
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/149800

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43596718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/149800


Electron. Commun. Probab. 20 (2015), no. 33, 1–10.
DOI: 10.1214/ECP.v20-3570
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

The dimension of the incipient infinite cluster

W.P.S. Cames van Batenburg*

Abstract
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1 Introduction

Consider critical nearest-neighbour percolation on Zd. The Incipient Infinite Cluster
(IIC) is a random infinite subset of Zd which intuitively can be viewed as the critical
cluster of the origin, conditioned to be infinitely large. This conditioning induces a new
probability measure PIIC. We study the IIC in high dimensions d (see below for formal
definitions) and in particular we identify the typical size of IIC under PIIC. In order to
sensibly determine the size of the IIC we use the concepts of mass dimension dm(A) of a
subset A ⊂ Zd and the volume growth exponent df (G) of an infinite connected graph
G. The former measures the IIC with respect to the (extrinsic) distance of the space
Zd in which IIC is embedded, while the latter measures the induced graph of IIC with
respect to (intrinsic) graph distance. We prove that the mass dimension of IIC is 4 and
the volume growth exponent of the graph of IIC is 2, PIIC-almost surely. See Theorems 1

and 2 below. Theorem 1 gives an explicit and rigorous foundation for the intuition that
for high d the IIC is a 4-dimensional object, a conjecture of physicists going back at least
30 years [1][2].

1.1 Critical high-dimensional bond percolation

Let G = (Zd, E) be a graph and fix a parameter p ∈ [0, 1]. We focus on the case of
nearest-neighbour bond percolation, meaning that (x, y) ∈ E ⇔ ‖x− y‖1 = 1 and each
edge (also called bond) e ∈ E is independently declared open with probability p and
closed with probability 1− p. Here ‖x‖1 denotes the `1-norm of x ∈ Zd. The resulting
probability measure is denoted by Pp.

Let {x↔ y} denote the event that vertices x and y are connected by a finite path of
open edges. Let C (x) =

{
y ∈ Zd | x↔ y

}
denote the open cluster of x. It is well known
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Dimension of the incipient infinite cluster

that for d ≥ 2 there exists a critical probability pc ∈ (0, 1) for which the model undergoes
a phase transition:

Ppc(∃x ∈ Zd s.t. |C (x)| =∞) =

{
0 if p < pc;

1 if p > pc.
(1.1)

Later we will zoom in on what happens at p = pc. Let ‖x‖ denote the Euclidean norm
of x ∈ Zd. This choice of norm is not essential, since all norms on Zd are equivalent and
we only work with estimates that hold up to a constant value. For functions f and g,
we let f � g denote that cg ≤ f ≤ Cg holds asymptotically for some constants c, C > 0.
Throughout this article we assume that our lattice is high-dimensional, by which we
mean that d > 6 is such that

Ppc(x↔ y) � ‖x− y‖2−d, (1.2)

for x, y ∈ Zd. It is widely believed that (1.2) holds in all dimensions d > 6. In case of
nearest-neighbour percolation it has been known for some time that (1.2) is true for all
d ≥ 19 [5] and recently V.d. Hofstad and Fitzner proved it for d ≥ 15 (in preparation). If
there exists an L > 0 such that (x, y) ∈ E ⇔ ‖x− y‖ ≤ L, then we speak of spread-out
finite-range percolation, rather than nearest-neighbour percolation. For this model, it
has been proven that (1.2) holds in d > 6 if the lattice is sufficiently spread out, which
means that L should be large enough [6]. For readability we restrict ourselves to the case
of nearest-neighbour percolation, but all results in this article also hold for spread-out
finite-range percolation.

In the regime of high dimensions, calculations are relatively easy. In technical practice
this is often a consequence of validity of the bound (1.2) on the two-point function, but
the intuitive idea behind all this is that for d larger than a certain critical dimension
dc, of which the value is believed to be 6, the model attains mean-field behaviour. The
amount of space in which open paths can travel has become so large that different pieces
of a critical cluster hardly interact. In particular, large open cycles have very small
probability. Therefore an open cluster will for many questions behave like a connected
graph without cycles: a tree. Percolation on a tree is relatively easy.

Incipient Infinite Cluster We now focus on what happens during the phase transition
at p = pc. In particular, we want to know how critical clusters behave ‘as they are
becoming infinitely large’. This interpretation is the source of the name Incipient Infinite
Cluster (IIC), a term originating from the physics literature, which was first defined
and treated in a mathematically rigorous way by Kesten [12]. See below for a formal
definition.

