
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/149047

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43595871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/149047

Author's Accepted Manuscript

Derivation and Inference of Higher-Order
Strictness Types

Sjaak Smetsers, Marko van Eekelen

PII: S1477-8424(15)00051-2
DOI: http://dx.doi.org/10.1016/j.cl.2015.07.004
Reference: COMLAN182

To appear in: Computer Languages, Systems & Structures

Received date: 26 February 2015
Revised date: 2 June 2015
Accepted date: 30 July 2015

Cite this article as: Sjaak Smetsers, Marko van Eekelen, Derivation and
Inference of Higher-Order Strictness Types, Computer Languages, Systems &
Structures, http://dx.doi.org/10.1016/j.cl.2015.07.004

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/cl

http://dx.doi.org/10.1016/j.cl.2015.07.004
http://dx.doi.org/10.1016/j.cl.2015.07.004
http://dx.doi.org/10.1016/j.cl.2015.07.004
http://dx.doi.org/10.1016/j.cl.2015.07.004
http://dx.doi.org/10.1016/j.cl.2015.07.004
http://dx.doi.org/10.1016/j.cl.2015.07.004

Derivation and Inference of
Higher-Order Strictness Types

Sjaak Smetsersa,∗, Marko van Eekelena,b

aInstitute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 212 6525 EC Nijmegen, The Netherlands

bComputer Science Department, Open University of the Netherlands, Valkenburgerweg 177
6419 AT Heerlen, The Netherlands

Abstract

We extend an existing first-order typing system for strictness analysis to the
fully higher-order case, covering both the derivation system and the inference
algorithm. The resulting strictness typing system has expressive capabilities
far beyond that of traditional strictness analysis systems. This extension is
developed with the explicit aim of formally proving soundness of higher-order
strictness typing with respect to a natural operational semantics. A key aspect
of our approach is the introduction of a proof assistant at an early stage, namely
during development of the proof. As such, the theorem prover aids the design
of the language theoretic concepts. The new results in combination with their
formal proof can be seen as a case study towards the achievement of the long
term PoplMark Challenge. The proof framework developed for this case study
can furthermore be used in other typing system case studies.

Keywords: strictness analysis, lambda calculus, typing, operational
semantics, automated theorem proving.

1. Introduction

In this paper we present a type-theoretic approach to strictness analysis
covering both type derivation and type inference1. The typing system includes
higher-order types as well as user-defined recursive data types. One of our ob-
jectives is to formally prove that the higher-order strictness typing is sound
with respect to a natural operational semantics. More specifically, we propose
to use proof assistants not only for the re-construction of hand-written proofs,
but moreover to introduce the tool during the development of language theoretic

∗Corresponding author
Email addresses: S.Smetsers@cs.ru.nl (Sjaak Smetsers), M.vanEekelen@cs.ru.nl

(Marko van Eekelen)
1This paper is an extension of an improved version of an earlier conference paper [SvE12]

which covers type derivation only.

Preprint submitted to Elsevier August 4, 2015

concepts. By introducing the tool in this stage, the consistency of technical con-
cepts can be verified whilst designing them. This is accomplished by checking
properties linking these concepts. This paper and the accompanying proof files
comprise examples of such concepts and properties. Inaccuracies or mistakes
made during the development were most often detected in an early stage, avoid-
ing time consuming and inevitably failing attempts to construct a correctness
proof of the main properties. This approach was used for the soundness proof
of a non-standard typing system for a simple functional programming language.
We combine standard Hindley-Milner typing with strictness information, spec-
ifying termination properties of higher-order functions. Strictness information
can be used to change inefficient call-by-need evaluation into efficient call-by-
value evaluation. This gain in efficiency lies in the fact that construction of
unevaluated expressions (so-called closures) is circumvented.

Combining standard typing with some form of input/ouput analysis is quite
common. We mention a few examples. Substructural type systems ([Wal04]) reg-
ulate the order and number of uses of data by ensuring that some values be used
at most once, at least once, or exactly once. E.g., linear typing systems (such as
uniqueness typing) can be used to identify unique objects. These unique objects
are suitable for compile-time garbage collection which is essential for incorpo-
rating destructive updates in functional languages (e.g., See [BS96, TWM95]).
Security-typed languages ([VIS96], for instance) track information flow within
programs to enforce security properties such as data confidentiality and in-
tegrity. This information can be used to prevent unintentional information
leaks. [SvEvK09] describes a dedicated typing system for predicting the heap
space usage of first-order, strict functional programs. This information can be
used in several ways, most notably to ensure that a program allocates sufficient
free memory.

Another view on this paper is that it reports on a case study of computer
aided verification of theories about syntactic objects. Syntactic theories such as
operational semantics and type systems play an important role in the (static)
analysis of computer programs and the construction of reliable implementations
of programming languages. The usability and reliability of syntactic techniques
can undoubtedly be improved by using automated proof assistants. This need
is recognized by many researchers. Most notably, the PoplMark Challenge
[ABF+05] calls for experiments on verifications of metatheory and semantics
using proof tools. The concrete proposal is to formalize existing proofs of prop-
erties of type systems with different proof assistants. The long term goal is far
more ambitious. It envisions “... a future in which the papers in conferences
such as Principles of Programming Languages (POPL) and the International
Conference on Functional Programming (ICFP) are routinely accompanied by
mechanically checkable proofs of the theorems they claim.”

The contribution of our work is threefold. The first contribution is the for-
malization of a non-standard typing system for strictness analysis of functional
programs covering both the derivation system and the type inference algorithm.
A first-order version of this typing system was presented in [BS07]. Compared
to traditional strictness analyzers, it has two main advantages. Firstly, it can

2

be combined with ordinary typing: the compiler does not require an additional
analysis phase. Secondly, it avoids fixed point computations, resulting in a
much more efficient implementation. In this paper we augment first order typ-
ing with function types, in effect making it fully higher-order. Compared to
common strictness analyses, the resulting system has an additional advantage:
it permits the specification and derivation of strictness properties between the
function arguments. We prove that our system is sound with respect to a given
natural operational semantics. Thereafter, we discuss the extension of the sys-
tem needed to deal with recursive data-types.

Secondly, it can be seen as a methodological experiment. We assess the us-
ability of theorem provers for formalizing complex semantical issues, not only
after the manual construction of the proofs, but especially during the develop-
ment of basic theory. The complexity of the typing system in our case study is
of a similar level as that of the PoplMark challenge. However, the main proof
methods are not known in advance, as is the case in the challenges, but are to
be developed during the proof process.

Finally, the PVS formalization can be used as a framework for developing
other metatheoretical concepts. The framework can be used as a basis for
developing other type based analyses together with their formal soundness proof,
living up to the ambition of the long term PoplMark Challenge.

Overview

Section 2 introduces the core language used in this paper. Basic aspects of
strictness are treated in Section 3 including semantic interpretations of (higher-
order) strictness types. The derivation rules for deriving higher-order strictness
types are given in Section 4. The soundness proof of this typing system is
treated informally in Section 5. The formal proof is described in Section 6.
Type inference is covered in Section 7. Recursive data structures are dealt with
in Section 8. The paper concludes with a discussion of related work in Section 9
and with concluding remarks and ideas for future work in Section 10.

