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 The dynamics of human resource recruitment and training in an uncertain environment creates a 
challenge for many policy makers in various organisations.  In the presence of fuzzy manpower 
demand and training capacity, many companies fear losing critical human resources when their 
employees leave. As such, the development of effective dynamic policies for recruitment and 
training in a fuzzy dynamic environment is imperative. In this frame of mind, a fuzzy systems 
dynamics modelling approach is proposed to enable the policy maker to develop reliable dynamic 
policies relating recruitment, training, and available skills, from a systems perspective. It is 
anticipated in this study that fuzzy system dynamics and optimization approach would help 
organizations to design effective manpower policies and strategies.      
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1. Introduction 

In the real world, corporate manpower systems possess a number of imprecise and dynamic humanistic 
factors which play a significant role in their overall behaviours. Consequently, most of the decision-
making takes place in a dynamic fuzzy environment in which the goals, the constraints and the impacts 
of possible actions are not precisely known. In a demand-driven manpower system, the availability of 
human resources is a key element to ensuring sustainable growth. For many knowledge-based 
organisations characterised by innovative products with short product life cycles and high demand 
uncertainty, cautious investment in manpower is essential. An efficient manpower investment strategy 
demands optimal recruitment and training decisions in order to control manpower systems costs. 
However, due to external uncertainties in the market, it is difficult to precisely determine future 
manpower needs, which creates a challenge for many organisations. As a result, the development of 
effective dynamic policies for recruitment and training is extremely difficult in a dynamic environment 
characterised by uncertain demand. To obtain reasonable results in uncertain environments, it is 
necessary to include management judgement (Zanakis & Maret, 1980). 

Although considerable efforts have been focused on corporate manpower planning, none of them took 
into consideration the model structure and parameters of manpower planning in a dynamic fuzzy 
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environment. Moreover, none of the extant approaches provides an optimal dynamic policy while 
considering manpower system costs. In the absence of robust optimisation techniques, modelling and 
optimisation of manpower systems becomes a difficult management decision problem. In this study, we 
propose a new approach to optimising system dynamics models with application to manpower systems 
in a fuzzy environment. The model considers fuzzy constraints relating to manpower demand and the 
available training capacity in order to develop a reliable dynamic recruitment and training policy, while 
considering the system costs. Fuzzy theory is utilized to model manpower policy optimisation in a 
fuzzy environment in order to obtain an optimal dynamic policy. 

This paper presents a fuzzy-based approach to manpower policy optimisation for a manpower system, 
from a system dynamics perspective. First, a brief literature review is given, followed by a description 
of the manpower optimisation problem. A background to fuzzy modelling is then provided, followed 
by a fuzzy system dynamics model. Finally, numerical experiments and concluding remarks are 
presented. 

2. Related literature 
 

The major objective in corporate manpower planning is to establish a reliable recruitment and training 
strategy so as to match future workforce demand and supply, in line with business or organisational 
objectives (Zanakis & Maret, 1980; Purkiss, 1981). Approaches in literature include descriptive and 
prescriptive models. Descriptive models are based on Markov chain simulation, a method which has 
widely been applied to manpower forecasting (Bechet & Maki, 1987; McClean, 1991). In essence, a 
Markov manpower system describes the uncertain relationship between stocks of manpower in various 
grades (levels) of an organization, and their variation over time. Zanakis and Maret (1980) presented a 
Markov chain application on the supply of over 1000 engineers flowing through various states in a 
large chemical company. Nilakantan and Raghavendra (2005) analysed the control aspects of a 
hierarchical Markov manpower system under the influence of ‘‘proportionality’’ policies that restrict 
recruitment at every level to be proportional to the promotions into that level. In general, the central 
equation in Markov manpower systems is as follows (McClean, 1991), 

