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INTRODUCTION AND SUMMARY

A large part of geometry is concerned with the study of differen-
tial manifolds, Hence one of the most fundamental problems for the
geometer is to classify differential manifolds up to isomorphism. To
meke things more manageable one restricts attention to manifolds with
the homotopy type of a given manifold N of dimension n.

The classical approach to this problem is as follows:
one considers maps £ : M » N with some extra - so-called "normal" -
structure, which is present in the case where f is a homotopy-equiva-
lence. One divides these maps into equivalence-classes under bordism,
which is a homotopy problem. Then one tries to do surgery to modify a
given map, inside its bordism class,in order to get a homotopy-equiva-
lence.

This process meets an obstruction s(f), which takes its values in
the Wall group Ln(G), functorially associated to the fundamental group
G of N. The velue of s(f) can be read off after doing low-dimensional
surgery on M, in order to change f into a highly-connected map, viz.
as the stable class of a gquadratic form over the group ring, Z[G],
defined by taking intersections and self-intersectionc of spheres in M
(in the case that n is even).

A natural question to ask then is: how does this manifestly impor-
tant quantity s(f) behave under various constructions which can be per-
formed on the map f? One of the most fundamental operations which can
be imagined is to teke the cartesian product with some fixed manifold V.

In studying this situation one is obstructed by the fact that the
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map £ x id : M x V -+ N x V is in general not highly-connected if f is.
Hence one has to modify M x V again in order to be able to read off
s(f x id). In general it is not at all clear how the result of this
depends on the original data. For this reason no general formula is
known which expresses s{f x id) in terms of s(f) and (bordism-) in-
variants of V, except in the simply-connected case G = 1,

We take a closer look at Leq(G)' An element of it is a class of
quadratic forms, and from these one is able to construct some algebraic
invariants. Most well-known are the invariants cf the type "signature".
They in fact only depend on the induced quadratic form over IR[G]. In
this case one has the advantage that the quadratic form does not in
fact depend on the "normal structure'". For this reason this case has
been extensively studied.

Another type of invariant, which Arf was the first to consider,
appear when one reduces coefficients to IF2 instead of IR. One is led
to the more subtle situation of quadratic forms in characteristic two.
Furthermore the ring IF2[G] is not necessarily semi-simple, as is the
case with IR[G]; and in applying the algebra to the geometrical situa-
tion one no longer has the advantage that the "normal structure" is
immaterial,

This is the situation we study in this thesis. We try to solve the
problems involved in the "Arf part” of s(f) by giving e definition of
it which does not presuppose the map f to be highly-connected. This is
a problem raised by L. Shaneson in [12]. We do this for the case G is
finite; however it gives information for infinite G by applying it to
finite quotients of G.
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To accomplish our goal we generalize the technique used by
W. Browder [3] in the simply-connected case, which is based on a
construction of a quadratic form using algebraic topology instead of
the geometric technique of self-intersections. To this end we have to
study equivariant algebraic topology.

The overall organization of the material is as follows. Chapter I
provides the necessary equivariant algebraic topology. Chapter II con-
tains the construction of our gquadratic form and the proof of some of
its properties. Chapter III contains the proof that this form deter-
mines the "Arf part" of the surgery obstruction s(f).

We now present a detailed description of the contents. In chapter
I, §1-5 we recall the construction and elementary properties of the
equivariant homology theory and cohomology theory, due to G.E. Bredon
[1] and Th. Brocker [2], and generalize these mildly.

In §6 we generalize Steenrod's cohomology operations to the equivariant
case and show that the generaiized operations have properties similar
to those of the classical operations, and in addition possess some
properties which have no classical counterpart (6.4, and 6.5.).

In §7 we consider functional cohomology operations in the equivariant
case, prove a general identity (7.2.), and calculate the result in a
non-classical example (7.3.).

In §8 we briefly recall the equivariant obstructiorn theory of

G.E. Bredon and apply it to deduce a property of the functional opera-
tion associated to the equivariant Steenrod operation.

In §9 we prove a further property of this functional operation, direct-

ly, by constructing some intricate homotopies.



In §10 we generalize Cech cohomology to the equivariant case, to com-
plete the picture formed by Bredon's cellular and Brdcker's singular
theories; in 6§11 we use this to state the properties of the Poincaré-
duality and Thom-isomorphism in an equivariant setting.

In the first section of chapter II we use among other things, the
immersion theory of Hirsch [7] to construct from a "normal map"
f:M->Na G-eguivariant map c : Skﬁ > Skﬁ defined on some suspension
of the universal covering space of N.

In §2 we make a detailed comparison between the equivariant cohomology
of ¢ and the ncmology of f. In §3 we consider a functional Steenrod
operation constructed from c¢ and we show that the properties of this
operation proved in chapter I imply that it gives rise to the polar
part of some quadratic form. This quadratic form is defined on the
equiveriant cohomology of the map ¢ with coefficients in the semi-
simple ring B, constructed from IF,[G] by dividing out the Jacobson
radicaly in so doing we avoid algebraic difficulties.

In §4 we prove that this form behaves in a natural way with respect to
inclusions of normal maps and we show that its stable class is an in-
variant of bordism.

In the second section of chapter III we construct a map with
prescribed surgery obstruction in such a careful way that we are able
to calculate our quadratic form for it in III.3, only using the natura-
1lity and bordism properties. It is shown that in the case at hand, we
get precisely the reduction of the surgery quadratic form to B-coeffi-
cients.

According to the outline of the proof given in III.1 this implies that

that the same is true for any normal map.
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CHAPTER I

EQUIVARIANT HOMOLCGY AND COHOMOLOGY THECRY

§1. Introduction of scme categor.es.

1.1

In this sect:or we define some of the basic notions we wiil work
with. The material in the first five sections of this chapter not re-
ferring to pairs of groups has been taken from [ 1 ] and [ 2 ].
In this chapter G will always dencte a firite group.

Let QG denote the "orbit category"”, the category with
objects . sets witn a transitive action of G and a basepoint, and
morphisms + equivariart maps, not necessarily pasepoint-preserving.
This category 1s equivalent to the category w.th
objects - subgroups of G, and
morphisms : equivariart maps of tne corresponding sets G/K.

Let QG denote the category with
objects : sets with a transaitive action of G, ard
morphisms : equivariant maps.
Let MG dencte the category with
objects * sets with a G-action, and
morphisms . equivariant maps.
Finally denote by 'MG the category with
objects : sets S with a transitive action of G together with a section
s of the projection S -+ §/G, and

morphisms : equivariant maps, not necessarily preserving this section.

11


http://cateRor.es

CHAPTER T

Let A denote the category of abelian groups and homomorphisms of
abelian groups. We denote by CG resp. CG the categroy with
objects : covariant resp. contravariant functors QG »> A, and
morphisms : natural transformations of functors.
We will call an element of CG resp. CG a covariant resp. contravariant

coefficient system.

Let £ : G/H - G/K be a morphism in QG. Say f(H) = aK, then
h ak = h f(H) = £f(hH) = f(H) = aK hence a"'h a €K for h € H.

This means that f factorizes into a translation and a projection:

G/ —m———> G/a}(a‘1

l f\ 1
G/a Ha — > g/K

In particular Mor(G/H,G/H) = N(H)/H, where N(H) denotes the normalizer

of H in G. Hence a coefficient system yields N(H)/H-modules for every

subgroup H of Gj

CG corresponds to right modules and CG corresponds to left modules.

1.3.

A functor M : Eb + A of course yields a functor QG - A.
On the other hand let M be a functor QG + A. For each s,t € S € aﬁ there
is a QG morphism fst : (S,s) + (8,t) corresponding to the identity
mapping of S, hence there is M(fst) : M(s,s) 3 M(S,t).
Now we take the projective limit: M(S) = {(x) € Il M(S,s)[M(fst)xs =x,}.

_ s€s ¢
That yields a functor QG »> A,

12



CHAPTER I

An element of MG resp. 'M_ splits canonically as a sum of orbits

G
lying in ab resp. QG. Hence a functor M : QG + A yields a functor

IM : MG + A with the property that ZM(HXA) =& (IM(X,)), where | denotes
A A

disjoint union. In particular we have, for invariant subsets T, and T,

A

of S:

M(T1 n T2) = ZM(T1) n ZM(T?) and

M(T1 U T2) M(T.) + ZM(T2) as subgroups of IM(S).

1.k,

We can prove things arout additive functors N from MG to an addi-
tive category by proving *hem for a certain universal category, through
which such an N factorizes.

Let FMG be the category whose
objects are : the free abeliar groups FS generated by elements S of MG,
and whose morphisms from FS to FT are: the elements of the subgroup of
the group HomG(FS,FT) of equivariant homororphisms which is generated
by MG-morphisms. FMG is an additive category.

There exists an obvious functer F from MG to FMG and for every
additive functor N there is a unique functor N8 such that N = (N®) o F.
We define N® on the object FS as N(S); to defire N® on morphisms it is
sufficient to consider the case that S and T are orbits; it is then
easy to check that N® is well-defined by assigning £ N(f.) to & fi’

ier  * i€1
where the f. are MG-morphisms from S to T.

1.5.

More generally we can consider the following situation:

13



CEAPTER I

Let ¢ : E > G be a fixed homomorphism of groups and define Q¢ to be the
categery consisting of the quotients G/K and H/L and eguivariant maps;
H-equivariant from #/X to E/L or from E/L to G/K; G-equivariant from
G/L to G/K; none from G/K to H/L.

An arbitrary morphism is a composition of a translation, a projec-
tior and possibly a map induced by ¢. Hence a ¢-ccefficient system

{i.e. a functor + A) is determined by

4]
~¢
a G-coefficient system NG,
an l{-coefficient systen NH,
ard homomorphisms NH(H/K} > NG(GMK)for each K < H.
For each S € MH we get NH(S) and for each T € MG we get NG(T), and
ncreover a homomorphism NG(T) > NH(T).

Let M¢ be the category with
objects : pairs (S,T) such that S € MH and T € MG and T is invariant in S.
The morphisms are : equivariant maps of pairs.’

Again an arbitrary cbjlect can be split as a sum of orbits of H of

the form (S,%) and cf orbits of G of the form (7,T); hence ar additive

functor N on M¢ is determired by tke NH(S) = N(s,Z) and NG(T) = N(T,T)

for S € MH and T € MG; in fact:

s 8 W%
diagonal image of NH(T)

N(S,T) = canonically.

Again there exists a universal additive category FM¢ and a functor
F: M- FM¢, through which all such N factorize. Its objects are pairs
Applying N to the equations: (T,@) U (s5-T,8) = (S,8) and

(T,T) u (S-T,p) = (S,T) we deduce that the following sequence is

14



CHAPTER I

(split-)exact
c - %(m - s, -~ et - o
We can also see this by applying N to the exact seqguence
o =+ (PT,FT) -+ (FS,FT) = (Fs,0)/{FT,0) -+ O.
In the case that H = G 1t .s interesting to ccnsider only those N

for wh.ch NG = 0, uriversal for them 1s the category with objects the

groups FS/FT.

1.6.

Let M te a right G-roaule, that defines M€ CG ty
M(G/F) = ¥ rod span {mh-m | m € M, h € F+ and
M(1) = the canonical projection M(G/H) + M(G/K) for 1 G/H » G/K
the map xH + xK, M(1) = the rap M(G/H) - M(G/g-1hg) rapping X to Xxg
for 1 the map G/H - G/5_1Hg mapp.ng xH to xHg = xg g_1Hg.

Let M be a left G-rodule, that def.nes M € CG oy
M(G/d) = {m €M | hm = m every h € H} and
M(1) = the caron.ca. i1nclusior M(G/K; » M(G/H) for 1 . G/F > G/K the
map xH + xK, M(1) = the map M(G/g_1kg) -+ M(G/4) mapring m to gm for -
the map C/F > G/g-1Hg mappirg xH to xkg.

Note that,although left- and right modiles over G are 1n bi,ection

-1
by gr = mg , there 1s no such relation betweer CG and CG.

§2. Singalar homclogy theory.

2.1,
Let TopG be the categroy with objects topolog.cal spaces w.th a

continuous action of G, and morphisms equ.variant continuous meps.

15



CHAPTER I

We will write simply Tcp ir case G = 1. Similarly, given a homcmorpaism
¢ : H> G of groups, there is a category Top¢ wita

objects : pairs (X,Y) such that X € TopE and Y € Tch an H-invariant
subset, and morrhisms : equivariant continuous maps of pairs.

Tnere is a functor Sg : Top, » M, defired bty
T AT

5

. X) = {continuous raps : 8" > X}, A" being tre standara n-simplex.

S
Sg(f) meps 0 to f 0o. In case G = 1 we will write S.-

Similarly, there is a functor Top¢ + M defined by

¢
s?(x,v) = (£7(0),e%()

n ’ = n..,v] Y, 1)

Given ¥ € CG and X € TopG define Mn(X) oy !\‘r(X) =zv(s;(x)) =

=M GFSE(X). Tnis is called tke £oh singular chain grour of X with

fad
ccefficients in M. 1f (X,Y) is a pair in TapG and V¥ € C7 we define

Mn(X,Y) =zms;(x,1') = Mchn(X,Y); then the sequerce

0 - ME(Y) -> Mn(x) > IVn(X,Y) + 0 is exact.

Similarly for (X,Y) € Top, and N € c®, N(X,Y) = Nerfl(x,Y) is

defined and the sequence

0 - :i(y) > N (X,Y) - NS(X,Y) > 0 1is exact.

n

.

. . G o
From now on we will write Cr and Cn for FS

S5

restc. FSn; or Cr if
1

16



CHAPTER 1I

Tc deduce vreperties of these cna n greuwns from these of the
classical chain grcaps we use the following
THEOREM [ 2 ].

et Z € TorG witk triv.el G-action, then every natuaral transfor-

ration @ C {X) » C (Z x ¥X) yi1elds a natural transformation

n n
ot C;(X) > C;(Z x X) for X € Tepgs and similarly
o® x,y) - ci(z X X,2 x ¥) for (X,Y) € Top,.

Proof Let g€ Sn(AF) be the 1dertity mapping, then a(j) = L n oo

for some @, € Sr(Z x A")  That yielas ratural transformations
Sn(X) > Sm(Z x X)) bty o > (1dZ x o)oul, for X € TOPC these are egui-

variant because they are natural, hence they yield natural trarsfor-

mations o0  S°(X) » %(Z x X). Then a® = £ r.a®  FC(x) » Fs%(z x X)
1 n m 1 2 n m

1s the transformation of the theorem.

H G H G
Furthermore af = (al,al) Sﬂ(X,Y) = (Sn(X),Sn(Y)) > S$(7 x X,Z % Y)
1s natural hence yields a¢. oT D

In particular (take Z = polnt) the classical bourdary overator

G G G
4 c (x)>c (X)) yrelds 4 C (X}~ C,_1(X) and hence
G G G ,
Meada' MeC (X)s>w¥ecC .(X),that 1s M X)L (X)

DEFII ITION. HS(X,N) 1s the homology of this complex (M,(X),M 8 dE).
Simiiarly one has d and hence N ® d_ NF(X,Y) -> Nn-T(X’Y) and
Y (X,Y,0) for (X,Y) € Top,, N € c®

The properties of this homology thecry are stated in the following
THEOREM. Let M € CC,
1) HS(f,M) 1s a functor on (pairs in) TopG; from now on we will denote

17



CHAPTER I

HG(f;N) by f,.

2) If f, and f, are equivariantly homotopic then (fo)* = (fl)*.
3) For a pair (X,Y) ir Top,. there is a long exact sequence:

G G
o viry o> Hn(X;N) > Hn(

L) On QG Hg( ;M) is equal to M for n=0 and to C for n#0.

« 'G ’
XY+ En_1(Y;f) >

S) Let U = {Ui | 2 € I} be an equivariant covering of X € TopG such
that X = U int U;. Denote ty FS(U) the subcomplex of FS(X)
generatedlgi the ¢ : A" > X such that o(a") < U; for some :. Then
the inclusion FS(U) > FS(X) is a chain-eauivalence.

In particular: if (X,Y) is a pair in TOpG and if W Y is G-

invariant such that W < int Y, then the inclusion (X-W,Y-W) < (X,Y)

induces isomorphisms in 1O ( M)

Similar statements are true for H¢(N € C¢):
1) Hi( ;) is a functor on T0p¢.

2) If f. and f, are homotopic through T(,'p¢ morphisms then (fO)* = (51)*.

0
3) For (X,Y) € T0p¢ there is a long exact seouence:
> Ho(r®) - Bonnm > myad) s
) Hi(S,T;N) = 0 for n#0 and for discrete S and T,
B (s,05m) = ED(s;1) = w(s).
B (1,150) = FO(T38%) = 1%(T) and

Hg( ;N) on the inclusion (T,#) « (T,T) is equal to the map
NH(T) -> NG(T) given by N.

5) If U = {Ui | i € I} is an H-eguivariant covering of X such that
unys= {Ui ny | i € I} is a G-equivariant covering of Y then the

inclusion FS{U,U N Y) » FS(X,Y) is a chain-equivalence.

18



CLAPTEF I

In particular .f (X,Y) € Tc'p¢ and 1f W € vV 1s G-ainvariant such
that ¥ € 1int Y ther the canonical map
ri(X—N,Y—W,N) > Pi(Y,Y;F) 1S an 1somorphir for each n.

For the proof of the first half of tnis thecrer we refer to [ 2 ],
the proof of the second nalf 1s curte similar. In fact 1t 1s a direct

application of the first theorem in tnis sutsection.

2.3.
We shall have occas:or to berefit from the foilc'r.ng notaticral
corvention. For invariant parts X1 and X2 of X € TOPG we define

G G G \
Q ko) 1 a 1S3
bn{X1,X2} to be Sn(X1) L Sn(XZJ, whictk 1s contaired in, btut 1in general

smaller then SE(X1 L X2). Applyirg tre functers F, M & and the homology
functor we find Hi({x1,X2},N). Sir.larly for 1nvar:iant parts X1 ard

X2 of X € TapH and for Y1,Y2 € TOPG 1nvariant parts cf X1 resp. X2

there is defined H‘I’;({x1,x2},{y1,y2};m).
Part 5 of the last theorem states that tne canorical map

Hﬁ({X1,X2};N) > hg(x1 U X.,M) .s an 1sormorphism, for open X, and X,.

2’ 2

The same can be said for relative groups, by us:ing the five-lemra,

In particular:

G
n

N

G G v .
Ho (X)X, 00 X5M) = B2((X,X,1,X0,0) 5 FO(G U X5,X050,

the first equality by using the Noether-isomorphism on crain level.

§3. Singular cohomology theory.

We define a contravariant functor L : MG > CG vy L(S)(G/F) = F(s

the free abelian group generated by SH ={s €S| hs =s every h € H},
19



CHAPTREF I

with the obvious values or rorprisms.
According to [ 1] C, 1s ar ate. ar category, -n part:cuiar there
T
A\

15 defined an atelian grouv Tra®(L{(g),M) for ary ™ € C..
fe1

A
We defire the n“h singalar coctair group of X € Tch w>th values .r

~

c(X,1) = Trar(l o £7(X),7).

L
M€ CG to te CC

]

C:milarly there 1s a4 functor L on saclh trat

G

I’¢
L(S,T){G/K) = F{T ) ana L{g,TV(-/v) = F(S‘K) etc.,

bence for N € C¢ there 1s a groap Traf{i(S,1),"}), and we car defire
n

C¢(X,Y,h) = Iraf(L o Sﬁ(X,Y),N). For ¢ = 1d or ¥ = @ or vV = X tris
redaces tc thke former aefairizior.

-~ -
Fror row or we derote L o Sn ty _: ard L o Si ty uﬁ.

3.2.

LEMaA. [ 1],

L(S}) 1s always a projective object of CG’ ard L(S,T) cne of C¢.

P rcof. Ve note that L 1s addxt.ve, perce 1t 1s sufficiert to creck
the staterert for an orbat.

1) given the situation I vhere & = G/K 2t 1s sufficient

tc fird a lifting of _ F(

-
-

g
G

11) ar orbit of (3,T) 1s of the form {S,d) o {T,T), hence the protliem

&
A(G/K) ————— > B(G/K)

tior f r G.
reduces to situation (1) for H or G C.E.D.