It turns out that Ppc (|C (0)| =∞) = 0 in high dimensions [8], so working directly with
Ppc will not provide us with interesting detailed information about an infinite cluster.
Intuitively, this problem can be overcome by approximately conditioning on the event
that |C (0)| = ∞, thus constructing a new probability measure. There exist several
constructions of such an IIC-measure that have been proven to be equivalent, providing
evidence that the IIC is quite a canonical, robust and unique object. For a precise
characterization, the reader is referred to [9] and [10]. We will only directly need the
following construction:

PIIC(F ) = lim
‖x‖→∞

Ppc(F | 0↔ x) (1.3)

for cylinder events F . In high dimensions, the limit exists irrespective of the direction.
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Through references to literature we will also implicitly use the construction

QIIC(F ) = lim
p↑pc

∑
x∈Zd Pp (F ∩ {0↔ x})∑

x∈Zd Pp (0↔ x)
.

In high dimensions, the limits PIIC(F ) and QIIC(F ) exist and are equal for all cylinder
events F . Consequently PIIC and QIIC extend to the same probability measure in our
context [9],[10]. Expectation value with respect to PIIC is denoted by EIIC.

It holds that PIIC (|C (0)| =∞) = 1. Hence the following terminology is used in the
context of PIIC.

Definition 1.1 (IIC). IIC is the random graph with vertex set C (0) and induced edge set

{(x, y) ∈ C (0)× C (0) | (x, y) is open } .

In many cases we are only interested in the vertices and therefore we abuse notation by
writing IIC = C (0).

1.2 Mass dimension and volume growth exponent

In order to determine how large the (infinite) IIC is, we need to associate some
natural notion of dimensionality. On the one hand, we will calculate the mass dimension,
which counts the vertices of IIC that are in a cube of finite radius r around the origin.
On the other hand, we consider the volume growth exponent, which counts the number
of vertices in IIC that can be reached from the origin by an open path of length at most
some fixed r. In the former case, IIC is counted with respect to the ‘extrinsic’ (Euclidean)
metric of the underlying lattice Zd, while in the latter case, IIC is counted with respect
to the ‘intrinsic’ graph distance of the random graph.

Definition 1.2 (Some auxiliary sets). Denote by

Qr =
{
x ∈ Zd | ‖x‖ ≤ r

}
the cube with radius r and boundary

∂Qr = Qr\Qr−1.

In practice we will want to bound the cardinality of the following three random sets,

Xr = {x ∈ Qr | 0↔ x}

X∗r =
{
x ∈ Qr | 0

Qr←→ x
}

Br =
{
x ∈ Zd | 0 ≤r←→ x

}
where 0

Qr←→ x means that 0 is connected to x by an open path that does not leave Qr

and 0
≤r←→ x means that 0 is connected to x by an open path of length ≤ r (with respect

to graph distance in the random percolated graph).

Definition 1.3 (Dimensions). The mass dimension of a subset A ⊂ Zd is

dm(A) = lim
r→∞

logr |A ∩Qr|

if the limit exists. The volume growth exponent of an infinite connected graph G is
defined by

df (G) = lim
r→∞

logr |BG(x, r)|

if the limit exists. Here BG(x, r) is the ball with some center vertex x and radius r, with
respect to graph distance.
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Note that the mass dimension of IIC equals dm(IIC) = limr→∞ logr |Xr| and the vol-
ume growth exponent of IIC can be rewritten as df (IIC) = limr→∞ logr |BIIC(0, r)| =
limr→∞ logr |Br|.

Our main goal is to prove Theorem 1.4, which states that on a high-dimensional
lattice the mass dimension of IIC almost surely equals 4.

Theorem 1.4. In high dimensions,

PIIC

(
dm(IIC) ≡ lim

r→∞
(logr |Xr|) = 4

)
= 1.

This can be contrasted against Theorem 1.5, which states that on a high-dimensional
lattice the volume growth exponent of IIC almost surely equals 2. This second result
was already implicit in two auxiliary lemmas in [14], which we use to obtain a formal
derivation of the almost sure statement.

Theorem 1.5. In high dimensions,

PIIC

(
df (IIC) ≡ lim

r→∞
(logr |Br|) = 2

)
= 1.