     1n t n t P R t   , (1)

where, R(t) is the vector of recruits to each level at time t, ( )n t is the vector of stocks (number in each 

level) at time t,  and P is the transition probability matrix { }ijP p . Mathematical programming 

methods are prescriptive in that they seek to optimally match workforce demand and supply. A review 
of these models is presented in Wang (2005). Zanakis and Maret (1981) formulated a Markovian goal 
programming model with pre-emptive priorities, providing a more flexible tool for corporate manpower 
planning. Mehlmann (1980) developed optimal recruitment and transition strategies for manpower 
systems using dynamic programming, showing that these strategies are linear functions of the present 
state, and of present and future goals. Although these models considered labour costs and recruitment 
policies, much of the reported work overlooked the objective of minimizing the manpower system costs 
such as recruitment costs, training and development costs, and overstaffing and understaffing costs. 
Recently, Rao (1990) developed a dynamic programming model to determine optimal recruitment 
policies, considering recruitment and overstaffing costs. Another major limitation of previous models is 
that they do not consider the system constraints and policies under which a manpower system operates. 

System dynamics modelling is one of a family of continuous system modelling techniques that derives 
from systems thinking and engineering control theory. First developed by Forrester (1961), system 
dynamics is an object-oriented methodology that uses causal loop diagrams, consisting of cause and 
effect variables, to represent structures and interactions of principal feedback loops in a system 
(Forrester, 1994; Sterman, 2004; Morecroft, 2007). Simulation models are developed in form of stock 
and flow variables, where stock variables depict the state of the system and flow variables describe the 
rates of change of the stocks. The net flow determines the rate of change of any stock, that is, 
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)()()( toutflowtinflowstock
dt

d
 , 

(2)

where, inflow(t) and outflow(t) are inflow and outflow values at time t. Systems dynamics is one of the 
most suitable approaches for modelling complex non-linear and dynamic systems (Sterman, 2004). 
Parker and Caine (1996) presented a system dynamics model to capture the dynamic flows of 
manpower through three stages (probationer, staff and senior staff) in a corporate manpower system, 
demonstrating the advantages of system dynamics-based simulation over Markov chain models. 
Recently, Hafeez and Abdelmeguid (2003) presented a system dynamics model to illustrate the 
relationship between recruitment, training, skills and knowledge in a causal loop form. The model can 
be used for time-based dynamic analysis to assist organisations in designing human resource 
management strategies. The aim of the model is to design optimum dynamic policy defined in terms of 
smoothing time for skills loss, skills deficit and training lead time. Wang (2005) modelled army officer 
training as a closed workforce system using system dynamics technique. Other models found in 
literature include the concepts of fuzzy theory (Guerry, 1999) and spreadsheets (Antony and Wilson, 
1990).  

3 The Manpower Optimisation Problem 

The manpower optimisation problem is described as follows, Fig. 1 shows a typical manpower system 
representation at corporate or industrial level (Hafeez & Abdelmeguid, 2003). The manpower system is 
a pull-based system operating in a demand-driven environment, such that recruitment and training 
decisions are triggered in response to manpower demand in the system. Recruitment and training 
operations are organised on discrete time periods such that the model plans activities over a manpower 
planning horizon for the next T time periods ( 1,..., )t T . 
 

 
Fig. 1. A basic system dynamics model for a corporate manpower system 

Flows of manpower occur due to recruitment rate tu , training completion rate gt, dropout proportion ,

0 1   and attrition proportion , 0 1  . The recruitment rate is supposed to be adjusted after   
periods. The training completion rate is dependent on training lead time or pipeline delay p which is 
determined a priori. The dynamics of the manpower system affects the stocks of trainee cohorts ( )C t  
and skillpool ( )E t . At any time t, the available skillpool should match the anticipated manpower 

demand ( )D t . In this connection, the main objective is to develop reliable manpower strategy or 
dynamic recruitment policy that minimizes recruitment and training costs while satisfying the 
anticipated demand ( )D t over the planning horizon. Recruitment costs and training costs per trainee are 
c  and k  , respectively. In modelling the manpower system, we consider manpower strategies when 
manpower demand is fuzzy, assuming that recruitment and training decisions are influenced by 
demand.  
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3.1 Decision Strategies 

