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Chapter 1

Motive and Outline

The incidence of cardiovascular disease is increasing in the western world, contributing

up to 20.5% of the total burden of disease in the Netherlands in 2011, and with 38,371

fatalities being the second cause of death in 2012. Meanwhile, blood donation is a common

practice in the Netherlands. In 2012, 293,839 people donated whole-blood or plasma. This is

approximately 2.7% of the Dutch population that is within the age-appropriate range (18 -

65 years) for blood donation. Although being quite common, not much is known about the

physiological effects of blood donation besides its effect on iron stores [1–3]. Lower iron

stores have been hypothesized to decrease cardiovascular disease. Since blood donation

is able to decrease iron stores tremendously, the research set out in this thesis addresses

whether blood donation is able to reduce cardiovascular disease.

1
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1.1 Cardiovascular Disease and Iron

A stabilising cardiovascular epidemic

Until 2004 in men and 2011 in women, cardiovascular disease was the leading cause of

death in the Netherlands (Figure 1.1). It has been competing with cancer, but both diseases

now seem to have reached a new equilibrium with approximately 40,000 deaths each year.

The decreasing trend of cardiovascular death has mainly been attributed to the increased

awareness, detection, and improved preventive actions such as lifestyle changes, but most

of all to improved therapies. Unfortunately, the success in health care has taken its toll on

the incidence of cancer now that patients can survive the initial cardiovascular event and it

has become a chronic disease.

The entire spectrum of cardiovascular diseases (CVD) covers a wide range from more

chronic conditions such as atherosclerosis that can ultimately lead to more acute phenomena

such as acute myocardial infarction or stroke. Atherosclerosis is a continuing inflammatory

process of endothelial accumulation of white blood cells that results in the attraction and

infiltration of monocytes that turn into macrophages once inside the intima [4–6]. There,

they scavenge oxidized LDL-cholesterol and turn into foam cells, forming fatty streaks. The

subsequent migration of smooth cells from the intima to the endothelium under the influence

of cytokines and growth factors results in the formation of a fibrous cap. Further calcium

deposits and accumulated debris finalized the plaque formation, which reduces the blood

flow in the artery. When the fibrous cap of a vulnerable plaque ruptures, thrombogenic

material such as collagen can leave the plaque, enhancing thrombus formation in the arterial

lumen, and eventually sends off a thromboembolism.

Classic risk factors of CVD include hypertension, dyslipidaemia, smoking, diabetes, and

obesity. Atherosclerosis can persist for several decades before becoming clinically manifest;

the average age at hospital admissions of acute myocardial infarction is 65 years in men

and 71 years in women, and for stroke the respective ages are 69 years and 72 years [7]. Of

interest are the gender differences: per 100,000 inhabitants, the incidence of cardiovascular

disease is higher in men for all age categories. Likewise, the average age at CVD-death is

lower in men (77 years) than women (84 years).

The hypothesis

A causal role of iron in cardiovascular disease has been first proposed by Sullivan in the

1980s [8]. He arrived upon his "iron-heart hypothesis" as an explanation for several obser-

vations: (1) premenopausal women have the lowest cardiovascular disease risk, but after

menopause and menstrual blood loss ceases, they rapidly increase in cardiovascular disease

to approach that observed in men; (2) western civilizations have an increased cardiovascular

disease risk compared to developing countries, where iron deficiency occurs more often due

to malnutrition; (3) myocardial failure in iron storage disease such as hemochromatosis.
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Figure 1.1: Sex-specific trends in the top-2 causes of death in the Netherlands (1990-2014)

Although the observation of myocardial failure in iron storage disease has become

less established in the last few years, as patients with hereditary hemochromatosis, a

condition accompanied by high levels of body iron stores, do not have an increased risk

of atherosclerosis [9], the other two observations are still present today and are not yet

fully explained by other phenomena. Indeed, the sex difference has been attempted to be

explained by changing hormone levels during menopause and subsequent changes in lipid

profile and body fat distribution [10–13], but since the failure of a large hormone replacement

therapy trial (the Women’s Health Initiative) in preventing cardiovascular disease [14], the

iron hypothesis has gained importance.

Lowering iron stores

Iron is an important metal required for several metabolic processes in cells. Iron is found

in two different cationic (or oxidative) states throughout the body: the more stabile ferric

iron (Fe3+) and the reactive ferrous iron (Fe2+). When in ferrous state, better known as

iron(II) oxide, it is at its most dangerous appearance and catalyzes the formation of reactive

oxygen species (ROSs). Under aerobic conditions, Fe2+ reacts with oxygen resulting in

Fe3+ and hydroxyl radicals (OH –) according to the Fenton reaction: Fe(II) + H2O2

Fe(III) + OH– + OH –. In turn, ferric iron can react with superoxide in the Haber-Weiss reaction
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to produce yet again ferrous iron: Fe(III) + O –
2 Fe(II) + O2. The resulting ROSs, most

importantly the hydroxyl radical, can in turn oxidize and damage DNA and polyunsaturated

fatty acids in lipids [15, 16]. ROSs play a role in the atherosclerotic process by oxidizing LDL-

cholesterol and decrease the efflux of cholesterol in macrophages, thereby enhancing foam

cell formation [17–19]. ROSs are also important contributors to impaired vascular reactivity

through decreased NO synthesis and action, as well as their stimulating role in platelet

aggregation and smooth muscle cell proliferation [20]. Furthermore, ROSs hamper insulin

uptake and its biological intracellular activities, thereby disturbing glucose metabolism and

vascular function [21].

Because of the catalytic properties of iron in the formation of reactive oxygen species,

its level needs to be tightly controlled. In humans, iron is not actively secreted. Instead,

total body iron content is regulated by the amount of dietary iron absorbed by the duodenal

enterocyte and the subsequent release into the bloodstream by the only known cellular

iron exporter ferroportin [22]. Uptake by the apical membrane requires the divalent metal

transporter-1 (DMT-1) for dietery Fe3+ which is first reduced to Fe2+ by DcytB, and an

unknown haeme transporter for dietary haeme iron [22]. The uptake rate of Fe3+ by DMT-1

can be enhanced by ascorbate (vitamin C) as this increases the reductase activity of DcytB.

A human body contains approximately 3000 to 4000 mg of iron. Most of this, around

2500 mg, is found in erythrocytes, where it is part of haemoglobin that facilitates the

transportation of oxygen from the lungs to all other tissues. When erythrocytes become

senescent after approximately 120 days, they are phagocytosed by reticuloendothelial

macrophages in the liver (i.e. Kupffer cells), spleen, and lymph nodes. The remaining iron

derived from the breakdown of haeme is subsequently stored as ferritin, or exported by

ferroportin into the bloodstream as either NTBI or transferrin. When new erythrocytes are

created during erythropoiesis, iron is needed for the haemoglobin molecule. Transferrin

facilitates the transportation of stored iron (ferritin) to various tissues throughout the body,

including the bone marrow where erythropoiesis takes place. The bulk of iron is taken up by

the cells bound to transferrin that enters the cells through endocytosis after binding to the

transferrin-receptor (TfR). Each day, 20-25 mg of iron is recycled via the above-explained

mechanism of senescent erythrocytes, macrophages, and new erythrocytes (Figure 1.2).

A decade ago, an important hormone regulating these processes of systemic iron homeo-

stasis was finally identified: hepcidin. Hepcidin binds to its receptor ferroportin, and promotes

the internal uptake and degradation of ferroportin [23]. Thus, when iron is required, hepcidin

expression and production is down-regulated (predominantly) in the liver, enabling ferro-

portin to export the intracellular iron into the bloodstream. This efflux of stored iron (ferritin)

from macrophages predominantly takes place in the liver, the main site for iron storage. Also,

more dietary iron residing in the duodenal enterocyte will be released by the up-regulation of

ferroportin. Hepcidin expression and production is decreased by erythropoiesis, and hypoxia,

and increased by high systemic iron levels and inflammation (Figure 1.2) [24].
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Figure 1.2: Brief outline of iron metabolism regulated by hepcidin. Hepcidin, predominantly

produced by the liver, binds to its receptor ferroportin (depicted as black cubes), inducing

the internalization and degradation of ferroportin. Ferroportin is the only known cellular iron

exporter. High serum hepcidin levels thus block the export of iron into the bloodstream

from various storage sites. Iron is exported into the bloodstream safely bound to transferrin

(depicted as triangles), and subsequently stored as ferritin (depicted as circles) in liver

cells. Reticuloendothelial macrophages derive their iron from the breakdown of senescent

erythrocytes which they phagocytose. Increased iron demand, such as in erythropoiesis after

blood donation, decreases hepcidin production. Consequently, ferritin can be released from

storage sites into the bloodstream and transported to the bone marrow for the production of

haemoglobin.
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Of note, iron is only dangerous and able to interact when unbound to storage and

carrier proteins such as ferritin, transferrin, and haeme. Free, redox-active iron is therefore

called "non-transferrin bound iron" (NTBI), which gives rise to the cellular labile iron pool

together with chelatable protein-bound iron. Iron is shuttled between different pools of

labile iron: the cytosol, mitochondria, and endoplasmic/lysosomal compartment [25]. Under

normal conditions, cellular iron homeodynamics is mainly determined by mitochondrial iron

consumption [25]. In the mitochondria, ROSs are a naturally occurring by-product of the

respiratory chain [26], while at the same place heme-synthesis requires iron. To prevent

oxidative cell damage, a delicate balancing system between iron and oxygen exists [25].

The enzymes superoxide dismutase (equilibrating superoxide (O –
2 ) and peroxide (H2O2))

and catalase (subsequently catalysing peroxide (H2O2) into water (H20) and oxygen ( 1
2 O2))

normally serve to remove the (su)peroxide from the cells [27]. Since antioxidants are able

to reduce redox stress, dietary antioxidants should decrease the availability of ROSs, but

some of them might also serve as pro-oxidants as for example vitamin C (i.e. ascorbate)

can replace superoxide in the Haber-Weiss reaction that results in the reactive ferrous iron

(Fe2+) [27]. In the cellular cytosol, ferritin also acts as a buffer as it stores Fe2+ in the

inner cavity after oxidation, a process consuming H2O2 [25]. Other factors that increase the

Fe2+:Fe3+ ratio are hypoxia and inflammatory processes, affecting iron regulatory proteins

that bind to iron responsive elements on mRNAs encoding ferritin, ferroportin, TfR, and

DMT-1 [25, 28], whereas ferroxidases (such as ceruloplasmin, hephaestin, and zyklopen)

could decrease the Fe2+:Fe3+ ratio by their ability to oxidize intracellular Fe2+ into Fe3+, a

necessary step in the process of apotransferrin-bound iron export by ferroportin [22]. In a

recent study, the increased iron content in atherosclerotic plaques was confirmed and linked

to a possible decrease in ferroxidases, limiting the ability to oxidize ferrous iron into ferric

iron [29].

Blood donation is known to lower iron stores [1–3, 30]. Each whole-blood donation of

500 ml contains approximately 200-250 mg iron [3]; a loss that needs to be compensated

by increased dietary iron uptake on top of the normal 1-2 mg/day and release from storage

sites.

Mechanistic pathways

The exact mechanism of how blood donation would decrease cardiovascular disease remains

unclear, but several pathways have ben hypothesised. In Figure 1.3, some of the main

hypothesised pathways are set out. It could be caused by a (combination of) the following

two pathways: (I) the direct effects of reducing iron subsequently decreasing oxidative

stress; (II) a reduction in blood viscosity. Reducing iron reduces oxidative stress, which

ameliorates vascular reactivity through increased NO synthesis and action, and decreases

the peroxidation of LDL-cholesterol, which in turn is an important progenitor of atheroscle-

rosis [21]. The latter is a process in which macrophages play an important role. They are

not only abundant in the vascular intima where atherosclerosis begins, but are also an
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Figure 1.3: Hypothesised pathways of how blood donation reduces cardiovascular disease.

important site for iron storage as they derive their iron from senescent erythrocytes, which

they phagocytize. In fact, Sullivan has come up with an update on the iron hypothesis that

more specifically describes the importance of macrophages and their iron content in the

onset of atherosclerosis [31]. Because of their close proximity to the vascular endothelium,

they facilitate the oxidation of LDL-cholesterol which ultimately accumulates into foam cells

through a cascade of inflammatory responses [17–19].

Another potentially important pathway yet begins in a completely different physiological

compartment: insulin and glucose metabolism. In fact, diabetes mellitus imposes such

a huge risk to cardiovascular disease, that it doubles the risk independently from other

established risk factors [32]. Of particular interest in this mechanism is the effect of iron on

insulin resistance. Insulin resistance can be regarded a pre-diabetic state in which the liver,

muscle, and adipose tissue lose their sensitivity to insulin to maintain normal glucose levels.

In a range of chronic metabolic conditions, such as dysmetabolic iron overload syndrome, non-

alcoholic fatty liver disease, high-ferritin type 2 diabetes mellitus, and metabolic syndrome,
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high iron levels seem to accompany insulin resistance and even predict diabetes mellitus [21,

33–35]. The metabolic syndrome is one of the mildest ones in this list of chronic metabolic

conditions, but its prevalence is ever-increasing in the western world. It stands for the

clustering of several conditions: central obesity, atherogenic lipid profile, hypertension and

elevated fasting glucose [36]. As such, it constitutes a risk factor not only for type 2 diabetes

mellitus, but also cardiovascular disease.

The mechanisms behind iron and metabolic disturbances are difficult and not yet com-

pletely elucidated [21]. First, insulin has long been known to affect the mobilization of

transferrin receptors to the cell surface [37]. These receptors facilitate the uptake of trans-

ferrin, thereby increasing intracellular iron. Second, iron overload affects insulin resistance

through oxidative damage to tissues involved in glucose and lipid metabolism such as pan-

creatic beta cells, adipose, muscle and also liver tissue [21]. Third, there is an intriguingly

and not-yet completely understood interplay between pro-inflammatory molecules, iron, and

hormones secreted from adipose tissues [38, 39]. The role of chronic subclinical inflammation

has been argued to be the core problem and cause of a disturbed iron homeostasis and its

direct and subsequent effects on the atherosclerotic process and insulin resistance.

Importantly, there are other less well-studied hypothesised pathways, among which

viscosity [Figure 1.3] [40]. Viscosity can be translated as the thickness and stickiness of

blood, and represents more biomechanical forces instead of molecular ones. The removal of

erythrocytes with blood donation reduces the viscosity of blood, with less blood cells that

normally aggregate at low shear rates such as during diastole, when blood moves slower,

to interact with the vascular endothelium [41]. Furthermore, reduced viscosity decreases

endothelial wall shear stress that affects the erosion and rupture of vulnerable plaques [41,

42]. There is a small overlap with the "iron reduction pathway", as the decrease in blood

cells during diastole also mean a decrease in the amount of iron that is deposited in the

thromboembolus from phagocytosed erythrocytes [41].

1.2 Blood Bank Practice in The Netherlands

In the Netherlands, the entire blood supply relies on voluntary non-remunerated donors.

Roughly, two different types of blood donors exist: whole-blood donors and plasmapheresis

donors. A whole-blood donation consists of the drawing of 500 ml of whole-blood and some

additional testing tubes for infectious disease testing purposes. Men are allowed to donate

a maximum of 5 donations a year, whereas women are restricted to 3 donations a year.

Between each successful donation, at least 56 days must pass by to restore hemoglobin

level. Donors that are eligible for donation are invited by postal mail to visit their blood bank

within the next two weeks. Approximately 55% of donors respond to such an invitation [43].
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After at least 1 successful whole-blood donation, donors are allowed to switch to plasma-

pheresis. This occurs upon invitation by the donor attendant, and is mainly driven by blood

group types, repeated deferrals for malaria-endemic area travels, and repeatedly low Hb

levels or when donors experience adverse reactions such as fatigue, dizziness and fainting.

Plasmapheresis may occur every two weeks with a maximum of 23 donations per year. Each

plasmapheresis procedure collects 650 ml of plasma that is separated from whole-blood in 3

to 4 batches, depending on the machine used. After each separated batch, donors receive

their erythrocytes back. The entire collection process takes approximately 45 minutes,

whereas a whole-blood donation normally is completed within 10 minutes. Instead of being

personally invited by postal mail such as whole-blood donors, plasmapheresis donors often

schedule their next appointment after their donation or make/receive a phone call afterwards

to make an appointment.

Routinely screening donor health not only ensures donor safety but also the safety of

the blood product that is to be derived from the donation. For this purpose, donors have to

fill out an eligibility questionnaire during each visit covering lifestyle factors that are related

to health status and infectious disease risk. A donor attendant or donor physician evaluates

this questionnaire, and subsequently assesses blood pressure, pulse rate and -irregularity,

and hemoglobin level by fingerstick method.

1.3 Healthy Donor Effect

Many studies directed to the iron hypothesis have used blood donation as a model for an iron

lowering intervention [44–52]. A methodologically challenging aspect is that blood donors

are continuously screened and selected on health status throughout their donation career:

during the registration process, in-between donations, and before each donation [Figure 1.4].

As a result, blood donors are generally in better health compared to non-donors. Many

studies were therefore unable to present unbiased results because of this Healthy Donor

Effect (HDE).

Atsma et al. previously described three distinct types of the HDE and referred to them

as the Healthy Registration Effect (HRE), the Healthy Donor Survivor Effect (HDSE), and the

Healthy Donor Career Effect (HDCE) [53]. When someone applies for blood donorship, a

number of health criteria have to be met in order to be registered as a blood donor. This

selection process based on (underlying) disease risk is thus responsible for the selection bias

or HRE when comparing the health of donors to non-donors.

Once being a newly registered blood donor, donation can only take place if certain

health criteria are met. Some of them result in a temporary deferral; others mean the end

of a donor’s donation career. Consequently, currently active donors are more likely to be

healthier than lapsing- or stopped donors. Research comparing these two groups of donors

is therefore influenced by the HDSE.
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Figure 1.4: Three different types of the HDE (arrows) as a result of three different selection

moments (dotted lines) during the donation career. HRE, healthy registration effect; HDSE,

healthy donor survivor effect; HDCE, healthy donor career effect.
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The third type of HDE, the HDCE, is of importance when studying health effects of blood

donation within currently active donors. As a result of continuously applying health criteria

prior to each donation, high-frequency donors and those with a higher number of lifetime

donations are probably healthier than donors who are yet in an early phase of their donation

career.

Concept of Blood Donation

Previous research has shown that the HDE is smaller when making comparisons within the

active donor population, as opposed to the general population or stopped donors [53]. How-

ever, there are many different aspects about the concept of blood donation as a determinant

of exposure, quite similar to that of tobacco use. The "amount" of exposure is determined by

three different aspects [Figure 1.5]:

• donation frequency: the number of donations

• donation career: the period during which the donations were made

• the combination of these two aspects: the number of donations per year.

A further combination can be made with the number of donations per year and the donation

career as a measure of donation intensity. An average donation frequency per year of 4 is

quite intense when the total donation career has been 4 years [see Donor 4 in Figure 1.5],

whereas the same donation frequency per year over a donation career of 1.5 years is not

[see Donor 1 in Figure 1.5].

When creating contrasts in the spectrum of blood donation, it all comes down to time.

The moment of starting, stopping, but also intermittent inactive periods of blood donation

determines all of the above three aspects. As such, it is also important to regard the time of

blood donation in relation to age. The age at which someone starts donating blood may be

an important aspect of the amount and efficacy of blood donation, as it also relates with the

progression stage of atherosclerotic disease and the number of years left to continue blood

donation.

1.4 Research Objectives

The scope of this thesis is the potential protective effect of lowering iron stores on cardi-

ovascular disease in healthy individuals. As explained above, blood donors constitute an

excellent study population to this end, as they are generally iron depleted and disease-free.

As a recurring theme throughout this thesis, high-frequency blood donors are compared to

low frequency donors in terms of cardiovascular risk, using (lifetime) donation frequency and

donation career to create different levels of exposure.
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Starting as a 
new donor

10 432

Donation career (years)

Donor 1
Frequency: 6

Career: 1.5 years

Frequency/year: 4

Donor 2
Frequency: 6

Career: 4 years

Frequency/year: 2.5

Donor 3
Frequency: 10

Career: 4 years

Frequency/year: 2.5

Donor 4
Frequency: 16

Career: 4 years

Frequency/year: 4

Figure 1.5: Four donors with different donation patterns. Three different aspects determine

the exposure to blood donation: donation frequency, donation career, and number of

donations per year. Although Donor 1 and Donor 4 have the same average donation

frequency per year, Donor 4 is much more exposed as this frequency per year was continued

for four years instead of only 1.5 years. To combine donation frequency per year with

donation career thus seems a useful measurement of blood donation exposure.
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Each donor has his or her own donation career, with a different number of donations and

donation frequency per year [Figure 1.5]. This enables us to study possible dose-response

relationships between blood donation and cardiovascular disease risk. Furthermore, this

thesis explores the use of a qualification period to eliminate the healthy donor effect as much

as possible, using a simulation study to test this approach. All with the goal to answer the

question whether high-frequency blood donation protects against cardiovascular disease.

1.5 Outline of this Thesis

Developing cardiovascular disease slowly progresses from metabolic changes to subclinical

atherosclerosis, until the disease becomes manifest and could ultimately result in cardi-

ovascular death. Essentially, blood donation could interfere with each of these stages in

the path to cardiovascular disease. In this thesis, we assess the effect of blood donation

on intermediary factors and processes, and also on manifest cardiovascular morbidity and

mortality.

Beginning with a cohort of first-time donors, the change in insulin resistance during

the first 1.5 - 2 years of the donation career is monitored [Section 2.1]. A more broad

outcome measurement of cardiometabolic risk factors (metabolic syndrome) is evaluated

next in a larger cohort of currently active whole-blood donors with a longer donation career

[Section 2.2]. Continuing to early anatomical changes of the vascular wall, non-invasive

measurements of atherosclerosis are investigated in active and stopped blood donors

[Section 3.1]. While studying cardiovascular morbidity and mortality, the HDE challenges

us again as using such longterm outcomes should not lead to a comparison of active

with stopped donors. Furthermore, blood donation should get sufficient opportunity to

prevent these longterm effects, requiring a longer period of exposure. In search for a

better way to deal with the HDE that also allows for a longer period of blood donation, a

simulation study assesses whether the application of a qualification period addresses both

issues [Section 4.1]. With this knowledge, the research continues and closes off with overt

cardiovascular morbidity and mortality in all Dutch whole blood donors [Section 5.1].

The insights provided by these individual studies will be combined to come to a final

conclusion on the debate of the protective ability of blood donation on cardiovascular disease

[Chapter 6]. For those who do not have the time to read this entire thesis, an abstract can

be found in the Summary on page 137 (for Dutch see the Samenvatting on page 141).





Chapter 2

Cardiometabolic Risk

If frequent blood donation should indeed slow down the onset of cardiovascular disease, then

frequent blood can also be expected to be associated with predecessors or risk factors of

cardiovascular disease. But what exactly are risk factors of cardiovascular disease? In 1988,

’syndrome X’, nowadays called ’metabolic syndrome’, was invented by Reaven to describe a

cluster of cardiovascular risk factors driven by insulin resistance. Insulin resistance reflects a

pre-diabetic stage. Metabolic syndrome is a cluster of 5 traits that constitutes a huge risk for

both cardiovascular disease and type 2 diabetes mellitus.

In this Chapter, we will describe whether frequent blood donation is associated with an

improved insulin resistance and lower prevalence of metabolic syndrome. We will start with

a cohort of first-time blood donors, in which the change in insulin resistance is determined

over a course of 1.5 - 2 years after the very first blood donation. This may, however, not be

long enough to detect an improvement of insulin resistance. Currently active whole-blood

donors do have a longer donation history. Therefore, a study that determines the presence

of metabolic syndrome among currently active blood donors is described next.

15
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2.1 Insulin Resistance

Original manuscript title:

Blood donation and insulin resistance in a follow-up study of first-time donors.

K. Peffer, M. den Heijer, D. W. Swinkels, A. J. Geurts-Moespot, F. Atsma, A. L. M. Verbeek

Submitted for publication

BACKGROUND: Iron depletion could improve insulin resistance by lowering oxidative stress in

hepatocytes, adipose tissue and pancreatic β-cells. Blood donation is effective in depleting iron

stores. This study aims to test whether frequent whole-blood donation is able to improve insulin

resistance in a cohort of first-time blood donors.

STUDY DESIGN AND METHODS: A cohort of male and female first-time whole-blood donors ≥ 45

years, was followed-up for 1.5 - 2 years. Insulin resistance (HOMA2-IR) and other cardiometabolic

risk factors were measured after overnight fasting at baseline (=before 1st blood donation) and

follow-up (median follow-up time = 20 months). Individual percentage changes from baseline

were calculated with 95% confidence intervals (CIs).

RESULTS: Of 120 first-time donors at baseline, 112 participated at follow-up. Ferritin and hepcidin

strongly decreased, both showing a dose-response effect with number of donations (p for trend

<0.001). HOMA2-IR increased during follow-up, by 5.7% (95%-CI: -8.4 to 22.0) in men and

23.9% (95%-CI: 9.5 to 40.1) in women. This increase was not explained by number of donations

during follow-up (p for trend=0.392), or by changing alanine aminotransferase levels (r=0.074,

p=0.219), but was positively associated with follow-up time (r=0.172, p=0.036).

CONCLUSION: Although iron stores were greatly reduced by blood donations in this cohort of

first-time donors, insulin resistance increased instead of decreased, especially in women. The

observed increase in insulin resistance during follow-up is best explained by ageing. Blood

donation does not improve insulin resistance in middle-aged healthy subjects.
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Introduction

Increased iron stores and metabolic disturbances go hand in hand. In patients with unex-

plained hepatic iron overload, the prevalence of the insulin resistance syndrome, a prede-

cessor of the metabolic syndrome (MetS), is 94% [54]. The other way around: the prevalence

of excess body iron is 15% in patients with MetS [55]. Furthermore, there is a considerable

association between these two disturbances and the presence of hepatic steatosis known as

non-alcoholic fatty liver disease (NAFLD): 42% of NAFLD-patients has MetS [56]. This overlap

between mild hepatic iron overload, insulin resistance, and hepatic steatosis accompanied

by transferrin saturation in the upper-normal range is now recognized as the dysmetabolic

iron overload syndrome (DIOS) and constitutes a risk marker for type 2 diabetes mellitus

(T2DM) and cardiovascular disease [33, 34, 57, 58].

The underlying pathogenic pathway is not yet completely understood, but subclinical

inflammation and disturbances in iron homeostasis are probably of key importance [33,

34]. Inflammatory processes increase hepatic hepcidin expression, the key iron regulatory

hormone [23, 59, 60]. In a mouse model, starvation-induced gluconeogenesis has also been

found to increase hepatic hepcidin expression [61]. As a consequence, iron accumulates

in the reticuloendothelial system, as hepcidin is responsible for the internalization and

subsequent degradation of ferroportin, the only known cellular iron exporter. Increased body

iron could exert its effect on insulin resistance by interfering with insulin receptor signaling

and expression and inhibiting the ability to burn carbohydrates in the liver and muscle [33,

34]. Iron is a known catalyzer of the formation of reactive oxygen species (ROSs). The insulin

receptor expression and insulin signaling of liver cells and peripheral tissue can be hampered

by ROSs, thus contributing to insulin resistance [62]. Moreover, iron has been observed

to compromise the functioning of adipose tissue, resulting in adipocyte insulin resistance

and hypertriglyceridemia [38, 39]. Therefore, increased iron stores could be responsible for

cell damage, which can result in liver damage, insulin resistance, β-cell dysfunction, and

ultimately diabetes mellitus. Increased baseline iron stores have already been found to

predict MetS and T2DM [63–66]. This raises the question whether iron depletion can prevent

the development of insulin resistance, MetS, and related conditions such as NAFLD, DIOS,

and T2DM.

Iron depletion occurs by reducing iron stores. Excess iron is stored in the liver and the

reticuloendothelial macrophages in the form of ferritin. Since serum ferritin levels reflect

the levels of tissue iron stored in ferritin, serum ferritin is a biomarker of (macrophage) iron

status [67]. The key regulatory hormone of iron homeostasis is hepcidin, which regulates

intestinal iron absorption and iron efflux from the storage sites. Thus, plasma hepcidin is a

good biomarker of systemic iron homeostasis [68].

