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Prologue 
 

The driving force of all life on Earth is the supply of energy from the Sun and Earth’s 

internal heat, which creates chemical disequilibria and forms the basis for 

biogeochemical element cycling. Thus, solar and geochemical energy are eventually 

converted into chemical energy stored in energy-rich bonds of ATP, acetyl-CoA or 

acetyl phosphate. The history of Earth’s surface chemistry is inevitably connected to 

the biosphere as already after approximately 600 My after the accretion, the first 

evidence for life was found in the oldest preserved rocks (Arndt & Nisbet, 2012). 

Despite still ongoing speculations on what types of respiration those early organisms 

might have had, they were most likely devoid of oxygen. Geochemical data show 

that for a period of almost 2 billion years, the Earth’s atmosphere was mostly anoxic 

driving the evolution towards a plethora of anaerobic biochemical diversity. 

However, it was the invention of photosystem II – a reaction complex capable to 

split water into reducing equivalents and molecular oxygen – which was among the 

most significant events for the further course of life’s evolution and diversification. 

Due to its strong oxidizing properties, oxygen was not only highly toxic to most then 

existing organisms, but it also started a cascade of abiotic reactions changing Earth’s 

surface chemistry towards a more oxidized state (Kump et al., 2011). During this 

time, oceans started to accumulate sulfate, oxidized forms of reactive nitrogen and 

metals. It was speculated that the availability of these new electron sinks was a 

turning point for invention of several respiratory processes considered today to be 

essential for biogeochemical element cycles (Falkowski & Godfrey, 2008, Godfrey 

& Falkowski, 2009). Eventually, adaptions to detoxify oxygen and its usage as 

terminal electron acceptor for respiration of energy-rich carbon-based substrates 

enabled organisms to exploit this strong source of metabolic energy and evolve 

towards multicellularity. 

All Earth’s biogeochemical element cycles are interconnected and a cascade of 

feedbacks controls the overall balance, which is primarily driven by the activity of 

microorganisms. The goal of this thesis was to shed more light on such 

interconnections at oxic/anoxic sedimentary interfaces and to understand the 

physiology of some microbial key players.
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chapter 1 

 

General introduction 
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Methane in the biological Carbon cycle 

 

Electron flow along physicochemical disequilibria is the basis for energy generating 

processes related to living systems and reactions driving biogeochemical element 

cycles. The carbon cycle (Figure 1) forms the basis and connects all other element 

cycles, not only because of the property of carbon to form the backbone of all 

macromolecules related to life, but also because of the vast reservoir of energy stored 

in reduced carbon compounds. The most abundant form of carbon – fully oxidized 

in carbonate minerals or carbon dioxide gas – enters the biosphere via fixation by 

photo- and chemolitho-/organoautotrophic organisms. During respiration and 

fermentation, the reduced carbon is oxidized back to carbon dioxide (CO2), however, 

its fate differs profoundly depending on available electron acceptors. Under aerobic 

conditions, even the most thermodynamically stable substrates can be rapidly 

oxidized directly to CO2, whereas in the absence of oxygen the degradation often 

occurs stepwise in metabolic co-operation of several organisms. The initial 

hydrolysis of organic matter yields a variety of oligo- and monomers which are then 

further converted into carboxylic acids, hydrogen and CO2. Generally, 

methanogenesis is the terminal reaction in anaerobic degradation processes when 

simple organic C-compounds, CO2 and hydrogen are converted to methane by 

methanogenic archaea. Thus, carbon dioxide and methane – the most oxidized and 

most reduced gaseous forms of carbon – are the end products of degradation. While 

CO2 can be then immobilized in minerals, released to the atmosphere and be fixed 

again, most of the produced methane is oxidized by microorganisms to CO2 before 

reaching the atmosphere. Thermodynamically, methane is among the most energy-

rich organic substrates while at same time being among the most stable ones, with a 

H-C bond activation energy of 439 kJ/mol (Thauer & Shima, 2008). For decades, 

this high thermodynamic stability was the reason for assuming that methane 

oxidation was only possible under aerobic conditions. During the aerobic process, 

the methane monooxygenase enzyme is used by oxygen-dependent methanotrophic 

bacteria to split oxygen into radicals one of which breaks a H-C bond in methane to 

form methanol and the other is reduced to form water (Hakemian & Rosenzweig, 

2007). The ability of bacteria to utilize methane as a single source of energy and cell 

carbon was discovered as early as 1906 (Söhngen, 1906) and the dogma on the 

exclusive role of oxygen in methane oxidation persisted until the late 1970s. 
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Anaerobic methane oxidation 

 

First indications on the possibility of methane oxidation under anoxic conditions 

came from geochemical observations of methane disappearance in sulfate-rich 

waters and sediments (Barnes & Goldberg, 1976, Reeburgh, 1976, Panganiban et al., 

1979). Since then numerous biogeochemical and molecular studies have provided 

evidence for sulfate-dependent anaerobic methane oxidation (S-AOM) (Knittel & 

Boetius, 2009). The discovery of this anaerobic way of methane degradation 

fundamentally changed our understanding on environmental methane fluxes and the 

carbon cycle as a whole. As the majority of biogenic methane is produced in deep 

anoxic sediments, it diffuses through the sediment column towards the oxic/anoxic 

interface (Figure 2). Thus, the anoxic sediment column acts as ‘filter’ and not all 

methane reaches the oxic layer where the aerobic methane oxidizing organisms are 

active. It has been estimated that in marine sediments up to 90% of methane is 

oxidized via the S-AOM process in the sulfate/methane transition zone (SMTZ) 

Figure 1: Biological carbon cycle. Transformations between the most oxidized (CO2), the most reduced 

(CH4) and intermediate ((CH2O)n) carbon compounds driven by particular metabolic processes are 

shown with arrows. Both, anabolic and catabolic processes are shown. 



12 
 

where both compounds co-occur (Hinrichs & Boetius, 2003). S-AOM was shown to 

be performed by consortia of sulfate-reducing bacteria (SRB) and methanotrophic 

archaea (ANME) which use the reverse methanogenesis pathway for methane 

activation (Knittel & Boetius, 2009). This metabolic co-operation was hypothesized 

to be based on a transfer of reducing equivalents from archaea to SRB which would 

make the overall reaction more exergonic (Hoehler et al., 1994). More recently, it 

was shown that some ANME might reduce sulfate on their own and shuttle 

intermediate oxidized sulfur species to SRB which in turn would perform a 

dismutation reaction to sulfide and sulfate (Milucka et al., 2012). Moreover, some 

environmental ANME populations were found not to be associated with SRB, raising 

the possibility of a non-syntrophic S-AOM process (Orphan et al., 2002, Treude et 

al., 2007). All these findings underline that mechanisms driving S-AOM still need 

further investigation. While sulfate is of great importance in fully marine sediments 

due to its constant supply from the overlaying water, nitrogen oxides and oxidized 

metals are often more abundant electron acceptors in freshwater and brackish 

environments. Furthermore, according to calculations S-AOM yields only between 

-22 and -35 kJ/mol CH4 (Valentine & Reeburgh, 2000) – energy which must be 

shared between both metabolic partners. These values are close to thermodynamic 

limits of life as the minimum quantum of energy usable for phosphorylation of ADP 

must be at least between one third and one fifth of the ATP unit (Schink, 1997). 

Based on physical parameters and partial pressures of hydrogen, calculations on 

marine sediments revealed that the minimum free energy needed to sustain microbial 

sulfate reduction is around -19 kJ/mol SO4
2- and -11 kJ/mol CH4 to sustain 

methanogenesis (Hoehler et al., 2001). In context of anaerobic methane oxidation, 

the use of nitrogen oxides and oxidized metals as terminal electron acceptors would 

yield significantly greater amounts of energy for microbial metabolism. The free 

energy gain from nitrite/nitrate reduction coupled to methane oxidation would yield 

-928/-503 kJ/mol CH4 and from Fe3+/Mn4+ reduction -454/-502 kJ/mol CH4 at 

standard conditions. First evidence for nitrogen oxide-dependent methane oxidation 

(N-AOM) came from an enrichment culture of ANME-related archaea and 

uncharacterized bacteria originating from a highly eutrophic freshwater sediment of 

Twentekanaal in the Netherlands (Raghoebarsing et al., 2006). The enrichment 

culture oxidized methane to CO2 while performing full denitrification to N2. Based 

on combined observations of this study and previous knowledge about S-AOM, it 

was hypothesized that a metabolic co-operation with interspecies reducing-
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equivalent transfer between methanotrophic archaea and denitrifying bacteria was 

responsible for N-AOM. 

However, this hypothesis was revised later by the observation that the partner 

bacteria could perform nitrite-dependent AOM in the absence of archaea (Ettwig et 

al., 2008). Subsequent metagenome sequencing and physiological experiments 

provided evidence for bacterial nitrite-dependent intra-aerobic methane oxidation 

metabolism in which nitrite is first reduced to nitric oxide (NO) which is then 

dismutated to molecular nitrogen and oxygen (Ettwig et al., 2010).  

 

Figure 2: Fate of methane within a sediment column with theoretical distribution of available 

electron acceptors based on their electron potential. The free energy gain from reduction decreases 

with the increasing sediment depth. Known organisms respiring each oxidant with methane as 

substrate are shown at the right. Abbreviations: ANME, anaerobic methanotrophs; SRB, sulfate 

reducing bacteria 
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The thus internally produced oxygen is assumed to be used by the methane 

monooxygenase for methane oxidation. The bacterium responsible for this process, 

Methylomirabilis oxyfera, was shown to belong to a new phylum, provisionally 

named NC10, which does not have any other cultured members.  

Recently, the archaeal member of an N-AOM consortium, Methanoperedens 

nitroreducens, was shown to perform methane oxidation via reverse methanogenesis 

in a similar fashion as other ANME archaea, but by coupling it directly to nitrate 

reduction (Haroon et al., 2013). 

Besides sulfate and nitrogen oxides, oxidized metal species were hypothesized to be 

suitable electron acceptors for methane oxidation and several studies have confirmed 

the occurrence of metal-dependent AOM (M-AOM) in various ecosystems (Crowe 

et al., 2011, Sivan et al., 2011, Amos et al., 2012, Norði et al., 2013, Egger et al., 

2015). However, so far the responsible pathway remains to be elucidated and several 

organisms have been speculated to be involved in observed activities. Iron- and 

manganese oxides are abundant constituents of various freshwater and marine 

sediments and directly control associated element cycles (e.g. phosphorous). Thus, 

metal reduction in methane rich sediments could be of particular importance for 

sedimentary nutrient dynamics. 

 

Ecology of N-AOM organisms 

 

Nitrogen oxides are common constituents at oxic/anoxic interfaces where 

ammonium, diffusing from deeper anoxic sediments, is oxidized with oxygen 

diffusing from overlaying oxic column. Here, methane, when not fully removed in 

deeper sediment, can be used as electron donor and sustain a population of N-AOM 

organisms. Moreover, in view of ever expanding eutrophication around the globe 

(Galloway et al., 2008), increasing hypoxic zones with elevated concentrations of 

reactive nitrogen and methane create more and more potential habitats for N-AOM 

organisms.  

Since their discovery, numerous molecular surveys based on 16S rRNA and methane 

monooxygenase (encoded by pmoA) genomic biomarkers have provided evidence 

for the widespread occurrence of M. oxyfera bacteria in various freshwater, estuarine 

and even marine environments. Besides their original enrichment sources in 

eutrophic Dutch channels and ditches (Raghoebarsing et al., 2006, Ettwig et al., 

2009), M. oxyfera-like bacteria have also been detected in the Lake Biwa sediment 

(Kojima et al., 2012), various waste water treatment plants (Luesken et al., 2011, 
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Kampman et al., 2014), a minerotrophic peatland (Zhu et al., 2012), oligotrophic 

sediments of Lake Constance (Deutzmann & Schink, 2011, Deutzmann et al., 2014), 

Jiaojiang Estuary of the East Sea (Li-dong et al., 2014), various Chinese wetlands 

(Zhu et al., 2015), freshwater lakes on the Yunnan Plateau (Liu et al., 2015), 

surface and subsurface sediments of the South China Sea (Chen et al., 2014), 

coastal sediment of Xiaogan Island (He et al., 2015), Japanese paddy field soils 

(Hatamoto et al., 2014), sediments of Qiantang River (Shen et al., 2014), coal tar 

contaminated aquifer in South Glens Falls (Hanson & Madsen, 2015), Banisveld 

aquifer in the Netherlands (Luesken et al., 2011) and sewage contaminated aquifer 

in Cape Cod (Olivia Rasigraf, unpublished results). 

Since the recent characterization of the N-AOM performing archaeon, the 

occurrence of M. nitroreducens has been investigated in rice field soils (Lee et al., 

2015, Vaksmaa et al., 2015) and freshwater wetlands (Adrienne Narrowe, 

unpublished results). Moreover, before physiological and genomic characterization 

of M. nitroreducens, related 16S rRNA gene sequences have been detected in diverse 

freshwater environments. So far, it is not known, whether these archaea are also 

thriving in brackish or marine sediments. 

Based on physiological studies, nitrite was shown to be the main product of nitrate 

reduction by N-AOM archaea (Baoli Zhu, PhD thesis, Haroon et al., 2013). In high 

concentrations, nitrite becomes toxic and must be removed. This creates a basis for 

metabolic co-operation with nitrite scavenging organisms. The first described culture 

of M. nitroreducens contained anaerobic ammonium oxidizing (anammox) bacteria 

which use nitrite for respiration (Haroon et al., 2013). The original N-AOM culture 

described in 2006 contained archaea closely related to M. nitroreducens which were 

enriched together with M. oxyfera bacteria, the latter being known by now to use 

nitrite as electron acceptor (Raghoebarsing et al., 2006). Thus, anammox and M. 

oxyfera-like bacteria are most likely common metabolic partners of N-AOM archaea 

as both methane and ammonium are often present at oxic/anoxic interfaces. 

 

Physiological aspects of Methylomirabilis oxyfera bacteria 

 

M. oxyfera is a methanotrophic bacterium which oxidizes methane under anoxic 

conditions via the aerobic pathways similar to aerobic methane oxidizers with 

methane monooxygenase as the key enzyme (Fig. 3). This discrepancy between the 

aerobic lifestyle and the lack of external oxygen in the habitat of M. oxyfera was 

solved with a hypothesis of nitric oxide (NO) dismutation to molecular nitrogen and 
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oxygen, with the latter being used by the methane monooxygenase (Ettwig et al., 

2010). The hypothesis was based on physiological experiments showing molecular 

oxygen production after acetylene-mediated blockage of methane monooxygenase 

and genomic analysis which revealed absence of genes encoding for known nitrous 

oxide reductase enzymes (Ettwig et al., 2010). Hitherto, the only two enzymes 

known to produce molecular nitrogen were nitrous oxide reductase in denitrifiers 

and hydrazine dehydrogenase in anaerobic ammonium oxidizers (anammox). In M. 

oxyfera, dinitrogen was hypothesized to be produced directly from NO by nitric 

oxide dismutases (Nod) – enzymes related to quinol-dependent nitric oxide 

reductases (qNor), but lacking essential features of the latter for quinol binding and 

pointing to their electron-neutral overall reaction (Ettwig et al., 2012). The putative 

Nod-encoding genes were shown to be among the highest transcribed and expressed 

in M. oxyfera enrichment cultures further pointing to their crucial role in metabolism 

(Luesken et al., 2012). However, it remains to be shown whether these proteins 

catalyze their hypothesized reaction. 

Besides two genes encoding putative Nod enzymes, M. oxyfera also encodes a 

canonical qNor which is also constitutively expressed at low levels (Luesken et al., 

2012). The role of this qNor is currently unclear as nitrous oxide is not an 

intermediate of the proposed main metabolism of M. oxyfera. Furthermore, the 

genome encodes and expresses a membrane-bound nitrate reductase pointing to the 

ability to use nitrate. However, previous physiological studies and observed reaction 

stoichiometry could not confirm usage of nitrate by M. oxyfera cultures, thus leaving 

also this aspect of its metabolism for future investigation. 

M. oxyfera is a methanotrophic bacterium which utilizes the aerobic pathways for 

methane oxidation with CO2 being the terminal product of the reaction (Ettwig et al., 

2010). Oxygen – generated from the dismutation of NO – is primarily used for the 

activation of methane during the first step of the pathway, however, according to 

proposed reaction stoichiometry not all of it can be used by methane 

monooxygenase. The genome of M. oxyfera was shown to encode several types of 

terminal respiratory oxidases. A complimentary array of experiments showed that 

M. oxyfera functionally produced a bo-type ubiquinol oxidase for oxygen 

respiration, further supporting its intra-aerobic metabolism (Wu et al., 2011). 

However, additions of oxygen (2 and 8%) to enrichment cultures showed a clear 

stress response on transcriptional level (Luesken et al., 2012). It remains to be 

investigated how the cultures would respond to lower O2 concentrations. 
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Another aspect of the unusual metabolism of M. oxyfera is its way of carbon 

assimilation. Typically, proteobacterial methanotrophs derive at least half of their 

cellular carbon from methane via serine or all via the ribulose-monophosphate 

pathway (Hanson & Hanson, 1996). However, the genome lacked key genes for 

some essential enzymes for both pathways, but encoded and transcribed all genes of 

the Calvin-Benson-Bassham (CBB) cycle. Thus, the pathway of carbon assimilation 

by M. oxyfera bacteria was unclear. 

 

 

Thesis outline 

 

A complementary array of methods and experiments performed within this PhD 

project aimed to elucidate some aspects of M. oxyfera physiology and to investigate 

the genomic basis for sedimentary element cycling with regard to nitrogen, iron and 

methane transformations. 

In chapter 2, the carbon and hydrogen isotope fractionation during the methane 

oxidation metabolism by M. oxyfera was investigated. The fractionation is based on 

reaction kinetics of lighter isotopes to react faster, thus leaving the remaining pool 

of substrates enriched with slightly heavier molecules. This leads to a specific 

isotopic signature under no substrate limitation which can be used for environmental 

studies to quantify methane oxidation. Our research revealed that the M. oxyfera 

isotopic signature during methane oxidation was not significantly different to that of 

other methanotrophs. 

3CH4 + 8NO2

-
 + 8H

+
        3CO2 + 4N2 + 10H2O 

ΔG°’= -928 kJ/mol CH4 

Figure 3: Proposed metabolic pathway of Methylomirabilis oxyfera bacterium (modified after Ettwig 

et al., 2010). Key enzymes (at reaction arrows) and the overall reaction stoichiometry are shown. 

Abbreviations: NirS, cytochrome cd1-dependent nitrite reductase; Nod, nitric oxide dismutase; Pmo, 

particulate methane monooxygenase. 
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In chapter 3, the carbon assimilation route of M. oxyfera bacteria was investigated. 

As the M. oxyfera genome lacks essential genes necessary for carbon assimilation 

from methane via the serine or ribulose monophosphate pathways, but contains all 

genes of the CBB cycle for CO2 fixation, we investigated whether CO2 was indeed 

the main carbon source for M. oxyfera cultures. Lipid labeling and RubisCO enzyme 

activity assays showed that CO2 was the main source of cellular carbon in M. oxyfera 

enrichment cultures. 

In chapter 4, the response of an M. oxyfera enrichment culture to additions of NO 

was investigated. In a batch reactor set-up, NO was added as a saturated solution and 

concentrations of N-metabolites and methane was monitored. Combined 

physiological and transcriptomic data pointed to severe nitrosative stress at 

micromolar concentration of free NO. 

In chapter 5, the capacity of the Bothnian Sea sediments for M-AOM was 

investigated. Batch incubations of slurries from the original sediment showed iron-

dependent methane oxidation activity. Subsequent metagenomic sequencing of the 

original sediment and active incubation slurries pointed to the involvement of iron-

reducing bacteria, methanotrophic/-genic archaea, putatively fermentative Clostridia 

and sulfate/thiosulfate reducing bacteria. 

In chapter 6, the genomic potential for various metabolic transformations of 

nitrogen compounds in the Bothnian Sea sediment was investigated. Results showed 

that nitrogen fixation, anammox and dissimilatory nitrite reduction to ammonium 

played only a minor role, but denitrification to N2 was probably the dominant 

pathway in the Bothnian Sea nitrogen cycle. 

In chapter 7, all findings are summarized and a general outlook for future research 

directions is discussed.  
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chapter 2 
 

 

Carbon and hydrogen isotope fractionation during 

nitrite-dependent anaerobic methane oxidation by 

Methylomirabilis oxyfera 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published previously as: 
 
Olivia Rasigraf, Carsten Vogt, Hans-Hermann Richnow, Mike S. M. Jetten, 
Katharina F. Ettwig (2011). Carbon and hydrogen isotope fractionation during 
nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera. 

Geochimica et Cosmochimica Acta, 89: 256-264.  
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ABSTRACT 

 

Anaerobic oxidation of methane coupled to nitrite reduction is a recently discovered 

methane sink of as yet unknown global significance. The bacteria that have been 

identified to carry out this process, Candidatus Methylomirabilis oxyfera, oxidize 

methane via the known aerobic pathway involving the monooxygenase reaction. In 

contrast to aerobic methanotrophs, oxygen is produced intracellularly and used for 

the activation of methane by a phylogenetically distinct particulate methane 

monooxygenase (pMMO). Here we report the fractionation factors for carbon and 

hydrogen during methane degradation by an enrichment culture of M. oxyfera 

bacteria. In two separate batch incubation experiments with different absolute 

biomass and methane contents, the specific methanotrophic activity was similar and 

the progressive isotope enrichment identical. Headspace methane was consumed up 

to 98% with rates showing typical first order reaction kinetics. The enrichment 

factors determined by Rayleigh approach were -29.2 ± 2.6‰ for δ13C (εC) and -227.6 

± 13.5‰ for δ2H (εH), respectively. These enrichment factors were in the upper range 

of values reported so far for aerobic methanotrophs. In addition, two-dimensional 

specific isotope analysis (Λ = (αH
-1-1)/(αC

-1-1)) was performed and also the 

determined Λ value of 9.8 was within the range determined for other aerobic and 

anaerobic methanotrophs. The results showed that in contrast to abiotic processes 

biological methane oxidation exhibits a narrow range of fractionation factors for 

carbon and hydrogen irrespective of the underlying biochemical mechanisms. This 

work will therefore facilitate the correct interpretation of isotopic composition of 

atmospheric methane with implications for modeling of global carbon fluxes. 

 

INTRODUCTION 

 

Methane is the most abundant hydrocarbon in the earth's atmosphere and is a potent 

greenhouse gas with an approximately 25 times higher global warming potential than 

carbon dioxide (IPCC, 2007). About 69% of all methane is produced by the catabolic 

activity of methanogenic archaea (Conrad, 2009), thriving in anoxic environments 

(e.g. rice paddy fields, swamps, continental margins) rich in organic carbon and 

limited in oxidants stronger than carbon dioxide. 

Most of the produced methane is oxidized back to carbon dioxide by two major sinks 

– abiotic oxidation by hydroxyl radicals in the upper atmosphere, and microbial 

oxidation under both oxic and anoxic conditions (Wuebbles & Hayhoe, 2002, 
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Conrad, 2009, Montzka et al., 2011). During biological methane oxidation, the initial 

activation to methanol is mechanistically the most difficult step due to the 

exceptional thermodynamic stability of methane with an activation barrier of 

+439 kJ/mol (Thauer & Shima, 2008). For decades, oxygen was believed to be the 

only possible electron acceptor for methane oxidation (Strous & Jetten, 2004). 

Aerobic methane oxidation is exclusively performed by Bacteria, belonging to α- or 

γ-Proteobacteria and recently discovered Verrucomicrobia (Semrau et al., 2008, Op 

den Camp et al., 2009). However, anaerobic oxidation with sulfate as terminal 

electron acceptor in consortia of anaerobic methanotrophic archaea (ANME) and 

sulfate-reducing bacteria was shown to exist and to be the dominant methane-

oxidizing process in marine sediments (Knittel & Boetius, 2009). In terms of 

thermodynamics, all electron acceptors in the range between sulfate and oxygen (~ -

220 mV – +818 mV) could potentially be used for the oxidation of methane. In 2006, 

it was for the first time described that oxidized nitrogen species (i.e., nitrate, nitrite) 

could be used for the anaerobic oxidation of methane (AOM) (Raghoebarsing et al., 

2006). The process of nitrite-dependent anaerobic methane oxidation (N-DAMO) is 

performed by Candidatus 'Methylomirabilis oxyfera' bacteria which belong to the 

newly described NC10 phylum (Ettwig et al., 2008, Ettwig et al., 2009, Ettwig et 

al., 2010). Though living anaerobically, M. oxyfera activates methane via the known 

pathway of aerobic methanotrophs, involving the monooxygenase reaction as the 

initial step of the process (Ettwig et al., 2010, Wu et al., 2011). Notably, the 

molecular oxygen used for methane oxidation is generated intracellularly by the 

reduction of nitrite to nitric oxide and probably dismutation of the latter to molecular 

nitrogen and oxygen (Ettwig et al., 2010). Methane monooxygenase is the key 

enzyme of oxygen-dependent methane oxidation and occurs in nature in two 

different forms: membrane-bound particulate (pMMO) and cytoplasmic soluble 

methane monooxygenase (sMMO) (Hakemian & Rosenzweig, 2007). Both enzyme 

forms differ in structure, active site composition and catalytic mechanism, with 

sMMO being expressed under copper-limited conditions and exhibiting a broader 

substrate range than pMMO (Elliott et al., 1997, Murrell et al., 2000, Hakemian & 

Rosenzweig, 2007). Most known methanotrophs preferentially express pMMO 

instead of sMMO with only one genus (Methylocella) exclusively using the latter, 

and only a small number can expresses both simultaneously (Murrell et al., 2000, 

Hakemian & Rosenzweig, 2007). In its genome, M. oxyfera possesses a single copy 

gene encoding particulate methane monooxygenase, whose full length amino acid 
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sequence of the alpha-subunit (pmoB) shares at most only 41% identity to the pmoB 

sequence of Methylococcus capsulatus. 

So far, little is known about the occurrence and significance of M. oxyfera in the 

environment. Besides the eutrophic freshwater canal in the Netherlands 

(Raghoebarsing et al., 2006), these bacteria have also been enriched from other 

freshwater sediments and a waste water treatment plant (Ettwig et al., 2009, Hu et 

al., 2009, Luesken et al., 2011). 16S rRNA sequences of NC10 phylum bacteria were 

retrieved from several ecosystems worldwide, including contaminated aquifers, 

soils, lake and river sediments (Ettwig et al., 2009), thereby providing evidence for 

their ubiquity. Moreover, with the development of primer sets specifically targeting 

the pmoA sequence of M. oxyfera bacteria (Deutzmann & Schink, 2011, Luesken et 

al., 2011), it was possible to approach their detection on the functional gene level. 

The pmoA sequences were detected in several anoxic aquifers, anaerobic waste water 

treatment plants, peat lands and an oligotrophic lake (Deutzmann & Schink, 2011, 

Luesken et al., 2011, Luesken et al., 2011), showing the potential for nitrite-

dependent anaerobic methane oxidation in these ecosystems. 

The experimental evidence for active AOM coupled to nitrite reduction in situ is 

scarce. So far, the concomitant disappearance of methane and nitrate has only been 

shown to occur in a sewage-contaminated aquifer and the sediment of an 

oligotrophic lake (Smith et al., 1991, Deutzmann & Schink, 2011). However, several 

studies have reported AOM in anoxic freshwater peat sediments and lake water 

columns, without identifying the responsible electron acceptor and organisms 

(Lehmann et al., 2004, Smemo & Yavitt, 2007, Schubert et al., 2010). It was 

hypothesized that nitrate and nitrite might be of particular importance for the 

observed methane oxidation in these ecosystems (Smemo & Yavitt, 2007). 

As methane is the second most important greenhouse gas in the atmosphere, the 

quantification and evaluation of its fluxes on a global scale has been the subject of 

extensive research during the last decades (Petit et al., 1999, Robertson et al., 2000, 

Wuebbles & Hayhoe, 2002, Dlugokencky et al., 2009, Ettwig et al., 2009, Montzka 

et al., 2011). The unusually strong depletion in the heavy 13C isotope of biogenic 

methane makes it possible to distinguish between thermogenic and biotic sources 

(Whiticar, 1999), but the picture is often complicated by the effect of biological 

oxidation. In this respect, determination of the global C1 budget based on mixing 

ratios and isotopic composition of methane has become an essential tool in 

biogeochemical studies (Whiticar, 1999, Dlugokencky et al., 2009, Kai et al., 2011). 
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Usually, (bio)chemical bond cleavages are associated with isotope discrimination of 

the substrate. The atomic mass differences between isotopes lead to different bond 

strengths inside the molecules, with heavier nuclei possessing lower zero-point 

energies and thus stronger bonds (Urey, 1947). The molecules with weaker bonds 

react faster and the remaining substrate pool becomes enriched with the heavier 

isotope. However, the preference of different processes, enzymes or even different 

enzyme isomers for lighter substrates is not uniform. Thereby, different pathways of 

substrate conversion can often be distinguished by the specific isotopic signature of 

the remaining pool or the product formed (Meckenstock et al., 2004, Mahieu et al., 

2006, Fischer et al., 2008, Vogt et al., 2008). 

The weighted average δ13C of methane produced by all biotic and abiotic sources is 

about -53 ± 5‰, but the average δ13C of atmospheric methane is only -47‰ (Quay 

et al., 1999), indicating that methane consumption processes lead to its enrichment 

with the heavy isotope. During aerobic methane oxidation, the remaining methane 

pool becomes enriched with 13C and 2H under non-limiting substrate conditions, 

which can be attributed to the kinetic effect of the initial and irreversible step of the 

pathway, the monooxygenase reaction (Nesheim & Lipscomb, 1996, Templeton et 

al., 2006). Fractionation occurs for both hydrogen and carbon, but its extent is 

different for both elements. In comparison to the 2H/1H couple, where the relative 

mass difference amounts to 100%, the difference for 13C/12C is only 8.3%. Thus, the 

fractionation effect is always higher for hydrogen than for carbon. 

The isotope enrichment of the residual substrate pool is expressed in enrichment 

factors (ε). So far, several enrichment factors for carbon and hydrogen during aerobic 

methane oxidation were determined (Coleman et al., 1981, Tyler et al., 1994, 

Bergmaschi & Harris, 1995, Reeburgh et al., 1997, Snover & Quay, 2000, Kinnaman 

et al., 2007, Feisthauer et al., 2011). The factors showed a broad range and could not 

be linked to a distinct type of methane monooxygenase, phylogenetic affiliation or 

cultivation condition. Furthermore, also enrichment cultures from marine sources 

exhibiting sulfate-dependent anaerobic methane oxidation produced enrichment 

factors for carbon and hydrogen similar to those of aerobic methanotrophs (Alperin 

et al., 1988, Kessler et al., 2006, Holler et al., 2009), despite the profoundly different 

underlying biochemical methane activation mechanisms.  

As the observed bulk stable isotope effect can be influenced by masking effects, e. 

g. diffusion or transport limitation, a two-dimensional analysis on the basis of 

hydrogen and carbon has been proposed (Feisthauer et al., 2011). The masking 

effects are considered to influence the bulk isotope fractionation of each element to 
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the same extent, thus the ratio of both fractionation factors could potentially provide 

a better picture about a particular biotransformation process in the environment 

(Feisthauer et al., 2011). 

This study aimed to investigate the isotope enrichment factors for carbon and 

hydrogen and to determine the two-dimensional fractionation factor during nitrite-

dependent anaerobic methane oxidation by an M. oxyfera enrichment culture. 

 

MATERIALS & METHODS 

 

Enrichment culture and methane degradation 

 

The culture of M. oxyfera bacteria (corresponding to strain “Twente” in Ettwig et al. 

(2010)) was enriched anoxically in a sequencing batch reactor under continuous 

supply of methane and nitrite as described by Wu et al. (2011). The incubation for 

isotope analyses was performed in batch incubations using 60 ml glass serum bottles 

with two different headspace to volume ratios: 0.35 (further referred to as R0.35) 

and 2.8 (R2.8). Biomass was concentrated two times in nitrate-free mineral salt 

medium (Ettwig et al., 2009) buffered with 5 mM 3-(N-morpholino) 

propanesulfonic acid (MOPS) under oxic conditions. After aerobically dispensing 

the biomass, serum bottles were sealed with red butyl rubber stoppers (Rubber BV, 

Hilversum, Netherlands), crimped with aluminium caps and made anaerobic by 5 

cycles of successive vacuuming and gassing with helium, and a final flushing with 

helium for 5 min. In each serum bottle, an overpressure of 0.4 bar was applied. 

Thereafter, methane (Air Liquide, Eindhoven, Netherlands) was added to a 

concentration of 3-5% (v/v) of headspace gas. Culture bottles were incubated 

horizontally under shaking (170 rpm, Innova® 40, New Brunswick Scientific, United 

States) at 30°C. Each serum bottle was sacrificed at a certain level of methane 

biodegradation (0-98% of initial concentration) by injection of 1 mL of 4 M sodium 

hydroxide and stored at 4°C until analyses. In addition to biotic culture incubation, 

abiotic control serum bottles with medium instead of biomass were prepared. 

 

Analysis of nitrite, methane and protein content 

 

Methane concentrations were analyzed by gas chromatography as described by 

Ettwig et al. (2008). Each sample was measured in duplicate by manual injection of 

100 µL headspace gas with a gas-tight syringe (Hamilton, Switzerland). Protein 
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content from 3 representative batch incubations per experiment was analyzed by 

bicinchoninic acid assay according to the manufacturer's instructions (Ettwig et al., 

2008). Nitrite content was monitored throughout the incubation with Merckoquant 

test strips (Merck, Darmstadt, Germany) in order to prevent nitrite limitation. In 

experiment R2.8, additional nitrite was supplied by a 100 mM anaerobic stock 

solution. 

 

Isotope-ratio mass spectrometry 

 

The isotopic composition of the headspace methane was analyzed with an isotope-

ratio mass spectrometer (Finnigan MAT 253, Thermo Finnigan Bremen, Germany) 

coupled to a gas chromatograph (GC, HP 7890A Series, Agilent Technology, Santa 

Clara, United States for H and HP 6890 Series, Agilent Technology, Santa Clara, 

United States for C isotopes) via a combustion device. Dependent on the 

concentration of methane in the headspace, 50 to 1000 µL gas were injected into the 

GC by a sample-lock syringe (Hamilton, Switzerland). Helium was used as a carrier 

gas with a constant flow of 2 mL min-1 at 40°C. Each sample was measured at least 

3 times. The standard deviation was always lower than 0.6 ‰ for δ13C and 7.8 ‰ for 

δ2H, respectively. 

 

Determination of isotope enrichment factors, fractionation factors and Λ 

 

For calculations of the isotope enrichment factors (Eq. 1), the isotopic abundance 

(δ13C, δ2H) was expressed in per mill (‰) relative to Vienna PeeDee Belemnite 

(VPDB) and standard mean ocean water (SMOW) as international standards, 

respectively. 

 

 δ13C or δ2H [‰] =                                  • 1000      Eq. 1 

 

in which Rsample and Rstandard represent the 13C/12C and 2H/1H ratios in sample and 

international standard, respectively. 

