
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/151500

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43598717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/151500

Unveiling Exception Handling Bug Hazards in
Android based on GitHub and Google Code Issues

Roberta Coelho∗, Lucas Almeida∗, Georgios Gousios†, Arie van Deursen‡
∗Federal University of Rio Grande do Norte

Natal, Brazil
Email: roberta@dimap.ufrn.br,lucas.almeida@ppgsc.ufrn.br

†Radboud University Nijmegen
Nijmegen, The Netherlands

Email: georgios@cs.ru.nl
‡Delft University of Technology

Delft, The Netherlands
Email: arie.vandeursen@tudelft.nl

Abstract—This paper reports on a study mining the exception
stack traces included in 159,048 issues reported on Android
projects hosted in GitHub (482 projects) and Google Code (157
projects). The goal of this study is to investigate whether stack
trace information can reveal bug hazards related to exception
handling code that may lead to a decrease in application ro-
bustness. Overall 6,005 exception stack traces were extracted,
and subjected to source code and bytecode analysis. The out-
comes of this study include the identification of the following
bug hazards: (i) unexpected cross-type exception wrappings (for
instance, trying to handle an instance of OutOfMemoryError
“hidden” in a checked exception) which can make the exception-
related code more complex and negatively impact the application
robustness; (ii) undocumented runtime exceptions thrown by both
the Android platform and third party libraries; and (iii) undoc-
umented checked exceptions thrown by the Android Platform.
Such undocumented exceptions make difficult, and most of the
times infeasible for the client code to protect against “unforeseen”
situations that may happen while calling third-party code. This
study provides further insights on such bug hazards and the
robustness threats they impose to Android apps as well as to
other systems based on the Java exception model.

I. INTRODUCTION

In recent years, we have witnessed an astonishing increase
in the number of mobile applications. These applications
extend phones capabilities far beyond basic calls and textual
messages. They must, however, face an increasing number of
threats to application robustness arising from failures in the
underlying middleware and hardware (e.g., camera, sensors);
failures in third party services and libraries; compatibility
issues [36]; memory and battery restrictions; and noisy external
resources [52] (e.g., wireless connections,GPS, bluetooth).

Therefore, techniques for error detection and handling are
not an optional add-on but a fundamental part of such apps.
The exception handling mechanism [26], embedded in many
mainstream programming languages, such as Java, C++ and
C#, is one of the most used techniques for detecting and
recovering from such exceptional conditions. In this paper we
will be concerned with exception handling in Android apps,
which reuses Java’s exception handling model.

Studies have shown that exception-related code is gener-

ally poorly understood and among the least tested parts of
the system [37], [40], [44], [24], [25], [17], [19], [51]. As
a consequence they may inadvertently negatively affect the
system: exception-related code may introduce failures such as
uncaught exceptions [29], [52] - which can lead to system
crashes, making the system even less robust [19].

In Java, when an application fails due to an uncaught
exception, it automatically terminates, while the system prints
a stack trace to the console, or on a log file [27]. A typical Java
stack trace consists of the fully qualified name of the thrown
exception and the ordered list of methods that were active on
the call stack before the exception occurred [27], [15].

This study performs a post mortem analysis of the ex-
ception stack traces included in issues reported on Android
projects hosted in GitHub and Google Code. The goal of this
study is to investigate whether the reported exception stack
traces can reveal common bug hazards in the exception-related
code. A bug hazard [14] is a circumstance that increases the
chance of a bug to be present in the software. An example of
a bug hazard can be a characteristic of the exception-related
code which can increase the likelihood of introducing the
aforementioned uncaught exceptions.

To guide this investigation we compiled general guidelines
on how to use Java exceptions proposed by Gosling [27],
Wirfs-Brock [50] and Bloch [15]. Then, using a custom tool
called ExceptionMiner, which we developed specifically for
this study, we mine stack traces from the issues reported on
482 Android projects hosted in GitHub and 157 projects hosted
in Google Code. Overall 159,048 issues were analyzed and
6,005 stack traces were extracted from them. The exception
stack trace analysis was augmented by means of bytecode
and source code analysis on the exception-related code of the
Android platform and Android applications. Some bug hazards
consistently detected during this mining study include:

• Cross-type exception wrappings, such as an Out-
OfMemoryError wrapped in a checked exception. Try-
ing to handle an instance of OutOfMemoryError “hid-
den” in a checked exception may bring the program
to an unpredictable state. Such wrappings suggest

that when (mis)applied, the exception wrapping can
make the exception-related code more complex and
negatively impact the application robustness.

• Undocumented runtime exceptions raised by the An-
droid platform (35 methods) and third-party libraries
(44 methods) - which correspond to 4.4% of the
reported exception stack traces. In the absence of
the “exception specification” of third-party code, it is
difficult or even infeasible for the developer to protect
the code against “unforeseen” exceptions. Since in
such cases the client usually does not have access to
the source code, such undocumented exceptions may
remain uncaught and lead to system crashes.

• Undocumented checked exceptions signaled by native
C code. Some flows contained a checked exception
signaled by native C code invoked by the Android
Platform, yet this exception was not declared in the
Java Native Interface invoking it. This can lead to
uncaught exceptions that are difficult to debug.

• A multitude of programming mistakes - approx-
imately 52% of the reported stack traces can
be attributed to programming mistakes. In par-
ticular, 27.71% of all stack traces contained a
java.lang.NullPointerException as their root cause.

The high prevalence of NullPointerExceptions is in line
with findings of earlier research [32], [23], [20], as are the
undocumented runtime exceptions signaled by the Android
Platform [30]. Some of the findings of our study emphasize
the impact of these bug hazards on the application robustness
by mining a different source of information as the ones used
in previous works. The present work mined issues created
by developers on GitHub and Google Code, while previous
research analyzed crash reports and automated test reports.
Furthermore, our work points to bug hazards that were not
detected by previous research (i.e., cross-type wrappings, un-
documented checked exceptions and undocumented runtime
exceptions thrown by third-party libraries) which represent
new threats to application robustness.

Our findings point to threats not only to the development
of robust Android apps, but also to the development of any
robust Java-based system. Hence, the study results are relevant
to Android and Java developers who may underestimate the
effect of such bug hazards on the application robustness, and
who have to face the difficulty of preventing them. Moreover,
such bug hazards call for improvements on languages and
tools to better support exception handling in Android and Java
environments.

The remainder of this paper is organized as follows.
Section II provides the necessary background on the Android
platform and Java exception model. Section III presents the
study design. Section III-C describes the ExceptionMiner tool
we developed to conduct our study. Section IV reports the
findings of our study. Section V provides a discussion of
the wider implications of our results. Section VI presents the
threats to validity associated to this study. Finally Section VII
describes related work, and Section VIII concludes the paper
and outlines directions for future work.

II. BACKGROUND

A. The Android Platform

Android is an open source platform for mobile devices
based on the Linux kernel. Android also comprises (i) a set
of native libraries written in C/C++ (e.g., WebKit, OpenGL,
FreeType, SQLite, Media, C runtime library) to fulfill a wide
range of functions including graphics drawing, SSL com-
munication, SQLite database management, audio and video
playback etc; (ii) a set of Java Core Libraries including a
subset of the Java standard libraries and various wrappers to
access the set of C/C++ native libraries using the Java Native
Interface (JNI); (iii) the Dalvik runtime environment, which
was specifically designed to deal with the resource constraints
of a mobile device; and (iv) the Application Framework which
provides higher-level APIs to the applications running on the
platform.

