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We study tunneling of charge carriers in single- and bilayer graphene. We propose an explanation for nonzero
“magic angles” with 100% transmission for the case of symmetric potential barrier, as well as for their almost-
survival for slightly asymmetric barrier in the bilayer graphene known previously from numerical simulations.
Most importantly, we demonstrate that these magic angles are not protected in the case of bilayer and give an
explicit example of a barrier with very small electron transmission probability for any angles. This means that one
can lock charge carriers by a p-n-p (or n-p-n) junction without opening energy gap. This creates new opportunities
for the construction of graphene transistors.
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I. INTRODUCTION

Klein tunneling, that is, transmission of massless Dirac
fermions with a high probability through potential barriers,
however broad and high they are [1–7], is one of the key
phenomena for graphene physics and technology. It protects
conducting state of graphene with a high-charge carrier
mobility despite charge inhomogeneities [8]; at the same time,
it does not allow us to use the simplest construction of graphene
transistor based on p-n-p (or n-p-n) junctions since such a
device can never be locked [3]. As a result, some tricky ways
should be used; for example, tunneling transistor with vertical
geometry [9], where electrons tunnel between two sheets of
graphene.

Full transmission for normally incident electron beam is
symmetrically protected: since for massless Dirac electrons
the propagation direction is intimately related to the direction
of pseudospin, and the latter cannot be changed by an action
of the electrostatic potential smooth at interatomic distances,
the back scattering is completely forbidden [1]; before the
discovery of graphene, this was noticed as an explanation of
stability of conducting channels in carbon nanotubes [10]. In
the first calculation for the rectangular potential barrier in the
two-dimensional case [3], additional nonzero “magic angles”
of the incidence were also found with full transmission; these
magic angles were also found for the parabolic barrier [4]
and associated to Fabry-Pérot resonances known in optics.
These additional resonances are not universally protected.
Semiclassical analysis [7,11] has shown that these magic
angles exist for symmetric potential barriers only, whereas
for generic one-dimensional barriers maxima of transmission
corresponding to the Fabry-Pérot conditions are suppressed;
moreover, this suppression is exponential in a formal semi-
classical smallness parameter.

Much less is known on the case of bilayer graphene where,
in the simplest approximation, electron spectrum is massless

*victor.kleptsyn@univ-rennes1.fr

but with parabolic touching instead of conical one and with
nontrivial chiral properties of the charge carrier wave function
[1,2,12,13]. In this case, for the normally incident electron
beam the transmission probability is exponentially small [3];
this is a nice counterexample to attempts to relate Klein
tunneling in single-layer graphene “just” with the gapless
character of the energy spectrum, whereas the chiral properties
of the wave functions are the most important. Existence of
“magic angles” with full transmission in bilayer graphene
has been demonstrated numerically for rectangular potential
barrier [3] and for some smooth shapes of the barrier [7]. In
the last paper, it was claimed that for asymmetric potentials,
contrary to the case of single-layer, magic angles survive. As
we will see, this statement is not quite accurate. Chiral effects
in penetration of charge carriers through potential barriers in
bilayer graphene has been studied also in Refs. [14] and [15].
However, the issue of stability of magic angles in the bilayer
graphene is still unclear. They have no obvious symmetry
protection, like 100% transmission at zero incident angle for
the single-layer graphene. Apart from theoretical interest this is
a question of potentially great practical importance: if it would
be possible to create a potential barrier with small enough
electron transmission probability for any angles, this would
open a way to build a conventional transistor based on p-n-p
(n-p-n) junction in bilayer graphene without gap opening.
In this paper we will show that this is, indeed, theoretically
speaking, possible: the magic angles are not stable and electron
transmission can be strongly suppressed by a proper choice of
the shape of the barrier.

II. BASIC EQUATIONS AND THE FORMULATION
OF THE PROBLEM

A. Single-layer graphene

Quantum mechanics of charge carriers in graphene is
governed by a massless Dirac equation [1,2]:

Ĥ� = E�, (1)
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FIG. 1. (Color online) Numerical simulation of transmission
probability for n-p-n junction in single-layer graphene. Energy of
a particle 80 meV, height of the junction 200 meV. (a) Transmission
probability for a symmetric potential of barrier width l2 = 250 nm,
for which n-p and p-n regions have characteristic widths l1 = l3 =
100 nm. (b) Transmission probability for an asymmetric potential
with l1 = 150 nm and l3 = 50 nm. (c), (d) The corresponding
potentials; see Ref. [7, Fig. 6].

Ĥ = VF (σxp̂x + σyp̂y) + U (x,y)

=
[

U (x,y) VF (p̂x − ip̂y)
VF (p̂x + ip̂y) U (x,y)

]
, (2)

where E is an energy of the stationary state, σx , σy are Pauli
matrices, U (x,y) is the potential, VF ≈ c/300 is the Fermi
velocity (c is the velocity of light), p̂x = −i�∂x , p̂y = −i�∂y .

To study Klein tunneling, we restrict ourselves to the
conventional case of a one-dimensional [i.e., given by a
function depending on one variable U (x,y) = U (x)] potential
barrier. A natural step is then to study the transmission and
reflection probabilities as a function of the angle of incidence θ .
As mentioned in the Introduction, the transmission probability
at θ = 0 is always 100%, irrespective to the parameters
of the potential. Numerical calculations show existence of
100% transmission at additional magic angles for symmetric
potential barriers and just maxima at some angles for the
asymmetric ones [7,11]. To illustrate this, we show in
Fig. 1 our computational results obtained for the same
potentials of n-p-n junctions, which were considered in
Ref. [7], that coincide up computer precision to those of
Ref. [7, Fig. 6].

From a general point of view, the existence of the magic
angles for symmetric potentials and their disappearance for
generic ones is an unexpected property of the Dirac equation
(2). In Refs. [7] and [11] it was explained within a quite
complicated semiclassical theory. It is interesting to study its

origin per se. Perfect transmission assumes that the reflection
amplitude is zero; this means that a complex-valued function
of one real argument, the angle of incidence, has nontrivial
zeros. We will give below a simple solution of this problem
based only on symmetry properties of the Dirac Hamiltonian.

