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Abstract
Locomotor malfunction represents a major problem in some neurological disorders like

stroke and spinal cord injury. Robot-assisted walking devices have been used during reha-

bilitation of patients with these ailments for regaining and improving walking ability. Previous

studies showed the advantage of brain-computer interface (BCI) based robot-assisted train-

ing combined with physical therapy in the rehabilitation of the upper limb after stroke. There-

fore, stroke patients with walking disorders might also benefit from using BCI robot-assisted

training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to

decode walking intention from cortical patterns during robot-assisted gait training. Spectral

patterns in the electroencephalogram (EEG) related to robot-assisted active and passive

walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in

three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A

logistic regression classifier was used to distinguish walking from baseline in these spectral

EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively,

were reached when active and passive walking were compared against baseline. The clas-

sification performance between passive and active walking was 83.4±7.4%. A classification

accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and

baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central

midline areas was found to be associated with the gait cycle phases, but not in the stroke

patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training

devices for gait rehabilitation.
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Introduction
Stroke is the main cause of disability in adults [1]. Many patients present lower limb
impairment characterized by abnormal muscle activations. Three months after the stroke,
about a quarter of these patients are still bound to the wheelchair [2].

Robot-assisted training devices have been used during rehabilitation of stroke patients for
regaining and improving walking ability, offering longer training duration, increasing move-
ment repetitions and reducing the physical load imposed upon the therapist. Robotic training
can provide the intensive and task-oriented type of training that has proven effective for pro-
moting motor learning [1,3], which is thought to be useful for motor recovery after stroke [4].
Despite the lack of consensus in the literature, a recent systematic review on the topic has
shown benefits of robot-assisted treadmill training. Stroke patients who received electrome-
chanical assisted gait training in combination with physical therapy are more likely to achieve
independent walking than patients receiving gait training without these devices [5].

One of the underlying mechanisms of the benefit of robot assisted-treadmill training is mul-
tisensory feedback. Multisensory feedback plays an important role in motor learning by rees-
tablishing the sensorimotor loop that is disrupted after stroke [6,7]. Several multisensory
feedback approaches have been reported for motor recovery in patients with stroke, including
action-observation [8], and recently developed Brain-Computer-Interfaces (BCI) coupled to
orthotic devices[9]. A BCI system can provide multisensory feedback (e.g. visual and propio-
ceptive (robots)[10]) allowing the users to modulate their brain activity by operant condition-
ing [11]. BCIs can couple intention with action and enable patients with stroke to achieve
intended motor actions by exploiting neural learning mechanisms [11]. Interestingly, it has
been suggested that the combination of robotics and brain control of upper limb assistive tech-
nology [12–15] leads to motor learning and induces neural plasticity resulting in motor func-
tion improvement [9,16–21].

In order to develop a BCI control of the robot-assisted gait device, fundamental research
aiming at detecting the precise active role of the motor cortex during the gait cycle has to be
done. Furthermore, it is important to identify what can effectively and non-ambiguously be
measured using non-invasive brain signals such as EEG: descending commands from the
motor cortex, ascending sensorimotor information, integration of both or artifacts.

So far, only few studies have investigated the neural correlates of human walking, principally
due to both the inherent experimental difficulty of measuring EEG signals in the ambulatory
context and the challenging goal of balance control in walk rehabilitation tasks [22]. However,
it has been recently confirmed that the motor cortex is particularly active during specific phases
of the gait cycle, particularly before the foot comes in contact with the ground [23–26].
Together these studies and others [27–29] have demonstrated that supraspinal circuits, espe-
cially those of the motor cortex, have a significant role in motor control during walking. Fur-
thermore, researchers have shown that active training can enhance motor performance and
increase corticospinal excitability in comparison to passive training [30]. Therefore, for motor
rehabilitation purposes it is necessary to actively involve the patients during the training.

At a fixed pattern and constant speed in robotic-training devices users often start relying on
the robot to perform the movement and reduce their muscular activity [31]. An important
component in the success of neural plasticity and motor learning is the supraspinal engage-
ment during the task. Therefore, several studies have attempted at detecting active subject par-
ticipation during robot training. One way to overcome this problem is by incorporating
control algorithms that require the patient to actively initiate movements to perform the task.
Using EEG, previous studies have investigated the difference between active and passive move-
ment during robot-assisted gait training. A significant decrease in the mu, beta and gamma
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bands during active compared to passive walking was observed in the right primary motor cor-
tex hand area, indicating increased cortical involvement during active walking [26]. However,
it remains to be tested whether these cortical patterns can be classified reliably for an online
detection of active cortical involvement during robot-assisted gait training.

In this study we aimed at demonstrating the feasibility of a BCI-based robotic-assisted train-
ing device for gait rehabilitation by decoding the intention of walking on the basis of EEG sig-
nals during robot-assistive gait training in ten healthy volunteers and three stroke patients with
mild lower limb impairment. Moreover, we aimed at detecting the precise role of the sensori-
motor cortex during active (intention to walk) and passive walking (no intention to walk) to
find out to which extend the cortical involvement during gait influences the patterns of neural
signals recorded by EEG.

