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Abstract—The stability and availability required on the 
electrical power systems with wind sources are directly related to 
the accuracy of a short-term forecasting wind speed model. This 
paper presents a wind speed forecasting model based on one of 
the widely used time-series regression models, namely the Auto-
Regressive Integrated Moving-Average (ARIMA). The method 
requires historical wind speed data for a given area, collected 
over a long time interval, in order to evaluate the required 
parameters of the wind speed ARIMA model. 

Keywords: wind power, time-series regresion techniques, wind 
speed forecasting.  

I. INTRODUCTION 
In the last decades, a growing interest in renewable energy 

resources has been observed. Unlike other renewable energy 
sources, wind energy has become competitive with 
conventional power generation sources and, therefore, the 
application of wind turbine generators has the highest growth 
among other sources. Wind is one of fastest growing energy 
source and it is considered as an important alternative to 
conventional power generating sources. 

Wind generation brings a great amount of benefit to power 
system, such as a cheaper energy comparing with the 
conventional generation, a lower gas emission, a faster 
implementation of the wind systems projects, a higher 
availability of wind energy resources for large areas, and so 
forth. Meantime, wind generation brings a series of difficulties 
to the traditional power systems, such as the uncontrollability 
of power generation, intermittence of generated power, the 
wind speed presents irregularly fluctuating and intermittent 
behaviour and also a poor predictability. 

 The availability of short-term forecasting wind speed 
model for a particular area is essential for operation planning of 
wind energy systems. This paper presents an application of 
time-series regression models in order to establish a model for 
the mean daily wind speed for an area located in north-east of 
Romania. 

II. WIND FORECASTING NECESSITY  
The operation of power systems with renewable energy 

sources has to consider the stability of the electrical power 
system, which is based on a reliable power generation that is 

permanently balanced by the load. In power system operations, 
it is imperative necessary to ensure the adequate electric power 
capacity, having in view the continuously changing of 
operating conditions. In a traditional power system, the System 
Operator supervises all available controllable resources, in 
order to ensure a safety reserve in operation of power system. 
The wind generation is an uncontrollable generating resource, 
depending on wind availability, thus the integration of wind 
generation into an electric power system will have a major 
impact on the system operation process. 

One of the most important requirements for wind 
generation planning and operation in the power systems is an 
accurate wind speed forecasting. The operation of wind 
generation should be carefully performed in order to mach the 
system’s needs with the different forecasting time frames [1]. 
The applications of wind power forecasts over a different 
period of time can be classified into long-term and short-term 
intervals: 

• Long-term wind speed forecasting usually covers few 
years ahead, considering the monthly and yearly 
values. Wind generation depends on geographical 
location and climatic condition, varying from season to 
season and from year to year. The long-term wind 
forecasting is used for development planning of wind 
power generation as well as the power system 
infrastructure, necessary for integration of the wind 
energy systems. The decisions of developing of power 
system infrastructure (including transmission line and 
substations) are made with looking ahead to meet 
demand growth and satisfy reliability requirement.  

• Short-term forecasting requires information about the 
wind speed from one hour up to a few days, being 
necessary to schedule the available generating units 
based on the predicted load demand and wind 
generation, as well as other system conditions, such as 
transmission constraints and generating units 
maintenances. The hourly schedules of generating 
units, also known as real-time operation, are crucial 
information for an economical and safety operation of 
power systems with wind resources. 
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A literature survey [1], [2] indicates that other authors also 
define the concept of medium forecasting, which are usually 
used to estimate the wind speed from a week to a year time 
interval. 

III. TIME-SERIES MODELS  
Time-series can be defined as a sequential set of data 

measured over a given time interval, commonly ordered in 
time, such as the hourly, daily or monthly measurements. The 
data term has the meaning of discreet values measured at equal 
intervals of time. The methodology which concerns with the 
analysis of this class of date is known as the analysis of time-
series regression technique or the analysis of dynamical series 
[3]. The basic idea of time-series forecasting is to build an 
accurate matching pattern for available data, after that to use 
this pattern to obtain the forecasted value with respect of the 
time frame. A time-series model predicts the forecasted value 
as a response of time series to a linear combination of its own 
past values and current or past values of other time-series.  