B. Bilayer graphene

The situation is different for the bilayer graphene. Follow-
ing Ref. [3], we will deal with the simplest effective Hamilto-
nian describing chiral particles with parabolic dispersion:

Ĥ =
[

U (x,y) (p̂x − ip̂y)2/2m

(p̂x + ip̂y)2/2m U (x,y)

]
, (3)

where m ≈ 0.031me is the effective mass of the electron in
the bilayer graphene [16], and me is the free electron mass.
(This value is according to the latest experimental data; in
early papers, the value m = 0.054me was used.)

This Hamiltonian is not applied to the real bilayer graphene
for very low energies (E < 10 meV), where the effects of
trigonal warping are essential [13,16], and for high enough
energies (E > 200 meV), where the transition to four-band
picture [15] is required. Anyway, Eq. (3) is a new type of wave
equation different from both nonrelativistic Schrödinger and
Dirac equations and its study is by itself of significance for
mathematical physics.

Contrary to the case of single-layer, there is no more Klein
tunneling at zero angle of incidence and no clear symmetry
properties that would protect full transmission at other angles,
thus giving a hope to find a barrier that allows blocking of a
current.

Numerical experiments for an n-p-n junction in bilayer [7]
have shown the following:
(i) nonzero magic angles are still present in a symmetric

potential;
(ii) moreover (and most surprisingly!) they seemed to survive

when one passes to a nonsymmetric potential; see Ref. [7,
Fig. 7] and Fig. 2(b) with our computational results.
Both these effects thus were to be explained.

C. The specific goals

In this paper we are answering all the above questions as
well as obtaining some other results. Namely, we

(1) Obtain an equivalent condition for a magic angle for
a symmetric potential. This condition is given by one real
equation (with generically simple roots). This is done for both
single-layer (see Sec. III A) and bilayer (Sec. III B) graphene.
In particular, the presence of magic angles for the symmetric
n-p-n junctions (considered in Refs. [7] and [11]) cannot be
removed by a small perturbation of the potential within the
class of symmetric ones.

(2) Explain (see Sec. III) the seemingly magic angles for
the nonsymmetric potentials (red line on Fig. 2). It turns
out that the minimal reflection probability is very small (of
order 10−3 . . . 10−4 for the potential studied in Ref. [7]) but
is still nonzero (cf. Fig. 7). The reflection and transmission
probabilities for this potential turn out to be very close to the
ones for a close symmetric potential (cf. Fig. 8). The latter
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FIG. 2. (Color online) Numerical simulations of a transmission
through an n-p-n junction in bilayer graphene. Energy of a particle
17 meV, height of the junction 50 meV. (a) Transmission probability
for a symmetric potential of barrier width l2 = 100 nm, with n-p and
p-n regions of characteristic width l1 = l3 = 10 nm. (b) Transmission
probability for an asymmetric potential with l1 = 20 nm and l3 =
40 nm. (c), (d) The corresponding potentials.

possesses exact magic angles, that become a seemingly magic
for a nonsymmetric one.

(3) Find (see Sec. IV) an explicit example of a potential for
which in some band of energies the transmission probability
is less then 2 × 10−8 for any angle of incidence. Interestingly
enough, such a potential can be taken to be symmetric, in
particular, showing that magic angles are not obliged to be
present for an arbitrary symmetric potential U (x) for bilayer
graphene.

(4) Provide (see Sec. V B) an approximation for the
transmission probability p(θ ) around a peak, showing that such
a peak has (approximately) a standard Lorenz-Breit-Wigner
form,

p(θ ) ≈ p0

1 + c(θ − θ0)2
.

(5) Provide (see Sec. V C) a “two-level” method of finding
the transmission probabilities in bilayer graphene that removes
the exponential growth problem.

III. SYMMETRIC CASE: TRUE MAGIC ANGLES

The key argument in both symmetric cases will be the
following symmetry of the graphene equations:

T :

(
�1(x,y)
�2(x,y)

)
�→

(
�2(−x, − y)
�1(−x, − y)

)
. (4)

It maps the solution of Eq. (1) for a potential U (x,y) to the
solution of Eq. (1) for the potential turned by 180◦ U (−x,−y).
Hence, if U (x,y) = U (x), as we will assume through the rest
of the paper, and U (−x) = U (x) (as we consider now the

symmetric case), the map T sends the solutions of Eq. (1) to
the solutions of Eq. (1). Finally, it is easy to notice that T

preserves the direction of a flat wave.
It turns out that this symmetry of the problem reduces the

number of independent equations. This is the same scenario
that occurs, for instance, for the equation describing the
Josephson junction [17,18].

A. Single-layer case

For the sake of mathematical completeness, let us state the
problem formally. As U = U (x) does not depend on y, the
eigenfunctions can be tried in the form �(x,y) = �(x,0)eiay ,
where the corresponding eigenvalue of the operator p̂y is equal
to a�. After denoting, by a slight abuse of notation, �(x) =
�(x,0), Eq. (1) becomes the ordinary differential equation(

U (x) − E −iVF �(∂x + a)
−iVF �(∂x − a) U (x) − E

)
�(x) = 0, (5)

or, equivalently,

∂x�(x) =
(

a −i U (x)−E

VF �

−i U (x)−E

VF �
−a

)
�(x). (6)

In the domain U = 0 (that is, to the left or to the right of the
barrier), the solution of Eq. (5) is a linear combination of left-
and right-going waves, ψL(x) = e−ikxvL and ψR(x) = eikxvR ,
respectively. Here ±ik, where a2 + k2 = ( E

�VF
)
2
, are the

eigenvalues of the right-hand side operator in Eq. (6), and

vR =
(

a + ik

iE/VF �

)
and vL =

(
a − ik

iE/VF �

)
are the corresponding eigenvectors. For a wave of energy E

falling at the angle θ , we thus have

a = E

�VF

sin θ, k = E

�VF

cos θ ;

we can also rewrite the eigenvectors as

vR = E

VF �

(
eiθ

i

)
and vL = E

VF �

(
e−iθ

i

)
. (7)

To find the transmission and reflection probabilities for a
given θ , one then looks for the solution of Eq. (5) that is of the
form

�R(x) =
{
ψR(x) + r(θ )ψL(x) on the left of the barrier,
t(θ )ψR(x) on the right of the barrier.

(8)
Here, r(θ ) and t(θ ) are, respectively, reflection and transition
amplitudes, and the corresponding probabilities are the squares
of their absolute values.