Because batch incubation experiments represent closed systems, a simplified 

Rayleigh approach as described by Coleman et al. (1981) can be applied for 

determination of enrichment factors during methane degradation. According to 

Coleman et al. (1981), the initial concentration of light methane isotopes can be 

approximated by the total methane concentration as the natural abundance of 13C and 

(Rsample – Rstandard) 

Rstandard 
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2H is small (1.1% and 0.015%, respectively). Furthermore, the simplified Rayleigh 

approach applies for first order reaction kinetics, where concentration of methane is 

the rate limiting factor (Coleman et al., 1981). 

In the current study, the isotope enrichment factors (ε) for carbon and hydrogen were 

calculated by a simplified Rayleigh approach as previously described (Elsner et al., 

2005) (Eq. 2). 

 

         =                 Eq. 2 

 

in which Rt, Ct, R0 and C0 represent stable isotope ratios (R) and concentrations (C) 

of headspace methane at the beginning (time point 0) and after a certain time of the 

experiment (time point t). 

By combining the equations 1 and 2, the isotope enrichment factor can be expressed 

according to equation 3. 

 

                 =                           Eq. 3 

 

The isotope enrichment factor was determined from the slope of the linear regression 

after plotting of ln((δt + 1000)/(δ0 + 1000)) versus ln(Ct/C0). δt and δ0 represent the 

isotope values at the beginning and after a certain time of the experiment, 

respectively. The standard error originating from the slope was calculated with 95% 

confidence interval as previously described according (Elsner et al., 2007). 

The isotope fractionation factor (α) can then be calculated according to equation 4. 

 

α =                + 1      Eq. 4 

 

In order to account for potential masking effects, a two-dimensional specific isotope 

analysis based on isotope fractionation of two elements was performed according to 

Elsner et al. (2007) and is presented in equation 5. 

 

Λ =                             Eq. 5 
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RESULTS & DISCUSSION 

 

Methane degradation kinetics 

 

In R0.35, methane was consumed up to 98% within 20 h of incubation, in R2.8 the 

degradation did not exceed 84% within 136 h (Figure 1). The different degradation 

rates in R0.35 and R2.8 were consistent with the absolute protein content: the 

specific methane consumption activity was comparable for both incubation 

experiments, 3 ± 0.3 in R0.35 and 3.2 ± 0.2 μmol g –1 protein min -1 in R2.8, 

respectively. However, the overall consumption patterns differed between R0.35 and 

R2.8, with an observable lag-phase during the first 10 h in R2.8. In both R0.35 and 

R2.8, methane degradation followed first order reaction kinetics; most culture bottles 

of each experiment exhibited similar methane oxidation rates 

(Fig. 1). During both incubation experiments a significant increase in biomass could 

be excluded, as the doubling time of M. oxyfera-like bacteria lies in the range of one 

to two weeks (Ettwig et al., 2009). In a previously conducted activity test, the 

stoichiometry of methane to nitrite consumption was determined to be close to the 

theoretical ratio of 3:8, indicating that N-DAMO was the predominant denitrifying 

pathway. 

 

Isotope fractionation of carbon and hydrogen 

 

Both R0.35 and R2.8 exhibited an enrichment in heavy isotopes of carbon and 

hydrogen during the course of incubation. The isotopic signature of 13C-methane was 

-37.8 ± 0.6‰ at the start of incubation and increased to +84.6 ± 0.4‰ after 98% of 

Figure 1: Methane degradation kinetics of 

Methylomirabilis oxyfera enrichment culture 

during both incubation experiments with 

different headspace to liquid ratios (R0.35 and 

R2.8). Headspace methane contents at the time 

of sacrification are plotted. R0.35 is shown with

open triangles, R2.8 with filled triangles. 
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headspace methane was consumed (Fig. 2A). The enrichment in deuterium 

proceeded in the same manner as 13C and increased from -130 ± 0.5‰ to 

+434 ± 6.4‰ after 90% of headspace methane was consumed (Fig. 2B). 

The isotope enrichment trend did not differ between both R0.35 and R2.8, indicating 

that no diffusion limitation occurred in R0.35 and that slow consumption rates and 

lag-time at the beginning of the incubation in R2.8 did not affect isotope 

fractionation. The isotope enrichment correlated very well with the decreasing 

concentrations of headspace methane typical for closed incubation systems. The 

determined isotope enrichment factors from the slopes of simplified Rayleigh plots 

were -29.2 ± 2.6‰ for carbon (εC) and -227.6 ± 13.5‰ for hydrogen (εH) (Fig. 3). 

Both regression lines came close to a correlation factor (R2) of 1 (Figure 3). 

The results showed that M. oxyfera-like methanotrophs discriminate against the 

heavier isotopes of carbon and h ydrogen  with values in the upper range of what has 

been reported so far for other methanotrophs and methane-oxidizing environmental 

samples (compiled in Feisthauer et al. 2011). Neither the peculiar methane oxidation 

mechanism nor the distinct sequence of M. oxyfera-specific pMMO were reflected 

in its specific enrichment factors. Similar observations were made by Feisthauer et 

al. (2011), where type I and type II methanotrophs produced similar enrichment 

factors for methane regardless of the type of expressed MMO. Although Nesheim 

and Lipscomb (1996) determined that isotope fractionation during biological 

δ13
C

 

δ2 H
 

Methane degradation [%] Methane degradation [%] 

Figure 2: Enrichment in heavy isotopes (A, carbon; B, hydrogen) with progressive methane 

degradation by a Methylomirabilis oxyfera enrichment culture during both incubation experiments. 

Values of R0.35 are shown as open rhombs, values of R2.8 as filled rhombs. 
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methane oxidation is primary due to catalysis by MMO, the experiments with whole 

cells showed that other processes might play a significant role for observed bulk 

isotope effect as well. 

Previous studies on microbial aerobic degradation of phenol and benzoate provided 

evidence that growth rates and physiological features were major parameters for the 

variation of isotopic discrimination of carbon (Hall et al., 1999). These factors 

correlated, directly or indirectly, with kinetics of substrate transport into the cell and 

thus its availability for the enzyme. As concluded by Kinnaman et al. (2007), 

substrate limitation and transport rates during aerobic oxidation of C1-C4 alkanes 

were the main determinants of fractionation control in methane seep enrichment 

cultures. 

As the M. oxyfera enrichment culture primary consisted of aggregated cells, 

substrate diffusion limitation to inner cells could be one of the parameters, which 

would affect the extent of bulk isotope fractionation and possibly mask the true 

fractionation in case of non-limiting substrate condition for each individual cell. 

Substrate availability is controlled by two factors, the bulk substrate concentration 

on one hand, and cell biomass content and its activity on the other hand. A previous 

study showed that cell density had a significant impact on fractionation of carbon 

during aerobic toluene degradation, with lower cell numbers of single-cell cultures 

leading to highest isotope fractionation factors (Kampara et al., 2009). In case of 

biofilms or cell clusters the effect could be even higher since the ratio of biovolume 

to surface area is much higher, restricting the access of substrate even more. 

Templeton et al. (2006) found that methane fractionation by whole cells of 

ln(Ct/C0) ln(Ct/C0) 
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Figure 3: Rayleigh plots for stable isotope fractionation (A, carbon; B, hydrogen). Data from both 
incubation experiments are included. 
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proteobacteria was mostly regulated by the total amount of substrate oxidized per 

unit time, which is dependent on the cell numbers and finally the number of active 

MMOs, and was regardless of the type of organism or type of expressed MMO. In 

general, lower cell densities might lead to determination of the true biological 

fractionation effect of methane, as the amount of catalyst (MMO) and not substrate 

is limiting. During the current study, the ratio of available catalyst (proportional to 

the total protein content) to total methane differed by a factor of 8 between both 

incubation experiments, however it did not have an effect on the isotope fractionation 

by M. oxyfera. One of the factors leading to the high enrichment factor of δ13C could 

be the availability of oxygen for pMMO (Templeton et al., 2006). The effect of 

oxygen would be inverse to that of methane concentrations. Theoretically, under low 

oxygen concentrations the process of methane oxidation would be slowed down 

favoring fractionation. Thus, even at low methane availability, the kinetic isotope 

effect could be offset by low oxygen. As M. oxyfera produces its oxygen 

intracellularly from nitrite via nitric oxide, this step is likely to be rate-limiting, thus 

restricting oxygen availability for pMMO (Templeton et al., 2006). 

 

Two-dimensional specific isotope analysis 

 

The two-dimensional specific isotope analysis based on carbon and hydrogen during 

methane degradation by M. oxyfera resulted in a lambda (Λ) value of 9.8. This 

approach was recently introduced in order to identify specific biodegradation 

processes (Elsner et al., 2005, Elsner et al., 2007). However, the study of Elsner et 

al. (2007) focused on biodegradation of methyl tert-butyl ether, a compound more 

complex and containing several non-reactive atom positions in contrast to methane. 

In a recent study, Feisthauer et al. (2011) determined several Λ values for sMMO 

and pMMO of phylogenetically distinct Proteobacteria, but could not observe 

significantly different lambda values dependent on the type of enzyme expressed. 

The authors compared the determination of Λ by two approaches, by plotting δ13C 

versus δ2H and calculation according to equation 5. The first approach was shown to 

be applicable only for enrichment factors of hydrogen not exceeding -100‰, which 

is out of the range during the current study. In general, there is a broad range of 

variation in Λ known from previous reports on methane oxidizing environmental gas 

samples and enrichment cultures. The values range between 3.2 and 19 without an 

obvious correlation with phylogeny or environmental conditions. Thus, neither the 

phylogenetic affiliation nor the specific catalytic mechanism can be inferred from 
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the two-dimensional specific isotope analysis during oxygen-dependent methane 

oxidation. 

 

Environmental implications 

 

It is evident from all studies on stable isotope fractionation during aerobic methane 

oxidation conducted so far that the determined enrichment and Λ factors do not 

reflect neither the underlying enzymatic pathway nor the phylogenetic affiliation of 

active methanotrophs. Moreover, a study of Holler et al. (2009) on isotope 

fractionation by enrichment cultures of AOM consortia (ANME II clade) from 

various marine environments revealed εC values of -11.9‰ – -37.5‰ and εH of -

100.7‰ – -229.6‰. Thus, despite the profoundly different biochemical mechanisms 

underlying both processes, they resemble isotope enrichment factors as those of 

aerobic methanotrophs. Similar values were also reported for gas samples from 

anoxic marine environments (Martens et al., 1999, Kessler et al., 2006). These 

findings indicate a narrow range of fractionation specific for biological methane 

oxidation. This, however, can be valuable for the quantitative distinction between 

biotic and abiotic methane oxidation. The hydroxyl-driven abiotic methane oxidation 

in the atmosphere is responsible for almost one third of all methane removal (Thauer, 

2011) and exhibits an Λ value of 75, a value of one magnitude larger than that of 

biologically mediated oxidation (Saueressig et al., 1996, Bergamaschi et al., 2000, 

Saueressig et al., 2001, Feilberg et al., 2005, Feisthauer et al., 2011), making both 

processes well distinguishable. 

An important factor which must be taken into consideration when interpreting 

isotope data from anoxic environments is methanogenesis. Methanogenic activity 

may overlap with anaerobic methanotrophy, leading to a partial recycling of 

produced carbon dioxide and complicating the interpretation of isotope data. 

However, under nitrate/nitrite rich conditions in the habitat of M. oxyfera 

methanogenesis might be restricted due to the high redox potential and unfavorable 

kinetics in comparison with denitrifiers. 

The enrichment factors determined within the current study have a potential to be 

applied in evaluation of methane fluxes in anoxic freshwater environments, and to 

contribute to source determination and modeling of global methane fluxes, which is 

important in context of global warming. 
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ABSTRACT 

 

Methane is an important greenhouse gas and the most abundant hydrocarbon in the 

earth’s atmosphere. Methanotrophic microorganisms can use methane as their sole 

energy source and play a crucial role in mitigation of methane emissions in the 

environment. Methylomirabilis oxyfera is a recently described “intra-aerobic” 

methanotroph that is assumed to use NO to generate internal oxygen to oxidize 

methane via the ‘conventional’ aerobic pathway including the monooxygenase 

reaction. Previous genome analysis has shown that, in contrast to most known 

methanotrophs, M. oxyfera lacks the complete common pathways for carbon 

assimilation from methane (i.e. serine and ribulose monophosphate pathways). 

Instead, the complete pathway of the Calvin-Benson-Bassham (CBB) cycle was 

encoded and transcribed by M. oxyfera. Here we provide multiple independent lines 

of evidence for autotrophic carbon dioxide fixation by M. oxyfera via the CBB cycle. 

Activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key 

enzyme of the CBB cycle, in cell-free extracts from the M. oxyfera enrichment 

culture was shown to account for up to 10% of the total methane oxidation activity. 

Labeling studies with whole cells in batch incubations supplied with either 13C-CH4 

or 13C-bicarbonate revealed that M. oxyfera biomass and lipids became significantly 

more enriched in 13C after incubation with 13C-labeled bicarbonate (and unlabeled 

methane) than after incubation with 13C-labeled methane (and unlabeled 

bicarbonate), providing the conclusive evidence of autotrophic carbon dioxide 

fixation. Besides this experimental evidence, detailed genomic and transcriptomic 

analysis demonstrated an operational CBB cycle in M. oxyfera. Altogether, these 

results showed that the CBB cycle is active and plays a major role in carbon 

assimilation by M. oxyfera bacteria. Our results suggest that autotrophy might be 

more widespread among methanotrophs than previously assumed and implies that a 

methanotrophic community in the environment is not necessarily revealed by 13C-

depleted lipids. 

 

INTRODUCTION 

 

Methane is an important volatile product of the anaerobic degradation of organic 

matter and is the most abundant hydrocarbon in the earth's atmosphere (Cicerone & 

Oremland, 1988). It is the most reduced form of carbon, but while bearing a vast 

amount of energy it is thermodynamically one of the most difficult organic 
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compounds to activate. The biological oxidation of methane occurs under both oxic 

and anoxic conditions, performed by specialized groups of Bacteria or Archaea. 

Aerobic methanotrophs belong to the Bacteria and all oxidize methane in a similar 

manner, using oxygen for the first oxidation step of methane to methanol by a 

monooxygenase. In the following reactions, catalyzed by dehydrogenases, methanol 

is oxidized to carbon dioxide with formaldehyde and formate as intermediates 

(Hanson & Hanson, 1996). 

The aerobic methanotrophs belonging to the Proteobacteria were divided into two 

types based on their morphology and physiological properties, including the route of 

C1 assimilation (Whittenbury et al., 1970). Type I methanotrophs utilize mostly the 

ribulose monophosphate (RuMP) pathway in which all cellular carbon is derived 

from methane and enters the pathway at the level of formaldehyde (Whittenbury et 

al., 1970, Anthony, 1986, Hanson & Hanson, 1996). Type II methanotrophs use the 

serine pathway in which half of the cellular carbon is derived from methane via 

formaldehyde, and the other half originates from carbon dioxide which enters the 

pathway via the phosphoenolpyruvate carboxylation reaction (Anthony, 1986). Both 

pathways represent chemoorganoheterotrophic modes of metabolism and were 

considered to be universal among aerobic methanotrophs. However, some 

proteobacterial methanotrophs do possess complete gene sets for autotrophic CO2 

fixation (Taylor et al., 1981, Baxter et al., 2002). The genomes of type I 

methanotrophs Methylococcus capsulatus, Methylocapsa acidiphila B2, 

Methylocaldum szegediense O-12, and of type II methanotrophs Methyloferula 

stellata AR4 and Methylocella silvestris BL2 possess complete sets of the reductive 

pentose phosphate cycle, commonly known as the Calvin-Benson-Bassham (Dedysh 

et al., 2002, Ward et al., 2004, Chen et al., 2010, Vorobev et al., 2011). It still 

remains to be experimentally validated which role the CBB cycle plays in these 

organisms. 

As methanotrophic bacteria thus seemed to derive at least half of their cellular carbon 

from CH4, stable carbon isotopic analysis has been commonly used to identify 

methanotrophy in culture-independent environmental studies (Hutchens et al., 2004, 

Cébron et al., 2007, Qiu et al., 2008, Dumont et al., 2011). It is in those cases 

assumed that the distinct δ13C signature of biogenic methane (i.e. strongly depleted 

in 13C) is also reflected in lipids and biomass of methanotrophic communities. 

Extremely depleted δ13C values were indeed observed in microbial biomass and 

lipids (Freeman et al., 1990, Hinrichs et al., 2000, Orphan et al., 2001, Blumenberg 

et al., 2004, Coolen et al., 2004, Deines et al., 2007). Based on these observations 
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autotrophy was generally dismissed as a dominant mode of carbon fixation in 

methanotrophic organisms.  

For a century after their first discovery in 1906, methanotrophic bacteria were 

believed to be restricted to α- and γ-Proteobacteria (Trotsenko & Murrell, 2008). 

However, since 2007 several independent studies showed that bacterial 

methanotrophs are phylogenetically much more diverse and are also found within 

the verrucomicrobial and NC10 phyla (Dunfield et al., 2007, Pol et al., 2007, Islam 

et al., 2008, Ettwig et al., 2010). The discovery of the (acidophilic) verrucomicrobial 

methanotrophs revealed not only a wider environmental and phylogenetic spectrum 

for aerobic methanotrophy, but also demonstrated that these methanotrophs lack 

essential genes of both the RuMP and the serine pathways (Hou et al., 2008). Instead, 

they were shown to utilize the CBB cycle for carbon dioxide fixation, challenging 

the paradigm that methanotrophs are organotrophs deriving a large part of their 

biomass from CH4 (Khadem et al., 2011). Similarly, genome analysis suggested that 

also the first described member of the NC10 phylum – the nitrite-dependent methane 

oxidizer Methylomirabilis oxyfera – may employ the CBB cycle for carbon 

assimilation (Ettwig et al., 2010, Wu et al., 2011). M. oxyfera oxidizes methane via 

a similar sequence of reactions as employed by aerobic methanotrophs, however, it 

does so in the complete absence of external oxygen. Instead, nitrite is reduced to 

nitric oxide and the latter is hypothesized to be dismutated to molecular nitrogen and 

oxygen (Ettwig et al., 2010, Wu et al., 2011, Ettwig et al., 2012). The internally 

produced oxygen can then be used for methane oxidation by a methane 

monooxygenase. 

The current study aimed to investigate the mode of C1 assimilation in M. oxyfera 

enrichment cultures through a multidisciplinary approach. We carried out detailed 

genome and transcriptome analysis focusing on the potential for autotrophic CO2 

fixation via the CBB cycle and employed enzyme activity assays to detect the 

activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) in cell free 

extracts. In (whole cell) batch incubations we performed 13C-labeling experiments 

using labeled methane and/or bicarbonate to identify the effective source of C 

assimilation in M. oxyfera-specific lipid biomarkers and total enrichment culture 

biomass. 
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MATERIALS & METHODS 

 

M. oxyfera enrichment culture 

 

      The culture of M. oxyfera bacteria strain “Ooij” was enriched in an anoxic sequencing 

batch bioreactor as previously described (Ettwig et al., 2008). The enrichment 

culture was dominated by M. oxyfera, making up approximately 80% of the total 

community as estimated from previous fluorescence in-situ hybridization (FISH) 

analysis. 

 

Transcriptomic and genomic analysis 

 

The phylogenetic sequence analysis of the large chain RubisCO genes was 

performed by comparison of cbbL gene sequences obtained from GenBank using the 

ClustalW algorithm within the MEGA 5.0 software (Thompson et al., 1994, Tamura 

et al., 2011). The resulting alignment was manually checked. The phylogenetic tree 

was calculated using the neighbor-joining method (Saitou & Nei, 1987) and a 

bootstrap test of 1,000 replicates. The Dayhoff matrix was used for reconstruction of 

evolutionary distances. The transcriptome data used in this study were obtained from 

(Luesken et al., 2012). Mapping of the total RubisCO reads was performed with CLC 

Bio Genomics Workbench 5.0 software using a sequence dataset downloaded from 

GenBank as mapping reference. The genome analysis was performed on the basis of 

published data with additional BLAST analysis. 

 

Cell extract preparations 

 

Biomass was obtained from the enrichment culture and centrifuged (under oxic 

conditions) for 30 min at 16,500 x g (Sorvall® RC5B Plus, DuPont, Bad Homburg, 

Germany) at 4°C. The supernatant was discarded and the pellet resuspended in 

20 mM Tris-HCl (pH 8.0) containing 50 mM sodium pyrophosphate (PPi). The final 

volume of resuspended pellet was 7 mL to which 1 tablet of a protease inhibitor 

cocktail (Boehringer, Mannheim, Germany) and 1 mg DNAse (Roche Diagnostics, 

Mannheim, Germany) were added. The disruption of cells was performed on ice by 

ultrasonication at 110 MPa 15 times for 10 s each with time pause intervals of 10 s. 

The sonicated biomass was centrifuged for 10 min at 12,000 x g at 4°C. The pellet 

was discarded and the supernatant was further centrifuged for 10 min under identical 
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conditions. Finally, the dark reddish-brownish supernatant was stored on ice for 

enzyme assays. 

 

RubisCO activity assays 

 

The method for the RubisCO activity assay was adapted from (Khadem et al., 2011). 

It is based on the determination of 13C-CO2 liberation after the destruction of labeled 

3-phosphoglycerate which is formed after the RubisCO-specific carboxylation of 

ribulose-1,5-bisphosphate (RuBP) by CO2 originating from labeled bicarbonate. The 

RubisCO activity can then be deduced from the increase in 13C-CO2 during a time-

series of samples. 

The assay was performed in 2 mL septum vials (Labco, UK) with a liquid volume of 

250 µL. Depending on the amount of cell-free extract used, either 175 or 200 µL of 

20 mM potassium phosphate buffer (pH 6.9) containing 10 mM MgCl2 were used. 

Cell-free extract (50 or 25 µL) and 20 µl of 100 mM 13C-NaHCO3 were added with 

a syringe to closed vials containing buffer, vortexed for 2 s and incubated for 10 min 

at 30°C. Then, 5 µL of 25 mMRuBP were added and vortexed for 2 s. Further 

incubation was performed at 30°C and samples of 50 µL were withdrawn by a 

syringe and injected into closed 3 mL exetainer vials (Labco Limited, High 

Wycombe, UK) in intervals of 5 or 10 min over a total period of 20 min. Each 

exetainer was amended with 20 µL of 0.5 M HCl and dried under vacuum at 50°C 

over night. The dried samples were amended with 0.5 mL ice-cold 0.1% KMnO4 in 

0.1 M H3PO4 in closed exetainers, vortexed for 5 s and incubated for 25 min at 50°C. 

After incubation, samples were kept at room temperature for 1 h for equilibration. 

The final measurement of headspace CO2 was performed by gas chromatography 

coupled to a mass spectrometer (GC-MS, Agilent 5975C, Santa Clara, USA).Each 

measurement was performed in duplicate by injection of 100 µL of headspace gas 

with a gastight syringe. 

 

Carbon isotope tracing experiments 

 

The effective assimilation of carbon from CH4 or bicarbonate/CO2 into biomass and 

lipids of M. oxyfera was investigated with stable isotope probing (SIP) experiments. 

Various treatments were performed in which M. oxyfera biomass was incubated with 

either 13C-CH4 or 13C-bicarbonate. The 13C-CH4 treatment also contained (unlabeled) 

bicarbonate, and the treatment with 13C-bicarbonate also received CH4 as energy 
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source. A control was included with 13C-bicarbonate without CH4, and as a reference 

biomass was also incubated with unlabeled CH4 and unlabeled bicarbonate. 

Additional treatments were included to test the use of H2 and/or formate as 

alternative electron donors. All treatments, summarized in Tab. 1, received nitrite as 

electron acceptor. 

 

Incubation set-up 

 

The reactor biomass was washed in 10 mM 3-(N-morpholino)propanesulfonic acid 

(MOPS) buffer (pH 7.4) and resuspended in nitrate-free mineral salt medium 

described in (29). MOPS was used as a buffering agent (pH 7.4) with a final 

concentration of 5 mM. Duplicate incubations were performed in 60 mL glass serum 

bottles amended with different combinations of 13C-labeled or unlabeled sodium 

bicarbonate (2.5 mM), methane (~4% in headspace) or formate (2.5 mM). All 

incubations were amended with sodium nitrite (0.3 mM) at the start of incubation 

and spiked with additional nitrite when the concentration in the bottles was close to 

zero, as estimated by Merckoquant test strips. The bottles were sealed with red butyl 

rubber stoppers and crimped with aluminum rings. Immediately after sealing, the 

batch cultures were made anoxic by 5 cycles of successive vacuuming and gassing 

with argon, and a final flushing with argon for at least 10 min. In each bottle, an 

overpressure of 0.4 bar was applied. Thereafter, the incubations were amended with 
13C-labeled (99-atom%, IsotecInc, Matheson Tri, USA) or -unlabeled methane (Air 

Liquide, Eindhoven, Netherlands) and some treatments with hydrogen to final 

concentrations of approximately 4% and 16% of headspace gas, respectively. 

Additionally, 2 mL unlabeled CO2 was added to each bottle for a bicarbonate/CO2 

equilibrium. The cultures were incubated horizontally on a shaker (170 rpm, 

Innova®40, New Brunswick Scientific, United States) at 30°C. The pH was 

measured with a pH meter (Metrohm 691, Herisau, Switzerland) at the start and the 

end of incubation. The headspace pressure was monitored several times during the 

experiment with a needle pressure meter (GMH 3111, Greisinger, Germany). 
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Table 1: Summary of the labeling experiment treatments of the Methylomirabilis oxyfera enrichment 

culture. 

NaHCO3 

Treatments 

Electron donor 

13C 12C-CH4 

12C 13C-CH4 

12C 12C-CH4 

13C - 

- 12C-CH4 

12C 13C-CH4+H2 

13C H2 

13C 12C-CH4+H2 

13C 12C-CH4 

12C 13C-HCOO- 

13C 12C-HCOO- 

- 13C-CH4 

 

Analysis of methane, nitrite, formate and protein concentrations 

 

Methane concentration in the headspace was measured by gas chromatography with 

a flame ionization detector (HP 5890 Series II, Agilent Technologies, SantaClara, 

United States). Each measurement was performed in duplicate by injection of 100 μL 

headspace gas with a gastight syringe. Measurements of carbon dioxide, oxygen and 

hydrogen were performed by GC-MS (see above). At the same time, liquid samples 

of 200 μL each were taken for nitrite and formate determination. After each activity 

experiment, 0.5 mL of biomass was taken from each incubation bottle for 

determination of the total protein content. The remaining biomass was centrifuged 

in 50 mL tubes at 4,000 x g for 20 min, supernatant was discarded and pellets were 

kept at -80°C until subsequent freeze-drying and following lipid and isotope 

analysis. Nitrite and protein concentrations were determined colorimetrically as 

described in (Ettwig et al., 2008). Formate determination was performed with a 
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method slightly modified from (Sleat & Mah, 1984). 0.1 mL sample was mixed with 

freshly prepared 0.2 mL working solution (0.5 g citric acid and 10 g acetamide in 

100 mL 2-propanol), 0.01 mL sodium acetate (30% (w/v) in MilliQ) and 0.7 mL 

acetic anhydride. All samples (triplicate) were incubated for two hours at room 

temperature in the dark and the extinction was measured at 510 nm with a 

spectrophotometer (Ultrospec K, LKB Biochrom Ltd., Cambridge, United 

Kingdom). 

During the experiment the enrichment culture exhibited a methanotrophic activity 

between 1.3 and 1.6 nmol CH4 min-1 mg-1 protein. Associated NO2
- consumption 

closely followed the theoretical stoichiometry of 3:8 (CH4:NO2
-). In the treatments 

where we checked for the use of alternative electron donors, we confirmed that 

neither formate nor hydrogen were used as electron donors by the M. oxyfera 

enrichment culture (data not shown). The presence of hydrogen did not have any 

effect on the methanotrophic activity. Interestingly, the nitrite- and methane-

oxidizing activity was considerably lower in incubations without added bicarbonate 

although the pH difference to cultures with added bicarbonate was not significant. 

 

Bulk- and compound-specific isotope analysis 

 

The freeze-dried biomass was separated into subsamples for bulk and compound 

specific isotope analysis. For bulk isotope analysis of the biomass, the sub-samples 

were acidified in silver foil cups (2 N HCl; dried at 60°C overnight) to remove all 

inorganic carbon. Isotope values were determined by elemental analysis followed by 

isotope ratio mass spectrometry (Thermo Flash 2000 Elemental Analyzer coupled to 

a Thermo DeltaV IRMS system). Lipid extraction of the sub-sample for compound-

specific analysis was carried out as described previously (Kool et al., 2012). In short, 

after saponification the obtained extracts were methylated with boron trifluoride 

(BF3) in MeOH and subsequently separated by column chromatography over 

activated alumina (Al2O3) into apolar and polar fractions. Previous analysis had 

revealed that the apolar fraction comprised the majority of the total lipids (Kool et 

al., 2012). The apolar fractions were subsequently analyzed by gas chromatography 

(GC; Agilent 6890) and gas chromatography-mass spectrometry (GC-MS; Thermo 

Trace GC Ultra coupled to a Thermo Trace DSQ). The GC was equipped with a 

fused silica column (25 m x 0.32 mm) coated with CP Sil-5 (film thickness = 0.12 

μm) with He as carrier gas. Relative abundance of the fatty acid methyl esters was 

derived from the (integrated) GC profile. Compounds were identified with GC-MS 
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following methods described previously (Kool et al., 2012). For stable carbon 

isotope analysis, fractions were analyzed by GC coupled to isotope ratio mass 

spectrometry as described previously (Schouten et al., 1998). Raw data were 

corrected for the δ13C of the carbon derived from BF3-methanol that was added 

during preparation of the methyl esters of the fatty acids. 

 

RESULTS 

 

Genome- and transcriptome analysis of C1 assimilation potential by M. oxyfera 

 

Detailed analysis of the previously published genome data (Ettwig et al., 2010) 

showed that neither serine nor the RuMP pathways were complete in M. oxyfera. For 

both pathways, important key genes could not be annotated. In the RuMP pathway 

3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) 

were missing. Malyl-CoA lyase, malate thiokinase and glycerate 2-kinase were 

absent in the serine pathway. 

When we consider the six known autotrophic pathways, only the CBB cycle gene 

set was complete. Analysis of the previously published transcriptomic and proteomic 

data (Ettwig et al., 2010, Luesken et al., 2012) revealed that all CBB cycle genes 

were also expressed in M. oxyfera bacteria (Tab. 2). The CBB genes are arranged in 

four separate clusters (Fig. 1) with additional copies of a phosphoribulokinase (PRK) 

and a fructose-1,6-bisphosphatase (FBPase) not being located within a cbb-operon. 

 
Table 2: Relative expression of CBB cycle-associated genes and (for comparison) key catabolic 

genes in Methylomirabilis oxyferaa 

orf 

identifier 

(damo_) 

Gene 

name 

Encoded protein ECb 

no. 

Relative 

expressionc 

0174 cbbF1 Fructose-1,6-bisphosphatase II 3.1.3.11  8.3 

0175 cbbA Fructose-bisphosphate aldolase II, CBB cycle 

subtype 

4.1.2.13 9.8 

0176 cbbE Ribulose-phosphate 3-epimerase 5.1.3.1 8.8 

0339 cbbG1 Glyceraldehyde 3-phosphate dehydrogenase 1.2.1.12 9.4 



43 
 

0340 cbbK Phosphoglycerate kinase, 5' end 2.7.2.3 9.1 

0341 cbbK Phosphoglycerate kinase, 3' end 2.7.2.3 8.3 

0342 tpiA Triosephosphate isomerase 5.3.1.1 9.0 

0804 oxyR LysR-type transcriptional activator - 7.5 

0861 oxyR LysR-type transcriptional activator - 8.7 

2116 cbbP1 Phosphoribulokinase 2.7.1.19 3.9 

2163 cbbF2 Fructose-1,6-bisphosphatase II 3.1.3.11  9.6 

2164 rpiA Ribulose-5-phosphate isomerase A 5.3.1.6 8.1 

2165 cbbL Ribulose-1,6-bisphosphate 

carboxylase/oxygenase, large chain 

4.1.1.39 9.3 

2166 cbbS Ribulose-1,6-bisphosphate 

carboxylase/oxygenase, small chain 

4.1.1.39 10.1 

2167 cbbX Ribulose-1,6-bisphosphate carboxylase/oxygenase 

activase, AAA ATPase 

- 9.9 

2168 ppcA Phosphoenolpyruvate carboxylase 4.1.1.31  9.3 

2170 cynT Carbonic anhydrase 4.2.1.1 10.3 

2650 cbbF3 Fructose-1,6-bisphosphatase II 3.1.3.11  9.6 

2651 cbbT Transketolase 2.2.1.1 7.9 

2652 cbbG2 Glyceraldehyde-3-phosphate-dehydrogenase 1.2.1.12 7.9 

2653 cbbP2 Phosphoribulokinase 2.7.1.19 9.9 

2986 cbbF4 Fructose-1,6-bisphosphatase II 3.1.3.11  9.1 

 

a The transcriptome analysis was performed on the basis of data published previously (Luesken et 

al., 2012). The presented data refer to the anoxic period.  
b EC, enzyme nomenclature designation.  
c Relative expression was determined from log2(RPKM+1), where RPKM is reads per kilobase per 
million mapped reads. 
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Two enzymes are exclusive to the CBB cycle: RubisCO and PRK (Tabita, 1988). 

The large subunit of the M. oxyfera RubisCO belongs to the red-like type 1c (Fig. 2) 

sharing 83% sequence similarity on the amino acid level with Rhodospirillum 

centenum SW and Beggiatoa alba as closest homologues. Also the small RubisCO 

subunit encoded by cbbS and a putative RubisCO activase encoded by cbbX share 

73% and 78% sequence similarity, respectively, with B. alba as the closest relative.  

Additionally, two isoforms of a LysR-type transcriptional activator were identified 

in the genome of M. oxyfera. Many autotrophs employ a regulation of the CBB cycle 

gene expression via the LysR-type transcriptional regulator, designated as CbbR 

(Gibson & Tabita, 1993). It was shown previously that CbbR is essential for the 

induction of autotrophy in Xanthobacter flavus (van den Bergh et al., 1993, Meijer 

et al., 1996, van Keulen et al., 2003). However, the cbbR-like genes of M. oxyfera 

are not located in the vicinity of any cbb cluster and it remains to be shown whether 

the expressed LysR-type proteins are specifically involved in the regulation of the 

CBB cycle or other metabolic processes. 

Two accessory functions are often associated with an active CBB cycle: the presence 

of CO2-concentrating micro-compartments, commonly known as carboxysomes, and 

a photorespiration pathway employed to detoxify 2-phosphoglycolate formed due to 

the oxygenation activity of RubisCO (Bowes et al., 1971, Yeates et al., 2008). 