2. Extended Lambda Calculus

In this section we introduce the core functional language used throughout
the paper. This language captures essential aspects such as basic values, ab-
straction, application, data constructors and destructors, and recursion.

2.1. Syntax

Definition 1. Let V = {x, y, z, x0, x1, . . .} be an infinite set of term variables

• The set Λ of (lambda) expressions is defined by the following abstract
syntax.

Λ ::= V | � | λV.Λ | ΛΛ | 〈Λ,Λ〉 | fstΛ | sndΛ |
inlΛ | inrΛ | caseΛ ofΛ orΛ | μV.Λ.

3

(unit)
� ⇓ �

(abs)
λx.M ⇓ λx.M

M ⇓ λx.B B[x← N] ⇓ V
(appl)

M N ⇓ V

M ⇓ 〈X,Y 〉 X ⇓ V
(fst)

fstM ⇓ V

M ⇓ 〈X,Y 〉 Y ⇓ V
(snd)

sndM ⇓ V

(pair)〈X,Y 〉 ⇓ 〈X,Y 〉
(inl)

inlL ⇓ inlL
(inr)

inrR ⇓ inrR

S ⇓ inlL GL ⇓ V
(case-L)

caseS of G orH ⇓ V

S ⇓ inrR H R ⇓ V
(case-R)

caseS of G orH ⇓ V

M [x← μx.M] ⇓ V
(fix)

μx.M ⇓ V

Figure 1: Evaluation rules

• The set of free variables of M is denoted by FV(M). Let �x = (x1, . . . , xn).
We write Λ�x for the set of λ-terms closed by �x, i.e., {M ∈ Λ|FV(M) ⊆ �x}.
We write Λo instead of Λ() (expressions with no free variables, so called
closed expressions).

The constructor � represents all basic values (integers, booleans, etc.). Pairs
are constructed using the expression 〈ex, ey〉, and destructed using projections
fst e and snd e. The constructors inl and inr are sum left and right injections
of the disjoint unions, whereas case is the destructor for these expressions.

In the sequel, we use capital letters like M,N,X, Y,B, . . . as meta-variables
to range over lambda expressions.

2.2. Semantics

We will describe an evaluation in which computations are done by successive
substitutions or replacements (call-by-name). With some adjustments to the
syntax it would have been possible to incorporate proper sharing, with a call-
by-reference semantics in the style of [Lau93]. Since we do not consider this
extension to be essential for strictness analysis, we will describe a system without
sharing.

The value V of a closed expression M is defined via a standard natural ‘big
step’ operational semantics expressed as judgements of the form M ⇓ V . This
evaluation will yield an (also closed) expression in head-normal form.

Definition 2. Let M ∈ Λo.

4

• We write M ⇓ V , and say that M evaluates to V if this statement is
derivable using the rules in Fig. 1.

• M is defined or convergent (notation M ⇓) if M ⇓ V for some value V .
Otherwise M is undefined or divergent (notation M ⇑).
• The set of undefined (closed) expressions (i.e., {M ∈ Λo|M ⇑}) is denoted
by O.

Lemma 1. M ⇓ V and M ⇓W ⇒ V = W

O contains a canonical inhabitant μx.x, commonly denoted as ⊥, that will
be used to introduce finite unfoldings.

Definition 3. Let Fx ∈ Λx. The nth (finite) unfolding (notation Fn
x) is defined

inductively by:
F 0
x = ⊥ Fn+1

x = Fx[x← Fn
x]

The following property (the so-called syntactical continuity property, for-
mally proved in [Sme10]) relates the evaluation of closed fix-expressions to the
evaluation of finite unfoldings, and vise versa.

Proposition 1. Let x, y ∈ V, and Cy ∈ Λy and Fx ∈ Λx.

Cy[y ← μx.Fx] ⇓ ⇔ ∃m ≥ 0 : Cy[y ← Fm
x] ⇓

A disadvantage of a ‘big step approach’ is that reasoning about individual
evaluation steps can be awkward. To circumvent this problem the following
equivalence relation appears to be useful.

Definition 4. Two expressions M,N ∈ Λo are reduction equivalent (notation
M =β N) if for all H ∈ Λo

M ⇓ H ⇔ N ⇓ H

3. Strictness

Plain strictness is usually defined as follows.

Definition 5. Let �x = (x1, . . . , xn). An expression E ∈ Λ�x is strict in xi

(1 ≤ i ≤ n) if for all �A ∈ (Λo)n

Ai ⇑ ⇒ E[�x← �A] ⇑

A drawback of this notion of strictness is the lack of compositionality: strict-
ness of a compound expression cannot always be determined by combining strict-
ness of its constituents. For example the expression fstx is strict in x and the
expression 〈x, y〉 not (and, of course, also not strict in y). However the com-
pound expression fst 〈x, y〉 is strict in x. Our aim is to refine this notion of

5

strictness in such a way that the evaluation properties of expressions are cap-
tured more accurately. For instance, the function fst not only evaluates its
argument to head-normal form, but successively also evaluates the first com-
ponent of the resulting pair. Moreover, the expression 〈x, y〉 is strict in x if
it appears in a context that not only needs a pair but also the value of the
first component of that pair (or of the second component to become strict in y
instead of x), as is the case in our example. These evaluation contexts will be
expressed as strictness types.

3.1. Strictness Types

A strictness type is a standard type annotated with so-called strictness at-
tributes. The idea is to formulate strictness of E in x by a typing statement

x:σ! � E : τ !

The refinement mentioned is accomplished by admitting attributes to more than
only the outermost level of a type. For example,

1. x:(σ! × τ)! � fstx : σ!

2. x:σ! � 〈x, x〉 : (σ! × σ)!

Typing (1) expresses that fst will evaluate its first argument as indicated above.
Typing (2) expresses that in a context in which the first component of a pair
is needed (which is indicated by the result type (σ! × σ)!) the expression itself
becomes strict in x. Observe that if the second component of the pair was
needed, a typing for (2) would be x:σ! � 〈x, x〉 : (σ × σ!)!. To avoid confusion,
we now introduce an explicit notation for the absence of strictness information,
namely ? (pronounced as lazy).

Definition 6. • Let Φ = {α, β, α0, α1, . . .} be an infinite set of type vari-
ables, and A = {!, ?} the set of strictness attributes (ranged over by meta-
variables u, v), T = Σ∪Π denotes the set strictness types. Here Σ and Π
are defined by the following abstract syntax.

Σ ::= ΠA

Π ::= Φ | 1 | Σ→ Σ | Σ× Σ | Σ + Σ

The outermost attribute of S ∈ Σ is denoted by [S]. Moreover, �S� denotes
the type obtained from S by removing the outermost attribute. Hence,
�S�[S] = S.

To avoid brackets, we will write (. . .→ . . .)u as . . .
u→

• Let |T | denote the ‘stripped’ version of T , i.e., T without any strictness
attributes. We consider two types T1, T2 as equivalent (notation T1 ∼ T2)
if |T1| ≡ |T2|. So, types are equivalent if their underlying standard types
are identical.

Definition 7. • Strictness attributes are ordered as follows: ! ≤ ?

