
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/149048

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43595872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/149048

Dijkstra and Hoare Monads

in Monadic Computation

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands.

Webaddress: www. cs. ru. nl/ B. Jacobs

3 October 2014

Abstract

The Dijkstra and Hoare monads have been introduced recently for capturing weak-
est precondition computations and computations with pre- and post-conditions,
within the context of program verification, supported by a theorem prover. Here
we give a more general description of such monads in a categorical setting. We first
elaborate the recently developed view on program semantics in terms of a triangle
of computations, state transformers, and predicate transformers. Instantiating this
triangle for different computational monads T shows how to define the Dijkstra
monad associated with T , via the logic involved.

Subsequently we give abstract definitions of the Dijkstra and Hoare monad,
parametrised by a computational monad. These definitions presuppose a suitable
(categorical) predicate logic, defined on the Kleisli category of the underlying monad.
When all this structure exists, we show that there are maps of monads (Hoare) ⇒
(State) ⇒ (Dijkstra), all parametrised by a monad T .

1 Introduction

A monad is a categorical concept that is surprisingly useful in the theory of
computation. On the one hand it describes a form of computation (such as
partial, non-deterministic, or probabilistic), and on the other hand it captures
various algebraic structures. Technically, the computations are maps in the
Kleisli category of the monad, whereas the algebraic structures are described
via the category of so-called Eilenberg-Moore algebras. The Kleisli approach
has become common in program semantics and functional programming (no-
tably in the language Haskell), starting with the seminal paper [28]. The al-
gebraic structure captured by the monad exists on these programs (as Kleisli

Preprint submitted to Elsevier Science 3 October 2014

maps), technically because the Kleisli category is enriched over the category
of algebras (for suitable monads).

Interestingly, the range of examples of monads has been extended recently
from computation to program logic. So-called Hoare monads [29,34] and Dijk-
stra monads [33] have been defined in a systematic approach to program ver-
ification. Via these monads one describes not only a program but also the
associated correctness assertions. These monads have been introduced in the
language of a theorem prover, but have not been investigated systematically
from a categorical perspective. Here we do so not only for the Dijkstra monad
(like in [16]), but also for the Hoare monad. We generalise the original defi-
nition from [33,29,34] and show that ‘Dijkstra’ and ‘Hoare’ monads DT and
HT can be associated with various well-known monads T that are used for
modeling computations.

Since the Dijkstra and Hoare monads combine both semantics and logic of
programs, we need to look at these two areas in a unified manner. From pre-
vious work [15] (see also [14]) a view on program semantics and logic emerged
involving a triangle of the form:

Logop =

 predicate

transformers

 --
>

 state

transformers

mm

(
computations

)Pred

ff

Stat

88
(1)

The three nodes in this diagram represent categories of which only the mor-
phisms are described. The arrows between these nodes are functors, where
the two arrows � at the top form an adjunction. The two triangles involved
should commute. In the case where two up-going ‘predicate’ and ‘state’ func-
tors Pred and Stat in (1) are full and faithful, we have three equivalent ways
of describing computations. On morphisms, the predicate functor yields what
is called substitution in categorical logic, but what amounts to a weakest pre-
condition operation in program semantics. The upper category on the left is
of the form Logop, where Log is some category of logical structures. The op-
posite category (−)op is needed because predicate transformers operate in the
reverse direction, taking a postcondition to a precondition.

In a setting of quantum computation this translation back-and-forth� in (1)
is associated with the different approaches of Heisenberg (logic-based, working
backwards) and Schrödinger (state-based, working forwards), see e.g. [9]. In
certain cases the adjunction � forms — or may be restricted to — an equiv-
alence of categories, yielding a duality situation. It shows the importance of
duality theory in program semantics and logic; this topic has a long history,

2

going back to [1].

Almost all of our examples of computations are given by maps in a Kleisli
category of a monad. In this monadic setting, the right-hand-side of the di-
agram (1) is the full and faithful ‘comparison’ functor K̀ (T) → EM(T), for
the monad T at hand. This functor embeds the Kleisli category K̀ (T) in the
category EM(T) of (Eilenberg-Moore) algebras. The left-hand-side takes the
form K̀ (T)→ Logop, and forms an indexed category (or, if you like, a fibra-
tion), and thus a categorical model of predicate logic. The monad T captures
computations as maps in its Kleisli category. And via the predicate logic in (1)
the ‘Dijkstra’ and ‘Hoare’ monads are defined.

One open problem in this area is how to obtain an appropriate categorical logic
Log for a monad T , yielding a triangle (1). In Sections 6 and 7 we side-step
this problem by axiomatising the required categorical logic that is needed
for the Dijkstra and Hoare monads. Specifically, we describe the properties
that a functor (indexed category) Pred : K̀ (T) → Logop should satisfy so
that one can define the Dijkstra and Hoare monad, written as DT and HT

respectively, associated with T . It turns out that the Dijkstra monad requires
only mild logical properties, whereas the Hoare monad requires much stronger
properties. Once they are satisfied we show that there maps of monad:

(
Hoare

monad HT

)
+3

(
state

monad ST

)
+3

(
Dijkstra

monad DT

)

{P}h{Q} � //h � //wp(h,−)

These maps describe some fundamental relations in the semantics of programs:
a Hoare triple {P}h{Q} is first sent to the program h, as element of the state
monad ST = T (S ×−)S associated with the monad T . In a second step this
program h is sent to the weakest precondition operation wp(h,−), mapping a
postcondition to a precondition.

We assume that the reader is familiar with the basic concepts of category the-
ory, especially with the theory of monads. The organisation of the paper is as
follows: the first three sections 2 – 4 elaborate instances of the triangle (1) for
non-deterministic, linear & probabilistic, and quantum computation. Subse-
quently, Section 5 shows how to obtain the Dijkstra monads for the different
(concrete) monad examples, and proves in these cases that weakest precondi-
tion computation forms a map of monads. This approached is axiomatised in
Section 6, starting from a suitable categorical predicate logic. In a similar, but
more restricted, axiomatic setting the Hoare monad is defined in Section 7.
Finally, Section 8 wraps up with some concluding remarks.

3

1.1 Notation for monads

We assume the reader is familiar with the notion of monad, see e.g. [26,2]. We
shall restrict ourselves to monads T = (T, η, µ) on the category Sets of sets
and functions. We write K̀ (T) for the Kleisli category of T , with sets X as
objects, and ‘Kleisli maps’ X → Y given by functions X → T (Y). We write
J : Sets → K̀ (T) for the functor given by J(X) = X and J(f) = η ◦ f .
Kleisli maps of the form J(f) are often called ‘pure’. We use a fat dot • for
composition in K̀ (T), to distinguish it from ordinary composition ◦. We recall
that g • f = µ ◦ T (g) ◦ f , and J(g) • J(f) = J(g ◦ f).

The Eilenberg-Moore category of the monad T is written as EM(T). Its objects
are ‘algebras’ a : T (X)→ X satisfying a ◦ η = id and a ◦ T (a) = a ◦ µ. There
is a canonical functor Stat : K̀ (T) → EM(T), sending a set X to the free
algebra µ : T 2(X)→ T (X) and a map f : X → T (Y) to the ‘Kleisli extension’
f∗ = µ ◦ T (f) : T (X)→ T (Y).

A monad T on Sets is automatically strong. There are ‘strength’ natural
transformations st1 : T (X)×Y → T (X ×Y) and st2 : X ×T (Y)→ T (X ×Y)
defined as:

st1(u, y) = T (λx. 〈x, y〉)(u) and st2(x, v) = T (λy. 〈x, y〉)(v).

These strength maps are related via swapping X × Y ∼= Y × X, and satisfy
T (π1) ◦ st1 = π1 and T (π2) ◦ st2 = π2. Moreover, they interact appropriately
with the unit and multiplication of the monad, see e.g. [17].

2 Non-deterministic and partial computation

The powerset operation P(X) = {U | U ⊆ X} yields a monad P : Sets →
Sets with unit η = {−} given by singletons and multiplication µ =

⋃
by

union. The associated Kleisli category K̀ (P) is the category of sets and non-
deterministic functions X → P(Y), which may be identified with relations
R ⊆ X × Y . The category EM(P) of (Eilenberg-Moore) algebras is the cate-
gory CL∨ of complete lattices and join-preserving functions. In this situation

diagram (1) takes the form:

(
CL∧)op ++∼= CL∨ = EM(P)ll

K̀ (P)

Pred

bb

Stat

??
(2)

4

where CL∧ is the category of complete lattices and meet-preserving maps.
The isomorphism ∼= arises because each join-preserving map between com-
plete lattices corresponds to a meet-preserving map in the other direction.
The upgoing ‘state’ functor Stat on the right is the standard full and faith-
ful functor from the Kleisli category of a monad to its category of algebras.
The predicate functor Pred : K̀ (P) → (CL∧)op on the left sends a set X to

the powerset P(X) of predicates/subsets, as complete lattices; a Kleisli map
f : X → P(Y) yields a map:

P(Y)
f∗=Pred(f)//P(X) given by (Q ⊆ Y) 7−→ {x | f(x) ⊆ Q}. (3)

In categorical logic, this map Pred(f) is often written as f ∗, and called a
substitution functor. In modal logic one may write it as �f . In the current
context we also write it as wp(f), since it forms the weakest precondition
operation for f , see [5]. Clearly, it preserves arbitrary meets (intersections). It
is not hard to see that the triangle (2) commutes.

