on
a decentralized architecture in the sense that all software
units work on their own, observing changes of other units
via a shared blackboard and reacting accordingly. The main
shortcoming of this type of architecture was the difficulty of
knowing the overall system state. More importantly, testing
and integrating the software units and incorporating inno-
vations or new products of third-party suppliers were very
challenging.

Therefore, some of the units of the FE subsystem were
redesigned in order to migrate to a new centralized, hierar-
chical component-based architecture, while others were kept
intact and were reused in the new architecture (e.g., the units
that control the hardware devices).

To clarify the terms used along the paper, a software
unit indicates a package that contains code related to cer-
tain functionality. A unit is a collection of smaller modules
each of which is responsible of more specialized and detailed
functionality. A module comprises a number of software
components, where each component is implemented in one
or more C# files.

The FE subsystem includes 22 units, two of which are
constructed from scratch and are the target of this study:
the Application State Controller (ASC) and the Frontend
Adapter (FEA). Both units comprise a number of modules
that include concurrent components with well-defined inter-
faces and responsibilities.

One of the key responsibilities of the ASC is managing
the external X-ray requests sent by the clinical operators via
dedicated X-ray pedals and hand-switches. The unit counts,
filters, and ensures priorities of such requests before instruct-
ing other units controlling the lower level drivers to start
X-ray image acquisition. It is also responsible for maintain-
ing the overall system state and coordinating interactions
with units surrounding the FE subsystem.

The FEA unit is mainly responsible for interfacing with
another external subsystem through a network. It exchanges

123

Evaluating the effect of a lightweight... 99

information related to patients and their examination details
with other external parties. The unit is also responsible for
monitoring the presence of other remote subsystems and con-
verting incoming information to readable XML and string
formats.

The interaction of these units with other external parties is
rather complex and error prone. Any party can issue requests
or can enter a faulty state. For example, clinical users may
press a pedal or a hand-switch at any time, even if the internal
components or the hardware is not prepared or configured yet
for image acquisition.

5 The process of developing ASD components
in iXR

The software of iXR systems is developed following an evo-
lutionary iterative process, i.e., the software is developed
through successive increments, each of which requires regu-
lar acceptance and review meetings by several parties.

In this section, we report on the work during three incre-
ments for developing ASD components for both the ASC
and the FEAunits, from January 2011 until August 2011. The
work was done by a team of five full-timemembers, who had
sufficient programming knowledge, but limited skills in for-
mal methods. The team was responsible for developing both
the ASD components and the other foreign components. The
ASD technology was tightly integrated with the traditional
development processes. Below we describe the main phases
concerning the incorporation of ASD into the development
processes.

Pre-study phase The three increments were preceded by a
pre-study period, during which the team attended a 1 week
ASD course to get familiar with the approach and its formal
technologies. The course was limited to learning how to use
the ASD:Suite, for example, how to fill-in the tables, how to
verify them using model checking, and how to integrate the
generated code with other handwritten code.

Furthermore, during the pre-study period the reference
architecture of the FE subsystem was discussed, to get con-
sensus about the functionality of the units among all team
members. Next the ASD team explored various design alter-
natives and approaches to define the ASD components. This
phase took a considerable amount of time, because it turned
out that the team still had to learn a number of aspects of
ASD. The problem was not in the ASD tooling itself but in
the design philosophy behind ASD, which required certain
architectural patterns to enable efficient model checking.

There was a lack of ASD design guides, cookbooks and
patterns that could aid the team to incorporate the new tech-
nology into its way of working and to prepare formally
verifiable components. Teammembers initially tried to adapt
the ASD technology to the existing way of developing soft-

ware at Philips Healthcare. Because object-oriented design
and programming was the dominating approach at iXR,
team members started investigating the suitability of ASD
for developing object-oriented designs. For this purpose,
the team reviewed and thoroughly studied the well-known
object-oriented design patterns [20], trying to model them
using ASD.

As a result, the team realized that developing object-
oriented designs usingASD is not productive sinceASD is an
action-oriented, component-based technology. Hence, after
quite some time, the team understood that successful appli-
cation of the technology requires changing the development
culture and the mind-set.

Design phase Based on the knowledge gained from the
pre-study period, team members prepared initial design
drafts containing hierarchical components with well-defined
interfaces and responsibilities, without using object-oriented
patterns. The design clearly distinguishes control compo-
nents from other data and computational components. The
designs were iteratively reviewed and re-factored until they
were approved by all team members. After that, design of
components and their responsibilities were documented in
informal documents.

Modelling the ASD components After the design phase, the
team started specifying the state machines of each compo-
nent, using the ASD:Suite version 6.2.0. Following the ASD
recipe, the models of the components were specified step-
wise, in a top-down fashion, starting with interface models
and gradually refining them by detailed design models and
server interfaces.

In general, filling in the ASD tables was a straightforward
task. The team carefully filled in and thought about every
stimulus in every state, asking early questions ofwhat actions
must be taken to input events not addressed by the incomplete
informal documents. Indeed, the technology helped the team
to find omissions and gaps in the initial set of requirements
and designs. It initiated early discussions with various stake-
holders. Subsequently, this increased the quality of require-
ments and designs during early phases of development.

However, due to the required completeness of the tables,
some ASD interface models were too large, hard to review,
andhard tomaintain. This resulted in further decompositions,
leading to smaller components, thus increasing readability
and maintainability. The required completeness was also
challenging during early stages of development. For a com-
plex system like the FE, lead architects tend to concentrate
on important, high abstract aspects of the system and leave
the details to later stages of the project. Although one could
choose towork on a subset of the interface, the corresponding
specification must be complete.

