CROSS SECTIONS FOR COLLISION-INDUCED ROTATIONAL TRANSITIONS OF NH3

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS
PROF DR P G A B WIJDEVELD
VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN
IN HET OPENBAAR TE VERDEDIGEN
OP WOENSDAG 23 JUNI 1982
DES NAMIDDAGS OM 200 UUR PRECIES

door

Dirk Bernardus Marie Klaassen

geboren te Geleen

PROMOTOR : PROF. DR. A. DYMANUS
CO-REFERENT : DR. J. J. TER MEULEN
de leden en oud-leden van de afdeling Atoom- en Molecuulfysica voor de prettige samenwerking;
de heren J. Holtkamp, E.van Leeuwen, C.Sikkens en F.van Rijn voor hun bijstand op elektronisch en technisch gebied en L.Hendriks bovendien voor het vervaardigen van enkele tekeningen;
drs. N. van Hulst en drs. J.van Vaals, die tijdens hun afstudeerperiode aan het onderzoek hebben meegewerkt;
de dienstverlenende afdelingen van de faculteit der Wiskunde en Natuurwetenschappen in de personen van de heren P.Walraven en J.van Langen, H.Verschoor, W.Verdijk en M.Kuppens, en H.Spruyt en G.Dekkers:
mw. M.van Leeuwen voor het typen van het manuscript.
Page
CHAPTER 1 : INTRODUCTION
1 Astrophysical background of the experiment 9
2 Experimental methods 10
3 The double-resonance beam maser scattering experiment 13
4 Outline of the present investigation 14
References 17
CHAPTER 2 : BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH_{3} I. CROSS SECTIONS FOR INVERSION TRANSITIONS INDUCED BY POLAR GASES (J.Chem.Phys. 76, 3019 (1982)
1 Introduction 20
2 The beam maser scattering machine 23
3 State selection 25
4 The relation between measured attenuation and cross sections 26
5 Theory 29
6 Experimental results and interpretation 31
7 Discussion 33
References 34
CHAPTER 3 : BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH 3II. CROSS SECTIONS FOR ROTATIONAL TRANSITIONS INDUCED BYPOLAR GASES
1 Introduction 37
2 The experimental set-up 41
3 The relation between attenuation differences and rotational cross sections 43
4 Theory 50
5 Experimental results and interpretation 54
6 Discussion 63
Appendix A : Transformation of measured effects into rotational cross sections 72
Appendix B : The apparatus function 78
References 82
CHAPTER 4 : BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH_{3} III. CROSS SECTIONS FOR ROTATIONAL TRANSITIONS INDUCED BY $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ AND H_{2}
1 Introduction 84
2 Experiment 86
3 Theory 87
4 Experimental results and interpretation
4.a The system $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ 93
4.b The system $\mathrm{NH}_{3}-\mathrm{N}_{2}$ 93
4.c The system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ 95
5 Discussion 100
Appendix A : Transition probabilities resulting from the R^{-7} terms in the intermolecular potential 114
Appendix B : Resonance functions 117
References 120
Titel en Samenvatting 124
Curriculum vitae 127

1. ASTROPHYSICAL BACKGROUND OF THE EXPERIMENT

Microwave transitions across various inversion doublets of ammonia (NH_{3}) have been detected in a large number of galactic objects ${ }^{1,2}$. These transitions are seen in absorption or in emission against the isotropic 3 K background radiation, depending on the nature of the doublet and the interstellar source. The observed relative intensities do generally not correspond to thermal equilibrium conditions. Moreover, most of the observed transitions originate from highly excited rotational states. Shortly after the discovery of interstellar NH_{3} by Townes and co-workers ${ }^{1}$ it was suggested by them ${ }^{3}$ that collisional excitation and de-excitation may provide an explanation of the observed features. This suggestion is generally accepted at present.

The observed emissions from interstellar NH_{3} do not possess the characteristic properties of maser-type emissions (high intensity, strong polarization, etc.). Consequently the intensities are proportional to the population differences between the doublet levels. Moreover, NH_{3} has many inversion transitions lying in a small frequency interval that can be detected with the same telescope and receiver. For these reasons anmonia is regarded as an ideal probe of the physical conditions in interstellar clouds ${ }^{4}$.

Several population transfer models have been considered to explain the nonthermal intensities of the observed transitions of interstellar ammonia ${ }^{3}, 5$, 6 . The outcome of all these model calculations depends critically on the rates for population transfer between the inversion-rotation levels, induced by collisions mainly with molecular hydrogen. Thus it is of great astrophysical interest to have accurate values for these rates, or the related collisional
cross sections. Schwartz ${ }^{7}$ has proposed to evaluate the population transfer rates from hydrogen-broadened linewidth measurements and extrapolate the obtained rates to interstellar temperatures.

Quantitative information about the rates for collision-induced population transfer, or equivalent collisional state-to-state cross sections, can be obtained from experiments and from theoretical calculations. Until now ab initio potential calculations combined with the computation of collisional cross sections have been performed only for the system ammonia-helium ${ }^{8}$. The interstellar abundance of molecular hydrogen is regarded to be an order of magnitude larger than that of helium in the relevant clouds ${ }^{5}$. Unfortunately the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ system seems too complex for the (currently present) computational techniques. The experiments performed so far (see Sect. 2) failed to produce reliable quantitative information on the relevant rates. Nevertheless, as of now, laboratory work on collisional cross sections for the ammonia-hydrogen system remains the main source of information.

2. EXPERIMENTAL METHODS

Experimental methods used and the results obtained for NH_{3} are reviewed by Dymanus ${ }^{9}$. All the measurements performed in the past fall into one of the following categories: line broadening and relaxation, steady-state doubleresonance, and molecular beam scattering. Line-broadening and (transient) relaxation studies provide mainly information about the rates for collisioninduced transitions across the inversion doublets of ammonia. Steady-state double-resonance experiments ${ }^{10}$ yield information about both inversion and rotational collision rates, but the latter ones are difficult to extract from only a single measured quantity, the relative intensity change $\Delta I / I$. The
difficulties stem mainly from the fact that the experiments are done in bulk and radiative and collision zones are not separated. These difficulties can be avoided in a beam experiment, where the primary ammonia beam passes through a scattering chamber or crosses a secondary beam.

To measure state-to-state cross sections in a beam experiment initial and final states of the primary beam molecule have to be well-defined in the scattering process. With the electric beam resonance (EBR) technique, applied for the first time by Toennies ${ }^{11}$ to measure state-to-state cross sections, electrostatic multipoles are used to focus the initial rotational substate into the scattering region and the final state onto the detector. Until now this method has only been applied to molecules with a large dipole moment (about $3 \times 10^{-29} \mathrm{Cm}$).

A molecular beam maser ${ }^{12}$ makes use of a microwave cavity as stateselective detector. Equipped with a scattering chamber or secondary beam, a beam maser can be used for scattering experiments. This method was developed independently at M.I.T. by Kukolich and co-workers ${ }^{13}$ and at Nijmegen by Reijnders ${ }^{14}$. Kukolich et al. used a scattering chamber and an ingenious oneand two-cavity (Ramsey) scheme to separate the inelastic effects. The apparatus of Reijnders was a conventional single-cavity beam maser but with a secondary beam. Both experiments yielded only information about the cross sections for collision-induced transitions across the inversion doublets of ammonia. Details of the experiment and results obtained at Nifmegen are reported in the thesis of Reijnders ${ }^{14}$ and in a paper ${ }^{15}$, hereafter refexred to as I, which is based on that thesis. In the present investigation the set-up of Reijnders is converted into a double-resonance beam maser (DR-BM), which permits measurements of collision-induced rotational transitions in NH_{3}. These measurements and their interpretation form the main body of this thesis. Paper I is reproduced as Chapter 2 for the sake of completeness and also because it contains information and references essential for understanding

(a)

Figure 1: Schematic diagram (a) and simplified working principle (b) of the DR-BM experiment (see text). Plus and minus sign indicate the parity of the levels. Wavy arrows indicate collision-induced parity changing transitions.
the present contribution.
Development of powerful, stable and tunable lasers opens new, promising perspectives to determine state-to-state cross sections. Shimizu and coworkers ${ }^{16,17}$ used $\mathrm{N}_{2} 0-1$ asers combined with Stark tuning to pump and probe different rotational levels of ammonia in a double-resonance beam experiment. But as no secondary beam or scattering chamber is used, the relation between the measurements and the reported cross section ${ }^{17}$ is far from clear. Other techniques involve optical lasers for sensitive state-selective detection via laser-induced fluorescence ${ }^{18}$, sometimes combined with labelling of the initial quantum state by laser excitation ${ }^{19}$. These methods are not feasible for ammonia because tunable lasers are not available in the wavelength region of the electronic transitions of $\mathrm{NH}_{3}(170-217 \mathrm{~nm})$.

3. THE DOUBLE-RESONANCE BEAM MASER SCATTERING EXPERIMENT

A schematic diagram of the $D R-B M$ set-up is given in Fig. 1a. A supersonic NH_{3} beam produced by a nozzle-skimmer assembly is detected by the signal cavity tuned to the frequency of an inversion transition. The observed signal from this cavity is proportional to the difference between the populations of the upper and lower level of the specific inversion doublet. An electrostatic octopole is used as a state selector to focus the molecules in the upper levels (solid trajectories in Fig. 1a) and remove the molecules in the lower levels (dashed trajectories) of all inversion doublets from the beam. In this way the population difference of the beam molecules entering the cavity and hence the observed maser signal can be increased by several orders of magnitude. In order to perform scattering experiments with the beam maser a secondary beam is inserted between the state selector and the microwave cavity. Between the state selector and the secondary beam a second (pump) cavity is placed, tuned
to an other (pump) inversion transition than the signal cavity. To explain the principle of the $D R-B M$ experiment it is assumed that in normal operation of the beam maser the lower states of all inversion doublets, including the pump doublet, are completely depopulated. Moreover the assumption is made that by feeding power to the pump cavity (pumping), the total population of the upper level (u) can be transferred to the lower level (Z) of the pump doublet. If only parity changing collision-induced transitions are allowed (wavy arrows in Fig. 1b), without pumping collisions will transfer molecules from the pump doublet to the lower signal level (solid wavy arrow). With pumping, however, molecules will be transferred from the pump doublet to the upper signal level (dashed wavy arrow). In the latter situation the population difference between upper and lower signal level and hence the signal intensity will be larger than in the situation without pumping.

The change in attenuated signal intensity caused by the pumping can be interpreted in terms of apparatus cross sections, i.e. differential cross sections for rotational transitions integrated over the acceptance angle of the microwave detector. By measuring the relative intensity changes as function of the secondary bean flow accurate values for the apparatus cross sections can be determined. Theoretical values for these cross sections are obtained by integration of the differential cross sections, after multiplication with a function called the apparatus function, that takes into account the angular resolution. Measurements, theoretical calculation of differential cross sections and the computation of the apparatus function are described in the next chapters.
4. OUTLINE OF THE PRESENT INVESTIGATION

Chapter 3 (paper II) contains a description of the experimental set-up and of
the apparatus function and a derıvation of the relation between relative intensity differences and rotational cross sections. For the polar scattering gases $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$ measurements are reported for collision-induced rotational transıtions between a number of inversion doublets of ammonia. Transition probabılıtıes are calculated in the low-order permanent-multipole interaction scheme using Anderson's theory combined with a proper treatment of the transition probabilıties at small impact parameters. These transition probabilities are combined with the apparatus function via a deflection function. The resulting theoretical values for the apparatus cross sections are in good agreement with the experımental results. With integral cross sections, calculated with the same scattering theory, also a satisfylng agreement with the experımental results of the steady-state double-resonance experiments of oka ${ }^{10}$ is obtained.

Experimental results for the scattering of ammonia with the nonpolar molecules $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and H_{2} are reported in Chapter 4 (paper III). The experimental results obtalned for CO_{2} and N_{2} are compared with theoretical values, calculated with the same theory as used for the polar scattering gases. Wıth molecular hydrogen as secondary beam gas, transıtion probabılıtıes are evaluated using "bent" trajectorles instead of the stralght-path approximation. The short-range anısotropıc repulsive potential for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$, which is found to be important for the explanation of the experımentally observed rotational cross sections, is not known to date. Two model functions for the anisotroplc potential are introduced with parameters adapted to the experımental results. Integral rotational cross sections are calculated with these empirical potentials, which besides dipole-quadrupole and quadrupole-quadrupole interaction also contain induction and dispersion terms with a long-range R^{-7} dependence (R is the intermolecular distance). These integral cross sections glve also a reasonable agreement with the results of oka ${ }^{10}$ and line broadening (Chapter 2) of NH_{3} by H_{2}.

The present investigation shows that with the DR-BM set-up rotational cross sections in forward direction can be measured. For ammonia the first measurements of cross sections for a large number of collision-induced rotational transitions and scattering gases are reported. All the experimental results obtained with polar scattering gases are reproduced by theory, which demonstrates that the experiment is well-described by the present interpretation. The obtained $\mathrm{NH}_{3}-\mathrm{H}_{2}$ potential can be used for calculations of cross sections at (lower) astrophysically relevant velocities and also for other transitions. For the system ammonia-hydrogen the first state-to-state rotational cross sections are presented.

1 A.C.Cheung, D.M.Rank, C.H.Townes, D.D.Thornton and W.J.Welch, Phys.Rev.Lett. 21. 1701 (1968)

2 M.Morris, B.Zuckerman, P.Palmer and B.E.Turner, Astrophys.J. 186, 501 (1973); P.R.Schwartz, A.C.Cheung, J.M.Bologna, M.F.Chui, J.A.Waak and D.Matsakis, Astrophys.J. 218, 671 (1977); G.Winnewisser, E.Churchwell and C.M.Walmsley, Astron.Astrophys. 72, 215 (1979)

3 A.C.Cheung, D.M.Rank, C.H.Townes, S.H.Knowles and W.T.Sullivan III, Astrophys.J. 157, L13 (1969)

4 G.Winnewisser, Colloquium on High Resolution Molecular Spectroscopy, Invited Paper, Tours, France (1979)

5 J.S.Sweitzer, Astrophys.J. 225, 116 (1978)
6 M.Morris, P.Palmer and B.Zuckerman, Astrophys.J. 237, 1 (1980); T.Pauls and T.L.Wilson, Astron.Astrophys. 91, L11 (1980)

7 P.R.Schwartz, Astrophys.J.Lett. 229, 45 (1979)
8 S.Green, J.Chem.Phys. 64, 3463 (1976); J.Chem.Phys. 70, 816 (1979); J.Chem. Phys. 73, 2740 (1980); S.L.Davis and J.E.Boggs, J.Chem.Phys. 69, 2355 (1978)

9 A.Dymanus, "Rotational collision cross sections: State of the art", Monograph, Fysisch Laboratorium, Katholieke Universiteit, Nijmegen, The Netherlands (1980)

10 T.Oka, "Collision-induced transitions between rotational levels", Advances in Atomic and Molecular Physics, Vol.9, Academic Press (1973)

11 J.P.Toennies, Disc.Faraday Soc. 33, 96 (1962); Z.Phys. 182, 257 (1965)
12 A.Dymanus, "Beam Maser Spectroscopy", International Review of Science, Physical Chemistry, Series 2, Vol.3, Ed.D.A.Ramsay, Buttersworths (1976); J.P.Gordon, H.J.Zeiger and C.H.Townes, Phys.Rev. 95, 282 (1954)

13 S.G.Kukolich, J.H.S.Wang and D.E.Oates, Chem.Phys.Lett. 20, 519 (1973):
K.R.Chien, P.B.Foreman, K.H.Castleton and S.G.Kukolich, Chem.Phys. 7, 161 (1975): J.R.Williams and S.G.Kukolich, J.Chem.Phys. 66, 251 (1977)

14 J.M.H.Reijnders, Thesis, Katholieke Universiteit, Nijmegen, The Netherlands (1978)

15 D.B.M.Klaassen, J.M.H.Reijnders, J.J.ter Meulen and A.Dymanus, J.Chem.Phys. 76. 3019 (1982)

16 F.Matsuhima, N.Morita, S.Kano and T.Shimizu, J.Chem.Phys. 70, 4225 (1979)
17 T.Shimizu, F.Matsuhima and Y.Honguh, page 212, Laser Spectroscopy V, Ed. A.R.W.McKellar, T.Oka and B.P.Stoicheff, Springer, New York (1981)

18 P.J.Dagdigian, B.E.Wilcomb and M.E.Alexander, J.Chem.Phys. 71, 1670 (1979); P.J.Dagdigian and B.E.Wilcomb, J.Chem.Phys. 72, 6462 (1980)

19 K.Bergmann, R.Engelhardt, U.Hefter and J.Witt, J.Chem.Phys. 71, 2726 (1979); K.Bergmann, U.Hefter and J.Witt, J.Chem.Phys. 72, 4777 (1980)

BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH 3
I. CROSS SECTIONS FOR INVERSION TRANSITIONS INDUCED BY POLAR GASES

Beam maser investigation of Inelastic scattering of $\mathrm{NH}_{3} \mathrm{I}$. Cross sections for inversion transitions induced by polar gases