20



CEAPTER I

This means that the exactness of
0 - L(7) » L(s) - L(c)/L(T) » ©

implies by arplication of Hom( ;1) the exactress of
o

o - CG

n r. R
X,Y;M) > CG(X;N) -+ cG(Y;r) - 0.
Similarly one deduces from the exactness of
o -» L(T,T) - L(5,T) - L(s,8)/L{T,¢d) > O

the exactness of
o - cﬁ(x,y;Nh)

Furthermore we remark that the L(S) constitute "sufficiently many"

> cnm) - cg(Y;NG) > 0.

projective otjects for the category CG [ t]. This rerark will make the

construction of Eilenberg-Maclane spaces for TopG possitle.

3.3.

In analogy with the first theorem of I1.2.2. we have:
THEOREM. [ 2 ].

Let Z € TopG with trivial G-action; then every natural transfor-
mation a : Cn(X) -+ Cm(Z x X) yields a natural transformation

ol Lﬁ(x) > Lﬁ(z x X) for X € Topy, and similarly

o Li(x,y) > Li(Z x X,2 % ¥) for (X,¥) € Top,.

Pr oo f. Obvious. Note that sn(xK) = sn(x)K.

From this it follows at once that the CS(X;H) form a cochain com-
plex and that the thus defined functor Hg( ;M) on TOpG has properties
similar to those listed in the second theorem of I1.2.2. for Hg( M)

The same can be said for H'( , ;N) on T0p¢.

¢
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CIHAPT=R I

§4, The cup-product.

=
—

S, 1 g TV, 0, - v QL -
Let G, and 5, be groups and le ] o, > A and 5 \Gg > A

be co- or contravariant coefficient systerms; then we find a coefficient

system ¥, 8 I, for G, x G, by the map oc1x02 > ch x QG2 + A mapping
, X G2)/H througn G,/p.H x G,/p.E to 1, (G,/p H) ® N2(G2/p2H).

(G

F A A e s { 2
From 51 € 'G, and 82 € G2 we can form Q1 x S2 € AG1XG2 and
N o E _ Pk PoFy _ 5o PiH PrH _
L(8, x §,)(G/E) = F(8, x 5,)" = F(s,71" x 5,72") = 75,717 & Fs "2 =
= _.’:*A a/E) 3
= LS1(G1/p1H) 8 LS (C2/p2 (LS, 8 LSZ)(u/h) i.e.

L(S, x S,) can be identified with LS, ® LS,.

"
Lge]
.
N
.
%
=
0
o
@
>
m
-
=3
S

In particular for &, = S (X ) and 82

end X, € Tch » 50 that we can identify &, x 8§ with Sn1 2(x. xX
2

G4y NRRL) %150 8 L2
we get: L (X, x X,} = Le (X, = x;) =18 '(X,) 8 L§ “(X,) =
G G
1 -2
L, (X)) 8L 5(x,)

In analogy with 3.3. there is the
THEOR='. A natural transformation of func:tors on pairs (X‘,X2) in Top
. ~ \ / ~ \
a:c (x)e vm(xe, -> cp\x1) 8 vq(x2,

induces a netural transforma*ion of functors on pairs (X1,X2) where

X, € TOpG1 and X2 € Tchg:
G -~ G 3 -~ G
Lo \ 2 1 \ -2
@ L, (x1, 8 L. (Xz) > Lp (x1; ® 2q (Xe)‘

Proo f:as in 3.3.

G

G -~
Firstly this tells us thret L*1(X1) ® L*2(X } has the structure of

2
a chain complex. Secondly we can apply it *tc the classical Eilenberg-

Zilber chair map (then n = m = p+qa), its homology inverse, and the two
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kemotopies of the two compositiors with the Identity. Hence there is

a generalized Eilenber-Zilter map and it still is a chain-equivalerce.

L.2.
We can use the foregoing to construct a crossproduct in cohomo-

logy:
P . q oD
HG1(X1,M1) [ HG2(X2,b2;

Gy Gz: "

v b2

H(Hom(Lp (X,)5¢) ® “om(Lq (X5)3M,))

G1 - G2 -~

M

H(Hom(Lp (X1) 8 Lq (x2),r1 [ M2))

G176z T8 M ;N 1 @M
H(Hom(Ln (x1xx2);1\1 ) h2)) = hG1xG2(x1xx2, M, @ r2),

where the third map is induced from the aforementioned E.Z. chain map.
In case G1 = C2 = G say, we can view G as the diagonal subgroup
of G x G, and by restricting to G we get a map to Hg(X1 x Xo3M, ® M2).
Finally in case X1 = X2 = X say, we can apply the cohomology of the
diagonal map X + X x X, and we get the cup-product map into HZ(X;M1 ® M2).
This cup-product has the classical properties of associativity
and commutativity, for instance:
yUx=(-1FP%(xvuy),
where 7 is the coefficient map M, & M, > M, ® My mariing a ® b to b ® a.
We can construct a mep as above for the category T0p¢; however it
has its values in an equivariant cohomology group involving a quadruple

of groups. However, applying the group diagonal we find a crossproduct:

X, a Y 5M,) > HP (X, = X

P
HY(X M) @ H(X,,Y,3

¢ ¢
and in case X, = X2 = X applying the diagonal of X we get a cup-product:

oy Yo X Y3 M @ M,),

P . a . ptq M 8
H (X,Y,M1) ® H¢(X,Y,V2) -+ H¢ (x,Y,M1 oM

¢ 2)'
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§5. The cap-product.

5.1.

Let M<G1,G > be the category with

2
objects: pairs (5,,5,), where S, € M. and £, € M_ , and with
1°v2 1 G,' 2 G,
morphisms: pairs (f1,f2), where f, is a HG morphism and f, is a M,
1 V2
morphisme

Let FM<G1,G > be the category with

2

objects: free abelian groups F(S1 x 52) = FS, 8 F&, where

(51,5 € M<G1,G2> and

5)
morphisms: homomorphisms lying in the subgroup gererated by the homo-

morphisms induced by M<G1,G > morphisms.,

2

We can view a H<G1,Gg> morrhism as a M morphism, and in case

2

G, = G2 =G as a MG morphism. Similarly for FH<G1,02>.

G1XG

In analogy with the first theorem of 2.2. we have:
THEOREM. [ 2 ].

Let o : cn(x1) 8 C (X2) > Cp(X1) ) Cq(X2) be a ratural transformation

m
of functors on pairs in Tc¢p; that yields a natural transformation of
FM<G1,G2> valued functors on pairs (X1,X2) with X1 € TOpG and

1

X, € TopG :

Gy Gy
e w
> F°p (X1) ® _sq (xz).

Again one can take the Filenberg-Zilter map as an example, or
rather its homotopy inverse (the case p = g = n+m), identifying
G G G,xG.
1 2 . 1*¥2
Fsp (x,) e qu (X,) with Fs, (X, x X5).

This yields a crossproduct in homology:
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G1 G?
B (X5M) 8 E S (Xy51,)
a G Go
A oamibe @ F5 (X} &1, 8 F8,5(X,)) =

- Gy 3,
B 8r,) e (FS, (X,) ® F3,(X,))

x

By 8 1) @ Fsi’TXG2(x1 x X,)) = E:lmce(x1 x Ao3k, ® Msis

. Gy Go
given M, € C  and M, €C°.

5.2.

If we would bhave a ratural slant-product
Gqx
pta

G G
P o 2 ol . 2 el
HG1(X1,R) 8 H (Xg x Xp5M7) > Hy (X53¢%)
then, by applying it *o the case p = a = 0 and X1 and Y? of the form

G1/H1 resp. G2/H2, we would find pairings
1 2 ;
N(G,/H)) & M(G, x G,/H, x Hy) =+ M(Gy/E,),

which are consistent with respect to QG and QG morphisms.

. ] e GixGp > G
On the other hand: if we are given N € CG , M €°C , MW EC
1

1 X Gy /Hy x H2)

2

and consistent maps N(G,/H,) ® M (G > M2(G2/H2) e

can construct natural maps

s : Hom(L(S);N) - Hom(ZM'(S x T),2M2(T)) according to [ 2 ], and

usirg this a slant-product:

G1xG.
P . 152 VAR
dG1(X1,N) ® Hp+q (x1 x Xp3M')
H(Hom(1s. (X, )50) @ (v' @ FSG1XG2(X x X))
om D 173 A p+q - 2/ 7

1 o el G
)sN) 8 (M' 8 \FSP (x,) 8 FS (X5))))

Gy
H(Hom(Lsp (X 1

1
2(x,;M),

2 Go G
H(M® 8 qu (x2)) = Hq o3

where the second map is induced by the Eilenberg-Zilber chain map of
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tre last subsection.
If we specialize to the case G1=G2=G and consider slart-products

G W
pro (X1 X X" ) > ¥

2(

HE(X1,P) ® ¥ U(XE,Ve) only, tnen consistent pairings

K(G/F) 8 N1(G/“) + M°(G/H) are recessary ard sufficient. (See [ 2 ]).
In the case X1 = Y2 = ¥, compesit or vith tre romology of the diago-

nal X + ¥ x X yields a cavr-prcduct

G
ug(X,N) 8 4P+O(X,M

1\ 5 FG(X,‘E\.
Q

5 3.
Consicer the followirg sitaation

X1€ TOUG and Y1 an invariant part of XI,
1

X2E TOPG2 and Y

Since the Eilenberg-Zilber map 1s natural we get a sum of ecuivariant

5 an invariant part of X2.

rapns
G, Ga G Go
s, () x s, (x2) > sp (x,) x S, (Xe) such that
G G G G
1 2 ooy 2
s, (x1) x s °( 2) L8, (v)) x s, (x2) maps to
G G G
~ 1 2 \ 1 2
S, (X)) x5, (vyr v °p (Y ) ox s, (X5)s

and we get a natural trarsformat.on

G1XG2/ G1XGO
« 2
F(sr {(x, x x2), S, {x1 x Yy, Y, x x?}) >
Ga G G G
\ 2 1 \ 2 1 2 \
+ F(8_ (X} x 8, (x2), sp (x1 x € (Y2) LS (Y1) x s_ (xg,)

Since moreover $ extends to a map

1 , 2
Hom(L(S1,T1),N) + For(M @ F(s1 x 85,8, x T, U'T, x 82),M 8 F(SE,TQ))

we get a slant-product

~

D G xGE ] G2 5
q (X1,Y1,h) 8 Pp+q (X, x x2,(x1 X Y,,Y, x x2},w S Hq ( )R

G, X5,¥5,M
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and for G. = G2 = G and X1 = X2 = X a cap-product:

G

2
p+a )

G(X Y3

P ) ol
Be(X, Y 3N) 8 B (X, (Y, Y 050) E(:Y,

Ir. case (X,Y1,Y2) is ar excisive triad we may replace

G v YL Gr ' Yal
p+q(x,{y1,‘2},r ) by HP+O\X,Y1 U Y sM ).

E
One can also construct cap-products in the TopA case; tut we
Y

will not go into the details.

5.L.

One can easily check that the evaluation map 5:
Hom(L(S)3;N) @ t(8 x T) » £M2(T) is natural with respect to MG mor-
phisms g : S>> 8', h : T ~ 7', Together with the fact that the
Eilenberg-Zilber map is natural and some properties of the homology
functor this yields the commutativity of the following diagram and
hence the fact that the slant product is natural. Similarly for

the cap-product.
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8<c

1%
HG(

H(CR(X;N

D oM
H(cG(x,ﬂ

M2 ® Fsg(Y))

X;N) ® H

:

G
pra

1 G
)8 (¥'8 FS_,

E.Z.

e
8 dp+q

(x x v3') «— HR(x73M)

a M

E.Z.

Yo (118 (FSiX 8 Fng)))<——H(cP(x';n) ® (v

G

naturality of the evaluation map

(X x Y31y ——— 5 uB(X';N) 8 H

naturality of the E.Z. map

1

(X x ¥)))e— H(CE(X';[\:) ® (M8 F

8 (

G

a0 Piyr.n
S pea(X % 1)) —> R(CA(X"31)

FSgX & F&

Q Q

Y)))——>N(C§(X';N)

d4Ld¥HO

I
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5.5.

Tne s_art-product is stable i.e. the follovwing diagram cormutes:

EP(X,A5L) apgm(Xx Y, X x BUA x Y{ )

G
.D, o oG ’. N A N 4‘ G _-2
hé(x,ﬂ;u) ) ﬂp+o\x x Y (X x E, A x Y};M) “Tant H;(Y,B,d )

Y]
42(X,A5N) 50 ({;x x T,A x Y},A x Y3 ”1) 3
‘G b k] p+q_1 N Y - » -9 -
n
Dy . G .ot > G .r«_ﬁ2\
HG‘X’A’N) ® Hp+0_-1(x x B, A x B; If) slant HQ"(B" ’
Proo®. [5 ]

.G Ty .
Represent 7 € HP+Q(X x Y {X x B, A x Y}t ) vy

z €M ® FS;+O(X x Y {X x B, A x Y}}, which in turn is the image of

- G
a €M 8 FS' (X xY).
p+q

P(X,A8) by y € Hom(Lsg(X,A);N).

Represent n € HG

Now 3¢ 1s represented by 3ds = a+b say, where a € M1 8 FS;+G(A x Y)

1 . .
and t € M ® FE +0(X x B), since z was a cycle. This corresponds under

g

the Kcether _somorphism to b, which represeris an element of

Hg+q_1(x x B, A x 3;¥1). Finally the slant witn n is represented Ty
¢(y 8 £.2.(b)), wkere ¢ denotes tre evaluation and F.Z. the Eilenherg-
Zilber map.

To calculate 3(nfk ) we remark tnat ¢(y ® E.Z2.(s)) is an element of
¥ o ¥sO(y) mapping to the right element ¢{y ® E.Z.(z)) of

¥ @ FS

0 Q0 Q

(Y)/FSS(B) representing n/z; herce 3(n/¢) is represented by
ay @ £.Z.(s)).

Since the evaluaticn map is natural it commutes with 3. By definition
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of the boundary operatcr 3 on a tensorproduct
a(y € E.2.(s)) =y 8 3E.Z.(s) since y was a cocycle. Furthermore

9E.Z.(s) = £.2.39s = E.2.(a+b) = E.Z.(a) + F.Z.(b) sirce F.2. is a

natural chain map. Finally ¢(y @ £.Z.(a)) = O because
£.7.{a) € ¥' & Fs°a 9 FsCy. ¢.E.D.
P q
Similarly cap is stable:
®P(x,A.;8) & HS. (X, AU A M)
G H 29' p+ 2)
}
yP G ] G 2
G(x A2,I) ® Hp+q(X,{A1,A2},N ) TS Hq(X,A1,r )
183
e
D
HG(X A2,N 8 Pp+q 1({A1,A FoAgs) h
restriction 3
EB(AL A, N AN) 8 KO ({A,A},A0;N")
giyaRy A3 p+q-1' 10023
r.oether L
p .0 G G 2
E(A,A, N AN ® Hp+q_1(A WAL N A N <ar Hq_1(A1,M )

Also a more complicated stability theorem lixe 12.20 in [ 5 ] is
true for equivariant cohomology. In proving it following the lines of
loc.cit. it is clarifying to put in some homology-groups involving the

{ } symbols, as has been done in the above proof.

§6. Steenrod operatiors.

6.1.

We recall a few facts regarding the construction of the Steenrod

squaring operations as car be found in [13,p.271-275.]
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The complex C,(X) ® C,(X) adm:ts an action of C, = {1,T} by chain

2
maps, given by T(a 8 t) = (-1)F%(1 & a) for a € C_{X) and t € (X0,
There exists a complex V, given by:
W = span (en,e;) for n > 0
= (-1 1) = _n‘ Y = a({e!') = O
d(e ) (-1) d(en) e g+ ( 1) el _; for n > 0 and d(ey) d(eo) s

this complex is acyclic and admits a free action of C., given ty

2
Te = e!'.

n n
There exists a natural C2-eouivariant chain transforration:

W, 8 Cu(X) » CoiX) 8 C,{X), uniguely determined up to a natural

homotopy. This f can be viewed as a seouerce of natural transforma-

tions Dy 2 C(X) » C(X) 8 C,{X) satisfying the ecuatiors

- k r_k -
dp, =D _; + (-1)" @D, _, + {-1)" D,d for k > 0 and

dDO = Dod;
the correspondence is given by Dk(x) = f‘(ek ® x).
According to some variant of theorem I.2.2. this yields natural

transformation , satisfying the sare identities:

e PEEN G
D, : Ln(X, > Lp(

N X} ® LS(X) for k, n, p, and a such that k+n = p+q.

Consider the map Sgp:

Hom(Lg(X);lﬂ ——ﬁ————a-Hom(Lg(X);N) -] Hom(Lg(X);V)

diag. l

Hom(Lg(X) ] Lg(x),M &M

Since a cochain ¢ € Hom(Li(X);M) is given by the values of the c(g),

where o € Lﬁ(x)(G/H), we can say that Sq is defired bty tre fornala:

<8qyc,0> = <c 8 c,D, 0> € M(G/H) ® M(G/F) for
G G
¢ € Hom(L (X);¥F) and o € Ly . (X) (G/H).
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2
Fer M € CG define C:V to te the ccefficient svystem suct that

(STM)(G/FY = M(53/3) & M{(G/F)/<par(a € L + ~ 8 a) with tne ctviods

+ N

M.

w

values on rorph.sms and let 1 ne the carcnical projection M & M - f

PROPCSITICL. v ¢ Sck maps cocvyecles to cocveles and coroundaries to co-

toundaries ard on cocyc.es 1t s additive rodulo cobourdaries (nere
n-«
+ = (=1) )

J .

P r o o f. We prove on.y tne Iirst statement.

Let ¢ € Hom(Li\X),V} suck trat 8c = C and let o € sz_k(x)(G/H)
{ ¥ = P(\ - k _
then <{-1) 8Sac,0> = <{-1) Ca,c,do> = <(=1)" ¢ ® ¢, Dkdo> =
1's
= <¢c 8 c, deo - Dk_1c - =1 TDP_10>,
vhere the first term <(c & c),3k0> = 0 anc
+

<he th.rd term <(-1}k(c 9 c),TDP_ o> = (=) kT<c 8 c,DP_1o> s can-
celled by the secord term after aoplyirg p. o E.D

Fence m o Sqn K incuces a mrap on cohorology level
n+¥
ag LE(X,V) > . (Y,Ffv), wrere * = (—1)k.
v —-

These consideratiors can te extended to thre category Tcp¢ without

further effort.

6.3.

These Steenrod scuar_ng operations nave properties similar to those
of the classical Steenrod operations

0 15 c2u
1) Sa” 1s the coefficiert map M > S, mapping a to a 8 a.

2) 5q%¢ = ple L ¢} fer ¢ € IS(X,M).

w
~—
mn
[o]
[e]
n

0 for c € Hé(K,M) 1n case k > s,
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k) Let u € HY (X,A;M) and v € HZ (Y,B;M) and let (X x B, A x Y) be
1 2 .

J

excisive in X x Y; then ﬂqu(u x v) = I Sq'u x Sq'v where 71 is

L itiEk o
the canonical coefficient map 52(M ® N) - s°M @ s°.
Proof.

1) Since for the classical D, on Ck(X) we have Do = 0 8 ¢ according

k
to [13,p.2T4], the same is true for the generalized Dk’

2) Follows from the fact that Dy = (E.2. map)(diagonal map).

3) Is obvious.

4) Is proved by paraphrasirg the proof in [ 13 ] of the corresponding
statement for the classical operations, as we have done already for
their construction. Q.E.D.

Remark: According to the argumentation in [14,p.2-3] it follows from

(4) that the qu commute with the coboundaery operator in the long exact

sequence of a pair, and hence with the suspension isomorphism.

6.4,
We are going to prove a property which has no classical counter-
part.

For M € CG define AEM to be the coefficient system such that

(AfM)(G/H) = span(a ® b ¢+ b ® a) c M(G/H) @ M(G/H) = (M & M)(G/H).

Hence there is an exact sequence:
0 » MM 5 MeMm - s 4+ o0

the Bokstein operator appearing in the corresponding long exact
sequence of cohomology will be called B.

. . +k+
THEOREM. The following diagram commutes up to a factor (-1)" k+1,
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n L ontk, 2
HG(X;M) ” —> H. (X,SiM)
Sq
+
qu ! B
Hn+k+1(X;S2M) 1+ T R Hn+k+1(X;A2M)

where 1 * T denotes the obvious coefficient transformation; * = (—1)k.