Interestingly, the diagram (2) involves additional structure on homsets. If we
have a collection of parallel maps fi in K̀ (P), we can take their (pointwise) join∨
i∈I fi. Pre- and post-composition preserves such joins. This means that the

Kleisli category K̀ (P) is enriched over the category CL∨. The category CL∨
is monoidal closed, and thus enriched over itself. Also the category (CL∧)op

is enriched over CL∨, with joins given by pointwise intersections. Further,

the functors in (2) are enriched over CL∨, which means that they preserve
these joins on posets. In short, the triangle is a diagram in the category of
categories enriched over CL∨. In particular, the predicate functor is enriched,
which amounts to the familiar law for non-deterministic choice in weakest
precondition reasoning: wp(

∨
i fi) =

∧
iwp(fi).

A less standard monad for non-determinism is the ultrafilter monad U : Sets→
Sets. A convenient way to describe it, at least in the current setting, is:

U(X) = BA
(
P(X), 2

)
= {f : P(X)→ 2 | f is a map of Boolean algebras }.

For a finite set X one has X
∼=→ U(X).

A famous result of [24] says that the category of algebras of U is the category
CH of compact Hausdorff spaces (and continuous functions). It yields the
following triangle.

BAop

Spec=Hom(−,2)
++> CH = EM(U)

Clopen

kk

K̀ (U)

Pred

aa

Stat

??
(4)

The predicate functor Pred sends a set X to the Boolean algebra P(X) of

5

subsets of X. For a map f : X → U(Y) we get f ∗ : P(Y) → P(X) by
f ∗(Q) = {x | f(x)(Q) = 1}. This functor Pred is full and faithful, almost
by construction.

The precise enrichment in this case is unclear. Enrichment over (compact
Hausdorff) spaces, if present, is not so interesting because it does not provide
algebraic structure on computations.

We briefly look at the lift (or ‘maybe’) monad L : Sets → Sets, given by
L(X) = 1 + X. Its Kleisli category K̀ (L) is the category of sets and partial
functions. And its (equivalent) category of algebra EM(L) is the category
Sets• of pointed sets, (X, •X), where •X ∈ X is a distinguished element;
morphisms in Sets• are ‘strict’, in the sense that they preserve such points.
There is then a situation:

(ACL∨
•,∧

)op
,,

> Sets• = EM(L)mm

K̀ (L)

Pred

ee

Stat

<<

(5)

We call a complete lattice atomic if (1) each element is the join of atoms
below it, and (2) binary meets ∧ distribute over arbitrary joins

∨
. Recall that

an atom a is a non-bottom element satisfying x < a ⇒ x = ⊥. We write
At(L) ⊆ L for the subset of atoms. In such an atomic lattice atoms a are
completely join-irreducible: for a non-empty index set I, if a ≤ ∨

i∈I xi then
a ≤ xi for some i ∈ I.

The category ACL∨
•,∧

contains atomic complete lattices, with maps preserv-

ing non-empty joins (written as
∨
•) and binary meets ∧. Each Kleisli map

f : X → L(Y) = {⊥} ∪ Y yields a substitution map f ∗ : P(Y) → P(X) by
f ∗(Q) = {x | ∀y. f(x) = y ⇒ Q(y)}. This f ∗ preserves ∧ and non-empty joins∨
•. Notice that f ∗(∅) = {x | f(x) = ⊥}, which need not be empty.

The adjunction (ACL∨
•,∧

)op � Sets• amounts to a bijective correspondence:

L
f //P(X − •) in (ACL∨

•,∧
)op

=================
X g

// {⊥} ∪ At(L) in Sets•

This correspondence works as follows. Given f : L → P(X − •) notice that
X = f(>) = f(

∨
At(L)) =

⋃
a∈At(L) f(a). Hence for each x ∈ X there is an

atom a with x ∈ f(a). We define f : X → {⊥} ∪ At(L) as:

f(x) =

 a if x ∈ f(a)− f(⊥)

⊥ otherwise.

6

This is well-defined: if x is both in f(a)−f(⊥) and in f(a′)−f(⊥), for a 6= a′,
then x ∈ (f(a) ∩ f(a′))− f(⊥) = f(a ∧ a′)− f(⊥) = f(⊥)− f(⊥) = ∅.

In the other direction, given g : X → {⊥} ∪ At(L), define for y ∈ L,

g(y) = {x ∈ X | ∃a ∈ At(L). a ≤ y and g(x) = a} ∪ {x ∈ X − • | g(x) = ⊥}.

It is not hard to see that this yields a commuting triangle (5), and that the
(upgoing) functors are full and faithful.

3 Linear and (sub)convex computation

We sketch two important sources for linear and (sub)convex structures.

(1) If A is a matrix, say over the real numbers R, then the set of solution
vectors v of the associated homogeneous equation Av = 0 forms a linear
space: it is closed under finite additions and scalar multiplication. For
a fixed vector b 6= 0, the solutions v of the non-homogeneous equation
Ax = b form a convex set: it is closed under convex combinations

∑
i rivi

of solutions vi and ‘probability’ scalars ri ∈ [0, 1] with
∑
i ri = 1. Finally,

for b ≥ 0, the solutions v to the inequality Av ≤ b are closed under
subconvex combinations

∑
i rivi with

∑
i ri ≤ 1. These examples typically

occur in linear programming.
(2) If V is a vector space of some sort, we can consider the space of linear

functions f : V → R to the real (or complex) numbers. This space is
linear again, via pointwise definitions. Now if V contains a unit 1, we
can impose an additional requirement that such functions f : V → R
are ‘unital’, i.e. satisfy f(1) = 1. This yields a convex set of functions,
where

∑
i rifi again preserves the unit, if

∑
i ri = 1. If we require only

0 ≤ f(1) ≤ 1, making f ‘subunital’, we get a subconvex set. These
requirements typically occur in a setting of probability measures.

Taking (formal) linear and (sub)convex combinations over a set yields the
structure of a monad. We start by recalling the definitions of these (three)
monads, namely the multiset monadMR, the distribution monad D, and the
subdistribution monad D≤1, see [14] for more details. A semiring is given by a
set R which carries a commutative monoid structure (+, 0), and also another
monoid structure (·, 1) which distributes over (+, 0). As is well-known [13],
each such semiring R gives rise to a multiset monad MR : Sets → Sets,
where:

MR(X) = {ϕ : X → R | supp(ϕ) is finite},
where supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is the support of ϕ. Such ϕ ∈ MR(X)
may also be written as finite formal sum ϕ =

∑
i si|xi 〉 where supp(ϕ) =

7

{x1, . . . , xn} and si = ϕ(xi) ∈ R is the multiplicity of xi ∈ X. The ‘ket’
notation |x〉 for x ∈ X is just syntactic sugar. The unit of the monad is given
by η(x) = 1|x〉 and its multiplication by µ(

∑
i si|ϕi 〉) =

∑
x(
∑
i si · ϕi(x))|x〉.

The distribution monad D : Sets→ Sets is defined similarly. It maps a set X
to the set of finite formal convex combinations over X, as in:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and
∑
x ϕ(x) = 1}

= {r1|x1 〉+ · · ·+ rn|xn 〉 | xi ∈ X, ri ∈ [0, 1] with
∑
i ri = 1}.

The unit η and multiplication µ for D are as for MR. We consider another
variation, namely the subdistribution monad D≤1, where D≤1(X) contains the
formal subconvex combinations

∑
i ri|xi 〉 where

∑
i ri ≤ 1. It has the same unit

and multiplication as D.

These three monads MR,D and D≤1 are used to capture different kinds of
computation, in the style of [28]. Maps (coalgebras) of the form c : X →
MR(X) capture ‘multi-computations’, which can be written in transition no-
tation as x

r−→ x′ if c(x)(x′) = r. This label r ∈ R can represent the time or
cost of a transition. Similarly, the monads D and D≤1 capture probabilistic
computation: for coalgebras c : X → D(X) or c : X → D≤1(X) we can write
x

r−→ x′ where c(x)(x′) = r ∈ [0, 1] describes the probability of the transition
x→ x′.