Blood donation is an effective intervention to deplete iron stores. Although Hb levels

are tightly monitored in order to prevent anaemia, serum ferritin and hepcidin levels are

diminished two-fold by frequent blood donation [69]. Thus, blood donors constitute a healthy,

naturally iron-depleted population in which such a question can be studied. There have been

several studies that have confirmed a protective effect of frequent blood donation on insulin
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resistance and MetS [48, 70–72], but some have proven otherwise [50, 73]. We recently

found that high intensity blood donation was associated with increased prevalence of MetS

in non-obese women, but not in obese women or in men [74].

The difficulty in making causality claims from these aforementioned studies is the

absence of follow-up data. Due to the fact that these studies were all cross-sectional in

design, no temporal relationship between lowering iron stores and metabolic alterations

could be studied. Therefore, we have conducted a longitudinal study among first-time blood

donors in which cardiometabolic risk factors were measured at baseline and 1.5 - 2 years

thereafter. The aim of this study is to test whether blood donation is able to improve insulin

resistance, and whether changes in insulin resistance relate with changing iron parameters

in healthy blood donors.

Materials and Methods

Study population

In two large blood bank collection centers in the east of the Netherlands, all first-time whole-

blood donors ≥ 45 years were invited by postal mail to participate in the CARdiovascular risk

and DONation (CARDON)-study. In the Netherlands, first-time donors are newly registered

whole-blood donors who have successfully passed their first medical screening and are

eligible to become a blood donor. This includes the absence of insulin-dependent T2DM.

Between December 2010 and January 2012, 175 first-time donors were invited to participate

(99 women and 76 men). During the visit for the CARDON-study, they were given the

opportunity to make their first whole-blood donation. A total of 161 (92.0%) responded to

the invitation, of which 131 (74.9%) were willing to participate and eventually 120 (68.6%)

participated.

After a mean period of 20 months, all 120 donors were re-invited to participate in follow-

up measurements. Between January and May 2013, 112 donors showed up for their follow-up

measurements. They included both active and stopped donors. Aimed at 80 donors at

follow-up measurement, this study had a power of 90% to detect a difference of 0.35 in

HOMA-IR between baseline and follow-up measurement with an alpha of 0.05 (one-sided).

All participants provided written informed consent after full explanation of the purpose and

nature of all study procedures. The accredited Medical Research Ethics Committee Region

Arnhem-Nijmegen approved this study’s protocol, which is in accordance to the Declaration

of Helsinki on ethical principles for medical research involving human subjects.

Data collection

Visits were scheduled between 8:00 and 10:30 am. Donors were sent a questionnaire by

mail, which they were suggested to fill in at home and bring with them to the visit. The

questionnaire covered topics such as lifestyle factors, disease history, familial history of

cardiovascular disease, and reproductive factors of women. All participants were instructed
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by phone and postal mail to abstain from smoking and to fast at least 8 hours before the

study visit. The research assistants or the researcher reviewed all answers during the

visit, and inconsistencies were discussed with the donor. Anthropometric measurements

were performed according to standardized protocols and conducted in duplo, consisting of:

blood pressure, waist- and hip circumference, height and weight. Waist circumference was

measured with a soft tape at the level midway between the lowest rib and iliac crest. The hip

circumference was measured at the level of the head of the femur. Measurements started

and ended with blood pressure measured manually (OMRON Digital Blood Pressure Monitor,

HEM-907 Intellisense, and WelchAllyn, Maxi Stabil 3) at the right arm in sitting position. Shoes,

jackets/coats and heavy clothing were taken off during all measurements. Circumferences

were adjusted by minus 2π times thickness of clothing. BMI (kg/m2) was calculated by

dividing weight in kilograms by squared height in meters. Donors were instructed to bring

the packaging of their medication used within 2 weeks before the visit with them.

Finally, fasting venous blood samples were drawn. Glucose and alanine aminotransferase

(ALT) were both measured in plasma using Abbott reagents on the ARCHITECT C16000

(Abbott BV Diagnostics Division, Hoofddorp, The Netherlands). Insulin was determined in

plasma with a two-step electrochemiluminescence immunoassay using a test kit from Roche

Diagnostics on the Modular E170 (Roche/Hitachi Modular Analytics E170, Basel, Switzerland).

Total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, ferritin, transferrin, iron,

and high-sensitivity c-reactive protein (hs-CRP) were measured on an Olympus AU 400

(Beckman Coulter, Switzerland). Hb and mean corpuscular volume (MCV) were determined

by on the SysmexXT1800i (Sysmex Corporation, Kobe, Japan). Zinc protoporphyrin (ZPP)

was measured on a ZPP Hematofluorometer (Aviv Biomedical, Inc., Lakewood NJ USA).

Hepcidin was measured in Li-heparin plasma with an in-house competitive ELISA as described

previously [68, 75]. Some subjects had plasma hepcidin levels below the lower limit of

detection (LLOD, 0.2 nmol/L) at a 20-fold dilution. Those subjects with levels at baseline

below the LLOD (n=6) were imputed a value that was randomly drawn from a uniform

distribution with minimum 0 and maximum 0.2 nmol/L. At follow-up, all donors (n=15) with

initial values below 0.8 nmol/L were re-determined with a 5-fold dilution. In this rerun, the

LLOD was 0.17 nmol/L. The values from the rerun were used in the analysis.

Homeostasis model assessment-insulin resistance (HOMA-IR) There are several

models that estimate insulin resistance. HOMA-IR has been found to strongly correlate with

estimates obtained by hyperinsulinemic euglycemic clamp and is one of the recommended

models to be used in large epidemiologic studies [76, 77]. We have used the updated, more

precise, computerized version, HOMA2 [78]. Higher HOMA2-IR scores indicate increasing

insulin resistance compared to the reference population in which it was developed.
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Number of donations All whole-blood donations that occurred during follow-up and had a

drawn volume of at least 100 ml were cumulated. In the Netherlands, donors are allowed to

donate 3 (women) or 5 (men) times a year with minimum intervals of 56 days. Also, donors

must meet the criteria of ≥ 50 ≤ 100 mmHg diastolic and ≥ 90 ≤ 180 mmHg systolic blood

pressure, and a capillary Hb level between ≥ 7.8 ≤ 11.0 mmol/l for women and ≥ 8.4 ≤ 12.0
mmol/l for men before donation.

Statistical analysis

Because HOMA2-IR follows a right-skewed distribution, oge-transformation was applied to

retrieve geometric means of baseline and follow-up measurements. This was also calculated

for triglycerides, cholesterol, TC/HDL ratio, ALT, total iron, TSAT, ferritin, hepcidin and the hep-

cidin/ferritin ratio. Individual percentage change from baseline was calculated for normally

distributed descriptive variables to obtain mean percentage change and its corresponding

95%-CI. Likewise, individual change in ln-transformed variables was calculated to obtain the

mean percentage change and its corresponding 95%-CI via back-transformation:

(e

1

n

n
∑

=1

(og()ƒoo−p − og()bsene)
− 1)∗100%.

Change in HOMA2-IR, ferritin, hepcidin, and ALT was calculated by subtracting individual

baseline values from follow-up values. Linear non-parametric trend analyses were performed

for change in ferritin, hepcidin, and HOMA2-IR across number of whole-blood donations using

Jonckheere-Terpstra’s one-sided test. Spearman’s correlation coefficient with a one-sided

p-value was calculated to assess the association between change in ALT and change in

HOMA2-IR, as well as for the association between follow-up time and change in HOMA2-IR.

All analyses were performed using IBM SPSS Statistics 21, Release Version 21.0.0.0 (IBM

Corp. Released 2012. IBM SPSS Statistics for Mac, Version 21.0. Armonk, NY: IBM Corp.).

Results

More women (n=65, 54.2%) participated at baseline than men (n=55, 45.8%). Of them,

61 women and 51 men also participated in the follow-up measurement, at which time 97

(86.6%) donors were still active. Median follow-up time was 20 months, during which a range

of 0-9 donations was made, with a median number of 3 donations.

ALT increased whereas triglycerides, ferritin, and hepcidin all significantly decreased

during follow-up [Table 2.1]. In men, ferritin decreased on average with -59.9% (95%-CI: -66.7

to -51.7) and hepcidin decreased with -31.3% (95%-CI: -51.0 to -3.6). The hepcidin/ferritin

ratio, reflecting the appropriateness of the decrease in hepcidin relative to ferritin, increases

with +71.4% (95%-CI: 29.7 to 126.6). Women show similar, but less pronounced, patterns in

iron homeostasis during follow-up [Table 2.1].
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Change in ferritin [Figure 2.1a] and hepcidin [Figure 2.1b] both showed a clear dose-

response relationship with number of donations during follow-up (p for trend <0.001 for both

ferritin and hepcidin).

Men had a slight increase in HOMA2-IR during the study period, from a (geometric) mean

of 1.17 at baseline to 1.24 at follow-up [Table 2.1]: an increase of 5.7% (95%-CI from -8.4 to

22.0). However, women showed a significant increase in HOMA2-IR of +23.9% (95%-CI: 9.5

to 40.1) during the study period follow-up.

Overall, no consistent dose-response relation was observed for number of donations and

change in HOMA2-IR [p for trend=0.392, Figure 2.1c]. As HOMA2-IR actually deteriorated

during follow-up instead of improved, no further attempts were made to relate changes in

iron parameters to changes in HOMA2-IR. Because ALT, a marker of liver damage, increased

during follow-up, we assessed its association with change in HOMA2-IR (r=0.074, p=0.219)

and confirmed that any deterioration in liver function did not explain the observed increase

in insulin resistance [Figure 2.2]. However, follow-up time was positively associated with

change in HOMA2-IR (r=0.172, p=0.036), possibly reflecting an ageing effect.

Discussion

In a cohort of first-time whole-blood donors, the course of 1.5 years of donating blood

was accompanied by a strong decrease in ferritin and hepcidin, whereas insulin resistance

increased with 23.9% in women. This unexpected increase in insulin resistance was not

explained by number of blood donations. These findings show that blood donation depletes

iron stores, but does not improve insulin resistance.

There are three explanations for our results: 1) a protective effect of blood donation on

insulin resistance does not exist; 2) a protective effect of blood donation is masked by an

non-specific time effect, meaning that non-donors would have deteriorated much worse in

insulin resistance than donors; 3) the exposure window was too short to have exposed a

protective effect, i.e. only acute effects on iron were visible while it takes longer to find the

subsequent beneficial effects on insulin resistance. The latter is somewhat reasonable as

our donors were generally healthy with insulin resistance already quite low, making further

improvement hard to prove. Nevertheless, iron stores were depleted, as ferritin and even

the regulatory hormone hepcidin both strongly decreased. Since the few donors that did

not donate at all during follow-up could be regarded as a control group, but showed no

more increase in insulin resistance than those with >0 donations [Figure 2.1c], the second

explanation seems somewhat unlikely.

This is the first study to investigate the longitudinal effect of multiple blood donations in a

cohort of first-time blood donors on insulin resistance and other cardiometabolic parameters.

In a recent study, forty-two men with normal glucose tolerance were followed for three

weeks, of whom 10 were studied for nearly four months. After one 450ml donation on t0,

insulin resistance (HOMA-IR) unexpectedly increased with 5.9% from a mean of 2.55 (±0.16)

at baseline to 2.75 (±0.46) at the final visit nearly four months later [73].
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(a) Change in ferritin (μg/L) by number of dona-

tions

(b) Change in hepcidin (nmol/L) by number of dona-

tions

(c) Change in HOMA2-IR (mmol/L) by number of

donations

Figure 2.1: Boxes depict medians, 25th, and 75th percentiles. Whiskers are the reasonable

minimum and maximum values (disregarding outliers and extremes). Circles are outliers

(>1.5 and <3 times IQR from box’s end); asterisks are extremes (>3 times IQR from box’s

end). All change scores are calculated by subtracting baseline values from follow-up values.

P-values for a descending trend of medians are one-sided and derived from Jonckheere-

Terpstra’s test.
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Figure 2.2: Scatterplot of change in HOMA2-IR by change in ALT (U/L), assessing the asso-

ciation between the two variables by Spearman’s correlation coefficient and its one-sided

p-value.

Other studies have been mainly cross-sectional in design. This could explain why

Fernández-Real and colleagues have found high-frequency donors to have an improved

insulin sensitivity compared to low-frequency donors; the same observation that Zheng et al.

have made albeit a non-statistically significant one [48, 50]. In such cross-sectional designs,

the healthy donor survivor effect could have been part of the explanation for the results [53].

Those donors who were able to have donated that often must have been healthy enough

to do so. However, a study that was simultaneously performed with the current study by

our research group, also using a cross-sectional design comparing low- and high-intensity

donors, no sign of a healthy donor survivor effect was observed. Surprisingly, although only

described in the population characteristics of our previous study, insulin resistance was

positively associated with donation intensity [74]. Since these active whole-blood donors

stem from the same source population as the first-time donors in the current study, it seems

plausible that we have observed the same pattern in the current study.

Furthermore, the age at which someone starts donating blood could have influenced the

results in this study; there still needs to be something to be averted by blood donation. The

first-time donors in our study were all at least 45 years at inclusion. To this point, our donors

might have been too late (or old) to improve insulin resistance. Of note, our donors were

already quite healthy with regard to insulin resistance, making further improvement difficult

to detect. Actually, this was also the reason why we have specifically included middle-aged

donors, as to assure that differences in cardiometabolic risk could be detected at all.
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On the other hand, it could be the very reason why our donors, mainly women, showed a

worsening in insulin resistance, merely reflecting the process of ageing that occurred during

follow-up. The positive association between follow-up time and change in HOMA2-IR also

supports this idea. The finding that the deterioration in insulin resistance was much larger in

women, mainly driven by an increase in insulin, points to hormonal changes as a result of

menopause that is known to increase at least skeletal muscle insulin resistance but possibly

also hepatic insulin resistance [13].

One other longitudinal prospective study found such deteriorating insulin sensitivity in

Mexican-American women during 4 years of follow-up [79]. The decrease in our middle-aged

women of 19.7% (calculated backwards from IR to HOMA-%S, as insulin sensitivity is the

reciprocal of IR) approaches the one observed in Mexican-American women, which was

15.7%. However, two other longitudinal prospective studies with yet completely different

subjects found decreases in insulin resistance of 60% one year after bariatric surgery [80]

and 14.3% in young adults (freshmen) during 4 years of follow-up [81].

Reducing insulin resistance has gained importance now that it has been found to be an

independent predictor of cardiovascular events in the general population [82–86]. Although

phlebotomy could still be a powerful intervention to lower iron stores in patients with DIOS,

MetS, NAFLD, and perhaps even T2DM, this study could not confirm its preventive potential

in a cohort of healthy first-time donors on insulin resistance. However, a recent randomized

controlled trial in patients with NAFLD could also not confirm improved insulin resistance

after phlebotomy [87]. Of note, in diseased individuals, phlebotomy could have quite differ-

ent effects than in a healthy donor population, as inflammatory responses accompanying

metabolic conditions affect iron metabolism. Therefore, the current study was specifically

designed to test its preventive potential on cardiometabolic risk in healthy subjects.

Besides the iron-hypothesis, which includes the much-researched pathway of iron accu-

mulation in intimal macrophages and subsequent atherosclerosis, other pathophysiological

mechanisms of cardiometabolic risk reduction through phlebotomy are relatively unexplored.

For example, it has also been proposed that whole-blood donation reduces viscosity [41] as

a result of lowering haematocrit. In turn, this could reduce vascular endothelial wall shear

stress, thus avoiding rupture and erosion of vulnerable plaques.

In conclusion, blood donation decreases iron stores in first-time donors after 1.5 - 2

years of follow-up, but this was not accompanied by an improved insulin resistance. Overall,

donors had a deteriorating insulin resistance, probably due to ageing. If blood donation

would lower cardiovascular disease risk, it seems unlikely that insulin resistance is involved.
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2.2 Metabolic Syndrome

Original manuscript title:

Donation intensity and metabolic syndrome in active whole-blood donors.

K. Peffer, A. L. M. Verbeek, D. W. Swinkels, A. J. Geurts-Moespot, M. den Heijer, F. Atsma

Vox Sanguinis 2015, 109(1), pp. 25-34.

BACKGROUND AND OBJECTIVES: Increased iron and metabolic syndrome (MetS) go hand in hand.

Frequent blood donation depletes iron stores. This study investigates whether high-intensity

blood donation is associated with lower MetS prevalence compared with low-intensity blood

donation, and whether iron acts as an intermediary factor.

MATERIALS AND METHODS: A random sample of 422 male and 211 female active whole-blood

donors ≥ 45 years of age was included in a cross-sectional study. Lipids, glucose and iron

parameters were measured after overnight fasting. MetS was defined according to the joint

interim statement of the International Diabetes Federation Task Force on Epidemiology and

Prevention. Three groups of donation intensity were created by sex-specific tertiles of donation

frequency per year and duration of donor career.

RESULTS: MetS was present in 22.9% of donors. Prevalence of MetS was 1.46 (95%-Confidence

Interval [CI]: 0.93 to 2.30) times higher in men with high donation intensity, whereas in women

MetS prevalence was 2.14 (95%-CI: 0.94 to 4.86) times higher in donors with high donation

intensity compared with those with low donation intensity. In men, increased prevalence of MetS

was mainly associated with higher ferritin, whereas high hepcidin predominantly affected MetS

prevalence in women.

CONCLUSION: High-intensity blood donation is not associated with a decreased prevalence of

MetS. In men and women, different iron parameters are associated with MetS prevalence. The

temporal relationship between blood donation, iron, and MetS, and gender differences herein

need to be explored in future research.
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Introduction

Ever since the iron hypothesis of cardiovascular disease was proposed in 1981 [8], studies

investigating associations between iron stores and cardiovascular risk have had conflicting

results. Originally, the hypothesis was brought up by Sullivan to synthesize several obser-

vations: 1) increased CVD risk in western civilizations compared with developing countries,

where iron deficiency occurs more often due to malnutrition; 2) myocardial failure in iron

overload disease; 3) increased CVD risk in postmenopausal (non-menstruating) women com-

pared with premenopausal women accompanied by increasing iron levels in postmenopausal

women, and a lifetime increase of iron levels in men, which would explain the established

difference in cardiovascular risk between men and women [8]. Cardiovascular disease and

its (metabolic) risk factors, such as hypertension, atherogenic dyslipidaemia, abdominal

obesity, and insulin resistance, often referred to as the Metabolic Syndrome (MetS), are

increasingly prevalent in European countries, with prevalences of MetS of 34.0% in men and

24.1% in women in the Netherlands in 2009 and 2010 [88]. MetS is a strong predictor of

cardiovascular disease and type 2 diabetes (T2DM) [89, 90].

As to the mechanism of action, there is firm evidence that inflammation and (subsequent)

excess iron contribute to oxidative stress and endoplasmic reticulum stress and thus poten-

tially to the pathogenesis of insulin resistance and atherosclerosis [31, 58]. Increased iron

stores have been repeatedly shown to be associated with the metabolic syndrome, but the

causal sequence and underlying pathways remain poorly understood [33, 34]. Increased

serum ferritin has been associated with onset of MetS and T2DM [63, 65, 91], possibly

by affecting insulin receptor expression/affinity and insulin signalling [62]. On the other

hand, insulin is known to influence iron metabolism by stimulating iron uptake in adipocytes

and hepatocytes [37]. Also, the key regulatory hormone of iron metabolism, hepcidin, was

recently found to be up-regulated by gluconeogenesis [61], and also by oral glucose load-

ing in healthy subjects [92]. Moreover, hormones secreted from adipose tissue, such as

adiponectin en leptin, have been found to interact with iron metabolism as well [39, 93, 94].

Sullivan has suggested that to test the iron-cardiovascular disease hypothesis accurately,

subjects should have depleted iron stores but normal Hb levels [95], which can be obtained

by recurrent phlebotomy [1, 2]. To date, two RCTs have been conducted that tested the iron

hypothesis in selected patient groups by randomly assigning them to either phlebotomy or

a (waiting-list) control group. The FeAST-study included patients suffering from peripheral

arterial disease, which showed no effect of randomly assigned 6-month interval phlebotomy

on all-cause mortality or death plus MI and stroke [96]. In a second RCT, patients with

metabolic syndrome had an improved systolic blood pressure at 6 weeks follow-up after two

phlebotomies compared with a waiting-list control group [97]. No significant changes were

observed for insulin sensitivity. Observational studies, however, did find iron depletion to

ameliorate insulin resistance in patients with non-alcoholic fatty liver disease, the hepatic

manifestation of MetS [62, 72].
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Because these previous studies were mainly performed in clinical populations, reverse

causation is a possible explanation of the observed effect. Therefore, additional research

has been performed in blood donors, as blood donors are a generally healthy population

and the regular loss of whole-blood leads to decreased iron stores. So far, results remain

inconclusive [98], and little attention has been paid to the hypothesized intermediating role

of iron in these studies. A huge drawback of many of these studies, however, is a type of

bias called the healthy donor effect. This type of bias occurs when (healthy) donors are

compared with non-donors. It is therefore recommended to conduct such health studies in

blood donors within the active donor population [53], since comparisons within the donor

population have shown to minimize healthy donor effects.

The current study is designed as a cross-sectional study within currently active whole-

blood donors. We will investigate whether high-intensity (long duration, high frequency)

blood donation is associated with reduced risk of MetS compared with low-intensity blood

donation. Furthermore, we will explore if iron metabolism has a causal, intermediary role

between blood donation and MetS. If iron metabolism is part of the causal pathway, over-

adjustment bias should occur when we control for iron parameters in the analyses relating

blood donation to MetS.

Materials and Methods

Study population

Between January 2011 and January 2012, each day a random sample of donors that would

have been invited for a donation were instead invited to participate in the CARdiovascular

risk and DONation (CARDON)-study. All donors were active whole-blood donors (i.e. at least

one donation attempt in the last 2 years). This resulted in a random sample of 825 currently

active whole-blood donors. A total of 781 donors (94.7%) responded to the invitation, of

which 663 (80.4%) were willing to participate and 633 (76.7%) donors actually participated

in the CARDON study. All participants provided written informed consent. The accredited

Medical Research Ethics Committee Region Arnhem-Nijmegen approved the study’s protocol,

which is in accordance to the Declaration of Helsinki on ethical principles for medical research

involving human subjects.

Measurements

Visits were scheduled between 8:00 and 10:30 am. All participants were instructed to abstain

from smoking and to fast at least 8 hours before the visit. Information on lifestyle factors,

familial history of cardiovascular disease and female reproductive factors were obtained

by questionnaire. Anthropometric measurements were conducted in duplo according to

protocols. Waist circumference was measured at the level midway between the lowest rib

and iliac crest. The hip circumference was measured at the level of the head of the femur.

Measurements started and ended with blood pressure measured manually (OMRON Digital
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Blood Pressure Monitor, HEM-907 Intellisense, and WelchAllyn, Maxi Stabil 3) at the right

arm in sitting position. Shoes, jackets/coats and heavy clothing were taken off during all

measurements. Circumferences were adjusted by minus 2π times thickness of clothing. BMI

(kg/m2) was calculated by dividing weight in kilograms by squared height in metres. Donors

brought the packaging of their medication used within 2 weeks before the visit with them. For

analysing purposes, medication use was recoded according to the Anatomical Therapeutic

Chemical classification system 2013 as provided by the World Health Organization [99].

Finally, fasting venous blood samples were drawn. Total cholesterol, HDL-cholesterol,

LDL-cholesterol, triglycerides, Apo-A1, Apo-B, ferritin, transferrin, iron, and high-sensitivity

C-reactive protein (hs-CRP) were measured on an Olympus AU 400 (Beckman Coulter,

Woerden, The Netherlands). Hb and mean corpuscular volume (MCV) were determined on

the SysmexXT1800i (Sysmex Corporation, Kobe, Japan). Zinc protoporphyrine (ZPP) was

measured on a ZPP Hematofluorometer (Aviv Biomedical, Inc., Lakewood NJ USA). Glucose

and alanine aminotransferase (ALT) were both measured in plasma using Abbott reagents

on the ARCHITECT C16000 (Abbott BV Diagnostics Division, Hoofddorp, The Netherlands).

Insulin was determined in plasma with a two-step electrochemiluminescence immunoassay

using a test kit from Roche Diagnostics on the Modular E170 (Roche/Hitachi Modular Analytics

E170, Basel, Switzerland). Hepcidin was measured in Li-heparin plasma with an in-house

competitive ELISA as described previously [75]. Some subjects (N=47) had plasma hepcidin

levels below the lower limit of detection (0.216nM), and their values were therefore drawn

randomly from a uniform distribution with minimum 0 and maximum 0.216 nM.

Definition of metabolic syndrome

According to the joint interim statement of the International Diabetes Federation Task Force

on Epidemiology and Prevention [36], metabolic syndrome was considered present if a

donor had at least three of the following five traits:

1. Elevated waist circumference (≥ 102 cm in men, ≥ 88 cm in women)

2. Elevated triglycerides (≥ 1.7 mmol/L or on drug treatment for elevated triglycerides)

3. Reduced HDL-C (< 1.0 mmol/L in men, < 1.3 mmol/L in women or on drug treatment

for reduced HDL-C)

4. Elevated blood pressure (≥ 130 mm Hg systolic blood pressure or ≥ 85 mm Hg

diastolic blood pressure or on antihypertensive drug treatment in a patient with a

history of hypertension)

5. Elevated fasting glucose (≥ 5.6 mmol/L or on drug treatment for elevated glucose)
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Table 2.2: Categorization of donation intensity into low, medium, or high based on sex-

specific tertiles of donation career and donation frequency per year

Donation frequency per year

First tertile Second tertile Third tertileMen

≤ 2.2 2.3 - 3.1 > 3.1

Donor career in years Total

First tertile Low Low Medium
N=142

≤ 16.2 N=50 N=28 N=64

Second tertile Low Medium High
N=139

16.3 - 25.0 N=52 N=56 N=31

Third tertile Medium High High
N=141

> 25.0 N=39 N=56 N=46

Total N=141 N=140 N=141 N=422

Donation frequency per year

First tertile Second tertile Third tertileWomen

≤ 1.5 1.6 - 2.0 > 2.0

Donor career in years Total

First tertile Low Low Medium
N=71

≤ 12.0 N=19 N=19 N=33

Second tertile Low Medium High
N=70

12.1 - 19.9 N=30 N=21 N=19

Third tertile Medium High High
N=70

> 19.9 N=22 N=30 N=18

Total N=71 N=70 N=70 N=211
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Donation intensity

There is no consensus about the best way to measure donation exposure when comparing

donors with different donation intensities. We have created an exposure measurement that

combines the average frequency per year and the duration of the donor career. Duration

of donor career was defined as the time between first and last donation, plus time until

next allowed donation. Donation frequency per year was calculated by number of lifetime

donations/duration of donor career. As men are allowed to donate more often than women (5

vs. 3 times a year), sex-specific tertiles were created for both variables. Donation intensity

was subsequently created as three different levels, based on the sex-specific tertiles of

donation frequency and career: low, medium, and high [Table 2.2]. Of note, a donation was

counted if more than 100 ml of whole-blood was collected. In the Netherlands, donations

are allowed at minimum intervals of 56 days. Also, donors must meet the criteria of ≥ 50 ≤
100 mmHg diastolic and ≥ 90 ≤ 180 mmHg systolic blood pressure, and a capillary Hb level

between ≥ 7.8 ≤ 11.0 mmol/l for women and ≥ 8.4 ≤ 12.0 mmol/l for men before donation.

Sometimes whole-blood donors (temporarily) switch to plasmapheresis. Although our donors

were all whole-blood donors at the time of inclusion, some had a history of plasmapheresis.

When at least 30 ml was drawn during plasmapheresis, that donation was counted as a valid

plasma donation. All donors with at least one valid plasma donation were categorized as

’ever having been a plasma donor’.

Statistical analysis

As our data are derived from a cross-sectional sample, the prevalence ratio is the most

appropriate effect estimate to express a relative risk [100]. To allow for multivariate ad-

justment, robust Poisson regression (a.k.a. Poisson regression with a sandwich estimator

of the variance) was used to estimate the association between donation intensity groups

and metabolic syndrome [100]. This resulted in prevalence ratios with 95% confidence

intervals (CIs). The lowest donation intensity was consistently used as the reference level of

exposure. Unadjusted and adjusted models were built. We considered the following factors

as potential confounders: age, smoking behaviour (status and pack years), body mass index

(BMI), having ever been a plasma donor, hs-CRP, having a family history of cardiovascular

disease and menopausal status.

