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ABSTRACT: The selection of optimal preprocessing is among the main bottlenecks in
chemometric data analysis. Preprocessing currently is a burden, since a multitude of
different preprocessing methods is available for, e.g., baseline correction, smoothing, and
alignment, but it is not clear beforehand which method(s) should be used for which data
set. The process of preprocessing selection is often limited to trial-and-error and is therefore
considered somewhat subjective. In this paper, we present a novel, simple, and effective
approach for preprocessing selection. The defining feature of this approach is a design of
experiments. On the basis of the design, model performance of a few well-chosen
preprocessing methods, and combinations thereof (called strategies) is evaluated.
Interpretation of the main effects and interactions subsequently enables the selection of
an optimal preprocessing strategy. The presented approach is applied to eight different
spectroscopic data sets, covering both calibration and classification challenges. We show
that the approach is able to select a preprocessing strategy which improves model
performance by at least 50% compared to the raw data; in most cases, it leads to a strategy
very close to the true optimum. Our approach makes preprocessing selection fast, insightful, and objective.

Data preprocessing involves the conversion of the original,
raw data to cleaned data, in which unwanted variation has

been removed. Sources of such unwanted variation include, e.g.,
baseline drifts in spectroscopic measurements or misalignment
in chromatographic elution profiles. These sources are
unrelated to the goal for which data was collected, such as
predicting the concentration of a compound from spectroscopic
data.
A multitude of different preprocessing methods has been

developed to remove a variety of artifacts in data from different
analytical platforms.1−6 In a complete data analysis procedure,
often more than one preprocessing method is applied. The
consecutive application of different preprocessing methods is
called a preprocessing strategy.7 Each preprocessing strategy
consists of a number of different steps (e.g., baseline correction,
smoothing), and in each step, a specific preprocessing method
is applied.
Preprocessing can make or break data analysis.7 This implies

that a wrong choice of preprocessing is detrimental to the
predictive power of a chemometric model (see, e.g., Figure 4).
Moreover, existing preprocessing selection procedures are
limited and not suited for large data sets.7 Nowadays, many
researchers consider preprocessing a burden. Therefore, it is of
the utmost importance that an approach is developed to obtain
an optimal preprocessing strategy within reasonable time.

The existing selection procedures include visual inspection of
data after preprocessing and the evaluation of the preprocessed
data with quality parameters such as correlation. The most
common selection procedure is a fit-for-use approach: simply
trying a few preprocessing methods or strategies and selecting
the one with the best model performance. It is, however, very
unlikely that the few preprocessing strategies selected a priori
lead to an optimal result. A straightforward way to overcome
this is the evaluation of many or all possible strategies and
simply selecting the optimal one. However, this is a very time-
consuming procedure and therefore not feasible for large data
sets and the multitude of available preprocessing methods.
Without a preprocessing selection procedure, the preprocess-

ing strategy is often based on experience: knowledge about the
instrument, sample, and different preprocessing methods.
Although such a preprocessing strategy will probably have an
acceptable model performance, it may not be the optimal one.
This paper presents a novel, fast, simple, and effective

approach for preprocessing selection. The key idea of the
approach is design of experiments (DoE), to evaluate a well-
selected number of different preprocessing strategies. Inter-
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pretation of main effects and interactions shows which
preprocessing steps are relevant to the data and which are
not. For each relevant step, the optimal preprocessing method
is subsequently found using a simple search algorithm. In this
work, the selection criterion is solely based on optimal model
performance. At a later stage, model interpretability will be
included as well (see the Discussion section).
We focus on preprocessing for calibration and classification

challenges in spectroscopic data. Four preprocessing steps are
considered: baseline correction, scatter correction, smoothing,
and scaling. These are the commonly used and important
preprocessing steps.7 Our selection of preprocessing steps and
methods is not exhaustive and may be altered, e.g., based on
sample or instrument knowledge or experience with certain
preprocessing methods, which will be discussed later as well.