Proof. For x € HE(X;M), represented by the cochain c,
k. . * k *
Sa"x is represented by p o Dn-k(c ® c), hence B o Sq x by GDn_k(c ® c).

On the other hand (1 # T)qu+1x is represented by (1+(-1)kT)D;_ (c 8 c).

k-1

Now we have <(1+(-1)kT<D;_k_ (¢ ® ¢),0> =

1

= ko ¥ _
=<c®c,D , o>+ (-1)°T D, .(c®c)o>=
= k+n =
=<c®c,D , 40>+ (-1)" "<c 8 c,TD 0> =
k+n-1 k+n-1_._*
=<c 8 c,an_ko> + (-1) Dn—kd°> = (-1) <5Dn_k(c ® c),0>

because the first term vanishes since é(c 8 c¢) = 0. Q.E.D

6.5.

Cne can iterate the result of the preceding subsection.
For M € CG define the coefficient system AfM by the formula:
(AfM)(G/H) = kernel of (1 + T) ¢ M(G/H) ® M(G/H) » M(G/H) & M(G/H).

We have a commutative diagrem:

k
. Sq n+k,. .2
Hg(x,M) > Hy (X387M)
o K lB
n+k+1 2 147 n+k+1
)
5g¥*2 By (X3820) ————— g (x,Aiw)
lB lc
n+k+2 2 n+k+2 2 n+k+2 2
_— _—
B (X,StM) = R, (X,A;M) 3 He, (X,AiM)

3b
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Here C is the Bokstein operation associated with the exact sequence
o -~ a?M -+ mMeMm -+ %M > 0 andj is the obvious coef-

ficient map.

. . . +
This means that there is a relation between qu and qu 2;

+ .
k+2 CoBo qu. Hence if we go further, from

Jof{1 £T) o Sq
AEM to M @ M, then the composition vanishes; so certainly the Sq

vanishes after multiplication by 2.

§7. Functional operaticns.

Consider ¢ : H> G as in 1.5.; let X € TopH, Y € TOpG and let
f : X~> Y be an H-equivariant continuous map. Denoting the cone on X

by CX we have (Y U fCX,Y) € Top¢. Hence for any N € C, there is a lorg

¢

exact sequence:

8

§ n . . R, .G
> H¢(Y L fcx,Y,N) > HG(Y,N ) =S

S HMY U X, Y;0F)

Now we can identify HE(Y U fcx,Y;HN) with HE_1(X;NH) and using it, §
* . - . n, G n H
corresponds to f o R, where R is the transformation H,( ;N ) > HH( 3N

given by N, as we see from the diagram:

n-1 G [} n H
H, (Y;NT) > HH(Y U (CX,Y3N )
x* *

f'R Diay.yil f
n-1 H n H
Hy (x;N87) 3 HH(CX,X;N )

Hence abbreviating H:(Y U fCX,Y;N) to H:(f;N) we find a long exact

sequence
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x;nh 3 H;H(f;N) >

*
n G fR n
> HG(Y,N ) > HH

If w is a cohomology operation of degree k which is defined for
Top¢ and which is stable then w connects two long exact sequences to a
commutative ladder. Examples of this situtation are coefficient homo-

morphisms, Bokstein operations and Steenrod squaring operations.

n-1,, .G > =ty 5 gnge. > uhiv.xC 5> ylyy. ol
(¥;37) 5 g (KGN ) 3 H¢(f,N) > HG(Y307) R H (X00)

A

_ _ 8 J
Hg+k 1(Y;MG) N H;+k 1(X;MH) > H$+k(f;M) > Hg+k(Y;MG) > Hn+k(X;MH)

Chasing this diagram we see that 5w

H

-1 . .
defines a homomorphism

Gy

¢J
from the subgroup ker Wg N ker f*R of Hg(Y;N
(

to the quotient coker
wH,f*R) of H;+k_1(X;NH). Henceforward this will be called the
functional operation we associated to w and f.

Of course there is also a functional operation in the case that only

one group G is involved.

T.2.
Let w and § be stable Top¢ cohomology operations such that

Q2 o w is defined and equal to 0 and consider the following situation:

X € TopH, Y e TopG, Z € TapG, f:X+>Ya TopH morphism ard
g:Y+7Za TapG morphism such that g o £ is TopH homotopic to a con-
stant map.

This homotopy induces TopH maps s : Y U fC)( +~Zand t : SX » 2 UgCY.
THEOREM. In this situation one has:

* * v
QH [} w¢ og =f oRoO QC o} wG.
f g
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Proof.

1) Both sides are defined on the same group:

. . -1
for the left-hand side that group is (g*)" (ker (wG,f* o R)),
for the right-hand side that group is (mG)_1(ker (QG,g*));

).

both groups are equal to ker (g* o wg

2) Both sides have values in the same group:

. . *
for the left-hand side that group is QH coker (mH,f o R),
for the right-hand side that group is f* o R coker (QG,g*);

both groups are equal to coker (QH o £* o R).

3) The fact that the maps on both sides are equal follows by diagram
chasing from diagram (a) on the next page, once we know the diagram

to be commutative.

The commutativity of the outer squares follow from the naturality
of w and 2. The middle square consists of the maps on the outside
of diagram (c) on the next page, which is easily seen to be commuta-
tive. The lower triangle is similarly exemplified in diagram (b) on
the next page. Finally the upper triangle is the result of applying

the functor H;( , 3N) to the triangle of Top¢ maps:

CX,Y) _(s.8) (z,2)

//12:3)

(Y,Y)

(Yu £
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*,, G
HG(Z,N1)
E 3
|\ e
G B (e 3N )— 1 (1;00)
“’1 ¢t G
G
H (g,N y ———> HG(Z,N2) o
N tR s
G
Q ‘H »
) .
HH(X’I‘z) _ H¢(f,N2)
. X
Hg(g;Ng) N diagram a.
No
s s t\R\
x G
. SN
hG(Y N2) R H, (X;ND)
HO(Y3N )“‘S—W"H(z v;n%)
R lR diagram b.
. 8
H;(Y,NH) —————— > Hy(2,Y;80)
Y
£* HY' (2 U X TY x 1 ) ——— i (2 UgCY;NH)
i |
4 o » .
H;(X;NH)—G-—> n+1(cx x;8H) HE (sx;N™)
1 +1,, G
H Y(2,v;80) — n{;“" (z,2,8) = B (z;3%)
diagram c i (
'R 1
y Y
+1 'H _____ +
s iR i 2,08 >Hf;‘: (Z,Y;N)
H |
V v
+1
HE(X;0) H'“H” X, ) e— g™ (v U CX,Y'NH)—>I{$+1(Y U ex,Y;N) = (£,5%)
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7.3.
In this subsection we calculate the functional operation in an
example:
THEOREM. Consider a TOpG morphism £ : SX + Y and let M € CG and
y € HS(Y;N). Denote by t the coefficient homomorphism

14+ (=1)"'r : M M>M8& M. Then we have

-1 1

ST o tf(y Uy) = (-1)n_1S_1 o f*y Us ' o £*y, modulo indeterminacy.

Proof. 1) The functional operation t, 1s defined on y " y-

f
t(y U y) = O because of the commutativity of U, and

f¥(y U y) = 0 since cup-products vanish for a suspension.
2) We may assume f to be an inclusion without loss of generality.
Let y be the image of ¥, € HZ(Y,C+X;M), which 1s represented by the

cochain n1. Since C™X 1s contractible, there exists a cochain v, on

1

C™X such that Gv1 = n1|C—X, there exists & cochain w on Y extending

vy
n-1
(

G X;M),

3) Since 6(v1|X) = n1|X =0, v1|x represents an element in H

1n fact the element S-1f*y, as is seen from the diagram:

n-

{v1} € HG

YxsM) ¥,lCTX € B (CTX, X5 M)

!

y,lsx € Hg(SX,C+X,M) > ylsx € Fy(sx;m).

L) Since n, = n,-éw vanishes on C™X 1t represents an element

2n
o

maps toy Uy € Hgn(Y,M@M) hence can be used to calculate tf(y uUy).

v, € Hg(Y,C'X;M) which maps to y € Hy(Y;M). Then y, Uy, € H Y,5X;M8M)

According to §k T(y1 U y?) = (—1)ny2 Uy,

1

5) We calculate the S of S_1 o f*y Us o f*y, which is represented

Uv,. To this end we extend it to a C X cochain: w U w.

by v, 1
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Then we take the coboundary: $w U w + (—1)n-1w U 8w. Finally we extend

-1
Y v u -

to a cocycle on SX which vanishes on C+X Ty Uw+ (-1
6) To show that this cocycle represents tf(y Uy) = 6_1t(y1 v y2) we
have to evaluate § on it.
To this end we extend it to a cochain on Y : ngUw+ (—l)n_1w Un,.
n n-1 .
Then we take the coboundary: (-1) n, U dw + (<1)7 sw U ny; since
. -1
§w = ny-n,, this equals (-nt (n1 Un, = n, U n1)-
On the other hand t(y1 U y2) =y, Uy, + (-1)n-1T(y1 u y2) =

=y, Uy, ¢t (-1)“'1(-1)“(3'2 Uy, Q.E.D.

Remark: For any x € Hn-1(X;M) the indeterminacy subgroup of

G
Hgn_](SX;M ® M) contains St(x U x) = 25(x U x) hence the sign occuring

in the theorem is immaterial. Furthermore there is no need to worry

about the sign in the definition of the suspension isomorphism S.

§8. Cellular homology and cohomology; obstruction theory.

8.1.
We define a G-complex X to be a CW complex on which the group G
acts by cellular transformations. For any invariant subcomplex A of X
(X,A) is celled a G-complex pair. According to [1,p.I.1.] such a pair
has the equivariant homotopy extension property (denoted HEP) and in
. G _’]XG
particular one has Hn(X,A;M) = n(X/A;M).

For such an X let w_(X) € MG be the collection of cells of X of

i)

n

w_(X1). Let X" denote the n-skeleton

dimension n; notice that wn(X)H n

of X. Then Hn(x“,x“'1) = Fv_(X) € FM, and
a .. :H_ (X

n n n~1, . . . .
o+l o1 ,X°) > Hn(x , X7 ') is an FMG morphism; in particular

Lo
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M® dn is defined.

8.2.

We now define the cellular homology of X with coefficients in

M€ c© HWi(X;M) to be the homology of the complex
(M 8 Fu,(X), M®4d,).
THEOREM. There is a natural isomorphism
G ~ G
HW_(X3M) = H_(X;M).
Pr oo f. The statement follows in a purely algebraic fashion from

1;M) in a

the fact that M 8 Hn(x“,x“'1) is isomorphic to Hg(x“,x“'
way respecting the boundary operator d. The algebra can be found in

(5, v.1.] Q.E.D.

8.3.

We define the cellular cohomology of X with coefficients in

M€ CG HWS(X;M) to be the homology of the complex formed by the

groups Traf(L o wn(X);M). Here the boundary operator of Lw,(X) is
defined from the homology sequence of the triple ((XH)n+1,(XH)n,(XH)n_1)
using the identification:
L o w (X)(G/H) = Fw_(X)" = Fw (X
THEOREM. There is a natural isomorphism

ng(x;M) = Hg(x;m).
Proo f. According to [ 1 ,IV.L.] Traf(L o wn(X);M) is isomorphic
to Hg(Xn,Xn_1;M) in a way which respects the boundary operator.

The statement is an algebraic consequence of this fact as the follo-

wing reasoning, modelled on [5, V.1.] shows. One does not need a spectral
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sequence as in [ 1 ]. Consider the diagram:

n-1 n-1 n—2 n,.n+l _k
Hg Ho (X, X75M)
l ; \\\\\\\Eils l
a* 1 it
“' Koy — 2 Sy — > Hg(xn,xk;m) - 50
l \\\\\ 1 la*
n+
3
v \\\\\* n+1(xn+1 k;M)

The diagram is commutative with exact row and columns.

+ .
Hence we have: HA(X,X5;1) ¥ u2(x™ 1, x¥;M) ¥ ker %= i*(ker 3™*) =

G G

+ . -
n+1) 2 ker 3n+1/ker i* = ker 3" 1/1m ?* = ker 3n+1/1m "

im(i* ker 3

since j* is onto. The last quotient is HWE(X;M) by definition.
Q.E.D.

Of course there is also a cellular theory for Top¢ complex pairs.
In fact that is a special case of cohomology with coefficients in a

"local coefficient system" as in [ 1 ,I.5] by using e functor
8 : K~ Q¢.

8.4,

We recall some of the facts concerning equivariant obstruction-
theory according to [1 , II.1-3.].
Let Y € TopG with invariant basepoint Yo such that YH is arcwise con-
nected and simple for each H « G. Define gt(Y) € CG by
mn(Y)(G/H) = nn(YH,yO) with the obvious values on morphisms.
THECREM. Let £ : K" UL + Y be & Top, morphism, where (K,L) ie & G-
complex pair. Then there is defined (cf} € ng+1(K,L;mn(Y)) which only

depends on the homotopy-class of f]Kn-1 U L and which vanishes if and
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only if £|K™ ' U L can be extended to K**' u L.

By repeated application of this theorem one finds for Y such that
xn(Y) =0ifn# r and n < dim (K-L):
THEOREM., Let £ : K + Y be equivariant; then equivariant homotopy-clas-
ges (relative L) of maps g : K ~ Y (such that g|L = £|L) ere in bijec-
tive correspondence with elements of
HWE(K,L;xn(Y)) by the correspondence g + w"(g,f).
(For the definition of w in terms of ¢ we refer to [1 ].)

In particular one can take f to be a constant map in case L = {;
in thet case we write xn(g) instead of mn(f,g). Furthermore ¢, and

hence x, is natural with respect to cellular maps.

In particular we have in case Y is a G-complex, and writing

xn(Y) for Xn(idY) : xn(f) = f*xn(Y)-

Now we have the
THEOREM. If M € CG there exists a G-complex K(M,n) called the Eilenberg-

Maclane G-complex of M such that qu(M,n) =M for g =n and 0 for q # n.

Combining these facts with those in the preceding subsection we
deduce:

THEOREM. The correspondence g - g*xn(K(M,n)) induces a bijection between

n

[K,k(My,n))] = the set of equivariant maps X + K(M,n) end HG

(X;M).

Henceforth we will abbreviate xn(K(M,n)) to Xq®

8.5.
We need the following theorem, of which Proposition II.T.1. in

[ 1] is the special case X = point:
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THEOREM. Let X and K be G-complexes and let f : X - K be an equivariant
A " ~ . . .

map such that wq(f) : wq(x) > mq(K) is an isomorphism for q < n-1 and a

surjection for q = n-1; then there exists a K' ® X of the equivariant

homotopy-type of K such that K'-X has no cells in dimensions less then

n.

P r oo f. Applying a homotopy if necessary we may assume that f is
cellular. Then by replacing K by K g X x I we may assume that X < K.
According to [ 1, II.5.2.] it follows from &q(x,x) = 0 for
q < n-1 that for L = X U Kn-1 the inclusion L € K is equivariantly
homotopic (relative to X) to amap p : L + X. Now K is a retract of

KULxTIUZX.
P
According to [ 1, I.1.]: K x OULx I <K x I is a strong defor-

mation retract, hence K x QUL x I/Lx 1+ XcKx I/Lx 1~ Xis a
D P
strong deformation retract. However K x 1/L x 1 v Xc K x I/L x 1 & X
P P
is also a strong deformation retract., Hence K UL x I U X is equi-

variantly homotopy-equivalent to K/L ~ X and there are maps
P
¢
¢, : K >K/L~X v, K as in the proof of II.7.1. in
P
Now one copies that proof starting with the fifth line on page II.18.1.

with K/~ replacing K/L. Q.E.D.

Remark: Furthermore the diasgram:

X— K commutes up to equivariant homotopy.
n
Kl

4"

COROLLARY. With the same assumptions we have:
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Hg(X;M) > Hg(K;M) is an isomorphism for q < n-1 and a surjection for
q = n=-1, for any M € CG.
H%(X;M) - Hg(K;M) is an isomorphism for g < n-1 and an injection for
qQ = n-1, for any M € CG'

8.6.
Consider the specialization at G/H:
ro: Traf(LSi(X);M) > Hom(Sn(XH);M(G/H)). This induces a natural and
stable transformation r : HE(X;M) > Hn(XH;V), where V = M(G/H).
On the other hand an equivariant obstruction-problem f : X > Y
H

yields by restriction an obstruction-problem f|H : xH o Y.

Inspection of the definition of c, shows that r(e.) = c(fIXH); the same

f)
is true for x. Hence if x € Hg(X,M) classifies £ : X » K(M,n) then

r(x) € Hn(XH;V) classifies f|H : XH

> k(M,m).

In particular: if £ : SK(M.n) » K{M,n+1) is classified by
Sx(K(M,n)) then £|H : SK(V,n) -~ K(V,n+1)} is classified by
rSx(K(M,n)) = Srx(K(M,n)) = Sx{K(V,n)).

PROPOSITION. If £ : SK(V,n) » K(V,n+1) is classified by Sx(K(V,n))
then f induces in ﬂq isomorphisms for g < 2n and a surjection for
q = 2n+1,

Pr o o f. Since the adjoint map of £ : K(V,n) + qK(V,n+1) induces

isomorphisms in the homotopy groups, it does so in the cohomology

groups, hence the suspension does so too.

. . . £
Since the following diegram commutes: SK(V,n)———— K(V,n+1)
if suffices to consider the evaluation Sad f evaluation
map E.

SQK(V,n+1)
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According to [ 6 ] and [11], E is homotopy equivalent to a
fibration the fibre of which is homotopy-equivalent to
QK(V,n+1) * 9K(V,n+1); this is & join of (n-1)-connected objects hence
2n-connected.
Hence E induces isomorphisms in nq for q < 2n and a surjection for

= 2n+l.
q = 2n*1 Q.E.D.

COROLLARY.Then the f : SK(M,n) = K(M,n+1) as above does the same for
$q hence according to the last subsection for any M,N € CG the mep

a . £ a R . .
HG(K(M,n+1),N) HG(SK(M,n),N) is an isomorphism for q < 2n and a

injection for g = 2n+1,

8.7.
Consi . o o k
onsider the map H, : S (M,q) » K(M,q+k) classified by S Xq*

Then the following diagram commutes up to equivariant homotopy:

Sk-1H1 : SkK(M,q)————————> S

k~Tk(Myq+1)

- s

H : SkK(M,q) K(M,q+k)

Let t be the coefficient map 1 + T : SiM > M@ M, where % = (—1)q.

It follows from the fact that the functional operation associated

to t is natural, that modulo indeterminacy one has:

+1 +1
Pl ) =t (8¢ ).

*®
tsk-1 (H a+k Hk a4k

H1 k-

. . . . . - *
The indeterminacy on the left is equal to im t + im (Sk H) ; the one

on the right is im t + im H . To show that both are equal, one needs to

*
K
know that the following map is an isomorphism:

L6
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. H§q+k(K(M,q+k);M9M) > HSQ+k(sk'

1 -
ko1 K(M,q+1) ;s M8M) .

That this is true follows from repeated application of the corollary

in 8.6,

+1 +1 -
q = 549 H* - sqq+1sk 1X

_ k=1, g+
Xark ~ 7% Fror¥qux =S5 87«

. *
Since Hk_1Sq g+
the left-hand side of the above formula is equal to Sk_1tH (Sq

2 2 !
to S_M we find this to be
q+1 ¥

q+1

q+1
Xq+1)’
. q+1 . .
and since Sq° ¥ 1s the reduction of x

k-1(

q+1
2
c1)

We have proved the following:

2 .
equal to S Sx°) = Skxq, applying I.7.4,

q+1 - ck
THEOREM. tHk o Sq Xq4k s (xq U Xq)'

§9, Maps to a suspension.

9.1.
Let Y be a G-complex and X € TOpG. We are interested in equiva-
x
riant maps £ : X > SY. Iy € Hg(Y;M) such that £ (s%y) = 0 we con-

sider the classifying map Yy : ¥+ K(M,q) of y and we denote

skyy of : X~ SkK(M,Q) by F.

. +1 .
We define wf(y) to be ng (Skxq) and we study the behaviour of

¢ in this section, For later reference we now state a property of ¥,
which is found by combining 8.7. with T7.2.