6

• This ordering on attributes induces the following coercion relation on T.

u ≤ v and σ ≤ τ ⇒ σu ≤ τv

1 ≤ 1

α ≤ α
S1 ≤ S2 and T1 ≤ T2 ⇒ S2 → T1 ≤ S1 → T2 and

S1 × T1 ≤ S2 × T2 and
S1 + T1 ≤ S2 + T2

Note the contravariance in the first argument of →.

• The infimum of two attributes u, v (notation u�v) is the miminum of u, v
w.r.t. ≤
• The predicate inf on (T,T,T) is defined by induction:

inf(σu, τv, ρw) = u = v � w and inf(σ, τ, ρ)
inf(α, α, α) = true
inf(1,1,1) = true

inf(S → T, S1 → T1, S2 → T2) = S = S1 = S2 and T = T1 = T2

inf(S × T, S1 × T1, S2 × T2) = inf(S, S1, S2) and inf(T, T1, T2)
inf(S + T, S1 + T1, S2 + T2) = inf(S, S1, S2) and inf(T, T1, T2)

inf(·, ·, ·) = false

The last rule should only be used if none of the othes rules applies, i.e. if
t1, t2 and t3 are not equivalent.

The inf predicate is used in our typing system to combine typing assumptions
of different occurrences of the same expression variable, commonly called con-
traction. Consider, for example the following function:

λx.+(fst x) (snd x)

If we assume that + is strict in both arguments (say of type N), then the
first occurrence of x will get type (N ! ×N?)!, and the second (N? ×N !)!. The
occurrences are combined by taking the infimum of their types, being (N !×N !)!.

3.2. Semantics of types

The meaning of a (strictness) type S is formalized by interpreting S as a
subset of Λo. The ‘standard’ interpretation �S� contains all expressions that
either evaluate to a value of type |S| or diverge. For example �(1u × 1v)w� (the
standard interpretation does not depend on concrete attribute values) contains
all expressions that are either in O or evaluate to 〈�,�〉, 〈�,−〉 or to 〈−,�〉.
Here, we use − to indicate that the corresponding expression diverges.

Definition 8 (Standard type interpretation). • Let A,B ⊆ Λo.

1 = {M ∈ Λo | M ⇓ �}
A × B = {M ∈ Λo | ∃a ∈ A, b ∈ B : M ⇓ 〈a, b〉}
A + B = {M ∈ Λo | ∃a ∈ A : M ⇓ inl a or ∃b ∈ B : M ⇓ inr b}
A→ B = {M ∈ Λo | ∀a ∈ A : (M a) ∈ B}

7

�σu� = O ∪ �σ�

�α� = ∅
�1� = 1

�S → T � = �S�→ �T �

�S × T � = �S� × �T �

�S + T � = �S� + �T �

Figure 2: Standard semantics of types

• The interpretation �S� are inductively defined in Fig. 2.

For strictness types, we will need two more interpretations: �·�? and �·�!. Let
S be a strictness type S. Then �S�? denotes all expressions that inhabit type
|S|, including O. �S�! denotes the set of expressions that diverge when used in
a context with type S. For instance, �1!�? contains all expressions that either
evaluate to � or diverge. �1?�? is the same set. �1!�! is equal to O, whereas
�1?�! is empty, since type 1? used in the latter corresponds to a lazy context.
Slightly more complicated is the following example in which we take (1! + 1?)!

as S. Now �S�? contains all expressions that either diverge or evaluate to inl I or
to inlR, with I ∈ �1!�?, R ∈ �1?�?. �S�!, however, contains besides all divergent
expressions only expressions evaluating to inl I, with I ∈ �1!�! = O. The case
inlR is impossible since this would require that R ∈ �1?�! = ∅.

Definition 9 (Strictness type interpretation). The interpretations �S�? and
�S�! are defined by mutual induction in Fig. 3.

The interpretations �·� and �·�? are almost identical. They only differ in the
way function types are treated. The function λx.�, for instance, is a member of

�α! !→ 1!�, but not a member of �α! !→ 1!�?. The latter is due to the additional
requirement that any expression E ∈ �α! → 1!�? should also be a member of
�α!�! → �1!�!, which is not the case for λx.�: if we substitute ⊥ (∈ �α!�!) for x
we get � as a result which is not an element of �1!�! = O. We will elaborate
further on this issue in Section 5.

The following property (based on finite unfoldings, see Definition 3) provides
an induction scheme for proofs in which fixed point expressions are involved;
e.g., see Theorem 1.

Proposition 2. Let T ∈ T, and x ∈ V, Fx ∈ Λx. Then, for all s ∈ {!, ?}

(∀n ∈ N : Fn
x ∈ �T �s) ⇒ μx.Fx ∈ �T �s

8

�σu�? = O ∪ �σ�, if u =?

= O ∪ �σ�?, if u =!

�α�? = ∅
�1�? = 1

�S → T �? = �S�? → �T �? ∩ �S�! → �T �!

�S × T �? = �S�? × �T �?

�S + T �? = �S�? + �T �?

�σu�! = ∅, if u =?

= O ∪ �σ�!, if u =!

�α�! = ∅
�1�! = ∅

�S → T �! = �S�? → �T �!

�S × T �! = �S�! × �T �? ∪ �S�? × �T �!

�S + T �! = �S�! + �T �!

Figure 3: Semantics of strictness types

The proof of this property in which Proposition 1 plays a crucial role, is quite
complex. In PVS it necessitates approximately 1000 proof steps in addition
to several non-trivial helper lemmas. The complexity is caused by the fact
that our purely syntactical approach requires tedious manipulations of various
constructs. In a formalization on paper this would have been barely feasible.

Both interpretations are closed under beta-equivalence.

Proposition 3. Let M =β N . Then, for all strictness types T , and s ∈ {!, ?}:

M ∈ �T �s ⇔ N ∈ �T �s

4. Strictness typing

In this section we present a type system for deriving strictness information of
terms and formally prove that this system is sound. Soundness here means that
if a term M can be typed with strictness type S, then indeed M is a member
of both �S�? and �S�!. In essence, strictness typing can be characterized as a
backwards analysis (E.g., see [DW90]): strictness properties are determined by
relating the effect of demands on the arguments to the effect of demands on the
result.

9

S ≤ T
(var)

Γ?, x:T � x : S
(unit)

Γ? � � : 1u

Γ1 �M : S
[R]→ R Γ2 � N : S [R] ≤ [S] inf(Γ,Γ1,Γ2)

(app)
Γ �M N : R

Γ, x:S � B : R u ≤ [R]
(abs)

Γ � λx.B : S
u→ R

Γ1 � X : S Γ2 � Y : T u ≤ [S] � [T] inf(Γ,Γ1,Γ2)
(pair)

Γ � 〈X,Y 〉 : (S × T)u

Γ � P : (S × T)[S] [T] =?
(fst)

Γ � fstP : S

Γ � P : (S × T)[T] [S] =?
(snd)

Γ � sndP : T

Γ � L : S u ≤ [S]
(inl)

Γ � inlL : (S + T)u
Γ � R : T u ≤ [T]

(inr)
Γ � inrR : (S + T)u

Γ1 � I : (S + T)[U] Γ2 � L : S
[U]→ U

Γ2 � R : T
[U]→ U

inf(Γ,Γ1,Γ2)

(case)
Γ � case I of L orR : U

Γ, x:T � B : S S ≤ T
(fix)

Γ � μx.B : S

Figure 4: Rules for strictness type assignment

Definition 10. • A basis (or environment) is a finite set of declarations
of the form x : S, where x ∈ V, S ∈ T. For a given basis, all variables are
assumed to be distinct. We will sometimes use the ‘functional notation’
Γ(x) to obtain the type assigned to x by Γ.