The category EM(MR) of (Eilenberg-Moore) algebras of the multiset monad
MR contains the modules over the semiring R. Such a module is given by
a commutative monoid M = (M,+, 0) together with a scalar multiplication
R ×M → M which preserves (+, 0) in both arguments. More abstractly, if
we write CMon for the category of commutative monoids, then the semiring
R is a monoid in CMon, and the category ModR = EM(MR) of modules
over R is the category ActR(CMon) of R-actions R ⊗M → M in CMon,
see also [26, VII§4]. For instance, for the semiring R = N of natural numbers
we obtain CMon = EM(MN) as associated category of algebras; for R = R
or R = C we obtain the categories VectR or VectC of vector spaces over real
or complex numbers; and for the Boolean semiring R = 2 = {0, 1} we get the
category JSL of join semi-lattices, since M2 is the finite powerset monad.

We shall write Conv = EM(D) for the category of convex sets. These are sets
X in which for each formal convex sum

∑
i ri|xi 〉 there is an actual convex

sum
∑
i rixi ∈ X. Morphisms in Conv preserve such convex sums, and are

often called affine functions. A convex set can be defined alternatively as
a barycentric algebra [32], see [12] for the connection. Similarly, we write
Conv≤1 = EM(D≤1) for the category of subconvex sets, in which subconvex
sums exist.

8

For linear ‘multi’ computation the general diagram (1) takes the following
form.

(ModR)op
Hom(−,R)

,,> ModR = EM(MR)
Hom(−,R)

mm

K̀ (MR)
R(−)

ee ;;
(6)

The adjunction (ModR)op �ModR is given by the correspondence between
homomorphisms M → (N (R) and N → (M (R), where(is used for lin-
ear function space. The predicate functor R(−) : K̀ (MR) → (ModR)op sends
a set X to the module RX of functions X → R, with pointwise operations.
A Kleisli map f : X → MR(Y) yields a map of modules f ∗ : RY → RX by
f ∗(q)(x) =

∑
y q(y) · f(x)(y). Like before, this f ∗(q) may be understood as the

weakest precondition of the postcondition q. In one direction the triangle com-
mutes: Hom(MR(X), R) ∼= Sets(X,R) = RX sinceMR(X) is the free module
on X. Commutation in the other direction, that is Hom(RX , R) ∼= MR(X)
holds for finite sets X. Hence in order to get a commuting triangle we should
restrict to the full subcategory K̀ N(MR) ↪→ K̀ (MR) with objects n ∈ N,
considered as n-element set.

Now let R be a commutative semiring. The triangle (6) is then a diagram
enriched over ModR: the categories, functors, and natural transformations
involved are all enriched. Indeed, if the semiring R is commutative, then so
is the monad MR, see e.g. [14]; this implies that ModR is monoidal closed,
and in particular enriched over itself. Similarly, the Kleisli category K̀ (MR)
is then enriched over ModR.

In the probabilistic case one can choose to use a logic with classical predicates
(subsets, or characteristic functions) {0, 1}X or ‘fuzzy predicates’ [0, 1]X . These
options are captured in the following two triangles.

PreFrmop

Hom(−,{0,1})
,,> Conv

Hom(−,{0,1})
ll EModop

Hom(−,[0,1])
,,> Conv

Hom(−,[0,1])
ll

K̀ (D)
{0,1}(−)

ee <<

K̀ (D)
[0,1](−)

dd <<
(7)

The adjunctions both come from [14]. The one on the left is investigated
further in [25]. It uses the category PreFrm of preframes: posets with directed
joins and finite meets, distributing over these joins, see [21]. Indeed, for a
Kleisli map f : X → D(Y) we have a substitution functor f ∗ : P(Y)→ P(X)
in PreFrm given by f ∗(Q) = wp(f)(Q) = {x ∈ X | supp(f(x)) ⊆ Q}. This
f ∗ preserves directed joins because the support of f(x) ∈ D(Y) is finite.

The homsets PreFrm(X, Y) of preframe maps X → Y have finite meets ∧,>,
which can be defined pointwise. As a result, these homsets are convex sets,
in a trivial manner: a sum

∑
i rihi is interpreted as

∧
i hi, where we implicitly

9

assume that ri > 0 for each i. With this in mind one can check that the triangle
on the left in (7) is enriched over Conv. It yields the rule wp(

∑
i rifi)(Q) =⋂

iwp(fi)(Q).

The situation on the right in (7) requires more explanation. We sketch the
essentials. A partial commutative monoid (PCM) is a given by a set M with
a partial binary operation > : M ×M → M which is commutative and asso-
ciative, in a suitable sense, and has a zero element 0 ∈ M . One writes x ⊥ y
if x> y is defined. A morphism f : M → N of PCMs satisfies: x ⊥ x′ implies
f(x) ⊥ f(x′), and then f(x>x′) = f(x) > f(x′). This yields a category which
we shall write as PCMon.

The unit interval [0, 1] is clearly a PCM, with r > r′ defined and equal to
r+ r′ if r+ r′ ≤ 1. With its multiplication operation this [0, 1] is a monoid in
the category PCMon, see [19] for details. We define a category PCMod =
Act[0,1](PCMon) of partial commutative modules ; its objects are PCMs M
with an action [0, 1] ×M → M , forming a homomorphism of PCMs in both
coordinates. These partial commutative modules are thus like vector spaces,
except that their addition is partial and their scalars are probabilities in [0, 1].

Example 1 Consider the set of partial functions from a set X to the unit
interval [0, 1]. Thus, for such a f : X ⇀ [0, 1] there is an output value f(x) ∈
[0, 1] only for x ∈ X which are in the domain dom(f) ⊆ X. Obviously, one
can define scalar multiplication r • f , pointwise, without change of domain.
We take the empty function — nowhere defined, with empty domain — as
zero element. Consider the following two partial sums that turn these partial
functions into a partial commutative module.

One way to define a partial sum > is to define f ⊥ g as dom(f)∩dom(g) = ∅;
the sum f > g is defined on the union of the domains, via case distinction.

A second partial sum f >′ g is defined if for each x ∈ dom(f) ∩ dom(g)
one has f(x) + g(x) ≤ 1. For those x in the overlap of domains, we define
(f >′ g)(x) = f(x) + g(x), and elsewhere f >′ g is f on dom(f) and g on
dom(g).

An effect algebra (see [7,6]) is a PCM with for each element x a unique
complement x⊥ satisfying x > x⊥ = 1 = 0⊥, together with the requirement
1 ⊥ x ⇒ x = 0. In the unit interval [0, 1] we have r⊥ = 1 − r. In Example 1
for both the partial sums > and >′ one does not get an effect algebra: in the
first case there is not always an f⊥ with f > f⊥ = 1, where 1 is the function
that is everywhere defined and equal to 1. For >′ there is f⊥ with f >′ f⊥,
but f⊥ need not be unique. E.g. the function 1 has both the empty function
and the everywhere 0 function as complement. We can adapt this example to
an effect algebra by considering only partial functions X ⇀ (0, 1], excluding
0 as outcome.

10

A map of effect algebras f is a map of PCMs satisfying f(1) = 1. This yields a
subcategory EA ↪→ PCMon. An effect module is at the same time an effect
algebra and a partial commutative module. We get a subcategory EMod ↪→
PCMod. By ‘homming into [0, 1]’ one obtains an adjunction EModop �
Conv, see [14] for details. The resulting triangle on the right in (7) commutes
in one direction, since Conv(D(X), [0, 1]) ∼= [0, 1]X . In the other direction one
has EMod([0, 1]X , [0, 1]) ∼= D(X) for finite sets X.

In [31] it is shown that each effect module is a convex set. The proof is simple,
but makes essential use of the existence of orthocomplements (−)⊥. In fact,
the category EMod is enriched over Conv. Even stronger, the triangle on the
right in (7) is enriched over Conv. This yields wp(

∑
i rifi) =

∑
i riwp(fi).

There are two variations on the distribution monad D that are worth point-
ing out. The first one is the expectation monad E(X) = EMod([0, 1]X , [0, 1])
introduced in [20] (and used for instance in [3] for probabilistic program se-
mantics). It can be seen as a probabilistic version of the ultrafilter monad from
the previous section. For a finite set one has E(X) ∼= D(X). The category of
algebras EM(E) contains the convex compact Hausdorff spaces, see [20]. This
monad E gives rise to a triangle as on the left below, see [20] for details.

