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Enantio- and diastereoselective synthesis of
c-amino alcohols†
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Floris P. J. T. Rutjes*a

The c-amino alcohol structural motif is often encountered in drugs

and natural products. We developed two complementary catalytic

diastereoselective methods for the synthesis of N-PMP-protected

c-amino alcohols from the corresponding ketones. The anti-products

were obtained through Ir-catalyzed asymmetric transfer hydrogena-

tion, the syn-products via Rh-catalyzed asymmetric hydrogenation.

The growing number of enantio- and diastereomerically pure
drug candidates has driven the advancement of stereoselective
synthetic strategies.1,2 The g-amino alcohol moiety is often
encountered in biologically relevant molecules and hence,
general procedures are desired to selectively prepare all of its
possible diastereoisomers. Examples of molecules containing
the g-amino alcohol structural motif include the drugs Ritonavir
and Lopinavir (both anti-HIV)3 and several 4-hydroxyleucine
derivatives (anti-obesity) (Fig. 1).4

Despite the abundance of the g-amino alcohol structure in
synthetically relevant targets, relatively few generally applicable
stereoselective methods are available for the construction of
such a moiety. Undoubtedly the most straightforward route
involves diastereoselective reduction of a b-amino ketone Mannich
product by employing a suitable hydride donor. Besides several
methods for the reduction of a-chiral b-amino ketones,5–7 a
number of reports on the stoichiometric reduction of b-branched
b-amino ketones (with a methylene adjacent to the amine function)
have been disclosed.8–11 These include the diastereoselective

reduction of N-sulfonyl-protected g-hydroxyimines,12 syn-
selective reductive amination of b-hydroxy ketones with
p-anisidine and polymethylhydrosiloxane,13 and dynamic kinetic
resolution of N-Boc-protected g-amino ketones.14 As an alter-
native, amino alcohols can be prepared through transition
metal-catalyzed hydrogenation of b-amino ketones,15 although
these methodologies have more generally been reported for the
hydrogenation of substances without b-chirality.16

We envisaged that robust enantioselective access to g-amino
alcohols may proceed via a proline-catalyzed Mannich reaction
to yield N-PMP-protected amino ketones, diastereoselective
reduction of the keto function, and subsequent removal of
the PMP protecting group.17 In this report, we describe that
N-PMP-protected b-amino ketones can be efficiently converted
into each of the corresponding syn- and anti-g-amino alcohols
in a highly diastereoselective manner. Both hydrogenation and
transfer hydrogenation have found many applications in stereo-
selective reduction of alkynes, alkenes, imines and ketones.18

Surprisingly, no literature precedence on the diastereoselective
(transfer) hydrogenation of chiral b-amino ketones existed at
the start of our research, while on the other hand b-hydroxy
ketones have shown to be suitable hydrogenation substrates.19,20

In transfer hydrogenations, 2-propanol or a formic acid/triethyl-
amine mixture is used as the source of hydrogen, which is
reversibly transferred to the substrate molecule. Due to this
reversibility, a careful analysis of the reaction progress and selec-
tivity is required. We started our investigations on asymmetric

Fig. 1 Pharmaceutically relevant g-amino alcohols.
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transfer hydrogenation (ATH) of N-PMP-protected b-amino
ketone 1.

Using the well-established Ru/TsDPEN complex 3 as the
catalyst, we observed a clean conversion into the desired
g-amino alcohols with a moderate dr (80 : 20), which irrespec-
tive of the existing chiral center depended on the catalyst
chirality (Scheme 1). Encouraged by these initial results we also
explored the use of iridium-based ATH catalysts. We prepared
catalysts 4 by heating a solution of a suitable iridium precursor
(i.e. [IrCp*Cl2]2) and an amino acid amide in the presence of an
inorganic base (e.g. K2CO3) according to a modified protocol
disclosed by Verzijl.21 The inorganic base was removed by
filtration to suppress possible elimination of p-anisidine prior
to reduction. Preferably, a,a-disubstituted amino acids were
employed to avoid the risk of catalyst racemization.

To our satisfaction, exposure of benchmark substrate 1 to
these catalysts resulted in high diastereoselectivities. When
D-a-Me-phenylglycine amide was used as the ligand, conversion
of (S)-1 into the corresponding anti-amino alcohol 2 proceeded
in a diastereomeric ratio of 96 : 4 (Table 1, entry 1), while the
(R)-aminoketone led to a 1 : 1 formation of amino alcohols
(entry 2). This implies that during iridium-catalyzed reduction,
the existing chiral center has a large impact on the stereo-
chemical outcome of the transfer hydrogenation. The influence
of the preexisting chirality in terms of a match and mismatch
with the ligand was confirmed by employing achiral Aib-NH2 as
the ligand (entry 3). In the presence of this achiral catalyst, a
diastereomeric ratio of 84 : 16 was observed for the products.
Replacing substituent R2 of catalyst 4a with a Bn group (i.e. 4d)

resulted in decreased selectivity (entry 4), whereas nearly com-
plete selectivity was obtained with the same catalyst 4d for the
(R)-substrate (entry 5). The combination of phenyl and benzyl
substituents showed again a clear match (entry 6, diastereo-
selectivity of 0 : 100) and mismatch (entry 7).