• By Γ? we denote a lazy basis containing only declarations of the form
x : σ?.

• Two bases Γ1,Γ2 are equivalent, denoted as Γ1 ∼ Γ2, if for each x one
has Γ1(x) ∼ Γ2(x).

• The inf predicate for types extends to (equivalent) bases in a straightfor-
ward manner: Let Γ ∼ Γ1 ∼ Γ2. Then inf(Γ,Γ1,Γ2) if inf(Γ(x),Γ1(x),Γ2(x))
for all x.

Definition 11. A strictness typing statement is an expression of the form Γ �
M : S, where Γ is a basis. Such a statement is valid if it can be derived by using
the rules in Fig. 4.

We briefly focus on these derivation rules. One should recall that in each
of these rules strictness can only appear if the context type, as given by the

10

α! ≤ α!

(var)
x:α!, y:β? � x : α! ! ≤ [α!]

(abs)
x:α! � λy.x : β? !→ α! ! ≤ [β? !→ α!]

(abs)
� λx.λy.x : α! !→ β? !→ α!

Figure 5: A derivation for � λx.λy.x : α! !→ β? !→ α!

conclusion, is strict itself. As such, one could say that ‘strictness propagates
outwards’.

The rule for variables (var) enforces that each strictness assumption x:σ! in
the environment should be ‘consumed’ by a strict occurrence of x (otherwise,
the premise of this rule cannot be valid). Since unit (unit) represents the result
of a computation (an expression in head normal form), the complete basis has
to be lazy. In the rule for application (app), the function expression is always
evaluated (provided that the application itself appears in a strict context), ex-
plaining the [R] attribute on the arrow. The inequality [R] ≤ [S] ensures that
the argument can only be strict if the context is strict. In essence, this ab-
straction rule (abs) reflects the characterisation of strictness as indicated at the
beginning of Sec. 3.1 The data constructor rules (pair, inl, inr) all involve ex-
pressions in head normal form. Strictness properties for expressions appearing
under these constructors are directly adopted from their corresponding context
type. The typing rules for projections (fst, snd) have already been discussed at
the beginning of the previous section. The case-rule (case) is more subtle. Re-
call that the evaluation of an expression case I of L orR results in the evaluation
of I first (explaining the attribute [U] on the corresponding sum type), followed
by the evaluation of either L (applied to the left component of the result of I)
or R (applied to the right component), but not both. So case I of L orR can
only be strict in a variable x if either I is strict in x or both L and R are strict
in x. The latter is accomplished by supplying the type derivations L and R
with the same basis Γ2. In the case of a recursive definition (fix), say of x, all
occurrences of x are not necessarily strict. Indeed, x itself will often appear in
a lazy context. This explains the inequality S ≤ T .

To prepare for type inference, the type assignment system is formulated in a
fully syntax directed fashion. As such, non-structural rules, such as contraction,
subsumption and weakening (that are usually defined separately), have been
incorporated in the structural rules of the system.

As an example, a strictness type derivation for the expression λx.λy.x is
given in Fig. 5. More examples can be found in Section 6.

5. Soundness

In this section we demonstrate that our typing system is sound. As previ-
ously stated, plain strictness is formulated solely in terms of undefinedness of

11

a function argument as a consequence of undefinedness of the function result.
However in our system strictness properties of function arguments can influence
each other. Consider, for example, the function AP = λf.λx.f x. Then strict-
ness of AP in x depends on the strictness properties of the other argument f .
If AP is applied to a strict function then the result will be strict in x. This is
expressed by the following valid strictness typing for AP2

AP :: (α! → β!)→ α! → β!

At this point it is important to see that Definition 5 is no longer adequate:
whether APF ⊥ ⇑ also depends on F . More specifically, F should be a strict
function, and not just any arbitrary expression as in Definition 5. E.g., if we
take λx.� for F then APF ⊥ ⇓ �.

Definition 12. • An expression environment is a function ρ from V to Λo.
Such an environment can be lifted to Λ in the obvious way. The result of
applying ρ to an expression E is denoted by Eρ.

• Let Γ be a basis. An environment ρ is valid for Γ (notation ρ � Γ), if
∀(x:S) ∈ Γ : ρ(x) ∈ �S�?.

• Similarly, ρ satisfies Γ (notation ρ � Γ) if ∃(x:S) ∈ Γ : ρ(x) ∈ �S�!.

Now the soundness of the type system (with respect to the semantics given
in Definition 9) can be formulated as follows:

Theorem 1.

Γ � E : S ⇒ ∀ρ : ρ � Γ ⇒
{

Eρ ∈ �S�? (1)
ρ � Γ ⇒ Eρ ∈ �S�! (2)

Observe that conclusion (2) is essentially a reformulation of Definition 5.
The problem about the strictness dependencies between arguments is solved by
allowing only valid environments. Take, for instance, the expression fx being
the body of the AP function in the above example. A possible strictness typing
(in which we have substituted 1 for both α and β) for this expression is:

f :1! !→ 1!, x:1! � f x : 1!

Soundness of this typing requires that any environment ρ for fx should be both

valid for and satisfying Γ = f :1! !→ 1!, x:1!. If such a ρ substitutes ⊥ for x it
indeed satisfies Γ, since ⊥ ∈ �1!�!. However, the validity of ρ prohibits λx.�
to be substituted for f , because λx.� is not a member of �1! !→ 1!�?, since
λx.� �∈ �1!�! → �1!�!; see Definition 9.

2For clarity, we have omitted the strictness attributes on the arrows. A full typing can be
found in Lemma 2.

12

6. The PVS Formalization

In this section we discuss the formalization of the strictness typing system
and its soundness proof in PVS.

We will not assume any preliminary knowledge about PVS and, as in the
previous sections, continue to use tool independent notations. The actual for-
malization is straightforward and barely uses PVS specific constructs. There-
fore, it should be relatively easy to convert our PVS specification to other proof
assistants like Coq or Isabelle.

Firstly, it must be determined how to represent the variable bindings occur-
ring in abstraction and fixed point expressions. We have chosen the De Bruijn
notation mainly because our previous work uses the same representation and
the system in this paper does not require significant fine-tuning. In the De
Bruijn notation variables are identified by indices : natural numbers indicating
the number of abstractions which must be skipped in order to localize the cor-
responding binder. If the variable number exceeds the number of surrounding
abstractions, the variable is considered free.

Definition 13. • The set ΛB of lambda terms with the De Bruijn indices
is defined by the following abstract syntax.

ΛB ::= N | � | λΛB | ΛB ΛB | 〈ΛB,ΛB〉 | fstΛB | sndΛB |
inlΛB | inrΛB | caseΛB ofΛB orΛB | μΛB

• The predicate closedn(M) checks whether none of the free variables of M
exceeds n. The definition of this predicate is obvious.