■ DATA
Eight data sets with different goals have been analyzed with the
proposed approach. Most details and results can be found in
the Supporting Information. Here, we discuss the results for
two data sets: a NIR data set on compound calibration and a
NIR data set on classifying Rochefort beers.7,8 In those
references, however, a mid infrared data set was used for exactly
the same purpose instead of NIR. Therefore, the section on the
classification data only highlights relevant experimental details
for the NIR data set.
Calibration Data: Background. The NIR calibration data

set relates to waste treatment of a chlorine gas (Cl2) production
facility. The gaseous waste effluent of this facility contains
chlorine, which needs to be removed for environmental
reasons. For this purpose, a so-called caustic scrubber is used.
In this scrubber, waste gases are led through a solution

containing NaOH. NaOH reacts with chlorine in the waste
gases to produce NaOCl and NaCl:

+ → + +Cl 2NaOH NaOCl NaCl H O2 2

NaOH, however, also reacts with CO2 in air, leading to
Na2CO3:

+ → +2NaOH CO Na CO H O2 2 3 2

These reactions show that the concentrations of NaOH,
NaOCl, and Na2CO3 play an important role in the scrubber.
Therefore, continuous monitoring of the concentrations of
these compounds is required. NIR spectroscopy is already
proven useful for online monitoring of caustic scrubbers.9−11

Calibration Data: Experimental Setup. Different samples
(n = 13) containing various amounts of NaOH, NaOCl, and
Na2CO3 have been prepared, in which the concentrations of all
compounds represented values likely to occur in the scrubber.
A NIR spectrum of each sample was obtained at five different
temperatures (15 °C, 21.3 °C, 27.5 °C, 33.8 °C, and 40 °C, the
range in which the scrubber operates), leading to 65 NIR
spectra in total. The compositions of the different samples are
given in Table S-1. In the remainder of this paper, these
samples will be referred to as compositions (i.e., a composition
indicates a sample with a specific amount of NaOH, NaOCl,
and Na2CO3). Six NIR spectra have additionally been measured
and will be used as a validation set. These spectra were
recorded by measuring three different compositions (inde-
pendent of the training set) at two temperatures per
composition (see Table S-2).
The NIR spectra were recorded on a Multi Purpose Analyzer

(Bruker) with a transflection probe with adjustable path length

(Hellma Mini Immersion Probe Saphir). Each spectrum was
recorded as the average of 32 scans with a resolution of 16
cm−1. In total, each spectrum contains 1102 data points. The
raw spectra are displayed in the top panel of Figure 1.

Classification Data: Experimental Details. To discrim-
inate Rochefort 8° from Rochefort 6° and 10° beers, NIR
spectra of beers from both classes were recorded using a
scanning spectrophotometer (NIRSystems 6500). Spectra were
recorded in duplicate between 400 and 2498 nm, from which
the average spectrum in the 1100−2498 nm wavelength range
was used for data analysis; each spectrum has 700 data points.
Separate training and validation sets were measured. The

training set consisted of 44 spectra, of which 28 are Rochefort
8° beers (Figure 1). The validation set consisted of 30 spectra,
of which 20 are Rochefort 8° beers. As already described,7 the
spectra have been measured in two different batches, leading to
the offset visible in Figure 1. This offset is unrelated to the beer
class.