The main strategy variables associated with satisfying uncertain demand in a manpower system are the 
recruitment rates, the training lead time, and the workforce or skillpool level. The possible responses to 
a fluctuating fuzzy demand may include altering (i) recruitment policies, (ii) training capacity, or (iii) 
training lead time. In practice, policy makers try to satisfy demand by a judicious manipulation of one 
or more of the above-mentioned variables, subject to an acceptable level of manpower system costs.  

3.2 Manpower System Costs 

In most real world manpower system problems, the following costs should be considered: 
a) recruitment costs,this refers to costs associated with advertising, interviewing and other 

administrative costs. 
b) training costs,these are costs associated with probation, training and development, and other 

costs associated with retaining employees. 
c) overstaffing or understaffing costs,costs incurred owing to underutilised workforce, or 

decreased productivity due to non-availability of workforce. 

The manpower optimization problem can be modelled based on the principles of FST and system 
dynamics in order to address the uncertainties in the manpower system. In this study, a fuzzy-based 
model is proposed for manpower policy optimisation. In this connection, some important definitions 
relating to fuzzy theory and fuzzy linear programming are provided in the next section. 

4 Fuzzy Modelling 

The theory of fuzzy sets is useful in problem situations with imprecise information such as fluctuating 
manpower demand. From fuzzy theory, a fuzzy set is a class of objects in which there is no sharp 
boundary between those objects that belong to that class and those that do not. In this context, Bellman 
and Zadeh (1970) introduced the concept of FST to linear programming; 

Find  such that : 

0

Tx c x z

Ax b

x









  

(3)

Here, c is the vector of cost coefficients of the objective function, x denotes the decision variables, A is 
the usual matrix of technical coefficients, b is the vector of available resources, and z is the aspiration 
level which calibrates the fuzzy set “objective function.” The symbol “ ” denotes the fuzzified version 
of “” and has the linguistic interpretations “essentially less than or equal to.” The fuzzy objectives 
and constraints are represented by their respective membership functions. A decision maker strives to 
find a solution that satisfies both the goals and the constraints, that is, the intersection of the fuzzy goals 
and constraints. 

Definition 1, Assume that a fuzzy goals G and a fuzzy constraints C are given in a space of alternatives 
(or variants) X. Then, for each alternative x X , the resultant decision D is the intersection or 
confluence of goal G and the given constraint C defined as  

D G C   (4)
Here, the fuzzy set D is defined by the membership function ( )D x as follows, 

   min ( ), ( ) ( ) ( )D G C G Cx x x x x       . (5)
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We note that the intersection of fuzzy sets is defined in the possibilistic sense by the min-operator. It 
follows from this definition that the maximising decision is defined as x X  such that, 

( ) max ( )D
x X

x x 


  (6)  

Fig. 2 shows a fuzzy decision space as confluence of goal and constraint. In terms of optimization, a 
fuzzy decision serves the purpose of an objective function introducing an order in the space of 
alternatives.  

 
Fig. 2. Fuzzy decision space as a confluence of goal and constraint 

Fuzzy mathematical programming has been instrumental in decision making in fuzzy environments. 
Three known categories of fuzzy mathematical programming are (i) flexible programming which treats 
decision making problems under fuzzy goals and constraints, (Tanaka, 1974; Zimmermann, 1978), (ii) 
possibilistic programming which deals with ambiguous coefficients in objective functions and 
constraints (Dubois & Prade, 1980), and (iii) robust programming which deals with fuzziness in both 
constraints and coefficients. Our fuzzy modelling approach extends the application of fuzzy theory to 
optimising system dynamics models, with application to manpower systems. The next section describes 
our fuzzy-based approach. 

