
Prefixless q-ary Balanced Codes with ECC
Theo G. Swart

Dept. of Electrical and Electronic Engineering Science,
University of Johannesburg, South Africa

Email: tgswart@uj.ac.za

Kees A. S. Immink
Turing Machines Inc,Willemskade 15b-d,

3016 DK Rotterdam, The Netherlands
E-mail: immink@turing-machines.com

Abstract—We present a Knuth-like method for balancing q-ary
codewords, which is characterized by the absence of a prefix that
carries the information of the balancing index. Look-up tables
for coding and decoding the prefix are avoided. We also show
that this method can be extended to include error correction of
single channel errors.

I. INTRODUCTION

Balanced, sometimes called dc-free, q-ary sequences have
found widespread application in popular optical recording
devices such as Compact Disc, DVD and, Blu-Ray [1], cable
communication, and recently in non-volatile (Flash) memo-
ries [2]. Prior art codes were presented by Capocelli et al. [3],
Tallini and Vacaro [4], and Swart and Weber [5].

Let x = (x1, . . . , xm) be a word of m q-ary symbols, q
and m positive integers, taken from the q-ary alphabet Q =
{0, 1, . . . , q − 1}, q ≥ 2. The weight, or unbalance, of x,
denoted by weight(x), is simply defined as the sum of the m
q-ary symbols, that is,

weight(x) =
m∑
i=1

xi.

An m-symbol codeword x is said to be balanced if

weight(x) =
m(q − 1)

2
. (1)

For certain practical applications, it is a desideratum to
generate balanced q-ary sequences. Clearly, look-up tables can
be used in case the sequences are not too long. Knuth [7]
described a simple encoding technique for generating binary,
q = 2, balanced codewords, which is capable of handling
(very) long binary blocks. Swart and Weber [5] generalized
this idea to q-ary sequences. In both cases, an additional
prefix is necessary for decoding the sequence. In this paper we
will make use of this simple encoding technique to construct
balanced codes which do not require a prefix for decoding.

In Section II, we start with relevant results from the lit-
erature. Section III presents a new method for constructing
prefixless q-ary balanced codes. In Section IV, we introduce
error correction in addition to balancing and in Section V in-
vestigate the redundancy and performance of the new scheme.
Finally, we conclude in Section VI.

II. BACKGROUND

In Knuth’s algorithm, a binary (q = 2) m-bit user word
(pay load), m even, is forwarded to the encoder. The encoder

splits the user word into a first segment consisting of the first
v bits of the user word, and a second segment consisting of the
remaining m−v bits. The encoder adds (modulo 2) a ‘1’ to the
m−v symbols in the second segment. The index v is chosen in
such a way that the modified word is balanced. Knuth showed
that such an index v can always be found. In the simplest case,
the index v is represented by a balanced word, called prefix, of
length p. The balanced p-bit prefix and the balanced m-bit user
word are both transmitted, and the rate of the code is simply
m/(m+ p). After observing the p-bit prefix, the receiver can
easily undo the modifications made. Note that both encoder
and decoder do not require look-up tables for the pay load,
and we conclude that Knuth’s algorithm is very attractive for
constructing long balanced codewords. Note, however, that the
scheme does require look-up tables for encoding and decoding
the prefix. Modifications of the generic binary scheme have
been discussed by Al-Bassam and Bose [8], Tallini et al. [9],
and Weber and Immink [10]. Binary balancing schemes that
include error correction has been presented by Al-Bassam and
Bose [11] and Weber et al. [12].

Capocelli et al. [3], Tallini and Vacaro [4], and Swart and
Weber [5] generalized Knuth’s binary scheme to the balancing
of q-ary codewords, q > 2. In [5], balancing is achieved, as
in Knuth’s scheme, by splitting the user word into a first and
second segment of v and m − v symbols, respectively. The
encoder adds (modulo q) an integer s ∈ Q to the symbols in
the first segment, and an integer s + 1 to the symbols in the
second segment. Swart and Weber showed that there exists
at least one pair of integers s and v such that the modified
word is balanced. The integers s and v are represented by
a balanced q-ary p-symbol prefix, which is appended to
the balanced codeword, and subsequently transmitted to the
receiver. The prefix must therefore be sufficiently long to be
able of representing qm distinct pairs of integers s and v. As
in the binary ‘Knuth’ case, look-up tables for encoding and
decoding the prefix are required which may be prohibitively
complex for large values of p. A further improvement of [5]
was presented by Pelusi et al. [6].

