
 Abstract - In logistics management, the use of vehicles to
distribute products from suppliers to customers is a major
operational activity. Optimizing the routing of vehicles is
crucial for providing cost-effective services to customers.
This research addresses the fleet size and mix vehicle routing
problem (FSMVRP), where the heterogeneous fleet and its
size are to be determined. A group genetic algorithm (GGA)
approach, with unique genetic operators, is designed and
implemented on a number of existing benchmark problems.
GGA demonstrates competitive performance in terms of cost
and computation time when compared to other heuristics.

Keywords - Logistics, vehicle routing, genetic algorithms

I. INTRODUCTION

 In most supply chains, the management of
distribution activities is a major operational task because
distribution costs contribute a significant portion of the
total operational costs. The need for effective distribution
systems continues to come up in the supply chain industry
due to escalating fuel costs. Distribution is a major part of
logistics and a substantial cost to many companies. An
effective distribution system can save millions of dollars
each year. It can assist the decision maker in long-range
planning, contract negotiations, and operations
improvement. Hence, the development of effective and
efficient distribution management systems is imperative.
 In logistics industry, firms often require their vehicles
to serve networks of hundreds of customers at various
locations. As such, planning and scheduling can consume
much time and effort, yet with little or no realizable cost
efficiency. Several questions naturally arise: How many
vehicles are needed to accommodate customer demand?
What are the required vehicle capacities? What are the
best routes? How best can customer demands be satisfied
at the least possible cost? Due to multiple potential
combinations of vehicle types and routing patterns,
solutions to these questions are complex. This problem is
a variant of the vehicle routing problem (VRP) [1].
 The rest of the paper is as follows: Section II gives a
brief outline of the VRP. Section III describes the fleet
size and mix VRP (FSMVRP). A group genetic algorithm
is proposed in Section IV. Computational tests and results
are given in Section V. Section VI concludes the paper.

II. THE VEHICLE ROUTING PROBLEM

 The VRP, first studied by Dantzig and Ramser [1],
mainly seeks to minimize transportation costs, number of
vehicles used, and customer waiting times. Since its
inception in the 1950s, other VRP variants followed. The
capacitated VRP (CVRP) is concerned with optimizing
the dispatch of goods required by customers, using a fleet
of capacitated homogenous vehicles [2]. Another variant
is VRP with time window constraints (VRPTW), where
arrival after the latest time window is penalized [3]. VRP
problems with heterogeneous vehicles are frequently
encountered in logistics industry. The heterogeneous fixed
fleet VRP (HFFVRP) is a CVRP variant with a fixed
number of available vehicles. The decision involves how
best to utilize the existing vehicle fleet [4]. On the other
hand, the FSMVRP is a CVRP variant where the fleet size
and its composition are to be determined [5].

III. THE FSMVRP PROBLEM DISCRIPTION

 Formally, the FSMVRP can be described as follows.
There are n customer locations, {1, 2,..., n}. A fleet of T
vehicle types are available at the depot, represented by 0.
The number of vehicles for each type is unlimited, and
one of the decisions is to determine the number of
vehicles of each type. Each vehicle type t has a capacity
Qt, a fixed cost ft and a variable cost per unit distance vt.
Assume that between two vehicle types a and b, we have
fa fb if Qa Qb. Two cost structures exist: (i) different
fixed costs with uniform variable costs [4-9], and (ii)
different variable costs with no fixed costs [10-12]. For
the FSMVRP with fixed costs and uniform variable costs;

tfv tt 0;1 (1)

For the FSMVRP with variable costs and no fixed costs;

tfv tt 0;0 (2)

 Each customer node i 0 has a non-negative demand
di. Let the travelling distance between location i and j be
non-negative τi,j. These distances are symmetric and
satisfy the inequality, τi,j = τj,i and τi,j τj,k ≥τi,k. Thus, the
total variable cost of travelling from location i to location
j is vtτi,j. The FSMVRP consists in determining the vehicle
fleet composition and the route of each vehicle, so that the
total cost of delivering goods to all customers is
minimized; each route starts and ends at the depot; each
customer is visited exactly once; customer demands are

A Group Genetic Algorithm for the Fleet Size and Mix Vehicle Routing Problem

M. Mutingi1,2, C. Mbohwa2

1Department of Mechanical Engineering, University of Botswana, Gaborone, Botswana
2Department of Quality and Operations Management, University of Johannesburg, Johannesburg, South Africa