With the De Bruijn notation one can avoid alpha-conversion during evalu-
ation. However, the substitution itself is more complicated because one has to
prevent that in M [x← N] the free variables of a N get captured by the binders
of M . This mandates an adjustment of the free variables of M . Usually the
correction of N is performed by an auxiliary function, whereas M is adjusted
on-the-fly (e.g., see [Kam01] for a formal definition of these operations).

The soundness property is formulated almost in exactly the same way as
Theorem 1. We have proved (1) and (2) in this theorem simultaneously by
induction on the derivation of Γ � E : S. The different cases require on average
200 proof steps each, which sums up to approximately 2200 steps all together3.

One of the advantages of having a full formalization is that one can actually
prove that examples are indeed correct explaining why we have formulated them
as a lemma.

Lemma 2. 1. λx.λy.x : α! !→ β? !→ α!

2. λf.λx.f x : (α! !→ β!)
!→ α! !→ β!

3The complete proof files can be downloaded from www.cs.ru.nl/~sjakie/papers/

strictnesstyping/.

13

3. μf.λn.casen ofλx.inl�orλx.f (inrx) : N ! !→ N !

4. μf.λx.λy.case xofλz.f (inr�) y orλz.f y (inr�) : N ! !→ N ! !→ N !

The proof of these typing statements can also be found in the PVS files. In
Example 3 and 4, N stands for the type 1+1 which we use to represent natural
numbers. The actual values of these numbers are not relevant: It suffices if we
can distinguish 0 (represented as inl�) from all other numbers (represented as
inr�). Example 3 resembles the factorial function (without the usual multipli-
cation and subtraction), and Example 4 (showing a recursive function that is
strict in both arguments) is taken from [CDG02].

6.1. Conducting the proof

Automated theorem proving is very time consuming. We estimate that the
construction of the entire proof (including the development of the necessary
theoretic concepts) comprises about six man-months work, maybe even more.
On the other hand, it revealed mistakes which had been made in the previ-
ous (first-order) version of the type system. Moreover, extending the language
with higher-order constructs made the system significantly more complex. For
example, the treatment of function types in Def. 7 showed to be non-intuitive.
Various attempts were made preceding the final version. The PVS formalization
helped us by enabling quick verification of modifications in definitions.

Our work can be considered as a contribution in the spirit of [ABF+05].
One of the PoplMark challenges is the treatment of variable binding. Most of
the solutions that have been reported to this challenge are based on de Bruijn
indices. Though [ABF+05] argues that this representation introduces too much
overhead in formal proofs, and should therefore be avoided, this is not con-
firmed by our approach or by any of these solutions. The low-level variable
representation does not lead to any significant increase in the complexity of the
proofs. With a few simple, and easy–to–prove auxiliary lemmas, one can effec-
tively hide all implementation details. The main proof itself is not affected. In
fact, the implicit bindings of De Bruijn’s representation allow environments to
be represented as simple lists rather than lists of pairs.

We believe that, besides obtaining full confidence, one of the main advan-
tages of possessing a formal proof is the possibility to replay the proof in a
tool. For instance, if one cannot immediately follow the given explanations, in
principle one can fall back on the fully elaborated formal version.

7. Inferring Higher Order Strictness Types

In this section we will describe how strictness variants of traditional typings
can be inferred effectively.

7.1. Standard type inference

The type derivation algorithm is based on the idea to split type reconstruc-
tion into two phases ([Wan87]): generation of requirements (in the form of type

14

equations) and fulfilling these requirements (in the form of a solution for the
equations, i.e., a suitable substitution for the type variables). The solution is
computed by means of a procedure called unification; see [Rob65].

Since the system is fully syntax directed (each syntactic construction has ex-
actly one typing rule), the equations σ � τ for an expression E can be generated
by stepwise reconstruction of a type derivation for E, essentially leading to a
type reconstruction for each subexpression of E.

We will illustrate this idea with an example. Consider the following expres-
sion.

λp.case p of λx.x or λy.�
For the outermost abstraction, two auxiliary variables variables are introduced,
say α, β. The variable α is assigned to p whereas β becomes the result type
of the case expression. The latter consists of three components. In order to
reconstruct the type, two more variables are needed, say γ, δ. Typing the pattern
leads to the equation α � γ + δ. Both branches of the case consist of a lambda
expression. Each lambda expression will again require new auxiliary variables.
To simplify our example slightly, we assume that λx.x if typed with ζ → ζ
and λy.� with η → 1, both ζ, η fresh. Typing these branches will lead to the
equations γ → β � ζ → ζ and δ → β � η → 1. Solving these three equations
by unification gives the substitution

∗ = {α← 1+ η, δ ← η, ζ ← 1, β ← 1, γ ← 1}
Applying this substitution gives the typing statement

λp.case p of λx.x or λy.� : 1+ η → 1

One can use this algorithm to show that type assignment has the principal typing
property: if an expression E is typable, there exist a principal typing for E, i.e.,
a ‘schematic’ type of which all other typings can be obtained via instantiation
of type variables.

The above typing for E is principal.

Principal Typing Theorem 1. Principal typings can be computed effectively.

Proof. See [BS96]. �

7.2. Strictness polymorphism

For strictness types we follow roughly the same procedure. Since strict-
ness typing involves subtyping, we will generate both type equations and type
inequalities.

Given an expression and a standard type, there can be several strictness
variants of that typing. Therefore it is natural to consider strictness schemes.
We use attribute variables (a, b, . . .) to denote schematic strictness types, in
the same way as we use type variables to indicate schematic standard types.
A concrete strictness typing consists of a proper instantiation of the attribute
variables.

15

We will need to state dependencies between strictness attributes. We will
express these as (finite) sets of attribute inequalities called attribute environ-
ments. The following example illustrates the use of these environments. The
possible types of the lambda expression λx.fst x can be expressed schematically
as

(αa × β?)c
d→ αb| b ≤ a, b ≤ c, d ≤ b

The attribute environment denotes restrictions on instantiations. E.g., a :=
!, b :=!, c :=!, d :=! and a :=?, b :=!, c :=!, d :=! are valid instantiations, but, for
example, a :=?, b :=?, c :=!, d :=! is not, since ? �!.

It is possible to add these ‘polymorphic strictness types’ and attribute en-
vironments to the formal typing system. A similar extension has been done in
the uniqueness type system, see [BS96]. We will refrain from such an extension
here, since it produces administrative overhead and does not contribute to the
understanding of the typing algorithm. Instead, we will regard our strictness
schemes as an abbreviation for the respective concrete strictness types obtained
by instantiation.

During strictness type reconstruction we sometimes need to denote the ‘min-
imum’ of two strictness types or strictness attributes. This operation occurs
whenever the typing rule contains an infimum of bases. In case this minimum
is not directly computable (when attributes are schematic, or types are not yet
equivalent) we continue the computation with a schematic minimum S � T .
Eventually, this leads to schematic attributes of the form a1 � . . . � ak. For
example, λx.〈x, x〉 can be typed with

λx.〈x, x〉 : αa�b f→ (αc × αd)e| f ≤ e, e ≤ c, e ≤ d, c ≤ a, d ≤ b.