D B. M. Klaassen, J. M. H. Reijnders, J. J. ter Meulen, and A. Dymanus
Fysisch Laboratorium, Katholieke Universiten Toernooweld, 6525 ED Nymegen, The Aetherlands
(Received 23 July 1981, accepted 7 October 19811

Cross sections for transitions aeross the inversion doublets $(J, K)=(1,1),(2,2),(3,3)$, and $(6,6)$, of NH , in collisions with $\mathrm{NH}_{3}, \mathrm{CF}_{3} \mathrm{H}$, and $\mathrm{CH}_{3} \mathrm{~F}$ have been measured in a molecular beam maser The results are in good agreement with values calculated both in Anderson's theory and in first-order Born approximation A companson 15 made with results of line broadening and transient experiments

I. INTRODUCTION

Extensive observations, following the discovery by Townes and collaborators, 'have well established that relative intensities of inversion emissions of interstellar ammona $\left(\mathrm{NH}_{3}\right)$ generally deviate from values expected for thermal equilibrium Several mechanisms have been proposed to explain these deviations ${ }^{2,3}$ Nowadays it is generally accepted that collisional excitation by H_{2}, followed by radiative and collisional de-excitation is the most likely one The results of model calculations on this mechanism depend critically on the values of the collisional cross sections between inversion and rotation levels, which are unknown at the astrophysically relevant very low (10 K) temperatures Some information about collisional cross sections of NH_{3} at higher temperatures ($200-300 \mathrm{~K}$) is avanlable Irom line broadening at low and high (saturation) power densities, from transient nutation and double resonance experiments and from inelastic molecular beam scattering,

Extensive measurements on self and foreign-gas broadening of inversion transitions of ammona have been performed by Bleaney and Penrose, ${ }^{1-6}$ by Howard and Smith, ${ }^{7}$ and more recently by Legan et al ${ }^{8}$ From the line broadening constant Γ_{1}, obtained from such measurements, the cross section $\sigma_{i j}$ for collisions between an absorbing molecule (2) and a perturbing molecule (j) 18 obtained using the relation

$$
\begin{equation*}
\sigma_{i j}=2 \pi \times 10^{6} \frac{\Gamma_{U 1}}{n_{i} \bar{v}_{1 j}}\left[\mathrm{~m}^{2}\right], \tag{1}
\end{equation*}
$$

with $\Gamma_{i j}$ in $\mathrm{MHz} / \mathrm{Torr}, \bar{v}_{i j}$ (average relative velocity) in ms^{-1}, and n_{1} (molecular density at 1 Torr) in m^{-3}. In Table I are collected some representative values of the cross sections for a number of low (W, K) states and secondary molecules relevant for the present series of experiments. The experimental results on line broadening are usually confronted with some version of Anderson's theory of pressure broadening. ${ }^{\text {s }}$ Murphy and Boggs ${ }^{10}$ have shown that their version of the theory ${ }^{11}$ with the two-level resonance concept provides a good over-all agreement with the experimental data both on self and foreugn-gas broadening.

Linewidth measurements on pure rotational transitions are not known to date Measurements on self broadening of inversion-doubled vibrational-rotation bands have been performed by various groups ${ }^{12-16}$ The resulting
cross sections are essentially tdentical to the microwave cross sections and follow the same J and K dependence Margolis and Sarang1 ${ }^{14}$ have found, that if the temperature dependence of the cross sections is written as

$$
\begin{equation*}
\sigma_{i j}(T)=\sigma_{1 j}\left(T_{0}\right)\left(T_{0} / T\right)^{(\alpha-1 / 2)} \tag{2}
\end{equation*}
$$

($T_{0}=300 \mathrm{~K}$) then for self broadening varies from 0.45 to 2.0 (depending on the J and K of the lower level) and for hydrogen broadening from 0.20 to 0.87 with an average of 0.5 for T between 200 and 300 K . Schwartz ${ }^{17}$ has proposed to use the relation (2) to extrapolate the cross section of Margolis and Sarangi to interstellar temperatures.

Broadening by hydrogen was found to be independent of J and K and the infrared value is (within the experimental errors) the same as the microwave value. $5,6,0$ Recently, Oka has measured broadening by para $(J=0$) and normal $(W \neq 0)$ hydrogen of the $(3,3)$ and $(4,4)$ transitions in the microwave region and of the $\nu_{1}^{2} Q(3,3)$ and $\nu_{i}^{2} Q(2,2)$ infrared transitions. ${ }^{16}$ Assuming that the cross sections are independent of J and K, and the type of transition, he obtained for para hydrogen a value of 0.21 and $0.22 \mathrm{~nm}^{2}$ at $T=294$ and 207 K , respectively, and for normal hydrogen 0.31 and 0.37 nm^{2}, respectively. The larger cross sections for normal hydrogen are ascribed to anisotropic forces.

It is well established that T_{2}, the relaxation time for the radiation induced macroscopic polarization of the gas, and T_{1}, the relaxation time for the return to equihbrium of the difference in population of the two levels involved in the transition, are not necessarily equal. Recent theories ${ }^{18,19}$ of these relaxation processes predict for the inversion transition of ammonia $0 \leqslant T_{2} / T_{1}$ $\leqslant 2$ depending on the relative magnitude of the inversion rate k_{12}, the adiabatic rate k_{a} (reorientation and dephasing), and the rate k^{\prime} to other doublets ($\Delta \sqrt{ } \neq 0$ transltions) Since in first-order approximation parity conserving collisions are forbidden k_{a} will be small Due to the much larger energy defect for $\Delta J \neq 0$ transitions compared with inversion transitions $k_{12} \gg k^{\prime}$. Consequently, T_{2} / T_{1} should approach the value of two for the inversion transitions

Amano and Schwendeman performed extensive measurements and refined analysis of power-broadened line shapes in muxtures of ${ }^{15} \mathrm{NH}_{3}-{ }^{15} \mathrm{NH}_{3}{ }^{20}$ and ${ }^{15} \mathrm{NH}_{3}-\mathrm{H}_{2} .{ }^{21}$

TABLE I. Collision crose sections (in $10^{-20} \mathrm{~m}^{2}$) obtalned from microwave (M) and infrared (CR) Ine broacrening (LB) and transient (TR) experiments at 300 K ; $\sigma^{(1)}$ and $\sigma^{(2)}$ is the cross section derived from relaxation time T_{1} and T_{2}, respectively; $\sigma_{\text {ma }}$ ls the cross section for inversion transitions $J, M=J=J, M^{\prime}=J$ as derived from $\sigma^{(1)}$ and $\sigma^{(2)}$ obtalned In translent axperiments.

		NH_{3}						H_{2}				N_{2}		CHF_{2}
		LB-M	LB-IR	LB- ${ }^{(1)}$	TR $-\sigma^{(1)}$	TR- ${ }^{(8)}$	TR- $\sigma_{\text {Lem }}$	LB-M	1.8-IR	LB- ${ }^{(1)}$	LB-M	LP-M	LB-M	LB-M
	$(1,1)$	486(11) ${ }^{\text {a }}$		496(55) ${ }^{\text {a }}$	720(50) ${ }^{\circ}$	$\begin{aligned} & 505(11)^{\mathrm{A}} \\ & 440(22)^{\mathrm{b}} \end{aligned}$	215(52)	38	$36^{\text {b }}$	39(4)		123)	180°	
	$(2,2)$	$\begin{aligned} & 502(5)^{\circ} \\ & 500^{i} \end{aligned}$	$\begin{aligned} & 518(10)^{k} \\ & 470^{\mathrm{j}} \\ & \mathbf{4 5 3 3 ^ { 1 }} \end{aligned}$		790(40) ${ }^{\text {c }}$	560(11) ${ }^{\text {a }}$	230(42) ${ }^{\text {a }}$		$\begin{aligned} & 42(2)^{\boldsymbol{b}} \\ & 30^{\mathrm{l}} \\ & 39(2)^{\text {a }} \end{aligned}$			98	$\begin{aligned} & 170^{\circ} \\ & 180(9)^{\prime \prime} \end{aligned}$	
	(2, 1)	$\begin{aligned} & 360^{\mathrm{f}} \\ & 330(7)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 365(21)^{\boldsymbol{n}} \\ & 340^{-} \end{aligned}$	393(44) ${ }^{\mathbf{T}}$	$395(35)^{\circ}$	$\begin{aligned} & 350(11)^{0, d} \\ & 240(4)^{-1} \end{aligned}$	45(37) ${ }^{\text {c }}$	$36(1)^{7}$	$\begin{aligned} & 37(3)^{\natural} \\ & 38(3)^{\natural} \end{aligned}$	37(4) ${ }^{\text {r }}$				
-	$(3,3)$	$\begin{aligned} & 540(5)^{\bullet} \\ & 550(11)^{*} \\ & 600^{f} \end{aligned}$	$\begin{aligned} & 536(20)^{\mathrm{B}} \\ & 490^{1} \\ & 480^{1} \end{aligned}$	775(86) ${ }^{\text {P }}$	1000(70) ${ }^{\text {e }}$	$\begin{aligned} & 565(11)^{e, d} \\ & 562(17)^{b} \\ & 520(70)^{-b} \end{aligned}$	$435(71)^{\circ}$	$\begin{aligned} & 34(1)^{1,0,1} \\ & 31(2)^{+,} \\ & 38^{1} \\ & 27(1)^{1} \end{aligned}$	$\begin{aligned} & 40(1)^{b} \\ & 39(1)^{e} \\ & 31^{1} \end{aligned}$	42(4) ${ }^{\mathbf{7}}$	$\begin{aligned} & 44(1)^{1} \\ & 45^{\circ} \end{aligned}$	$93{ }^{\circ}$ $95(3)^{k}$ 93(5)* $99(11)^{0}$	$\begin{aligned} & 172(8)^{\bullet} \\ & 175(13)^{0} \\ & 184(7)^{k} \\ & 154^{p} \end{aligned}$	$\begin{aligned} & 845(42)^{a} \\ & 570(17)^{k} \end{aligned}$
$\begin{aligned} & \overrightarrow{3} \\ & 3 \\ & 3 \\ & 7 \\ & \mathbf{7} \end{aligned}$	$(3,2)$	$\begin{aligned} & 396(10)^{4} \\ & 393(14)^{2} \\ & 430^{t} \end{aligned}$	$\begin{aligned} & 400(55)^{m} \\ & 390^{\prime} \\ & 417^{1} \end{aligned}$	473(52) ${ }^{\text {\% }}$	680(36) ${ }^{\text {a }}$	$\begin{aligned} & 430(11)^{\text {c.d }} \\ & 375(1)^{\text {b }} \\ & 430(30)^{b} \end{aligned}$	250(38) ${ }^{\text {c }}$	37(1) ${ }^{\text {2 }}$	$\begin{aligned} & 38(1)^{12} 4 \\ & 30^{1} \end{aligned}$	39(4) ${ }^{\text {1 }}$		95*	144	
$\begin{aligned} & \underline{0} \\ & \vdots \end{aligned}$	(3,1)	$\begin{aligned} & 315^{\mathrm{t}} \\ & 290(8)^{\bullet} \end{aligned}$	$\begin{aligned} & 310(22)^{1+1} \\ & 280^{J} \end{aligned}$						$\begin{aligned} & 32(2)^{\boldsymbol{M}} \\ & 33(2)^{\text {a }} \end{aligned}$					
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	$(6,6)$	$\begin{aligned} & 540(6)^{\circ} \\ & 630^{i} \end{aligned}$	$\begin{aligned} & 590^{1} \\ & 510^{J} \\ & 490^{1} \end{aligned}$			$510(15)^{-8}$		$\begin{aligned} & 31(1)^{a} \\ & 30(2)^{a} \end{aligned}$	$\begin{aligned} & 34^{\mathbf{k} 4} \\ & 30^{1} \end{aligned}$		45°	850,	174(8) ${ }^{\text {a }}$	$910(46)^{*}$

${ }^{*}$ Reference 20

Reference 27
${ }^{\circ}$ Reference 23
${ }^{4}$ Reference 24.
${ }^{4}$ Reference 8.
${ }^{1}$ Reference 4.
"Reference 14
${ }^{1}$ Reference 15.

Reference 12.
Reference 7.
${ }^{1}$ Meference 6.
Reference 26.
Reference 21.
Heference 46.
Reference 47.
Reference 13.

Their results for T_{2} and a quantity called ($\left.T_{1} / T_{2}\right)_{0}$ which should be very close (within 10\%) to the real value of T_{1} / T_{2}, converted to the cross sections $\sigma^{(2)}$ and $\sigma^{(1)}$ according to

$$
\begin{align*}
& \sigma_{i j}^{(2)}=\left(n v_{13} T_{2}\right)^{-1}, \tag{3}\\
& \sigma_{11}^{(1)}=\left(T_{1} / T_{2}\right)_{0}^{-1} \sigma_{11}^{(2)},
\end{align*}
$$

are reproduced in Table I. The $\sigma^{(2)}$ values of A mano and Schwendernan for self-and hydrogen-broadening are in good agreement with the cross sections avaulable from low power hnewidth measurements. ${ }^{4,6,8}$ The values of $\sigma^{(1)}$ are up to 60% higher than the $\sigma^{(2)}$ values and show a rather complicated J and K dependence.

Transient spectroscopy methods have been applied to study $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ relaxation by various groups. ${ }^{22-27}$ Some of the results for T_{2} and T_{1}, converted to $\sigma^{(2)}$ and $\sigma^{(1)}$ are reproduced in Table I The measurements by Flygare's group ${ }^{23,27}$ were all performed on the $M=J$ component. Hoke et al ${ }^{25}$ performed extensive measurements on T_{2} and T_{1} for M components of the $(2,2)$ and $(3,3)$ states. The measurements showed that T_{2} is independent of M, but $T_{1} 16$ strongly dependent. The dependence could quite well be explained by Anderson's theory ${ }^{9}$ modified for T_{1}, T_{2} calculation, assuming only dipole-dipole interaction. The saturation experiments of Amano and Schwendeman ${ }^{20}$ probed simultaneously all $|M|$ transitions in a (J, K) doublet and their analysis resulted in an M averaged quantity $\left(T_{1} / T_{2}\right)_{0}$.

Both Anderson's ${ }^{9,25}$ and more recent theories of rotational relaxation ${ }^{18,19}$ predict that

$$
\begin{equation*}
\sigma^{(1)}-\sigma^{(2)}=\sigma_{\text {(av }} \tag{4}
\end{equation*}
$$

with σ_{16} the cross section for inversion transitions. The principal assumption underlying (4) is neglect of dephasing effects. The values of $\sigma_{\text {is }}$ for $M=M^{\prime}=J$ obtained by Flygare's group are reproduced in Table I.

Hoke et al ${ }^{24}$ have also determined T_{2} and T_{1} at two temperatures, 204 and 196 K (dry ice), for the (2,2), $(3,2),(3,3)$, and $(4,3)$ transitions. They found that for a given transition T_{2} / T_{1} and the ratio of the values of T_{2} at the two temperatures was about 15 . Also these results could be explained with the modified Anderson's theory with only dipole-dipole interaction

Extensive collislon-transier studies on a large number of inversion doublets of NH_{3} have been performed by Ota and his collaborators using steady -state microwave-microwave double-resonance (MM-DR) ${ }^{28,29}$ The results of these studies show, that for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ and NH_{3}-polar gases (1) the preferred selection rules are of the dipole-dipole type ($\Delta J=0, \pm 1, \Delta K=0$, parity +--), (2) probability of the $\Delta J=0$ transitions ($\equiv \beta$) is much larger than of the $\Delta J= \pm 1(\underset{\sim}{(})$ transitions for $J=K$ but these become of the same order of magnitude for $J>K$, (3) probability of the $\Delta J= \pm 1$ parity changing ($\equiv \alpha$) and parity conserving ($\pm \rightarrow \pm, \equiv \gamma$) collisions is of the same order of magnitude; for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ (4) most of the observed collision induced transitions also obey dipole-selection rules, (5) probability of $\Delta J=2$ collisions is about 0.2 relative to those with $\Delta J=1$, (6) $\Delta k= \pm 3$ collisions occur quite strongly for some doublets. It is very difficult to
extract reliable information about individual transition rates from these measurements even when using information from line broadening. Anderson's theory applied to DR yielded a definitely poor agreement between the observed and calculated relative intensity changes Δ / I

Infrared-infrared and infrared-microwave doubleresonance experiments have been performed on NH_{3} by a number of groups. ${ }^{30,31}$ In all these measurements the $(8,7), v=0$ level was pumped with an $\mathrm{N}_{2} \mathrm{O}$ laser and the effects of this pumping were observed at other $v=0$ inversion transitions. Kreiner et al. ${ }^{31}$ conclude from extensive (also triple-resonance) measurements on 28 inversion doublets that only the effects on the $(9,7)$ and $(7,7)$ are collision induced, these on all other doublets are caused by heating effects.