(michael.mutingi@mopipi.ub.bw; cmbohwa@uj.ac.za)

978-1-4673-2945-3/12/$31.00 ©2012 IEEE 1468

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43598392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

satisfied; and vehicle capacity is not violated. Owing to
FSMVRP complexity, the use of exact methods on large-
scale instances is not viable. Not surprisingly, most
approaches rely on heuristics that obtain good solutions,
including tabu search [6] [7], memetic algorithm [11],
genetic algorithm [11], particle swarm optimization [14],
and evolutionary algorithm [12]. We propose a group
genetic algorithm (GGA) to address the FSMVRP.

IV. GROUP GENETIC ALGORITHM APPROACH

 We describe GGA and its elements, including
chromosome coding, initialization, and genetic operators.

A. GGA Coding Scheme

 The GGA performance strongly depends on the type
of the coding scheme used. While most authors use
depot(s) as trip delimiters [11] [12], a few do not use
delimiters [15]. We develop our coding scheme from the
later. The evaluation of a chromosome k = [1, 2, 3,…, n]
involves partitioning customer orders along k into groups
so that the cumulative load for each group does not
exceed the vehicle capacity, and the cumulative delivery
cost incurred is minimized. This is represented by a graph,
G(X) with vertex V(G) = {i | 0 ≤ i ≤ n}. Let E(G) be the set
of directed arcs on G(X), where (i,j) E(G) iff

,
1 t

j

im m Qd
and t be the vehicle type chosen. Each

arc (i,j) represents a feasible trip, where the vehicle
departs from node 0 (depot) and visits nodes i+1, i+2,…,
j-1, and j, consecutively. The total load for trip (i,j) is

given by .
1

j

im md The objective is to select a vehicle

type t with the least cost and capacity not less than the trip
load. Then, for the FSMVRP with fixed cost, trip cost ci,j
is equivalent to fixed cost plus variable costs [5];

1

1 0,1,1,0,

j

ih jhhitji fc (3)

On the other hand, for the FSMVRP with no fixed cost;

 t

j

ih jhhiji vc

1

1 0,1,1,0, (4)

Fig. 1. Typical data for chromosome representation

 Consider a typical distribution center with T = 2
unlimited vehicle types to serve n = 6 retailers (see Fig. 1).
The numbers on arc(i,j) and node j represent τi,j and di,
respectively. The capacities of vehicle types t1 and t2 are
Q1 = 500 and Q2 = 550, respectively. Their fixed costs are

f1 = 300 and f2 = 400, respectively. The proposed GGA
uses a group structure for each feasible solution based on
three codes (see Fig. 2). Code 1, of size n, is a group
structure upon which the genetic operators act. Code 2
shows the vehicle type assigned to each trip, while code 3
represents the position of the last node of each trip.

Fig.2. Chromosome representation

 The chromosome [1 2 4 3 5 6 · 1 1 2], comprises
codes 1 and 2 (“·” demarcates codes 1 and 2). According
to code 1, vehicle type 1, with f1 = 300 and vt = 1, is
assigned trip (0-1-2-0). From (3) the total cost for this trip
is 300 + 240 + 42 + 280 = 862. Other trips, (0-4-0) and
(0-3-5-6-0), are evaluated in a similar manner, as shown
in Table I.

TABLE I.
GGA CODING SOLUTION EXAMPLE

Trip Vehicle type Cost
0-1-2-0 1 862
0-4-0 1 700
0-3-5-6-0 2 930
Total Cost 2492

B. Initialization

 An initial population of the desired size, popsize, is
produced by (i) savings [16] and sweep heuristics [17],
and (ii) random generation. The savings algorithm is
applied using one vehicle type at a time. The sweep
algorithm is also used to generate initial solutions. These
initial solutions are then concatenated into chromosomes.
More chromosomes are generated as follows;

Repeat
1. Assign a location to each vehicle t, (t = 1,2,…, m)
2. Randomly assign the remaining locations,
3. Encode the string and add to initial population,
Until (population size = popsize).

 The GGA approach minimizes some cost function f
which is mapped to a score function, as suggested in [23];

)](,0max[)(max kk gff (5)

where, gk(τ) is the objective function of chromosome k at
time τ and fmax is the largest objective function.