B. Exception Model in Java

Exception Types. In Java, exceptions are represented ac-
cording to a class hierarchy, on which every exception is
an instance of the Throwable class, and can be of three
kinds: the checked exceptions (extends Exception), the runtime
exceptions (extends RuntimeException) and errors (extends
Error) [27]. Checked exception received their name because
they must be declared on the method’s exception interface
(i.e., the list of exceptions that a method might raise during
its execution) and the compiler statically checks if appropriate
handlers are provided within the system. Both runtime excep-
tions and errors are also known as “unchecked exceptions”,
as they do not need to be specified on the method exception
interface and do not trigger any compile time checking.

By convention, instances of Error represent unrecoverable
conditions which usually result from failures detected by the
Java Virtual Machine due to resource limitations, such as
OutOfMemoryError. Normally these cannot be handled inside
the application. Instances of RuntimeException are implicitly
thrown by Java runtime environment when a program violates
the semantic constraints of the Java programming language
(e.g., out-of-bounds array index, divide-by-zero error, null
pointer references). Some programming languages react to
such errors by immediately terminating the program, while
other languages, such as C++, let the program continue its
execution in some situations such as the out-of-bounds array
index. According to the Java Specification [27] programs are
not expected to handle such runtime exceptions signaled by
the runtime environment.

User-defined exceptions can be either checked or
unchecked, by extending either Exception or RuntimeExcep-
tion. There is a long-lasting debate about the pros and cons
of both approaches [8], [6], [1] Section II-C presents a set of
best practices related to each of them.

Exception Propagation. In Java, once an exception is
thrown, the runtime environment looks for the nearest enclos-
ing exception handler (Java’s try-catch block), and unwinds
the execution stack if necessary. This search for the handler
on the invocation stack aims at increasing software reusability,
since the invoker of an operation can handle the exception in
a wider context [37].

Fig. 1: Example of an exception stack trace in Java.

A common way of propagating exceptions in Java pro-
grams is through exception wrapping (also called chaining):
One exception is caught and wrapped in another which is then
thrown instead. Figure 1 shows an exception stack trace which
illustrates such exception wrapping. For simplicity, in this
paper we will refer to “exception stack trace” as as just stack
trace. The bottom part of the stack trace is the root exception,
which indicates the first reason (root cause) for the exception
thrown (in this case, the computer run out of memory). The top
part of the stack trace indicates the location of the exception
manifestation (which we will refer to as the exception wrapper
in this paper). The execution flow between the root exception
and the wrapper may include other intermediate exception
wrappers. In all levels, the exception signaler, is the method
that threw the exception, represented on the stack trace as the
first method call below the exception declaration.

C. Best Practices

Several general guidelines have been proposed on how to
use Java exceptions [35], [27], [50], [15]. Such guidelines do
not advocate any specific exception type, but rather propose
ways to effectively use each of them. Based on these, for the
purpose of our analysis we compiled the following list of Java
exception handling best practices.

I-Checked exceptions should be used to represent recover-
able conditions ([35], [27], [50], [15]). The developer should
use checked exceptions for conditions from which the caller
is expected to recover. By confronting the API user with a
checked exception, the API designer is forcing the client to
handle the exceptional condition. The client can explicitly
ignore the exception (swallowing, or converting it to another
type) at the expense of the program’s robustness [27].

II-Error represents an unrecoverable condition which
should not be handled ([27]). Errors should result from failures
detected by the runtime environment which indicate resource
deficiencies, invariant failures or other conditions, from which
the program cannot possibly recover.

III-A method should throw exceptions that precisely define
the exceptional condition ([27], [15]). To do so, developers
should either try to reuse the exception types already defined in
the Java API or they should create a specific exception. Thus,
throwing general types such as a pure java.lang.Exception or
a java.lang.RuntimeException is considered bad practice.

IV- All exceptions explicitly thrown by reusable code should
be documented. ([35], [27], [50], [15]). For checked excep-

GitHub Google Code
Lable % Occurrences Lable % Occurrences
empty 54.24% Defect 91.96%
Defect 39.56% Enhancement 3.16%
Enhancement 0.57% Task 1.37%
Support 0.52% empty 1.12%
Problem 0.36% StackTrace 0.70%
Others 4.74% Others 1.68%

TABLE I: Labels on issues including exception stack traces.

tions, this is automatically the case. Bloch [15] furthermore
recommends to document explicitly thrown run time excep-
tions, either using a throws declaration in the signature, or
using the @throws tag in the Javadoc. Doing so, in particular
for public APIs of libraries or frameworks, makes clients aware
of all exceptions possibly thrown, enabling them to design the
code to deal with them and use the API effectively [40], [50].

III. STUDY DESIGN

The goal of our mining study is to explore to what
extent exception stack traces contained in issues of Android
projects (hosted in GitHub and Google Code), can reveal bug
hazards in the exception-related code of both the applications
and the underlying framework. As mentioned before, in this
context bug hazards are the characteristics of exception-related
code that favor the introduction of failures such as uncaught
exceptions.

This exploration is guided by the set of best practices
covered in Section II-C. To support our investigation, we
developed a tool called ExceptionMiner (Section III-C) which
extracts the exception stack traces embedded on issues, and
combines stack trace information with source code and byte-
code analysis. Moreover, we use manual inspection to augment
the understanding of stack traces and support further discus-
sions and insights (Section III-D). In this study we explore
the domain quantitatively and highlight interesting cases by
exploring cases qualitatively.

Figure 2 gives an overview of our study. First, the issues
reported on Android projects hosted on GitHub (1) and Google
Code (2) are recovered. Then the stack traces embedded each
issue are extracted and distilled (3). The stack trace information
is then combined with source code and bytecode analysis in
order to discover the type of the exceptions (5) reported on the
stack traces (e.g., error, runtime, checked), and the origin (6)
of such exceptions (e.g., the application, a library, the Android
platform). Manual inspection steps (4, 7, 9) are used to support
the mining process and the search for bug hazards (8). The next
sections detail each step of this mining process.

Our study focuses on open-source apps, since the in-
formation needed to perform our study cannot be retrieved
from commercial apps, whose issue report systems and source
codes are generally not publicly available. Open source An-
droid open-source apps have also been the target of other
research [33], [41] addressing the reuse and API stability.

A. Android Apps in GitHub

This study uses the dataset provided by the GHTorrent
project [28], an off-line mirror of the data offered through the
Github API. To identify Android projects, we performed a case

Fig. 2: Study overview.

insensitive search for the term “android” in the repository’s
names and short descriptions. Up to 23 February 2014, when
we queried GHTorrent, this resulted in 2,542 repositories.
Running the ExceptionMiner tool in this set we observed that
589 projects had at least one issue containing a stack trace.