Transient-nutation IM-DR experiments have been performed on NH_{3} by Levy et al., ${ }^{32}$ Dobbs et al., ${ }^{33}$ and by Amano ${ }^{20}$ using $\mathrm{N}_{2} \mathrm{O}$ lasers pumping the $(8,7)$ doublet. The results for T_{1} of the pumped level oblained in these measurements show rather large (factor ~4) differences.
Toennles ${ }^{34}$ was the first to apply the electric beam resonance (EBR) technique to measure state-to-state collisional cross sections between rotational levels. The technique was applied to TIF and recently to CsF ${ }^{35}$ scattered by various atoms and molecules. Unfortunately, the EBR technique is not easily applicable to NH_{3} because of considerable loss in detection sensitivity for molecules which do not contan alkalis (or haludes).

Development of stable and tunable optical lasers opened a new era in state-to-state collisional studies. Detection via laser-induced fluorescence ${ }^{36}$ in combinatuon with electrostatic state selection ${ }^{37}$ or laser excitation labeling ${ }^{38}$ is a very powerful method to study both total and differential cross sections. The technique cannot (yet) be applied to NH_{y} because its lowest electronic transitions ($\bar{A}-\bar{X}$) are in the UV region (217-170 nm).

Kukolich and his co-workers have used a beam-maser spectrometer to measure T_{2} - and T_{1}-like cross sections (σ_{11} and σ_{1}, respectively, in the notation of Kukolich et $a l$). ${ }^{38}$ In these experiments transitions of NH_{3} in a selected quantum state to other states, induced by colhisions with secondary molecules, are measured by observing the change in the maser emission from the selected state. A single-cavity arrangement was used to obtain σ_{1}, and a two-cavity arrangement with the Ramsey separated field method ${ }^{40}$ to obtain $\sigma_{\text {II }}$. Measurements have been performed on the (3, 2) and (7, 6) Inversion transitions of NH_{3} scattered by polar and nonpolar molecules. ${ }^{39,41-43}$ The experimental results were analyzed using the Feynman-Vernon-Hellwarth vector representation ${ }^{44}$ and related via the coefficients of the relaxation matrox to those of the scattering S matrix. ${ }^{41.45}$ The relations for the cross sections are

$$
\begin{align*}
& \sigma_{1}=\sigma_{s}+2 \sigma_{1 \mathrm{LVV}}, \tag{5}\\
& \sigma_{\mathrm{II}}=\sigma_{a}+\sigma_{\mathrm{lav}} .
\end{align*}
$$

Herein σ_{g} is the cross section for combined elastic and inelastic scattering over an angle larger than Θ_{R}, the

FIG. 1, Schematic diagram of a beam maser spectrometer. The grey area gives the beam reaching the detector in the absence of state selection. The solid and dashed curves represent the limiting trajectories of a molecule in the upper and the lower state, respectively, reaching the detector in the presence of state selection.
angular resolution; $\sigma_{i n v}$ is the cross section for inelastic scattering across the inversion doublet over angles smaller than Θ_{R}. For large values of Θ_{R} the value of $\sigma_{1 \text { ar }}$ should approach the value of $\sigma^{(1)}$ obtained in power broadening experiments if adiabatic collisions are neglected.

In the investigation reported in this paper a set-up similar to the one cavity arrangement of Kukolich is used to obtain $\sigma_{i n v}$ for NH_{3}-polar gases collisions. Instead of a scattering chamber a secondary beam was used to simplify the analysis of the results. Corrections are made for finite angular resolution via calculated differential cross sections. The results are compared with predictions from both Anderson's theory and the first-order Born approximation. In subsequent papers results will be reported on $\sigma_{4 n}$ for NH_{3}-nonpolar (including H_{2}) collisions and on rotational cross sections obtained with a double-resonance beam-maser technique.

II. THE beAM MASER SCATTERING MACHINE

The principle of operation of a beam maser spectrometer is well known and documented. ${ }^{48}$ Only a brief summary is given below for the sake of nonspecialists.

A molecular beam (Fig. 1) passes through a state selector, for polar molecules usually an electrostatic n pole, and a resonant region, at microwave frequencies normally a resonant cavity. The cavity field induces transitions between molecular levels whose energy difference (divided by h) equals the resonance frequency of the cavity. These transitions result in a change in the power reflected (or transmitted) by the cavity, that is proportional to the difference in the population of the levels involved. Normally the population distribution of the molecular levels is thermal and the relative population difference between two neighboring levels can be $10^{-2}-10^{-4}$. This results in poor sensitivity in beam absorption experiments at microwave frequencies. The function of a state selector is to transmit to the cavity
molecules, for example, in the upper state and reject those in the lower state of the transition. In an ideal situation the beam entering the cavity consists only of molecules in the upper state and all these molecules may contribute to the (emission) transition signal. The gain in sensitivity due to state selection can easily be a few orders of magnitude.

In the present investigation an ammonia beam maser is converted into a scattering machine by inserting a secondary beam, which crosses the primary ammonia beam perpendicularly after the state selector. In the following some features of the machine, schematically depicted in Fig, 2 are described.

The ammonia beam is formed by a nozzle-skimmer assembly. The nozzle itself is just a small hole drilled in a thinbrass foil (0.025 mm). With nozzle orifices in the range of $30-80 \mu$ it is possible to obtain a stable beam at stagnation pressures up to 2000 Torr and background pressures of 2.10^{-6} Torr. The skimmers are truncated cones, machined from brass with a full cone angle of 90° and diameters of about 1 mm . The skimmer is fixed in the wall separating the nozzle exhaust chamber and the (first) buffer chamber. The molecular beam is modulated at 120 Hz by a mechanical chopper mounted directly behind the skimmer.

Velocity distribution measurements performed on the NO scattering machine in our laboratory ${ }^{49}$ yield already at moderate pressures a most probable velocity in the ammonia beam of $1080 \mathrm{~ms}^{-1}$, in agreement with the assumption of complete isentropic expansion. A univelocity beam at $1080 \mathrm{~ms}^{-1}$ in the maser is assumed in theoretical considerations. This assumption is confirmed by a matching dependence of the microwave line intensities on the Stark voltage applied to the state selector (Fig. 3) and the fact that attenuation measurements are in agreement with Beer's law. In this assumption thermalizing collisions among the primary ammonia molecules can be neglected. The measured relative intensities on different inversion levels correspond with a rotational temperature of about 95 K .

FKG. 2. Artist's view of the beam maser scattering set-up.

In the first buffer chamber the state selector, consisting of two octopoles, is placed 5.5 cm from the source. The electrodes, polished stainless steel rods 2.5 mm in diameter, 26.5 (octopole 1), and 26.9 cm (octopole 2) long, are arranged symmetrically on a cylinder with a diameter of 10 mm . The distance between neighboring rods is 2 mm . The selector is surrounded by a liquid nitrogen trap, yielding a background pressure in the order of 10^{-7} Torr. Breakdown typically occurred at 40 kV . As the static electric field increases in a direction perpendicular to the beam axis, ammonia molecules in upper inversion states are forced towards the selector axis, while those in the lower states are deflected out of the beam (Fig. 1). The resulting microwave line intensity is determined by the efficiency of these two actions. As both the sensitivity and the angular resolution of the microwave detector depend on the operation of the state selector calculations on the trajectories of the molecules through the state selector are carried out. These are described in the next section.

The secondary beam, formed by a multichannel array, crosses the primary beam in the second buffer chamber. The fused glass capillary array (Mosaic Inc.) consists of about 8.10^{6} channels with a mean diameter (2a) of 5.5 μ at a transparency of 50%. The length of the capillaries is 3.2 mm , yielding a length to radius ratio of 1164. The array is 46 mm long in the direction of the primary beam and 8 mm wide. The distance from the primary beam axis is 20 mm and the angle of incidence of the secondary beam is 90°. The distance between the exit opening of the state selector and the middle of the secondary beam is 70 mm . The multi-channel array is used because the primary beam in a maser is fairly broad. The total flow rates through the multi-channel array are monitored with an absolute flow meter (Brooks). For the secondary beamgases $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$, and $\mathrm{CF}_{3} \mathrm{H}$ the applied flow, corresponding with an attenuation of the primary beam over roughly one decade, ranges from 2.5×10^{17} to $3.5 \times 10^{18} \mathrm{~mol} \mathrm{~s}^{-1}$. The mean free path λ of the molecules at the inlet of the effuser
varies between 0.013 and 0.21 mm . The capillaries are therefore driven in the opaque mode. The intensity distribution in this mode is taken from Zugenmaier. ${ }^{50}$ The numerical results ${ }^{51}$ are found to be in good agreement with measurements done by Beijerinck ${ }^{52}$ except for small angles. The calculations show that the angular

FIG. 3. Measured (solid curves) and calculated (points) microwave line intensity as a function of Stark voltage for the (J, K) $=(1,1)$ level (solid circles) and $(2,2)$ level (triangles) with the cavity in frontside position.
distribution at angles larger than 2° is independent of the flow intensities and gases used. As the attenuation measurements have been performed with fairly broad primary beams, these measurements are not sensitive to changes of the angular distribution at smaller angles. For the same reason in our calculations the velocity distribution of the secondary beam is assumed to be Maxwellian at room temperature for all angles.

The secondary beam molecules are pumped by a cryopump attached to the bottom of a Leybold $500 \mathrm{f} / \mathrm{s}$ Klıpping Verdampferkryostat (VMK 500). ${ }^{48}$ The cryopump consigte of a number of thin walled copper pipes directed to the effuser in order to form an optically closed atructure in two directions. The length of the cryopump pipes Increases from the top to the bottom ensuring a stable operation, without pressure bursts due to detachment of "ice" or "frost" of secondary beam molecules. A purnping speed of $10^{6} \mathrm{k} / \mathrm{s}^{-1}$ and a background pressure of 5×10^{-7} Torr with secondary beam on have been achleved. Influx of radiation heat is prevented by a closely fitting cylindrical shield and gold plating of the cryo-assembly. The shield carries the secondary beam source and contans two diaphragms, 10 cm apart and with a diameter of 8 mm , through which the primary beam enters and leaves the scattering region. In this way, the scattering region 18 well defined and separated from the radiative zone in the microwave cavity.

In the detector chamber two microwave cavities and an ion gauge (to monitor the total beam) are placed All cavities used in the present experiment were cylindrical reflection type cavities oscillating in the TM_{010} mode. The length of the cavities 1516 cm The beam entrance and exit holes have diameters of 4 mm . Cavities are placed at distances of 48 cm (front side position) and 65.5 cm (backside position) from the exit opening of the state selector. This set-up allows simultaneous measurements with two different angular resolutions of 0.28° and 0.20° in the laboratory system. The angu-

$$
\begin{array}{ll}
J, J-J-\frac{1}{2}+\frac{1}{2} Z_{J x}, & J+1, J+1-J, \\
J, z-z+Z_{J}, & J+1, J-J-\frac{1}{2}-\frac{1}{2} Z_{J X}, \\
J, 0-\frac{1}{2}+\frac{1}{2} Z_{J x}, & J+1, z-z, \\
& J+1,0-0,1,
\end{array}
$$

with $z=1,2, \ldots, J-1$ and $Z_{J K}=\left\{3 K^{2}-J(J+1)\right]$ $\left[\left|3 K^{2}-J(J+1)\right|\right]$.

The results of a computer programsolving the differential equations that describe the motion of the ammonia molecules in the state selector show that within the acceptance angle of the cavity the population of the lower inversion state 15 unaffected. So there 18 no need for the correlation in the lower inversion levels. In the (assumed) field free region between the state selector and the cavity, all degenerate $M_{r_{1}}$ substates are muxed up and each ($F_{1}, M_{f_{1}}-M_{f}$) correlation gets the same weight
lar resolution of the ion gauge is 0.15°. A superheterodyne system requiring only a single klystron is used in the present investigation. This klystron is stabilized using a combined Schomandl, Rohde, and Schwarz frequency synthesizing system SRS. ${ }^{53}$ This system is locked to a Rhode and Schwarz XSRM Rubidum frequency standard. By comparing the measured signal to noise ratios for the various inversion transitions with a theoretical expression, the rotational temperature in the primary ammonia beam is determined to be $95(10) \mathrm{K}$.

III. STATE SELECTION

Calculations on the trajectories of the ammonia molecules through the state selector are required for two reasons: (1) to predict the number of molecules in a specific state passing through the microwave cavity per second in order to evaluate the theoretical expression for the signal to noise ratios and (2) to describe the scattering process Inside the state selector the inversion doublet levels of the ammonia molecules are characterized by the rotational quantum numbers J, K, M_{f}, according to the strong field case. The transitoons detected in a beam maser, however, are those between the hyperfine sublevels $\left.\mid F, M_{F}\right)$. The used couplling scheme of angular momenta is $J+I_{N}=F_{1}$ and $F_{1}+I_{H}=F$, where I_{N} is the spin of the nitrogen nucleus and I_{M} is the total nuclear hydrogen spin. So, the relevant hyperfine states must be correlated with the rotational substates determining the molecular trajectories through the state selector. It is assumed that the population of the closely spaced hyperfine levels due to hydrogen spins $1 s$ randomized by transitions induced by Fourier components of the state selector field as seen by the molecule. Therefore, only the quadrupole $\mid F_{1}$, $\left.M_{F_{1}}\right\rangle$ substates are relevant in the correlation. From the field-free quadrupole splitting, weak field Stark effect calculations and the noncrossing rule the following correlation between the quadrupole $\left|F_{1}, M_{F 1}\right\rangle$ and rotational $\left|J, K, M_{s}\right\rangle$ substates can be derived for the upper Inversion level (notation $F_{1},\left|M_{F_{1}}\right|-\left|M_{J}\right|$):
$J-1, z-z-Z_{J}$,
$J-1, \quad 0-\frac{1}{2}-\frac{1}{2} Z_{J K}$,

$$
\begin{equation*}
\rho\left(F_{1}, M_{F_{1}}-M_{j}\right)=\frac{1}{2 F_{1}+1} \tag{6}
\end{equation*}
$$

The weighted correlation between the quadrupole $\mid F_{1}$, $\left.\left|M_{F_{1}}\right|\right\rangle$ and rotational $\left|J, K,\left|M_{I}\right|\right\rangle$ substate is obtained by taking the summation $\sum_{w_{F_{1}}} \rho\left(F_{1},\left|M_{F_{1}}\right|-\left|M_{s}\right|\right)$. Multiplying with $\left|\mu_{F_{1} 1_{1}}\right|^{2}$ and summing over F_{1} gives finally the relative contribution $W\left(J,\left|M_{J}\right|\right)$ of a J, M_{J} trajectory to the microwave signal. Herein $\mu_{F_{1} F_{1}}$ stands for the electric dipole moment matrix element for a $\Delta F_{1}=0$ transition.

As the measured linewidth of the monitored $\Delta F_{1}=\Delta F$
$=0$ component was nearly equal to the expected linewidth of a single line under the present experimental conditions and as the stimulating power was kept far below saturation, the gain in microwave intensity $I(V)$ of the $\Delta F_{1}=\Delta F=0$ component because of the state selector operating at a voltage V, can be written as

Herem the summation is over all the unresolved quadrupole hyperfine components of the studied main line, $N_{F_{1}, 1}(V)$ and $N_{F_{10,1}}(0)$ represent the flow of ammonia molecules in the particular quadrupole hyperfine upper (u) or lower (1) state through the microwave cavity with and without state selection, respectively; $\nu_{\delta x}$ is the transition frequency. As $N_{F_{1}}(V)=N_{F_{1}}(0)$ and $\nu_{d \pi}{ }^{18}$ in the microwave region, the following expression 13 ob tained for the normally well satisfied condition $[I(V) /$ $I(0)]\left(k T / h \nu_{\delta \Lambda}\right)^{-1} \gg 1$
where T is the temperature determining the relative population difference of the inversion states at thermal equilibrium; $N_{l_{j} l_{u}}(V)$ represents the number of NH_{3} molecules in the relevant rotational substates leaving the state selector within the acceptance angle of the cavity.

In Fig. 3 the measured microwave line intensities as function of the Stark voltage for the (1,1) and (2, 2) inversion lines are compared with the values obtanned with Eq. (8) using the computer program for trajectory calculations to evaluate $N_{\mid \Psi_{J / W}}(V)$. The calculations were performed with 200 initial trajectories for each rotational $\left|J, K,\left|M_{J}\right|\right\rangle$ substate assuming a monochromatic beam and neglecting the fringing fields. The number of trajectories contributing to the calculated microwave line intensities was about 100 . The good agreement between the calculations and the measurements demonstrated in Fig. 3 proves that the trajectory calculations are reliable. From the calculated trajectories the radial distribution of the ammonla molecules in the upper inversion state in front of the secondary beam is calculated (Fig. 4). This information is used to describe the scattering process.