Although slightly better results were obtained with a-benzylated
phenylglycinamide as the ligand, we explored the substrate scope
of the stereoselective ATH with the a-methyl-a-phenyl substituted
glycinamide-based catalyst (4a) because of its straightforward
accessibility. The b-amino ketone substrates were prepared via
the asymmetric proline-catalyzed Mannich reaction.22,23 The
results in Table 2 led us to conclude that ATH of b-amino
ketones is widely applicable. In all examples we observed a
reasonable to good diastereoselectivity, with the best selectivities
obtained for R1 = Ar. In addition, it is worth mentioning that we
have previously successfully deprotected both diastereoisomers
of PMP-protected amino alcohol 2 using oxidative enzymatic
conditions.17b

With an efficient method for the anti-selective preparation of
g-amino alcohols in hand, we realized that extensive screening
of other metal/ligand combinations could possibly deliver

Scheme 1 Ru/(R,R)-TsDPEN-catalyzed ATH of ketone 1.

Table 1 Screening of Ir-based amino acid amide catalysts 4a–e for ATH
of aminoketone 1a

Entry sm R1 R2 Cat Ratio (2)

1 (S)-1 Me Ph 4a 96 : 4b

2 (R)-1 Me Ph 4a 50 : 50c

3 (S)-1 Me Me 4b 84 : 16b

4 (S)-1 Me Bn 4d 63 : 37b

5 (R)-1 Me Bn 4d 2 : 98c

6 (R)-1 Bn Ph 4c 0 : 100c

7 (S)-1 Bn Ph 4c 47 : 53b

a Reaction conditions: 4–6 mol% catalyst, rt 25 min–25 h. b (2R,4S)/
(2S,4S). c (2R,4R)/(2S,4R).

Table 2 Preparative ATH of b-amino ketonesa

Entry sm R1 pr drb Yieldc

1 (S)-1 3,4-(MeO)2C6H3 2 96 : 4 100
2 (S)-6 4-FC5H4 10 95 : 5 88
3 (S)-7 2-MeC6H4 11 97 : 3 76
4 (R)-8 iBu 12 76 : 24d 99
5 (S)-9 CO2Et 13 79 : 21 100

a Reaction conditions: ketone (1.0 equiv.), (IrCp*Cl2)2 (0.02 equiv.),
a-Me-phenylglycine-NH2 (0.20 equiv.), K2CO3 (3 equiv.), 2-propanol,
rt, 1.5–20 h. b (2R,4S) : (2S,4S) (determined by HPLC). c Isolated yield.
d Absolute configuration = (2R,4R) : (2S,4R).

Table 3 Preparative AH of b-amino ketonesa

Entry sm R1 t (h) pr drb Yieldc

1 (S)-1 3,4-(MeO)2C6H3 19d 2 495 : 5 77
2 (S)-6 4-FC5H4 44e 10 495 : 5 76
3 (S)-7 2-MeC6H4 44e 11 495 : 5 81
4 (R)-8 iBu 15d 12 495 : 5 f 77
5 (S)-9 CO2Et 17d 13 495 : 5 56

a Reaction conditions: substrate (1.0 equiv.), Rh(COD)2BF4 (0.05 equiv.),
(R)-BINAP (0.05 equiv.), r.t., 15–44 h or substrate (1.0 equiv.),
Rh(COD)2BF4 (0.30 equiv.), (R)-BINAP (0.030 equiv.), 50 1C, 15–44 h.
b (2S,4S) : (2R,4S) (determined by HPLC). c Isolated yields. d 50 1C. e rt.
f (2S,4R) : (2R,4R) (determined by HPLC).
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g-amino alcohols with syn-selectivity. We nevertheless resorted
to hydrogenation with molecular hydrogen for the synthesis
of the syn-congeners. We discovered that hydrogenation of
b-amino ketones in the presence of a catalyst in situ prepared
from Rh(COD)2BF4 and a C2-symmetric ligand such as (R)-BINAP
(5) (Table 3), produced the desired syn-g-amino alcohols with
excellent diastereoselectivity.

Again we observed a strong effect of the existing chiral
center on the diastereoselectivity. Upon hydrogenation of (S)-1
with Rh/(R)-BINAP, pure (2S,4S)-2 was obtained, whereas with
Rh/(S)-BINAP the ratio (R,S) vs. (S,S) was 70 : 30. Dichloro-
methane appeared to be the most suitable solvent with respect
to solubility of the starting material, diastereoselectivity and
reaction rate. To investigate the scope and limitations, we
subsequently hydrogenated a number of aromatic, aliphatic
and carboxylic b-aminoketones on preparative scale (Table 3).

In some cases, the reactions proceeded somewhat slowly,
despite the use of higher catalyst loadings (entries 2 and 3).
In all cases, however, nearly exclusive formation of the desired
syn-diastereoisomer was observed in combination with good
yields.

Finally, to verify the assigned stereochemical outcome, we
prepared (2S,4S)-2 on a larger scale, after which X-ray crystal-
lographic analysis of the product proved that Rh/(R)-BINAP (5)
hydrogenation of (S)-1 indeed led to formation of the syn-product
((2S,4S)-2, Fig. 2).

We have developed two complementary methods for
the hydrogenation of b-amino ketones to the corresponding
g-amino alcohols. The anti-products can be obtained through
ATH, in which 2-propanol is employed as the hydrogen donor
and an Ir/a-substituted-amino acid amide complex as the
catalyst. syn-Products are accessible by asymmetric hydrogena-
tion under hydrogen pressure in the presence of a Rh-based
BINAP catalyst. In combination with the proline-catalyzed
Mannich reaction, these methods provide powerful tools for
the enantio- and diastereoselective synthesis of all four diastereomers
of g-amino alcohols.

This work forms part of the Ultimate Chiral Technology
project supported in part with funds provided by SNN
(Cooperation Northern Netherlands) and EFRD (European Fund
for Regional Development).
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