In a general quantum mechanical setting, these amplitudes
are general complex numbers with |r(θ )|2 + |t(θ )|2 = 1; the
“no-reflection” condition r = 0 on a complex number r cannot
be satisfied in a generic one-parametric family. It turns out
that in our particular situation of a symmetric potential, the
numbers r(θ ) and t(θ ) satisfy an additional relation. Namely,
we have the following:

Proposition 1. The function q(θ ) = ie−iθ r(θ)
t(θ) , where r(θ )

and t(θ ) are defined by Eq. (8), is real-valued for all values θ .
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FIG. 3. (Color online) Blue line: the transmission probability for
the symmetric potential from Figs. 1(a) and 1(c). Green line: real-
valued analytic function f (θ ) such that |r(θ )| = |f (θ )|. Its zeros
correspond to magic angles.

Instead of the function q(θ ), it is more convenient to
consider its differently normalized version: the function
f (θ ) = q(θ)√

1+q2(θ)
. This real-valued function, on the one hand,

satisfies |f (θ )| = |r(θ )|, and hence its zeros are exactly the
magic angles; see Fig. 3. On the other hand, this real-valued
function generically has simple zeros (and as it takes values
of both signs, its zeros cannot be removed by a small
perturbation).

Proof. First note that the map T , given by Eq. (4), descends
on the space of solutions of Eq. (5), preserving a:

T :

(
�1(x)
�2(x)

)
�→

(
�2(−x)
�1(−x)

)
. (9)

Second, note that the flow Eq. (6) preserves the bilinear
antisymmetric form with the matrix

Q =
(

0 1
−1 0

)
,

that is, for any two solutions ψ1,ψ2 the value Q(ψ1,ψ2) =
ψt

1(x)Qψ2(x) (“t” means transposed) does not depend on x

(and thus Q becomes a well-defined bilinear form on the space
of solutions). The easiest way to see it is to say that the matrix
of the flow Eq. (6) has zero trace, and hence the flow map
from x = x1 to x = x2 has determinant one, while ψt

1Qψ2 =
det(ψ1 ψ2).

It is also immediate to check that Q(T ψ1,T ψ2) =
Q(ψ2,ψ1), which can be restated as

Q(ψ1,T ψ2) = Q(ψ2,T ψ1).

This remark easily implies the following observation: for any
solution ψ of Eq. (6), the value Q(ψ,T ψ) is purely real.

Now, let us apply this remark to the solution � = 1
t(θ)�R ,

where �R is of the form of Eq. (8). On one hand, Q(�,T �)
is a real number. On the other hand, calculating it at any point

x0 on the left of the barrier, we get

Q(�,T �) = Q

(
1

t(θ )
ψR(x0) + r(θ )

t(θ )
ψL(x0),(T ψR)(x0)

)
= r(θ )

t(θ )
Q(vL,T vR) = r(θ )

t(θ )
(e−2iθ − 1)

E2

V 2
F �2

,

where we have used Eq. (7) for the last equality. Then,

(e−2iθ − 1)
E2

V 2
F �2

= −e−iθ 2i sin θ
E2

V 2
F �2

= −ie−iθ 2aE

VF �
,

and hence

Q(�,T �) = −q(θ )
2aE

VF �
.

The left-hand side of the last equality is real, and thus so is
q(θ ). �

To conclude this paragraph, let us restate the condition
for an angle being magic, r(θ ) = 0, in two different ways.
First, due to the proof of Proposition 1 it is equivalent to
Q(�R,T �R) = 0; calculation of this form at x = 0 gives us

Q(�R,T �R) = |�R,1(0)|2 − |�R,2(0)|2.
Second, the form Q is nondegenerate, so Q(ψ1,ψ2) = 0 if and
only if ψ1 and ψ2 are proportional. We finally get

Proposition 2. The angle θ is magic if and only if

|�R,1(0)| = |�R,2(0)|,
and if and only if T �R is proportional to �R .

B. Bilayer case

In the same way as in the single-layer case, we are
considering the solutions of the form �(x,y) = �(x)eiay. Then
Eq. (1) becomes(

U (x) − E − �
2

2m
(∂x + a)2

− �
2

2m
(∂x − a)2 U (x) − E

)
�(x) = 0, (10)

or, introducing new variables,

Ũ (x) = 2m
�2 [U (x) − E], �1(x) = (∂x − a)�1(x),

�2(x) = (∂x + a)�2(x),
(11)

we can reduce Eq. (10) to the following equation:

∂x�̃ =

⎛⎜⎜⎝
a 1 0 0
0 a Ũ (x) 0
0 0 −a 1

Ũ (x) 0 0 −a

⎞⎟⎟⎠�̃, (12)

on a complex four-vector,

�̃(x) = (�1(x),�1(x),�2(x),�2(x))t .

In the same way as for the single-layer case, in the domain
U = 0, Eq. (12) has the solutions of the form (for E > 0,
otherwise some signs will be different),

ψR(x) = eikxvR, ψL(x) = e−ikxvL,
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FIG. 4. (Color online) Blue line: the transmission probability for
the symmetric potential from Figs. 2(a) and 2(c). Green line: real-
valued analytic function f (θ ) such that |r(θ )| = |f (θ )|. Again, its
zeros correspond to magic angles.

where

vR =

⎛⎜⎜⎝
a + ik

− 2m
�2 E

−(a − ik)
− 2m

�2 E

⎞⎟⎟⎠ and vL =

⎛⎜⎜⎝
a − ik

− 2m
�2 E

−(a + ik)
− 2m

�2 E

⎞⎟⎟⎠, (13)

and a2 + k2 = 2m
�2 E. The angle of incidence θ is now related

to a by a =
√

2m
�2 E sin θ and k =

√
2m
�2 E cos θ .

Though, Eq. (12) also has in the domain U = 0 the solutions
of the form

ψ+(x) = eλxv+, ψ−(x) = e−λxv−,

where

v+ =

⎛⎜⎜⎝
a + λ
2m
�2 E

a − λ

− 2m
�2 E

⎞⎟⎟⎠, v− =

⎛⎜⎜⎝
a − λ
2m
�2 E

a + λ

− 2m
�2 E

⎞⎟⎟⎠, λ =
√

a2 + 2m

�2
E.