III. PREFIXLESS BALANCED CODES

As before, let x = (x1, . . . , xm) be a word of m, q-
ary symbols, xi ∈ Q, where q and m are chosen such that
(q − 1)m/2 is an integer. The word w = (w1, . . . , wm) is
obtained by modulo q integration of x, that is by the following

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43596004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

operation
wi = wi−1 ⊕q xi, 1 ≤ i ≤ m,

where w0 = 0, and the ⊕q sign indicates modulo q summation.
The above operation, often called precoding, will be denoted
by the shorthand notation w = I(x). Note that the original
word x can be uniquely restored by modulo q differentiation:

xi = wi 	q wi−1, 1 ≤ i ≤ m, (2)

where 	q indicates modulo q subtraction. The above differ-
entiation operation will be denoted by x = I−1(w). Clearly,
I−1(I(x)) = x.

Define the binary m-bit word uv = (0v−110m−v) (that is,
uv consists of ‘0’s except a single ‘1’ at position v). We are
now in the position to formulate Theorem 1.

Theorem 1 There is at least one pair of integers, s and v,
s ∈ Q, v ∈ {1, . . . ,m}, such that I(x ⊕q uv ⊕q su1) is
balanced, that is weight(I(x⊕q uv ⊕q su1)) = m(q− 1)/2.2

Proof: Trivial considering Theorem 1 from [5].

Example 1 Let q = 5 and m = 6, and let the pay load be
x = (4,2,1,0,0,0). After a search, we find s = 2 and v = 5.
Adding uv ⊕q su1 = (2,0,0,0,1,0) to the pay load, yields y =
(1,2,1,0,1,0). After precoding y, we obtain w = I(1,2,1,0,1,0)
= (1,3,4,4,0,0). And we may verify that w is balanced since
the sum of its entries equals (q − 1)m/2 = 12. 2

Using the above theorem, we will show that the precoding
operation combined with error correction may lead to an
efficient construction of a balanced code.

For the balancing of a q-ary word, we must find a pair
of integers s and v, s ∈ Q and v ∈ {1, . . . ,m}. Note that
in the binary case, q = 2, the search is restricted to finding
the balancing index v. There is, except full search, no simple
algorithm available for computing s and v.

The next encoding and decoding algorithm exploits The-
orem 1 and we will show below that in conjunction with
error correcting or detecting codes, it will be possible to
efficiently balance q-ary words, and circumvent the encoding
and decoding of the prefix in the prior art construction.

A. Encoding

The encoding procedure consists of four steps. We will
make use of a q-ary (m−1, k) linear block code of dimension
k and length m− 1. The encoding function is denoted by φq .
Let r′ = m− 1− k be the redundancy of the block code, and
define the r′ × (m − 1) matrix Cq,r′ whose i-th column ci
is the q-ary representation of the integer i, 1 ≤ i ≤ m − 1,
m ≤ qr

′
. For example, for q = 3, r′ = 2, and m = 9 we

obtain
C3,2 =

[
0 0 1 1 1 2 2 2
1 2 0 1 2 0 1 2

]
. (3)

We call Cq,r′ a check matrix, for which we have an
easy syndrome decoding available similar to that of binary
Hamming codes [13]. This forms a single, magnitude-one
error correction code, or a single error detection code. The

maximum row length of the check matrix Cq,r′ is qr
′ − 1,

r′ > 1. The coding function x′ = φq(a) is defined in such a
way that x′ satisfies Cq,r′x

′T = 0.
Step 1: The k-symbol pay load, a, is encoded into the

codeword x′ = {x′1, . . . , x′m−1} using the q-ary (m − 1, k)
linear block code, i.e. x′ = φq(a).

Step 2: The m-symbol word x is obtained by prefixing a
redundant ‘0’ to x′, that is, x = {0, x′1, . . . , x′m−1}.

Step 3: Using Theorem 1, find a pair of integers, s ∈ Q
and v ∈ {1, . . . ,m}, such that w = I(x⊕q uv ⊕q su1), with
weight(w) satisfying (1).

According to Theorem 1, such a pair of integers s and v
can always be found.

Step 4: The balanced m-bit word w is transmitted.

B. Decoding

At the receiver side, the m-symbol word y is retrieved from
the received by modulo q differentiation, i.e.

y = I−1(w) = x⊕q uv ⊕q su1.