However, neither carboxysome-encoding genes nor carboxysome-like structures 

could be observed in M. oxyfera cells (Wu et al., 2012), indicating a cytoplasmic 

CO2 fixation. Besides CO2, O2 is a competing substrate of RubisCO, which leads to 

a reduced CO2 fixation efficiency and the production of 2-phosphoglycolate (Bowes 

et al., 1971), a toxic compound which needs to be detoxified. The detoxification of 

phosphoglycolate eventually leads to the formation of 3-phosphoglycerate which can 

re-enter the CBB cycle. So far, three routes of the photo-respiratory pathway are 

known: C2 cycle, glycerate pathway and decarboxylation (Eisenhut et al., 2008, 

Zarzycki et al., 2013). In each pathway, glycerate is the key intermediate and steps 

leading to its formation are common for all. Glycerate is formed via glycolate from 

2-phosphoglycolate catalyzed by a phosphoglycolate phosphatase and glycolate 

oxidase, respectively. No genes encoding a phosphoglycolate phosphatase were 

identified in M. oxyfera, however, the glycolate oxidase encoding gene glcD is 

present and transcribed. Furthermore, except for a glycerate kinase catalyzing the 

last step, all other proteins involved in C2 cycle are present in M. oxyfera. 
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RubisCO activity 

 

Cell-free extract preparations of M. oxyfera enrichment culture exhibited an average 

RubisCO-specific activity of 0.2 nmol 13C-CO2*min-1*mg protein-1 (Fig. 3). This 

activity corresponded to approximately 10% of the methanotrophic activity of the 

culture at the time of the experiments. No activity was observed in incubations 

without addition of either RuBP or cell-free extract (data not shown). 

Interestingly, only freshly prepared cell-free extract exhibited the CO2-fixing 

activity, freezing or storing on ice for longer than one day resulted in a complete loss 

of activity. Since the cell-free extract was prepared from an enrichment culture with 

approximately 20% other community members, we also investigated the 

transcriptome for reads mapping to a comprehensive RubisCO data set obtained from 

GenBank. Over 90% percent of the total RubisCO reads were specific to M. oxyfera,  

0174      0175     0176          0339  0340  0341  0342            2116 

2163   2164   2165      2166  2167         2168          2170 

2650           2651            2652      2653           2986 

cbbF1     cbbA     cbbE         cbbG  cbbK cbbK   tpiA            cbbP1 

cbbF2   rpiA   cbbL      cbbS  cbbX         ppcA          cynT 

cbbF3         cbbT            cbbG    cbbP2         cbbF4 

Figure 1: Gene clusters and single genes involved in or associated with the CBB cycle in 
Methylomirabilis oxyfera. The direction of transcription is indicated with arrows and ORF identifiers 
are shown. Encoding genes: cbbF, fructose-1,6-bisphosphatase II; cbbA, fructose-bisphosphate 
aldolase II; cbbE, ribulose-phosphate 3-epimerase; cbbG, glyceraldehyde 3-phosphate 
dehydrogenase; cbbK, phosphoglycerate kinase; tpiA, triosephosphate isomerase; cbbP, 
phosphoribulokinase; rpiA, ribulose-5-phosphate isomerase A; cbbL, ribulose-1,6-bisphosphate 
carboxylase/oxygenase, large chain; cbbS, ribulose-1,6-bisphosphate carboxylase/oxygenase, small 
chain; cbbX, putative ribulose-1,6-bisphosphate carboxylase/oxygenase activase; ppcA, 
phosphoenolpyruvate carboxylase; cynT, carbonic anhydrase; cbbT, transketolase 
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Figure 2: The bootstrap consensus tree of selected RubisCO form I sequences calculated from 

1,000 replicates. The evolutionary history was inferred using the neighbor-joining method and the 

evolutionary distances using the Dayhoff matrix. Scale bar represents the number of amino acid 

changes per site. The alignment gaps were eliminated in a pairwise comparison. RubisCO 

sequences of methanotrophs are highlighted and the sequence of Methylomirabilis oxyfera is 

underlined. The classification is based on (Tabita, 1995), with types Ia and Ib belonging to the 

green-like, and types Ic, Id and Ie belonging to the red-like RubisCOs. 
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suggesting that the measured specific RubisCO activity could be attributed mainly 

to M. oxyfera. 

 
13C-labeling of bulk biomass and specific lipids 

 

Bulk stable carbon isotope data showed that more 13C was incorporated into the total 

biomass in the treatment with 13C-bicarbonate than with 13C-CH4 (Fig. 4a). In the 

absence of CH4, also when substituted with formate or H2 as electron donor, the 

incorporation from 13C-bicarbonate was minimal. The absolute amount of 13C 

incorporation into biomass was estimated from the bulk isotope enrichment and the 

total organic carbon data, together with the overall amount of CH4 oxidation (1.3 to 

1.6 nmol CH4 min-1 mg-1 protein amounts to an average 422 μg C oxidized per total 

batch incubated). By the end of the incubation, the 13C-bicarbonate treatment 

contained approximately 27 μg more 13C than the control without any label (absolute 

amount per batch incubated). In the 13C-methane treatment, about 11 μg 13C had been 

incorporated, which approximates the amount of C indirectly assimilated from CH4 

via CO2. In total, approximately 38 μg of 13C was thus assimilated into the biomass 

of each batch over the course of the experiment, which amounts to about 9% of the 

amount of CH4-carbon oxidized. This correlates well with the observed specific 

RubisCO activity. 

The compound-specific stable carbon isotopic analysis of fatty acids showed the 

same trend as the bulk carbon isotope enrichment, with highest 13C enrichment when 

bicarbonate was 13C-labeled in the presence of (unlabeled) CH4 (Fig. 4b). The three 

fatty acids C16:0, 10MeC16:0, and 10MeC16:1Δ7, which are of main interest because of 

their relative abundance and specificity (Kool et al., 2012), all followed the same 

trend as the total 13C uptake. Some minor fatty acids showed a different response to 

the labeling: the fatty acids isoC15 and aiC15 became similarly enriched from 13C-

bicarbonate regardless of the presence of CH4. For the fatty acids C18:1, C18:0 and 

C19cyc a higher degree of labeling was obtained from 13C-CH4 than from 13C-CO2. 

 

DISCUSSION 

 

Based on the genome information of M. oxyfera, we followed the hypothesis that the 

CBB cycle would be the major route of C assimilation in M. oxyfera.  Our labeling 
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experiments (Fig. 4) now provide conclusive proof that M. oxyfera, in contrast to 

most known methanotrophic bacteria, is an autotrophic organism. In the absence of 

CH4 the cultures did not incorporate significant amounts of 13C label, showing that 

CH4 was essential as energy source, but the bulk stable carbon isotope analysis 

suggests that bicarbonate/CO2 was actually the main carbon source for M. oxyfera 

cells (Fig. 4a). However, as the M. oxyfera biomass is only available in enrichment 

culture, the risk always remains that the other community members may have 

Figure 4: Changes in δ13C in fatty acids and total biomass carbon of Methylomirabilis oxyfera after 

incubation with 13C-labeled substrates, relative to the control incubation without 13C labeling. The 

‘cyc’ denotes a cyclopropyl moiety; ‘total fatty acid carbon’ is the weighted average of the Δδ13C of 

all fatty acids. 
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contributed to the observed 13C incorporation. The compound-specific stable carbon 

isotope analysis provides the decisive data that bicarbonate/CO2 was the carbon 

source for cell material production by M. oxyfera because a similar type of 

enrichment pattern was observed for the M. oxyfera-specific fatty acids 10MeC16:0, 

and 10MeC16:1Δ7 (Kool et al., 2012). Although some labeling was observed in the 

incubations with 13C-CH4 and unlabeled bicarbonate/CO2, its extent was clearly 

lower than in the incubations with 13C-bicarbonate and unlabeled methane. This 

labeling signal was most probably caused by an indirect 13C-CO2 incorporation 

originating from 13C-CH4 oxidation (i.e. scrambling). Additionally, the labeling 

results of a minor fatty acid fraction also indicated the presence of other CO2-fixing 

community members and chemoorganoheterotrophic methanotrophs.  

At the time of the earliest nitrite-dependent methane oxidizing enrichment culture, a 

labeling experiment with 13C-CH4 showed that after 3 to 6 days of incubation the 13C 

label was indeed incorporated into bacterial lipids (Raghoebarsing et al., 2006). 

However, the anticipated biomarker lipid 10MeC16:0 fatty acid did not become 

significantly enriched and the 13C content of 10MeC16:1Δ7 fatty acid could not be 

determined due to its low abundance and co-elution (Raghoebarsing et al., 2006). 

This could, at least in part, be caused by the slow growth of M. oxyfera. However, a 

carbon source other than CH4 can also explain this observation. This was not tested 

at that time; our data now provide strong indications that this alternative carbon 

source could be CO2. 

The test for the specific activity of RubisCO with cell-free extract of M. oxyfera 

confirmed that M. oxyfera indeed exhibited a CO2-fixing activity. The measured 

activity rate may seem low compared to the two weeks doubling time of M. oxyfera 

reported previously (Ettwig et al., 2009). However, this doubling time was observed 

during the initial enrichment period and represents exponential growth of M. oxyfera. 

In the current study the culture exhibited a constant steady-state activity, probably 

close to stationary phase, during which enzyme expression and specific activity are 

expected to be lower than during exponential growth phase. Moreover, the observed 

specific RubisCO activity compared well with the estimated C assimilation activity 

based on our 13C labeling experiments. 

The genomic information and the absence of carboxysome-like structures suggest 

the CO2 fixation in M. oxyfera to be non-carboxysomal, but rather cytoplasmic. 

Carboxysomal CO2 fixation probably evolved in order to increase the rates at low 

ambient CO2 concentrations and to minimize photorespiration (Zarzycki et al., 

2013). As in the environmental niche of M. oxyfera the CO2 concentrations are 
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unlikely to be limiting and external oxygen is not present the carboxysomal CO2 

fixation might not offer an advantage in comparison with cytoplasmic CO2 fixation. 

The incomplete photorespiration pathway also implies that photorespiration might 

not be relevant in M. oxyfera, however, the mechanism of the hypothesized internal 

oxygen metabolism is not known yet and the possibility of internal RubisCO oxygen 

exposure cannot be ruled out. 

The rapid increase in genomic information has revealed that several known 

proteobacterial methanotrophs, which are considered to be 

chemoorganoheterotrophs, do possess the genomic potential for an autotrophic 

lifestyle. Moreover, it was recently shown that autotrophy is widespread among the 

newly discovered verrucomicrobial methanotrophs (Khadem et al., 2011, Sharp et 

al., 2012). The finding that autotrophy might be a more common mode of C1 

metabolism among methanotrophs has implications for the detection of 

methanotrophy, and assessment of its significance, in the environment. It implies 

that the stable carbon isotopic signature of these bacteria would not identify them as 

part of the methanotrophic community in situ and in conventional stable isotope 

studies. A recent report on methanotrophy in a geothermal soil demonstrated that 

labeling with 13C-CH4, as commonly used in SIP studies targeting methanotrophs, 

failed in detecting the active methanotrophic community. Instead a modified SIP 

method including 13C-bicarbonate/CO2 was necessary and successful to detect 

autotrophic methanotrophs. The same would apply for the detection of M. oxyfera-

like methanotrophs in mesophilic, anoxic and suboxic environments. Thus, M. 

oxyfera might have escaped detection by means of stable isotope analysis and, more 

generally, the contribution of autotrophic methanotrophic bacteria to methane 

cycling might have been hitherto overlooked. 
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Physiological response of Methylomirabilis oxyfera 

enrichment cultures to nitric oxide (NO) 
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ABSTRACT 

 

The methanotrophic bacterium Methylomirabilis oxyfera employs a novel “intra-

aerobic” denitrification pathway in which nitrite is converted to dinitrogen gas as the 

end-product. Nitrite is presumably reduced to nitric oxide by a cytochrome cd1-

dependent nitrite reductase NirS. The following step, the conversion of nitric oxide, 

is hypothesized to proceed via a reaction which was so far unknown to biology - 

dismutation of nitric oxide to molecular nitrogen and oxygen. In this pathway, 

nitrous oxide is bypassed as an intermediate. While nitrogen is released, the 

produced oxygen is presumed to be mainly used for the oxidation of methane to 

carbon dioxide. However, a small fraction of generated oxygen can also be reduced 

to water by a terminal oxidase.  

The mechanism of nitric oxide dismutation still remains elusive. It is hypothesized 

to be catalyzed by a divergent nitric oxide reductase-like enzyme. The M. oxyfera 

genome encodes two homologues of the putative nitric oxide dismutase (Nod), both 

encoding genes are highly transcribed under all conditions tested so far. Besides the 

two putative nitric oxide dismutases, M. oxyfera genome also encodes one copy of a 

“conventional” quinol-dependent nitric oxide reductase (qNor). Thus, in M. oxyfera 

nitric oxide is a critical metabolite which conversions are far from being understood. 

Here, we exposed an enrichment culture of M. oxyfera bacteria to elevated 

concentration of free nitric oxide and analyzed its metabolic response from 

metabolite measurements and sequenced mRNA. Different experimental stages 

revealed a severe nitrosative stress. After NO had decreased under 1 µM, the 

methanotrophic and nitrite reducing activities resumed. Transcriptomic results, 

however, indicated an ongoing downregulation of central cellular processes 

including genes involved in both nitrogen and methane metabolism. Upregulation 

was observed for protein synthesis and DNA repairing processes. Following 

experiments will focus on NO concentration under 1 µM in chemostat cultures in 

order to investigate the roles of two putative Nod proteins and conventional qNor. 

 

INTRODUCTION 

 

Nitric oxide (NO) is central metabolite in the biological Nitrogen cycle (N-cycle) as 

all so far known organisms and pathways involved in nitrogen transformations can 

form and utilize NO (Schreiber et al., 2012). At the same time it is one of most 

important signaling molecules in prokaryotic and eukaryotic cells. In microbes, 
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various cellular processes have been implicated to be regulated by NO including 

denitrification (Van Spanning et al., 1995, Kwiatkowski & Shapleigh, 1996, Van 

Spanning et al., 1999), biofilm swarming (Barraud et al., 2006, Liu et al., 2012), 

symbiosis (Wang & Ruby, 2011) and defense mechanisms (Gusarov et al., 2009). 

Production of nitric oxide in denitrifiers is mediated by dissimilatory nitrite reductase 

(Nir), an enzyme which was shown to occur in two structurally dissimilar but 

functionally identical forms: copper-dependent NirK and cytochrome cd1-dependent 

NirS (Zumft, 1997). Besides dissimilatory nitrite reductases, several other enzymatic 

systems were shown to produce NO including bacterial nitric oxide synthases (NOS) 

(Adak et al., 2002), hydroxylamine oxidoreductases (Hao) (Campbell et al., 2011, 

Maalcke et al., 2013) and pentaheme nitrite reductases (Corker & Poole, 2003). 

Besides its important role in cellular processes, NO is at the same time a highly 

reactive and toxic intermediate when its transient concentrations rise above 

physiological limits. Thus, a variety of mechanisms have evolved to further 

transform NO to less toxic intermediates (e.g. nitrite, nitrous oxide). The abiotic 

chemistry of nitric oxide is complex and involves several reactive nitrogen species 

(RNS) when reacting with oxygen and superoxide (Bowman et al., 2011). These 

RNS include peroxinitrite, nitroxyl and nitrosonium, with the oxidation state of N 

atom varying between I and III (Hughes, 1999, Poole, 2005). Each of these highly 

reactive and transient intermediates induces partly distinct physiological responses 

(Bowman et al., 2011). Known microbial detoxification mechanisms involve 

flavohemoglobins (Hmp) (Kim et al., 1999, Stevanin et al., 2002), cytochrome c 

nitrite reductases (NrfA) (Costa et al., 1990, Stach et al., 2000, Mills et al., 2008) 

and flavorubredoxins (NorV) (Gardner et al., 2002).  

In most denitrifiers, NO is metabolized to nitrous oxide (N2O) by respiratory nitric 

oxide reductases (Nor) which occur in two forms: quinol- (qNor) and cytochrome 

bc1-dependent (cNor) forms (Shiro, 2012). Both are transmembrane proteins which 

catalyze the following reaction (Shiro, 2012):  

2NO + 2e- +2H+ → N2O + H2O 

Until recently, the only pathways for NO conversion to dinitrogen gas (N2) were 

believed to proceed either via N2O during denitrification or N2H4 during anaerobic 

ammonium oxidation (anammox). In denitrifiers, the reaction is catalyzed by the 

activity of Nor and nitrous oxide reductase (Nos) (Zumft, 1997), and in anammox 

bacteria by hydrazine synthase and hydrazine dehydrogenase (Kartal et al., 2011). 

However, recent description of a novel methane-oxidizing denitrifier 
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Methylomirabilis oxyfera challenged this paradigm with a proposed hypothesis of 

NO dismutation to molecular oxygen (O2) and N2, thereby bypassing any free 

reaction intermediates (Ettwig et al., 2010). The genome of M. oxyfera encodes and 

expresses two paralogues of qNor-like proteins, which have been proposed to 

catalyze NO dismutation and have been provisionally named nitric oxide dismutases 

(Nod) (Ettwig et al., 2012). Amino acid sequence analysis and comparison to 

conventional qNor proteins revealed important structural modifications at the active 

and quinol-binding site, which imply an electron-neutral reaction in accordance with 

a proposed dismutation reaction (Ettwig et al., 2012). However, mechanisms of NO 

dismutation are currently unknown and need further investigation including isolation 

and biochemical characterization of putative proteins. Besides two structurally 

related Nod proteins, M. oxyfera genome also encodes and expresses a conventional 

qNor. The role of M. oxyfera qNor is currently unknown as N2O was hypothesized 

to be bypassed as an intermediate. However, enrichments of M. oxyfera cultures 

produce low levels of N2O and the proportion of produced N2O from nitrite rises 

with elevated concentrations of nitrite (unpublished). Thus, its role might be in 

detoxification of excessive NO. However, this hypothesis needs further validation 

since the reaction mechanism and speed of putative Nod proteins are not known. Its 

potential involvement in NO detoxification would imply the dismutation to be the 

limiting step during the denitrification pathway of M. oxyfera. Besides the unclear 

role of a conventional qNor, the M. oxyfera genome also encodes and expresses other 

enzymes involved in dissimilatory part of the N-cycle, namely membrane-

bound/periplasmic nitrate reductases (Nar/Nas) and hydroxylamine oxidoreductase 

(Hao). Former enzymes perform reduction of nitrate to nitrite, however previous 

physiological studies and the proposed pathway suggest that nitrate is not used by 

M. oxyfera. The role of Hao is also not clear since this enzyme is believed to be 

essential in aerobic ammonia oxidation where it converts hydroxylamine to nitrite. 

Besides aerobic ammonia oxidizers, many methanotrophic bacteria were shown to 

harbor Hao (Stein & Klotz, 2011). In methanotrophs, Hao was hypothesized to be 

involved in detoxification of hydroxylamine which is formed by methane 

monooxygenase when ammonium is present (Nyerges & Stein, 2009, Stein & Klotz, 

2011). Thus, M. oxyfera Hao might be involved in detoxification of ammonium-

derived hydroxylamine since ammonium is a common compound at oxic/anoxic 

interfaces. In aerobic ammonia oxidizers, hydroxylamine is oxidized to nitrite with 

O2 (Hooper et al., 1983). However, since M. oxyfera occurs in habitats where 

external oxygen is not present or very low, the main product of hydroxylamine 
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oxidation might be NO. It has been shown previously that Hao-like proteins from 

anaerobic ammonium oxidizing bacteria (anammox) form NO (Maalcke et al., 

2013). However, it cannot be excluded that some of the internally produced oxygen 

could be used for the oxidation of hydroxylamine to nitrite. All N-cycle and in 

methane oxidation pathway involved enzymes harbored by M. oxyfera are 

summarized in Figure 1. 

The objective of this research was to investigate the physiological response of an M. 

oxyfera enrichment culture to controlled additions of NO in a bioreactor system by 

measuring concentrations of nitrogenous compounds and methane. Furthermore, 

total RNA extracted from the enrichment culture during the exposure experiment 

was sequenced with Ion Torrent technology and analyzed with the CLC Genomics 

Workbench software. Exposure to micromolar concentrations of NO induced a stress 

response which resulted in inhibited methane oxidation, nitrite reduction activity and 
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Figure 1: Genomic metabolic potential of Methylomirabilis oxyfera in respect to catabolic nitrogen-
and methane conversions. Steps designated with questions marks are so far not investigated and their 
role/function unclear. Abbreviations: Nar, nitrate reductase; Nir, nitrite reductase; Nor, nitric oxide 
reductase; Nod, nitric oxide dismutase; pMMO, particulate methane monooxygenase, MDH, methanol 
dehydrogenase; FolD, methylene-H4F dehydrogenase/methenyl-H4F cyclohydrolase; FDH, formate 
dehydrogenase; MtdB,  methylene-H4MPT dehydrogenase (Modified after Ettwig et al., 2010 and Wu 
et al., 2011). 
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downregulation of central metabolic genes. Only after the NO concentration 

decreased below 1 µM in liquid, activities resumes while the downregulation for 

central catabolic genes was still ongoing. 

 

MATERIALS & METHODS 

 

Experimental set-up 

 

The M. oxyfera enrichment culture used in this study was enriched in an anoxic 

sequencing batch reactor as described previously (Ettwig et al., 2008). Prior to NO 

exposure experiments, the culture was transferred to a 3 L continuous membrane 

reactor under anoxic conditions. The culture was fed with nitrate-free mineral 

medium (composition described previously in Ettwig et al., 2008) and bubbled with 

CH4/CO2 (95/5%) gas mixture. The pH of the culture was maintained around 7.2. 

The denitrifying activity of the culture prior to experiments was approximately 6 

nmol NO2
-*min-1*mg protein-1. 

NO was supplied to the reactor from an anoxic saturated mineral medium (nitrate-, 

nitrite- and trace element-free) solution bubbled with a 50% NO (in He) gas. 

 

NO exposure experiment: closed headspace 

 

A modified set up with a closed headspace was employed for simultaneous 

quantification of headspace gas concentrations including methane. Prior to the 

experiment, the influent was stopped in order to deplete the culture in all nitrogenous 

electron acceptors. At the same time, the culture was flushed for 2 h with an Ar/CO2 

(95/5%) gas mixture to lower the headspace methane concentrations. At the time 

point when the NO solution started to be supplied to the reactor, the effluent speed 

was adjusted to the same speed as the NO solution influent so that the headspace 

volume and pressure remained approximately constant. Headspace NO, N2, O2 and 

N2O concentrations were measured throughout the experiment with gas 

chromatography coupled to mass spectrometry (GC-MS, Agilent 5975C, Santa 

Clara, USA), CH4 was measured with gas chromatography (GC, HP 5890 Series II, 

Agilent Technologies, SantaClara, United States). Liquid samples of 0.5 mL were 

taken throughout the experiment for nitrogenous ion determination. Biomass 

samples of 10 ml each were taken in duplicate at different stages of the experiment 
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for RNA extraction. The samples were immediately frozen at -80°C until the 

subsequent RNA isolation. Before each biomass sampling, the same volume of Ar 

gas was injected into the headspace to avoid under pressure. 

 

NO exposure experiment: open headspace 

 

Prior to NO exposure experiments with the open headspace, the medium influent to 

the reactor was stopped in order deplete the culture of nitrogenous electron acceptors. 

During the experiment, the reactor was supplied with CH4/CO2 gas at the rate of 32 

ml/min. Simultaneously, the headspace effluent gas was connected to NOx analyzer 

(CLD 700EL, EcoPhysics, Michigan) for on-line determination of free NO. Further 

measurements, sampling and operation were performed as described above. 

 

Analysis of nitrite and protein concentrations 

 

Nitrite and protein concentrations were measured colorimetrically as described 

previously (Ettwig et al., 2008). 

 

RNA isolation 

 

The total RNA was isolated from the enrichment biomass with the TRIzol reagent 

(Ambion, Life technologies) following the manufacturer’s instructions. The 

concentration and quality of isolated RNA was assessed with NanoDrop 1000 

(Thermo Scientific). After isolation and quantification, the RNA was treated with 

DNAse I (Sigma Aldrich) following the manufacturer’s instructions. After the initial 

isolation and DNAse I treatment, the RNA was checked with gel electrophoresis. 

The removal of 16S and 23S ribosomal RNA was performed with the RiboPureTM 

kit (Ambion, Life technologies). The subsequent removal of 5S ribosomal and 

transfer RNA was performed with the MEGAClearTM kit (Ambion, Life 

technologies). After each step, the RNA quality was checked with the Bioanalyzer 

2100 (Agilent technologies) following the manufacturer’s instructions. 
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mRNA sequencing and analysis 

 

The rRNA-depleted mRNA was used for sequencing by Ion PGMTM system (Ion 

TorrentTM platform, Life technologies). In short, the cDNA libraries were prepared 

by using the Ion Total RNA-Seq Kit v2 (Life technologies) following the 

manufacturer’s instructions. The quality and quantity of cDNA was assessed with 

the Bioanalyzer 2100. The sequencing of cDNA was performed with the Ion 318TM 

Chip kit (Life technologies) following the manufacturer’s instructions. 

Following mRNA samples were sequenced: T0, before NO exposure (reference 

transcriptome), T4 (315 min after the start of NO exposure), T5 (1578 min after the 

start of NO exposure) and T8 (2923 min after the start of NO exposure). T5 and T8 

transcriptomes were sequenced from two biological replicated. All sequence data 

were cross-assembled with CLC Genomics Workbench 6.5 and analyzed with crAss 

v1.3 online tool (http://edwards.sdsu.edu/crass/) for identification of assembled 

reads in contigs. Blast 2.2.27+ was used for annotation of assembled contigs against 

non-redundant protein database (version from 07/2014) with an e-value cutoff of 1E-

5. Analysis revealed no significant difference between T5 and T8 transcriptomes. 

Thus, final data interpretation was performed for T0, T4 and T5 data points. 

 

RESULTS & DISCUSSION 

 

Analysis of metabolite concentrations 

 

After the start of continuous supply of NO solution to the reactor, an immediate non-

linear increase of free NO in reactor headspace was observed (Fig. 2, experiment 

with closed headspace). Simultaneously with NO, also concentrations of N2O and 

NO2
- increased. Both compounds must have originated from abiotic reactions 

occurring while saturation of N-compound-free mineral medium with NO. This 

saturated solution was eventually pumped into the reactor and it cannot be excluded 

that parallel to biotic processes some abiotic reactions of NO with mineral medium 

compounds were still ongoing inside the reactor. The non-linear increase of free NO 

concentrations was probably caused by reactions of NO with biomass and medium, 

where after the initial saturation the increase began to be linear. In the batch mode 

(317 min after the start of the NO exposure), net nitrite and NO consumption by the 

culture were observed. However, the methane oxidizing activity was inhibited during 

the entire phase when free NO in the liquid phase was higher than 0.7 µM. Below 
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0.7µM NO, methane oxidizing and nitrite reducing activities started to recover. 

During this “active” phase of the exposure experiment, approximately between 1250 

and 2628 min, calculated methane consumption activity was 2 nmol CH4*min-1*mg 

protein-1. The nitrite reducing activity was approximately 2.8 nmol NO2
-*min-1*mg 

protein-1, which was 52% of the theoretical activity based on calculated methane 

consumption activity and assumed theoretical stoichiometry of 8:3 (nitrite:methane). 

The net nitrous oxide gas production activity was 0.26 nmol N2O*min-1*mg protein-

1 and the N2 production activity 2.6 nmol N2*min-1*mg protein-1. Overall, the N2 

production activity matched well with measured CH4 consumption activity 

calculated from the 4:3 stoichiometry. During this phase, free NO was still observed 

in headspace of the culture and was consumed simultaneously with nitrite. 

At the point when the nitrite and NO were not measurable anymore, after 2427 min, 

methane oxidation activity declined and net nitrous oxide consumption was observed 

at a rate of 0.27 nmol N2O*min-1*mg protein-1. This indicated that methane oxidation 

in the culture was coupled to availability of nitrite and/or nitric oxide, but not to 

nitrous oxide reduction. This observation would confirm the hypothesized 

metabolism of M. oxyfera in which nitrous oxide is not a reaction intermediate. 

Nitrous oxide was probably consumed by other denitrifying community members. 

In order to investigate whether the observed activity trends were caused by biological 

or abiotic reactions, an abiotic experiment (with open headspace) was performed 

with the same set up but without biomass. From the beginning of the NO addition an 

immediate increase of free NO was observed (data not shown). During the NO 

supply phase, also an increase in N2O (approximately 50% of the NO increase slope) 

and NO2
- was observed, indicating an abiotic source for both compounds. 

During batch phase, concentrations of all N-compounds except unlabeled N2 

remained constant indicating the purely biotic origin of all activities in the biotic 

experiments. Slow increase in N2 concentrations was most likely due to air diffusion 

into the reactor headspace. Abiotic nitrous oxide production has been reported 

previously and occurs during the process of chemodenitrification when reduced 

metals act as electron donors for NO reduction to nitrous oxide or dinitrogen (Chalk 

& Smith, 1983, Parkes et al., 2007). These abiotic reactions are not well investigated 

and their extent is not known, but would be dependent on the availability of reduced 

metals and pH. Since culture media contain various trace metals, this reactions are 

likely to take place. Thus, in culture experiments, the origin of N2O might be difficult 

to trace since several biotic and abiotic processes take place simultaneously. 
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Transcriptome analysis 

 

The transcriptomic analysis of the culture revealed the presence of a microdiverse 

population of M. oxyfera bacteria in the enrichment culture (data not shown). Thus, 

mapping to the previously published genome appeared to be a not optimal approach 

for transcriptome analysis. Instead, an alternative approach was applied. Here, all 

transcriptome data was combined in a single dataset which was then used for a de 

novo assembly. Assembled and assigned contigs were then used as mapping template 

for individual transcriptomes.  

It also should be noted that the enrichment culture consisted of flocks which create 

concentration gradients. Thus, depending on the location of individual cells and 

reaction kinetics of nitric oxide, they might have been exposed to different 

concentrations of nitric oxide, which in turn could have caused different metabolic 

responses. Therefore, obtained data represent an “average” metabolic response of 

different strains of M. oxyfera present in the reactor and cells located at different 

locations inside the flocks. 

Time (min) 

Figure 2: Absolute amounts (µmol) of N-compounds throughout the nitric oxide (NO) exposure 

experiment of Methylomirabilis oxyfera enrichment culture. The data from an experiment with closed 

headspace are shown. After the supply of nitric oxide was stopped (indicated with arrow), the 

experiment was continued in batch mode. Dotted lines indicate time points at which culture 

transcriptome was analyzed. 
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Metabolite measurements revealed a severe inhibition of methane oxidizing activity 

of enrichment culture by added NO (batch phase between 317 min and 1579 min). 

Transcriptome analysis was performed for the time points T4 (315 min after the start 

of NO exposure, NO concentration at sampling time was 14 µM in liquid) and T5 

(1578 min after the start of NO exposure, NO concentration at sampling time was 

0.6 µM in liquid). Results revealed an overall trend towards downregulation of most 

enzymes involved in central metabolic processes, however, for some a clear trend 

could not be observed since some parts of the same gene assembled in separate 

contigs showed partial up- and downregulation (Tab. 1). At T4, when free NO 

concentration was highest, among the genes involved in nitrogen transformations 

downregulation was observed for nirJ, encoding for heme d1 biosynthesis protein 

involved in nitrite reductase synthesis and nirS, encoding cytochrome cd1 nitrite 

reductase. Among two putative Nod enzymes, most contigs with decreased 

expression values affected one of the paralogues, Nod2. Though not being involved 

in central energy metabolism, also the expression of hydroxylamine oxidoreductase 

(Hao) was diminished. At time point T5, the expression results were partially not 

consistent for the same gene. Here, contig_14512 covering the 100-154 AA region 

on Nap showed an over 7 fold upregulation and contig_15191 covering the 748-788 

AA region an over 3 fold downregulation of the same gene. Similar observation was 

made for the Nar-encoding genes. However, contig_530 covering the full NarG 

encoding gene showed slight overexpression pointing to an increased nitrate-

utilizing activity of M. oxyfera. At T5, most Nir encoding genes were downregulated 

and only lrp gene, encoding transcriptional regulator of AsnC family, showed an 

over 7 fold overexpression for the AA region of 249-280. Overall expression of 

nitrite reductase encoding genes, in particular NirS, was also downregulated. As 

nitrite reductase encoding genes are located on the same operon as NapA, this might 

point to an overall reduced expression of both enzyme systems. Both Nod encoding 

genes showed an overall trend towards downregulation, except contig_9017 

covering the Nod1 AA region of 741-803 with an over 7 fold overexpression. Thus, 

a clear trend towards a differential expression of the two Nod paralogues could not 

be concluded. At T5, the conventional qNor showed an upregulation and Hao was 

downregulated. 

For particulate methane monooxygenase encoding genes (pmoCAB), it was possible 

to assemble contigs covering full genes, with contig_1681 covering both pmoA and 

pmoB, and contig_655 covering pmoC. Also, most M. oxyfera-specific pmo coding 

reads could be mapped to fully assembled contigs. At T4, no significant expression 
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changes could be observed, however, clear downregulation of all pmo genes 

occurred at T5 pointing to a diminished methane oxidizing capacity of the 

enrichment culture. 

Methanol dehydrogenase (MDH) is present in the M. oxyfera genome in two 

different forms: pyrroloquinolone (PQQ)-dependent MxaF1 and XoxF form. The 

latter is present in two forms, XoxF1 and XoxF2 (Wu et al., 2015). Protein 

purification and enzyme activity studies have shown that under standard culturing 

conditions M. oxyfera functionally expresses the XoxF1 form (Wu et al., 2015). 

Interestingly, at T4, an upregulation was observed for MxaF1 and XoxF2 encoding 

genes, while no significant transcription change occurred for XoxF1 encoding genes. 

At T5, however, the only transcribed MDH form was XoxF2, and no transcription 

was observed for either MxaF1 or XoxF1. This points to differential expression of 

different MDH homologues at different stages of physiological changes induced by 

nitrosative stress. 

The MxaF1 MDH has been well characterizes in the past, it contains PQQ as 

prosthetic group and Ca2+ as a cofactor (Anthony & Williams, 2003), and is present 

in a variety of methano- and methylotrophic bacteria (McDonald & Murrell, 1997). 

XoxF proteins, however, share less than 50% sequence similarity to known MxaF 

(Kalyuzhnaya et al., 2008, Keltjens et al., 2014, Wu et al., 2015). The genes 

encoding XoxF proteins were shown to be widespread in natural systems and even 

to be present in organisms not affiliated with methylotrophic lifestyle (Kalyuzhnaya 

et al., 2008, Taubert et al., 2015). Phylogenetic analysis revealed a division of XoxF 

in 5 families many of which are dependent on rare earth elements of the lanthanide-

group instead of Ca2+ as a cofactor (Keltjens et al., 2014, Pol et al., 2014). 

Interestingly, so far group XoxF2 has only been detected in acidophilic 

methanotrophic Verrucomicrobia and M. oxyfera (Pol et al., 2014, Wu et al., 2015). 

Regarding the catalytic mechanism of methanol oxidation, some evidence suggests 

the higher substrate affinity and reaction speed of XoxF in comparison to MxaF 

(Keltjens et al., 2014). Also, XoxF2 from Methylacidiphilum fumariolocum SolV 

was shown to oxidize methanol directly to formate bypassing formaldehyde as 

intermediate (Pol et al., 2014). This feature has been speculated to be related to the 

use of Calvin Cycle for CO2 fixation by this organism, while both ribulose-

monophosphate and serine cycle require formaldehyde derived from methane 

(Keltjens et al., 2014).  

As discussed earlier, downregulation was observed for Pmo and also for 

formaldehyde activating enzyme (Fae) encoding genes at the time point T5. Here, 
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the overregulation of XoxF2 could potentially serve for oxidation of lower 

concentrations of methanol directly to formate and bypassing formaldehyde as 

reaction intermediate. Thus, M. oxyfera might switch between the expression of 

different types of MDH depending on substrate availability and stress conditions. 