(14)
To find the transmission and reflection probabilities one

now has to consider the solution of the form

�̃R(x) =
{
ψR(x) + r(θ )ψL(x) + α1ψ+(x), x < −x0

t(θ )ψR(x) + α2ψ−(x), x > x0
,

(15)

where supp U ⊂ [−x0,x0].
We then have the following
Proposition 3: The function q(θ ) = i r(θ)

t(θ) , where r(θ ) and
t(θ ) are defined by Eq. (15), is real-valued for all values θ .

Once again, instead of the function q(θ ) we can consider
the function f (θ ) = q(θ)√

1+q2(θ)
, which is more convenient due

to the relation |r(θ )| = |f (θ )|. Zeroes of f (θ ) correspond to
the magic angles and are generically simple (see Fig. 4).

Proof. In the same way as in the single-layer case, the map
T descends on the space of solutions of Eq. (12), preserving

a, and becomes:

T :

⎛⎜⎝�1(x)
�1(x)
�2(x)
�2(x)

⎞⎟⎠ �→

⎛⎜⎜⎝
�2(−x)

−�2(−x)
�1(−x)

−�1(−x)

⎞⎟⎟⎠. (16)

Also in the same way as before, we note that the flow of
Eq. (12) preserves a bilinear antisymmetric form. Namely, note
first that it preserves a sesquilinear form with the matrix

Q =

⎛⎜⎝ 0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞⎟⎠.

This can be checked by explicit computation; though, there is a
simple physical interpretation for it. Namely, 1

i
�∗(x1)Q�(x1)

measures the current density through the section x = x1 (see,
e.g., Ref. [7, Eqs. (136) and (137)]), so the conservation of the
form is merely the conservation of number of particles.

At the same time, both matrices of the flow and of the
form Q are purely real. Hence, the flow also preserves an
antisymmetric bilinear form with the same matrix Q. Hence,
Q(·,·) is a well-defined antisymmetric form on the space of
solutions of Eq. (12): the value (�̃(1)(x))tQ�̃(2)(x) does not
depend on the choice of the point x.

Finally, it is easy to see that we have the following:
Lemma 1. For any two solutions ψ̃1,ψ̃2 of Eq. (12) one has

Q(ψ̃1,T ψ̃2) = Q(ψ̃2,T ψ̃1).

In particular, Q(ψ̃1,T ψ̃1) is always real.
For the eigenvectors of the matrix of the flow of

Eq. (12) at zero potential, the only pairs giving nonzero product
Q(ψ̃1,T ψ̃2) are

Q(vR,T vL) = −Q(vL,T vR) = 4ik
2mE

�2
,

and

Q(v+,T v+) = −Q(v−,T v−) = −4λ
2mE

�2
.

Proof. The first part is immediate; the equalities in the
second part can be checked by an explicit computation. Finally,
to check that all the other likewise products vanish, note that

T (vR) = −vR, T (vL) = −vL, T (v+) = v−, T (v−) = v+,

and that due to the invariance of Q by the flow of the Q product
Q(v1,v2) on two eigenvectors v1,v2 can be nonzero only if the
sum of corresponding eigenvalues vanishes. �

Take now

�̃(x) := 1

t(θ )
�̃R(x)

=
{

1
t(θ)ψR(x) + r(θ)

t(θ) ψL(x) + α1
t(θ)ψ+(x), x < −x0,

ψR(x) + α2
t(θ)ψ−(x), x > x0.

Then, Q(�̃,T (�̃)) is a real number. Note that at x < x0, we
have (T �̃)(x) = −ψR(x) + (α2/t(θ ))ψ+(x)), and hence

Q(�̃,T (�̃)) = r(θ )

t(θ )
Q(vL,T vR) = −4ik

2mE

�2

r(θ )

t(θ )
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FIG. 5. (Color online) Fast-oscillating potential U (x).

(The expression in the middle is the only term that does not
vanish.) As the expression on the left-hand side is real, so is
q(θ ) = i r(θ)

t(θ) . �

IV. TRANSMISSION-BLOCKING EXAMPLE

The above arguments show that in the symmetric case, if
magic angles were present for some potential U , they usually
cannot be removed by its small perturbation. Though these
arguments do not imply that the magic angles should be
present for any symmetric potential, indeed, a real function
q(θ ) generically is not obliged to have real roots.

Indeed, one can construct an example of a symmetric
barrier, the probability of transmission through which is quite
small. The potential that we construct is a sufficiently quickly
oscillating one, being a series of four n-p-n barriers. Namely,
fix the height of barriers U0 = 50 meV and the n-p and p-n
junction widths l1 = l3 = · · · = l15 = 10 nm and the pairwise
distances and widths l2 = l4 = · · · = l14 = 10 nm. Then, take

x0 = 0, xi+1 = xi + li , i = 1, . . . ,15,

and define

U (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < x0 or x > x15 or x ∈ [x4i−1,x4i],

U0, if x ∈ [x4i+1,x4i+2],

U0
1
2

{
1 + tanh[10(x − x4i+x4i+1

2 )/l4i]
}
,

if x ∈ [x4i ,x4i+1],

U0
1
2

{
1 − tanh[10(x − x4i+2+x4i+3

2 )/l4i+2]
}
,

if x ∈ [x4i+2,x4i+3]

(17)

(see Fig. 5; compare with Ref. [7, Eq. (135)]).
The fast oscillations of the potential U (x) prevent the

appearances of “resonances” between the junctions, and allow
to block the transmission in a band of energies sufficiently
close to U0/2. Namely, in the energy band from 20 to 30 meV,
the transmission probability p(θ ) = |t(θ )|2 for any angle of
incidence θ does not exceed 2 × 10−8; see Fig. 6.

Further increase in number of barriers allows further
reducing of transmission probability in this band (or of slight
widening of the band where a given upper estimate on
|t(θ )|2 holds). We will discuss in the next section a reason
of why a blocking potential should be looked for among
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FIG. 6. (Color online) (a) Green line: maximal transmission
probability pmax = maxθ p(θ ) for the potential Eq. (17) as a function
of the given energy E of the wave. Note that in the band E = 20 . . . 30
meV the transmission probability does not exceed 2 × 10−8. Blue
line: maximal transmission probability for the cosine-oscillating
potential Eq. (18). Note that in the same energy band the transmission
probability is still very small (it does not exceed 10−6). (b)
Transmission probability for the potential Eq. (17) as a function of
the angle θ for energies E = 20, 22.5, 25, 27.5, 30 meV.

fast-oscillating ones. We conclude this section by noticing
that other fast-oscillating potentials exhibit similar behavior.
For instance, considering the potential

U (x) =
{

U0
1
2 [1 − cos(πx/2l1)], x ∈ [0,16l1]

0 otherwise,
(18)

we get a similar behavior for the maximal transmission
probability; see Fig. 6, top.