EModop

Hom(−,[0,1])
,,

> EM(E)
Hom(−,[0,1])
ll σEModop

Hom(−,[0,1])
,,> EM(G)

Hom(−,[0,1])
ll

K̀ (E)
[0,1](−)

cc <<

K̀ (G)
Meas(−,[0,1])

dd <<
(8)

The triangle on the right captures continuous probabilistic computation, via
the Giry monad G on the category Meas of measurable spaces. This is elabo-
rated in [15]. The category σEMod contains effect modules in which countable
ascending chains have a join. Both these triangles commute, and are enriched
over convex sets.

We continue with the category Conv≤1 = EM(D≤1) of subconvex sets. We
now get a triangle of the form:

GEModop

Hom(−,[0,1])
,,> Conv≤1 = EM(D≤1)

Hom(−,[0,1])
ll

K̀ (D≤1)
[0,1](−)

ee ::
(9)

We need to describe the category GEMod of generalised effect modules. First,
a generalised effect algebra, according to [6], is a partial commutative monoid
(PCM) in which x> y = 0⇒ x = y = 0 and x> z = y > z ⇒ x = y hold. In
that case one can define a partial order ≤ in the usual way. We obtain a full
subcategory GEA ↪→ PCMon. In fact we have EA ↪→ GEA ↪→ PCMon,

11

since a generalised effect algebra is not an effect algebra, but a more general
‘topless’ structure: a generalized effect algebra with a top element 1 is an effect
algebra.

One can now add multiplication with scalars from [0, 1] to generalised effect
algebras, like for partial commutative modules. But we require more, namely
the existence of subconvex sums r1x1>· · ·>rnxn, for ri ∈ [0, 1] with

∑
i ri ≤ 1.

As noted before, such sums exist automatically in effect modules, but this is
not the case in generalised effect algebra with scalar multiplication, as the
first structure in Example 1 illustrates. Thus we define a full subcategory
GEMod ↪→ PCMod, where objects of GEMod are at the same time par-
tial commutative modules and generalised effect algebras, with the additional
requirement that all subconvex sums exist. Summarising, we have the fol-
lowing diagram of ‘effect’ structures, where the bottom row involves scalar
multiplication.

EA�
� //GEA�

� //PCMon

EMod
?�

OO

� � //GEMod
?�

OO

� � //PCMod
?�

OO

Once we know what generalized effect modules are, it is easy to see that
‘homming into [0, 1]’ yields the adjunction in (9). Moreover, this diagram (9)
is enriched over Conv≤1, so that weakest precondition wp preserves subconvex
sums of Kleisli maps (programs).

4 Quantum computation, briefly

In this section we wish to point out that the triangle (1) applies beyond
the monadic setting. For instance, quantum computation, modeled via the
category CstarPU of C∗-algebras (with unit) and positive, unital maps, one
obtains a triangle:

EModop

Hom(−,[0,1])
,,> Conv

Hom(−,[0,1])
mm

(CstarPU)op
Pred

ff

Stat

99
(10)

The predicate functor sends a C∗-algebra A to the unit interval [0, 1]A ⊆ A
of ‘effects’ in A, where [0, 1]A = {a ∈ A | 0 ≤ a ≤ 1}. This functor is full
and faithful, see [8]. On the other side, the state functor sends a C∗-algebra
A to the (convex) set of its states, given by the homomorphisms A→ C. This
diagram is enriched over convex sets. A similar setting of states and effects, for
Hilbert spaces instead of C∗-algebras, is used in [4] for a quantum precondition
calculus.

12

In [8] it was shown that commutative C∗-algebras, capturing the probabilistic,
non-quantum case, can be described as a Kleisli category. It is unclear if the
non-commutative, proper quantum, case can also be described via a monad.

5 Dijkstra monad examples

In [33] the ‘Dijkstra’ monad is introduced, as a variant of the ‘Hoare’ monad
from [29]. It captures weakest precondition computations for the state monad
X 7→ (S × X)S, where S is a fixed collection of states (the heap). Here we
wish to give a precise description of the Dijkstra monad, for various concrete
computational monads T .

For the powerset monad P , a first version of the Dijkstra monad, following
the description in [33], yields DP : Sets→ Sets defined as:

DP(X) = P(S)P(S×X), (11)

where S is again a fixed set of states. Thus, an element w ∈ DP(X) is a
function w : P(S×X)→ P(S) that transforms a postcondition Q ∈ P(X×S)
into a precondition w(Q) ∈ P(S). The postcondition is a binary predicate, on
both an output value from X and a state from S; the precondition is a unary
predicate, only on states.

In this first version (11) we simply take all functions P(S × X) → P(S).
But in the triangle (2) we see that predicate transformers are maps in CL∧,
i.e. are meet-preserving maps between complete lattices. Hence we now prop-
erly (re)define DP as the set of meet-preserving functions:

DP(X)
def
= CL∧(P(S ×X),P(S)

)
=
(
CL∧)op(Pred(S),Pred(S ×X)

) (12)

This is indeed a monad, following [33], with unit and multiplication:

η(x) = λQ. {s | (s, x) ∈ Q} µ(H) = λQ.H
(
{(s, h) | s ∈ h(Q)}

)
.

We introduce some notation (S, i.e. fraktur S) for the result of applying the
state transformer monad to an arbitrary monad (see e.g. [23]).

Definition 2 For a monad T : Sets → Sets and for a fixed set (of ‘states’)
S, the T -state monad ST is defined as:

ST (X) = T (S ×X)S = K̀ (T)
(
S, S ×X

)
.

13

For the record, its unit and multiplication are given by:

x 7−→ λs ∈ S. η(s, x) and H 7−→ µ ◦ T (λ(s, h). h(s)) ◦ H,

where η, µ are the unit and multiplication of T .

Proposition 3 There is a map of monads SP ⇒ DP from the P-state monad
to the P-Dijkstra monad (12), with components:

SP(X) = K̀ (P)
(
S, S ×X

)
σX //

(
CL∧)op(Pred(S),Pred(S ×X)

)
= DP(X)

given by substitution / weakest precondition:

σX(f) = Pred(f) = f ∗ = wp(f) = λQ ∈ P(S ×X). {s | f(s) ⊆ Q},

following the description from (3).

Proof. We have to check that substitution is natural in X and commutes
with the units and multiplications. This is easy; for instance:(

σ ◦ ηS
)
(x)(Q) =

(
ηS(x)

)∗
(Q) = {s | ηS(x)(s) ⊆ Q}

= {s | ηP(s, x) ⊆ Q}
= {s | {(s, x)} ⊆ Q}
= {s | (s, x) ∈ Q} = ηD(x)(Q). �

At this stage the generalisation of the Dijkstra monad for other monads —
with an associated logic as in (1) — should be clear. For instance, for the
multisetMR and (sub)distribution monad D,D≤1 we use the triangles in (6),
(7) and (9) to define associated Dijkstra monads:

DMR
(X) = ModR

(
Pred(S ×X),Pred(S)

)
= ModR

(
RS×X , RS

)
DD(X) = EMod

(
Pred(S ×X),Pred(S)

)
= EMod

(
[0, 1]S×X , [0, 1]S

)
DD≤1

(X) = GEMod
(
Pred(S ×X),Pred(S)

)
= GEMod

(
[0, 1]S×X , [0, 1]S

)
(13)

Then there is the following result, analogously to Proposition 3. The proofs
involve extensive calculations but are essentially straightforward.

Proposition 4 For the multiset, distribution, and subdistribution monadsMR,
D, and D≤1 there are maps of monads given by substitution:

SMR

(−)∗ +3DMR
SD

(−)∗ +3DD SD≤1

(−)∗ +3DD≤1

14

from the associated state monads to the associated Dijkstra monads (13). �

The Dijkstra monad associated with the expectation monad E is the same as
for the distribution monad D. Hence one gets a map of monads SE ⇒ DD,
with substitution components:

SE(X) = E(S ×X)S = EMod
(

[0, 1]S×X , [0, 1]
)S

(−)∗
��

EMod
(

[0, 1]S×X , [0, 1]S
)

= DD(X)

where f ∗(q)(s) = f(s)(q). Details are left to the reader.

6 Dijkstra’s monad, beyond examples

We have seen several instances of state-and-effect triangles. It would be highly
desirable to have a general method to construct for an arbitrary monad T (on
Sets) an associated ‘logical category’ Log, leading to a triangle of the form:

Logop ,,
> EM(T)ll

K̀ (T)

Pred

aa

Stat

<<

In the previous version [18] of this paper a general adjunction Setsop �
EM(T) was described, induced by a fixed algebra T (Ω) → Ω. This suggests
some way towards a category Log by suitably restricting this adjunction. But
how to do that in general remains unclear.

Here we take a different route: we simply assume that we have a functor
Pred : K̀ (T) → Logop and investigate what properties it should satisfy in
order to define a ‘Dijkstra’ monad — and also a Hoare monad in the next
section. These requirements turn out to be rather light. In the next section
we ask the same question for the Hoare monad. In that case we need much
stronger properties.