Materials and Methods

Participants
10 healthy volunteers (mean age 32.3 ± 10.8, six female) without a history of neurological or
psychiatric disorders and three acute ischemic stroke patients participated in the experiment (3
males, mean age 46.7±16.9, Berg Balance Scale 20±12.8). The stroke patients presented a first
ischemic stroke 2, 3 and 2 months before they participated in this study, respectively. Patients
presented severe left sided hemiparesis and severe difficulties to stand and walk. Detail demo-
graphic information is presented in Table 1.

Ethics Statement
The Medical Ethics Committee of the Radboud University medical center approved this study
and all participants provided written informed consent before entering the study.

Exoskeleton
The Lokomat Pro (Hocoma AG, Volketswil, Switzerland) was used to assist walking. This exo-
skeleton is a bilaterally driven gait orthosis in which a body-weight support system and a tread-
mill are incorporated (Fig 1A). The orthosis moves the legs along a specified trajectory in the
sagittal plane, with hip and knee joints of the orthosis actuated by linear drives that are inte-
grated into an exoskeleton.

Electroencephalographic (EEG) recordings
Electrical signals from 62 electrodes were recorded at 500Hz sampling rate using a TMSi Refa-
72 amplifier (Twente Medical Systems International, The Netherlands). Impedance of the elec-
trodes was kept below 50KO.

Table 1. Demographic information stroke patients.

Patient Age Gender Months after stroke Balance Berg Score Lesioned hemisphere BWS GF

P 1 51 m 2 6 right 64.20% 85%

P 2 61 m 3 31 right 35.9% 60%

P 3 28 m 2 23 right 40% 65%

m = male; BWS = Body weight support, GF = guidance force.

doi:10.1371/journal.pone.0137910.t001
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Electromyographic (EMG) recordings
Muscle activity from the right leg (healthy volunteers) or the paretic leg (stroke patients) was
recorded using three bipolar electrodes over the gastroc medialis (calf), semintendinosus (ham-
string) and vastus lateralis (quadriceps). In addition, muscle activity from the right trapezius
on the neck (neck) was recorded (Fig 1A).

Accelerometers
In order to track the gait cycle during walking in the Lokomat accelerometers were positioned
on each leg above the metatarsal bones (Fig 1A). The accelerometers used were type ADXL 335
(Analog Devices One Technology Way, MA, USA).

Experimental Design
Healthy Volunteers. Healthy participants attended one experimental session in which

they were asked to either walk in a passive or in an active mode at a speed of 1.5Km/h or to
stand in the Lokomat. During the passive and active walking conditions the body weight sup-
port (BWS) and the guidance force (GF) were manipulated. For the passive walking GF of

Fig 1. Experimental design and canonical correlation analysis example. a. Experimental setup in the lokomat with the EEG electrodes and cap, the
EMG electrodes located in the right trapezius (neck), right gastroc medialis (calf), right semintendinosus (hamstr.) and right vastus lateralis (quadri.), and the
corresponding accelerometers for the right and left foot (accel.). b. Schematic representation of a trial starting with a relax period hanging (baseline) and
continuing with a walking task which could be either passive or active. c. Average spectrum across all blocks for all extracted components (raw signal
(black)), for only the muscle related components (EMG, red) and for only unrelated muscle components (raw—EMG, blue) using canonical coherence
analysis (CCA).

doi:10.1371/journal.pone.0137910.g001

Decoding Brain Signals during Robot Gait Training

PLOS ONE | DOI:10.1371/journal.pone.0137910 December 16, 2015 4 / 21



80% and BWS of 75% were used, while for the active walking GF was set to 30% and BWS to
5% (a complete passive walking with a GF of 100% and BWS of 0% was not possible because
the participants were not able to walk in the Lokomat anymore and it was not a good option
either since this completely changes the stepping behavior [32]). Participants were asked to
perform as little effort as possible during the passive walking condition and to allow the legs
to be moved by the robot. Moreover, they were verbally informed about how passive they
were walking on the basis of their EMG signals. During the task, participants hold on to the
safety bars at the sides of the treadmill. Participants were instructed to follow the device as
best as possible during all walking conditions (e.g. avoiding pushing against the knee and hip
orthosis). A familiarization period for active and passive walking was given to the partici-
pants. After the subject felt comfortable walking in the Lokomat, the experimental session
was started.

An experimental session consisted of 14 blocks, seven for passive and seven for active
walking. Blocks were presented in a randomized order. Each block started with a period of
quiet baseline while participants were lifted from the treadmill in the robot (100% BWS,
meaning no balance needed and no contact with the floor) and looking at a fixation cross on
a computer screen for 7.5s (Fig 1B). Afterwards an instruction was displayed on the screen
advising the participant about the task to be executed; active or passive walking. In both
walking tasks, the treadmill started, participants walked for 49s, after which the treadmill was
stopped. The treadmill had a delay of at least 7s to come up to a stable speed and 7s to slow
down and stop completely. The recordings only took place during constant and stable speed,
which was indicated by the physiotherapist controlling the robotic device and a trigger
marker in the EEG recordings. During the baseline and walking periods a fixation cross was
displayed on the screen. Resting periods between blocks were made depending on the partici-
pant’s fatigue.