5. A Fuzzy-based system dynamics optimisation approach 

In this section, we propose an interactive fuzzy-based approach to optimising system dynamics models 
(Fig, 3). Our approach acknowledges that, in real world, future demands and resources are fuzzy in 
nature, and policy makers may feel that goals, constraints, and the consequences of possible actions are 
not known precisely. In that respect, the approach incorporates fuzzy set theory to deal with 
imprecision in demand and resources. The fuzzy membership functions of demand forecasts not only 
represent the fuzziness of future demand but also the human judgement of the policy maker. 

 
Fig. 3. Proposed fuzzy system dynamics optimization approach 
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In the first phase, a real world problem is modelled from a system dynamics perspective. However, the 
system dynamics model does not address the imprecise parameters inherent in the problem. Thus, in the 
second phase, the system dynamics model is transformed into a fuzzy model which includes fuzzy 
parameters in order to address the uncertainties in the real world problem. In the third phase, the fuzzy 
model is then converted to a usual mathematical model which is solved using an optimisation technique 
to obtain a crisp solution. In the fourth phase, a dynamic policy is formed from the parameters obtained 
from the crisp solution. The dynamic policy is checked with the system dynamics model in order to 
examine the efficiency of the policy.  

In a fuzzy environment, the goal of manpower optimisation is to maximise the degree of meeting 
manpower demand by selecting a dynamic recruitment policy in tu ( 1,..., )t T .  Thus, denoting the 

degree of meeting manpower demand by , the goal can be defined as, 

  max , 1,...,
t

t
t t

u
G D E t T    . (7)

The first step in the fuzzy modelling approach is to develop system dynamics equations for the 
manpower system. 

5.1 System Dynamics Model 

Consider the system dynamics model in Fig. 1. If p denotes the pipeline delay due to training, then, the 
state equation for training can be expressed in the form,  

1 for all 1,...,t t t t pC C u u t T      (8)

Considering the dropout proportion , 0 1  , the training completion rate tg can be represented by 

the following expression. 

 1 for all 1,...,t p tu g t T     (9)

While the inflow to the employed skill-pool is influenced by the training completion rate, the outflow is 
dependent on natural attrition rate parameter , where 0 1  . Therefore, considering training and 
natural attrition, the state equations are represented in this form,  

  1 1 for all 1,...,t t tE E g t T    (10)

The manpower gap should be reduced as much as possible, that is, 

- 0 for all 1,...,t tE D t T  (11)

The employed quantity Et should be non-negative, 

0 for all 1,...,tE t T  (12)

In the next phase, fuzzy-set theoretic model is developed from the system dynamics equations.  

5.2 Fuzzy Linear Programming Model 

A fuzzy model is developed based on the system dynamics equations and the proposed dynamic policy. 
From expression (8) we note that if 1t t t t pC C u u    , then, 

1 0 1 1 pC C u u                          2 1 2 2 0 1 1 2 2p p pC C u u C u u u u           

Therefore, by recursion, it follows that, 
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 0
1

for all 1,...,
t

t pC C u u t T 





   
(13)

By the same reasoning, we note that if   1 1t t tE E g     as in (10), it follows that, 

    1 11 1 1t t t p t t pE E u aE bu             

Let  1a    and   1 1b     . Then it follows that, 

1 0 1 pE aE bu          2 1 2 0 1 2p p pE aE bu a aE bu bu        

 

 3 2 3 0 1 2 3p p p pE aE bu a a aE bu bu bu   
         

Therefore, in general, 

 0
1

0
t

t t
t pE a E a bu









    

Given that the skill pool should be about the same as demand for manpower, - 0t tE D  , we obtain the 

following fuzzy constraint, 

       0
1

1 1 1 1 for all 1,...,
t

t t

pE u D t T





   




        (14)

The final fuzzy model for the manpower optimization problem with uncertainty in data, and a fuzzy 
aspiration cost 1z   is formulated as follows; 