Table 1 lists the developed ASD components for the ASC
and the FEA units. Each component includes one imple-

123

100 A. Osaiweran et al.

Table 1 Modelling and
verification statistics of the ASD
components

Component Models Rule cases States Transitions Time(s) ELOC

ASC unit

AcquisitionController 6 432 16,912 79,840 2 1685

AcquisitionRequests 5 837 192,320 1,027,032 20 2821

ASCExamEpxManager 4 165 160 339 <1 928

ASCMisc 4 58 2633 4963 <1 963

ASCMiscDecoupler 2 13 7 9 <1 356

RequestCounter 5 113 45,560 76,233 3 1133

RequestFilter 3 381 51,790 226,910 1 994

RunController 4 842 8,058,224 41,150,288 444 5126

FEA unit

AcqCtrlAcqRequests 3 353 2802 7805 <1 465

BETStateless 3 404 8640 38,704 <1 518

CmdStateless 3 62 12 24 <1 704

CxaAdpMain 7 2794 139,824 461,292 50 5944

DAcqCtrl 4 1300 117,412 364,066 13 3206

DActivation 3 103 4480 14,688 <1 585

Decoupler 2 11 3 3 <1 239

DWrapper 4 408 8928 46,736 <1 674

FEProxyVE 6 5270 597,096 1,764,366 289 9645

FEProxyVEStateless 6 202 4976 19,320 <1 1753

FSStateless 3 31 220 636 <1 554

UGStateless 3 88 44,388,432 76,939,995 6853 951

mented interface model that captures the external behaviour,
one design model that includes the external and internal
behaviour of the component, and a number of interface mod-
els of server components. The number of models for each
component can be found in column 2 and the sum of all rule
cases in column 3. The other columns are explained below.
Formal verification Each ASDmodel is verified using model
checking. With a single button click, the model checker
detected various deadlocks, livelocks, illegal scenarios, and
race conditions, which required changes to the models.
In some cases, solving these defects caused a redesign of
the ASD components, especially when the fix made model
checking not feasible due to the size of the induced state
space.

Another important reason for redesign was the lack of
abstraction in the behaviour of some components. For exam-
ple, the use of callback eventswhich can enter theASDqueue
in any order might imply that FDR2 needs hours or even days
to calculate the state space that captures all possible execution
scenarios. Adding a new event, e.g., due to changed require-
ments, may make verification virtually impossible. Hence,
components were re-factored to make model checking feasi-
ble again.

In general, the design style influences the time needed
for model checking. Note that, within our industrial context,
waiting for a long time is usually not acceptable due to the
tight deadlines of the incremental planning. Worst, before a

defect is discovered, the model checker may have already
taken a substantial time. Hence, developers are forced to
wait for the model checker repeatedly during the process of
removing defects. A number of design guidelines to improve
the model checking speed were proposed [21]. Hence, the
team avoided a number of design styles that may needlessly
increase the state space and the time required for verification
[27].

Based on the knowledge gained, the team eventually
obtained a set of formally verified components. Columns
4–6 of Table 1 contain the output data from FDR2 for the
most time-consuming check, i.e., the refinement check for
the design models. For each component, the table shows the
state space generated by FDR2: the number of states and
transitions, and the time in seconds. These data indicate that
most of the components were verified within an acceptable
range of states and transitions, calculated in a reasonable time
by FDR2.

Code generation and integration As soon as ASD compo-
nents had been formally verified and further reviewed to
ensure that fixing the model checking defects did not break
the intended behaviour, the code was generated automat-
ically and integrated with the code of other components
via glue code. The last column of Table 1 quantifies the
number of the effective lines of code (ELOC), generated
in the C++ programming language. The effective lines of

123

Evaluating the effect of a lightweight... 101

code denote all source code excluding blanks and com-
ments.

Experience shows that, in a more conventional develop-
ment method, integrating components is a nightmare, due to
the substantial effort required to ensure that all components
work together correctly. Therefore, it was surprising that
integrating ASD components with one another was always
smooth, did not require any glue code, and often was accom-
plished without any errors. However, integrating ASD code
with the surrounding handwritten or legacy code that did not
undergo formal verification caused some errors and delays.
These errors were not counted because they emerged during
the implementation phase and are part of the normal coding
and debugging processes. Furthermore, they are not consid-
ered as behavioural defects because these issues appeared
in the wrappers connecting ASD generated code, which is
implemented in one technology (Microsoft C++ .Net), and
the legacy code, which is implemented using a different tech-
nology (Microsoft Component Object Model).

Testing An apparent advantage of ASD is that testing time
is shortened since formal verification replaces white-box
testing of the internal structure of the generated code. But,
an apparent limitation of ASD is that only a fixed set of
properties are verified. It is not possible to express domain
specific properties or to relate events between implemented
and server interfaces. Hence, testing the required behaviour
is still needed.

Therefore, the entire set of components of the ASC and
the FEA units were tested as a black-box. Furthermore, at
the end of each increment, the FE subsystem—including the
ASD components—was thoroughly tested by a specialized
test team, using various types of testing such as model-based
statistical test, smoke test, regression test, and performance
test, details of which are outside the scope of this paper. As
a result of testing, a few defects were detected; details will
be given in subsequent sections.

6 Data collection and analysis

In this section, we collect and analyse the project data to
investigate the impact of the use of ASD on the quality of
the developed software. We further compare the end quality
of the units which incorporate ASD with the other units of
the FE. To accomplish this goal, we started with collecting,
for every unit, the total number of effective lines of code that
had been newly developed plus the changed legacy code. We
restricted ourselves to the period bounded by two baselines,
representing the start and the end of the three increments.