V. BILAYER GRAPHENE: GENERIC ONE-DIMENSIONAL
POTENTIAL

A. Approximate magic angles

We start by considering the example that was studied in
Ref. [7]: an asymmetric n-p-n junction. First, note that the
corresponding angles are not exactly magic; though they seem
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FIG. 7. (Color online) Zoom in: absolute value of the reflection
amplitude |r(θ )| for n-p-n junction in bilayer graphene near magic
angles. Settings are the same as in Figs. 2(b) and 2(d).

to be such, precise computations show that the local minimal
values of |r(θ )| in these cases are ≈ 0.029 and ≈ 0.053
at the angles θ ≈ 30◦ and θ ≈ 65◦, respectively (and hence
the local maxima of the transmission probability |t(θ )|2 are,
respectively, ≈ 0.9991 and ≈ 0.997); see Fig. 7.

Thus, the correct mathematical question is not to explain
the exact equality but to explain why the minimal value of
|r(θ )| is so small.

The first idea here would be to compare this asymmetric
potential to a close symmetric one. Namely, in addition to
the asymmetric potential with junction widths l1 = 20 nm and
l3 = 40 nm and flat p part of width l2 = 100 nm, consider
a symmetric one with the junction widths l1 = l3 = 20 nm
and flat p part of width l2 = 110 nm (so that the middle of
the p-n junction does not move). It turns out that the transition
probabilities for these barriers are quite close to each other (see
Fig. 8, red and green lines). At the same time, latter potential
possesses exact magic angles due to the same arguments as
in Sec. III B. Given this, one could argue that the reason for
almost-magic angles is just that the solutions of two equations,
the one for the symmetric potential and for the asymmetric one,
are sufficiently close to each other.
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FIG. 8. (Color online) Transmission probability for n-p-n junc-
tion in bilayer graphene for asymmetric 20-100-40 nm (red lines),
symmetric 20-110-20 nm (green lines), and 30-100-30 nm (blue lines)
barriers.

However, a closer examination of the graph on Fig. 8 shows
that this argument alone cannot be a satisfactory explanation.
Indeed, one notices that the peaks are shifted with respect
to each other, so that the value of one of the functions at the
maximum of the other one is quite far from 1, much farther than
its maximal value. Hence, additional arguments are required
for an explanation here.

In fact, note that altering both junction widths, that is,
considering the symmetric potential with l1 = l3 = 30 nm,
l2 = 100 nm, one gets a much better approximation for
the transmission probability; see Fig. 8, red and blue lines.
Though, a priori it is not clear why such an approximation
(contrary to the one-side modification) gives so precisely the
approximately magic angles. We will explain it at the end of
this subsection.

To provide a complete explanation for the almost-magic
angles effect, we will approximate the problem of crossing of
an n-p-n barrier as a sequence of two independent crossings,
of an n-p and of a p-n barriers, respectively. The error in
such an approximation will be almost negligible, thus reducing
our question to the study of individual crossings. Finally, an
additional effect, appearing in the bilayer graphene (contrary
to the single-layer) is in the core of the explanation here.

Namely, under the width l2 flat part of the barrier, the
Eq. (12) again has constant coefficients, and can be interpreted
as zero-potential equation for a wave of energy EU := E − U0.
Provided that |EU | > |a| = |E sin θ |, the wave-type solutions
of Eq. (12) in this domain can be written in the form

φR(x) = eikU xv′
R, φL(x) = e−ikU xv′

L,

where kU =
√

E2
U − a2. Here v′

R and v′
L are the corresponding

eigenvectors of the matrix of the system, given by Eq. (13) for
the energy EU , up to some sign changes due to the inequality
EU < 0:

v′
R =

⎛⎜⎜⎜⎝
a + ikU

2m
�2 EU

a − ikU

− 2m
�2 EU

⎞⎟⎟⎟⎠ and v′
L =

⎛⎜⎜⎜⎝
a − ikU

2m
�2 EU

a + ikU

− 2m
�2 EU

⎞⎟⎟⎟⎠. (19)

Also, as earlier, one also finds in this domain solutions of the
form

φ+(x) = eλU xv′
+, φ−(x) = e−λU xv′

−,

where λU =
√

E2
U + a2, and v′

± are the associated eigenvec-
tors [again with a sign change with respect to Eq. (14)]:

v+ =

⎛⎜⎜⎜⎝
a + λU

− 2m
�2 EU

−(a − λU )

− 2m
�2 EU

⎞⎟⎟⎟⎠, v− =

⎛⎜⎜⎜⎝
a − λU

− 2m
�2 EU

−(a + λU )

− 2m
�2 EU

⎞⎟⎟⎟⎠. (20)

Now, related to the problem of describing an n-p-n
barrier, one can consider the problem of describing an n-p
transmission, given by a potential Un-p(x) that is identically 0
on the left of the barrier and identically U0 on the right of it.
For a barrier of characteristic width l, analogously to the n-p-n

165407-7



KLEPTSYN, OKUNEV, SCHUROV, ZUBOV, AND KATSNELSON PHYSICAL REVIEW B 92, 165407 (2015)

barrier, we can take

U (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x < 0,

U0, if x > l,

U0
1
2

{
1 + tanh

[
10

(
x − l1

2

)
/l

]}
,

if x ∈ [0,l],

(21)

(compare with Ref. [7, Eq. (135)]). A physically meaningful
solution then should be of the form

�n−p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1ψR(x) + a2ψL(x) + a3ψ+(x),

to the left of the barrier,

a4φR(x) + a5φL(x) + a6φ−(x),

to the right of the barrier.

(22)

The coefficients a1,a2 of the wave component to the left of
the barrier and the coefficients a4,a5 to the right of it are then
related by a transmission matrix An-p = An-p(l,θ ):(

a1

a2

)
= An-p

(
a4

a5

)
.