Because of the dependency of BMI with waist circumference, one of the traits of the

metabolic syndrome, ordinary conditional regression would over-adjust the intended effect

estimate. Furthermore, BMI could also be a potential effect modifier. One could imagine

that blood donation is primarily protective of MetS in obese subjects as opposed to non-

obese subjects, because increased body fatness alters iron metabolism through adipocyte

hormones [21]. Therefore, we have also performed our analyses within non-obese (BMI

< 30 kg/m2) and obese (BMI ≥ 30kg/m2) donors separately. To examine the effect of iron

metabolism, all iron parameters, the ratios of hepcidin to ferritin and of hepcidin to TS, were

included as continuous variables one-by-one in the adjusted model. Also, the simultaneous
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inclusion of hepcidin and ferritin into the adjusted model was examined. All analyses were

conducted with IBM SPSS Statistics 21, Release Version 21.0.0.0 (IBM Corp. Released 2012.

IBM SPSS Statistics for Mac, Version 21.0. Armonk, NY, USA: IBM Corp.).

Results

Of 633 participating donors, 422 (66.7%) were men and 211 were women (33.3%). Across the

donation intensity groups, donors differed in age, smoking status, BMI, having ever been a

plasma donor, hs-CRP, having a family history of cardiovascular disease, menopausal status,

and lifetime number of Hb and blood pressure deferrals [Table 2.3]. In men, a dose-response

relation between donation intensity and iron depletion was present, whereas such an effect

was less pronounced in women [Table 2.3]. A total of 145 donors (22.9%) were classified as

cases of having Metabolic Syndrome (MetS). Prevalence of MetS surprisingly increased with

increasing donation intensity in both sexes [Table 2.4].

Within men, there was no association between donation intensity and MetS, with an

adjusted prevalence ratio for medium- and high-intensity donors of 1.09 (95%-CI: 0.69 to

1.73) and 1.46 (95% CI: 0.93 to 2.30), respectively [Table 2.4].

In female donors, prevalence ratios were higher than in men. Prevalence ratios attenu-

ated to 1.99 (95%-CI: 0.87 to 4.52) and 2.14 (95%-CI: 0.94 to 4.86) for donors with medium

and high donation intensity upon controlling for confounding factors, respectively.

The analyses within non-obese and obese subjects revealed that the positive association

between donation intensity and MetS was mainly restricted to non-obese female donors, and

that iron parameters were not involved [Supporting Information -Table A1].

Although these results point towards a higher risk of MetS in high-intensity donors, we

did perform the proposed analyses that would investigate whether iron metabolism has any

part in these associations. The iron parameters with the strongest influence (MCV, ferritin,

and the simultaneous inclusion of ferritin and hepcidin) on the adjusted prevalence ratios

are presented in Table 2.4. These analyses revealed that the iron parameters barely affected

the adjusted prevalence ratios in either men or women [Table 2.4].

Next, we let go of our donation intensity grouping, and explored the two main iron

metabolism parameters ferritin and hepcidin, and how they related to MetS prevalence.

Separately for men and women, ferritin and hepcidin medians were used to create four

different groups: low ferritin and low hepcidin (1); high ferritin and low hepcidin (2); low

ferritin and high hepcidin (3); high ferritin and high hepcidin (4). Within men, increased

prevalence of MetS seems predominantly affected by high ferritin, whereas in women high

hepcidin appeared to be associated with increased prevalence of MetS [Figure 2.3].
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Table 2.3: Characteristics of donors across donation intensity groups

Donation intensity

Characteristic Low Medium High

N=198 N=235 N=200

Donor career (y) 12.6 (6.8) 15.3 (9.7) 25.5 (4.3)

Donation frequency/year 1.6 (0.6) 2.6 (1.1) 2.7 (0.6)

Ever been plasma donor 17 (8.6%) 16 (6.8%) 23 (11.5%)

Lifetime deferrals for

Low Hb 100 deferrals 115 deferrals 148 deferrals

0 deferrals 150 (75.8%) 176 (74.9%) 138 (69.0%)

1 deferral 22 (11.1%) 33 (14.0%) 24 (12.0%)

2 deferrals 12 (6.1%) 11 (4.7%) 17 (8.5%)

≥ 3 deferrals 14 (7.1%) 15 (6.4%) 21 (10.5%)

Blood pressure 13 deferrals 19 deferrals 24 deferrals

0 deferrals 190 (96.0%) 220 (93.6%) 184 (92.0%)

1 deferral 5 (2.5%) 12 (5.1%) 11 (5.5%)

2 deferrals 1 (0.5%) 2 (0.9%) 3 (1.5%)

≥ 3 deferrals 2 (1.0%) 1 (0.4%) 2 (1.0%)

Age (y) 54.2 (5.7) 54.2 (5.6) 57.1 (5.8)

BMI (kg/m2) 26.1 (3.1) 26.7 (3.8) 27.1 (4.0)

Underweight (< 18.5) 0 (0%) 0 (%) 1 (0.5%)

Normal (18.5 - 24.99) 80 (40.4%) 87 (37.0%) 57 (28.5%)

Overweight (≥ 25) 98 (49.5%) 107 (45.5%) 107 (53.5%)

Obese (≥ 30) 20 (10.1%) 41 (17.4%) 35 (17.5%)

Postmenopausal status 42 (61.8%) 45 (59.2%) 50 (75.8%)

Smoking status

Never 61 (31.0%) 75 (32.1%) 71 (35.9%)

Ever 102 (51.8%) 116 (49.6%) 100 (50.5%)

Current 34 (17.3%) 43 (18.4%) 27 (13.6%)

Pack yearsa (y) 10.0 (11.6) 9.7 (14.9) 10.0 (12.5)

Blood pressure (mmHg)

Systolic 128 (15) 131 (16) 136 (17)

Diastolic 82 (9) 84 (9) 86 (8)

Waist (cm) 94.3 (9.6) 95.7 (10.8) 97.4 (12.2)

Waist-to-hip ratio 0.94 (0.07) 0.93 (0.08) 0.95 (0.08)

a Median (interquartile range). b HOMA-IR, Homeostasis model assessment-insulin resistance, calculated as

(nsn∗ gcose)/22.5. Hb, haemoglobin; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; TC/HDL ratio, total cholesterol/HDL ratio; Apo A1, apolipoprotein A-I; ApoB, apolipoprotein B; ALT, alanine

aminotransferase; hs-CRP, high-sensitivity c-reactive protein; CVD, cardiovascular disease; AMI, acute myocardial

infarction. Transferrin saturation is calculated by (100∗ total iron)/(transferrin∗25).
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Table 2.3: Characteristics of donors across donation intensity groups (continued)

Donation intensity

Characteristic Low Medium High

N=198 N=235 N=200

Triglycerides (mmol/l) 1.39 (1.37) 1.43 (0.80) 1.37 (0.71)

Cholesterol (mmol/l)

Total cholesterol 5.56 (1.03) 5.64 (1.08) 5.55 (0.95)

HDL-cholesterol 1.43 (0.33) 1.38 (0.33) 1.41 (0.34)

LDL-cholesterol 4.10 (0.84) 4.16 (0.91) 4.13 (0.82)

TC/HDL ratio 4.07 (1.23) 4.28 (1.16) 4.10 (1.00)

Apo A-I (g/l) 1.56 (0.21) 1.52 (0.21) 1.54 (0.22)

ApoB (g/l) 0.99 (0.21) 1.01 (0.21) 0.99 (0.18)

Glucose (mmol/l) 5.2 (0.7) 5.2 (0.6) 5.3 (0.6)

HOMA-IRb (mmol/l) 2.2 (1.8) 2.3 (1.6) 2.6 (2.0)

ALTa (U/l) 24 (13) 26 (13) 25 (13)

hs-CRPa (mg/l) 1.03 (1.76) 1.10 (1.82) 1.21 (1.71)

Lipid lowering meds 11 (5.6%) 12 (5.1%) 14 (7.0%)

Anti-hypertensive meds 30 (15.2%) 38 (16.2%) 39 (19.5%)

Glucose lowering meds 5 (2.5%) 4 (1.7%) 3 (1.5%)

Familiy history of CVD 101 (51.0%) 134 (57.0%) 110 (55.0%)

AMI 69 (34.8%) 95 (40.4%) 74 (37.0%)

Stroke 48 (24.2%) 69 (29.4%) 57 (28.5%)

Haemoglobin (mmol/l)

Men 9.4 (0.5) 9.4 (0.5) 9.4 (0.6)

Women 8.6 (0.5) 8.6 (0.5) 8.7 (0.5)

Transferrin saturation (%)

Men 30 (14) 27 (12) 26 (12)

Women 28 (16) 26 (11) 28 (12)

Ferritina (μg/l)

Men 48.3 (42.0) 35.7 (30.1) 35.7 (29.2)

Women 39.5 (34.7) 36.1 (34.3) 36.4 (33.6)

Hepcidina (nM)

Men 2.24 (2.92) 1.60 (2.68) 1.14 (1.77)

Women 1.74 (2.62) 1.91 (2.38) 1.98 (2.69)

a Median (interquartile range). b HOMA-IR, Homeostasis model assessment-insulin resistance, calculated as

(insulin * glucose)/22.5. Hb, haemoglobin; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; TC/HDL ratio, total cholesterol/HDL ratio; Apo A1, apolipoprotein A-I; ApoB, apolipoprotein B; ALT, alanine

aminotransferase; hs-CRP, high-sensitivity c-reactive protein; CVD, cardiovascular disease; AMI, acute myocardial

infarction. Transferrin saturation is calculated by (100totron)/(trnsƒerrn25).
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Table 2.4: Prevalences and Prevalence Ratios (95%-CIs) of Metabolic Syndrome

Donation MetS

Prevalence Ratio (95%-CI)

Intensity N(%) Unadjusted

Adjusteda

+Ferritin

Sex

+MCV +Ferritin
+Hepcidin

Low 23
Ref. Ref. Ref. Ref. Ref.

N=130 (20.0)

M
e
n Medium 34 1.07 1.09 1.09b 1.20b 1.18

N=159 (21.4) (0.68-1.69) (0.69-1.73) (0.69-1.74) (0.75-1.92) (0.74-1.90)

High 40 1.50 1.46 1.47b 1.71b 1.70

N=133 (30.1) (0.98-2.31) (0.93-2.30) (0.93-2.32) (1.07-2.74) (1.06-2.72)

Low 7
Ref. Ref. Ref. Ref. Ref.

N=68 (10.3)

W
o
m

e
n

Medium 19 2.43b 1.99 1.79 2.07 2.06

N=76 (25.0) (1.09-5.42) (0.87-4.52) (0.79-4.08) (0.92-4.66) (0.91-4.71)

High 19 2.76b 2.14 1.99 2.33 2.29

N=67 (28.4) (1.24-6.12) (0.94-4.86) (0.88-4.52) (1.04-5.26) (1.01-5.20)

a Adjusted model includes: age (continuous), hs-CRP (continuous), smoking (categorical, 3 levels), having ever

been a plasma donor (dichotomous), having a family history of CVD (dichotomous), and postmenopausal status

(dichotomous). b Model did not converge. MCV, mean corpuscular volume; hs-CRP, high-sensitivity C-reactive

protein; CVD, cardiovascular disease.

Figure 2.3: Prevalence (n/N) of metabolic syndrome according to strata based on sex-specific

medians of ferritin (men: 38.13, women: 37.09 μg/l) and hepcidin (men: 1.62, women: 1.91

nM).
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Discussion

This study indicates an association between high-intensity blood donation and metabolic

syndrome (MetS), independent of iron metabolism. In both sexes, prevalence of MetS was

approximately 1.5 to 2.5 times higher in high intensity donors compared with low intensity

donors. Of note, after adjusting for confounders, no significant effect remained. Moreover,

the remaining twofold increase in MetS prevalence in women could not be further explained

by any iron parameter. These findings are contrary to what would be expected: donors with

a high frequency of donations per year over a long period of time should have prolonged iron

depletion, which would prevent them from developing MetS.

Although there are many studies that have found a positive association between in-

creased iron stores and MetS, the causal sequence is currently being debated [33, 34]. The

potential role of obesity has had little attention in previous studies, although it is highly

likely to be associated with MetS and probably also with blood donation intensity. This is

possibly due to the pre-donation criterion for body weight of at least 50 kg, hindering lean

donors from donating more often. Furthermore, heavy weight donors could probably carry

the burden of a donation more easily, as the drawn volume is the same for all whole-blood

donors. The association between obesity and MetS is easily derived from the inclusion of

waist circumference as a trait of MetS; both obesity and waist circumference are strongly re-

lated to central adiposity. Adipose tissue and two of its secretory hormones, adiponectin and

leptin, have recently been proposed to play a role in iron metabolism and insulin resistance.

Adiponectin is decreased with increasing body fatness and is inversely correlated with ferritin

and transferrin as well as adipose tissue insulin resistance [39, 94]. Leptin level is directly

proportional to the amount of body fat, and was found to up-regulate hepcidin transcription

in hepatocytes [93]. Furthermore, in a recent study including three independent cohorts,

iron seems to accumulate in adipose tissue with increasing body fatness and impaired insulin

action [35].

These novel findings indicate that obesity could be associated with increased (adipocyte)

iron stores and insulin resistance, and this has made us aware of the potential effect-

modifying properties of obesity in the relation between blood donation and MetS. Meaning

that obese donors could especially be susceptible to the benefits of lowering iron stores

through blood donation, as they would have increased (adipocyte) iron retention. In contrast,

one would expect to find a more reliable and "true" effect of blood donation in non-obese

donors who have a normal, regular iron metabolism. We have found that the increased

prevalence of MetS in high-intensity blood donors was mainly restricted to non-obese female

donors, indicating that obesity is indeed an effect modifier of blood donation and MetS

prevalence, but not in the way that we anticipated. In obese donors, there was no association

between blood donation and MetS prevalence. In either group, iron parameters did not

explain the (lack of) association between blood donation and MetS. These results do not

support the novel interplay between iron and adipose tissue in the same direction.
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There is no doubt that iron, adipose tissue, and insulin resistance keep each other in

a vicious cycle [21], making it difficult to assess direct causal effects in any study. On

top of that, our study has a cross-sectional design, that does not allow us to study the

temporal relationship between blood donation, iron, and MetS, although it is at least highly

likely that iron levels have decreased due to frequent blood donation. We propose that

in epidemiological studies, MetS is not just an intermediary factor of the relation between

blood donation (and thus lower iron stores), and cardiovascular disease, but is also an

important confounding factor. Meaning that lower MetS risk is not just an effect of lower

iron stores through blood donation, but that MetS (or some of its components) also affects

(the probability of) blood donation. Moreover, alternative causal pathways of blood donation

leading to a decreased cardiovascular risk, such as a reduced viscosity, have not been

addressed in this study [41].

Previous studies showing a protective effect of blood donation on cardiovascular disease

were often concerned about a healthy donor effect bias when comparing donors with the

general population or ex-donors. To minimize the healthy donor effect, we have embedded

our study within currently active whole-blood donors as recommended [53]. Furthermore,

our main finding (increasing MetS prevalence in high-intensity donors) supports the absence

of a healthy donor effect. The fact that both medium- and high-intensity female non-obese

donors had 3.5-fold increased prevalence of MetS does, however, leave the possibility of

residual confounding. In a post-hoc analysis, we did not find differences in physical activity

or meat consumption across donation intensity groups.

Another strength of our study is the inclusion of women in addition to the inclusion

of men. This seems to become even more important now that gender differences are

surfacing in iron metabolism and insulin resistance and MetS [101, 102]. Hepcidin is the

key regulatory peptide of iron metabolism and could be of particular importance in the

development of MetS as it also regulates the iron content of macrophages and liver cells [31,

103]. Increased cellular iron could decrease hepatic insulin extraction and impair insulin

signalling [34, 62], leading to hyperinsulinemia. Furthermore, iron-catalysed formation of

reactive oxygen species could damage pancreatic β-cells, inducing insulin resistance [34, 58].

Cellular iron is entrapped within cells by higher levels of hepcidin [23]. With frequent blood

donation, hepcidin is being down-regulated in response to lower iron stores and increased

erythropoiesis, releasing cellular iron from erythrophagocytosed macrophages which can

thus become available for erythroid precursors [103].

Hepcidin levels could therefore in particular be involved in the relation between blood

donation and MetS, which would be in agreement with our observation in women. The

apparent importance of hepcidin in women with MetS was also found in a population-based

study conducted by Martinelli et al., in which MetS was an independent predictor of hepcidin,

even after adjustment for ferritin [101]. Interestingly, we found ferritin to be the main

explanatory factor of MetS in men, a phenomenon that has also been observed by Kim

et al. in normal fasting glucose men but not in women [104]. In a 5-year follow-up study,

higher ferritin levels were also associated with future MetS in a Korean population of healthy



40 CHAPTER 2. CARDIOMETABOLIC RISK

men at baseline [63]. In contrast, Sheu et al. found that ferritin was associated with insulin

resistance in Chinese non-diabetic women but not in non-diabetic men [102]. Thus, the

mechanism that underlies the gender difference is poorly understood yet.

To ensure sufficient iron depletion, this study was conducted within currently active

donors. This is confirmed by quite low iron stores, with hepcidin ranges even lower than

those observed in a population-based study [68] and in a comparable study of whole-blood

donors [105]. As MetS is a reversible condition, maybe a more recent level of exposure is

more important. Therefore, we have also used the number of donations in the last 2 years

before study participation categorized into sex-specific tertiles in a post-hoc analysis. These

donation tertiles were not consistently associated with MetS prevalence, and iron parameters

were accordingly marginally able to explain the observed differences in MetS across donation

tertiles. Thus, it could be that the effects of iron depletion are more short-term than we

expected. On the other hand, phlebotomy has been repeatedly opted as a safe and cost-

effective treatment for patients with dysmetabolic iron overload syndrome, and also for

NAFLD [33, 34], and our chosen exposure measurement of donation intensity should reflect

the potential benefit of such a treatment in a healthy population. A randomized trial in MetS

patients has already shown a positive effect on blood pressure after phlebotomy-induced

reduction of body iron stores, but not on insulin resistance [97].

In conclusion, this study showed that high-intensity blood donation is not associated with

a decreased risk of MetS. Within non-obese female donors, donation intensity was positively

associated with MetS prevalence, independent of iron parameters. However, increased

prevalence of MetS was mainly associated with higher ferritin in men, whereas high hepcidin

predominantly affected MetS prevalence in women. Future research should address these

gender differences and the role of obesity herein, and longitudinal data is needed to better

value the potential of blood donation in preventing MetS.
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Chapter 3

Subclinical Atherosclerosis

Blood donors are not allowed to have overt cardiovascular disease. Yet, in our quest of the

preventive ability of blood donation on cardiovascular disease, it is very important to know

whether early, subclinical deteriorations are making its presence in the less-active blood

donor. Nowadays, non-invasive measurements of atherosclerosis exist that are able to shed

some light on the presence of these subclinical deteriorations. These measurements reflect

resistance, stiffness, and thickening of the vascular wall, anatomical deviations of which that

are all involved in the pathology of atherosclerosis. Will low-frequency blood donors already

have an impaired vascular integrity than high-frequency blood donors?

43
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3.1 Vascular Integrity

Original manuscript title:

The effect of frequent blood donation on ferritin, hepcidin, and subclinical

atherosclerosis.

K. Peffer, M. den Heijer, S. Holewijn, J. de Graaf, D. W. Swinkels, A. L. M. Verbeek, F. Atsma

Transfusion 2013, 53(7), pp. 1468-1474.

BACKGROUND: Iron catalyzes the formation of free radicals, which could lead to damaged

vascular walls and subsequent atherosclerosis. Blood donation decreases iron stores and can thus

decrease cardiovascular risk. Even within blood donors, differences in stored iron are observed.

This study investigates whether increasing lifetime number of donations decreases the extent of

subclinical atherosclerosis within blood donors.

STUDY DESIGN AND METHODS: Subclinical atherosclerosis was evaluated in 269 blood donors by

measuring intima-media thickness (IMT), pulse-wave velocity (PWV), and ankle-brachial index

(ABI). Lifetime number of whole-whole-bloodblood donations was categorized into sex-specific

donation tertiles.

RESULTS: Ferritin and hepcidin were lower in high- frequency donors compared to low-frequency

donors. Donors in the third sex-specific donation tertile had on average a 0.3% (95% confidence

interval [CI], -3.6 to +3.0%) lower IMT, a 2.1% (95% CI, -3.9 to +8.0%) higher PWV, and a 1.5%

(95% CI, -1.4 to +4.5%) higher ABI compared to donors in the first sex-specific donation tertile.

CONCLUSION: With such small differences and no consistent trend across donation groups, it

cannot be concluded that blood donation has a beneficial effect on the extent of subclinical

atherosclerosis.
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Introduction

In 1981, Sullivan [8] proposed protective effects of depleting iron stores on heart disease.

He arrived at the iron hypothesis by three main observations: 1) myocardial failure in iron

storage diseases, 2) accumulation of stored iron with age in men, and 3) accumu- lation of

stored iron in postmenopausal women to levels found in men. With these findings he aimed

to explain the established difference in cardiovascular risk between men and women. Due

to the cessation of menstrual blood loss with menopause, and hence increasing iron stores,

post-menopausal women would rapidly deteriorate in cardiovascular risk and approach that

observed in men.

Iron has the potential to catalyze the formation of reactive oxygen species, of which

hydroxyl radicals are of major concern [16]. Hydroxyl radicals oxidize low-density lipoprotein

(LDL) cholesterol, which leads to the formation of foam cells and ultimately atherosclerosis [4].

If no such reactive iron is available, as in iron depletion, atherosclerosis may be prevented or

its progression slowed. Over the past years, more and more insight has been gained into iron

metabolism, of which the discovery of hepcidin has been of major importance. This peptide

hormone appears to play a key role in iron homeostasis and disorders [60] and is therefore

of additional value when assessing iron status.

Iron depletion refers to a state of decreased storage iron and hemoglobin (Hb) within

the normal range. This condition is likely to be more common in whole-blood donors than in

the general population. Therefore, blood donors comprise an effective study population to

investigate the relationship between depleted iron stores and cardiovascular risk. Particularly

high-frequency blood donors have been shown to have decreased body iron levels compared

to low-frequency donors [1, 2, 69, 106]. However, previous epidemiologic studies on

associations between iron depletion and cardiovascular risk remain inconclusive [45–47,

107]. Although the epidemiologic studies reported by Kiechl and coworkers [107], Meyers

and coworkers [47], and Salonen and coworkers [45] concluded that lowered body iron was

protective against cardiovascular disease, Ascherio and colleagues [46] concluded otherwise.

All of these studies mainly used cardiovascular events and/or deaths as outcome meas-

urements, whereas others used endothelial dysfunction [49, 51], which is related to progres-

sion of atherosclerosis [108–110]. One of these two studies using endothelial dysfunction

as outcome measurement found that frequent blood donors have an improved vascular

function compared to occasional blood donors [49], as measured by flow-mediated dilation

and intima-media thickness (IMT), whereas the other one only found a small nonsignificant

difference [51]. However, drawbacks of these studies are a small sample size [49], self-

reported donation history [51], and no sex-specific cutoff for number of donations [49, 51].

The latter factor is important as men are allowed to donate five times a year whereas women

are restricted to a maximum of three donations per year.

To obtain valid estimates of association, the current study is designed as a population-

based cohort of whole-blood donors with donation data obtained from the blood bank. Using

sex-specific cutoffs for lifetime number of donations, we compared high-frequency donors

with low-frequency donors regarding the extent of subclinical atherosclerosis.
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Materials and Methods

Study population

Data were obtained from the Nijmegen Biomedical Study (NBS), a population-based survey

conducted by the Department of Epidemiology and Biostatistics and the Department of

Clinical Chemistry of the Radboud University Nijmegen Medical Centre. In accordance with

the Declaration of Helsinki, the study protocol was approved by the institutional review

board of the Radboud University Nijmegen Medical Centre. All participants provided written

informed consent [111].

The first part of the NBS, NBS-1, included an age- and sex-stratified random sample of

22,451 adults selected from the Population Registry of Nijmegen. Between August 2002

and December 2003, a total of 21,756 subjects were sent a postal questionnaire, of whom

9350 (43%) responded and provided written informed consent. Part 2 of the NBS (NBS-2)

was conducted 3 years after the commencement of NBS-1 by the Department of Internal

Medicine. In NBS-2, all 2114 middle-aged subjects (50-70 years) from the NBS-1 cohort were

reinvited. From this group, 1491 subjects participated in NBS-2 (response 71%).

These NBS-2 participants were linked to Sanquin’s blood bank registry based on sex, date

of birth, and last name. In case of multiple matching, residency was used additionally in the

linkage strategy. Of the 1491 NBS-2 participants, 272 persons could be linked to the blood

bank registry. Three of them were excluded: one individual started donating blood after

participating in NBS-2 and one individual appeared to be a bone donor. A third participant

was excluded because of lipid-lowering medication use within the preceding 4 weeks of the

measurements. This left 269 donors available for data analysis (152 men, 117 women).

Data collection

The following data from NBS-2 were used in the present study: non-invasive measurements

of atherosclerosis (NIMA), blood variables, and a self-administered questionnaire. NIMA

measurements consisted of carotid IMT of the common carotid artery, ankle-brachial index

(ABI), and pulse-wave velocity (PWV). All measurements were taken with participants in

supine position after at least 10 minutes’ rest in a temperature-controlled room (23-24 ◦C)

and performed by well-trained and certified sonographers according to highly standardized

protocols as previously described [112].

IMT was measured with an ultrasound machine (AU5, Esaote Biomedica, Genova, Italy)

with a 7.5-MHz linear-array transducer. Actual measurement of the IMT was performed off-line

by the sonographer at the time of the examination, using semiautomatic edge-detection

software (M’Ath, Standard Version 2.0, Metris, Argenteuil, France). Averaging the mean of all

four measured segments (far wall left, near wall left, far wall right, and near wall right) of the

distal common carotid artery yielded the mean IMT in millimeters.

PWV was determined by applanation tonometry, using a commercially available nonin-

vasive central blood pressure assessment system (SphygmoCor, Version 7.1, Atcor Medical,

Sydney, Australia). Pulse waveforms were recorded at two sites sequentially (right carotid
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artery and left femoral artery), and wave transit time was calculated using the R-wave of a

simultaneously recorded electrocardiogram as a reference frame as described before [113].

For ABI, appropriately sized cuffs were placed around both arms above the elbow and

around both legs just above the ankle. Resting blood pressures were mea- sured at the left

and right brachial artery and the left and right posterior tibial and dorsalis pedis arteries

using an 8-MHz hand-held Doppler probe (ImexDop CT+, Biomedic, Almere, The Netherlands).

The lowest of the four ABIs as calculated by dividing the four ankle pressures by the highest

of the two arm pressures was used in the analysis.

Blood samples were collected from all participants in both NBS-1 and NBS-2 and drawn

after an overnight fasting or in the afternoon 6 hours after a standardized breakfast of 400

kcal (where 1 kcal = 4.184 kJ). Breakfast was standardized by instructing participants to

consume a maximum of two slices of brown bread with jam or honey and a glass of milk

at least 6 hours before the visit. All participants were specifically instructed not to smoke

or use tea, coffee, chocolate, or alcohol for at least 12 hours before the visit and asked

to discontinue any lipid-lowering medication 4 weeks before measurements. Adherence

to these instructions was assessed by thoroughly questioning the participants; those who

admitted to have violated the instructions were excluded from analysis.

Total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG), and

glucose were determined in blood samples. LDL cholesterol was calculated according to

the Friedewald method [114]. Since no iron variables were measured in NBS-2, levels of

hepcidin, ferritin, transferrin saturation, iron, and iron-binding capacity as well as alanine

aminotransferase (ALT), and C-reactive protein were retrieved from NBS-1. Hepcidin was

measured by competitive enzyme-linked immunosorbent assay as described in Galesloot

and colleagues [68] and Kroot and colleagues [75].