There were a total of 202 submitted defects. These defects
were uncovered during the in-house subsystem tests and are
not post-release defects or found after delivery to the field.
We analysed all defects separately and partitioned them into

Table 2 Statistical data of representative units of the FE

Unit Effective lines of code Defects Defects/KELOC

ASD HW ASD HW ASD HW

ASC 14,006 5784 13 10 0.92817 1.72891

FEA 25,238 9489 1 18 0.03962 1.89693

IGC 0 6326 0 35 N/A 5.53272

SC 0 3340 0 0 N/A 0

SIM 0 6202 0 0 N/A 0

IDS 0 2650 0 7 N/A 2.64151

NGUI 0 2848 0 0 N/A 0

PandB 0 3161 0 1 N/A 0.31636

coding defects and others (e.g., due to documents, require-
ments or design issues). This led to a list of 104 defect reports
related to coding. For each coding defect, the corresponding
unit and the internal component were identified.

Table 2 depicts the results of our data collection, show-
ing only a representative subset of the FE units. The units
that exhibit similar results or those which were not changed
during the increments have been excluded for readability pur-
poses. Hidden from the table is also the amount of reused or
legacy code, developed and verified during previous projects.

To study the impact of ASD, we separated the ASD code
and the handwritten (HW) code and analysed them in iso-
lation. Both are quantified in the second and third columns
of Table 2. The handwritten code of the first two units rep-
resents glue code that connects ASD generated code with
other non-ASD external components. It also represents non-
control code that cannot be modelled in ASD:Suite such as
data manipulation or computations [example (de-)serializing
xml strings].

We distinguished ASD defects from those related to the
handwritten code, as listed in the fourth and fifth columns.
Next the defect rate of ASD and non-ASD code was com-
puted, as shown in columns 6 and 7.

Note that some of the manually coded units exhibit zero
defects, because most of the changes were on the level of
interfaces and not on the core internal behaviour of the units.
Furthermore, the ASC and the FEA were constructed from
scratch while other units were reused from previous released
products.

As can be inferred from the table, for the two units that
incorporate ASD, the quality of ASD code seems to be better
than the corresponding manually written code, especially for
the FEA unit, which contained one defect. After studying the
corresponding defect report we found that the defect was not
only related to ASD components but rather to a chain of ASD
and non-ASD components, due to a missing parameter in a
method. Nevertheless, developers of the FEA unit, clearly,
could deliver close to zero defects per thousand ASD lines
of code.

123

102 A. Osaiweran et al.

For the FEA unit, most defects were related to the hand-
written code. This is different for the ASC unit, although the
defect rate for the ASD part is slightly better than the man-
ually written code. The amount of defects appeared in ASD
components of the ASC unit motivated us to investigate the
behaviour of the components in depth and to study the nature
and the type of the detected defects. We discuss this in detail
in the subsequent section.

In general, the defects of the ASC appeared due to unin-
tended, unexpected behaviours (e.g., after a user presses and
releases a number of pedals and switches, it was expected
that a particular type of X-ray resumes but it stopped).
None of these defects was due to deadlocks or illegal inter-
actions (e.g., there were no crashes due to null reference
exceptions or illegal invocation of methods at some states).
This is because deadlock and illegal scenarios were for-
mally checked by the fixed set of verification properties of
ASD.

To explain why the FEA unit included fewer defects, we
observed that its required functional behaviour is far less
complex than the behaviour of the ASC unit. Moreover, the
FEA unit implements an ASD interface model that specifies
an important interaction protocol between the FE and other
subsystems. This interface and its intended behaviour were
thoroughly reviewed—not only by the FE team but also by
other teams of the other subsystems.

7 Analysing the complexity of ASD components
in relation to defects

The purpose of this section is to study the complexity of each
ASD component and determinewhether there is a correlation
between complexmodels and the error density.We also study
the root causes of the defects appeared in ASD components
that could escape formal verification,without providing tech-
nical details about the functionality of the ASD components.
To do so, we began by analysing the ASD components indi-
vidually, especially those related to the ASC unit, trying to
identify the responsible component that contributed most to
the defects.

Initially, this appeared to be challenging because we did
not possess any systematic means to measure the complexity
of components at the model level. Therefore, we assessed
the complexity of components using two other means. The
first way is subjective in the sense that we evaluated the
models concerning understandability and reviewability of the
models, based on our “common sense”. The second way is
more objective because we chose to systematically analyse
the generated code, using available code analysis tools and
techniques. The two steps are detailed below.

For the first way, we evaluated the readability of only the
design model of each component, and assigned review codes

based on the degree of complexity in reviewing and com-
prehending the models: VE = very easy, E = easy, M =
moderate, C = complex and VC = very complex. Column
two of Table 3 includes the results of the assessment. For
example, the RunController component is considered to be
complex because it includes 23 input stimuli, for which a
response is required to be defined in 16 states, and 10 state
variables being used as predicates in almost all rule cases.
Often, there are several rule cases for a certain stimulus in
a state to distinguish combinations of values of variables.
For instance, in a certain state there are 31 rule cases for the
FailedSC stimulus event to deal with all possible combina-
tions of variable values. A fragment with three of these rule
case is shown in Fig. 8.

As a contrary case, the user-guidance component
UGStateless of the FEA unit is considered to be very easy
because it contains only two states without any predicates.
The component is enabled or disabled to allow or block the
flow of information traffic to other components. Although
the component is easy to read and to understand, it was
the most time-consuming component when verified using
model checking, as can be seen in Table 1. The reason is that
the component receives a large number of callback events.
Because these events are stored in the queue of the compo-
nent in any arbitrary order, FDR2 took substantial time to
calculate the state space of the component.