Different numbers of models are used to characterize the 
time- series regression technique. In this section are presented 
the main types of patterns used in time series analysis, which 
are widely used in a large number of practical applications 
[2],[3]. 

A. Auto Regressive process (AR) 
In an auto regressive process by order p, noted as AR(p), 

the current value of the time series, y(t), is expressed as a linear 
relationship between its previous values, being described by 
the following relationship: 

)()(....)2()1()( 21 teptytytyty p +−++−+−= φφφ  (1) 

where iφ  represents autoregressive parameters, which 
considers the influence of values that range between y(t-i) and 
y(t), while )(te  represents a white noise series with mean zero 
and variance 2

eσ , which is independent by y(t-i) terms. Usually, 
AR(p) patterns are expressed using a )(BΦ operator, which 
describes the difference between first to pth behind y(t) process. 
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Therefore, the process y(t) can be considered to be an 
output signal from a transfer filter, 1)( −Φ B , having as the 
input signal a white noise sequence, e(t), as is shown in Fig 1. 
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Fig. 1 - Transfer function for an AR model 

B. Moving Average process (MA) 
In a moving-average process by order q, noted as MA(q), 

the current value of the time series, y(t), is expressed as a linear 
relationship between the current and previous values of a white 
noise series, L),1(),( −tete , as in presented in follows:  

)(....)2()1()()( 21 qtetetetety q −−−−−−−= θθθ  (3) 

where θi represents the moving average parameters. A similar 
application of the operator Ө(B) on the white noise series, 
allows that previous equation to be written as: 

)()()()...1()( 2
2
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Thus, based on previous expression, the time-series process 
can be considered as an output signal from a linear filter, with 
the transfer function Ө(B) and with a white noise sequence, 
e(t),as an input signal, as is depicted in Fig 2. 
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Fig. 2 - Transfer function for a MA model 

C. Auto Regressive Moving Average process (ARMA) 
If the previous processes (MA and AR) are combined 

together, a new class of process can be defined, namely the 
Auto-Regressive Moving Average (ARMA), this being one of 
the widely used time-series process. ARMA procedure 
analyzes and forecasts the time series equally spaced data, the 
mathematical representation of ARMA (p, q) being described 
by the following relationship: 
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)(....)2()1()(

21

21

qtetetete

ptytytyty

q

p

−−−−−−−+

+−++−+−=

θθθ

φφφ
   (5) 

where iφ and θj are called the autoregressive and moving 
average parameters. 

In this case, the y(t) process can be considered as a output 
signal of a linear filter whose transfer function is given by the 
rapport of two polynomials  Ө(B) and )(BΦ , having as a input 
signal a white noise sequence, e(t), as is depicted in Fig 3. 
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Fig. 3 - Transfer function for an ARMA model 

D. Auto Regressive Integrated process with Moving Average 
(ARIMA) 
The above time-series processes, like AR, MA or ARMA 

processes, are called stationary processes. This means that the 
mean of the series and the covariance between the observations 



for any of these processes don’t change in time. Unfortunately, 
many of the practical time series are characterized by a given 
non-stationary behaviour, in which the trends and other 
qvasistationary characteristics vary in time. If the process is 
non-stationary, it is necessary a changing of the process into a 
stationary process [4]. This changing can be conducted in the 
case of non-stationary time series using a differencing process, 
symbolized by ∇  operator, where: 

)()1()1()()( tyBtytyty −=−−=∇   (6) 

Consequently, an order d differentiated time series is 
written as:  

)()1()( tyBty dd −=∇    (7) 

A differentiated stationary series can be modelled using one 
of the AR, MA or ARMA processes, obtaining an integrated 
time series processes. For a series that needs to be d order 
differentiated and that can be modelled as a p and q AR and 
MA processes, the ARIMA(p,d,q) model can be written as:  