■ METHODS
General Approach. The key idea of our approach is that

only design of experiments (DoE) is used to find an optimal
preprocessing strategy (see Figure 2). In the DoE, different
preprocessing steps are evaluated as factors; these are baseline
correction (B), scatter correction (St), noise removal by
smoothing (Sm) and scaling (Sg), always applied in this order,
and it is assessed whether or not each factor influences model
performance (The order of the steps is discussed further in the
Discussion section.). For this, we have chosen the simplest
DoE: the full-factorial design. Second, for each preprocessing
step deemed relevant by the DoE, the optimal preprocessing
method for that step is obtained from a broader set of methods.
All preprocessing methods used in this work are based on
extensive studies.7 Table S-3 presents an overview of all
methods used.
PLS-1 and PLS-DA were chosen for the analysis of the

calibration and classification data sets, respectively. PLS and
PLS-DA have already proven suitable methods for similar cases

Figure 1. Top panel: plot of the raw calibration data. Spectra from the
training set (n = 65) are shown in black; validation spectra (n = 6) are
shown in red. Bottom panel: raw classification data. Black represents
Rochefort 8°, red Rochefort 6° and 10°.
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many times.12−15 The presented approach can be used with
other data analysis methods as well. All programming was
performed using MATLAB (version 8.4.0 (R2014b), The
MathWorks Inc., Natick, MA).
PLS and Cross-Validation. PLS-1 is a commonly applied

regression method16,17 that aims to predict a response vector y
given a data matrix X, by estimating the regression coefficients
b:

= +y Xb E (1)

E is the residual matrix, which should be minimized to obtain
an optimal model. For PLS-DA, y is binary, indicating class
membership.
When an optimal b is found, the performance of the model

should be tested by applying the model to new and unseen data
(i.e., using b and a new X to generate predictions yn̂ew). The
root-mean-square error of prediction (RMSEP) is a common
measure of PLS model performance: the lower the RMSEP, the
better predictions the model generates for new data. For
classification, the percentage of misclassification is often used as
a model performance measure.
Cross-validation was used to optimize the number of latent

variables (LVs) for each PLS model.18,19 For the calibration
data, cross-validation was performed by leaving one composi-
tion (i.e., five spectra) out at a time, leading to a 13-fold cross-
validation procedure. The optimal number of LVs, between 1
and 35, in the cross-validation procedure was obtained by using
a selection algorithm.20 In short, it compares the model
performance of a PLS model with a + 1 LVs with that of a
model with a LVs by using a randomization t-test; the model
with a LVs is preferred if no significant difference in model
performance exists (more details can be found in the
Supporting Information). The more conventional way of
selecting the number of LVs with the lowest root mean square
error of cross-validation (RMSECV) often indicated an
extremely high number of LVs (at or around 35) and was
therefore not used. Using the breakpoint (elbow) in the curve

of RMSECV vs number of LVs was also not used, because it is
not straightforward to automate.
For the classification data, PLS-DA with a leave-10%-out

cross-validation procedure was performed to determine the
optimal number of LVs (again between 1 and 35). Here, the
number of LVs leading to the lowest percentage of
misclassifications was chosen. Classes were coded as −1 and
+1, and we accounted for unequal class size.21

The DoE Approach. DoE, also referred to as Experimental
Design (XPD), provides a way to reveal which factors influence
the response of an experiment.22 Its goal is to evaluate the
influence of each factor on the response. Here, we propose a
full factorial design (i.e., the simplest design) to evaluate the
influence of each preprocessing step on model performance.
Each factor is varied at two levels: the low level (“−”) and the
high level (“+”). This leads to a design matrix with four factors
(i.e., the four preprocessing steps) and 24 = 16 experiments
(Table 1).

The aim is to assess for each preprocessing step whether it
influences model performance or not. In practice, that implies
that an evaluation should be made as to whether the model
performance significantly increases when performing a specific
step compared to not performing it. This already determines
the value for the low level for all steps: the low level indicates
that the step should not be performed (For scaling, the low
level indicates “mean centering”, since this is customary for
virtually all PLS models.).
For the high level, one of the many available methods should

be chosen. Such a method should lead to improved model
performance if the respective data artifact indeed requires
correction. On the basis of our experience with spectroscopic
data, both from literature and our own experience,7 we have
preselected a method for each factor. For baseline, the selected
method is AsLS (Asymmetric Least Squares23,24) and for
scatter SNV (Standard Normal Variate25). For smoothing, the
Savitzky−Golay algorithm was chosen, with parameters for
window width and order exactly in the middle of the evaluated
options (i.e., window width 9 points and polynomial order
37,26). Finally, Pareto scaling was chosen for the scaling step,
because this is one of the more commonly applied scaling
methods in infrared data.27

Figure 2. Flowchart of the DoE approach.