 

( )( )

min 1 1

ba

t t
t t

z c u k u z    

   

(15)

subject to 

       
( )

0
1

1 1 1 1 , 1,...,

c

t
t t

pE u D t T





   




      



(16)

 

 
( )

0
1

, 1,...,

d

t

p tC u u K t T 





   




(17)

0, 1,...,tu t T  (18)

0 1,h  (19)
 

where, (a) denotes total recruitment costs, (b) denotes total training costs, (c) total recruitment inflows 
at time t, and (d) the total trainees in training at time t. The fuzzy mathematical programming model 
could not be solved by crisp mathematical programming due to the ambiguous values of the fuzzy 
constraints. 
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5.3 Dynamic policy 

In order to come up with a reliable recruitment and training strategy, we model the dynamic policy tu  

as a fuzzy set. Assuming proportional control, the dynamic policy can be expressed as a function of 
current demand tD  and skill pool level tE . In this study, we use a system dynamics time constant   

such that; 

for all 1,...,t t
t

D E
u t T




  
 (20)

where, ρ is a parameter that depicts the nominal recruitment quantity. 

  for all 1,...,t t tu D E t T         (21)

       0
1

1 1 1 1 1,...,
t

t t

t t pu D E u t T





      




  
            

  
  

(22)

This expression may be included as a fuzzy constraint in the fuzzy linear model. However, due to the 
non-linearity of constraint, the overall fuzzy model becomes nonlinear. For a fixed value of  , the 
fuzzy model becomes linear. 

5.4 Obtaining crisp solution – possibilistic model 

The proposed fuzzy model considers fuzzy constraints and seeks to obtain a crisp solution of the 
problem. Assuming the context of the possibilistic programming, the model will adopt the approach 
initially proposed by Inuiguchi et al. (1994). Hence, in order to define the possibility distribution 
concept it is necessary to describe what is a fuzzy constraint or restriction. Let a  be a fuzzy set of the X 
universe characterized by the membership function ( )a x  . Then a  is a fuzzy constraint on B (Zadeh, 

1978) if a  acts as an elastic constraint on the values that may be assigned to B in the sense that the 
assignment of a value x to B is of the form: 

: ( )aB x x  , (23)

where ( )a x  is interpreted as the satisfaction degree of a constraint represented by awhen x is assigned 

to B. This implies that 1 ( )a x  is the degree with which a constraint has to be extended in order to 

allow the assignation of x values to the B variable. 

Following definition 5.1, the membership function of the fuzzy set of the fuzzy decision of the model is 
defined using the “min-operator” as follows: 

 ( ) min ( )iD i
x x  . (24)

It follows that a fuzzy decision D  is a fuzzy set whose membership function ( )i x  represents the 

degree to which x fulfils (satisfies) a fuzzy constraint. The “min-operator” represents the “logical and” 
or the intersection of two or more fuzzy sets defined through their membership function ( )i x . 

Therefore, the fuzzy set of the decision D consists of all the values of x that satisfy the i fuzzy 
constraints. 

Definition 2,Let ( )i x , 1,...,i m , be the membership functions of constraints, where 0 ( )x  is the 

membership function of the objective. Then, a crisp or non-fuzzy optimal solution x  is obtained by 
maximizing the solution of (24) as follows: 
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   
0 0

max min ( ) max ( )i Dix x
x x x 

 
    (25)

Definition 3,The membership functions of each one of the i fuzzy constraints are defined by a fuzzy set 
whose membership function is defined as ( )i x  as follows: 

1 if  

( ) 1 if  , 0,...,

0 if  

i i

i i
i i i i i

i

i i i

B x d

B x d
x d B x d v i m

v

B x d v



 

      



 

(26)

where, iB x  denotes the left-hand side of the i fuzzy constraints, id  represents the right-hand side of the 

fuzzy constraints and iv  represents the admissible extension of the tolerance interval of violation of the 

fuzzy constraints. The membership function above can be transformed into the following form: 