C. Selection Operator

 Several selection strategies have been suggested by
Goldberg [18], including deterministic sampling,
remainder stochastic sampling with/without replacement,
and stochastic tournament. The remainder stochastic

[1 2 | 4 | 3 5 6] [1 1 2]

t1 t1 t2

[2 3 6]

code 3code 1 code 2

0

300

42 280

20

120
250

320
200

70
20

100

270
240

4

2

3

1

5

6

50
500100

Vehicle t1: Q1 = 500, f1 = 300; Vehicle t2: Q2 = 550, f2 = 400

500

Proceedings of the 2012 IEEE IEEM

1469

sampling without replacement is applied in this work;
each chromosome k is selected and stored in the mating
pool according to its expected count ek calculated thus;

 popsie

k k

k
k

fpopsize

f
e

1
1

 (6)

 Here, fk is the score function of the kth chromosome.
Each chromosome receives copies equal to the integer
part of ek, that is, [ek], while the fractional part frac(ek) is
treated as a success probability of obtaining additional
copies of chromosome k into the mating pool.

D. Crossover Operator

 Crossover is an evolutionary mechanism by which
selected chromosomes mate to produce new offspring,
called selection pool. This enhances exploration of
unvisited regions in the solution space. The proposed
group crossover operator exchanges groups of genes of
selected chromosomes (see Fig.3), with probability
prcoss, until the desired pool size, poolsize, is obtained:

Repeat
1. Generate the crossover point in (1, g-1), g = trips.
2. Swap the groups to the right of the crossover point.
3. Repair the offspring, if necessary.
Until (selection poolsize is achieved).

Fig. 3: Crossover operator

 After crossover, some customers may appear in more
than one trip, while others may be missing. Such offspring
should be repaired by eliminating duplicated customers to
the left of the crossover point (see Fig.4) and inserting
missing ones into the trip with the least loading. Thus,
group coding takes advantage of the group structure. The
basic single-point crossover is applied on code 2.

Fig. 4: Chromosome repair mechanism

E. Mutation Operator

 Mutation is applied to every new chromosome using
two mutation operators; swap mutation and shift mutation.
The swap mutation operates by exchanging genes
between two groups in a chromosome according to the
following procedure:

1. Randomly select two numbers from set {1, 2,…,g};
2. Randomly choose a gene from each group;

3. Swap the selected genes.

Fig. 5 illustrates the swap mutation mechanism.

Fig. 5. Swap mutation

 The shift mutation works by shifting the frontier
between two adjacent groups by one step, either to the
right or to the left (see Fig. 6) as follows;

1. Randomly generate the frontier in (1, g-1).
2. Randomly choose the shift direction: right or left.
3. Shift the frontier in the selected direction.

Figure 6: Shift mutation operator

 As for the genes that correspond to code 2, a basic
mutation operator is applied by replacing a randomly
selected gene with a randomly generated integer in {0,
1,…,T}. Mutation essentially provides GGA with a local
search capability, called intensification. However, shift
mutation is a more localized search than swap mutation.

F. Inversion Operator

 To curb premature convergence, inversion is applied
at a low probability on selected chromosomes. Inversion
rearranges chromosome groups in a reverse order (Fig. 7).

Before inversion : [1 2 | 4 | 3 5 6]
After inversion : [3 5 6 | 4 | 1 2]

Fig. 7: Inversion operator

G. Diversification

 As iterations proceed, the population converges to a
particular solution. Premature convergence may occur
before an optimal solution is obtained. To check diversity,
define an entropic measure Hi for each location i;

m

j

ijij

i m

opsizepnpopsizen
H

1)log(

)(log)(
 (7)

where nij is the number of chromosomes in which location
i is assigned position j in the current population; m is the
number of locations. Then, diversity H is defined as,

m

i
i mHH

1

 (8)

Offspring chromosome : [1 2 | 4 | 3 5 6]
Select group or trip : 2 and 3
Select genes or nodes : 4 and 6

Mutated offspring : [1 2 | 6 | 3 5 4

offspring chromosome : [1 2 | 4 | 3 5 6]
select frontier, rand (1,2) : 1
select direction : left

mutated offspring : [1 | 2 4 | 3 5

shift frontier

Before repair: [1 2 | 4 | 4 6]