Note now, that for any coordinates on the the two-dimensional
space of physical solutions, the restriction of the bilinear
antisymmetric form Q on this plane is proportional to the de-
terminant (area) form in these coordinates. Hence, considering
two different systems of coordinates (a1,a2) and (a4,a5), we see
that the coefficient of proportionality is equal to Q(ψR,ψL) =
4ik 2m

�2 E and Q(φR,φL) = 4ikU
2m
�2 EU , respectively, and thus

the determinant of the matrix An-p, relating these coordinates,
is equal to

det An-p = 4ikU
2m
�2 EU

4ik 2m
�2 E

= kUEU

kE
.

Now, pass from the solutions ψR,ψL in U = 0 domain and
from φR,φL in the U = U0 one to the properly normalized
“sine-cosine” solutions

ψcos :=
√

kE

2
(ψR + ψL), ψsin :=

√
kE

2i
(ψR − ψL)

in the domain U = 0 and to

φcos :=
√−kUEU

2
(φR + φL), φsin := −

√−kUEU

2i
(φR − φL)

in the domain U = U0. The advantage of these solutions is
that as they are purely real, the transmission matrix in these
coordinates,

Ãn-p =
√

kE√−kUEU

(
1
2

1
2

1
2i

− 1
2i

)
An-p

(
1
2

1
2

− 1
2i

1
2i

)−1

, (23)

is also purely real, and due to the choice of the normalization
it is of determinant 1.

Recall now that a real area-preserving matrix Ã admits
singular value decomposition: it can be represented as a

product of a rotation matrix, a diagonal matrix (
μ 0

0 μ−1
),

and another rotation matrix. The reflection and transmission
coefficients, associated to such a matrix, then satisfy

|t | = 2

μ + μ−1
, |r| = μ − μ−1

μ + μ−1
. (24)

In particular, for an angle to be (approximately) magic, the
corresponding real matrix should be an (approximate) rotation.

Write for a transmission problem through an n-p barrier of
characteristic width l and for the angle of incidence θ

Ãn-p = Ãn-p(l,θ ) = Rα(l,θ)

(
μ(l,θ ) 0

0 μ(l,θ )−1

)
Rβ(l,θ),

(25)
where Rα stays for the rotation at angle α.

Next, consider the p-n transmission problem. To do so, note
that the application of T sends it to the solution of the form

�p-n(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1ψR(x) + a2ψL(x) + a3ψ−(x),

to the right of the barrier,

a4φR(x) + a5φL(x) + a6φ+(x),

to the left of the barrier,

(26)

for the new potential Up-n(x) = Un-p(−x) (note that this
potential will be supported on [−l,0]). For the corresponding
transmission matrix, we then have

Ap-n = A
−1
n-p. (27)

In the same way as before, we pass to the sine-cosine bases,
thus obtaining a real determinant 1 matrix

Ãp-n =
√−kUEU√

kE

(
1
2

1
2

− 1
2i

1
2i

)
Ap-n

(
1
2

1
2

1
2i

− 1
2i

)−1

(28)

Joining Eqs. (23), (27), and (28), and using the reality of
matrices Ãn-p, Ãp-n, we get

Ãp-n =
(

1 0

0 −1

)
Ã−1

n-p

(
1 0

0 −1

)
. (29)

The singular decomposition Eq. (25) thus gives us

Ãp-n =
(

1 0

0 −1

)
R−β(l,θ)

(
μ(l,θ ) 0

0 μ(l,θ )−1

)−1

×R−α(l,θ)

(
1 0

0 −1

)
= Rβ(l,θ)

(
μ(l,θ )−1 0

0 μ(l,θ )

)
Rα(l,θ). (30)

Finally, let us return back to an n-p-n junction. Note that
if the width l2 of the flat p part of the barrier is sufficiently
large, the transmission through the barrier can be approximated
as a sequence of n-p and p-n junctions (of widths l1 and l3,
respectively). Indeed, the corresponding physical solutions are
of the form

�n-p-n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1ψR(x) + a2ψL(x) + a3ψ+(x),

to the left of the barrier,

a4φR(x) + a5φL(x) + a6φ−(x) + a7φ+(x),

in the p zone,

a8ψR(x) + a9ψL(x) + a10ψ−(x),

to the right of the barrier.

The component a7φ+(x) is of order at most 1 near the p-n
part, and hence is of order e−λU l2 near the n-p transition, which
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is negligible (it is less than 10−7 for the barrier and angles
described on Figs. 2 and 8). The same applies to a6φ−(x).
Thus, with very high accuracy one has(

a1

a2

)
≈ An-p

(
a4

a5

)
,

(
a4

a5

)
≈ A(l′)

p-n

(
a8

a9

)
,

where the transmission matrix A(l′)
p-n corresponds to the p-n

barrier, shifted by l′ = l1 + l2 + l3 to the right from the
position [−l3,0] at which it was studied earlier. For the full
transition matrix we thus have

An-p-n ≈ An-pA(l′)
p-n.

Hence, the same holds for the transmission matrix in the
sine-cosine basis:

Ãn-p-n ≈ Ãn-pÃ(l′)
p-n. (31)

Taking into account that

Ã(l′)
p-n = R−kU l′Ãp-nR

−1
kl′

and substituting into Eq. (31) the singular decomposition
Eqs. (25) and (30), we obtain for the total n-p-n transmission
matrix

Ãn-p-n(θ ) ≈ Rα1(θ)

(
μ1(θ ) 0

0 μ−1
1 (θ )

)
Rβ1(θ)

×Rβ2(θ)−kU l′

(
μ−1

2 (θ ) 0

0 μ2(θ )

)
Rα2(θ)−kl′ , (32)

where

μ1(θ ) = μ(θ,l1), μ2(θ ) = μ(θ,l3),

α1(θ ) = α(θ,l1), α2(θ ) = α(θ,l3),

β1(θ ) = β(θ,l1), β2(θ ) = β(θ,l3).

This matrix is natural to expect to be closest to a rotation for
angles θ when the composition of rotations in the middle,
Rβ1(θ)+β2(θ)−kU l′ , is a rotation by an integer multiple of π

(compare with Eqs. (33) and (34) in Sec. V B below). For
such angle θ0, one has

Ãn-p-n(θ ) ≈ ±Rα1(θ)

(
μ1(θ )μ−1

2 (θ ) 0
0 μ−1

1 (θ )μ2(θ )

)
Rα2(θ)−kl′ .