The attribute a � b on the argument type together with the inequalities c ≤
a, d ≤ b indicate that this argument can only become ! if either c or d is taken !.

7.3. Generating requirements

The requirements generated during type reconstruction consist of strictness
type equations but also of strictness type inequalities (due to subtyping con-
straints S ≤ T in the rules for var and fix) and strictness attribute inequalities
(due to attribute constraints u ≤ v).

We can describe the generation of requirements as a function S. It takes an
expression E and a goal type T as input and produces a pair 〈Γ,R〉 consisting
of a basis Γ and a collection of inequalities R. The latter collection is a triple
consisting of a set of type equations, a set of type inequalities, and a set of
attribute inequalities.

Definition 14. The strictness requirements generation function S is defined
inductively in Fig. 6. Union of results is to be taken componentwise.

Some remarks: If the variable x in the rules for fix and abstraction does not
occur in E there will be no declaration of x in the resulting basis. Hence, we
cannot write the basis as Γ ∪ {x:X}. In the case of abstraction, the type X is

16

S(x, T) = 〈{x:αa}, 〈−, {T ≤ αa},−〉〉,
S(�, T) = 〈∅, 〈{�T � � 1},−,−〉〉

S(E E′, T) = 〈Γ � Γ′,R∪R′ ∪
〈−,−, {[T] ≤ a}〉〉

where S(E,αa [T]→ T) = 〈Γ,R〉
S(E′, αa) = 〈Γ′,R′〉

S(λx.E, T) = 〈Γ,R∪ 〈{�T � � X → αa},−, {[T] ≤ a}〉〉
where S(E,αa) = 〈Γ ∪ {x:X},R〉,

S(〈E,E′〉, T) = 〈Γ � Γ′,R∪R′ ∪
〈{�T � � αa × βb},−, {[T] ≤ a � b}〉〉

where S(E,αa) = 〈Γ,R〉
S(E′, βb) = 〈Γ′,R′〉

S(fstE, T) = S(E, (T × α?)[T])

S(sndE, T) = S(E, (α? × T)[T])

S(inlE, T) = 〈Γ,R∪ 〈{�T � � αa + βb},−, {[T] ≤ a}〉〉
where S(E,αa) = 〈Γ,R〉,

S(inrE, T) = 〈Γ,R∪ 〈{�T � � αa + βb},−, {[T] ≤ b}〉〉
where S(E, βb) = 〈Γ,R〉,

S(case I of L orR, T) = 〈Γ � Γ′,R∪R′ ∪R′′ ∪
〈Γ′ � Γ′′,−,−〉〉

where S(I, (αa + βb)[T]) = 〈Γ,R〉,
S(L, αa [T]→ T) = 〈Γ′,R′〉,
S(R, βb [T]→ T) = 〈Γ′′,R′′〉,

S(μx.E, T) = 〈Γ,R∪ 〈−, {T ≤ X},−〉〉
where S(E, T) = 〈Γ ∪ {x:X},R〉

Figure 6: Strictness requirements generation

17

taken to be α?, with α fresh. For fix expressions, the inequality T ≤ X can be
omitted. The infimum of Γ�Γ′ consists of declarations x:S�T for each variable
x appearing in both Γ and Γ′. For a variable x that appears only in Γ (say with
type S) and not in Γ′, the infimum Γ � Γ′ contains just x:S. The case that x
appears in Γ′ and not in Γ is handled similarly. Analogously, if a variable x is
not present in both Γ and Γ′, the set of type equations Γ � Γ′ will not contain
an equation corresponding to x. Instead, ? ≤ [S] should be added to the set
attribute inequalities (where S is the type of x in either Γ or Γ′).

7.4. The typing algorithm

The next step is to solve the inequalities obtained by S. Our goal is to
compute a ‘principal strictness typing’, i.e. a valid typing (possibly containing
an attribute environment) of which all other concrete strictness typings can be
obtained via instantiation.

The underlying ‘standard part’ of the requirements can easily be solved: The
output of S can be converted into a set of standard type equations σ � τ , by
ignoring all strictness attributes and by considering type inequalities and type
infima as equations. Let E be an expression. Suppose we apply S to 〈E,αa〉,
with α and a fresh. It is not difficult to show that the most general solution for
the resulting collection of equations (after applying the above procedure) leads
to a principal standard typing of E.

Principal Strictness Typing Theorem 1. Principal strictness typings can
be computed effectively.

Proof (Sketch of the algorithm). Let E be an expression.

Step 1. Compute 〈Γ,R〉 = S(E,αa).

Step 2. Determine (by unification) a solution ∗0 for the standard type equations
that result from Γ,R.

Step 3. Lift ∗0 to a strictness type substitution ∗, i.e., for each α = σ, the type
σ is converted into a pseudo strictness type by decorating all subtypes
of σ with fresh attribute variables.

Step 4. Extend the set of type attribute inequalities of R with the inequalities
that arise from the type equations and inequalities inR after performing
∗. Let Δ be the result of this step.

Step 5. Now 〈Γ∗, (αa)∗,Δ〉 is a principal typing for E. �

To obtain more legible types, one could simplify the result of step 4 by
determining the restriction of Δ to attributes appearing in Γ∗ and (αa)∗. We
will not explain this procedure in more depth.

The principal strictness type can be seen as the ‘best strictness type’ (mean-
ing ‘as strict as possible’) which is obtained by choosing ! for all attribute vari-
ables.

18

7.5. Example

In this section we will illustrate strictness type inference with a fully elabo-
rated example. In the course of the procedure we will need to introduce fresh
type and strictness variables. We will use numbers for type variables instead
of Greek letters, and Roman letters for strictness variables. The application
of S to an expression E and a fresh goal type 1a will produce a basis and
set of requirements. During this generation phase, a basis can grow, shrink or
present declarations might change. The set of requirements, however, is only
extended. To enhance readability, we do not explicitly collect all the generated
requirements at each step. Instead, we only mention the newly created ones.

Consider the expression E = λx.〈x, x〉. We will show that the strictness type
for E that was given before is indeed computed by our type inference algorithm.

Step 1. Compute 〈Γ,R〉 = S(E, 1a)

⇒ S(λx.〈x, x〉, 1a)
⇒ S(〈x, x〉, 2b)
⇒ S(x, 3c)
⇐ 〈x:5e, 〈−, {3c ≤ 5e},−〉〉
⇒ S(x, 4d)
⇐ 〈x:6f , 〈−, {4d ≤ 6f},−〉〉

⇐ 〈x:5e � 6f , 〈{2 � 3c × 4d},−, {b ≤ c � d}〉〉
⇐ 〈−, 〈{1 � 5e � 6f → 2b},−, {a ≤ b}〉〉

Step 2. Determine a substitution that solves the set of standard type equations
that result from Γ,R. In this example this step is almost trivial: a
possible solution, say ∗0, is:
∗0 = {3← 4, 3← 5, 3← 6, 2← 3× 3, 1← 3→ 3× 3}

Step 3. Lifting ∗0 to a strictness substitution ∗ normally requires new fresh
strictness variables, However, in this example we can optimize this step
by using the generated equations for variable 1 as well as for 2.

