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I. INTRODUCTION. 

One of the main tasks in solid state physics is solving the problem 

of the motion of electrons in perfect metallic crystals. Several 

approaches, like L.C.A.O. and model potential formalisms, have Ъееп 

applied with considerable success. In principle the calculation of 

24 
electronic eigenstates is a many body problem involving say 10 

electrons and nuclei. To make this problem manageable one has to 

make some assumptions and approximations : 

a. Born - Oppenheimer approximation i.e. the nuclei are supposed on 

fixed places in г - space 

b. one - electron approximation : i.e. an electron is moving in some 

averaged, periodic field, arising from all other electrons and 

nuclei. 

Then we arrive at a picture where an electron is moving in a 

periodic crystal potential, which motion can be described by the 

Bloch type solution of the one electron Schroedinger equation. One 

way to proceed now is to approximate the crystal potential by a 

"muffin tin" model, i.e. the potential is assumed to be spherically 

symmetric inside spheres around each ion with radius say equal to 

half nearest neighbours distance and is assumed to be a constant 

(say zero) in the remaining interstitial region. This problem can 

be attacked by Green's function theory and, depending on the basis 

one chooses to expand the crystal wave function and the Green's 

function, one arrives at the so called KKR (Korringa and Kohn and 

Rostoker (1954)), 
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KKRZ (KO brought iota к racpresencation try Ziman (1965)) от APW 

(augmented plane wave, J.Slater (1937)) formalisms. The expansion 

coefficients are determined by a variational procedure. The parameters, 

which these various formalisms have in common, are the scattering phase 

shifts of the individual muffin tin potentials or, equivalently, the 

logarithmic derivatives of the radial part of the APW wave functions 

at the muffin tin sphere radius. Once the phase shifts have been evaluated 

at an energy E one can calculate the values of the wave vector к for which 

1 (к)-К hold«,i.e. the bandstructure E (к) can be determined. In particular 

the phase shifts at the Permi energy are constants for the Permi surface 

of a metal, (see also Segali and Heim (196 )). However the accurate 

construction of the muffin tin potential is a hard task theoretically as 

well as numerically. On the other hand from many considerations one can 

argue that the logarithmic derivatives of the muffin tin well should be 

good parameters for the description of a Permi surface. 

The object of this thesis is to investigate the ability of these 

muffin tin parameters to 4eacribe the geometry of a Permi surface and 

what kind of further information we can get from them once they have been 

determined experimentally. It turns out that they are excellently suited 

for interpolation purposes, for example the rather complicated but 

experimentally accurately known Fermi surface of white tin can be described 

to within the experimental error just by fitting as few as four phase shifts. 

Further it will be found that unfortunately there existía strong ambiguity 

in the choice of the Fermi energy, relative to the muffin tin zero. 

This is both an amazing fact, because lMf6ralUA¿ one hardly can believe 

that such strongly different muffin tin potentials can reproduce the same 

Fermi surface, as well eis a disappointment, for one should like to end up 

with unique values of the various parameters. 



- 5 -

The Permi energy ambiguity causes a l o t of addit ional phenomena l ike 

l i n e a r i t y of the logarithmic derivatives as a function of the Fermi 

energy, specif ic behaviour of the Priedelsum and the existence of 

"focus point r a d i i " , which phenomena can be understood to some 

extent by studying the APW matrix elements in the so called 

"on the Permi sphere" approximation. 

One of the main advantages of the phase sh i f t based bandstructure 

calculat ions over plane wave methods l ike OPW i s the natural inclusion 

of those cases, where narrow d-bands are lying in the broad s - ρ - band, 

as i t occurs in the noble metals for example, because such a d-band i s 

correct ly described by the d-phase shift-behaviour as a function of E. 

So far we have not mentioned r e l a t i v i s t i с effects, which become more 

importaflt for the heavier elements. Рог example in the case of white t i n 

i t wi l l turn out that spin-orbit coupling should be included. 

This thes i s contains the following chapters. In chapter I I we wil l 

give a br ief review of the theoret ica l foundation of the APW formalism 

and some statements from scat ter ing theory. Further we wil l discuss 

phenomena, related to or ar i s ing from an experimentally found E_ ambiguity, 

l ike l inear behaviour of logarithmic der ivat ives , conservation of APW 

matrix element in "on the Fermi sphere" approximation, the existence of 

"focus point" muffin t i n r a d i i , and the var iat ion of the Priedelsum as 

a function of E.,· Final ly we will discuss second order effects in band-

s t ructure problems. 

In chapter I I I we wil l discuss the computerprogram we have set up 

for an (R)APW f i t to the experimental geometry of the Fermi surface of 

a metal· 
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The results of the calculations on Sn and Hg will be reported in 

chapter III, where we will make use of earlier reports now enclosed 

as appendices A
f
B and C. Further we will discuss the results on the 

nohle metals obtained by N.Coenen from a KKRZ fit. 

In chapter V we give some concluding remarks and suggestions for 

further investigation. 



. THEORY 

II«1 General outline of APW formalism. 

The augmented plane wave method (APW) was formulated for 

the f i r s t time in 1937 Ъу J . S l a t e r . But due to i t s numerical 

complexity the method had to wait for the rather large computers 

of the l a s t decade before becoming popular. Now i t s power for 

solving the c i y s t a l hamiltonian has been recognized by a large 

publ ic . Para l le l to th i s developement the method of Korringa 

(1947) and of Kohn and Rostoker (1954)(KKR) have been establ ished, 

and also the k-representation of i t by J.Ziman (I965) (KKRZ). The 

relat ionship between APW and KKR(Z), both methods being solut ions 

of the muffin t i n model, has been studied by several workers from 

whoinwe mention K.H. Johnson (I966), who was able to derive both 

methods from a Greens function formalism by using d i f ferent s e t s 

of basis functions for the expansion of the wave function and of 

the Greens function. 

In recent years several reviews concerning phase s h i f t based models have 

appeared (to mention a few: T.L. Loucks, Augmented Plane Wave 

Method (1967), J.Ziman (1972) and Dimmock (1972) to which the i n t e r e s t e d 

reader i s referred. In th i s work we will s t r e s s only some features 

which are of d i r e c t i n t e r e s t to our work, or which can be seen as 

addit ional remarks to the above mentioned reviews. 

Por the derivat ion of the APW matrix elements we wi l l follow 

Zi man (1972) in his recent review mainly. Por the moment we suppose 

a crysta l with one atom per primitive c e l l . The muffin t i n p o t e n t i a l 

V„_ i s defined as 
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MT
4
 ' s 

around each ion site and 

W * ) - IqC*) Γ ^ Β ( 2 · 1 ) 

V^pC?) - О г > R (2.2) 
MT 

with r r e s t r i c t e d to the Wigner-Seitz c e l l . V_(r) i s expected 

to he very similar to the atomic Hartree-Fock potentia l ; only 

for the larger г there i s a marked difference because of the 

overlap of the outer shel l atomic o r b i t a l e . R i s choosen some­

what a r b i t r a r i l y but usually equal to half of the nearest neighbour 

distance; not larger than that to avoid overlap of neighbouring 

potent ia l wells . Using the def ini t ion of м _(г) inside each ce l l 

we obtain the periodicity condition 

with 1 being a l a t t i c e vector. 

The crys ta l one electron Schroedinger equation reads ( in a .u.) 

for the c e l l centred at the or ig in : 

[ - V2 + Vs - E] Yj( f) - 0 r < R (2.4) 

[-V 2 - В ] ftm - 0 r > R (2.5) 

Because of the spherical symnetry of V
M
_(r) inside the muffin 

tin spheres the wave function inside the muffin tin spheres can be 

written as a linear combination of НЛг^Т.. (г), where Η-ΛΓ,Ε) 

is a regular solution of the radial part of the Schroedinger equation. 
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tr"2 t ï ^ 2 ίφ + Έ- v s ( r ) - 1 ( 1 + ^т~21 R i ( r · ^ • 0 ( 2 · 6 ) 

and Y. (r) i s the usual spherical harmonie. An APW wave function l m 

i s defined now Ъу 

АР ̂ (г) 

ехр(ік.г) . ехр (1к.1)вхр(1к.^· )(outside spheres) 

Ê ±1а-1тЧТ' '
E ) Y

l m
(
^ ]

4 7 t ̂ ^PÍ^'Ainside 1-th sphere) (2.7) 

The coefficients a, are determined Ъу the condition that the APWeir) 
1 m к ' 

should Ъе continuous on the muffin tin spheres. Using the well known 

expansion 

expíik.?) - 4^lmi
1J1(kr')Ylm(í')Yim(k) (2.8) 

we get 

hm " ATt^ÛclO/R^R.E)} Y*m(k) (2.9) 

Taking into account the per iodici ty of the crysta l potent ia l we can 

write now the to ta l solution"\|/£ of the one electron Schroedinger 

equation (2 .4) , (2.5) as a l inear combination of APW £ =t 

ι 

where К. are reciprocal l a t t i c e vectors . The expansion coeff icients 

Ъ^ =» can be determined by a var ia t ional procedure. The discontinuity 

in the slope of APVfe on the muffin t i n sphere causes some a r b i t r a r i n e s s 

in the variat ional procedure (R.S.Leigh, 1956). Following the procedure 
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qf S later we get the secular APW determinant with matrix 

elements ( in c .u.) 

3 ^ - З/гтГІЕ - ϊ I s) 

R •ξ (21+l)œ i(E)j1(2TCk iR)j1(2Jrk.R)P1(l.k j) (2.13) 
^-^átom 

In (2.12) and (2.13) ïc. • к + К. ; j 1 denotes the spherical Bessel 

function; P. i s the Legendre polynomial;^! . the atomic volume; 

Οί,ίΕ) - RR ,

1 (E t R)/R 1 (E t R) f which i s dimensionless, shal l be referred 

to as the "logarithmic der ivat ive" for o r b i t a l quaitum numter 1. 

I I . 2 1-and K-convergence aspects . 

At t h i s point we wish to make some corranents on the convergence 

propert ies of the APW formalism both with respect to the 1-sum as 

well as to the s ize of the APW matrix. 

Although the set of plane waves [ e x p ( i k . . r ) } i s a complete one for 

functions defined in the u n i t c e l l , the se t [APWe ) i s overcomplete 
i 

unfortunately. The continuation (2.9) of every plane wave to inside the 

muffin t i n spheres i s a ra ther arbi t rary one thus leaving us with a set 

of basis functions which i s overcomplete generally. As a consequence the 

determinant of the i n f i n i t e APW matrix vanishes for a l l values of E. 

However, the method i s saved by any f i n i t e truncation of the APW secular 

determinant. The desired K. convergence may then be obtained by inspection 

of the numerical values of the matrix elements and energy values. 
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I t can Ъе shown (Johnson, I966) t h a t the APW formalism can Ъе 

derived from minimizing 

^ J f k - ^ V ^ ^ i ^ l 2 ^ (2.17) 

and taking the l imit as M goes to i n f i n i t y , thua proving that the APW 

formalism yields the most rapidly convergent plane wave expansion of 

the wave function outside the spheres. 

The l-truncation i s determined by two requirements. F i r s t we have 

to include a l l Ok. which are s igni f icant ly deviating from the "empty 

p o t e n t i a l " value a£(E) « x j · ( x ) / j 1 ( x ) , x - 2 TÍR / Ë . In pract ice th i s condition 

requires a l m a , x of not larger than two or th ree , because for the higher 1 
о 

the centrifugal b a r r i e r l ( l + l ) / r i s overwhelming already V_(r) in the 

metals we are dealing with. Secondly the 1-sum should be large enough 

to sat i s fy the expansion (2.8) suf f ic ient ly; for most calculat ions L • 10 

suff ices. 

The truncation of the 1-sum causes a slight discontinuity in the 

APW£ at the muffin tin radius, but this has no serious oonsequenc es, 

because in a variational procedure the trial functions are not required 

to be continuous. 

In the discussion on K. - and 1-convergence we can include some 

remarks on the role of the muffin tin radius. In the definition (2.1.) 

and (2.2.) of V^-ir) the quantity R is brought in somewhat arbitrary. 
PIX 

Usually one takes the value of R half nearest neighbours distance 

because for this value one intuitively expects the muffin tin model 

to approach most closely the real potential (the model does not allow 

for overlapping muffin tin spheres, although recently it has been shown 

that no serious errors are made if R is choosen say 10$ larger than the 
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inscribed sphere radius, (M.J.G.Lee et al (1972), O.K. Andersen (1971), 

M.A.C. Devillers (1972) ). The maximum value of 1, needed for sufficient 

convergence may be decreased by decreasing R, but this will increase 

the size of the APW determinant for it will take more plane waves to 

describe \1/£ in the interstitional region (see equation (2.17). 

So R can be seen as to balance the maximum value of 1 against the size 

of the APW determinant (Leigh,R.S, 1956). For this reason one may expect 

the bandstructure to be rather insensitive to the value of R, provided 

the maximum 1-value and the APW determinantal size are sufficient large 

(of course for the value of R within certain limits, because for example 

decreasing R to within the last closed shell of the atom would increase 

the size of the APW determinant drastically, the latter becoming no 

longer manageable in practice)· 

By inspection of the APW matrix element (2.12) we see that the only 

place where the potential enters in the formalism, is the logarithmic 

derivative«. (E,R). By fixing R we note that cc (E) is a constant for a 

surface of constant energy in k-space. So they can be used as adjustable 

Parameters for a Fermi surface. It is just this idea we want to investigate 

in this thesis, i.e. we are seeking an answer to the questions of with 

how many ш and with how many K. we can reproduce the experimental well 

determined Fermi surface of a metal. Or in other words, how well does 

the muffin tin model work in metals ? The way we have proceeded in 

practice to answer those questions, will be treated in the next chapter. 

II·3 Other muffin tin potential based formalisms. 

There are other formalisms based on the muffin tin model like KKR 

and KKRZ. These can be derived using Green's function theory ала without 

going 



- 13 -

in d e t a i l s we present immediаШу the re su l t ing KKRZ matrix element 

( in c .u .) 

ΠΚΚΗΖ,_Λ тП Σ ( 2 1 + 1) r i ( E ) J 1 ( 2 T t k R)j ( 2 T t k E ) . 
I i j W * Tc-siatom 1 Α ι ι A j 

А Λ 

. P 1 ( k i . k ) (2.18) 
J 

with 

^ - ( ^ ( E ) -oc° (E) (2.19) 

We note that (2.18) has some advantages over (2.13) in that the j 1 term 

i s lacking and in t h a t the 1-sum converges more rapidly, for we have to 

include now only those 1 for which a-.(E) i s s igni f icant ly d i f ferent 

from x 1 ( E ) . But there are arguments (Johnson I966; Segali and Haun, 1968; 

Devi l lers e t a l , 1971) "that the K. convergence i s not as fas t as t h a t of 

APW. Another advantage of KKRZ i s that the s e t of t r i a l functions on 

which the former i s based forms a complete s e t . This has been pointed 

out Ъу Lloyd (1965). He showed that (2.18) can be obtained form a 

hamiltonian, in which the muffin t i n potent ia l (2.1.) and (2 .2 . ) i s 

replaced by a non-local 1-dependent deltasfunction p o t e n t i a l at the 

muffin-tin radius. The solutions >K(r) of such a well defined Hamiltonian 

form a complete set and thus also the expansion of \j/tj( r ) in a plane wave 

representation must be unique. Once more, as mentioned above, i f we r e s t r i c t 

ourselves to a f i n i t e s ize of the determinant the discussion about the 

completeness of the set t r i a l functions i s of l i t t l e importance. 
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II#4 OFS-approxLmation : comparison with local pseudo potent ia l 

formalism. 

We can look upon (2.13) and (2.18) as being the Fourier 

transforms of some local pseudo potent ia l describing the t r a n s i t i o n 

of nearly free electron s tates k. into k. (OFS^approximation). In 
J 

this approximation the APW (KKRZ) matrix elements are evaluated 

for к. а к. • к-, = /ЕЕ (with E_ is the free electron value of the 

Fermi energy), and they become functions of the continuous variable q 

(in c.u.) 

r^q.V - - Зйе; Oy>os(eq) - VV2^*) / 2n** + 

+ ~ 1 ( 2 1 + l)0i1(Ep)j2(2KkpR)P1(co8(6 î)) (2.20) 
atom 

For q > 2 k-, k. and k. a k. + q are taken an t ipa ra l l e l and only 

^ -̂  —». 
k. i s fixed at k_· At the values q̂  . a K. - K. we may expect 

APW 
Ρ (q. . E_) to deviate not too much from V(q. .) of some adequate 

local pseudo potent ia l for the metal being in consideration , at 

l e a s t so for the "most important" q. . for that metal. A further 

discussion of t h i s nearly free electron argument i s postponed 

to section I I . 9 and also should wait the numerical re su l t s in the 

next chapters. 
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ΙΙ·5 Scattering theory in solid state physics; Friedel picture« 

Another point of view in bandstruotdre theory is to look 

at the muffin tin crystal as an assembly of periodically arranged 

scattering potential wells. 