However, this hypothesis needs further validation. 

At T4, most contigs showing overexpression, besides central nitrogen and methane 

metabolism, included gene parts encoding histidine kinases, peptidase M50, 

endonuclease, thioredoxin reductase, ribosomal protein L35, guanylate cyclase, 

response regulator in two-component system, NADH-quinone oxidoreductase and 

menaquinol-cytochrome c reductase (data not shown). At T5, most overexpression 

was observed for genes encoding proteins involved in DNA processing including 

DNA gyrase, DNA mismatch repair protein, DNA polymerase, DNA 

methyltransferase, several proteins involved in tRNA synthesis, NADH-quinone 

oxidoreductase, chaperones, enoyl-CoA hydratase, acetylglutamate kinase and two 

proteins involved in CBB cycle, CbbX and transketolase (data not shown). This 

indicated that NO mediated stress caused cells to overexpress genes encoding 

proteins mainly involved in signal transduction, DNA repair and protein synthesis. 

Remaining annotated genes genes either did not show significant expression changes 

or were downregulated pointing to an overall nitrosative stress response. Notably, 

numerous contigs with significant over- and downregulation could not be annotated 

and manual blast analysis showed significant similarity to non-annotated regions of 

published M. oxyfera genome. 

NO is a highly reactive small radical molecule which can diffuse freely into the cell 

and cause damage by reacting with metals, lipids, proteins and nucleic acids. Proteins 

with metals in active sites and rich in thiol groups are considered to be damaged the 

most; this would especially affect the cytochrome proteins (Cooper, 1999). Besides 

transition metals, also sulfhydryl groups in proteins were shown to be binding targets 

for NO (Clementi et al., 1998, Cooper, 1999). It has been shown previously that NO 

mediated inhibition of NADH dehydrogenase in mitochondria is not due to NO 

binding to iron in the enzyme, but due to reaction with sulfhydryl groups (Clementi 

et al., 1998). 

Global downregulation of genes involved in central metabolic processes indicated 

severe nitrosative stress of M. oxyfera bacteria at micromolar concentration of free 

NO. Although methane oxidizing and nitrite reducing activity increased after 1579 

min, approximately the time point from which the T5 transcriptome originated, more 

downregulation of central metabolic genes was observed. This might indicate that 
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the culture responded with a delay to nitrosative stress by ongoing downregulation. 

Thus, activity recovery could not be deduced for the transcriptomic response of the 

culture. It should be noted however, that transcriptome does not reflect activity 

changes which are occurring at the protein level. Moreover, it been shown that 

elevated NO concentrations (lower micromolar range) can diminish nitric oxide 

reductase activity in Paracoccus denitrifcans (Girsch & de Vries, 1997, Koutný & 

Kučera, 1999). This was assumed to occur due to NO binding to oxidized enzyme 

which is considered to be inactive (Girsch & de Vries, 1997). Although there are 

structural differences between Nor and Nod, similar mechanisms might apply for 

Nod as well. As reactions of NO with enzyme-bound iron are mostly reversible 

(Cooper, 1999), drop in inhibitory concentrations of NO can lead to recovery of 

activity which would be uncoupled to transcriptomic or translational response for 

NO utilizing proteins. However, this needs to be tested for M. oxyfera cells with 

lower NO concentrations. Furthermore, lower concentrations of free NO might give 

insight into differential expression of two Nod paralogues in case of different 

enzyme affinities to NO. Genome analysis of M. oxyfera revealed no known 

detoxification systems such as flavohemoglobin, flavorubredoxin or pentaheme 

nitrite reductase. Also the kinetics of the putative nitric oxide dismutation are so far 

unknown, but if this reaction is indeed a limiting step during the nitrogen metabolism 

of M. oxyfera, cells would benefit from highly regulated NO detoxification 

mechanisms. This function could be taken over by the conventional qNor 

(CBE68939) which is constitutively expressed. Our previous batch activity studies 

with elevated partly inhibitory concentrations of nitrite revealed increased 

production of nitrous oxide, which was up to 50% of N-NO2
- (data not shown). This 

points to N2O production as a putative detoxification mechanism. However, further 

validation is needed. Also the trend towards overexpression of qNor at T5 indicated 

a possible involvement in detoxification. The role of Hao in respect to detoxification 

still needs further investigation. 

Interestingly, physiological results obtained within this study further confirmed 

observations made by Ettwig et al. 2010 (Supplementary Fig. 5). Experiments 

performed with 15N-labeled NO pointed to an inhibitory effect of free NO on 

methane oxidizing activity of M. oxyfera enrichment culture, which only recovered 

after the NO concentration dropped to approximately 1 µM. At the moment when 

labeled NO was added labeled N2 and N2O were produced simultaneously (Ettwig 

et al., 2010). However, it should be noted that due to chemodenitrification the 

fraction of N2O produced by biological activity is not known. 
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PERSPECTIVES 

 

Our combined results pointed to an overall inhibitory effects of NO at tested 

micromolar concentrations. Both methane oxidizing and nitrite reducing activity 

only recovered after free NO concentrations decreased lower than 1 µM. Thus, it 

would be feasible to perform future NO exposure experiments just below and above 

the inhibitory threshold in order to investigate associated physiological changes. 

Moreover, a continuous chemostat set up would provide an advantage to investigate 

physiological and transcriptomic changes caused exclusively by nitric oxide. As 

there is still a possibility of a delayed transcriptomic response of the culture to 

changing external parameters, an experiment of longer duration could potentially 

provide a clear picture of different transcriptomic regulation patterns. Moreover, the 

role of hydroxylamine oxidoreductase and nitrate reductase still need to be 

investigated. Also, differential expression of different methanol dehydrogenases 

might point to metabolic flexibility of M. oxyfera at changing methanol availability. 

Thus, the physiological response analysis to other N-compounds such as ammonium, 

hydroxylamine, elevated concentrations of nitrate and nitrite and methanol would 

provide a better understanding of M. oxyfera physiology and thus its role in different 

environments. 
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Table 1: Transcription values for central nitrogen and methane metabolic genes cross-assembled in contigs from M. oxyfera enrichment culture exposed 

to free nitric oxide. Comparison of T4 and T5 transcriptoms relative to T0 is shown as fold change values. Overexpression was defined for values higher 

than 1 (marked in green) and downregulation for values lower than -1 (marked in red). 

Gene 

description 

Gene 

name 

Contig 

identifier 

GenBank 

Accession 

(CBE) 

Protein 

length 

(AA) 

Protein 

sequence 

coverage 

rangea 

% 

identityb 

Fractionc 

 

 

Fold changed 

       T0 T4 T5 T4/T0 T5/T0 

Periplasmic 
nitrate 
reductase 

napA contig_14512 69459 788 100-154 73 7,84E-06 5,28E-06 7,55E-05 -0,10 7,70 

napA contig_8007 69459 788 200-625 85-91 2,65E-04 2,44E-04 8,30E-04 0,15 -0,61 

napA contig_15191 69459 788 748-788 95 2,49E-05 2,66E-05 4,39E-05 1,15 -3,21 

Membrane-
bound 
nitrate 
reductase 

narI contig_1955 67839 227 45-95 94 2,44E-05 1,32E-05 4,34E-05 -0,56 2,48 

narG contig_530 67843 1216 1-1216 77-98 4,93E-06 3,36E-06 6,31E-06 -0,12 1,15 

narJ contig_2833 67840 299 1-295 66-80 8,96E-07 9,60E-07 6,12E-07 0,10 0,40 

narI contig_676 67839 227 102-227 89-91 2,51E-05 1,49E-05 1,05E-05 -0,88 0,28 

narH contig_8004 67841 509 295-371 84 1,48E-05 7,44E-06 4,12E-06 -0,54 -0,34 

narH contig_8782 67841 509 254-301 83-96 1,34E-06 1,44E-06 0,00E+00 0,09 -1,29 

narH contig_3365 67841 509 409-491 77 2,24E-06 1,68E-06 0,00E+00 -0,75 -1,69 

narG contig_12321 67843 1216 547-576 100 7,84E-06 5,28E-06 7,55E-05 -0,98 -2,47 



 

 

narG contig_7894 67843 1216 574-618 77 2,65E-04 2,44E-04 8,30E-04 0,09 -3,85 

narJ contig_10847 67840 299 144-178 97 2,49E-05 2,66E-05 4,39E-05 -0,39 -4,55 

Dissimila-
tory nitrite 
reductase 

lrp contig_8819 69457 384 249-280 94 2,24E-07 2,40E-07 7,77E-05 0,07 7,91 

lrp contig_4659 69457 384 3-251 83 8,56E-05 7,20E-05 8,42E-05 -0,25 -0,02 

nirJ contig_6034 69461 406 14-116 77 4,03E-06 1,68E-06 3,16E-06 -1,21 -0,34 

nirS contig_4747 69462 546 120-477 85-99 6,34E-05 2,88E-05 4,15E-05 -1,13 -0,61 

nirF contig_2787 69460 409 159-405 88 1,48E-05 7,44E-06 6,81E-06 -0,98 -1,11 

nirS contig_6641 69462 546 51-121 99 9,85E-06 3,84E-06 3,65E-06 -1,34 -1,41 

nirS contig_16564 69462 546 483-535 91 1,70E-05 1,46E-05 4,83E-06 -0,22 -1,80 

nirS contig_12241 69462 546 501-546 87-94 1,57E-06 3,36E-06 3,06E-07 1,05 -2,04 

nirF contig_5491 69460 409 31-158 91-92 4,03E-06 1,92E-06 6,12E-07 -1,03 -2,54 

nirJ contig_12484 69461 406 213-378 84 6,94E-06 2,40E-06 9,18E-07 -1,49 -2,79 

Putative 
nitric oxide 
dismutase 

nod1 contig_9017 69496 808 741-803 53 6,05E-06 1,15E-05 2,07E-04 0,92 5,07 

nod1 contig_3194 69496 808 11-319 93 4,10E-05 2,40E-05 3,61E-05 -0,77 -0,18 

nod1 contig_18979 69496 808 499-530 75 8,96E-07 2,16E-06 6,59E-07 1,18 -0,39 

nod2 contig_79 69502 810 1-810 92-98 2,57E-03 1,53E-03 1,74E-03 -0,75 -0,56 



 

 

nod2 contig_15007 69502 810 438-509 99 2,46E-06 2,16E-06 1,62E-06 -0,18 -0,57 

nod1 contig_11813 69496 808 322-357 81 1,57E-06 1,44E-06 9,18E-07 -0,11 -0,71 

nod2 contig_9390 69502 810 268-307 80 6,94E-06 8,88E-06 3,77E-06 0,35 -0,86 

nod2 contig_492 69502 810 701-753 98 2,02E-06 2,40E-07 1,01E-06 -2,64 -0,93 

nod2 contig_11728 69502 810 502-545 95 2,24E-06 2,16E-06 9,65E-07 -0,05 -1,13 

nod2 contig_11713 69502 810 225-281 97-100 8,96E-07 0,00E+00 3,53E-07 -3,32 -1,14 

nod2 contig_493 69502 810 723-777 96 1,79E-06 7,20E-07 7,07E-07 -1,21 -1,23 

nod1 contig_717 69496 808 593-808 91-96 3,15E-04 2,06E-04 1,22E-04 -0,61 -1,37 

nod2 contig_748 69502 810 112-137 92 2,75E-05 1,39E-05 1,00E-05 -0,98 -1,45 

nod1 contig_8693 69496 808 371-420 96 2,46E-06 4,80E-07 6,12E-07 -2,14 -1,85 

nod2 contig_9890 69502 810 13-214 77 6,94E-06 5,52E-06 1,27E-06 -0,33 -2,36 

nod2 contig_6703 69502 810 30-82 92 4,48E-07 0,00E+00 0,00E+00 -2,45 -2,45 

nod2 contig_14326 69502 810 239-278 95 8,96E-07 0,00E+00 0,00E+00 -3,32 -3,32 

nod1 contig_12211 69496 808 364-445 89 8,96E-07 4,80E-07 0,00E+00 -0,78 -3,32 

nod1 contig_11676 69496 808 741-784 84 8,96E-07 7,20E-07 0,00E+00 -0,28 -3,32 

nod2 contig_10780 69502 810 1-31 81 1,55E-05 6,96E-06 1,37E-06 -1,14 -3,41 



 

 

nod2 contig_11312 69502 810 70-216 95 5,15E-06 1,20E-06 3,53E-07 -2,01 -3,53 

nod1 contig_20579 69496 808 72-122 69 1,12E-06 2,40E-07 0,00E+00 -1,84 -3,61 

nod2 contig_16015 69502 810 321-358 100 1,12E-06 7,20E-07 0,00E+00 -0,57 -3,61 

nod2 contig_19168 69502 810 616-661 96 1,79E-06 2,40E-07 0,00E+00 -2,48 -4,24 

Nitric oxide 
reductase qnor contig_17166 68939 730 584-661 90-100 2,89E-05 2,57E-05 2,75E-04 -0,17 3,24 

qnor contig_10582 68939 730 661-725 94 1,34E-06 1,20E-06 1,32E-06 -0,15 -0,03 

qnor contig_1849 68939 730 186-302 80-83 8,96E-07 0,00E+00 6,12E-07 -3,32 -0,48 

qnor contig_16072 68939 730 81-131 76 1,12E-06 7,20E-07 6,59E-07 -0,57 -0,68 

Hydroxyl-
amine 
oxido-
reductase 

hao contig_9987 69546 462 46-125 89 2,02E-06 1,20E-06 1,27E-06 -0,70 -0,63 

hao contig_2004 69546 462 299-455 91 8,49E-05 4,87E-05 3,81E-05 -0,80 -1,15 

hao contig_10028 69546 462 120-231 92 6,72E-06 3,12E-06 0,00E+00 -1,08 -6,09 

hao contig_11741 69546 462 199-297 91 8,96E-07 7,20E-07 1,62E-06 -0,28 0,79 

Methane metabolism 

Methane 
monooxy-
genase 

pmoC contig_10135 69521 258 1-24 100 8,96E-07 0,00E+00 0,00E+00 -3,32 -3,32 

pmoC contig_10803 69521 258 1-122 86 3,14E-06 1,44E-06 6,59E-07 -1,07 -2,09 

pmoC contig_13085 69521 258 212-252 98 2,24E-07 7,20E-07 7,07E-07 1,34 1,32 



 

 

pmoA contig_14662 69517 422 312-349 87-100 8,96E-07 7,20E-07 0,00E+00 -0,28 -3,32 

pmoC contig_15629 69521 258 147-194 94 4,70E-06 5,04E-06 0,00E+00 0,10 -5,59 

pmoA 

pmoB 

contig_1681 69517 

69519 

422 

243 

pmoA: 1-

422 

pmoB: 1-

243 

93 

93-95 
2,30E-04 3,04E-04 7,66E-05 0,40 -1,58 

pmoA contig_18155 69517 422 99-138 98 0,00E+00 2,40E-07 0,00E+00 1,77 0,00 

pmoB contig_20036 69519 243 194-240 85 1,12E-06 7,20E-07 0,00E+00 -0,57 -3,61 

pmoA contig_20740 69517 422 36-66 91 4,48E-07 4,80E-07 0,00E+00 0,08 -2,45 

pmoA contig_5442 69517 422 260-334 95 7,39E-06 6,96E-06 1,30E-05 -0,09 0,81 

pmoC contig_655 69521 258 1-265 78-93 5,68E-04 4,19E-04 3,10E-04 -0,44 -0,87 

pmoA contig_7562 69517 422 375-422 98 1,57E-06 1,68E-06 3,06E-07 0,09 -2,04 

Methanol 
dehydro-
genase 

xoxF1 contig_17727 67239 634 534-593 98 4,48E-07 2,40E-07 0,00E+00 -0,69 -2,45 

mxaF contig_18750 67228 601 344-401 82-100 1,34E-06 4,80E-06 0,00E+00 1,76 -3,85 

mxaF contig_19291 67228 601 576-601 96 2,24E-07 9,60E-07 0,00E+00 1,71 -1,70 

xoxF2 contig_19484 67248 613 588-613 92 4,48E-07 4,80E-07 3,06E-07 0,08 -0,43 

mxaF contig_19977 67228 601 278-339 97 1,57E-06 9,60E-07 0,00E+00 -0,65 -4,06 

xoxF1 contig_20618 67239 634 329-391 94-100 6,72E-07 4,80E-07 0,00E+00 -0,41 -2,95 



 

 

xoxF2 contig_6156 67248 613 513-545 94 4,48E-07 3,60E-06 8,55E-06 2,76 3,98 

xoxF2 contig_7400 67248 613 546-606 93 7,17E-06 9,36E-06 6,88E-06 0,38 -0,06 

xoxF2 contig_7537 67248 613 438-473 81 2,24E-07 1,44E-06 1,62E-06 2,25 2,41 

5,10-
methenyl-
tetrahydro-
folate 
cyclo-
hydrolase; 
Methylene 
tetrahydro-
methano-
pterin 
dehydro-
genase; 
Formal-
dehyde 
activating 
enzyme 

folD contig_14471 68902 288 189-244 82 2,24E-07 4,80E-07 6,12E-07 0,84 1,14 

fae  

mtdB 

 

contig_1682 67531 

67532 

 

166 

294 

Fae: 1-

166  

MtdB: 1-

288 

98 

92 
9,68E-05 8,64E-05 1,51E-04 -0,16 0,64 

folD contig_4820 68902 288 95-196 90 4,26E-06 2,16E-06 4,74E-05 -0,95 3,45 

folD contig_6595 68902 288 18-104 84-92 2,46E-06 1,20E-06 2,28E-06 -0,98 -0,10 

folD contig_8720 68902 288 246-282 89 2,46E-06 5,04E-06 4,17E-06 1,00 0,74 

fae contig_15307 67531 166 12-74 95 4,48E-07 0,00E+00 3,53E-07 -2,45 -0,27 

fae contig_18178 67531 166 82-129 100 5,53E-05 3,82E-05 2,26E-05 -0,53 -1,29 

fae contig_19314 67531 166 132-166 91 1,12E-06 7,20E-07 0,00E+00 -0,57 -3,61 

Formyl-
transferase/
hydrolase; 
Methenyl-
tetrahydro-
methano-
pterin 
cyclo-
hydrolase 

fhcD 
contig_10086 67536 304 27-81 78 0,00E+00 2,40E-07 3,53E-07 1,77 2,18 

fhcB contig_10888 67534 451 254-330 62 6,72E-07 4,80E-07 6,59E-07 -0,41 -0,02 

fhcA contig_11321 67535 548 382-471 91 1,34E-06 7,20E-07 3,06E-07 -0,82 -1,83 

fhcB contig_11887 67534 451 105-157 68 2,69E-06 7,20E-07 3,06E-07 -1,77 -2,78 



 

 

fhcB contig_16477 67534 451 17-105 70 1,05E-05 1,20E-05 2,03E-06 0,19 -2,32 

fhcC contig_17513 67537 269 163-222 80-100 2,24E-07 4,80E-07 0,00E+00 0,84 -1,70 

fhcB contig_18161 67534 451 375-432 72 1,57E-06 1,92E-06 0,00E+00 0,28 -4,06 

fhcA 

fhcB 

contig_314 67535 

67534 

548 

451 

1-548 

1-439 

92 

94-96 
1,61E-04 1,11E-04 1,28E-04 -0,53 -0,33 

mch 

fhcC 

contig_2501 67538 

67537 

312 

269 

1-304 

1-269 

81-93 

86 
5,58E-05 5,57E-05 5,96E-05 0,00 0,10 

Formyl-
tetrahydro-
folate 
deformy-
lase 

purU contig_12220 69659 286 96-150 76-83 4,48E-07 0,00E+00 3,06E-07 -2,45 -0,43 

purU contig_13724 69659 286 195-274 91 1,41E-05 1,20E-05 1,51E-05 -0,23 0,10 

purU contig_3881 69659 286 41-84 82-92 4,48E-07 1,20E-06 1,22E-06 1,25 1,27 

Formate 
dehydro-
genase 

fdhI contig_13529 67886 715 389-446 81 2,24E-07 0,00E+00 3,53E-07 -1,70 0,48 

fdhA2 contig_13903 67914 899 74-173 82 3,14E-06 3,60E-06 7,01E-05 0,19 4,44 

fdhI contig_13910 67886 715 659-714 70 1,34E-06 2,40E-07 0,00E+00 -2,09 -3,85 

fdhA2 contig_14646 67914 899 188-243 83-88 1,34E-06 4,80E-07 0,00E+00 -1,32 -3,85 

fdhA2 contig_1845 67914 899 262-570 60-81 6,94E-06 4,80E-06 2,64E-06 -0,52 -1,36 

fdhI contig_2576 67886 715 25-123 56 1,79E-06 9,60E-07 2,59E-06 -0,84 0,51 

fdhI contig_3337 67886 715 148-257 79 2,69E-06 1,92E-06 2,19E-06 -0,46 -0,28 

fdhI contig_3383 67886 715 542-657 88 4,26E-06 5,52E-06 4,73E-06 0,37 0,15 



 

 

a
 protein coverage range of translated amino acid sequence from gene assembled in respective contig 

b % identity on amino acid level to protein sequence of M. oxyfera in GenBank 
c mapped read fraction normalized to total transcriptome size 
d logarithmic fold change in T4 and T5 transcriptomes in relation to T0 reference point  
 

fdhA2 contig_4983 67914 899 1-40 80 2,36E-03 3,09E-03 2,20E-04 0,39 -3,43 

fdhD contig_7207 68661 269 61-176 46 4,70E-06 2,64E-06 3,56E-06 -0,81 -0,39 

fdhA2 contig_8959 67914 899 849-899 82 2,44E-05 3,12E-05 1,49E-05 0,35 -0,71 

fdhA2 contig_9316 67914 899 596-847 83-85 9,18E-06 5,76E-06 2,03E-06 -0,66 -2,13 

fdhD contig_9455 68661 269 160-220 97 3,14E-06 1,92E-06 1,62E-06 -0,68 -0,91 

fdhD contig_9851 68661 269 184-217 91 3,14E-06 2,64E-06 3,06E-07 -0,24 -2,99 
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ABSTRACT 

 

The Bothnian Sea is an oligotrophic, low-salinity brackish basin located in the 

northern part of the Baltic Sea. Its sediments are characterized by high amounts of 

reactive iron below a shallow sulfate-methane transition zone (SMTZ). Previous 

geochemical studies suggested that methane produced in these sediments is 

consumed by sulfate-dependent anaerobic oxidation of methane (S-AOM) within, 

and iron-dependent AOM (Fe-AOM) below the SMTZ. In this study, we analyzed 

the potential of the in situ sediment microbial community from Bothnian Sea for 

iron-dependent anaerobic methane oxidation with ferrihydrite and 13C-labeled 

methane additions and sequenced total DNA from 3 subsequent depths and active 

incubation slurries. The microbial community was analyzed in relation to the 

methane cycle. Based on 16S rRNA and functional key genes (mcrA and 

pmoA/mmoX) involved in methane transformations, we identified an abundant 

aerobic type I methanotrophic community at the oxic/anoxic interface (0-2.5 cm 

below seafloor, cmbsf) with Methylobacter as the dominant member. In this surface 

layer, obvious anaerobic methane cycling processes were absent. In the S-AOM zone 

(5-12.5 cmbsf), we were able to retrieve anaerobic methanotrophic archaea (ANME) 

sequences which belonged to the ANME-2a cluster accompanied by abundant 

sulfate reducing bacteria from the order Desulfobacterales. The ANME archaea were 

also present in the methanic/Fe-AOM zone below the SMTZ (30-35 cmbsf), and 

became even more abundant in Fe-AOM incubation slurries. Methanogens were 

present in both S-AOM and methanic/Fe-AOM zones with Methanosarcina and 

Methanoregula as dominant genera. Putatively fermentative Clostridia and δ-

Proteobacteria from the order Desulfuromonadales (Geobacteraceae) also increased 

in numbers possibly indicating an indirect mechanism of iron and methane 

transformation processes in the slurries. Moreover, genes encoding for oxidized 

sulfur species reduction processes (thiosulfate and sulfite reductase) were also 

enriched in incubation slurries pointing to an operational cryptic sulfur cycle. 

Altogether, our results suggest that Fe-AOM in Bothnian Sea sediments is most 

likely driven by an interplay of several metabolic processes involving 

methanotrophic/-genic archaea, iron reducers, sulfate reducers and putatively 

fermentative Clostridia. 
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INTRODUCTION 

 

Biological methane oxidation has been discovered more than a century ago 

(Söhngen, 1906) and since then extensive research has advanced our knowledge 

about mechanisms of methane oxidation in the presence of oxygen. The reaction is 

initiated by a methane monooxygenase (Mmo) which utilizes the potent chemistry 

of oxygen radicals for the transformation of the highly stable methane molecule into 

methanol (Hakemian & Rosenzweig, 2007). Further reactions involving various 

dehydrogenases ultimately lead to carbon dioxide (CO2) as the end product (Hanson 

& Hanson, 1996). So far, all known organisms capable of this process belonged 

exclusively to bacteria within the phyla of Proteobacteria (α- and γ-) and 

Verrucomicrobia (Hanson & Hanson, 1996, Op den Camp et al., 2009, van Teeseling 

et al., 2014) 

In contrast, biological methane production is a strictly anaerobic process typically 

occurring in deep sediments where organic matter is degraded to acetate and 

hydrogen/CO2, which in the absence of electron acceptors other than CO2 are 

converted to methane by acetoclastic and hydrogenotrophic methanogenic archaea. 

Via diffusion towards the sediment surface, methane passes through zones of 

alternative electron acceptors, ultimately reaching the oxic layers or the overlying 

water column. Thus, anaerobic methane oxidation with alternative electron acceptors 

has been subject of research in the past decades. Among these, sulfate was shown to 

play a crucial role as electron acceptor for methane oxidation in marine sediments 

(Knittel & Boetius, 2009) where its constant supply from overlying water leads to 

the formation of a sulfate methane transition zone (SMTZ) due to sulfate-dependent 

methane oxidation (S-AOM).  

S-AOM is performed by specialized groups of anaerobic methanotrophic archaea 

(ANME) and associated sulfate-reducing bacteria (SRB) (Knittel & Boetius, 2009) 

and has been recognized as a major sink for methane in marine environments where 

it can attenuate up to 90% of methane diffusing from the underlying methanic zone 

(Reeburgh, 2007). Based on 16S rRNA gene phylogeny, known ANME archaea 

were classified into 3 non-monophyletic clusters related either to Methanosarcinales 

(ANME 2 and 3) or Methanomicrobiales (ANME 1) (Knittel & Boetius, 2009). 

Associated SRB partners of ANME-1/ANME-2 clades were shown to belong to 

Desulfosarcina/Desulfococcus and those of ANME-3 clade to Desulfobulbus 

clusters (Knittel & Boetius, 2009). 
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ANME archaea are related to methanogens and employ the methyl coenzyme M 

reductase (Mcr) enzyme in reverse for methane activation (Krüger et al., 2003). 

Early research on S-AOM hypothesized a syntrophic partnership between ANME 

and SRB, in which the SRB would scavenge reducing equivalents from ANME, thus 

shifting the thermodynamics of the overall process towards a more exergonic state 

(Hoehler et al., 1994). The nature of exchanged reducing equivalents remains elusive 

to date. Moreover, ANME archaea have also been reported to thrive in the absence 

of SRB pointing to the ability of certain ANME groups to perform S-AOM on their 

own (Orphan et al., 2002, Treude et al., 2007). A recent study investigating the 

nature of exchanged metabolites between an ANME-2 clade and associated SRB 

suggested the ability of archaea to reduce sulfate to sulfur, which after a reaction 

with sulfide to polysulfide was disproportionated by SRB to sulfide and sulfate 

(Milucka et al., 2012). However, it remains to be investigated whether all ANME 

archaea are able to perform sulfate reduction and how ubiquitous this particular 

interaction is in nature. 

Distinct clades of ANME archaea were shown to possess different environmental 

niches mainly defined by temperature and availability of methane (Nauhaus et al., 

2005). The same study investigated the potential for anaerobic oxidation of methane 

with alternative electron acceptors including metal oxides, nitrate and sulfur. All 

were reduced (at lower rates than sulfate), but the processes could not directly be 

linked to methane oxidation (Nauhaus et al., 2005). Another study, however, found 

that ANME-2 archaea/SRB consortia originating from the same environment – 

Hydrate Ridge sediments in the Pacific Ocean– were stimulated in their sulfate-

reducing activity by iron oxides (Sivan et al., 2014). Based on isotope fractionation 

signatures of sulfate, it was proposed that the natural sulfate reduction was enhanced, 

but not altered in its mechanism (Sivan et al., 2014). The involvement of iron oxides 

in biological S reduction has been shown previously. Sulfurospirillum deleyianum, 

a sulfur- and thiosulfate-reducing bacterium, was shown to grow in the presence of 

ferrihydrite, where sulfide was re-oxidized by ferric iron to mixed forms of oxidized 

sulfur species used by the organism (Straub & Schink, 2004, Lohmayer et al., 2014). 

A similar mechanism was proposed to take place in iron-rich marine sediments in 

which S-AOM was shown to occur (Holmkvist et al., 2011). In this process, a cryptic 

sulfur cycle is generated below the SMTZ where sulfide diffuses downward and is 

re-oxidized to intermediate oxidized sulfur species by in-situ iron oxides. Further 

transformation to sulfate via disproportionation reactions was also speculated to 
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occur, thus sustaining an in-situ population of active sulfate- and sulfur-reducing 

organisms (Lohmayer et al., 2014). 

The early research on AOM focused on sulfate as an electron acceptor due to its high 

concentration in seawater and marine sediment. However, AOM with electron 

acceptors other than sulfate would in theory provide sufficient energy to sustain 

microbial metabolism. The first described enrichment culture capable of AOM in the 

presence of nitrate and nitrite (N-AOM) was hypothesized to utilize a mechanism 

similar to that of S-AOM – a syntrophic consortium of archaea and bacteria in which 

bacteria would scavenge reducing equivalents for reduction of nitrogen oxides 

(Raghoebarsing et al., 2006). Recent studies have shown that bacterial and archaeal 

members of the consortium can oxidize methane without each other, both possessing 

their own independent pathways for the process. The bacterial member, 

Methylomirabilis oxyfera, utilizes nitrite which after the reduction to NO was 

hypothesized to generate intra-cellular oxygen via a dismutation reaction (Ettwig et 

al., 2010, Ettwig et al., 2012). M. oxyfera possesses the full pathway for aerobic 

methane oxidation, in which methane monooxygenase would use the internally 

produced oxygen to oxidize methane to methanol (Wu et al., 2011). In contrast, the 

archaeal member, Methanoperedens nitroreducens, reduces nitrate to nitrite by 

oxidizing methane via reverse methanogenesis with Mcr as the key enzyme (Haroon 

et al., 2013). 

The first indication for the use of oxidized metal species as electron acceptors for 

AOM (M-AOM) came from marine sediment incubations (Beal et al., 2009). Since 

then, several studies of various terrestrial and marine ecosystems reported metal-

dependent AOM activity (Crowe et al., 2011, Sivan et al., 2011, Amos et al., 2012, 

Norði et al., 2013, Segarra et al., 2013, Egger et al., 2015), however, so far no 

organisms or possible pathways could be deduced. Thus, the significance and 

mechanism of this process in the environment remains largely unknown. In view of 

the ubiquitous occurrence of iron and manganese oxides in both freshwater and 

marine sediments, a better understanding of the underlying mechanisms of observed 

M-AOM activity would greatly enhance our knowledge of sedimentary metal- and 

methane cycles. 

Previous work indicated the potential of iron-rich Bothnian Sea sediments for M-

AOM (Slomp et al., 2013). Though being part of the Baltic Sea – a sea suffering 

from high nutrient loading and widespread bottom water anoxia – the Bothnian Sea 

has been impacted by eutrophication to a far lesser degree (Lundberg et al., 2009). 

However, mild eutrophication during the last decade has led to a shift of a narrow 
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Figure 1: Location map of the study site. Site 

US5B (62°35.17’ N, 19°58.13’ E) is located in 

the deepest part of the Bothnian Sea at 214 m 

depth with an average bottom water salinity of 

around 6 g/L. 

SMTZ towards the sediment surface below which abundant iron oxides coincide 

with high methane concentrations (Slomp et al., 2013, Egger et al., 2015). Here, we 

investigated the potential of iron- and methane-rich Bothnian Sea sediment for iron-

dependent anaerobic methane oxidation. The slurried original sediments was 

incubated with nanoparticulate ferric oxides and labeled methane, and the total DNA 

extracted from different layers from original and incubated sediment material was 

sequenced with the Ion Torrent technology and analyzed using various metagenomic 

pipelines. 

 

MATERIALS & METHODS 

 

Sampling, geochemical analysis and diffusion model simulations 

 

Replicate sediment cores were taken in the Bothnian Sea at sampling site US5B 

during the R/V Aranda cruise in August 2012 (Fig. 1, location, sampling procedure 

and core storage are described in Egger et al. 2015). Biogeochemical parameters 

were measured either onboard or later in the lab and diffusion model calculation 

performed as described previously (Egger et al., 2015). 
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Incubation experiments 

 

Replicate sediment cores taken in 2012 were sealed immediately and stored onboard 

at 4°C. Back in the lab, they were sliced in sections of 5 cm under strictly anaerobic 

conditions and stored anaerobically in the dark at 4 °C. The incubation experiments 

started within half a year after sampling. Per culture bottle, 30 g of wet sediment 

(∼25 mL) was homogenized in 75 mL of SO4
2--depleted medium mimicking in-situ 

bottom water conditions within a helium-filled glovebox (containing ∼2% hydrogen 

gas, H2). An 85-mL aliquot of this sediment/medium slurry was distributed over 150-

mL culture bottles and an additional 11.4 mL of medium was added to all bottles 

with the exception of the Fe treatments, for which 11.4 mL of a Fe-nanoparticle 

solution (Bosch et al., 2010) (20 mmol/L (Fe3+), resulting in 2 mmol Fe3+ per bottle) 

was added instead. The approximate ratio of 1 part sediment to 3 parts medium was 

chosen in agreement to reported incubation studies (Beal et al., 2009, Segarra et al., 

2013). After the contents were mixed, the culture bottles were sealed with airtight 

red butyl rubber stoppers and secured with open-top Al screw caps. After being 

sealed, 5mL of CO2 and either 45 mL of nitrogen (“cntl”) or 45mL of 13CH4 (“13CH4” 

and “13CH4 & Fe3+”) were injected into the headspace of duplicate incubations to 

yield 1 bar overpressure (volume headspace = 50 mL) and incubated in the dark at 

20°C under gentle shaking. Dissolved sulfide and SO4
2− were sampled within the 

glovebox by allowing the sediment to settle out of suspension and taking a subsample 

(1.5 mL) of the supernatant water via a needle syringe. Analysis of sulfide was 

performed as described for sediment porewater in Egger et al. 2014 (detection limit 

of <1 μmol/L). Samples for total dissolved S were measured by ICP-OES after 

acidification with 10 μL of 35% suprapur HCl and assumed to represent only SO4
2- 

due to the release of sulfide to the gas phase during acidification (Jilbert & Slomp, 

2013) (detection limit of <82 μmol/L). Headspace samples (30 μL) were analyzed 

by gas chromatography (GC, Agilent 6890 series, USA) using a Porapak Q column 

at 80°C (5 min) with helium as the carrier gas (flow rate 24 mL/min). The GC was 

coupled to a mass spectrometer (Agilent 5975C inert MSD, Agilent, USA) to 

quantify the masses 44 and 45 (CO2). To account for the medium loss due to 

subsampling of the solution and because of an observed leveling-off of measured 

headspace 13CO2 concentrations, an additional 11.4 mL of medium (“cntl” and 

“13CH4”) and Fe-nanoparticle solution (“13CH4 & Fe3+”) was added to the culture 

bottles after 55 days. Fe-AOM rates were determined from the linear slope of 13CO2 

production in duplicate incubations from 20-30 cm and 30-35 cm depths, before and 
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after second addition of Fe3+ taking into account the CO2 dissolved in the liquid and 

removal thereof during sampling. Thus, the statistical mean is based on a total 

number of eight rate estimates. 