Furthermore, height and weight were measured to obtain the body mass index (BMI),

calculated as body weight (in kg) divided by squared height (in m). Systolic blood pressure

(SBP) and diastolic blood pressure were measured using an oscillometric sphygmomanometer

(Criticon model no. 1846, Criticon, Inc., Tampa, FL). The self-administered questionnaire

provided data on cardiovascular disease history, medication use, and smoking behavior.

Prevalent cardiovascular disease was defined as a reported myocardial infarction, transient

ischemic attack, stroke, peripheral arterial disease, coronary artery bypass or angioplasty,

or treated angina. Diabetes mellitus 2 (DM2) was defined as fasting glucose of at least 7

mmol/L or when previously diagnosed and treated DM2. Presence of diabetes mellitus 1

(DM1) was based on self-reported data. Smoking behaviour was classified as current, ever,

or never.
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Donation data

As the donor population consists of donors providing both plasma and whole-blood, we only

considered whole-blood donations to contribute to the amount of iron depletion. As a result,

the lifetime number of donations represents the total amount of whole-blood donations per

donor. A whole-blood donation was counted as valid when the drawn volume was at least

100 mL. Before 2000, data on type of donation (e.g., whole-blood or plasma) and drawn

blood volume are limited. To estimate the donation type of those unknown, we assumed that

an interval of at least 56 days between the two donation dates would imply a whole-blood

donation. When this interval was shorter, a different type of donation was assumed (e.g.,

plasma donation or a deferral) and was therefore not counted. Missing drawn volumes

were assumed as being sufficient (≥ 100 mL) and accompanying donations were treated

as effectual donations. All valid donations until subclinical atherosclerosis measurements

were performed were added up. The resulting lifetime number of donations was categorized

into sex-specific tertiles (tertiles in men: ≤ 28 donations, 29-47 donations, > 47 donations;

tertiles in women: ≤ 15 donations, 16-27 donations, > 27 donations).

Statistical analysis

First, descriptive statistics were performed. Differences in baseline characteristics between

donors in the three sex- specific donation tertiles were assessed with chi-square tests,

analysis of variance, and the Kruskal-Wallis test.

Second, linear regression models were used to analyze the relation between sex-specific

donation tertiles and each NIMA outcome (IMT, PWV, and ABI). Mean differences in NIMA

variables between the three sex-specific tertiles were calculated with corresponding 95%

confidence intervals (95% CIs). Three different models were built: Model 0 calculated

unadjusted differences, in Model 1 differences were adjusted for sex and age, and in Model

2 differences were additionally adjusted for smoking status, BMI, SBP, DM1 and DM2, total

cholesterol, HDL, and TG. All analyses were performed using computer software (PASW

Statistics 19, Release Version 19.0.0, SPSS, Inc., 2010, Chicago, IL, http://www.spss.com).

Results

Table 3.1 shows the characteristics of the study population per sex-specific donation tertile

(n=269). Of 269 blood donors, 152 (57%) were men and 117 (43%) were women. Mean

(±SD) age was 61.2 (±5.6) years for men and 59.8 (±5.6) years for women. High- and

low-frequency donors mainly differed in smoking behavior and the time elapsed between

their last whole-blood donation and participating in NBS-2. Ferritin was lower with increasing

lifetime number of donations, but the proportion of iron depleted subjects did not differ

between donors in the first and second sex-specific donation tertile. Within men, 6.8% were

iron depleted within the third donation tertile, whereas the proportion of female donors with

iron depletion was 20.0%.
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Hepcidin was also inversely related to number of donations, with the lowest median observed

in male donors within the third donation tertile (4.6 nmol/L).

Regression analysis resulted in adjusted mean differences expressed as percentage

change from the first sex-specific donation tertile [Table 3.2]. The small differences found

between the three donation groups in Model 0 and Model 1 reduced to the null when fully

adjusted in Model 2. Mean IMT was only -0.3% (95% CI, -3.6 to +3.0%) lower in donors in the

third sex-specific donation tertile compared to those in the first sex-specific donation tertile.

As for PWV, donors in the third sex-specific donation tertile had a slightly higher mean value

of +2.1% (95% CI, -3.9 to +8.0%) than donors in the first sex-specific donation tertile. Mean

ABI scores were just +1.5% (95% CI, -1.4 to +4.5%) higher in donors in the third sex-specific

donation tertile compared to donors in the first sex-specific donation tertile. Overall, none of

the NIMA variables showed a consistent and/or significant trend across the three donation

groups.

Discussion

This study did not reveal a clear effect of lifetime number of whole-blood donations on the

extent of subclinical atherosclerosis measured as IMT, PWV, and ABI as only very small

differences were found across sex-specific donation tertiles without a consistent pattern of

association. We confirmed that blood donation decreases iron stores, as increasing number of

donations was strongly associated with lower ferritin and hepcidin distributions. Although our

sex-specific donation tertiles seem to distinguish different levels of exposure, we did not find

an effect of blood donation on the extent of subclinical atherosclerosis. As our measurements

of iron status depend on a single determination, they cannot provide information about

lifelong exposure levels. Repeated iron measurements throughout a donor’s career would

have been informative. Because our sex-specific donation tertiles were so closely correlated

to iron levels, they might also serve as a proxy measurement of lifelong exposure status. By

comparing the exposure window from first to last donation between our donation tertiles, it

appears that donors in the third sex- specific donation tertile not only have a higher number

of lifetime donations, but also a longer time period of exposure [Table 3.1]. This indicates

that donors in the third sex-specific donation tertile are at a higher and longer exposure level

than donors in the first and second sex-specific donation tertiles.

Several underlying mechanisms of iron affecting the development of cardiovascular

disease have been proposed. Initially, research focused on storage iron being redox act-

ive, subsequently enabling LDL oxidation. Recently, Sullivan [31] proposed an additional

mechanism in which hepcidin can promote progression of atherosclerotic plaque by slowing

or preventing the mobilization of iron from macrophages within the atherosclerotic plaque.

Hepcidin is a newly emerged key hormone in iron balance, which binds and subsequently

degrades the cellular iron exporter ferroportin, leaving iron trapped inside the iron-containing

cells. As a result of blood donation, erythropoiesis occurs, which in turn down regulates

hepcidin expression, causing cellular iron export into plasma.
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Table 3.1: Characteristics of donor population

Lifetime number of donationsb

Characteristic First tertile Second tertile Third tertile p value

(n=88) (n=89) (n=92)

Age (y) 59.9 (±5.5) 60.8 (±5.7) 61.2 (±5.8) 0.321

Sex (men) 49 (55.7) 51 (57.3) 52 (56.5) 0.997

Time since last donation (y) 9.7 (±6.0) 6.0 (±4.1) 1.4 (±2.5) 0.000

Time between first and last dona-

tion (y)

7.3 (±5.4) 14.8 (±3.8) 20.8 (±3.7) 0.000

Ever deferred 23 (26.2) 38 (42.7) 46 (50) 0.004

Deferred for low Hb 8 (9.1) 8 (9.0) 10 (10.9) 0.890

One deferral for low Hb 8 7 5

Two deferrals for low Hb 0 1 2

Three deferrals for low Hb 0 0 3

BMI (kg/m2) 26.5 (±3.7) 27.4 (±4.7) 26.9 (±3.6) 0.332

Smoking status 0.027

Current 23 (26.2) 14 (15.7) 8 (8.7)

Former 46 (52.3) 48 (53.9) 53 (57.6)

Pack-years (y) 11.6 (±13.6) 10.3 (±14.2) 8.4 (±11.6) 0.256

Cholesterol (mmol/L)

Total 5.86 (±0.94) 5.82 (±0.99) 5.81 (±1.01) 0.936

HDL 1.40 (±0.37) 1.36 (±0.42) 1.42 (±0.35) 0.608

TG (mmol/L) 1.36 (±0.71) 1.58 (±0.92) 1.35 (±0.67) 0.073

Blood pressure (mmHg)

Systolic 126.7 (±13.9) 125.5 (±13.0) 128.8 (±14.1) 0.198

Diastolic 77.2 (±9.4) 77.6 (±9.6) 79.8 (±9.2) 0.155

Diabetes 0.065

No 81 (92.0) 80 (89.9) 91 (98.9)

DM1 1 (1.1) 0 (0) 0 (0)

DM2 6 (6.8) 9 (10.1) 1 (1.1)

CRP (mg/L, n=78; 85; 84) 4.87 (±3.13) 4.64 (±1.90) 4.61 (±2.46) 0.768

ALT (U/L, n=78; 84; 84) 13.9 (±6.7) 15.1 (±7.6) 13.0 (±6.7) 0.168

Ferritin (μg/L)c

Men (n=44; 50; 44) 116.9 (122.3) 78.2 (100.7) 33.0 (35.1) 0.000

Women (n=35; 34; 40) 53.5 (69.1) 60.8 (107.3) 32.4 (41.6) 0.000

Iron depleted (%)d

Men 0 0 6.8 0.038

Women 2.9 2.9 20.0 0.012

Hepcidin (nmol/L)c

Men (n=40; 43; 41) 18.2 (12.5) 11.8 (13.9) 4.7 (7.0) 0.000

Women (n=29; 26; 33) 17.7 (16.3) 10.4 (16.5) 8.7 (15.4) 0.025

Hb, haemoglobin; BMI, body mass index; HDL, high-density lipoprotein; TG, triglycerides; DM1/2, type 1/2 diabetes

mellitus; CRP, C-reactive protein; ALT, alanine aminotransferase. a Data are reported as mean (±SD) or number

(%). b Lifetime number of whole-blood donations divided into sex-specific tertiles. In men: ≤ 28 donations, 29-47

donations, > 47 donations; in women: ≤ 15 donations, 16-27 donations, > 27 donations. c Median (interquartile

range). d Iron depletion defined as ferritin < 12 μg/L.



3.1. VASCULAR INTEGRITY 51

Table 3.2: Percentage difference (95% CI) between donation groups

Modela

Outcome 0 1 2

IMT (mm) 0 1 2

First tertile Ref. Ref. Ref.

Second tertile +0.2 (-3.4 to +3.8) -0.5 (-3.8 to +2.9) +0.2 (-3.1 to +3.5)

Third tertile +0.1 (-3.5 to +3.6) -0.9 (-4.2 to +2.5) -0.3 (-3.6 to +3.0)

PWV (m/sec)

First tertile Ref. Ref. Ref.

Second tertile -1.8 (-9.1 to +5.4) -3.7 (-10.5 to +3.0) -2.7 (-8.8 to +3.3)

Third tertile +4.4 (-2.7 to +11.5) +2.5 (-4.1 to +9.1) +2.1 (-3.9 to +8.0)

ABIb

First tertile Ref. Ref. Ref.

Second tertile -0.9 (-2.1 to +4.0) +1.2 (-1.9 to +4.2) 0.0 (-2.9 to +2.9)

Third tertile +2.9 (-0.2 to +5.9) +3.2 (+0.2 to +6.2) +1.5 (-1.4 to +4.5)

a Model 0 = unadjusted; Model 1 = adjusted for sex and age; Model 2 = adjusted for sex, age, smoking status, BMI,

SBP, total cholesterol, HDL, TG, and DM. b ABI differences were not adjusted for SBP, as it is already included in ABI

itself.

In previous studies, increased hepcidin has been associated with increased arterial stiff-

ness (PWV) in patients on maintenance hemodialyis [115], as well as with the presence of

carotid plaques in patients with nonalcoholic fatty liver disease and metabolic syndrome

alterations [116, 117].

In the past, two studies investigated the relation between blood donation and subclinical

atherosclerosis [49, 51]. Zheng and colleagues [49] found decreased oxidative stress and

enhanced vascular function in high-frequency donors compared to low-frequency donors,

and Engberink and colleagues [51] concluded that IMT was only slightly reduced in high-

frequency donors compared to low-frequency donors. So, both studies did not entirely rule

out a beneficial effect of frequent blood donation on atherosclerosis, whereas our study

does. These previous studies used non-sex-specific categorization of high- and low-frequency

donors. As men are allowed to donate more often than women, this could lead to imprecise

cutoff values of the determinant under study (i.e., number of donations). In contrast, we

created sex-specific cutoff values for lifetime number of whole-blood donations, thereby

taking into account sex differences in number of donations.

Health studies among blood donors are very susceptible to a type of selection bias,

which is called the healthy donor effect. Recent work from our research group showed that

these studies are very susceptible to two types of healthy donor effects [53]. First, during

the registration process of new blood donors, health- and lifestyle-related criteria are applied.

As a result, the donor population might on average be healthier than the general population.
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Second, during the course of a donor’s career, the selection process continues as deferral

criteria such as repeatedly low Hb levels, hypertension, and cardiovascular disease are

applied before each donation. Subsequently, deferred (lapsed) donors might be less healthy

than current (active) donors. In contrast, results showed that the healthy donor effect was

minimal between active low- and high-frequency donors.

Therefore, to diminish the healthy donor effect, health studies among blood donors

should be embedded within a group of active donors [53]. Although Engberink and colleagues

mainly compared current donors to ex-donors and never donors, they also performed

their analyses within current donors comparing high-frequency donors to low-frequency

donors [51]. They found that high-frequency donors had a non-significantly lower carotid IMT

than low-frequency donors. However, when excluding plasma donors, the mean carotid IMT

increased in high-frequency donors. In contrast, Zheng and colleagues only included active

donors in their study and found a strong effect even in quite a small study population [49]. Of

note, as a result of their sample size, they were unable to adjust for all confounding factors

at once.

In our study we did not exclude lapsed donors, but we did perform a post hoc analysis

among currently active donors (at least one donation in the past 2 years, n = 99), with the

same adjustments for confounding variables except diabetes mellitus, as this condition is a

deferral criterion for blood donation. The results of these analyses confirmed those found in

the entire study popu- lation; the maximum difference in IMT, PWV, or ABI between donors

in the third sex-specific donation tertile compared to those in the first was 3.6% (data not

shown). Thus, we still did not find donors in the third sex-specific donation tertile to be

healthier with respect to subclinical atherosclerosis. The healthy donor effect therefore could

not have influenced our results, which strengthens our findings of no substantial effect of

lifetime number of whole-blood donations on the extent of subclinical atherosclerosis.

Remarks must be made about the implications of our results with regard to the outcome

measurements used in this study. Although measurements of subclinical atherosclerosis (IMT,

PWV, and ABI) are quite predictive for future cardiovascular disease events [118–121], they

are biomarkers and should be interpreted as such. Any effects of blood donation on manifest

cardiovascular disease can thus not be determined in our study. We can only draw conclusions

about the effects of blood donation on atherosclerosis. Moreover, pathways leading from

blood donation to cardiovascular disease other than atherosclerosis, for example, cardiac

arrhythmia, were not addressed in this study. Therefore, we cannot entirely exclude an effect

of blood donation on cardiovascular disease.

A limitation of our study is the time lag between the actual exposure (i.e., donating blood)

and measuring the outcome. This time lag may have weakened any association, if present.

It could also have had its influence on the amount of exposure measured in our population.

A second limitation is the proportion of iron-depleted subjects within this group of donors. It

is questionable whether 6.8% of men and 20.0% of women being iron depleted within the

third donation tertile is adequate enough to reveal a protective effect on cardiovascular risk.
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With regard to hepcidin, values in donors within the second and third sex-specific donation

tertile are quite comparable to those found in the general population [68], which implies

nonadequate iron depletion in our study sample. In our post hoc analyses among active

donors we were able to investigate the impact of these two limitations. Because these

analyses only included currently active donors, there was no time lag as the time since their

last exposure (donation) was at the maximum of 2 years.

Furthermore, these donors were also more iron depleted (15.0% of men and 33.3% of

women within the third donation tertile compared to 0.0 and 11.1% in the first donation

tertile, respectively). Because our post hoc analyses did not deviate from the null results

found in the entire study population, these limitations cannot explain the lack of association

between lifetime number of donations and subclinical atherosclerosis.

In conclusion, this study showed that blood donation leads to decreased iron stores, but

that increased blood donation is not evidently associated with less subclinical atherosclerosis

as measured with IMT, PWV, and ABI. The discordance between our results and those from

previous studies on blood donation and subclinical atherosclerosis warrants further detailed

research. Future studies on cardiovascular disease in whole-blood donors should use sex-

specific donation groups and should be embedded within the active donor population.
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Chapter 4

Healthy Donor Effect

The healthy donor effect (HDE) is a type of selection bias occurring in observational studies

that is introduced by the repeated health screening and subsequent selection of healthier

blood donors. So far, we have minimized the HDE by comparing high-frequency long-career

blood donors to low-frequency short-career blood donors, but when the initial analyses on

cardiovascular morbidity and mortality were conducted [Chapter 5], this comparison ap-

peared to leave room for the HDE: remaining a donor and continuing to donate automatically

implied a better health. This phenomenon of healthy donor selection makes it quite difficult

to make any causality claims from observational studies, and requires a new approach to

avoid the association between disease-free survival and donation frequency that is not

merely a result of healthy donor selection.

Meanwhile, the concept of blood donation was further decomposed into two main assets:

the duration of the donation career, and the donation frequency. It was assumed that the

effects of blood donation on cardiovascular morbidity and mortality were not of acute nature.

Rather, continuing blood donation for at least ten years was considered a sufficient amount

of time for blood donation to exert its potential beneficial effect on cardiovascular disease

occurrence.

At first glance, restricting the inclusion to donors with a donation career of at least ten

years seems a good approach to appreciate both the HDE-bias and the biologically required

duration of exposure. Using simulation models, this chapter explores whether the application

of a 10-year qualification period will minimize the Healthy Donor Effect without completely

diminishing the underlying causal effect of blood donation on cardiovascular events.

55



56 CHAPTER 4. HEALTHY DONOR EFFECT

4.1 Simulation Study HDE

Original manuscript title:

The qualification period to de-bias the Healthy Donor Effect: a simulation study.

To be submitted

BACKGROUND: High-frequency blood donation has been associated with a reduced cardiovascular

risk. However, blood donors are repeatedly selected on health status throughout the donor career,

resulting in a seemingly protective effect of blood donation that is actually explained by this

Healthy Donor Effect. Instead of using the lifetime number of donations, this study tests whether

a qualification period in which high- and low-frequency donors qualify themselves prior to the

follow-up period, yields less biased results.

METHODS: A cohort of 1,000,000 simulated persons lowered iron levels with each donation.

CVD-risk increased based on iron levels and lifestyle, representing all other causal risk factors.

Transition probabilities from non-donor to active donor, from active to stopped donor, and the

probability of donating were either completely random or dependent on the CVD-risk. Both simu-

lation scenarios (with a random or healthy donor selection) were analysed with the conventional

and a qualification period of 1, 5, 10, and 15 years. Cox proportional hazards modelling estimated

the crude and lifestyle-adjusted hazard rate ratio (HRRs) for high- vs. low-frequency donors.

RESULTS: The conventional approach severely overestimated the protective effect of blood

donation, with HRR=0.67 even when no causal effect was simulated and donors were randomly

selected. When a small causal effect was simulated and healthy donors were selected, the HRR

with the conventional approach was 0.16 whereas the 1-, 5-, 10-, 15-, and 20-year qualification

period approaches showed HRRs of 0.83, 0.78, 0.32, 0.16, and 0.17. The magnitude of the HDE

increased with longer qualification periods and a larger causal effect of iron levels on CVD-risk.

Adjusting for lifestyle attenuated the HRRs only in the scenario of a healthy donor selection,

and especially when the causal effect of iron levels was relatively small and longer qualification

periods were applied.

CONCLUSION: The application of a qualification period during which donors qualify themselves

decreases the Healthy Donor Effect, especially compared to the conventional approach using

lifetime number of donations. Although some bias will be left unaccounted for, the qualification

period is a promising next step in eliminating the HDE-bias.
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Introduction

Iron depletion has long been hypothesised to have protective effects on cardiovascular risk.

As a result of repeated erythrocyte iron loss, blood donors have depleted iron stores. Not

surprisingly, blood donors have been used extensively to study the effect of iron depletion

in relation to disease occurrence. Donors have been compared to non-donors, ex-donors,

or to donors with a different donation exposure to study the effect of low iron stores and

blood levels on cardiovascular disease occurrence. However, results from such studies can

be tremendously biased due to the Healthy Donor Effect, a phenomenon resulting from

selection processes before and during a donor’s career. The Healthy Donor Effect (HDE)

comprises factors (e.g. blood pressure, genetic susceptibility, Hb level) that are causally

associated with both exposure and disease status, thus influencing the study’s estimates of

association between blood donation and (cardiovascular) outcome.

Three types of HDE

Atsma et al. previously described three distinct types of the HDE and referred to them as the

Healthy Registration Effect (HRE), the Healthy Donor Survivor Effect (HDSE), and the Healthy

Donor Career Effect (HDCE) [Figure 4.1] [53]. The HRE distorts research that compares

donors to non-donors. When someone applies for blood donorship, a number of health criteria

have to be met in order to be registered as a blood donor. This selection process based

on (underlying) disease risk is thus responsible for the selection bias when subsequently

comparing the health of donors to non-donors. Once being a newly registered blood donor,

donation can only take place if certain health criteria are met. Some of them result in

a temporary deferral; others mean the end of a donor’s donation career. Consequently,

currently active donors are more likely to be healthier than lapsing- or stopped donors.

Research comparing these two groups of donors is therefore influenced by the HDSE. The

third type of HDE, the HDCE, is of importance when studying health effects of blood donation

within currently active donors. As a result of continuously applying health criteria prior to

each donation, high-intensity donors and those with a higher number of lifetime donations

are probably healthier than donors who are yet in an early phase of their donation career.

After comparing self-reported health and lifestyle indicators between all donor groups, Atsma

and colleagues concluded that it is best to only make comparisons within the active donor

population, as the HDCE constitutes the smallest bias [53]. Long-career (high-frequency)

donors more often reported a good or excellent self-rated health, and less often a visit

to the GP in the previous 3 months than short-career (low-frequency) donors. Although

lifestyle indicators such as dietary patterns and physical activity did not materially differ

between these two donor groups, BMI was higher in long-career donors than in short-career

donors [53].
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Figure 4.1: Three different types of the HDE (arrows) as a result of three different selection

moments (dotted lines) during the donation career. HRE, healthy registration effect; HDSE,

healthy donor survivor effect; HDCE, healthy donor career effect.
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Epidemiological concepts

Although all three types of the Healthy Donor Effect are referred to as selection bias (a differ-

ential selection that occurs before exposure and disease) or confounding (a risk factor for the

disease that is also associated with the exposure of interest), once these factors responsible

for selection (and confounding) are measured on all study subjects, and these factors are

antecedents of both exposure and disease, adjustment just like with any other ordinary

confounding factor can be performed according to Rothman, Greenland and Lash [122]:

Selection bias and confounding are two concepts that, depending on termin-

ology, often overlap. For example, in cohort studies, biases resulting from

differential selection at start of follow-up are often called selection bias, but in

our terminology they are examples of confounding. Consider a cohort study

comparing mortality from cardiovascular diseases among longshoremen and

office workers. If physically fit individuals self-select into longshoreman work,

we should expect longshoremen to have lower cardiovascular mortality than

that of office workers, even if working as a longshoreman has no effect on

cardiovascular mortality. As a consequence, the crude estimate from such a

study could not be considered a valid estimate of the effect of longshoreman

work relatie to office work on cardiovascular mortality.

Suppose, however, that the fitness of an individual who becomes a longshore-

man could be measured and compared with the fitness of the office workers.

If such a measurement were done accurately on all subjects, the difference

in fitness could be controlled in the analysis. Thus, the selection effect would

be removed by control of the confounders responsible for the bias. Although

the bias results from selection of persons for the cohorts, it is in fact a form of

confounding.

However, it is often impossible to exactly know, let alone measure, these factors responsible

for the Healthy Donor Effect. Moreover, these factors are also intermediary determinants of

exposure and disease, meaning that they are not only caused or influenced by exposure, but

also affect the probability of subsequent exposure.

If these factors would have been measured accurately on all subjects, it is still not

possible to adjust for them by conditional risk estimation, as adjusting for intermediary

variables results in over-adjustment bias (the causal effect of the exposure on disease

status is completely accounted for by the intermediary variables, leaving a null-effect). It

is therefore of utmost importance that analysing data possibly influenced by the HDE is

conducted by design and analytical techniques that are as little as possible affected by it.
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Study designs

To decrease the HDE as much as possible, it is recommended to embed studies within the

active donor population and create the determinant contrast by the "amount" or level of

donation [53]. There are several aspects that determine the level of exposure to blood

donation:

1. donation frequency or the (lifetime) number of donations

2. donation career in years

3. the average donation frequency per year

4. the combination of 2 and 3 as a measure of donation intensity.

With cardiovascular events as outcome, it is likely that many donors have stopped donating

actively, and that comparing the donation frequency between CVD cases and non-cases

would actually mean comparing stopped to active donors. Furthermore, is is expected that

blood donation would have a lagged effect on cardiovascular disease. Blood donation should

therefore be given a sufficient amount of time to slow down the disease process.

As the HDE is the result of repeatedly selecting healthier (prospective) donors throughout

the donation career, analysing techniques accounting for follow-up time could be more

resilient to HDE. One could think of Cox proportional hazards (Cox PH) modelling and repeated

measures techniques (Generalized Estimating Equations), which do not compare cumulative

incidences or risks among exposure groups but rather compare incidence rates. However,

the survival probability is likely to be highly associated with exposure status, as the number

of blood donations is a time-varying exposure. High-frequency donors would therefore

probably have the largest disease-free survival; otherwise they wouldn’t have been able to

become a high-frequency donor.

Others have also struggled with the HDE. In an attempt to minimize this, Meyers and

colleagues have used a 3-year period from 1988 until 1990 during which frequent (≥1

donation each year) and casual (1 donation in 3 years) donors were identified [47]. Although

cases and controls were matched on sex and birth year, they did not address possible

differences in donation career. In a study on blood donation and cancer, Edgren and

colleagues have used a case-control approach in which cases of cancer were matched on

time with controls: each time a donor was identified as cancer patient, ten random control

donors were selected who were alive and disease free at the index date [123]. This method

is called incidence density sampling and the calculated odds ratio directly estimates the

incidence rate ratio [124]. Although a major improvement in study design in terms of HDE,

it is a cumbersome method that does not account for differences in donation career and

also requires the use of a latency period to eliminate the HDE-bias (or more specifically

reverse-causation bias in this case), the successfulness of which remains to be seen.
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The same research group has recently made a new attempt to adjust for the HDE by only

considering mortality among "retired" donors (i.e. those with a last donation at ages 64.5-

65 years) who survived at least 2 years after their most recent donation (thereby further

reducing short-term causal effects of donation) [125]. Including an interaction between the

variables donation rate (i.e. average number of donations per year in the preceding 5-year

window) and an indicator for ongoing donation (i.e. not yet "retired") in the Poisson model

yielded the HDE-adjusted effect for donation rate among non-"retired" donors. However, they

could not confirm that their HDE-adjusted protective effect of blood donation was indeed not

biased by a residual HDE, as the adjustment factor was estimated among elderly donors.

In this article, we propose an easy-to-use method as a possible solution to separate the

period in which the exposure is determined from the period in which disease occurrence

takes place, that simultaneously does justice to the hypothesised lagged effect of blood

donation. This can be achieved by the application of a so-called qualification period [126].

Although invented for clinical trial settings, we use the qualification period as a fixed period

of exposure during which donors must qualify themselves. This means that donors must

remain an active donor for at least, say, 10 years [Figure 4.2]. During this qualification period,

the exposure is determined (i.e. number of donations). Only after this qualification period,

the actual follow-up period starts in which donors can experience cardiovascular events. By

fixing the period in which exposure is determined, exposure status cannot have influenced

the survival probability as they are now separated periods. Of note, such an approach seems

only appropriate in situations in which the exposure-disease relationship is likely to be long,

meaning that more acute-onset diseases would be inappropriately studied in this manner.

Aim

This simulation study examines whether a qualification period to determine donation fre-

quency yields better, less biased, results than without a qualification period using the lifetime

number of donations (at the end of follow-up) to compare cardiovascular risk between high-

and low-frequency donors using Cox PH regression. For this purpose, datasets were created

with a completely random donor selection and a healthy donor selection, and subsequently

analysed with both the conventional lifetime number of donations method and the use of

a qualification period. This was practised on datasets that mimicked a protective effect of

blood donation on cardiovascular disease through the lowering of ferritin (as a measurement

of body iron stores).
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Figure 4.2: Design of a cohort study to which a 10-year qualification period is applied.