Table 1. Design Matrix As Used in Our Approach

experiment baseline scatter smoothing scaling

1 + + + +
2 + + + −
3 + + − +
4 + + − −
5 + − + +
6 + − + −
7 + − − +
8 + − − −
9 − + + +
10 − + + −
11 − + − +
12 − + − −
13 − − + +
14 − − + −
15 − − − +
16 − − − −
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The response variable for the calibration data is RMSEP and
for the classification data the percentage of misclassification in
the validation data, such that for both data sets a lower response
indicates improved model performance. The effect (i.e.,
influence) of each preprocessing step can be calculated by
taking the average of the response variable of this particular step
at the high level (y+̅) minus the average response variable at the
low level (y−̅):

= ̅ − ̅+ −y yeffect (2)

A negative effect indicates that y+̅ is smaller than y−̅, i.e.,
performing a specific step has led to a decrease in the response
variable and thus improved model performance. The complete
design matrix is shown in the first five columns of Table 2.
Significance of Effects. In general, the significance of an

effect is determined by a pooled variance, obtained from
response values of repeating all rows in the DoE. For this
purpose, we bootstrap the original data to artificially create new
data on which the same DoE (Table 2) is applied. To keep
comparability with the results from the original, non-
bootstrapped data set, the number of LVs is not optimized
but set to the values as found for the nonbootstrapped data.
The number of bootstrap samples to use is that number where
the variability (seffect) in response values (i.e., RMSEP or
percentage of misclassifications) has become constant.
From the response values obtained during bootstrapping, the

variance in response is calculated for each row in the design and
these variances are subsequently pooled over the 16 DoE
strategies to obtain one, averaged variance:

ν ν ν
ν ν ν

=
+ + +
+ + +

s
s s s...

...pooled
2 1 1

2
2 2

2
16 16

2

1 2 16 (3)

Here, sn
2 is the variance in responses of row n in the DoE; νn is

the amount of bootstrap samples for row n (denoted rn) − 1, νn
= rn − 1. Finally, the pooled variance is converted into a
standard deviation for each effect seffect using the following
equation:

= × +
+ −

⎛
⎝⎜

⎞
⎠⎟s s

N N
1 1

effect pooled
2

(4)

In this equation, N+ and N− are the number of values used in
the calculation of y+̅ and y−̅, respectively. An effect is often
deemed significant if its value is at least 2−3 times larger than
seffect.
This approach implicitly assumes equal variances and

normally distributed responses over the response values for
all 16 experiments. Since this does not completely hold (lower
response values are also associated with a lower variance), the
logarithm of the response values is used instead for calibration;
for classification, the arcsin of the percentages of misclassifica-
tion is used.

Interaction Effects and Their Interpretation. Using
DoE, interaction effects can be calculated as well, due to the
full-factorial way of setting up the experiment. In our case, the
design consists of four different factors, from which six two-
factor interactions can be constructed (B × St, B × Sm, B × Sg,
St × Sm, St × Sg, and Sm × Sg) as well as four three-factor
interactions (B × St × Sm, B × St × Sg, B × Sm × Sg, and St ×
Sm × Sg) and one four-factor interaction (B × St × Sm × Sg).
The interpretation of a two-factor interaction effect in our

approach is as follows:28 if the effect of the interaction has a
negative value, a decrease in response (i.e., improved model
performance) is expected when the two factors involved are
simultaneously changed from the low to the high level. Vice
versa, an increase in response is expected when the effect of the
interaction has a positive value. The net effect Effnet on model
performance when including two preprocessing steps A and B
can therefore be calculated via

= + + ×Eff Eff Eff Effnet A B A B (5)

This only holds in the case of two factors and their
interaction. The interpretation of three- and four-factor
interactions is less straightforward,28 and they are therefore
further neglected in this work (see the Discussion section).