Because the potential well is spherical symmetric a description 

in partial waves will be suited. The scattering phase shifts Ύ)-,(Έ) 

of a single scatterer are related to et, (E) by 

a^M-x {^(х)-ів
гі
(Е)п*(х)} / { J1(x)-tgïl(B)n1(x)} (2,21) 

with χ - 2 TTR / Е . РОГ any spherical syimetric potent ia l V(r) which 

_2 
diverges slower than r in the or ig in, which goes exponentially or 

fas ter to zero for large г and which i s bounded for a l l intermediate 

valúas of г the Schroedinger equation (2.6) can be rewritten as 

(Calogero I967) ( in a.u.) 

| ? В » Г )—7^· { c o s
 »Ι^Κ,Ρ) J1(rVS)-8in^1(Bfp)ii1(r /1) ) 2 (2.22) 

Apparently V«— satisfies the above conditions and we immediately note 

that ̂  (E
f
R) - ^(Ε,οο)^ »Ц(Е), This justifies (2.21). So, using 

(2.21) and (2.19), equations (2.13) and (2.18) give a "phasesiift" 

description of the bandstructure. In this way the quantities α. (E) 

and ¡f, (E) are transformed into the more familiar іг (E). 

We note that the ηΛΈ) arising from (2.20) suffer a "modulo Tt" 

ambiguity. Solving (2.22) for the real potential V
Mr]1
(r) yields: 

^ (E) - ̂ ТГ
 + 7l

(E) - - | ^
i
(

S
)

<
- 2 (2.23) 

where n. equals the number of bound l - s t a t e s of VM_(r). In (2.23) 

i s i s assumed that E >0 and that E i s suf f ic ient ly small. (Levinsons 

theorem). In t h i s sense ^- . (E) i s often called the "reduced phase 

s h i f t " and apparently only these phase sh i f t s axe determining the 
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bandstructure of the conductionband for energy S (see eq.(2.2l) and 

(2.13). In addition the »^(Ejare usually small for E_ « E_ in nearly 

free electron metals. It is joist the possibility of replacing now the 

strong potential V^—ir) by a weak scattering effective pseudo potential 

with scattering properties 'J-, (E) which is the fundamental justification 

of the pseudo potential formalism and which accounts for the great 

successes of the latter in the past ten or twenty years. 

We can introduce a "generalized" Priedel sum 

ζ Γ ρ <v-£ z : ( 2 1 * 1 ) 4i l p ( V ( 2 · 2 4 ) 

Subst i tut ing (2.23) into (2.24) leads to 

Z 1 * (Kp) - Z i 0 n + Zdäp) (2.25) 

with 

¿•on ш 2 1 ( 2 1 + 1 ) ^ (2.26) 

and ZiEp) - ^ - 1 ( 2 1 + 1 ) ^ ( 1 ^ ) (2.27) 

From Levinson'B theorem for E_ being sui table small we expect for 

a closed shel l ion 

ε™ - NA - Z v (2.28) 

in which N. i s the atomic number and Ζ i s the valence of the metal. 
A V 

Using the semi-empiric ^-Дг) for white t i n (Devillere et a l , I969) 

we verified (2.28) by solving (2.21) numerically. 

About the value of the Priedelsum Z(EL,) there i s l i t t l e to say 

off-hand.Originally P r i e d e l ' s formula, i s derived for a s ingle posit ive 

charge 6Ζ placed in a uniform electron gas with Permi п е г ^ E-. Then 
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¿ Z - | - ^ (21+1)^(1^) (2.29) 

From this one might expect in the case of a metal the Friedel sum 

to be 

ZdSp) - Zv (2.30) 

suggesting a picture of the metal to be built up from neutral atoms, 

each carrying its total atomic electron cloud. But as the individual 

atom potentials overlap in a metal the muffin tin zero will be lower 

than The zero of the potential of the free atom (Ziman, 1965)· so the 

phase shifts will be measured at a large energy in the former case. 

Consistent to first order with (2.30) is (Cohen and Heine, 1972) 

lim V(q)--|-l£ (2.31) 

suggesting Bp - -j Bp 

(2.30) with Z(4E£) we will call the "Friedel picture" 

ΙΙ·6 Lloyd picture. 

Edwards (1962) has given a treitment of electron states in disordered 

systems for weak potentials using Green's function theory. Lloyd 

(1965, 1966) has given an extension of Edwards theory for stronger 

energy dependent pseudo potentials. For a detailed presentation of 

their results we refer to thoie papers. Here we will give briefly some 

of their results (in a.u.). Lloyd derived an expression for the integrated 

density of states 
E 

N(E) . ƒ n(E) dE (2.32) 

-00 
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Ее found 

N(E) - - ^ Г т [Тг ( l n ( k 2 + Р - В - і е ) } ] (2.33) 

where к and I must Ъ understood as the k inet ic energy operator 

and the potent ia l operator respectively. 

In momentum representation t h i s re su l t s in 

N(B) - - - ^ r a [ l n { d e t || (k 2 - E-ie ) ¿g ¿ · +<ЙПк«> Il J ] (2.34) 

Using a t-matrix expansion fori 1 Lloyd shows that (2.34) can be 

rewritten in posit ion representation 

with L short for l,m and 

N0(E) - E 3 / 2 / ( 6 j t 2 ) 

-1/2 

ъ?о (2.36) 

(2.37) 

and 
^ i E ^ I c b . b · •Ь Х ^ ^ С . ^ г ) lr|>R 

^/(ï) 
--1 /Ч,Ь. l r | - o 

(2.38) 

with C L , I j ' L a Clehsch-Gordan coefficient and h ( ^ a Hankel function. 

The expression (2.35) i s valid for any arrangement of the scat ter ing centers, 

Now from t h i s point we can proceed for the case of a muffin t i n potent ia l 

taking E • Ер and taking only single center scat ter ing in (2.35). Then 

because 

NtEp) - - f j f k 3 / ( 2 r t ) 3

s Z v / 2 Л 
atom (2.39) 

i t follows in a s t ra ight forward way that 
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Z v - Z v ( E p / ^ ) 3 / 2
+ ZOSp) (2.40) 

We wil l ca l l expression (2.40) the Lloyd p ic ture · Clearly th i s 

deviates from the Friedel picture (2.30) for EL,« -rïL. Prom (2.40) 

we read off, that Z(E£) » 0 and that cLZ(Ep)/dï^ . - Zv / | · E£ 

for ÏL, • E-, hoth r e su l t s which have been derived too Ъу Devillerô 

(1971) from considerations of the KKHZ matrix elements· This should 

he so, because the Lloyd picture and KKRZ both are bas ica l ly derived 

from the same Green's function approach to the nearly free electron 

s t a t e s in a metalé Lee (1968) also found the r e su l t (2.40) from 

heur i s t i c arguments. 

I I . 7 Small energy l imit of r^ (Ep) and of Z(Ep) 

As experimentally found by Devil lers (1971) for very small values of 

E-, ( in practice E_, <.1 E.,) the phase shi f t s obey the rules of general 

sca t te r ing theory i . e . 

lim ^ ( ф = a ^ 2 1 + 1 ) / 2 + ^ЛГ (2.41) 

and t h i s confl icts with the Lloyd p i c t u r e . Because, by inspection of 

(2.41) and (2.27), i t i s clear that Z(0) can only take the values 

Z(0) - 0,2, . . . (2.42) 

So for example the Lloyd picture (2.40) would yield Z(0) » 1 for the 

alkalis and the noble metals. In fact it will turn out in the next 

chapters that always experimentally for Sn,Cu,Ag,Au,Hg the phase shift 

η_0-+ TC and ^-»O for 1 > 1, so Z(E
p
)-»'2,when Ep-^0. 

None the less the Fermi surfaces of these metals can «till be described 
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veil in the APW and KKRZ schemes. 

O.K. Andersen (1972 ) has worked out this idea still further by-

noting that the structure constants in the KKR formalism can be 

calculated very easily if E_ is taken to be zero, thus making a band-

structure calculation very fast computationally. 
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I I . 8 Modified t-matrix 

Devillers et al (1973a) have proposed that a "modified 

t-matrix", rather than the usual t-matrix, be used in Ziman's 

"weak perturbation" expression for the specif ic r e s i s t i v i t y 

of a liquid metal (see app. B). 

In the near future a formal proof of the above proposal 

wi l l be given (Devil lers, 1974i to be published). The basic 

idea i s , thatfora given muffin t in potent ia l and Fermi energy 

Ε-,ι the s -matrix of a single sca t te rer i s completely d e t e r ­

mined and i s independent of the kinematics of the scattered 

electrons· 

Here we will give only the preliminary r e s u l t s . The modified 

t-matrix i s given by 

tOSp, Θ) - Z j M t ^ E p ) Р1(сов θ) (2.43) 

with 
χ 

m W " " ІЕІ eXp ^ Ili S i n Ï1 (2.44) 

A modified expression for the opt ical theorem i s 

Im {t^Ep) } - Λ | ^ (Ep) | 2 (2.45) 
χ 

m 

and for the re la t ion between s-and t-matrix 

Si - 1 - 2 i ^P t (2.46) 
χ 

m 

Putt ing the modified t-matrix (2.43) in the expression 

for the specif ic r e s i s t i v i t y 
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H oc 1 2 Í ( 1 _ соз ) ItOSp, 0 ) | 2 a ( Ô ) < 4 c o s θ) (2.47) 
V P 

where a( θ ) is "the structure factor, and using the well 

known relation 

χ 
V
P 

m-r„ - kp (2.48) 

/ *\4 
a correction factor (m ) to the "lowest" order specific 

resistivity arises. This correction factor was already proposed 

by Devillers et al (1973a) for calculating the specific 

resistivity of liquid mercury in terms of the modified t-matrix. 

There an original overestimation of the specific resistivity 

Ъу a factor of about 2.5 is found to be completely cancelled, 

when the value m - .81 is used (see app.B). 
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I I .9 E-ambiguity; f i r s t order approach to the band structure problem; 
_£ 

conservation of matrix element in first order and its consequences. 

Going ahead with the experimental results, we have found that in 

APW(KKRZ) the Fermi energy E is nearly indeterminate by FS data 
г 

(Devillers 1969, 1971, 1973 (Sn), 1973 (Hg), Coenen 1972, Lee 1968, 

1971, Shaw 1972). 

APW 

If we look at Г in the OFS approximation and restrict our­

selves to first order pseudopotential theory in the NFE model (2.20) 

and (2.12), one immediately sees that on the diagonal 

kp - r
A P W

 (q - 0, a
l f
 Е

р
) - Е

р
 (2.66) 

should hold, while off the diagonal (in the degenerate case) 

r
A P W

 (q., a v E
F
) - ^ (2.67) 

should hold. Here q. are reciprocal lattice vectors, q. £ 2 ^ , 

ι ι F 

i • 1, ... M and с. must be constants independent of E . Further 

as an example let us take the case that there are two different val­

ues q. in (2.67). Then if we take three parameters a., we have three 

equations in three unknowns (see Devillers 1972). This makes E 

indeterminable. In the true APW matrix there is of course E^ and 

F 

k-dependence in (2.66) and (2.67) and moreover second order effects 

may be important. But the above discussion makes it plausible that 

in thatcase also E is weakly determined. 

г 

Assuming (2.66) and (2.67) to be valid one can reach further con­

clusions about the dependence of α (E , R) upon the variables E_ 

1 г F 

and R, as has been done by Devillers (1972). There it is shown that 
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^(2.66) and (2.67) result in α. (Ε-,,Η) being linear functions of 

EL, as is experimentally generally found. 

Further the existence of "focus-points" of O.K. Andersen 

(1971) are shown to arise from (2.66) and (2.67). A focus point 

S, is defined by 

[ ¿ O ^ S p . l O / d E p ] H _ s - 0 (2.68) 

and we define OL (Ε-,,Β.) a a. (S-) . Also from Taylor ser ies 

expansions around S, i t has been proved (Devillers 1972), that 

«iCs^ - {*10 + ^1(1+1) + ^ Û I * 1 0 I ( U I ) J / (1 + 

+ Δ1(1 + O^Q) + {Δ^ 1(1+1)J (2.69) 

and 

o£1 1 - Δ 1 ( 2 π Η Ι ) 2 [ 1 + ^ ( 1 + o t 1 0 ) + ^ { 1(1+1) + 

+ ( 1 + α ΐ ο ) 2 Π (2·Τ0) 

where 

Δ ι Ξ ( s i - R i ) / R i ( 2 · 7 1 ) 

and we have assumed that 

«1 ( V V - α ΐ ο + α ΐ 1 Ь ( 2 · 7 2 ^ 

So for small Δ, we can write 

2 

0^ (Bp.Hj) - 0^ (3
1
) + Δ

1
 (ZJTHj) Ep (2.73) 

which equation holds pre t ty well as a f i r s t approximation in most 

cases we have met. The rad i i S, are expected to lie in the neighbourhood 

of the Wigner-Seitz radius, especial ly in densily packed metals where 

the inscribed sphere of the Wigner Seitz c e l l f i l l s up to Tofo of the 

t o t a l volume. This expectation can be made plausible by looking at the 
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one dimensional case. Then R_ сал Ъе choosen Н^_, so the interstitial 

region has zero volume and ïL, is completely indeterminable and S, = K.«· 

Something of this reflects in the three dimensional case too. In most 

cases S, is close to TL,- (Andersen 1971, Devillers 1972, Shaw et al 1972). 

As is shown in Devillers (1972) in practice one may use both the 

linear approximation to α,, (Ε^,Η) аз well aa the focus point parameters 

in limited ranges of Е_. In larger ranges, say for ÏL,= 0 to ÏL, = EL,, 

both approximations fail. 

If a metal is more anisotropic, more q. in (2,67) should be included 

generally, and thus EL, becomes a less weak parameter. Or to say in terms 

of the focus point picture : the inscribed sphere fills less of the total 

volume, the interstitial region is larger and the WS cell can be described 

worse by a Wigner Seitz sphere. 

,10 Second order approach to the bandstructure problem. 

In second order the diagonal eigenvalue equation in NPE theory becomes 

< :
ψ (

1
)

1
 - у ^ Г - Е р ІУ

( 1 )
>- k p - ^ + î - Σ ( 2 )

-ο (2.74) 

with 

r1)-V¿^ 'V-^ 2 ̂  + *„>] (2.75) 
Si l kP + ^n I - ^ 

and 

Σ
(

2
) .

Γ
 I

 r% I (2.76) 
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(
and where Norm stands for <.\|Λ ' | Y^ ^(in the OFS approximation 

we replace Г ^У f (^,ο^,Ερ). 
τι 

It is interesting to calculate the kinetic energy in second 

order as is done in Devillers (1973), for many times in solid state 

physics one is working with models where the energy dispersion relation 

is approximated by E(k) β к /m 

2 / * 
The kinetic energy E, . = к /m is given by 

« r < \ | Д 1 ) | -V 2 | Xj/O) > Ä < ψ ( 1 ) ι EL, _ Γ \ψ(^> 

- Ер, - P0 + 2 Σ ( 2 ) (2.78) 

(see Merzbacker, chapter 16, page 370) 

From (2.74) and (2.78) i t follows 

\ i n - k F + l ( 2 ) - k F < 1 + A > ( 2 · 7 9 ) 

where we define 

Δ - ( 4 - Ε

Ρ

+ v /4 

so 

(2.80) 

m * . (1 + Δ ) " " 1 (2.81) 

Consistent expressions for other physical quant i t ies , up to 

second order, are 

Vj^ockp/m* (2.82) 

Vpockj, /mT (2.83) 

NÍBp) oc m^kp (2.84) 
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All th i s leads to ra ther simple corrections to f i r s t order NFE 

theory, as for example in the NPE expression for the specif ic 

r e s i s t i v i t y of l iquid metals (Devillers 1973). 

11.11 Re la t iv i s t i c RAPW scheme; spin orb i t coupling. 

When the muffin t i n potential i s so strong that r ô l a t i v i s t i c 

effects (Darwin term, mass velocity, spin-orbi t coupling) become 

important one has to solve the Dirac equations rather than the 

Schroedinger equation (see for example Loucks I965, Loucks 1967). 

The logarithmic der ivat ive then i s replaced Ъу the quant i t ie s 

(Mattheiss I966). 

0^- { (l+ORj [cf/g] _ 1 _ 1 + IRj [ cf/g] 1 J /(21+1) (2.85) 

^ - ( H J [ c f / g ] _ 1 _ r Hj [ c f / g ] 1 + (21+1)}/(21+1) (2.86) 

where cf and g are physically allowed solutions of the rad ia l 

Dirac equations for E - E_. In the non r e l a t i v i s t i c l imi t e.q. the 

l ight velocity c-oo, [ c f / g i ^ ^ - K l ^ E ^ R ) - 1 and 

[cf/g^-O^Ep.R) + 1 + 1 , eoo^-^OSp.R) and / 3 ^ 0 . 

As noted by Mattheiss (I966) r e l a t i v i s t i c effects l ike the 

Darwin term and the mass velocity are diagonal with respect to the 

electron spin and therefore they are included automatically in the 

O-'s, i f these are used as adjustable parameters (see also Devi l lers 

1969). 

Mattheiss (I966) has given an expl ic i t expression for the RAPW 

matrix element (in c .u .) 

< k , + | H-Elk.,+ >-
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atom ι J 

1 

27t|k._É.|R I О 

О 

1 

4-* Z ( 2 U l ) c ^ J 1 ( 2 7 t k H ) J 1 ( 2 r t k H ) P 1 ( u ) 
1 O 

O 1 

jrfl atom 
Σ (21+1) p 1 J 1 ( 2 T r k i H ) J 1 ( 2 n k j H ) p [ ( i i ) 

/ in η + i n \ 
ζ χ у 

. -η + i n - i n 
* у χ ζ (2.87) 

in which гык. . к У к - к . , η о к. χ к . / к . к . and P. i s the derivative 

of Legendre polynomial P- . 