IV. THE RELATION BETWEEN MEASURED ATtENUATION AND CROSS SECTIONS

The interpretation of the microwave line and total beam attenuations in terms of total (in)elastic collision cross sections is complicated for three reasons. (1) a broad primary beam and a rather low angular resolution of the microwave detector compared with standard scattering experiments, (2) a wide effusive secondary beam, resulting in a larger scattering region, and (3) interwoven elastlc and inelastic effects. The following illustrates the extent of problems associated with (3). A collision induced transition from the upper to the lower level of an inversion doublet within the opening angle of the detectors, will not change the blal beam intensity, but diminishes the microwave line intensity (proportional to the difference in the population of the upper and

FKG. 4. Radial distribution of ammonla molecules in the upper atates of the $(1,1),(2,2),(3,3)$, and $(6,6)$ inversion doublets In front of the secondary beam, contributing to the microwave aignal The solld and dashed curves represent the distribution for the cavity in frontside, and backside position, respectively
lower level) twace I The same collision but with an angular deflection outside the opening angle does change the total beam intensity and reduces the microwave line intensity by only one unit. Total cross sections obtained from so called "apparatus cross sections" via angular resolution corrections are rather unreliable. ${ }^{38,41,43}$ In the present investigation the scattering data in the maser are related to theoretlical differential cross sections by an apparatus function $G\left(v_{\text {rel }}, \theta_{c m}\right)$, which, for each relative velocity $v_{\text {ril }}$, represents the averaged probability that a molecule which 18 scattered over an angle $\theta_{e m}$ in the center-of-mass system will, enter the detector.

It is assumed that the inversion transitions are dominant over the rotational transitions and that the elastic differential cross section does not depend on the specific inversion level upper or lower. The microreversibility property ${ }^{54}$ for scattering implies that the inelastic differential cross sections from the upper to the lower level and vice versa are nearly the same. To simplify the construction of the apparatus function the assumption is made that the lower state molecules have

FK. 5 Transformation of the laboratory to the center-of-mass frame. The ratlo $N_{1 \mathrm{a}} / N_{\text {cat }}$ gives the numerical value of $\left[\int_{i d}\left(d \varphi_{00} / 2 \pi\right)\right]_{\operatorname{som}^{2}\left(j v_{2}\right.}$ (see the text). D_{1} and D_{2} is the entrance and exit dlaphragm, respectlvely, of the scattering region.
the same trajectories through the scattering region as the upper state molecules. Trajectories of molecules in the lower state are in fact quite different from those in the upper state. Because of the large population differences the uncertainty introduced by this approximation is well below the experimental errors. Fig. 4 shows that the primary beam is fairly broad in front of the secondary beam source. Therefore, in the construction of the apparatus function the primary beam is represented by eight line beams, passing through the secondary beam at a radial distance corresponding to the maximus in the radial distribution. The beams form edges of a regular octagonal pyramid with the base at the exit of the state selector and the top near the detector. For each line beam a different apparatus function 19 constructed. These elght apparatus functions are afterwards averaged, resulting in one function for the total primary beam, Each line beam 18 divided into equal sections along the length of the scattering region. The effuser surface is also divided into equal areas each represented by one channel in its center (Fig. 5). The flow pattern of this channel is given by the flow per channel in the opaque mode. ${ }^{50}$

The density of secondary beam molecules, coming with velocity $v_{2 j}$, whin Δv_{2} from a specific effuser channel \boldsymbol{j} at a specific section z on a line beam is given by

$$
\begin{equation*}
n_{r 2}\left(r_{1 j}\right)=I\left(\hat{v}_{2 I j}\right) P\left(v_{2}\right) \frac{\Delta v_{2}}{r_{1 j}^{2} v_{2}} \tag{9}
\end{equation*}
$$

where $I\left(\hat{v}_{211}\right)$ is the secondary beam intensity in the $d \boldsymbol{l}$ rection $\tilde{v}_{21}, P\left(v_{2}\right)$ is the Maxwellian velocity distribution, and $r_{i j}$ is the distance between channel \boldsymbol{j} and point t on the line beam. The probability per traveled section Δl_{1} for a primary beam molecule with velocity ∇_{i} to collide with a secondary beam molecule with velocity $\nabla_{2 i j}$ and to be deflected into $d \Omega$ in the direction ($~_{\mathrm{cm}}, \varphi_{\text {em }}$) in the center-of-mass system is

$$
\begin{equation*}
I\left(\hat{v}_{2 d j}\right) P\left(v_{2}\right) v_{\mathrm{roi}}\left[\frac{d \sigma}{d \Omega}\left(\vartheta_{\mathrm{cm}}, \varphi_{\mathrm{cmi}}\right)\right]{o_{\mathrm{ral}} 1 j}^{d \Omega} \frac{\Delta v_{2} \Delta l_{1}}{r_{i j}^{2} v_{2} v_{1}}, \tag{10}
\end{equation*}
$$

where $\nabla_{\mathrm{rel}}=\nabla_{2}-\nabla_{1}$ and $\left[d \sigma / d \Omega\left(\theta_{\mathrm{cm}}, \varphi_{\mathrm{cm}}\right)\right] \nu_{\mathrm{rol}} 2 f$ is the relevant differential cross section. If we neglect double collisions (attenuation measurements in agreement with Beer's law), summation over all chosen subareas on the effuser and intervals Δv_{2}, yields for the change $\Delta N_{u_{i}}$ of primary molecules in the upper inversion level per section Δl_{1}^{35}.

$$
\begin{align*}
& \Delta N_{v i}=\sum_{i, v 2} I\left(\hat{v}_{2 i j}\right) P\left(v_{2}\right) v_{r e 1} \frac{\Delta v_{2} \Delta l_{1}}{r_{i, 1}^{2} v_{2} v_{1}}\left(-N_{\mathrm{vi}} \sigma^{101}\left(v_{\mathrm{rol}}\right)\right. \\
& +2 \pi \int d \vartheta_{\mathrm{cm}} \sin \vartheta_{e m}\left\{N_{\mathrm{a}_{i}}\left[\frac{d \sigma^{01}}{d \Omega}\left(\vartheta_{\mathrm{e}}\right)\right] v_{\mathrm{rel}}\right. \\
& \left.+N_{i}\left[\frac{d \sigma^{d e l}}{d \Omega}\left(\vartheta_{\mathrm{cm}}\right)\right]_{{ }_{\mathrm{rel}}}\left(\int_{1 a} \frac{d \varphi_{\mathrm{cm}}}{2 \pi}\right){v_{\mathrm{cm}} 1 / \mathrm{o}_{2}}\right) \tag{11}
\end{align*}
$$

Herein $\sigma^{\text {tol }}$ is the sum of the integral elastic (el) and inelastic (inel) cross section. The subscript id (inside detector) under the integration sign indicates that the integral is confined to those angles, which correspond to trajectories through the detector after the collision. The assumption is made that the differential cross sections do not depend on φ. A similar expression is obtained for ΔN_{t}, by replacing all indices u by l and vice versd. The resulting differential equations $d / d l\left(N_{0}\right.$ $\pm N_{1}$) can be solved for each line beam,

$$
\begin{aligned}
& \left(N_{\mathrm{u}} \pm N_{1}\right)=\left(N_{v} \pm N_{1}\right)_{0} \exp \left[-\sum_{j v_{2}} I\left(\delta_{2 i j}\right) P\left(v_{2}\right) v_{\text {rel }} \frac{\Delta v_{2} \Delta l_{1}}{r_{1 j}^{2} v_{2} v_{1}}\right. \\
& \times\left\{\sigma^{201}\left(v_{m i l}\right)-2 \pi \int d v_{\mathrm{em}} \sin 9_{0 m}\left[\frac{d \sigma^{01}}{d \Omega}\left(v_{0 m}\right) v_{r o l}\right.\right.
\end{aligned}
$$

For each choice of f, j, v_{2} and a fixed angle ϑ_{em} the Newton diagram relating the laboratory and center of mass velocities is completely determined. The integral $\left[\int_{\& d}\left(d \varphi_{e m} / 2 \pi\right)\right] v_{\mathrm{cm}} \imath j v_{2}$ can be calculated by stepping on a cone with top angle $s_{c m}$ a round $v_{1} \rightarrow v_{c m}$ and checking if the resulting v_{1}^{\prime} (after the collision) will give a trajectory through the detector (Fig. 5). Each choice of $i_{1} j_{1}$, and v_{2} in the sum of Eq. (12) gives a certain value of $v_{\text {rol }}$. To avoid calculation of differential cross section for every $v_{\text {rel }}$, the calculations are done only for discrete values $v_{\text {rol, }}$. . Now the linear interpolation

$$
\begin{align*}
& \frac{d \sigma}{d \Omega}\left(v_{\mathrm{cal}}, v_{\mathrm{ral}}\right)=\frac{v_{\mathrm{rd,m+1}}-v_{\mathrm{m}}}{\Delta v_{\text {rol }}} \frac{d \sigma}{d \Omega}\left(\vartheta_{\mathrm{col}}, v_{\mathrm{rol}, \mathrm{~m}}\right) \\
& +\frac{v_{\text {rel }}-v_{\text {rel }}}{\Delta \nu_{\text {rel }}} \frac{d \sigma}{d \Omega}\left(\theta_{\mathrm{col}}, v_{\text {rol }, \mathrm{mol}}\right), \tag{13}
\end{align*}
$$

with $\Delta v_{\text {rol }}=v_{\text {rol,mol }}-v_{\text {ret,m }}$ and $v_{\text {rol,m }} \leqslant v_{\text {rol }} \leqslant v_{\text {rol, mel }}$ is used to rearrange the sum over t, j, and v_{2} in a sum over only the relative velocity. For a line beam the resulting function $G\left(v_{r o l}, m, s_{c m}\right)$, in the following called apparatus function, is

$$
\begin{align*}
G\left(v_{\mathrm{rol}, \mathrm{~m}}, \theta_{\mathrm{em}}\right)= & \sum_{1 j v_{2}}\left[1-\frac{\left|v_{\mathrm{rel}}-v_{\mathrm{rol}, \mathrm{~m}}\right|}{\Delta v_{\mathrm{rol}}}\right] I\left(v_{2 i j}\right) P\left(v_{2}\right) \\
& \left.\times v_{\mathrm{rel}} \frac{\Delta v_{2} \Delta l_{1}}{r_{1 j}^{2} v_{1} v_{2}}\left(\int_{1 \mathrm{~d}} \frac{d \varphi_{\mathrm{Em}}}{2 \pi}\right) v_{\mathrm{cra}^{i j v_{2}}}\right), \tag{14}
\end{align*}
$$

where negative terms are dropped. In terms of this apparatus function Eq. (12) for the dufference between (sum of) the numbers of molecules in the upper and lower state, that are entering the detector per second on a Ine beam, is given by

$$
\begin{align*}
& \left(N_{\Delta} \pm N_{1}\right)=\left(N_{u} \pm N_{1}\right)_{0} \exp \left(-\sum_{\nu_{r=1, m}} G\left(v_{r * 1, m}, 0\right)\left\{\sigma^{201}\left(v_{r o l, m}\right)\right.\right. \\
& -2 \pi \int d \theta_{\mathrm{em}} \sin 9_{\mathrm{em}} \frac{G\left(v_{\mathrm{ril}, \mathrm{~m}}, \vartheta_{\mathrm{am}}\right)}{G\left(v_{\mathrm{rel}, m}, 0\right)} \\
& \left.\left.\times\left[\frac{d \sigma^{\oplus l}}{d \Omega}\left(\vartheta_{o m 1} v_{c \infty 1, m}\right)_{ \pm} \frac{d \sigma^{l n l}}{d \Omega}\left(\vartheta_{\mathrm{em}}, v_{r e l}, m\right)\right]\right\}\right) . \tag{15}
\end{align*}
$$

Herein $G\left(v_{\text {rel, }}, 0\right)$ results from the fact that in forward direction $\left(g_{e m}=0\right)$ the integral $\int_{i d}\left(d \varphi_{c \mathbb{d}} / 2 \pi\right)$ is equal to unity.

For each rotation state $|J, K\rangle$ and each beam p of the elght line beams, representing the primary beam, the apparatus function $G_{j}^{\prime}\left(v_{\text {rel }}, v_{\mathrm{cm}}\right)$ is different. The attenuated microwave intensily $I_{J A}$ is proportional to

$$
\begin{equation*}
I_{J K} \div \sum_{m i}^{n}\left(N_{u}-N_{i}\right)_{J K}^{f} \tag{16}
\end{equation*}
$$

where the summation involves the eight llne beams. For $\left(N_{1}-N_{1}\right)_{S_{K}}$ Eq. (15) has to be substituted with the apparatus function $G_{J K}^{\phi}\left(v_{r o l}, \theta_{e m}\right)$ for the spectific line beam p. This procedure is called post-averaging. The unattenuated intensities of the line beams are equal because of the cylindrical symmetry of the primary beam. The corresponding expression for the attenuated total beam intensity $I_{T B}$ is

$$
\begin{equation*}
I_{T B} \div \sum_{S K} \sum_{n=1}^{B}\left(N_{n}+N_{t}\right)_{s K} \tag{17}
\end{equation*}
$$

where the first summation is over the population distribution of inversion-rotational states in the primary beam, determined by the rotational temperature in the beam and the state selector efficiencies. Numerical calculations wherein an apparatus function averaged over the different line beams

$$
\begin{equation*}
G_{J E}\left(v_{r v 1}, s_{\mathrm{cm}}\right)=\frac{1}{6} \sum_{m=1}^{n} G_{J \Sigma}^{p}\left(v_{r v 1}, v_{\mathrm{cm}}\right) \tag{18}
\end{equation*}
$$

was used for each line beam instead of the corresponding apparadus function $G_{j r}^{*}\left(v_{\text {roil }}, \vartheta_{\mathrm{cw}}\right)$, ylelded within 2% the same attenuations as in the case of post-averaging. Using this preaveraged apparatus function the summation over p in Eqs (16) and (17) gives a factor 8 and the Integrations of differentual croes sections have to be done only once instead of eight times In order to reduce computation time preaveraged apparatus functions (Fig 6) are used in the calculations. As stated in Sec. 11, the angular and velocity distribution of the secondary beam are independent of the flow. So the apparatus function depends linearly on the flow and it is sufficient to perform the calculations for only one flow value.

FIG. 6. Apparatus function $\left(\mathrm{In} \mathrm{m}^{-2}\right)$ for the $(1,1)$ cavity In frontside position and a secondary beam of ammonla molecules.

From Eqs. (15)-(17) the expressions for the attenuated microwave and total beam intensities are

$$
\begin{align*}
& I_{J \Sigma}=l_{j K}^{0} \exp \left\{-\sum_{v=1, m}\left(n _ { 2 } l _ { J K , 0 _ { r + 1 , m } } \left[\sigma_{J K}^{\mathrm{to1}}\left(v_{r o 1, m}\right)\right.\right.\right. \tag{18}
\end{align*}
$$

and
where

$$
\left(n_{2} l_{J X, v_{r i 1, m}}=G_{J K}\left(v_{r v i, m}, 0\right)-\right.\text { secondary beam flow, }
$$ and 1

The brackets () stand for a pre-averaging over the rotational states J and K It has to be emphasized that
for the cavity in [roni, respectively backside position and total beam detector different apparatus functions have to be used. The extraction of cross sections, $\sigma_{J K}$ for the microwave signal and $\sigma_{T B}$ for the total beam signal, directly from the attenuation measurements is performed using the relations

$$
\begin{equation*}
I_{J K}=I_{J K}^{0} \exp \left[-\left(n_{2} l\right)_{J K,{ }_{2 f t}} \sigma_{J K}\right] \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\mathrm{TB}}=I_{\mathrm{TB}}^{0} \exp \left[-\left(n_{2} l\right)_{\mathrm{TB}, \bullet f f} \sigma_{\mathrm{TB}}\right] \tag{23}
\end{equation*}
$$

where the index eff(ective) stands for a summation over $v_{\text {ral }}$ and $\sigma_{f X}$ and $\sigma_{T B}$ are regarded as taken at the mean relative velocity:

V. THEORY

Most of the experimental investigations of collision induced population transfer in ammonia were, until now, line broadening experiments. Results were usually compared with calculations following Anderson's theory. ${ }^{9-11,56}$ For that reason the same theory 15 also used in this paper, although it has two disadvantages: (i) the result is a transition probability as a function of the impact parameter, instead of a differential cross section and (2) an elastic differential cross section cannot be obtained. To account for these drawbacks inelastic and elastic differential cross sections are derived in the first Born approximation for dipole-dipole scattering

In Anderson's theory ${ }^{65}$ the total transition probability at impact parameter b and relatuve velocity $v_{\text {rol }}$ for a collision unvolving two (1,2) symmetric top molecules, regarding only low order multipole moments, 15^{57}

$$
\begin{align*}
P_{\mathrm{T}}^{\mathrm{I}_{1} I_{2}}(b)= & 2 C_{1}^{2} \sum_{J_{1}^{\prime} J_{1}^{\prime} J_{2}^{\prime} J_{2}^{\prime}}\left(2 J_{1}^{\prime}+1\right)\left(2 J_{2}^{\prime}+1\right) \\
& \times\left(\begin{array}{ccc}
J_{1} & l_{1} & J_{1}^{\prime} \\
-K_{1} & 0 & K_{1}^{\prime}
\end{array}\right)^{2}\left(\begin{array}{ccc}
J_{2} & l_{2} & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}^{\prime}
\end{array}\right)^{2} f_{\mathrm{T}}(\omega \tau), \tag{26}
\end{align*}
$$

where C_{1} is a dimensionless constanl given by

$$
\begin{equation*}
C_{1}=\frac{Q_{11} Q_{t_{2}} 2^{\prime}(l-1)!}{4 \pi \epsilon_{0} \hbar v_{r a l} \delta^{I} \sqrt{\left(2 l_{1}+1\right)!\left(2 l_{2}+1\right)!}} \tag{27}
\end{equation*}
$$

and $f_{1}(\nu \tau)$ is the so-called resonance function, as tabulated by Tsao and Curnutte ${ }^{56}$:

$$
\begin{align*}
f_{1}(\omega T)= & \frac{1}{2} \sum_{m=-1}^{+1}\left[\frac{2}{2^{1}(l-1)!}\right. \\
& \left.\times \sqrt{\frac{(2 l)!}{(l+m)!(l-m)!}}(\omega \tau)^{1} K_{m}(\omega \tau)\right]^{2} . \tag{28}
\end{align*}
$$