Theorem 5 Let T be an arbitrary monad on Sets, and let S be an arbitrary
set (of states), for which we form the associated state monad ST = (S×−)S.
Let Pred : K̀ (T)→ Logop be a functor to some (unspecified) category Log. If
Pred preserves copowers, then the definition

DT (X) = Log
(
Pred(S ×X),Pred(S)

)

15

yields a monad on Sets. It comes equipped with a map of monads ST ⇒ DT .

As before we simply write f ∗ = Pred(f) : Pred(Y) → Pred(X), for a Kleisli
map f : X → T (Y), and call this f ∗ a substitution morphism.

For an arbitrary index set I, a copower is an I-fold coproduct
∐
i∈I X without

any dependence on i. It is often written as I · X. In Sets such a copower is
simply the cartesian product I × X. Since colimits in a Kleisli category are
inherited from the underlying category, this I ×X is also a copower in K̀ (T).

A power is a ‘constant’ product
∏
i∈I X, written as XI . Since the functor

Pred : K̀ (T) → Logop goes to an opposite, preservation of copowers means
that it sends copowers in K̀ (T) to powers in Log. Thus, there are (canonical)
isomorphisms:

Pred(X)I
cpp
∼=

//Pred(X × I) (14)

in the category Log. These maps are called cpp, for ‘copower preservation’.
They are canonical in the sense that they are inverses to the maps Pred(X ×
I) → Pred(X)I obtained as tuple 〈J(κi)

∗〉i∈I for the coprojection functions
κi : X → X × I, given by κi(x) = 〈x, i〉 in Sets. In K̀ (T) these coprojections
are J(κi) = ηT ◦ κi = ηS(i), where ηS is the unit of the state monad ST =
T (S × −)S. This preservation holds for Boolean and fuzzy predicates, since
P(X)I ∼= P(X×I) and ([0, 1]X)I ∼= [0, 1]X×I . The maps cpp in (14) are natural
in X, in the sense that for f : X → T (Y) and g : I → J the following diagram
commutes.

Pred(X)I
cpp
∼=

//Pred(X × I)

Pred(Y)J
cpp
∼=

//

f∗◦(−)◦g=(f∗)g

OO

Pred(Y × J)

(st1◦(f×g))∗
OO

(15)

The map on the right uses the strength map st1 : T (Y)× J → T (Y × J) from
Subsection 1.1.

Proof. (Of Theorem 5) For f : X → Y in Sets we have DT (f) : DT (X) →
DT (Y) given by DT (f)(h) = h ◦ J(idS × f)∗ : Pred(S × Y) → Pred(S ×
X)→ Pred(S). The unit ηD : X → DT (X) is given by ηD(x) = ηS(x)∗, where
ηS(x) = λs. (s, x) : S → T (S×X) as in Definition 2. It is not hard to see that
ηD is a natural transformation.

For the definition of the multiplication µD : DT (DT (X))→ DT (X) we use that
the predicate functor preserves copowers. For a map H : Pred(S×DT (X))→
Pred(S) we have to define µD(H) : Pred(S × X) → Pred(S). We take the
following composite.

Pred(S ×X)
〈h〉h∈DT (X) //Pred(S)DT (X) cpp

∼=
//Pred(S ×DT (X)) H //Pred(S)

16

We illustrate the verification of one of the monad laws. For h ∈ DT (X),(
µD
X ◦ ηDDT (X)

)
(h) = µD

X

(
ηS(h)∗

)
= ηS(h)∗ ◦ cpp ◦ 〈k〉k∈DT (X)
(∗)
= (λf. f(h)) ◦ 〈k〉k∈DT (X)

= λp. (λf. f(h))
(
〈k〉k∈DT (X)(p)

)
= λp. (λf. f(h))

(
λk. k(p)

)
= λp. h(p)

= h.

The marked equation
(∗)
= holds since (λf. f(h)) ◦ cpp−1 = (ηS(h))∗, as shown

below. (
(λf. f(h)) ◦ cpp−1

)
(p) = cpp−1(p)(h)

= (ηT ◦ κh)∗(p)
= (λs. ηT (κh(s)))

∗(p)

= (λs. ηT (s, h))∗(p)

= (λs. ηS(h)(s))∗(p)

= (ηS(h))∗(p).

Like before, substitution forms a map of monads ST ⇒ DT , by sending a
function f ∈ ST (X) = T (S × X)S to f ∗ ∈ Log

(
Pred(S × X),Pred(S)

)
=

DT (X). �

7 The Hoare monad

The Dijkstra monad captures functions from postconditions to preconditions.
In Theorem 5 in the previous section we have seen that very little logical
structure is needed to define the Dijkstra monad for a monad T . We proceed
with the Hoare monad, and will see below that it requires — in contrast —
non-trivial logical structure. This Hoare monad contains triples (P, h,Q) of
precondition, program, and postcondition, corresponding to a Hoare triple
{P}h{Q}, with meaning: if condition P holds in state s in which the program
h is executed, then postcondition Q holds for all states and outputs produced
by running h in state s.

This section contains one result, namely Theorem 7. It involves a bit of expla-
nation. First, a monad T is called affine (see [10]) if it preserves the terminal
object 1, or, more specifically, if the unit map η : 1→ T (1) is an isomorphism.
The powerset monad is not affine, but the nonempty-powerset monad is affine.

17

The distribution monad D is also affine, and of course, the identity monad is
affine. The following result is an adaptation of [10, Lemma 4.2].

Lemma 6 For a monad T on Sets, the following statements are equivalent.

(1) T is affine, i.e. T (1) ∼= 1;
(2) T (π1) ◦ st2 = η ◦ π1 : X × T (Y)→ T (X);
(3) T (π2) ◦ st1 = η ◦ π2 : T (X)× Y → T (Y).

Proof. The equivalence of points (2) and (3) is easy and left to the reader,
so we concentrate on (1) ⇔ (2). First assume that the unit η : 1 → T (1) is
an isomorphism. The equation T (π1) ◦ st2 = η ◦ π1 follows from the following
diagram chase.

X × T (Y)

id×T (!)
��

st2 //

id× !

))

T (X × Y)

T (id× !)
��

T (π1)

uu

X × T (1)
st2 //T (X × 1)

T (π1)
��

X × 1 π1
//

η
33

id×η∼=
OO

X η
//T (X)

In the other direction we use the equality of projections π1 = π2 : 1 × 1 → 1
to prove η ◦ ! = id in:

T (1)

〈!,id〉
��

! // 1 η

%%
1× T (1)

π1

55

st2 //

π2

33T (1× 1)
T (π1)=T (π2) //T (1)

�

Theorem 7 Let T be an affine monad on Sets and S be a set of states.
Let Pred : K̀ (T) → MSLop be a functor to the category MSL of meet semi-
lattices. This functor Pred satisfies the following additional properties.

• It preserves copowers, as described after Definition 5.
• There are left and right adjoints

∐
f
a J(f)∗ a

∏
f

to substitution maps

J(f)∗ : Pred(Y)→ Pred(X), for each f : X → Y in Sets. The left adjoints
satisfy the Frobenius property:

∐
f

(
J(f)∗(P) ∧Q

)
= P ∧

∐
f
(Q).

We also require the Beck-Chevalley condition, as described below.
• Each semi-lattice Pred(X) is actually a Heyting algebra. Hence there is an

implication operation P ⊃ Q in each Pred(X). Moreover, substitution J(f)∗

along a pure map J(f) = ηT ◦ f preserves ⊃.

18

Sending a set X to the set of Hoare triples:

HT (X) =
{

(P, h,Q)
∣∣∣∣P ∈ Pred(S), h ∈ ST (X), Q ∈ Pred(S × (S ×X))

with P ≤ (st2 ◦ 〈id, h〉)∗(Q)
}
.

then yields a monad HT on Sets, which is appropriately called the Hoare
monad for T , following in [29,34]. Forgetting the pre- and postconditions gives
a map of monads HT ⇒ ST to the state monad ST = T (S ×−)S.

The inequality P ≤ (st2 ◦ 〈id, h〉)∗(Q) in the definition of HT (X) may be read
informally as: if P (s), then Q(s, h(s)). The postcondition Q is thus a relation
between a ‘pre-state’ s and the result h(s) involving a post-state in S and
an outcome in X. Having such a pre-state in postconditions is convenient in
specification, for instance for expressing properties like val = old(val)+1, where
old(val) refers to the value of the variable val in the pre-state. Such old-syntax
occurs for instance in the specification language JML for Java, see [22].