(1 )i i iB x d v h    (27)

This expression implies that the decision maker has the highest satisfaction 1h  when the right hand 
side of the constraint iB x  is equal to or below id . In this study, we assume a possibility distribution 

represented by a symmetric triangular fuzzy number ic with the following membership function: 

| |
( ) max 1 ,0

i

i
c

i

x
x

v


 

  
 

  
(28)

Here, i  is a variable restricted by a possibility distribution
ic  . Thus using the parameters ic and iv , 

we represent a symmetric triangular fuzzy number ic as ,i ic c v . In order to obtain a crisp solution, 

we need to transform our fuzzy model into a crisp mathematical program. Let h define the satisfaction 
level, that is an aspiration level of the decision maker, such that 0 1h  . For a fixed value of  , the 
above formulation can be transformed into an equivalent crisp linear programming model. 

max z h  
subject to: 

 1 1 1(1 )t t
t t

c u k u z v h       (29)

        0
1

1 1 1 1 2 (1 ), 1,...,
t

t t

p t tu E D v h t T





   




        
 

(30)

        0
1

1 1 1 1 2 (1 ), 1,...,
t

t t

p t tu E D v h t T





   
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, 0 1,...,tu t T   (35)

0 1h  (36)
In constraint (29), the fuzziness in the definition of the desired cost of the generated plan is defined by 
the tolerance interval [ 1, 1 1]z z v . The decision maker does not have a precise idea about the total cost 
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that is satisfactory. In constraints (30) to (33), the fuzziness in the manpower demand is represented by 
the symmetric triangular number , 2t tD v . The variable h is an aspiration level such that 0 1h  , as 

shown by non-negativity constraint (36). 

The model aims to maximize the degree to which the constraints related to the minimal recruitment and 
training costs, the satisfaction of the demand and the available capacity are possibly satisfied. However, 
the model developed is non-linear because of the non-linearity of constraints (32) and (33). The new 
model is a non-linear program that seeks to maximise the degree to which the fuzzy constraints are 
possibly satisfied. 

6.   Numerical experiments  

For the sake of illustration, a set of experiments were conducted in order to investigate the performance 
of the proposed fuzzy system dynamics optimisation approach. A hypothetical large corporate 
manpower system was created as the background to test the model,The organisation recruits IT 
specialists who undergo probation and training for 4 time periods before final placement in the skill-
pool. The length of each time period in the model is 1 quarter. The planning horizon is assumed to be 
40 time periods. In the first set of experiments, a fuzzy demand of 400,15D   is assumed. In the 

second set of experiments a growing demand is used. In both cases, the recruitment and training costs 
are assumed to be 20 and 50 unit costs, respectively. 

The fuzzy model requires the user to set parameter values such as the required necessity level, time constant 
 and the aspiration cost. The experiments executed in this section aim to investigate the effect of 

(1) Varying the minimum satisfaction level h 
(2) Varying the aspiration cost z1 
(3) Varying the time constant   to determine optimal dynamic policy 

The results provide insights into how the parameters affect the performance of the models and the 
better model to use under different scenarios in a static demand or growing-demand environment. In 
the experiments, the total cost and satisfaction level over the planning horizon are computed and used 
as the performance indicators of the models. 

a) Planning for a stable demand 

Experiment 1,Vary satisfaction level h 
In this experiment, a fuzzy demand of 400,15D   is assumed. By varying h from 0 to 1 with an 

increment of 0.1h  , and 4  , the feasible plans are as listed in Table 1. 