1.3 Embedding and conjectures

On the 4-dimensionality of IIC. Earlier developments in the direction of determining
‘the’ dimension of the IIC include the following. In [10] it was shown that in high
dimensions, PIIC (0↔ x) � ‖x‖4−d, implying that EIIC(|Xr|) � C · r4. This moment bound,
which is also derived in a more general setting in [9], already gave some weak notion
of the 4-dimensionality of the IIC. As we will see later, it provides enough information
to derive an almost sure upper bound 4 on the (upper) mass dimension of IIC, using
Markov’s inequaliy and Borel-Cantelli. However, deriving the corresponding lower
bound 4 on the (lower) mass dimension requires a completely different technique.
Concentration inequalities like the second moment method are not powerfull enough
[3] and many standard techniques from percolation theory don’t apply because of the
delicate dependency on the origin, induced by the IIC-measure. Indeed, the derivation
of the lower bound constitutes the main contribution of this article.

Spectral dimension and other bounds on |Xr| and |Br|. The spectral dimension of
an infinite connected graph G is defined by

ds(G) = −2 · lim
r→∞

logr (p2r(x, x))

if the limit exists. Here p2r(x, x) is the return probability of a simple random walk on G
after r steps. Kozma and Nachmias [14] showed that ds(IIC) =

4
3 , thereby confirming the

so-called Alexander-Orbach conjecture in high dimensions. For many ‘nice’ graphs and in
particular for any Cayley graph G it holds that df (G) = ds(G), but this is not the case for
the IIC, as df (IIC) = 2 6= 4

3 = ds(IIC), suggesting that the IIC is an intrinsically fractal ob-
ject. Kozma and Nachmias also showed that Epc (|Br|) � r and Ppc (Br\Br−1 6= ∅) � r−1.
These statements are in terms of the intrinsic graph distance and should be contrasted
against their extrinsic counterparts Epc (|Xr|) � r2 and Ppc (0↔ ∂Qr) � r−2 [9][13].

Growth behaviour of Xr∩δQr and X∗r ∩δQk. In the proof of Theorem 1.4, we actually
also show that PIIC (limr→∞ logr(|X∗r |) = 4) = 1. That is, |X∗r | and |Xr| don’t differ very
much; they both grow like r4. We now would like to know more about the size of IIC at the
boundary ∂Qr. This size can be interpreted in two ways, either as |∂Qr∩Xr| = |∂Qr∩IIC|
or as |∂Qr ∩X∗r |. On the one hand, since Xr =

⋃r
k=1 (∂Qk ∩Xk) is a disjoint union, it is
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to be expected that |∂Qr ∩Xr| typically grows like r3. On the other hand, considering the
disjoint union X∗r =

⋃r
k=1 (∂Qk ∩X∗r ), one may be tempted to believe that analogously,

|∂Qk ∩ X∗r | grows like k3. We believe this is indeed the case for k � r, because for
those values |∂Qk ∩ X∗r | ≈ |∂Qk ∩ Xk|. However, if k ≈ r the picture (presumably)
changes completely. Theorem 1.16 in [3] yields that there exists a constant C > 0 such
that for all λ, r > 0, PIIC

(∑r
k=1 |∂Qk ∩X∗k | ≤

1
λ · r

3
)
≤ C · 1λ . A slight adaptation of that

proof yields that PIIC

(
|∂Qr ∩X∗r | ≤ 1

λ · r
2
)
≤ C · 1λ and in fact, we conjecture that the

opposite bound PIIC

(
|∂Qr ∩X∗r | ≥ λ · r2

)
≤ C · 1λ holds too (and if true, an even stronger

bound with exponential tail should hold; see Remark 2.6). In other words, we expect
|∂Qr ∩X∗r | to grow like r2 instead of r3. One motivation for the opposite bound comes
from Theorem 2 in [13], which essentially says that |∂Qr ∩X∗r | is smaller than r2 if |Xr|
is smaller than r4. To actually prove the opposite bound, it would suffice to show that
EIIC (|∂Qr ∩X∗r |) ≤ C · r2, and for this it would be very useful to have a good upper

bound on PIIC(0
Qr←→ x), for x ∈ ∂Qr. While PIIC(0←→ x) � ‖x‖4−d depends only on the

norm of ‖x‖ but not really on the choice of norm, the behaviour of PIIC(0
Qr←→ x) is more

complicated. For example, if we define the cube Qr with respect to the `∞-norm, then it
is much ‘harder’ for an open path that stays entirely inside Qr to reach a corner vertex x1
of Qr, than it is to reach the center vertex x2 of a face of Qr, although ‖x1‖∞ = ‖x2‖∞.