Notice that it is implicit in the type of the functor Pred : K̀ (T) → MSLop

that substitution maps g∗ = Pred(g) preserve finite meets (∧, 1). However, we
do not require that all substitution g∗ also preserves implication ⊃, only for
pure maps g = J(f) = ηT ◦ f . But since each g∗ preserves ∧ we do get an
inequality in one direction, namely: g∗(P ⊃ Q) ≤ g∗(P) ⊃ g∗(Q). This will be
used below.

We do require what is called a Beck-Chevalley condition (see [11] for more
information) for the adjoints

∐
f
,
∏

f
. It takes the following special form.

Given a pullback in Sets of the form:

X

h
��

f //Y

k
��

A g
//B

then there are equations:

∐
f
◦ J(h)∗ = J(k)∗ ◦

∐
g

J(k)∗ ◦
∏

g
=
∏

f
◦ J(h)∗ (16)

Given this Beck-Chevalley property for pure maps, one can prove that the cpp
maps not only commute with substitution (−)∗, as in (15), but also with

∐
,∏

and ⊃.

Remark 8 (ii) below explains why the requirement that the monad T be affine
makes sense in the presence of such quantification. But first we present the
proof of Theorem 7. It is a long exercise in categorical logic. A simplified,
logical description is given in Remark 8 (i). It may be helpful.

19

Proof. To start we define three projection maps pre, prog, post, namely:

pre(P, h,Q) = P prog(P, h,Q) = h post(P, h,Q) = Q.

These maps have types pre : HT (X)→ Pred(S), prog : HT (X)→ ST (X), and
post : HT (X)→ Pred(S×(S×X)). The last claim of the theorem says that prog
is a natural transformation DT ⇒ ST . This will be the case by construction,
since for the middle, program part of DT we copy ST .

We first have to show that HT is a functor on Sets. For a function f : X → Y
one obtains HT (f) : HT (X)→ HT (Y) by:

HT (f)
(
P, h,Q

)
=
(
P, ST (f)(h),

∐
id×(id×f)

(Q)
)
,

where ST (f)(h) = T (id × f) ◦ h, see Definition 2. This map HT (f) is well-
defined since, if we assume (st2 ◦ 〈id, h〉)∗(Q) ≥ P , then:

(
st2 ◦ 〈id,ST (f)(h)〉

)∗(∐
id×(id×f)

(Q)
)

=
(
st2 ◦ 〈id, T (id × f) ◦ h〉

)∗(∐
id×(id×f)

(Q)
)

=
(
st2 ◦ (id × T (id × f)) ◦ 〈id, h〉

)∗(∐
id×(id×f)

(Q)
)

=
(
T (id × (id × f)) ◦ st2 ◦ 〈id, h〉

)∗(∐
id×(id×f)

(Q)
)

=
(
µ ◦ T (ηT ◦ (id × (id × f))) ◦ st2 ◦ 〈id, h〉

)∗(∐
id×(id×f)

(Q)
)

=
(
J(id × (id × f)) • (st2 ◦ 〈id, h〉)

)∗(∐
id×(id×f)

(Q)
)

= (st2 ◦ 〈id, h〉)∗J(id × (id × f)∗
(∐

id×(id×f)
(Q)

)
≥
(
st2 ◦ 〈id, h〉

)∗
(Q) via the unit of

∐
(−) a J(−)∗

≥ P.

In order to define the unit map ηH : X → HT (X) we use that each set of
predicates Pred(X) has a greatest element 1X , and that substitution maps
preserves these top elements. Then:

ηH(x) =
(
1S, η

S(x),
∐
〈id,κx〉

(1S)
)

where κx = λs ∈ S. (s, x) : S → S × X and
∐
κx a (ηT ◦ κx)∗ = ηS(x)∗ =

ηD(x). We leave it to the reader to verify that ηH is a natural transformation.

The definition of the multiplication map µ : (HT)2(X)→ HT (X) involves more

20

work:

µH(P,H,Q) = (P ′, H ′, Q′) where

P ′ = P ∧
∏

π1

(
Q ⊃ J(π2)

∗(cpp(pre))
)

H ′ = µT ◦ T
(
λ(s, h). prog(h)(s)

)
◦ H

Q′ =
∐

π1

(
J(π1 × id)∗(Q) ∧
J(〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉)∗(cpp(post))

)
.

(17)

We briefly explain the three parts P ′, H ′, Q′ of this definition.

• Applying the copower preservation map cpp : Pred(S)HT (X) ∼=−→ Pred(S ×
HT (X)) to the first projection pre : HT (X) → Pred(S) yields a predicate
cpp(pre) ∈ Pred(S × HT (X)). Via the projection π2 : S × (S × HT (X)) →
S × HT (X) we get J(π2)

∗(cpp(pre)) ∈ Pred(S × (S × HT (X))). Since Q is
a predicate on the same set S × (S ×HT (X)), we can form the implication
Q ⊃ J(π2)

∗(cpp(pre)). The projection π1 : S × (S × HT (X)) → S, yields a
substitution map J(π1)

∗ : Pred(S) → Pred(S × (S × HT (X))), which has∏
π1

as right adjoint. Thus, the product
∏

π1

(
Q ⊃ J(π2)

∗(cpp(pre))
)

is a

predicate on S.
• The map H is by definition in ST (HT (X)), and thus has type H : S →
T (S × HT (X)). For (s, h) ∈ S × HT (X) we have prog(h) : S → T (S × X).
Thus the composite in the second part in (17) is of the appropriate form:

H ′ =
(
S H //T (S × HT (X))

T (prog′) //T 2(S ×X)
µT //T (S ×X)

)

where prog′ : S×HT (X)→ T (S×X) is prog′(s, h) = prog(h)(s). This allows
us to write H ′ as Kleisli composition H ′ = prog′ • H.
• The postcondition Q′ ∈ Pred(S × (S × X)) requires most work. A crucial

role is played by the projection:

(
S × (S ×X)

)
×
(
S × HT (X)

)
π1 //S × (S ×X)

We move the predicates Q ∈ Pred(S × (S × HT (X))) and cpp(post) ∈
Pred((S×(S×X))×HT (X)) to the domain of this projection. We abbreviate:

Q1 = J(π1 × id)∗(Q)

Q2 = J(〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉)∗(cpp(post)),

and define Q′ =
∐

π1
(Q1 ∧Q2) as in (17).

We will show that the multiplication µH in (17) is well-defined, i.e. that P ′ ≤
(st2 ◦ 〈id, H ′〉)∗(Q′). This involves some work.

21

First, the triple (P,H,Q) ∈ HT (HT (X)) satisfies P ≤ (st2 ◦ 〈id, H〉)∗(Q). The
counit of the adjunction J(−)∗ a

∏
(−)

yields in Pred(S × HT (X)),

J(π1)
∗
∏

π1

(
Q ⊃ J(π2)

∗(cpp(pre))
)
≤ Q ⊃ J(π2)

∗(cpp(pre)).

By applying (st2 ◦ 〈id, H〉)∗ to both sides we get:

(st2 ◦ 〈id, H〉)∗J(π1)
∗∏

π1

(
Q ⊃ (η ◦ π2)∗(cpp(pre))

)
≤ (st2 ◦ 〈id, H〉)∗(Q ⊃ J(π2)

∗(cpp(pre)))

≤ (st2 ◦ 〈id, H〉)∗(Q) ⊃ (st2 ◦ 〈id, H〉)∗J(π2)
∗(cpp(pre)).

On the left-hand-side we use that the monad T is affine to prove that the
composition of substitution functors (st2 ◦ 〈id, H〉)∗ ◦ J(π1)

∗ is the identity
id = (ηT)∗, in:

J(π1) • (st2 ◦ 〈id, H〉) = µT ◦ T (ηT ◦ π1) ◦ st2 ◦ 〈id, H〉
= T (π1) ◦ st2 ◦ 〈id, H〉
= ηT ◦ π1 ◦ 〈id, H〉 by Lemma 6

= ηT .

And on the right-hand-side we see that:

J(π2) • (st2 ◦ 〈id, H〉) = T (π2) ◦ st2 ◦ 〈id, H〉 = π2 ◦ 〈id, H〉 = H.

Altogether we have P ′ ≤ P ≤ (st2 ◦ 〈id, H〉)∗(Q), and also:

P ′ ≤
∏

π1

(
Q ⊃ J(π2)

∗(cpp(pre))
)
≤ (st2 ◦ 〈id, H〉)∗(Q) ⊃ H∗(cpp(pre)).

Hence we obtain P ′ ≤ H∗(cpp(pre)) by modus ponens.

At this stage we need a ‘dependent’ version of the naturality diagram (15) for
cpp. It goes as follows. For a function f : Y × I → T (Z) we have:

Pred(Y)I
cpp
∼=

//Pred(Y × I)

Pred(Z)I
cpp
∼=

//

f#

OO

Pred(Z × I)

(st1◦〈f,π2〉)∗
OO

(18)

where the function f# is defined by f#(Q)(i) = f(−, i)∗(Q(i)). We leave it to
the reader to verify that this diagram commutes, using the inverse of cpp.