Next, we distributed the defects to the respective compo-
nents, as depicted in the last column of Table 3. As can be
seen, most of the ASD defects reside in the RunController
component, unveiling an apparent correlation between the
complexity of the component and the density of defects.

In the second way, we performed a static analysis of
the generated code, seeking similar correlations between
code complexity and defect density. The motivation was that
complexity of the models may also be reflected in the corre-
sponding generated code. We used the SourceMonitor tool
Version 3.2 [41] to analyse the generated code.

Table 3 includes some selected code metrics produced by
the tool: the average number ofmethods per class (AvgM/C),
the average statements per method (Avg S/M), the maximum
cyclomatic complexity (Max CC), the average block depth,
and the average cyclomatic complexity (AvgCC). In general,
generated code tends to take up more space than manually
written code. In our application domain there are hardly any
memory limitations for code (the main concern is the stor-
age of X-ray images). It would lead to a larger maintenance
effort if one would maintain the generated code manually,
but clearly this is not advisable.

As can be seen in the table, the RunController component
also appears to be very complex compared to other compo-
nents. Notable is that the 157 Max CC of the RunController
component resides in the code corresponding to the rule cases
of the FailedSC stimulus event presented earlier in Fig. 8. In

123

Evaluating the effect of a lightweight... 103

Table 3 Statistical data of ASD
components

Component Review Avg M/C Avg S/M Max CC Avg depth Avg CC Defects

ASC unit

AcquisitionController E 3.42 3.3 16 1.03 1.41 1

AcquisitionRequests M 5 6.3 18 1.26 2.26 3

ASCExamEpxManager E 3.17 2.8 4 0.88 1.25 0

ASCMisc VE 3.62 2.2 5 0.79 1.08 0

ASCMiscDecoupler VE 3.5 1.7 3 0.73 1.14 0

RequestCounter M 3.57 5 13 1.17 1.90 1

RequestFilter M 4.38 7 18 1.33 2.73 1

RunController C 7.61 10.5 157 1.42 5.71 7

FEA unit

AcqCtrlAcqRequests VE 4.08 2.3 3 0.99 1.17 0

BETStateless VE 2.57 1.5 3 0.84 1.13 0

CmdStateless VE 4.05 2.2 3 0.8 1.09 0

CxaAdpMain C 7.44 5.5 13 1.09 2.08 0

DAcqCtrl M 7.95 3.7 16 0.95 1.27 1

DActivation VE 3.1 2.1 5 0.84 1.17 0

Decoupler VE 3 1.4 3 0.7 1.14 0

DWrapper VE 2.46 1.6 4 0.84 1.16 0

FEProxyVE M 16 3.9 13 0.9 1.12 0

FEProxyVEStateless VE 4.4 2.5 9 0.85 1.12 0

FSStateless VE 2.82 1.6 3 0.8 1.11 0

UGStateless VE 4.58 2.3 4 0.84 1.07 0

Fig. 8 An example of complex
rule cases

the code, the rule cases are represented by a single method
containing 30 related if-else statements.

The number of defects found in the RunController com-
ponent motivated us to study the type of these defects and
their evolution. In fact, four of the seven defects had a sim-
ilar cause, namely missing updates of state variables before
a state transition. The team solved these defects by adding
more rule cases with different predicates and also additional
state variables, which increased the complexity even more.
Another defect was caused by forgetting to store a value. Two
defects were due to missing requirements.

A potential solution to avoid such defects is to reduce the
complexity by decomposing the RunController component
into a number of smaller components instead of increasing

the complexity by adding more details and state variables to
the component when fixing the defects. The RunController
clearly shows that bug fixing should be done with care and
may lead to redesign activities.

8 Quality and performance results

In this section, we evaluate the end quality and productiv-
ity of the developed ASD units, by comparing them against
the worldwide industry standards reported in the literature.
The best sources we could find are [30,37–39], where statis-
tics related to a number of projects of different types and
sizes are thoroughly described. We concentrate more on

123

104 A. Osaiweran et al.

those statistics revealed for software systems analogous to
the Frontend (FE) subsystem. Code quality is discussed in
Sect. 8.1, whereas productivity is addressed in Sect. 8.2.

8.1 Code quality

In [35], Linger and Spangler compared the quality of code
developed under the Cleanroom software engineering formal
method to the industry standard of 30–50 defects per KLOC.
Jones in [30] presents an average of 1.7 coding defects per
function point (p. 102, Table 3.11), which roughly corre-
sponds to a range of 14–58 defects per C++ KLOC (after
consulting Table 3.5 on p. 78 of [30]).

Furthermore, McConnell presents in [38] (p. 242, Table
21-11) a breakdown of industry average defect rate based
on software size, where our type of software is estimated to
include 4–100 defects per KLOC. In [37] McConnell explic-
itly states an industry average of 1–20 defects per KLOC
during the construction of software (p. 521), and also men-
tioned a range of 10–20 defects per KLOC, in the Microsoft
Applications Division, during in-house testing. McConnell
classifies the expected defect density based on the project
size, where our system is expected to include 4–100 defects
per KLOC (p. 652, Table 27-1).

At Philips Healthcare, for each increment the internally
delivered code should exhibit at most six defects per KLOC
with an average productivity of 2 LOC per staff hour. Any
code that includes more defects, during the in-house con-
struction, can be rejected and sent back to the developers,
but this rarely happened.

From the data presented earlier in Table 2, we conclude
that the ASD technology delivered high quality code, aver-
aging the ASD code of the ASC and FEA units to only 0.36
defects per KLOC. Hence, if we consider the ranges of soft-
ware quality mentioned above, the ASD code appears to be
of good quality.