Stroke patients. Stroke patients also attended one experimental session in which they
were asked to walk at a comfortable speed of maximum 1.5Km/h or to rest in the Lokomat
with 100% of BWS and no contact with the floor (baseline). A physiotherapist controlled the
speed of the orthosis according to the patient’s capabilities. The BWS and the GF was adjusted
for each patient’s limitations (see Table 1).

For patients, an experimental session consisted of 10 blocks. Each block started with a
period of lifted from the treadmill (100% BWS, meaning no balance needed and no contact
with the ground) while participants looked at a fixation cross on a computer screen for 7.5s,
which was used as a baseline condition (Fig 1A). Subsequently, an instruction was displayed on
the screen advising the participant about the initiation of the task. During walking, the tread-
mill started and patients walked for 49s, after which the treadmill was stopped. The physiother-
apist indicated when the patient walked properly. During the baseline and walking periods a
fixation cross was displayed on the screen. Resting periods between blocks were made to avoid
fatigue.

EEG analysis
EEG data were downsampled to 250Hz, linearly detrended and epoched according to gait cycle
information recorded from the accelerometers. The gait cycle phases were defined relative to
the right heel strike (measured by the accelerometers) for the healthy volunteers and for the
patients relative to the paretic leg heel strike (see S1 Fig). The other gait cycle phases, apart
from the right heel strike, were defined according to the literature [33]. In total, around 17 to
21 gait cycles were detected in each block, depending on the participant’s leg length. EEG sig-
nals were re-referenced to a common average across all channels. A Canonical correlation
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analysis (CCA) method [34] was used to remove the EMG artifacts on the EEG signals. This
worked by identifying and removing sources (components), such as muscle activity, which
have low temporal auto-correlation as assessed by having power in the EMG frequency band
(15-30Hz) more than 1.3 times stronger than in the EEG frequency band (1-30Hz). The com-
ponents identified as muscle activity are marked as EMG and removed from the raw signals.
The remaining components are kept and used to reconstruct the EEG activity (Fig 1C). The
mastoid electrodes located on TP8 and TP7 were removed and on the remaining EEG elec-
trodes a surface Laplacian based on spherical spline interpolation [35] was performed to
improve spatial selectivity.

Power spectral analysis was performed using Welch’s method with a Hanning window of
250ms. For classification of the EEG signals into different conditions, the frequency bins from
8 to 30Hz were used. Frequencies below 8 Hz were not considered in the analysis in order to
avoid any influence from movement artifacts (<4Hz).

Event-related desynchronization (ERD) and event-related synchronization (ERS) were cal-
culated by normalizing the power in the frequency of interest from the active and passive walk-
ing by the corresponding baseline condition. The following equation (Eq 1) illustrates this
procedure:

ERD or ERS ¼ Walking � Baseline
Baseline

� �
� 100 ð1Þ

Walking corresponds either to passive or active walking and the Baseline to the resting
period before passive and active walking, respectively.

Spectrograms for the active and passive walking and baseline were calculated for each trial
using a hanning window of 250ms and a fractional overlap of 0.5 and afterwards time-warped
such that all gait cycles had the same effective duration. Event-related spectral perturbations
(ERSP) were calculated by first subtracting the average power over the gait cycle from the
power at any time-point and then dividing by the average power over the whole experiment for
each frequency bin.

Classification of EEG signals
EEG classification was performed using a L2-regularized logistic regression classifier [36,37].
The regularization parameter was selected as the one, which maximised the estimated classifi-
cation accuracy. The EEG epochs were classified between passive walking and baseline, active
walking and baseline and passive and active walking (binary classification). Classification accu-
racy was estimated using 10 fold cross validation on the testing data, where for each fold 90%
of the trials were used for training the classifier and 10% for testing it. The output of the classi-
fier for each fold was the prediction decision values for each instance. Classification accuracy
was measured by the balanced loss [38], which punishes stronger a wrong classification of an
instance from the minority class than a wrong classification of an instance from the majority
class (this to prevent for unbalanced number of trials for each class). This value falls in the
range of 0 to 1 and after multiplying it by 100(%), an accuracy of 50% represented the chance
level or no discrimination.