We drop the first symbol, ‘s’, of y obtaining the (m− 1)-
symbol y′. Then (m− 1)-symbol words y′ and x′ differ only
at an unknown index position v. As x′ satisfies Cq,r′x

′T = 0,
we have

Cq,r′y
′T = cv,

where cv is the v-th column of Cq,r′ . Thus, we can uniquely
retrieve the index v, and restore the original word by subtract-
ing ‘1’ from y′v , that is, x′ = y′ 	q uv .

By a straightforward reshuffling of the symbols, and remov-
ing the redundant symbols, we obtain the original k-symbol
pay load a.

IV. ADDING ERROR CORRECTION

From (2), any single channel error in, say wj , will be
transformed to a double adjacent error in xj and xj+1. This, to-
gether with the single “error” we introduced during balancing,
means that we must be able to correct three errors. However,
this would come at a price of much more redundancy. We can
avoid this by extending our code used in the previous section
and by introducing interleaving.

A. Encoding

We start with a similar code as in Section III-A, but extend
it by adding a symbol that sums modulo q over all the previous
symbols. We denote this extended code by C∗q,r∗ . Choose q
to be an odd value and l such that m − 1 = 2l. The code
then forms an (l, k) linear block code, with redundancy of
r∗ = l− k. In general, the check matrix C∗q,r∗ will be of size
r∗ × l, with the i-th column ci being the q-ary representation
of the integer (i + qr

∗−1), 1 ≤ i ≤ l. As an example, the
check matrix in (3) becomes

C∗3,3 =

0 0 1 1 1 2 2 2
1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1

 .

Lemma 1 The (l, k) linear block code with check matrix C∗q,r
can correct a single magnitude-one error, and it can detect a
magnitude-one error and any other random error. 2

Proof: Let ei and ej represent the error magnitudes,
where ei = 1 is the magnitude-one error and ej ∈
{1, 2, . . . , q − 1} is the random error. The syndrome for the
code is s = {s1, s2, . . . , sr} = eici ⊕q ejcj , and sr 6= 0 for
all ej except when ej = q − 1. If ej = q − 1, then s = 0
only if i = j. Therefore, a single magnitude-one error and any
random error can be detected. Further, sr = 1 only if ej = 0
(there is no random error), then with s = ci the magnitude-one
error can be corrected.

We have two k-symbol payloads a and a′ that are encoded
into codewords b = {b1, b2, . . . , bl} and b′ = {b′1, b′2, . . . , b′l}
respectively, using the q-ary (l, k) code. Interleave these two
codewords to a depth of two, to form

x′ = {x′1, x′2, . . . , x′m−1} = {b1, b′1, b2, b′2, . . . , bl, b′l}.

The encoding now follows the same steps as in Construction 1
to add a redundant ‘0’, to find the values s and v to balance
the sequence and to encode it into w. The final encoding step
is to append symbols α and β to w, where

α = w1 ⊕q w3 ⊕q · · · ⊕q wm ⊕q δq,m, and
β = w2 ⊕q w4 ⊕q · · · ⊕q wm−1,

with δq,m ≡ 2(q − 1)(2 − m) (mod q). In essence, α and
β are “parity check” symbols over the odd and even symbols
respectively, and δq,m is added to ensure that α and β together
are balanced.

Lemma 2 If δq,m ≡ 2(q − 1)(2 −m) (mod q), then (α, β)
will be balanced. 2

Proof: Let α′ = w1+w3+ · · ·+wm and β′ = w2+w4+
· · ·+wm−1, then since w is balanced, α′+β′ = m(q−1)

2 . We
also want (α, β) to be balanced, therefore it must hold that
α+ β = q − 1.

Now, since α ≡ α′ + δq,m (mod q) and β ≡ β′ (mod q),
then

α+ β ≡ α′ + δq,m + β′ (mod q)

q − 1 ≡ δq,m + m(q−1)
2 (mod q)

which with some manipulation proves the lemma.
The sender then sends the balanced sequence

(w1, w2, . . . , wm, α, β) to the receiver. The encoding
process is summarized in Fig. 1.

Note that we described the algorithm for odd values of q.
If q is even, then instead of using 2l = m − 1 and x =
{0, x′1, . . . , x′m−1} during balancing, use 2l = m−2 and x =
{0, 0, x′1, . . . , x′m−2}, so that the length is even and balancing
can be achieved.