8.2 Productivity

Theproductivity ofASD is compared to the literature in terms
of the number of lines of code per staff hour (using 132 h per
month, based on 22 days, 6 h a day). In [30], Jones presents
a productivity figure of 435 ELOC for C++ per staff month
(p. 73, Table 3.4), which is equal to 3.3 ELOC per staff hour.
Furthermore, he provides figures for the average and best
practices for systems software (p. 339, Table 9.7). There,
Jones presents a 4.13 and 8.76 as an average and best-in-
class function points per staff month (which is equal to 1.7
and 3.5 as an average and best-in-class LOC per staff hour,
after consulting Table 3.5 on p. 78).

In [15], Cusumano et al. studied the data of a number of
projects worldwide, and found amedian of 450 LOCper staff
month (3.41 LOC per staff hour) for the data sample related

to the Japanese and European projects. The projects include
roughly 48 % of generated code.

A study of McConnell [37] (p. 522) showed that a formal
Cleanroom project could deliver nearly 5.61 LOC per staff
hour [34]. He alsomentioned an industry average of 250–300
LOCperwork-month (1.9–2.3LOCper staff hour), including
all non-coding overhead. Furthermore, [37] (p. 653 Table
27-2) lists the expected productivity based on the size of
the software product. Given these statistics, the productivity
of software similar to the Frontend (FE) subsystem ranges
between 700 and 10,000 LOC per staff year with a nominal
value of 2000 LOCper staff year (i.e., 0.4–6.3with a nominal
value of 1.3 LOC per staff hour).

Consequently, we can use the above measures to compare
the productivity of the ASD developed units. The total time
spent developing theASD components was 2378 h, affording
an average of 16.5 ELOC per staff hour. The total time spent
developing the two units, including the time spent for non-
coding overhead, was 5701 h, which favourably yields 9.6
ELOC per staff hour. Therefore, if we consider the above-
mentioned range of 0.4–6.3 LOC per staff hour of [37], the
productivity of ASD appears to be much better. This high
productivity is due to a number of factors:

– The ASD:Suite is a model-based tool that provides an
easy to use graphical user interface. Specification ofmod-
els is done by filling the ASD tables with actions selected
from an ordered list using clicks. Compared to traditional
text editors, the graphical interface of ASD is more pro-
ductive.

– The code is obtained automatically by a click of a button.
– Integrating ASD components is automatic and requires
no extra work.

– The internal structure of ASD generated code need not be
tested since it is formally verified (but black-box testing
is required).

– ASD tracing and logging facilities finding the source of
bugs and quickly repairing them.

9 Related projects using formal techniques

In this section,we report about a number of industrial projects
that incorporated formalmethods into software development,
highlighting their achieved quality and productivity. Our
starting point was a survey and a comprehensive review of
applications developed using formal methods, including 70
references to the literature, in [44]. Furthermore, we searched
other projects using web search engines and visited a number
of searched home pages hosting the formal techniques.

Initially, the idea was to restrict ourselves to the last
10 years, but we found very few publications reporting quan-
titative evidences that demonstrate the impact of formal

123

Evaluating the effect of a lightweight... 105

Table 4 List of projects incorporated formal techniques in software development

Year Project Technology Size (KLOC) Prog. language D/KLOC LOC/man-hour Phase counting
defects

1988 IBM COBOL
Structuring
Facility

Cleanroom 85 PL/I 3.4 5.6 Certification test

1989 NASA Satellite
Control

Cleanroom 40 FORTRAN 4.5 5.9 Certification test

1991 IBM System
Product

Cleanroom (partial) 107 Mixed 2.6 3.7 All testing

1996 MaFMeth VDM + B 3.5 C 0.9 13.6 Unit testing

1998 Line 14, Paris
metro

B method 86 Ada Zero – Testing + after
release

1999 DUST-EXPERT VDM 17.5 and 15.8 C++ and Prolog ≤1 – Testing + after
release

1999 Siemens FALKO ASM 11.9 C++ 0.17 2.2 After release

2000 VDMTools VDM 23.3 C++ – 12.4 –

2000 TradeOne, Tax
Exem.

VDM 18.4 C++ 0.7 10 Integration test

2000 TradeOne,
Option

VDM 64.4 C++ 0.67 7 Integration test

2006 Tokeneer ID
Station

SPARK 10 Ada Zero 6.3 Reliability test
after delivery

2007 Shuttle, Paris
airport

B Method 158 Ada – – –

2008 Mobile FliCa VDM 264 C++ Zero – After system
release

2012 Philips, Frontend ASD 39.2 C++ 0.36 16.5 (ELOC) Subsystem test

techniques in industry. Most publications contain detailed
case studies of applying formal methods at different stages
of software development and facts about the performance of
the formalmethod tools and did not describe the performance
of industrial projects. Hence we searched further back, until
the late 1980s.

Table 4 summarizes the results by listing 13 projects that
are similar to ours and which provide sufficient data about
code quality and productivity. The last line describes our
own FE project. The projects are listed in chronological
order, highlighting the formal technique used, the size of
the developed software, the programming language used for
implementation, the defect density, the productivity in terms
of the lines of code produced per staff hour, and the phase
where the defects were counted. We give a brief explanation
of the first 13 projects.