We apply this diagram with f = st2 ◦ 〈π1, prog′〉 : S×HT (X)→ T (S×(S×X)),
where prog′(s, h) = prog(h)(s). This function prog has type HT (X) → T (S ×

22

X)S and satisfies, by definition of HT (X), for each h ∈ HT (X), the following
inequality.

pre(h) ≤ (st2 ◦ 〈id, prog(h)〉)∗
(
post(h)

)
= f#(post)(h).

Using this last equality we get:

cpp(pre) ≤ cpp((st2 ◦ 〈π1, prog′〉)#(post))
(18)
= (st1 ◦ 〈st2 ◦ 〈π1, prog′〉, π2〉)∗(cpp(post)).

Recall that our aim is to prove:

P ′ ≤ (st2 ◦ 〈id, H ′〉)∗(P ′) = (st2 ◦ 〈id, H ′〉)∗(
∐

π1
(Q1 ∧Q2)).

The unit of the adjunction
∐

(−) a J(−)∗ gives an inequality Q1 ∧ Q2 ≤
J(π1)

∗(
∐

π1
(Q1 ∧ Q2)). We apply on both sides the map f = µT ◦ T (st1 ◦

〈st2 ◦ (id× prog′), π2〉) ◦ st2 ◦ 〈id, H〉 : S → T ((S × (S ×X))× (S ×HT (X))).
It yields:

f ∗(Q1) ∧ f ∗(Q2) = f ∗(Q1 ∧Q2) ≤ f ∗J(π1)
∗(
∐

π1
(Q1 ∧Q2)). (19)

Our strategy is to prove the following three equations.

(a) f ∗J(π1)
∗ = (st2 ◦ 〈id, H ′〉)∗, so that the right-hand-side in (19) equals

(st2 ◦ 〈id, H ′〉)∗
∐

π1
(Q1 ∧Q2) = (st2 ◦ 〈id, H ′〉)∗(Q′);

(b) f ∗(Q1) = (st2 ◦ 〈id, H〉)∗(Q) ≥ P ′;
(c) f ∗(Q2) = H∗(st1 ◦ 〈st2 ◦ 〈π1, prog′〉, π2〉)∗(cpp(post)) ≥ H∗(cpp(pre)) ≥

P ′.

Using these inequalities, that we proved before, we are done showing that
P ′ ≤ (st2 ◦ 〈id, H ′〉)∗(Q′), and thus that the multiplication map µH in (17) is
well-defined.

23

For point (a) we calculate:

J(π1) • f
= µT ◦ T (ηT ◦ π1) ◦ µT ◦ T (st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= T (π1) ◦ µT ◦ T (st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (T (π1) ◦ st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (π1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st2 ◦ (id × prog′)) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st2) ◦ st2 ◦ (id × T (prog′)) ◦ 〈id, H〉
= st2 ◦ (id × µT) ◦ 〈id, T (prog′) ◦ H〉
= st2 ◦ 〈id, H ′〉.

Similarly, point (b) is obtained by using that Q1 = J(π × id)∗(Q) and:

J(π1 × id) • f
= µT ◦ T (ηT ◦ (π1 × id)) ◦ µT ◦ T (st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= T (π1 × id) ◦ µT ◦ T (st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (T (π1 × id) ◦ st1 ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st1 ◦ (T (π1)× id) ◦ 〈st2 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st1 ◦ 〈ηT ◦ π1 ◦ (id × prog′), π2〉) ◦ st2 ◦ 〈id, H〉 by Lemma 6

= µT ◦ T (ηT ◦ 〈π1, π2〉) ◦ st2 ◦ 〈id, H〉
= st2 ◦ 〈id, H〉.

Finally, for point (c) we use Q2 = J(〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉)∗(cpp(post))
and:

J(〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉) • f
= T 〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉) ◦ µT ◦ T (st1 ◦ 〈st2 ◦ (id × prog′), π2〉)

◦ st2 ◦ 〈id, H〉
= µT ◦ T (T 〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉) ◦ st1 ◦ (st2 × id) ◦ 〈id × prog′, π2〉)

◦ st2 ◦ 〈id, H〉
(∗)
= µT ◦ T (st1 ◦ (st2 × id) ◦ 〈〈π1 ◦ π2, π2 ◦ π1〉, π2 ◦ π2〉 ◦ 〈id × prog′, π2〉)

◦ st2 ◦ 〈id, H〉
= µT ◦ T (st1 ◦ (st2 × id) ◦ 〈〈π1 ◦ π2, prog′ ◦ π2〉, π2 ◦ π2〉) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st1 ◦ (st2 × id) ◦ 〈〈π1, prog′〉, π2〉) ◦ T (π2) ◦ st2 ◦ 〈id, H〉
= µT ◦ T (st1 ◦ 〈st2 ◦ 〈π1, prog′〉, π2〉) ◦ H.

The marked equation
(∗)
= may be obtained by unpacking the definitions of st1

and st2.

24

We thus have well-defined unit and multiplication maps. Verifying that they
satisfy the appropriate equations to make the functor HT into a monad is still
a lot of work, involving Frobenius, Beck-Chevalley, and various preservation
properties of the ‘copower preservation maps’ cpp. It proceeds along the lines
given above, and will be left to the meticulous reader. �

An easy instance of Theorem 7 is obtained by taking the identity monad
T = id on Sets, with standard classical logic Pred : Sets → MSLop given
by Pred(X) = P(X) and substitution f ∗ = Pred(f) = f−1 given by inverse
image. The associated monad Hid then captures Hoare triples for deterministic
computations with state, as described by the state monad Sid(X) = (S×X)S.

Another, proper, example involves the non-empty powerset monad P• : Sets→
Sets. Notice that it is affine, since P•(1) ∼= 1, using that the singleton set
1 = {0} has precisely one non-empty subset, namely 1 ⊆ 1. The associ-
ated predicate functor Pred : K̀ (P•) → MSLop is given on objects again by
Pred(X) = P(X), and on arrows now by Pred(g)(Q) = g∗(Q) = {x | g(x) ⊆
Q}, for g : X → P(Y), like in (3). Each function (or pure map) f : X → Y
in Sets yields J(f)∗ = ({−} ◦ f)∗ : Pred(Y) → Pred(X) by J(f)∗(Q) =
{x | {f(x)} ⊆ Q} = f−1(Q). These inverse image maps f−1 have left and
right adjoints Pred(Y)→ Pred(X) in a standard way, namely:

∐
f
(P) = {y | ∃x. f(x) = y ∧ P (x)} = {f(x) | P (x)}∏
f
(P) = {y | ∀x. f(x) = y ⇒ P (x)}.

We now obtain a Hoare monad HP• for non-deterministic computations with
state, in P•(S ×X)S.

Remark 8 (1) The monad definitions used in Theorem 7 and its proof are
based on the ones in [29]. There, they are formulated in the language of
the theorem prover Coq. We deviate in two points, one small, and one
more significant.
• We use categorical language, instead of type-theoretic language. With

sufficient fluency in categorical logic, one sees that the constructions
are essentially the same.
• We extend the construction by weaving in an affine monad T . Thus,

the work in [29] is a special case of our construction, when T is the
identity monad.

As background information to the categorical formulations that we use we
give the corresponding logical descriptions of the unit and multiplication
of the Hoare monad H = Hid, for the identity monad T = id. For an

25

element x ∈ X, and triple (P,H,Q) ∈ H2(X),

η(x) =
(

1S, λs. (s, x), {(s, s, x) | s ∈ S}
)

µ(P,H,Q) =
(
{s | P (s) ∧ ∀s′, h.Q(s, s′, h)⇒ pre(h)(s′)},
λs. prog(π2H(s))(π1H(s)),

{(s, t, x) | ∃s′, h.Q(s, s′, h) ∧ post(h)(s′, t, x)}
)

(2) The requirement that the monad T be affine is relevant in the context of
quantification. We shall explain this for the powerset monad P and the
non-empty powerset monad P•. Notice that P• is affine, since P•(1) ∼=
1 = {0}, but P is not, since P(1) ∼= 2 = {0, 1}. We consider both K̀ (P)
and K̀ (P•) with the standard logic Pred(X) = P(X).

Now consider the coproduct
∐
π2 for the special case of a projection

π2 : X × Y → Y . Then
∐
π2(P) = {y | ∃x. P (x, y)}. If we have a Kleisli

map g : Y → X, then we expect to be able to prove, intuitively that from
P (g(y), y) we can deduce ∃x. P (x, y). But in setting with monads, this is
a bit more subtle. First, the predicate P (g(y), y) obtained by substitution,
is really the result:

(st1 ◦ 〈g, id〉)∗(P) where st1 ◦ 〈g, id〉 : Y → P(X)× Y → P(X × Y).

