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Abstract. Observations with the Fermi Large Area Telescope (LAT) indicate a possible
small photon signal originating from the dwarf galaxy Reticulum II that exceeds the ex-
pected background between 2GeV and 10GeV. We have investigated two specific scenarios
for annihilating WIMP dark matter within the phenomenological Minimal Supersymmetric
Standard Model (pMSSM) framework as a possible source for these photons. We find that
the same parameter ranges in pMSSM as reported by an earlier paper to be consistent with
the Galactic Center excess, are also consistent with the excess observed in Reticulum II,
resulting in a J-factor of log10(J(αint = 0.5◦)) ≃ (20.3− 20.5)+0.2

−0.3GeV2cm−5. This J-factor

is consistent with log10(J(αint = 0.5◦)) = 19.6+1.0
−0.7GeV2cm−5, which was derived using an

optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan
Fiber System (M2FS).
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1 Introduction

While the existence of dark matter (DM) is widely accepted and its cosmological abundance is
measured, the fundamental nature of DM remains unknown. The most promising explanation
is that DM is a neutral and weakly interacting particle, not described by the Standard Model
(SM). A weakly interacting massive particle (WIMP) is a leading scenario for dark matter,
as it can lead to the right abundance of DM originating from a thermal freeze out in the
early universe. WIMPs can be searched for with several detection strategies, one of which
being indirect detection via annihilation products (for example gamma rays) [1, 2].

Observations of our Galactic Center (GC) with the Fermi-LAT satellite over the past
several years, show that there is a significant excess in gamma rays in the energy range
of 1 GeV . Eγ . 50 GeV (see refs. [3–17] for details and interpretations). The source
of these photons is under debate. Astrophysical explanations (like pulsars or cosmic ray
outbursts) have been shown to face challenges, but it is not yet possible to rule out these
explanations [18–24]. Another possibility for the origin of this γ-ray excess is annihilating
DM. The GC is a promising target for searches of DM signals, as large-scale simulations
of galaxy formation predict DM halos around galaxies such as the Milky way [25, 26]. This
implies that an indirect DM signal could come from the Galactic Center [27].

Initially, the GC excess signal was reported to be compatible with a 30GeV dark matter
particle annihilating into bb̄, or a 10GeV dark matter particle annihilating to τ τ̄ [5, 28]. The
resulting b-quarks and τ -leptons can hadronize to neutral pions, which can decay to the
observed γ-ray photons. Both processes should have an annihilation cross section close to
〈σv〉 ≃ 1.3× 10−26 cm3s−1, the annihilation cross section expected for a thermal relic with a
mass at the weak scale Ew ≃ 100GeV. These predictions have been explored within various
contexts, for example within the Minimal Supersymmetric Standard Model (MSSM). In the
framework of the MSSM, it is impossible to obtain such a scenario given LEP constraints [29].

However, a study on astrophysical background model systematics [13] allows for also
higher WIMP masses and different annihilation channels to give a good fit to the GC ex-
cess [30]. In addition it is shown that uncertainties originating from high energy physics
(especially partron showers) are also important to take into account [31]. Recently new anni-
hilation scenarios within the phenomenological MSSM (pMSSM) and compatible with all the
constraints are found [31, 32]. In the pMSSM the 105 Lagrangian parameters of the MSSM
are reduced to 22, using phenomenological constraints on several parameters. In this model
we assume that:

• Masses of the first and second generation sfermions are equal, separately in the lepton
and quark sectors.
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• All the soft SUSY-breaking parameters are real, so the only source for CP-violation is
the CKM matrix in the standard model.

• Requiring minimal flavor violation, in the MSSM all sfermion mass matrices are as-
sumed to be diagonal.

As a result of R-parity conservation in the MSSM, a lightest supersymmetric particle (LSP)
exists. In most scenarios the LSP is the lightest neutralino, χ̃0

1, which is a combination of the
neutral electroweak gaugino and higgsino fields. We select only models with a neutralino as
LSP. The neutralino is a well-motivated DM candidate, as it is neutral, stable and can lead
to a right DM relic density [33]. A 19-dimensional realization of the pMSSM is enough to
encapsulate the phenomenology of the 22-parameter model. This is achieved by putting all
trilinear couplings of the first and second generation to 0. The remaining parameters are 10
sfermion masses, 3 gaugino masses M1,2,3, the ratio of the Higgs vacuum expectation values
tanβ, the Higgsino mixing parameter µ, the mass mA of the CP-odd Higgs-boson A0 and 3
trilinear couplings Ab,t,τ .