=∇Φ )()( tyB d Ө(B)e(t)   (8) 

As a result of daily, weekly, yearly or other periodicities, 
many time series present periodic behaviours in response to 
one or more of these periodicities [5]. Therefore, a seasonal 
ARIMA model should be rewrite in accordance with following 
relationship: 

)()()()()()( teBBtyBB SD
S

dS Θ=∇∇Φ θφ   (9) 

The y(t) series represents an output signal from an unstable 
linear filter whose inside signal is a white noise sequence e(t) 
and whose transfer function is given by the combination of  
processes depicted in Fig 4. 
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Fig. 4 -  Transfer function for an ARIMA model 

IV. NUMERICAL EXAMPLE 
For a numerical analysis, a real wind speed measurement is 

used in the paper to forecast the wind speed values based on 
the time series technique. The wind data used for analysis was 
collected from the north-east area of Romania, over one year. 
The data collection was made at one hour interval, the hourly 
average values being recorded. The data was first examined for 
any missing values or outliers. The missing values have been 
replaced by the average of values from same day, the daily 
time-series values being shown in the Fig 5. 

During the identification process, the first analyze is an 
evaluation of autocorrelations and partial autocorrelations 
functions. The plots of these autocorrelation functions show the 
degree of correlation between past values of the series, as a 
function of the number of days from the past, for that the 
correlation is computed.  
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Fig. 5 Daily wind speed average data base for one year 

Autocorrelation Function
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(Standard errors are white-noise estimates)
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Fig. 6. Autocorrelation function (a) and partial autocorrelation function (b) of 
the wind speed original database 

As can be seen from the Figs 6.a and 6.b, the 
autocorrelation and partial autocorrelation functions indicate 
that the time-series is slightly autocorrelated, with an order 
between 1 and 3, while rest of autocorrelation and partial 



autocorrelation values are between the confidence limits. These 
aspects involve the possibility of an Auto Regressive Moving 
Average model analysis. According to the autocorrelation 
function, it results that the autoregressive transformation 
parameter will be chosen to p=1. Analyzing the partial 
autocorrelation function of the wind speed series, it results a 
value of moving average parameter between q=1÷3. Based on 
the ARMA(1, 1÷3) analyses, it appears the necessity of a 
seasonal differentiation of original series. From the process 
analysis, it results the following optimal model for the original 
wind speed database, namely an ARIMA(1,1,1)(1,0,0), with a 
seasonal lag equal with 12. The estimation of autoregressive 
and moving average parameters have been conducted to 
p=0,76314 and q=0,66582, respectively.  The residual values 
of original database after that ARIMA(1,1,1)(1,0,0) process has 
been applied, are plotted in Fig 7.   

Plot of variable: VMED08
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Fig. 7 Residuals ARIMA (1,1,1)(1,0,0) series  

The autocorrelation and partial autocorrelation functions of 
residual series, indicate that the residuals are uncorrelated, as 
can be seen in Figs. 8 a,b. Moreover, a chi-square statistical test 
applied to the error autocorrelations indicates that the predicted 
error is very close to a white noise with a zero mean.  

Autocorrelation Function
VMED08  : ARIMA (1,1,1)(1,0,0) residuals;
(Standard errors are white-noise estimates)
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Partial Autocorrelation Function
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(Standard errors assume AR order of k-1)
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Fig. 8. Autocorrelation function (a) and partial autocorrelation function (b) of 
the residual series 

From the statistical results can be concluded that the 
ARIMA (1,1,1)(1,0,0) is adequate to model this particular wind 
speed series. For estimation of speed wind values for the next 
30 days, the data has been divided into two groups, namely: 
one data group from January 1 to December 15, for the 
prediction model and the second group from 16th to 31th of 
December for testing and validating the resulting regression 
model. In Fig 9, the dashed central line was created based on 
the estimated ARIMA (1,1,1)(1,0,0) model, while the 
continuous line are the original historical data. The extreme 
dashed line from Fig. 9 shows the limits of estimated values of 
wind speed, in a 0.9 confidence level interval.  
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Fig. 9. Comparison between original and forecasted time-series 

A numerical comparison between original and forecasted 
daily wind database are presented in Table 1. The forecasted 
values of speed wind are generate for the 30 days, from which 
15 days are over the last days from 2008, and others 15 days 
are from beginning of 2009. For these values have been 
computed the residual values, they being tabulated in last 
column of table. 