 

DNA isolation and sequencing 

 

A separate core dedicated to molecular analysis was sliced under aerobic 

conditions in intervals of 2.5 cm, immediately frozen in liquid nitrogen and stored 

at -80°C until DNA extraction. Total DNA was extracted from each homogenized 

sediment core slice with the PowerSoil Total RNA Isolation Kit with DNA Elution 

Accessory kit (MoBio, USA). For each extraction, 2 g of sediment material was 

used according to manufacturer’s instructions. The quality and quantity of isolated 

DNA was assessed with NanoDrop 1000 (Thermo Scientific). For each analyzed 

depth (0-2.5, 5-12.5 and 30-35 cmbsf), the isolated DNA was pooled in equimolar 

concentrations, if necessary. DNA samples were stored at -20°C until further 

metagenomic library preparation. 

Metagenomic library preparation was performed with IonXpressTM Plus gDNA 

Fragment Library kit (Ion TorrentTM platform, Life technologies) following the 

manufacturer’s instructions. The initial shearing of DNA was performed by 

ultrasonication (Bioruptor®, Diagenode). The quality and quantity of DNA was 

assessed with the Bioanalyzer 2100 during the library preparation procedure. 

Sequencing was performed with the Ion PGMTM system (Ion TorrentTM platform, 

Life technologies). 

 

Molecular data analysis 

 

Raw sequence data were trimmed to >100nt length with CLC Bio Genomics 

Workbench 7.0.3 (CLC Bio, Qiagen, USA) resulting in following read numbers: 

3,966,999 (average length 289 nt) for 0-2.5 cmbsf, 3,615,605 (average length 296 

nt) for 5-12.5 cmbsf, 3,225,702 (average length 291 nt) for 30-35 cmbsf and 

2,180,088 (average length 303 nt) for incubation slurry. The phylogenetic 

characterization of in-situ microbial community was performed based on 16S rRNA 

gene diversity. The raw metagenomic sequence reads were mapped to a reference 

SSU rRNA gene dataset obtained from the SILVA database (Quast et al., 2013) 

(RefNR99 dataset, release 115) using CLC Genomics Workbench with the following 

mapping parameters: mismatch cost 2, insertion cost 3, deletion cost 3, length 
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fraction 0.5, similarity fraction 0.8.  The reads that mapped to SSU rRNA reference 

gene set were extracted and used for subsequent nucleotide blastn analysis against 

the same SSU reference dataset (e-value cut off 10E-6). Significant hits were 

extracted and aligned using the SINA Aligner (Pruesse et al., 2012). The aligned 

SSU rRNA reads were then imported and analyzed using the ARB software version 

5.5 (Ludwig et al., 2004) and the SILVA SSU RefNR99 database (release 115) as a 

reference. 

Functional gene analysis of pmoA and mcrA gene reads was performed as described 

previously (Lüke et al., 2015). In short, metagenomes were blasted against manually 

curated pmoA (Dumont et al., 2014) and mcrA gene databases (e-value cut off 10E-

6). For the mcrA gene database, mcrA gene sequences were obtained from NCBI and 

manually curated to cover the known methanogen diversity (Supplementary 

material). Then, significant hits were extracted and blasted against non-redundant 

protein database (version 11/2014). Bit scores from both blast outputs were plotted 

against each other with the RStudio software (R version 3.1.2) and bit score ratio 

was used to filter out non-significant matches. All pmoA and mcrA sequences from 

the Bothnian Sea sediment metagenomes were loaded into ARB, corrected for 

sequencing errors and aligned. Afterwards, all sequences were exported and 

analyzed with MEGAN 5.10.3 (Huson et al., 2011) using previously published 

database for pmoA (Dumont et al., 2014) and an mcrA gene database of manually 

curated full and partial length sequences of  known methanogens and methanotrophs 

for taxonomic assignment (Supplementary material). The mcrA database was created 

by importing and characterizing gene sequences in ARB. Accessory genes encoding 

for thiosulfate reductase (mopB), sulfite reductase (dsrA) and multi-heme 

cytochrome c proteins (cytC) of Geobacter/Shewanella/M. nitroreducens were 

analyzed by blasting metagenomes against non-curated gene datasets obtained from 

NCBI and Kletzin et al. 2015 (Supplementary material). After a first blast run, 

significant reads were extracted and blasted against non-redundant protein database. 

After plotting both bit score outputs and extracting significant reads, all were 

imported into MEGAN and analyzed based on standard NCBI taxonomy. For 

quantitative comparison, all analyzed gene reads except for cytC were normalized to 

metagenome size and average gene length according to the following formula: 

normalized read count (nrc) = (gene read count*1.000.000.000)/(total metagenome 

read count*average gene length [nt]). The obtained nrc values (representing reads 

per million read per 1000 bp) were used to generate gene heat maps with the RStudio 

software. Gene assemblies were done with the CLC Genomics workbench 8.0 with 



83 
 

the following parameters: bubble size 5,000, minimum contig length 400, word size 

30, mismatch cost 3, insertion cost 3, deletion cost 3, length fraction 0.5 and 

similarity fraction 0.8. MEGAN analysis was performed with the following settings: 

min score 50, max expected 0.01, top percent 5, max support percent 0.0, min 

support 1, LCA percent 50, min complexity 0. 

 

RESULTS & DISCUSSION 

 

Geochemical profiles 

 

Vertical pore water profiles for station US5B (Fig. 2) revealed a shallow SMTZ at a 

depth of ca. 4 to 9 cm, where SO4-dependent AOM results in the depletion of pore 

water SO4
2- and CH4. Reductive dissolution of Fe-oxides driven by sulfide 

production during SO4-AOM induces a distinct minimum in sedimentary Fe-oxides 

and precipitation of Fe-sulfides (mostly FeS). Abundant reducible Fe-oxides below 

the SMTZ were accompanied by very high dissolved ferrous Fe 

(Fe2+).concentrations (> 1.8 mmol/l). The depth trend in total (Fe/Al) indicated that 

the Fe is not only repartitioned between oxide and sulfide phases within the SMTZ, 

but that Fe-oxide reduction below the SMTZ triggered upward migration of 

dissolved Fe2+ with an enrichment of total Fe in the sulfidic zone. However, reductive 

Fe-oxide dissolution by dissolved sulfide is unlikely in the deeper sediments since 

the sulfide generated by SO4
2- reduction is sequestered in the form of authigenic Fe-

sulfides in the SMTZ (Fig. 2). Because no sulfide remains to diffuse into the zone 

where Fe reduction is occurring, a cryptic sulfur cycle as observed in Baltic Sea 

(Holmkvist et al., 2011) and Black Sea (Holmkvist et al., 2011) sediments, where 

SO4
2- is generated by sulfide reacting with deeply buried ferric Fe (Fe3+) species 

(Holmkvist et al., 2011, Holmkvist et al., 2011), is unlikely to occur. High dissolved 

Fe2+ concentrations further preclude Fe-oxide reduction via sulfide released during 

disproportionation of elemental sulfur (Bak & Pfennig, 1987, Thamdrup et al., 

1993), as any sulfide produced locally would be immediately scavenged to form Fe-

sulfides. Thus, two alternative mechanisms may explain the high dissolved Fe2+ 

concentration in the porewater below the SMTZ. The first mechanism is 

organoclastic Fe reduction, i.e. Fe reduction coupled to organic matter degradation. 

The second is Fe-AOM, i.e. Fe reduction coupled to AOM dissolved Fe2+ in these 

sediments. 
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Fe-AOM activity in the Bothnian Sea sediment 

 

The potential of the microbial community present in the sediments below the SMTZ 

to perform Fe-AOM was experimentally tested with slurry incubation studies. Fresh 

sediment samples from several depth layers were incubated with 13C-labeled CH4 

(13CH4), CO2, and a SO4
2−-depleted medium mimicking Bothnian Sea bottom water 

conditions. Duplicate incubations were amended with either only 13CH4 or 13CH4 and 

20 mmol/L Fe-hydroxide nanoparticles. 

Figure 2: Geochemical profiles for site US5B. a, Porewater profiles of SO4
2-, CH4, sulfide (∑H2S = 

H2S + HS- + S2-) and Fe2+. Grey bar indicates the sulfate/methane transition zone (SMTZ) b, Sediment 

profiles of total sulfur (Stot), FeS (acid volatile sulfide, AVS), Fe-oxides (see Supplementary Fig. 1 

for the calculation of the Fe-oxide fraction) and total (Fe/Al). 
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In the control slurries, nitrogen was used instead of 13CH4. AOM rates were then 

determined by measuring production of 13CO2, i.e. the end product of 13CH4 

oxidation. The addition of Fe hydroxide nanoparticles almost doubled AOM activity 

(1.7 fold increase) in the sediment samples between 20 and 35 cm depth compared 

to the slurries where no additional Fe3+ was added (Fig. 3). The increase in δ13C-CO2 

as a response to Fe3+ addition thus suggests that the microbial community present in 

the sediment below the SMTZ is capable of coupling AOM to Fe reduction. 

Throughout the whole experiment, sulfide stayed below detection limit (<1 μmol/L) 

and SO4
2− concentrations stayed below 350 μmol/L. A slight decrease in background 

SO4
2− during the incubation period might indicate low  

levels of SO4
2− reduction of ∼1.9 pmol SO4

2− cm−3 day−1. Similar rates of SO4
2− 

reduction (∼1 pmol SO4
2− cm−3 day−1) were reported for methanogenic Baltic Sea  

Figure 3: Incubation experiment with 13C-labeled CH4 conducted on sediments from 20-35 cm depth. 

SO4
2--depleted slurry incubations showed an increasing enrichment of headspace CO2 in 13C after 

addition of Fe(III) (“13CH4 & Fe(III)”, red triangles) compared to treatments where no additional Fe(III) 

was added (“13CH4”, green circles), suggesting stimulation of Fe-AOM. Elevated δ13C-CO2 values 

([13CO2] / ([12CO2]+[13CO2]) of the 13CH4-treatment without additional Fe(III) compared to the control 

(“cntl”, blue squares) indicate Fe-AOM with remaining Fe-oxides present in the sediment. 20 mmol/l 

Fe(III) were added at t0 (0 days) and after 55 days (dashed red line). Error bars are based on duplicates 

for 20-30 cm and 30-35 cm (i.e. n = 4). 
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sediments (Holmkvist et al., 2011). Taking into account indirect Fe-stimulated S-

AOM through a cryptic sulfur cycle (Holmkvist et al., 2011, Holmkvist et al., 2011), 

where redox reactions between sulfide and Fe-oxides result in the reoxidation of 

sulfide to SO4
2− in a 17:1 stoichiometric ratio, we estimate a gross rate of SO4

2− 

reduction of ∼2 pmol SO4
2− cm−3 day−1.  S-AOM is thus unlikely to contribute more 

than 0.1% to the total 13CO2 production in the investigated Bothnian Sea sediment 

layers. These findings support our hypothesis that the accumulation of dissolved Fe2+ 

in the porewater below the SMTZ is, at least partly, a result of Fe-AOM. The 

potential rate of Fe-AOM in our incubations is 1.32 ± 0.09 μmol cm−3 year−1, which 

compares well to recent estimates of potential Fe-AOM rates in slurry incubations 

of brackish wetland (1.42 ± 0.11 μmol cm−3 year−1 (Segarra et al., 2013)) and Fe3+-

amended mesocosm studies of intact deep lake sediment cores (1.26 ± 0.63 μmol 

cm−3 year−1(Sivan et al., 2011)). It should be noted, however, that these rates are all 

derived from stimulated microbial communities and thus could be lower under in-

situ conditions. 

 

16S rRNA gene-based phylogenetic community composition 

 

The microbial community composition over the sediment core from the site USB5 

in the Bothnian Sea was analyzed with respect to 16S rRNA diversity and CH4 

cycling by metagenomics from 3 different depths: the oxic/anoxic interface, active 

S-AOM zone and potential Fe-AOM zone. Previous geochemical analysis and 

activity measurements have indicated the active ferric iron-dependent AOM in the 

sediment below SMTZ. However, responsible organisms and thus possible 

metabolic processes behind the observed activity are still unknown. The current 

study used the approach of metagenomics in order to investigate the microbial 

community changes associated with Fe-AOM incubation and to deduce possible 

routes for the production of labeled CO2 from methane. 

 

Bacterial in-situ sediment composition 

 

Total 16S rRNA gene reads from each Bothnian Sea sediment sample comprised 

approximately 5 to 6% of total raw reads in respective metagenomes. The majority 

was assigned to bacteria (80% in 0-2.5 cmbsf, 95% in 5-12.5 cmbsf and 80% in 30-

35 cmbsf). The most abundant bacterial phylum in 0-2.5 cmbsf and 30-35 cmbsf was 

Proteobacteria with 55% and 32%, respectively. Other abundant phyla were 
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comprised by Bacteroidetes (7% in both samples), Planctomycetes (5% in 0-2.5 

cmbsf and 6% in 30-35 cmbsf) and Chloroflexi (3% in 0-2.5 cmbsf and 9% in 30-35 

cmbsf). In 5-12.5 cmbsf, Proteobacteria were as abundant as Planctomycetes (28% 

each), followed by Bacteroidetes (7%) and Chloroflexi (6%). The proportional 

distribution of the most abundant archaeal, bacterial and proteobacterial groups in 

all samples is shown in Fig. 4. 

The distribution within the proteobacterial population was significantly different 

between all depth samples. Whereas the most dominant groups in 0-2.5 cmbsf were 

comprised by Methylococcales (14%), Campylobacterales (9%) and unclassified 

group Sh765B-TzT-29 (7%), the 5-12.5 cmbsf zone was dominated by 

Desulfobacterales (18%), group Sh765B-TzT-29 (10%), group 43F-1404R (8%) and 

Order Insertae Sedis/Family Insertae Sedis/Marine (7%). The 30-35 cmbsf zone was 

dominated by group Sh765B-TzT-29 (13%), group 43F-1404R (8%), 

Syntrophobacterales (7%) and Xanthomonadales (7%). The occurrence of 

Methylococcales in the upper depth corresponded with availability of both methane 

and oxygen in this depth which is essential for the methanotrophic lifestyle of this 

group. Moreover, we found abundant pmoA gene reads encoding the particulate 

methane monooxygenase enzyme. This finding points to the importance of aerobic 

methane oxidation at the oxic/anoxic sediment interface, which also shows that 

methane was not effectively removed in the deeper anoxic layers. 

Campylobacterales, the second most abundant proteobacterial group in 0-2.5 cmbsf, 

comprised the genera Sulfurimonas and Sulfurovum belonging to the family 

Helicobacteraceae. Both Sulfurovum and Sulfurimonas spp. are commonly found in 

marine environments, they respire oxygen or nitrate with reduced sulfur species as 

electron donors (Inagaki et al., 2003, Inagaki et al., 2004, Zhang et al., 2009). These 

findings are corroborated by profiles of nitrate and oxygen which were available only 

within the uppermost cmbsf, but were not measurable below. The coupling between 

biogeochemistry and community structure was also apparent in the S-AOM zone. 

Here, the Desulfobacterales were the most dominant. This was also observed in 

previous studies investigating S-AOM (Michaelis et al., 2002, Siegert et al., 2011). 

Members of the Desulfobacterales, such as the genus Desulfococcus, are commonly 

found in association with ANME archaea, with whom they perform syntrophic S-

AOM process (Knittel et al., 2005). Interestingly, the uncharacterized group 

Sh765B-TzT-29 was found to be abundant in all depths, however, no information is 

available about metabolic capacities of this group. Sh765B-TzT-29 sequences were 

found in various environments and it was speculated that its members might be 
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involved in Fe-AOM in anoxic environments (Siegert et al., 2011). Also no 

information is currently available about metabolic capabilities for the group 43F-

1404R. Sequences belonging to 43F-1404R have been detected previously in marine 

sediments with active sulfur cycling (Asami et al., 2005), marine hydrothermal field 

(Kato et al., 2009) or paddy soils (Itoh et al., 2013). In depth 30-35 cmbsf, members 

of Syntrophobacterales were more abundant than in upper analyzed sediment layers. 

Some of the members of this order are capable of sulfate reduction (McInerney et 

al., 2008). They were shown to be metabolically flexible and, depending on 

environmental conditions and metabolic partners, able to perform both sulfate 

respiration and fermentation (Plugge et al., 2011). 

Syntrophobacterales are often found in syntrophic partnerships with hydrogen-

consuming organisms in anoxic methanogenic environments (Lueders et al., 2004, 

Stams & Plugge, 2009). An abundant methanogen population would potentially act 

as a hydrogen sink in this depth.  

The Planctomycete population differed substantially within the sediment transect, 

with a remarkable abundance of Brocadiales-related sequences (65% of all 

Planctomycete reads) in 5-12.5 cmbsf versus 5% in 0-2.5 cmbsf and non in 30-35 

cmbsf (more detailed discussion in Chapter 6). 

 

Archaeal in-situ sediment composition 

The most dominant groups within the archaeal population at all depths were the 

thaumarcheal Marine Group 1 (MG-1), the euryarchaeal Deep Sea Hydrothermal 

Vent Group 6 (DSHVG-6), the euryarchaeal order Thermoplasmatales and 

anaerobic methanotrophic archaea (ANME) from group 2a. 

Group MG-I comprised 65% of all archaeal 16S rRNA gene reads in 0-2.5 cmbsf, 

while in 5-12.5 and 30-35 cmbsf its abundance was with 24% and 28% significantly 

lower, respectively. Previous studies have shown that at least some representatives 

of this group are capable of aerobic ammonia oxidation (Hu et al., 2011, Stahl & de 

la Torre, 2012). Furthermore, MG-1 seems to be dominant among archaea in various 

marine water and sediment habitats underlining its importance for biogeochemical 

element cycling (DeLong, 1992, Galand et al., 2009). Although most gene reads 

belonging to MG-1 were detected in 0-2.5 cmbsf where both oxygen and nitrate co-

occurred, their relatively high abundance in deeper anoxic layers was puzzling. 

Similar observations were reported previously from deep oligotrophic sediment 

subsurface (Sørensen et al., 2004, Inagaki et al., 2006, Teske, 2006). However, the 

metabolic function of those deep-sediment MG-I group archaea remains unclear, and 
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a metabolism other than oxygen-dependent ammonia oxidation might be more 

likely. 

Based on 16S rRNA gene results, group DSHVG-6 was the second most abundant 

in the Bothnian Sea sediment and its relative abundance increased with depth (17% 

in 0-2.5 cmbsf, 27% in 5-12.5 cmbsf and 38% in 30-35 cmbsf). 

Metabolic capacities of members from this group are unknown, however sequences 

have been often found in marine anoxic sediments. Investigations of methane seep 

sediments from Nankai Through have revealed similar trends in archaeal population 

with groups MG-1 and DSHVG-6 being the most dominant and similar trend 

showing a decrease in MG-1 and increase in DSHVG-6 abundance with depth 

(Nunoura et al., 2012). The first habitats in which DSHVG-6 sequences were 

detected were hydrothermal vents (Takai & Horikoshi, 1999). 

Thermoplasmatales archaea were found in relatively constant abundance (8-10%) at 

all depths over the sediment transect. The sequences clustered mainly within 5 

groups: ASC21, AMOS1A-4113-D04, Marine Group II, Terrestrial Miscellaneous 

Group (TMEG) and 2B5. Their metabolism is not known, but related 16S rRNA 

sequences have been detected in methane seeps of the North Sea (Wegener et al., 

2008), subseafloor sediments in a gas hydrate area (unpublished), oxygen minimum 

zone in the Pacific Ocean (unpublished) and methanogenic estuarine sediments in 

Orikasa River (Kaku et al., 2005). Moreover, during mcrA gene analysis we detected 

methanogens of the genus Methanomassiliicoccus which is related to 

Thermoplasmatales and might have contributed to observed 16S rRNA inventories.  

ANME archaea were only found in 5-12.5 (24%) and 30-35 (8%) cmbsf which is in 

agreement with the presence of corresponding mcrA genes in both depths. These 

archaea are involved in reverse methanogenesis in cooperation with SRB from the 

order Desulfobacterales (Knittel et al., 2005). This corresponds to biogeochemical 

data pointing to active S-AOM zone in 5-12.5 cmbsf. The presence of ANME in 

deeper sediment with no measurable sulfate might be a relict of their previous 

activity in this depth as the sulfate-methane transition zone in the Bothnian Sea had 

moved towards the sediment surface in previous decades (Slomp et al., 2013). An 

alternative possibility would be a methanotrophy metabolism coupled to electron 

acceptors other than sulfate. 
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Community change associated with Fe3+ and CH4 incubation 

Metagenome analysis revealed that the abundances of most major bacterial and 

archaeal clades decreased after the incubation period of 3 months in Fe-AOM slurry 

incubations. Among bacteria only members of Firmicutes (putatively fermentative 

Clostridia), δ-Proteobacteria (Desulfuromonadales) and ε-Proteobacteria 

(Campylobacterales) increased in numbers after the incubation period (Fig. 4): 

Clostridia (from 3 to 24%), Desulfuromonadales (from 1 to 23% within all 

Proteobacteria (equivalent to <0.5% to 5.5% within all bacteria)) and 

Campylobacterales (from below detection limit in original sediment to 5% within 

all Proteobacteria (0 to 1.3% within all bacteria)). 

Within archaea, several taxa also increased in abundance, mostly belonging to 

euryarchaeal clades of Methanosarcinales (from below detection limit to 14%), 

ANME-2a (from 8 to 18%), Thermoplasmatales (from 10 to 21%) and 

uncharacterized Marine Benthic Group B (MBG-B) (from 5 to 11%). 

The archaeal lineage MBG-B was first detected in deep-sea sediments of the Atlantic 

Ocean (Vetriani et al., 1999). Since then, 16S rRNA gene signatures of MBG-B have 

been detected in a wide range of coastal, marine, intertidal subsurface and sediment 

habitats (Inagaki et al., 2003, Sørensen et al., 2004, Kim et al., 2005, Knittel et al., 

2005, Lloyd et al., 2006). Notably, many of those habitats were characterized by 

active methane cycling such as methane seeps, gas hydrates and methane-consuming 

mats. It has been hypothesized that MBG-B archaea might be involved in anaerobic 

methane oxidation, either directly or indirectly (Sørensen & Teske, 2006, Teske & 

Sorensen, 2007). Moreover, a study comparing microbial subsurface communities 

detected significant dominance of MBG-B in methane-bearing but not in methane-

free sediment (Inagaki et al., 2006). This shows that MBG-B archaea are associated 

with methane cycling in anoxic sediment, however, neither possible metabolic 

pathways nor associated genes are known to date. Investigation of total archaeal 

lipids from methane-hydrate bearing sediments revealed assimilation of non-

methane organic carbon derived from sediments, despite the fact that most carbon 

cycling in those sediment was driven by AOM (Biddle et al., 2006). It was argued 

that MBG-B might still be involved in oxidation, but not assimilation of methane 

(Biddle et al., 2006). 

A significant increase in Methanosarcinaceae 16S rRNA gene reads was 

accompanied with an increase in mcrA gene read numbers related to Methanosarcina 

spp. Methanogens of the order Methanosarcinales have been well characterized, 

both genetically and physiologically. They are among the most metabolically 
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versatile methanogens, being able to utilize all methanogenic substrates except 

formate (Thauer et al., 2008). Their increase in numbers indicated favorable 

conditions for methanogenesis during incubation which could have been stimulated 

by several factors. Addition of ferric iron provided electron acceptor in excess thus 

stimulating favorable conditions for respiration of organic matter present in the 

sediment slurry. This could have led to mobilization of simple organic compounds 

which would benefit methanogens. Also, a stark increase in putatively fermentative 

Clostridia we observed in the incubation slurry could have caused a decrease in 

redox potential which in turn would stimulate both methanogens and iron reducers. 

The effect of lower redox potential on increased ferrihydrite reduction by Geobacter 

spp. has been shown previously (Straub & Schink, 2004). A previous study showed 

that Methanosarcina and ANME archaea are stimulated with addition of ferrihydrite 

in hydrocarbon-dependent methanogenesis/-trophy (Siegert et al., 2011). An 

increase in methanogen population in our incubation slurries could then at least 

partly explain the increase in observed methane oxidation activity as it is known that 

Methanosarcina-related methanogens are able to oxidize some methane during the 

regular methanogenesis activity (Zehnder & Brock, 1979). Moreover, methanogens 

of the order Methanosarcinales have been previously shown to be able to reduce 

ferric iron with hydrogen as the electron donor during methanogenesis (Liu et al., 

2011, Liu et al., 2011). Inhibitory effects of ferric iron on methanogenesis activity 

of Methanosarcina were also reported (van Bodegom et al., 2004).  

Besides methanogenic Methanosarcina spp., known methanotrophic archaea from 

the ANME-2a clade also increased in both 16S rRNA and mcrA (group 2e) gene 

reads. ANME archaea are known to be involved in S-AOM (Knittel & Boetius, 

2009). More recently, an archaeon closely related to ANME group 2a was shown to 

be capable to couple nitrate reduction to methane oxidation (Haroon et al., 2013). It 

has been speculated that ANME archaea could also be potentially involved in AOM 

linked to ferrihydrite reduction (Wankel et al., 2012, Kletzin et al., 2015), however, 

any evidence for this is still lacking or is indirect. 

In comparison to soluble electron acceptors (e.g. sulfate, nitrite, nitrate), iron 

reduction is more challenging due to the insoluble nature of iron oxides at 

physiological conditions. Although siderophore-mediated assimilative uptake of 

chelated ferric iron has been well described in bacteria (Andrews et al., 2003), this 

mechanism is unlikely to play a role for dissimilative processes due to relatively high 

metabolic investment. Microbial iron reduction is a widespread process and several 

mechanisms have been described for its mediation. Microorganisms can employ 
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direct contact either via conductive pilin-structures and cell surface contact to iron 

oxides, or indirect iron reduction via secondary redox shuttles such as humic 

substances (Weber et al., 2006). In any case, electrons from methane oxidation must 

be directed into the periplasm and ultimately outside the cell. 

Theoretically, an ability to shuttle electrons onto an external electron acceptor 

(ferrihydrite particle) such as known from bacterial iron reducers like Geobacter or 

Shewanella could enable ANME archaea to link methane oxidation to iron reduction 

without a metabolic partner. The ability to reduce iron is generally associated with 

high numbers of multi-heme cytochrome c protein encoding genes in respective 

genomes (Shi et al., 2007). Notably, the genome of ANME archaeon M. 

nitroreducens encodes up to 38 multi-heme cytochrome c proteins (Haroon et al., 

2013, Kletzin et al., 2015), and this feature was speculated to be linked to possibility 

for iron metabolism (Kletzin et al., 2015). 

All 16S rRNA gene reads of ANME archaea found in original Bothnian Sea sediment 

as well as in incubation slurry were assigned to clade 2a which corresponds to group 

2e in mcrA phylogeny (reviewed in Knittel and Boetius, 2009). Both archaeal clades 

are phylogenetically closely related (Fig. 7). So far, one metagenome of ANME-2a 

enrichment culture has been sequenced from an aggregate and revealed that this 

lineage of ANME harbors abundant multi-heme cytochrome c protein encoding 

genes (Wang et al., 2014), a feature very similar to ANME-2d. Based on genome 

information, it was speculated that ANME-2a possess high metabolic flexibility in 

substrate utilization and energy-converting mechanisms (Wang et al., 2014). 

However, so far there is no evidence for dissimilatory iron reduction by these 

methanotrophs. Even if not performed by one organisms alone, iron reduction 

coupled to methane oxidation still could occur in a metabolic co-operation with iron 

reducers similar to that described previously for S-AOM. In this scenario, archaea 

would oxidize methane and shuttle reducing equivalents to known bacterial iron 

reducer. In fact, the observed increase in 16S rRNA genes assigned to 

Desulfuromonadales (Geobacteracaea) indicated that this scenario might have been 

at least partially responsible for the observed AOM activity in our incubations. The 

majority of reads (64%) assigned to Desulfuromonadales could be assembled to a 

single full length 16S rRNA contig sharing 97% identity to Desulfuromonas 

michiganensis strain BB1 (NR_114607). This organism was shown to utilize a wide 

range of electron acceptors including ferric iron with several electron donors (Sung 

et al., 2003). 
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Members of Desulfuromonadales order, Geobacter spp., have been observed 

previously in the zone of iron-dependent AOM in an anoxic aquifer (Amos et al., 

2012). Also Beal et al. (2009) reported a significant increase in known metal 

reducing organisms in their incubations with iron. 

A parallel increase in 16S rRNA gene reads belonging to Campylobacteraceae most 

closely related to Sulfurospirillum spp. might point to an alternative route to iron 

reduction in incubation slurry. These organisms have been shown to use a variety of 

electron acceptors including oxygen, nitrate, sulfur and thiosulfate (Eisenmann et al., 

1995, Finster et al., 1997, Sikorski et al., 2010). As our incubations were anoxic 

without added nitrate, growth of those bacteria was probably associated with 

intermediate oxidized sulfur species. These would have been generated internally 

from the oxidation of sulfide, probably abiotically by added iron hydroxide – via a 

cryptic sulfur cycle previously described for incubations of marine sediment 

(Holmkvist et al., 2011). In order to further investigate this hypothesis we analyzed 

both metagenomes for the presence of poly-/thiosulfate reductase encoding genes 

related to Sulfurospirillum spp. The read numbers increased from below detection 

limit in the original sediment to 4.3 normalized read counts in the incubation slurry, 

which would fit to an operational cryptic sulfur cycle. However, it is not known to 

what extent the generated sulfur species contributed to iron reduction and whether 

there was a link to methane oxidation activity. We did not observe an increase in 16S 

rRNA gene reads belonging to known sulfate reducers. Also, some species of 

Sulfurospirillum were shown to be capable of iron reduction (Stolz et al., 1999). Our 

batch incubation medium used for slurry preparation contained low concentration of 

sulfate (200 µM) to mimic in-situ conditions. The importance of low sulfate 

concentrations for a cryptic sulfur cycle in ferrihydrite-rich systems has been pointed 

out by a recent study (Hansel et al., 2015). In flow experiments with ferrihydrite-

amended columns and low medium sulfate concentrations, the in situ microbial 

community was enriched for known sulfate- and sulfur-reducing organisms and iron-

reducing organisms increased in numbers only after all sulfate was depleted within 

the column (Hansel et al., 2015). Mass balance calculations and molecular data 

pointed to preferential usage of sulfate over highly reactive iron oxides, despite the 

better theoretical reduction potential of ferric iron (Hansel et al., 2015). 

 

 

 



95 
 

Aerobic methane cycle as inferred from pmoA gene inventory 

 

Our metagenome survey revealed that up to 14% of all proteobacterial 16S rRNA 

gene reads in the 0-2.5 cmbsf sample belonged to the γ-proteobacterial order of 

Methylococcales – aerobic methanotrophs commonly found in various terrestrial and 

marine environments. Previous comparative analysis of methane cycle associated 

communities has shown that Methylococcales are also common community 

members in various marine methane seep ecosystems (Tavormina et al., 2010, Ruff 

et al., 2015). The analysis of particulate methane monooxygenase-encoding 

sequence reads from the sediment transect revealed that most methanotrophs in 0-

2.5 cmbsf belonged to the type Ia with Methylobacter being the most abundant top 

blast hit (Fig. 2). Not a single monooxygenase sequence could be retrieved from 5-

12.5 cmbsf – hot spot of S-AOM in the sediment transect. In 30-35 cmbsf, no typical 

Figure 5: Methane monooxygenase (pmoA) gene read analysis in the Bothnian Sea sediment. 

Normalized taxonomically assigned gene read distribution is shown. Normalized and summarized 

gene read counts: 10.5 in 0-2.5 cmbsf, 0 in 5-12.5 cmbsf, 1 in 30-35 cmbsf and 0.6 in incubation 

slurry. Pie chart area is categorized as following: 10-12 nrc: 100%, 7-10 nrc: 80%, 5-7 nrc: 60%, 

2-5 nrc: 40%, 0.1-2 nrc: 20%. Abbreviations: AOB, ammonia oxidizing bacteria. 
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type Ia methanotrophic pmoA sequences could be detected, but instead some 

divergent monooxygenase sequences related to both methane and ammonia 

monooxygenase clades from various freshwater environments. Some sequences 

could not be classified with the used reference database (1.8 nrc  from 0-2.5 cmbsf 

and 0.3 nrc from 30-35 cmbsf, designated as ‘not characterized’ in Fig. 2), as the 

database was developed for classification of amplicon pyrosequences of partial 

sequence length (Dumont et al., 2014). Failed classification was either being out of 

range of the alignment with database sequences and/or low sequence similarity to 

known monooxygenases. The sediment was also analyzed for the presence of soluble 

methane encoding genes (mmoX). Only one mmoX gene read could be retrieved from 

the 0-2.5 cmbsf zone, and none from two deeper layers indicating that this enzyme 

did not play an important role in the Bothnian Sea methane cycle. Functional gene 

data were congruent with 16S rRNA gene data, which confirmed the dominance of 

Methylococcaceae family in 0-2.5 cmbsf. In conclusion, the methane cycle at the 

oxic/anoxic interface was exclusively driven by aerobic methanotrophy, as neither a 

single 16S rRNA belonging to methanogens nor mcrA gene sequences could be 

retrieved from the sequenced metagenome. This finding also indicated that methane 

was not effectively removed in the deeper sediment transect via AOM, and that some 

methane reached the oxic zone to fuel aerobic methanotrophs. This finding is 

congruent with results reported by Egger et al. 2015, showing an isotopic signature 

of methane above the SMTZ which is indicative of the activity of methanotrophic 

organisms. 

 

Anaerobic methane cycle as inferred from mcrA gene inventory 

 

In stark contrast to absence of methanogen related sequences in 0-2.5 cmbsf, mcrA 

gene reads were detected in deeper layers and increased in abundance with depth 

(Fig. 6; 2.3 nrc in 5-12.5 cmbsf, 2.7 ncr in 30-35 cmbsf). Also, normalized mcrA 

read numbers increased nearly 4 times in incubation slurry from 30-35 cmbsf (11.3 

nrc) in comparison to the original sediment indicating a possible stimulation by 

added Fe3+. 

Taxonomic analysis revealed that the majority of mcrA reads in 5-12.5 cmbsf 

belonged to ANME archaea related to group 2e, followed by methanogens related to 

Methanosarcina and Methanoregula. These findings further support the hypothesis 

that ANME drive the S-AOM process in this zone. ANME-2e mcrA genes were also 

detected in 30-35 cmbsf, although in slightly lower percentage (60% vs 77%). Here, 



97 
 

in contrast to 5-12.5 cmbsf, Methanosarcina-related mcrA were not detected, but 

Methanoregula slightly increased in abundance (13% vs 8%) and also 

Methanomassiliicoccus-like mcrA genes were detected (20%). 