Dwarf galaxies (dSphs) in the vicinity of our galaxy provide an alternative to the Galac-
tic Center for the search for γ-rays originating from annihilating dark matter. The amount of
DM in these objects can be estimated by measuring the stellar velocities of member stars [34].
The resulting DM signal is proportional to the line-of-sight integral of the DM density distri-
bution, a quantity known as the J-factor. Dwarf galaxies have a lower DM density (typical up
to log10(J) = 20GeV2 cm−5) than expected for the Galactic Center (for which the J-factor is
predicted to be at least an order of magnitude larger). However, dSphs have less complicated
backgrounds than the Galactic Center, as the latter suffers from systematic uncertainties
associated with diffuse fore- and backgrounds [35]. These facts make dSphs promising tar-
gets for the detection of γ-rays originating from DM annihilation. Until recently, no dSphs
with a significant γ-ray excess were found, setting strong limits on the cross section for DM
annihilation. Recent imaging data from the Dark Energy Survey (DES) led to the discovery
of new Milky Way satellites [36–38]. Among those, Reticulum II is of particular interest,
as this object showed a gamma ray excess of a global significance level of 2.3–3.7 σ [39, 40]
between 2GeV and 10GeV. The Fermi and DES collaborations found a less significant ex-
cess (p-value of 0.05 including a trials factor from testing multiple DM masses and channels,
corresponding to a global significance of 1.65 σ), using an updated (Pass 8) data set [41].
The local significance they find is 2.4 σ (p = 0.01).

In this paper we will present a comparison of the Pass 7 data for Reticulum II in terms
of annihilating neutralino dark matter. We use the pMSSM as a framework to provide this
dark matter particle, using the results of ref. [31]. This study has no channel and mass trials
factor since the DM mass and shape are fixed by the pMSSM model and the Galactic Center
excess data. We will update this study to Pass 8 data in due course.

2 Analysis set-up

In ref. [40] events are included within 0.5◦ from Reticulum II. We adopt the same strategy
and will refer to this as the region of interest (ROI). See figure 1 for the resulting photon
spectrum, which is extracted from ref. [40]. The error bars indicate Poisson confidence level
intervals (68%) on the number of counts in each bin. A logarithmic binning of 5 bins per
decade between 0.2 and 300GeV is used, resulting in a total of 15 bins. In this figure the
last 2 bins are not shown, because of their large uncertainties. It is clear that between 2 and
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Figure 1. Photon spectrum as extracted from ref. [40] of the Fermi-LAT data using events within 0.5◦

of Reticulum II (black points) with Poisson error bars. The solid gray line is the sum of background
estimates of the Fermi Collaboration’s models for isotropic and Galactic diffuse emission at the location
of Reticulum II. Between 2GeV and 10GeV, the photon spectrum rises above the background. This
observed excess region is indicated by the blue box. The colored points are fluxes generated by
DarkSUSY of the best fits for four scenarios: tt (blue), WW(1) (green), WW(2) (red) as extracted
from [31] and bb (orange), added to the background of Reticulum II. The red box indicates the
expected excess region, as determined by equation (3.2).

10GeV, the spectrum of Reticulum II rises above the expected background. We will refer
to this region as the observed excess region from now on. See ref. [40] for details on the
analysis leading to this gamma-ray excess. From the ROI we derive the integration angle to
be αint = 0.5◦, corresponding to Ω = 2π(1− cosαint) ≃ 2.4× 10−4 sr.

The observed gamma-ray flux from DM annihilation per unit solid angle at a photon
energy Eγ is given by:

dΦγ(Eγ)

dEγdΩ
=

〈σv〉

8πm2
DM

dNγ

dE

∫
l.o.s.

ρ2DM(l)dl , (2.1)

where the integral over the DM density squared is along the line of sight (l.o.s.), 〈σv〉 is the
annihilation cross section weighted by the relative velocity, mDM is the WIMP mass, and
dNγ/dE denotes the photon spectrum per annihilation.

The normalization factor
∫
dΩ

∫
l.o.s.

ρ2
DM

(l)dl is commonly referred to as the J-factor:

J =

∫
dΩ

∫
l.o.s.