Then we performed a further clean up, inspecting the site
of every Android project reporting at least one stack trace,
to make sure that they represented real mobile apps. During
this clean up 106 apps were removed because they were either
example projects (i.e., toy projects) or tools to support Android
development (e.g. Selendroid, Roboeletric - tools to support
the testing of Android apps). The filtered set consisted of 482
apps. This set of 482 projects contained overall 31,592 issues
from which 4,042 exception stack traces were extracted.

Issues on Github are different from issues on dedicated bug
tracking tools such as Bugzilla and Jira. The most important
difference is that there are no predefined fields (e.g. severity
and priority). Instead, Github uses a more open ended tagging
system, on which repositories are offered a pre-defined set
of labels, but repository owners can modify them at will.
Therefore, an issue may have none or an arbitrary set of labels
depending on its repository. Table I illustrates the ocurrences of
different labels on the issues including exception stack traces.

Regardless of the issue labels, every exception stack trace
may contain relevant information concerning the exception
structure of the projects analyzed, and therefore can reveal
bug hazards on the exception-related code. Because of this,
we opted for not restricting the analysis to just defect issues.

B. Android Apps in Google Code

Google Code contains widely used open-source Android
apps (e.g. K9Mail1). However, differently from GitHub,
Google Code does not provide an API to access the informa-
tion related to hosted projects.2 To overcome this limitation
we needed to implement a Web Crawler (incorporated in
ExceptionMiner tool described next) that navigates through the

1K9Mail moved to Github but as a way of not loosing the project history
it advises their users to report bugs on the Google Code issue tracker: https:
//github.com/k9mail/k-9/wiki/LoggingErrors.

2Google code used to provide a Web service to its repositories, but this was
deactivated in June 2013 in what Google called a “clean-up action”.

web interface of Google Code projects extracting all issues and
issue comments and storing them in a relational database for
later analysis.

To identify Android projects in Google Code, we per-
formed a similar heuristic: we performed a case insensitive
search (on the Google Code search interface) for the term
“android”. On January 2014, when we queried Google Code,
this resulted in a list of 788 projects. This list comprised the
seeds sent to our Crawler.

The Crawler retrieved all issues and comments for these
projects. From this set, 724 projects defined at least 1 issue.
Running the ExceptionMiner tool in this set we observed that
183 projects had at least one issue containing an exception
stack trace. Then we performed further clean up (similar to the
one described previously) inspecting the site of each project.
As a result we could identify 157 Android projects. This set
contained 127,456 issues in total, from which 1,963 exception
stack traces were extracted. Table I illustrates the occurrences
of different labels on the issues including exception stack
traces. Differently from GitHub, in Google Code most of the
issues were labeled as “Defect”. However, based on the same
assumption described for the GitHub repository we considered
all issues reporting stack traces (regardless its labels).

C. The ExceptionMiner Tool

The ExceptionMiner is a tool which can connect to dif-
ferent issue repositories, extract issues, mine exception stack
traces from them, distill exception stack trace information,
and enable the execution of different analyses by combining
exception stack trace information with byte code and source
code analysis. The main components of ExceptionMiner are
the following:

Repository Connectors. This component enables the con-
nection with issue repositories. In this study two main connec-
tors were created: one which connects to GHTorrent database,
and a Google Code connector which is comprised of a Web
Crawler that can traverse the Google Code web interface and
extract the project’s issues. Project meta-data and the issues
associated with each project are stored in a relational database.

Exception Stack Trace Distiller. This component is based
on a combination between a parser (based on regular ex-

pressions) and heuristics able to identify and filter exception
names and stack traces inline with text. This component
distills the information that composes a stack trace. Some
of the attributes extracted from the stack trace are the root
exception and its signaler, as well as the exception wrappers
and their corresponding signalers. This component also distills
fine grained information of each attribute such as the classes
and packages associated to them. In contrast to existing issue
parsing solutions such as Infozilla, our parser can discover
stack traces mixed with log file information3.

Exception Type Analysis. To support a deeper investigation
of the stack traces every exception defined on a stack trace
needs to be classified according to its type (e.g. Error, checked
Exception or RuntimeException). The module responsible for
this analysis uses the Design Wizard framework [16] to inspect
the bytecode of the exceptions reported on stack traces. It
walks up the type hierarchy of a Java exception until it
reaches a base exception type. Hence in this study the bytecode
analysis was used to discover the type of each mined exception
when the jar file of such exception was available on the project
or on a reused Java library. An specific implementation (based
on source code analysis) was needed to discover the exception
type when the bytecode was not available.

With this module we analyzed all exceptions defined in the
Android platform (Version 4.4, API level 19), which includes
all basic Java exceptions that can be thrown during the app
execution, and exceptions thrown by Android core libraries.
Moreover, we also analyzed the exceptions reported on stack
traces that were defined on applications and third-party li-
braries (the tool only analyzed the last version available).

Exception Signaler Analysis. This module is responsible
for classifying each signaler according to its origin (i.e.,
Android Application Framework, Android Libcore, Applica-
tion, Library). Table II presents the heuristics adopted in this
classification.

To conduct this classification, we provide this module with
the information comprising all Java packages that compose:
the Android Plaform; the Android Libcore; and each analyzed
Application.

To discover the packages for the first two origins we can
use to the Android specification. To discover the packages for
the third origin, the application itself, this module extracts the
manifest files of each Android app, which defines the main
packages that the applications consist of. If this file is not
available, the tool recursively analyzes the structure of source-
code directories composing the appm filtering out the cases in
which the application also includes the source code of reused
libraries. Then, based on this information and using pattern
matching between the signaler name and the packages, this
module identifies the origin of the exception signalers.

The exceptions are considered to come from libraries if
their packages are neither defined within the Android platform,
nor on core libraries, nor on applications. Table II summarizes
this signaler classification.

3In several exception stack traces, the exception frames were preceeded
by logging information e.g., 03-01 15:55:01.609 (7924): at
android.app.ActivityThread.access$600(ActivityThread-
.java:127) which could not be detected by existing tools.

Signaler Description
android If the exception is thrown in a method defined in Android platform.

app If the exception is thrown in an method defined on an Android app.
libcore If the exception is thrown in one of the core libraries reused by Android

(e.g., org.apache.harmony, org.w3c.dom, sun.misc, org.apache.http,
org.json, org.xml).

lib If the exception is thrown on a method that was not defined by any of
the elements above.

TABLE II: Sources of exceptions in Android

D. Manual Inspections

In our experiments, the output of the ExceptionMiner tool
was manually extended in order to (i) support the identification
of packages composing the Android platform, libs and apps
analyzed in this study (as described previously); and (ii)
identify the type of some exceptions reported in issues that
were not be automatically identified by the ExceptionMiner
tool (because they were defined on previous versions of
libraries, apps and Android Plaform). When the exception
could not be found automatically or manually (because they
were defined on a previous version of the app or lib), we
classified the exception as “Undefined”. Only 31 exceptions
remained undefined, which occurred in 60 different exception
stack traces (see Table V).

E. Replication Package

All the data used in this study is publicly available
at https://github.com/souzacoelho/exceptionminer. Specifically
we provide: (i) all issues related to Android projects found
in GiTHub and Google Code used in this study; (ii) all
stack traces extracted from issues; (iii) the results of manual
inspection steps; (iv) the ExceptionMiner tool we developed
to support stack trace extraction and distilling.