∗ = {3← 4, 3← 5, 3← 6, 2← 3c × 3d, 1← 3e�f → (3c × 3d)b}
Step 4. Now the type inequalities are converted into attribute inequalities, and

added to the attribute inequalities already present in R. The resulting
collection Δ of inequalities is:

Δ = {c ≤ e, d ≤ f, b ≤ c � d, a ≤ b}
Step 5. Finally, we end up with the following typing for E. Note that we can

write b ≤ c � d as b ≤ c, b ≤ d

λx.〈x, x〉 : 3e�f a→ (3c × 3d)b | c ≤ e, d ≤ f, b ≤ c, b ≤ d, a ≤ b

19

8. Recursive data structures

Thus far we have only considered non-recursive data structures. In this
section we will describe an extension of the theory to lists. This extension can
serve as a bases for the treatment of other recursive data types.

Lists are built up from constructors nil (the empty list) and cons. We
incorporate these constructs in our syntax together with a destructor called list
leading to the following extension of Definition 1

Λ ::= · · · | nil | consΛΛ | listΛΛΛ

By L(σ) we denote the (standard) type of lists of σ objects.
The evaluation rules for these construct are straightforward: hnf-evaluation

of list objects stops at the outermost constructor.

(nil)
nil ⇓ nil

(cons)
consH T ⇓ consH T

L ⇓ nil N ⇓ V
(list-N)

listLN C ⇓ V

L ⇓ consH T C H T ⇓ V
(list-C)

listLN C ⇓ V

Besides plain hnf-evaluation, it is useful to distinguish other evaluation
forms. The most common ones are spine evaluation and full evaluation. For
instance, the function length computing the size of the list will enforce the
complete evaluation of the list structure, but leave the elements unaffected. A
function sum that sums all the elements of a list will not only evaluate the spine
completely, but also all of its elements.

The evaluation contexts induced by these functions are again encoded in an
appropriate strictness type. This leads to the following extension of Definition 6:

Π ::= · · · | LA(Σ)

Only part of the types that can be constructed according to this syntax is well-
formed. This is due to the fact that for data structures, strictness ‘propagates
outwards’: in order to evaluate inner components of a data structure, the struc-
ture itself has to be evaluated before these components can be accessed.

For example, for a list of 1 elements we have 4 different valid strictness
variants: (L?(1?))?, (L?(1?))!, (L!(1?))!, and (L!(1!))!, corresponding to no, hnf,
spine and full evaluation, respectively.

The typing rules are extended according to our intended semantics.

(nil)
Γ? � nil : 1u

Γ1 � H : S Γ2 � L : (Lv(S))v u ≤ v v ≤ [S] inf(Γ,Γ1,Γ2)
(cons)

Γ � consH L : (Lv(S))u

Γ1 � L : (Lv(S))[T]
Γ2 � N : T

Γ2 � C : S
[T]→ (Lv(S))v

[T]→ T
[T] ≤ v inf(Γ,Γ1,Γ2)

(list)
Γ � listLN C : T

20

For a soundness proof, all definitions based on either expressions or on types
have to be adjusted in order to deal with list constructs. All of these adjustments
are reasonably straightforward, and can be found in the PVS formalization.
However, the formalization does not yet contain a completely formalized proof;
i.e., the list cases are still missing, mainly due to the increased complexity of
the proof.

Again, we formulate some examples as lemmas which enables us to formally
prove that the typing statements are indeed correct.

Lemma 3. 1. μl.λx.list x (inl�)λh.λt.l t : (L!(α?))!
!→ N !

2. μs.λx.list x (inl�)λh.λt.+ h (s t) : (L!(N !))!
!→ N !

3. ∀u, v, w ∈ A, v ≤ w,w ≤ u : μr.λx.λy.list x y λh.λt.r t (consh y) :

(Lv(αu))v
v→ (Lw(αu))w

v→ (Lw(αu))v

We use the same representation for natural numbers as in Example 2. The
operation + is simply represented by ⊥, because the only relevant aspect of +
is this example us that it is strict in both arguments, and ⊥ can be typed as
a strict binary operation. Example 1 is the length function (without addition),
and Example 2 the sum function. Example 3 is the well-known reverse function,
that transfers each element of the first list argument to the second argument.
One will usually call this function with an empty list as second argument. In that
case, all elements of the first list will appear in reverse order in the final result.
By using quantified attributes, we obtain a polymorphic strictness typing for
reverse. In this typing the difference between the first and the second argument
becomes apparent: Even simple hnf-evaluation of an application of reverse will
result in the complete evaluation of the spine of the first argument. For the
second argument this is not the case. This argument will only be evaluated
when the whole spine of the reverse’s result is needed.

9. Discussion of related work

We compared several existing techniques for strictness analysis by giving a
brief outline of their main ideas.

In [JI92, Ben93] a non-standard type inference is introduced using conjunc-
tion types. The main properties of the system are formulated and proved with
respect to a denotational semantics of their language. The difference with our
approach is that the strictness information is restricted to traditional head-
normal form evaluation only, which, as we argued, hampers modularity. In
[HM94] a typing framework is presented focusing on algorithmic aspects, by
providing a checking algorithm for a variation of Jensen’s system.

The system described by [CDG02] is most similar to ours. For a language
resembling the core functional language introduced in Section 2, the authors
describe both a strictness and a totality analysis using a non-standard type
inference system. The main difference with our approach is that conjunction
types are used. In our system the strictness properties of all function arguments

21

are captured by a single strictness type, whereas the system of [CDG02] requires
a conjunction of these properties. The advantage of our approach is that it can
be incorporated directly in a standard Hindley-Milner type inference algorithm.

The system introduced by [HH10] is based on relevance typing. Similar to our
system, and the backwards strictness analysis used in the Glasgow Haskell Com-
piler [JHH+92], the (evaluation) context in which variables are used determines
whether these variables are relevant if such a context is evaluated. In [HH10]
the emphasis is on exploiting strictness information by defining a transformation
replacing ordinary function applications by a more efficient eager applications.

Strictness analysis by abstract interpretation introduces a non-standard se-
mantics by translating functions into abstract versions over finite domains, no-
tably over finite lattices. The bottom elements of these domains play the role
of generic ‘undefined’ values. Recursive abstract functions are defined by a
fixed-point construction. The main property of this alternative interpretation
is to yield a decidable approximation of the (in general undecidable) strictness
property, even in the higher-order case. This abstraction inevitably leads to in-
formation loss. The standard form of abstract interpretation uses the two-point
lattice as ground domain. See [Myc81], [BHA85] and [?] for more information.
Due to the complexity of finding fixed points in abstract domains, abstract in-
terpretation is not very useful for implementing strictness analysis in compilers
for functional languages.

Abstract reduction analyzes evaluation of expressions by mimicking reduction
on sets of concrete values extended with special elements for undefinedness.
This technique approximates ordinary computations closer than for instance
abstract interpretation or strictness typing. Rewriting semantics is adjusted
by specifying the behaviour of functions on non-standard elements. Abstract
reduction sequences may not terminate. A special technique called reduction
path analysis is used to cut off these sequences in a way that keeps most of the
strictness information intact; see [Nöc93], [CHH00]. The main disadvantage of
this approach is the lack of modularity; it requires the implementations of the
involved functions to perform the analyses effectively.