The classifier weight vectors for the best regularization parameter were calculated for each
participant in order to identify which frequency and spatial characteristics were most useful for
the classifier. A grand-average classifier weight vector was obtained across participants by nor-
malizing each participant’s classifier weight vector. Values between 1 and -1 were obtained,
where values close to 1 and -1 indicated a strong influence on the classification and values close
to zero indicated no influence on the classification.
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EMG analysis
EMG signals were filtered with a high-pass filter in 10Hz and a notch filter was applied to
remove the power line noise in 50Hz. Subsequently, signals were normalized to the maximum
value during baseline, then rectified, downsampled to 250Hz and epoched according to gait
cycle information recorded from the accelerometers (as it was done with the EEG data). Grand
average muscle activity was calculated first by normalizing the EMG signals across muscles and
walking conditions for each participant and then averaging. Normalized EMG signals varied
from 0 to 1, where 1 indicated the maximum activity across muscles and across walking condi-
tions for each participant.

Statistical analysis
All data were reported as mean values ± standard deviation (SD) when indicated. Statistical
evaluations on the power density analysis were performed using a paired sample t-tests.

A cluster-based permutation test [39] was used to assess differences on the ERSP across
moving conditions (active, passive walking and baseline). This non-parametric test finds clus-
ters of frequencies and time points where the spectrogram differs between conditions while
controlling for the false alarm rate. Cluster-based permutation tests were performed using
Fieldtrip [40]. The significant level (α) was 0.05.

Significant differences in muscle activation patterns were calculated between active and pas-
sive walking. For this purpose the EMG signals for each muscle were normalized to the maxi-
mum value during baseline and downsampled to 250Hz. Then, a power spectral analysis was
performed using Welch’s method with a Hanning window of 250ms on the signals from each
muscle. For group analysis the power for each muscle was normalized to the maximum for
each subject. EMG grand average was calculated independently for each muscle. A pair sample
t-test was used to compare each frequency bin (from 0 to 40 Hz) from the EMG grand average
during active walking against passive walking. The significant level (α) was 0.05 for all tests.
Bonferoni correction was applied to correct for multiple comparisons among frequencies
(p = 0.0013, corrected).

As classification accuracies are not normally distributed [41] a non-parametric test, Wil-
coxon signed rank, was used to assess significant classification accuracies above chance level.
To compare the classification performance across decoding conditions a non-parametric one-
way ANOVA (Kruskal-Wallis) was performed. Post-hoc Wilcoxon signed rank tests were per-
formed for subsequent comparisons. The significant level (α) was 0.05 for all tests. Bonferoni
corrections for multiple comparisons were applied when required.

Results

Healthy volunteers task
Canonical correlation analysis (CCA). Since physiological signals like muscle artifacts

can contaminate strongly the electroencephalographic (EEG) signals during walking, a canoni-
cal correlation analysis (CCA) was performed. CCA component analysis rejection method has
shown effectiveness in removing the EMG components from the EEG signals [42] (for an
example see 1c). This analysis was fed time-delayed versions of the signals such that it could
derive spectral as well as spatial filtering. Before rejection of the EMG components the raw
EEG data contains strong power in frequencies in the EMG range (above 15 Hz), which is spa-
tially clustered around the known muscle sources, i.e. neck, eyes and scalp muscles. After
rejecting the EMG components and selecting correctly the EEG components the power on
these frequencies and locations is reduced. Therefore, after CCA analysis the EEG signals are
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cleaned from EMG components that might bias the classification results (based on non-cortical
signals).

Power density analysis and topographical distribution. A significant difference between
passive walking and active walking and its corresponding baseline condition were found in the
beta band in the Cz electrode (Fig 2A) (active walking vs baseline before active walking t = 2.15

Fig 2. Power density analysis in healthy volunteers. a. Grand average power density analysis over Cz for active and passive walking and the baseline
before passive and active walking conditions. b. Topographic distribution of event related desynchronization (ERD) and synchronization (ERS) in the mu (8–
12 Hz), beta (15-30Hz) and low gamma (30-40Hz) bands.

doi:10.1371/journal.pone.0137910.g002

Decoding Brain Signals during Robot Gait Training

PLOS ONE | DOI:10.1371/journal.pone.0137910 December 16, 2015 8 / 21



p = 0.04, passive walking vs baseline before passive walking t = 2.21 p = 0.04). Event related
desynchronization (ERD) was stronger bilaterally above the right and left primary motor areas
in the mu band (8-12Hz), while in the beta (15-25Hz) and low gamma (30-40Hz) frequencies
the ERD was stronger above the Cz electrode in the fronto-central leg motor area (Fig 2B).

Spectrogram. Grand average ERSPs for the channel Cz showed clear changes in the spec-
tral power during the gait cycle in the high beta and low gamma band (20-40Hz) (Fig 3A).
Between the right initial contact and left toe off phase a desynchronization was found in high
beta and low gamma band. The same pattern was observed during left initial contact and right
toe off phase. On the contrary, during left and right swing phases (after left and right toe offs
until right and left initial contact) a synchronization in the high beta and low gamma band was
found (Fig 3A).

The cluster-based permutation t-tests of the EEG signals from Cz revealed significant differ-
ences in the ERSPs between (active and passive) walking and baseline conditions (Fig 3B). Pas-
sive and active walking had mainly a significant decrease in power in the frequency range of
beta and low gamma frequencies. No significant differences were found when the cluster-based
permutation t-test was performed between active and passive walking conditions.