The backbone of IIC and scaling limits. There is a natural subset of the IIC, called
the backbone (bb) of the IIC, which consists of all open bonds e = (e−, e+) such that
there exist two disjoint open paths, one path from 0 to e− and the other path from e+ to
∞. It is expected that the mass dimension of the backbone PIIC-almost surely equals 2.
The validity of the almost sure upper bound 2 is immediate from the known expectation
bound EIIC (|bb ∩Qr|) � r2 [9] and an application of Lemma 3.2 from the present article.
Heydenreich, V.d. Hofstad, Hulshof and Miermont prepare a proof that the scaling limit
of the backbone is a brownian motion, which almost surely has Hausdorff dimension 2. A
related, but wide open conjecture is that the scaling limit of the high-dimensional IIC
itself is Integrated super-Brownian excursion [7].

The IIC in low dimensions. For d = 1, IIC trivially has mass dimension and volume
growth exponent 1. Kesten proved the bound

EIIC|IIC ∩Qr| � r2 · Ppc (0↔ ∂Qr) ,

which holds for a wide range of lattices on Z2 [12]. For site percolation on the triangular
lattice, Lawler, Schramm and Werner were able to show that Ppc (0↔ ∂Qr) = r−5/48+o(1)

[15]. So for this particular lattice, EIIC|IIC∩Qr| � r2 · r−5/48 = r91/48. By the conjectured
universality of the exponent, this result presumably holds for all common two-dimensional
lattices. Note that 91

48 is just slightly smaller than 2, the dimension of the surrounding
space. For 3 ≤ d ≤ 6 very little is known rigorously. Simulations by Kumagai suggest
that ds(IIC) ranges from ≈ 1.318+ /− 0.001 for d = 2 to ≈ 1.34+ /− 0.02 for d = 5, which
is close to the value 4/3 that holds in high dimensions, but nevertheless supports the
belief that the Alexander-Orbach conjecture is false for d ≤ 6 [14].

1.4 About the proof

For Theorem 1 we use an upper bound on the expectation value of |Xr| to derive
that dm(IIC) ≤ 4, almost surely. The lower bound is the hard (or at least more unusual)
part. For this we use the one-arm exponent bound Ppc (0↔ ∂Qr) ≤ C · 1

r2 , from which it
will follow that under PIIC a typical shortest open path between 0 and ∂Qr has length
r2. In Theorem 3.1 this is combined with the fact that the intrinsic ball Br contains
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approximately r2 elements, yielding that |Xr| ≥ |X∗r | ≈ |B(length shortest open path 0↔∂Qr )| ≈
|Br2 | ≈ (r2)2 = r4, or rather that large downwards deviations of these approximations
have small enough probability. The technical Lemma 3.2 is used to turn probabilistic
bounds into almost sure statements. Indeed, Theorem 1.5 follows by a direct application
of this lemma to a result from literature.

2 Ingredients from literature

In this section we collect ingredients from the literature that we use in our proofs.

Theorem 2.1 (Theorem 1.5 in [9]). In high dimensions, there exists a constant C > 0

such that for all r ≥ 1:
EIIC (|Xr|) ≤ C · r4.

Theorem 2.2 (Corollary of Theorem 1 in [13]). In high dimensions, there exists a C > 0

such that for all r ≥ 1:

Ppc (0↔ ∂Qr) ≤ C ·
1

r2
.

Lemma 2.3 (Lemma 2.5 in [14]). In high dimensions, there exists a constant C > 0 such
that for all r ≥ 1 and any event E measurable with respect to Br and for any x ∈ Zd with
‖x‖ sufficiently large:

Ppc(E ∩ {0↔ x}) ≤ C ·
√
r · Ppc(E) · Ppc(0↔ x).

Lemma 2.4 (Essentially Lemma 6.1 in [11]). In high dimensions, there exists a C > 0

such that for all ε > 0, r ≥ 1:

PIIC

(
0
≤ε·r2←→ ∂Qr

)
≤ C ·

√
ε,

where

{
0
≤ε·r2←→ ∂Qr

}
is the event that 0 is connected to ∂Qr by an open path of length

≤ ε · r2.