B. Decoding

Let ŵ be the (possibly corrupted) received codeword
of length m + 2. Let s = {s1, s2, . . . , sr} and s′ =

a1, a2, . . . , aka a′1, a
′
2, . . . , a

′
k a′

b1, b2, . . . , bl b′1, b
′
2, . . . , a

′
l

(l, k)-code

b

(l, k)-code

b′

x′ x′1, . . . , x
′
m−1 = b1, b

′
1, b2, b

′
2, . . . , bl, b

′
l

Interleave (depth 2)

x x1, x2, . . . , xm = 0, x′1, x
′
2, . . . , x

′
m−1

w w1, w2, . . . , wm

I(x⊕q uv ⊕q su1)

Add redundant 0

w1, w2, . . . , wm, α, β

Add parity symbols

Fig. 1. Summary of encoding algorithm for q odd

{s′1, s′2, . . . , s′r} be the respective syndromes that are calcu-
lated after multiplying the decoded and deinterleaved code-
words with the parity check matrix Cq,r.

The columns of Cq,r were constructed in such a way that
the decimal representation of the first r− 1 q-ary entries will
give us the position, say p, of an error provided that the error
has a magnitude of one, i.e. if sr = 1 or s′r = 1. For simplicity,
let s = {p, α} and s′ = {p′, α′}, where p, p′ are the decimal
representation of the first r − 1 q-ary entries and α = sr and
α′ = s′r. Note that p, p′ will only indicate the error position
if a magnitude-one error occurred (α, α′ = 1).

If no channel errors occurred, none or only one of the
deinterleaved codewords would contain a magnitude-one error
that was introduced during balancing. Therefore if either (a)
s = {p, 1}, s′ = {0, 0}, (b) s = {0, 0}, s′ = {p′, 1}, or (c)
s = s′ = {0, 0} is true (p, p′ > 0), we can undo the uv

sequence that was added during encoding. If this is not the
case, then possible channel errors occurred that first need to
be corrected.

Decoding is done according to the following steps.
Step 1: Since the transmitted codeword was balanced, we

can determine the error magnitude by looking at the imbalance
in the received codeword. Let σ be the imbalance in the
codeword and σ′ be the imbalance in the “parity check”
symbols, where:

σ =

m∑
i=1

ŵi −
m(q − 1)

2
and σ′ = ŵm+1 + ŵm+2 − (q − 1).

If σ = 0 (irrespective of σ′’s value) then assume no error
occurred in the codeword and go to Step 4. If σ 6= 0 and
σ′ 6= 0, or |σ| > q − 1, then assume multiple errors occurred,
declare a decoding failure and STOP.

Step 2: Check the “parity check” symbols. Let:

γ = ŵ1 ⊕q ŵ3 ⊕q · · · ⊕q ŵm ⊕q δq,m ⊕q ŵm+1,

γ′ = ŵ2 ⊕q ŵ4 ⊕q · · · ⊕q ŵm−1 ⊕q ŵm+2.

If γ 6= 0 and γ′ = 0, then an error occurred in an odd position
and set i = 1. If γ = 0 and γ′ 6= 0, then an error occurred in

an even position and set i = 2. If γ = 0 and γ′ = 0, or γ 6= 0
and γ′ 6= 0, then possible multiple errors occurred, declare a
decoding failure and STOP.

Step 3: Subtract σ from the symbol in position i. (Note
that in this case we are not doing modulo q subtraction.) If
ŵi−σ ∈ {0, 1, . . . , q−1}, proceed to the next step, otherwise
let i ← i + 2 and repeat this step. If i > m, then declare a
decoding failure and STOP.

Step 4: Perform modulo q differentiation with y =
I−1(ŵ 	q σui), drop the redundant first symbol to obtain
y′, deinterleave the codewords and determine the syndromes
for both codewords. If the syndromes are not calculated as

s = {p, 1}, s′ = {0, 0}, p > 0, or
s = {0, 0}, s′ = {p′, 1}, p′ > 0, or (4)
s = {0, 0}, s′ = {0, 0},

then the channel error was not corrected, let i ← i + 2 and
return to Step 3. If σ = 0 (coming from Step 1) and either
statement is not true, then declare a decoding failure and
STOP. If one of these statements is true, then subtract one
(modulo q) from the corresponding codeword, according to p
or p′, and retrieve the information.