Inclusion criterion is remaining an active donor for at least 10 years. Donation frequency is

determined during this qualification period, whereas disease occurrence is measured during

the follow-up period starting after 10 years. The time-axis could be either read as calendar

months from fictive years or the iterations used in this simulation study.
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Materials and Methods

General model

We simulated a cohort of blood donors that lowered their cardiovascular disease (CVD) risk

by lowering ferritin after each donation. Figure 4.3 provides an overview of the model with

two of the simulated scenarios. A dataset of 1,000,000 subjects was created, of which 10%

was immediately assigned blood donorship. As blood donors are a dynamic population, the

constant influx of new donors and efflux of stopping donors was mimicked as well. Therefore,

we used a looping procedure, with 300 iterations, each representing one month. In each

iteration, there was a constant transition probability from the non-donor to the active donor

state, and from active donor to stopped-donor.

Donors were allowed to donate, whereas non-donors were obviously not. Each subject

started with a random ferritin value drawn from a normal distribution with a mean of 100

μg/l and a standard deviation of 20. After a donation, ferritin dropped with 10. When ferritin

dropped to levels below 10, the value was set at 10. All donors were first-time donors; they

all had 0 previous donations. All donors (active and stopped) increased their ferritin with 1

each month.

CVD events occurred depending on the CVD-level, which started with a baseline CVD

level and from thereon increased each month with a fraction of the current ferritin level and

a fraction of "lifestyle", representing all other risk factors of CVD. All subjects had a baseline

CVD risk randomly drawn from a uniform distribution with minimum 0 and maximum 1,

except those immediately assigned blood donorship; their distribution ranged from 0 to 0.5.

A higher event probability was assigned to higher levels of CVD. The looping ended when

donors experienced a CVD event, or after the 300th iteration.

Simulated scenarios

To study the effect of both the conventional approach and the qualification period applied to

the data, we used two different scenarios: one with a random donor selection throughout the

donor career, and one with a healthy donor selection. CVD-level affected the probabilities

of becoming a donor, making a donation, and stopping in the scenario of a healthy donor

selection, whereas these probabilities were randomly assigned in the random donor selection

scenario.

Simulating the Healthy Registration Effect (HRE) The HRE is a result of selecting

healthy prospective donors, and only allowing new donors with a low baseline CVD risk

mimicked this effect. For each prospective donor, a random baseline CVD risk was drawn

from a uniform distribution with minimum 0 and maximum 1. Only prospective donors with a

baseline CVD risk <0.5 were allowed to enter the active donor pool.
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Figure 4.3: Schematic overview of the 2 scenarios for donor selection: random or healthy.

Combined with 3 scenarios for the size of the causal effect of ferritin on CVD risk:

none: CVD = CVD + (0.0000∗ Ferritin) + (0.0002∗ Lifestyle),

small: CVD = CVD + (0.0005∗ Ferritin) + (0.0002∗ Lifestyle), and

large: CVD = CVD + (0.001∗ Ferritin) + (0.0001∗ Lifestyle), yields 2∗ 3 = 6 scenarios.
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Simulating the Healthy Donor Survivor Effect (HDSE) In the scenario of random

donor selection, there is a probability of 1% to change in donor status from active to stopped,

irrespective of CVD risk. Subsequently, HDSE was introduced by the longitudinal CVD risk

affecting this probability of continuing blood donorship, with a higher CVD risk increasing the

stopping probability.

Simulating the Healthy Donor Career Effect (HDCE) To simulate the HDCE resulting

from differential donor selection prior to each donation, donors with a higher CVD-risk had a

lower chance to donate: 50% for donors with CVD <2.5 and 25% for donors with a CVD <5.

This means that only the healthiest ones were able to reach a high number of donations.

Causal effect size To examine whether the size of the causal effect of ferritin on CVD risk

changed the results, and to demonstrate that the 10-year qualification did not wash out

the entire causal effect, we have used three different causal effects scenarios: (I) no causal

effect of ferritin on CVD (using a completely random variable that mimicked the behaviour

of ferritin, but was entirely unrelated to blood donation), (II) a small causal effect of ferritin

on CVD risk (with an increase of 0.0005 ∗ ferritin and 0.0002 ∗ lifestyle each month), and

(III) a large causal effect of ferritin on CVD risk (with an increase of 0.001 ∗ ferritin and

0.0001∗ lifestyle each month).

Each of the three different causal effect scenarios (none, small, large) also had two

different donor selection scenarios (random or healthy). This yields a total of six different

simulated scenarios. The complete program can be found in Appendix B.

Statistical analysis

To each dataset, both the conventional method and the qualification period were applied to

compare cardiovascular risk between high- and low-frequency donors. For the conventional

method, the lifetime number of donations (i.e. at the end of follow-up) was used to distinguish

high-frequency donors from low-frequency donors as the exposure measurement, based on

the median.

The qualification period approach only selected donors who had remained throughout the

entire qualification period. The number of donations that they made during this qualification

period was used to categorize donors into low- and high-frequency donors, based on the

median as well. Five different durations of the qualification period were used: 1 year, 5 years,

10 years, 15 years, and 20 years. Follow-up time was calculated by subtracting the duration

of the qualification period from the total follow-up time between becoming an active donor

and having a CVD event or the end of follow-up after 300 months. As a result, they could only

have a maximum survival of 288, 240, 180, 120, or 60 months after a qualification period of

1, 5, 10, 15, or 20 years, respectively.
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Unconditional and conditional on lifestyle Cox PH models were built to estimate hazard rate

ratios (HRRs), with the time until cardiovascular event or for censored donors today’s date

(t=300) in months as person-time. All datasets were built and analysed with IBM PASW SPSS

21 for Mac (Release Version 21.0.0.0, Chicago, IL, USA).

Results

Overall effects of scenarios

A brief description of the population characteristics is provided in Table 4.1. In the scenario

without a causal effect of ferritin on CVD risk, the sole effect of the healthy donor selection

can be seen. Because the probability to stop donating is now dependent on the CVD risk,

it takes longer for donors to reach a certain CVD level that ends their donor career. As a

result, the donor career is longer with a healthy donor selection [Table 4.1]. Furthermore,

the healthy donor selection has prevented donors to donate as often as in the scenario of a

random donor selection, reflected by a lower number of donations and a higher ferritin level.

Within the scenario of a random donor selection, different causal effects of ferritin on

CVD risk only results in different levels of ferritin and the percentage of donors with a CVD

event. Although the number of donations does not seem to be affected by the causal effect

size of ferritin, ferritin itself is approximately 1.5 times higher when it does contribute to

CVD risk. This could be a result of CVD-cases having a higher ferritin level in the scenario

with a causal effect of ferritin than in the scenario without such a causal effect of ferritin.

Another interesting effect of increasing the causal effect of ferritin, seems to be the increased

proportion of CVD-cases. One could expect that more benefit from donating blood is gained

when the causal effect of ferritin is increased. Instead, the CVD-risk increases more rapidly

when ferritin has a larger causal effect (0.001*ferritin vs. 0.0005*ferritin), irrespective of

blood donation. Thus, the proportion of CVD-cases is around 1.3 times higher in the scenario

of a large causal effect of ferritin on CVD risk.

Independent of the causal effect, the donor career was longer when a healthy donor

selection was simulated. However, when ferritin did contribute to CVD risk, more donors

remained active when a healthy donor selection was applied, likely a result of lowering

their CVD risk with blood donation. This preventive effect of donating blood was especially

present in the scenario of a small causal effect of ferritin, because the healthy donor selection

differentiates quicker between those at a low or high CVD risk when the causal effect is larger:

not being able to donate when your CVD risk is higher results in a more rapid increase of your

CVD risk, with earlier drop-outs. Compared to a small causal effect of ferritin, this stronger

or more rapid selection effect when a large causal effect is simulated is also reflected by a

shorter donation career with fewer donations [Table 4.1].
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Table 4.1: Characteristics of simulated donor cohorts. Data are reported as me-

dian or percentage

Random donor selection Healthy donor selection

No causal effect of ferritin on CVD risk

Donor status

Non-donor 22% 22%

Active 38% 35%

Stopped 40% 43%

Donation career (months) 100 115

Number of donations 46 36

Ferritin (μg/l) 27 40

CVD event 35% 35%

Small causal effect of ferritin on CVD risk

Donor status

Non-donor 22% 22%

Active 35% 50%

Stopped 43% 28%

Donation career (months) 99 158

Number of donations 49 61

Ferritin (μg/l) 44 14

CVD event 29% 20%

Large causal effect of ferritin on CVD risk

Donor status

Non-donor 22% 22%

Active 36% 38%

Stopped 42% 40%

Donation career (months) 100 123

Number of donations 47 40

Ferritin (μg/l) 38 39

CVD event 37% 37%

Dynamic donor populations are simulated in which blood donation lowers ferritin and donors

develop CVD events. Six different donor cohorts are created with 2 scenarios of donor selection

(random and healthy) and 3 scenarios of causal effect of ferritin on CVD risk (none, small, and

large).
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Effect of analysing techniques

In the scenario without a causal effect of ferritin on CVD risk and a random donor selection,

all qualification-period approaches yielded HRRs≈1 [Table 4.2], confirming no protective

effect of high-frequency blood donation. In contrast, the conventional approach leads to

a seemingly protective effect of high-frequency blood donation, with HRR=0.67. When

a healthy donor selection is applied to the scenario of no causal effect, the conventional

approach further overestimates the protective effect in high-frequency blood donors to a

HRR of 0.31, a typical "healthy donor effect". Likewise, the qualification period approach has

stronger deviations from 1 when the duration of the qualification period increases; more time

during which donors are selected on their CVD-risk [Table 4.2]. Of note, the "healthy donor

effect" seems to stabilize around HRR=0.38 from a 10-year qualification period onwards,

and does not completely converge to the overestimation as observed in the conventional

lifetime approach. This likely stems from a different selection of the donor population: the

20-year qualification approach does not include donors that have failed earlier, whereas

the conventional lifetime approach does, leading to a larger overestimation probably by the

comparison of stopped and active donors.

The scenarios with a causal effect of ferritin on CVD risk demonstrate a further protective

effect in high-frequency blood donors compared to the no causal effect scenario. For the

qualification period approaches with a random donor selection, HRR≈0.92 in the scenario

of a small causal effect and HRR≈0.84 in the scenario of a large causal effect of ferritin

[Table 4.2]. However, in the scenario of a healthy donor selection, the HRRs further decrease

to indicate a stronger protective effect in high-frequency donors. Although the HRRs with the

conventional lifetime approach do further decrease to reveal the beneficial effect of blood

donation in the scenarios with a causal effect of ferritin, the difference between the random

and healthy donor selection scenarios are not that clear as all HRRs remain around 0.22

[Table 4.2].

By comparing the HRRs of the scenario with a healthy donor selection to the HRRs of

the scenario with a random donor selection, it appears that the healthy donor selection

results in an overestimation of the effect of blood donation. This overestimation seems

to be affected by the size of the causal effect and the duration of the qualification period.

The overestimation is larger when the causal effect is large, but decreases when a longer

qualification period is applied. This phenomenon can be explained by the vicious circle that

is brought upon by the healthy donor selection: a high CVD-risk leads to a lower donation

probability, thus increasing the CVD-risk. Therefore, a larger causal effect results in a bigger

overestimation of the protective effect of blood donation, but this becomes less important

when a longer qualification period is applied. If a longer qualification period is applied,

other factors such as lifestyle become more important in determining CVD-risk. This can be

observed by comparing the lifestyle-adjusted HRRs within the scenario of a healthy donor

selection between the different qualification periods: the confounding effect of lifestyle is

larger when the qualification period is longer.
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Table 4.2: Effect of analysing scenario on estimated Hazard Rate Ratio (HRR) of high- vs.

low-frequency donors on cardiovascular events

Simulation scenarios

No causal effect Small causal effect Large causal effect

Random

donor

selection

Healthy

donor

selection

Random

donor

selection

Healthy

donor

selection

Random

donor

selection

Healthy

donor

selection

Adjusted

for life-

style

1-year qualification approach

No 1.00 1.01 0.90 0.83 0.83 0.63

Yes 1.00 1.01 0.89 0.82 0.83 0.63

5-year qualification approach

No 1.00 0.45 0.92 0.78 0.85 0.43

Yes 1.00 0.53 0.92 0.82 0.85 0.45

10-year qualification approach

No 1.00 0.38 0.92 0.32 0.84 0.38

Yes 0.99 0.50 0.91 0.67 0.83 0.43

15-year qualification approach

No 0.99 0.37 0.93 0.16 0.82 0.33

Yes 0.98 0.49 0.92 0.54 0.81 0.40

20-year qualification approach

No 1.02 0.38 0.94 0.17 0.85 0.32

Yes 1.01 0.49 0.94 0.63 0.83 0.38

Conventional lifetime approach

No 0.67* 0.31 0.23 0.16 0.22 0.21

A
n

a
ly

s
in

g
s
c
e
n

a
ri

o
s

Yes 0.67* 0.37 0.23 0.26 0.22 0.21

* The conventional lifetime approach uses the entire donor population and the total lifetime number of donations to

categorise high- and low-frequency donors. Consequently, donors with a very short follow-up time will inevitably

be categorised as a low-frequency donor, and this also works the other way around: high-frequency donors will

have a longer follow-up time. This association between donation frequency and disease-free survival creates a

seemingly protective effect of HRR=0.67. In contrast, the qualification period approach uses a fixed period of

exposure during which donation frequency is determined. This number of donations during the qualification period

is used to categorise high- and low-frequency donors. The period during which exposure (i.e. donation frequency)

is determined is thus separated from the occurrence of CVD events, as only donors that have survived the entire

qualification period as an active donor are selected.
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Figure 4.4: Causal diagram with a causal effect of ferritin on CVD-risk. Each donation lowers

ferritin levels, which affects CVD-risk along with Lifestyle. CVD-risk determines the donation

probability, reflecting a healthy donor selection responsible for the HDE-bias.
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Figure 4.5: Causal diagram with no causal effect of ferritin on CVD-risk. Risk factor "X"

denotes a random risk factor of CVD that mimicks the behaviour of ferritin in size and

change but is entirely independent of blood donation. Ferritin does not affect CVD-risk in this

scenario. Lifestyle operates as a confounding variable by indirectly influencing the donation

probability via CVD-risk.
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Lifestyle as a confounder?

Lifestyle only seems to act as a confounder of the relation between blood donation and

cardiovascular events if a healthy donor selection is present. This is a result of CVD-risk

determining donation frequency when a healthy donor selection is simulated [Figure 4.4].

The presence of "confounding" even in the scenario of no causal effect of ferritin, reveals

how lifestyle and donation frequency must be associated through CVD-risk [Figure 4.5], as

no direct effect of lifestyle on donation frequency was modelled. Lifestyle is (indirectly)

associated with donation frequency (through CVD-risk) and a direct cause of CVD-risk,

therefore acting as a confounder.

Because the healthy donor selection creates a cyclic causal diagram, lifestyle cannot

be considered a confounding factor in the classical sense, but merely acts like one through

CVD-risk. Estimating the direct causal effect of donation frequency on CVD-risk is nearly

impossible because of the feedback loop of CVD-risk on donation frequency. This simulation

shows that adjusting for lifestyle or other independent risk factors for CVD-risk yields better

effect estimates, especially when the true causal effect of ferritin is relatively small.

Discussion

This simulation study has shown that when comparing cardiovascular risk between high and

low-frequency donors, applying a fixed qualification period that donors must have survived

and in which their donation frequency is determined strongly decreases the Healthy Donor

Effect (HDE) bias, as compared to the conventional approach of using lifetime number of

donations over the entire follow-up period to distinguish high-frequency donors from low-

frequency donors. This is especially true for shorter qualification periods and smaller causal

effects of ferritin on CVD-risk.

We can now extend the conclusion from Atsma and colleagues that comparisons between

high- and low-frequency donors are more robust to the HDE, if and only if a qualification

period is applied. When the entire follow-up period is used to determine donation frequency,

biased effect parameters will be found due to a higher survival probability of high-frequency

donors. Consequently, the two different exposure groups will inevitably be selected on

outcome/disease status. This simulation study has further proven that even without the

selection of healthy donors throughout the donor career, and even without a causal, pro-

tective effect of blood donation on CVD risk, one will still find a seemingly protective effect

of high-frequency blood donation compared with low-frequency blood donation with this

conventional approach.

This "time-effect" of high-frequency donors having a longer disease-free survival (other-

wise they could not have become a high-frequency donor), independent of a protective effect

of blood donation, is not seen in the qualification period approach. We have confirmed that

determining the exposure frequency of donation prior to the outcome, efficiently separates

most of the selection processes that occur during follow-up. However, factors that determine

the donation frequency during the qualification period, and that transfer across the qualifica-
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tion period to the follow-up period, still bias the risk estimates. The healthy donor selection

that takes place during the qualification period will therefore impose stronger biases when

the qualification period is longer.

Depending on the magnitude of the causal effect of blood donation and ferritin on CVD-

risk relative to other risk factors of CVD, the healthy donor selection result in a smaller or

larger bias. In general, the overestimation of the protective effect of high-frequency blood

donation due to healthy donor selection, is larger when the causal effect is larger. The

divergence between high- and low-frequency donors will be quicker when the health benefit

of blood donation (i.e. a larger causal effect) increases; donors not being able to donate

due to a higher CVD-risk more rapidly fall behind in donation frequency and drop out of the

donor population. This "positive feedback-loop" or vicious circle thus creates a stronger HDE

when there is more to gain with blood donation, but when longer qualification periods are

applied other causal risk factors of CVD such as lifestyle become more important. Therefore,

the magnitude of the HDE with the qualification period approach is larger when a longer

qualification period is used (more time during which donors are selected) and the causal

effect of blood donation is smaller (leaving more room for other causal risk factors such as

lifestyle).

The most valid estimates are obtained in the qualification period approach, using a

period of 1 year. The subsequent question would be whether such an approach is the right

one in a situation in which the effects of blood donation are assumed to be lagged. Lowering

iron stores for 1 year with frequent blood donation can hardly be assumed to have causal

protective effects on cardiovascular disease, because this disease has a longer time to

develop. Longer qualification periods will thus be required from a biologic perspective, but

increases the size of the HDE. Furthermore, the importance of measuring other causal factors

to control for them is emphasised by the results of this simulation study. This becomes

especially important when the true causal effect of blood donation is small.

The difficulty of the HDE is the simultaneous ability of factors to confound and being part

of the causal pathway between exposure and outcome. There are other, more advanced

statistical approaches such as g-estimation and marginal structural models (MSMs) that

would ordinarily be applied in such circumstances. However, they cannot be used in this

context. The strict exclusion of donors that do not meet the criteria for blood donation

(a probability to donate of zero), violates one of the important assumptions of MSM: the

positivity assumption. This assumption dictates a probability of > 0 for each exposure

stratum. Of note, this simulation study has not used such strict exclusion criteria, but simply

decreased the probability of a donation for donors with a higher CVD-risk. Although we could

have used the advanced statistical modelling techniques to our simulated data, they would

not do just to the true observed blood bank data in which donors with a blood pressure above

a certain threshold have a probability of zero to donate.

Another deviation of our simulated data with real-world data, is the omission of using

ferritin (or more precisely haemoglobin) as a pre-donation criterion. A deferral for a donation

because of low haemoglobin levels is not uncommon; approximately 26.7% of the active
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donor population has had at least one deferral [Section 2.2]. Of particular interest, is the

direction of the HDE bias by Hb-deferrals. This would allow donors with higher iron levels to

donate more often, thus enabling ’unhealthier’ donors to become high-frequency donors.

Depending on the magnitude of the two gross selection mechanisms of CVD-risk (healthier)

and iron levels (unhealthier), the size of the HDE bias will likely vary. This simulation study

has solely focussed on selecting healthier donors, mainly to investigate its plausibility of

explaining beneficial cardiovascular health effects in previous observational studies. In

addition, lifestyle was only modelled as a direct contributing factor of CVD risk through

which it was also related to donation frequency, whereas in reality it is likely to be also a

direct causal factor of donation frequency. As with all pre-donation selection criteria, lifestyle

constitutes several aspects with varying effects on the direction of the HDE bias. The main

and sole purpose of lifestyle in this simulation study was to incorporate other causal factors

of CVD than ferritin, for example dietary pattern and physical activity, in order to balance

out the different sufficient causal factors that form the causal model of CVD risk.

Even in the absence of a protective effect of frequent blood donation on CVD, and

even in the absence of a continuous healthy donor selection, using the lifetime number

of donations as exposure measure severely overestimates the "protective effect". Using

a short qualification period prior to the outcome period, effectively decreases this healthy

donor effect, but seems illogical from a biologic point of view assuming a lagged effect of

blood donation. Furthermore, controlling for other causal risk factors of CVD is important as

they act as confounders due to the healthy donor selection, especially when the true causal

effect of blood donation is small and longer qualification periods are applied. Future studies

should be aware of the magnitude of the HDE within donors not only when using lifetime

number of donations but also when using a long qualification period to study the effect of

frequent blood donation on long-term outcomes such as CVD, cancer or other hypothesised

iron-mediated diseases such as Alzheimer’s disease.





Chapter 5

Cardiovascular Outcomes

So far, we have sought the answer to our question on the subclinical level, but the proof of

the pudding is in eating. What is the magnitude of the preventive ability of blood donation on

cardiovascular disease? Are we really able to prevent cardiovascular disease with frequent

blood donation? And if so, does blood donation also lower cardiovascular mortality? If

there really were to be such a thing as preventing cardiovascular morbidity and mortality

through blood donation, what would be the best donation intensity to maximize its preventive

strength?

75
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5.1 Morbidity and Mortality

Original manuscript title:

Reducing cardiovascular disease with 10 years of regular blood donation:

a cohort study of 159,934 donors addressing the healthy donor effect.

To be submitted

BACKGROUND: Prolonged iron depletion could protect against cardiovascular disease as a result

of decreased oxidative stress. Due to repeated erythrocyte loss, frequent blood donation lowers

iron stores. This study aims to investigate whether 10 years of active whole-blood donating

decreases the risk of cardiovascular mortality and morbidity.

METHODS: All Dutch whole-blood donors who have remained active for at least 10 years (validated

by ≥ 1 donation in either year 8 or 9) were included in this study. During this 10-year qualification

period, donors were categorized into sex-specific donation tertiles according to the total number

of whole-blood donations. End-points were cardiovascular cardiovascular morbidity (investigated

in 155,827 donors) and mortality (investigated in 158,919 donors) based on hospital discharge

diagnoses and death certificates from Statistics Netherlands. Cox-regression was used to estimate

the age-adjusted Hazard Rate Ratio (HRR) with a 95% confidence interval (95%-CI).

RESULTS: Median age at start of donation career was 34 (IQR: 16). A total of 9,381 (10.81%) men

and 4,338 (6.28%) women had a primary cardiovascular hospital admission or death. Primary

cardiovascular mortality was confirmed in 876 (0.55%) donors. Adjusted for age at start of the

donation career, female high-frequency blood donors had a reduced cardiovascular morbidity

(HRR=0.90, 95%-CI: 0.84 - 0.97) and cardiovascular mortality (HRR=0.83, 95%-CI: 0.56 - 1.22)

compared with low-frequency blood donors. No effect was observed in men on either morbidity

(HRR=0.99, 95%-CI: 0.94 - 1.04) or mortality (HRR=0.94, 95%-CI: 0.78 - 1.12)

CONCLUSION: Long-term, high frequency blood donation protects against cardiovascular disease

in women, but not in men. Follow-up time was insufficient in this young population to statistically

confirm effects on cardiovascular mortality.
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Introduction

Iron catalyses the formation of reactive oxygen species. These in turn can damage vascular

endothelium, pancreatic beta cells, and hepatocytes. Not surprisingly, high levels of iron

stores have been repeatedly related to diseases from the cardiovascular spectrum: athero-

sclerosis, AMI, metabolic syndrome, non-alcoholic fatty liver disease, and diabetes mellitus.

However, such associations were at least as often unproven as they were proven [98]. In

studies from the general population, high iron levels could also be the consequence of chronic

subclinical inflammation. Inflammation is, along with iron level and hypoxia, one of the main

mechanisms that affect iron homeostasis through the expression of hepcidin [24]. Thus,

reverse causation bias could have largely influenced such studies.

Blood donors are a profoundly eligible group of subjects from the general population

that are not only generally healthy and disease-free (otherwise they wouldn’t have been

able to become a donor), but also have low iron stores. The latter mainly being a result of

the repeated loss of whole-blood, containing iron-rich erythrocytes. Comparing the risk of

cardiovascular disease between donors and non-donors, although not uncommon in previous

studies, would lead to biased results due to a so-called healthy donor effect. It has therefore

been recommended to perform studies embedded within the donor population, comparing

high-frequency donors to low-frequency donors [53].

To date, a few such studies have been performed and found that high-frequency blood

donation is associated with: increased flow mediated dilation [50], decreased carotid intima

media thickness [51], increased insulin sensitivity [48], and a lower incidence of cardiac

events [47]. However, a quasi-random experiment in blood donors found no effect (a risk

ratio of 1.02) of blood donation on incident cardiac ischemia [52]. This null-effect was also

confirmed in a recent study among Italian blood donors [127] comparing hospital admissions

between donors with different donation frequencies and years of donation to non-donors. In

a recent study on blood donation and all-cause mortality, an attempt was made to adjust for

the healthy donor effect [125]. Although their HDE-adjusted results indicated a protective

effect, they also could not exclude the presence of a residual HDE that explained this result.

Furthermore, the same study by Zheng et al. that found improved flow-mediated

dilation in high-frequency blood donors also refuted the hypothesis that changes in glucose

metabolism would link blood donation to improved vascular function, as it found no effect

on insulin sensitivity or vascular reactivity after oral glucose loading [50]. In line with these

results, previous studies from our own research group either found no association between

frequent high-intensity blood donation and vascular function [105] or metabolic syndrome

prevalence [74], or even a counter-hypothesised increase in insulin resistance in a cohort of

first-time donors followed-up for 1.5 - 2 years [Peffer et al, unpublished].

All in all, no definite conclusions can be drawn. Maybe a more composite end-point, such

as overt cardiovascular disease, will have a better opportunity to reveal any association

with blood donation. Again, the healthy donor effect could be an issue, as such long-

term outcomes will frequently occur outside the donation career, and that comparing high-

frequency (long-career) donors to low-frequency (short-career) donors would actually mean
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comparing healthy active donors with less-healthy stopped donors. Furthermore, for such

more long-term health outcomes, we assume that a longer exposure window of 10 years is

needed for blood donation to exert its protective effect on cardiovascular disease. By only

including donors who have remained active in donating for at least 10 years, and compare

those with a high donation frequency during these first 10 years to those with a low donation

frequency, we can study the effect of intensive blood donation on long-term outcomes

such as cardiovascular disease. Moreover, it excludes the comparison of active to stopped

donors as each donor was still active when their donation frequency was determined, thereby

theoretically reducing the healthy donor effect.

In a simulation study from our own group, we showed that implementing such a 10-

year qualification period further reduced the healthy donor effect as compared to using

the lifetime number of donations [Peffer et al, unpublished]. Such a qualification period is

also used in more clinical trial settings to eliminate other causal factors [126]. By applying

a 10-year qualification period, the disease-free survival time or duration of the donation

career is not necessarily related with the number of donations, as each donor has had

equal opportunity to donate in this fixed time period. Because the study outcome does not

influence the number of donations, the qualification period approach reduces the healthy

donor effect between high- and low-frequency donors.

In the present study, we aim to estimate the relation between blood donation and incid-

ent cardiovascular disease by including a very large cohort of all Dutch whole-blood donors

ever. Even within the donor population, a healthy donor effect exists as the repeated (self-)

selection of healthy donors throughout the donation career results in health differences be-

tween high- and low-frequency donors that appear to be a result of their donation behaviour,

but actually is the result of (self-) selection. By applying a 10-year qualification period during

which donors must have remained active in donating, we aim to minimize this healthy donor

effect.

Materials and Methods

Data sources

For this study, all electronically recorded donations, including visits that ended in a deferral,

thru 2010 were merged. In the early 80s, blood donations were started being recorded

electronically by each individual collection centre. As of 1990, the electronic recording of

donations had a near nationwide coverage. Since 1998, Sanquin Blood Bank has been the

sole foundation that is responsible for blood supply in the Netherlands.