PROPOSITION. ty(y) = £'s%(y U y).

*x*
Proof. tw(y) =t Sqq+1(Skxq) = F s¥(

k
Uy ) =t*s%y uy).
P Xq Y Xg (y Uy)

9.2.

We are going to study wf(x+y). We define
&
(

m : K(M,q) x K(M,q) + K(M,q) by the formula m*(xq) = pr:(xq) + pr, Xq)'

L7



CHAPTER I

Then if Yy and Yy : Y » K(M,q) classify x resp. y, the map

mo (y, x Yy) o (diagonal map) : Y > Y x Y > K(M,q) x K(M,q) + K(M,q)

X
is classifying for x+y since

. * x
(dlagonal)*(yx x Yy) my =

q
= (diagonal)*(y  x Yy)*(PT:<Xq) + Pr;(xq)) =
= (pr.I o (yx x Yy) ) diagonal)*(xq) + (pr2 o (Yx x yy) o diagonal)*(xq) =
= Y;(xq) + y;(xq) =x +y.
Therefore we study the composition:
Sk(m o (yx x yy) o (diag.)) o f = s¥m o Sk(yx x yy) o Sk(diag.) o f.

We note that for G-complexes A and B with basepoint the natural equi-
variant map SA v SB v A * B > S(A x B), where * denotes join, is an
equivalence, This follows from the well known non-equivariant version
using theorem 8.5. or [ 1 ,II.5.5.].

Furtherrore we note that suspension S commutes with one point union v
(up to a natural equivalence).

Hence we are led to a diagram:

x > s o Sy xv) > sM(k(M,Q) x k(M) > sfK(M,q)

\\\\ I ' I /////
sfyvsfyy »  s¥k(M,q)vs*K(M,q)v
s Ty *v)  s¥N(k(M,q) * K(M,q))

where we have a wedge of three maps in the lower row.

9.3.
PROPOSITION. Consider TapG morphisms X I, sY & 7 where €& =8,V 8y

then:

L8
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i) (g o £)*(z2) = (g1 o £)*(z) + (g, 0 £)*(2).

ii) For a natural operation w one has:

(z) =w_ .(2) +w_ .(2), in the sense that the left-hand side
8,f gt

is defined whenever the right-hand side is, with smaller indeterminacy.

mg of

Pr oo f. Obvious.

Applying this to the factorization of the F associated to x+y in
9.2, we conclude that wf(x+y) equals the sum of three terms, two of
which are wf(x) and ¢f(y). The third one can be identified with the
functionel square associated to the composition:

k-1
k (

X » 8% > s k-1

Y *y) » s5Nk(M,q) * k(M,q)) + s¥K(M,q).

The last map here is the (k-1)th suspension of the Hopf map H(m) con-
structed from m.

In the subsections to come we will prove that already H(m)*(qu) = 0.
Hence we can calculate wf(x+y) by combining naturality of the functional

square with the calculation of ng?;)(qu).

9.k,

In chapter II we will use the following version of the foregoing:
Let ¢ : H > G be & homomorphism and let M € CG. Then H acts on X(M,q)
by using ¢. Moreover K(M,q) can be viewed as the Eilenberg-Maclane com-
plex of the MH € CH defined by MH(H/K) = M(G/¢K) etc. In fact M even
yields an element of C¢.

Now consider an H-complex Y and X € TopH and an H-equivariant map

fi:X-~> SkY. Then given y € H;(Y;MH) we can define ¢(y) by using the

kg
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Top¢ version of the functional square. Everything done so far remains
true and we are led to the same problem as in 9.3. since K(M,q) is a

G-complex and H(m) is G-equivariant.

9.5.

We define H : SK(M,q) - K(M,q+1) by the formula H*(xq+1) = qu.
We have the adjoint equivariant map ad H : K(M,q)+ QK(M,q+1). We can
view H as the composition E o S(ad H), where E denotes the natural

"evaluation" map S QK(M,q+1) > K(M,q+1).

PROPOSITION. The following diagram commutes up to homotopy:

m

K(M,q) x K(M,q) — K(M,q)
ad H ad H
loop sum £
QK(M,q+1) x QK(M,q+1) — K(M,q+1)

Pr oo f. We show that the two compositions have adjoint maps which
are equivariantly homotopic. This is done by noting that they classify

the same element of Hq+l(S(K(M,q) x K(M,q));M).
G Q.E.D.

9.6.

We consider the situation where we are given K,L € TopG with base-
point and morphisms m : K x K > K and j : SK + L such that
KxK——" 5 K commutes up to equivariant homotopy

lad J lad 3
£
QL x QL —> QL

where £ is the loop multiplication.,
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PROPCSITION. There exists an equivariant homotopy A from
E o H(£) : QL * QL » SQL + L to a constant map.
Proof, DefineA : I x1IxQLx QL+~ L by the formula
Mu,v,0,7) = fo(2v + u) for 2v +u < 1,

t(2v = u - 1) for 2v ~u > 1,

basepoint for 1-u < 2v < 1+u,

Then A{u,v ,0,17) does not depend on T for v = 0 and does not depend on

o for v = 1 hence A induces a well-defined map I x QL * QL » L.
Q.E.D.

We conclude that we can extend E to & map

EUA:SQL U c(eL * aL) » L.
H(L)

Since the Hopf construction H( ) is natural, the following diagram
commutes up to an equivariant homotopy h:
K *K ___ligll__, SK
J
ad j S(ad j)

H(L) E
—_—

QL * QL sQL, —————» L.

Hence the map j o H(m) : K * K + SK + L is homotopic to a constant map;
this homotopy, N, is the composition of h and A(ad j * ad j).

. *_ % . . . .
In particular we have H(m) H1x = 0 in the situation of 9.5.; this

q+1

justifies the statement in 9.3.

9.7.
PROPOSITION. Let L € TopG with invariant basepoint p then
d0oE :SAL~+L~>LxL (where d denotes the diagonal map)

is equivariently homotopic to a map into L v L.
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Proof.Wedefinel : I xIx L~ L x L by the formula
r(t,v,0) = [ (o(2v),p) for 2v < 1-t,

(p,o(2v=1)) for 2v > 1+t end

(o(v-3t+3),0(v+it-3)) for 1-t < 2v < 1+t,
This ' is continuous and I'(t,v,0) = p for v = 0 or 1, so induces a
well-defined map on I x SQL, Q.E.D.

A fortiori: denoting the diagonal L » L A L by A, we see that

A o E is homotopic to the constant map by
I{t,v,0) = ol(v-3t+3) A o(v+it-3) for 1-t < 2v < 1+t,

P A p otherwise,

The composition of this homotopy with H(£) : QL *QL > SQL, which

maps (v,0,7) to (v,ot), looks as follows:
o(2v-t+1) A a(2v+t=1) for 1-t < 2v < t,
1(2v-t ) A o(2v+t-1) for t < 2v < t+1 &nd 1-t < 2v < 2-t,
T(2v-t ) A t(2v+t-2) for 2-t < 2v < 14t,
p A p elsevhere.
We extend this as follows:
THEQREM, There exists an E such that the following diagram commutes

to equivariant homotopy:

SQL U C(9L * aL) _—EU—A—» L
H(L)
collapsing map c. A
E
S(QL * QL) > L AL

up

Pr oo f, On SQL the composition E o ¢ will be the constant map and

the composition A o (E U A) is AE; we take the homotopy to be the T
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constructed in the above proposition. The composition with H(£) yields
a homotopy for QL * QL; we want to extend it to the whole of
c(qL * qL),
We define P : I x I x I x QL x QL » L A L by the formulas:
P(t,u,v,0,1) = (i)o(u+ev-t+1) A olu+2v+t-1) for the
(t,u,v) such that 1-t < u+2v < t;
(ii) v(2v-u-t) A 1(2v-u+t-2) for the
{(t,u,v) such that 2-t < 2v-u < 1+t;
(iii) t(2v-u~t) A g(2v+u+t-1) for the (t,u,v)
such that 2v > utt > 2v-1
and 2-2v > u+t > 1-2v,
(iv) p A p elsevhere,
One easily checks that the formulas yield p A p in case one of the
inequalities becomes an equality and that the domains defined by the
inequalities only intersect in such points. Hence P is well defined by
these formulas.
For v = 1, which can only happen in the second and the fourth case,
P does not depend on o; likewise for v = 0 P does not depend on T.
Hence P yields a well-defined map I x I x QL * QL - L A L
For u = 1 we find p A p. Hence P yields a well-defined map
I x C(QL * QL) > L A L, For u = O the formulas for P coincide with those
for T. Hence P yields a homotopy extending T.
For t = 1 (first, second and fourth case) we find
Ao{u+2v) for (u,v) such that u+2v < 1,
At(2v-u-1) for (u,v) such that 1 < 2v-u,
P A p elsevwhere,
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which are just the formulas for A o A. Hence the homotopy starts right.

For t = 0 (third and fourth case) one gets 1(2v-u) A o{2v+u-1)
for the (t,u,v) such that 2v > u > 2v-1, 2-2v > u > 1-2v, and p A P
elsewhere, We define E(u,(v,0,7)) by this formula;

this is possible because it yields p A p for u = 0 or 1, Q.E.D

We may replace the E in the proof by a homotopic one; we shall
use the one defined by the less complicated formula:
E(u,{v,o,t)) = 1(v) A o(u).
From this formula one sees that E can be factorized as follows:
(EAE)oW:S(QL*QL) +» SQL ASQL » L AL,
where W maps (u, (o,v,1)) € S(QL * QL) to (v,t) A (u,0) € SQL A SQL;

in fact W is an equivalence for L a complex.

9.8.
We define a map J : SK U C(K * K) -~ SRL U C(QL * QL) as follows:

a) On [3,1] x K * K by the formula

J (t,(s,x,7)) = (2t-1,(s,ad j(x), ad j(y))).
b) On [0,3) x K * K by using the homotopy between

S(ed j) o H{m) : K * K > SK + SQL and

H(L) o (ad j * ad j) : X * K » QL * QL » SQL from 9.6,
c) On SK by S(ad j).

Then the following diagrams commute:

SK U C(K * K)
J T L

EUA
SQL U C(oL * QL)’//
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collaps c

SK U C(X * K) S(K * X)

J

SQL U C(QL * QL) — = > s(QL * QL)

vhere the map on the right side of the diagram is defined to be the
sum (in S-sense) of S(adj * adj )and the constant mep, hence is
homotopic to S(adj * adj).

We may now draw the following conclusion from theorem 9.7.:
THEOREM. In the situation described in 9.6. there exists a diagram

which commutes up to homotopy (everything equivariant):

JUN

SK UC(K * K) - L

collaps ¢ diagonal

s(K*K)w—>sxASK—j"—j>LAL
9.9.

Let A,B € TopG with invariant basepoint and M € CG.
Then the long exact sequence

HS(AAB;M) > HG(A x B3M) > HO(A v B3M) ...
splits in a natural way.

Moreover for a € Hg(A;M1) and b € Hg(B;Mz) such that p,q > 0,
axb= pr:a ] pr;b € Hg+q(A x B;M1 8 M2) maps to O in Hg+q(A v B;M‘@ M2).
Hence there is a canonical element, say a A b, in Hg+q(A A B;M1 ] M2)
which maps to a % b.

Now we are ready to calculate ng?;)(qu), as announced in 9.3.

To this end we remark that in the definition of the functional
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operation on a pair (X,A) we may interpret the coboundary operator §

1
Hy(AsM) > Het

G (X,A;M) as the cohomology of the natural collapsing map

X U CA > SA preceded by the suspension isomorphism. Accordingly we
calculate the suspension of SqH( )(Sx ).
Consider the following diagram, where K stands for K(M,q), L for

K(M,q+1), and j for Hy:

q+1
/;,qu € Ho  (SK; M)

oM - A
/J///’
+1 j
Xqe1 € 3" (LM) (jun) B3 (sk U c(k * K); M)
lsqq+1 Sqq+1
. * v
Xger U Xga1 € o2 (1,;5%) (jun) > 1532 (5K U G(K * K);57M)
A
*
TA c*
A € H2q 2(L A L'SQM) —'—E*——>H2q+2(S(K * K);5°M)
Xq+1 Xq+1 i G
-7
RS e
l(w) ¥
="
202 (o¢ A sK382M)

S A Sx_ € H
Xq Xq

The column on the right indicates the construction of S SqH(m)(Sx ).
The upper square in the diagram is commutative because Sq is natural;
the lower square and triangle are precisely the cohomology of the com=-
mutative diagram of maps in 9.8.

We can take the image of Xgt1 in Hg+1(SK U C(K * K);M) as the 1lif-
ting of Sx to Hq+1(SK U C(K * K);M) we need, since H1( q+1) = qu.
Hence S qu( (Sx ) is just the image of Sx A qu under W.
+1

THEOREM., SY (m

H )(SX )= x *x .

q q
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In the situation of 9.3. this implies that
ng?;)(Yx * Yy)(qu) equals the image of S{x A y) in H§q+1(K * K;SzM).
Since the composition SY = Y * Y > S(Y A Y) is equal to S(A) we get
for the functional Sqq+1 of qu associated to the map SY -~ SK(M,q):
SA*(x Ay) =8(xUy). Hence the third term of wf(x+y) is equal to
f*Sk(x Uyl

THEOREM. ¥.(x+y) = yp(x) + y(y) + £*s¥(x u y).

§10. Equivariant Cech cohomology.

10.1,

Consider a linear action of G on IR". Then an invariant X c IR"
will be called a G-neighborhood retract (GNR) if there exists an in-
variant neighborhood U of X and an equivariant retraction r : U » X,
PROPOSITION. Let X < IRm be a GNR and let Y c IR" bve equivariantly
homeomorphic to X; then Y is a GNR.

Pr oo f. We have the equivariant maps i : Xc U, r : U » X and
j:Uc IR®. Since X is a NR it is locally closed hence locally com=-
pact; hence Y is locally compact and therefore locally closed. We
write Y = C N V with C closed and V open; by replacing C by g gG and
V by g gV if necessary we may assume that C and V are invariant.

The Tietze Extension Theorem applied to the closed Y in V states
that there exists a continuous £ : V - IR™ such that flY = jo1ioh,
where h is the homeomorphism Y + X. Then f defined by
F(x) = |G|-1 géG f(xg—1)g is ‘equivariant.

Now U is invariant and open and v 'rf : 57U > Y is an inverient

retrection. Q.E.D.
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We will call Y € TOpG a G-Euclidean neighborhood retract (GENR)

if Y is equivariantly homeomorphic to some GNR X < IR™.

10.2.
For pairs (X,Y) where Y ¢ X © E are locally compact invariant
parts of some GENR E and for M € CG we define:

AHX,Y3M) = lim HY(V,W3M),
G G

where A is the collection of invariant neighborhoods (V,W) of (X,Y)
such that V o W, ordered by inverse inclusion.

PROPOSITION. Let E and E' be GENR's and let X' < E' be a locally com-
pact invariant part.

a) If £ : X' > E is continuous and equivariant there exists a con-
tinuous and equivariant F : U' + E such that U' is an invariant open
neighborhood of X' and such that F|X' = f,

b) If Fan H : E' > E are continuous and equivariaent and if 0t : X' > E
is an equiveriant homotopy between F|X' and H|X' there exists an equi-
variant homotopy Gt : U" > E such that U" is an invariant open neigh-
borhood of X' and such that 8 = ©|X', ©

= H|U" and o, = F|U".

1 0

Proof.a)Wehavei : E+Vand r : V+E where V< IR" is G-
invariant and open and where r and i are equivariant and continuous
such that r o i = id, Furthermore one may assume that there is an open
E" © E' such that X' is closed in E"; one may assume E" to be G-inva-
riant,

According to the Tietze theorem i o £ : X' -+ IR® has an extension
¢ : E" > IR", hence (by taking the average) also an equivariant ex-
tension ¢. We take U' = 8~ '(V) and F = ro.
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b) Just as (a) by paraphrasing { 5 ,VIII.6.2.]. Q.E.D

For an equivariant f : (X',Y') > (X,Y) where Y €« X € E and
Y' € X' ¢ E' as above there exists an equivariant extension to an open
and invariant U' D X', Hence for every pair W € V of invariant neigh-
borhoods of Y € X there is defined

1

F... : HY(V,w;M) ~ Hg(F- V,FWiM) > Eg(x',y';M).

VW G F
Together they induce a transformation of direct systemshence induce
F: ﬁg(x,Y;M) > HR(X, Y 5M).
Similarly it follows from (b) that this F does not depend on the

extension F of f. Henceforth we will call it f.

10.3.

Let ¥ © X be locally compact parts of an ENR E and also elements
of TopG. Then X < Map(G,E) is invariant and Map(G,E) a GENR hence ac-
cording to the foregoing ﬁg(X,Y;M) is defined and we have:

i) If £ and g are equivariantly homotopic then T = E.

ji)id = id and (f g) = g T.
iii) In particular ﬁg(x,Y;M) only depends on the equivariant homotopy
type of (X,Y).

iv) There is a natural exact sequence:

o HROGM) > BIGM) > EBHXGYM) ﬁ%*’(x;m) e

v) There is a natural transformation
o ﬁg(x,Y;M) > Hg(x,y;m) which is en isomorphism if X and Y are GENR's.

vi) For locally compact invariant parts X, and X, of a GENR E such
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that X1-X and X,-X, are open in X1 U X2 - X, N X, there is an excision

2 27 2
isomorphism:
X, U X,,X,3M) = H(X,,X. N X,;M), hence a Mayer-Vietoris sequence:
G 1 o T2t G 20t U T2 d :
Td . T 74 . Td .
HG()(1 U X,3M) > HG(X1.M) ® HG(xz,M) > H (X NX,sM) L.

vii) ﬁg( sM) is "continuous": repeating the limit procedure yields the

same groups i-

10. L4,

Let X be a Hausdorff G-space and suppose X = Xi, vhere every

0

==

i
X is an open invariant GENR. Then X is a GENR.

Pr oo f. We may assume X to be a closed part of some 1R” [ 5,8.8.],
hence we may assume it is an invariant closed part of some IR® equip-
ped with an action of G. Furthermore it suffices to consider the case
m=1.

Assume that the T, ¢ Vi > Xi are equivariant retractions, where
the V; = IR" are open end invariant. Then putting

-1
V., = T, (x

-1
01 n X1) nr, (x. n X1), r. and r

o 1 restrict to neighborhood

0 0

retractions V01 + XO n X1.

However XO n X1 is an open and invariant part of XO’ hence a GENR.

Hence there exists an open U01 > XO N X, where ry and r, are equivari-

antly homotopic by ry : U01 > XO n X1.

Let U, © VO and U1 c V. be open neighborhoods of X-X1 resp. X~-X

0 1 ) 2
such that 66 n 31 = @: we may assume that U0 and U1 are invariant by
replacing by N gU. if necessary.

gEG 1
There exists a continuous t : IR™ + [0,1] such that T Uy = 0 and
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-r|U1 = 1. We may assume T to be equivariant by replacing it by
inf {1(g x)| g € G} if necessary.

Now U = U, uu, vy is an invariant neighborhood of X and

01

p : U=+ X is an equivariant retraction where p is defined by

p|U0 =Tgs p|L1 =r, and p(x) = rT(x)(x) for x € U01. Q.E.D.

COROLLARY. Let M be a (topological) manifold with a free action of G

and let K € M be compact and invariant. Then there exists an open and

invariant E 2 K in M which is a GENR.

Pr oo f. One can cover K by open sets U which are sufficiently small

to yield gU N U = § for every g # 1; hence we can cover K by finitely

many such Ui' Take E = U GUi; this a GENR according to the proposition
i

since every GU; is of the form G x U with U; an ENR. One easily checks

> J
that G x U 1s a GENR for U an ENR. Q.E.D.

§11, Poincaré duality.

11.1.

We are interested in the groups HZ(V;M) for topological manifolds
with a free action of G and for M € CG. This group is isomorphic to the
one we get by replacing M by the module M(G/e) and so is classically
known. In this section we give a summary of the facts for later refe-
rence.

) = IF,. for

Let V be a manifold of dimension n then Hn(V,V-x;IF >

2
all x € V and this isomorphism is unique since Aut IF, = {1}. For

A  V denote by T(A) the ring of continuous functions A + IF,. The

inclusions (V,V-A) c (V,V-x) for x € A induce & homomorphism
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Ty Hn(V,V—A;IF2) > T(a).
PROPOSITION, [ 5 ,VIII.3,3.].