TABLE I. FORECASTED AND ORIGINAL VALUES OF WIND SPEED 

Day 
No. Forecast Lower 

90% 
Upper 
90% Std.Err. Observed Residual

351 2,439109 -0,58915 5,467364 1,836189 2,222827 -0,216282

352 5,675669 2,63311 8,718230 1,844863 4,842877 -0,832792

353 3,549342 0,49848 6,600203 1,849896 3,612008 0,062666

354 3,770664 0,71498 6,826348 1,852821 3,914502 0,143838

355 3,833222 0,77473 6,891712 1,854522 3,259986 -0,573236

356 2,922760 -0,13736 5,982883 1,855512 3,518218 0,595458

357 2,026027 -1,03505 5,087100 1,856089 2,620609 0,594582

358 3,014286 -0,04734 6,075913 1,856424 2,995469 -0,018817

359 3,797367 0,73542 6,859316 1,856620 3,961013 0,163646

360 2,845871 -0,21627 5,908008 1,856734 2,933191 0,087320

361 2,404439 -0,65781 5,466685 1,856800 2,311085 -0,093354

362 2,433367 -0,62894 5,495677 1,856838 2,796262 0,362895

363 2,333283 -1,01482 5,681391 2,030133 2,039125 -0,294158

364 4,759747 1,40864 8,110854 2,031951 5,851340 1,091593

365 3,070129 -0,28272 6,422982 2,033010 3,001931 -0,068198

366 3,166855 -0,18701 6,520724 2,033626 

367 5,189266 1,83481 8,543727 2,033985 

368 4,287307 0,93250 7,642112 2,034194 

369 2,144318 -1,21069 5,499323 2,034315 

370 2,580753 -0,77437 5,935875 2,034386 

371 3,924387 0,56920 7,279577 2,034427 

372 3,254162 -0,10107 6,609393 2,034451 

373 1,562187 -1,79307 4,917440 2,034465 

374 3,819895 0,46463 7,175161 2,034474 

375 2,392645 -1,66884 6,454126 2,462688 

376 5,271071 1,20322 9,338921 2,466550 

377 3,337712 -0,73384 7,409267 2,468796 

378 3,503920 -0,56979 7,577631 2,470104 

379 4,432694 0,35773 8,507660 2,470865 

380 3,525966 -0,54973 7,601662 2,471308 

  

V. CONCLUSIONS 
The effects of wind speed forecast errors, strictly evaluated 

as the difference between forecasted and real wind speed, will 
lead to abnormally planning and operation conditions. There 
are two cases that could be expected: first, the day-ahead 
forecasted values are less than the real-time actual values and, 
the second one, the day-ahead forecasted values are greater 
than the real-time actual values. In first case, in order to 
maintain optimal operation, some wind generators should be 
curtailed, therefore, the unnecessary operations will increase 
the additional operating cost. In the second case, it is necessary 
to generate power from other sources, power sources that may 
not be available and in this case the generating system may not 
be able to entirely meet the real-time load. So, an accurately 
forecast wind speed is imperative necessary.  

In the paper, an example of ARIMA process was presented 
in order to forecast the day-ahead wind speed values. It should 
be noted, that the method can’t be applicable to all situations. 
So, the used method should be chosen considering more 
factors, such as the time frame, pattern of the data, cost of the 
forecasting, desired accuracy, availability of the data, and also 
the experience of operator. 
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