Table 2. Design Matrix Including Response Variablesa

experimental design response

experiment baseline scatter smoothingb scaling RMSEPNaOCl %-misclassRochefort

1 AsLS SNV yes Pareto 0.466 7.42
2 AsLS SNV yes MC 0.568 7.42
3 AsLS SNV none Pareto 0.577 7.42
4 AsLS SNV none MC 0.563 7.42
5 AsLS none yes Pareto 0.083 19.82
6 AsLS none yes MC 0.194 11.36
7 AsLS none none Pareto 0.081 19.82
8 AsLS none none MC 0.199 11.36
9 none SNV yes Pareto 0.826 7.42
10 none SNV yes MC 0.568 11.36
11 none SNV none Pareto 0.825 7.42
12 none SNV none MC 0.570 11.36
13 none none yes Pareto 0.289 19.82
14 none none yes MC 0.270 19.82
15 none none none Pareto 0.288 19.82
16 none none none MC 0.263 19.82

aAbbreviations: asymmetric least squares (AsLS); standard normal variate (SNV); mean centering (MC). The two rightmost columns show the
RMSEP (root mean square error of prediction) values of prediction of NaOCl and the percentage of misclassification for the Rochefort data
respectively. The number of LVs for each experiment and response is optimized using cross-validation (no. of LVs not shown). b“Yes” indicates
Savitzky−Golay smoothing, with window size of 9 px and a 3rd order polynomial.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.5b02832
Anal. Chem. 2015, 87, 12096−12103

12099

http://dx.doi.org/10.1021/acs.analchem.5b02832


Optimization of Relevant Steps. After having determined
which preprocessing steps are relevant using DoE, the optimal
method for each step should be chosen, ultimately leading to an
optimal preprocessing strategy. For this purpose, we use a
sequential optimization approach, in which the optimal
preprocessing method for each step is sought in a sequential
way. First, the method for the first relevant step is optimized; all
subsequent steps are not performed. Next, the method for the
second relevant step is optimized, where the first step is
performed with the already optimized method. This continues
until all relevant steps have been optimized.

■ RESULTS
Here, we will focus on the results of predicting the
concentration of NaOCl and classifying the beer samples.
The results for the other two compounds in the calibration
data, NaOH and Na2CO3, can be found in the Supporting
Information as well as results from all other investigated data
sets. An additional discussion follows at the end of this section.
Prediction of NaOCl. Table 2 shows the RMSEP values for

the 16 different preprocessing strategies as evaluated by the
DoE. Effects, both main effects and interactions, are calculated
for each of the four preprocessing steps (Figure 3). The height

of a bar indicates the effect value; the errorbars indicate the size
of ±2seffect. Bootstrap samples are constructed to estimate the
value of seffect. A total of 150 bootstrap samples were chosen,
because the value of seffect has stabilized at that number of
bootstrap samples (Figure S-1).
From Figure 3, it follows that scatter correction (St) has a

very large positive effect, i.e., it leads to an increase in RMSEP.
Furthermore, all effects that include smoothing are insignificant,

an effect value of 0 is within the interval given by the effect
value ±2seffect, and thus smoothing does not influence RMSEP
at all. Figure 1 shows that the data under study are indeed not
very noisy.
The only two effects that obviously lead to a decrease in