Because several regions have been responsible for the blood collection registry over

the years, donors could be registered in several blood banks. During several centralization

processes, older blood bank registries were merged into newer ones, with donor IDs from

the older ones extended to avoid duplicates in the newer ones. This process has continued

up to 2005, in which one national blood donor database was created, assigning completely

new donor IDs to each donor.
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Donor IDs, from older to newer ones, were linked to each other based on the same

extension process that took place in the 90s. This extension method was collection-site-

specific and was deduced by us from hand-searching dozens of individual donors based on

name, address, date of birth, and gender. Also, we had documentation from two former

divisions (covering 50% of The Netherlands) on the exact method used for extending donor

IDs.

This linkage process resulted in a database of 28,229,353 donations from assumingly

1,5 million donors. For each donation record, haemoglobin and blood pressure was merged

as well, using donor-ID and donation-ID. Missing values gradually decreased over time, from

approximately 95% of donations in the 80s having missing Hb and blood pressure values,

to 65% and 4% in the 90s and 2000s, respectively. Of note, missing values naturally occur

when donors have not been tested because they are deferred for other reasons, e.g. risk

behaviour. In later years, body weight and length was also recorded, which we have used to

calculate the body-mass-index (kg/m2). However, these fields are donor-specific instead of

donation-specific, and are also overwritten throughout visits. Thus, no real longitudinal data

is available for BMI, except over the different databases used over time. Moreover, weight

and length are not always recorded; most often only at the very first visit.

Statistics Netherlands linked donation records based on gender, date of birth, ZIP code,

number of the house, and a validity date (last donation date) to the GBA (municipal population

register). The GBA contains unique national registration numbers as of 1995. Certificates of

death are linked to the GBA for all deaths that have occurred in the Netherlands, and are

subsequently recoded into ICD-9 (1995) and ICD-10 (1996-2010) coding. Cause(s) of death

of Dutch residents who died abroad are commonly not included in the GBA, but date of death

is. A maximum mismatch of 1 in the linkage variables date of birth and gender was allowed.

Of the 28,229,353 donation records, 25,195,010 (89.3%) were linked, of which 28,279 (0.1%)

were linked with 1 mismatch [Figure 5.1]. In total, 3,034,343 (10.7%) donation records were

not linked at all, of which 2,611,593 (86.1%) could not be linked due to missing values in the

primary linkage variables zip code and number of the house, and the remaining 422,750

(13.9%) donation records due to missing values in the secondary linkage variables date of

birth and gender [Figure 5.1].

Study populations

From the donation records that were linked to the GBA, all donors with at least one successful

whole-blood donation were selected. A whole-blood donation with a drawn volume of at

least 100 ml was considered as being successful. Donations with missing donation type

were considered to be whole-blood if: 1) the donor had been given whole-blood previously

or later (the latter one mainly being the case in very old records which did not yet contain

information on donation type); and 2) if the interval between two successful whole-blood

donations was at least 56 days, in concordance with current and past guidelines. Missing

drawn volumes from older donations were ignored for deciding whether the donation was

successful or not, as this was not recorded from the beginning onwards.
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-504,023

-7,889,306 
duplicate 

donations

Selecting successful 
whole blood donations

Selecting donors  2 years between start 
donor career and first donation date

Selecting donors with a 
donor career  10 years

- 1,015 donors 
censored before 

1-1-1995

-3,310 donors with a 
CVD admission within 

first 10 years of career

-795 donors censored 
before 1-1-1995

28,229,353 donations 
from 

± 1,500,000  donors

Linked to Statistics 
Netherlands:

25,195,010

Not linked to Statistics 
Netherlands:

3,034,343

2,611,593 due to
missing zipcode/nr of the house

Missing donation type: 937,601

28,279 linked with 1 mismatch 
in date of birth / sex

20,340,047 donations

433,578 donations assumed to 
be whole blood

14,102,453 donations from 
1,039,247 donors

7,834,298 donations from 
658,817 donors

159,934 donors

158,919 donors

Morbidity Mortality

156,622 donors

155,827 donors

Figure 5.1: Linkage results of the study populations. Donations were linked to Statistics Neth-

erlands (89.3%). Only donors with at least 1 successful whole-blood donation, a completely

recorded donation history (≤ 2 years between start donor career and first recorded donation

date), and a donor career of at least 10 years were selected.
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However, if any previous donation did have a non-missing drawn volume, the donation was

regarded as a (temporary) deferral.

In the Netherlands, donors are first invited for a new donor test, a first visit during which

blood donation is explained and more extensive medical tests are performed. If all test

results are negative and the donor is still willing to become a donor, they are invited for

their first donation within 6 months. Because donations were recorded only from a specific,

unknown date onwards (left censoring), only donors with a recorded donation maximally

2 years after their first recorded new donor visit or first recorded application date were

included. This to ensure that we had the complete donation history of each included donor.

This study uses two different study populations for two different cardiovascular outcomes:

morbidity and mortality. In the morbidity study, donors with a CVD hospital admission in

the first 10 years of the donor career are excluded. Of the 1,039,247 donors with at least 1

successful whole-blood donation, 159,934 (15%) donors had a complete donation history and

had (had) a donor career of at least 10 years [Figure 5.1. This was validated by a successful

whole-blood donation in either year 8 or 9 [Figure 5.2]. Our end-points are only available

as of 1995. Therefore, donors with a last donation date before 1-1-1995 and who were not

known to have had a CVD event and whose deregistration date, if available, was before

1-1-1995, were also excluded.

Morbidity Of the 159,934 donors with a donor career of at least 10 years, 3,310 donors

were excluded because of a cardiovascular hospital admission within the first 10 years of

the donor career [Figure 5.1]. Another 795 donors censored before 1-1-1995 were excluded,

leaving 155,827 donors available for analysis [Figure 5.1].

Mortality From the initial population of 159,934 donors with a donor career of at least 10

years, 1,015 were excluded due to being censored before 1995. This left 158,919 donors

available for analysing CVD mortality [Figure 5.1].

Outcome measurements

Morbidity Dutch Hospital Data (DHD) collects hospital admissions and discharges from all

hospitals in The Netherlands. For each admission, this registry contains the main diagnosis

for which a patient was admitted and subsequently discharged. Recording of main discharge

diagnoses was mandatory up to and including 2005 for all hospitals in the Netherlands.

Thereafter, coverage slowly declined to 86% in 2010 [128]. Diagnoses are recorded according

to ICD-9 coding. The primary outcome for morbidity was the first occurrence of either a

cardiovascular main discharge diagnosis or a primary cardiovascular death (ICD-9: codes

3900 - 4599; ICD-10: codes I000 - I999). Because the GBA consists as of 1995, follow-up data

on cardiovascular discharges and deaths were available from 1995 through 31st December

2010.
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10-year 
qualification period

Follow-up 
period

Application date 
new donor

19901970 2010

t=0

1980 2000

10-year 
qualification period

10-year 
qualification period

Application date 
new donor

t=0

Follow-up period

Follow-up period

Application date 
new donor

t=0

CVD event

Calendar years

Figure 5.2: Diagram of study design illustrating the 10-year qualification period. Although the

qualification period is fixed at 10 years for each donor, the calendar period differs between

donors. Donors starting to donate a long time ago will consequently have a longer follow-up

period (unless they’ve become a CVD case). Follow-up was completed until a CVD event

occurred or until 31st December 2010. The number of whole-blood donations within the

10-year qualification period is used to create sex-specific donation tertiles.
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Mortality The primary outcome in the mortality analysis was cardiovascular death (ICD-9:

codes 3900 - 4599; ICD-10: codes I000 - I999) registered as the primary cause of death.

This is the underlying cause of death that is primarily responsible for the onset of death.

Secondary outcome was cardiovascular death (ICD-9: codes 3900 - 4599; ICD-10: codes

I000 - I999) registered as either the primary or secondary cause of death, the latter being

causes of death that have contributed to the onset or process of death. Of note, one donor

could have both a primary and secondary cardiovascular cause of death, e.g. primary stroke,

secondary atherosclerosis.

Statistical analysis

Starting date was calculated from new donor visit or application date, whichever came first.

For each donor, duration of career was calculated as time since starting date in months.

The number of donations during the 10-year qualification period was used to categorize

donors into high-, medium-, or low frequency donors [Figure 5.2]. As men are allowed to

donate more often (5 times a year) than women (3 times a year), the cut-offs were based on

sex-specific tertiles of number of donations (15 and 22 in men, 12 and 16 in women). All

analyses were performed separately for men and women. From year 11 onwards, considered

as t=0, donors were followed-up until death or censored at December 31st, 2010.

Hb, blood pressure, and BMI were calculated as individual means throughout the 10-year

qualification period and the follow-up period over all donations, including attempts that

resulted in a deferral. Donor characteristics were expressed as medians with interquartile

ranges, as they appeared to be non-parametrically distributed.

Cumulative survival of primary and secondary cardiovascular cause of death was visu-

alized with Kaplan-Meier curves. A log-rank test was performed to test for differences in

survival between the three sex-specific donation tertile groups.

Multivariable Cox regression analyses, with time since 11 donation years (t=0) as person-

time, were performed to adjust for the available potential confounding variables one by one.

We have considered age (at start of the donor career), Hb, SBP, DBP, BMI, and blood type as

potential confounders. Donation tertiles were treated as a categorical variable with the first

tertile as reference group. Data preparation and analysis were performed in SPSS 20.0.0.2

for Windows.

Results

Morbidity

From a total of 17,084,348 person-months, the median follow-up time was 108 (interquartile

range: 63) months. High-frequency donors had a shorter follow-up time [Table 5.1]. High-

frequency donors had more donations during the follow-up period than medium- and low-

frequency donors, indicating that they had continued their donation intensity from the

10-year qualification period [Table 5.1]. In women, high-frequency donors were older at the
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start of their donor career than medium- and low-frequency donors; a difference that was not

observed among men [Table 5.1]. Women also showed a slightly increased blood pressure

with increasing donation tertiles, and this effect carried on during the follow-up period. No

trends were observed in Hb or BMI, except for a small increase during the follow-up period in

blood pressure for all donation tertiles, irrespective of gender.

A total of 9,381 (10.81%) men and 4,338 (6.28%) women suffered a primary cardi-

ovascular hospital admission or death [Table 5.1]. In men, no significant differences were

observed in the Kaplan-Meier curves comparing donation tertiles (p=0.021, Figure 5.3a),

whereas high-frequency female donors seemed to have an increased cardiovascular event

rate compare to medium- and low-frequency donors [p=0.001, Figure 5.3b]. Adjusted for age,

men still not differed in cardiovascular hazard across donation tertiles, with a hazard rate

ratio (HRR) of 0.99 (95%-CI: 0.94 to 1.04) [Table 5.1]. However, women showed a reduction

in cardiovascular hazard associated with high-frequency blood donation (HRR=0.90, 95%-CI:

0.84 to 0.97) compared to low-frequency donors [Table 5.1].

Mortality

Median follow-up time was 113 (interquartile range: 61) months from a total of 18,128,762

person-months, and was longest in low- and medium frequency donors [Table 5.2]. Medium-

and high-frequency donors also donated more often during follow-up, and had more often

blood type 0 (especially 0-) [Table 5.2]. During follow-up, blood pressure increased equally

within sex-specific donation tertiles [Table 5.2]. Women in the upper two donation tertiles

were older at the start of their donor career and had a slightly higher blood pressure both

during the qualification period as well as during follow-up.

Of the 158,919 donors, a total of 3,859 (2.43%) donors were deceased, of whom 875

(0.55%) suffered a primary cardiovascular death, and another 362 (0.23%) suffered a

secondary cardiovascular death. Overall death rates and cardiovascular mortality were lower

in women than in men [Table 5.2].

In men, both primary (p=0.526) and primary and secondary cardiovascular survival

combined (p=0.234) was comparable across donation tertiles [Figure 5.4a and 5.4b]. The age-

adjusted HRR of high-frequency donors comparing the hazard rate of primary cardiovascular

death with low-frequency donors was 0.94 (95%-CI: 0.78 to 1.12).

In women, primary cardiovascular survival was also comparable across donation tertiles

(p=0.128, Figure 5.5a), whereas primary and secondary cardiovascular survival combined

significantly differed (p=0.003, Figure 5.5b) in favour of low- and medium frequency donors.

The age-adjusted HRR of primary cardiovascular survival was 0.83 (95%-CI: 0.56 to 1.22) for

high-frequency donors compared with low-frequency donors [Table 5.2].

In both men and women, medium-frequency donors had a less-pronounced decrease in

primary and secondary cardiovascular death combined than primary cardiovascular death

alone, whereas high-frequency donors had an equal hazard rate for primary and secondary

cardiovascular death combined compared with low-frequency donors [Table 5.2].
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(a) Primary cardiovascular morbidity based on hospital admissions and causes of death in men

(b) Primary cardiovascular morbidity based on hospital admissions and causes of death in women

Figure 5.3: Kaplan-Meier curves of cumulative cardiovascular disease-free survival, separ-

ately for sex-specific donation tertiles based on the number of donations in the first 10 years

of the donation career. Follow-up starts at year 10 (t=0).
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(a) Primary cardiovascular death in men

(b) Primary and secondary cardiovascular death combined in men

Figure 5.4: Kaplan-Meier curves of cumulative cardiovascular survival in men, separately

for donation tertiles based on the number of donations in the first 10 years of the donation

career. Follow-up starts at year 10 (t=0).
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(a) Primary cardiovascular death in women

(b) Primary and secondary cardiovascular death combined in women

Figure 5.5: Kaplan-Meier curves of cumulative cardiovascular survival in women, separately

for donation tertiles based on the number of donations in the first 10 years of the donation

career. Follow-up starts at year 10 (t=0).
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Discussion

This study found a protective effect of long-term, frequent whole-blood donation on car-

diovascular morbidity and mortality in women from the cohort of all Dutch whole-blood

donors, but not in men. Women with a high donation frequency during the first ten years

of their donation career had a decrease of 10% in cardiovascular morbidity and 17% in

cardiovascular mortality compared to women with a low donation frequency. In men, the

respective numbers were 1% and 6%.

Previous studies were often challenged by the healthy donor effect; an effect that would

lead to potentially biased results as a consequence of repeatedly applied health criteria to

the donor population to commence donorship. We have aimed to minimize such an effect by

only including donors that were able to donate for at least 10 years, meaning that they must

have had at least one successful whole-blood donation from year 10 onwards and donated

at least once in year 8 or 9.

In a simulation study from our own research group, we have previously demonstrated

that the use of such a qualification period does decrease the Healthy Donor Effect that

normally occurs by comparing high- and low frequency donors based on the lifetime number

of donation (unpublished data). When using the lifetime number of donations at the end of

follow-up, this will be inevitably associated with survival time since reaching a high number

of donations requires more disease-free survival time. The biggest advantage of using

a 10-year qualification period, is that the exposure frequency (i.e. number of donations)

is determined separately from the follow-up period in which cardiovascular events are

measured. The number of blood donations used to compare donors with different exposure

levels is therefore no longer per definition related with survival time. However, the simulation

study also showed that the HDE-bias is not completely eliminated with a qualification period,

especially when the period used is longer and the protective effect of blood donation is small

relative to other causal factors of CVD-risk. Nonetheless, this approach still yields better

results than the conventional one using lifetime number of donations.

Another advantage of this time-window between exposure and outcome measurement,

is the circumvention of the need to use so-called latency periods to avoid reverse causation

bias. This means that incipient cardiovascular disease in donors could lead to a lower

donation intensity in his/her last years of donorship, and that subsequent cardiovascular

death is erroneously associated with a lower donation intensity, frequency, or duration of the

donor career. Such an association is less likely in our design, as the exposure was determined

at least 10 years before any cardiovascular outcome could have occurred. This study is the

first study to have used the qualification period approach to estimate the effect of blood

donation frequency on cardiovascular disease.

In a previous study from Meyers et al., a somewhat comparable approach was used with

a period of 3 years [47]. However, this period of 3 years was set between 1988 and 1990,

and not within the first years or a fixed moment of the donor career. Within these 3 years,

donors could qualify themselves as a frequent donor (> 1 unit of whole-blood each year) or a

casual donor (1 unit of whole-blood in that 3-year period).
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The attempt made by Meyers et al. is very honourable, and their study was actually one of

the first that specifically aimed to avoid this bias. The results from Meyers’ study indicated a

protective effect of frequent blood donation on cardiovascular events (adjusted Odds Ratio

of 0.60, 95%-CI: 0.43 to 0.83), a much more pronounced effect than our current study. Of

specific interest, the effect of frequent donation was larger in women (adjusted OR=0.25,

95%-CI: 0.09 to 0.73) than in men (adjusted OR=0.67, 95%-CI: 0.47 to 0.94), completely

in line with our own findings. Likewise, a recent study on all-cause mortality found that

the inverse association between donation rate and mortality was smaller in men (mortality

rate ratio, MRR=0.89, 95%-CI: 0.86 to 0.92 per donation/year) than in women (MRR=0.84,

95%-CI: 0.78 - 0.91) [125]. The researchers from this group also made an appreciable effort

to eliminate the healthy donor effect by adjusting for a variable that predicted ongoing

donation based on the donation rate among donors with a last donation at ages 64.5-65

years who survived at least 2 years thereafter. However, they also could not interpret their

results as conclusive evidence of a beneficial health, as they were unsure whether a residual

HDE was still present.

This increased protective effect in women seems surprisingly. Until now, men were

hypothesised to gain more from regular blood donation as they have higher iron stores [129].

Perhaps women do reach a sufficiently low iron level, whereas men do not. The fact that

Meyers et al. found women to benefit from blood donation was explained by their exclusion

of women younger than 50 years at baseline, meaning that virtually all donors were post-

menopausal and theoretically able to benefit from iron loss. In contrast, our female donors

were all quite young at baseline, still in their early 30s, thus in their early 40s at the start of

follow-up. Galesloot et al. also observed that hepcidin and the hepcidin/ferritin ratio were

associated with presence of atherosclerotic plaque in postmenopausal women but not in

men from the general population [130]. With respect to cardiovascular disease, known risk

factors contribute differently to disease risk in men and women, in large part modified by

differences in hormonal status affecting lipid profiles, body fat distribution, insulin resistance,

endothelial function, and coagulation and fibrinolysis [10–12, 131]. Reducing oxidative stress

through blood donation-induced iron depletion could therefore yield increased protective

effects in women to counteract the damaging effects of menopause.

A drawback of our design is that our donors might not have had a sufficient follow-up

time to investigate cardiovascular mortality; our donors were quite young when they started

donating, being in their mid-30s. Requiring a 10-year cardiovascular survival to be included

in the study implicates that donors were generally young. As a result, our donors were in

their mid-40s when follow-up started, and with a maximum follow-up time of approximately

25 years, our donors were only yet around mid-60s at the end of follow-up. Thus, it is highly

likely that our donors were still too young to die of cardiovascular disease; mean age of

cardiovascular death was 77 years in men and 84 in women in the general Dutch population

in 2012 [7]. Indeed, our results do indicate that age at start of the donation career was an

important contributing factor. In the unadjusted analyses in women, the effect estimates

pointed towards a slight increased risk of medium- and high-frequency donors (data not
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shown), who were also older at the start of their donation careers. When adjusted for age, the

effect estimates reversed to a slight protective effect, implying that the age difference was

part of the explanation of the initially increased risk in female medium- and high-frequency

donors. From a biologic perspective, it should be emphasised that including such young

donors at the start of their donation career is important to study true protective effects of

blood donation, as it should have ample opportunity to slow down the disease process.

The strongest support for an insufficient follow-up time in our mortality study to demon-

strate protective effects, are the results of the morbidity study. Because these occur earlier

in life, the power increases to detect differences between the donor groups as more case-

patients are observed. Indeed, even with half the incidence of that in men, (borderline)

significant effects were observed in women. Of interest though, the size of the effect estim-

ates of blood donation on mortality were larger than on morbidity. The difference between

the two cardiovascular endpoints lies in an earlier detection and thus stage of the disease.

After being admitted to a hospital for cardiovascular disease, other factors come in play that

determine the course and progress of the disease until eventually death occurs, such as

treatment. A large contributing factor for the differences between morbidity and mortality

thus lies within the therapy that a donor received after having survived the initial cardiovas-

cular incident. Without the availability of treatment data, and without being able to exclude

an association with donation frequency in the first ten years, it can be argued that the effect

size of our morbidity study is a more accurate measure of the actual effect size of blood

donation as therapeutic effects are less expected to have influenced morbidity data.

The current study was short in data on known potential confounding factors such as BMI,

blood type, smoking behaviour, dietary iron intake/supplementation, and blood pressure

to completely adjust for it or study their contribution to the relation of blood donation

and cardiovascular mortality. Assuming that high-frequency donors represent a healthier

subdomain of the donor population, with less donors smoking, not accounting for such

confounding factors would mean an overestimation of the protective effect of high-frequency

blood donation in the current study: a residual healthy donor effect. To investigate the

likeliness of such a healthy (self)-selection, we have examined the association between

donation frequency and smoking behaviour, medication use (for lipids, hypertension, and

glucose), physical activity, and prevalence of metabolic syndrome (MetS) among donors

from the CARDON-study (N=633, age ≥ 45 years) [74] who have had remained active for

at least 10 years and whose measurements were conducted after the 10-year qualification

period. In both men (n=315) and women (n=134), the tertiles based on the number of

donations in the first 10 years of their donation careers were not statistically significant

associated with a higher proportion of never-smokers, ranging from 31% in the lowest tertile

to 37% in the highest tertile. Medication use was higher in the second and third donation

tertiles in women, even statistically significant for lipid-lowering drugs. No differences

were observed among men. Physical activity was lowest in the first donation tertile and

highest in the second donation tertile in both sexes. Prevalence of MetS was highest in the

third donation tertile, even after adjustment for age at start donation career, BMI, hs-CRP,
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smoking, having ever been a plasma donor, having a family history of CVS, physical activity,

and postmenopausal status, and this difference persisted upon adjustment for ferritin and

hepcidin as a measurement of iron stores and distribution, respectively. These associations

indicate that donors with a high donation frequency in the first ten years of their donation

career actually have a less favourable cardiovascular risk profile, which therefore unlikely

explains the lower morbidity and mortality rate in high-frequency female donors. Of note,

our simulation study has also shown that the healthy donor effect increases with increasing

causal effects of iron stores (and thus blood donation) on cardiovascular risk. Although we do

not know the true causal contribution of iron to cardiovascular risk, given the inconsistencies

between the studies conducted so far should indicate that it is unlikely to be a tremendous

causal factor. Taken together, our results might not have been that much biased by a residual

healthy donor effect, although we cannot rule out completely that (female) donors who

donated more often during their first 10 years of their donation career were already more

healthy to begin with.

In light of previous studies that were embedded within the donor population, our results

provide new insights. No protective effect of frequent blood donation on cardiovascular

incidence has been reported since the study from Meyers and co-workers [46, 47, 52].

With the 10-year qualification period decreasing but not completely eliminating the

healthy donor effect-bias, this study showed promising reductions in cardiovascular morbidity

and mortality associated with high-frequency blood donation during the first 10 years of the

donor career, only in women. We conclude that long-term, high frequency blood donation

might reduce cardiovascular disease in women, and encourage future research into sex-

specific effects of blood donation on cardiovascular disease.





Chapter 6

General Discussion

The aim of this thesis was to test whether lowering iron stores by means of frequent blood

donation prevents cardiovascular disease, thereby taking into account the methodologically

challenging healthy donor effect. The main finding of this thesis is that blood donation

could indeed protect against cardiovascular disease in women, but not through metabolic

improvements.

By tapping each aspect of developing cardiovascular disease, moving from early cardi-

ometabolic risk factors, to subclinical atherosclerosis, to cardiovascular illness, and eventually

to cardiovascular death, this thesis has attempted to open the black box of blood donation

and cardiovascular disease. How do the findings piece together and what is the state of

affairs?

97
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6.1 Account and Accountability

In Chapters 2, 3, 4, and 5 a flow of the research was presented that was conducted within

diverse study populations, as to give substance to the preventative hypothesis of blood

donation. We started off exploring the immediate and short-term effects of blood donation, all

the way across the continuum of biochemical pathways, towards subclinical atherosclerosis

and clear manifestations of cardiovascular morbidity and mortality.

Cardiometabolic Risk

The availability of data and cost constraints for additional measurements have driven us

first to conduct a study among 120 first-time donors at baseline, aged ≥45 years, who

were invited by postal mail to participate in the so-called CARdiovascular risk and DONation

(CARDON)-study [Section 2.1]. After a median period of 20 months, all of them were re-

invited to participate in follow-up measurements for insulin resistance (HOMA2-IR) and other

cardiometabolic risk factors. Within that follow-up period, they showed a range of 0-9 blood

donations, with a median number of 3. We observed that iron stores were greatly reduced

by the donations, but insulin resistance increased instead of decreased as was hypothesized,

especially in women. The observed increase in insulin resistance was best explained by

ageing.

The following study was intended to employ the concept of blood donation in greater

detail by looking at the intensity of donation: a combination of donation career in years and

donation frequency per year [Section 2.2]. To this extent, the CARDON-study was expanded

to a random sample of 422 male and 211 female active whole-blood donors, ≥45 years of

age, for a cross-sectional study. Lipids, glucose and iron parameters were measured after

overnight fasting and presence of metabolic syndrome (MetS) was determined. Again, iron

levels were lower in high-intensity donors. MetS appeared to be present in one-quarter

of the donors. We made contrast on the donation exposure by categorization of donation

intensity into low, medium, or high based on sex-specific tertiles of donor career and donation

frequency per year. Unexpectedly, the low and high part of the donation spectrum did not

yield consistent differences in MetS prevalence. Results suggested a higher prevalence of

MetS in high intensity donors; an effect most pronounced in non-obese women. It should

be mentioned, though, that iron parameters did not follow the hypothesis either as they

appeared not to be involved in any of these associations.

Subclinical Atherosclerosis

The next step was to explore the more stringent parts of the disease spectrum with the

inclusion of subclinical atherosclerosis [Section 3.1]. From the large-scale population-based

Nijmegen Biomedical Study (NBS) we were able to match 1491 NBS-2 participants (aged

50-70 year) to Sanquin’s blood bank registry based on sex, date of birth, and last name. Of

these, 272 persons were linked to the blood bank registry, and NBS data on non-invasive
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measurements of atherosclerosis (NIMA), blood variables, and a self-administered question-

naire were added. NIMA measurements consisted of carotid IMT of the common carotid

artery, ankle-brachial index (ABI), and pulse-wave velocity (PWV). Across the sex-specific

tertile groups of lifetime number of donations containing approximately 90 donors each,

ferritin and hepcidin were lower in high-frequency donors compared to low-frequency donors.

Donors in the third sex-specific donation tertile had on average a 0.3% lower IMT values,

a 2.1% higher PWV value, and a 1.5% higher ABI compared to donors from the first tertile.

With such small differences and no consistent trend across donation groups, it could not be

concluded that blood donation has a beneficial benefit on the extent of subclinical athero-

sclerosis. In interpreting the findings, however, a few things became clear, especially that

time since last donation in the first tertile was 9.7 yr, whereas in the third tertile it was 1.4 yr.

Therefore, we performed a post-hoc analysis among currently active donors (at least one

donation in the last two years), which confirmed the null-results found in the entire study

population.

Qualification Period

For the next study, we wanted to investigate cardiovascular morbidity and mortality using

’big data’ from Sanquin Blood Bank of all Dutch whole-blood donors ever. Although we had

already reduced the ’Healthy Donor Effect’ phenomenon by not comparing the donation

population with the general population, we were still facing selection and confounding issues

as defined by Femke Atsma and co-workers. Because overt cardiovascular disease more likely

occurs outside the donation career, comparing high-frequency donors with low-frequency

donors should not become a comparison of active with stopped donors. Besides, blood

donation was assumed to require a longer period of commencement to prove its preventive

capabilities on such longterm outcomes. As a possible solution to both issues, we wanted to

adopt a qualification period of ten years: whole-blood donors should have remained active

for at least ten years. Adherence to such a qualification period of donation was the central

prerequisite. After that, donors were categorised into donation tertiles according to the total

number of whole-blood donations during this 10-year qualification period.