IV. THE STUDY RESULTS

This section presents the results of the study, providing
both a quantitative and qualitative analysis of the outcomes.
We center our presentation of the results around bug hazards
we distilled from (1) common root exceptions; (2) exception
types; and (3) exception wrappings.

A. Common Root Exceptions

After distilling the information available on the exception
stack traces, we could find the exceptions commonly reported
as the root causes of stack traces. Table III presents a list of
the top 10 root exceptions found in the study - ranked by
the number of distinct projects on which they were reported.
This table also shows how many times the signaler of such an
exception was a method defined on the Android platform, the
Android libcore, the application itself or a third-party library
- following the classification presented in Table II.

We can observe that most of the exceptions in this
list are implicitly thrown by the runtime environment due
to programming mistakes (e.g., out-of-bounds array index,
division-by-zero, access to a null reference) or resource
limitations (e.g., OutOfMemoryError). From this set the
java.lang.NullPointerException was the most reported root
cause (27.71%). If we consider the frequency of NullPoint-
erException across projects, we can observe that 51.96% of all

Root Exception Projects Occurrences Android Libcore App Lib
% # %

java.lang.NullPointerException 332 51.96% 1664 27.71% 525 20 836 280
java.lang.IllegalStateException 120 18.78% 278 4.63% 185 31 41 39
java.lang.IllegalArgumentException 142 22.22% 353 5.88% 195 12 95 44
java.lang.RuntimeException 122 19.09% 319 5.31% 203 2 64 51
java.lang.OutOfMemoryError 78 12.21% 237 3.95% 141 16 35 34
java.lang.NoClassDefFoundError 67 10.49% 94 1.57% 10 0 46 37
java.lang.ClassCastException 64 10.02% 130 2.16% 55 0 55 20
java.lang.IndexOutOfBoundsException 62 9.70% 166 2.76% 53 0 93 18
java.lang.NoSuchMethodError 54 8.45% 80 1.33% 10 0 56 14
java.util.ConcurrentModificationException 43 6.73% 65 1.08% 5 0 46 13

TABLE III: Root Exceptions occurrences and popularity in repositories hosted in Google Code (GC) and GitHub(GH).

projects reported at least one exception stack trace on which
the NullPoiterException was the root cause.

The NullPointerException was mainly signaled inside the
application code (50%) and the Android platform (31.5%),
although we could also find the NullPointerException being
signaled by third-party libraries (16.3%). Regarding reusable
code (e.g., libraries and frameworks), there is no consensus
whether it is a good or a bad practice to explicitly throw
a NullPointerException. Some prefer to encapsulate such an
exception on an instance of IllegalArgumentException, while
others [15] argue that the NullPointerException makes the
cause of the problem explicit and hence can be signalled by
an API expecting a non-null argument.

The high prevalence of NullPointerException is aligned
with the findings of other research [32], [23], [20], [30].
For instance, Sunghun et al. [32] show that 38% the bugs
related to exception handling in the Eclipse project are caused
by NullPointerException. Furhtermore, Kechagia and Spinellis
showed that the NullPointerException was the most reported
exception on the crash reports sent to BugSense (a bug report
management service for Android applications) [30]. Other
research on robustness testing [34], [20] shows that most of the
automatically detected bugs were due to NullPointerException
and exceptions implicitly-signaled by the Java environment due
to programming mistakes or resource limitations (as the ones
found in our study).

Identifying the Concerns Related to Root Exceptions. To
get a broader view of the root exceptions of stack traces,
we performed a manual inspection in order to identify the
underlying concerns related to the most frequently reported
root exceptions. Besides the exceptions related to programming
mistakes mentioned before, we also looked for exceptions
related to some concerns that are known as sources of faults
in mobile development: concurrency [10] backward compati-
bility [36], security [22], [49] and resource management (IO,
Memory, Batery) [52].

Since it is infeasible to inspect the code responsible for
throwning every exception reported in this study, the con-
cern identification of each exception was based on intended
meaning of the particular exception type, as defined in its
Javadoc documentaion and in the Java specification. For ex-
ample: (i) an instance of ArrayOutOfBoundException refers
to a programming mistake according to its Javadoc; and (ii)
the Java specification lists all exceptions related to backward
compatibility [7], such as InstantiationError, VerifyError, and
IllegalAccessError.

Concern % Occurrences on stacks
Programming logic (java.lang and util) 52,0%
Resources (IO, Memory, Batery) 23,9%
Security 4,1%
Concurrency 2,9%
Backward compatibility 5,5%
Specific Exceptions 4,9%
General (Error, Exception, Runtime) 6,7%

TABLE IV: Identifying the concerns related to root exceptions

To perform this concern analysis, we selected a subset
of all reported root exceptions, consisting of 100 exceptions
reported in 95% of all stack traces analyzed in this study.
Hence, based on the inspection of the Javadoc related to
each exception and the Java specification, we identified the
underlying concern releated to each root exception. Table IV
contains the results of this analysis. This table also illustrates
the exceptions that could not be directly mapped to one of
the aforementioned concerns, either because they were too
general (i.e., java.lang.Exception, java.lang.RuntimeException,
java.lang.Error) or because they were related to other concerns
(e.g., specific to an application or a given library).

To ensure the quality of the process, three independent
coders classified a randomly selected sample of 25 exception
types (from the total 100) using the same list of concerns; the
inter-rater agreement was 96%.

More than 50% of the uncaught exceptions are due to errors
in programming logic, with the NullPointerException as most
prevalent exception. For another 25% the root cause relates
to resource constraints.

B. Exception Types

As mentioned before, using the ExceptionMiner tool in
combination with manual inspections we could identify the
root exception type (i.e., RuntimeException, Error, checked
Exception) as well as its origin - which we identified based
on the package names of the signalers related to it in the stack
traces (Section III-C). Table V presents the types and origins
of root exceptions of all analyzed stack traces.

We can observe that most of the reported exceptions are
of type runtime (64.85%); and that the most common origins
are methods defined either on the Application (47.3%) or on
the Android platform (34.3%). We could also find runtime
exceptions thrown by library code (17.7%).

We can also see, from Table V, that in contrast with the
other origins, most of the exceptions signaled on Android

Root Type Android Libcore App Lib All %
Runtime 1335 73 1843 690 3894 64.85%
Error 188 46 302 167 691 11.51%
Checked 276 314 313 567 1358 22.61%
Throwable 0 0 2 0 2 0.03%
Undefined 4 0 18 38 60 1.00%
All 1 803 433 2478 1462 6005

TABLE V: Types and origins of root exceptions.

Libcore (i.e., the set of libraries reused by Android) are
checked exceptions. This set comprises: org.apache.harmony,
org.w3c.dom, sun.misc, org.apache.http, org.json, org.xml, and
javax. Signaling checked exceptions is considered a good
practice (see best practice IV in Section II-C) because by using
checked exceptions a library can define a precise exception
interface [37] to its clients. Since such libraries are widely
used in several projects, this finding can be attributed to the
libraries’ maturity.