RMSEP are baseline correction (B) and the baseline correction-
scaling interaction (B × Sg). Since Sg only has a very small
positive effect, if significant at all, there will be a net decrease in
RMSEP if doing both B and Sg compared to only B. Therefore,
we conclude that baseline correction and scaling are the
relevant preprocessing steps.
It may be that St and Sm are excluded due to an unfortunate

choice for the high level of these steps (i.e., St or Sm in fact do
lead to a reduction in RMSEP, but the selected method at the
high level does show this; see step 3b in Figure 2). To protect
our approach against such failure of the selected methods,
model performance is evaluated of six additional preprocessing
strategies. In these additional strategies, only the methods
selected for the irrelevant preprocessing steps are varied, while
the methods for the relevant steps are fixed to their high level
setting. If these strategies cannot improve model performance
any further, it is very likely that a particular preprocessing step
is rejected because it indeed has no effect on model
performance and not because of failure of the selected high
level method. This approach is further referred to as random
strategies.
In this case, RMSEP values of six additional strategies are

calculated that include different methods for St and Sm, while
fixing the method for B and Sg to AsLS and Pareto,
respectively. These values are subsequently compared to row
7 in Table 2: in that way, it can be assessed whether different
methods for Sm and St can further lower the RMSEP of
application of only B and Sg (0.081). For NaOCl, it appeared
that all six additional strategies had a much higher RMSEP
compared to 0.081 (range, 0.327−1.238), so this supports the
conclusion that only B and Sg need further optimization.
The standard deviation in RMSEP values from the 150

bootstrap samples for experiment 7 is among the lowest of all
16 experiments (Figure S-2). Performing B and Sg thus not
only leads to an increase in model performance, it also leads to
a more robust model (compared to strategy 16, the raw data):
small changes in data lead to only small changes in model
performance.
Next, the optimal method for each significant step has to be

determined by a simple sequential optimization scheme.
Sequential optimization of B and Sg leads to the evaluation
of 14 different preprocessing strategies: 7 to select the best
baseline method and subsequently 7 to select the best scaling
method. The preprocessing strategy obtained in this way is
fourth order detrending plus Pareto scaling, with an RMSEP
value of 0.0757.
A preprocessing strategy has been obtained that improves

much in terms of RMSEP over the raw (i.e., meancentered)
data (0.263, row 16 in Table 2) and also in robustness (Figure
S-2). We have also compared the obtained strategy with the
true optimal strategy, the strategy from among all 4 900
possible strategies leading to the lowest RMSEP.7 Therefore,
we applied all 4 900 different preprocessing strategies,
calculated 4 900 different PLS models with cross-validation,
and assessed the RMSEP for each PLS model (Figure 4).
The strategy obtained using the DoE approach is very close

to the true optimum. Moreover, the model complexity has
lowered compared to a model built on the raw data. The DoE

Figure 3. Effect values for all main effects (red) and two-factor
interactions (blue), based on predicting the concentration NaOCl
(upper panel) and classifying Rochefort beers (bottom panel).
Errorbars indicate ±2seffect. Abbreviations: Baseline (B); Scatter (St);
Smoothing (Sm); Scaling (Sg). Interaction effects are shown with a
“x”, e.g., “B × St” indicates the two-factor interaction between Baseline
and Scatter. Effect values are based on the logarithm (calibration) or
arcsin (classification) of the response values from Table 2.
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approach is thus able to provide an optimal preprocessing
strategy, with evaluation of only a small fraction of all 4 900
possible preprocessing strategies.
Classifying Rochefort Beers. Percentage of misclassifica-

tion values for the 16 strategies are shown in Table 2 for the
classification data. The bottom panel of Figure 3 shows the
main effects and second-order interactions for these data where
the error bars are again based on 150 bootstrap samples.
Two main effects (B and St) have a negative effect. The B ×