JA is isomorphic for compact A.

More generally: for neighborhood retracts X and Y in V we have:

Hn(Y,X;IF = Fb(V—X,V—Y), the ring of continuous functions on V-X

5)

with compact support which vanish on V-Y.

EXAMPLE, For a compact, connected manifold M of dimension n without

ne

IF,.

boundary we have: J, : Hn(M;IFZ) 5

e
-1
We denote J), (1) by OM.

EXAMPLE. For a compact connected manifold L of dimension n with boun-
dary 9L we consider M = LU 3L x [0,1).

Then J, : Hn(M,M-int L;IF2) 2 IF_. However this group is by retraction

L 2

isomorphic to Hn(L,BL;IF2). Hence we get OL,BL € Hn(L,BL;IFz).
PROPOSITION., [ 5 ,vII.2.9.]

3 Hn(L,BL;IFe) + Hn_1(aL;IF2) maps OL,aL to OaL

PROPOSITION. Let (P,3P)and Q,5Q)
be connected manifolds of dimension n
with boundary such that P is a regular Q

domain in Q. Then OP,B is induced- by 7P

P

Q,9Q° 3Q

Pr oo f and explanation., Consider the diagram:

H P,BP;IF2) ———>Hn(Q,R;IF2)<——— Hn(Q,BQ;IF

n(
l’\a l’\a l’\:
Hn(M,M-int P;IF2)—>Hn(N,N-int P;IF2)<—-Hn(N,N-int Q;IF2)

~__ )

. - v
Fb(lnt P) r

5)

b(int Q)
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vhere R = Q-P, M =P U 3P x [0,1) cQ, N =Q U 3Q x [0,1) hence

N - int P=R U 3Q x [0,1). One easily checks that the diagram com-

mutes.
However OP,aP yieids 1 € IF, = Fb(lnt P) and OQ,aQ yields
1 € IF, = Fb(lnt Q). Hence OP,aP and OQ,BQ have the same image in
Hn(Q,R;IFg) Q.E.D.
COROLLARY. We consider a bordism L
between manifolds with boundary i.e. BOL

L is e manifold of dimension n+1
with boundary 3L which is the union
of the manifolds of dimension n 3 _L and 3+L along their common

boundary 3 L. Then the following diagram commutes:

0

) 3 0 € B (3L;IF

2 oL l

LY
aL,3+L,IF2) -> 0a L.l € Hn(

0 € Hn+1(L,3L;IF

L,3L 2)

H( 3_L,3 LiIF,)

this follows by combining the second proposition with the last one for

the case (P,3P) = (3_L,d.L), (Q,3Q) = (3L,§), R = 3 L.

1.2,

Consider & k-dimensional real vectorbundle £ over a sufficiently
nice space X (e.g. a manifold) with total space E({) and projection p.
Then it can be equipped with an inner product; denote the associated
disc bundle by D(&) and the sphere bundle by S(g).

€ Hk(E(E),E(E)-D( Y3IF,) such

PROPOSITION, There exists a unique U £
n

2
K ..
H (flbre;IFz),

E
thet the restriction to any fibre is precisely 1 € IF2
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called the Thom class of .

PROPOSITION. In case X is a manifold of dimension n and A < X, let
. . &

OA € Hn(V,V-A,IF2) Fb(A) correspond to 1 € Fb(A) and let

0 € H _ (E(g),E(e)-D(E) N p_1A;IF ) correspond to 1.

P-1A n+k 2

Then we have p,(0 o nu)=20.

pa b

Proof, The first proposition is well-known.
The second proposition is immediate after writing down +he characteri-

zations of U, and 0.

£

COROLLARY. Let (L,3L) be a manifold of dimension n with boundary and
let £ be a vectorbundle over L; then £ can be extended to

M=1LU23L x [0,1). The foregoing applied to X = M and A = int L to-
gether with the retraction isomorphisms

Hn(L,aL;IF ) = H ) and

2 n(
(p(g),D(g]oL) U S(g);IF,)

M,M - int L;IF2

H_ o (E(£),E(£)-D(£) N p™ (int L);IF,)

Hn+k

yields the formula:

0

P (U N OD(E),D(EIBL) uste)) = 9,00

We will apply this to X = V/G (notations from, 11.1.), noting that
Hn(V/G;IFe) = HE(V;IFZ) canonically. This yields a map
n n+k .
Hg(VsM) » H; " (E(€),E(£)-D(£);M) mapping z to puz U Ug.
Let (L,3L) and £ be as above. Then there is & commutative ladder

of such Thom maps, as a consequence of the naturality and stability of

the cup-product:
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HI(OLM) ———— H1:q(13(t;|aL),S(ElaL);M)

8 )

v
+1
Hq

k+q+1(
G

c D(g),D(E|aL) U s(&);M)

(L,3L3M) ———> H

v

HIT Ly M) ———— HET(0(e), s(e)5 M)
A
Hg+1(3L; M) —— > Hg+q+1(D(E]3L), s(g|aL) ;M)

11.3.

Consider a manifold V of dimension n with boundary on which G
acts freely and let K,L < V be invariant and compact, or more generally
closed and contained in an open and invariant GENR E < V. Then for any

IF,G module M, HX(K,L;M) is defined and equal to lim Hg(U,W;M) where

G

(U,W) runs through the set of open and invariant parts of V containing

2

(K,L) (since those inside E form a cofinal subsystem).

The fundemental class OK € HE(V,V—K;IFE) yields through

W .G G G
it e Hn(V,V-K;IFe) > Hn(V,(V-K) U W;IF,) = Hn(U-L,(U-K) U (W-L);IF2)

an element jWOK. Capping with it yields homomorphisms

N G ~ooG
Egw Hg(U,w;M) 2 H%(U—L,W—L;M) > Hn_q(U—L,U-K;M) 2 Hn_q(V—L,V-K;M)
which are consistent hence induce a transformation:
HR(K,LsM) > Y (V-L,V-K3M).

THEOREM. This map is isomorphic.
Pr oo f. We copy the proof of [ 5,VIII.T.2.] with the following
alterations.

Cases (1) to (b): replace M = IR® by M = G x IR"; if K is any of the
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types mentioned, we have G x KX © M.
Ccase (5): as in I.10.4, we cover K with "charts" of the form G x IR".

Case (6) is diagram chasing, hence does not change. Q.E.D.

The nontrivial facts we used in this proof are the propositions
VII.12.22, VIII.7.6. and VIII.7.7. from [ 5 ]. These in turn are
consequences of VII.12,6. (naturality of cap) and VII.12.20. (stabi-
lity of cap). We have already seen that these properties of the cap-

product remain true in the equivariant case.

1.4,

a) Let V be a compact connected manifold of dimension n without boun-
dary. Then there exists an orientation class OV € Hn(V;IFE) and the
theorem of 11.3. for the case K = V, L = @ states that

- P G R .. .
nOv : HG(V,M) > Hn_q(V,M) is isomorphic for any q.

b) Let L be a compact connected manifold of dimension n with boundary.

Then there exists an orientation class OL according to 11.1. and

,oL

the following diagram commutes:

8 +1
HO(L,OL3M) > H3(LiM) >  HI(aL;M) > HET(L,0L3M)

lnoL ,oL lnoL, L anL anL ,aL

G G . G . G .
Hn_q(L,M) > Hn_q(L,aL,M)+Hn_q_1(aL,M) > Hn_q_1(L,M)

The vertical arrows in this diagram ere isomorphisms.
For the proof of this statement we refer to [ 5 ,VIII.9.1.].
It relies on the naturality VII.12.6. and the stability VII.12,13, and

14 of the cap-product.
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¢) Finally for a bordism L between manifolds with boundary (3+L,BOL)
and (a_L,BOL) as in the corollary in 11.1, the following diagram
commutes:
q G
H (L,9L;M —> H (L;M
g s ) nOL,aL n+l-q H )
\ o Vv
q . - .
Ho(L,3,LyM) N0y Hpeqoq(Ls?_LsM)
[
q+1 R v g+l . gV .
Hy (31,3, L3M) = Hg (B_L,aOL,M)-—7ﬂ7————————> Hn+1_q(3_L,M)
a_L,BOL
]
q+1 h G
Hg (L,aL;M) o > H__(L;M)
L,5L 4

Hence the second horizontal arrow is an isomorphism by the five lemma.

11.5.

The connection made in 11.2. between fundamental classes 0 and
Thom classes U implies a connection between the Poincaré duality
isomorphism and the Thom map.

Consider (L,3L) and £ as in 11.2.

a) The following diasgram commutes:

e . , gtk .
o(L,3L3M) e R ¢ (D(£),D(g[aL) U s(E);M)
N0y 51 "p(g),p(]aL) U s(e)
Px
G M) €— G .
Hn_q(L,M) Hn_q(D(E),M)

This follows from the calculation:
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*
Pelp x U Ug) N OD(E),D(E|3L) U S(E)) -

= p*(p*x n (UE n o )) =

D{E),>(g|aL) U s(g)

=xN P*(UE n OD(g),D(ElaL) U S(E)) )

[t}
o]
o}
<

L,dL"

b) The following diagram commuzes according to the same formulas:

B(L;) _ — 13™(n(e),5(¢) 5m)
p and UE
£
N0y, o, "On(e),p(g |aL) Us(E)
P
G * G
Hn_q(L,aL,M) Hn_q(D(E),D(EIaL);M)

¢) There exists a similar diagram for Hg(aL;M) but that is a special

case of the above.
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THE GEOMETRY

§1. Normal maps and embeddings.

1.1,

In the following manifold means: a ¢” differential manifold satis-
fying the Hausdorff and second countability axiom. In particular it is
a metrizable topological space; a metric can be constructed by using a
Riemannian structure or an embedding into some Euclidean space.

Let M and N be manifolds; denote by Hom(M,N) the set of continuous
maps M > N, and let d be a metric on N.

The fine Co-topology on Hom(M,N) is defined by prescribing the base;

this is formed by the sets
Wf s = {g | alg(x),f{x)) < 8(x) all x € M},

vhere § : M+ IR is strictly positive and continuous.
By restriction we get a topology on Homm(M,N), the set of C maps
M > N.
However, a Cm map £ : M » N induces a continuous map from M to

JE(M,N), the r°B

Jjet bundle of the pair.
The fine cT-topology on Hom (M,N) is the coarsest topology rendering
continuous the map £ - jT(f), Hom (M,N) » Hom(M,J" (M,N)}).
For manifolds embedded in some Euclidean space and with the induced
Riemannian structure, the sets {g € Hom (M,N) | algl(x),f(x)) < 8(x)
and ||Dg(x)-Df{x)|| < §(x) for every x € M} give a base for the fine

C1—neighborhoods of f.
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Let {Ci | i € I} be a locally finite covering of M by compacta and
for each i € I let (Ui’hi) resp. (Vi,ki) be coordinate-systems around
C; resp. £(C;). Given a set 6 = {8, | 1 € I} of positive numbers, define
Xf,d as the set of g € Hom (M,N) such that
g(Ci) <V, ]kifh;1(x)—kigh;1(x)| < §; and
ID(kifh;1)(x)-D(kighzl)(x)l <8.,alli€lI,x€C,.

The sets of the form X form a base for the fine C1—topology on

£,
Hom(M,N). This is the topology designated by C1 in the Séminaire
Cartan [ 8 1.

The coarse Cr—topology is defined in the same way, but in the
definition of a base element as atove one only demands the inequality
or a conpact subset of M.

This topology is the one called ¢¥ in the Séminaire Cartan; it can be

defined without using a metrie, as a compact-open topology. Notice

that the fine and the coarse topology coincide only for compact M.

1.2.
Given manifolds M, N without boundary of dimension m, & normal map
from M to N consists of:
a vectorbundle £ over N,
a continuous map £ : M > N,
a bundle map lifting f,% : TM+e - TN+£ mepping the fibers isomorphically,

where € is the trivial bundle of the same fibre dimension as E, say k.

Remark: This definition is easily seen to be equivalent to C.T.C. Wall's
[15 ] definition.
Let Dk(2) be the open disk of radius 2, D(E) the bundle of disks
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of radius 1 associated to £. Then f can be thought of as a map

k(

2) x M+ Y = D(E), using projection and zero section, and f can
be considered as a kind of derivative for f.

Now from the theory of Hirsch and Gromov (see V. Poenaru's talk
in A'dam 1970 [ 101) we deduce:
PROPOSITION. In these circumstances and assuming M compact, there
exists an immersion F : X + Y such that its derivative DF is homotopic
to f as bundle isomorphisms. Given r, two choices for F can be connec-
ted by a path in the space of all immersions X + Y, continuous with

respect to the coarse Cr-topology.

Remark: In the more general case that M is not compact but f is proper
one would like to find anF which is proper if restricted to Dk(1) x M
and a homotopy which is also proper there.

This however does not follow from the given reference.

Now we apply the "lemme de Thom au but" (Séminaire Cartan no. 6
[ 8]) using M x M x A(Y) as the submanifold of
0%, ¥) x 3%(X,¥) = X x X x Y x Y (A(Y) € Y x Y is the diagonal).
The assertion that F x F, restricted to the complement of A(X) in
X x X does not hit the submanifold means that F|M is injective. So the
lemma says that every fine Cr—neighborhood of F contains a new immer-

sion F', such that F'|M is injective, provided that

2dimX+2dimM+ dimY<2dim X+ 2 dim Y, i.e. k > dim M.

Remark: In the noncompact case with F, proper at M x Dk(1) we can choose

F' near enough to F as to assure that F' is proper there.
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Now F' is a homeomorphism M -+ F'(M) and the image F'(M) is closed in
Y.
Remark: In the noncompact case that remains true because F' is conti-
nuous, proper and injective om M (see Munkres [ 9 ] page 20).
According to Munkres [ 9 ] lemma 5.7. applied to A = M, using the
fact that an immersion in codimension O is locally a diffeomorphism,
there exists a neighborhood of M in X which is mapped homeomorphically
onto an open part of Y by F'.

Composing F' with a "scale-transformation 1in the p¥_direction"

we achieve that M x Dk(1) is mapped homeomorphically by the composition
F'' onto a closed part of Y whose boundary is F''(M x Sk_1).
Now we will show that F' is regularly homotopic to F, and so is

-~

also consistent with f.

LEMMA. Given f € Hom (X,Y), for each r there exists a C -fine open

U 3 f such that if g € U there exists a map h : [0,1] + Hom (X,Y),
continuous with respect to the coarse topology, such that h[0,1] € U,
h(0) = £, h(1) = g.

Pr oo f following the model of theorem 4.2. in Munkres [9 ] and
using his notations:

For g in a sufficiently small fine neighborhood of f, f(Ui) o0,
implies the same is true for g. So it has become a local problem and
we prove something analogous to Munkres' theorem L.1.

So be given Ac Ve V< U as in loc.cit. and make the same ¥ and

a. Let £, = £(1-¥)+g¥, Ft = af1+(1-a)f then f, and F are constantly g

1 1

where £ = g and F1 = f1 = g on A, Now one can go on as in theorem L.2.
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loc. cit.; one constructs in the same way F., F and f,.
1 t
Q.E.D.
Keeping in mind that immersions form a fine open set in HomW(X,Y)

we may choose U small enough as to assure that all h, are immersions,

t

if f is an immersion.

Summarizing: we have found F'' such that:
F'' is an immersion of X = M x Dk(2),

DF''is homotopic to f,

F''is a homeomorphism of V = M x Dk(T) to a closed part of Y = D(E)

with topological boundary V = M x s< T,

According to the theory of Hirsch and Gromov (see V. Poenaru's
lecture at A'dam 1970 corr. 2 [ 10]) the F just constructed is unique
up to regular homotopy, hence so is F''.

So let H : [0,1] - Hom (X,Y) map into the subset of immersions

and be continuous with respect to the coarse topology, and assume that

H(0) and H(1) are embeddings of M x Dk(1).

We want to prove that H(0) and H(1) can be joined by a path in the

space of embeddings of M x p¥(1).

We may assume - without loss of generality - that H is independent
of t € [0,1] for t > 1-e or t < € for some € > O.
PROPOSITION. In these circumstances there is a different path H' coin-
ciding with H in a neighborhood of 0 and 1 and consisting of immersions,

such that
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ad H' : [0,1]) x X > Y
(t , x) > H'(t)(x) is C .
Pr oo f. Let {Ki | i € T} be a locally finite covering of X by compacta.

For fixed i € I and t € [0,1] there exists a Gt 5 € IR, Gt i 0, such
9

that

d1(H',H(t)) < 8 on Ki = H' is an immersion.

t,1
Because HlKi is continuous there exists a neighborhood U, of t such that
for s € U, d,(H(s),H(t)) < 36, . on K.. So if H' is a path with

t 1 t,1 i

d1(H'(s),H(s)) < %6t ; on Ki for s € Ut then H'(s) is an immersion on

b ]
Ki for s € Ut'
We can find a finite subset T of [0,1] such that {Ut | t €T

covers [0,1]); let Gi = min {Gt,i

| t €T} then if d,(H'(s),H(s)) < 8;
on Ki for all s € [0,1], H'(s) is an immersion on Ki for all s € [0,1].
Let § be a strictly positive function on X such that § < Gi on Ki
then if for all s d1(H'(s),H(s)) < § one may conclude that H'(s) is
an immersion everywhere. But according to~Munkres' theorem L.6. [ 9 ]
one can then find an H' such that ad H' is C  (if the € > O used there

is sufficiently small nothing changes near t = 0 or 1). Q.E.D

Extending H' by a constant path one may assume H' to be defined
on IR.
Because the image of H' : IR -» Homm(X,Y) consists of immersions

and because ad H' : IR x X > Y is C_, the map
G:IRx X>IRxY
(t , x) » (t,H'(t)(x)) is an immersion.

Now we can find in any fine neighborhood of G another immersion G'

which
Th
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i) coincides with G on ((-=,e) U (1-e,=)) x X
ii) maps [0,1) x M injectively, provided tkat k > dim M+1.

Suppose G'(t,x) = (s(%,x),g'(t,x)) then the C map
S : (t,x) » (s(t,x),x) is near enough to the identity map in the fine
C‘-sense to be a diffeomorphism IR x X - IR x Y, if G' was chosen near
enough to G.

We replace G' by G'' =G' o 8-1 which also satisfies (i) and (ii)
and is of the form (t,x) » (t,g"'(t,x)).

So there exists a neighborhood of

(==,0] x M x DX(1) U [0,1] x M x 0 U [1,m) x M x D*(1)

in IR x X which is mapped homeomorphically by G''.

By composing G'' with a "t-dependent changeof scale in the Dk(1)-

direction" we achieve that a neighborhood of IR x M x Dk(l) is mapped

homeomorphically by the composition G''' (see sketch).

In II.1.2. we have seen that F'' maps M x Dk(1) hcmeomorphically

to a closed part V of Y such that 3V corresponds to M x Sk-1. This in-

duces a continuous "collapsing map" p ¢ Y/3Y + V/3V = SkM+; here 3Y
is the space of the sphere-bundle of E.

However ¢_, still depends on the choice of the embedding F'. We

F
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want to show that p is well-determined up to homotopy. So assume two

choices have been made and the constructions of II.1.3. have been done.

Let W be a neighborhood of M x Dk(1) in X such that (-e,7+) x W
is mapped homeomorphically by F'' onto an open part of IR x Y. Then

a) because the collapsing map ¢ : V > V/3V is continuous one has a

_1'

continuous map (1 x ¢) o (G''") G''1([0,1] x W) » [0,1] x V/3V,

b) on [0,1] x ¥ = G'''([0,1] x M x D(1)) the map (t,y) » (t,») is
continuous. (Here = denotes 3V/3V € V/3V).

Both maps agree where they are both defined, so one gets a conti-
nuous map c. : [0,1) x Y > [0,1] x V/3V.
Projecting onto the second factor and factorizing through [0,1] x Y/3Y
one finds a homotopy between the two choices for Cpe
Now consider a connected manifold N with basepoint n and a homomor-

phism from ﬂ1(N,n) to a finite group v, Denote the associated covering

. . . WAY)
space of N by N; this induces coverings M,X,? ete.