The l a s t term in (2.87) i s purely due to spin orbit coupling. Of 

course 1-0 does not contr ibute, ref lected in (2.87) in that Ρ - 0 . 

As for the higher values of 1 the centrifugal term in the radia l eigen 

value equations i s dominating the potent ia l term, β.. becomes small. 

For instance in white t i n only the 1=1 term has a s igni f icant 

influence on the PS (see app.A). 

I I · 1 2 (R)APW scheme for crys ta l s with more than one atom per primitive 

c e l l . 

The above theory applies for metals with one atom per primitive 

l a t t i c e c e l l . I f there are more ident ica l atoms per primitive c e l l 

t h i s leads in bandstructure theory to the introduction of the well 

known s t ructure factor S. . 

V f f i l e X p ( i ( *i • fy· *n> 
(2.88) 

T¡,are the positions of the Nc atoms in the primitive cell. 

Generally S. . is a complex number, but in those cases where an inversion 
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point in the primitive cell can Ъе defined, we are allowed to take 

that inversionpoint as origin, thus making S. . a real number. Most 

of the more simple crystal structures do have such an inversion 

point. We can obtain the RAPW matrix elementa for these crystals 

just by multiplying (2.87) with S... 

M7-.-*S. .M. . ,_ n
n
4 

13 13 13 (2.89) 

Also if the atoms in the primitive cell are not identical the APW 

formalism may be extented without much effort. But in this work 

we do not explore such crystals, the interested reader is referred 

to the book of Loucks (I967) for the mathematical 

expressions in that case. 
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. COMPUTATIONAL ASPECTS OF APW INTERPOLATION. 

.1 Least squares fit of muffin tin potential parameters 

to experimental points on the FS in the APW scheme. 

-k .-1 

The APW energies E for wavevector к (к in f i r s t 

Bri l louin zone) are given Ъу 

det || M (к,Е,Н, ο^Ε,Η)) || = 0 (3.1) 

where the matrix element is given Ъу (2.12). If we take 

once and for all R = R
T
 and we choose Е-Ер/Ъесаизе the 

experimental data are determined at the Fermi energy) 

then M is only a function of к and oc.. Note that the 

point k, which satisfies (3.1) is a point on the FS, 

because E(k) = E_ Ъу definition. In practice we choose 

some line in к space along whibh we are searching for 

nodes in the determinant. Thus we are finding intersections 

of that line with the FS. If we know «.., we can calculate 

subsequently the points к on the FS. But conversely if we 

know experimentally all points к on the FS we can use ot̂  

as adjustable parameters, without knowledge of the muffin 

tin potential. The question on uniqueness of the a, so 

obtained may be deferred to a later stage. From the arguments 

section II.2 we assume a small numer of <x,, 1P0,1,.... 1 

1' ' ' * max 
to be suff ic ient, say 1 « 2, (Theo, with 1 + 1 ^ 1 έ L 

' ^
7
 max

 ч ι max ^ max 

are fixed on the "empty potential" values «,). 
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'Further instead of taking all points of the PS, we choose a rather 

small set of N representative points k. " on the FS, say N - JO. 

How many of those points should be choosen is a matter of trial and 

error. Then we have a problem of a (l + 1 ) parameter function, 

which must be fitted to N points. A suitable way to do this is fitting 

in a least squares sense. Because the determinant is a non linear 

g 

л. we have to use well chosen values a. 

iterative procedure. 

In the least square procedure we are solving the equation 

(A
T
A )(ΔβΟ = (А

Т
)(де) (3.3) 

with 

g 

function of*, we have to use well chosen values a, as a start for an 

.exp 
4>i " U " îi0*? (3*4) 

Α. 
ι 

j - ( d p i C o ^ ) /ÒOL^S (3.5) 

( Δ α ) . - < -α* (З.б) 
J J J 

where a. is the improved new value of α . and fl. (a, ) is the 

intersection of a line with the FS, corresponding with p. ^ 

on that line. oc. can be used as a., in (3.5) and (3.3) in a 

next iterative step. We iterate the procedure until the root 

mean square 
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has converged to w i t h i n p r e s e t l i m i t s . Mostly a few i t e r a t i o n s 

a r e s u f f i c i e n t . 

Acc identa l ly a degeneration of energy l e v e l s i s not removed 

Ъу t h e p e r t u r b i n g p o t e n t i a l . Then the determinant has a " p a r a b o l i c 

z e r o " , i n s t e a d of a node, as a funct ion of k . 

We have made our computer progranune so t h a t such double nodes 

are d e t e c t e d as p o i n t s of t h e FS t o o . Those are i n t e r e s t i n g p o i n t s 

because t h e r e , i n к space,magnetic breakdown occurs i n de Haas van 

Alphen exper iments . 

I I I . 2 Convergence a s p e c t s ; s i z e of the de terminant ; LBWdin procedure . 

In p r a c t i c e we have t o l i m i t ourse lves to a f i n i t e number of 

r e c i p r o c a l v e c t o r s as wel l as to t r u n c a t e t h e i n f i n i t e 

1-summation a t L ( s e e s e c t i o n I I . 2 ) . To determine numerical 
max4 ; 

convergence we wil l use two c r i t e r i a 

1) ( Δ О) should not change more than some tolerance, say 

КГ"* c.u. 

2) The parameters must stay stable against enlarging the number 

of K-vectors. 

In pract ice L » 6 suffices and the number of K-vectors i s 
* max 

about 100. 

As the numerical evaluation of a determinant of rank M involves 

a number of multiplications proportional to M , working with M •* 100 

would consume an intolerable amount of computer time. Therefore we use a 
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theory of Price (1950) and Löwdin (1950 which anábles us 

to work with much smaller ranks without loss of accuracy. 

The trick is to divide the zeroth order eigenvalues 

¡Ïc+Kjl into two groups Ik + К. 1 ¿E,, and Е ^ I k + ^І ^ Eg 

and to ignore "interactions" between states of the second group. 

Then the APW matrix takes the form 

M * * - (3.8) 

В 

with В a diagonal matrix and always det В / 0 for the eigenvalue 

E • E,, (E
p
<E

1
). Now for calculating det || M || one first 

•Isweeps" the matrix elements of AL, thus folding in group A^ 

matrix elements into matrix A, and then solves the determinant 

of A exactly. The values of E.. and Eg
 a r e

 determined by trial 

and error such that the above criteria are satisfied. Mostly 

the size of A is about 10 to 20, which leads to the saving of 

a large amount of computertime. 

Another time consuming point in the calculations involves the 

spherical Bessel functions and Legendre polynomials occuring in 

the APW matrix elements. 
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W.e tabulated these functions in the beginning of the program, 

mostly at a mesh of .01 in the arguments. We used linear 

interpolation of the tabulated values. 

III.3 Ambiguity in the sign of Fourier transforms in first order 

perturbation theory. 

In first order local pseudo potential theory one is dealing 

with an ambiguity in the Fourier transforms of the pseudo 

potential. This can be demonstrated in the simple case of a two 

fold degenerate zeroth order energy eigen value E = (к) • 

I к + КІ . This energy level is split up by the pseudo potential 

in E
+
 - E

o
 + jV^j where V^ is the Fourier transform. So if we 

know experimentally the energy levels E and E we can fit only 

the absolute value of V^. In section II.4 we pointed to the 

nAPW 
similarity between Ι (ς^, ο^,Ερ) and V . If we were fitting 

APW
 n 

Π to first order in the above case we would find two local 

minima of (AP)Tmg defined on parameterspace, both nearly 

equally low. 

A more complicated example is handled by Devillers et al (1973), 

(see appendix B) who report an APW fit to the FS of solid mercury. 

The most important V are V
1 0 0

 and V ^
 f
 leading to four local 

minima in (Д^)
гт
а· But by taking into account non locality (as is inhe­

rent to the APW scheme) and second order effects, and by using 

accurate FS data an unambigous form factor for mercuiy was arrived at. 
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The 0£,(Ep,R) resulting from rather accurate аЪ initio muffin 

tin potentials may help to point to the right solution also. 

We note, that the above alternative solutions are approximately 

symmetrical with respect to the free electron (i.e. V — • О) сазе. 

This may cause trouble in the APW scheme too, because the computer 

program is "feeling" all alternatives simultanously and it starts 

to approach one of the local minima on rather spurious "indications". 

III.4 Least squares fit in the relativistic APW-scheme. 

Making our calculations relativistic aggravates the numerical 

problems considerably at first sight because 

a. each non relativistic matrix element is replaced now by a 2x2 

matrix (eq.2.87) thus doubling the size of the determinant, 

which makes the computation time about 2 times longer. 

b. all matrix elements become complex numbers now, which makes a 

factor 4 in multiplications and divisions 

c. each node in the constant E search becomes a "parabolic zero" 

Fortunately we can eliminate the disadvantages of a and с by making 

nRAPW 
use of the hermitian character of Г and of the special features 

of the spin orbit matrix (Loucks I967). The hermiticity quite 

generally assures us that after we have 'bwept" two rows and columns in 

the computional procedure of the determinant, the remaining 

" sub-determinant" matrix is hermitian again. 
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The 2x2 m a t r i x P ? ^ has the form (2.8?) 

П++ n + - l 
1 i j ' i j RAPW 

1 J l . , , + _ . * / n + + 4 * 
Γ 

AJ ;-(гі-г (i-r/ 
(3.8) 

so we only have to calculate Г. . andf\ . at each step in the 

"sweep" procedure, thus gaining back the 2 factor in computer 

time. Further we note that a l l П . . " are zero and th i s remains 

ao a f ter thejweep procedure has been completed. 

So,as the two roots (spin + an -) of the determinant always 

nRAPW coincide, we can find those roots by bringingr into the 

t r iangular form Ρ and then taking the product ГГнеГ. instead 

I I I . 5 Least squares f i t to dHvA data. 

Quite analogously to section I I I . 1 one can determine the APW 

parameters by f i t t i n g on de Haas van Alphen (dHvA) extremal cross 

sect ional areas instead of on c a l i p e r s . Then we have to replace ρby 

S in eçpiations (3 .3) , (3.4) and (3.5) Of course area f i t t i n g 

consumes considerably more computertime than caliper f i t t i n g . 
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IV. RESULTS 

IV.1 White tin. 

As a severe test for the muffin tin model we judged the 

PS of white tin to he a good test case. Its PS was well 

established experimentally by the work of Stafleu et al (1967), 

Craven et al (I968) and Matthey et al (1971, 1973). 

Especially the RP size effect measurements of Matthey were 

very inviting, for several reasons. First they held the obvious 

advantage of delivering a lot of к points on the PS, which 

saves computertime by orders of magnitude compared with dHvA 

fitting. Second they were claimed to be very accurate. Third 

that part of the RPSE measurements which could hardly be 

interpreted directly, for example because they were arising 

from non central orbits, from cut-offs in к space or from 

breaks, hopefully could be assigned in the RAPW calculated 

projections of the PS. 

The results of our calculations have been reported in 

Devillers et al (I969, 1973). The latter paper has been 

included in this thesis as appendix A. The reader is asked 

to study this appendix at this point. 

Here we only will make some general remarks. 

The selection of the к points on which we will fit the 

logartihmic derivatives is based on several criterifl: 

a. the interpretation of the experiment should be as unambiguous 

as possible 
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b. the experimental error should be small; on the 14 selected 

points the mean absolute error is »0 03 c.u. 

c. The points should be spread over the FS more or less uniformly. 

This provides maximum assurance that there are enough independent 

equations in the least squares procedure to enable a stable fit to 

be made. 

d. enough points should be selected, which are as much as possible 

sensitive to the crystal potential, i.e. points which are degenerate 

in the PE model and are split up by the crystal potential» 

On the basis of the above points we have selected 14 points on the PS. 

Prom table 2 of app. A we see that with as few as four a,̂  we 

easily can fit to within the experimental error. The discussion of the 

apparent EL, ambiguity is postponed to the next chapter. 

To check further how RAPW works as an interpolation scheme we have 

calculated another selected group of about 60 k-points (or better its 

projection) spread over the whole PS and compared them with the 

experimental values (table 4 of app.A). The agreement is excellent : 

mean absolute deviation .002 c.u. and a largest absolute deviation 

.010 c.u. The latter result in turn confirms our initial selection of 

14 points to be sufficient. 

Further the projection of the FS to three symmetry planes (100), (110) 

and (001) have been calculated (section 3 and figures 3-11 of app. A). 

Nearly all the RPSE measurements of Matthey et al (1971) could be placed 

in those projection figures, where the work of Matthey (thesis, I969) and 

of Matthey et al (1973) of course was extremely helpful for the inter­

pretation. 
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All details are found in section 3 and figures 3-11 of app.A. 

At this point we only wish to draw the attention to a few of the 

details to illustrate the high quality of the RAPW interpolation 

scheme : ? 

a. the curve 9*10 in fig»7 is the projection of the fourth zone 

"neck" on (001) ; this opening does not exist in the free electron 

model. Thus this opening is very sensitive to the crystal potential. 

We note a splfendid agreement between the RAPW calculated curve and 

the RPSE resonance c21 (see also table 4)· 

b. a piece of the PS, which does not exist in the free electron zone, 

is the sixth zone around W. As the projection on (lG0)(fig 11a) 

and on (110) (fig 11b)have no inversion centre one has to interpret 

the RPSE measurements via a "tangential construction" (see section 

3 of app. A). Doing so we note an agreement to within a few thousands 

of к between the RAPW curves and the experimental calipers. 

Further fig.11a shows the existence of two extremal cross sections, 

differing by a few per cent (table 5 of app.A). This is nicely 

confirmed experimentally (footnote ê  at table 5)· 

c. special cut off points like 7' in fig. 8 and 13' in fig. 9 may arise, 

when two projection curves merge, and give rise to the resonances 

аЗТ, a38 and Ъб. 7'and 13' again are very "potential sensitive" and 

although they are not fitted directly, the RAPW values agree to 

within .001 к with experiment (see table 4 of app.A). 
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d. as an example of non central o r b i t s , which are not interpretable 

without the calculated projection curves we mention ЪІЗ in f ig.9· 

The experiments confirm exactly our calculations (see also table 4 

of app.A) 

We have to compare also with other available information on the 

geometry of the FS l i k e dHvA data ( table 5 of app.A). The agreement 

i s not quite sat is fying, because the main re la t ive deviation of 1.5^ 

with especially the measurements of Craven et al (1968), who claims 

an experimental error of 1^, i s s l i ght ly outside th is experimental 

e r r o r . In the discussion of section 4 of App.A some possible sources 

of the discrepancies are suggested. 

In conclusion we may say that the RAPW scheme indeed i s very well 

suited for interpolat ion of the FS data on white t i n . 

IV2. The noble metals. 

As a second t e s t for FS parametrization with muffin t i n parameters 

we have choosen the noble metals (Coenen et al 1972). For two reasons 

they are i n t e r e s t i n g in t h i s respect. 

a. The FS consisrt of one multiple connected single zone. dHvA data of 

a very high precision are available, such that FS rad i i have been 

determined to within a few times 10 c.u. 

b , for the noble metals i t i s well established that there i s a narrow 

d-band in the s conduction band. This makes a local pseudo potentia l 

f i t inadequate whereas APW,KKR,KKRZ give full a t tent ion in a natural 

way to the 1-dependence of the pseudo p o t e n t i a l . 
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From the work on PS parametrization we mention : Lee (1969)1 

who performed an APW analysis for Cu; Coenen et al (1972), who 

made a KKRZ interpolation and Shaw et al (1972) who used KKR. 

In general their findings agree very closely. Рог the sake of 

clearness we will restrict ourselves to a discussion of the work 

of Coenen only. 

The first remark is that although the PS is known better than 

that of white tin by almost a factor of ten the quality of the fit 

is again to within experimental inaccuracy. 

Second the parameter E_, is even less well determined than in 

the case of white tin ; Coenen has investigated the quality of 

fit for the range .01 cu. <E-¡1<. 80 cu. (EL« . 61 cu.) and 

he has not found serious loss of quality. 

Third, mostly the influence of the non constant part of the 

crystal potential in the interstitial region is judged to be 

negligible. But keeping in mind the accuracy with which the FS 

has been describes (order 10~ c.u.) Coenen thought it useful 

to investigate this numerically. To obtain some reasonable values 

for &V11i and AVpQfs he Fourier analys ed a smoothly extrapolated 

ab initio muffin tin potential of Christensen (I969). The Д -̂ ob­

tained can be included in the KKRZ (or APW) formalism easily by the 

analysis of Beleznay and Lawrence (I968). Coenen found the ΔΥ-. so 

computed to be of negligible importance as to the quality of 

fit and as to the Friedelsum, but not as to the phase shifts. These 

latter phenomena can be understood from our analysis of the E-

ambiguity. Eq. (2.66) and (2.67) now read 
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Κ ^ , τ - η S ir ^ τ? (4.1) 

r i n z ( q i i ^ » V + Д СЧІ) - e i i-1,2 (4.2) 

so we have three new equations in the new phase shifts íj, and 

this is equally well solved, albeit that ûV(q.) / 0 will yield 

¡̂ 1 instead of t̂ ,. As the diagonal eq. (4*1·) is unaltered and 

as 

pKKKBZ/ n и
 _, Ν _ 2^o (q-0, >2

1
,E

p
) * - ̂ Ç ΖζΒρ)/ Z

v
 for Ep^E^ 

(see De vi Here, 1971) eq.(4.1) Cells us that the Friedel sum will 

not be influenced by including AV(q.)· This remains nearly true 

also if we were to replace (4.1) by the second order diagonal equa­

tion (compare with (2.74)). 