Healthy Donor Effect

Whether such a qualification period would successfully eliminate the HDE-bias but still left

room for detecting a preventive effect of blood donation, was investigated with a simulation

study [Section 4.1]. The endeavours of a cohort of 1,000,000 persons were simulated, with a

maximum follow-up of 300 months during which donating lowered iron stores. Cardiovascular

risk increased based on iron stores and lifestyle, representing all other causal risk factors

of CVD. Transition probabilities from being a non-donor to an active donor, and from active

to stopped donor, as well as the probability to donate were either completely random or

dependent on CVD-risk: the selection processes inducing HDE. Both simulation scenarios

(with a random or healthy donor selection) were analysed with the conventional lifetime
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number of donations approach and a 1, 5, 10, 15 and 20-year qualification period approach.

Cox proportional hazards modeling estimated the crude and lifestyle-adjusted hazard rate

ratio (HRRs) for high- vs. low-frequency donors, a categorisation that was either based on

the number of donations during the qualification period or the lifetime number of donations.

Using the lifetime number of donations severely overestimated the protective effect of blood

donation.

Even when no causal effect of iron stores was simulated and donors were randomly

selected, high-frequency donors appeared to have a reduced cardiovascular hazard rate

(HRR=0.67); a time-effect that is entirely attributed to the association between the life-

time number of donations and disease-free survival time. More mimicking reality with the

scenario of a small causal effect of iron stores and a healthy donor selection, the HRR of

the qualification periods decreased with increasing qualification periods to converge to the

conventional lifetime approach (0.16), with HRR=0.83 for a 1-year qualification period and

HRR=0.17 for a 20-year qualification period. The magnitude of the HDE-bias increased with

longer qualification periods and a larger causal effect of iron levels on CVD-risk. Adjusting for

lifestyle attenuated the HRRs only in the scenario of a healthy donor selection, and especially

when the causal effect of iron levels was relatively small and longer qualification periods

were applied. Using qualification periods does decrease the magnitude of the HDE-bias, but

does not completely eliminate this type of bias.

The lessons learnt from the simulation were that the qualification period is better than

the conventional approach of lifetime number of donations in eliminating the HDE-bias, and

on the pivotal influence of the duration of the qualification period affecting the magnitude of

the HDE-bias. Another important lesson was the relatively large contribution of other causal

CVD factors that acted as confounders due to the healthy donor selection processes, mainly

in the situation where the true preventive effect of lower iron levels is small. This emphasises

the need to measure all other causal CVD factors.

Cardiovascular Outcomes

With this knowledge, we carefully continued investigating cardiovascular morbidity and

mortality, applying the new and stringent design considerations regarding to the healthy

donor effect [Section 5.1]. A qualification period of ten year was used to include donors and

follow them up on cardiovascular morbidity (investigated in 155,827 donors) and mortality

(investigated in 158,919 donors) using hospital discharge diagnoses and death certificates

from Statistics Netherlands. The median age at start of donor career appeared to be 34 yr

(IQR: 16). For this young population, the median follow-up time until cardiovascular hospital

admission, death, or end-of study, was 108 (interquartile range: 63) months from a total

of 17,084,348 person-months. A total of 9,381 (10.81%) men and 4,338 (6.28%) women

had a primary cardiovascular hospital admission or death. Compared with low-frequency

blood donation and adjusted for age at start of the donation career, high-frequency blood

donation was associated with a reduced cardiovascular morbidity in women (hazard rate
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ratio, HRR=0.90, 95%-CI: 0.84 to 0.97), but not in men (HRR=0.99, 95%-CI: 0.94 to 1.04).

The population in which cardiovascular mortality was studied had a slightly larger follow-up

time, with a median of 113 (interquartile range: 61) months from a total 18,128,762 person-

months. Primary cardiovascular mortality was confirmed in 876 (0.55%) donors. The relation

between donation frequency during the first ten years of the donation career and primary

cardiovascular mortality was more pronounced than was observed with cardiovascular

morbidity (women: HRR=0.83, 95%-CI: 0.56 to 1.22, men: HRR=0.94, 95%-CI: 0.78 to 1.12).

The young age of this population could have resulted in an insufficient follow-up period to

detect the required number of cardiovascular fatalities for statistical significance, but the

point estimates seem promising.

The only protective effect found was that on cardiovascular morbidity and an encouraging

but not (yet) statistical significant effect on mortality; can we now conclude that blood

donation is preventive for cardiovascular disease? A critical appraisal of the results learns that

the HDE and perhaps residual "confounding" is the actual explanation of the observed (small)

protective effects of blood donation. As the simulation study relies on many assumptions of

not only the magnitude of the causal effect of iron levels, but also the strength of the healthy

donor selection, we must address if and how much the HDE-bias accounts for the results, as

well as other sources of influence from choosing specific study designs and -populations.

6.2 Methodological Considerations

The hypothesis that blood donation lowers cardiovascular disease risk mainly relies on

the subsequent decrease in oxidative stress due to iron loss. Oxidative stress not only

affects glucose metabolism by increasing insulin resistance, but also damages the vascular

endothelium directly and enhances the formation of foam cells in the atherosclerotic process.

These are all intermediary outcomes of cardiovascular disease. This thesis has not found

protective effects of blood donation on such intermediary outcomes, but a (slight) protective

effect on cardiovascular morbidity and promising effects on cardiovascular mortality were

found in women. How should the discrepancies in these results be explained? Does the

choice for specific study populations, in order to minimize a type of bias called the healthy

donor effect, have a role in this? Throughout this thesis, this methodologically challenging

aspect of performing health research in donors has been addressed. Do the main findings of

this thesis now point to a causal effect of blood donation on cardiovascular disease risk, or

should they be interpreted as biased results? This section addresses several methodological

aspects that need to be considered before arriving at final conclusions.

Study Populations

All of the studies in this thesis were conducted within the donor population at large, i.e. not

using information from the general population. Because of all the health criteria that donors

must meet in order to become a donor and continue donating, they are generally healthy.
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As such, they might not have had that much to gain from blood donation, with already low

cardiovascular disease risks not really an at-risk group, and probably not that high in body

iron stores. Then again, the participants from the CARDON-study were intentionally selected

on their slightly increased risk because one of the inclusion criteria was an age of at least 45

years. This to ensure that early deteriorations in cardiovascular risk would be detectable at

all. Likewise, the age criteria of the Nijmegen Biomedical Study participants (50 - 70 years)

increased the likelihood of detecting subclinical atherosclerosis.

However, it could have occluded a cardiovascular benefit if they had already been

exposed too long to the damaging and irreversible effects of iron and other cardiovascular

risk factors. If irreversible damage had already occurred, either by the damaging effects

of iron-catalysed hydroxyl radicals or other factors, these donors wouldn’t have had that

much to gain from blood donation. The importance of the age at which someone starts

donating seems to be confirmed by the findings of a protective effect in the population that

was relatively young (median age 34 years) in which cardiovascular morbidity and mortality

was studied, whereas no beneficial effects were found in the CARDON-study on insulin

resistance which included first-time donors with a median age of 52. Of note, the age at start

of the donation career is unlikely to explain the null-results in either the CARDON-study on

metabolic syndrome (median age 36 years) or the Nijmegen Biomedical Study on subclinical

atherosclerosis (median age 39 years).

When considering the possible dose-effect relationship between iron and cardiovascular

disease, one could imagine that there is a steep curve in the upper range of iron levels,

and a much more flat line in the lower range of iron levels. Therefore, when someone has

really high iron levels, a decrease of, say 50%, could have tremendous beneficial effects

on cardiovascular disease risk, whereas such a decrease in donors with already low iron

levels would not have a similar effect on their CVD risk. This seems plausible as many

observational studies have found high ferritin levels to be predictive of type 2 diabetes

mellitus and cardiovascular disease, but when lowering iron stores in blood donors there is

not a directly protective effect [Chapters 2 and 3], rather only a long-term one [Chapter 5].

Since our donors are generally healthy, it can be assumed that they would have iron

levels in the low-to-normal-range. This is plausible because chronic subclinical inflammation

increases hepcidin expression [24, 132] and ferritin also acts as an acute phase react-

ant [133], both increasing systemic iron levels in diseased individuals [59]. This iron increase

is also often seen in chronic metabolic conditions [21], making it quite difficult to test the

iron-hypothesis, as it remains unsure whether iron affects the metabolic alterations or the

other way around.

Most of the studies in this thesis showed higher blood pressure and body weight/BMI

with increasing donation intensity. If this association is relatively stronger than that between

lower iron stores and a reduced cardiometabolic risk, than this could be the explanation of

our null-/contra hypothesized results. If metabolically less healthy donors happen to donate

more often, then high-intensity donors would have an increased cardiometabolic risk that is

probably not to be averted with lowering iron stores through donating blood. In this case, it
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would take a lot more time for blood donation to counteract such associations and reveal its

protective effect.

Therefore, the duration of the donation career could also be of great importance, and

some of the studies in this thesis may lack a sufficient time-window to truly reveal a pro-

tective effect. It can be argued that only continuing donating for at least 10 years with an

adequate number of whole-blood donations per year would be sufficient to truly lower one’s

cardiovascular risk. This idea seems to be confirmed by the protective findings of blood

donation on cardiovascular morbidity and mortality [Chapter 5]. In some of the other studies

in this thesis, however, the number of blood donations and the duration of the donor career

were possibly insufficient, not providing enough time to exert beneficial effects of repeated

blood donation.

Healthy Donor Effect

One of the largest scientific concerns of previous studies that aimed to investigate the health

effects of blood donation, was a type of bias that is referred to as the healthy donor effect

(HDE). Although blood donors are a subgroup of the general population, they actually differ

in many respects from their source population.

First of all, there are physical entry requirements for blood donors. First-time donors

must be between 18 and 65 years old, whereas active blood donors may continue to donate

until they are 70 years old. The average age of Dutch whole-blood donors is consequently

around 45, whereas this is 40.6 years for the general population in 2012. In light of this

thesis’ scope, other criteria are more important such as blood pressure (50 - 100 mmHg

diastolic and 90 - 180 mmHg systolic), body weight (> 50 kg), and capillary haemoglobin

level (7.8 - 11.0 mmol/L for women and 8.4 - 12.0 mmol/L for men before donation).

Second, donors differ in psychological profile and (health) behaviour from the general

population. Donors are more often religious, married, higher educated, low-risk takers,

and have a higher socio-economic status than non-donors [134, 135]. Behaviour that is

accompanied with an increased risk for infectious disease is less common among blood

donors. Moreover, donors highly appreciate the medical screening before each donation. As

a result, donors constitute a healthier self-selected subdomain of the general population.

All of the above criteria and factors also contribute to differences between low- and

high-intensity donors and long- and short-career donors [136]. Someone’s health status

affects the likelihood of a future donation [53]. These factors would thus correlate well with

donation frequency and duration of the donation career, thereby being potentially important

confounding factors.

Furthermore, blood donation could affect some of these factors causally. Haemoglobin

levels decrease following blood donation due to erythrocyte loss. Blood pressure could also

be (temporarily) decreased after donating blood [97]. In addition, haemoglobin and blood

pressure are longitudinally related to each other [137]. This makes haemoglobin and blood

pressure also intermediary factors at the same time, which means that these factors are
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not only causally related to blood donation and cardiovascular disease, but are also direct

effects of blood donation. This makes it impossible to simply adjust for these factors, as it

would completely over-adjust the effect of blood donation on cardiovascular disease, leading

to a null-result.

Atsma and co-workers have laid an important foundation for the subsequent handling

of the Healthy Donor Effect in donor research [138]. They have not only identified different

types or moments of selection inducing the HDE, they have also provided scientific evidence

of the magnitude of the HDE [53]. Comparing high-frequency donors to low-frequency

donors within the currently active donor population yielded the smallest deviations from

equality [53]. Until now, the recommendation from Atsma and co-workers to embed donor

research within the active donor population was leading. However, when studying disease

outcomes that also occur outside the active donor career, such as cardiovascular mortality,

a need for another approach arises to avoid comparing active donors with stopped donors.

Simulation models

Separating the period in which donation frequency is determined from the period in which

the outcome can occur, was hypothesized to reduce the bias as imposed by the Healthy

Donor Effect. This can be achieved by the application of a qualification period, which means

that only donors who were able to remain an active donor throughout the entire qualification

period are selected. Then, the number of donations within this qualification period is used

to distinguish high- and low-frequency donors. Using simulation models that mimicked

the protective effect of blood donation on CVD risk, the effect of analysing techniques on

datasets with and without a healthy donor selection were compared [Section 4.1].

One of the most interesting findings from the simulations was that even without a healthy

donor selection (and even without a protective effect of blood donation on CVD risk), there

appeared to be a Healthy Donor Effect bias when comparing the hazard rate of CVD events

between high-frequency and low-frequency donors based on the total lifetime number of

donations. This is a result of high-frequency donors having a higher survival probability,

regardless of beneficial effects of blood donation or pre-donation selection on health criteria.

In fact, high- and low-frequency donors are already selected on the cardiovascular outcome,

as the lifetime number of donations is directly related with survival-time. This phenomenon

is quite comparable to the relation between the number of birthdays and someone’s age.

The most important result from this simulation study is the near-complete elimination

of the HDE-bias when a very short qualification period is applied, but this increases to that

observed in the conventional lifetime number of donations approach when the qualification

period increases to 20 years. The second most important finding is that a larger contribu-

tion of ferritin to CVD risk, i.e. a larger protective effect of blood donation, increases the

magnitude of the HDE-bias. They seem to positively feedback one another.
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Moreover, the balance between ferritin and other causal risk factors determined how the

magnitude of the HDE-bias changed over different qualification periods. A smaller effect of

ferritin on CVD-risk increases the importance of other causal risk factors, especially when

longer qualification periods are applied. These other causal CVD-factors then operate as

confounders, even though they are not directly associated with donation frequency.

These findings combined, the HDE-bias is smallest when the qualification period is short

(one year) and the causal effect of ferritin is small. Naturally, this approach is not plausible

in situations where exposure has a lagged or long-term effect on disease occurrence, such

as assumed in blood donation and cardiovascular disease. Longer qualification periods are

then required. The simulation study emphasises the importance of adjusting for any other

causal factor of CVD when such a 10-year qualification period is applied, especially if the

true protective effect of blood donation is small relative to these causal factors of CVD.

Disease Mechanisms

Besides other or unknown pathways, this thesis has solely focused on one of two openly

hypothesized branches (iron and viscosity) of mechanistic pathways from blood donation to

a reduced CVD risk: iron [Figure 1.3]. The other hypothesised pathway, viscosity, has not yet

received that much attention in relation to blood donation in the scientific literature [40, 41].

However, it has deserved a profound place in the clinical literature, and is a widely recognised

risk factor for rupture of vulnerable atherosclerotic plaques [139]. Viscosity translates best as

the thickness or stickiness of blood. Increased viscosity means an increased number of cells

in the blood and a subsequent increased frictional resistance of the moving blood with the

stationary vascular wall. This friction or shear stress is an important biomechanical risk factor

for a vulnerable plaque to erode and rupture [139]. Moreover, during diastole, more blood

cells will reside along the endothelium, especially in places of low shear stress, enhancing

the aggregation of erythrocytes and thrombocytes and creation of a thromboembolism [42].

These aspects were not specifically addressed in this thesis. Since the studies in this

thesis did not confirm the pathways of metabolic improvements or subclinical atheroscle-

rosis, studies pursuing the effects of blood donation on viscosity are encouraged to study

alternative pathways. Such studies could use the same methodology, as viscosity gradually

decreases with volumes drawn. The number of blood donations could therefore be a good

determinant to investigate the effects of blood donation on viscosity and atherosclerosis.

Because of this resemblance, it seems unlikely that studies hypothesising an effect of blood

donation on viscosity and atherosclerosis would yield entirely different results. However, not

all effects of viscosity on cardiovascular disease act through atherosclerosis, thus leaving

alternative mechanistic pathways as an explanation of the inconsistencies in the studies in

this thesis. Additionally, studies that would simultaneously investigate effects of blood dona-

tion on viscosity and atherosclerosis could provide new insights into possible overlapping

mechanisms, such as lipid profile changes.
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6.3 Further Issues

We now have learned that blood donation likely does not immediately improve cardiometa-

bolic risk factors, but its preventive effects on cardiovascular disease cannot be excluded

either. This congruency could point to the pathway of atherosclerosis, perhaps via viscosity,

although no effects were found on a subclinical level in this thesis. Also, other pathways

might be involved. What does this thesis holds for future science, and which issues should

be borne in mind?

The Struggle of Subject Matter and Methodology

Throughout this thesis, the healthy donor effect has led to the search for alternative meth-

odologies. Meanwhile, the biologic concept of blood donation, lowering iron stores, and

decreasing cardiovascular disease has required other methodological approaches. The idea

that a specific contrast should be present in the donation spectrum, directly imposes the

possibility of the HDE. In search for the optimal contrast between donor groups, using the

lifetime number of donations, the donation frequency per year, and the duration of the donor

career, supports the biologic concept of blood donation. At the same time, increasing the

contrast in the donation spectrum increases the possibility of HDE-bias.

When beginning from the methodological perspective, the simulation study showed that

a qualification period of 1 year had the least biased results in terms of the HDE. However,

the effect of such a short period of blood donation on reducing cardiovascular disease

seems hardly plausible from a biologic point of view, which actually suggested a 10-year

qualification period. Future research should be aware of the importance of starting age, the

duration of the donor career, and the way the true causal effect of blood donation directly

determines the magnitude of the HDE-bias.

Does Gender Matter?

The studies described in this thesis used tertile scores of the number of donations to

determine high- and low-frequency donors. These tertiles were consistently calculated

separately in men and women, and all but one study also presented the results separately

for men and women. Was there a need to do so? One reason was the different donation

trajectories that men and women have; men are allowed to donate more often than women,

and they also differ in psychological terms from each other in blood donation behaviour.

For example, no-show behaviour, stress responses, coping with adverse reactions of blood

donations lead to different donation careers in men and women.

Another reason is the effect of blood donation on iron homeostasis; men tend to normally

build up their iron levels over the years, whereas women stay at a relatively low but stable

level until menopause as a result of menstrual blood loss and pregnancies. The exact effect

of blood donation on iron homeostasis could therefore very well differ between men and

women. The last reason is that, combined with the above mentioned factors, men and
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women have a different causal risk model for CVD that is still not entirely understood [10].

Thus, it seemed appropriate to treat men and women separately in the analyses.

The results of the individual studies confirm the need for separate analyses of men

and women, and are in accordance with gender differences that have also been observed

in other studies [47, 102, 104, 130]. However, there are many inconsistencies in the

direction of the observed differences. In some instances, only men seem to benefit from

blood donation [44]. This seems plausible as they are the ’naturally’ high-risk group in

terms of iron levels [129]. However, other studies found a beneficial effect that is larger in

(postmenopausal) women [47, 49].

The results from the cross-sectional CARDON-study among active donors also point

to probable differences in the association of iron parameters and metabolic syndrome

prevalence [Section 2.2]. In men, high ferritin levels were mainly associated with metabolic

syndrome prevalence, whereas hepcidin was more closely related with metabolic syndrome

cases in women. Interestingly, others have argued that the combination of hepcidin and

ferritin, as represented by the hepcidin-to-ferritin ratio, is more meaningful in determining

subjects at high risk for cardiovascular disease [140]. The biggest clue to different effects in

men and women in this thesis was the study on cardiovascular morbidity and mortality, with

only an effect in women. As it yet remains undetermined, continuing the separate analysis

of men and women seems appropriate.

Beyond Cardiovascular Disease

How should the overall result of this thesis be interpreted in light of other, comparable

studies? In Table 6.1, an overview of all studies that have been conducted in healthy subjects

who were or could have been blood donors, is provided. It covers a total of 17 studies among

which only 3 trials, and includes 4 studies from this thesis. A total of 7 concluded a beneficial

effect of blood donation.

So far, all of the previous observational studies that did find an effect of blood donation,

are highly likely explained by the Healthy Donor Effect, except for the retrospective cohort

study by Meyers et al., also using a somewhat similar approach with a 3-year index period in

which donation frequency is determined. They concluded that frequent blood donation is

associated with a reduced cardiovascular risk, especially in women. This is quite comparable

to the study in this thesis on cardiovascular morbidity and mortality with a 10-year quali-

fication period, in which a small protective effect was observed in women but not in men

[Chapter 5]. Strikingly, the only three known trials to date, all concluded beneficial effects,

albeit at short-term.
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New horizons in blood donor research?

In the context of healthy individuals and as a preventive measure, the studies described in

this thesis provide sufficient cause for future research into blood donation and cardiovascular

disease. The most crucial role is to confirm the underlying pathway through which blood

donation operates, including the effects on iron metabolism and gender differences herein.

This thesis points to the likeliness of mechanisms other than the metabolic one (i.e. insulin

resistance and metabolic syndrome). Studies not only aiming at atherosclerosis, but also

viscosity, should be further pursued. Moreover, gender differences in the benefits from blood

donation deserve more attention.

Apart from cardiovascular disease, blood donation could also have positive effects on

other important illnesses with a high burden of disease. For example, iron has been implied

in the development of neurological disorders and cancer. During ageing, iron accumulates

in the brain and stimulates the aggregation of amyloid plaques as found in Alzheimer’s

disease [144]. Blood donation has also been hypothesised to reduce cancer risk by lowering

iron [145]. The oxidative stress induced by high iron levels could also result in DNA damage,

and thus increase cancer risk [146]. Furthermore, malignant cells require more iron for their

increased cell division rate, suggesting that iron facilitates tumour growth [147]. This means

that lowering oxidative stress through blood donation could reduce cancer risk, as found

in two previous studies [148, 149], although another study found no effects on colorectal

cancer incidence and mortality [150].

However, the repeated removal of erythrocytes and immunoglobulins increases cell

proliferation, and increased cell proliferation could actually increase the risk of malignan-

cies [151]. In a large linkage study in the Danish and Swedish donor population, plasma

donation was surprisingly associated with an increased risk for non-Hodgkin lymphoma [123].

Such findings require further investigation in blood donors.

6.4 Conclusion

This thesis indicates a protective effect of blood donation on cardiovascular disease in

women, but improving the metabolic condition through iron depletion is unlikely to be

involved. Rather, other pathways such as a reduced viscosity or the combination with

atherosclerotic plaque formation play a role. In future studies aiming at these mechanistic

pathways, gender differences in the effect of blood donation on cardiovascular disease as

well as on altering iron metabolism need to be explored. The health of blood donors should

be adequately monitored as iron stores are depleted and long-term effects, both positive

and negative, on other physiological compartments are not excluded. Any such effects of

blood donation should be known in order to maintain a blood supply that solely relies on

healthy, voluntary, non-remunerated (or uncompensated) donors.
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Appendix to Section 2.2

Additional analyses on metabolic syndrome prevalence in non-obese and obese donors.
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Appendix B

Appendix to Section 4.1

Syntaxes used to create simulated datasets with six different scenarios:

1. no causal effect, random donor selection [Listing B.1]

2. no causal effect, healthy donor selection [Listing B.2]

3. small or large causal effect, random donor selection [Listing B.3]

4. small or large causal effect, healthy donor selection [Listing B.4]
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Listing B.1: No causal effect, random donor selection

1

2 SET RNG = MT MTINDEX = 592004.

3

4 NEW FILE.

5 INPUT PROGRAM.

6 LOOP #x=1 TO 1000000.

7 COMPUTE Ferritin= RV.NORMAL(100,20).

8 COMPUTE Ferritin_fake= RV.NORMAL(100,20).

9 COMPUTE random1=RV.UNIFORM(0, 1).

10 COMPUTE random2=RV.UNIFORM (0,1).

11 COMPUTE randomCVD=RV.UNIFORM(0,1).

12 COMPUTE randomCVD2=RV.NORMAL(100,20).

13 COMPUTE lifestyle=RV.UNIFORM(0,100).

14 COMPUTE Donation=0.

15 COMPUTE CVD_event=0.

16 COMPUTE persontime=0.

17 COMPUTE stop=0.

18 COMPUTE Donor=0.

19 COMPUTE Number_Donations=0.

20 IF (random1 <0.01) Donor=1.

21 IF (Donor=1) start=0.

22 COMPUTE baselineCVD=RV.UNIFORM(0,1).

23 COMPUTE CVD= baselineCVD + 0.001*Ferritin_fake.

24 IF (Ferritin <10) Ferritin=10.

25 END CASE.

26 END LOOP.

27 END FILE.

28 END INPUT PROGRAM.

29 EXECUTE.

30 /********************************.

31

32 LOOP #month=1 TO 300.

33 COMPUTE Donation=0.

34 COMPUTE random2=RV.UNIFORM(0,1).

35 COMPUTE randomCVD=RV.UNIFORM(0,1).

36 COMPUTE randomCVD2=RV.UNIFORM(0,1).

37 /*Creating new donors, with moment of becoming a new donor saved in start.

38 DO IF (Donor=0 AND (random2 > 0.995)).

39 COMPUTE Donor=1.

40 COMPUTE start=#month.

41 END IF.

42 /*Creating stopped donors, with moment of ending donor career saved in stop.

43 DO IF (Donor=1 AND (random2 <0.005)).

44 COMPUTE Donor=2.

45 COMPUTE stop=#month.

46 END IF.

47 /*Making sure that non−donors really remain clean, blanco, new donors and not already increase iron levels or have CVD events.

48 DO IF Donor NE 0.

49 IF (Donation=0 AND Donor=1 AND (random2)>0.5) Donation=1.

50 COMPUTE Number_Donations=Number_Donations + Donation.

51 IF (Donation=1) Last_Donation=#month.

52 IF (Donation=1) Ferritin=Ferritin − 10.

53 /*Creating a fake ferritin variable that mimics the pattern of ferritin but is independent of blood donation.

54 IF (randomCVD2>0.775) Ferritin_fake=Ferritin_fake − 10.

55 /*Small causal effect ferritin_fake: 0.0005*Ferritin_fake and 0.0002*lifestyle.

56 COMPUTE CVD= CVD + (0.0005*Ferritin_fake) + (0.0002*lifestyle).

57 IF ((randomCVD<0.00001) OR (randomCVD<0.0001 AND CVD >1) OR (randomCVD<0.001 AND CVD >2.5) OR (randomCVD<0

.01 AND CVD>5)) CVD_event=1.

58 IF (CVD_event=1) event_time=#month.

59 COMPUTE Ferritin=Ferritin+1.
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60 IF (Ferritin<10) Ferritin=10.

61 COMPUTE Ferritin_fake=Ferritin_fake +1.

62 IF (Ferritin_fake<10) Ferritin_fake=10.

63 /*Saving total Number Donations and donor status at the end of each qualification period.

64 DO IF #month − start=12.

65 COMPUTE Donations_qual_1y=Number_Donations.

66 COMPUTE donor_qual_1y=Donor.

67 END IF.

68 DO IF #month − start=60.

69 COMPUTE Donations_qual_5y=Number_Donations.

70 COMPUTE donor_qual_5y=Donor.

71 END IF.

72 DO IF #month − start=120.

73 COMPUTE Donations_qual_10y=Number_Donations.

74 COMPUTE donor_qual_10y=Donor.

75 END IF.

76 DO IF #month − start=180.

77 COMPUTE Donations_qual_15y=Number_Donations.

78 COMPUTE donor_qual_15y=Donor.

79 END IF.

80 END IF.

81 END LOOP IF CVD_event=1.

82 EXECUTE.
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Listing B.2: No causal effect, healthy donor selection

1

2 SET RNG = MT MTINDEX = 592004.

3

4 NEW FILE.

5 INPUT PROGRAM.

6 LOOP #x=1 TO 1000000.

7 COMPUTE Ferritin= RV.NORMAL(100,20).

8 COMPUTE Ferritin_fake=RV.NORMAL(100,20).

9 COMPUTE random1=RV.UNIFORM(0, 1).

10 COMPUTE random2=RV.UNIFORM (0,1).

11 COMPUTE randomCVD=RV.UNIFORM(0,1).

12 COMPUTE randomCVD2=RV.NORMAL(0,1).

13 COMPUTE lifestyle=RV.UNIFORM(0,100).

14 COMPUTE Donation=0.

15 COMPUTE CVD_event=0.

16 COMPUTE persontime=0.

17 COMPUTE stop=0.

18 COMPUTE Donor=0.

19 COMPUTE Number_Donations=0.

20 IF (random1 <0.01) Donor=1.

21 IF (Donor=1) start=0.

22 IF (Donor=1) baselineCVD = RV.UNIFORM(0,0.5).

23 IF (Donor=0) baselineCVD=RV.UNIFORM(0,1).

24 COMPUTE CVD= baselineCVD + 0.001*Ferritin_fake.

25 IF (Ferritin <10) Ferritin=10.

26 END CASE.

27 END LOOP.

28 END FILE.

29 END INPUT PROGRAM.

30 EXECUTE.

31 ********************************.