Theorem 2 Using the encoding and decoding algorithm de-
scribed above, a single channel error can be corrected. 2

Proof: Let a single channel error with magnitude e occur
in position j in w, resulting in ŵ = w ⊕q euj . If j ∈ {m+
1,m+2}, then σ = 0 and one of the conditions in (4) are true,
thus we can decode correctly. If j ∈ {1, 2, . . . ,m}, then |σ| ∈
{1, 2, . . . , q − 1} with σ ≡ e (mod q). Because of (2), y =
I−1(ŵ) will contain adjacent errors in yj and yj+1, along with
a possible magnitude-one error in yv+1. After deinterleaving,
one codeword will have one error, and the other codeword will
have one error (possibly two errors).

We try to correct the error by subtracting σ from the symbol
in position i, i ∈ {1, 2, . . . ,m}, i.e. y = I−1(w ⊕q euj 	q

σui). If i 6= j, then we introduce two more errors in yi and
yi+1, and after deinterleaving, one codeword will have two
errors, and the other codeword will have two (possibly three)
errors. According to Lemma 1, we can detect the two errors
and none of the conditions in (4) will be true. If i = j + 1 or
i = j−1, then three adjacent errors occur in {yj−1, yj , yj+1}
or {yj , yj+1, yj+2} respectively, and after deinterleaving it is
possible to have one error in one codeword and three errors
in the other codeword. Since detection of three errors is not
guaranteed (the codeword can be valid and the syndrome will
be zero), it is possible to have one of the conditions in (4)
true. However, this situation is avoided by using γ and γ′ to
determine whether i should be even or odd.

Finally, if i = j then y = I−1(w), one of the conditions in
(4) is true and we can decode correctly.

V. ANALYSIS

A. Redundancy
We first look at the redundancy of the balancing scheme

in Section III. Let r denote the total number of redundant

symbols of the balanced code, r = r′+1. Since the maximum
length of the check matrix Cq,r equals qr−1− 1, we conclude
that the maximum length, Lq(r), of the pay load is

Lq(r) = qr−1 − r, q > 2.

For the binary case q = 2, since only the index v needs to
be encoded and not the integer s, we find

L2(r) = 2r − r − 1,

which is the same value as presented by Knuth [7] using a
construction with a prefix. Note that for q = 2 the check
matrix C2,r defines a regular (binary) Hamming code with
redundancy r′ = r.

Swart and Weber’s construction has a balanced prefix of
length r, where each prefix uniquely represents the pair of
integers s and v. Let Nq(r) denote the number of distinct q-
ary balanced prefixes of length r. Then for Swart and Weber’s
construction, we require that the length of the pay load,
denoted by LSW

q (r), must satisfy

LSW
q (r) ≤

⌊
Nq(r)

q

⌋
.

Using generating functions, we can straightforwardly com-
pute the number of distinct q-ary prefixes, Nq(r), of length r.
Table I shows, for q = 3 and q = 5, Lq(r) and LSW

q (r) as a
function of r.

We conclude from the table that the redundancy of the new
balanced q-ary code is significantly reduced with respect to
Swart and Weber’s method. Note that Capocelli et al. presented
a code construction where the length of the pay load is less
than

qr − 1

q − 1
. (5)

For large alphabet q we conclude that the redundancy of
the new method is approximately a factor of q/(q− 1) higher
than that of the prior art construction by Capocelli et al. The
construction of [4] introduces compression to the construction
from [3], resulting in even lower redundancies.

TABLE I
LSW
q (r) AND Lq(r) AS A FUNCTION OF r.

q r LSW
q (r) Lq(r) LECC

q (r)

3 4 6 23 –
3 5 17 76 –
3 6 47 237 –
3 7 131 722 –
3 8 369 2179 –
3 9 1046 6552 10
3 10 2984 19672 9
5 4 17 120 –
5 5 76 620 –
5 6 350 3119 –
5 7 1627 15618 4
5 8 7633 78117 3
5 9 36065 390616 42
5 10 171389 1953115 41

For the redundancy of the balancing scheme with error
correction in Section IV, the total redundancy is r = 2r∗+3.
The maximum length of the check matrix for one (l, k) code
is l = qr

∗−1 − 1. Let LECC
q (r) denote the maximum length of

the pay load, then taking into account that we use two (l, k)
codes, add one redundant symbol for balancing and two more
redundant “parity” symbols, it can be shown that for q odd

LECC
q (r) = 2q

r−5
2 − r + 1.

For q even, one more redundant symbol is added. Values for
LECC
q (r) are also shown in Table I.
Again, for the binary case q = 2, since only the index v

needs to be encoded and not the integer s, we find

LECC
2 (r) = 2

r−2
2 − r − 1.