Now, a final (and key) remark is that for the bilayer graphene
and relatively short n-p barriers, the value μ(θ,l) does depend
on the angle of incidence but depends very slightly on the
width of the barrier, while the latter stays sufficiently small;
see Fig. 9. A plausible explanation for this will be discussed
in Sec. V C.

Due to this observation, the above matrix is indeed very
close to the rotation one, as μ(θ,l1) ≈ μ(θ,l3). More precisely,
for such θ0, substituting μ = μ1(θ0)/μ2(θ0) into Eq. (24), one
has

|r(θ0)| = |μ − μ−1|
μ + μ−1

= tanh δ(θ0),

where δ(θ ) = | log μ1(θ ) − log μ2(θ )|. This scenario indeed
holds for both approximate magic angles illustrated on

1
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FIG. 9. (Color online) The function log μ(θ,l) for a wave of
energy E = 17 meV, crossing on bilayer graphene an n-p barrier of
height V = 50 meV (same energy and height as for Fig. 2). (a) The
dependence on the width l for (almost) magic angles θ ≈ 30.64◦ (blue
line), θ ≈ 65.34◦ (red), and for θ = 45◦ (green). (b) The dependence
on the angle of incidence θ , for widths l = 20 nm (blue line), 30 nm
(green), and 40 nm (red).

Fig. 2, right. For instance, for an approximate magic angle
θ1 ≈ 30.65◦, we have

log μ1(θ1) ≈ 1.1641, log μ2(θ1) ≈ 1.1343,

δ(θ1) = | log μ1(θ1) − log μ2(θ1)| ≈ 0.0298,

which is in perfect agreement with |r(θ1)| ≈ 0.0299. For θ2 ≈
65.34◦, one has

log μ1(θ2) ≈ 1.5815, log μ2(θ2) ≈ 1.6339,

δ(θ2) = | log μ1(θ2) − log μ2(θ2)| ≈ 0.0524,

which is also in perfect agreement with |r(θ2)| ≈ 0.0524.
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Finally, the above description also explains why the 30-
100-30 nm potential was such a good approximation for the
20-100-40 nm one (see Fig. 8). Indeed, the equation for the
magic angle is based on the angles β(θ,l1), β(θ,l3), and we
have with quite high precision

β(θ,l1) + β(θ,l3) ≈ 2β

(
θ,

l1 + l3

2

)
.

To conclude, we note that the mechanism described in
this section is exactly the one that one would like to avoid
while looking for a transmission-blocking potential. Hence, it
seems quite natural to avoid long flat parts (as they are likely
to “cancel,” for some angles, what happens before and after
them), and hence consider a fast-oscillating potential—as it
was done in Sec. IV.

B. Peaks for n-p-n barriers

The description above can be used to describe the shape of
a peak of the transmission probability. Namely, for a matrix
A ∈ SL(2,R), the corresponding inertia coefficients μ and
μ−1 can be found from the relation tr AA∗ = μ2 + μ−2, thus
implying that

p(θ ) = |t(θ )|2 = 4

2 + tr AA∗ , (33)

where A = Ãn-p-n is the corresponding transmission matrix.
From the approximation Eq. (32), one gets

tr AA∗ = tr

(
μ2

1(θ ) 0

0 μ−2
1 (θ )

)
Rγ (θ)

(
μ2

2(θ ) 0

0 μ−2
2 (θ )

)
R−γ (θ),

where γ (θ ) = β1(θ ) + β2(θ ) − kU l′. An explicit calculation
then gives

tr AA∗ = [
μ2

1(θ )μ2
2(θ ) + μ−2

1 (θ )μ−2
2 (θ )

]
cos2 γ (θ )

+ [
μ2

1(θ )μ−2
2 (θ ) + μ−2

1 (θ )μ2
2(θ )

]
sin2 γ (θ )

= c1(θ ) + c2(θ ) cos2 γ (θ ), (34)

where

c1(θ ) = μ2
1(θ )μ−2

2 (θ ) + μ−2
1 (θ )μ2

2(θ ),

c2(θ ) = [
μ2

1(θ ) − μ−2
1 (θ )

][
μ2

2(θ ) − μ−2
2 (θ )

]
.

A peak of the transmission probability corresponds to a
local minimum of the denominator of Eq. (33). Due to the
wide l2 part, the angle

γ (θ ) = β1(θ ) + β2(θ ) − kU l′

changes much faster than μ1,2(θ ) does, so such a peak
θ0 (almost) corresponds to γ (θ0) ≈ πn. Approximating
cos2[γ (θ )] ≈ c(θ − θ0)2, where c = ( dγ (θ)

dθ
)2, one gets for the

shape of the peak the Lorenz-Breit-Wigner form:

p(θ ) = 4

2 + tr AA∗ ≈ p(θ0)

1 + c′(θ − θ0)2
.

Such an approximation turns out to be quite precise; see
Fig. 10 for such an approximation for the peaks corresponding
to the n-p-n barrier discussed in Ref. [7] (as well as in Sec. II B).
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FIG. 10. (Color online) Blue (solid) line: exact transmission
probability for the symmetric n-p-n junction. Red (dashed bold) line:
Lorenz-Breit-Wigner approximation p(θ ) ≈ 1

1+c(θ−θ0)2 .

C. Computational algorithms

We conclude this paragraph with specifying a computation
method for finding the transmission probabilities for long
barriers. Namely, a straightforward method of computation
includes numerically solving the differential Eq. (12) through
the barrier. Then, finding a linear combination �̃R of solutions
that starts on the right of the barrier with ψR and with ψ− that
would have no exponentially growing component on the left
of the barrier. Though, if the barrier is sufficiently long, the
solution starting with a given initial value has a tendency to
grow exponentially with the width of the barrier.