Hence, this substitution is:

(st1 ◦ 〈g, id〉)∗(P) = {y | ∀x ∈ g(y). P (x, y)}.

From this we obtain ∃x. P (x, y) if g(y) 6= ∅, that is, if g : Y → X is a
map in K̀ (P•) instead of in K̀ (P).

Categorically, for an affine monad T , this works as follows. There is
the unit of the adjunction P ≤ J(π2)

∗∐
π2(P). Hence by applying (st1 ◦

〈g, id〉)∗ substitution on both sides we get:

(st1 ◦ 〈g, id〉)∗(P) ≤ (st1 ◦ 〈g, id〉)∗(J(π2)
∗(
∐
π2(P))

(∗)
=
∐
π2(P).

For this second, marked equation
(∗)
= we use that the monad T is affine,

via Lemma 6:

J(π2) • (st1 ◦ 〈g, id〉) = T (π2) ◦ st1 ◦ 〈g, id〉
= η ◦ π2 ◦ 〈g, id〉
= η.

(3) An important example of an affine functor is the distribution monad
D : Sets→ Sets, introduced in Section 3. It comes with a predicate logic
Pred : K̀ (D)→ EModop, where Pred(X) = [0, 1]X is a meet semi-lattice,
via the standard order on the unit interval [0, 1], used pointwise. How-
ever, it does not satisfy the requirements of Theorem 7 since substitution

26

functors f ∗ do not preserve finite meets. We include a simple counter
example.

Consider the Kleisli map f : 1 → D(2) given by f = 1
4
|0〉 + 3

4
|1〉,

with predicates q1, q2 ∈ [0, 1]2 given by q1(0) = 1
5
, q1(1) = 1

3
, q2(0) = 1

6
,

q2(1) = 1
2
. We obtain f ∗(qi) ∈ [0, 1]1 ∼= [0, 1] and their meet via:

f ∗(q1) =
∑
i f(i) · q1(i) = 1

4
· 1
5

+ 3
4
· 1
3

= 1
20

+ 1
4

= 3
10

f ∗(q2) = 1
4
· 1
6

+ 3
4
· 1
2

= 1
24

+ 3
8

= 5
12

f ∗(q1) ∧ f ∗(q2) = 3
10
∧ 5

12
= 3

10
.

But:

f ∗(q1 ∧ q2) = 1
4
· (1

5
∧ 1

6
) + 3

4
· (1

3
∧ 1

2
) = 1

4
· 1
6

+ 3
4
· 1
3

= 1
24

+ 1
4

= 7
24
.

8 Concluding remarks

The triangle-based semantics and logic that was presented via many examples
forms the basis for (a) several versions of the Dijkstra monad, associated
with different monads T , and (b) a description of the weakest precondition
operation as a map of monads. The categorical predicate logic for a monad
T on Sets is axiomatised subsequently in such a way that the Dijkstra and
Hoare monads (for T) can be defined. In the end, it leads to maps of monads
(Hoare) ⇒ (State) ⇒ (Dijkstra), by combining Theorems 5 and 7.

Acknowledgments

Thanks to Sam Staton, Mathys Rennela, and Bas Westerbaan for their input
& feedback.

References

[1] S. Abramsky. Domain theory in logical form. Ann. Pure & Appl. Logic,
51(1/2):1–77, 1991.

[2] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.

[3] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-
based cryptographic proofs. In Principles of Programming Languages, pages
90–101. ACM Press, 2009.

[4] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. Math. Struct.
in Comp. Sci., 16(3):429–451, 2006.

27

[5] E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics.
Springer, Berlin, 1990.

[6] A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures.
Kluwer Acad. Publ., Dordrecht, 2000.

[7] D. J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics.
Found. Physics, 24(10):1331–1352, 1994.

[8] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras:
Probabilistic Gelfand duality. In R. Heckel and S. Milius, editors, Conference
on Algebra and Coalgebra in Computer Science (CALCO 2013), number 8089
in Lect. Notes Comp. Sci., pages 141–157. Springer, Berlin, 2013.

[9] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory.
From Uncertainty to Entanglement. Cambridge Univ. Press, 2012.

[10] B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic,
69(1):73–106, 1994.

[11] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam,
1999.

[12] B. Jacobs. Convexity, duality, and effects. In C. Calude and V. Sassone, editors,
IFIP Theoretical Computer Science 2010, number 82(1) in IFIP Adv. in Inf. and
Comm. Techn., pages 1–19. Springer, Boston, 2010.

[13] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. Book, in preparation, version 2, 2012.

[14] B. Jacobs. New directions in categorical logic, for classical, probabilistic
and quantum logic. See arxiv.org/abs/1205.3940, 2012. To appear in Logical
Methods in Computer Science.

[15] B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer
Science. IEEE, Computer Science Press, 2013.

[16] B. Jacobs. Dijkstra monads in monadic computation. In M. Bonsangue, editor,
Coalgebraic Methods in Computer Science (CMCS 2014), number 8446 in Lect.
Notes Comp. Sci. Springer, Berlin, 2014.

[17] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. 2014.

[18] B. Jacobs. Two of the grand changes through computer and network technolog.
In M. Hansen, J.-H. Hoepman, R. Leenes, and D. Whitehouse, editors, Privacy
and Identity Management for Emerging Services and Technologies, volume 421
of IFIP Adv. in Inf. and Comm. Techn., pages 1–11. Springer, Boston, 2014.

[19] B. Jacobs and J. Mandemaker. Coreflections in algebraic quantum logic. Found.
of Physics, 42(7):932–958, 2012.

28

[20] B. Jacobs and J. Mandemaker. The expectation monad in quantum foundations.
In B. Jacobs, P. Selinger, and B. Spitters, editors, Quantum Physics and Logic
(QPL) 2011, volume 95 of Elect. Proc. in Theor. Comp. Sci., pages 143–182,
2012.

[21] P. Johnstone and S. Vickers. Preframe presentations present. In A. Carboni,
M.C. Pedicchio, and G. Rosolini, editors, Como Conference on Category Theory,
number 1488 in Lect. Notes Math., pages 193–212. Springer, Berlin, 1991.

[22] G. Leavens, A. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and
Systems, pages 175–188. Kluwer, 1999.

[23] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages, pages 333–343. ACM
Press, 1995.

[24] E. Manes. A triple-theoretic construction of compact algebras. In B. Eckman,
editor, Seminar on Triples and Categorical Homolgy Theory, number 80 in Lect.
Notes Math., pages 91–118. Springer, Berlin, 1969.

[25] Y. Maruyama. Categorical duality theory: With applications to domains,
convexity, and the distribution monad. In S. Ronchi Della Rocca, editor,
Computer Science Logic, pages 500–520. Leibniz Int. Proc. in Informatics, 2013.

[26] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin,
1971.

[27] R. Møgelberg and S. Staton. Linearly-used state in models of call-by-value.
In A. Corradini, B. Klin, and C. C̈ırstea, editors, Conference on Algebra and
Coalgebra in Computer Science (CALCO 2011), number 6859 in Lect. Notes
Comp. Sci., pages 293–313. Springer, Berlin, 2011.

[28] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92,
1991.

[29] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot:
dependent types for imperative programs. In International Conference on
Functional Programming (ICFP), pages 229–240. ACM SIGPLAN Notices,
2008.

[30] G. Plotkin and J. Power. Computational effects and operations: An overview.
In Proc. of the Workshop on Domains VI, number 73 in Elect. Notes in Theor.
Comp. Sci., pages 149–163. Elsevier, Amsterdam, 2004.

[31] S. Pulmannová and S. Gudder. Representation theorem for convex effect
algebras. Commentationes Mathematicae Universitatis Carolinae, 39(4):645–
659, 1998.

[32] M. Stone. Postulates for the barycentric calculus. Ann. Math., 29:25–30, 1949.

29

[33] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying
higher-order programs with the Dijkstra monad. In Proc. of the 34th ACM
SIGPLAN conf. on Programming language design and implementation (PLDI),
pages 387–398. ACM, 2013.

[34] W. Swierstra. A Hoare logic for the state monad. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics,
number 5674 in Lect. Notes Comp. Sci., pages 440–451. Springer, Berlin, 2009.

30

	Introduction
	Notation for monads

	Non-deterministic and partial computation
	Linear and (sub)convex computation
	Quantum computation, briefly
	Dijkstra monad examples
	Dijkstra's monad, beyond examples
	The Hoare monad
	Concluding remarks
	References