IV.3 Mercuiy. 

The place of solid and liquid mercury in band structure theory is 

a very peculiar one. In the last ten years a steady stream of 

publications has appeared reflecting many efforts to resolve the 

extravagant physical properties of mercury. 

First of course there is the problem that it is a liquid metal 

at room temperature. This raises a lot of difficulties in preparing 

single crystals to do dHvA and other Permi surface investigations, 

and thus this is the reason, why experimentalists only the last six 
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years have done extensive experiments on it. We mention dHvA 

experiments of Brandt and Rayne (I966), magneto resistance 

measurements of Dishman and Hayne (1968), magneto accoustic 

measurements of Bogle, Coon and Grenier (I969)· These authors 

also performed local pseudo potential fits, resulting in 

V(tL.)f which were in poor quantitative agreement with each 

other; as they, were also in poor agreement with ah initio 

model potential calculations of Animalu and Heine (I965)· 

But the results agreed with each other in that the PS of 

Hg is free electron like. Ήιβ free electron model consist 

of a multiply connected first zone hole piece, "centered" 

around (111) and (110) BZ faces and a second zone electron 

lens, centered in L. As the free electron spheres touches the 

(IH) and (HO) BZ faces very nearly, the pseudo potential 

easily produces openings around Τ and X (see fig. 1 of app.B 

for the location of these symmrtry points in the BZ). 

Second, despite the experimental evidence for a nearly 

free electron like PS, the above mentioned pseudo potential form 

factors yielded large discrepancies between the experimental 

value of the specific resistivity of liquid mercury at room 

temperature and the values, calculated with Zimanfc weak perturbation 

expression for this quantity 

Я с с / a(q) f V(q) | 2 q 3 dq (4.3.) 
S о 
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Where a(q) is the structure factor, i.e. the Fourier transform of 

the pair distribution function of the scattering centers. 

Experimentally a(q) may Ъе determined accurately from neutron 

scattering or X-ray scattering experiments. As the integrand 

contains a factor q and as a(q) is peaked near q - 2k_, the 

value of Rs is strongly dominated by the value of V(q) for 

.6 <q/^kn ̂ 1· This is the region, where also the lowest q
n 

for solid mercuiy are lying. All the above pseudo potentials 

yielded an underestimation of the anomalously high value 

R ^
5
 a $6 yuQcm, for example by a factor of three for the 

Animalu-Heine - modelpotential. This has been worrying a lot 

of people for years. 

Third, experimentally the specific resistivity of the liquid 

metal drops fast when it is alloyed with many other metals. 

This is an anomalous phenomenon compared with most other metals, 

where the specific resistivity grows under alloying usually. 

The latter is made plausible by reasoning that the disorder of the 

medium is augmented by the foreign¿uest atoms. Mott (see his recent 

review article, 1972) tried to explain this anomaly of mercury ,by 

assuming a pseudo gap in the density of states of liquid mercury, 

This pseudo gap arises in his theory, when the mean free path of the 

conduction electrons becomes about the mean atom distance. A pseudo 

gap of about [̂ (Ер,) / N (E-,) J - ·5 would explain the anomalous 

resistivity drop, assuming that the pseudo gap fills up quickly on 

alloying. Later on he with drew this explanation, because of Edwards 

cancellation theorem (Edwards I962), which states that every 

N(E_)/N(E_
I
) / 1 cancels in the expression for R . 
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Fourth, experimentally the Hall coefficient is very nearly 

free electron like (R„«(nec)~ ) 

Fifth, another physical quantity, the volume derivative 

of the specific resistivity at the melting point is anomalously 

high experimentally. 

Sixth, from the RAPW calculation of Keeton and Loucks a 5d -

band appeared, lying in the conduction hand. 

To explain the above experimental points a peculiar form factor 

was suggested by Evans, Greenwood, Lloyd and Ziman (I969) and 

Evans (1970) (see fig. 2 of app.B). Indeed the above points two 

and three can be explained with it. But not the fifth and sixth 

point (see app.B). For as to the latter point it may be argued from 

scattering theory, that the d-band is a "resonant state" band. This 

means that the 1-2 shift behaves like 

(see fig. 1) 

E - E 
res 

fe 

31т 

2jr 

уГ 

- И ! 

(4.4) 

Fig.1 η.as a function of energy for a resonant 

s t a t e band 
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So ^OÍEH) i8 expected to Ъе rather large negative, where as <2i 

of Evans is rather large positive (~.2rad). Moreover this 

positive value of îp conflicts with the results of phase shifts 

fitting of Lee (I969), Coenen et al ( 1972) and Shaw et al (1972) 

on the PS of the noble metals, where it was always found rç^ 

to be negative which in turn is consistent with a large number 

of аЪ initio band structure calculations on those metals, where 

a d-band resonance in the s-p band was found. 

The latter considerations especially motivated us to use our APW 

interpolation scheme for the accurate dHvA measurements of 

Poulsen et al (1971) in order to investigate which set of phase 

shifts would be most consistent with PS data, (we are grateful 

to Prof. W.H. Young, who initially drew our attention to the 

"mercury problem"). The results have been reported by Devillers 

et al (1973a) and by Devillers et al ( 1973Ъ), these papers being 

included as appendices В and С respectively. App.В reports the 

investigation of the various local minima in the rms deviation 

in dHvA fitting. In particularly it turns out that the Evans 

version of the form factor is unlikely mainly because it does 

not yield any"« -arms" in the X BZ-face, a point which was also 

mentioned by Jones and Datars (1971)· By the arguments listed 

in app.B it turns out that the previous Animalu-Heine shape is 

the correct one, albeit that our form factor is much stronger 

in the backward scattering region. This results now in an 

overestimation of the experimental value of the specific 

resistivity (compare with the above point two). This problem 
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has been resolved too i n app.B, where we i n t r o d u c e a s e c o n d 

order co r rec t ion f a c t o r m . We der ived an expres s ion f o r t h i s 

q u a n t i t y by adopt ing ideas of Edwards (1962) . There a c o m p l i c a t e d 

express ion for 2. in the l i q u i d i s given, t h e c a l c u l a t i o n o f 

which needs t h e eva lua t ion of t h e p r i n c i p a l p a r t of an i n t e g r a l 

with a s i n g u l a r i t y i n i t s i n t e g r a n d . In our ca se we can c i r c u m v e n t 

(2Ì 
t h i s numerical problem by e l i m i n a t i n g Σ ' v i a e q . 2 - 8 o f a p p . B , 

which axe taken as t h e analogy of eq. (2.74) - ( 2 . 8 1 ) . As i s 

nAPW 
di scussed in app.C due t o our f i t p r o c e d u r e " i s a c c u r a t e t o a l l 

o r d e r s , so assuming t h i r d and h igher orders may be n e g l e c t e d , Σ 

2 
i s exact ly given by eq. ( 2 . 7 4 ) . At given k_ and ÏL,, P . i s e a s i l y 

evaluated v ia eq ( 2 . 2 0 ) . From t a b l e 2 of app.B we n o t e t h a t , f o r 

E ^ j E ^ m * - . 8 1 . From eq. (2 .84) i t follows then N Í ^ / N Í I C ) = . 8 1 , 

or a pseudo gap i n t h e dens i ty of s t a t e s in t h e s e n s e o f Mot t ( s e e 

d i s c u s s i o n po in t t h r e e of t h i s s e c t i o n ) . Very r e c e n t l y C o t t i e t a l 

(197З) have found experimental evidence for such a p s e u d o g a p from 

photo emmission exper iments . From t h e i r f i gures we e s t i m a t e 

N Í Í L J / N Í E L , ) *» .8 for both s o l i d and l i q u i d mercury, which r e s u l t p r o v i d e s 

another s t rong suppor t for our form f a c t o r . 

As to the i n t e r p o l a t e d Fermi sur face we n o t e some a s y m m e t r i e s , 

which have not been recognized e a r l i e r ( f i g . 2 of a p p . C ) . 

Indeed there i s some experimental evidence for t h e s e a s y m m e t r i e s 

( s ee app.C) 

In conclusion we may say , t h a t t h e r e s u l t s on mercury form a t h i r d 

example of how very well the muffin t i n model works f o r m e t a l s and 

of what kind of u se fu l a p p l i c a t i o n s of the o b t a i n e d p a r a m e t e r s t h e r e 

a r e . 
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IV· 4 Experimental behaviour of α , ̂  and Ζ as a function of E_. 

In all former cases (Sn, Cu, Ag, Au, Hg) the logarithmic 

derivatives show nearly linear behaviour as discussed in 

section II.9i eve" in the low EL region. 

Also in all cases the low EL, behaviour of the phase shifts 

is similar to the low energy behaviour eq. (2.41) for a 

constant potential. However the limit ^(EL,)-* 0 mod.It does 

not mean lim α·.. (E) · 06.. (E-O) as will be shown. The limit 

value 

00,(0,11) - lim ».(Ε-,,Η) (4.5) 

^ Е р -
0 

can be computed if the coefficients in (2.41) are known. 

For example in white tin the "scattering lenght" a • .300 

о 
+ .00 3 c.u. (Devillers et al 1971). 

Then, with R • .259 c .u . , we obtain easily via a Taylor 
t t 

a e r i e s expansion of j - , n 1 , j . , n̂ ^ and tg ηΛ in (2.21) 

oc ( 0 f Ä ) « _ f b — - -7 .3 + .5 ( 4 # 6 ) 
R - a о 

which must be in agreement with the graphically extrapolated 

value (Devillers et a l , 197ΐ)α (0,R) - -6.0 + 1. 

Eq. (4.6) also examplifies a weak point of the muffin 

t i n model, i . e . i f R i s choosen tooclose to a then α _». + oo, 
' о о — ' 

r e f l e c t i n g a node in the 1 • 0 wave function for R • a . 
о 

This makes the APW (KKRZ) no longer manageable numerically. 
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One should always choose R such that one is avoiding that 

kind of accidental singularity , or one should choose a 

slightly modified APW scheme. Concerning the Friedelsum 

for the above metals we always found Ζ (ÜLJÄO and 

Ζ (rr HL,) s» Ζ . This seems to be in agreement with the Friedel 

picture (see section 11,5)· But we can also compare with the 

Lloyd picture (section II.6). In fig. 2 we have plotted Z(îL,) 

/ Ζ as a function of (Ε_/Ε_) ' . And from the near linear 

behaviour of Z(Ep)/z in a large region of the argument, it 

is suggested that the Lloyd picture is the more correct one. 

The low EL behaviour is of course dictated by the small energy 

behaviour of JK . 

As to the linear parts of the Friedel sum versus IL in fig.2 

it seems to be possible to improve upon the Lloyd picture in a 

simple way by taking into account the effect of orthogonalization 

on the core states. This leads to a "depletion hole" of 

charge d,Z (see for example Cohen and Heine 1970)· Then the 

electron density in the interstitial region (and fictively in the 

whole volume) corresponds to (l+d.)Z valence electrons/atom. 

So in our opinion an improvement upon the Lloyd picture is 

г
 0

 3/2 η 

zOSp)/ z
v
 - (1 + d^Ll - ( V V -1 (4.7) 

From fig.2 we estimate for EL
1
>-r EL, : d, ж .11 +_ .02 for 

white tin and d, • . 20 +_ .05 Hg, which values are in agreement 
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Pig.2. Experimental behaviour of the Friedel sum as a 

function of (Ep/E^)^ for white tin, copper and 

marcury. The data have been taken from Devillers 

et al (1972) for white tin, from Coenen et al (1072) 

for copper and from Devillers et al (1973a) for 

mercury respectively. 
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with model potential calculated values of Cohen and Heine 

(1970) : dh « .08 + .01 for white tin and c^ = .26 + .02 

for Hg respectively. To give a more accurate description 

of the experimental Friedel sum there is need for further 

theoretical refinements. Also it would he interesting to 

investigate more metals in the above way. 
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?. SOME APPLICATIONS OF EXPERIMENTAL FS DETERMINED MUFFIN 

TIN PARAMETERS. 

If the experimental muffin tin parameters were to have 

physical significance, other than that they can be used 

for an accurate description of FS data, ideally they should 

be able to describe too other physical phenemona, like the 

electron-phonon interaction (Lee, 1972; Allen, 1972)
г 

bandstructure and FS of compounds, compressibility of the 

metal and specific resistivity of the liquid metal. 

We have met a very interesting test case : the specific 

resistivity of liquid mercury (section IV.3 and app.B). 

That the resulting specific resistivity agrees to within a 

few per cent with the experimental one provides at the same 

time very strong evidence for the following statements 

a. The OFS approximation (2.19) is a very accurate one to the 

atomic form factor of mercury : in the backward scattering 

region, because this determines almost completely the 

specific resistivity (eq.4»3) and also in the forward 

scattering tegion, for the second order correction factor 

m* ((2.80) and (2.81)) depends totally on Γ^ίΟ,Ερ). For 

example,an error of 0.1 c.u. inr^ (0,E_) means an error 

of 10/ί in the m corrected value of the specific 

resistivity. 
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b. the nearly free electron expression for the specific 

resistivity of liquid metals apparently holds too for 

cases, where second order effects are significant 

provided the latter are accounted for by a simple mul­

tiplication factor. 

c, the anomalously high value of the specific resistivity 

of liquid mercury is mainly caused by the rather strong 

d character of the form factor. 

Another physical quantity which can be calculated from the atomic 

form factor is the volume derivative of the specific resistivity. 

This has been done for the case of liquid mercury (app.B), which 

has an anomalously high value for that quantity. Because m drops 

out, the good agreement with the experimental value may be 

especially convincing those who might have looked upon our (m ) 

correction to the specific resistivity with some scepticism. 

A further application of the muffin tin parameters is that they 

can be used to test ab initio calculated crystal potentials : 

instead of calculating the PS and of subsequent comparing with 

experimental data it now suffices to compare the ab initio 

calculated logarithmic derivatives or phase shifts with the 

fitted ones, as for example Ament et al (1973) has done recently 

for the case of white tin, and as Meyer et al (1973) has done for 

white tin, the noble metals, mercury and the alkali metals. 
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VI. CONCLUSIONS AND SUGGESTIONS POR FUETHER RESEARCH. 

In this work we hope we have been able to demonstrate 

that the muffin tin parameters are extremely useful in 

interpolating geometrical Fermi surface data. We have exemplified 

this for the metals white tin, the noble metals and mercury. 

In every case the quality of fit is to within experimental 

accuracy. Especially for the noble metal this means that the 

quality of fit is to within a few times 10 c.u. An apparently 

strong EL, ambiguity is quite well understood now. 

An analysis from a different view is given by Heine et al 1971· 

It is also shown that the APW interpolation scheme can resolve 

a lot of fine details of the Fermi surfaces and that it is a 

powerful instrument to facilitate the interpretation of dFvA, 

RFSE, magneto accoustic, cyclotron resonance and other Fermi 

surface related physical properties. 

It is also shown that the OFS approximation is a very reliable 

one. The relation between the APW scheme and the more familiar 

local pseudo potential theory is much clarified. Also the 

relations between Block theory of crystalline metals and 

scattering theory of (disordered) densily packed scattering 

potentials have been clarified considerably. Further it has 

been shown that the parameters obtained can be used very 

successfully in the computation of physical properties like 

specific resistivity {ana its volume derivative) of liquid 

metals. 

Suggestions for further research, arising from the work, may 

be listed in the following way 
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a. more precise dHvA and / or RPSE measurements to test 

a lot of PAPW predictions on white tin, 

b. the same as in a as to the predicted asymmetries in 

the Fermi surface of fnercury, 

c. a more theoretical foundation of our (m ) correction 

to the specific resistivity òf liquid metals in Ziman's 

weak perturbation theory, 

d. testing the APW scheme on the Fermi surfaces of metal 

compounds might give indications on charge transfer, 

e. a theoretical improvement upon the Lloyd picture up to 

second order. 
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LIST OF ABBREVIATIONS 

L.C.A.O. 

KKR 

KKRZ 

APW 

RAPW 

OPW 

OFS 

h 
E ; 

FS 

a.u. 

c u . 

NFE 

R I 

«WS 

RFSE 

dHvA 

JF 

'4 

Linear combinat ion o f a t o n i c o r b i t a l s 

band s t r u c t u r e scheme, developed by Korringa, and by 

Kohn and Ro s t оке r 

KKR brought i n k - r e p r e s e n t a t i o n by Ziman 

augmented p l a n e wave 

r e l a t i v i s t i с augmented p lane wave method 

o r t h o g o n a l i s e d p l a n e wave 

on Fermi s p h e r e approximation 

Fermi e n e r g y w i t h r e s p e c t to muffin t in zero 

Fermi e n e r g y f o r f r e e e l e c t r o n gas 

Fermi s u r f a c e 

atomic u n i t s 

c r y s t a l u n i t s 

nearly f r e e e l e c t r o n 

radius o f i n s c r i b e d sphere 

radius o f W i g n e r - S e i t z sphere 

radio f requency s i z e e f f e c t 

de Haas—van Alphen e f f e c t 
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APPENDIX A . 

The Fermi surface of white t i n from a RAPW i n t e r p o l a t i o n . 