In these formulas J_{i} and K_{i} are the quantum numbers of the symmetric tops involved, primes indicate the situation after the collision; Q_{1} is a molecular multipole, K_{m} is a modified Bessel function, $\boldsymbol{h}_{\boldsymbol{w}}$ is the gain in kinetic energy, and $\tau=b / e_{r a l}$. In the case of rigld nonoverlapping charge distributions (long-range interactions) only the maximum value of $l=l_{1}+l_{2}$ occurs. The polar symmetric top molecules, used as secondary beam gases, have nonzero multipole-moment matrix elements for $\Delta J_{2}=0$. This type of transitions will be dominant in the secondary beam molecule as follows from the resomance function $f_{1}(\Delta \tau)$. The beam maser is only sensitive for changes in a particular internal state of the ammonia molecule (suffux 1). The target molecules (suffux 2) are assumed to form a Boltzmann distribution over the rotation (inversion) states. In that case Eq. (26) can be approximated by

$$
\begin{align*}
P_{T}^{J_{1}^{\prime} J_{2}}(b)= & 2 C_{s}^{2} \sum_{J_{1}^{\prime}}\left(2 J_{1}^{\prime}+1\right)\left(\begin{array}{ccc}
J_{1} & l_{1} & J_{1}^{\prime} \\
-K_{1} & 0 & K_{1}
\end{array}\right)^{2} \\
& \times\left(\left(2 J_{2}^{\prime}+1\right)\left(\begin{array}{ccc}
J_{2} & l_{2} & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}
\end{array}\right)^{2}\right) f_{1}(\omega T), \tag{29}
\end{align*}
$$

Where the brackets () denote Boltzmann averages, For molecules with a symmetry axis the Boltzmann averages are given by

$$
\begin{equation*}
\langle F(W, K)\rangle=\frac{\sum \sum_{j=0} \sum_{K,+\delta}^{J} F(W, K)(2 J+1) \exp \left\{-\left[B J(J+1)+(C-B) K^{2}\right] h / k T\right\}}{\sum_{J=0} \sum_{K=0}^{J}(2 J+1) \exp \left\{-\left[B J(J+1)+(C-B) K^{2}\right] h / k T\right\}} . \tag{30}
\end{equation*}
$$

From Eq. (26) it follows that in the permanent multipole interaction scheme the dipole and quadrupole moments of ammonia will lead to the selection rules

$$
\begin{aligned}
& \left|\Delta J_{1}\right|=\left|J_{1}-J_{1}^{\prime}\right| \leqslant l_{1} \\
& J_{1}+J_{1}^{\prime} \geqslant l_{1} \\
& \Delta K_{1}=0
\end{aligned}
$$

In addition to these quantum number selection rules, there is the parity selection rule

$$
+-\quad \text { for odd } l_{1}, \quad+-+\quad \text { for even } l_{1}
$$

Transitions with $\Delta K= \pm 3$ can be caused by the permanent octopole and the distortion dipole moment of ammonia. The leading terms to cause these transitions, however, will be provided by induction and dispersion forces. So the $\Delta K= \pm 3$ collision induced transitions are only feasible in fairly hard collisions.

The transition probability $1 s$ related to the inelastic cross sections measured in the maser by Eq. (21):

where $P_{J_{K}}^{1_{1}^{\prime}{ }^{2}}(b)$ represents the term with $\left(G_{1}^{\prime}, K_{1}^{\prime}\right)=\left(\sigma_{1}, K_{1}\right)$ $\equiv(J, K)$ in the summation in Eq. (29), depending also on the relative velocity, and $G_{J K}\left[v_{\text {rol }}, s_{c m}\left(b, v_{\text {rul }}\right)\right]$ is the apparatus function introduced in Sec. IV. To evaluate Eq (31) a relation between the deflection angle $\vartheta_{c m}$ and the umpact parameter b is needed. Averaged over all possible orientations the classical dellection function for two nonrotating dipoles μ_{1} and μ_{2} in the impulse approximation can be written as ${ }^{58}$

$$
\begin{equation*}
\vartheta_{\mathrm{cm}}\left(b, v_{\mathrm{rol}}\right)=\frac{\pi^{2}}{8} \frac{\mu_{1} \mu_{2}}{4 \pi \epsilon_{0}\left(\frac{1}{2} \mu v_{\mathrm{rol}}^{2}\right)} b^{-3}, \tag{32}
\end{equation*}
$$

where μ is the reduced mass. Since no better deflection function is available for collisions involving symmetric top molecules this $g_{e m}\left(b, t_{\text {rol }}\right)$ is used for the calculation of $\sigma_{J K, 4 p}^{\text {nol }}\left(v_{\text {reil }}\right)$ according to Eq (31). Because it cannot be greater than unity, $P_{J K}^{1_{1}^{\prime 2}}(b)$ is set equal to unity for impact parameters smaller than b_{1}, where b_{1} is solved by iterative solution of $P_{J X}^{d_{1}{ }^{1}}\left(b_{1}\right)=1$ These approximathons have been successfully applied to pressure broadening of ammonia, ${ }^{9.10}$ and should even better describe the results obtained in the beam maser, because in the interpretation using Anderson's theory only inelastic ef fects in small angle (large impact parameter) scattering are taken into account.

In order to obtain directly the angular distribution of the (in)elastic scattering it is necessary to include the relative translational motion in the quantum mechanical calculations This is done using the Born approximation, which gives for the differential cross section for the collision induced transition $n-n^{\prime}$

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{n^{\prime} n}}(\vartheta, \varphi)=\frac{k_{n}^{\prime}}{k_{n}}\left|f_{n^{\prime} n}(9)\right|^{2}, \tag{33}
\end{equation*}
$$

where k_{n} and k_{n}^{\prime} are the wave vectors of the relative motion of the two molecules before and after the collision, respectively, and $f_{\mathrm{f}}{ }_{n}(9)$ is the scatlering amplitude In evaluating this scattering amplitude the following restrictions have to be made: (1) the scattering takes place for large impact parameters or large angular momentum (l) values resulting in small defiection angles and (2) the transfer of collisional angular momentum and transla-
tional energy is small. Three intervals of angular momentum values are considered:
(1) $l>l^{*}$, where l^{*} is determined by the following relation for the T matrix elements

$$
\begin{equation*}
\sum_{n^{\prime} 1^{n} m_{i} 0}\left|T_{n_{n} i^{1} i_{m} m_{1} 0}^{\left(\left.B_{0}\right|^{2}\right.}\right|^{2}=1 . \tag{34}
\end{equation*}
$$

(2) $l^{* * *}<l \leq l^{*}$, the angular momentum $l^{* *}$ is determined by the condition

$$
\begin{align*}
& \text { (3) } l<l * * \text {. } \tag{35}
\end{align*}
$$

In the interval $l>l$ * (soft collisions) the T matrix elements are calculated using the first Born dpproximation. For $l<l *$ (hard collisions) the Born approximation breaks down. In the region $l^{* *}<l<l *$ all inversion channels are equally probable and the random phase approximation is used, with

$$
\begin{equation*}
T_{n_{n} i^{\prime} \mid m_{i}^{\prime} 0}=\frac{\exp \left(t \varphi_{n_{n} n r^{\prime} 1 m_{i}^{\prime} 0}\right)}{\sqrt{\lambda_{0_{i}}^{-}}}-\delta_{n n^{\prime}} \delta_{r^{\prime} 1} \delta_{m_{1}^{\prime} 0}, \tag{36}
\end{equation*}
$$

 1 and the energy, and $N_{0_{1}}$ is the number of open inversion channels. Both inversion and rotation channels are open in the interval $l>l^{* *}$, but the probability of a rotation excitation is at least one order of magnitude below the inversion transition probability Therefore only inversion channels are effectively open, and contribute to the summation in Eq (34) In the region $l<l$ ** inversion and rotational transitions become equally important. Because the number of open channels becomes very large the T matrix can be approximated by

$$
\begin{equation*}
T_{r n \pi r} 1 m_{1}^{\prime} 0 \simeq-\delta_{r n} \delta_{1}, \delta_{m_{1}^{\prime} 0} . \tag{37}
\end{equation*}
$$

This implies that for large scattering angles the elastic differential cross section exceeds its inelastic counterpart With these approximations straightforward calculations ${ }^{57.58}$ yield the following result for the differential cross section in first order Born approximation for the case of dipole-dipole interaction.

$$
\begin{align*}
& \frac{d a}{d \Omega_{n^{\prime} n}}(9)=\left[\frac{l * *}{k_{n}} \frac{J_{1}(l * * g)}{9} \delta_{n+n}\right]^{2}+\frac{1}{5} \sum_{m_{1}^{\prime}=-2}^{* 2} \frac{1}{k_{n}^{2}} \int_{1 * *}^{1 *} J_{m_{1}^{\prime}}^{2}(l \vartheta) l^{2} d l+\left(2 J_{1}^{\prime}+1\right)\left(\begin{array}{ccc}
J_{1} & 1 & J_{1}^{\prime} \\
-K_{1} & 0 & K_{1}
\end{array}\right)^{2} \\
& \times\left(\left(2 J_{2}^{\prime}+1\right)\left(\begin{array}{ccc}
J_{2} & 1 & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}
\end{array}\right)^{2}\right)_{6}\left[\frac{\left(1_{0}^{2} / k_{n}\right) \lambda_{j}^{2}}{x_{0}^{2}+l_{0}^{2} g^{2}}\right]^{2} \sum_{m_{1}^{\prime *-2}}^{* 2} \frac{\left.\left.\left[l^{*} 9 K_{m_{i}^{\prime}}\left(x^{*}\right) J_{m_{i}^{\prime}}-1\right)\left(I^{*} 9\right)+x^{*} K_{m i}-1\right)\left(x^{*}\right) J_{m_{i}^{\prime}}\left(l^{*} 9\right)\right]^{2}}{\left(2-m_{i}^{\prime}\right)!\left(2+m_{i}^{\prime}\right)!} . \tag{38}
\end{align*}
$$

where J_{1} denotes a Bessel function and $\lambda=l \Delta_{i} / k_{n} ; I_{0}$ and so x_{0} are defined in terms of the interaction strength of the involved dipole moments μ_{1} and the relative velocity $v_{\text {rel }}$

$$
\begin{equation*}
l_{0}=k_{\mathrm{n}} \sqrt{\frac{2}{3} \frac{\mu_{1} \mu_{2}}{4 \pi \epsilon_{0}} \frac{1}{n_{l}{ }_{\mathrm{ret}}}} ; \tag{39}
\end{equation*}
$$

the brackets denote again Boltzmann averages over the
secondary beam molecules [Eq. (30)]
As the value of the collision angular momentum l** is about an order of magnitude smaller than $1 *$, the second term in Eq. (38), representing an extra contribution to the inelastic differential cross section due to inversion transilions, is primarily determined by 1^{*}. The first term in Eq. (38) slands for the contribution to the differential cross section of the elastic diffraction scat-

FIG. 7. Attenuation of the total beam intensity (squares and solld line) and of the inversion line intensities of the (J, K) $=(1,1)$ level (circles and dotred line) and the (6,6) level (triangles and dashed line), as a function of the NH_{3} flow through the effuser (cavity In backside position). Vertlcal bars represent three standard deviations
tering. This scattering is strongly peaked in the forward direction, because the de Broglie wavelength λ $=h / \mu v_{\text {rol }}$ of the system is small compared to the characteristic elastic collision diameter $d^{*}=l^{*} / k_{n}$. The last term in Eq. (38) is the contribution of inelastic scattering at large impact parameters. Since the di-pole-dipole interaction is of extremely long range and only inelastic collisions are allowed for a pure dipoledipole intermolecular potential, the peaking of the inelastic differential cross section in forward direction is even stronger than in the case of elastic collisions.

VI. EXPERIMENTAL RESULTS AND INTERPRETATION

For accurate measurements of the attenuation of the microwave and total beam intensity a digital measuring procedure with the and of a minicomputer (PDP/11E10) has been developed. In order to minimize the influence

TABLE II. Direction coelficients \ln Torr $^{-1} 1^{-1} s$ of the "besl" atralght lines as discussed in the text. Errors are based on three standard deviations.

Secondary beam molecule

	(J, K)	$\mathrm{CH}_{3} \mathrm{~F}$	$\mathrm{CF}_{3} \mathrm{H}$	NH_{3}
Frontside	$(1,1)$	$34.6(7)$	$55.5(11)$	$20.5(4)$
position	$(2,2)$	$28.4(13)$	$52.7(11)$	$212(6)$
	$(3,3)$	$29.3(7)$	$56.2(15)$	$22.5(3)$
	$(6,6)$	$33.0(12)$	$64.3(46)$	$23.4(20)$
	$(1,1)$	$34.7(8)$	$56.8(11)$	$21.5(4)$
Backside	$(2,2)$	$295(7)$	$550(11)$	$226(9)$
position	$(3,3)$	$31.7(8)$	$60.0(14)$	$23.3(6)$
	$(6,6)$	$33.4(13)$	$63.9(18)$	$24.0(25)$
		$19.4(4)$	$29.3(9)$	$12.5(3)$

TABLE III. Acceptance angles In the center-ofmass system (in degrees).

	Secondary beam molecule		
	$\mathrm{CH}_{3} \mathrm{~F}$	$\mathrm{CF}_{3} \mathrm{H}$	NH_{3}
Frontside position	042	0.35	0.56
Backside position	0.29	0.24	0.39
Ion gauge	0.23	0.19	0.31

of inevitable drift effects such as thermal instabilities of the resonant cavities, primary and secondary beam fluctuations, this procedure consists of a repetition of a certain number of steps in reflection symmetric sequence. Each step is defined by the setting of a number of experimental conditions, such as: secondary beam on/off; beam stop in front of the son-gauge in/out. The base-line intensity of the microwave signal is measured by shifting the frequency of the source klystron by 48 to 300 kHz . This is done by coupling a low frequency signal ($16-100 \mathrm{kHz}$) to the 10 MHz reference signal used for the klystron stabilization. The signals of the microwave power detector and the ion-gauge are fed into phase sensitive detectors, whose output is sampled by A/D converters whth a gate of 10 s . After each step the digital results are transferred to the disk unit of the computer Delay times between the steps are chosen long enough to account for RC eflects caused by the phase sensitive detectors (RC times are 1 s) and for stabilization of the secondary beam flow.

Attenuation measurements up to one decade were performed on metastable inversion levels of both the spin modifications, the (1,1) and (2,2) para $\left(V_{H}=\frac{1}{2}\right.$) and the $(3,3)$ and $(6,6)$ ortho $\left(G_{H}=\frac{3}{2}\right)$ levels. The main line resulting from transitions $\Delta F_{1}=\Delta F=0$ is taken as a representative for each inversion level $|J, K\rangle$, 1 , e., it is assumed that the collision-induced inversion transition probabilities do not depend on the hyperfine levels involved This assumption is justified by the fact that the quadrupole hyperfine splitting of the inversion levels ${ }^{58}$ is small compared to the Stark effect in the electric field of the perturbing molecule Secondary beam gases used were $\mathrm{CH}_{3} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{H}$ and NH_{3}. Figure 7 shows a typical plot of the microwave line and total beam intensities for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering.

The measured microwave and total beam signal attenuations, plotted on a logarithmic scale versus the secondary bearn flow, are fitted by a straight line according to Eqs. (22) and (23). The results obtanned in terms of direction coefficients of the "best" straight Ines are summarized in Table II. The apparatus cross sections $\sigma_{J K}$ and $\sigma_{T B}$ depend on the angular resolution and involve both elastic and inelastic effects. From Table II it is clear that the variations in microwave line attenuation for the different inversion doublets (K, K) are significant. The results obtained for the two positions of the microwave cavity differ at most 6%. The weak dependence of the microwave cross section on the angular resolution (Table LII) can be understood from Eq. (24). This equation shows that the microwave cross sec-

TABLE IV. Permanent multipole moments of the secondsry beam molecules.