Muscle activity. Grand average EMGs are shown in Fig 3C for passive and active walking.
The calf was active during the right stance phase after the left toe off. The hamstring was acti-
vated directly after the right heel contact during the right stance phase and also after the left
heel contact and right toe off phase. The quadriceps was active between the 20% and 30% of the
gait cycle during the right stance phase. No systematic changes in muscle activity during the
gait cycle were observed in the neck muscle.

Significant differences (p<0.0013 corrected) in muscle activation patterns indicated that
during active walking muscle activity in the right lower limb was increased in comparison to
passive walking. The later occurred in all the frequencies between 0 to 40Hz (Fig 4). The neck
muscle did not show any significant difference between passive and active walking.

Classification accuracies. The average classification accuracy was 94.0±5.4% (mean±std)
when active walking was compared against baseline and 93.1±7.9% when passive walking was
compared against baseline (Table 2). A classification performance of 83.4±7.4% was achieved
when active walking was compared against passive walking. Furthermore, when the baseline
before active walking and the baseline before passive walking were compared the classification
performance was 54.7±8.3% (not significantly different from chance level). All comparisons
showed classification performances above chance level (50%) (active walking vs baseline
p<0.01 corrected (p = 0.002); passive walking vs baseline, p<0.01 corrected (p = 0.002); and
active walking vs passive walking p<0.01 corrected (p = 0.002)) except when the baseline
before active walking and the baseline before passive walking conditions were compared
(p>0.05 corrected (p = 0.13)), as expected.

The non-parametric one-way ANOVA showed a main effect between classification accura-
cies (χ 2

3,39 = 28.33, p = 3.1x10-6). Post-hoc Wilcoxon signed rank tests indicated that the clas-
sification performance of active and passive walking against baseline had a higher classification
performance than the classification performance when active walking was compared against
passive walking (p<0.01 corrected (p = 0.002) for active walking; p<0.01 corrected (p = 0.002)
for passive walking) and the baseline’s classification task (p<0.01 corrected (p = 0.0020) for
active walking; p<0.01 corrected (p = 0.0020) for passive walking). No differences were found
when the classification performance of active walking vs baseline and passive walking vs base-
line were compared (p>0.05 corrected (p = 0.92)).

The grand average classifier weight vector (Fig 5) for active walking against baseline and
passive walking against baseline showed features corresponding to the ERD which could be
seen at the expected channels around bilateral motor cortices for the mu frequency (12Hz) and
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more medial around Cz for the beta (20Hz) and low gamma frequencies (28Hz). For active
walking versus passive walking, a weaker brain activity was found around bilateral motor corti-
ces in the mu frequency (12 Hz) while in the beta band this activity was localized more in par-
ieto-occipital areas and in the low gamma band in centro-medial areas.

Fig 3. Event-related spectral perturbations (ERSP) andmuscle activity during the gait cycle in healthy volunteers. a. Grand average event-related
spectral perturbations (ERSP) over Cz during active and passive walking. b. Statistical differences between passive walking and baseline (left) and active
walking and baseline (right). c. Grand average muscle activity (normalized across muscles and walking conditions) from the neck (right trapezius), right calf
(gastroc medialis), right hamstring (semintendinosus, hamstr.) and right quadriceps (vastus lateralis, quadri.).

doi:10.1371/journal.pone.0137910.g003
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The grand average classifier weight vector (Fig 4) for active against passive walking showed
features corresponding with weaker mu strength in pre-motor regions, weaker beta strength in
the pre-frontal and posterior parietal regions and weaker gamma strength in the leg motor cortex
area during active robot-assisted walking. However, pair sample t-tests indicated no significant
difference between passive and active walking in the electrodes and frequencies where the classi-
fier weights were stronger (12 Hz channel P04 t = -1.41 p = 0.19 and channel FC2 t = -0.33
p = 0.75; 20Hz channel POz t = -1.13, p = 0.28 and channel Fz t = 1.51 p = 0.17; 28 Hz channel
C2 t = 1.59 p = 0.15).

Stroke patients
Here the results obtained for the stroke patients are described.

Power density analysis and topographical distribution. A significant difference between
active walking and the baseline condition was found in the beta band (25–30 Hz) in the CPz
electrode (t = -5.87 p = 0.03) (Fig 6A) in the stroke patients. Event related desynchronization
(ERD) was found stronger distributed over the left centro-parietal areas in the mu band (8-
12Hz) (towards the healthy hemisphere). In contrast, in the beta (15-25Hz) and low gamma

Fig 4. Power spectrum EMG grand average. Power spectrum grand average for the neck (right trapezius), right calf (gastroc medialis), right hamstring
(semintendinosus, hamstr.) and right quadriceps (vastus lateralis, quadri.) during active (red) and passive (blue) walking. Statistical differences between
passive walking and active walking are highlighted in the gray shadow (p<0.0013, corrected).

doi:10.1371/journal.pone.0137910.g004

Table 2. Classification performance for different walking conditions (active and passive) and baseline.