Strictness typing is a purely syntactic (‘intentional’) way of deriving strict-
ness information. The resulting strictness information merely depends on the
structure of the expressions, particularly on the occurrences of case clauses, and
(as in the case of abstract interpretation) not on the computational behaviour
on concrete values. The advantage of strictness typing over abstract interpreta-
tion is that the first method can be combined with standard typing. For more
information, the reader is referred to [LM91].

10. Conclusions and Future Work

In this paper we presented a strictness typing system which is fully higher-
order. We describe a type derivation system as well as a type inference al-
gorithm. Moreover, the typing system enables the specification of arbitrary
evaluation contexts, which is essential for supporting modularity. Like many
other meta-theoretical expositions we used De Bruijn indices to represent term

22

variables. Despite the objections that have been raised against this low-level
representation (e.g., See [ABF+05]), we encountered no real issues that signifi-
cantly hampered our proofs.

We have demonstrated that proof assistants are not only useful in formalizing
existing proofs but also to develop new language theoretic concepts. One major
concern, however, remains the fact that the construction of a formalized proof
remains very time consuming. Compared to a manual construction on paper, the
development time using the proposed method probably takes (much more than)
three times as long. It is difficult to opt whether this is worth the investment.
Although the reader might not learn very much from the formalization itself, it
is still useful because in the end it guarantees that the system is indeed fully
correct.

10.1. Future work

The formal proof does not yet cover soundness of the entire typing system:
the proof work on recursive data types must be extended and completed. More-
over, a proof formalization of the Principal Strictness Typing Theorem is still a
compelling challenge. In addition, the type system itself should be considered
as a proof of concept, rather than as a system that is directly suited for being
incorporated in a standard functional language, like Haskell. For this reason,
we have developed a prototype implementation. However, this prototype is still
very rudimentary, and will require quite some effort in order to make it ripe for
testing and comparing with other strictness analyzers.

References

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Ge-
offrey Washburn, Stephanie Weirich, and Steve Zdancewic. Mecha-
nized metatheory for the masses: The poplmark challenge. In Joe
Hurd and Thomas F. Melham, editors, TPHOLs, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer, 2005.

[Ben93] Peter Nicholas Benton. Strictness analysis of lazy functional pro-
grams. Number 309 in Ph.D. Thesis. University of Cambridge, Com-
puter Laboratory, 1993.

[BHA85] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strict-
ness analysis for higher order functions. In Proc. of Workshop on
Programs as Data Objects, pages 42–62. DIKU, Denmark, Springer
Verlag, LNCS 217, 1985.

[BS96] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for func-
tional languages with graph rewriting semantics. In Mathematical
Structures in Computer Science, volume 6, pages 579–612, 1996.

23

[BS07] Erik Barendsen and Sjaak Smetsers. Strictness analysis via resource
typing. In Reflections on Type Theory, Lambda Calculus, and the
Mind, pages 29–40, Nijmegen, Netherlands, December 2007.

[CDG02] Mario Coppo, Ferruccio Damiani, and Paola Giannini. Strictness,
totality, and non-standard-type inference. Theor. Comput. Sci.,
272(1-2):69–112, 2002.

[CHH00] David Clark, Chris Hankin, and Sebastian Hunt. Safety of strictness
analysis via term graph rewriting. In Static Analysis, 7th Interna-
tional Symposium, SAS 2000, LNCS, pages 95–114. Springer, 2000.

[DW90] Kei Davis and Philip Wadler. Backwards strictness analysis: Proved
and improved. In Proceedings of the 1989 Glasgow Workshop on
Functional Programming, pages 12–30, London, UK, 1990. Springer-
Verlag.

[HH10] Stefan Holdermans and Jurriaan Hage. Making ”stricterness” more
relevant. In Proceedings of the 2010 ACM SIGPLAN workshop
on Partial evaluation and program manipulation, PEPM ’10, pages
121–130, New York, NY, USA, 2010. ACM.

[HM94] Chris Hankin and Daniel Le Métayer. Deriving algorithms from
type inference systems: Application to strictness analysis. In POPL,
pages 202–212, 1994.

[JHH+92] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Jones Cordy,
Hall Kevin, Will Partain, and Phil Wadler. The glasgow haskell
compiler: a technical overview, 1992.

[JI92] T.P. Jensen and Københavns Universitet. Datalogisk Institut. Ab-
stract interpretation in logical form. Ph.D. Thesis, DIKU, Datalo-
gisk Institut, Københavns Universitet. DIKU, 1992.

[Kam01] Fairouz Kamareddine. Reviewing the classical and the de Bruijn no-
tation for λ-calculus and pure type systems. Logic and Computation,
11:11–3, 2001.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation,. In Proc. of
POPL’93: Twentieth annual ACM symposium on Principles of Pro-
gramming Languages, pages 144–154. Charleston, South Carolina,
1993.

[LM91] A. Leung and P. Mishra. Reasoning about simple and exhaustive
demand in higher-order lazy languages. In Proc. of International
Conference on Functional Programming Languages and Computer
Architecture (FPCA ’91), pages 328–351. Boston, USA, Springer
Verlag, LNCS 523, 1991.

24

[Myc81] A Mycroft. Abstract interpretation and optimising transformations
for applicative programs. PhD thesis, University of Edinburgh, 1981.

[Nöc93] E.G.J.M.H. Nöcker. Strictness analysis using abstract reduction.
In Proc. of Conference on Functional Programming Languages and
Computer Architecture (FPCA ’93), pages 255–266. Kopenhagen,
ACM Press, 1993.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23–41, 1965.

[Sme10] Sjaak Smetsers. The syntactic continuity property: A computer ver-
ified proof. In Sun-Yuan Hsieh Jixin Ma Zoran Majkic and Khalid
S HusainEditors Ibrahiem M M El Emary, editors, International
Conference on Theoretical and Mathematical Foundations of Com-
puter Science (TMFCS10), pages 135–142. ISRST, 2010.

[SvE12] Sjaak Smetsers and Marko C. J. D. van Eekelen. Higher-order strict-
ness typing. In Hans-Wolfgang Loidl and Ricardo Peña, editors,
Trends in Functional Programming - 13th International Symposium,
TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected
Papers, volume 7829 of Lecture Notes in Computer Science, pages
85–100. Springer, 2012.

[SvEvK09] Olha Shkaravska, Marko C. J. D. van Eekelen, and Ron van
Kesteren. Polynomial size analysis of first-order shapely functions.
Logical Methods in Computer Science, 5(2), 2009.

[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Once
upon a type. In Proceedings of the seventh international conference
on Functional programming languages and computer architecture,
FPCA ’95, pages 1–11, New York, NY, USA, 1995. ACM.

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. J. Comput. Secur., 4:167–187, Jan-
uary 1996.

[Wal04] David Walker. Substructural type systems. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, pages 3–44.
MIT Press, 2004.

[Wan87] Mitchell Wand. A simple algorithm and proof for type inference.
Fundamenta Informaticae, 10(2):115–121, 1987.

25