( reprinted from Physica Status S o l i d i В, 1974) 
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THE FERMI SURFACE OF WHITE TIN FROM A RAPW INTERPOLATION 

COMPARED WITH EXPERIMENT 

M.A.C. Devillers, M.M.M.P. Matthey and A.R. de Vroomen 

Fysisch Laboratorium, Katholieke Universiteit, Nijmegen, 

The Netherlands 

ABSTRACT 

From extensive calculations we will 

show, that the relativistic APW method, 

used as an interpolation scheme, can 

describe the Fermi surface of white tin 

consistent in detail with all available 

experimental data. At the same time we 

will use this model of the Fermi surface 

of white tin to confirm and to complete 

the interpretation of radio frequency 

size effect measurements as presented 

in the preceeding paper. 
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Durch ausführliche Hechnungen zeigen wir, dass die 

relativistische APW Methode als Interpolationsschema die 

Fermi fläche von Weissem Zinn beschreiben kann, und 

zwar auf eine bis ins Detail mit den vorhandenen experi­

mentellen Daten konsistente V/eise. Zugleich werden wir 

dieses Modell der Permi fläche gebrauchen, um die 

Interpretation der IÏFSE Messungen zu bestätigen und zu 

vervollständigen wie das im vorhergehenden Artikel ge­

schehen ist. 
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1, Introduction. 

The purpose of this paper is to investigate the 

usefulness of the relativistic APW scheme as an inter­

polation scheme for geometrical data on the Fermi surface 

(PS) of a polyvalent metal as well as to help complete 

the global interpretation of the radio frequency size 

effect (RPSE) measurements on white tin of Matthey et 

al Li]. In a previous letter 1.2] we already introduced 

the method and we presented the preliminary results of 

our calculations. In this paper we will discuss the 

method in more detail and we will present an extensive 

comparison of the calculations with RPSE and de Haas-

van Alphen (dHvA) data L3,4,5] as well as with the results 

of previous plane wave calculations L4,6J. It turns out 

that the APV/ scheme is most suitable for interpolation 

purposes; the few remaining discrepancies between 

calculation and experimental data are felt to be due 

more to experimental errors rather than to inadequacies 

of the APW scheme. 

The starting point for our calculations is the 

APW determinantal equation for the - one electron -

energy eigen values of electrons in a perfect metallic 

crystal. The relativistic APW matrix elements (RAPW) 

have the form L7,8J: 
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<Tcif + |H-E |Ê , +> = 

I R ) ƒ ι o 

IR У l O 1 

,.^^3 i - (2ттік - к . 
(g f -Eje - Ì5SÌ (Й ff -E) Д 1 І '^J 

1 J ч а г J 2 n | k . - k . 

R / 1 0 ' 
+ , τ ^ — Σ (21+1)a 1 J 1 (2nk i H)J 1 (2nk.R)P 1 (u) Sy 

at 1 J \ 0 1 

•o ~ f ^-r, n + i n 

+ τ τ Π — Σ ß 1 J 1 ( 2 T T k i R
) ; j l ( 2 n k j R ) P i ( u ) Sij 

at 1 \ - η γ + ί η χ - i n z 

in which u = 1c. .k./k.k., η = к.xk./k.k. , 

S.. is the structure factor and 

Tc. , E, ̂
a
+» R» J-,» Рл» P^ have their usual meaning. 

The information of the muffin tin potential is contained 

in the dimensionless ct and β-. , which are constants for 

a Fermi surface 

α
ι
 = L(1+1)R Í cf/g 3 ^ ^ + IR { cf/g ) 1 _J / (21+1) ( 

ß 1 = R t cf/g 3 ^ ^ - R { cf/g i^ + (21+1) ( 
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where cf ала g are physically allowed solutions of the 

radial Dirac equations taken for г = R, R being the 

muffin tin radius, and the energy E = Ер, the Fermi 

energy relative to the muffin tin zero. In the non-

relativistic case Ρ л-* о and α.. = Ru-î/u-, , where 

u-í (Η,Ερί/νι,ίΗ,Ερ) is the logarithmic derivative of the 

1-dependent solution to the Schrödinger equation, 

evaluated for r = R and E = Ep. A non-zero ß, is caused 

solely by spin-orbit coupling. We note that some 

relativistic effects like the Darwin term and the mass-

velocity term, which may have larger effects on the PS 

than spin-orbit coupling ÌQÌ, are diagonal with respect 

to the electron spin and are therefore included auto­

matically in the ^ ' s , if these are used as adjustable 

parameters. 

It is instructive to calculate the - reduced -

scattering phase shifts η,(Ep) of the muffin tin poten­

tial and the Priedel sum Ζρ(Ερ) from OL, (E
p
,R) using the 

well-known relations 

¿g^Ep) = { xJi(x)-a1(Ep,R)J1(x) } / { xn^(x)-a1(EF,R)n1(x) 

and 

Zp(Ep) = | Σ (21+1 ̂ (Ep) 
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with χ = 2TTRE
F
*. TO give η,ζΕρ) its usual physical 

meaning it is assumed that the relativistic effects in 

α (E
p
,R) are not too large. 

Throughout this paper we will use as units the 

"crystal units" (c.u.) as introduced in [9»10]. Taking 

for the crystallographic constant a = 5.812 Â and 

a/c = 1.841 at 40K [ill the conversion factor for energy 

to R is .3284 R per c.u.; the length ТЪ is the unit 

in reciprocal space. 

2. Calculation. 

The parameters ̂ (short for α^Ερ,Η)), 1 = 0,1,2 

and 3f are calculated with the use of a constant E 

search Ъу fitting them to fourteen selected points of 

the FS (Pig. 1
t
 Table 1). These points are experimental­

ly well determined by RPSE measurements as reported in 

the preceeding paper LlJ. As the relationship between 

the co-ordinates of the points on the PS and the a. is а 

non-linear one the fit requires ал iteration procedure. 

To start the iteration one may use for the values of a. 

and E
p
 the "empty potential" values or some "rough" 

values from ab initio bandstructure calculations or 

preferably those determined from experimental or theore­

tical values of local form factors of the pseudo 

potential. The "empty potential" values are taken for 
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Pig· 1. Cross section of the FS with f owe symmetry-

planes from our RAPW calculation (solid lines) 

and from Craven's pseudo potential calculation 

(small dots). The Point 12» is the projection 

of point 12 on the ЬГН plane (see Table 1 

and 3). 
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Table 1. 

Comparison between RAPW fitted, plane wave calculated 

and experimental semi calipers. 

Zone 

3,1 < 

3,2 ( 

3,3 I 

3,4 1 

4,5 ( 

4,7 1 

4,10 ( 

4,1 1 

5,1 ( 

5,4 1 

5,5 1 

5,6 j 

6,1 < 

6,2 

6 

6,3 

a 

: υ 

k
 2) 

: 3) 

; 4) 

: 5) 

: e) 

: 7) 

: β) 

> 9) 

;io) 

: i i ) 

[12») 

:i3) 

:i4) 

(15) 

Caliper 

(* - k
x
)2-

<* - V
2
" 

k
z 

(
kx
 - *)2> 

k
z -

k
x
2^ 

k
x 

1
 -

k
x 

к, - a/2с 
Zi 

Χχ 

k
x
2* 

»-•ν 
k

z 

^ 

central height 

k
x
2^ 

I 

RAPW
b
'

C
'

d 

79 

117 

456 

87 

500 

398 

172 

505 

566 

398 

465 

335 

828 

634 

194 

124 

BPW
e 

80 

129 

449 

85 

496 

440 

166 

504 

583 

400 

468 

349 

858 

623 

235 

123 

Exp.
f 

80 

121 

456 

91 

496 

400 

172 

505 

566 

396 

459 

337 

196+2
δ 

123 
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a
 The numbering between paranthesis is that of Fig· 1 

and the other numbers are those of Table 3· 

The values are in units 10"^ cu.. 

c
 This work. 

Mean abs. deviation between RAPW and exp. value: 2. 

Largest abs. deviation between RAPW and exp. value: 6. 

θ
 Ref. Сб]. 

f
 Ref. [i]. 

^ Ρ. Kolling, Magneto Accoustic Effect, private communi­

cation. 



- 72 -

α. and α (Pig. 2). For our calculations we have chosen 

Ej, = 1.60 cu. The quality of the fit is very good 

(Table 1) and for only two points significantly beyond 

experimental error. This discrepancy will be discussed 

later on. (The experimental error in the RPSE measure­

ments of Сз^ is less than 1$, unless stated otherwise 

explicitly). 

We estimated the total error in our calculated 

k-values (where we traverse the Fermi surface more or 

less perpendicular), caused by the finite number of 

APVlMs (about 120), by the truncation of the 1-sum at 

1 = 51 by neglecting the interactions among the states 

with the higher zeroth order energies (k. > 7 c.u.), 

and by numerical interpolation procedures and rounding-

off errors of the computer, to be less than .0005 c.u. 

Among the spin-orbit coupling parameters,β.. 

appears to be the only one which is important for the 

FS. Its value is mainly determined by the sixth zone 

around W. 

The choice of E« forms a peculiar problem in the 

sense that the quality of the fit turns out to be very 

insentive for the choice of E
F
 as is demonstrated by 

Table 2. Fig. 2 shows the fitted &, and the "empty 

potential" values of <*-, as a function of Ep with fixed 

0.| = .24. Note the near linearity of the fitted ct̂ . 

This linear behaviour can be understood from the "on the 
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5 -

4 -

3 

2 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-θ 

1 = 0 

1.2 14 1.6 1.Θ 2.0 
E
F
(c.u.) 

Pig. 2. The fitted (solid lines) and empty potential 

values (broken lines) of the logarithmic 

derivatives c^ as a function of Ep. 



Table 2. 

Quality of the fit and the values of the parameters as a function of E 

V 

2.00 

1.80 

1.60 

1.60 e 

1.60 

1.40 

1.20 

ъ 
ш.а. 

dev ia t ioE 

3 

3 

2 

2 

3 

2 

3 

l a r g e s t 

d e v i a t i or 

8 

б 

6 

6 

б 

б 

б 

α 
о 

-б .73 

-6.92 

-7.06 

-7.15 

-6.99 

-7 .23 

-7.31 

а 1 

-1.36 

-1.40 

-1.450 

-1.480 

-1.474 

-1.480 

-1.525 

а 2 

2.84 

2 .47 

2.07 

2.05 

2.08 

1.71 

1.34 

аз 

3.20 

2.78 

2.52 

3.52 

3.06 

2.07 

1.96 

е 1 

.24 

.24 

.24 

.20 

.00 

.24 

.24 

\° 

.4572 

.6040 

.7548 

.7593 

.751 

.9155 

1.0828 

η 1 

.5331 

.6530 

.7846 

.8021 

.799 

.9111 

1.0548 

Ъ 

- .1440 

- .0963 

- .0522 

- .0510 

- .053 

- .0174 

.0096 

η 3 

- .0120 

- .0040 

.0001 

- .0075 

- .004 

.0032 

.0028 

Ζ d 

.80 

1.31 

1.813 

1.820 

1.82 

2.25 

2.75 

a
 In units c.u. 

Mean absolute deviation of the RAPW values from the experimental ones of the 

semi calipers from Table 1; unit 10"^ c.u. 

c
 The phase shifts TU are calculated from OL using formula (4). 

The Priedelsum Z
p
 is calculated using formula (5). 

With these values of Ε_, a, and 0-, the whole K» of white tin has been calculated. 
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Fermi sphere" approximation [9З eind the slopes can be 

related to muffin tin radii S, for which the E^-depen-

dence of a.-, vanishes [12,133. An extensive discussion 

concerning the problem of the choice of Ej, and the 

behaviour of α and the Friedel sum as a function of 

Ej, can be found elsewhere £2,14,9,12·^. We feel that the 

Friedel sura as a function of Ep is an important quantity, 

since it is a curve of constant FS. We believe that 

any muffin tin potential, constructed from first 

principles, should end up with a Friedel sum lying on 

this curve. 

3. Comparison with RFSE. 

Once the parameters a., and ß1 have been fitted to 

the selected set of points on the FS we can calculate 

the whole FS and make a comparison with RFSE and other 

experiments. A large number of check points, cross 

sections and projections of the FS have been calculated. 

The projection of the FS on a certain plane with normal 

η is defined as the collection of projections of those 

points of the FS for which ν ."η = ο, ν is the Fermi 

velocity and η is the normal to that plane. Table 3 

shows a listing of calculated points with v.п.. = ν.ϊίρ = о, 

n
1
 and η« being the normals to two of the main symmetry 

planes (100), (110) and (001). Table 4 shows a large 
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Table 3. 
Calculated coordinates of points of the PS with Чг.п^ . п ^ О , 

n 1 and n 2 are two of the d i rec t ions ß o o j , filo] and [boi] . 

Unit 10-3 С 4 Ъ и 

Zone 

3 

4 

Po int
a 

1 

2 

3 

4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

k
x 

444 

417 

500 

562 

495 

239 

195 

500 

571 

141 

281 

554 

129 

172 

290 

\ 

444 

417 

500 

438 

0 

0 

0 

500 

429 

141 

281 

446 

129 

0 

260 

k
z 

0 

330 

456 

300 

0 

0 

535 

460 

501 

583 

0 

0 

565 

503 

0 

Zone 

5 

6 

Point 

1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

13 

1 

2 

3 

k
x 

0 

380 

0 

398 

329 

500 

208 

357 

99 

150 

395 

0 

0 

88 

k
y 

0 

0 

0 

0 

329 

165 

410 

0 

99 

0 

195 

0 

0 

88 

k
z 

1487 

1106 

614 

1350 

1310 

920 

1145 

1140 

609 

611 

1147 

828 

634 

785 

See a l so Ref. Cl ] . 
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number of check points. The indication of the angle in 

the RPSE measurements is taken from the directions 

И00 J, [110] and Li00] respectively for the a-, b- and 

с-measurements. The agreement between experiment and 

calculation is excellent: mean absolute deviation of 

.002 cu. and a largest deviation of .010 eu. on about 

60 points. 

Pig· 3 to 11 show all calculâted and/or experimen­

tal projections in three symmetry planes for zone 3 to 6. 

We shall use the following conventions: 

a) Г = (0, 0, 0) origin in k-space 

b) symmetry points of the Brillouin zone are indicated 

with capital letters, whereby we will follow the 

usual convention (see for example Fig. 5 of [1 ]). 

The same convention will be used for the labeled 

points of the PS from Table 3. 

c) the calculated projections are drawn with heavy solid 

lines, the not calculated ones with heavy broken 

lines. 

d) the RPSE measurements are indicated with thin broken 

lines and small dots. Orbits with a centre of inver­

sion, as for example аЗ, Ъ1 and Ъ2 in Pig. 3 are 

plotted from that centre; orbits without a centre of 

inversion, as for example 2xa5, 2xb3 and 2xb4 in 

Pig· 3» are drawn with the aid of a "tangent con­

struction". "Cut-off in k-space" orbitsLlJ, as for 



Table 4· 

Comparison of RISE measured semi calipers of Ll3 and the RAPW calculated values (10~^ cu.). 

Zone 

3 

4 

RFSB 

Resonance 

a 1( 0°) 

a 3( 0°) 

a 5( 0°) 

Ъ 1С 0°) 

Ъ 2( 0°) 

b 4( 0°) 

b 2 

b 4 

b 3C 0°) 

b 1 

b 3 

b 3(90°) 

a 7C 0°) 

a 9( 0°) 

a 8( 0°) 

a20C 0°) 

Лк
ехІ)

/2 

59.0 + 1.5 

66.0 + 1.5 

9 3 + 2 

77.0 + 1.C 

80.3 

121 ") 

119 J 

99 

90.7 Ί 

88 J 
82 

456 

172 

292 

271 

505 

RAPW 

ûkcalc/2 

59 

65 

92 

74 

79 

117 

98 

87 

81 

456 

172 

290 

275 

505 

Remarks 

Pig. 4, break 

Pig. 3a, 4 

Pig. 3a, 4 

Pig. 3b, 4 

Pig. 3c, 4 

Pig. 3c, 4 

max [I10]a 

min Ìlio] 

Pig. 3b, 4 

max C110] 

min Clio] 

Pig. 3b 

Pig. 5,7 

Pig. 5,7 

Ref. Lie! 