The first three projects were selected from [34], where
Linger lists 15 projects where the Cleanroom formal engi-
neering method was used, summarizing the results achieved
for each project. All systems exhibit quality figures that
range between 0 and 5 defects per KLOC with an aver-
age of 3.3 defects per KLOC. Compared to the mentioned
range of 30–50 defects/KLOC in traditional development,
Linger concluded that systems developed with formal meth-

ods achieve remarkable quality. Since productivity figures
were not available for 12 of these projects, Table 4 contains
the three projects with quality and productivity data:

1. The IBM COBOL Structuring Facility, with a team of
six developers (it was their first development project).
The product exhibits 3.4 defects per KLOC and several
major components were certified without experiencing
any defect. The average productivity was 5.6 LOC per
man-hour.

2. The development of a Satellite controller carried out
by the Software Engineering Laboratory at NASA. The
system included 40 KLOC of FORTRAN and was certi-
fied with 4.5 defects/KLOC. The productivity was 5.9
LOC/person-hour, resulting in an 80 % improvement
over previous averages known in the laboratory.

3. Complex system software which was developed by 50
people at IBM using various programming languages.
The system exhibited 2.6 defects/KLOC,where five of its
eight components experienced no defects during testing.
The team used the Cleanroom method for the first time
[22].

123

106 A. Osaiweran et al.

The MaFMeth project [6] incorporated VDM and the B
method in software development. The project included 8000
lines of generated code. However, developers estimated the
actual code size to be 3500 LOC in case the same function-
ality is implemented without any code reuse. The reported
defects were found during unit testing. Defects found during
validation testing or defects found after releasing the system
were not available. Productivity was 13.6 LOC per hour with
a defect density of 0.9 defect per KLOC.

The B Method was used to develop safety-critical com-
ponents of the automatic train operating system, the metro
line 14 in Paris [2,5]. Members of the development and
validation teams were newcomers to formal methods, but
were supported by B experts when needed. The developed
components included 86,000 of mathematically verified Ada
code and the system did not experience any defect during
independent testing or after release. However, the num-
bers regarding the effort spent for the entire development
were missing except for the correctness proofs. Neverthe-
less, the project was completed successfully and on schedule
[5].

The DUST-EXPERT project incorporated VDM to soft-
ware development and was successfully released with 15.8
KLOC of Prolog and 17.5 KLOC of C++ [13]. The system
exhibited less than one defect per KLOC. The defects were
found during coverage testing and after product release. Pro-
ductivity was above industry norms but there were no figures
provided in the paper. Productivity using Prolog was less
than C++ because of the high abstract level and the rigor-
ous way the core Prolog was generated. Developers involved
were skilled in formal methods.

Abstract State Machines (ASM) were used in the devel-
opment of a software package developed at Siemens called
FALKO [7]. The package was redesigned from scratch due
to its complexity. The newly developed package included
roughly 11,900 LOC of C++, generated and manually writ-
ten, developed in nearly 66 man-weeks effort. Two defects
were found after product release andwere fixed directly in the
generated code. The end quality was 0.17 defect per KLOC
and the productivity was 2.2 LOC per hour.

In [33], VDM was used to formally develop some com-
ponents of the VDM toolset itself. Table 4 includes some
metrics related to the VDM-C++ code generator compo-
nent, which was formally specified using VDMbut manually
implemented using C++. The productivity was 12.4 LOC
per hour, but compared with other components the produc-
tivity was less due to its complexity and the involvement of
new employees. No figures related to the defects found were
reported.

The VDM toolset was used for developing some compo-
nents of a business application, called TradeOne [19]. Two
subsystems of the application were developed under the con-
trol of VDM++where the first exhibits a productivity figure

of nearly 10 lines of C++ and Java per staff hour while the
second subsystem exhibits 6.1 lines of C++ per staff hour.
The defect rates of both subsystems are less than one defect
per KLOC. The defects were reported during integration test-
ing and there were no defects discovered after releasing the
product.

The Tokeneer ID Station (TIS) project was carried out
by Praxis High Integrity Systems and accomplished by three
part-timemembers over 1year using SPARK [4]. The overall
productivity of the TIS core system was 6.3 LOC of Ada per
man-hour. The system did not exhibit any defect whatsoever
during reliability testing and also since delivery.

The B Method was successful in developing software
components of a driverless shuttle at Paris Roissy Airport
[2,3]. The developed software included 158 KLOC of gener-
ated code. The generated code includes lots of duplications
due to the lack of sharing in the code and the intermediate
steps performed by the code generator. The code is estimated
to be 60 KLOC in size after tuning. However, there were no
data available about the total time spent in development or the
number or type of defects encountered along the construction
of the software.

Sony Corporation applied VDM to the development of
firmware for a smart card IC chip in an industrial project
called the Mobile FeliCa [32]. The developers produced
140,241 formal lines of VDM specification including test
cases of 66,412 lines and 34,460 lines of comments written
in a natural language. The formal specification guided the
implementation of 264,000 lines of C++ code, produced by
a team of 50–60 members. The project was accomplished
with an average productivity of 11.9 lines of VDM per
hour. Before the integration tests, 440 errors were found
and fixed. No defects were reported by customers since
the first system release. In general, developers observed an
increase in quality and they could deliver the system in
time.

As a general conclusion we can say that the formal tech-
niques used in these projects had favourably increased the
productivity and the quality of the developed systems. Never-
theless, given the level of the gained quality and productivity
it is worth investigating whymost organizations do not incor-
porate formal engineering methods in their development
processes. The literature about the projects mentioned above
does not contain discussions regarding the weaknesses and
the main difficulties encountered when applying the tech-
niques.

10 Conclusions

Based on our analysis of the use of the ASD approach in an
industrial development project, related to industrial standards

123

Evaluating the effect of a lightweight... 107

and similar projects, we answer the questions raised in the
Sect. 1.