 
Table 1  
Feasible manpower plans using our fuzzy model 
h cost  h  cost 
0.1 50474 0.6 51998 
0.2 50779 0.7 52303 
0.3 51084 0.8 52608 
0.4 51388 0.9 52913 
0.5 51693 1.0 infeasible 

 

The total costs associated with the feasible plans range between 50474 and 52913 cost units. The 
decision maker does not have a precise idea about the satisfactory cost. Thus, this additional 
information can be used to obtain a suitable fuzzy goal range. Since the extreme values of the costs are 
50474 and 52913, the decision maker may assume that the fuzzy goal range is [50500, 52900], that is, 
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the tolerance of violation is 2400 which is expressed in the form 60000 2400(1 )TC X h     where 
aspiration cost 1 60000z  . 

Experiment 2,Vary time constant  , obtain dynamic policy 

In order to obtain a dynamic policy, we reformulate the fuzzy model by adding the fuzzy dynamic 
policy constraint set. The objective is to maximize the degree of satisfaction h under the decision 
maker’s proposed dynamic policy. The value of θ is varied from 1 3 to 12 3quarters with an increment 

of 1 3   which is equivalent to a 1 month period. The following set of alternate plans is obtained as 
shown in Table 1. 

Table 2  
Feasible manpower plans from our fuzzy model 
θ h Total cost θ h Total cost 
1 0 12373 8/3 0.5846 58634 
4/3 0 79892 9/3 0.5846 58377 
5/3 0 60785 10/3 0.5846 58334 
6/3 0.5784    59158 11/3 0.5846 58568 
7/3 0.5846    58653 12/3 0.5846 58529 

 
From this analysis, the policy maker has a set of alternate plans to choose from allowing for interactive 
decision making and human judgement. The results in table 1 shows that the most reliable dynamic 
policy is when θ* = 10/3 quarters with the satisfaction level of 0.5846 and a cost of 58334. The value of 
 is 19. Therefore, the desired dynamic policy can be expressed as follows; 

 3
19 for all 1,...,

10t t tu D E t T     

Fig. 4. Variation of Skillpool E(t) versus demand 
D(t), θ* = 10/3 

Fig. 5. Fluctuating skillpool E(t) about the desired 
demand D(t), θ = 5/3 

Fig. 4 shows that by using the reliable dynamic policy with θ* = 10/3 and 19  , we obtain minimal 
fluctuations in the available skillpool E(t), which is required of a reliable dynamic policy. Fig. 5 shows 
the output from the fuzzy model when θ = 5/3. This dynamic policy is unreliable due to many 
unwanted oscillations and low satisfaction level, 0h   over the planning horizon. The next set of 
experiments considers a fuzzy growing demand over 40 time periods. 

b) Planning for a growing manpower demand 

Table 3 gives hypothetical demand data for a manpower system of a large multi-national corporation 
over a 10 year period (40 quarters). The manpower system is expected to experience growth over the 
planning horizon, resulting in a S-shaped manpower demand. 
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Table 3  
Fuzzy demand data input for a manpower system 
t D  t D  t D  t D  
1 400,15 11 415,15 21 430,15 31 439,15 
2 402,15 12 416,15 22 430,15 32 440,15 
3 403,15 13 418,15 23 432,15 33 441,15 
4 404,15 14 420,15 24 432,15 34 442,15 
5 406,15 15 421,15 25 433,15 35 442,15 
6 406,15 16 423,15 26 434,15 36 441,15 
7 408,15 17 424,15 27 436,15 37 440,15 
8 410,15 18 425,15 28 437,15 38 440,15 
9 412,15 19 427,15 29 438,15 39 440,15 
10 414,15 20 429,15 30 439,15 40 440,15 
 

Experiment 1,Vary satisfaction level h 

In this experiment, ten sets of feasible plans can be obtained by varying h from 0 to 1 with an increment 
of 0.1h  , and θ = 4. Figure 6 and Figure 7 illustrate the variation of skillpool E(t) and demand D(t) 
over a 40 period planning horizon for satisfaction levels 0.8h   and h = 0.1, respectively. 