Almost two thirds of all crashes come from run time excep-
tions. Most of these originate from the application layer.

Inspecting Exception Interfaces. According to the best
practices mentioned before, explicitly thrown runtime excep-
tions should be documented as part of the exception interface
of libraries/framework reusable methods. To investigate the
conformance to this practice, we firstly filtered out all the
exceptions implicitly signaled by the runtime environment (due
to programming mistakes) - since these exceptions should not
be documented on the method signature. Then we inspected the
code for each method (defined either in the Android Aplication
Framework or in third-party libraries) explicitly signaling a
runtime exception.

Table VI presents the results of this inspection. We found
79 methods (both from libraries and the Android platform)
that explicitly threw a runtime exception without listing it on
the exception interface (i.e., using throws clause in the method
signature). From this set only one method (defined on a library)
included an @throws tag in its Javadoc - reporting that the
given runtime exception could be thrown in some conditions.
These methods were responsible for 267 exception stack traces
mined in this study.

This result is in line with the results of two other stud-
ies [42], [30]. Sacramento et al [42] observed that the runtime
exceptions in .NET programs are most often not documented.
Kechagia and Spinellis [30] identified a set of methods on
the Android API which do not document its runtime excep-
tions. One limitation of the latter work is that it did not
filter out exceptions that, although runtime, should not be
documented because they were implicitly signaled by the JVM
due to resource restrictions or violations on Java semantic
constraints. When explicitly signaling a runtime exception and
not documenting it, the developer imposes a threat to system
robustness, especially when such exceptions are thrown by
third party code (e.g., libraries or framework utility code)
invoked inside the application. In such cases the developer
usually does not have access to the source code. Hence in the
absence of the exception documentation it is very difficult or
even impossible for the client to design the application to deal
with “unforeseen” runtime exceptions. As a consequence, the

Origin stacks signaler methods throws clause @throws
Libraries 205 44 0 1
Android 62 35 0 0
All 267 79 0 1

TABLE VI: Absence of exception interfaces on methods.

id Runtime Exception wrapping an Error
1 java.lang.RuntimeException - java.lang.OutOfMemoryError
2 java.lang.RuntimeException - java.lang.StackOverflowError)

Checked Exception wrapping an Error
3 java.lang.reflect.InvocationTargetException - java.lang.OutOfMemoryError
4 java.lang.Exception - java.lang.OutOfMemoryError

Error wrapping a Checked Exception
5 java.lang.NoClassDefFoundError - java.lang.ClassNotFoundException
6 java.lang.AssertionError - javax.crypto.ShortBufferException)

Error wrapping a Runtime Exceptino
7 java.lang.ExceptionInInitializerError - java.lang.NullPointerException
8 java.lang.ExceptionInInitializerError - java.lang.IllegalArgumentException

TABLE VII: Examples of Cross-type wrappings

undocumented runtime exception may remain uncaught and
lead to system crashes.

Only a small fraction (4%, 267 stack traces) of run time
exceptions are programmatically thrown. Almost none (0.4%,
just one) of these were documented.

Missing Checked Exceptions on Exception Interfaces.
Our exception stack trace analysis revealed an unexpected bug
hazard: a checked exception thrown by a native method and not
declared on the exception interface of these methods signaling
them.

The native method in question was defined in the An-
droid platform, which uses Java Native Invocation (JNI) to
access native C/C++ code. This exception was thrown by
the method getDeclaredMethods defined in java.lang.Class.
The Java-side declaration of this method does not have any
throws clause, leading programmers and the compiler to think
that no checked exceptions can be thrown. However, the C-
code implementation did throw a “checked exception” called
NoSuchMethodException, violating the declaration. The Java
compiler could not detect this violation, because it does not
perform static exception checking on native methods.

This type of bug is hard to diagnose because the developer
usually does not have access to the native implementations.
Consequently, since it is not expected by the programmer,
when such method throws this exception, such an undocu-
mented exception may remain uncaught and cause the app
to crash, or maybe mistakenly handled by subsumption. The
exception stack traces reporting this scenario actually corre-
spond to a real bug of Android Gingerbread version (which
still accounts for 13.6% of devices running Android).

For native methods, even checked exceptions can be thrown
without being documented on the exception interface.

C. Exception Wrappings

Java is the only language that provides a hybrid excep-
tion model which offers three kinds of exceptions each one
holding an intended exception behavior (i.e., error, runtime
and checked). Table VIII presents some wrappings found in

Wrapper Type Root Cause Type Projects Occurrences Android Java/Libcore Lib App
Runtime Checked 88 148 75 0 38 35
Runtime Error 46 67 58 0 8 1
Checked Runtime 17 31 4 0 16 11
Checked Error 8 9 5 0 1 3
Error Checked 14 27 6 7 6 8
Error Runtime 8 17 1 1 1 14

TABLE VIII: Wrappings comprising different exception types.

this study that include different exception types (i.e., Error,
checked Exception and Runtime). Below, we discuss the most
important of such “cross-type wrappings in more detail.

Runtime Exception wrapping an Error. From Table VIII,
we see that most of these wrappings are performed by the An-
droid platform (50.7%). The code snippet below was extracted
from Android and shows a general catch clause that converts
any instance of Throwable (signaled during the execution of an
asynchronous task) into an instance of RuntimeException and
re-throws it. Table VII presents examples of exceptions that
were actually wrapped in this code snipet. Such wrappings
mask an unrecoverable Error into a general runtime exception.

try {
...

} catch (InterruptedException e) {
android.util.Log.w(..., e);

} catch (ExecutionException e) {
throw new RuntimeException("...",e.getCause());

} catch (CancellationException e) {
...

} catch (Throwable t) {
throw new RuntimeException("...", t);

}

Runtime Exception wrapping a Checked Exception. This
wrapping was responsible for 49.5% of the cross-type wrap-
pings. From this set 50% were performed on methods defined
on Android platform. We observe that it is a common im-
plementation practice in the methods of Android platform.
However, using such a general exception, is considered a bad
practice according to the Java specification and common guide-
lines, as it loses contextual information about the exception.

Checked Exception wrapping an Error. Most of these
wrappings were also caused by the reflection library used
by applications’ methods. The methods responsible for the
wrappings were also native methods written in C. Table VII
illustrates some of these wrappings some of them are masking
an OutOfMemoryError into a checked exception. Such wrap-
pings may also mask an unrecoverable error and may lead to
“exception confusion” described next.

Error wrapping Runtime and Checked Exceptions Ta-
ble VII illustrates examples of instances of Error wrapping
instances of RuntimeException. Although such a wapping
mixes different exception types, since there is no obligation
associated to handling runtime exceptions, it does not violate
the aforementioned best practices.

On the other hand, the inspection also revealed instances
of Error wrapping checked exceptions. Such wrappings were
mostly performed by Java static initializers. If any exception
is thrown in the context of a static initializer (i.e., static
block) it is converted into an ExceptionInitializerError on the

point where the class is first used. Table VII also illustrates
examples of such wrappings. Although such a wrapping may
represent a design decision, it violates the best practice related
to checked exceptions and errors as it mixes the intended
handling behaviour associated to both types.