Then the map of covering spaces induced by the embedding F''' is
a T-equivariant embedding and hence induces a T-equivariant map

LY kyu+ . . . .
c, : Y/3Y » S ﬁ , uniquely determined up to w-equivariant homotopy.

F
From now on we will denote Y/BY by T(E).

1.5.

If M and N are compact manifolds with boundary and (f,;) is a
normal map M + N not satisfying f(3M) < 3N, we may view M as a regular
domain in a manifold without boundary.

The theory of the preceding subsections with the obvious altera-

tions endows us with a homotopy-unique embedding of M x Dk(1) in Y as
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a closed part with M x Dk(1) UMx Sk_1corresponding to the boundary.
Sc collapsing defines a map T(E)/T(g]aN) - Sk(M/BM), and similarly in
the equivariant case.

Let (f,}) be a normal map between compact manifolds with boundary
(M,3V) and (N,3N) such that f(aM) < aN.
We introduce the following notation:
x=mxpk2) v= ()
3X =aM x DX(2) , 3y = D(g|aN).
Because TM]BM = TaM+e1 canonically, a normal rap oM - 3N is induced so

there exists a corresponding immersion Fp ¢ 98X x IR » 3Y x IR such that

FblaM x Dk(l) x IR is an emtedding. So DFb is homotopic to §|3M, using

these identifications.

Remark: As in II.1.2. we consider f as a map X - Y hence f|3M as a map

aX » 3Y etc.

Because 3M x 0 < aM x [0,1]) is a homotopy-equivalence,

f(aM x [0,1]) + idE is homotopic to (%]8M) x id hence homotopic

T[0,1]°

to DF. x id ) rel (39X x IR) x O.

b olo0,1] = D(F, x 1d

b {0,1]
Fxtending this homotopy to X x IR we get f', homotopic to f rel aM

and such that D(Fy x idy 1)) = (M x [0,1]).

[0,1
According to the relative immersion theorem of Hirsch and Gromov
(see V. Poenaru's lecture, theorem 1' [10 ] ) there exists an immersion
F: Xx IR>Y x IR extending Fp, id[o,1] on éx x [0,1] x IR such that
DF is homotopic *o T rel 3aX x [0,1] x IR , consequently homotopic to

T rel 3X x 0 x IR.

Using a relative version of the "lemme de Thom au but" (compare
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Séminaire Cartan [ 8 ; exposd T, corr. 7)) and "scale transformastion"

.. . 1
one replaces F by a similar F'' embedding M x p** {(1).

So we get a commutative diagram of embeddings:

am x DX*1(1) « [0,1) » D(£k+1[8N)X [0,1]

1 |

FrrosMox DY) —— 5 p(e

Fb x 1d[C,1]

k+1)

Here the vertical arrows are the canonical inclusions, using the

isomorphism D(5k+1|aN) x [0,1] % D(£k+]|3N x [0,1)).

One proves exactly as in the absolute case that Fb is uniquely

determined up to homotopy of ermbeddings, and for a fixed choice of Fis

k+1(1)

F'' is determined up to a homotopy rel 3M x [0,1] x D . (see
sketch) : !
| MxS | Pplg]am)
|
e =~~.)_lomxp
oM 4 - X
maMxS
: D(g) J
| s(g) |_Is(g|aw)

. . k+1
There exists a collapsing map D(E£) =+ (D
mapping S(E) to the base point; this yields a map

e : T(£))= D(E)/s(€) » s**'M*. This maps D(£|aN) to 5" oM hence

1 .
k+ )+; there results e map (still called c¢):

k+1
(

c : T(g|aN) » s*7 (oM

T(E)/T(E]aN) = D(E)/S(E) U D(E|AN)) ~ 8 '(M/aM).

Associated to the embedding of the collar aM x [0,1] € M is a

collapsing map M + CaM (the cone on 3M) which maps aM c M to

3M x 0 < C3M so M/3M maps to SaM.

This map is homotopic to the one which figures in the Puppe sequence of
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the pair (M,3M).Because a commutative diagram of embeddings yields a
(strictly!) commutative diagram of ccllapsirg maps, we find & commuta-
tive diagram:

T(g|oN) —> T(g) —> T(£)/T(E|3N) —> ST(E| 3N)

lc c c c

k+1( k+1, + Sk+1(M/BM) S Sk+1(BM)+

K M s s I —s

vhere ¢ is determined up to homotopy by the normal map. Of course the

. . . NNy .
same is true equivariantly with N,M etc. replacing N, M etc.

1.6.
We want to study the situation of a tordism between normal maps

of manifolds with boundary. So let

BM1 = BM2 =

and similerly for N; end for the normal map (f,f) : M > N one has
f(Mi) N, i=o0,1,2.

We play it as in the last subsection: first we construct an em-

bedding F. of M x Dk+2(1) Dk+2(1) which extends

0 and then an F1 of M1 x

. k+2 . .
Fy % 1d[0’1] end an F, of M, x D (1) extending Fo x 1d[0’1]. So
F1 x id and F2 x id coincide on the collar
M. x D¥*2(1) x [0,1] x [0,1] = M x DX*2(1) with F. x id x id and we can

0

extend to the interior of M.

0

We get collapsing maps c, uniquely defined up to homotopy:
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T(g[Ny) ——— T(£|N;) ——> T(£|N,)/T(g|N,) = ST(E|N,)

| ! l

(€| N,) —> () > T(£)/T(g|N,) ——> ST(£]N,)

! | | |

T(E|N,) /T(£|N) > T(€)/T(E|N,)—> T(£) /T(£[N UN,) —> S(T(E|N,) /T(g|N))

| ! !

ST(E|N,) ———> ST(g|N,)——> S(T{g|N,)/(2(£|N))>s7T(g|N,)

[N]

+
kor s k+2m+—ﬁ Sk+2(M VY s i3y

) | | 3

c,}(+2M+ _ Sk+2N+ - S Sk+2(\1/lv' ) —> Sk+

|° ! l

§*2 (v, ) ——> s v ) — P um,) —— 5 3w )

l, 2'0 l l 2’70
sk+3vs _ s‘+3v+——> sk+3(M1/MO)—> sk

e_w
f\)+

+
w

=

+
0

§2. The cohomology of the collapsirg map.

As explaired in II.1. a normal map of manifolds £ . M + N gives

A
rise to a rap T(E) > SkM+. However, with coefficients ir a m-rodale B

one has

~ s+k s+k

ro(H,B) 2 w3(H,B) 2 H3(D(e),8(e),B) 2 HYTN(T(E);B)
using tre Poincaré- and the Thom-isomorphism. We will show that .n this
way f, corresponds to c*,

Furthermore we will show trat in the case of manifolds with boun-

N o
dary this corresponderce maps the homology ladder of f : (M,3M) - (N,BN)
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"+
into the cohomology ladder of ¢ : (T(g),T(g|aN)) » (SkﬁtSkBM ).

First consider tie simple case of a normal map f between mani-
folds with boundary (M,3M) and (N,3N) not satisfying f£(3M) < aN. Ac-

cording to 1.5. this induces a collapsing map

e T(E)/T(E|3N) - sk(ﬁ/aﬁ) associated to an embedding of M x pk(1)

into D(E) (see sketch)

<

Denote M x DX(1) by P, D(E) by Q, and o-P by R.

We may write down the following commutative diagram:
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s+k

H'"

vu

H:(ﬁ,aﬁ;s) ——5——>H:+k
(1) ”op,a

v

LUV Ho

H'"

*
C

T

~
(P/3P;B) «— H

(P,3P;B) «——— H:“k

(2) no

s+k(

4

(Q,R;B)

o/R;B) ————> 1°"(0/30;B)

S+k uy

——— 15"(0,20;8) <=5 — m3(¥,a};3)

~

/noQ’aO

II YEI4VHO
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Here the isomorphisms in the boundary are precisely the relative ver-
sions of those in II.1.

The commutativity of this diagram is obvious, except perhaps at
(1) and (2); (1) is an application of I.11.5 and (2) is an application
of the naturality of the cap-product. Here 0 is the element in

QR

H25+k(Q,R;IF2) vhich is the image of both OP,BP and Oo,aq (see I.11.1,

theorem 2).

According to II.1. & normal map £ : (M,dM) » (N,3N) yields a
system of consistent embeddings and the collapsing maps associated to
them. Now we construct three diagrams related to H(M), H(M,3M) and
H(3M). Bach of them is commutative for the same reason as the one in
1I.2.2.

We introduce the notations (see sketch of the situation)

P=DK1) x M, 2P = sk« M, a.p = DX(1) x a1,
Q = p(¢) , 9,0=s5(£) , 3_0=D(E|3N), R=G-P, S=3_Q-2_P
I T
I I
51 | R : S
3 P |
- N— 3 Q
|
| a+ : a_P
S : '
|
! 3+Q 1
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H

B S(M; B)==PH

noM, M H

H

s+k(

s+k

(P,3,P;B) <« H

)
A n(P,aP

4 ™
s (P33 _P;B) —> H_
kg “oN m
s (M, aM;B) f—>Hs

"
P/a P;B) «——H

*

o*

s+k(

s+k(

(

s+k

Q/R;B) —>H_"(0/9,Q;B)

s+k

0O,R; B)-——>F (9,9 +93 B)-=H N;B)

//

9,3_0;B)

|

(N,3N;B)

HILJAYHO

II
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H5+k(

|

'u +
H:(M,a?a;B) —y’ k¢

lnop’ 3P

no,, H’; (p  ;B) —>H

|

B ;B)—>H’;

s b

P/3P;B) «— B

P,3P;B) «——H

n
(@

stk

(q/RU3_Q;B) ——>H_ "(Q/3Q;B)

| l

Q,RU3_0;B) —> 15 (0,20;8) e=—=r°(¥,a};B)

|

s+k
S

s+k
(

|

(M

IT HIIJVHD
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+
HS k

m

H3(aM;B) == p5*k
ki m
ﬂOaM
H'IT
S
H"

Y
(3_P/3 P;B)«—H

4

(3_P,3 P;B) «—— H_

c¥

T

™ (a_a/s;B) —— K5™(3_0/3 0;B)

s+k s+k(

(3_Q,8;B) —> H_
no /
3 P,d P l /nOB_Q,BOO
no

3_Q,2,03B)e—— HS(3N;B)

o (F|3_P)«

v
(a_P 3B) ——>H_ (3_Q ;B) N

|

(aM ;B)——>H's' (3 ;B)

(£]aM),

II HaLdVHD
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The groups at corresponding positions in the three diagrams occur
in a long exact sequence. In this way one gets a commutative exact lad-
der corresponding to each arrow in the diagrams.

a) for the arrows denoted by -+ that is the ordinary H, or H* ladder of
a map of pairs.
b) for the arrows denoted by -+ that is a Poincaré-duality-ladder as in
I.11.4 b or c.
¢) for the arrows denoted by = that is a Thom-isomorphism-ladder as in

I.11.5.

2.h,

-

We consider the following situation: (f,f) a normal map

(M,3M) + (N,3N), M, a regular domain in M, j the inclusion M, © M, such

that f maps M3 6 M-M1 into dN.

So we can restrict to a normal map (M1,3M1) > (N1,3N1).

One asks for the relation between c(f) and c(f|M1).

Again let P = M x Dk(I); analogously P, = 'B\/'I,I x Dk(1),

=N k
P3-M3xD(1),Q

the last subsection for menifolds with boundary; then FIP1 is an appro-

D(E); we construct an embedding F : P » Q as in

priete embedding for M,.
Now the inclusion P1 < P gives rise to a collapsing map
c‘j : P/BP->P/(3PUP3

gram:

) = P1/Z~)P1 which figures in the commutative dia-
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/Cf\

Q/3Q —> Q/R L 3p «——— P/3P

\l N l \ 3

Q/R U P34——— P/3P U P3

P1/3P1

C
£,

so we get:

PROPOSITION. The correspondence defined in II.2,transforms the diagram:

3B ——> HY(;B) into H5+k(P1/3P1;B) ——

fIMQ\\\\* k///// (°f|M1);\\\\\‘ CE c;

B! (¥;B) H5*(q/29;8)

-H((

2.5.

Let ej be the collapsing map: ﬁ/aﬁ -+ ﬁ/ﬁ3 & M1/3M1 then cj can be
viewed as the k-fold suspension of e
From the other hand; eg : H:(ﬁ1,3ﬁ1;B) = Hj(ﬁ,ﬁ3;B) + H:(ﬁ,BM;B)

corresponds by Poinceré isomorphism to j, : H:(M1;B) > H:(M;B).

§3. The construction of the guadratic form.

Given a finite group m let A be the group ring IFZ[“] of m
over the field IF2, endowed with the canonical involution
- (ang) -+ ang_1
If I is a two-sided and involution-invariant ideal of A we consi-
der B = A/I. Now © acts from the left on B @ B; the quotient is isomor-
phic to B ms an abelian group by b1 ® b2 > 3752; here the right action
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of m on B & B is transformed into the action of ® on B by conjugation.

Furthermore the interchange b1 ® b2 -> b2 ® b1 on B 8 B corresponds
to - on B, In particular the quotient of 82B =B 8 B/spa.n(b.I 8 b2 - b2 8 b.|
under the left m-action can be identified with B/{b-b}.

3.2.

Since A is finite, it is certainly Artinian, hence if we take I to
be the Jacobsonradical of A (i.e. the set of elements which generate a
nilpotent two-sided ideal), the resulting B is semi-simple i.e. every
B-module is projective, hence every short exact sequence of B-modules
splits.

This implies that for a chain-complex D of B-modules the canoni-
cal map #(D;B) - HomB(Hn(D);B) is isomorphic, and similarly the map
(H"(

Hn(D) -+ Hom D;B);B).

B
If C is & chain complex equipped with a right m-action then

D=(C®IF,) @ B is a complex of B-modules.

2) A
We then can identify

m .

Hn(C,B) with Hn(D) and

H:(C;B) with HP(D;B).

3.3.
Let £ : (M,3M) » (N,3N) be a map between manifolds (with boundary)

of dimension 2s. Let ﬁ, ﬁ be defined as in II.1.4. Provided that f is

of degree one i.e. f*oM,aM = ON,QN’ the diagram
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H:(n“a,aﬁ;a) - H:(N,aN;B)
£
M, M
anM,BM y l”oN,aN
£
HZ(M;B) * > HZ(N;B)

commutes, hence f* is injective arnd f, is surjective.
We will use the symbol P to denote the Poincaré-isomorphisms nOM M
b

and noN,aN'
n
This implies a direct-sum splitting of H:(ﬁ,BM;B) as ker f,P & im £*
and,related to this, one of H:(M;B) as ker £, & P im t*; similarly
"
for H:(%;B) and HZ(M,BM;B).
. . m T, A .
The canonical map j : HS(M;B) > HS(M,BM;B) preserves the direct-

sum splitting; and if flaM : M + 3N is a homotopy-equivalence, the

induced map j : ker fg -+ ker ff’aM 1s an 1somorphism, &s 1S seen by
diagram-chasing.
A

NN
Furthermore the obvious map <,> HZ(M,BM;B) > HomB(H:(M,aM;B);B)

preserves the direct-sum splitting, and is an isomorphism in the case

B has been chosen as in II.L.2. to be A/(radicel).

Consider the pairing 8 associated to the composition:

S(M,3M;B) + H'"(M;B) > H'(M,3M;B) -+ Hom_(HS(M,3M;B))
L P s j s B''m

H

mapping x to (y =+ <y,x N O

), hence B(y,x) = <y,x N 0M,3M> =

>
M, aM
1
(yux)n OM,aM'

PROPOSITION. The restriction of B to P;1 ker fM is a nonsingular
pairing.
Remark: to be more precise we should write

Bly,x) = E((y Ux) no ) = <y U x,0 > where E is the identifi-

M,3M M,3M
. T, )
cation of HO(M;B ® B) with B.
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3.k,
it

s M,aﬁ;B) inherits a right m-action from B and

We remark that H

H:(%,BM;B) a left action. The nataral pairing

<, > HZ(%,BM;B) x H:(M,BM;B) + B has the properties:
<gX,0> = g<x,o>
<x,0g> = <X,0>g.

Furthermore it follows from the naturality properties of the cap-
product with respect to coefficient-homomorphisms that
gx N 0= (xn O)g_1 i.e. the Poincaré-duality-isomorphism N 0 is equi-

variant. This implies:

PROPOSITION. B is "sesquilinear": B(gy,hx) = gB(y,x)h_1.

3.5.

We have seen in II.1.5. that for manifolds with boundary (M,aM),
(N,3N) of dimension 2s, a normal map f : M > N defines an equivariant
map T(E)/T(EIaN) > sk(ﬁ/aﬁ) welldefined up to equivariant homotopy.

In the following we consider x € H:(%,ap;B) satisfying c*(Skx) =0
i.e. x N O € ker f,. Then the construction of I.9.1. yields a

M, M
2stk 2 . .
¢C(x) € H (T(£),T(£]|3N);S°B) modulo some indeterminacy. By Thom-
and Poincaré-isomorphism this cohomology~group is isomorphiec to
HB(N;S2B) = B/{b-b}. The image of wc(x) by this isomorphism will be
called q(x).
According to I.9. there is a relation between wc(x) and the

pairing (y,x) = c*Sk(y U x), hence between q(x) and the image b{y,x)

of c*Sk(y L x) in B. According to diagram II.2.3. b(y,x) is the image

under f, of the Poinceré-dusl of y U x, so B(y,x) = b(y,x).
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Summarizing we have:
THEOREM. Given a normal map as above, and denoting
{x € HS(M,Bﬁ;B) [ xn OM,BM € ker ff} by K we have a pair (b,q) such
that:
(1) b : Kx K-+ B is biadditive.
(2) bly.gx) = bly,x)g” .
b(gy,x) = gbly,x).
(3) dl{y,x) = b{x,y).
{4) if £(3M) c 3N, f is of degree one, and f|3M is a homotopy equiva-
lence, then b is nonsingular.
(5) q : K+ B/{b-b} modulo indeterminacy.
(6) qlx+y) = q{x)+q(y) + class of b(y,x).
(7) q{x) + q(x) is welldefined end equal to b(x,x).
(8) a(gx) = & a(x)g™ .

The third property is a consequence of the commutativity of the
cup-product: y U x = T(x U y), where T is the coefficient-hcmomorphism
B® B-+ B® B mapping b ® b' to b' ® b; we also use the relation between
this T and the involution on B explained in II.3.1.

The last property is a consequence of the naturality of Sq, and
hence of wc, with respect to coefficient-homomorphisms.

In other words: if we can prove that the indeterminacy of q
vanishes, there will result a quadratic form in the sence of C.T.C. Wall
[ 15, chapter 4]. We will show the vanishing of the indeterminacy in the

next few subsections.

3.6.

We consider B as a right module over p = Aut B and we apply the
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theory of I.7. for the canonical hoﬁomorphism T >op.
We modify the definition of wc, using the functional squaring cperation
equivariant with respect to 7_&nd p. The considerations of the fore-
going subsection remain true since the relevant properties of the opera-
tions follow by naturality from the properties proved in I.8. and I.9.
for the p-equivariant case.

Now the total indeterminacy is, according to I.T.2., equal to:

. +1
im qu

+ im (Sk¢x o c)* o R,
where R is the restriction H; -> H:. (as in I.7.)

We consider the two parts of the above sum seperately in the next

subsections.

3.7.

We first prove that the first part of the indeterminacy vanishes.

To this end we consider the following diagram:

-1 +k-1
557" (N,a%;B) BT r(e) ,1(g] an);B)
Ll Va m
SqS+1 Thom—isomé}phisms qu+1
25,0 A * 2s+k
H"S(N,aN;B) > HE S (7€) (€] am);B)

This diagram commutes because of the Cartan formula I.6.3.:
(notice that U is a IF,-cohomology class)

xCU)=s"xuvu + £ s x U sdiu

s+1(
£ £ iso

Sq £

and because of the next lemma:

LEMMA . SquE =0 for i > O.
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Proof. Because TM @ ¢ = f*(TN @ £) for a normal map f, we have for
the Stiefel-Whitney classes v w(M) = £*(w(N) U w(g)).