B. Performance

We look at the performance of two codes:
• R = 10/19 code with q = 3: an (8,5) linear block code

is used, giving rate (16,10) after interleaving, and after
balancing and adding the extra two “parity symbols” this
becomes (19,10).

• R = 4/11 code with q = 5: a (4,2) linear block code
is used, which after interleaving, balancing and adding
“parity symbols” is (11,4).

Fig. 2 shows the symbol error rate after decoding for these
two codes. If a decoding failure occurred, the information
was discarded, and was not taken into account in the symbol
error rate calculations. Typically in an ARQ system if decoding
failure occurred, the information would be requested again.

Fig. 3 shows the probability that a decoding failure occurred.
That is, for the imbalance detected, during decoding no
position could be found such that the syndromes indicated
either a magnitude-one error or no error, or the algorithm
determined early on that possible multiple errors occurred.

VI. CONCLUSIONS

We have presented a simple method for balancing q-ary
codewords, where look-up tables for coding and decoding the
prefix can be avoided. The receiver only needs to know the
check matrix of the linear code being used. We have compared
the redundancy of the new construction with that of prior
art constructions. The redundancy of the new construction is
much less than that of Swart and Weber’s construction, and
slightly larger than that of the Capocelli et al. construction.
The method was also extended to include error correction
capabilities to correct single channel errors, by simply adding
four redundant symbols and introducing interleaving.

Since all operations are linear, encoding and decoding can
be simplified by setting up a generator matrix and parity
check matrix that does interleaving/deinterleaving and inte-
gration/differentiation all in one step. This would alleviate
the problem having to repeatedly decode for every attempt
at correcting the error. We leave this as future work.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

D
ec
o
d
in
g
er
ro
r
ra
te
,
p
e

100 10−1 10−2 10−3 10−4

Symbol error rate, ps

R = 10
19

, q = 3

R = 4
11

, q = 5

Fig. 2. Decoding error rate

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
ro
b
.
D
ec
o
d
in
g
F
a
il
u
re

100 10−1 10−2 10−3 10−4

Symbol error rate, ps

R = 10
19

, q = 3

R = 4
11

, q = 5

Fig. 3. Probability of decoding failure

REFERENCES

[1] K. A. S. Immink, “Coding Methods for High-Density Optical Record-
ing,” Philips J. Res., vol. 41, pp. 410–430, 1986.

[2] H. Zhou, A. Jiang, and J. Bruck, “Balanced Modulation for Nonvolatile
Memories,” submitted to IEEE Trans. Inform. Theory.

[3] R. M. Capocelli. L. Gargano, and U. Vaccaro, “Efficient q-ary immutable
codes,” Discrete Appl. Math., vol. 33, pp. 25–41, 1991.

[4] L. G. Tallini and U. Vaccaro, “Efficient m-ary balanced codes”, Discrete
Applied Mathematics, vol. 92, pp. 17–56, 1999.

[5] T. G. Swart and J. H. Weber, “Efficient Balancing of q-ary Sequences
with Parallel Decoding,” in Proc. IEEE Intl. Symp. Inform. Theory,
Seoul, South Korea, Jun. 29–Jul. 3, 2009, pp. 1564–1568.

[6] D. Pelusi, L. G. Tallini and B. Bose, “On m-ary balanced codes with
parallel decoding,” in Proc. IEEE Intl. Symp. Inform. Theory, Austin,
Texas, Jun. 13–18, 2010, pp. 1305–1309.

[7] D. E. Knuth, “Efficient Balanced Codes,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 51–53, Jan. 1986.

[8] S. Al-Bassam and B. Bose, “On Balanced Codes,” IEEE Trans. Inform.
Theory, vol. 36, no. 2, pp. 406–408, Mar. 1990.

[9] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of Some New
Balanced Codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 790–802,
May 1996.

[10] J. H. Weber and K. A. S. Immink, “Knuth’s Balanced Codes Revisited,”
IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1673–1679, Apr. 2010.

[11] S. Al-Bassam and B. Bose, “Design of Efficient Error-Correcting
Balanced Codes,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1261–
1266, Oct. 1993.

[12] J. H. Weber, K. A. S. Immink, and H. C. Ferreira, “Error-Correcting
Balanced Knuth Codes,” IEEE Trans. Inform. Theory, vol. 58, pp. 82–
89, Jan. 2012.

[13] R. W. Hamming, Coding and Information Theory, Prentice-Hall, Engle-
wood Cliffs, 1986.