Can ASD deliver product code of good quality? The ASD
technology allows generating formally verified code from
formalmodels. Compared to the industry standards of Philips
and those reported worldwide, the ASD technology could
clearly deliver product code that exhibits good quality fig-
ures. The developed units appeared to be stable and reliable
against the frequent changes of requirements. But, obtain-
ing this level of quality depended on many factors like the
experience of developers and the level of abstractions in the
designs, for instance.

Does ASD always produce near zero-defect software? If not,
which types of defects can be expected? As we saw before,
although ASD components were formally specified and ver-
ified, some defects were found during testing. Since ASD
only checks a limited set of properties, it may not always
lead to defect-free software. However, our study shows that
the formally developed software contains very few defects
compared to the industry standards. In general, most defects
were easy to find and to fix. Furthermore, we collected statis-
tical figures related to worldwide projects that incorporated
other formal methods in software development. Although
the number of these projects was very limited, we found
that most projects exhibited good quality and productivity
figures.

Does ASD require more development time compared to tra-
ditional methods? What about the productivity using ASD?
The presented data indicate an improved productivity com-
pared to industrial standards. This resulted from the fact that
developers were only concerned with models, from which
verified code is generated automatically with the click of a
button. Another important fact is that less or even no timewas
spent integrating and manually testing the generated code;
activities which are usually time-consuming and uncertain.
The productivity was higher because ASD prevented prob-
lems earlier rather than detecting and fixing problems at later
stages, which is time-consuming and costly.

Finally we discuss some of the limitations of the ASD
method that might prevent large-scale introduction into the
industrial workflow:

– The approach is limited to event-based control compo-
nents. It is not suitable for low-level real-time controllers
and data-intensive components. Designers might find it
difficult to decide what to do in ASD and what not.

– ASD assumes a hierarchical control architecture with
synchronous method calls from top to bottom and asyn-
chronous callbacks in the other direction. Although this
gives a clear structure, it is not always easy to construct
such a hierarchy, especially because components should

be small and the number of callbacks limited to allow
model checking. Moreover, when software engineers are
used to object-oriented designs this might require a par-
adigm shift.

– Large state-transition tables become difficult to review
and to maintain; there are hardly any structuring mecha-
nisms, e.g., to indicate that a certain transition is common
to a set of states.

– When preparing work breakdown estimations, it is diffi-
cult to estimate the time needed for verification.

– There is no systematic means to evaluate and analyse
the complexity of ASD models, e.g., to detect early that
model checking might take too long or to decide that
refactoring is needed. For our analysis,we determined the
complexity based on the corresponding generated code.
Butmodels that generate complex codedonot necessarily
produce huge state spaces when checked formally.

Summarizing, our investigation shows that the ASD
technology could deliver good quality software with high
productivity. But we also indicated that large-scale introduc-
tion is not trivial and requires good insight in the possibilities
and impossibilities of the method.

Acknowledgments Wewould like to thank the anonymous reviewers
for their useful remarks and suggestions for improvement.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Abrial, J.-R.: TheB-Book:Assigning Programs toMeanings. Cam-
bridge University Press, New York (1996)

2. Abrial, J.-R.: Formal methods: theory becoming practice. J. Univ.
Comput. Sci. 13(5), 619–628 (2007)

3. Badeau, F., Amelot, A.: Using B as a high level programming lan-
guage in an industrial project: Roissy val. In: ZB 2005: Formal
Specification and Development in Z and B. Lecture Notes in Com-
puter Science, vol. 3455, pp. 334–354. Springer, Berlin (2005)

4. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D.,
Everett, B.: Engineering the Tokeneer enclave protection system.
In: Proceedings of the 1st International SymposiumonSecure Soft-
ware Engineering (2006)

5. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Meteor: A suc-
cessful application of B in a large project. In: FM’99: Formal
Methods. Lecture Notes in Computer Science, vol. 1708, pp. 369–
387. Springer, Berlin (1999)

6. Bicarregui, J., Dick, J., Woods, E.: Quantitative analysis of an
application of formal methods. In: FME’96: Industrial Benefit and
Advances in FormalMethods. Lecture Notes in Computer Science,
vol. 1051, pp. 60–73. Springer, Berlin (1996)

7. Borger, E., Pappinghaus, P., Schmid, J.: Report on a practi-
cal application of ASMs in software design. In: Abstract State
Machines—Theory and Applications. Lecture Notes in Computer
Science, vol. 1912, pp. 361–366. Springer, Berlin (2000)

123

108 A. Osaiweran et al.

8. Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet:
some experiences of formal methods in practice. In: APSEC
’03: Proceedings of the Tenth Asia–Pacific Software Engineering
Conference Software Engineering Conference, pp. 49–58. IEEE
Computer Society, London (2003)

9. Carter, J.M., Poore, J.H.: Sequence-based specification of feedback
control systems in Simulink. In: Proceedings of the 2007 Confer-
ence of theCenter forAdvancedStudies onCollaborativeResearch,
CASCON ’07, pp. 332–345. IBM Corporation, New York (2007)

10. CBMC: Bounded Model Checking for Software. http://www.
cprover.org/cbmc (2015)

11. CPAchecker: The Configurable Software-Verification Platform.
(2015)

12. ClearSy,Atelier B: Industrial Tool Supporting theBMethod. http://
www.atelierb.eu/en (2012)

13. Clement, T., Cottam, I., Froome, P., Jones, C.: The development
of a commercial “shrink-wrapped application” to safety integrity
level 2: the dust-expertTM story. In: Computer Safety, Reliability
and Security. Lecture Notes in Computer Science, vol. 1698, pp.
216–225. Springer, Berlin (1999)