Denoting the inverse of the total square Sq by x(Sq), the relation

w = 8q v between Stiefel-Whitney classes and Wu-classes implies:

v(M) = £*(v(N) U x(Sq)w(E£)). Substituting this into

<v(N) U x,0 = <Sq x,9 > = <8q x,f,0 > = <Sq f*x,0

> > =
N,oN N,3N M, oM M, oM

= <v(M) U f*x,0 > we find for the latter <v(N) U x(Sq)w(g) U x,0

M, M NN

M, M = ON,BN' Hence Poincaré-duslity for N implies

v(N) = v(N) U x(Sa)w(E), so x(Sq)w{g) = 1 and finaily w(&/ = 1.

using f,0

However Sq U, = w(E) U U

£ , SO Sq U. =1U

£ € £ Q.E.D.

Remark: One can also conclude that Sqi UE = 0 from the fact that £ is
fibre-homotopically triviel, because of Spivak's characterization of
the normal spherical fibration [ 3 ]J.

Now the squaring operation at the left side of the diagram

1 .
on the right

. . . +
vanishes because of dimensional reasons, hence the qu
vanishes, which proves the assertion at the beginning of this subsec-

tion.

3.8.
It is more difficult to see that the second contribution to the
indeterminacy vanishes.

Consider the commutative diagram:
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B2 (K(B,5+k);B") > S (sRk(s,s5);8")
o] H o]
k
R lR
B2 5*(k(B,5+k) ;B") > 1o (s%k(B,5);B")
™ H* m
k
t
2s+k
HSTN(T(g) /T(g]aN) 3B ),

vhere t = Sk¢x o c.
The fact that t* o R = 0 follows from

* . . .
(t* o R) o HE=t*o H; oR=(E ot) oR since H¥ is surjective if

k

B' = 5°B and Hk o t is homotopic to a constant.

That Hk o t is equivariantly homotopic to & constant follows from

the fact that it classifies

k k
* = * = o* =
(Hk ot) Xq 45 t* g Xg = ¢ (" x) =0 (because x € K).
That H; is surjective for the special choice of coefficients B' = S2B,

will be shown in the next few subsections.

3.9.
As we have seen in I.8.7. the map
Be_y o HoSTN(K(B,kes)3B") > Hoo (8" k(B8 41)581) = BT (K(B,541)5BY)

is isomorphic, hence H; is surjective exactly if its last composition

fector is surjective:

H* H2s+1

3o (sK(B,s);B").

(K(B,s+1);B') ~ H§S+1

Consider the following commutative diagram; we see by diagram
chasing that to prove surjectivity of H? = a, it is enough to know

that n is surjective and  is injective.
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a
2s+1
Bo St (K(B,s+1)5B") ————— B % (5K(B,5)3B") ———— B2 (H,3B")
3 4
5 Traf(ﬂZSH(SK(B,s);IFe);B')ﬁ
. . Al . T . 1
Traf(gesH(K(B,sH),IF2),B ) Traf(§25+2(H1,Ir2),B )

(Here the upper row is exact and the lower one res composition 0).

3.10.
We prove the
LEMMA. ¢ is isomorphic.
Proof. We apply I.8.5. with n = 2s+2; this yields a p-complex L

and a commutative diagram:

where H' is an equivariant homotopy-equivalence and L-SK(B,s) has only
cells in dimensions at least 2s+2. So we can replace H1 in the diagram
I1.3.9. by the pair (L,SK(B,s)).

But as G. Bredon remarks after his I.Q.E. [ 1], for a G-complex
X without (n-1)-cells the pairing 2 (M) > Traf(gn( X);M) is elways

isomorphic. This obviously remains true if ﬁr(X) is replaced by

H (X;IF

H 2), if 2M = 0.

Applied to X = L/SK(B,s) this yields the desired conclusion. Q.E.D

3.11.

There remains to bte proven that n is surjective. This subsection
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contains some general considerations needed to do that.

In the following we denote by A® the IF -vectorspace of stable IF2-

2

cohomology-operations of degree s; let w1,w2,...,wm be a base of As and
let AS be its dual.
Let V be a vector space over IF2, say witr base €12€55- 256 .

The Eilenberg-Maclane complex K(V,s+1) is a Aut(V)-complex. Since, by

. . . +
the Hurewicz theorem and the coefficiernt theorem, H> 1(K(V,s+1);IF2) = va

d 2s+1(

canonically, there is a pairirg A® 8 v& + H K(V,s+1);IF,). It fol-

2

lows from the Klinneth formula for K(V,s+1) = K(IF2,5+1)“, that the

+ .
2s 1(K(V,s+1);IF2), hence the pairing

mi(eg) constitute & base of H

considered above is an isomorphism.

Similarly there exists a pairing (using the cup-product):

d d d 25(

ASeV eV @V > H K(V,s);IFz), mapping qu @ f-f®Ff and

fO@g-g8f to0 for each f and g in Vd.

Hence there exists an induced map:
2% e v? e s(v1)/(sq® @ £ - 1 8 £} » H(KIV,s);1F,)

. * .
and because the wi(eE) together with the e:, U 632 constitute a base of

25(

H K(V,s);IF2) this is also an iscmorphism.

Furthermore we may identify the canonical map

25+1 2s+1
( ST

H K(V,s+1);IF,) » H SK(V,s)1F,) 2 H2S(K(V,s);IF2)

5)
with the inclusion map:

A5evis a9 vie s2vd)/(sq®e £ -8 £},

Hence we may identify H (K(V,s+1);IF2) with A e V and

2s+1

H (sk(V,s);IF,) = H

2s+1 S(K(V,5)31IF,) with

2 2
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{lo,T) € A, 8VEBVEYV | 0(Sq®> & £) = t(f @ f),7(f @ g) =r1(g®r))}.

The canonical map H (SK(V,s);IF.) » (K(V,s+1);IF2) may be

2541 o) > Hyg iy

vieved as the projection onto the first summand. So there exists an
exact sequence:

0 » im(1+T) » H (sKk(v,s);IF,) » H (K(V,s+1);IF2) +0

2s+1 2) 2s5+1

For a subgroup J of Aut(B) we have:

H.(K(B,s);IFz)(Aut By = Hi(K(B,s)J;IF

2) = Hi(K(BJ,s);IFe).

The foregoing considerations lead to an exact sequence of coeffi-

cient-systems:

0+ im (1+T) » §25+1(SK(B,S);IF2) - §25+1(K(B,s+1);IF2) >0

where im (1+T) is the ccefficient-system whose value at Aut B/ j is the
image of 1+T : B’ 8 BY » B’ @ BY.
3.12.

We can now prove the statement thatnis surjective by applying the
half-exact functor Traf( ;B') to the exact sequence just derived. For
both choices one can make for B':

Jes >l o8

{a) B'" = cok(1+4T) i.e. B'(Aut B/J) = cok (1+T: B

(b) B'

528 = cok ((1+T): B® B> B 8 B),

the coefficient-system constructed from the module

one is left to prove that Homp(im (1+T), cok (1+T) = 0.

SUBLEMMA. Let V be a vectorspace over IF. of dimension # 2. Let

2
T: VeV>Ve®eVmepa®btob ® a. Then

H (im (14T), cok (1+T)) = 0.

Maut v

98



CHAPTER II

Pr oo f. It suffices to show that f € hom(im (1+T), cok (1+T)) maps ,

X @y +y®xtoO. Suppose x ® y +y ® x # 0; this means that x and y

are independent hence we can choose a base €15€50 58 such that e, =X
and e, =Y.
Let f(e1 -] e, * e, 8 e1) = e, B e, + Be, 8 e, * ve, -] e, *
L Gie1 ] ei + I ciez ] e + L ;i.ei ®e..
i>2 i>2 pise M J

Equivariance of f with respect to the element A € Aut V defined by

Ae Ae, = e Aei = e, for 1 > 2, implies that a = B and Gi = E..

17 f20 A% i
Equivariance of f with respect to the element A € Aut V defined by

Ae1 = e1+e2, Ae2 = e, Aei =e; for 1 > 2, implies that B = a+B+y hence

a=8=y, and €, = 6i+ei so = 0.
Finally, equivariance with respect to the element A defined by

Ae1 = e1+e3, Ae2 = ey, Aei = ei for 1 > 2, implies that

fle, ® e, + e, 8 e3) = zeq @ e, + ae, ] e3; combined with the equivariance

3 2 3
with respect to the element B given by

Be1 = e3, Be3 = e1 and Bei = ei for i # 1,3, this yields that

fle, ® e, + e, 8 e1) =ae, 8 e, +ae, Be,hencea=8=y=0and g =0.

1 2

Q.E.D.

Summarizing: this sublemma yields the surjectivity of n, hence the

*

k is proved and elso the vanishing of the indeter-

surjectivity of H
minacy of q. We may thus state the
THEOREM. A normal map between even-dimensional manifolds with boundary,

inducing a homotopy-equivalence of the boundaries, gives rise to a

nonsingular quadratic form in the sence of C.T.C. Wall.
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§4. Properties of the guadratic forr,

L,1.
THEOREM. The quedratic form (q,b) is natural for inclusions of normal
maps of the type described in II.2.4. with respect to:

* s, N * k_ s, . * _
e : {x € H (M ,0M,;B) | cf|M1S x =0} » {x € H“(M,aﬁ,a) | crs'x = 0}

Pr oo f. Consider x € HS(M.,aM,;B) such that (c.,. )*s¥x = o.
Froof My s, £lm,

If ¢ = M1/8M1 + ¥(B,s) is a map classifying x, then 9, © e is a map
classifying ezx and

= Sk¢ oc. 0c¢C = Sk¢

_ ok k
=95 ¢x oS e'j oc X i £ M1

f M1

hence from the definition we see that

v{x) constructed from M and

w(e;x) constructed from M; coincide in H:S+k(T(£)E(E|BN);S2B),
hence q{x) = q(e}x) in B/{b-b}.

Furthermore the computation

*

*Sk(x Uy) = cp

(g, 35" (x U y) = e} x v y)) =

* * *
= C;Ske;(x Uy)s= cfSk(ejx U ejy)
shows that

*
b(x,y) = b(ejx,ezy)- Q.E.D.

.2,

In the remainder of this section we will formulate and prove that
the quadratic form (b,q) is, up to some equivalence-relation, invariant
urnder bordism of normal maps.

Consider a bordism of normal maps i.e. the situation of II.1.6.

,

and let x € H:(M,ﬁ2;B) such that ¢*s®k = 0. Then there is a commutative
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diagram, according to II.1.6.:

s(T(€)/T(g|N,)) ————— < (W/h,) — s¥* 'k (B,s)
T c st e, A
//
k+1 /_k+1
S(T(e]N,)/T(E[N,)) —Xs (N /M ) 5 0

’
‘l‘ | ///
Y e

T(£) /T(E|N, U N,) ————» s*(H/M, U B)
[

.. . . v noA
where i is the inclusion (M1,M0) c (M’MQ)'
The vertical compositions are equivariantly homotopic to constant
. . . +1 .
maps, hence a functional operation associated to Sk ¢i*x o ¢ vanishes.

In particular the image under y of ¥(i *x)}, which is computed from

k+1 .
S ¢i*x o ¢ venishes.

We will show that the identifications of H2s+k+1 S(T(E|N1)/T(E|N0);S2B)
and H28+k+1( (e)/7( E|N L 2);82B) with B/{b-b} correspond under y. This
shows:

PROPOSITION. In these circumstances is q(i*x) = 0.

L.3.

We notic; that vy is a map from the Puppe sequence of the inclusion
T(E|N1 ] Ne)/T(EINQ) c T(g)/T(g|N2) hence we can identify y* with the
boundary~operator in the long exact sequence of this pair.

Using the fact that the Thom-isomorphism preserves such a long

exact sequence we can identify y* with the composition

25(311,?1 ,5%B) < 25(?\4‘ UNQ,NZ,S B)—»H N UN ,5°B)
g h

8
2s+1 Ll
HOV (MY, U N,55°B)
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=1
Finally: <éh*g*” 1x,O > = <h*g*” 1x,30 > = <h*g* 'x,0 > =
N N1 u N2

= <x,g;1h*0N1 u N2> = <x’ON1,NO> in S°B © IF, = B/{b-b},

which proves the assertion in the last subsection.

b.h.

As in II.4.3. there are direct-sum splittings
M,M

_ 1 . *
s+1(M ;B) = ker f, ® P im fMl,ME
M
™ 1 . *
HS(M1,B) = ker fy @ P im fy M
170
TN
HS(M,B) = Kker ff ® im fM M, UM,
and corresponding splittings of
s/ N, s N s+1,%v LN
uS (M,¥,33), Hﬂ(h1,MO,B) and HCUU(M,H, U Hy3B).
Furthermore the maps
TN T, m
HY,, (8,0 58) > HL(H 5B) » HS(M,B)

map the kernels into the kernels and hence induce an exact sequence:

{the kernel of a surjection of long exact sequences)

M, M M1 M
ker f, > ker f, > ker f,.

i
Similarly the maps

s'\/’\a. s, N ’\4'\4' _ oSN
H"(M,Mg,B) -+ H"(M1 1] M2,M2,B) = H_ (M 1,M sB) » H

s+1(m A
T

Y
M,M, U M2;B)

map the images into the images; hence the direct-sum splitting is
preserved.
s, N R
In II.L. we showed that the cup-product on H“(M1,MO) induces a

nonsingular pairing on ker Pf,. Notice that instead we can use cup-
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o . "
product and kernel from the isomorphic group H:(M1 u 32,§2;B).

The three maps

2"
H:(M,M ;

s+1 " y N .
Homy (HS* ' (M,M, U M,3B)3B)
all preserve the direct-sum splitting and the first and last map are

isomerphic (compare II.L.).
M,M M,M1 UM

The middle map induces an isomorphism: ker f, + ker f, 2

if £ : (M, M ) (N,,N ) is a homotopy~equivalence, because this implies

22 0

n , R .
that f, : H,,,(M1 U ﬁe,M1;B) > H*(’!‘\f1 U ﬁe,ﬁ1;B) is isomorphie.
We may conclude that the cup-product on

n, a . . ..
Hs(ﬁ,M 3B) x HS+1( M,M, U MQ;B) inducesa nonsingular pairing ¢ on

L
M M M, UM

ker Pf, x ker Pf, 1 2 in the case considered.

4.5,
PROPOSITION. With the notations already introduced:
b(ix:Y) = C(X,p}’) .

Pr oo f. We have:

. e o < .
b{ix,y) = <1ny,0M1UM RV <1xuy’F*BOM,M1UM > = <6g (IXLY)’OM,M1UM2>

n

" a
where g is the inclusion (M1 v M2,¢) c (ﬁ1 U Mz,ﬁe),and from the other
hand: c(x,py) = <XUPy’0M,M1UM2>'

Hence the statement follows from the fact that in general, given
a triple X c Y © Z and meps as in the diagram:

n+1

H:(Z,X;B) ——>H; 7(Y,X;B) ————> HY(2,Y;B)

N W A

n(z B)—>H (Y;B)
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one has:
dg(ixUy) = 8(gixUgy) = §(j(hx)U(gy)) = (hx)Us{gy) = xupy.

Q.E.D.
L.6.

Consider the category with objects the triples (X,b,q), where K
is a finitely generated left B-module and (b,q) is a quadratic form
on B i.e.

(1) b : XKx K-> B is biadditive.
(2) b(a1x,a2y) = a1b(x,y)zg.
(3) bly,x) = blx,y).

(4) D is nonsingular i.e. induces an isomorphism X » K% = Hom_(X,B).

B
(5) q: K-+ B/{b-D}.
(6) qlx+y) = q(x)+a(y) + class of b(x,y).
(1) a(x) + q{x) = v(x,x).
(8) qlax) = aq(x)a for x,y € K; 8q,8,,2 € B.
The morphisms are the module-homomorphisms preserving b and q.
This category has an obvious concept of "direct sum" (often called
"orthogonal sum") hence one can define its Grothendieck-group.
For P a finitely generated left B-module we define H(P) to be the
left B-module P @ Pd, equipped with the q which vanishes on P and pd

and with the b which vanishes on P x P and Pd x pd

, and which is the
canonicel pairing on P x pd.

The quotient of the Grothendieck-group by the subgroup generated
by the elements of the form H(P) will be denoted by L(B). The construc-
tion of II.3.5. assigns to a normal map of even-~dimensional manifolds,

inducing & homotopy-equivalence of the boundaries, an element of the
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group: L(B) (if one is given a homomorphism n1(N) > m),
Given & finitely generated left B-module P, consider the set of
meppings £ : P x P + B such that:
(i) £ is biedditive.
(i1) ﬂ(a1x,aey) = a1£(x,y)E;, a,,a, € B; x,y € P.
An involution T acts on this abelian group by: (T&)(x,y) = £{y.x);
given an element £ € coker(1-T) we can define a pair (bz,qz) by
bp(x,y) = L(x,y) + £(y,x); qp(x) = class of £(x,x).
The assignment £ ~ (bﬂ’ql) maps coker(1-T) bijectively to the set
of pairs (b,q), satisfying (1)-(3), (5)-(8) above.

For this fact we refer to [16].

L.7.
LEMMA. Let X ; Y ; Z be an exact sequence of left B-modules and let
(b,q) be a nonsingular quadratic form on Y.
Let ¢ : X x Z + B also be a nonsingular pairing such that:

q(ix) = 0 and ©b(ix,y) = c{x,py) for x € X, y € Y.
Then (Y,b,q) represents 0 in L(B).
Proof. Denote imi Y by S. A map adb : S » (t/8)d is induced by
b because b(ix1,ix2) = 0 for Xq9%, € X. We state that this map is iso-
morphic.

An element f € (Y/S)d can be considered as an element of Yd, hence,
because b is nonsingular, there exists a y € Y such that b(a,y) = fp(a)
for all a € Y. This implies that c(x,py) = b(ix,y) = 0 for all x € X,

Yy € Y; hence py = 0, soy € S.

If s € S such that b(y,s) = 0 for all y € Y/S then s = O because
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b is nonsingular. This proves the statement.
Because every B-module is projective, we may conclude that

d

Y=S®Y/S=S &S5 . Choose P such that S & P is a free module, say P.

Then (Y,b,q) ® H(P) is a quadratic form with underlying module

vyeBeprl=rer

which is free, and b and q vanish on S ® P = F.
According to lemma 5.3. in [15 ] (but without mention of bases)
the quadratic form is isomorphic to H(F). Because H(F) and H(P) re-

present 0 in L(B), so does (Y,b,q). Q.E.D.

Summarizing:
THEOREM. If a normal map of even dimensional manifolds is bordant to e
homotopy-equivalence "over m" then the associated quadratic form re-
presents 0 in L(B).
Remark: The condition "bordant ...." means the same as ~ O in the

notation of [15 ; page 86].
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THE RELATION BETWEEN THE QUADRATIC FORM AND THE SURGERY OBSTRUCTION

§1. Generalities

1.1,

We recall the following from [ 15, chapter 9].
Consider "objects" consisting of the following:
compact manifolds with boundary (M,3M) and (N,3N) of dimension n,
a map £ : (M,3M) » (N,3N) of pairs of degree one, inducing a homotopy-
equivalence: aM - 3N,
a vectorbundle v over N and a stable framing F of TM + f*v, and finally
amap w : N~ K (K a CW complex) such that w,(N) factorizes as
m (0 ¥ o (k) > {21},
Introduce the notation 8 ~ 0 for an object 8 as above to denote that
there exist:
compact manifolds (P,B_P,3+P) and (0,3_Q,9,Q) of dimension n+1 with two
boundary parts, such that (M,aM) = (3+P,3+P N 3_P) and
(N,3N) = (3,Q,3,Q N 3 Q),
a map g : (P,3+P,3_P) > (Q,3+Q,3_Q) of degree one, extending f, and
inducing e homotopy-equivalence: (3_P,3_P N 3,P) ~ (3_Q,3_Q N 3,0),
a vectorbundle p over Q extending v and a stable framing G of TQ + g*u,
stably extending F, and finally
an extension of w to & map Q » K such that w1(Q) factorizes.

The definition: 6, ~ 6, if e1+(-92) ~ 0 (where + denotes disjoint

union and - denotes change of orientation) defines an equivalence
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relation on the "objects"; we denote the set of equivalence-classes
by L;(K); it has a natural structure of abeliarn group.

On the other hand there are the Wall groups Ln(r,w), which for
even n are defined in [ 15, chapter 5] as eguivalence-classes of qua-
dratic forms over Z[mn]. According to the cited reference the surgery
obstruction defines an isomorphism s : L;(K) > Ln(n1(K),w) for n > b
if K has finite 2-skeleton. In fact it is stated there for Poincaré-
complexes N and Q instead of manifolds, but the fact that we are
dealing with manifolds only mrakes things easier.