participants active walking vs
baseline

passive walking vs
baseline

active walking vs passive
walking

baseline before active walking vs baseline before
passive walking

1 94.9 95.5 89.9 42.6

2 97.4 98.8 75.3 43

3 100 100 83.3 63.7

4 85.3 85.3 83.1 53.6

5 98.6 100 77.5 60.5

6 96.6 92.6 79 46

7 95.7 94.5 91.7 66

8 93.3 93.3 93.7 58

9 94.3 96.6 88.3 56.8

10 83.5 74.5 71.9 57.3

mean 94 93.1 83.4 54.7

std 5.4 7.9 7.4 8.3

doi:10.1371/journal.pone.0137910.t002
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(30-40Hz) frequencies the ERD was stronger above the Cz electrode in the fronto-central leg
motor area and moderate stronger above the left centro-parietal area (Fig 6B).

Spectrogram. ERSPs for the channel Cz (Fig 7A) did not show systematic changes during
the gait cycle in the spectral power as found in healthy volunteers in the low gamma band (Fig
3A). The cluster-based permutation t-tests of the EEG signals from Cz did not revealed signifi-
cant differences between the ERSPs during active walking and baseline. However, ERD/ERS
from Cz revealed a strong desynchronization during walking in the beta band (15-30Hz) (Fig
7B).

Muscle activity. Grand average EMGs are shown in Fig 7C for baseline and active walking.
EMG activity of the stroke patients showed a different muscle activation pattern during the

Fig 5. Classifier weight vector in healthy volunteers.Grand average classifier weight vector for the best regularization parameter representing frequency
(12Hz, 20Hz and 28Hz) and spatial characteristics used by the classifier.

doi:10.1371/journal.pone.0137910.g005
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gait cycle when compared with the healthy volunteers’ pattern (Fig 3C). The activity in the calf
was more pronounced during the right heel contact and before left heel contact during the
right stance phase. In the hamstring the activity was increased directly after the left toe off
phase until the left heel contact during the right stance phase. The quadriceps activity was
increase before the left heel contact (between the 40% and 60% of the gait cycle during the right
stance phase). No systematic changes in muscle activity during the gait cycle were observed in
the neck muscle.

Classification accuracies. The classification accuracy was 96.4%, 85.7% 87.5% for patient
1, 2 and 3, respectively when walking was compared against baseline using the information
from the beta band (20–30 Hz). The grand average classifier weight vector (Fig 6C) shows fea-
tures corresponding to the ERD (Fig 6B), which can be seen at the expected channels around
Cz for 20, 24 and 28Hz.

Discussion
The main aim of this study was to demonstrate that EEG based BCI could be used for the con-
trol of a robot-assistive gait device, despite the presence of prominent muscle and movement
artifacts during walking. In order to demonstrate this we evaluated: the performance of a linear
classifier to differentiate between walking intention and no walking intention in healthy volun-
teers, the cortical involvement during walking intention and its topographical distribution in
the sensorimotor stream, and the performance of this classifier in stroke patients with locomo-
tor deficits.

Classification performances differentiating walking from baseline for both healthy partici-
pants and stroke patients were above 93% and 89%, respectively, supporting previous results
during treadmill walking [25]. This underlines the feasibility of BCI-based robotic-assisted
training devices. The weights of the classifier indicated that the main brain signals contributing

Fig 6. Power density analysis and classifier weight vector in stroke patients. a. Grand average power density analysis over Cz for baseline and walking
conditions. b. Grand average topographic distribution of event related desynchronization (ERD) and synchronization (ERS) in the mu (8–12 Hz), beta (15-
30Hz) and low gamma (30-40Hz) bands. c. Grand average classifier weight vector for the best regularization parameter representing frequency (20Hz, 24Hz
and 28Hz) and spatial characteristics used by the classifier.

doi:10.1371/journal.pone.0137910.g006
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Fig 7. Event-related spectral perturbations (ERSP) andmuscle activity during the gait cycle in stroke
patients. a. Event related spectral perturbations (ERSP) over Cz during walking. b. Event-related
desynchronization and synchronization (ERD/ERS) during walking (no threshold for significant changes was
applied). c. Muscle activity from the neck (right trapezius), right calf (gastroc medialis), right hamstring
(semintendinosus, hamstr.) and right quadriceps (vastus lateralis, quadri.) during walking (red) and baseline
(blue).

doi:10.1371/journal.pone.0137910.g007
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to this performance were the event-related desynchronization (ERD) in the mu rhythm more
bilaterally distributed and ERD in the beta and low gamma bands located more centro-medi-
ally as has been reported before [25,42]. Brain signals in the beta band centro-medially located
(Cz electrode) were significantly different during passive walking and active walking in com-
parison to baseline. We observed that mu-band effect seemed more lateralized over the hand
areas whereas beta/gamma was more medially focused over the foot regions. This could be due
to implicit hand activity or volume conduction effects causing central mu-cancellation. Previ-
ous NIRS studies have measured cerebral activity during actual gait [27,43], showing that walk-
ing increases cerebral activity bilaterally in the medial primary sensorimotor cortices, the
supplementary motor area and the prefrontal cortex. Furthermore, successful conversion of
brain signals during walking from the motor cortex into limb kinematics has been achieved
with monkeys, on the basis of invasive measurements [29]. Our evidence is in accordance with
these studies indicating that supraspinal circuits have a significant role in motor control during
walking.