Secondary beam molecule	Dipole moment n D	Quadrupole moment In 10^{-26} esu
NH_{3}	$\mathbf{1 . 4 7 6 (2) ^ { \text { b } }}$	$-2.92(8)^{\mathrm{c}}$
$\mathrm{CH}_{3} \mathrm{~F}$	$1.8584(5)^{\text {d }}$	-1.4^{a}
$\mathrm{CF}_{3} \mathrm{H}$	$1.6512(5)^{\text {d }}$	36^{\star}
Reference 60.		${ }^{0}$ Reference 62.
Reference 61		Reference 63.

tion is sensitive to the acceptance angle via the difference between elastic and inelastic effects, which compensate each other. The direction coefficients for the microwave line attenuations are roughly twice those obtained for the total beam attenuation This difference originates from the last two terms in Eq. (25). The fact that the logarithm of the attenuation is proportional to the secondary beam flow confirms that the apparatus function depends linearly on the secondary beam flow. Furthermore, it indicates that the secondary beam molecules are properly trapped by the cryopump and double collisions do not occur.

In the following the results are confronted with the predictions of Anderson's theory and Born approximation. Anderson's theory does not supply elastic cross sections. To extract information from the measurements about the inelastic cross section alone, the following assumptions have to be made: (1) the collision cross sections depend only weakly on the rotational quantum numbers and (2) the microwave cavity and the ion gauge have the same angular resolution Although in practice the acceptance angles of the microwave cavities and ion gauge are different (Table III) the latter assumption 15 quite reasonable because of the weak dependence of the microwave attenuation on the angular resolution (Table II). With these assumptions the expression for the ratio of attenuated microwave line and total beam signal is [Eqs. (19), (20), and (31)]

$$
\begin{align*}
\frac{I_{d K}}{I_{\mathrm{TB}}}= & \frac{I_{J K}^{0}}{I_{\mathrm{TB}}} \exp \left\{-4 \pi \sum_{v_{\mathrm{TO}}, m} \int d b b G_{J Y}\left[v_{\mathrm{ral}, \mathrm{~m}}, \vartheta\left(b, v_{\mathrm{ral}}\right)\right]\right. \\
& \left.\times P_{J K}\left(b, v_{\mathrm{ral}, \mathrm{~m}}\right)\right\} \tag{40}
\end{align*}
$$

Herein $P_{J Y}\left(b, v_{\text {rol }, \mathrm{m}}\right)$ is the inversion transition probability summed over the dipole-dipole and dipolequadrupole term of the multipole expansion (Table IV). The deflection function $\vartheta_{\mathrm{sm}}\left(b, v_{\mathrm{rol}}\right)$ is given by Eq. (32) where the dipole moment of the primary ammona and the secondary beam molecule is replaced by the matrix element for the studied inversion and rotational levels, respectively. The latter matrix element is also averaged over a Boltzmann distribution at room temperature [see Eq (30)]. In analogy with Eqs, (22) and (23) an inelastic apparatus cross section 18 defined by the relation

In Table V the theoretical predictions for $I_{J X} / I_{T B}$ resulting from Eq. (40) are compared with the experimental results for the cavity in the backside position, where the difference in angular resolution between the cavity and the ion gauge is smaller (see Table II) Except for the (1,1) transition in collisions with $\mathrm{CH}_{3} \mathrm{~F}$ (to be discussed in the next section) the comparison shows an excellent agreement between theoretical and experimental values.

For the comparison with the Born approximation the experimental attenuations are interpreted in terms of (in)elastic cross sections for the studied inversion level of ammonia assuming that the collision induced inversion transitions are dominant over rotational transitions. Differential (in)elastic cross sections for small angle dipole-dipole scattering [Eq. (38)] are substituted into the expressions for the signal attenuations [Eqs. (19) and (20)]. Values of the relevant multipole moments used in the calculations are given in Table IV, while the Boltzmann averages of the multipole moment matrix elements are taken according to Eq. (30). The resulting

TABLE V. Comparison between experiment and Anderson's theory All cross sectlons are In $10^{-20} \mathrm{~m}^{2}$ Errors are based on three standard deviatlons

Secondary beam molecule and flow in Torrla ${ }^{-1}$	Inversion Une (W, K)	Measured	Calculated kq. (40)	$\sigma_{\pi x, a v n}^{1}$ measured Eq. (41)	$\begin{aligned} & \sigma_{J K}^{\operatorname{tg} 91} \\ & 2 \pi \int_{0}^{\circ} P_{J K}(b) b d b \end{aligned}$
NH_{3}	(1, 1)	$0.728(12)$	0719	111(6)	446
0.0335	$(2,2)$	0 701(22)	0718	134(12)	516
	$(3,3)$	0 685(15)	0.651	140(8)	548
	$(6,6)$	0 670(56)	0634	141 (29)	586
$\mathrm{CF}_{3} \mathrm{H}$	$(1,1)$	0 704(13)	0.758	192(10)	566
0.01225	$(2,2)$	0 720(13)	0. 755	191 (10)	655
	$(3,3)$	0 678(14)	0.698	213(11)	696
	$(6,6)$	0 645(16)	0677	241(14)	745
$\mathrm{CH}_{3} \mathrm{~F}$	$(1,1)$	$0.715(13)$	0823	156(8)	352
0.020	$(2,2)$	0 804(16)	0822	108(10)	408
	$(3,3)$	$0.769(14)$	0.777	122(8)	433
	$(6,6)$	0 745(21)	0.765	138(13)	465

TABLE VI. Comparison between theory and experiment In the framework of the Born approximatlon for the cavity in backside position. All cross sections in $10^{-20} \mathrm{~m}^{2}$. Errors are based on three standard deviations

secondary beam molecule and How in Torrla ${ }^{-1}$	Inversion level (J K)	$\bar{v}_{\mathrm{ma} 1}\left(\mathrm{~ms} \mathrm{~s}^{-1}\right)$	$I_{J K} / I_{J r}^{0}$		$I_{\mathrm{TB}} / I_{\mathrm{TB}}^{0}$		$\begin{aligned} & \sigma_{J K} \\ & \mathbf{E q}_{(22)} \end{aligned}$	$\begin{aligned} & \sigma_{\mathrm{TB}} \\ & \mathrm{Fq} \end{aligned}$	Theoretical integral cross sectuons (Born approximatlon)		
				$\mathrm{Eq} \mathrm{(19)}$		Eq (20)			$\sigma_{j K}^{\text {joi }}$	$\sigma_{j j_{k}}$	${ }_{\text {afk }}^{1}$
$\begin{aligned} & \mathrm{NH}_{3} \\ & \mathrm{O} 0335 \end{aligned}$	(1,1)	1289	$0487(7)$	0333	0 653(5)	0000	30319)	$300(6)$	418	299	119
	(2 2)		0 469(14)	0486			573(22)		313	30	149
	(3, 3)		0 458(9)	0444			578(1-)		دuJ	399	11.4
	$(6,6)$		0 448(J7)	0391			3051091		622	+39	183
$\begin{aligned} & \text { CF, } \mathrm{H} \\ & 001225 \end{aligned}$	$(1,1)$	1134	0 499(7)	0506	0 698(B)	0624	703(15)	395(13)	712	493	219
	(2,2)		0 510(7)	0493			787(15)		782	341	241
	$(3,3)$		0 480(8)	0497			805(19)		808	059	$2+9$
	$(6,6)$		0 457(10)	0443			$800(24)$		830	379	237
$\begin{gathered} \mathrm{CH}_{3} \mathrm{~F} \\ \mathbf{0} 020 \end{gathered}$	(1,1)	1189	0 499(8)	0662	0 678(5)	0098	647(13)	3 Sa (7)	348	200	10 H
	$(2,2)$		$05548)$	0619			286(14)		454	322	135
	(3,3)		0530 (8)	0571			391(19)		499	350	149
	$(0,6)$		$0513(13)$	0339			$022(24)$		530	J	105

theoretical attenuations are compared with the experimental values in Table VI. As in the comparison with Anderson's theory only the $(1,1)$ transition in the $\mathrm{NH}_{\mathbf{3}}-\mathrm{CH}_{3} \mathrm{~F}$ system shows a significant deviation. For the other transitions and scattering gases the theoretical and experimental values are in good agreement. The comparison 1 g given only for the cavity in backside position. Theory and experimental results for the cavity in frontaide position agree equally well. All comparative calculations are only necessary at one setting of the flow, because the apparatus function is proportional to the flow and the measured signal attenuations depend exponentially on the secondary beam flow.

VII. DISCUSSION

In view of the assumptions made, the agreement between the experimental results and Anderson's theory is remarkably good (Table V). This agreement is partly due to the fact that for the interpretation only inelastic collisions in forward direction are taken into account [Eqs. (40) and (41)]. These collisions with large impact parameters and small transition probabilities are well described by Anderson's theory combined with the classical deflection function. Calculations performed with this theory applied to rotational transitions yield cross sections which are at least an order of magnitude smaller than the cross sections for inversion transitions. Only for the system $\mathrm{NH}_{3}-\mathrm{CH}_{3} \mathrm{~F}$ the cross sections for rotational transitions between the $(\zeta, K)=(1,1)$ and $(2,1)$ levels, seem to be larger. This is confirmed by preliminary results of experiments on collision induced rotational transitions, to be reported in a following communication. Calculations and preliminary results confirm the validity of the assumption of an isolated inversion doublet made to derive the formula for the attenuated intensities in the maser [Eqs. (10) and (20)] The digcrepancy between experimental results and predictions of Anderson's theory found for $\mathrm{CH}_{3} \mathrm{~F}$ on the $(1,1)$ level (Table V) is most probably caused by resonant rotational transitions, which are not taken into account in the interpretation.

In comparing the experimental results with the Born approximation, the full dependence of the cross sections
on the rotational quantum numbers J, K is regarded and the angular resolution is properly taken into account. For $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ and $\mathrm{NH}_{3}-\mathrm{CF}_{3} \mathrm{H}$ the agreement of the theory with the experimental results is quite satisfactory (Table VI). Apparently $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ and $\mathrm{NH}_{3}-\mathrm{CF}_{3} \mathrm{H}$ scattering 19 well-described by a dipole-dipole intermolecular potenthal. For $\mathrm{NH}_{3}-\mathrm{CH}_{3} \mathrm{~F}$ the explanation for the discrepancy between theory and experimental results on the (σ, K) $=(1,1)$ level is the same as with Anderson's theory. For the other levels there are small systematic deviations towards too small theoretical cross sections. This may be due to the fact that at room temperature only states with low values of K are populated in the prolate symmetric top $\mathrm{CH}_{3} \mathrm{~F}$, yielding a small effective dipole moment. So for $\mathrm{CH}_{3} \mathrm{~F}$ higher-order multipole interactions should be included in future calculations. This explanation is confirmed by the fact that with Anderson's theory, with dipole-dipole and dipole-quadrupole interaction, no deviations are found.

The rotational dependence of the microwave line attenuations measured at different inversion levels is in agreement with the theoretical predictions. For the total beam attenuation the agreement of theory with experimental results is almost as satisfactory as for the microwave line attenuation (Table VI) Inspection of Eqs. (24) and (25) shows that the total beam attenuation 18 more sensitive to the angular resolution. Moreover, the total beam attenuation must be averaged in the theoretical calculations over the population distribution in the primary beam. In the actual calculations only the metastable levels $J=K=1,2,3$ and 6 are involved in this (post-)averaging procedure.

In Tables V and VI the calculated integral (in)elastic and total cross sections are given as well. Comparison of the results tor $\sigma_{J I}^{101}$ obtaned with Born's, respectively Anderson's theory, shows that the latter predicts too large inelastic cross sections. The dipole-quadrupole interaction, which is only taken Into account in Anderson's theory, contributes at most 10% to the cross section. However, at small impact parameters the transition probabilities calculated in a straight path appromimation become too large, leading to unreliable integral cross sections. Independently of the angular resolution

TABLE VII. Integral crose sections (In $10^{-2 C} \mathrm{~m}^{2}$) calculated In Born approximathon and converted to the relative velocttles In a gas cell at 300 K .

	(J, K)	$\sigma_{j K}^{\prime \prime}$	$\sigma_{J K}^{\text {inal }}$
NH_{3}	$(1,1)$	177	446
	$(2,2)$	222	545
	$(3,3)$	244	595
	$(6,6)$	273	654
$\mathrm{CF}_{3} \mathrm{H}$	$(3,3)$	413	928
	$(6,6)$	427	961

(frontside, respectively backside), the apparatus cross sections $\sigma_{J K}$ for scattering with NH_{3} and $\mathrm{CF}_{3} \mathrm{H}$ are close to the sums (σ_{j}^{10}) of the calculated integral elastic and melastic cross sections. According to Eq. (24) this implies that $\sigma_{J Y \text {, wp }}^{\text {Inop }}$ and $\sigma_{d K, 00 D}^{\circ 1}$ are approximately equal over the range of applied acceptance angles. The calculated integral cross sections $\sigma_{S R}^{1 a 01}$ and $\sigma_{j K}^{01}$ differ, however, by an amount of about $200 \times 10^{-20} \mathrm{~m}^{2}$ which is approximately equal to half the value of $\sigma_{J_{K}^{\text {nel }}}^{\text {tel }}$. This leads to the conclusion that for dipole-dipole scattering at least half of the inelastic collisions result in deflection angles larger than 0.2° (in the laboratory system). This conclusion is confirmed by the fact that $\sigma_{J i n}^{T a n}$, wop (Table V) 15 much smaller (about 50%) than $\sigma_{J A}^{1 a n}$ (Table VI). Hence incomplete inelastic cross sections are measured in the maser, making it difficult to compare the experimental results directly with the outcome of other experiments.

The results for $\sigma_{J K}$ and $\sigma_{T B}$ should be compared with σ_{I} and σ_{BA} of Wang et al. ${ }^{41}$ and Williams et al. ${ }^{43}$ Comparison with the results of Wang et al. is complicated by the uncertainty in their angular resolution (about 0.5° in the laboratory system) and the use of an effusive primary beam, which results in a large spread of relative velocities and a lower mean relative velocity. Therefore it is not surprising that the results they obtained on the $(J, K)=(3,2)$ and (7,6) inversion transitions differ $\mathbf{3 0 \%}$ (their uncertanty) with the results given in Table VI. Nevertheless the dependence on the scattering gases and rotational quantum numbers (larger cross sections for higher inversion levels) is the same. Willams et al. used a primary nozzle beam and their results for the $(J, K)=(3,2)$ level are quite close to the results of this investigation for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$. Their observation, that σ_{1} (or $\sigma_{J K}$) is insensitive to the angular resolution (θ_{R}) over a range from 0.2° to $1.5^{\circ} \mathrm{in}$ the laboratory system, is confirmed for a small part of the range ($0.20^{\circ}-0.28^{\circ}$) by the experimental results and theoretical calculations reported in this paper. This insensitivity implies that the
 w_{1} thin the experimental error over the applied range of θ_{R}. It was shown above that for $\left(\mathrm{NH}_{3}-\mathrm{NH}_{3}\right)$ scattering
 smaller than $\sigma_{J K}^{1+1}-\sigma_{j k}^{0 j}$ for all investıgated inversion levels, there is no reason to expect a different behavior for the (3, 2) state. From this result combined with the implication of the observation of Williams et al. fol-

smaller than $\sigma_{J A}^{2 a n}-\sigma_{J K}^{11}$. This would lead to the conclusion that quite a large part of the collisions result in deflection angles even larger than 1.5° for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$, which is in contradiction with the assumptions made by Williams et al. to explain the coincidence of σ_{1} (or $\sigma_{J X}$) and the line broadening data.

As the integral cross sections calculated in Born approximation can be regarded as experimentally confirmed, they can be confronted with the results of line broadening and transient experiments. In Table VID the values for $\sigma_{j K}^{01}$ and $\sigma_{J K}^{\text {land }}$ from Table VI are given, converted to the relative velocity in agas cell ($\sigma \sim v^{-1}$). The values of $2 \sigma_{J X}^{1} 01$ should be equal to the results of transient T_{1} experiments (fourth column of Table I). The M dependence of the latter complicates the comparison. Nevertheless the calculated $2 \sigma_{J_{k}^{2}}^{1}$ values are about 20% too large, but the (J, K) dependence $1 s$ correct. The results of line broadening and transient T_{2} experiments (columns one and two, respectively five of Table I) should be compared with the sum of $\sigma_{I K}^{1001}$ and the cross section for "adiabatic" collisions. ${ }^{18,18,64}$ Comparison of Table I with Table VII shows that $\sigma_{J r^{10} 1}{ }^{15}$ within 10% of the results of line broadening and transient experiments, while the sum of $\sigma_{J \pi}^{10,1}$ and $\sigma_{J K}^{01}$ differs roughly 30% from these results. This leads to the conclusion that the "adiabatic" cross section $1 s$ not identical with the quite large elastic cross section involved in the maser experiments.