We can also observe that some stack traces include suc-
cessive cross-type wrappings, such as: Runtime - Checked -
Runtime - Checked - Runtime - Checked - Runtime. Hence,
although some of these wrappings may be a result from design
decisions, the mis-use of exception wrapppings may make
the exception handling code more complex (e.g., the multiple
wrappings) and error-prone, and lead to “exception confusion”.

To illustrate this problem we can use one of the wrappings
discussed above. When the developer is confronted with a
checked exception, the designer of the API is telling him/her
to handle the exceptional condition (according to Java Speci-
fication and best practices). However, such exception may be
wrapping an Error such as an OutOfMemoryError, which in-
dicates a resource deficiency that the program cannot possibly
recover from). Hence, trying to handle such an exception may
lead the program to an unpredictable state.

Cross-type exception wrappings are common. They violate
the semantics of Java’s original exception design (e.g., when
mapping unrecoverable Errors to other types of exceptions),
and may lead to lengthy exception chains.

V. DISCUSSION

“Everybody hates thinking about exceptions, be-
cause they are not supposed to happen”
(Brian Foote)4

The exception handling confusion problem. When
(mis)applied, exception wrapping can make the exception-
related code more complex and lead to what we call the excep-
tion handling confusion problem. This problem can lead the
program to an unpredictable state in the presence of exceptions,
as illustrated by the scenario in which a checked exception
wraps an OutOfMemoryError. Currently there is no way of
enforcing Java exception type conventions during program
development. Hence, further investigation is needed on finding
ways to help developers in dealing with this problem, either
preventing odd wrappings or enabling the developer to better
deal with them. Furthermore, this calls for empirical studies
on the actual usefulness of Java’s hybrid exception model.

On the null pointer problem. The null reference was
firstly introduced by Tony Hoare in ALGOL W, which after
some years he called his “one-billion-dollar mistake” [9]. In

4Brian Foote shared his opinion in a conversation with James Noble - quoted
on the paper: hillside.net/plop/2008/papers/ACMVersions/coelho.pdf

this sudy, the null references were, infact, responsible for
several reported issues - providing further evidence to Hoare’s
statement. This observation emphasizes the need for solutions
to avoid NullPointerExceptions, such as: (i) lightweight intra-
method null pointer analysis as supported by Java 8 @Nullable
annotations5; (ii) inter-method null pointer analysis tools such
as the one proposed by Nanda and Sinha [38]; or (iii) language
designs which avoid null pointers, such as Monads [47] (as
used in functional languages for values that may not be
available or computations that may fail) could improve the
robustness of Java programs.

Preventing uncaught exceptions In this study we could
observe undocumented runtime exceptions thrown by third
party code, and even undocumented checked exception thrown
by a JNI interface. Such undocumented exceptions make it
difficult, and most of the times infeasible for the client code to
protect against ‘unforeseen” situations that may happen while
calling a library code.

One may think that the solution for the uncaught exceptions
may be to define a general handler, which is responsible
for handling any exception that is not adequately handled
inside the applications. Although this solution may prevent
the system from abruptly crashing, such a general handler
will not have enough contextual information to adequately
handle the exception, beyond storing a message in a log file
and restarting the application. However, such a handler cannot
replace a carefully designed exception handling policy [40],
which requires third-party documentation on the exceptions
that may the thrown by APIs used. Since documenting runtime
exceptions is a tedious and error prone task, this calls for tool
support to automate the extraction of runtime exceptions from
library code. Initial steps in this direction have been proposed
by van Doorn and Steegmans [46].

VI. THREATS TO VALIDITY

Internal Validity. We used a heuristics-based parser to mine
exceptions from issues. Our parsing strategy was conservative
by default; for example, we only considered exception names
using a fully qualified class name as valid exception identifiers,
while, in many cases, developers use the exception name in
issue description. Conservative parsing may minimize false
positives, which was our initial target, but also tends to increase
false negatives, which means that some cases may have not
been identified as exceptions or stack traces. Our limited
manual inspection did not reveal such cases. Moreover, in this
study we manually mapped the concerns related to exceptions.

To ensure the quality of the analysis, we calculated the in-
terrater agreement after three independent developers classified
a randomly selected sample (of 25 exception types from the
total of 100); the interater agreement was high (96%).

External Validity. Our work uses the GHTorrent dataset,
which although comprehensive and extensive is not an exact
replica of Github. However, the result of this study does not
depend on the analysis of a complete Github dataset. Instead,
the goal of our study was to pinpoint bug hazards on the

5Already supported by tools such as Eclipse, IntelliJ, Android Studio 0.5.5
(release Apr. 2014) to detect potential null pointer dereferences at compile
time.

exception-related code based on exception stack trace mining
of a subset of projects.

We limited our analysis to a subset of existing open-
source Android projects. We are aware that the exception
stack traces reported for commercial apps can be different
from the ones found in this study, and that this subset is a
small percentage of existing apps. Such threats are similar to
the ones imposed to other empirical studies which also use
free or open-source Android apps [33], [36], [41]. Moreover,
several exception stack traces that support the findings of
this study refered to exceptions coming from methods defined
on Android Application Framework and third-party libraries.
Additionaly, the bug hazards observed in this study are due
to characteristics of Java exception model, which can impose
challenges the robustness of not only to Android apps but also
to other systems based on the same exception model.

Another threat relates to the fact that parts of our analysis
are based on the availability of stack traces on issues reported
on Github and Googlecode projects. In using these datasets,
we make an underlying assumption: the stack traces reported
on issues are representative of valid crash information of the
applications. One way to mitigate this threat would be to access
to the full set of crash data per application. Although some ser-
vices exist to collect crash data from mobile applications [3],
[4], [5], [2], they do not provide open access to the crash
reports of their client applications. In our study, we mitigated
this threat by manually inspecting the source code associated
to a subset of the reported exception stack traces. This subset
comprises the stack traces related to the main findings of the
study (e.g., “undocumented runtime and checked exceptions”,
and “cross-type wrappings”).

VII. RELATED WORK

In this section, we present work that is related to the
present paper, divided into four categories: i) papers that use
the information available on stack traces; ii) empirical studies
on the usage of Java Exceptions and its fault proneness; and iii)
tools to extract stack trace information from natural language
artifacts (e.g., issues and emails) and iv) empirical studies
involving Android apps.