Furthermore, we aim at detecting the precise control role of the sensorimotor cortex during
active (intention to walk) and passive walking (no intention to walk) in order to find out to
what extend the cortical involvement during gait influences the patterns of neural signals
recorded by EEG. In the first place, we found significant stronger muscle activations during
active walking in comparison to passive walking indicating that the healthy controls were able
to relax and not contract voluntarily their muscles during passive walking as during active
walking. However, it is difficult to avoid active muscle contraction in the legs during “com-
plete” passive walking because it is hard not to resist the imposed movements at times and as
soon as some load bearing is allowed some muscle activations are present (e.g. in the soleus)
[44]. This explains why during passive walking we still found some voluntary muscle contrac-
tion. In the second place, a good classification performance was found when distinguishing
passive and active walking (above 83%) in the healthy volunteers. The weights of the classifier
indicated differences in brain activations in pre-motor, posterior parietal and in the leg motor
areas (in the mu, beta and low gamma rhythms, respectively) between active and passive
robot-assisted walking. However, these differences were not statistically significant. We con-
clude that the classifier is picking up information that is not localized to a specific frequency or
region in the brain, but it is driven by broadly distributed signals. Even tough, we found that
the ERD in central-middle areas (i.e. efferent signal) were driving the classification between
active and passive walking against rest, one cannot completely reject that afferent sensory
information was also identified by the classifier. This might be one of the reasons why the clas-
sifier reduced in performance when active walking was classified against passive walking and
no significant differences were found between these two walking conditions. Therefore, for
future implementations into BCI control one has to consider that this approach cannot differ-
entiate between walking intent, simply sensory information emerging from locomotor activity
or a mix of these two signals. Furthermore, despite applying CCA, remaining sources of
unwanted artifacts cannot be entirely excluded and therefore they could have potentially con-
tributed to the classification between passive and active walking

In correspondence with previous studies [26] a modulation of the high beta and low gamma
activity during the gait cycle was observed in the event-related spectral perturbation (ERSP)
analysis during active and passive walking. We were able to detect the difference between left
and right swing and double support phases without using ICA and source analysis techniques.
This modulation showed an ERD during the double support phase (when muscles are less
active) while during the swing phase (when muscle are more active) an ERS, which might
imply more cortical involvement during the double support phase. Moreover, compared with
Wagner’s et al. [26] data, during passive walking the present data shows similarities for the
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swing phase but differs for the stance period in that more activity is seen in the present data.
One likely explanation is the difference in BWS between both studies during passive walking
(in Wagner et al. [26] BWS was always below 30% while in the present study it was 75%).

Other studies have found ERSPs in a broader band including not only low gamma and high
beta activity but also mu and low beta modulation coupled to the gait cycle during treadmill
walking [23,25,42]. One possible explanation because this modulation was so focal in the high
beta and low gamma band in our experiment could be because of the fixed walking pattern
imposed by the robot (less variation), which is different than when people walk more naturally
in a treadmill. Previous work has suggested that the sensorimotor system may shift towards
operating at higher frequencies (gamma) in situations requiring dynamic force output [45].
Another possible explanation is based on previous work [46] showing that movement artifacts
were associated with broader low gamma modulation of the ERSP. Since our results showed
ERSPs that on the contrary were frequency specific to high beta and low gamma activity
(between 20 to 40Hz), this could actually suggest that our data were less prone to movement
artifacts (which were found mainly in the low frequency bands below 4 Hz and not in the beta
and low gamma frequency) (See S2 and S3Figs).

Importantly, we did not find the modulation of the high beta and low gamma activity dur-
ing the gait cycle in the small population of stroke patients that we assessed. Gamma synchro-
nization facilitates the coordination of distributed functional cell assemblies [47] and is a
fundamental process in cortical computation [48]. Seeber et al. [24] suggested that low gamma
oscillations of neuronal populations might be linked to sensorimotor processing or integration.
Even though it is difficult to conclude anything regarding only three patients, we hypothesize
that the lack of low gamma modulation during the gait cycle might be related to the sensorimo-
tor integration deficits presented in these stroke patients. Future studies should investigate
whether modulation of low gamma frequencies before and after robot-assisted gait training
could be used as a potential biomarker of motor recovery.

Even though in this study we used participants trying actively to match the movement of
the Lokomat as a model of walking, it is important to underline that during Lokomat walking
the kinematic patterns are slightly different than during treadmill walking (e.g. more hip and
ankle extension, greater hip and ankle range of motion and less linear movement of joints)[49].
These differences might modify the type of motor commands send by the cortex. However, for
the purposes of detecting walking intention this model is sufficient.