Pig. 5,7 

Zone 

5 

RPSE 

Resonance 

a12( 0°) 

a15( 0°) 

с 3( 0°) 

a14( 0°) 

a10( 0°) 

a37(90
0
) 

a37 

аЗб(90
0
) 

ъіз 

а22 

а33(90
0
) 

а29(90
о
) 

аЗО(59
0
) 

а34С59
0
) 

а22(59
0
) 

b 6(90°) 

Ъ 6 

д
к
ехр

/ 2 

337 

395 • 

396 и 

359 

329 

162 

171 

189 

190, 

• 

566 

250 

424 

459 ] 

\ 459 J 

165 

169 

RAPW 

д
к
са1с

/ 2 

335 

398 

357 

328 

163 

171 

190 

567 

2 52 

426 

460 

166 

170 

Remarks 

Pig. 8,10 

Pig. 8,10 

Pig. 10 

Pig. 8 

break 

Pig. 8 

max [001] 

Pig. 8 

max [001 ] 

max [0013 

Pig. 8 

cut off orbit 

Pig. 8 

Ka34 + a22) 

Fig. 9 

max [001] 



Table 4 ( continua "ti в. ). 

al8( 0
o
) 

а1б( 0
o
) 

а19( 0
o
) 

a27(90
0
) 

a25(90
0
) 

a21 

a25 

a28(90
o
) 

Ъ14( 0
o
) 

Ъ20( 0
o
) 

Ы9( 0
o
) 

Ъ23(90
о
) 

c21 

a19, c1 

a 7 

с 5( 0
o
) 

a40(47
O
) 

a40(73
O
) 

a40C90
o
) 

Ь 5(- 0°) 

475 

446 

488 

535 

586 

588 

558 

503 

400 

629 

570 

496 

326 

1000 

524 

124 

101 

102 

123 

476 

446 

488 

535 

583 

559 

500 

398 

630 

569 

500 

328 

524 

122 

99 

100 

124 

Ref. [іб] 

Ref. [1б] 

Fig. 5, 7 

Pig. 5 

Pig. 5 

max [00l] 

min [00l] 

Pig. 5 

Pig. 6, 7 

Pig. 6, 7 

Pig. 7 

Pig. 6 

min [100] 

Pig. 7, 

TL Ξ 1.000 

Pig. 7 

Pig. 11a 

Pig. 11a 

Pig. 11a 

Pig. 11b, 11c 

13(90°) 

15( 

16( 

0°) 

0°) 

с 3(45°) 

Ь27(90
о
) 

с 9( 

cil, 

c19 

c19 

c19 

c19 

c19 

0°) 

c2 

180 

410 + 

459 

462 + 

440 

653 + 

642 + 

' 500 

• 

. 201 + 

750 

, 145 + 

"1800 

10 

6 

8 

8 

5 

5 

c19 

Ъ 5(21°) 

Ъ 5(29°) 

Ъ33(5б
0
) 

ЪЗЗ(90
о
) 

131 + 5 

130 

139 

124 

102 

180 

415 

465 

439 

643 

205 

145 

130 

131 

139 

122 

100 

Pig. 9 

Pig. 9 

Pig. 9, Ю 

Pig. 10 

Pig. 9 

Pig. 10 

Pig. 10 

Pig. 10
; 

іЛк [100] 

£Лк [οίοJ 

Pig. 10, p.A, 

iàk [100] 

ІДк [010] 

Pig. 10, p.B
; 

ІЛк [100] 

£Дк [οίο] 

Pig. 11Ъ 

Pig. IIb 

Pig. IIb 

Pig. IIb 

I 

«»i 

I 



Table 4 (continuation). 

5,6 

4,6 

5,6 

5,6 

а31(90
о
) 

a24(90
0
) 

a23(90
0
) 

Ъ25(90
о
) 

294 + 4 

605 + 9 

661 + 10 

531 

290 

600 

663 

« 530 

a36 + а40
Ь 

а28 + а40 

а37 + а28 

*27 + ЪЗЗ 

4,6 

5,6 

Ъ24(90
о
) 

с 4( 0°) 

604+10 

481 + 6 

601 

478 

Ъ23 + ЪЗЗ 

с 3 + 6th 

zone - 20 

а
 With "max [lio]" we mean the maximum value of the component of Дк

ехр
( )/2 in the 

direction ClIOÜ for θ φ о0
. 

A lot of sum orbits has been measured Cl]. For example the cubic shape of the 

sixth zone makes this piece of the Ferrai surface very suitable for generating 

"current sheets" in the bulk of the sample, thus making sum orbits possible. 

We remark that often it happens that a caliper, which can not be measured 

itself directly because of the shape of its orbit, сала be measured as a sum 

orbit. 
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82 

аЗ-а5 

•[100] 

[001] 
4 

b2=bV 

Pig. Projection of the third zone: on (010) (a), 

on (ITO) (Ъ and c). 
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example 2xa29 and 2xa30 in Pig. 8 are incidentally-

indicated· 

Now we will discuss all projections in detail. 

Third zone. 

Pro.jection on (010), Fig. 3a. 

Prom the known shape of the third zone we expect 

in the Li00] direction a central minimum semi caliper 

and a non central maximum one which merge for large 

angles. These expectations are confirmed Ъу aß and a5. 

a5 is indicated only by a single point in the figure. 

The consistency between RFSE and RAPW is good. 

Pro.iection ón (ITO). Fig. 3b t 3c« 

The projection on (ITO) consists of two figures: 

the cross section of the third zone with the plane LXP 

and Γχρ respectively. Again there are, just like in 

Fig. 3a, two extrema in LllOJ which is consistent with 

the measurements Ъ1 and ЪЗ in Fig. 3b, respectively Ъ2 

and Ъ4 in Fig. 3c. 

At large angles there is a systematic discrepancy 

between RAPW and bl sind Ъ2. The same discrepancy is 

shown by Ъ14 and b23 in Fig. 6 and by b29, b30 and Ъ31 

in Fig. 9· These all are just those measurements which 

have been measured from a LllO-l-sample at large angles 

Lij. Therefore it seems to be probable, that these 
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measurements ought to be corrected by .5° to 1° towards 

LOOll in the plane (110). 

Pig. 3b is the dHvA cross sectional area 6, 

(Table 5). Our calculated value agrees with the experi­

mental one to within one per cent. The cross sectional 

area in Pig. 3c has not been detected in dHvA experiments. 

Pro.jection on (001). Fig. 4» 

The smallest figure is the cross section with the 
•1 

к = о plane, its area is the dHvA oscillation
 δ

1 

(Table 5). Our calculated area is 3.5 ft greater than the 

experimental values. This means only about .001 c u . in 

the semi calipers. 2xa1 and 2xa3 agree excellently with 

RAPW, while bl and Ъ2 are significantly larger than the 

RAPW dimensions. Such an inconsistency is also seen for 

the largest figure in Pig. 4. This figure is the projec­

tion of points of the PS from the neighbourhood of the 
2 

δ - dHvA cross section for which RAPW and experiment 

agree within 1$ (Table 5). The agreement between RAPW 

and 2xa5 is very good too. However ЪЗ and Ъ4 are 

significantly larger than RAPW. unfortunately from the 

c-measurements no data are available for the third zone. 

Por the discrepancy between RAPW and the experimental 

b1 to Ъ4 we don't have a satisfying explanation. It seems 

to us that most probably the experimental bl to Ъ4 along 

HIOJ are systematically too large by about .002 c.u. 



oo 

Pig· 5· Projection of the fourth zone on (010). 
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On the line XP the third and fourth zone are 

degenerated. This degeneration is removed by spin-orbit 

coupling. However the splitting remains very small: 

about .003 c u . Consequently there remain sharp bends 

in the cross section of the third and the fourth zone 

with the к = о plane. Such sharp bends give rise to 

additional RPSE resonances: so called "breaks" 1-15], 

For example 2xa1 is consistent with a break in the third 

zone δ
1
 orbit (Pig. 4); 2xal8 and 2xa16 are consistent 

with breaks in the fourth zone e·? orbit (see Pig. 1 of 

Ref. [16]). 

Fourth zone. 

Pro.iection to (010). Pig. 5. 

The points 3 and б have been calculated; their 

projections corresponds with a27 and a25 along Looi]. 

The interpolated curve З'-б' of the projection has been 

estimated from the measurements a27 and a25. Prom the 

curve 10-11· the points 10 and 11' have been calculated 

and they are consistent with a? and a9 along ClOO]. 

The curve 2-10 can not be measured directly with 

RPSE. However the curve 2-10-3-1 is the dHvA cross 

section
 e

1
 (Table 5) and,keeping in mind the consistency 

between RA.PW and a20, a19, a27, a7 and the cross section 

area
 6

1 f
 we may conclude that the points on the curve 

have been determined to within .002 c.u. their normal 
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component. 

The consistency between RAPW and a21 is less 

rigourous. 

The "cut-off in k-space" orbit a28 is in good 

agreement with RAPW. 

Projection to (ITO), Fig. 6. 

The central semi calipers Ъ14, Ъ20 and Ъ23 are 

in good agreement with RAPW, especially along the 

symmetry directions. Por the larger angles the same 

systematical error of about .5° as for ЪЗ and Ъ4 in the 

third zone is seen (see comments on the third zone). 

The interpretation of Ъ22 and Ъ21 is rather complicated. 

Ъ22 seems to be a normal RFSE resonance. (Por sake of 

clarity we have taken 5' as origin for the Ъ22 calipers.) 

Ъ21 is caused by a drastic change of the shape of the 

orbit in k-space, going along the direction of the 

magnetic field· 

The curve ^-З'-в' is the dHvA-area e^ (Table 5). 

The RAPW area is 2.5$ smaller than the experimental value. 

This means only .002 c u . in the direction Clio], which 

is well within the 'experimental error in Ъ20. 

The curve 7-6-4 is a dHvA cross section, which has 

not been measured experimentally however. The RAPW value 

is .788 c.u. 



О 

Pig, 7. Projection of the fourth zone on (001). 
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Projection to (001). Fig. 7. 

The consistency between RAPW and the RPSE measure­

ments ci, c5» c15 and c21 is nearly perfect. Further 

still some other points of the projection curves have 

been measured in the (010) and (1T0) samples as indicated 

in the figure. 

The curves 1-8 and 2-7 are cross sections with the 

5 2 
к = о plane and their areas correspond with

 e
^ and е.. 

respectively (Table 5)· 

The points 9 and 10 lie in the neighbourhood of the 

dHvA cross section with the plane k_ = .52 c.u., which 

has not been detected experimentally. The RAPW value is 

•110 c.u. 

The specific curvature around point 11 gives rise 

to a special RFSE resonance [16] (Table 4). 

Fifth zone. 

Pro.iection to (010). Fig. 8. 

The agreement of RAPW with a33t a34, a37, a38, 

аЗб, а29 and al5 is perfect, just as for the limiting 

angles of a22: 37° and 59°. al4, a29 and a30 are consis­

tent with "cut-off" resonances. At the limiting angle 59° 

the relation 2xa30 = a34 + a22 should hold (See Table 4). 

a12 and a14 show some larger experimental inaccuracy, 

nevertheless they agree reasonably well with RAPW. The 



«о 

Pig. 8. Projection of the fifth zone on (010). 
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Pig. 9. Projection of the fifth zone on (1T0). 
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not calculated part of the curve 6*-10· has been 

estimated from a12. 

Projection to (lT0)
t
 Fig. 9« 

The consistency between RAPW and Ъб, Ъ32, b13, Ъ27 

and Ъ31 is perfect. Ъ16 and the cut off orbits Ъ15 and 

b12 agree reasonably with RAPW. The interpretation of 

ЪЗО seems to be reliable (see comments third zone), that 

of b28 between 70° and 80° is not very clear. The inter­

pretation of the non central orbits ЪІЗ» bl6, Ъ32, Ъ27 

and Ъ29 requires a tangent construction; this has been 

done for a limited number of points. 

The curve 1-5-10-3 is the dHvA cross section with 

the plane к = к . The area corresponds with ^ (Table 5)· 

Prelection to (00l)t Fig. 10. 

The projection consists of two curves: 4*-5' 

which has been calculated entirely, and the projection 

of the tubes, connecting the pears L1J, Э'-б, which has 

been calculated partly. The RAPW curve A'-S' is in good 

agreement with c3, a15(0
o
) and Ъ1б(0

0
). The curve Э'-б 

is determined experimentally by c9, c19, di and al2(0°). 

cl9 is consistent with the RAPW curve. For an additional 

comparison the points A and В have been also calculated 

(Table 4). 

Further, some points from c2, сб, clO, c17 and c20 
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Pig. 10. Projection of the fifth zone on (001). 
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Pig. 11. Projection of the sixth zone: on (010) (a), 

on (ITO) (b) and on (001) (c). 
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have Ъееп indicated in the figure. 

The curve A'-^' consists of the projection of 

points, which are lying in the neighbourhood of the 

dHvA cross section ъ' (Table 5). 

Sixth zone. 

Projection to (010), Pig. 11a. 

a40 is in good agreement with our calculation. 

The measurements should Ъе drawn with the aid of a 

tangent construction. It is not clear why the dimension 

in the ИооЗ direction has not been measured with RFSE. 

The inner curve is the central dHvA cross section 

with the (010) plane and the area corresponds with fp 

(Table 5). Prom the figure it is obvious, that there 

should be another, non-central dHvA cross section (see 

note at Table 5). 

Projection to (1T0), Fig, lib. 

The agreement between RAPW and ЪЗЗ and especially 

Ъ5 is good. These measurements require a tangent con­

struction. The RAPW dimensions in the [OOl] direction 

are systematically smaller than those, which follow from 

a40 and ЪЗЗ· The explanation for this might be sought 

in the fact, that because of the cubic shape of the 

sixth zone, a small error in the orientation of the 

sample causes appreciable errors in the RPSE 
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measurements. 

The inner curve of the projection is the central 

dHvA cross section with the (iTo) plane. The area 
•1 

corresponds with f I (Table 5). 

Without spin-orbit coupling the sixth zone is 

degenerated with the fifth zone on the line к = к 
χ у 

through W (k = .650). The spin-orbit coupling parameter 

£.. yields a splitting of about k̂ = .04 eu. on this line. 
Projection to (001), Fip;. 11c. 

Prom the curve only one point has been measured; 

Ъ5(0
0
). The curve consists of the projection of points, 

which are lying in the near vicinity of the dHvA cross 

section with the plane к = .790. The area corresponds 

with f} (Table 5). 

4. Comparison with dHvA data. 

Wt h&ve calculâted a large number of dHvA cross 

seetions to compare them with the experimental values 

of Stâflêu L4J and Craven et al [5З (Table 5). The mean 

relative deviation of RAPW with both Stafleu and Craven 

is 1.5 pöf cent and the largest relative deviation is 

4*5 and 3*5 per cent respectively. The error in the 

experimental values of Craven is "almost everywhere 

better than" 1 per dent. That i^ the mean relative 

deviation is Somewhat larger than the experimental error, 
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Table 5. 

dHvA - a r e a s . 

Plane 

rXL 

( k z = .320) 

(ky = .500) 

LXP 

ΓΠι 

LXP 

LIU 

(lcz = .340) 

ГЛ. 

ПО. 

ncp 

(lcz = 1.340) 

(by = .500) 

(by = .410) 

( k z = .920) 

LHl 

( 1 ^ = .050) 

Γχρ 

(lcz = .790) 

Symbol 

•Î 
·? 
«5 
«1 
«? 
«1 
«1 
«Î 

•5 
в 

"1 
"1 
^ 4 

Ί 
«î 
i' 

»î 

Experimental 

S t a f l e u , et a l . c 

14.0 + .15 

26 .6 + .25 

127 + 2 . 5 

137 + 2 .5 

286 + 4 

208 + 4 

278 + 4 

860 + 20 

900 + 20 

564 + 8 

560 + 8 

1 170 + 2 

J 

441 + 9 

35.9 + .4 

46.6 + .9 

36.4 + . 4 

Craven, e t a l . 

14.0 

26 .4 

129 

137 

277 

209 

269 

840 

914 

1094 

551 

554 

170 

168 

432 

•ч 

J 

36.5 

47.8 

36.2 

C a l c u l a t i o n 

RAPWf 

14.5 

26.7 

127 

136 

274 

203 

272 

856 

934 

562 

566 

173 

171 

425 

35.6 

36.2 

46.8 

37.4 

RPW g , h 

14.0 

26.6 

127 

134 

280 

208 

270 

847 

923 

554 

560 

169 

438 

37.1 

46.9 

36.2 
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Table 5 (continued). 

a
 Areas in unit 10~

3
(Π)

2
. 

Reference СзЗ; inaccuracy "almost everywhere better 

than 1̂ '·. 

c
 Reference W (Note: on page 683; A = .0829 Ρ should 

be A = .0817 P). 

π« and TT2 should be interchanged in Ref. [5З. 
a 1 

Our RAPW calculation shows a non central ^ with about 

the same dA/dk as the central one. In fact Stafleu, 

1966, [private communication] did measure those two 

dHvA frequencies with the aid of a torsion method: 

from field rotation diagrams and direct measurements 

he determined the frequency difference to be 2$, which 

is in perfect agreement with our calculations. 

f
 Mean rel. dev. (A

R A
p

W
-A

s t a f l e u
)/A

s t a f l e u
: 1.5*, largest 

dev. 4.5$. 

Mean rel. dev. (A
B A
p

W
-A

0 r a V №
)/A

0 p | l V i n
i 1.5*, largest 

dev· 3*5*· 

s
 Ref. СбЗ. 

h Шал rel. dev. U1B^rAs1¡aiUVL)/Añ1¡a!tUvit 1*, largest 

dev. 3*5*· 

Mean re l . dev. (^i»w-A0raven)/ACraVeni 1*, largest 

dev. 2*. 
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which is not entirely understandable, specially for the 

large areas. For example, if we suppose an uncertainty 

of .002 c.u. in the RAPW dimensions of the el! orbit, 

then the uncertainty in its area will not be more than 

about .7 per cent. However the discrepancy amounts to 

2 per cent. Prom an analysis of Craven's experimental 

results there appears a slight inconsistency in these 

measurements. Following Craven's interpretation along 

[001] the following should hold: £? + B-2cj] s 2.000 c.u. 

However, substituting Craven's experimental values yields 

1.980 cu., suggesting that the values for both é^ and В 

are too small by 1 per cent. This correction would remove 

the above discrepancy by a great deal indeed. 