Methanomassiliicoccus-like methanogens were only recently described from a 

human gut microbiome (Dridi et al., 2012, Borrel et al., 2013). Phylogenetic analysis 

suggests their common ancestry with Marine Group B, Marine Benthic Group D and 

Thermoplasmatales (Borrel et al., 2013). These methanogens were shown to be 

restricted to methylotrophic H2-dependent metabolism lacking most genes involved 

in H2/CO2 methanogenesis and the oxidative part of methylotrophic methanogenesis 

(Dridi et al., 2012, Borrel et al., 2013). Recent data suggest their widespread 

occurrence in various environments (Kemnitz et al., 2005, Biderre-Petit et al., 2011, 

Iino et al., 2013, Zhou et al., 2015). As these methanogens are related to 

Thermoplasmatales (Dridi et al., 2012), their ribosomal genes might have 

contributed to observed increases of 16S rRNA reads assigned to 

Thermoplasmatales. The presence of methanogen-related mcrA and 16S rRNA gene 

sequences is congruent with our previous isotope fraction modeling studies, which 

suggested a concurrent hydrogenotrophic methanogenesis and Fe-AOM below the 

SMTZ (Egger et al., 2015). 

In comparison to the original sediment, we observed increases in all detected 

methanogen- and methanotroph-related mcrA gene reads in active incubation slurry. 

In particular, the most pronounced changes were in Methanosarcina-like and 

ANME-2e-like mcrA read abundances which pointed to increased methane 

utilization capacity in the incubation slurries. Assemblies of corresponding 16S 

rRNA gene reads revealed that the ANME archaea at our sampling site belonged to 

the same genotype irrespective of depth in which it was detected, resembling 99% 

identity to an environmental sequence OT-A17.11 (GenBank: AB2524242) 

originating from the marine sediment of the Yonaguni Knoll IV hydrothermal field 

and which was assigned to ANME-2a cluster (Inagaki et al., 2006). Assemblies of 

mcrA gene reads pointed to microdiversity within the detected groups, but all 

ANME-like sequences detected at our sampling site formed a separate cluster in an 

amino acid-based phylogenetic tree (Fig. 7) pointing to a new ANME-2e-related 

species.  

Also, in view of abundant multi-heme cytochrome c (CytC) encoding genes found 

in both ANME-2a and group AAA (16S rRNA phylogeny) genomes and known iron 

reducers from the order Desulfuromonadales, we compared metagenomes from the 

original sediment and slurry incubation for Geobacter/Shewanella/M. 
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nitroreducens-like CytC protein encoding genes (Tab. 1). This analysis showed a 

clear increase in cytC gene reads in incubation slurries in comparison to the original 

sediment. Notably, blastx results indicated an increase in cytC gene reads with M. 

nitroreducens as closest match, however, with protein identities between 32 and 82% 

on the amino acid level. The low identities could partially be explained by frame 

shifts due to sequencing errors (analyzed cytC genes encoding reads were not 

corrected for sequencing errors) in raw reads, but also due a lack of protein 

information of ANME-2e-related archaea in NCBI blast database. 

 

Figure 6: Methyl-coenzyme M reductase (mcrA) gene read analysis in the Bothnian Sea sediment. 

Normalized taxonomically assigned gene read distribution is shown. Normalized and summarized gene 

read counts: 0 in 0-2.5 cmbsf, 2.1 in 5-12.5 cmbsf, 2.7 in 30-35 cmbsf and 11.3 in incubation slurry.

Pie chart area is categorized as following: 10-12 nrc: 100%, 7-10 nrc: 80%, 5-7 nrc: 60%, 2-5 nrc: 40%, 

0.1-2 nrc: 20%. 
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Figure 7: Maximum likelihood phylogenetic trees of selected methanogenic and methanotrophic archaea. Designated groups of methanotrophic 

archaea (ANME) are shown. A: 16S rRNA-based tree. B: mcrA-based amino acid tree. Abbreviations: ANME, anaerobic methanotrophic archaea; 

AAA, AOM-associated archaea. Group AAA designation is synonymous to ANME-2d lineage in 16S rRNA gene phylogeny. 
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Table 1: Multi-heme cytochrome c (cytC) protein encoding gene blastx output after analysis for 

Geobacter (omcE/omcS), Shewanella (mtrC/omcA) and M. nitroreducens-like (all multi-heme cytC 

protein encoding genes) specific genes. Absolute read numbers are shown. The total metagenome size 

of original sediment metagenome was 3225702 and of incubation slurry 2180088 reads.  

 30-35 (cm below sediment surface, cmbsf) 

 original 

sediment 

incubation 

slurry 

Total 134 493 

Archaea (all) 58 205 

Archaeoglobi Ferroglobus-like 17 72 

Methanomicrobia Methanoperedens-like 35 116 

Bacteria (all) 68 248 

Deltaproteobacteria Desulfuromonadales 7 44 

 Desulfobacterales 2 12 

Gammaproteobacteria Alteromonadales 4 4 

Acidobacteria  7 24 

Clostridia  1 24 

 

Scenarios for Fe-AOM in Bothnian Sea sediment 

 

Based on our observations of population changes in the incubation slurry in 

comparison to the original sediment, several scenarios can possibly explain the 

observed methane oxidation activity (Fig. 8), which are not mutually exclusive. 

First, ANME archaea could perform Fe-AOM alone without a metabolic partner by 

shuttling electrons directly onto Fe3+ particles. Abundant archaeal cytC encoding 

gene reads detected in the incubation slurry metagenome supported this 

scenario. Secondly, they also could shuttle reducing equivalents directly or 

indirectly to iron reducers (Desulfuromonadales) for ferric iron reduction or to 

sulfate reducers for sulfate/sulfur reduction. Clostridia, probably stimulated by ferric 

iron, could contribute to both enzymatic iron reduction and release of fatty acids and 
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hydrogen. Both, fatty acids and hydrogen, are potential substrates for methanogens, 

iron reducers, sulfate and sulfur reducers. The majority of Clostridia-assigned 16S 

rRNA gene reads could be assembled to a single contig sequence sharing 98%  

identity with Acidaminobacter hydrogenoformans, an organism which was shown to 

ferment various amino acids while producing acetate, propionate, hydrogen and CO2 

(Stams & Hansen, 1984). Moreover, its growth was shown to be stimulated in co-

cultures with sulfate reducers or methanogens, which would scavenge H2 and 

stimulate fermentation (Stams & Hansen, 1984). Some Clostridia have been shown 

previously to be able to reduce ferric iron (Ottow, 1971, Dobbin et al., 1999, Park et 

al., 2001, Lovley et al., 2004, Scala et al., 2006). Furthermore, as discussed earlier, 

Clostridia could lower the overall redox potential inside the incubation slurry which 

would stimulate methanogens, ANME archaea and iron reducers even further. Based 

on genomic potential, there was a possibility for a cryptic sulfur cycle in the 

incubation slurry supported by an increase in 16S rRNA and thiosulfate reductase 

encoding gene reads of Sulfurospirillum-like organisms. Also, despite no obvious 

increases in 16S rRNA gene reads of known sulfate reducers, we analyzed both 

original sediment and incubation slurry metagenomes for sulfite reductase encoding 

genes (dsrA) and observed a clear enrichment in incubation slurry samples (17.8 nrc 

vs 5.4 ncr). Hence, ANME archaea mediating anaerobic methane oxidation may also 

shuttle reducing equivalents to sulfate reducers, together mediating S-AOM. 

 

CONCLUSIONS & OUTLOOK 

 

Our investigations of the Bothnian Sea sediment for iron-dependent anaerobic 

methane oxidation leave room for several possible mechanisms. Incubation slurries 

which exhibited methanotrophic activity harbored increased populations of known 

iron reducing bacteria of the order Desulfuromonadales, methanogenic archaea 

belonging to Methanosarcina, Methanomassilicoccus and Methanoregula, and 

ANME-2a-like methanotrophic archaea. The strongest population increase was 

observed for putatively fermentative Clostridia. A concomitant increase in 

Desulfuromonadales-specific and archaeal multi-heme cytochrome c and mcrA-

encoding genes further indicated crucial roles for Fe-AOM activity. At the same 

time, functional genes involved in reduction of oxidized sulfur methanotrophic 

archaea. The strongest population increase was observed for putatively fermentative 

Clostridia. A concomitant increase in Desulfuromonadales-specific and archaeal 

multi-heme cytochrome c and mcrA-encoding genes further indicated crucial roles 
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for Fe-AOM activity. At the same time, functional genes involved in reduction of 

oxidized sulfur species also increased in abundance indicating an active sulfur cycle 

as well. Altogether, our data support that Fe-AOM is active in the Bothnian Sea 

sediment with ANME archaea, iron reducing bacteria, fermentative Clostridia and 

sulfur/sulfate reducing bacteria being the most likely organisms involved. 

Enrichment cultures are ultimately necessary to unravel the responsible mechanisms. 
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Figure 8: Possible scenarios for iron and methane transformations in the Bothnian Sea Fe-AOM 

incubation slurry as deduced from 16S rRNA and relevant functional gene changes assigned to major 

functional organism groups in compared metagenomes from the original sediment and incubation slurry 

from the Bothnian Sea. Possible processes are shown in parallel. 
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ABSTRACT 

 

The biological nitrogen cycle is driven by a plethora of reactions transforming 

nitrogen compounds between various redox states, which can be performed by a 

variety of different microorganisms. Whereas some of these processes are 

phylogenetically fairly widespread (e.g. denitrification), some others are only 

restricted to narrow groups (e.g. anammox). Here we investigated the metagenomic 

potential for nitrogen cycle processes of the in-situ microbial community in an 

oligotrophic, low salinity environment of the Bothnian Sea sediment. Total DNA 

from three depths below the sediment surface was isolated and sequenced with the 

Ion Torrent technology. The diversity of diagnostic functional genes coding for 

nitrate reductases (napA;narG), nitrite reductases (nirK;nirS;nrfA), nitric oxide 

reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia 

monooxygenase (amoA), hydroxylamine oxidoreductase (hao) and nitrogenase 

(nifH) was analyzed by blastx analysis against curated reference databases. In 

addition, PCR-based amplification was performed on the hzsA gene of anammox 

bacteria. Our results reveal high genomic potential for full denitrification to N2, but 

minor importance of anaerobic ammonium oxidation (anammox), dissimilatory 

nitrite reduction to ammonium (DNRA) and nitrogen fixation. Genomic potential for 

aerobic ammonia oxidation was dominated by Thaumarchaeota while bacterial 

amoA genes were scarce at all sediment depths. In general, phylogenetic composition 

of core microbial communities correlated well with biogeochemical characteristics 

of particular depths. Moreover, despite their lower abundance in Bothnian Sea 

sediment, we detected a higher diversity of anammox bacteria in metagenomes than 

with PCR-based technique. Our metagenome results reveal the quantitative 

importance of various N-cycle driving processes and highlight the advantage in 

detection of novel microbial key players which might be overlooked by using 

traditional PCR-based methods. 

 

INTRODUCTION 

 

The biogeochemical nitrogen cycle (N-cycle) is among the key element cycles in 

nature. N is  a major component in building blocks for life (amino acids, nucleic 

acids and metabolites) and N-oxides are used as alternate electron acceptors in 

anaerobic respiration. The biggest pool of nitrogen is air, which comprises the most 

stable and inert form – N2 (Robertson & Vitousek, 2009). It enters the reactive 
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nitrogen pool as ammonia via biological nitrogen fixation by nitrogenase (Nif). This 

phylogenetically deeply rooted and highly regulated protein is widespread among 

both bacteria and archaea (Postgate, 1998) and the nifH gene is widely used as 

biomarker to track this process in the environment (Gaby & Buckley, 2012). 

Ammonium can then either be directly assimilated into biomass or nitrified to nitrite 

by ammonia oxidizing bacteria (AOB) and archaea (AOA). Aerobic ammonia 

oxidation is catalyzed by ammonia monooxygenase (Amo) (Norton et al., 2002, 

Klotz et al., 2006), an enzyme only distantly related between AOB and AOA 

(Walker et al., 2010), with the amoA gene – coding for the beta-subunit of the 

enzyme – being used as the biomarker for ecological studies. Although being 

structurally different, both AOB- and AOA-specific Amo oxidizes ammonium to 

hydroxylamine (Arp et al., 2002, Vajrala et al., 2013), the fate of which has been 

well investigated in AOB but is still elusive in AOA. AOB use hydroxylamine 

oxidoreductase (Hao) – a multi-heme cytochrome c protein – to oxidize 

hydroxylamine further to nitrite (Arp et al., 2002). The use of hao gene as biomarker 

has been explored previously (Schmid et al., 2008), but is complicated by divergent 

multiple gene copies in some genomes. AOA seem to utilize a novel so far unknown 

mechanism for hydroxylamine oxidation. Their genomes lack multi-heme 

cytochrome c proteins, but instead harbor a great variety of multi-copper oxidase 

(Mco) encoding genes. These Mco have been implicated in hydroxylamine oxidation 

(Hallam et al., 2006, Walker et al., 2010). In the presence of oxygen, nitrite can be 

further oxidized to nitrate by nitrite oxidizing bacteria (NOB). NOB are mostly 

aerobic organisms that convert nitrite to nitrate by a molybptopterin iron-sulfur 

containing nitrite:nitrate oxidoreductase (Nxr), an enzyme phylogenetically and 

structurally related to membrane-bound nitrate reductase (Nar). Nitrate is the most 

oxidized and more stable form of reactive nitrogen in the environment. When oxygen 

becomes limiting, nitrogen oxides can be respired during denitrification – a 

sequential reduction process which proceeds via NO and N2O to molecular nitrogen, 

catalyzed by respiratory membrane-bound or periplasmic molybdenum-containing 

nitrate reductases (Nar, Nap), copper- or iron-containing nitrite reductases (NirK, 

NirS), quinol- or cytochrome-dependent nitric oxide reductases (Nor) and copper-

containing nitrous oxide reductase (Nos), respectively. A recent discovery of nitrite-

dependent anaerobic methane oxidation (N-AOM) has indicated a presence of an 

alternative mechanism of denitrification in which N2O as an intermediate is bypassed 

and NO is directly converted to N2 by simultaneously producing molecular oxygen 

which is used for methane oxidation (Ettwig et al., 2010). The genome of the 
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responsible bacterium was shown to encode alternative Nor-like proteins, designated 

as nitric oxide dismutases (Nod) (Ettwig et al., 2012). In the environment, 

denitrifying organisms compete with anaerobic ammonia oxidizers (anammox) and 

dissimilatory nitrite/nitrate reducers to ammonium (DNRA with nrfA gene as 

diagnostic marker) for the electron acceptor. Thus, the fate of nitrite/nitrate depends 

on various environmental parameters which favor a particular process (Kraft et al., 

2014). While denitrification is a phylogenetically fairly widespread ability and 

usually requires organic carbon, reduced sulfur compounds or hydrogen as electron 

donors (Zumft, 1997), anammox is a unique process which combines nitrite and 

ammonium to N2 as the end product (Strous et al., 2006). The anammox reaction 

proceeds via nitric oxide (NO) and hydrazine (N2H4) as intermediates with hydrazine 

synthase (Hzs) being the key enzyme and hzsA gene being used as biomarker for 

environmental studies (Kartal et al., 2011, Harhangi et al., 2012). Anammox seems 

to have evolved once and is restricted to a monophyletic order of Brocadiales within 

the Planctomycete phylum. Extensive research in the past decade has revealed the 

key role of anammox bacteria for nitrogen cycling in a wide range of habitats. It has 

been estimated that up to half of reactive nitrogen in anoxic basins and marine 

oxygen minimum zones – hot spots of nature’s biogeochemical nitrogen cycling – is 

lost due to anammox activity (Devol, 2003, Kuypers et al., 2003, Kuypers et al., 

2005, Lam et al., 2009). Environmental studies investigating the diversity and 

activity of anammox bacteria have shown that marine environments are inhabited by 

representatives of the Scalindua genus whereas freshwater and brackish ecosystems 

can harbor a wider diversity including the known genera Jettenia, Brocadia, and 

Kuenenia, (Kuypers et al., 2003, Schmid et al., 2007, Dale et al., 2009, Humbert et 

al., 2009, Hirsch et al., 2011, Hu et al., 2011). Marine coastal sediments are of 

particular interest for biogeochemical element cycling as they represent hot-spots of 

microbial activity due to excess availability of organic matter. The solid matrix of 

sediments limits the diffusion of substrates and so, through biotic and abiotic 

reactions, redox gradients establish and spatially separate aerobic and anaerobic 

metabolisms (Joye & Anderson, 2008). The Bothnian Sea is located in the northern 

part on the Baltic Sea – one of the world’s biggest anoxic basins which has been 

heavily impacted by eutrophication in the previous decades (Lundberg et al., 2009). 

However, due to physical factors such as topography, water exchange dynamics and 

weak stratification, the Bothnian Sea has been influenced to a far lesser degree of 

eutrophication and is generally considered as an oligotrophic ecosystem (Lundberg 

et al., 2009). The main input sources for organic matter in the Bothnian Sea were 
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calculated to be riverine and from intrusions from highly eutrophic Baltic Proper 

(Algesten et al., 2006). Nitrate penetration depth is restricted to the upper centimeter 

(Slomp et al., 2013). Studies about nitrogen cycling in Bothnian Sea sediments are 

scarce and previous activity measurements and flux calculations have indicated that 

several N-cycle processes might be involved in reactive nitrogen loss from the 

ecosystem (Stockenberg & Johnstone, 1997). Knowledge about the genomic 

potential of the microbial community of the sediment involved in N-cycle is lacking. 

In this study we investigated the phylogenetic composition and metagenomic 

potential of the in-situ microbial community with respect to the biological N-cycle 

in the Bothnian Sea sediment at three specific depths. DNA was extracted and 

sequenced by Ion Torrent technology. Curated data sets of the diagnostic N-cycle 

proteins were used to estimate the abundance and diversity of the various reactions 

with specific emphasis on the anammox process. 

MATERIALS & METHODS 

 

Sampling site and core processing 

 

Sediment cores were taken in the Bothnian Sea at sampling site USB5 during the 

R/V Aranda cruise in August 2012 (location, sampling procedure and core storage 

Figure 1: Biological N-cycle illustrating major 

metabolic processes (number-coded) with 

associated known key enzymes. Abbreviations: 

Nar/Nap, dissimilatory nitrate reductase; 

NirK/NirS, dissimilatory NO-forming nitrite 

reductase; Nor, nitric oxide reductase; Nod, 

nitric oxide dismutase; Nos, nitrous oxide 

reductase; Nif, nitrogenase; Amo, ammonia 

monooxygenase; Hao, hydroxylamine 

oxidoreductase; Nxr, nitrite oxidoreductase; 

Nrf, dissimilatory ammonia-forming nitrite 

reductase; Hzs, hydrazine synthase. Number-

coded metabolic processes: 1, nitrate reduction; 

2, denitrification; 3, nitrogen fixation; 4, 

aerobic ammonia oxidation; 5, aerobic nitrite 

oxidation; 6, dissimilatory nitrite reduction to 

ammonium (DNRA); 7, anaerobic ammonia 

oxidation. 
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are described in Egger et al. 2014). Processing of the core dedicated to molecular 

analysis is described in (Rasigraf et al., in preparation, Chapter 5). 

  

DNA isolation and sequencing 

 

DNA isolation and sequencing were performed as previously described (Rasigraf et 

al., in preparation, Chapter 5). 

 

Polymerase chain reaction (PCR) 

 

PCR reactions were performed to amplify the hzsA gene specific to anammox 

bacteria in samples from 0 to 25 cmbsf on each 2.5 cm interval sample individually. 

PCR reactions were composed as previously described (Harhangi et al., 2012). 

Following primer pairs were used: hzsA_757F and hzsA_1829R to cover the 

diversity of known freshwater anammox bacteria, and hzsA_757F Scalindua and 

hzsA_1829R Scalindua to cover known marine anammox bacteria (Harhangi et al., 

2012). PCR was performed in a thermocycler (Professional thermal cycler, 

Biometra, Jena) with following parameters: initial denaturation for 4 min at 94°C, 

followed by 30 cycles of denaturation for 1 min at 94°C, primer annealing for 1 min 

at 54° to 66°C (parallel PCR reactions were performed at different annealing 

temperatures), elongation for 2 min at 72°C, and final elongation for 10 min at 72°C. 

PCR products were checked with gel electrophoresis. Due to low final concentration 

of PCR products, a semi-nested PCR was performed with hzsA_1600F Scalindua 

and hzsA_1829R Scalindua primers (Harhangi et al., 2012). PCR reaction products 

for each depth sample were pooled and subjected to gel electrophoresis. Bands of 

correct size were cut and purified from gels with the Gene Jet Gel extraction kit 

(Thermo Scientific, Waltham, USA) following manufacturer’s instructions. A semi-

nested PCR was performed with purified PCR products as template under following 

conditions: initial denaturation for 4 min at 94°C, followed by 30 cycles of 

denaturation for 1 min at 94°C, primer annealing for 1 min at 56°, elongation for 2 

min at 72°C, and final elongation for 10 min at 72°C. Ligation, transformation and 

cloning of PCR products were performed as previously described (Harhangi et al., 

2012). 
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Metagenome analysis 

 

The 16S rRNA gene-based phylogenetic characterization of in-situ microbial 

community at USB5 sampling site was described previously (Rasigraf et al., in 

preparation, Chapter 5). Functional gene analysis was performed as previously 

described (Lüke et al., 2015). The following functional genes were analyzed: 

narG/napA (dissimilatory nitrate reductases), hzsA (hydrazine synthase), hao 

(hydroxylamine oxidoreductase), amoA (ammonia monooxygenase), nor (nitric 

oxide reductase), nirS/nirK (dissimilatory NO-forming nitrite reductases), nifH 

(nitrogenase), nosZ (nitrous oxide reductase), nrfA (dissimilatory ammonia-forming 

nitrite reductase). The gene databases used for blast analysis were described 

previously (Lüke et al., 2015). Data analysis and normalization was performed as 

previously described (Rasigraf et al., in preparation, Chapter 5). 

 

RESULTS & DISCUSSION 

 

N-cycle metabolism related gene analysis 

 

Detailed 16S rRNA gene analysis of the Bothnian Sea sediment at USB5 sampling 

site was described previously (Rasigraf et al., in preparation, Chapter 5). Therefore, 

we focused here on combined functional biomarker and selective 16S rRNA gene 

analysis relevant to particular metabolic processes involved in N-cycle. General 

overview of normalized functional gene counts is shown in Tab. 1.  

 

Table 1: Overview over blastx-based functional marker gene analysis of the Bothnian Sea sediment 

transect. Most abundant phylogenetic groups with assigned normalized gene read counts (nrc, counts 

per 1 Mio reads per 1 kb) and corresponding metabolic processes are shown. 

Phylogenetic assignment Depth (cmbsf, cm below  

sediment surface) 

Phylum Order/group 0-2.5  5-12.5  30-35  

Total prokaryotic 16S rRNA 337 338 313 

N2 fixation  

nifH (total) 

 

10.1 

 

6.1 

 

1.7 

Proteobacteria Methylococcales 7.6 0 0 

 Chromatiales 1.1 0 0 

Euryarchaeota Methanomicrobia 0 3.1 1.4 
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Nitrate reduction 

narG (total) 

55.1 33.9 3.2 

Proteobacteria Rhodocyclales 3.9 4.7 0 

 Methylococcales 2.6 0.2 0 

 Desulfobacterales 0.8 2.3 0.1 

 Desulfuromonadales 3.0 1.1 0.1 

Deinococci - 1.0 1.8 0.1 

Candidate division OP3 Omnitrophicaceae 9.1 3.8 0.9 

Euryarchaeota Haloarchaea 2.8 2.9 0.3 

napA (total)  29.6 12.4 0.7 

Bacteroidetes Flavobacteriia 1.6 0.3 0 

Planctomycetes - 0.9 0.8 0 

Proteobacteria Burkholderiales 0.4 0.7 0 

 Desulfuromonadales 0.6 0.9 0.1 

 Desulfobacterales 1.3 1.2 0 

 Campylobacterales 3.0 0.9 0 

 Alteromonadales 2.8 0.1 0.2 

Nitrite reduction 

nirS (total) 

  

73.8 

 

52.9 

 

4.6 

Proteobacteria Rhodobacterales 2.4 2.8 0.2 

 Burkholderiales 3.3 3.2 0 

 Hydrogenophilales 2.9 4.3 0 

 Rhodoyclales 3.2 1.7 0.4 

 Alteromonadales 3.2 1.1 0 

 Chromatiales 2.4 1.3 0.4 

 Methylococcales 8.1 0.3 0 

 Oceanospirillales 4.9 4.7 0.2 

nirK (total)  91.5 68.2 23.9 

Actinobacteria - 3.4 7.0 0 

Chloroflexi - 1.1 2.9 0 

Proteobacteria Rhizobiales 3.5 2.7 0.5 

 Methylococcales 4.3 0 0 

Crenarchaea Thaumarchaeota 39.4 11.3 14.5 

Nitric oxide reduction 

nor (total) 

  

37.7 

 

28.9 

 

5.0 

Bacteriodetes Flavobacteriia 3.1 3.7 0.9 

Planctomycetes - 2.0 0.9 0 

Proteobacteria Burkholderiales 2.1 0 0 

 Desulfuromonadales 2.0 3.4 0.5 

 Myxococcales 2.1 1.1 0.2 

 Methylococcales 2.0 0.6 0 

 Strain HdN1-like 2.9 2.2 0 

Spirochaetes - 2.0 0 0 
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Nitrous oxide reduction 

nosZ (total) 

 

52.5 

 

40.4 

 

7.5 

Bacteriodetes Flavobacteriia 12.2 5.4 1.4 

 Order II Insertae Sedis 2.7 2.4 0.3 

 Cytophagia 3.1 1.4 0.3 

Chlorobi Ignavibacteriae 1.6 2.1 0.8 

Chloroflexi - 2.1 1.0 0.2 

Proteobacteria Myxococcales 1.2 2.1 0.2 

Hydroxylamine oxidation 

hao (total) 

 

33.4 

 

52.0 

 

6.4 

Bacteriodetes/Chlorobi - 1.3 2.8 0.5 

Deinococci - 1.3 1.4 0.4 

Planctomycetes - 3.9 8.9 0.7 

Proteobacteria Desulfobacterales 1.4 8.4 0.7 

 Desulfovibrionales 1.0 2.8 0.2 

 Desulfuromonadales 1.2 1.7 0.2 

 Myxococcales 2.9 4.0 0.2 

 Syntrophobacterales 1.9 1.4 0.2 

 Alteromonadales 1.4 2.5 0 

 Vibrionales 2.2 1.4 0 

Candidate division OP3 Omnitrophicaceae 1.4 1.3 0.5 

Anammox 

hzsA (total) 

  

0.6 

 

2.4 

 

0 

Planctomycetes Brocadiales 0.6 2.4 0 

Aerobic ammonia oxidation 

amoA (total) 

 

22.9 

 

8.9 

 

6.2 

Crenarchaea Thaumarchaeota 21.7 8.9 5.2 

Proteobacteria - 1.0 0 1.0 

 

Dissimilatory nitrate reduction/anammox: nitrate reductase (narG/napA) 

 

The ability to perform nitrate reduction is a widespread trait among facultative and 

strictly anaerobic bacteria, archaea and some eukarya. Nitrate is a fairly common 

electron acceptor in many ecosystems at the oxic/anoxic interface and is readily 

available when oxygen becomes scarce. Nitrate is reduced to nitrite by a 

dissimilatory nitrate reductase which occurs in two forms: membrane-bound 

(encoded by Nar gene cluster) and soluble periplasmic (encoded by Nap gene 

cluster) (Zumft, 1997), with genes encoding subunits NarG and NapA being used as 

phylogenetic markers for environmental studies. The product of nitrate reduction – 

nitrite – is a central intermediate within the biogeochemical nitrogen cycle. It can be 

reduced to dinitrogen gas or any intermediate nitrogen oxide during denitrification, 
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to ammonium via dissimilatory nitrite reduction to ammonium (DNRA) or to 

dinitrogen gas via anammox. Furthermore, it can be oxidized back to nitrate during 

the last step of nitrification by nitrite oxidoreductase (Nxr) – a homologue enzyme 

to Nar. 

The nitrate reducing community harboring narG showed a clear stratification within 

the sediment transect. Most reads (55 nrc) were found in the upper 0-2.5 cmbsf zone, 

where oxygen and nitrogen oxides were still available for respiration. Roughly half 

of all reads were assigned to phylum Proteobacteria with the most dominant groups 

belonging to Methylococcales (5%), Desulfuromonadales (5%) and Rhodocyclales 

(7%). Other dominant narG-containing groups were assigned to candidate division 

OP3 (Omnitrophicae, 17%) and Haloarchaea (5%). In the 5-12.5 cmbsf zone (34 

nrc), the major groups containing narG were comprised by Rhodocyclales (14%), 

Desulfobacterales (7%), Deinococcales (5%), candidate division OP3 

(Omnitrophicae, 11%) and Haloarchaea (9%). Notably, the change in 

biogeochemical parameters towards the absence of oxygen and dominance of sulfur 

cycle in this zone was accompanied with the shift in narG-harboring community 

towards sulfate reducing bacteria (Desulfobacterales) and decline in methane 

oxidizing bacteria (Methylococcales) and iron reducing bacteria 

(Desulfuromonadales). The deeper layer of 30-35 cmbsf was characterized by a stark 

decrease in overall narG read numbers (3 nrc) most of which were assigned to 

candidate division OP3 (Omnitrophicae, 30%) with the remaining reads being 

distributed among Proteobacteria. These results were congruent with all other 

observations and indicated the low potential and need for nitrate reduction in this 

depth. 

Conspicuous was the dominance of candidate division OP3 within the narG-

harboring community in all depths. There are so far no cultured representatives from 

this group and their metabolic potential remains elusive. 16S rRNA gene information 

revealed that candidate division OP3 belongs to the 

Planctomycetes/Verrucomicrobia/Clamydiae (PVC) superphylum and it was 

suggested that members of this group are most likely anaerobes thriving in marine 

sediments, lakes and aquifers (Glöckner et al., 2010, Ragon et al., 2013). The 

currently available single-cell genome of one of the members of this group, 

Omnitrophus fodinae SCGC AAA011-A17, revealed the presence of genes coding 

for respiratory nitrate reductase and heme/copper-type cytochrome/quinol oxidase. 

Other genes of the denitrification pathway could not be detected. This points to a 

facultative anaerobic lifestyle of this organism. 
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The napA gene reads were less abundant than narG. The distribution followed the 

pattern of the narG with most reads detected in 0-2.5 cmbsf (30 nrc), where most 

abundant groups belonged to Flavobacteriia (5%), Campylobacterales (10%) and 

Alteromonadales (10%). The distribution of napA in 5-12.5 cmbsf (12 nrc) was more 

evenly spread with most abundant groups belonging to Planctomycetes (6%), 

Burkholderiales (5%), Desulfobacterales (10%), Desulfuromonadales (7%) and 

Campylobacterales (7%). In 30-35 cmbsf, napA was with 1 nrc only of minor 

importance consistent with the finding on narG and other N-cycle genes. 

 

Denitrification/anammox: dissimilatory NO-forming nitrite reductase 

(nirS;nirK) 

 

Nitrite reductase is the key enzyme within the denitrification process in which it 

catalyzes the conversion of nitrite to nitric oxide – the defining step of the process. 

There are two forms of nitrite reductase described in denitrification so far: iron-

containing cytochrome cd1 (NirS) and copper-dependent (NirK) forms. Both 

enzymes are structurally and phylogenetically dissimilar, but serve the same 

physiological function (Zumft, 1997). It has been believed that both genes were 

mutually exclusive (Averill, 1996), however, a recent study has found both genes in 

the genome of Methylomonas denitrificans strain FJG1 (Kits et al., 2015). 

Numerous studies have used nirS/nirK genes for environmental studies for 

evaluation of diverse habitats for their denitrification potential and phylogeny of 

associated denitrifiers (Braker et al., 2000, Oakley et al., 2007). 

The distribution of both nirK and nirS gene reads followed the same trend as for 

other N-cycle related genes with decreasing abundance with increasing depth 

(Tab.1). The vast majority (43%) of detected nirK reads in 0-2.5 cmbsf were 

assigned to Thaumarchaeota. Other abundant groups were assigned to 

Methylococcales (5%), Rhizobiales (4%) and Actinobacteria (4%). The most 

abundant nirK groups in 5-12.5 cmbsf depth belonged to Thaumarchaeota (17%), 

Actinobacteria (10%), Chloroflexi (4%) and Rhizobiales (4%), indicating a clear 

community shift with the increasing depth. Interestingly, deeper in the sediment 

transect (30-35 cmbsf), the thaumarchaeal nirK seemed to increase in abundance 

again (61%) and the total normalized number was even higher than in 5-12.5 cmbsf. 

The available genome information of AOA has confirmed the presence of multiple 

gene copies of multicopper oxidoreductase type nitrite reductases (Mco), a trait 

which seems to be highly conserved among AOA (Lund et al., 2012). This pointed 
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to the ability of AOA to nitrifier denitrification which is probably responsible for the 

archaeal N2O production in the ocean (Santoro et al., 2011). The physiological role 

of AOA NirK is still unclear, it might be involved in detoxification of nitrite or use 

of nitrite as the alternative electron acceptor to oxygen under hypoxia (Walker et al., 

2010). Environmental studies have revealed wide distribution of thaumarchaeal nirK 

genes in marine water columns and sediments (Venter et al., 2004, Yakimov et al., 

2011, Lund et al., 2012), also indicating distinct communities between water 

columns and sediments (Lund et al., 2012). The calculated ratios of nirK to group 

MG-1 16S rRNA showed a decrease with increasing depth (3.5 in 0-2.5 cmbsf, 2.7 

in 5-12.5 cmbsf and 0.9 in 30-35 cmbsf). This again pointed to distinct populations 

of MG-1 archaea with potentially different modes of metabolism. Normalized 

nirK/amoA gene ratios were calculated to be 1.8 for 0-2.5 cmbsf, 1.3 for 5-12.5 

cmbsf and 2.8 for 30-35 cmbsf. 

Proteobacteria was the most dominant bacterial phylum harboring nirS-like genes 

in 0-2.5 cmbsf (48%), 5-12.5 cmbsf (41%) and 30-35 cmbsf (50%). Methylococcales 

comprised with 11% of all reads the most abundant group in 0-2.5 cmbsf. This 

finding corresponded with widespread occurrence of Methylococcales bacteria in 

this depth as inferred from 16S rRNA and findings of other genes of the 

denitrification pathway (e.g. narG, nor, nirK). Available genome data of MOB 

confirm widespread presence of genes involved in denitrification and their 

contribution to N2O production (Stein & Klotz, 2011). Recent work has shown that 

Methylomonas species encode and express denitrification genes when exposed to 

nitrate and are able to link the reduction of nitrate to the oxidation of methane under 

hypoxia in a bioenergetically favorable manner (Kits et al., 2015). 

 

Denitrification/anammox: dissimilatory nitric oxide reductase (nor) 

 

Nitric oxide reductases are membrane-bound heme-copper oxidase proteins 

catalyzing reduction of NO to N2O. The step of NO reduction is of high biological 

significance as a highly toxic and reactive gas is reduced to a non-toxic form. Thus, 

NO-reductases are not exclusively restricted to denitrifying organisms but are widely 

spread among organisms for detoxification reasons (Shiro, 2012). 