Now the constructions of the last chapter endow us with a map
t o L;(K) + L(B), for m = n1(K) firite; fur . hermore the operation of
reducing a quadratic form over Z[n] to one over B induces a map
T Ln(n,w) + L(B) for n even.

Ir this chapter we prove the:

TEECREM. rs = t

by first constructing an element of L;(K) mapping to an arbitrary given
element of Ln(n,w) and then showing that our quadratic form for this
normal map is just the reduction of the given gquadratic form to B

coefficients.

§2. The construction of a standard normal map.

2.1.
Assume n = 2s > 6. Let Xn_1 be a connected compact manifold with
boundary and fundamental group w. Let ¢ be a nonsingular quadratic

form on a free module over R = Z[n] with base €585, €0 (i.e. ¢
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represents an element of coker (1-T); compare II.4.). We are going to
construct a normal map to X x [0,1] with the class of ¢ as its surgery
obstruction, following [ 15, theorem 5.8.]; our construction is adapted
so as to allow the calculation of our (b,q) for it.

We base our construction on the following algebraic trick:
define the quadratic form ¢ on a free module over R with base
L PRPRLAR e?,e",...e; by w(ei,ej) = w(e;,eg) = w(ei,eg) = 0 and
w(eg,eé) = ¢(ei,ej); then the restriction of ¢ to the submodule spanned

i’ej)'

In applying C.T.C. Wall's theorem 5.8. to $, one does not introduce

A _ ' "o . . 8..8.) = ' " ' "y =
by the & = el + el is just ¢ : w(el,eJ) w(e1+e1,eJ+eJ) d(e

self-intersections.

2.2.

We choose 2m disjoint discs in the interior of X and for each one
we choose a path connecting it to the basepoint * of X; that is equi-
valent to choosing liftings to the universal covering %; composition

Vo [-1,1) x D577 5 02571 yields om

)°.

with the standard embedding S°~
disjoint embeddings (fi)o
1

"
and &i

- . . . -1
Let E°7' be the "northern hemisphere" disc in s°7'. Now there are

. -1 =1
embeddings T, : [0,1] x p° x D°

1) 1. | [0,i] ps~! « ps7!

-+ int X such that

=1 % [=1,1] x D577,

2) ri l [5’1] X DS—1 x Ds-1 = (fi_.)O I ES—1 x [_1’1] x DS—1,

S

N
(£1)° | E

3) T. [0,1] x O x 0 yields together with the chosen paths a zero-

i |
homotopic loop. (We identify [-1,1] with [0,i] resp. [2,1].)

0

We subject the (fi)o and (f;) to simultaneous regular homotopies

n} resp. ”E to new disjoint embeddings (fi)1 and (f'i')1 such that the
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S=

induced "framed .mmersions' n x 1d : S L [-2,1] » ¥ x [-2,-1)

have 1intersections and self-irtersections as descrabed by V. (For
details on this, see [ 15, proof of theorem 5.8.]).Hence (fi)1 and
(f;)1 are also '"connected by Fi". We may assume that the homotopies,
restricted to the corplement of Es_1, remain disjoint from the im Fl.
From now on we denote ni(t+2) by (f]'_)t and n;(t+2) by (f;)t.

We can use the Fi to construct the connected sum (?i)t of the
framed spheres (f{)t and (f;)t. To te more precise:

s-1 52 s=1

-1 .
write 8° as D U [0,1] xS U D7 '; this yields also a splitting

of 5571 x 0% x [-1,1]. Define (fl)t as

=1
(fi)t at the "southern hemisphere” on the first D°° summand,

(f;)t at the "soutnern hermisphere"” on the second ps~’ summend,

and on the [0,1] x ss—2 summand we define (fl)t as T  composed with the
- -1 - -

erbedding (10,11 x 5572) x ([-1,1] x D°7") » [0,1] = D" x D°"' map-

ping (1,v,0,x) to (3 - §§g cos xt1, v(1 - §%9-51n x1),x). (see sketch)

Idertifying 557! with {(a,v) € [-1,1] x RS | a2+[v|2 = 1} and

replacing in the above formula v by the pair (a,v) we find also an em-

vedding: ([0,1] x 8571) x ([-1,1] x p%7") = [=1,1] x ([0,1] x D5~ 'xD%"")

110



CHAPTER III

The image of this map under id[_ x Ti in [-1,1] x X fits “ogethker

1,1]
with the image under id x (fi)1 and 1d x (15‘2)‘I of

1 1

- D%) x ([-1,1] x .°7
1

([-1,1] x g5~ ) where

D® derotes {(a,v) € [-1,1] x E5 | a2+|v]2 < 1},

In less precise language: we can form the connected sum of the two
cylindres defined by id x (fi) and id x (fg) inside [-1,1] x X. (see
sketch. )

We will denote this subset of [-1,1] x X by T.

Ixfi!
i

1xf!

> in [-1,1]xX

—_

Now we can define the manifolds Y., Yy, Y' and Y":

S

Y, consists of [-2,1] x X together with handles D5 x D°, glued ac-

3)1 : 85 DS 4 x x 1.

cording to the embeddings (fi)1 and (f
Yy consists of [-2,0) x X U T together with the same handles; hence
Ty is a regular domain of Y, . It can also be considered as [-2,0] x X
together with handles, glued according to the embeddings %i' (See the

picture.)
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Y' is constructed in the same way as Ya, but only using the (fi)1; simi-

larly

Y" is constructed gluing only the second set of m handles to [-2,1] x X.
In the next subsections we construct a normal from Y, to X x [0,1])

and consider the induced normal maps on Y Y' and Y".

Xx1

- --f— ===z =z==3---~1 L—-1 Xx0

A Xx-1 .__(____ _--_-F-u

Xx=2

2.3,
Now that we have defined the manifolds involved we are going to
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define the normal maps. First we give a more detailed account of the
framings in the proof of theorem 5.8. of [15].
Consider X and the regular homotopies n. of the framed spheres

SS_1, which were embedded in the standard way; we can view these homo-

s=1

topies as "framed immersions" S x I > X x I. Together with the

standardly embedded framed discs D° that yields a framed immersion of

s s-1)

(p°,s into (X x I, X x 1) i.e. a map

j: (DS,SS—1) x D5 > (X x I, X x 1). Denoting by p the projection
X x I+ X we have a map from

Y=XxIUhandles to X, viz. f=pUpoj.

A trivialization F of T(X x I) + p*v (with v = vy there is a

canonical one) yields a trivialization of j*T(X x I) & j*p*v.

We identify j*T(X x I) with the tangent space of the handle by

(idTX ® -1)oDj which is possible because j is an immersion, hence Dj
is isomorphic. The union of these trivializations is a trivialization
of T(X x I U handle) + (p U p o j)*v = T¥ + f*v.

Our trivialization is the correct one at X x I. In [15, pagé 10]
C.T.C. Wall argues that there exists essentially one trivialization for
the handle and that the only thing to be checked is that that one behaves
right on the intersection of the handle with X x I. Because the trivi-
alization we constructed for the handle does behave right on the inter-
section, it is the correct one.

In analogy with this situation we can 'fold Y, along X x o":

J maps the handles to X x [-2,-1] using the regular homotopy, and maps
X x {0,1]) to X x [-1,0] by: (x,t) » (x,-t). With the aid of p:

X x [-2,0] + X that yields f : Y, > X. Constructing the framing in
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analogy with the above is also straightforward.

By restriction we have j, f and F at our disposal for Y., Y' and Y".

b!

2.4,

The f we constructed in the last subsection is a map to X; however
we need maps to X x I.

Consider a bordism (L,B+L,B_L) as in I.11.1. and amap f : L + 2
such that f(aoL) < 32. By a homotopy we achieve that in a collar
I x 30L c 3+L f maps (t,x) as (1,x); in particular it maps the collar
to 3Z. Now define £y (L,3+L,3_L) + (Zx[0,1], Zx1 U 3zZx[0,1], Zx0)
by teking the second coordinate equal to the minimum of 1 and (1/e)
times the distance to 3_L, for sufficiently small ¢ > O.

A trivialization of TL+f*v yields one of TL+f?(p*v), because
pfy = f,vhere p is the projection Z x I » Z.

In this way we get from our construction & normal mep of manifolds
with boundary of equal dimension n. Notice that X x [-1,1] U handles is
mapped to X x 1 <3(X x I) and hence that we have the situation of the
"naturality theorem" II.L.1. for the inclusion Y, e¥,.

Similarly for the inclusions of Y' and Y" in Y-

§3. The computation of the quadratic form for the model normal map.

3.1.

The idea of the computation is as follows:
we compute the quadratic form for Y, using the neturelity theorem from
the quadratic form for Ya;

this we compute using naturaslity from the quadratic forms for Y' and Y";
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we compute the quadratic forms for Y' and Y" also by naturality from the
one for a certain manifold Yh’ which is a boundary, and we apply IT.L.2,

We carry out the construction of C.T.C. Wall [!'5 , theorem 5.8.]
for the quadratic form H(Rm); that yieids a normal map f : Yh > X x I,
inducing a homotopy-equivalence of the boundary because the form is
nonsingular,

There are two sets of s-spheres, S1 and 32, corresponding with the
first resp. second half of the standard base of Rgm; each of the spheres
consists of the originel s-disc, the regular homotopy n of its boundary

and the core of the handle (see sketch). These spheres are mapped by f

to zero-homotopic spheres.

=4
(2
n
Fod
X
—

Now Yh has the homotopy-type of the one-point union of X and the
2m s-discs, in such a way that f corresponds to the projection on X.
Hence with coefficients M equal to R or B the kernel of
fy ¢ Hg(yh:M) -+ Hg(% x I3;M) vanishes except for j = s,

and in that case it is equal to M2m; the generators are represented by
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the spheres in S1 and SQ'

Now we can do surgery on the collection of s-spheres S1 because
these are embedded with trivial normal bundle and without mutual inter-
sections. Because the associated elements of R2m generate a subkernel
of H(R™), the result of this surgery is a homotopy-equivalence (in fact
it is a diffeomorphism).

We introduce the following notations:

Z = the trace of the surgery i.e. Y, x I U the m (s+1)-handles,

h

5 = Yh, Z1 = BZ-ZQ, Z0 = Z1 n Z2 = 3Z2.

Z
Then we can apply II.L.2. and we conclude that g and b vanish on the
part of ker f,P H:(Yh,a¥h;3) which is in the image of Hs(%,%1;B).

Now according to I.11.4. the following diagram commutes:

H3 (2,2 3B) ——— B3(2,,%;3)

P P , where P denotes Poincaré duality.
(3,258 ——> H"(%,;3)
s+‘l b ] 2) s 2’

Now H:+1(a,22;B) = B" with the elements represented by the (s+1)-
handles, which were glued to Yn during the surgery, as a base; hence
the image of it under 3 is represented by the s-spheres 8,-

We conclude that q and b vanish for the first m base elements of
ker f,P. The same is true for the second m base elements, as is seen by

interchanging the roles of 5, and 8 in the above discussion.

2

3.2.

Had we applied the construction of [ 15, theorem 5.8.] only for
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the first m base elements of H(Rm), so with vanishing quadratic form,
then we would have got the construction of the normal map Y' - X x I.

We now apply the neturality theorem II.4.1. to the inclusion Y' c Y.

By Poincaré duality eg corresponds to j, in homology.
It is clear that ker (f‘|Y'),,l has a base represented by the collection

S, of m s-spheres and that j* maps this to the first half of the base

1
of ker f,.

We conclude that for £ : Y' » X x I q and b vanish identically,
because they did so on the first half of the base of ker f,.

The same is true for Y".

3.3.

We apply the naturality theorem II.4.?1. to the inclusion Y' c Y,.

m,

Ker (lea)* has a base consisting of elements e;,eé,...eé,eq,eg,...e

which are represented by s-spheres as was the case for Y the first

h;
half of those spheres are in Y'.

This tells us that a and b vanish on the corresponding elements
of ker (f|Ya)*P’ The same can be said about Y" € Y_and the second half
of the base.

Finally b(P_1eg,P-1e5) can be viewed as the intersection-number

of e¥
i

and ej, reduced from R-coefficients to B-coefficients. This number
is equal to the intersection-number of the corresponding spheres, hence
by construction to ¢(ei,ej) (compare III.2.1.). Hence

1 0 =1

b(P~ ef,P ej) = r¢(ei,ej), where r denotes the reduction.

3.k

Finally we apply the naturality theorem II.k.1. to the inclusion
17
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k: Y cY,. Ker (leb)* has a base consisting of elements 61,62,...,Em,

which are represented by the spheres formed ty im n, T and the cores of
the handles. In Y& these can be viewed as connected sums of corresponding

- * -1
s ; .= e! + e . .
spheres from 1 and S2, hence k*e1 e; e; so eJ maps P & to
pler + plen,
1 1
We have

1 =1

-1 " - 1] " -
ei) + b(P ei,P e') =

-1 '
q(P ei) + g(P i
=0+ 0+ role;,e;) = rqyle;).

1 1

b(P'1é.,P‘1e.) = b(P’1e;,P'1e3) + b(p~
-1

1 - t
el,P ej) +
1 -1

n =1 1 - ) "n -
+ b(P el,P ej) + b(P el,p ej) =

0+0+ r¢(ei,ej) + r¢(ej,ei) =

r b¢(ei,ej),

which completes the calculation of this section.
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SAMENVATTING

De techniek van chirurgie wordt gebruikt om te onderzoeken of een ge-
geven afbeelding van variéteiten bordant is met een homotopie-equiva-
lentie, In dit proefschrift wordt de techniek van W. Browder om de hij
een dergelijk probleem optredende obstructie met algebraische topolo-
gische middelen te vinden uitgebreid van het enkelvoudig samenhangende
geval naar het gevel van een eindige fundamentaalgroep.

Hierbij wordt gebruik gemaakt van middelen van de equivariante alge~
braische topologie en van de differentiaaltopologie.

In hoofdstuk I wordt hiertoe de equivariante algebralsche topologie
van G. Bredon en Th. Brdcker verder ontwikkeld, met name door de con-
structie en bestudering van equivariante cohomologie-operaties. Deze
blijken naast de vertrouwde, ook eigenschappen te bezitten (stellingen
6.4, en 7.3.) die in het klassieke geval niet aan de dag treden.

In hoofdstuk II §1 wordt het chirurgie-gegeven vertaald in een equi-
variant topologisch gegeven, waarna in §2 en §3 met de technieken van
hoofdstuk I hieruit een niet-singuliere kwadratische vorm in de zin
van C.T.C. Wall wordt geconstrueerd. In §4 worden enkele belangrijke
eigenschappen van deze constructie afgeleid.

In hoofdstuk III wordt door berekening van deze vorm in een voldoend
algemene situatie, asangetoond dat de geconstrueerde grootheid de chi-
rurgie obstructie ten dele vastlegt. Het probleem, gesteld door

L. Shaneson, om de chirurgie-obstructie zonder voorbereidende chirurgie
te bepalen, is aldus door de resultaten van dit proefschrift in belang-

rijke mate opgelost,
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STELLINGEN

Het simpliciale complex met hoekpuntenverzameling a,b,...,£
bestaande uit de simplices
aef, fca, cfk, ki, ghi, Lhe, Lej,
eaf, fak, had, ckd, Lhg, gjit, jgb,
bgd, ged, deh, dhc, htc, cfb, bei,
fbi, cba, abd, egf, fgh, RLj, 4Lk  en hun zijden
vormt een triangulatie van het orienteerbare oppervlak ven geslacht
twee op zodanige wijze, dat in elk hoekpunt precies zeven simplices

elkaar ontmoeten,

Voor een coketencomplex E met coaugmentatie e en met daarmee

consistente cup-i-producten U zij de kegel CE van E gedefinieerd

i
door (CEY® = ¢ o Cn_1 voor n > 0 en (CE)O = ¢ ® Z, met corand-

operator § gedefinieerd door §(a,b) = (8a, &b - (-1)%) voor
a € C" en 6(a,b) = ( a, e(b) - a) voor & € Co, en met coaugmentatie
e gedefinieerd door e(1) = (e(1),1),

Dan wordt een daarmee consistent stelsel van U - producten
b

gedefinieerd door:

(,0) U (c,d) =(alYc,aud+ (=" a u b), indien
i 1 1 i-1

a € Cm+1, c€C®eni> o0

(a,b) U (¢,d) = (a U c, aUd) indien c € ¢ en n > 0;
0 0 o}

(a,b) U (c,d) =(aUc, aleld) +db) indien c € Co, dus d € Z.
0 0 4]

Met behulp hiervan kan een natuurlijk stelsel van cup-i-produc-

ten voor het singuliere coketencomplex van een willekeurige ruimte



worden geconstrueerd. De U is die van Alexander en Whitney en dus
associatief. De operatie g ? met vaste a is een derivatie over U.
0

Zij p de partitiefunctie, d.w.z. p(n) is het asantal manieren
om n te schrijven als som van natuurlijke getallen.
Den is het asantal manieren om n te schrijven als som van verschil-
lende oneven getallen op zodanige wijze dat een even (resp. oneven)
santel daarvan congruent is met 3 of 5 modulo 8 gegeven door

b p(ﬂfh - 515%11)’ waar gesommeerd wordt over de natuurlijke getal-

len k die modulo 8 congruent zijn ean n (resp. n+i).

Laat V en W vectorruimten zijn van eindige dimensie. Laat voor
i=1,2,3 K; een lineaire deelruimte zijn van V, Li een lineaire
deelruimte 2zijn van W en P, een lineaire afbeelding zijn van V naar
W. Er besteat een lineaire afbeelding A van V naar W zodanig dat

(A-Pi)(K.

1) c Li voor i = 1,2,3 precies als aan de volgende vijf onaf-

heankelijke voorwearden is voldaan:
1) Er bestaat een A met (A-Pi)(Ki) ©L; voor i =1eni-=2.

2) Analoog voor i = 1 en i = 3,

3) Analoog voor i = 2 en i = 3.

4) Het probleem is oplosbaar als men elke Li door L1+L2+L vervangt.
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5) Het probleem is oplosbaar als men elke Ki door K1nK2nK3 vervengt.

Zij k een licheam en zij R = k[x]/(xe); k is te beschouwen als
een moduul over R waarbij X als O werkt.
Dan is een willekeurig ketencomplex C van vrije R-modulen equivelent
met het complex gevormd door de R-modulen Hn(C;k) @k R en de homo-

morphismen Bn ® X, wear Bn : Hn(C;k) - Hn_1(C;k) de Bokstein-operator



is, geassocieerd met het exacte rijtje van R-modulen:
0 - XR » R - R/XR + 0.
De ketenequivalentieklasse van het ketencomplex C wordt dus vastge-

legd door diens homologiegroepen en Boksteinopersaties.

Beschouw een inbedding f van de volle torus S1 x D2 in de

3

drie-spheer S~, zodanig dat de hartlijn f(S1 x 0) een klaver -

bladknoop beschrijft, en zodanig dat het "linking-getal van

T 0) en f(S1 x p) voor pED2 gelijk is san -2.

3

(s
Het resultaat van het doen van chirurgie op S~ door middel van f is
een varieteit met als fundamentaalgroep de binaire oktaedergroep

(van orde 48),

Bij het bewijzen van stellingen als de volgende kan met vrucht
gebruik worden gemaskt van de meetkunde van twee-dimensionale
varieteiten:

Een ondergroep, welke isomorf is met Z @ Z, van een geamelgameerd

product G1 *H G2 over een eindige groep H, is geconjugeerd met een

ondergroep van G1 of van G2'

In algebraisch-topologische bewijzen wordt vask gebruik gemaakt
van ineenstortende spectraalrijen in gevellen, waarin volstaan kan

worden met een eenvoudig ad hoc argument.

De ruimte van minimale geodeten tussen twee vaste antipodale

punten in de Stiefel-varieteit VQIR? = {(x,y) € IR" x IR®;

<X,Xx> = <y,y> = 1, <x,y> = 0} is homeomorf met de suspensie van de

Stiefel-varieteit V, R"2,



10. De voorzieningen, welke door de overheid worden getroffen ten

gerieve van de automobilist, gaan vaak ten koste van de voetganger.