St interaction does not seem significant, since 0 is within the
confidence limits. Furthermore, all effects with smoothing are 0,
again indicating that smoothing does not have an effect on
model performance. Also for this data, there does not seem to
be any noise (Figure 1). B and St are therefore deemed relevant
steps.
Scaling (Sg) has one relevant interaction: St × Sg. However,

since baseline and scatter correction are already included, there
will be no additional increase in model performance when
including scaling: main effect Sg is not significant, while B × Sg

and St × Sg cancel out. Therefore, scaling is not considered as a
relevant step here.
The conclusion to only include B and St is validated by

additional strategies, where the settings for B and St are fixed. It
appeared that all six additional strategies have exactly the same
percentage of misclassification as for only B and St (experiment
4 in Table 2; percentage of misclassification 7.42%) and
therefore the conclusion to only include B and St and to
disregard Sg is justified.
The strategy obtained with the DoE is baseline correction via

AsLS and scatter correction via either max scaling, L2 norm
scaling or SNV (they all lead to the same response). The
location of these strategies in the full preprocessing landscape is
shown in Figure 4. Apparently, the most optimal preprocessing
strategy in terms of model performance has been found. Only
the model complexity could have been 1 or 2 LVs lower with
another preprocessing strategy. Again, we can conclude that an
optimal preprocessing strategy is obtained using the DoE
approach.

■ DISCUSSION
The presented approach performs well for all eight investigated
data sets (Table S-4). The approach does not only lead to a
more efficient preprocessing selection, it also provides more
insight in preprocessing, especially in cases where preprocessing
steps are not deemed relevant. The general framework
presented in Figure 2 is valid for other data types (step 1),
different types of designs (step 2) and other models and
performance measures (step 3) as well.
From all steps included in the preprocessing strategy, scaling

is the only step that does not (directly) relate to the removal of
a data artifact. Baseline correction methods, scatter correction
methods, and smoothing all aim to remove a certain artifact
from the data (baseline, scatter, and noise, respectively) which
may hamper the construction of a chemometric model. Scaling,
on the other hand, is mainly part of a preprocessing strategy to
make the data more suitable for data analysis, such as when
autoscaling as to remove the influence of variables measured on
different scales.
Scaling should always be the last step in a preprocessing

strategy. Indeed, when performing scaling, e.g., prior to baseline
correction, the scaling effect will be partly attenuated by the
baseline correction method. The other three steps, however,
may be changed in order. For this work, we have set the order
of steps in the strategy to a reasonable order. Some scatter
correction methods are also able to remove a baseline,29 but
baseline correction methods are generally better suited for this
task. Therefore, baseline correction is performed prior to
scatter correction.
The order of steps should be fixed before evaluating the DoE,

because effects and interactions will change if steps are
performed in a different order. The design could be extended
with another factor, i.e., the order of steps, which is especially
useful when a reasonable order is not known on beforehand.
This factor may have multiple levels such that multiple orders
can be examined. The number of experiments to perform (and
also the number of chemometric models to build) is, however,
increasing in such an approach.
The preprocessing steps and methods used in this work are

the most common ones for preprocessing spectroscopic data.
For all investigated data sets, our selection performed well.
Therefore, our selection may be used if a user is not
experienced in preprocessing and wants to obtain a reasonable

Figure 4. Model performance of all 4 900 different preprocessing
strategies versus the complexity of the model (i.e., the number of LVs).
Upper panel, calibration data (NaOCl); lower panel, Rochefort
classification. The black diamond indicates the result of the raw (i.e.,
mean centered) data. The green dot shows the outcome of the final
strategy found using our DoE approach and the red star the strategy
with the lowest model performance that would have been found by
examining all 4 900 strategies.
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preprocessing strategy. Of course, more experienced users can
alter the approach based on their experience and knowledge,
e.g., by taking different preprocessing steps into account,
selecting different preprocessing methods for the DoE, or
changing the order in which the steps are applied. The
influence of this order can even be examined using the design
itself, by adding a fifth factor representing the order of applying
the different methods, possibly with multiple levels. Almost all
preprocessing methods used in this work do not require any
parameter optimization, which simplifies the use of this
approach. Therefore, other popular preprocessing methods,
such as Extended Multiplicative Signal Correction (EMSC)30,31