This suggestion is also supported by a similar deviation 

for e{. 

Further support for our suggestion is found in 

Staf leu's measurements [4І . He assigned his G. and G.. 

4 5 
oscillations to the éT and é^ orbits respectively. The 

former agrees well with our calculation while the latter 
5 

does not. Craven's discussion of his ei and A measurements 

and the fact, that Stafleu performed his G measurements 

at rather high magnetic fields (30-35 kGauss, private 

communication) make it highly probable, that Stafleu's 

G. oscillation should be interpreted as Craven's A 

measurements, or at least as a mixing of Craven's A 

and 6^ oscillations. 
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5· Pompariвon with other bandstrueturβ caloulatìons, 

Earlier calculations are from Weisz (1966), Stafleu 

et al (1967) and Craven (1968). All of them used the 

Fourier transforms of the local pseudopotential as adjus­

table parameters. 

Weisz [173 based his work on Gantmakher's RPSB 

measurements С183, which however are systematically too 

large [l9f ЗЗ. Therefore his interpolated PS deviates 

appreciably from the new measurements of С3З. 

Stafleu et al [4З based their calculations on their 

dHvA measurements, but they used a "few plane waves" 

scheme only, so their resulting calipers are not very 

accurate« 

Craven СбЗ fitted the Fourier transforms to his 

accurate dHvA measurements [5З and he used about 50 plane 

waves« Therefore we think his calculations to be superi­

eur to the former ones ала we will compare with his 

results only (Table 1, Table 5 and Fig. 1)· Though plane 

wave calculations by Craven agree very well with his 

dHvA data, hie calculated calipers show deviations by up 

to «04 cu. compared with the RFSE measurements of [3З· 

We believe the deviations of Craven's peeudo 

potential calculations from the RFSE measurements of [3З 

to be due to a wrong value of the Fermi energy mainly· 

We have performed С20З a peeudo potential fit to the 
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öame 14 points of Table 1 using the Permi energy as 

another independent parameter. The Fourier coefficients 

and the r.ra.s. deviation of к showed a considerable 

dependence on the choice of Ê ,· The best fit has a r.m.s. 

deviation twice as bad as the best RAPW fit. Further 

results can be found elsewhere І20]. 

6. Conclusions. 

We believe to have shown, that - remarkably 

enough - the parameters of the muffin tin potential can 

describe excellently the Fermi surface of a polyvalent, 

nearly free electron and rather anisotropic metal. The 

consistency between RAPW and the experimental data is 

of such a quality that we feel that the experimental 

accuracy is not yet sufficient to show the,limits of the 

RAPW model. This^is due to the fact that the deviation 

of the muffin tin model, i.e. the modulation of the 

potential between the muffin tin spheres, can be absorbed 

in the scattering parameters of the potential wells. 

Further we believe to have been able to describe 

the linear dimensions of the Fermi surface of white tin 

to within .002Πι, which is considerably better than the 

results of earlier interpolating calculations. Although 

of a complicated shape the Fermi surface of white tin is 

now one of the most accurately known among the polyvalent 

metals. 
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APPENDIX В . 

A paeudo potential form factor for mercury. 
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LETTER TO THE EDITOR 

A pseudopotential form factor for mercury 
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Abstract. From accurate de Haas-van Alphen measurements one can deduce an un­
ambiguous form factor for mercury. The calculated value of the specific resistivity of 
liquid mercury, based on this form factor, overestimates the experimental value. A 
correction factor (m*Y is proposed which brings the calculated value of the specific 
resistivity into excellent agreement with the experimental one. The calculated volume 
derivative of the specific resistivity at the melting point agrees reasonably with the 
experimental value. 

In the current literature there exists much confusion about the sign and magnitude of the 
pseudopotential form factor of mercury (Animalu and Heine 1965, Brandt and Rayne 
1966, Bogle et al 1969, Evans et al 1969, Evans 1970, Jones and Datars 1971, Takeuchi 
1971, see also Naguchi and Takeuchi 1973). The specific resistivity and related properties 
depend critically on the value of the form factor for q near Ik? so there is need for a 
rather precise determination of the latter. Recently, accurate de Haas-van Alphen 
(dHvA) data (Poulsen et al 1971) have become available and these can be used for the 
experimental determination of some muffin tin parameters, for example the logarithmic 
derivatives аг(£Р, R) in the APW scheme, R being the muffin tin radius, or alternatively 
the reduced phase shifts IJÍ(£F) of the muffin tin well. It is well established now (Devillers 
and de Vroomen 1971, Lee and Heine 1972) that band structure schemes based on the 
muffin tin model can be used very well to interpolate experimentally known Fermi surface 
geometry, that the resulting щ^Ет) are independent of the scheme being being used 
(APW, KKR or KKRZ) and that the parameters can be converted to a local form factor 
of some effective pseudopotential. We have used the APW scheme to fit *jo, ηι and ηζ in a 
relative least squares procedure to the dHvA orbits a(l TO), τ, τ', β and 77(111) of Poulsen 
et al (1971). From local pseudopotential arguments, which turn out to be not too bad 
for mercury, we may expect four local minima of the RMS deviation in parameter space, 
ie if K100 and Fno ( ~ Fin) is the correct solution of the band structure problem then the 
sets {— K100, Fno}, {Vim, — Fno} and {— F100, — Fno} should be rather good solutions 
too in first order approximation. Indeed we have found those four alternatives, 
albeit that two of them did not yield β arms in the X Brillouin zone face. In our opinion, 
on the whole the work of several authors should be classified as in table 1. 

Alt-I and Alt-IV yield β arms only at the cost of large discrepancies with the α and τ 
orbits. As there is almost unambiguous experimental evidence for the existence of the 
β arms (open orbits in the magnetoresistance and cut off's in dHvA measurements) we 
are forced to exclude Alt-I and Alt-IV. 

L220 
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Table 1. Characteristics of the various, alternative form factors of mercujy 

Notation 

AIM 

Alt-ll 

Alt-Ill 

Alt-IV 

Sign of 
l-AHW 
l ( 1 0 0 ) 

i 

PAPW 
1 < I 1 0 ) 

-*-

Main character of 
lens 

Ρ 

s.d 

Ρ 

s, ρ, d 

Τ, X opening 

s, d (no 

Ρ 

Ρ 

s, d (no 

β arms) 

β arms) 

Authors 

Jones, 
class A ; 
Evans 
Jones, 
classB(?) 
Jones 
class C; 
Animalu; 
Brandt 

Hetween Alt-ll and Alt-Ill the latter appears to be favoured rather strongly for the 
following reasons : 

(i) The fit to the five areas, mentioned above, is somewhat better for Alt-Ill (1*5% 
RMS, which is about twice the experimental inaccuracy) than for Alt-II (2-2% RMS). 

(ii) The agreement with magneto-acoustic calipers of Bogle et al (1969) is significanti) 
better for Alt-Ill. 

(iii) Better agreement with the experimental angular range of magnetoresistance 
open orbits and dHvA signals. 

(iv) The right anisotropy of the χ dHvA orbits in the field directions from (ITO) 
towards (111) (whereas Alt-II does not give any anisotropy!). 

(v) In the free electron model the (100) Brillouin 7one face acts like a mirror plane 
for the electron lens. But Alt-Ill yields an asymmetry: the electron lens is tipped 3° out 
of the (100) Brillouin zone face from (100) towards (111) and this seems to be confirmed 
excellently by recent cyclotron resonance measurements of Poulsen et α/(1971); whereas 
the free electron like Alt-ll gives only a slight asymmetry of about 0-5° in the wrong 
direction. 

As for other metals (Devillers and de Vroomen 1971, Lee and Heine 1972) £ F is a 
weak parameter. The best fit was obtained for EF = 0·30 cu, 170 = 49-04°, тд --= 19·580, 
iii - - - 5-20c. We did not try using four phase shifts to improve the quality of the fit 
because at this level of accuracy we cannot be sure that spin-orbit coupling effects may 
be ignored any longer. 

To calculate the specific resistivities of liquid mercury we can transform the IJJ(£F) 

to a local form factor r A P W (^, Ey) in the on Fermi sphere approximation (Devillers and 
dc Vroomen 1971, Lee and Heine 1972) and then use r A P W ( i , Ev) as an approximate 
value for the matrix element in the well known Ziman formalism. For the structure 
factor we used the values of Haider and Wagner (1966). We take the usual expression 

peale (FM-Wty, £>)) α '- а(;с)|ГАР*(. і£ъ,)|2(1д-і ( i ) 

with χ - q 2/vF and гк — fo. The result appears now to depend strongly on the value of 
£> and we note a considerable overestimation of pexP - 96/χΩ cm (table 2). 

As the backward scattering matrix elements are very large (varying between about 
-0-2 and +0-2 Ryd in the range 0-6 χ 1) we expect considerable second order 
effects which may account for the observed discrepancies. Now. following a line of argu­
ment suggested by the work of Edwards (1962), we propose a semiphenomenological 
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Table 2. Calculated specific resistivity ρ«·" (μίί cm) and m* of liquid Hg at Τ = ЗООК 
with form factor r A P W and I 4 as a function of Fermi energy. The latter arc measured in 
crystal units (Devillers and de Vroomen 1971, Devillers 1972) for which the free electron 
value Ε ρ 

Er 

0-4245 
0-35 
0-30 
0-25 
015 
010 

is 0-4245 

pealo 

489 
350 
298 
267 
224 
207 

PAPW 

m· 

0-662 
0-728 
0-756 
0-775 
0-809 
0-826 

(m*)« p·»'« 

94 
98 
97 
97 
97 
96 

pQtiC 

666 
67-3 
80-4 
109 
238 
314 

Γ« 

m· 

1113 
1014 
0-998 
0-966 
0-818 
0-701 

(m*)4 p« 1 ' 

102 
72 
80 
95 
106 
76 

correction factor (wi*)4 to the calculated 'lowest order' specific resistivity. This correction 
can be thought of as follows. 

We will use some identities, which are consistent with each other to second order: 
for the kinetic energy 

£"kta = m W = №1т* (2) 

and 

Eun = ^ 1 1 1 - 7 a | фЫ) = <0<і> J £F - Г J ф<"> (3) 

where фЫ is correct to first order in perturbation theory. Now for a moment we look at 
the solid. Then, in the nondegenerate case, it is a well known result that 

£kin = £F - Го + 2Σ« (4) 

with 

Σ <2) = ν ' . — U M 2 

1.1** + f.|"-**' 
Combining (4) with the energy eigenvalue equation, 

kj? - E? + Го - Σ<2> = 0 (5) 

which is correct to second order, it follows that 

Яш = to« + Σ») = Ι&Ο. + Δ) (6) 

where we define 

Δ = (Απ* - Er + ΓΟ)/*Ϊ*. (7) 

Then from (2), (6) and (7) we obtain 
ія· = (1 + Δ)-1. (8) 

Now we assume (2), (7) and (8) to be valid in the liquid too. 
Equation (2) defines г = кт/т* which is consistent with ν? = ν ^ . This results in a 

correction factor (m*yt to ρоч». Further the ΓΑ^(ςη, Ερ) (qn for Hg lying in the backward 
scattering region) have been fitted to the splitting Δ* on the Fermi surface at an energy 
dispersion relation k2jm* rather than at the free electron dispersion relation i 2 ; so 
rA I > w(0 n, E?) is overestimating the Fourier transform Vqn of the effective pseudopotential 
by a factor Ijm* (Weaire 1967, Heine and Weaire 1970). This leads to an additional 
correction factor (w*)2. 
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The //i*, delined by (7) and (8), and the specific resistivity corrected by (w*)4 have 
been listed in table 2. We note a splendid agreement with />ex" for Ey — $£У0 (the theoreti­
cal choice оГ£к in first order). However the corrected resistivity is amazingly independent 
of £ F . In our opinion this is related to the fact, that for Hg the 'focus point radii' 
(Devillers 1972) for / = 1 and 2 are very close to the Wigner-Seitz radius. 

Testing our (wi*)4 correction on white tin (using ΓΑΙ>νι(^, ƒ » of Devillers and de 
Vroomen 1971) we again find that for £к ~ \Еуй an original overestimation of about 30% 
is reduced to a few per cent. However for £к ~ £i.0 the corrected value deviates from the 
experimental one. 

It is interesting to calculate the resistivi!) with the APW-deduced phase shifts in a / 
matrix formalism (Evans et al 1971). But here we take a modified t matrix in that we use 
(fi·0)1 2 in the denominator of the scattering matrix element rather than (£F) 1 / 2 , for we 
think the mean kinetic energy of the electrons at the Fermi energy is given in lowest order 
by A-}.-2 rather than by ¿V. In doing so the modified / matrix reduces to Ziman's quasi-
potential (Ziman 1964) 

Г'(<7, £к) =- - ^ - \ Σ W - Ο « Ρ ('T) si" mPi (cos 0). (9) 

Putting this form factor in equation (I) yields /эса1с(Г4(£р)) (table 2). For the very same 
reasons as in finding p0»10 from r A P W ( ^ , £ F ) we apply a correction (ni*Y but taking now, 
for the analogue of (7), Δ = (ATF2 — £ F — | ΓΌ | )/A:F£ (tabic 2). It is very gratifying that 
pcaic(r<(£F)) ~ pcaic(rAPW(£F)) for £ F ~ ^£·ρο a n c i that approximately the same 
m* — 0-81 is found here as previously. Moreover these values of m* agree with those of 
Weaire (196η. 

Another quantity which can be calculated from our r A P W ( 9 , ¿£κ0) is the volume 
derivative D = (D a l/p c a l c) (d/)calc/düBt) at the melting point. Ziman (1966) has given an 
approximate expression 

D~2-%p (10) 

with 

P~~ і\р(х)\Пх)\**ах · U } 

We note that m* corrections drop out from ρ as well as some scaling of a(x) or Г(лг). So, 
as pointed out by Ziman, ρ is a sensitive measure for qo, ie the node in Γ(^) at about 
χ = 0-9. We have calculated D for the Ammalu-Heinc form factor (D = 31) the 
Evans form factor (D -- —3-9) and our present form factor (D —- 60). This latter 
compares well with the experimental value D — 8-2 ± 0-3. 

Another experimental phenomenon is the rather sharp decrease in p on alloying with 
many other metals. As far as we can see we may expect this, on the basis of the present 
work, since the general argument advanced by Evans (1970) continues to hold. The 
replacing of Hg atoms with numerically large Kq (of the order of 0· 1-0-2 Ryd) by solute 
atoms with Kg of the order of several 001 Ryd in the important region 0-6 < qllk? < 1 
seems to be the essential feature. 

One of us (WHY) is grateful for helpful remarks from Dr R Evans and Professor Sir 
Nevill Mott. 
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APPENDIX С. 

The Fermi surface of mercury from an APW interpolation. 

(reprinted from J. Phys. F: Metal Physics, 1974, vol. 4) 
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THE PERMI SUBFACE OP MERCUHY PROM AN APW INTERPOLATION 

H.A.C. Devi Hers and A.R. de Vroomen 

ïyeisch Laboratorium, Katholieke Universiteit Nijmegen, 

The Netherlands 

ABSTRACT 

Muffin t in parameters are used in the APW scheme 

to f i t recent accurate de Haas-van Alphen data . The 

interpolated Permi surface i s in good agreement with 

magneto acoustic and magneto res is tance data . A form 

factor , decuded from the f i t t ed muffin t i n parametere, 

i s proposed which y i e lds , when used in Ziman's theore t ica l 

expressions for the specific r e s i s t i v i t y of the l iquid 

and i t s volume der iva t ive , excellent agreement with the 

experimental values. 
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(110) 
[110] 

(Ш) 
ПТТ] 

Figure 1 : Brillouin zone of mercury· Nomenclature after 

Bogle et al С1969). 
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1. Introduction 

In the past several aut *іогв (Brandt et al I966, 

Bogle et al 1969t Jones et al 1971) tried to describe 

the experimental known geometry ana. other related proper­

ties of the Permi surface (PS) of mercury in terms of 

local pseudo potential form factors. In their results as 

well as in the work of others on the form factor of 

mercuiy (see for example Evans 1970, Takeuchi 1971) an 

ambiguity appeared as to the sign of the Fourier transforms 

of the pseudo potential in the backward scattering region 

q *= 2 k-, k^being the radius of the free electron Permi 

sp here. The resolution of this ambiguity has been reported 

in a former paper (Eevillers et al 1973) where the APW 

scheme has been used to deduce the scattering phase shifts 

^.(Ep) from accurate de Haas van Alphen (dHvA) measurements 

of Poulsen et al (1971). 