ρ2DM(l)dl (2.2)

We use SUSPECT [42] as a spectrum generator and DarkSUSY 5.1.1 [43, 44] to compute
the photon fluxes. In ref. [31], it is shown that there are three pMSSM parameter ranges that
are consistent with the GC photon excess as originating from annihilating DM. That paper
contains the details on how the possible solutions were found using a scan of the pMSSM
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M1 (GeV) M2 (GeV) µ (GeV) tanβ

tt 171–189 190–1550 > 250 > 5

WW(1) 103–119 240–660 108–142 8–50

WW(2) 91–101 102–127 156–507 5–12

Table 1. Parameter ranges in pMSSM that correspond to the best solutions to the GC excess, as
extracted from [31].

parameter space. The solutions presented in ref. [31] yield a value for the DM relic density
that corresponds to ΩDMh2 ≃ 0.1, close to the observed value ΩDMh2 = 0.12 ± 0.0027 [45],
without being constrained a-priori to do so. In all cases the lightest neutralino is the DM
candidate.

The first region of the pMSSM parameter space that was found to yield a good fit to the
GC excess is one in which the lightest neutralinos annihilate mostly to a pair of top quarks.
The lightest neutralinos have a very dominant bino component (99%), and their masses are
at the kinematical threshold (mχ ∼ 174–187GeV). These models have ΩDMh2 = 0.08–0.21.
We will refer to these models as tt.

The second solution is χ̃0
1χ̃

0
1 → W+W−. In this case the lightest neutralino is a bino-

higgsino mixture, with a mass range of mχ ∼ 84–92GeV. We will refer to these models as
WW(1). This solution provided the best fit to the GC excess (p-value=0.45). These models
correspond to a ΩDMh2 in the range of 0.08–0.10.

The third solution yields a scenario in which the lightest neutralinos annihilate mostly
to W+W− pairs. In this case, the composition of the lightest neutralinos is a mixture of
bino, wino and higgsino, where the bino component is the most dominant one (90%). The
mass of the lightest neutralinos is mχ ∼ 87–97GeV. The Galactic Center best fit points have
an ΩDMh2 of 0.07–0.18. We will refer to these models as WW(2).

In table 1 we show the exact parameter ranges in the pMSSM for each scenario. From
each scenario we adopt the 50 best fit models (corresponding with the best χ2 for the Galactic
Center excess fit) for comparison with the Reticulum II signal.

In addition to these three scenarios, we create a 50GeV neutralino and consider only
the bb̄ annihilation channel. We artificially put 〈σv〉 ≃ 1.3 × 10−26 cm3s−1, the upper limit
for the annihilation cross section as found by ref. [46] and used in ref. [39] to explain the
Reticulum II excess. We will refer to this model as bb.

3 Results

The resulting photon fluxes are fitted with the photon spectrum of Reticulum II, leaving
the J-factor as a fitting parameter. Since the error bars are approximately symmetric and
uncorrelated, we use the following χ2 definition to determine the best fit:

χ2 =
∑
i

(di −mi)
2

σ2
i

, (3.1)

where i is the energy bin number, running from 1 to 15, di is the Reticulum flux and mi the
DarkSUSY model flux. In figure 1 we show the resulting photon spectrum for the best fits.
We use (minimal χ2)+ 1 to define the 1σ range of the J-factor. In the following, we give the
mean values of this J-factor error for all 50 best fit models within each scenario.
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Figure 2. J-factor (note we do not use the logarithm) of the three best fits within tt (blue), WW(1)
(green), WW(2) (red) and bb (orange) as a function of χ2 (as defined in equation (3.1)).

We find that the tt scenarios yield the best results, with a minimal χ2 ranging between
7.75 and 7.93. To determine the corresponding p-value we take a conservative approach and
use 13 degrees of freedom (d.o.f.). The d.o.f. are counted as follows: there is a total of 15
bins, which gives 15 degrees of freedom. We subtract 1 d.o.f. for the background fit and 1
d.o.f. for the J-factor normalization. Using 13 d.o.f., the chi2-values correspond to a p-value
of ≃ 0.85. The tt models give a J-factor of log10(J(αint)) = (20.33–20.56)+0.15

−0.23GeV2cm−5.
The numbers between brackets denote the range of the optimal fit J-factor for each model.

The WW(1) scenario results in a J-factor of log10(J(αint)) = (20.31–20.35)+0.16
−0.25

GeV2 cm−5. The chi2-values are slightly worse with a mean value of 8.75, corresponding
to a p-value of 0.79 using 13 d.o.f.

