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The title compound, [Fe3(C5H5)3(C15H12OP)]�H2O or Fc3PO�-
H2O, was obtained as red crystals from the Friedel±Crafts

alkylation reaction of PCl3 and ferrocene. Torsion angles

(O PÐCÐFe/C) range fromÿ45.39 (9) toÿ56.11 (14)�. The

structure is stabilized by intermolecular hydrogen bonds

[H� � �O = 2.10 (3) and 2.00 (4) AÊ ], forming dimeric structures

between pairs of O PFc3 and water molecules. A theoretical

Tolman cone angle of 211� was calculated.

Comment

As part of a systematic investigation into the steric demand of

phosphine ligands in various model Pt-group metal complexes,

we have unexpectedly isolated crystals of triferrocenyl-

phosphine oxide (Fc3P O), (I), previously reported but not

structurally characterized by Sollot & Howard (1962). The

yellow crystalline solid obtained was at ®rst thought to be

unoxidized PFc3, and was tested in reaction with

[Rh(Cl)(CO)2]2 in an attempt to synthesize the well known

[MCl(CO)(XY3)2] Vaska-type complexes (M is Rh or Ir, X is P,

As or Sb, and Y is aryl or alkyl), which often crystallize with

ease. However, no reaction was observed (IR and 31P NMR

spectroscopy) and crystals, now red in colour, were isolated

from the mixture. The spectroscopic data of these were similar

to those of the yellow crystalline compound (see Experi-

mental). The change in colour can probably be attributed to

the variation in solvent between the two synthetic steps,

resulting in different packing effects.

Compound (I) (Fig. 1) is one of the few structures char-

acterized to date containing the PFc3 moiety [Cambridge

Structural Database (CSD), Version 5.25 of 2004; Allen, 2002].

Usually, ferrocenyl fragments possess geometric parameters

similar to those of ferrocene and its derivatives. In the case of

(I), all the cyclopentadienyl (Cp) rings are planar to within

0.003 AÊ and the interplanar angles are 3.53 (19), 2.37 (12) and

2.19 (12)� for the Fe1, Fe2 and Fe3 moieties, respectively.

Furthermore, the Cp rings in each ferrocenyl moiety have an

almost eclipsed conformation.

Pairs of O PFc3 molecules are linked via OÐH� � �O
hydrogen bonds to water molecules, forming a dimeric struc-

ture around an inversion centre (Table 2 and Fig. 2). This

interaction creates channels along the c axis (Fig. 2). The use

of water as a hydrogen bridge in the solid state in phosphine

oxide compounds is not uncommon, but few form dimeric

structures in the unit cell (ca 10% in the CSD). These

compounds mostly consist of either ferrocene or electron-

donating (Krauss et al., 2001) functionalized variations

thereof. Thus, electron-rich phosphorus(V) oxides might assist

in the formation of dimeric structures. The same hydrogen-

bonding pattern is observed for the structure of

O PFc2Et�H2O (Durfey et al., 2002).
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Figure 2
A packing diagram for (I), illustrating the interactions between pairs of
O PFc3 and water molecules.

Figure 1
The structure of (I), showing the atom-numbering scheme and
displacement ellipsoids at the 30% probability level. H atoms have been
omitted for clarity. For the C atoms, the ®rst digit indicates the ring
number and the second digit indicates the number of the atom in the ring.



The conformation of the ferrocene substituents in (I) can be

described by the torsion angles between the O P moiety and

ferrocene, which are compared in Table 3 with those of other

compounds containing PFc3 fragments. It is important to note

that none of the compounds has torsion angles close to 0�,
illustrating few or no intramolecular interactions between

XÐP and ferrocene, which was postulated as an option for a

possible geometrical conformation of (I) (Sollot & Howard,

1962). The ferrocenyl moieties are staggered in such a way that

atoms O1 and P are both above the plane formed by the three

Fe atoms [1.8424 (16) and 0.3499 (5) AÊ for O1 and P, respec-

tively].

Three different methods have been investigated to estimate

the torsion angles of the ferrocenyl moiety for comparison

with reported torsion angles in the literature (Steyl et al.,

2001). These include OÐPÐCg1ÐCg2, OÐPÐCÐFe and

OÐPÐCÐC (Cg is the centroid of ring 1 or 2). The torsion

angles OÐPÐCg1ÐCg2 and OÐPÐCÐFe yield similar

values, while the other method gives ca 5� difference, because

of the almost eclipsed conformation of the Cp rings.

The most widely used parameter to de®ne the steric

demand of tertiary phosphines is the Tolman cone angle (�T),

which was calculated as described previously (Tolman, 1977;

Otto et al., 2000). A modi®ed structure of (I) was used to

calculate a reasonable value for the expected Tolman cone

angle, by incorporating a dummy atom 2.28 AÊ from the P

atom. A somewhat larger value of 211� was obtained for (I)

compared with the other known PFc3 structures (Table 3).

This value may not necessarily be a true re¯ection of the steric

in¯uence on a given metal centre, since the ¯exibility of

ferrocenyl moieties around the PÐC bond can signi®cantly

affect this value. This was found previously with similar ¯ex-

ible phosphines, e.g. tribenzylphosphine (Muller et al., 2002)

and ferrocenyldiphenylphosphine (Otto et al., 2000). The

structures of IÐPFc3 and H2C PFc3 are examples where the

ferrocenyl fragments have different orientations with respect

to the XÐP moieties (torsion angles given in Table 3) but still

possess similar cone angles.