14. CSKSystemsCorporation: VDMTools. Industrial Tool Supporting
VDM++. http://www.vdmtools.jp/en (2014)

15. Cusumano, M., MacCormack, A., Kemerer, C.F., Crandall, B.:
Software development worldwide: the state of the practice. IEEE
Softw. 20(6), 28–34 (2003)

16. Doornbos, R., Hooman, J., van Vlimmeren, B.: Complementary
verification of embedded software usingASDandUppaal. In: Inno-
vations in Information Technology (IIT’12), pp. 60–65 (2012)

17. Esterel Technologies: SCADE Suite. Model Based Development
Environment Dedicated to Critical Embedded Software. http://
www.esterel-technologies.com/products/scade-suite (2014)

18. FDR homepage: http://www.fsel.com (2014)
19. Fitzgerald, J., Larsen, P., Mukherjee, P., Plat, N., Verhoef, M.:

Validated Designs for Object-Oriented Systems. Springer TELOS,
Santa Clara (2005)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
New York (1995)

21. Groote, J., Kouters, T., Osaiweran, A.: Specification guidelines
to avoid the state space explosion problem. In: Fundamentals of
Software Engineering. Lecture Notes in Computer Science, vol.
7141, pp. 112–127. Springer, Berlin (2012)

22. Hausler, P.A.: A recent cleanroom success story: the Redwing
project. In: 17th Annual Software Engineering Workshop. NASA
Goddard Space Flight Center, Greenbelt (1992)

23. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, New York (1985)

24. Heitmeyer, C.: On the need for practical formal methods. In: For-
mal Techniques in Real-Time and Fault-Tolerant Systems. Lecture
Notes in Computer Science, vol. 1486, pp. 18–26. Springer, Berlin
(1998)

25. Holloway, M.C.: Why engineers should consider formal methods.
In: 16th Digital Avionics Systems Conference, pp. 16–22. IEEE
Press, New York (1997)

26. Hooman, J.: Lecture Notes in Computer Science. Specification and
compositional verification of real-time systems, vol. 558. Springer,
Berlin (1991)

27. Hooman, J.,Huis,R., Schuts,M.:Experienceswith a compositional
model checker in the healthcare domain. In: FHIES 2011, LNCS,
vol. 7151, pp. 93–110. Springer, Berlin (2012)

28. Hopcroft, P.J., Broadfoot,G.H.:Combining the box structure devel-
opmentmethod andCSP for software development.Electron.Notes
Theor. Comput. Sci. 128(6), 127–144 (2005)

29. IBM Rational Rhapsody family: http://www.ibm.com/software/
products/en/ratirhapfami (2015)

30. Jones, C.: Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley Longman, Boston (2000)

31. Jones, C.B., Jackson,D.,Wing, J.: Formalmethods light. Computer
29(4), 20–22 (1996)

32. Kurita, T., Nakatsugawa, Y.: The application of VDM to the indus-
trial development of firmware for a smart card IC chip. Int. J. Softw.
Inform. 3(2), 343–355 (2009)

33. Larsen, P.: Ten years of historical development “bootstrapping”
VDMTools. J. Univ. Comput. Sci. 7(8), 692–709 (2001)

34. Linger, R.C.: Cleanroom software engineering for zero-defect soft-
ware. In: Proceedings of the 15th International Conference on
Software Engineering, pp. 2–13. IEEE Computer Society Press,
Los Alamitos (1993)

35. Linger, R., Spangler, R.: The IBM cleanroom software engineering
technology transfer program. In: Software Engineering Educa-
tion. Lecture Notes in Computer Science, vol. 640, pp. 380–394.
Springer, Berlin (1992)

36. MATLAB: MathWorks. http://www.mathworks.com (2015)
37. McConnell, S.: Code Complete, 2nd edn. Microsoft Press, Red-

mond (2004)
38. McConnell, S.: Software Estimation: Demystifying the Black Art.

Microsoft Press, Redmond (2006)
39. Mills, H.: Certifying the correctness of software. In: 25th HICSS,

Hawai, pp. 373–381 (1992)
40. Mills, H.: Stepwise refinement and verification in box-structured

systems. Computer 21, 23–36 (1988)
41. SourceMonitor homepage: http://www.campwoodsw.com/

sourcemonitor.html (2014)
42. Uppaal, UP4ALL, Uppsala: http://www.uppaal.com (2015)
43. Verum homepage: http://www.verum.com (2014)
44. Woodcock, J., Larsen, P., Bicarregui, J., Fitzgerald, J.: Formal

methods: practice and experience.ACMComput. Surv. 41(4), 1–36
(2009)

123

http://www.cprover.org/cbmc
http://www.cprover.org/cbmc
http://cpachecker.sosy-lab.org
http://www.atelierb.eu/en
http://www.atelierb.eu/en
http://www.vdmtools.jp/en
http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://www.fsel.com
http://www.ibm.com/software/products/en/ratirhapfami
http://www.ibm.com/software/products/en/ratirhapfami
http://www.mathworks.com
http://www.campwoodsw.com/sourcemonitor.html
http://www.campwoodsw.com/sourcemonitor.html
http://www.uppaal.com
http://www.verum.com

	Evaluating the effect of a lightweight formal technique in industry
	Abstract
	1 Introduction
	2 Related work
	3 Analytical software design
	3.1 ASD interface models
	3.2 ASD design models
	3.3 Formal verification using model checking

	4 Description of the project
	5 The process of developing ASD components in iXR
	6 Data collection and analysis
	7 Analysing the complexity of ASD components in relation to defects
	8 Quality and performance results
	8.1 Code quality
	8.2 Productivity

	9 Related projects using formal techniques
	10 Conclusions
	Acknowledgments
	References