The experiment reported in this paper shows the feasibility of measuring inelastic cross sections in forward direction in a beam maser. Although comparison with theoretical predictions is quite complicated, both Anderson's and Born's theory fit with the experimental results. The outcome of the latter theory agrees with the results of line broadening and transient experiments as well, which are, however, somewhat ambiguously related to the collision cross sections as measured in the maser.
${ }^{1}$ A. C. Cheung, D. M Rank, C H. Townes, D. P. Thornton, and W. J Welch, Phys Rev Lett 21, 1701 (1968).
${ }^{2}$ T. Oka, F O. Shimizu, T. Shimizu, and J K. G. Watson, Astrophys. J. 165, 15 (1971). T. Oka, Mémolres Socreté Royale des Sclences de Lıそ̉ge, $6 e$ Série, tome III (1972), p. 37.
${ }^{3}$ A C. Cheung, D. M Rank, C. H. Townes, S H. Knowles, and W T Sullıvan, Astrophys. J. 157, 13 (1969).
${ }^{4}$ B. Bleaney and R P Penrose, Proc. R. Soc. London 188, 358 (1947).
${ }^{3}$ B. Bleaney and R. P. Penrose, Proc Phys. Soc. London 60. 83 (1948).
${ }^{6}$ B. Bleaney and R. P. Penrose, Proc. Phys Soc. London 60, 540 (1948).
${ }^{7}$ R. R. Howard and W. V Smlth, Phys Rev 79, 128 (1950); 79, 132 (1950).
${ }^{8}$ R. L Legan, J A. Roberts, E A. Rinehart, and C. C. LIn, J. Chem. Phys. 43, 4337 (1965).
${ }^{9}$ P. W Anderson, Phys. Kev 76, 647 (1949).
${ }^{10}$ J. S. Murphy and J. E. Boggs, J. Chem. Phys. 50, 3320 (1969).
${ }^{11}$ J. S Murphy and J. E. Boggs, J. Chem. Phys. 47, 691 (1967).
${ }^{12}$ (a) W. S. Benedict, E K. Plyler, and E. D. Tidwell, J.

Res. Natl. Bur Stand. 61, 123 (1956); (b) J. Chem Phye 29, 829 (1958)
${ }^{13}$ J. S Margolis, J. Quant Spectrosc. Radlat. Tranafer 15, 637 (1975)
${ }^{14}$ J. S Margolls and S. Sarangl, J. Quant Spectrosc. Radiat. Transler 16, 405 (1976)
${ }^{15}$ P. Varanasi, J. Quant Spectrosc. Radlat Transfer 12, 1283 (1972),
${ }^{16} \mathrm{~T}$ Oka, Invited paper, LAU Symposlum No 87 on Interatellar Molecules, Mount Tremblant, Ontario, Canada 1979
${ }^{19}$ P R. Schwartz, Astrophys J. 220, 45 (1979).
${ }^{10}$ W. Llu and R A Marcus, J Chem Phys. 63, 272 (1975); 63, 290 (1975)
${ }^{10}$ H. H. Schwendeman and T Amano, J. Chem Phys 70, 962 (1979)
${ }^{20}$ T. Amano and R H Schwnedeman, J. Chem. Phys, 65, 5133 (1976)
${ }^{21}$ T. Amano, T Amano, and R H. Schwendeman, J. Chem. Phys 73. 1238 (1990).
${ }^{22}$ A H Briltaln, P. J Manor, and R H. Schwendeman, J. Chem Phys 58, 5735 (1973)
${ }^{23}$ W, E Hoke, J Ekkers, and W H Flygare, J. Chem. Phys 63, 4075 (1975)
${ }^{24} W$ E Hoke, D. R Bauer, J Ekkers, and W H Flygare, J. Chem Phys 64, 5276 (1976)
${ }^{25}$ W E Hoke, D. R Bauer, and W H. Flygare, J. Chem. Phys 67, 3454 (1977)
${ }^{28} \mathrm{~T}$ Amano and T Shimizu, J Phys. Soc. Jpn 35, 237 (1973).
${ }^{21}$ J. C. McGurk, H. Mader, R T. Hofmann, T. G Schmalz, and W. H. Flygare, J. Chem Phys 61, 3759 (1974)
${ }^{16} \mathrm{~T}$ Oka, J. Chem Phys, 47, 4852 (1967), 48, 4919 (1968), 4日, 3135 (1968), Adv. At Mol Phys. 8, 127 (1973).
${ }^{24}$ P. W Daly and T. Oka, J Chem Phys 83, 3272 (1970), A R. Fabrls and T. Oka, E6, 3168 (1972), R. M. Lees and T. Oka, 49, 4234 (1968).
${ }^{\text {so }}$ T Shimizu and T Uka, J Chem. Phys 53, 2536 (1970), Phya Rev. A 2, 1177 (1970), S Kano, T Armano, and T Shimizu, Chem. Phys Lett 25, 119 (1974), W A Krelner, M Romheld, and H D Rudolph, 2 Naturforsch Tell A 28, 1707 (1973), J Lamaire, J. Thibault, F Herlemont, and J Hourlez, Mol Phys 27, 611 (1974)
${ }^{31} \mathrm{~W}$ A Kreiner, A Eyer, and H Jones, J. Mol Spectrosc. 62. 420 (1974)
${ }^{32} \mathrm{~J}$ M. Levy, J H S Wang, S. G Kukolfch, and J I Steinfeld, Phys Rev Latt 28, 395 (1972), Chem. Phys Lett 21, 588 (1973)
${ }^{33}$ E M Dobbs, R. H. Michels, and J I. Steinfeld, J. Chem. Phys. 63, 1904 (1975).
34 J P. Toennles, Dlscuss. Faraday Soc. 33, 96 (1962), Z. Phys. 182, 257 (1965)
${ }^{3 S}$ U. Borkenhagen, H. Malthan, and J P Toennles, Chem Phys Lett 41, 222 (1976), J. Chem. Phys. 71, 1722 (1979)
${ }^{36}$ J. L, Kingey, J Chem Phys 66, 2560 (1977), W, D Phillipe, J. A Serrl, D J. Ely, D E. Pritchard, K. R Way, and J. L. Kinsey, Phys Rev Lett 41, 937 (1978)
${ }^{37}$ P. J. Dagdiglan, B E Wllcomb, and M. H. Alexander, J Chem. Phys. 71, 1670 (1979). P. J Dagdigian and B E WUcomb, ibid 72, 6462 (1980).
${ }^{38}$ K. Bergmann, R. Engelhardt, U. Helter, P. Hering, and J.

Witt, Phys Rev. Lett. 40, 1446 (1978), J Phys E 12, 507 (1979), K Bergmann, R. Engelhardt. L. Heiter, and J WItt, J. Chem. Phys, 71, 2726 (1979). K. Bergmann, U. Heiter, and J. WItt, ibid. 72, 4777 (1980).
${ }^{30}$ S G Kukollch, J. H S Wang, and D. E Oates, Chem Phys. Lett 20, 519 (1973)
${ }^{40}$ N, F. Ramsey, Molecular Beams (Clarendon, Oxford, 1956).
${ }^{4} \mathrm{~J}$ H. 5 Wang, D. E. Oates, A Ben-Reuven, and S. G Kukolich, J Chem Phys 50, 5268 (1973)
${ }^{2}{ }^{2} K \quad R$ Chlen, P Foreman, $K \quad H$ Castleton, and $S ~ G$ Kukollch, Chem Phys 7, 161 (1975)
${ }^{43} J$ R Williams and S G Kukolich, J Chem Phys 66, 251 (1977)
${ }^{4} R \quad P$ Feymman, F L Vernon, and R W Hellwarth, J Appl Phys 28, 49 (1957)
${ }^{45}$ A Ben-Reuven and S G Kukolich, Chem Phys Lett 23, 376 (1973)
${ }^{4}{ }^{4}$ H Feeny, W Madigosky, and B. Winters, J Chem Phys 27, 898 (1957)
${ }^{41} \mathrm{~K}$ Matsura, Res Electrotch Lab. Tokyo, 24, 579 (1960)
${ }^{48}$ A Dymanus, Intemational Revieu of Science, Physucal Chemistry, edited by D A Ramsay (Butlerworths, London, 1976), Vol 3, J P Gordon, H J Zeiger, and $C H$ Townes, Phys Rev 95, 282 (1954)
${ }^{40}$ S. Stolte, thesis, Katholneke Universitell, NIjmegen, The Netherlands, 1972.
${ }^{50} \mathrm{P}$ Zugenmater, Z Angew Phys 20, 184 (1906)
${ }^{51} D$ Klasssen, $Q \quad$ R 53 (1976), $Q \quad R$ stand for "Quarterly Report of the Atomic and Molecular Research Group,'
Fysisch Laboratorlum, Katholleke Universitelt, NiJmegen, The Netherlands.
${ }^{52} \mathrm{H}$ C W. Beljerinck and N F. Verster, J Appl Phys 46, 2083 (1975)
${ }^{53}$ J. A. Th. Verhoeven, thesls, Katholleke Unlversitelt, Nijmegen, The Netherlands, 1978.
$S_{\text {A }}$ Messiah, Quantum Mechavies (North-Holland, Amsterdam, 1965), Vol II
${ }^{55} \mathrm{D}$ Klaassen, Q R 55 (1977) (see Ref. 51).
${ }^{56} \mathrm{C}$ J Tsao and B Curnutte, J Quant Spectrose Radiat Transfer 2, 41 (1962)
${ }^{57}$ J. M. H. Heljnders, thesis, Katholleke Unlversitent, Nijmegen, The Netherlands, 1978.
${ }^{50} E$ A Gislason and D Herschbach, J Chem Phys 64, 2133 (1976)
${ }^{59} \mathrm{~J}$ T Hougen, J Chem Phys 57, 4207 (1972)
${ }^{00} P$ Foreman, K Chien, and $S G$ Kukollch, J Chem Phys 62, 4710 (1975)
${ }^{61}$ E A Cohen and R L Poynter, J Mol Spectroac 53, 131 (1974)
${ }^{62} \mathrm{~J}$ A Th Verhoeven and J M H Reljnders, Q. R 27 (1970) (see Ref. 51),
${ }^{63}$ W L Meerts, Q R 40 (1973) (see Ref 51).
${ }^{64} \mathrm{G}$ Birnbaum, Advances in Chemical Physics, Intermolecular Forces, edited by J O HIrschfelder (Interscience, New York, 1967), Vol 12
${ }^{65}$ In this paper modifications of Anderson's theory and Born approxtmation are used Nevertheless they are referred to as Anderson's theory and Born approxlmation

BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH_{3}

 II. CROSS SECTIONS FOR ROTATIONAL TRANSITIONS INDUCED BY POLAR GASESD.B.M. Klaassen, J.J. ter Meulen and A. Dymanus Fysısch Laboratorıum, Katholıeke Unıversıtelt Toernoolveld, 6525 ED N1jmegen, The Netherlands

ABSTRACT

A molecular beam maser is used in a double-resonance scheme to measure cross sectıons for rotatıonal transitıons between levels of different $\mu n v e r s i o n$ doublets of NH_{3} induced by collisions with $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$. Theoretical values, calculated with a modifıcation of Anderson's theory, are in good agreement with present experımental results and steady-state double-resonance experıments of Oka (J.Chem.Phys. 48, 4919 (1968)).

In a previous paper ${ }^{1}$, hereafter referred to as I, we reported measurements on cross sections for inversion transitions of ammonia (NH_{3}) induced by collisions with polar gases in a beam-maser scattering set-up. The experimental results were interpreted using Born approximation and Anderson's theory. Also a brief summary was given of other experiments (and theories) yielding collision-induced population transfer rates between inversion and rotation levels relevant for the astrophysical NH_{3} problem. Special attention was paid to the steady-state double-resonance experiments of oka ${ }^{2}$, practically the only experiments capable of yielding collisional rates between rotational levels of NH_{3}. It was pointed out that it is very difficult to extract information about the state-to-state collision cross sections from those experiments, because they are sensitive to the ratio of rotational transition rates to the sum of a number of transition rates, including (twice) that for inversion transitions (Eq. (23)). This is caused by the fact that those experiments are done in steady-state and radiative and collision zones are not separated. Recently Shimizu et al. ${ }^{3}$ reported a laser double-resonance experiment on the $(J, K)=(3,2) \rightarrow(2,2)$ transition induced by NH_{3} collisions. In this paper a double-resonance (DR) experiment is described, employing the beam-maser (BM) scattering set-up reported in I. A schematic diagram of the DR-BM experiment is shown in Fig. 1a. The ammonia beam passes through a state selector, which focusses the molecules in the upper states and removes the molecules in the lower states of all inversion doublets from the beam. In an additional cavity, inserted between the state selector and the secondary beam (Fig. 1a), the molecules of a specific inversion doublet (J_{P}, K_{P}) can be transferred (pumped) to the lower level. To explain the principle of operation of the DR-BM experiment it is assumed that all molecules can be

Figure 1: Schematic diagram (a) and simplified working principle (b, c) of the DR-BM experiment (see text). Plus and minus sign indicate the parity of the levels. The dashed intensity corresponds to the situation where collision-induced rotational transitions are neglected. The shaded arrow indicates the change in attenuated signal intensity due to pumping.
pumped from the upper to the lower level (J_{p}, K_{p}). Furthermore only collisioninduced transitions from the pump (J_{p}, K_{p}) to the signal (J_{s}, K_{s}) doublet levels are regarded. Taking into account for the moment only collision-induced transitions involving the dipole moment of amonia, collisions with the secondary beam can transfer molecules from the upper level (J_{p}, K_{p}) to the lower level of another doublet $\left(J_{s}, K_{s}\right)=\left(J_{p} \pm 1, K_{p}\right)$ or from the lower level (J_{P}, K_{P}) to the upper level (J_{S}, K_{s}). The microwave line intensity, detected with the signal cavity, tuned to the inversion transition (J_{s}, K_{s}), is proportional to the difference between the numbers of molecules in upper and lower states (J_{s}, K_{s}) (Ref. I). Collision-induced transitions between the doublet levels $\left(J_{p}, K_{P}\right)$ and $\left(J_{S}, K_{S}\right)$ therefore decrease the signal (J_{S}, K_{s}) when only the upper level (J_{p}, K_{p}) is populated (Fig. 1b). However, when the inversion transition (J_{p}, K_{p}) is pumped, the lower level (J_{p}, K_{p}) is populated and these collision-induced transitions are increasing the signal (J_{S}, K_{S}) (Fig. 1c). The difference between the attenuated signal in the presence and absence of microwave pupping is proportional to the small-angle cross section for transitions between the doublet levels ($\mathrm{J}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}$) and ($\mathrm{J}_{\mathrm{s}}, \mathrm{K}_{\mathrm{s}}$). In practice not all molecules can be pumped from the upper state to the lower state of inversion doublet $\left(J_{p}, K_{p}\right)$. Therefore the pumping efficiency is measured with the probe cavity, tuned to the same inversion transition (J_{p}, K_{p}). Furthermore also collision-induced transitions involving the quadrupole moment of ammonia and transitions between the (J_{p}, K_{p}) or (J_{s}, K_{s}) doublet and all other doublet levels are regarded in the interpretation of the measurements (Sect. 3).

Results are reported for a number of rotational transitions and the polar scattering gases $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$. The measurements are interpreted in terms of the difference between the differential collision cross sections for parity changing and conserving rotational transitions. A modification of

Anderson's theory is presented, which gives a more realistic behaviour of the transition probability at small impact parameters. Predictions from this theory are compared with the experimental results. Integral cross sections for parity changing and conserving transitions are calculated. A theoretical prediction, using these cross sections, for the outcome of $D R$ steady-state experiments ${ }^{4}$ is also given.

The molecular beam apparatus is basically the same as that described in I. In the following only the relevant modifications are described. The main modification is the replacement of the second state selector by a microwave pump cavity (Fig. 1a). This cavity is used to change the population distribution over the levels of a specific inversion doublet (J_{p}, K_{p}) of the ammonia molecules entering the scattering region. Molecules in the selected upper state are pumped to the nearly empty lower state by the microwave power, which is switched periodically on and off by a shutter placed in the waveguide. The klystron system, used to generate the power, is similar to the superheterodyne detection system. The pump, signal and probe cavities (length 0.16 m , diameter about $9 \mathrm{~mm}, \mathrm{TM} 010$ mode) are identical to the microwave cavities used in I. However, the end caps are removed from the pump cavity to avoid attenuation of the primary beam. The efficiency of pumping is monitored with a probe cavity tuned to the same inversion transition (J_{p}, K_{p}). The probe cavity is shielded against possible leaks of radiation from the pump cavity by a metal mesh with a transparency of about 90%, placed across the entrance hole. By feeding power to the pump cavity the signal from the probe cavity could be reduced by a factor of about 10 indicating an almost equal population of upper and lower state of the (J_{p}, K_{p}) inversion doublet. In all measurements reported in this paper commercial platinum-iridium diaphragms (Siemens), with a diameter of $30 \mu \mathrm{~m}$, are used as nozzles producing the primary NH_{3} beam. With a stagnation pressure of $1.6 \times 10^{5} \mathrm{~Pa}$ the most probable velocity of the beam was $950 \mathrm{~m} / \mathrm{s}^{5}$. The secondary beam is produced by a circular metal multi-channel array (Brunswick Corporation) with a diameter of 14 mm. With this source the scattering region is better defined than in I. The array consists of about 335000 channels with a length of 0.433 mm and a
mean diameter of $8.9 \mu \mathrm{~m}$, yielding a length to radius ratio of 50 . The secondary beam source is mounted 22 mm from the primary beam axis. The flow through this effuser is regulated by a calibrated mass flow controller (Tylan Corporation). The control head is calibrated for $0-10 \operatorname{sccm~}_{3} \mathrm{NH}_{3}(1 \mathrm{sccm}=$ 4.55×10^{17} molecules per second) and conversion factors are used for $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$. The linearlty is 0.5% and the reproducibility 0.2%, both of full scale. In front of the scattering region, 295 mm from the exit opening of the state selector, a diaphragm with a diameter of 3.4 mm is placed to ensure that all molecules entering the scattering zone will reach the signal cavity in absence of the secondary beam.