So far, two forms of respiratory nitric oxide reductases (Nor) have been 

characterized: a cytochrome c-dependent (NorBC) and a quinol-dependent (qNor) 

form (Shiro, 2012). However, with the advance in metagenomics sequencing, many 

novel genes encoding alternative Nor enzymes have been identified (Pace et al., 
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unpublished). In particular, a recent discovery of nitrite-dependent AOM (N-AOM) 

has revealed that the crucial oxygen-generating step from NO is most likely to be 

catalyzed by a NO-dismutase (Nod), an enzyme structurally related to qNor (Ettwig 

et al., 2012). Genes with similar sequence modifications have since been identified 

in several other organisms including γ-proteobacterial strain HdN1 (Zedelius et al., 

2011) and phylum Bacteroidetes belonging Mariniradius saccharolyticus (Bhumika 

et al., 2013), Cecembia lonarensis (Kumar et al., 2011) and Muricauda 

ruestringensis (Bruns et al., 2001). 

nor-like genes were detected in all depths over the sediment transect with decreasing 

abundance with increasing depth (38 nrc in 0-2.5 cmbsf, 29 nrc in 5-12.5 cmbsf and 

5 nrc in 30-35 cmbsf). In 0-2.5 cmbsf, no clear dominance of any phylogenetic group 

could be observed. Here, 5-6% of all nor-like reads were assigned to Spirochaetales, 

Methylococcales, Desulfuromonadales, Myxococcales, Burkholderiales and 

Planctomycetes. Notably, two groups which possessed the most nor-like reads 

showed nearest identity to Flavobacteriia and strain HdN1. Several nor-like reads 

from the Flavobacteriia order revealed highest identity to Muricauda ruestringensis 

and other organisms containing alternative nor-like genes with sequence features 

found in Nod proteins. Also, sequences resembling nearest identity to strain HdN1 

nod sequence pointed to an abundant population of bacteria containing Nod-like 

proteins. However, no 16S rRNA genes affiliated with either M. oxyfera or strain 

HdN1 could be detected pointing to novel nod-like gene harboring bacterial groups.  

The observation of abundant nod-like gene reads would be congruent with 

biogeochemical data indicating the presence of methane and nitrogen oxides in 0-

2.5 cmbsf for N-AOM. However, an alternative Nod-catalyzed metabolism might be 

possible. Also, similar nor-containing phylogenetic groups were identified in 5-12.5 

cmsbf, however, the abundances differed to 0-2.5 cmbsf. In particular, nor-

containing Desulfuromonadales and Flavobacteriia populations increased to 12 and 

13%, respectively. The abundance of nod-like gene containing strain HdN1-like 

population remained similar (7%). This finding showed that despite the absence of 

nitrogen oxides in 5-12.5 cmbsf, nod-like genes were still relatively abundant. This 

pointed to either a non-active population of bacteria containing Nod proteins or an 

active population using Nod-like proteins to perform an alternative metabolism. 
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Denitrification: nitrous oxide reductase (nosZ) 

 

Nitrous oxide reductase is a soluble homodimeric heme-copper oxidase which 

catalyzes the final step in denitrification sequence, the conversion of N2O to 

molecular nitrogen (Zumft, 1997). First characterized nitrous oxide reductases 

originated from denitrifying cultures (Zumft, 1997), but it became evident that the 

capacity to reduce N2O to N2 was not a defining step of denitrification. In fact, many 

denitrifiers lack the necessary genes and stop the process at the level of N2O, thereby 

contributing to its emissions to the atmosphere (Beaulieu et al., 2011). Previous 

studies have shown that the capacity of denitrifying communities to reduce N2O 

might be regulated by environmental parameters such as availability of nitrate, 

organic carbon or pH (Weier et al., 1993, Van Den Heuvel et al., 2011). Recent 

genomic surveys have pointed to a much wider distribution of atypical nos genes 

which are not restricted to denitrifiers, but are also present in non-denitrifiers and 

DNRA-performing organisms (Sanford et al., 2012). Moreover, these abundant 

atypical nitrous oxide reductases were shown to be functional (Sanford et al., 2012). 

Our metagenome analysis revealed high abundance of nosZ-encoding gene reads (53 

in 0-2.5, 40 in 5-12.5 and 8 in 30-35 cmbsf nrc, respectively) which was 

approximately within the same range as the abundance of narG- and and nirS-

encoding gene reads. Most dominant phylum harboring nosZ gene in 0-2.5 cmbsf 

was assigned to Bacteroidetes with Flavobacteriia (23%), Cytophagia (6%) and 

Bacteroidetes Order Insertae II Sedis (5%) groups being the most dominant. Similar 

bacterial groups were dominating the 5-12.5 cmbsf depth, however the abundances 

changed. The most prominent change was observed in nosZ abundance of 

Flavobacteriia which decreased to 13% and Myxococcales which increased to 5%. 

Flavobacteriia was with 11% of all assigned reads also the most dominant nosZ-

harboring group in 30-35 cmbsf. 

These results pointed to widespread capacity for nitrous oxide reduction in the 

Bothnian Sea sediment along the whole sediment transect with molecular nitrogen 

being the most likely product of denitrification. 

 

Nitrogen fixation: nitrogenase (nifH) 

 

Nitrogenase is the only known enzyme system capable of reduction of molecular 

nitrogen to biologically available form as ammonia. It consists of two components, 

a MoFe, VFe or FeFe metalloprotein and a second Fe metalloprotein (Eady, 1996, 
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Rees & Howard, 2000). Nitrogenase (encoded by nif gene cluster) has a fairly wide 

distribution within bacteria, but within archaea was only shown to be present in 

methanogenic/-trophic Euryarchaeota (Dos Santos et al., 2012, Boyd & Peters, 

2013). 

Analysis for nitrogen fixation potential in the sediment transect revealed low 

abundance of nifH gene reads in all sediment depths (10 nrc in 0-2.5 cmbsf, 6 nrc in 

5-12.5 cmbsf and 2 ncr in 30-35 cmbsf) as well as clear differences in microbial 

populations responsible for the process. The majority (75%) of detected nifH gene 

reads in 0-2.5 cmbsf belonged to the order Methylococcales with Methylobacter spp. 

as the most dominant genus (up to 100% identity on protein level). This dominance 

of Methylococcales was congruent with 16S rRNA gene data. Moreover, the 

majority of gene reads encoding the particulate methane monooxygenase in this 

sediment layer were assigned to Methylobacter (Rasigraf et al., in preparation, 

Chapter 5), further confirming its dominance at the oxic/anoxic interface. Only one 

read was assigned to δ-Proteobacteria (95% protein identity with Desulfocapsa 

sulfexigens). The remaining 14% were assigned to orders Chromatiales and 

Aeromonadales within γ-Proteobacteria. 

The nifH inventory in 5-12.5 cmbsf revealed a shift in nitrogen fixing population 

towards Methanomicrobia (>55% of all reads). Two reads shared an over 95% 

protein identity to Methanosarcina acetivorans, the phylogenetic identity of 

remaining reads within Methanomicrobia could not be clearly resolved due to lower 

identity to known species. The remaining nitrogen fixing population (25%) was 

represented by sulfate reducing bacteria (SRB) from δ-Proteobacteria, Nitrospirae 

and Firmicutes. 

The phylogenetic affiliation of nifH reads within the sediment transect reflected the 

dominance of major functional microorganism groups in each particular depth 

observed from the 16S rRNA analysis (Rasigraf et al., in preparation, Chapter 5). 

 

Aerobic ammonium oxidation: ammonia monooxygenase (amoA) 

 

Ammonia monooxygenase catalyzes oxygen-dependent oxidation of ammonia to 

hydroxylamine. Structurally, ammonia monooxygenase (Amo) is related to methane 

monooxygenase (MMO), both exhibit vice versa activity, although at lower rates 

(Bédard & Knowles, 1989). For decades, the ability to oxidize ammonia was 

considered to be restricted to two monophyletic groups within Proteobacteria: β-

Proteobacteria including genera Nitrosomonas, Nitrosospira and Nitrosovibrio, and 
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γ-Proteobacteria including genus Nitrosococcus (Teske et al., 1994). Beginning in 

2006, studies reported that a distinct mesophilic group within Crenarchaeaa 

(Thaumarchaeaota) was able to oxidize ammonium to nitrite as end product. These 

archaea contained a homolog of Amo only distantly related to its bacterial 

counterpart (Könneke et al., 2005). Since then, numerous studies have shown the 

ubiquity of ammonia oxidizing archaea (AOA) in both terrestrial and marine 

environments, and their tremendous importance for the N-cycle (Francis et al., 2005, 

Beman et al., 2008). 

At our sampling site, amoA gene sequences were found in all three analyzed depths, 

with decreasing abundance with increasing sediment depth (Tab.1). The highest 

abundance was observed in 0-2.5 cmbsf, sediment zone where oxygen and 

ammonium still co-occured, thus providing substrates for ammonia oxidizers. 

Taxonomic assignment revealed that the majority of amoA reads was assigned to 

Thaumarchaeota (Tab. 1), which strongly pointed to their dominance in aerobic 

ammonia oxidation process in the Bothnian Sea sediment. All archaeal sequences 

fell within the Marine Group 1.1a. Reads revealed high similarity to sequences found 

in ecosystems ranging from fully marine over brackish to terrestrial. The closest 

cultured representatives were Nitrosopumilus and Nitrosoarchaeum spp. AmoA 

reads were also detected in the S-AOM zone of 5-12.5 cmbsf and methanogenic zone 

of 30-35 cmbsf, where electron acceptors other than sulfate or CO2 were not 

measurable. Most sequences detected in the deeper sediment revealed high similarity 

to sequences found in marine, estuarine and freshwater habitats. 

Based on these observations, it was evident that AOA were not restricted to sediment 

zones where oxygen was still present, but rather occurred in all analyzed sediment 

depths. This corresponded with 16S rRNA gene results of marine group I (MG-I) 

Thaumarchaeota which were detected in all depths and decreased in abundance with 

increasing sediment depth. The ratio of amoA to 16S rRNA of MG-I was 

approximately 2 for the upper two depths and 0.3 for 30-35 cmbsf. Currently 

available genomic information of archaeal ammonia oxidizers shows amoA and 16S 

rRNA being single copy genes in sequenced genomes of thaumarchaeal ammonium 

oxidizers. However, several previous studies have reported amoA/16S rRNA ratios 

to be higher than 1 and speculated on several amoA copies in AOA genomes (Beman 

et al., 2008, Santoro et al., 2010, Lund et al., 2012), which might be the case for 

novel sedimentary AOA. The occurrence of group MG-I Thaumarchaeota in anoxic 

sediment layers has been reported previously (Sørensen et al., 2004, Roussel et al., 

2009, Jorgensen et al., 2012). It has been speculated that electron acceptors other 
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than oxygen might be used for ammonia oxidation in these organisms, or that 

ammonia monooxygenase might serve a different function than ammonia oxidation 

(Mußmann et al., 2011, Jorgensen et al., 2012). It has also been shown recently that 

not all Thaumarhaeota are capable of ammonia oxidation, but are metabolically 

more flexible and can grow with organic nitrogen substrates (Weber et al., 2015). 

 

Aerobic ammonium oxidation/anammox: hydroxylamine oxidoreductase (hao) 

 

Hydroxylamine oxidoreductase is the second key enzyme during aerobic ammonia 

oxidation where it catalyzes the oxidation of hydroxylamine to nitrite in AOB 

(Igarashi et al., 1997). Hao from Nitrosomonas europaea is a homotrimeric protein 

with each monomer containing 7 c-type hemes and one P460 heme, the latter being 

involved in catalysis and covalent binding of the adjacent monomer (Igarashi et al., 

1997, Cedervall et al., 2009). In AOB, Hao forms a functional complex with 

cytochrome C554 and cytochrome Cm552 where two electrons are shuttled to AMO 

via C554 and other two electrons to cytochrome c oxidase via Cm552. This functional 

unit is conserved in all AOB on the genomic level where HAO, C554, Cm552 encoding 

genes are located in a single operon (Arp et al., 2007).  

Besides AOB, several organisms with diverse phylogenetic backgrounds were 

shown to harbor octa-heme Hao-like proteins. It has been hypothesized that those 

proteins are capable of both reductive and oxidative N-compound transformation in 

the N-redox state between -3 and +3 (Kartal et al., 2011, Maalcke et al., 2014). 

Previous studies have shown octa-heme cytochrome c protein mediated reduction of 

nitrite and hydroxylamine to ammonium in Shewanella oneidesis MR-1 (Atkinson 

et al., 2007), reduction of nitrite to ammonium in Thioalkalivibrio nitratireducens 

(Polyakov et al., 2009), oxidation of hydrazine to molecular nitrogen (Kartal et al., 

2011) and reduction of hydroxylamine to nitric oxide in anammox bacteria (Maalcke 

et al., 2014). 

hao-like gene reads and its multi-heme cytochrome c homologs were detected in all 

depths of the sediment transect, however, unlike other N-cycle  genes, more reads 

were detected in 5-12.5 cmbsf than in the 0-2.5 cmbsf (52 vs. 33 nrc). This higher 

abundance was mostly attributable to the dominance of anammox (order 

Brocadiales) and sulfate reducing bacteria (orders Desulfobacterales and 

Desulfovibrionales). Based on available genome information, anammox bacteria 

contain up to 10 divergent hao-like gene paralogs (Strous et al., 2006, Kartal et al., 

2012, van de Vossenberg et al., 2013), which would explain the relative high 
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abundance of hao-like genes affiliated to anammox bacteria in 5-12.5 cmbsf. This 

observation was in congruence with 16S rRNA and hzsA gene data which all 

indicated higher abundance of anammox bacteria in this depth interval. The relative 

abundance of anammox related hao-like reads within 0-2.5 cmbsf sample was 12% 

and increased to 18% in 5-12.5 cmbsf. Blast-based phylogenetic analysis of the hao-

like reads assigned to anammox bacteria revealed that Kuenenia stuttgartiensis was 

the most common next relative in 5-12.5 cmbsf (75%) with identities between 50 

and 100%, the remaining reads revealed highest identity to Scalindua spp. (14%, 

identities between 54 and 100%), Brocadia spp. (9%, identities between 52 and 70%) 

and strain KSU-1 (2%, 58% identity). In contrast, the majority of reads assigned to 

anammox in 0-2.5 cmbsf resembled highest identity to Scalindua spp. (65%, 

accession nr. WP_034410018) with identities ranging between 54 and 100%, the rest 

was assigned to Kuenenia spp. (15%, identities between 47 and 65%), Brocadia spp. 

(7%, identities between 53 and 64%) and strain KSU-1 (11%, identities between 76 

and 78%). These results demonstrated diversity differences in both depths and 

pointed to potentially novel anammox species, an observation which was supported 

by data derived from 16S rRNA and hzsA gene phylogeny. However, since the 

phylogenetic resolution was limited due to short read length the interpretation of data 

should be treated with care and needs further investigation. 

Previous surveys revealed marine ecosystems to be dominated by anammox bacteria 

of the Scalindua genus and freshwater terrestrial habitats by the genera Kuenenia, 

Brocadia, Jettenia, Anammoxoglobus and strain KSU-1 (Kuypers et al., 2003, 

Penton et al., 2006, Galán et al., 2009, Humbert et al., 2009). Molecular studies 

based on amplification of anammox-specific 16S rRNA and functional genes have 

reinforced a hypothesis salinity being the major environmental factor shaping the 

community shifts between the dominance of either Scalindua or other anammox 

genera (Dale et al., 2009, Hirsch et al., 2011), the latter designated as “freshwater” 

anammox genera. However, physiological studies have shown that members of the 

genus Kuenenia can gradually be adopted to high salt concentrations in a bioreactor 

system (Kartal et al., 2006), thus indicating that environmental parameters other than 

salinity might play a role in anammox distribution. 

In general, highest proportion of hao-like gene reads in all depths was comprised by 

δ-Proteobacteria: 25% in 0-2.5 cmbsf, 35% in 5-12.5 cmbsf and 22% in 30-35 cmbsf, 

with Desulfobacterales, Desulfovibrionales and Myxococcales being the most 

abundant orders. Due to limited gene sequence information, accurate function 

predictions of detected hao-like genes fragments were not possible. However, 
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previous studies have shown several sulfate reducing bacteria (SRB), in particular 

within the δ-subdivision, to possess multi-heme cytochrome c proteins of the C554 

and other families (Pereira et al., 2011). In SRB, these proteins were speculated to 

be involved in respiration as in storage of electrons derived from periplasmic 

hydrogen oxidation (Heidelberg et al., 2004), enzymatic metal reduction (Lovley et 

al., 1993, Lovley & Phillips, 1994, Michel et al., 2001), regulation (Pereira et al., 

2011), or detoxification (Greene et al., 2003). To our knowledge, there is no 

evidence for bona fide hydroxylamine oxidoreductase proteins in these organisms. 

Interestingly, hao-like gene reads affiliated with AOB were detected in low 

abundance in all analyzed depths with no difference between 0-2.5 and 5-12.5 cmbsf 

(3% and 2% within all hao-like reads, respectively). All AOB hao-like reads 

belonged to the order Nitrosomonadales within β-Proteobacteria. In addition to 16S 

rRNA and amoA gene data, this was another indication of AOB being not of high 

importance in ammonium oxidation at the USB5 sampling site. 

In contrast to the two upper depths, hao-like genes were of much less importance in 

30-35 cmbsf depth (6 nrc). This trend followed other N-cycle genes, which pointed 

to a much lower importance of nitrogen cycling in this depth. 

 

Dissimilatory ammonia-forming nitrite reductase (nrfA) 

 

Dissimilatory ammonia-forming nitrite reductase (Nrf) is a pentaheme cytochrome 

c protein catalyzing a single-step 6e- reduction of nitrite to ammonia (Einsle, 2001). 

Nrf is the key enzyme during ammonification – a “shortcut” process in the N-cycle 

which directly links pools of nitrite and ammonium. This process is of particular 

importance for investigations of reactive nitrogen balance in anoxic ecosystems as it 

competes for nitrite with denitrification and anammox but unlike them does not 

contribute to net reactive nitrogen loss as N2. 

nrfA-like gene reads were detected in all depths of the sediment transect, however 

their abundance was considerably lower than of those involved in denitrification. 

Also, more nrfA-like gene fragments were detected in 5-12.5 cmbsf (16 ncr) than in 

0-2.5 cmbsf (12 nrc). The most abundant groups possessing nrfA in 0-2.5 cmbsf 

belonged to Desulfuromonadales (15%), Bacteroidetes/Chlorobi (25%) and 

Verrucomicrobia (13%). In 5-12.5 cmbsf, verrucomicrobial nrfA could not be 

detected anymore, but Bacteroidetes/Chlorobi (24%) and Desulfuromonadales 

(13%) still comprised the most abundant nrfA-possessing groups. Here, nrfA 

fragments assigned to Myxococcales increased to 8%. Also in depth 30-35 cmbsf 
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most of the nrfA-like reads were assigned to Bacteroidetes/Chlorobi (70%). Thus, 

the nrfA-bearing Verrucomicrobia detected in 0-2.5 cmbsf might be adapted to 

higher sediment redox state and probably able to tolerate some oxygen. 

Previous studies investigating DNRA in estuarine environments reported its relative 

importance in comparison to denitrification in organic carbon- and sulfide-rich 

sediments, speculating on inhibitory role of sulfide on denitrification (An & Gardner, 

2002). Moreover, it has been speculated that salinity might play a crucial role for 

fate of nitrate reduction pathway, where denitrification was inhibited at higher 

salinities while DNRA was not affected (Giblin et al., 2010). Based on those 

previous observations, the combination of low-sulfide, oligotrophic and hyposaline 

conditions in the Bothnian Sea sediment would likely favor denitrification over 

DNRA for nitrate reduction. In fact, the low overall abundance of nrfA in comparison 

to denitrification-related gene reads supported this hypothesis. 

Reports on nrfA-bearing communities in sediments are scarce. So far, these have 

been analyzed in 3 estuary ecosystems exhibiting gradients in organic carbon, sulfide 

and salinity parameters (Takeuchi, 2006, Smith et al., 2007, Song et al., 2014). The 

majority of nrfA sequences detected in the Colne estuary, United Kingdom, was 

comprised by representatives of δ-Proteobacteria most closely related to order 

Desulfuromonadales. Despite the very different biogeochemical properties of our 

sampling site in the Bothnian Sea with the hypernutrified sediment of the Colne 

estuary, we observed a similar trend in DNRA community towards the dominance 

of those particular δ-proteobacterial groups. 

 

Anammox: hydrazine synthase (hzsA) 

 

Hydrazine synthase is a unique enzyme complex catalyzing the condensation 

reaction of NO and ammonium to hydrazine (N2H4) during the anammox pathway 

(Kartal et al., 2011). The enzyme is characteristic for anammox bacteria and based 

on the available genome information, primers were developed for HzsA subunit 

encoding gene to detect anammox bacterial diversity in the environment (Harhangi 

et al., 2012). 

Metagenome analysis revealed higher hzsA gene read abundance in 5-12.5 cmbsf 

sample (2.4 nrc) than in 0-2.5 cmbsf (0.6 nrc). This results contradicted the 

assumption of anammox bacteria being more abundant in layers where they would 

have access to oxidized nitrogen oxides for respiration. Comparing the identity of 

hzsA reads between both depths, a clear difference was observed. Whereas all reads 
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found in 0-2.5 cmbsf were assigned to Scalindua spp., all reads but one in 5-12.5 

cmbsf were assigned to Kuenenia spp. Only one read in 5-12.5 cmbsf was assigned 

to Scalindua. No hzsA gene reads could be identified in the 30-35 cmbsf. Also the 

majority of 16S rRNA reads assigned to Brocadiales from 5-12.5 cmbsf were 

affiliated with Kuenenia and other freshwater anammox genera supporting the 

findings at the hzsA gene level. Despite low read numbers assigned to hzsA gene, 

these results pointed to a vertical stratification of the anammox community within 

the Bothnian Sea sediment transect. Findings of brackish sediments inhabited by 

anammox bacteria belonging to different genera including Scalindua have been 

reported before (Dale et al., 2009, Fu et al., 2015). However, shifts in community 

structure between freshwater and marine genera have been investigated in horizontal 

gradients and attributed to changing environmental parameters like salinity, pH or 

C/N ratio (Dale et al., 2009, Fu et al., 2015). Slight changes in pH, nitrate/nitrite 

availability, C/N ratio or interactions with different metabolic partners between 0-

2.5 and 5-12.5 cmbsf might be responsible for observed vertical anammox 

community structure in the Bothnian Sea sediment. Also, due to its geographical 

location the Bothnian Sea is strongly influenced by riverine input from mainland and 

occasional intrusions of saltier waters from the North Sea. This might have 

contributed to introduction and preservation of microbial communities from other 

locations including freshwater habitats of the mainland. 

PCR on extracted total DNA with primer pair combinations targeting either the 

Scalindua genus or other five known genera of anammox bacteria resulted in positive 

amplification only for Scalindua-specific hzsA gene. Positive amplification was 

observed for 3 samples between 0 and 7.5 cmbsf indicating significant presence of 

Scalindua-specific hzsA genes only in this upper layer. The absence on hzsA below 

7.5 cmbsf is congruent with metagenome results for 30-35 cmbsf where no reads 

could be assigned to hzsA and Brocadiales-specific 16S rRNA genes. However, as 

PCR product concentration was too low for ligation, a semi-nested PCR reaction was 

performed with Scalindua-specific primers for greater yield and further cloning 

procedure resulting in a final amplicon sequence length of 229nt. In total, 60 

amplicon sequences could be retrieved: 21 for 0-2.5 cmbsf, 18 for 2.5-5 cmbsf and 

21 for 5-7.5 cmbsf. All sequences shared 97-100% amino acid identity with 

uncultured Scalindua spp. originating from the marine sediments in Guyamas Basin 

(AGV76990) (Russ et al., 2013). However, due to short sequence length the 

uncertainty in correct phylogenetic annotation is high and solid information can only 

be deduced at the genus level.  
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Biogeochemical parameters of the sediment transect showed measurable nitrate only 

within the upper 0.5 cmbsf, below this depth the sediment was anoxic. Thus, it is not 

clear where an abundant anammox bacterial population would derive nitrogen oxides 

for respiration below 2.5 cmbsf. The presence of other genes involved in aerobic 

processes (amoA) below 2.5 cmbsf might point to occasional fluxes of both oxygen 

and nitrogen oxides which would be rapidly consumed thus keeping concentrations 

below detection limits. An alternative explanation could be the presence of dormant 

not active community which was preserved during the sedimentation process. To our 

knowledge, deep bioturbation (below 2 cmbsf) which would introduce oxygen in 

deeper layers was not occurring at the USB5 sampling site (Matthias Egger, personal 

communication). 

 

CONCLUSIONS & OUTLOOK 

 

The results of our study indicate the importance of nitrogen cycling in the upper 

more oxidized Bothnian Sea sediment layers, where, based on genomic potential, 

full denitrification to N2 seemed to dominate the N-cycle driving processes. Aerobic 

ammonia oxidation was almost exclusively attributed to Thaumarchaeota which 

presence was detected throughout the whole sediment transect with decreasing 

numbers towards deeper transect. Unexpectedly, the peak of anammox bacterial 

community was detected below the oxidized layer, a zone where no oxygen or 

nitrogen oxides were detectable and sulfate reduction with methane was the 

dominant metabolic process. Moreover, the anammox community composition 

seemed to be stratified between different layers with potentially novel species which 

were not detectable by PCR with specific primers. These findings show that gene 

amplification-based techniques might lead to underestimation or lack of detection of 

microbial key players of particular metabolic processes. This also shows that our 

understanding of microbial metabolic networks in coastal sediments is still far from 

being complete. 

  



126 
 

chapter 7 
 

 

Discussion and Outlook 
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Physiological aspects of intra-aerobic methanotrophy: current knowledge and 

future directions  

 

Since the discovery of nitrite-dependent methane oxidizer Methylomirabilis oxyfera, 

numerous molecular studies have provided evidence for its ubiquity in diverse 

oxygen limited habitats pointing to the important role in methane cycle. While 

molecular data can give a valuable insight in their distribution and phylogenetic 

diversity, it is physiological characterization which can eventually help us to 

understand why they occur in certain environmental niches, what role they play in 

the microbial community and what interactions they undergo with other community 

members. 

The isotopic composition of methane has been shown to give an accurate information 

about its sources and sinks, and make predictions about its cycling in many habitats 

(Whiticar, 1999). Methanogens produce isotopically light methane, which is well 

distinguishable from abiotic sources. Moreover, based on both hydrogen and carbon 

isotopic signature it is even possible to distinguish between hydrogenotrophic and 

acetoclastic methanogenesis (Whiticar, 1999). On the “sink-side”, under non-

limiting substrate conditions methanotrophic organisms consume methane with a 

preference for lighter isotopes of both carbon and hydrogen, thus leaving the residual 

pool of methane enriched in heavier isotopes. The fractionation usually occurs at the 

first non-reversible enzymatic conversion step when the back reaction is not 

significant. For methanotrophic bacteria, this would apply for the first step in the 

methane oxidation pathway – catalyzed by methane monooxygenase – which has 

also been experimentally shown (Nesheim & Lipscomb, 1996). The unusual 

methanotrophic lifestyle of M. oxyfera and its ubiquitous occurrence in the 

environment led to the motivation to investigate its specific isotopic signature was 

different to other methanotrophs using methane monooxygenase for methane 

oxidation. However, the results showed that despite its unusual metabolism, the 

fractionation factors for both carbon and hydrogen were in same range as of other 

methanotrophs. M. oxyfera-specific methane monooxygenase clusters separately 

from other methanotrophic bacteria in phylogenetic trees, indicating some 

characteristic features which are only present in these methanotrophs. Although 

unlikely according to the calculated and observed reaction stoichiometry, it still 

cannot be excluded that nitric oxide could be used directly as a substrate for the 

enzyme. Nevertheless, even with its most likely substrate – molecular oxygen – the 

kinetic isotope fractionation mechanism is still elusive, since oxygen is hypothesized 
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to be supplied by putative Nod enzymes. The reaction mechanism and kinetics of 

this dismutation reaction are so far unknown and remain a subject for future research. 

Here, one among the still many questions is whether there is a close physical 

proximity between Nod and Pmo to shuttle oxygen. In case of a slow and limiting 

oxygen supply, the isotopic fractionation of methane could be offset due to slower 

reaction rates. The mechanism of the M. oxyfera-specific Pmo still needs further 

investigation. 

The methane isotope fractionation factors obtained for M. oxyfera can be used in 

future studies for a more precise modelling of methane fluxes in anoxic 

environments. It has been shown is several previous studies that M. oxyfera bacteria 

are highly abundant in certain habitats (Deutzmann et al., 2014, Hanson & Madsen, 

2015). These habitats would provide ideal grounds for methane isotope 

measurements and application of fractionation factors determined for M. oxyfera 

bacteria. Thus, the abundance, phylogeny, classical activity methane oxidation 

activity measurements and modelling of overall methane cycling in those habitats 

could provide a holistic picture on the role of M. oxyfera in the environment. 

In the context of environmental detection of active methanotrophy in the 

environment, many studies were based on the knowledge of methanotrophs 

assimilating at least half of their cellular carbon from methane, which would be 

reflected in the C isotope composition of lipids and DNA of methanotrophic bacteria. 

Thus, heavy 13C-labeled methane was used for incubations of environmental samples 

in order to detect active methanotrophs by extraction and amplification of 13C-

labeled DNA (DNA-SIP). Although the Calvin Cycle encoding genes for CO2 

fixation were known for a long time to be present and even expressed in some 

proteobacterial methanotrophs (Kao et al., 2004), their function remained elusive 

since it was shown that those methanotrophs were still mainly using carbon 

assimilation pathways with formaldehyde as the main substrate. The use of 

intermediate formaldehyde for assimilation into cell carbon seemed logical, as in 

comparison to the reduction CO2 to the redox level of cellular carbon significantly 

less reducing equivalents are needed. However, recent characterization of 

verrucomicrobial methanotrophs and M. oxyfera-like bacteria challenged this 

dogma, since both were shown to use the Calvin Cycle for CO2 fixation and lack 

essential genes involved either in serine or ribulose monophosphate pathways 

(Khadem et al., 2011, Rasigraf et al., 2014). This trait seemed peculiar at first, but 

growing genomic and experimental evidence suggests that methanotrophic bacteria 

are metabolically more flexible than previously thought (Chistoserdova, 2011, 
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Kalyuzhnaya et al., 2013). Here, recent characterization of novel methanol 

dehydrogenases of the XoxF type adds another puzzle piece to the above mentioned 

metabolic plasticity. XoxF from Methylobacterium extorquens AM1 was shown to 

be more efficient in the catalysis of methanol oxidation and even able to oxidize 

methanol to formate in one step (Schmidt et al., 2010). This has been speculated to 

be a possible solution for the CO2 fixation via the Calvin Cycle in M. fumariolicum 

SolV since this methanotroph was shown to only possess the XoxF type methanol 

dehydrogenase (Keltjens et al., 2014). The genomes of all so far known 

methylotrophs were shown to possess XoxF (Taubert et al., 2015), thus providing a 

great potential for physiological investigations of their function in different methano- 

and methylotrophs. The genome of M. oxyfera encodes MxaF1 and two types of 

XoxF methanol dehydrogenases, with XoxF1 being functionally expressed under 

standard culturing conditions (Wu et al., 2015). Our nitric oxide exposure 

experiments indicated a differential expression of all three MDH types, with only 

XoxF2 type being transcribed at the time point when Pmo, Fae and other methane 

oxidation pathway encoding genes were downregulated and NO concentrations 

dropped to under 1 µM. At this time point, the methane oxidation activity was still 

inhibited and resumed shortly after. The kinetics and catalytic mechanism of XoxF2 

from M. oxyfera are not known. It might be adapted to lower methanol supply from 

methane monooxygenase, which was likely to be inhibited at that time point. These 

results point to metabolic flexibility of M. oxyfera under different stages of metabolic 

stress and open room for future physiological studies to investigate gene 

transcription and expression switches at varying physiological conditions. 

Furthermore, knowing the physiological conditions at which XoxF2 is expressed 

would allow its expression and possibly further purification and biochemical 

characterization.  

Testing the physiological response of M. oxyfera cultures with lower concentrations 

of NO (below 1 µM) could potentially resolve the roles of two Nod and conventional 

qNor proteins. The slightly higher expression of the conventional qNor at the time 

point when NO dropped under 1 µM but the activity was still inhibited (T5) and our 

previous experiments with elevated semi-toxic concentrations of nitrite (unpublished 

results) have indicated an elevated production of nitrous oxide as a potential 

detoxification mechanism. As the reduction of NO to N2O requires two electrons, 

the question remains whether they are derived from the central methane oxidation 

metabolism or are coupled to another electron donor. 
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The dismutation mechanism still remains hypothetical, the knowledge of the 

conditions regulating a potential switch between the expression of different Nod 

encoding genes could provide a tool for physiological studies and protein 

purification for biochemical characterization. However, slow growth in flocks with 

doubling times in a matter of weeks still remains a challenge. Here, the exposure to 

nanomolar concentrations of nitric oxide might offer an effective trigger for 

swarming (Barraud et al., 2006) and physiological changes associated with enhanced 

growth rates. NO concentration seems to be a crucial factor, since it has been shown 

that both biofilm formation and dissociation can be induced at different NO 

concentrations (Schmidt et al., 2004). Thus, at lower concentrations (in nanomolar 

range) M. oxyfera’s potential for motility could be investigated in a continuous 

chemostat reactor system. 

The ability to reduce nitrate still remains a question since nitrate is not used under 

standard culturing conditions, but the genes encoding for both periplasmic and 

membrane-bound nitrate reductases are transcribed under all tested conditions. 

Furthermore, if nitrate would be used as the only substrate for O2 formation, 4 

molecules of O2 would not be enough for the oxidation of 5 molecules of methane. 

Here, a possibility remains that M. oxyfera NarG, which is closely related to Nxr, is 

involved in nitrite oxidation instead of nitrate reduction. In fact, M. oxyfera NarG 

was shown to be closely related to Nxr proteins of nitrite oxidizing bacteria 

Nitrobacter, Nitrococcus and Nitrolancetus (Sorokin et al., 2012). However, nitrate 

production was so far not observed in M. oxyfera cultures and it is well possible that 

nitrate reductase encoding genes were obtained via the horizontal gene transfer and 

are not essential for M. oxyfera. 

M. oxyfera is a methanotrophic bacterium which employs methane monooxygenase 

for methane oxidation. Structurally, methane is very similar to ammonium and it is 

known that methane monooxygenase can oxidize ammonium to hydroxylamine as a 

side reaction. Hydroxylamine is a highly toxic intermediate and many 

methanotrophic bacteria possess hydroxylamine oxidoreductase for its 

detoxification. Also the genome of M. oxyfera encodes and expresses a 

hydroxylamine oxidoreductase. However, the fate of oxidized hydroxylamine 

remains unknown since external oxygen is not available as a substrate for the 

enzyme. In its environmental niche at the oxic/anoxic interface, M. oxyfera would 

often encounter elevated concentrations of ammonium. It remains to be investigated 

at which concentrations ammonium would become toxic and how the reaction is 

integrated in the overall metabolism of M. oxyfera in terms of the electron flow 



131 
 

mechanisms. Hao mediated oxidation of hydroxylamine to NO instead of nitrite 

might provide a physiological advantage since it could directly be used by dedicated 

NO utilizing enzymes, either Nod or qNor. Experiments involving 15N-labeled 

ammonium and mass spectrometric detection of labeled metabolites such as NO and 

hydroxylamine might provide an insight into the role of Hao in M. oxyfera. 