Analysis and Use of Stack Trace Information. Several
papers have investigated the use of stack trace information
to support: bug classification and clustering [48], [31], [21],
fault prediction models [32], automated bug fixing tools [45]
and also the analysis of Android APIs [30]. Kim et al. [31]
use an aggregated form of multiple stack traces available in
crash reports to detect duplicate crash reports and to predict
if a given crash will be fixed. Dhaliwal et al. [21] proposed
a crash grouping approach that can reduce bug fixing time in
approximately 5%. Wang et al. [48] propose an approach to
identify correlated crash types and describe a fault localization
method to locate and rank files related to the bug described
on a stack trace. Schroter et al. [43] conducted an empirical
study on the usefulness of stack traces for bug fixing and
showed that developers fixed the bugs faster when failing
stack traces were included on bug issues. In a similar study,
Bettenburg et al. [12] identify stack traces as the second
most stack trace feature for developers. Sinha et al. [45]
proposed an approach that uses stack traces to guide a dataflow

analysis for locating and repairing faults that are caused by
the implicitly signaled exceptions. Kim at al. [32] proposed
an approach to predict the crash-proneness of methods based
information extracted from stack traces and methods’ bytecode
operations. They observed that most of the stack traces were
related to NullPointerException and other implicitly thrown
exceptions had the higher prevalence on the analyzed set
of stacks. Kechagia and Spinellis [30] examined the stack
traces embedded on crash reports sent by 1,800 Android
apps to a crash report management service (i.e., BugSense).
They found that 19% of such stack traces were caused by
unchecked and undocumented exceptions thrown by methods
defined on Android API (level 15). Our work differs from
Kechagia and Spinellis since it is not based on stack traces
mined from issues reported by open source developers on
GitHub and Googlecode. Moreover, our study mapped the
origin of each exception (i.e., libraries, the Android platform
or the application itself) and investigated the adoption of best
practices based on the analysis of stack trace information.
Our work also identified the type of each exception mined
from issues (classifying them as Error, Runtime or Checked)
based on the source code analysis of the exception hierarchy
and analized the exception wrappings that can happen during
the exception propagation. Such analysis revealed intrigging
bug hazards such as the cross-type exception wrappings not
discussed in previous works.

Empirical Studies on Exception Handling Defects. Cabral
and Marques [17] analyzed the source code of 32 open-source
systems, both for Java and .NET. They observed that the
actions inside handlers were very simple (e.g., logging and
present a message to the user). Coelho et al. [18] performed
an empirical study considering the fault-proneness of aspect-
oriented implementations for handling exceptions. Two re-
leases of both Java and AspectJ implementations were assessed
as part of that study. Based on the use of an exception flow
analysis tool, the study revealed that the AOP refactoring
increased the number of uncaught exceptions, degrading the
robustness of the AO version of every analyzed system. The
main limitation of approaches based static analysis based
approaches are the number of false positives they can generate,
and the problems the faced when dealing with reflection
libraries and dynamic class loading. Pingyu and Elbaum [52]
were the first to perform an empirical investigation of issues,
related to exception-related bugs, on Android projects. They
perform a small scale study on which they manually inspected
the issues of 5 Android applications. They observed that 29%
had to do with poor exceptional handling code, this empirical
study was used to motivate the development of a tool aiming
at amplifying existing tests to validate exception handling
code associated with external resources. This work inspired
ours, which automaticaly mined the exception stack traces
embedded on issues reported on 639 open source Android
projects. The goal of our study was to identify common bug
hazards on the exception related code that can lead to failures
such as uncaught exceptions.

Extracting Stack Traces from natural language artifacts.
Apart from issues and bug reports, stack traces can be embed-
ded in other forms of communication between developers, such
as discussion logs and emails. Few tools have been proposed to
mine stack traces embedded on such resources. Infozilla [13]
is based on a set of regular expressions that extract a set of

frames related to a stack trace. The main limitation of this
solution is that it is not able to extract stack traces embedded
on verbose log files (i.e., on which we can find log text mixed
with exception frames). Bacchelli et al. [11] propose a solution
to recognize stack trace frames from development emails and
relate it to code artifacts (i.e. classes) mentioned on the stack
trace. In addition to those tools, ExceptionMiner is able to
both extract stack traces from natural language artifacts and to
classify them in a set of predefined categories.

Empirical studies using Android apps. Ruiz et al. [41]
investigated the degree of reuse across applications in Android
Market, the study showed that almost 23% of the classes
inherited from a base class in the Android API, and that
217 mobile apps were reused completely by another mobile
app. Pathak et al. [39] analyzed bug reports and developers
discussions of Android platform and found out that approxi-
mately 20% of energy-related bugs in Android occurred after
an OS update. McDonnell et al. [36] conducted a case study
of the co-evolution behavior of Android API and 10 dependent
applications using the version history data found in GitHub.
The study found that approximately 25% of all methods in the
client code used the Android API, and that the methods reusing
fast-evolving APIs were more defect prone then others. Vsquez
et al. [33] analyzed approximately 7K free Android apps and
observed that the last successful apps used Android APIs that
were on average 300% more change-prone than the APIs used
by the most successful apps. Our work differs from the others
as it aims at distilling stack trace information of bug reports
and combine such information with bytecode analysis, source
code analysis and manual inspections to identify bug hazards
on the exception handling code of Android apps.

VIII. CONCLUSION

The goal of this paper is to investigate to what extent stack
trace information can reveal bug hazards related to exception
handling code that may lead to a decrease in application
robustness. To that end, we mined the stack traces embedded
in all issues defined in 482 Android projects hosted in Github
and 157 projects hosted in Google Code. Overall it included
6,005 exception stack traces.

Our first key contribution is a novel approach and toolset
(ExceptionMiner) for analyzing Java exception stack traces as
occurring on GitHub and Google Code issues. Our second
contribution is an empirical study of over 6000 actual stack
traces, demonstrating that (1) half of the system crashes are due
to errors in programming logic, with null pointer exceptions
being most prominent; (2) Documentation for explicitly thrown
RuntimeExceptions is almost never provided; (3) Extensive use
of wrapping leads to hard to understand chains violating Java’s
exception handling principles.

Our results shed light on common problems and bug
hazards in Java exception handling code, and call for tool
support to help developers understand their own and third party
exception handling and wrapping logic.

REFERENCES

[1] Checked or unchecked exceptions? http://tutorials.jenkov.com/
java-exception-handling/checked-or-unchecked-exceptions.html, Oct
2013. Online.

[2] Acra. code.google.com/p/acra/, Mar 2014. Online.
[3] Bugsense. https://www.bugsense.com/, Mar 2014. Online.
[4] Bugsnag. https://bugsnag.com/, Mar 2014. Online.
[5] Google analytics. https://www.google.com/analytics/, Mar 2014. On-

line.
[6] Java: checked vs unchecked exception explana-

tion. http://stackoverflow.com/questions/6115896/
java-checked-vs-unchecked-exception-explanation, Mar 2014. Online.

[7] Java specification on backward compatibility. http://docs.oracle.com/
javase/specs/jls/se7/html/jls-13.html, Jan 2014. Online.

[8] The Java tutorial. Unchecked exceptions: The controversy. http://docs.
oracle.com/javase/tutorial/essential/exceptions/runtime.html, Mar 2014.
Online.

[9] Null references: The billion dollar mistake, abstract of talk at qcon
londo. qconlondon.com/london-2009/presentation/Null+References:
+The+Billion+Dollar+Mistake, Mar 2014. Online.

[10] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salva-
tore De Carmine, and Atif M Memon. Using gui ripping for automated
testing of android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages
258–261. ACM, 2012.

[11] Alberto Bacchelli, Tommaso Dal Sasso, Marco D’Ambros, and Michele
Lanza. Content classification of development emails. In Proceedings
of ICSE 2012, pages 375–385, 2012.

[12] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul
Premraj, and Thomas Zimmermann. What makes a good bug report?
In Proceedings of FSE 2008, pages 308–318, 2008.