32

33 LOOP #month=1 TO 300.

34 COMPUTE Donation=0.

35 COMPUTE random2=RV.UNIFORM (0,1).

36 COMPUTE randomCVD=RV.UNIFORM(0,1).

37 COMPUTE randomCVD2=RV.UNIFORM(0,1).

38 /*Recalculating baselineCVD for non−donors, to ensure sufficient number of new donors.

39 IF (Donor=0) baselineCVD= RV.UNIFORM(0,1).

40 /*Creating new donors, with moment of becoming a new donor saved in start.

41 DO IF (Donor=0 AND (random2 > 0.99) AND baselineCVD<0.5).

42 COMPUTE Donor=1.

43 COMPUTE start=#month.

44 END IF.

45 /*Creating stopped donors, with moment of ending donor career saved in stop.

46 DO IF Donor=1 AND ((random2<0.0005 AND CVD>1) OR (random2<0.005 AND CVD>2.5) OR (random2<0.05 AND CVD>5)).

47 COMPUTE Donor=2.

48 COMPUTE stop=#month.

49 END IF.

50 /*Making sure that non−donors really remain clean, blanco, new donors and not already increase iron levels or have CVD events.

51 DO IF Donor NE 0.

52 IF (Donation=0 AND Donor=1 AND ((random2>0.5 AND CVD <2.5) OR (random2>0.75 AND CVD <5))) Donation=1.

53 COMPUTE Number_Donations=Number_Donations + Donation.

54 IF (Donation=1) Last_Donation=#month.

55 IF (Donation=1) Ferritin=Ferritin − 10.

56 /*Creating a fake ferritin variable that mimics the pattern of ferritin but is independent of blood donation.

57 IF (randomCVD2>0.775) Ferritin_fake=Ferritin_fake − 10.

58 /*Small causal effect ferritin_fake: 0.0005*Ferritin and 0.0002*lifestyle.

59 COMPUTE CVD= CVD + (0.0005*Ferritin_fake) + (0.0002*lifestyle).
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60 IF ((randomCVD<0.00001) OR (randomCVD<0.0001 AND CVD >1) OR (randomCVD<0.001 AND CVD >2.5) OR (randomCVD<0

.01 AND CVD>5)) CVD_event=1.

61 IF (CVD_event=1) event_time=#month.

62 COMPUTE Ferritin=Ferritin+1.

63 IF (Ferritin<10) Ferritin=10.

64 COMPUTE Ferritin_fake=Ferritin_fake +1.

65 IF (Ferritin_fake<10) Ferritin_fake=10.

66 /*Saving total Number Donations and donor status at the end of each qualification period.

67 DO IF #month − start=12.

68 COMPUTE Donations_qual_1y=Number_Donations.

69 COMPUTE donor_qual_1y=Donor.

70 END IF.

71 DO IF #month − start=60.

72 COMPUTE Donations_qual_5y=Number_Donations.

73 COMPUTE donor_qual_5y=Donor.

74 END IF.

75 DO IF #month − start=120.

76 COMPUTE Donations_qual_10y=Number_Donations.

77 COMPUTE donor_qual_10y=Donor.

78 END IF.

79 DO IF #month − start=180.

80 COMPUTE Donations_qual_15y=Number_Donations.

81 COMPUTE donor_qual_15y=Donor.

82 END IF.

83 END IF.

84 END LOOP IF CVD_event=1.

85 EXECUTE.
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Listing B.3: Small or large causal effect, random donor selection

1 SET RNG=MT MTINDEX=592004.

2

3 NEW FILE.

4 INPUT PROGRAM.

5 LOOP #x=1 TO 1000000.

6 COMPUTE Ferritin= RV.NORMAL(100,20).

7 COMPUTE random1=RV.UNIFORM(0, 1).

8 COMPUTE random2=RV.UNIFORM(0,1).

9 COMPUTE randomCVD=RV.UNIFORM(0,1).

10 COMPUTE lifestyle=RV.UNIFORM(0,100).

11 COMPUTE Donation=0.

12 COMPUTE CVD_event=0.

13 COMPUTE persontime=0.

14 COMPUTE stop=0.

15 COMPUTE Donor=0.

16 COMPUTE Number_Donations=0.

17 IF (random1 <0.01) Donor=1.

18 IF (Donor=1) start=0.

19 COMPUTE baselineCVD=RV.UNIFORM(0,1).

20 /*Small causal effect:.

21 /*COMPUTE CVD= baselineCVD + 0.001*Ferritin.

22 /*Large causal effect:.

23 COMPUTE CVD= baselineCVD + 0.005*Ferritin.

24 IF (Ferritin <10) Ferritin=10.

25 END CASE.

26 END LOOP.

27 END FILE.

28 END INPUT PROGRAM.

29 EXECUTE.

30 ********************************.

31

32 LOOP #month=1 TO 300.

33 COMPUTE Donation=0.

34 COMPUTE random2=RV.UNIFORM (0,1).

35 COMPUTE randomCVD=RV.UNIFORM(0,1).

36 /*Creating new donors, with moment of becoming a new donor saved in start.

37 DO IF (Donor=0 AND (random2 > 0.995)).

38 COMPUTE Donor=1.

39 COMPUTE start=#month.

40 END IF.

41 /*Creating stopped donors, with moment of ending donor career saved in stop.

42 DO IF (Donor=1 AND (random2 <0.005)).

43 COMPUTE Donor=2.

44 COMPUTE stop=#month.

45 END IF.

46 /*Making sure that non−donors really remain clean, blanco, new donors and not already increase iron levels or have CVD events.

47 DO IF Donor NE 0.

48 IF (Donation=0 AND Donor=1 AND (random2)>0.5) Donation=1.

49 COMPUTE Number_Donations=Number_Donations + Donation.

50 IF (Donation=1) Last_Donation=#month.

51 IF (Donation=1) Ferritin=Ferritin − 10.

52 /*Small causal effect ferritin: 0.0005*Ferritin and 0.0002*lifestyle.

53 /*COMPUTE CVD= CVD + (0.0005*Ferritin) + (0.0002*lifestyle).

54 /*Large causal effect ferritin: 0.001*Ferritin and 0.0001*lifestyle.

55 COMPUTE CVD= CVD + (0.001*Ferritin) + (0.0001*lifestyle).

56 IF ((randomCVD<0.00001) OR (randomCVD<0.0001 AND CVD >1) OR (randomCVD<0.001 AND CVD >2.5) OR (randomCVD<0

.01 AND CVD>5)) CVD_event=1.

57 IF (CVD_event=1) event_time=#month.

58 COMPUTE Ferritin=Ferritin+1.

59 IF (Ferritin<10) Ferritin=10.
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60 /*Saving total Number Donations and donor status at the end of each qualification period.

61 DO IF #month − start=12.

62 COMPUTE Donations_qual_1y=Number_Donations.

63 COMPUTE donor_qual_1y=Donor.

64 END IF.

65 DO IF #month − start=60.

66 COMPUTE Donations_qual_5y=Number_Donations.

67 COMPUTE donor_qual_5y=Donor.

68 END IF.

69 DO IF #month − start=120.

70 COMPUTE Donations_qual_10y=Number_Donations.

71 COMPUTE donor_qual_10y=Donor.

72 END IF.

73 DO IF #month − start=180.

74 COMPUTE Donations_qual_15y=Number_Donations.

75 COMPUTE donor_qual_15y=Donor.

76 END IF.

77 END IF.

78 END LOOP IF CVD_event=1.

79 EXECUTE.
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Listing B.4: Small or large causal effect, healthy donor selection

1 SET RNG=MT MTINDEX=592004.

2

3 NEW FILE.

4 INPUT PROGRAM.

5 LOOP #x=1 TO 1000000.

6 COMPUTE Ferritin= RV.NORMAL(100,20).

7 COMPUTE random1=RV.UNIFORM(0, 1).

8 COMPUTE random2=RV.UNIFORM(0,1).

9 COMPUTE randomCVD=RV.UNIFORM(0,1).

10 COMPUTE lifestyle=RV.UNIFORM(0,100).

11 COMPUTE Donation=0.

12 COMPUTE CVD_event=0.

13 COMPUTE persontime=0.

14 COMPUTE stop=0.

15 COMPUTE Donor=0.

16 COMPUTE Number_Donations=0.

17 IF (random1 <0.01) Donor=1.

18 IF (Donor=1) start=0.

19 IF (Donor=1) baselineCVD=RV.UNIFORM(0,0.5).

20 IF (Donor=0) baselineCVD=RV.UNIFORM(0,1).

21 /*Small causal effect:.

22 COMPUTE CVD= baselineCVD + 0.001*Ferritin.

23 /*Large causal effect:.

24 /*COMPUTE CVD= baselineCVD + 0.005*Ferritin.

25 IF (Ferritin <10) Ferritin=10.

26 END CASE.

27 END LOOP.

28 END FILE.

29 END INPUT PROGRAM.

30 EXECUTE.

31 ********************************.

32

33 LOOP #month=1 TO 300.

34 COMPUTE Donation=0.

35 COMPUTE random2=RV.UNIFORM (0,1).

36 COMPUTE randomCVD=RV.UNIFORM(0,1).

37 /*Recalculating baselineCVD for non−donors, to ensure sufficient number of new donors.

38 IF (Donor=0) baselineCVD= RV.UNIFORM(0,1).

39 /*Creating new donors, with moment of becoming a new donor saved in start.

40 DO IF (Donor=0 AND (random2 > 0.99) AND baselineCVD<0.5).

41 COMPUTE Donor=1.

42 COMPUTE start=#month.

43 END IF.

44 /*Creating stopped donors, with moment of ending donor career saved in stop.

45 DO IF Donor=1 AND ((random2<0.0005 AND CVD>1) OR (random2<0.005 AND CVD>2.5) OR (random2<0.05 AND CVD>5)).

46 COMPUTE Donor=2.

47 COMPUTE stop=#month.

48 END IF.

49 /*Making sure that non−donors really remain clean, blanco, new donors and not already increase iron levels or have CVD events.

50 DO IF Donor NE 0.

51 IF (Donation=0 AND Donor=1 AND ((random2>0.5 AND CVD <2.5) OR (random2>0.75 AND CVD <5))) Donation=1.

52 COMPUTE Number_Donations=Number_Donations + Donation.

53 IF (Donation=1) Last_Donation=#month.

54 IF (Donation=1) Ferritin=Ferritin − 10.

55 /*Small causal effect ferritin: 0.0005*Ferritin and 0.0002*lifestyle.

56 COMPUTE CVD= CVD + (0.0005*Ferritin) + (0.0002*lifestyle).

57 /*Large causal effect ferritin: 0.001*Ferritin and 0.0001*lifestyle.

58 /*COMPUTE CVD= CVD + (0.001*Ferritin) + (0.0001*lifestyle).

59 IF ((randomCVD<0.00001) OR (randomCVD<0.0001 AND CVD >1) OR (randomCVD<0.001 AND CVD >2.5) OR (randomCVD<0

.01 AND CVD>5)) CVD_event=1.
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60 IF (CVD_event=1) event_time=#month.

61 COMPUTE Ferritin=Ferritin+1.

62 IF (Ferritin<10) Ferritin=10.

63 *Saving total Number Donations and donor status at the end of each qualification period.

64 DO IF #month − start=12.

65 COMPUTE Donations_qual_1y=Number_Donations.

66 COMPUTE donor_qual_1y=Donor.

67 END IF.

68 DO IF #month − start=60.

69 COMPUTE Donations_qual_5y=Number_Donations.

70 COMPUTE donor_qual_5y=Donor.

71 END IF.

72 DO IF #month − start=120.

73 COMPUTE Donations_qual_10y=Number_Donations.

74 COMPUTE donor_qual_10y=Donor.

75 END IF.

76 DO IF #month − start=180.

77 COMPUTE Donations_qual_15y=Number_Donations.

78 COMPUTE donor_qual_15y=Donor.

79 END IF.

80 END IF.

81 END LOOP IF CVD_event=1.

82 EXECUTE.
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Summary

Cardiovascular disease was the leading cause of death in The Netherlands until 2007, and

remains a significant contributor to the total burden of disease. Iron has been implied as a

cause of cardiovascular disease in 1981 by Sullivan. This hypothesis was originally used to

explain the sex difference in the occurrence of heart disease. In men, cardiovascular disease

has an earlier onset with a higher incidence rate than in women. Within women, there is

a gross distinction between pre- and postmenopausal disease occurrence. The incidence

of cardiovascular disease is much lower in premenopausal women, but rapidly increases

after menopause to the rate that is observed in men. Meanwhile, iron stores remain at a low

level due to menstrual blood loss and pregnancies, but steadily increases during menopause,

whereas men have increasing iron levels throughout adulthood. Therefore, lowering iron

stores was proposed to have a protective impact on cardiovascular disease occurrence.
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The mechanism behind remains to be elucidated, but the catalyzing role of iron in the

formation of reactive oxygen species, especially hydroxyl radicals, is central to the hypothesis.

The damaging effects of such reactive oxygen species on DNA, LDL-cholesterol, and the

vascular endothelium could promote the process of atherosclerosis, and indirectly through

metabolic alterations leading to insulin resistance and ultimately cardiovascular disease.

Blood donation has been an effective measure to deplete iron stores. Each whole-

blood donation (500 ml) contains approximately 200 - 250 mg of iron; a significant amount

compared to the average total body iron of 3000 - 4000 mg. To compensate this loss, blood

donors must increase their dietary iron absorption, as there is no active iron secretory

mechanism that can be reduced to maintain iron levels.

One of the methodological challenges when relating blood donation to reduced cardi-

ovascular disease is to prevent biased results due to the healthy donor effect. Because

donors are repeatedly selected on health criteria prior to each blood donation, blood donors

are generally healthier than non-donors, but also health differences between high- and low-

frequency donors occur due to these selections. As a result, (high-frequency) blood donation

appears to reduce cardiovascular disease whereas it is actually a result of a healthy donor

selection. The studies in this thesis were therefore confined to blood donors. Furthermore,

the application of a qualification period to participate in the individual studies to further

exclude the healthy donor effect was explored in a simulation study.

The effects of blood donation on cardiometabolic risk were studied in two different donor

populations from the CARdiovascular risk and DONation (CARDON) study. The CARDON-study

measured cardiometabolic risk factors in first-time whole-blood donors and currently active

whole-blood donors aged 45 years and older. Insulin resistance did not improve in the cohort

of first-time blood donors that was followed-up for 1.5 - 2 years [Section 2.1]. More long-term

effects of blood donation were studied in a cross sectional sample of currently active blood

donors. Metabolic Syndrome prevalence was not lower in high-intensity donors compared

with low-intensity donors [Section 2.2]. Thus, the CARDON-study did not provide evidence

for a protective effect of blood donation on cardiometabolic risk.

The protective effects of blood donation on vascular integrity was examined in a sample

of (ex-) blood donors that participated in the Nijmegen Biomedical Study, aged 50 - 70 years.

Measurements of subclinical atherosclerosis were compared between high- and low-frequent

donors. No differences were observed in either ankle-bracial index, carotid intima-media

thickness, or pulse-wave velocity between the two donor groups [Section 3.1].

While studying long-term effects of blood donation such as cardiovascular disease, the

HDE-bias was raised to the matter. Because these cardiovascular events more frequently

occur outside the active donation career, comparing high-frequency donors to low-frequency

donors must not become a comparison of active with stopped donors. Furthermore, blood

donation would require a longer time to truly prevent such long-term outcomes. As a possible

solution to both issues, a qualification period was adopted. Donors that had remained active

in donating for at least ten years were categorized into low- and high-frequency donors, after

which they were followed-up for cardiovascular events.
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In a simulation study, the effectiveness of applying a 10-year qualification period to

eliminate the HDE-bias yet leaving a detectable causal effect of blood donation, was invest-

igated [Section 4.1]. Compared to the conventional lifetime number of donations approach,

the qualification period approach yielded less biased results, especially when short (1-year)

periods were applied and the causal effect of iron or thus blood donation was relatively small.

Continuing the study on cardiovascular outcomes as registered by Statistics Netherlands

and Dutch Hospital Data, high-frequency blood donation during the first 10 years of the

donation career was protective against cardiovascular morbidity, but only in women. Because

the median age at start of the donation career was only 34 years, this study probably lacked

the power to statistically confirm effects on cardiovascular mortality [Section 5.1], although

the size and direction of the point estimate were encouraging.

The studies in this thesis did not find any protective effects of blood donation on cardiometa-

bolic risk or subclinical atherosclerosis. However, cardiovascular morbidity and mortality

seemed to be reduced among donors with a high donation frequency in the first ten years

of their donation career, but only in women. This discrepancy in results could either point

to biased results or a true causal effect of blood donation on cardiovascular disease not

acting through cardiometabolic risk reduction or subclinical atherosclerosis. The simulation

study partly supports the validity of the result on cardiovascular morbidity and mortality,

but a residual HDE-bias cannot be entirely excluded. The discrepancy in the results of this

thesis could also indicate the presence of an alternative causal pathway through which blood

donation lowers cardiovascular disease.

The effects of long-term blood donation are largely unknown, other than the effects on

depleting iron stores and reducing whole blood viscosity. The latter reflects the thickness and

stickiness of blood, which is reduced by whole blood donation through the removal of cells

and plasma substances such as proteins. Viscosity is a known risk factor for the erosion and

rupture of vulnerable atherosclerotic plaques and the formation of thromboembolisms. This

thesis has not addressed this alternative causal pathway of viscosity. While the number of

blood donations would gradually reduce whole blood viscosity, the effects on atherosclerosis

as presented in this thesis would largely resemble that of a hypothetical study on viscosity

and atherosclerosis. However, the thromboembolism formation affected by viscosity requires

new research, and could be the alternative causal pathway explaining the discrepancy of

this thesis’ results.

This thesis points to a protective effect of whole-blood donation on cardiovascular disease

in women, but not in men. However, it seems unlikely that such a protective effect is

the result of metabolic improvements and maybe even not through the direct effects on

atherosclerosis, but rather is exerted indirectly through a reduced blood viscosity, or even

through a yet unidentified mechanism. Research into the mechanism behind this, including

gender differences herein, as well as other possible long-term effects of blood donation, are

next steps.





Samenvatting

Tot 2007 vormden hart- en vaatziekten de belangrijkste doodsoorzaak in Nederland en zijn

zij nog altijd verantwoordelijk voor een groot deel van de totale ziektelast. In 1981 opperde

Sullivan dat ijzer een oorzakelijke rol zou spelen bij hart- en vaatziekten. Deze hypothese

was oorspronkelijk bedoeld om verschillen tussen mannen en vrouwen te verklaren in het

optreden van hart- en vaatziekten. Bij mannen treedt hart- en vaatziekten niet alleen eerder

op maar ook sneller vergeleken met vrouwen. Bij vrouwen is er verder een onderscheid

te maken tussen pre- en postmenopauzale vrouwen. De hart- en vaatziekten-incidentie is

aanzienlijk lager bij premenopauzale vrouwen dan bij postmenopauzale vrouwen, maar stijgt

snel vanaf de menopauze tot aan het niveau dat men bij mannen ziet. Tegelijkertijd is het

ijzerniveau laag vanwege menstrueel bloedverlies en zwangerschappen en stijgt vanaf de

menopauzeleeftijd, terwijl mannen hun volwassen leven lang ijzer blijven stapelen. Daarom

zou het verlagen van de ijzervoorraad wel eens beschermende effecten kunnen hebben op

het optreden van hart- en vaatziekten.
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Het onderliggende mechanisme is nog altijd onduidelijk, maar de catalyserende rol van

ijzer bij de vorming van reactieve zuurstofdeeltjes, waarvan met name de hydroxylradicalen

belangrijk zijn, speelt een centrale rol in de hypothese. De schadelijke effecten van deze

zuurstofdeeltjes op het DNA, het LDL-cholesterol en het vasculaire endotheel zou het ont-

staan van atherosclerose bevorderen, maar ook indirect via metabole veranderingen en het

ontstaan van insuline resistentie kunnen zij uiteindelijk tot hart- en vaatziekten leiden.

Bloeddonatie is een effectieve methode om de ijzervoorraad op te gebruiken. Elke

volbloeddonatie (500 ml) bevat ongeveer 200 - 250 mg ijzer; een significante hoeveelheid ten

opzichte van de totale ijzervoorraad van zo’n 3000 - 4000 mg. Om dit verlies te compenseren,

zullen bloeddonors de hoeveelheid ijzer die zij uit de voeding opnemen moeten verhogen,

omdat er geen actief uitscheidingsmechanisme bestaat voor ijzer dat omlaag zou kunnen

om zo toch het ijzerniveau te behouden.

Wanneer men bloeddonatie wil relateren aan een verlaagd cardiovasculair risico, blijkt

het een grote uitdaging te zijn om vertekende resultaten te voorkomen als gevolg van het

"healthy donor effect". Omdat bloeddonors herhaaldelijk worden geselecteerd op gezond-

heidscriteria voorafgaand aan elke bloeddonatie, zullen bloeddonors doorgaans gezonder

zijn dan niet-donors. Maar ook tussen veel- en weinig-gevers kunnen gezondheidsverschillen

ontstaan door deze selecties. De studies in dit proefschrift zijn daarom beperkt tot bloeddo-

nors alleen. Daarnaast is middels een simulatiestudie onderzocht of het toepassen van een

kwalificatieperiode om in de afzonderlijke studies deel te nemen, het healthy donor effect

verder kan uitsluiten.

De effecten van bloeddonatie op het cardiometabole risico zijn onderzocht in twee ver-

schillende populaties van de CARdiovasculaire risico en DONatie (CARDON)-studie. In de

CARDON-studie zijn cardiometabole risicofactoren bestudeerd in de groep van eerste-donatie

volbloeddonors en huidige actieve volbloeddonors in de leeftijd van 45 jaar en ouder. Insuli-

neresistentie bleek niet te verbeteren in een cohort van eerste-donatie donors die 1,5 - 2 jaar

gevolgd werden [Sectie 2.1]. De meer lange-termijn effecten van bloeddonatie werden beke-

ken in een transversaal onderzoek bij een steekproef van huidige actieve volbloeddonors.

De prevalentie van metabool syndroom was bij hoog-intensieve donors niet lager vergeleken

met laag-intensieve donors [Sectie 2.2]. Kortom, de CARDON-studie leverde geen bewijs

voor een beschermend effect van bloeddonatie op het cardiometabole risico.

De beschermende effecten van bloeddonatie op de vasculaire integriteit werden onder-

zocht in een steekproef van (ex-) bloeddonors die meegedaan hadden aan de Nijmegen

Biomedische Studie in de leeftijd van 50 - 70 jaar. Metingen van subklinische atherosclerose

werden vergeleken tussen veel- en weinig-gevers. Er werden geen verschillen gevonden

in de enkel-arm-index, de intima-media dikte van de arteria carotis of de polsgolfsnelheid

tussen de beide donorgroepen [Sectie 3.1].

Terwijl het effect van bloeddonatie op langetermijneffecten werd onderzocht, zoals hart-

en vaatziekten, werd het HDE opnieuw aan de orde gebracht. Omdat zulke cardiovasculaire

incidenten vaak buiten de actieve donatiecarrière optreden, moest de vergelijking tussen

veel- en weiniggevers niet een vergelijking worden tussen actieve- en gestopte donors.
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Daarnaast zou bloeddonatie een langere tijd nodig hebben om daadwerkelijk zulke lange-

termijnuitkomsten te kunnen voorkomen. Als mogelijke oplossing voor beide problemen

werd een kwalificatieperiode aangenomen. Donors die minstens tien jaar actief donor waren

gebleven werden gecategoriseerd in veel- en weiniggevers, waarna zij gevolgd werden voor

cardiovasculaire incidenten.

In een simulatiestudie werd de effectiviteit onderzocht van een 10-jaars kwalificatieperi-

ode om de vertekening door HDE te verwijderen terwijl er wel een detecteerbaar causaal

effect van bloeddonatie overblijft [Sectie 4.1]. Vergeleken met de conventionele benadering

waarbij het levenslange aantal donaties werd gebruikt, leidde de kwalificatieperiode bena-

dering tot minder vertekende resultaten, vooral indien er korte (1-jaars) periodes werden

toegepast en het causale effect van ijzer oftewel bloeddonatie relatief klein was.

Verdergaand met het onderzoek naar cardiovascular uitkomsten zoals geregistreerd door

het Centraal Bureau voor de Statistiek en de Landelijke Medische Registratie, bleken donors

die tijdens de eerste tien jaar van hun donatiecarrière vaak hadden gedoneerd beschermd te

zijn tegen cardiovasculaire morbiditeit, maar dit was enkel bij vrouwen het geval [Sectie 5.1].

Omdat de mediane leeftijd bij aanvang van de donatiecarriére slechts 34 jaar was, had deze

onderzoekspopulatie waarschijnlijk onvoldoende power om de effecten op cardiovasculaire

sterfte statistisch te kunnen bevestigen [Sectie 5.1], hoewel de grootte en richting van de

puntschatting bemoedigend waren.

De onderzoeken in dit proefschrift vonden geen beschermende effecten van bloeddonatie op

het cardiometabole risico of de vasculaire integriteit. Daarentegen leken de cardiovasculaire

morbiditeit en mortaliteit verlaagd te zijn bij donors met een hoge donatiefrequentie in de

eerste tien jaar van hun donatiecarrière, maar dit was enkel bij vrouwen het geval. Deze

discrepantie in de resultaten zouden kunnen wijzen op vertekende resultaten, óf op een

waarlijk causaal effect van bloeddonatie op hartvaatziekte dat niet verloopt via het verlagen

van het cardiometabole risico of subklinische atherosclerose. De simulatiestudie onderbouwt

deels de validiteit van de bevindingen op cardiovasculaire morbiditeit en mortaliteit, maar

een residuele vertekening door het HDE kan niet geheel worden uitgesloten. De discrepantie

in de resultaten van dit proefschrift kunnen evenwel duiden op de aanwezigheid van een

alternatief causaal mechanisme waarmee bloeddonatie een beschermend effect heeft op

hart- en vaatziekten.

De langetermijneffecten van bloeddonatie zijn grotendeels onbekend, behalve dan

de effecten op het opgebruiken van de ijzervoorraad en het verlagen van de volbloed-

viscositeit. Laatstgenoemde geeft de dikte en plakkerigheid van het bloed weer, welke

verlaagt wordt door volbloeddonatie via het onttrekken van cellen en plasmabestanddelen

zoals eiwitten. Viscositeit is een bekende risicofactor voor de erosie en het scheuren van

kwetsbare atherosclerotische plaques en de vorming van thrombo-embolieën. Omdat het

aantal bloeddonaties geleidelijk aan de volbloed-viscositeit verlaagt, zullen de effecten op

atherosclerose zoals in dit proefschrift beschreven grotendeels overeenkomen met die van

een hypothetische studie naar viscositeit en atherosclerose. Wel zal het effect van viscositeit

op de vorming van thrombo-embolieën nieuw onderzoek vergen.
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Dit zou een alternatief causaal mechanisme kunnen zijn die de discrepantie in de resultaten

van dit proefschrift verklaart.

Dit proefschrift duidt op een beschermend effect van volbloeddonatie tegen hart- en vaat-

ziekten bij vrouwen, maar niet bij mannen. Het lijkt echter onwaarschijnlijk dat zo een

beschermend effect het resultaat is van verbeteringen in het metabole spectrum en mis-

schien zelfs ook niet van directe effecten op atherosclerose, maar eerder het gevolg is van

een verlaagde viscositeit, of zelfs via een tot nog toe onbekend mechanisme. De volgende

stappen zijn het onderzoek naar het onderliggende mechanisme hiervan, inclusief de ge-

slachtsverschillen hierin, alsmede andere mogelijke langetermijneffecten van bloeddonatie.
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