[1 2 | - | 4 6]

After repair: [1 2 | 3 5 | 4

eliminate 4

introduce 3,5

[1 2 | 4 | 3 5 6] [1 2 | 4 | 4 6
]

swap

[1 3 | 2 5 | 4 6] [1 3 | 2 5 | 3 5
6]

Parents: Offsprings:

Proceedings of the 2012 IEEE IEEM

1470

 Therefore, inversion is applied to improve diversity to
a desired value. The best candidates from diversified and

undiversified populations are always preserved.
G. The GGA Implementation

 The overall GGA (Fig. 8) incorporates the operators
described in previous sections, using carefully chosen
genetic probabilities: crossover (0.4), mutation (0.01), and
inversion (0.05) as in [21].

GGA Algorithm:
BEGIN
1: Input: initial data input: select GGA parameters;
2: Initial population, oldpop: create chromosomes;

(i) savings and sweep algorithms; then, (ii) random generation;
Repeat
3: Selection/recombination:

(i) evaluate strings by fitness function;
(ii) create temporal population, temppop: use int [ek], then frac(ek)

4: Group crossover/recombination:
(i) select 2 strings by selection strategy from temppop.
(ii) apply crossover operator to the 2 strings.
(iii) if successful, apply inversion, else go to 5.
(iv) apply repair mechanism if necessary.

5: Mutation: mutate and move offspring to new population, newpop;
6: Replacement strategy:

(i) compare selection pool spool and oldpop strings, successively;
(ii) take the one that fares better in each comparison;
(iii) select the rest of the strings with probability 0.55;

7: Diversification:
(i) calculate population diversity H;
(ii) if (H Hmin) then diversify till H ≥ Hmin;
(iii) re-evaluate strings by fitness function;

8: New population:
(i) oldpop = newpop
(ii) advance population, gen = gen + 1

Until (gen ≥ maxgen)
END

Fig. 8: Proposed GGA Implementation

V. COMPUTATIONAL TESTS AND DISCUSSIONS

A. Problem Sets

 The proposed GGA was implemented in Java and
executed on a Pentium 4 at 3GHz based on 12 benchmark
problems in [20]. Table II specifies the costs, vehicle
capacity Qt, (t = 1, 2,…, 6); fixed cost ft; and variable cost
vt. Using the notation in [5], problem sets 3 to 6 have 20
customers, 13 to 16 have 50, 17 to 18 have 75, and 19 to
20 have 100. Computational results were compared with
those from best-performing heuristics in the literature,
including tabu search [21] [7] [9], column generation-
based heuristics [8], and evolutionary algorithm [12].

B. Computations, Results and Discussions

 Table III presents the computational results of the
FSMVRP with fixed costs. A count of the best-known
solutions obtained by the heuristics is provided. Out of the
12 benchmark problems, our GGA approach produced 11
best known solutions, compared to only 6 found in [21], 6
in [7], 5 in [15], 8 in [8], 9 in [9], and 10 in [5].
 Table IV presents the percentage deviation of each
solution from the best-known and the computation times
for each problem. All algorithms showed remarkable
accuracy, with average percent deviation less than 1%.
Our GGA performed competitively in terms of percentage
deviation and computation times. The results demonstrate
the utility of the GGA developed in this research.
VI. CONCLUSIONS AND FURTHER RESEARCH

 TABLE II
SPECIFICATIONS FOR THE BENCHMARK PROBLEMS

No. Q1 f1 v1 Q2 f2 v2 Q3 f3 v3 Q4 f4 v4 Q5 f5 v5 Q6 f6 v6

3 20 20 1.0 30 35 1.0 40 50 1.0 70 120 1.0 120 225 1.0
4 60 1000 1.0 80 1500 1.0 150 3000 1.0
5 20 20 1.0 30 35 1.0 40 50 1.0 70 120 1.0 120 225 1.0
6 60 1000 1.0 80 1500 1.0 150 3000 1.0
13 20 20 1.0 30 35 1.1 40 50 1.2 70 120 1.7 120 225 2.5 200 400 3.2
14 120 100 1.0 160 1500 1.1 300 3500 1.4
15 50 100 1.0 100 250 1.6 160 450 2.0
16 40 100 1.0 80 200 1.6 140 400 2.1
17 50 25 1.0 120 80 1.2 200 150 1.5 350 320 1.8
18 20 10 1.0 50 35 1.3 100 100 1.9 150 180 2.4 250 400 2.9 400 800 3.2
19 100 500 1.0 200 1200 1.4 300 2100 1.7
20 60 100 1.0 140 300 1.7 200 500 2.0