[13] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and
Sunghun Kim. Extracting structural information from bug reports. In
Proceedings of MSR 2008, pages 27–30. ACM, 2008.

[14] Robert Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Professional, 2000.

[15] Joshua Bloch. Effective java. Pearson Education India, 2008.
[16] J. Brunet, D. Guerrero, and J. Figueiredo. Design tests: An approach to

programmatically check your code against design rules. In Proceedings
of New Ideas and Emerging Research (NIER) track at the International
Conference on Software Engineering (ICSE), pages 255–258. IEEE,
2009.

[17] Bruno Cabral and Paulo Marques. Exception handling: A field study
in Java and .Net. In Proceedings of ECOOP 2007, pages 151–175.
Springer, 2007.

[18] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari,
Nélio Cacho, Uirá Kulesza, Arndt von Staa, and Carlos Lucena.
Assessing the impact of aspects on exception flows: An exploratory
study. In Proceedings of European Conference on Object-Oriented
Programming (ECOOP), pages 207–234. Springer-Verlag, 2008.

[19] Roberta Coelho, Arndt von Staa, Uirá Kulesza, Awais Rashid, and
Carlos Lucena. Unveiling and taming liabilities of aspects in the
presence of exceptions: a static analysis based approach. Information
Sciences, 181(13):2700–2720, 2011.

[20] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an auto-
matic robustness tester for Java. Software: Practice and Experience,
34(11):1025–1050, 2004.

[21] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. Classifying field crash
reports for fixing bugs: A case study of mozilla firefox. In Proceedings
of International Conference on Software Maintenance (ICSM 2011),
pages 333–342, 2011.

[22] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A study of android application security. In USENIX security
symposium, volume 2, page 2, 2011.

[23] Gordon Fraser and Andrea Arcuri. 1600 faults in 100 projects: auto-
matically finding faults while achieving high coverage with evosuite.
Empirical Software Engineering, pages 1–29, 2013.

[24] A Garcia, CMF Rubira, et al. Extracting error handling to aspects:
A cookbook. In Proceedings International Conference on Software
Maintenance (ICSM), pages 134–143. IEEE, 2007.

[25] Alessandro F Garcia, Cecılia MF Rubira, Alexander Romanovsky, and
Jie Xu. A comparative study of exception handling mechanisms for

building dependable object-oriented software. Journal of systems and
software, 59(2):197–222, 2001.

[26] John B Goodenough. Exception handling: issues and a proposed
notation. CACM, 18(12):683–696, 1975.

[27] James Gosling. The Java language specification. Addison-Wesley
Professional, 2000.

[28] Georgios Gousios. The GHTorrent dataset and tool suite. In Pro-
ceedings of the International Working Conference on Mining Software
Repositories (MSR), pages 233–236. IEEE, 2013.

[29] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and Kwang-Moo
Choe. An uncaught exception analysis for java. Journal of systems
and software, 72(1):59–69, 2004.

[30] Maria Kechagia and Diomidis Spinellis. Undocumented and unchecked:
exceptions that spell trouble. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 312–315. ACM,
2014.

[31] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan.
Crash graphs: An aggregated view of multiple crashes to improve crash
triage. In Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 486–493. IEEE, 2011.

[32] Sunghun Kim, Thomas Zimmermann, Rahul Premraj, Nicolas Betten-
burg, and Shivkumar Shivaji. Predicting method crashes with bytecode
operations. In Proceedings of the 6th India Software Engineering
Conference, pages 3–12, 2013.

[33] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,
Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. API
change and fault proneness: A threat to the success of Android apps.
In Proceedings of FSE 2013, pages 477–487. ACM, 2013.

[34] Amiya Kumar Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S
Rellermeyer. An empirical study of the robustness of inter-component
communication in Android. In Proceedings of the IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pages
1–12. IEEE, 2012.

[35] Dino Mandrioli and Bertrand Meyer. Advances in object-oriented
software engineering. Prentice-Hall, Inc., 1992.

[36] T. McDonnell, B. Ray, and Miryung Kim. An empirical study of
api stability and adoption in the android ecosystem. In Proceedings
International Conference on Software Maintenance (ICSM), pages 70–
79, 2013.

[37] Robert Miller and Anand Tripathi. Issues with exception handling in
object-oriented systems. In Proceedings of ECOOP’97, pages 85–103.
Springer, 1997.

[38] Mangala Gowri Nanda and Saurabh Sinha. Accurate interprocedural
null-dereference analysis for java. In Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on, pages 133–143. IEEE,
2009.

[39] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy
debugging on smartphones: A first look at energy bugs in mobile
devices. In Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, HotNets-X, pages 5:1–5:6, New York, NY, USA, 2011.
ACM.

[40] Martin P. Robillard and Gail C. Murphy. Designing robust Java
programs with exceptions. In Proceedings International Conference
on the Foundations of Software Engineering (FSE), pages 2–10, 2000.

[41] I.J.M. Ruiz, M. Nagappan, B. Adams, and A.E. Hassan. Understanding
reuse in the Android market. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages 113–122, 2012.

[42] Paulo Sacramento, Bruno Cabral, and Paulo Marques. Unchecked
exceptions: can the programmer be trusted to document exceptions.
In International Conference on Innovative Views of .NET Technologies,
2006.

[43] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. Do stack
traces help developers fix bugs? In Proceedings Working Conference
on Mining Software Repositories (MSR), pages 118–121. IEEE, 2010.

[44] Hina B Shah, Carsten Gorg, and Mary Jean Harrold. Understanding
exception handling: Viewpoints of novices and experts. IEEE Trans.
Soft. Eng., 36(2):150–161, 2010.

[45] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim,
and Mary Jean Harrold. Fault localization and repair for Java runtime

exceptions. In Proceedings International Symposium on Software
Testing and Analysis (ISSTA), pages 153–164. ACM, 2009.

[46] Marko Van Dooren and Eric Steegmans. Combining the robustness of
checked exceptions with the flexibility of unchecked exceptions using
anchored exception declarations. ACM SIGPLAN Notices, 40(10):455–
471, 2005.

[47] Philip Wadler. Monads for functional programming. In Advanced
Functional Programming, pages 24–52. Springer, 1995.

[48] Shaohua Wang, Foutse Khomh, and Ying Zou. Improving bug local-
ization using correlations in crash reports. In Proceedings Working
Conference on Mining Software Repositories (MSR 2013), pages 247–
256. ACM/IEEE, 2013.

[49] Anthony I Wasserman. Software engineering issues for mobile applica-
tion development. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, pages 397–400. ACM, 2010.

[50] Rebecca J Wirfs-Brock. Toward exception-handling best practices and
patterns. Software, IEEE, 23(5):11–13, 2006.

[51] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay Jain, and Michael Stumm. Simple
testing can prevent most critical failures: An analysis of production
failures in distributed data-intensive systems. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI ’14,
Broomfield, CO, USA, October 6-8, 2014., pages 249–265, 2014.

[52] Pingyu Zhang and Sebastian Elbaum. Amplifying tests to validate
exception handling code. In Proceedings International Conference on
Software Engineering (ICSE), pages 595–605, Piscataway, NJ, USA,
2012. IEEE Press.