Instead, consider the solution �̃−(x) to Eq. (12) that
coincides with ψ− on the right of the barrier. Note that we
do not need to know the solution itself, but only up to the
proportionality: its only role will be to be added to a linear
combination to remove the exponential growth on the left of
the barrier. Hence, instead of finding �̃−(x) itself (which is
most natural to expect to grow exponentially when one passes
to the left of the barrier), we can look for a unit vector-valued
function �0

−(x) that is proportional to it at any point x, given
by the normalization

�0
−(x) = �̃−(x)/|�̃−(x)|. (35)

The latter can be found either by normalizing the solution on
each step or by solving a differential equation for it,

∂x�
0
− = A�0

− − (A�0
−,�0

−)�0
−, (36)

where A is the matrix of Eq. (12) and (·,·) is the usual scalar
product.

Second, to find the reflection and transmission coefficients,
we are looking for a solution �̃R to Eq. (12) that is of
the form of Eq. (15). Again, it is natural to expect that the
solution, starting with ψR on the right of the barrier, will grow
exponentially.

But the solution �̃R we are looking for is anyway a
combination of the solution starting with ψR and the one
starting with ψ−. So while solving Eq. (12) right-to-left,
starting with ψR outside the barrier, we can at any point x

safely add �0
+(x) with any coefficient: this keeps us in the

same space of linear combinations. Thus, we consider the
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component of ψR that is orthogonal to �0
−, that is,

ψ̃(x) := ψR(x) − (ψR(x),�0
−(x))�0

−(x). (37)

It obeys the following modification of Eq. (12):

∂xψ̃ = Aψ̃ − 1
2 ((A + A∗)ψ̃,�0

−)�0
−.

Such an orthogonalization removes the growth associated to
the highest (nonphysical) eigenvalue of A, leaving only the
expansion and contraction associated to the physical solutions
themselves.

Finally, after arriving to the point (−x0) on the left side of
the barrier, one further modifies the solution ψ̃ on the left of
the barrier by adding again �0

− with such a coefficient,

β = − Q(ψ̃(−x0),v+)

Q(�0−(−x0),v+)
,

that the obtained combination ψ := ψ̃ + β�0
− does not have

a component along ψ−. Decomposing ψ(−x0) in the base of
eigenvectors vR, vL, v+, v−, we find 1

t(θ) and r(θ)
t(θ) as coefficients

before vR and vL, respectively.
The above algorithm (or its slight modification) seem also

to be an explanation of the almost-constancy of the inertia
coefficients μ(θ ), which are (as it was discussed in Sec. V A)
in the background of the appearance of almost-magic angles
in the bilayer case.

Note first, that we can construct the space of physically
interesting solutions of Eq. (12) in the following way. Any
bounded (“physical”) solution �̃ of Eq. (12) is Q-orthogonal
to both solutions �̃+ and �̃−, which coincide, respectively,
with ψ+ to the left of the barrier and with ψ− to the right
of it. Indeed, Q products Q(�̃,�̃+) and Q(�̃,�̃−) give (after
normalization by Q(ψ−,ψ+)), respectively, the coefficients
before ψ− in the decomposition to the left of the barrier and
before ψ+ in the decomposition to the right of it. On the
other hand, for a generic θ, E,U the solutions �̃+ and �̃− are
linearly independent, and hence a Q-orthogonal complement
to the two-plane {α�̃+ + β�̃−} is exactly the two-plane of
physical solutions.

Now, instead of considering functions �̃− and �̃+, we can
consider their normalized versions

�0
+(x) = �̃+(x)/|�̃+(x)|, �0

−(x) = �̃−(x)/|�̃−(x)|.
As before, they can be constructed by solving a differential
equation left-to-right and right-to-left, respectively. Note that
it is natural to expect such a construction to be stable under
small perturbations: a long-time map contracts almost all the
directions in a small neighborhood of the most expanded
image.

Once these two functions are found, at any point x we
know the two-plane of physical solutions as the Q-orthogonal
complement to the two-plane {α�0

+(x) + β�0
−(x)}.

Finally, knowing such a plane, generically, we can re-
construct the flow without using the potential U explicitly.
Indeed, the derivatives of the first and of the third coordinate in
Eq. (12) do not include Ũ , and at the same time, the first and the
third coordinate generically provide a system of coordinates
on the two-plane of physical solutions. Thus, the system of
differential equations on the first and third coordinate can be
written only using �0

±.

The same technique applies also to the study of n-p
transitions, with the only difference that on the right of the
barrier we are taking the function �0

− instead of �0
−, which is

obtained as �0
− = �̃−/|�̃−|, where �̃− coincides with φ− on

the right of the barrier.
At the same time, it is natural to expect that �0

+ and
�0

− will not change too much under small changes of the
potential U defining the n-p transition. The reason for that
is that these functions are solutions to first-order differential
equations, defined by U (so even a discontinuity of U

will result in a smooth behavior of �0
+ and �0

−). At the
same time, in a zone where two different potentials U

coincide, these functions (roughly speaking, corresponding
to the fastest-growing direction) quickly become aligned,
so the effect of any perturbation should be sufficiently
local.

This shows the difference between the single- and bi-
layer graphene. For a single-layer graphene, we have a
two-dimensional differential equation directly involving the
potential U . While for the bilayer graphene, we have an
additional “integration”: the solutions �0

+, associated to these
potentials, are very close to each other (and the same holds
for the solutions �0

−); they mostly coincide, and differ only a
little between the two potentials. And as it is these functions
that define a new two-dimensional differential equation, the
difference between the transmission matrices An-p comes from
the “integration” of difference between them and should be
even smaller.

VI. CONCLUSIONS

To summarize, we have considered chiral tunneling through
one-dimensional potential barriers for the cases of both single-
layer and bilayer graphene. We have proven that in both cases
for symmetric barriers magic angles with 100% transmission
can be found from one real equation. For the case of bilayer,
this equation does not necessarily have real solutions and
we have presented examples of the potential barrier with a
very low transmission at any angles in a restricted energy
range. This opens a way to build the conventional p-n-p (or
n-p-n) transistor from bilayer graphene without opening the
energy gap. This is also important conceptually since it gives
a clear counterexample to an opinion that the Klein tunneling
in single-layer graphene is due to gapless character of the spec-
trum; actually, it is due to a special chiral character of electronic
states there. We have also presented arguments explaining
why for the case of bilayer graphene the difference between
symmetric and antisymmetric barriers is not as dramatic as for
the single-layer one; whereas for the latter case asymmetric
shape of the barrier results in an exponential suppression of
transmission at nonzero magic angles, in bilayer graphene they
are robust, in a sense that the transmission probability remains
close to 100%.
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