Proof. The event E =

{
0
≤ε·r2←→ ∂Qr

}
is measurable with respect to Bε·r2 . Therefore,

Lemma 2.3 implies that for any x ∈ Zd with ‖x‖ sufficiently large,

Ppc

(
0
≤ε·r2←→ ∂Qr | 0↔ x

)
≤ C ′ ·

√
ε · r2 · Ppc (0↔ ∂Qr) ≤ C ·

√
ε,

where the second inequality follows from Theorem 2.2. Now apply construction (1.3) of
PIIC.

Lemma 2.5 (Essentially Lemmas 2.2 and 2.3 in [14]). In high dimensions, there exists a
C > 0 such that for all λ > 1 and r ≥ 1:

PIIC

(
|Br| ≤

1

λ
· r2
)
≤ C · 1

λ
(2.1)

and

PIIC

(
|Br| ≥ λ · r2

)
≤ C · 1

λ
. (2.2)

Proof. Inequality (2.1) is the statement of Lemma 2.3 in [14]. On the other hand, Lemma
2.2 in [14] states that there exists a C > 0 such that for all r ≥ 1 and all x ∈ Zd with ‖x‖
sufficiently large,

Epc
(
|Br| · 1{0↔x}

)
≤ C · r2 · Ppc (0↔ x) .
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By Markov’s inequality this implies that for all λ > 1 and r ≥ 1 it holds that
Ppc

(
|Br| ≥ λ · r2 | 0↔ x

)
≤ C · 1

λ , for all x ∈ Zd with ‖x‖ sufficiently large. Letting
‖x‖ → ∞ yields (2.2), because

{
|Br| ≥ λ · r2

}
is a cylinder event.

Remark 2.6. By estimating the moments of |Br| and |Xr| from above, it is possible to de-
rive stronger (exponential tail) upper bounds forPIIC

(
|Br| ≥ λ · r2

)
andPIIC

(
|Xr| ≥ λ · r4

)
.

Compare [4], §6.3.

3 Deriving the main theorems

The following theorem is crucial for the derivation of Theorem 1.4. It relies on
Lemmas 2.4 and 2.5 and in that sense, it uses that both the cardinality of the intrinsic
ball with radius r and the length of the shortest path from 0 to the boundary of ∂Qr grow
like r2.

Theorem 3.1. In high dimensions, there exists a C > 0 such that for all λ > 1 and r ≥ 1:

PIIC

(
|X∗r | ≤

1

λ
· r4
)
≤ C · 1

λ1/5
.

Proof. Let λ > 1. Write ε := ε(λ) = λ−2/5, then

PIIC

(
|X∗r | ≤

1

λ
· r4
)

= PIIC

(
|X∗r | ≤

1

λ
· r4, 0 ≤ε·r

2

←→ ∂Qr

)
+PIIC

(
|X∗r | ≤

1

λ
· r4, not 0

≤ε·r2←→ ∂Qr

)
.

(3.1)
By Lemma 2.4 we can bound the first term as follows:

PIIC

(
|X∗r | ≤

1

λ
· r4, 0 ≤ε·r

2

←→ ∂Qr

)
≤ PIIC

(
0
≤ε·r2←→ ∂Qr

)
≤ C · ε1/2 = C · 1

λ1/5
. (3.2)

On the other hand, if

{
not 0

≤ε·r2←→ ∂Qr

}
occurs then the intrinsic ball Bε·r2 is a subset of

X∗r , so |Bε·r2 | ≤ |X∗r |. Therefore a bound on the second term is given by

PIIC

(
|X∗r | ≤

1

λ
· r4, not 0

≤ε·r2←→ ∂Qr

)
≤ PIIC

(
|Bε·r2 | ≤

1

λ
· r4
)

= PIIC

(
|Bε·r2 | ≤

1

λ · ε2
· (ε · r2)2

)
≤ C · 1

λ · ε2

= C · 1

λ1/5
, (3.3)

where the second inequality follows from Lemma 2.5. Now evaluate (3.2) and (3.3) in
(3.1) to finish the proof.

The next lemma will be used to transform the results obtained so far into the almost
sure statements of Theorem 1.4 and 1.5. We present a more general and stronger version
than we actually need.