have not been considered, since these methods often require a
more thorough parameter optimization or input based on prior
knowledge.
In this work, we have solely focused on model performance,

without taking interpretability of the model into account. In
future work, interpretability will be included by evaluating, e.g.,
the Variable Importance in Projection (VIP)32 or the newly
proposed Significance Multivariate Correlation (sMC).33 When
both predictive ability and interpretability need to be assessed,
multicriterion experimental designs may be used, which allow
for the simultaneous evaluation of more than one response
variable, for example, by using desirability functions.
In the current setup, the validation set is the same

throughout the full approach. Since many steps involved
make use of the same validation set (DoE, bootstrap), it may be
that the final model is heavily focused toward this set such that
the obtained model performance does not fully resemble the
expected model performance for new samples. We have
investigated this issue by using an additional validation set for
the Corn data set, and it appeared that the RMSEP of this
additional validation set was only slightly worse compared to
that of the original validation set (see the Supporting
Information). Also, the same preprocessing steps were deemed
relevant. However, splitting the data in three parts is
recommended if the data size permits to do so. As a separate
study, it may also be investigated whether bootstrapping the
validation set as well is advantageous, if the data cannot be split
in three parts.
Additional validation may also be used to evaluate whether

three- and four-factor interactions could indeed be neglected.
These interactions should not be neglected if a model including
these interactions is significantly better than a model including
only two-factor interactions. Since interpretation of the higher-
order effects is not straightforward, it may be best to deem all
steps relevant for the subsequent optimization when higher-
order interactions appear relevant.
Flat̊en and Walmsley have also used an DoE approach to

optimize calibration model parameters, including a few
parameters related to preprocessing.34 Their approach is
however fundamentally different from our work: in their
paper, only one method was used for each preprocessing step,
e.g., only derivatization for baseline correction. In other words,
it was decided on beforehand that baseline correction should be
performed using derivatives. Our approach tries to avoid this by
first evaluating whether baseline correction should be
performed at all, before optimizing a specific method.
Moreover, their approach also involves optimizing model
parameters such as the no. of LVs via DoE, while the current
approach optimizes this using cross-validation.
Calculation time for the current approach is approximately

15−30 min, depending on the number of bootstrap samples,

the maximum number of LVs in cross-validation, the number of
different preprocessing steps and methods to consider, and the
size of the data set. Calculation time does not depend on the
number of relevant preprocessing steps, since the sequential
optimization procedure is very fast. The evaluation of all 4 900
different preprocessing strategies, also including proper cross-
validation for each strategy, already takes a day for a relatively
small data set such as the caustic scrubber data and is therefore
not feasible. For larger data sets and/or more different
preprocessing steps and methods, the difference in calculation
time between our approach and the evaluation of all possible
strategies will increase even further.

■ CONCLUSION
In this paper, we have presented a novel and much needed
approach to obtain an optimal preprocessing strategy within
reasonable time. The approach uses design of experiments to
systematically evaluate the influence of each preprocessing step
on the final strategy. On the basis of the outcome of the design,
preprocessing methods should be optimized for each step
leading to a decrease in model performance.
To summarize, a user first selects the relevant preprocessing

steps (i.e., factors in the design) for a specific data set. Next, a
specific experimental design is chosen (e.g., full factorial) and
the preprocessing methods to be used at the high level are
defined, the low level always implies do nothing. The design is
then applied, effect values are calculated for each factor (and
possibly interactions) and a conclusion is drawn for each
preprocessing step whether it is relevant for the data under
study or not. Additional factor levels may be used to strengthen
these conclusions (random strategies). Finally, the relevant steps,
if any, can be further optimized by, e.g., the proposed sequential
optimization. In this work, a selection of preprocessing steps
and methods is provided that covers the basic preprocessing
requirements for spectroscopic data.
All examples investigated in this work show considerable

improvement in model performance in reasonable time using
our approach. Furthermore, the approach is generic and can be
applied to data from many different analytical platforms.
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