TABLE III
COMPUTATIONAL RESULTS FOR THE BENCHMARK PROBLEMS

No. Best

known
Gendreau et
al. (1999)

Wassan and
Osman (2002)

Lima et al.
(2004)

Choi and Tcha
(2007)

Brandao
(2008)

Liu et al.
(2009)

GGA (2012)

3 961.03 961.03 961.03 961.03 961.03 961.03 961.03 961.03
4 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33
5 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05
6 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47
13 2406.36 2408.41 2422.10 2408.60 2406.36 2406.36 2406.36 2406.36
14 9119.03 9119.03 9119.86 9119.03 9119.03 9119.03 9119.03 9119.03
15 2586.37 2586.37 2586.37 2586.88 2586.37 2586.37 2586.37 2586.37
16 2720.43 2741.5 2730.08 2721.76 2720.43 2728.14 2724.22 2720.43
17 1734.53 1749.5 1755.1 1758.53 1758.53 1734.53 1734.53 1734.53
18 2369.65 2381.43 2385.52 2396.47 2371.49 2369.65 2369.65 2369.65
19 8659.74 8675.16 8659.74 8691 8664.29 8661.81 8662.95 8661.81
20 4038.46 4086.76 4061.64 4093.29 4039.49 4042.59 4038.46 4038.46

Bests: 12 6 6 5 8 9 10 11

Proceedings of the 2012 IEEE IEEM

1471

 FSMVRP involves the determination the fleet size
and the mix of heterogeneous vehicles, assuming that the
number of vehicles of each type is unlimited. This paper
presents a GGA for solving the FSMVRP with fixed and
variable costs. The approach obtained best-known
solutions based on the comparative analysis tests on
benchmark problems. Moreover, the GGA approach
performed competitively within a reasonable computation
time. In terms of the average solution cost, GGA
demonstrated competitive performance.
 This research contributes logistics and transportation.
The current GGA uses unique group genetic operators,
demonstrating its competitive performance when
compared to related approaches in the literature. Possible
further research directions include the design of more
efficient algorithms for solving the FSMVRP problem in
which the customer demand is uncertain or fuzzy.

REFERENCES

[1] G. B. Dantzig and J. H. Ramser. “The Truck Dispatching

Problem,” Management Science, vol. 6, pp. 80-91, 1959.
[2] P. Toth and D. Vigo, “The Vehicle Routing Problem,”

SIAM Monograph on Discrete Mathematics and
Applications, Philadelphia, PA: SIAM, 2002.

[3] O. Braysey, and M. Gendreau, “Vehicle routing problems
with time windows, part I: Route Construction and Local
Search Algorithms,” Transportation Science, vol. 39, no. 1,
pp. 104–118, 2005.

[4] E.D Taillard. “A heuristic column generation method for
the heterogeneous fleet VRP,”. RAIRO 33, pp. 1–34, 1999.

[5] S. Liu, W. Huang and H. Ma. “An effective genetic
algorithm for the fleet size and mix vehicle routing
problems,” Transportation Research Part E, vol. 45, pp.
434-445, 2009.

[6] M. Gendreau, G. Laporte, C. Musaraganyi, and E.D.
Taillard, “A tabu search heuristic for the heterogeneous
fleet vehicle routing problem,” Computers and Operations
Research, vol. 26, pp. 1153–1173, 1999.

[7] N.A. Wassan and I.H. Osman, “Tabu search variants for the
mix fleet vehicle routing problem,” Journal of the
Operational Research Society, Vol. 53, pp. 768–782, 2002

[8] E. Choi and D.W. Tcha. “A column generation approach to
the heterogeneous fleet vehicle routing problem,”
Computers and Operations Research, vol. 34, pp. 2080–
2095, 2007.

[9] J. Brandao. “A deterministic tabu search algorithm for the
fleet size and mix vehicle routing problem,” European
Journal of Operational Research, vol. 195 No. 3, pp. 716-
728, 2008.