Experimental

The title compound was prepared according to a modi®ed version of

the published procedure of Sollot & Howard (1962). Ferrocene (30 g,

0.16 mol) and freshly sublimed AlCl3 (4.33 g, 0.032 mol) were added

to degassed heptane (100 ml) in a vessel equipped with a re¯ux

condenser and a dropping funnel containing PCl3 (2.84 ml,

0.03262 mol) in degassed heptane (100 ml). The solution in the

dropping funnel was added to the mixture over a period of 1 h, after

which the mixture was re¯uxed (ca 373 K) for 24 h. The mixture was

then decanted and the remaining solids extracted successively with

hot benzene and water. The combined benzene extracts were dried

(Na2SO4) and the remaining solid puri®ed by column chromatog-

raphy [acetone±CHCl3, 1:4; RF(O PFc3) = 0.3]. Puri®ed (I) crys-

tallized as yellow crystals by slow evaporation from the acetone±

chloroform solution (yield 0.5 g, 2.6%). Red crystals of (I) were

obtained from the reaction of [Rh(Cl)(CO)2]2 and (I) (1:4 molar

ratio) in dichloromethane. Spectroscopic data, 1H NMR (CDCl3,

300 MHz): 4.08 p.p.m. (d, 27 H); 31P{H} NMR (CDCl3, 121.46 MHz):

30.3 p.p.m. (s).

Crystal data
[Fe3(C5H5)3(C15H12OP)]�H2O
Mr = 620.05
Triclinic, P1
a = 10.010 (2) AÊ

b = 11.900 (2) AÊ

c = 11.920 (2) AÊ

� = 76.51 (3)�

� = 70.23 (3)�

 = 78.13 (3)�

V = 1286.8 (5) AÊ 3

Z = 2
Dx = 1.60 Mg mÿ3

Dm = 1.585 Mg mÿ3

Dm measured by ¯otation in
aqueous NaI

Mo K� radiation
Cell parameters from 966

re¯ections
� = 3±28�

� = 1.76 mmÿ1

T = 293 (2) K
Cuboid, red
0.40 � 0.24 � 0.18 mm

Data collection
Bruker SMART 1K CCD area-

detector diffractometer
! scans
Absorption correction: multi-scan

(SADABS; Bruker, 1998)
Tmin = 0.583, Tmax = 0.728

8973 measured re¯ections

6181 independent re¯ections
5233 re¯ections with I > 2�(I)
Rint = 0.015
�max = 28.3�

h = ÿ10! 13
k = ÿ15! 15
l = ÿ15! 15

Re®nement
Re®nement on F 2

R(F ) = 0.028
wR(F 2) = 0.073
S = 1.03
6181 re¯ections
333 parameters
H atoms treated by a mixture of

independent and constrained
re®nement

w = 1/[�2(Fo
2) + (0.0338P)2

+ 0.4474P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.001
��max = 0.39 e AÊ ÿ3

��min = ÿ0.47 e AÊ ÿ3

Aromatic H atoms were placed in geometrically idealized posi-

tions (CÐH = 0.97±0.98 AÊ ) and constrained to ride on their parent

atoms, with Uiso(H) = 1.2Ueq(C). The positions of the water H atoms

were determined from a Fourier difference map and their coordinates

were re®ned isotropically.

Data collection: SMART-NT (Bruker, 1998); cell re®nement:

SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and

XPREP (Bruker, 1999); program(s) used to solve structure: SIR97

(Altomare et al., 1999); program(s) used to re®ne structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND

(Brandenburg, 2001); software used to prepare material for publi-

cation: WinGX (Farrugia, 1999).
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Table 1
Selected geometric parameters (AÊ , �).

PÐO1 1.4941 (15)
PÐC31 1.7846 (19)

PÐC51 1.7872 (17)
PÐC11 1.7879 (18)

O1ÐPÐC31 114.50 (9)
O1ÐPÐC51 113.87 (9)

O1ÐPÐC11 113.96 (8)

C21ÐC11ÐPÐO1 ÿ45.39 (9)
C41ÐC31ÐPÐO1 ÿ51.27 (10)
C61ÐC51ÐPÐO1 ÿ50.69 (10)

Fe1ÐC11ÐPÐO1 ÿ49.29 (13)
Fe2ÐC31ÐPÐO1 ÿ56.11 (14)
Fe3ÐC51ÐPÐO1 ÿ54.49 (14)

Table 2
Hydrogen-bonding geometry (AÊ , �).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH1� � �O1 0.75 (3) 2.10 (3) 2.843 (3) 167 (3)
O2ÐH2� � �O1i 0.86 (4) 2.00 (4) 2.860 (3) 178 (4)

Symmetry code: (i) 1ÿ x; 1ÿ y; 1ÿ z.
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Table 3
Comparative geometrical data for XPFc3 (�, AÊ ).

�tor1 = XÐPÐCg1ÐCg2; �tor2 = XÐPÐCÐFe; �tor3 = XÐPÐCÐC; �T is the
Tolman cone angle (Tolman, 1977); Cg is the centroid of ring 1 or 2.

X FeÐX �tor1 �tor2 �tor3 �T Reference

O 1.4941 (15) ÿ47.6 ÿ49.3 ÿ45.4 211 a
ÿ55.2 ÿ56.2 ÿ51.3
ÿ54.6 ÿ54.4 ÿ50.6

I 2.426 (12) ÿ46.3 ÿ47.3 ÿ45.4 198 b
ÿ162.0 ÿ161.2 ÿ167.6
ÿ49.2 ÿ49.3 ÿ52.0

CH2 1.630 56.3 57.2 51.5 200 c
63.5 62.7 58.8
64.5 64.3 61.3

References: (a) this work; (b) Gridunova et al. (1982); (c) Schmidbaur et al. (1989).