Lemma 3.2. Let Z1, Z2, . . . be a sequence of random variables with values in R>0, such
that Z1 ≤ Z2 ≤ . . .

(i) If there exist constants β, µ, C > 0 such that P(Zr ≥ λ · rβ) ≤ C · 1
log(λ)1+µ for all

λ > 1 and r > 0, then:

P

(
lim sup
r→∞

(logr(Zr)) ≤ β
)

= 1. (3.4)

ECP 20 (2015), paper 33.
Page 7/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3570
http://ecp.ejpecp.org/


Dimension of the incipient infinite cluster

(ii) If there exist constants α, µ,C > 0 such that P(Zr ≤ 1
λ · r

α) ≤ C · 1
log(λ)1+µ for all

λ > 1 and r > 0, then:

P
(
lim inf
r→∞

(logr(Zr)) ≥ α
)
= 1. (3.5)

Proof. Define the strictly increasing subsequences rk = 2k and λk = 2

(
k(

1+µ/2
1+µ )

)
. Also

define εk := logrk(λk) = k(
1+µ/2
1+µ −1). Note that rk, εk > 0 and λk > 1 for all positive

integers k, and limk→∞ εk = 0. We first prove (3.4). For all positive integers k it holds
that

P
(
Zrk ≥ λk · r

β
k

)
≤ C · 1

log(λk)1+µ
. (3.6)

Using the notation Yr := logr(Zr) we obtain that

∞∑
k=1

P (Yrk ≥ εk + β) =

∞∑
k=1

P
(
Zrk ≥ λk · r

β
k

)
≤ C ·

∞∑
k=1

1

log(λk)1+µ

=
C

log(2)1+µ
·
∞∑
k=1

1

k1+µ/2

< ∞.

By Borel-Cantelli this implies that

P (Yrk ≥ εk + β for infinitely many k) = 0

and because limk→∞ εk = 0 it follows that

P

(
lim sup
k→∞

(Yrk) ≤ β
)

= 1. (3.7)

Now consider any r > 0 and choose k ∈ N such that 2k ≤ r ≤ 2k+1. Then

Yr =
log(Zr)

log(r)
≤ log(Z2k+1)

log(2k)
=

log(Z2k+1)

log(2k+1)
· log(2

k+1)

log(2k)
= Y2k+1 · k + 1

k

and

Yr =
log(Zr)

log(r)
≥ log(Z2k)

log(2k+1)
=

log(Z2k)

log(2k)
· log(2k)

log(2k+1)
= Y2k ·

k

k + 1
,

so
lim sup
r→∞

Yr = lim sup
k→∞

Y2k (3.8)

and
lim inf
r→∞

Yr = lim inf
k→∞

Y2k . (3.9)

Evaluating (3.8) in (3.7) yields the desired statement (3.4).
The proof of (3.5) is almost the same. By the arguments used in (3.6) - (3.7) we obtain

P (Yrk ≤ −εk + α for infinitely many k) = 0

and therefore

P

(
lim inf
k→∞

(Yrk) ≥ α
)

= 1. (3.10)

Evaluating (3.9) in (3.10) yields the desired statement (3.5).
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We are ready to prove the main theorems.

Proof of Theorem 1.4. By Theorem 2.1 and Markov’s inequality,

PIIC

(
|Xr| ≥ λ · r4

)
≤ EIIC (|Xr|)

λ · r4
≤ C

λ
.

Lemma 3.2.(i) can be applied to this, with Zr = |Xr| and β = 4, to obtain

PIIC

(
lim sup
r→∞

(logr |Xr|) ≤ 4

)
= 1. (3.11)

Apply Lemma 3.2.(ii) to Theorem 3.1, with Zr = |X∗r | and α = 4, to obtain

PIIC

(
lim inf
r→∞

(logr |X∗r |) ≥ 4
)
= 1. (3.12)

Because |X∗r | ≤ |Xr| for all r ≥ 0, the theorem now follows from (3.11) and (3.12).

Proof of Theorem 1.5. Apply Lemma 3.2.(i) and 3.2.(ii) to Lemma 2.5, with Zr = |Br|
and α = β = 2, to obtain

PIIC

(
lim sup
r→∞

(logr |Br|) ≤ 2

)
= PIIC

(
lim inf
r→∞

(logr |Br|) ≥ 2
)
= 1.
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