In this paper we will give a more detailed picture of the 

PS of mercury, especially we will concentrate on those details 

which are not recognized earlier and we will compare the 

calculated PS calipers with magneto acoustic ones of Bogle et 

al (1967). Further we report the numerical results of several 

muffin tin parameters; ̂ (EL,), Priedelsum Z-XiL,) and a phase 

nAPW 
shift decuded form factor Γ (ς,Ε-,). The latter will be 

discussed, especially with regard to second order effects as 

mentioned in Devillers et al (1973)· 
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Table 1 

a) Phaseshifte п.. Friedelsum Ζ- and й on five dHvA areas í-l F rms 

(in per cent) as a function of E_,· 

h 

.4245 

»35 

.30 

.25 

.15 

.10 

**o 

.441 

.678 

.856 

1.049 

1.512 

1.806 

Ή 

.120 

.258 

.342 

.417 

.468 

.388 

Пг 

-.199 

-.130 

-.091 

-.059 

-.016 

-.0056 

Zp 

-.126 

.511 

.909 

1.275 

1.804 

1.91 

Δ 
rms 

2.2 

1.6 

1.5 

1.6 

2.7 

3.5 

Ч-"» г [τ С Ka^Úp-1'2} 
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2. Calculation and resu l t s 

The calculation has been performed in a simular 

way as was done for white t i n (Devillers et a l 19б9і 

Devil lers et al 197 Ό ι but now we are f i t t i n g three 

logarithmic derivatives ^ ( Έ - , Η ) in a r e l a t i v e leas t 

squares sense to experimental dHvA areas rather than 

to semi cal ipers of the FS in an absolute l e a s t squares 

sense. Although the five dHvA areas θί(ΐΤθ), Τ", Γ ,paad 

^(111) (notation of Poulsen et a l 1971)t chosen as to 

represent the PS, are dif fering by two orders of magni­

tude, we have given them equal weighting fac tors . About 

f i f ty APW's were taken into account, which seems to be 

suff icient for the obtained quali ty of f i t . The same i s 

t rue as regards the truncation of the 1-summation at 

1 • 5· As usually the muffin t i n radius R was taken as 
max 

the half nearest neighbour distance H_ • 0.5 c.u. (crys ta l 

uni t s ( c . u . , see Devil lers et al 1971) are used throughout; 

the l a t t i c e constant a • 2.986З A; conversion factor for 

energies to Ry: .8θ68~ ) . We did not include spin orbi t 

coupling, because we suppose t h i s to be of minor influence 

for the shape of the PS, again within the l imi t s of the 

obtained quality of f i t . 

The resul t ing phase sh i f t s are given in table 1 as 

a function of E- as well as t h e i r Fri edel sum ZL,(E_) and 

the fc.m.s. deviat ion. At the energy EL, • 0.30 c.u. the 
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0.5 CU. 

(001) 

(100) 

Figure 2 : APW interpolated ЗН А cross sections of the 

Fermi surface of mercury: ЧіТо) (figure 2a), 

τ (figure 2b), τ· (figure 2c), Ρ (figure 2d) 

and η(111) (figure 2e). Figure 2d and 2e have 

been . enlarged by factors 5 and .5 respectively 

with respect to the other cross sections. 
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deviation of the calculated areas a ( 110), Τ, Τ and «to 

the experimental ones i s leas than 1$, the л(111) area 

deviates 3$ ( tahle 2 ) . These calculated extremal cross 

sections are shown in figure 2. (see also figure 1). 

Figure 2a shows c lear ly an asymmetry of the electron 

disk with respect to the (100)Brillouin zone face: the 

normal to the extremal cross sect ional plane i s shifted 

ahout 3 from the ( 100) direct ion towards the (111) 

d i rec t ion . Experimental support for t h i s asymmetry i s 

found in the cyclotron resonance measurements of Poulsen 

et a l (1971)· Further support i s found in the dHvA branch 

Qi^Poulsen 1971| figure 5)t which i s symmetric around 

26 from ( i l l ) d irect ion rather than around 24 . The lens 

i s not a figure of revolution around the short axis . This 

i s shown Ъу (X(111) ( table 2 ) . I f there were no asymmetry 

then 0¿(111) ^ a(lT0)/cos(24o) - .076 c u . The T-orbi t 

(figure 2b) shows some asymmetiy too i . e . the Fermi 

velocity v_ in the (IOO) and (HO) Bri l louin zone faces 

i s not para l le l to the UL- and UX-direction respect ively. 

All those s l ight asymmetries have consequencies for the 

in terpre ta t ion of dHvA and magneto acoustic measurements. 

Not a l l offckem we have re-analysed (see various notes to 

table 3) . 

The calculated cal ipers are in good agreement with 

the magneto acoustic measurements of Bogle et al (1969) 

( tab le 3) . One notes two large discrepancies between 
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Table 2, 

Comparison with dïïvA experimente 

α(ιΤο) 

Τ 

г' 

Ρ 

ri CiU) 

α(ιιι) 

T-nek 

А хр 

.0699 

.0338 

.0444 

.00159 

.472 

.0815 

(.0420)Ъ 

езср. error (#) 

.3 

.7 

.5 

.7 

1.4 

.4 

^ 3 1 0 - ^ / ^ « « > 

+ .8 

- .3 

+ .9 

.0 

-3.1 

+ 1.9 

(.0333)° 

а
 Poulsen et al (1971) 

Poulsen doubts his interpretation of this dHvA-branch 

Calculated value A · 
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experimental and calculated calipers in table 3: k. and 

i n 

c^ · Por the disagreement in k. we have no sat is fying 

explanation; of course the asymmetry of the T-orbi t 

(X i s an inversion point and XK i s a mirror l ine) causes 

t h a t one does measure between points with v_ // XUf but 

i t i s d i f f icu l t to see from figure 2b that t h i s accounts 

ful ly for the observed discrepancy. Concerning the c— 

experimental value : here the discrepancy with our 

calculat ion is such t h a t , taking into account the consis­

tency of the T-orbit with a l l other experimental data, i t 

seems inevitable to conclude that the i n t e r p r e t a t i o n of 

the experiment i s wrong. As a consequence the value of 

к . quoted by Bogle ( I969) i s wrong too by the amount 

Дк - .035 c u . 

3. APW form factor 

With the "on the Permi sphere" approximation the 

APW matrix elements can be transformed easi ly to a form 

factor r ^ C q . E p K D e v i l l e r s et al 1971). As reported in 

an e a r l i e r paper (Devillers et a l 1973) one can use 

Γ (ς,Ε-) to compute the specific r e s i s t i v i t y of l iquid 

mercury as well as the volume der ivat ive of the r e s i s t i v i t y . 

ΓAPW/ 
(qjEp) for some values of E-,· For 

comparison we show the theoret ica l form factors of Animalu 

and Evans too (Evans 1970), as well as some 
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Figure 3 : Form factor ^ ^ ( q , ^ ) (this work), V(q) of 

Animalu and Heine and V(q) of Evans (1970) 

respectively as a function of q/2Kp. The 

heavy dots are values quoted by Jones and Datars 

(1971). 
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fitted V(a ) of Jonea and Datare (1971)· Our form factor 

has apparently stronger backward scattering matrix 

elements, for a large part caused by the 1»2 contribution· 

This causes considerable second order effects which not 

only gives rise to an effective band mass m (Devillers 

et al І97З), but makes it difficult too to compare our 

Г
А Р И

(^
1
?Яр) with the fitted V ^ ) , which include impli­

citly the second order effects. 

Because the APW determinant in the fit procedure is 

solved exactly (within the limits of required numerical 

convergence of course) the numerical values of the APW 

matrix elements possess a selfconsistency to all orders, 

It is reasonable to assume that contributions, which may 

be seen as third or higher order can be ignored in our 

problem. So if we assume now the "on the Fermi sphere" 

approximation to be a good approximation to the band 

structure problem we may assume too that the values of 

АРЫ 

Γ («ϊιΕ«) f°
r
 Ч ^ 2^1 are consistent automatically with 

the second order energy eigenvalue equation on the diago­

nal. And this may be an important note, because it is not 

clear wether in model potential calculations this nevessary 

consistency is assured when poeple force V(o) « - "7 B_ , 

which is a first order perturbation condition. To use 

it APW 

Г in nearly free electron theories the only thing to 

do seems to be the introduction of some appropriate m 

correction (Devillers et al 1973). 

Another point, we mention in respect with the re-
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liability of Γ , concerns the higher 1-values ( 1 г-З) 

and spin orbit coupling, which we did not include explicitly 

in our fitting procedure. However, one may expect these 

contributions to be included effectively in the three 

parameters used, in other words Г (q, ]й ) is expected 

to alter very little if we were including higher 1 terms 

or a spin orbit coupling term. 

4. Conclusion 

We have given a rather accurate description of the 

PS of solid mercury in terms of phase shifts of the muffin 

tin potential. The calculated extremal cross sections and 

calipers of the PS are in good agreement with the available 

experimental data. We have found a number of slight 

asymmetries in the shape of the PS, which were not recognized 

earlier. An experimental re-investigation of the PS with the 

aid of dHvA or radio frequency size effect experiments might 

be worthwhile to check the predicted asyrranetries. 

Finally we propose an atomic form factor Г (q,-sí¿) 

which may be used to calculate properties like the specific 

resistivity of liquid mercury and its volume derivative. The 

specific resistivity, calculated withP (q, -r· E_) and at 300oK, 

is 97/<'-^cm, whereas the experimental value is 96/&.2cm. For more 

nAPW 
details of this application of I the interested reader is refered 

to a former paper (Devillers et al (1973). 
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Table 3 

Comparison with magneto a 

(unit .001 с 

Cal iper a 

lens 

K l ens 

.L-W 
lens 

kL-U 

in 

k x - u 

in 

T-U 
in 

.T-W 
i n 

.X-K 
K i n 

T-W ¿C-K 
in + ^in 

E rp . a 

8 4 + 2 

256 + 5 

304 + 8 

428 + 10 

1 4 2 + 5 

^190d 

APW 

87 

263Ъ 

288 

439 

118 

104° 

104° 

100 

204 

¡oustic calipers 

Caliper 

k?-U 
out 

k T - ; 
out 

k x - u 

out 

T-W 
Kout 

Л к ^ 

кх-к 
out 

Exp. 

542 + 15 е 

366 + 10 f 

364 + 10β 

428 + 10 

115+ i o e 

226 + 20 

62 + 10 

APW 

582 

352 

387 

427 

149 

219 

58 

158 
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Table 3 (continued) 

Prom Bogle et al I969 

Projection of lens on LU-direction. 

T-opening appears to be c i rcu lar to within .001 c .u. 

Estimated by Poulsen et al 1971 from de Haas-van Alphen 

cut-off angles and angular ranges of "magneto-resistance open 

orbits"» 

Wrong i n t e r p r e t a t i o n of experiment ? See t e x t . 

f 
Note shape of ^ - o r b i t in Figure 2e} experiment measures 

projection of n{111)-orbit on TU-direction (=.375 c . u . ) , 

T-U rather thafl к . · out 

Measures i n d i r e c t l y from £,. o rb i t , suffers from symmetric 

in te rpre ta t ion of lens ; correction of 3 would remove 

discrepance. 
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SUMMARY 

The muffin tin potential model has been used in the past to 

develop several band structure schemes like APW, KKR and KKRZ. 

The ab initio construction of the crystal muffin tin potential is 

a hard task however. On the other hand, the muffin tin potent­

ial enters in the band structure theory as logarithmic derivatives, 

a. (E_,,R), of the radial part of the "atomic" solutions of a single 
1 F 

muffin tin potential at the inscribed sphere radius R, or, equiv-

alently, as the phase shifts гц (E ) of such a single muffin tin 

potential. And it is noted that, at the Fermi energy Ε , these 

quantities are constants. So they can be used as parameters to 

describe Fermi surfaces, when for example the latter have been 

measured by de Haas-van Alphen or radio frequency size effects. 

It is also noted that they are expected to be more adequate than 

the Fourier transforms of some local pseudopotential. These ideas 

form the basis for our thesis work. 

It turns out that indeed the a., are very suitable for interpola­

tion of Fermi surface data. This has been shown for the examples 

white tin, copper and mercury respectively. 

Further, it is investigated whether the parameters obtained have 

any physical significance other than for Fermi surface interpolation 

purposes. An application of them has been found in using them in a 

theoretical expression for the specific resistivity (and its volume 

derivative) of liquid metals. 

From our work an apparent E -ambiguity has been found, the reason 

fior which has been traced back via arguments from local pseudopotential 

theory. Some consequences of the E -ambiguity for the fitted para­

meters and the relationship of them with the "focus point" parameters 

of Andersen havebeen analysed. 
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Also the relations between Bloch theory of crystalline metals 

and scattering theory of densily packed scattering potentials have 

been clarified considerably. As to the present state of scatter­

ing theory in metals we advance a modified theory which accounts 

better for the kinematics of the conduction electrons and at the 

same time gives rise to the incorporation of second order effects 

in band structure theory in a very simple way. 
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SAMENVATTING 

Het muffin tin potentiaal model is in het verleden gebruikt voor 

de ontwikkeling van bandstructuur schema's als APW.KKR enKKRZ. De ab 

initio constructie van een numeriek nauwkeurige kristal muffin tin 

potentiaal is echter een moeilijke opgave. Anderzijds is het zo, dat 

in de uiteindelijke determinant uitdrukking voor de energie-eigen­

waarde van een Bloch electron de muffin tin potentiaal impliciet 

verschijnt in de logarithmische afgeleiden, O. (E ,R), van het radíele 

deel van de "atomaire" oplossingen van een enkele muffin tin poten­

tiaal, of, equivalent, als phase shifts η -(E ) van zo'n enkele muffin 

tin potentiaal. En we merken op, dat, voor gegeven Fermi energie, 

deze grootheden constanten zijn; met als gevolg dat ze als parameters 

gebruikt kunnen worden voor de beschrijving van een experimenteel 

bepaald Fermi oppervlak· Ook merken we op, dat naar verwachting de 

muffin tin parameters meer geëigend zijn voor de parametrizatie van 

Fermi oppervlak gegevens dan de vooral vroeger vaak gebruikte Fourier 

getransformeerd« van een lokale pseudo potentiaal. Deze ideeën 

vormen de basis van ons promotie onderzoek. 

Uit ons onderzoek blijkt, dat de 06 uitmuntend geschikt zijn voor 

interpolatie van ook topologisch-geometrisch ingewikkelde Fermi-

oppervlakken. Als voorbeelden zullen we respectievelijk de interpolatie 

van het Fermi-oppervlak van wit tin, die van koper en die van kwik 

gebruiken. 

Verder hebben we onderzocht of de verkregen parameters een zodanige 

physische betekenis hebben, dat ze ook voor andere dan interpolatie 

doeleinden gebruikt kunnen worden. Een toepassing hebben we gevonden 

door ze via de "on the Fermi sphere approximation" te gebruiken in de 
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theoretische uitdrukking voor de specifieke weerstand ( en diens volume 

afgeleide) van vloeibare metalen. 

Uit de resultaten van ons onderzoek blijkt verder een duidelijke 

E -ambigiteit. De reden hiervan hebben we opgespoord met gebruikmaking 

van argumenten, ontleend aan de theorie voor lokale pseudo potentialen. 

Sommige konsekwenties van de E-ambigiteit voor de muffin tin para­

meters, alsmede hun relatie met de "focus-point" parameters van Andersen, 

hebben we geanalyseerd. 

Ook de relaties tussen Bloch theorie van kristallijne metalen en 

strooiingstheorie voor dichtgepakte strooiende potentialen zíjn aanzien­

lijk verhelderd. Vat betreft de huidige stand van zaken in strooiings-

theorie voor metalen stellen we een gemodificeerde theorie voor, welke 

de kinematica van de geleidingselectronen beter in rekening brengt en 

tegelijkertijd voert tot het op een zeer eenvoudige manier in rekening 

brengen van tweede orde effecten in bandstructuurtheorie. 
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STELLINGEN 

I 

Er zijn duidelijke aanwijzingen, dat Ζiman'β "zwakke 

storing" uitdrukking voor de specifieke weerstand van 

vloeibare metalen tot in tweede orde correct gemaakt 

kan worden door deze met een (m*) correctie-factor 

te vermenigvuldigen. 

Dit proefschrift. 

II 

De verschillen van de theoretische waarden van de spe­

cifieke weerstand van vloeibaar zink en vloeibaar cadmium 

ten opzichte van hun respectieve experimentele waarden 

kunnen teniet gedaan worden door een geschikt gedefinieerde 

tweede orde correctie-factor. 

A.J.Greenfield en N.Wiser,1973, 

J.Phys.F: Metal Phys., 3, 1397. 

III 

De t-matrix voor elastische verstrooiing kan geschreven 

worden als het product van een factor, die alleen van de 

kinematica van het inkomende deeltje afhangt,en van een 

factor, die alleen van de verstrooiende eigenschappen van 

de target afhangt.Dit feit wordt niet voldoende benadrukt 

in vele handboeken. 

bv. E.Merzbacher»Quantum Mechanics, 

John Wiley & Sons, Inc.,New York 

1961, chapter 12, 21. 



IV 

De eerste Bom benadering wordt niet noodzakelijk ongeldig, 

wanneer een partiele phase shift van de grootte orde van 

een radiaal is. 

V 

Voor de beschrijving van thermische positronen in metalen kan 

het muffin tin model een nuttige benadering zijn voor de posi­

tron-metaal interactie potentiaal. 

VI 

De lage energie limiet voor de pattiele phase shifts in muffin 

tin metalen impliceert niet noodzakelijkerwijs, dat de corres­

ponderende logarithmische afgeleiden de "empty potential" 

waarden aannemen. 

Dit proefschrift. 

VII 

Het bestaan van som-banen in radiofrequente size effect expe­

rimenten geeft de mogelijkheid om afstanden tussen punten op 

het Fermi oppervlak te meten, die in die experimenten niet 

rechtstreeks als fundamentele calipers gemeten kunnen worden. 

VIII 

Huidige methoden voor de berekening van interatomaire krach­

ten ín metalen via de Bom-Green of de Fercus-Yevick theorie 

zijn in principe incorrect. 

M.A.C. Devi11ere Nijmegen, mei 1974. 