Our current classification results (above 89%) are relevant for developing a BCI-based
robot-assisted gait training device controlled by EEG signals. Although previous studies have
shown that it is feasible to remove the EMG artifacts from EEG signals recorded during walk-
ing using ICA and dipole fitting [26], these methods are not so straightforward to be imple-
mented in an online BCI scenario due to their computational load. Instead, canonical
correlation analysis (CCA) has shorter computational time and can be used on a trial basis as
others have shown [50]. Therefore, CCA can be easily implemented during online BCI.

Previous studies have shown already the feasibility of an online control of gait rehabilitation
devices driven by EEG signals [22]. For example in [51], a non-invasive EEG-based BCI gov-
erning a functional electrical stimulation (FES) system for ankle movement was presented. In
this application, EEG patterns underlying foot dorsiflexions were detected in real time, and this
information was subsequently used to trigger the FES. A linear Bayesian classifier trained using
a vector of spatio-spectral features optimally discriminated the idling and dorsiflexion states.
In relation to our results, EEG power changes in the μ, β and low γ bands observed over mid-
central areas (i.e., electrode Cz) were the most informative features for classification. In addi-
tion, all five able-bodied subjects achieved a 100% BCI-FES response (no omissions), and one
subject had a single false alarm. In another study [52], paraplegic and tetraplegic patients could
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trigger a walking simulator (virtual reality) by imagining themselves walking or idling. In a fol-
low up study [53], one able-bodied subject and one subject with paraplegia due to spinal cord
injury (SCI), used an EEG prediction model for online BCI operation of the Lokomat. The
EEG in the pre-frontal cortex, supplementary motor, and the leg and arm sensorimotor repre-
sentation areas contained the best discriminant information, which is in line with our results
regarding the classifier’s topographic weight information. The cross-correlation between
instructional cues and the BCI-Lokomat walking epochs averaged was 0.81±0.05 (0.8 false
alarms per session and no omissions). This proved that SCI patients have the possibility to
operate a robust BCI walking simulator with a short training period and satisfying accuracy.
Our results are in line with these studies performed in SCI, showing that EEG detected move-
ment intention can be effectively used for a BCI-gait-rehabilitation system also in patients with
cortical stroke.

Previous studies have shown that a binary control (on/off) of a BCI-based robotic device in
combination with physiotherapy has a beneficial effect in the motor rehabilitation of the upper
limb of stroke patients with severe paralysis [9]. However, it remains to be tested if such BCI
might benefit the motor rehabilitation of the lower limb. In order to develop a BCI for the reha-
bilitation of gait, it is necessary to evaluate the feasibility to decode walking intention from cor-
tical patterns during robotic lower limb rehabilitation. Our offline classification results showed
that it is feasible to distinguish with high accuracy between resting and walking when stroke
patients are immersed in a robot-gait training system. In previous work [54], we have demon-
strated that the online implementation of this approach (i.e. using a logistic regression classifier
to distinguish walking intention against resting) can be used to control in a binary mode (on/
off) a treadmill by using EEG signals from healthy volunteers, achieving high accuracies rates
[37]. All together, these results showed the feasibility of developing a BCI for the rehabilitation
of gait.

Lastly, one problem of brain control approaches is that the accuracy to detect intention or
movement by noninvasive brain signals can be limited [55–58]. On the other hand, surface
electromyography (sEMG) activity has been successfully used for the accurate decoding of
many movements for prosthesis' and orthosis’ control of the upper [59–62] and lower limb
[63], making it an attractive tool as a source of control for motor restoration robotics or
orthotics.

Conclusions
Here, we demonstrated that it is possible to decode walking intention from cortical patterns
generated in the sensorimotor strip during robot-assisted gait training in healthy volunteers
but also in stroke patients with mild lower limb impairment. The modulation of low gamma
activity in central midline areas was found to be associated with the gait cycle phases in healthy
volunteers but not in the stroke patients.

Supporting Information
S1 File. Supporting Information.
(PDF)

S1 Fig. Gait cycles were determined according to the right heel strike (red dots) using the
accelerometer’s data from the right (blue continue line) leg. The left leg’s accelerometer data
is as well illustrated (black dotted line) for comparisons.
(TIF)
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S2 Fig. Power density analysis of EMG artifacts in healthy volunteers. a. Spectral density
analysis over all electrodes for active and passive walking and the baseline before passive and
active walking conditions. b. Topographic distribution of event related desynchronization
(ERD) and synchronization (ERS) in the mu (8–12 Hz), beta (15-30Hz) and low gamma (30-
40Hz) bands.
(TIF)

S3 Fig. EEG temporal structure (in Cz) during the gait cycle for one of the participants.
From top to bottom: average across trials of raw data, EEG data filtered in the beta band (15–
30 Hz), EEG data filter in the low gamma band (30–40 Hz) and event-related perturbations
(ERSP) from 0 to 40Hz for active (right panel) and passive walking (left panel).
(TIF)
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