The WW(2) scenario gives a J-factor of log10(J(αint)) = (20.25–20.55)+0.15
−0.25GeV2cm−5.

These have a χ2 between 8.35 and 8.66, corresponding to a p-value of 0.81.
The last scenario, bb, results in log10(J(αint)) = 19.57+0.19

−0.35 if we use an annihilation
cross section of 〈σv〉 ≃ 1.3×10−26 cm3s−1. The bb scenario has χ2 = 10.7, which corresponds
to a p-value of 0.63.

In figure 2 we show the J-factor as a function of χ2 for one model in each scenario. Note
that we do not plot the logarithm of the J-factor in this figure.

In table 2 we summarize the best p-values of the total signal and the p-values for the
observed excess region for each scenario (indicated by Reticulum II data and Observed excess

region). In order to provide for an unbiased statistical test of the signal shapes, we also
include p-values for an expected excess region and for a background only model. We define
the expected excess region as the range of bins where:

min {pi(signal + background|background)} (3.2)

is satisfied, where a minimum number of bins of 4 is demanded, because the observed excess
region consists of 4 bins. The signal refers to the photon flux as generated by DarkSUSY. In
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Reticulum II data Observed excess region Expected excess region

tt 0.85 0.36 0.53

WW(1) 0.79 0.27 0.36

WW(2) 0.81 0.31 0.40

bb 0.63 0.09 0.24

background 0.37 0.01 0.03

Table 2. The p-values for the proposed four scenarios corresponding to the Reticulum II measured
data, the observed excess region from 2 to 10GeV (as indicated in figure 1 by the blue box) and the
expected excess region (as indicated in figure 1 by the red box). In the last row we include p-values
for the background only model to explain the Reticulum II measured data, the observed excess region
and the expected excess region.

equation (3.2), the label i denotes a certain continuous bin range and p denotes the p-value.
χ2 is calculated according to equation (3.1) and the number of d.o.f. is equal to the number
of bins - 1 (note that the J-factor normalization is now set, so we gain one extra d.o.f.).
This range of bins corresponds to the situation where the best discrepancy between signal
as generated by DarkSUSY and background can be made. We adopt the relative Poisson
distributed errors on the Reticulum II measured data as an error on the background. The
expected excess region is for all four models the same and indicated by the red box in figure 1.
This region differs from the observed excess region by a few bins.

As shown in table 2, the tt scenario yields the best fit results for the observed excess
region (p=0.36) and expected excess region (p=0.53). The bb scenario yields the worst fit
(p=0.09 for the observed excess region, p=0.24 for the expected excess region).

Our conclusion is that the DM annihilation models, as proposed in ref. [31] which
are consistent with the gamma ray excess in the Galactic Center as reported by Fermi-
LAT, provide also a good fit to the observed gamma ray excess in Reticulum II. We find
here that all these models predict a J-factor between log10(J(αint)) = 20.0GeV2cm−5 and
log10(J(αint)) = 20.7GeV2cm−5 (including 1σ error). The bb model results in a J-factor
of log10(J(αint)) = 19.57+0.19

−0.35. The GC models lie within the 1σ region of log10(J(αint)) =

19.6+1.0
−0.7 GeV2cm−5 for an integration angle of αint = 0.5◦ as reported by ref. [47]. This

derivation is done using an optimized spherical Jeans analysis of kinematic data obtained
from the Michigan/Magellan Fiber System, an analysis which is independent of our approach.
Ref. [48] reported a lower J-factor of log10(J(αint = 0.5◦)) = 18.9 ± 0.6GeV2cm−5 (1σ
uncertainty), using the same spectroscopic data. This difference could originate from a
different choice of dark matter priors (such as the dark matter local density and halo profile).
Our models are consistent within 2σ with this J-factor.

4 Summary and conclusions

We found that the same models that are consistent with the Galactic Center gamma ray
excess, shown in ref. [31], are also consistent with the small excess observed in Retic-
ulum II, as reported by ref. [40]. The resulting J-factor is log10(J(αint = 0.5◦)) ≃
(20.3 − 20.5)+0.2

−0.3GeV2cm−5, which is consistent with another determination of the J-factor
using kinematic data obtained from the Michigan/Magellan Fiber System, resulting in a J-
factor of log10(J(αint = 0.5◦)) = 19.6+1.0

−0.7 GeV2cm−5 as reported by ref. [47]. An improvement
on the uncertainty of the J-factor will be important for interpreting these results.
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