Fig. 6. Variation of skillpool and demand when h = 0.8 Fig. 7. Variation of skillpool and demand when h = 0.1 
 

Table 4 shows that the total costs associated with the feasible plans range between 61746 and 67726 
cost units. Since the decision maker does not have a precise idea about the most satisfactory cost, this 
additional information can be used to obtain a suitable fuzzy goal range. Thus, the decision maker may 
assume that the fuzzy goal range is [61746, 67726], that is, the tolerance of violation is 5980 which is 
expressed in the form 70000 5980(1 )TC X h     where aspiration cost 1 70000z  . 

Table 4  
Feasible manpower plans using our fuzzy model 
h cost  h  cost 
0.1 61746 0.6 65513 
0.2 62466 0.7 66408 
0.3 63199 0.8 67726 
0.4 63952 0.9 infeasible 
0.5 64714 1.0 infeasible 
[ 

The next set of experiments deals with determination of a reliable dynamic policy in the presence of a 
fuzzy growing manpower demand. 
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Experiment 2,Vary time constant  , obtain a dynamic policy 

In order to maximize the degree of satisfaction h under the decision maker’s proposed dynamic policy 
alternatives, the dynamic policy constraint set is added to the fuzzy model. As in the previous 
experiment, the values of θ are incremented by 1 3  from 1 3 to 12 3quarters. The results of the 
experimental analysis are shown in Table 5. 

Table 5  
Feasible manpower plans with time-varying demand 
θ h Total cost θ h Total cost 
1 0 79992 8/3 0.4279 67920 
4/3 0.504 65647 9/3 0.4660 68148 
5/3 0.4995 66304 10/3 0.4993 68276 
6/3 0.3989 66092 11/3 0.5249 68342 
7/3 0.3888 67512 12/3 0.5473 68391 

 
This analysis provides the policy maker with a set of alternate plans to choose from, allowing for 
further human judgement. The results from Table 5 reveal that the most reliable dynamic policy is 
when θ* = 12/3 time units with the satisfaction level of 0.5473 at a cost of 68391, with the value 

=23. It follows that the desired dynamic policy can be expressed as follows; 

 3
23 for all 1,...,

12t t tu D E t T     

By applying the dynamic policy the decision maker is able to balance the uncertain manpower demand 
D(t) and the available skillpool E(t) over a 40 period horizon, as shown by the graphical illustration 
Figure 8. With time constant θ = 4/3, it is difficult to follow the demand closely, as can be seen by the 
presence of unwanted fluctuations as the demand stabilises 445. This demonstrates the usefulness of 
our approach to interactive optimization of system dynamics models with application to manpower 
systems. 

 
Fig. 8. Variation of skillpool E(t) with demand 
D(t), θ = 12/3 

Fig. 9. Variation of skillpool E(t) with demand 
D(t), θ = 4/3 

 

7.  Conclusion 

In many business environments, decision making in manpower systems is made under conditions of 
uncertainty in key factors such as market demand and training capacity. Due to scarcity and uncertainty 
of information it is extremely difficult to exactly generate manpower plans in a dynamic environment. 
To enable the decision maker to design reliable policies, a fuzzy-based system dynamics optimization 
approach was proposed in this paper. The approach integrates system dynamics and fuzzy set theory for 
interactive policy optimisation of a manpower system. The method commences by developing a system 
dynamics model, which is then converted into a fuzzy model that can be solved by conversion to a crisp 
conventional program. A suitable dynamic policy is then obtained by adding a fuzzy policy constraint 
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set. The resulting fuzzy model softens the rigid requirements in the traditional linear programming 
model using a possibilistic modelling approach. The proposed method is robust in three main ways. 
First, our approach allows for decision maker’s human judgment; it provides a set of alternatives in an 
interactive manner rather than prescribe a solution. Second, our approach provides a reliable dynamic 
policy in the presence of fuzzy constraints in a fuzzy environment. Third, the fuzzy dynamic approach 
is reliable in that it models fuzziness in the problem without causing explosive growth of the 
computational effort. 
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