[10] I. Osman, S. Salhi, “Local search strategies for the vehicle
fleet mix problem,” In: Rayward-Smith, V.J., Osman, I.H.,
Reeves, C.R., Smith, G.D. (Eds.), Modern Heuristic Search
Methods. Wiley, New York, pp. 131–153, 1996.

[11] C.M.R.R. Lima, M.C. Goldbarg, E.F.G. Goldbarg. “A
memetic algorithm for the heterogeneous fleet vehicle
routing problem,” Electronic Notes in Discrete
Mathematics, vol. 18, pp. 171–176, 2004.

[12] L.S. Ochi, D.S. Vianna, L.M. Drummond, A.O. Victor. “A
parallel evolutionary algorithm for the vehicle routing
problem with heterogeneous fleet,” Future Generation
Computer System, vol. 14, pp. 285–292, 1998.

[13] C.D. Tarantilis, C.T. Kiranoudis, V.S. Vassiliadis, “A
threshold accepting metaheuristic for the heterogeneous
fixed fleet vehicle routing problem,” European Journal of
Operational Research, vol. 152, pp. 148–158, 2004.

[14] B. F Moghadam and S. M. Seyedhosseini, “A particle
swarm approach to solve vehicle routing problem with
uncertain demand: A drug distribution case study,”
International Journal of Industrial Engineering
Computations, vol. 1, pp. 55-66, 2010

[15] C. Prins. “A simple and effective evolutionary algorithm
for the vehicle routing problem,” Computers and
Operations Research, vol. 31, pp. 1985–2002, 2004

[16] G. Clarke, J.W. Wright. “Scheduling of vehicles from a
central depot to a number of delivery points,” Operations
Research, vol. 12, pp. 568–581, 1964.

[17] B. Gillett, L. Miller. “A heuristic for the vehicle
dispatching problem,” Operations Research, vol. 22, pp.
340–349, 1974.

[18] D. E. Goldberg, Genetic Algorithm in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[19] E.V. G. Filho and A.J. Tiberti. “A group genetic algorithm
for the machine cell formation problem,” International
Journal of Production Economics, Vol 102, pp. 1-21, 2006.

[20] B. Golden, A. Assad, L. Levy and F. Gheysens. “The fleet
size and mix vehicle routing problem,”. Computers and
Operations Research, vol. 11, pp. 49–66, 1984.
M. Gendreau, G. Laporte, C. Musaraganyi and E.D.

Taillard. “A tabu search heuristic for the heterogeneous fleet
vehicle routing problem,“. Computers and Operations Research,
vol. 26, pp. 1153–1173, 1999.

TABLE IV

PPERCENT DEVIATIONS AND CPU TIMES FOR FSMVRP ALGORITHMS

No. Best
known

Gendreau et al. (1999) Lima et al. (2004) Choi and Tcha (2007) Liu et al. (2009) GGA (2012)
Deviation Time (s) Deviation Time (s) Deviation Time (s) Deviation Time (s) Deviation Time (s)

3 961.03 0.000 164 0.000 89 0.000 0 0.000 0 0.000 0
4 6437.33 0.000 253 0.000 85 0.000 1 0.000 0 0.000 1
5 1007.05 0.000 164 0.000 85 0.000 1 0.000 2 0.000 2
6 6516.47 0.000 309 0.000 85 0.000 0 0.000 0 0.000 0
13 2406.36 0.085 724 0.093 559 0.000 10 0.000 91 0.000 89
14 9119.03 0.000 1033 0.000 669 0.000 51 0.000 42 0.000 65
15 2586.37 0.000 901 0.020 554 0.000 10 0.000 48 0.000 55
16 2720.43 0.775 815 0.049 507 0.000 11 0.139 107 0.000 10
17 1734.53 0.863 1022 1.384 1517 1.384 207 0.000 109 0.000 113
18 2369.65 0.497 691 1.132 1613 0.078 70 0.000 197 0.000 211
19 8659.74 0.178 1687 0.361 2900 0.053 1179 0.037 778 0.024 804
20 4038.46 1.196 1421 1.358 2383 0.026 264 0.000 1004 0.000 1047

 Averages: 0.3012% 776.9 0.3171% 887.4 0.1462% 172.4 0.0176% 209.0 0.0024% 209.7

Proceedings of the 2012 IEEE IEEM

1472