Another great under-explored research field concerns interactions of M. oxyfera 

bacteria with other community members, which might either benefit or compete with 

them for substrates. Oxic/anoxic interfaces harbor a great variety of organisms which 

depend on the supply of electron acceptors from the oxic zone such as nitrate and 

nitrite, and availability of electron donors such as various fermentation products, 

ammonium and methane produced in the deeper anoxic layers. M. oxyfera is a 

denitrifying bacterium, which depends on nitrite as the electron donor. Thus, 

possible competition for electron acceptor could occur with denitrifiers, anammox 

bacteria and DNRA performing organisms. Several previous studies have focused 

on investigations of factors determining the dominance of either denitrification or 

DNRA, and several factors such as organic carbon content, sulfide concentrations, 

salinity and availability of reactive nitrogen have been implicated as crucial factors 

for the dominance of either process (Giblin et al., 2010, An & Gardner, 2002, Kraft 

et al., 2014). Both denitrification and DNRA compete for organic carbon or reduced 

sulfur species as electron donors, M. oxyfera however does not rely on these electron 

donors but uses methane instead. Thus, the affinity to nitrite would be among the 

main factors determining its competitiveness with denitrifiers and DNRA organisms. 

But other factors such as salinity or sulfide exposure would play important roles as 

well. All these aspects of M. oxyfera physiology are currently mostly unknown and 

studies based on both environmental sequencing of total commnity DNA and 

laboratory-based controlled physiological tests in bioreactor systems would give 

some insights into possible environmetal interactions. In case of interactions with 

anammox bacteria, a previous study showed that both can be enriched together and 

co-exist in a bioreactor system (Luesken et al., 2011b). Another study, however, 

showed that M. oxyfera could be effectivelly outcompeted by anmmox bacteria in 

bioreactor systems (Hu et al., 2015). Environmetal molecular studies have shown 

that both co-occur in anoxic environments (Wang et al., 2012). It is likely that 

different substrate affinities and reaction kinetics of different M. oxyfera and 

anammox strains determine individual competition advantages and outcomes of 

competition interactions.  
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In the environment, M. oxyfera bacteria depend on some community members for 

the supply of nitrite. Thus, ammonia oxidizers and nitrate reducing organisms are 

essential partners, however, little is known about possible interactions with these 

organisms. The first described N-AOM culture contained both nitrate-reducing 

archaea (group AAA) and M. oxyfera bacteria (Raghoebarsing et al., 2006). By now 

it is known that group AAA archaea reduce nitrate to nitrite (Baoli Zhu, PhD thesis, 

Haroon et al., 2013), which can be effectively scavenged by M. oxyfera. Since both 

use methane as the electron donor, a natural co-occurance of both is a very likely 

scenario, since also group AAA archaea would benefit from the removal of toxic 

nitrite. In contrast, no studies have yet investigated possible interactions with aerobic 

ammonia oxidizers. Both would benefit from each other where M. oxyfera would 

revome toxic nitrite and ammonia oxidizers would make create anoxic environment 

for M. oxyfera by respiring oxygen. It would be particularly interesting to investigate 

whether ammonia oxidizing bacteria or Thaumarchaeota would be the preferred 

metabolic partners and what environmental factors would determine possible 

metabolic partner preference. Also here, total community DNA sequencing and 

culturing could provide some insights. 

Moreover, in view of previously discussed metabolic plasticity of methanotrophic 

organisms, and in particular of M. oxyfera bacteria, it cannot be excluded that also 

substrates other than methane could be used depending on varying environmetal 

conditions. This would inevitably add another level of complexity to investigations 

of metabolic interactions with other organisms. 

 

Iron-dependent anaerobic oxidation of methane: in quest for microbial key 

players 

 

Within a sediment column, methane produced in deeper anoxic layers diffuses 

through zones of alternative electron acceptors before it reaches the oxic/anoxic 

interface where nitrite-, nitrate- and oxygen-dependent methanotrophs are active. 

During the past few decades a combination of geochemical, biogeochemical and 

molecular studies provided solid evidence for the importance of sulfate for methane 

oxidation in marine sediments which is performed by consortia of ANME archaea 

and sulfate-reducing bacteria at the sulfate-methane transition zone (SMTZ). The 

majority of methane is oxidized in this zone before ever reaching the upper sediment 

layers. Here, methane is oxidized by methanogen-related archaea via the methyl-

coenzyme M reductase (Mcr) and the reducing equivalents are shuttled to partner 
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sulfate-reducing bacteria. However, in freshwater and brackish environments where 

overall salinity and sulfate concentrations are low, other electron acceptors like 

oxidized metal species (e.g., birnessite, ferrihydrite, goethite, magnetite etc.) play a 

more important role for anaerobic respiration. Several environmental studies have 

provided evidence for metal-dependent methane oxidation activity in various 

environments, but underlying processes still remain elusive. Thus, solving the 

physiological and biochemical enigma responsible for observed activities could 

provide an important insight into the methane cycling processes in iron-rich 

sediments. Here, based on its biogeochemical characteristics of abundant reactive 

iron oxides below a narrow SMTZ where sulfate concentrations stay below the 

detection limit, the Bothnian Sea sediment provides a suitable ecosystem to study 

the iron-dependent anaerobic methane oxidation (Fe-AOM). Our batch incubations 

with reactive iron oxides and added methane showed that Fe-AOM was indeed active 

the Bothnian Sea sediment and subsequent metagenomic sequencing revealed 

several groups of organisms being stimulated by added iron and methane. Thus, a 

specific group of organisms responsible for observed activities could not be 

identified, which rather pointed to a possibility of a metabolic network of different 

groups involved either directly in iron reduction and methane oxidation or indirectly 

in stimulation of the former by produced metabolites. Furthermore, there was 

evidence for a functional cryptic sulfur cycle which was indicated by enrichments of 

thiosulfate and sulfite reductase encoding genes in active incubation slurries. 

However, the phylogenetic affiliation of the detected sulfite reductase genes revealed 

that they belonged to various sulfate reducing bacteria without a clear dominance of 

Desulfobacterales which have been implicated as metabolic partners for sulfate-

dependent anaerobic methane oxidation (S-AOM). Thus, the increase of these genes 

might have been decoupled to AOM since the putatively fermentative Clostridia – 

strongly enriched in our incubation slurries – could have provided substrates for 

microbial sulfate reduction in form of various fermentation products. In order to 

investigate whether the observed increase in sulfite reductase genes was indeed 

coupled to AOM via a cryptic sulfur cycle, a modified experimental set up is needed 

and will be perfumed in follow up studies. Sulfate could be provided in different 

concentrations to Fe3+-amended and Fe3+-free incubations with methane, and the 

associated methane oxidation activities and microbial community changes could be 

investigated. Furthermore, an application of microbial sulfate reduction inhibitors 

might proof to be feasible, however, it cannot be excluded that also other metabolic 

processes can be co-inhibited, in particular the Fe-AOM. 
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The community analysis of active Fe-AOM batch incubations also showed increases 

in both 16S rRNA and McrA encoding genes assigned to ANME-2a archaea. It is 

tempting to conclude that these archaea were directly involved in the observed Fe-

AOM activity, however, as mentioned above, a possibility for an active S-AOM via 

a cryptic sulfur cycle at least to some degree cannot be excluded. An interesting 

genomic feature of this particular type of ANME archaea is the high abundance of 

cytochrome c encoding genes which has also been shown for another closely related 

nitrate-reducing ANME-like archaeon, Methanoperedens nitroreducens (Haroon et 

al., 2013, Wang et al., 2014, Kletzin et al., 2015). Based on this feature, the latter 

has been speculated to be able to reduce reactive iron (Kletzin et al., 2015). In case 

ANME-2a archaea can use their abundant cytochrome-containing proteins for 

electron transfer to the outer membrane, two scenarios for their involvement in Fe-

AOM would be possible: direct reduction by the transfer of electrons onto the iron 

particle and indirect reduction either by reduction of some kind of redox shuttles or 

shuttling of electrons to an iron-reducing partner. The dominance of the same ANME 

genotype in the SMTZ of the Bothnian Sea sediment transect points to its ability to 

perform S-AOM. However, it has been discussed previously that based on their 

genomic features ANME-2a archaea might be metabolically flexible (Wang et al., 

2014). Thus, depending on environmental conditions, the usage of both sulfate and 

iron as electron acceptors could still be possible. However, this questions could only 

be answered with an enrichment and subsequent physiological characterization of 

this particular Bothnian Sea specific ANME-2a lineage. Additionally, co-cultures of 

related archaea with Desulfuromonas-like iron reducers could be performed in order 

to investigate possibilities for interspecies reducing equivalent transfer. 

Besides the ANME-2a, also the McrA encoding genes of several methanogens 

(Methanosarcina, Methanoregula and Methanomassiliicoccus) increased in 

abundance in our Fe-AOM incubations. Although involved in methanogenesis, it has 

been shown in the past that members of Methanosarcina can oxidize some methane 

to carbon dioxide (Zehnder & Brock, 1979). This could have contributed to the 

observed labeled CO2 production. It is likely that the increase in methanogens was 

stimulated by fermentative Clostridia which would have provided substrates for 

methanogenesis in form of carboxylic acids and hydrogen. In this case, their activity 

would contribute to the “dilution” of 13C-labeled methane with unlabeled methane 

originating from the above mentioned clostridial substrates. 
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Genomic potential for nitrogen cycle in the Bothnian Sea sediment 

 

In addition to investigations of methane cycling processes in the Bothnian Sea, also 

the genomic potential for nitrogen cycle was analyzed. It appeared that full 

denitrification to N2 was the most important process based on the abundance of genes 

involved in each enzymatic step. Other anaerobic processes such as dissimilatory 

nitrite reduction to ammonium (DNRA), anaerobic ammonium oxidation 

(anammox) and nitrogen fixation seemed to be of only minor importance. The 

aerobic part was dominated by ammonia oxidizing Thaumarchaeota and their 

genomic biomarkers based on 16S rRNA, AmoA and NirK encoding genes were 

detected in all analyzed depths including deeper anoxic layers. This observation 

seems obscure since oxygen is absent in the deeper layers. Interestingly, similar 

trends were observed in marine sediments (Jorgensen et al., 2012). This points to the 

ubiquitous occurrence of these deep ammonium oxidizer-like organisms which most 

likely employ a metabolism other than aerobic ammonium oxidation. It cannot be 

excluded, however, that these genomic markers are remnants from the past when this 

sediment layers still contained oxygen. Since an alternative metabolism is another 

likely possibility, the potential substrates and electron acceptors are unknown. 

Nevertheless, ammonium might still play a role as the possible substrate with an 

implication for anaerobic ammonium oxidation with electron acceptors other than 

oxygen or nitrite. This novel metabolism could for example be coupled to iron oxide 

or sulfate reduction which would have major implications for sedimentary nitrogen 

cycling and add another puzzle piece to theoretical microbial metabolisms “yet to be 

discovered”. Here, a genomic approach with full genome assembly might be a 

suitable approach since the genomic data might provide some cues about its 

metabolic features and subsequently lead to successful enrichments and further 

physiological characterization. Surprising observations were also made regarding 

the community composition and distribution of anammox bacteria within the 

sediment column. Here, the majority of anammox genomic biomarkers including 

16S rRNA, Hzs and Hao encoding genes were detected in the S-AOM sediment 

sample and not at the oxic/anoxic interface where biogeochemical conditions would 

imply a higher availability of nitrite – the electron acceptor for anammox 

metabolism. PCR amplification of hzsA genes indicated that this peak of anammox 

biomarkers was located at the top of sulfate-methane transition zone. Furthermore, 

metagenomics revealed potentially novel anammox species closer related to 

Kuenenia, while the anammox biomarkers at the oxic/anoxic interface were mostly 
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related to Scalindua. This vertical stratification is intriguing and was so far never 

reported before. It remains to be shown whether these deep located anammox 

bacteria are active or dormant, and in case of their activity where they would derive 

electron acceptor for respiration. Enrichment cultures of these potentially novel 

anammox bacteria from the original sediment would enable to perform their 

physiological characterization which in turn would possibly shed more light on this 

peculiar distribution pattern. Moreover, genome assemblies and environmental 

transcriptomics could be used for comparative genomics and transcriptomics with 

the so far sequenced and characterized anammox species. 
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Summary/Synthesis 
 

Since the discovery in 1906 by Söhngen that methane can support growth of 

microorganisms, it was believed for a long time that methane could only be 

transformed in the presence of oxygen and remained inert in anoxic waters and 

sediments. It occurred as impossible that any other environmentally relevant oxidant 

could have a reduction potential high enough to be used for the oxidation of methane. 

Anaerobic oxidation of methane (AOM) seemed to be an “impossible” process until 

roughly 40 years ago when biogeochemical profiles and compound flux calculations 

in marine waters and sediments gave first hints that methane was not as stable under 

anoxic conditions as previously believed.  

From that time onwards, AOM with sulfate as electron acceptor was shown to 

attenuate up to 90% of methane in anoxic marine sediments indicating its major 

importance for global carbon cycling. Moreover, we now also know that not only 

sulfate but also nitrogen oxides can be used for AOM and several biochemical 

mechanisms can be used by responsible organisms. Methylomirabilis oxyfera is one 

of those organisms which oxidizes methane under anoxic conditions, however it still 

uses the power of oxygen for C-H bond breakage in methane. This elegant 

biochemical solution to methane activation arises from the dismutation of nitric 

oxide to molecular nitrogen and oxygen, a novel reaction which was till then 

unknown to biology. 

Since its discovery, numerous molecular studies have provided strong indications 

for the ubiquity of M. oxyfera bacteria in diverse habitats pointing to its important 

role in methane cycling. However, the knowledge about its physiology still remains 

to be fully explored thus making it difficult to draw conclusions about niche 

specialization, activity and potential interactions with other organisms. 

In chapter 2, we addressed the specific isotopic signature which M. oxyfera bacteria 

impose during their methane oxidizing activity. As isotopically lighter substrates 

react faster, they are preferentially used by enzymes at non-limiting substrate 

conditions. During aerobic methane oxidation, the isotope fractionation is 

hypothesized to occur at the first and irreversible step of the pathway – at the 

methane monooxygenase. Various methanotrophs were shown to produce isotopic 

signatures which were not correlated to their phylogenetic affiliation or methane 

monooxygenase protein sequence. Our research showed that also the isotopic 

signature of M. oxyfera was no different to aerobic methanotrophs, and that all values 
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fell within a relatively narrow range. Previous molecular studies revealed habitats 

which contain considerable populations of M. oxyfera-like bacteria. Integration of 

methane isotope measurements in those habitats in combination with methane flux 

modelling, molecular approaches and classical batch activity measurements would 

provide a more complete picture on the role and importance of M. oxyfera in natural 

systems. 

In context of environmental detection of active methanotrophy, numerous studies 

were based on the knowledge of methanotrophs assimilating at least half of their 

cellular carbon from methane, which would be reflected in the isotopic signature of 

the carbon atoms in lipids and DNA of methanotrophic bacteria. Thus, heavy 13C-

labeled methane was used for incubations of environmental samples in order to 

detect active methanotrophs by extraction and amplification of 13C-labeled DNA 

(DNA-SIP). While this still applies to so far known proteobacterial aerobic 

methanotrophs, recently discovered verrucomicrobial aerobic methanotrophs were 

shown to use Calvin Cycle for CO2 fixation. Thus, the incorporation of C-isotope 

label from methane would occur to a far lesser degree indirectly from methane-

derived CO2 and probably fail to detect these methanotrophs. In chapter 3, we 

showed that also M. oxyfera-like methanotrophs fix CO2 via the Calvin Cycle. These 

recent findings point to the necessity for modified DNA-SIP methods for improved 

detection of methanotrophy in environmental samples. 

Despite the available genome information and some physiological and biochemical 

studies on M. oxyfera bacteria, their metabolic pathway still needs further 

investigation. Here, nitric oxide is of particular interest as it was hypothesized to be 

dismutated to nitrogen and oxygen by a hypothesized Nod enzyme. However, the 

mechanism remains elusive and in view of the genomic potential of M. oxyfera to 

metabolize NO, further research is needed. Our nitric oxide exposure experiments 

described in chapter 4 revealed severe stress response both at the transcriptomic and 

physiological levels at micromolar concentrations of free NO. This was evident from 

downregulation of central metabolic enzyme encoding genes involved in both 

nitrogen and methane metabolism. Also upregulation was observed, however, it 

mostly involved unannotated DNA regions on the M. oxyfera genome. Manual check 

and possible reannotation of those DNA regions could provide some insight into 

their function. This remains subject for future investigation. The activity started to 

recover after free NO concentration fell under 1 µM, however, the downregulation 

of central metabolic genes seemed to continue. Following studies should focus on 

concentrations of NO below 1 µM and include 15N-labeled NO for more precise 
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tracing of its metabolites. Of particular interest is the role of the conventional qNor, 

but also possible differential expression of two paralogues of putative Nod enzymes. 

 

Anoxic brackish sediments – hot-spots of element cycling 

Within a sediment column, methane produced in deeper anoxic layers diffuses 

through zones of alternative electron acceptors before it reaches the oxic/anoxic 

interface where nitrite-, nitrate- and oxygen-dependent methanotrophs are active. 

During the past few decades a combination of geochemical, biogeochemical and 

molecular studies provided solid evidence for the importance of sulfate for methane 

oxidation in marine sediments which is performed in consortia of ANME archaea 

and sulfate-reducing bacteria at the sulfate-methane transition zone. The majority of 

methane is oxidized in this zone before reaching upper sediment layers. Here, 

methane is oxidized by methanogen-related archaea via the methyl-coenzyme M 

reductase and the reducing equivalents are shuttled to partner sulfate-reducing 

bacteria. However, in freshwater and brackish environments where overall salinity 

and sulfate concentrations are low, other electron acceptors like oxidized metal 

species (e.g., birnessite, ferrihydrite, goethite, magnetite etc.) play an important role 

in anaerobic respiration. Several environmental studies have provided evidence for 

metal-dependent methane oxidation activity in various environments, but underlying 

processes still remain elusive. In chapter 5, we investigated the potential of in-situ 

microbial community for iron-dependent anaerobic methane oxidation (Fe-AOM) in 

the Bothnian Sea sediments. Due to its non-steady state diagenetic history, abundant 

iron oxides have been preserved below a shallow sulfate-methane transition zone 

and based on previous geochemical analysis, Fe-AOM was hypothesized to take 

place in these sediments. Our batch incubations of original sediment from iron- and 

methane-rich anoxic layers showed significant iron-dependent methane oxidation 

activity. Analysis of total DNA could not identify one specific group of organisms 

responsible for the process, but rather pointed to an interplay of several potential 

metabolic partners each either involved in iron reduction, methane oxidation or 

stimulation of both with production of metabolites. We identified population 

increases in known methanogens related to Methanosarcina, Methanoregula and 

Methanomassiliicoccus, anaerobic methanotrophic archaea closely related to the 

ANME-2a clade, iron-reducing bacteria from the order Desulfuromonadales, 

putative fermentative Clostridia and thiosulfate/sulfate reducing bacteria. The role 

of methanotrophic archaea observed in our incubations is of particular interest since 

the genomes of most closely related organisms contain various cytochrome c 
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proteins in great abundance and the possibility of a direct electron transfer has been 

discussed as a potential mechanism for Fe-AOM. It remains unclear whether the 

Bothnian Sea specific ANME-2a subcluster can oxidize methane by directly 

coupling it to iron reduction, shuttling the reducing equivalents to iron reducers or 

even sulfate reducers which would derive sulfate from abiotic sulfide oxidation by 

reactive iron during a cryptic sulfur cycle. As we observed the same genotype of 

ANME archaea within the sulfate-methane transition zone, it shows that these 

archaea are involved in sulfate-dependent anaerobic methane oxidation. An 

enrichment of these archaea would enable further physiological characterization and 

show whether they also could be involved in iron transformations. 

In chapter 6, we investigated the nitrogen cycle potential of the low salinity, 

oligotrophic sediment of Bothnian Sea. Full denitrification to N2 seemed to dominate 

the anaerobic part of the N-cycle, while nitrogen fixation, DNRA and anammox 

seemed to be of only minor importance. The aerobic ammonia oxidation was 

dominated by ammonia oxidizing Thaumarchaeota which seemed to occur also in 

deeper anoxic layers. This observation remains enigmatic, since also other studies 

reported similar results at other marine locations. The metabolism of these deep 

sediment Thaumarchaeota could be different from aerobic ammonia oxidation and 

it remains elusive why ammonia monooxygenase still can be detected in those deep 

sediment layers. 

Surprisingly, more anammox bacterial biomarkers were detected at the sulfate-

methane transition zone instead of oxic/anoxic interface where oxidized nitrogen 

species would be available for anammox respiration. PCR results indicated that this 

peak of anammox biomarkers was located at the top of sulfate-methane transition 

zone. Furthermore, metagenomics revealed potentially novel anammox species 

closer related to freshwater genus Kuenenia, while the anammox biomarkers at the 

oxic/anoxic interface were mostly related to marine species of Scalindua genus. This 

vertical stratification is intriguing and was so far never reported before. It remains to 

be shown whether these deep located anammox bacteria are active or dormant, and 

in case of their activity where they would derive electron acceptor for respiration. 

Enrichment cultures of these potentially novel anammox bacteria from original 

sediment would enable to perform their physiological characterization. 

 

Extensive AOM research from last decades has greatly advanced our understanding 

of global methane and carbon cycles. A process which was disregarded as 

“impossible” has been shown to be a major player in a wide range of ecosystems. 
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We also know now that there is no mechanistically “one fits all” solution, but rather 

a variety of biochemical inventions and metabolic co-operations. It seems that our 

knowledge of it is still relatively limited, and thus in the near future running deeper 

into the AOM “rabbit hole” will bring more exiting examples of “impossible things” 

performed by “impossible” microbes. 
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Samenvatting 
 

Sinds de ontdekking in 1906 door Nicolas Söhngen, dat micro-organismen op 

methaan kunnen groeien, dacht men lang dat methaan alleen kon worden omgezet in 

aanwezigheid van zuurstof en inert was in anoxische milieus. Het werd “onmogelijk” 

gedacht dat andere electron acceptoren zoals nitraat, ijzer of sulfaat gebruikt konden 

worden voor de oxidatie van methaan. De mogelijkheid van anaërobe oxidatie van 

methaan (AOM) werd aan de kand geschoven tot ongeveer 40 jaar geleden, toen 

biogeochemische profielen en flux berekeningen in mariene ecosystemen de eerste 

aanwijzingen gaven dat methaan niet zo stabiel was onder zuurstofloze condities als 

voorheen werd gedacht. 

Vanaf dat moment, bleek AOM met sulfaat als elektronenacceptor zo’n 90% van de 

methaan in zuurstofloze mariene sedimenten te om te zetten waarmee ook duidelijk 

werd dat AOM een grote rol kon spelen in de mondiale koolstofcyclus. Bovendien 

weten wij nu dat niet alleen sulfaat maar ook stikstofoxides kunnen worden gebruikt 

voor AOM en dat miscroorganismen verschillende biochemische mechanismen 

kunnen gebruiken. Methylomirabilis oxyfera is een van die organismen die methaan 

kan oxideren onder anoxische omstandigheden, maar toch gebruik maakt van de 

kracht van zuurstof voor het breken van de C-H binding in methaan. Deze elegante 

biochemische oplossing die M. oxyfera uitgevonden heeft is de dismutatie van 2 

moleculen stikstofmonoxide tot moleculaire stikstof en zuurstof; diet is een nieuwe 

reactie die tot nu toe onbekend was in de biologie. Sinds deze ontdekking, hebben 

tal van moleculaire studies sterke aanwijzingen verschaft voor de anwezigheid van 

M. oxyfera bacteriën in diverse habitats, die mogelijk wijzen op een belangrijke rol 

in de methaan-cyclus. Echter, de kennis over de fysiologie van M. oxyfera is nog 

weining onderzocht, waardoor het moeilijk is om conclusies te trekken over niche 

specialisatie, activiteit en mogelijke interacties met andere organismen. 

In hoofdstuk 2 hebben we de specifieke isotoopsignatuur van M. oxyfera bacteriën 

onderzocht die zij tijdens de oxidatie van methaan achterlaten. Isotopisch lichtere 

substraten (bijvoorbeeld 12CH4) worden bij vorkeur gebruikt door enzymen wanner 

het substraat niet beperkended is. Tijdens aërobe methaanoxidatie, wordt 

verondersteld dat de isotopenfractionering optreedt tijdens de eerste en 

onomkeerbare activatie door methaan monooxygenase. Verschillende 

methanotrofen bleken isotope kenmerken te produceren die niet gecorreleerd waren 

met hun fylogenetische affiliatie op basis van methaan monooxygenase 
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eiwitsequenties. Ons onderzoek toonde aan dat ook de isotoopfractionering door M. 

oxyfera niet heel anders was dan die aërobe methanotrofen, en dat alle tot nu toe 

waargenomen waardes binnen een relatief smalle bandbreedte vielen. Moleculaire 

studies laten zien dat er aanzienlijke populaties van M. oxyfera-achtige bacteriën in 

ecosystemen aanwezig kunnen zijn. Integratie van methaan isotoop metingen in deze 

systemen, in combinatie met methaan-flux modellering, moleculaire studies, en 

klassieke activiteit metingen, zou een completer beeld over de rol en het belang van 

M. oxyfera in natuurlijke systemen kunnen geven.  

In de context van milieu-detectie van actieve methanotrofie, werden er bij talrijke 

studies vanuit gegaan dat methanotrofen ten minste de helft van hun cellulaire 

koolstof uit methaan assimileren, wat weerspiegeld word in de isotopische waardes 

van de koolstofatomen in lipiden en DNA van methanotrofe bacteriën. Daarom 

wordt er vaak zwaar 13C-gelabeld methaan gebruikt voor incubaties van 

milieumonsters teneinde de actieve methanotrofen te detecteren met behulp van 13C-

gelabeld DNA (DNA-SIP). Hoewel dit nog steeds geldt voor de tot nu toe bekende 

proteobacteriële aërobe methanotrofen, bleek dat de onlangs ontdekte 

verrucomicrobiële aërobe methanotrofen de Calvin Cyclus gebruiken voor CO2-

fixatie. In dit soort methanotrofen zou daarom de opname van 13C-gelabeld methaan 

in veel mindere mate optreden en ze zullen waarschijnlijk niet eens gedetecteerd 

worden met deze methode. In hoofdstuk 3 hebben we aangetoond dat ook M. 

oxyfera-achtige methanotrofen CO2 opnemen middels de Calvin cyclus en het 

enzyme ribulose-bisfosfaat carboxylase. Deze bevinding wijst op de noodzaak om 

de DNA-SIP methoden te optimaliseren zodat ook autotrofe methanotrofen in 

milieumonsters gedecteerd kunnen worden. 

Ondanks de beschikbare genoom informatie en een aantal fysiologische en 

biochemische studies over M. oxyfera bacteriën, is meer onderzoek nodig moet om 

hun metabole route beter te begrijpen en experiminteel te verifiëren. 

Stikstofmonoxide is hier van bijzonder belang vanwege de mogelijke omzwtting 

naar stikstof en zuurstof door een zogenaam NO dismutase eiwit (NOD). In onze 

experimenten waarin we M. oxyfera blootstelden aan micromolare concentraties 

stikstofmonoxide (hoofdstuk 4), bleek er in de cellen een stress respons op zowel 

transcriptoom als fysiologisch niveau op te treden.Dit bleek uit de repressie van 

genen die coderen voor de centrale metabole enzymen in zowel het stickstof als 

methaan metabolisme. Daarnast werd ook eent aantal zogenaamde gene die coderen 

voor hypothetische eiwitten sterker to expressie gebracht onder invloed van NO. 
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Handmatige analyse van deze gene kan mogelijk inzicht geven in hun mogelijke 

functie. Dit is een interessant onderwerp voor toekomstig onderzoek. 

Nadat de vrije NO concentratie onder 1 µM kwam in ons experiment, kwan de 

activitiet van M. oxyfera cellen weer opgang, maar de expressie van genen voor het 

centrale metabolisme bleef laag. Verfolg studies moeten zich richten op 

exprerimenten waar de NO concentraties lager zijn dan 1 µM en waar 15N-gelabeld 

NO word toegevoegd om intermediaire metabolieten nauwkeuriger in kaart te 

brengen. Van bijzonder belang is daarbij de rol van het conventionele qNor gen, 

maar ook de mogelijke differentiële expressie van twee paralogen van de vermeende 

NO dismutase enzymen. 

 

Zuurstofloze brakke sedimenten - hot-spots van de element cycli 

 

Methaan dat word geproduceerd in de diepere anoxische lagen zal in sedimenten 

omhoog diffunderen en daarbij zones van alternatieve electronenacceptoren 

doorkruisen voordat methaan het oxische/anoxische grensvlak bereikt. Gedurende 

de laatste decennia toonde een combinatie van geochemische, biogeochemische en 

moleculaire studies in marine sedimenten al aan hoe belangrijk sulfaat voor anaërobe 

methaanoxidatie is, die wordt uitgevoerd in consortia van ANME archaea en sulfaat-

reducerende bacteriën in de sulfaat-methaan overgangszone (SMTZ). Het merendeel 

van het methaan wordt al geoxideerd in deze zone alvorens methaan de bovenste 

sedimentlagen bereikt. In de SMTZ wordt methaan geoxideerd via het methyl-

coenzym M reductase van aan methanogenen verwandte archaea en worden de 

reductie equivalenten overgedragen naar de sulfaat-reducerende partner bacteriën 

mogelijk via dunne nanodraden en multiheme cytochromen. 

Echter, in zoet water en brakke omgevingen waar totale zout en sulfaat concentraties 

laag zijn, spelen andere elektronen acceptoren zoals geoxideerde metalen (bv 

birnessiet, ferrihydriet, goethiet, magnetiet etc.) mogelijk een belangrijke rol in de 

anaërobe ademhaling en methaanoxidatie. Enkele studies in deze ecosystemen 

hebben al sterke aanwijzingen gegeven voor metaal afhankelijke methaanoxidatie, 

maar de onderliggende processen blijven tot nu toe nog steeds een raadsel. In 

hoofdstuk 5 onderzochten we het potentieel van de in-situ microbiële gemeenschap 

voor ijzer-afhankelijke anaërobe methaanoxidatie (Fe-AOM) in de Botnische Zee 

sedimenten. Vanwege de niet-steady state diagenetische geschiedenis zijn 

behoorlijke hoeveelheden ijzeroxiden bewaard gebleven beneden de SMTZ, die 

mogelijk Fe-AOM zoden kunnen laten plaats vinden. Onze incubaties van sediment 
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uit de ijzer- en methaan-rijke anoxische lagen lieten een significante ijzer-

afhankelijke methaanoxidatie activiteit zien van 1.1 µmol/g/jaar. Een metagenoom 

analyse van DNA geextraheerd uit deze incubaties toonde aan dat er moglijk een 

samenspel is van verschillende potentiële metabole partners die elk betrokken 

kunnen zijn bij ijzerreductie, methaanoxidatie of elkaar van metabolieten kunnen 

vorzien. De metagenoomanalyse liet zien dat de celaantallen van een aantal 

verschillende groepen microorganismen toenamen; dit waren bekende methanogene 

archaea gerelateerd aan Methanosarcina, Methanoregula en 

Methanomassiliicoccus, anaërobe methanotrofe archaea die nauw verwant zijn aan 

de ANME-2a clade, ijzerreducerende bacteriën uit de orde van Desulfuromonadales, 

fermentatieve Clostridia en bacteriën die betrokken zijn bij de zwavelcyclus. De rol 

van methanotrofe archaea in onze incubaties is van bijzonder belang omdat de 

genomen van de meest nauw verwante organismen grote aantallen van verschillende 

cytochroom c bevatten en daarmee de directe elektronenoverdracht als een potentieel 

mechanisme van Fe-AOM mogelijk maken zoals recent ook voor S-AOM is 

aangetoond. Het blijft onduidelijk de specifieke ANME-2a subcluster archaea in de 

Botnische Zee methaanoxidatie direct kunnen koppelen aan ijzerreductie, of dat er 

indirecte mechanismen bij betrokken zijn, dat er zelfs zogenaamde “geheime” 

abiotische zwavelcyclus bij betrokken is. Een actieve verrijkingscultuur van de 

gevonden AOM archaea zou hun fysiologische karakterisering verder mogelijk 

maken en ook kunnen laten zien of ze ook betrokken zijn bij de reductie van ijzer. 

In hoofdstuk 6 onderzochten we de stikstofkringloop in sedimenten van de 

Botnische Zee. Denitrificatie naar N2 leek de anaërobe N-cyclus te domineren, 

terwijl stikstoffixatie, DNRA en anammox van minder belang leken te zijn. De 

aërobe ammoniak-oxidatie wordt gedomineerd door Thaumarchaeota die zich ook 

in de diepere zuurstofloze bleken voor te komen. Wat de Thaumarchaeota daar 

precies doen blijft raadselachtig, maar ook andere studies hebben deze archaea in 

anoxische sedimentlagen aan getroffen. 

Verrassenderwijs werden er ook meer anammox-bacteriële biomarkers ontdekt in de 

SMTZ in plaats in oxische/anoxische overgangsfase. De PCR resultaten gaven aan 

dat deze piek van anammox biomarkers aan de bovenkant van de SMTZ lag. 

Bovendien, onthulde de metagenoomanalyse ook potentieel nieuwe anammox-

soorten die dichter verwant bleken te zijn aan de zoetwater Kuenenia soorten. De 

anammox biomarkers in oxische/anoxische overgangszone waren meer gerelateerd 

aan de mariene Scalindua anammox-soorten. Deze verticale stratificatie is 

intrigerend en is tot nu toe nog niet vaak eerder geobserveerd. Er moet nu nog 



174 
 

aangetoond worden of anammox-bacteriën in de SMTZ dawerkelijk actief zijn, en 

welke verbinding ze als electronenacceptor voor hun ademhaling zouden gebruiken. 

Ophopingsculturen van deze potentieel nieuwe anammox-bacteriën uit in-situ 

sedimenten zou ons in-staat stellen hun fysiologische eigenschappen te 

karakteriseren. 

 

Het uitgebreide AOM onderzoek van de laatste decennia heeft ons begrip van de 

mondiale methaan en koolstof cycli sterk utgebreid. Het zogenaamde "onmogelijke" 

process van anaërobe methaanoxidatie is nu daadwerelijk aangetoond en het blijkt 

een belangrijke speler te zijn in een groot aantal ecosystemen. We weten nu ook dat 

er geen mechanistisch "one fits all" oplossing bestaat, maar dat er diverse 

biochemische mechanismen en verschillende metabolische 

samenwerkingsverbanden bij betrokken kunnen zijn. Er zijn due nog genug 

uitdagingen om in de nabije toekomst nieuwe ontdekkingen op het gebied van 

anaërobe methaanoxidatie te doen en daarbij nieuwe “onmogelijke” organismen te 

ontdekken.
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