In order to measure apparatus cross sections which are close to the integral cross sections the acceptance angle of the signal cavity $1 s$ enlarged as much as possible. To this end the cavity is mounted at a distance of 0.473 m from the exit opening of the state selector. Moreover the end caps have beam transition holes with a diameter of 6 mm . The acceptance angle of the signal cavity is increased to 1.58° in the laboratory system $\left(0.28^{\circ}\right.$ in I). With this set-up the radiative zones of punp and signal cavity are well separated from the collision region.
3. THE RELATION BETWEEN ATTENUATION DIFFERENCES AND ROTATIONAL CROSS SECTIONS

The effect of collision-induced rotational transitions from one inversion doublet (J_{p}, K_{p}) to another (J_{s}, K_{s}) is studied by measuring the difference in attenuated intensity from the signal cavity (tuned to inversion transition (J_{S}, K_{s})) with and without power fed into the pump cavity (tuned to inversion transition ($J_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}$)). Previous investigations (I) showed that the main line in the inversion spectrum $\left(\Delta F_{1}=\Delta F=0\right)$ can be taken as a representative for each inversion doublet, to which all rotational substates $\left|J, K_{, ~ M}\right\rangle$ equally contribute. Consequently the scattering process can be described in terms of these substates and degeneracy averaged cross sections. For an evaluation of the measured effects a relation has to be set up between them and the rotational cross sections. In I such a relation was constructed using calculations of the molecular trajectories through the state selector. These calculations were considered as quite reliable in view of the good agreement between the calculated and measured dependence of the microwave line Intensity on the state selector voltage. For the present investigation the acceptance angle of the signal cavity was increased with a factor of five compared to I. In this geometry the contribution of molecules with trajectories close to the rods of the state selector, which cannot be taken into account in the trajectory calculations, has become too large. This was evidenced by the failure of trajectory calculations to reproduce the experimental line intensities as function of the state selector voltage. Thus there is no reliable prediction for the radial and angular distribution of molecules leaving the state selector. As a way out the primary bean is treated as a line beam with only one (the most probable) velocity.

In a many-level scheme the number $N_{\text {JKMu }}$ of molecules entering the microwave cavity per second in the upper level (u) of state $\left|J, K, M_{J}\right\rangle$ can be written

Figure 2: Level scheme for parity changing (α) and conserving (γ) transitions. Plus and minus sign indicate the parity of the levels (K_{p} and K_{s} odd).

$$
\begin{aligned}
& N_{J K M u}=\left[N_{J K M u}^{0}+\underset{\substack{J^{\prime} K^{\prime} M \\
i=u, Z}}{ }\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J^{\prime} K^{\prime} i \rightarrow J K u}^{e f f} d z '\right.\right. \\
& \left.\left.+O\left(n^{2}\right)\right\} N_{J J^{\prime} M^{\prime} i}^{0}\right] e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J K}^{t o t} d z '} \text {; }
\end{aligned}
$$

a similar expression holds for $N_{J K M Z}$, the number of molecules in the lower level. Herein v_{1} is the primary beam velocity, v_{r} is the relative velocity, n is the density of secondary beam molecules, z is the length of the scattering region, $\sigma_{J K}^{\text {tot }}$ is the integral total cross section for state !J,K> averaged over M_{J} and

$$
\begin{equation*}
\sigma_{J^{\prime} K^{\prime} i \rightarrow J K u}^{e f f} \equiv \int_{i d} \frac{d}{d \Omega} \sigma_{J^{\prime} K^{\prime} i \rightarrow J K u} d \Omega \tag{2}
\end{equation*}
$$

is the differential cross section for the transition $\left|J{ }^{\prime}, K^{\prime}, i\right\rangle \rightarrow|J, K, u\rangle$, averaged over M_{J}^{\prime} and M_{J} and integrated over those angles in the centre of mass system that correspond to trajectories through the detector after the collision; furthermore $\mathrm{N}_{\mathrm{JKMu}}^{0}$ is the number of molecules entering the scattering region per second in the upper inversion level of state $\left|J, K, M_{J}\right\rangle$ and $O\left(n^{2}\right)$ stands for terms proportional to $n^{2} \times\left(\sigma_{J^{\prime} K^{\prime}}^{\text {tot }}-\sigma_{J K}^{t o t}\right)$. Following oka ${ }^{2}$ (Fig. 2) we write for the cross sections for parity changing (α) and conserving (γ) transitions (for $\left|K_{p}-K_{s}\right|$ even)

$$
\begin{align*}
& \sigma_{J_{p} K_{p} u} \rightarrow J_{s} K_{s} Z=\sigma_{J_{p} K_{p}} Z \rightarrow J_{s} K_{s} u=\sigma_{p \rightarrow s}^{\alpha} \tag{3}\\
& \sigma_{J_{p} K_{p} u \rightarrow J_{s} K_{s} u}=\sigma_{J_{p} K_{p}} Z \rightarrow J_{s} K_{s} Z=\sigma_{p \rightarrow s}^{\gamma}
\end{align*}
$$

where p and s stand for $J_{p} K_{p}$ and $J_{s} K_{S}$, respectively. If $\left|K_{p}-K_{S}\right|$ is odd, α and γ have to be interchanged in Eq. (3).

With Eqs. (1) and (3) the change Δ in the population difference $\left(N_{u}-N_{Z}\right)_{J_{s}} K_{s} M_{s}$ between the situation with and without pumping the inversion transition (J_{p}, K_{P}), can be written (for $\left|K_{p}-K_{S}\right|$ even) as (see App. A)

$$
\begin{align*}
& \Delta\left(N_{u}-N_{Z}\right)_{J_{s} K_{s} M_{s}}=\sum_{M_{p}}\left[\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\sigma_{p \rightarrow s}^{Y, e f f}-\sigma_{p \rightarrow s}^{\alpha, e f f}\right) d z^{\prime}\right\}\right. \tag{4}\\
& \left.\times \Delta\left(N_{u}-N_{Z}\right)_{J_{p} K_{p} M_{p}}^{0}\right] e e^{-\int_{0}^{2} n \frac{v_{r}}{v_{1}}} \sigma_{s}^{\text {tot }} \mathrm{dz} z^{\prime}
\end{align*}
$$

In the present interpretation the term $0\left(n^{2}\right)$ is disregarded. Assuming that all degenerate sublevels contribute equally to the microwave signal I_{s}, the following expression is obtained for the relative intensity change due to pumping, $\Delta I_{s} / I_{s}^{0}$,

$$
\begin{align*}
& \times e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}}} \sigma_{s}^{\text {tot }} d z^{\prime} \tag{5}
\end{align*}
$$

This relative intensity change depends on the pumping efficiency through
$\Delta\left(N_{u}-N_{2}\right)_{J_{p}}^{0}{ }_{K_{p} M_{p}}$. In order to obtain a quantity ζ^{0} that is independent of this efficiency, a multiplier F_{p} is introduced that can be determined experimentally

$$
\begin{equation*}
F_{p}=\frac{1}{1-I_{p}^{0^{*}} / I_{p}^{0}} \tag{6}
\end{equation*}
$$

where I_{p}^{0} stands for the signal from the probe cavity; the asterisk indicates the situation with power fed to the pump cavity. This multiplier equals unity when upper and lower levels of the pumped inversion doublet (J_{p}, K_{p}) are equally populated. With Eqs. (5) and (6) ζ^{0} can be defined as (see Appendix A)

$$
\begin{align*}
& \zeta^{0} \equiv F_{p} \frac{\Delta I_{s}}{I_{s}^{0}}=R_{s}^{p} \sum_{M_{S}}\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\sigma_{p \rightarrow s}^{\alpha, \text { eff }}-\sigma_{p \rightarrow s}^{\gamma, \text { eff }}\right) d z^{\prime}\right\} \tag{7}\\
& \times e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{s}^{\text {tot }}} \mathrm{dz} \text {, }
\end{align*}
$$

where $R_{s}{ }^{P}$, the ratio of population differences, is given by

$$
\begin{equation*}
R_{s}^{p}=\frac{\sum_{p}\left(N_{u}-N_{l}\right)^{0} J_{P} K_{P} M_{P}}{\sum_{M_{s}}\left(N_{u}-N_{l}\right)_{J_{s}}^{0} K_{s} M_{s}} \tag{8}
\end{equation*}
$$

The exponential factor in Eq. (7) can be written as I_{s} / I_{s}^{0} (App. A). Herewith ζ^{0} is transformed into a new quantity ζ defined by

$$
\begin{equation*}
\zeta \equiv F_{p} \frac{\Delta I_{S}}{I_{s}}=R_{s}^{P} \sum_{M_{s}}\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\sigma_{p \rightarrow s}^{\alpha, \text { eff }}-\sigma_{p \rightarrow s}^{\gamma, \text { eff }}\right) d z^{\prime}\right\} \tag{9}
\end{equation*}
$$

The main advantage of ζ over ζ^{0} is its linearity in the secondary beam density n, which facilitates the determination of $\left(\sigma_{p \rightarrow s}^{\alpha, e f f}-\underset{p \rightarrow s}{\gamma, e f f}\right)$.

The computation of the rotational cross sections is rather complicated. In order to simplify these calculations a normalized apparatus function $H_{p \rightarrow s}\left(\theta_{c m}\right)$, averaged over the relative velocity, is introduced (see Appendix B). It can be expressed in the apparatus function $G_{p \rightarrow s}\left(v_{r, m}, \theta_{c m}\right)$ used in I

$$
\begin{equation*}
H_{p \rightarrow s}\left(\theta_{c m}\right)=\frac{\sum_{r, m} G_{p \rightarrow s}\left(v_{r, m}, \theta_{c m}\right)}{\sum_{v_{r, m}} G_{p \rightarrow p}\left(v_{r, m}, \theta_{c m}\right)} \tag{10}
\end{equation*}
$$

The cross sections are now calculated only at the mean relative velocity <v ${ }_{r}$, given by

$$
\begin{equation*}
\left\langle v_{r}\right\rangle=\frac{v_{r, m} v_{r, m} G_{p \rightarrow p}\left(v_{r, m}, 0\right)}{\sum_{v_{r, m}} G_{p \rightarrow p}\left(v_{r, m}, 0\right)} \tag{11}
\end{equation*}
$$

With Eqs. (10) and (11) the expression for ζ is transformed into (see Appendix B)

$$
\zeta=R_{s}^{p}(n Z) \text { eff }\left(\begin{array}{l}
\sigma_{p \rightarrow s}^{\alpha, a p p}-\sigma_{p \rightarrow s}^{\gamma, a p p} \tag{12}
\end{array}\right)
$$

where $(n Z)$ eff $=\sum_{v_{r, m}} G_{p \rightarrow p}\left(v_{r, m}, 0\right) \sim$ secondary beam flow
and

$$
\begin{equation*}
\sigma_{p \rightarrow s}^{a p p}=2 \pi \int d \theta_{c m} \sin \theta_{c m} H_{p \rightarrow s}\left(\theta_{c m}\right)\left\{\sum_{M_{s}} \frac{d}{d \Omega} \sigma\left(\theta_{c m},<v_{r}>\right)_{p \rightarrow s}\right\} \tag{14}
\end{equation*}
$$

The subscript $p \rightarrow s$ of the apparatus functions indicates that the change in kinetic energy of the molecules, or energy defect, has to be taken into account in the calculation of the relative velocity after the collision ${ }^{6}$. This change δE can be written as

$$
\begin{equation*}
\delta E=E_{s}+E_{2},-E_{p}-E_{2} \tag{15}
\end{equation*}
$$

where 2 stands for $\mathrm{J}_{2} \mathrm{~K}_{2}$ and the prime indicates that E_{2}, is the internal energy of the secondary beam molecule after the collision. Because it is not feasible to consider the dependence of δE on the initial and final states of the secondary beam molecule, two types of apparatus functions are used: (A) with $\delta E=E_{S}-E_{p}$, and (B) with $\delta E=0$. The latter type corresponds to exactly resonant transitions of both molecules, whereas the first type implies completely non-resonant collisions.

As shown in I the collision cross sections, measured in the maser, can be expressed in terms of transition probabilities. For rotational transitions the relevant relation can be written as

$$
\begin{equation*}
\sigma_{p \rightarrow s}^{a p p}=2 \pi \int_{0}^{\infty} H_{p \rightarrow s}\left(\theta_{c m}(b)\right)\left(2 J_{s}+1\right) P_{p \rightarrow s}(b) \quad b d b \tag{16}
\end{equation*}
$$

where $P_{p \rightarrow s}(b)$ is the degeneracy averaged transition probability evaluated at $<v_{r}>$. The transition probability is calculated in the permanent multipole interaction scheme, following Anderson's theory $7,8,9$. To obtain the total transition probability the individual transition probabilities have to be multiplied with the appropriate Boltzmann factor of the initial state ($\mathrm{J}_{2}, \mathrm{~K}_{2}$) of the secondary beam molecule and summed over the final states $\left(J_{2}^{\prime}, K_{2}^{\prime}\right)$ of that molecule

$$
\begin{equation*}
P_{p \rightarrow s}(b)=\sum_{J_{2} K_{2}}\left(2 J_{2}^{\prime}+1\right)\left(2 J_{2}^{\prime}+1\right) g_{J_{2} K_{2}} e^{-K_{2} / k T} P_{p \rightarrow s}^{2 \rightarrow 2^{\prime}}(b) \tag{17}
\end{equation*}
$$

where $\mathrm{g}_{\mathrm{J}_{2} \mathrm{~K}_{2}}$ is the statistical weight factor and the superscripts 2 and 2^{\prime} stand for $\left(J_{2}, K_{2}\right)$ and $\left(J_{2}^{\prime}, K_{2}^{\prime}\right)$, respectively. The expression for $P_{p \rightarrow p^{2 \rightarrow 2}}^{(b)}$ is

$$
{\underset{p}{p \rightarrow 2^{\prime}}}_{2 \rightarrow 2^{\prime}}(b)=\sum_{Z_{1} Z_{2}} 2 C_{Z}^{2}\left(\begin{array}{ccc}
J_{p} & Z_{1} & J_{s} \tag{18}\\
-K_{p} & 0 & K_{s}
\end{array}\right)^{2}\left(\begin{array}{ccc}
J_{2} & Z_{2} & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}^{\prime}
\end{array}\right)^{2} f_{Z}(\omega \tau)
$$

where $\hbar \omega=|\delta E|$. All symbols are defined in I. Because a rotational transition of the primary beam molecule gives a quite large energy defect, which may be
partly compensated by a rotational transition of the secondary beam molecule, the full dependence of ω on initial and final states of both molecules is taken into account.

Due to the large acceptance angle in the maser quite small impact parameters are probed. But in that region the transition probability, according to Eq. (18), can become larger than unity. Although several solutions to the problem have been suggested ${ }^{\text {? }}$, none of them seems to be adequate for the problem of calculating the probability for a rotational transition, if the probability for an inversion transition is predicted to be larger than unity. Therefore a procedure suggested by Rabitz and Gordon ${ }^{10}$ for the Born approximation, is combined with Anderson's theory:

- each individual transition probability $\mathrm{P}_{\mathrm{p} \rightarrow 1^{\prime+}}^{2^{\prime+}}$ (b) is truncated to unity if the theoretical prediction is larger;
- if the total transition probability, $p_{p}^{2}(b)$, for one set of initial states of primary and secondary beam molecules

$$
\begin{equation*}
P_{P}^{2}(b)=\sum_{J_{1}^{\prime} K_{1}^{\prime} J_{2}^{\prime} K_{2}^{\prime}}\left(2 J_{1}^{\prime}+1\right)\left(2 J_{2}^{\prime}+1\right) P_{P^{\prime} \rightarrow 1}^{2+2 \prime}(b) \tag{19}
\end{equation*}
$$

is larger than unity, each contributing term $p_{p \rightarrow 1^{\prime}}^{2 \rightarrow 2^{\prime}}(b)$ is divided by $p_{p}^{2}(b)$. Without this modification Anderson's theory yielded about 45\% larger integral cross sections than the Born theory if applied to the $(J, K)=(1,1)$ and $(2,2)$ inversion transitions and $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering (Ref. I). With the modification both theories yielded within 3% the same values.

To evaluate $\sigma_{p \rightarrow s}^{a p p}$ (Eq. (14)) a relation between the impact parameter b and deflection angle $\theta_{c m}$ is needed. For the interpretation of the previous experiments (I) the classical deflection function for two nonrotating dipoles μ_{1} and μ_{2} was used
$\theta_{c m}(b)=\frac{\pi^{2}}{8} \frac{\mu_{1} \mu_{2}}{\left.4 \pi \varepsilon_{0}{ }^{\left(\frac{1}{2}\right.} \mu v_{r}{ }^{2}\right)} b^{-3}$
where μ is the reduced mass. The dipole moments μ_{1} and μ_{2} were replaced by the matrix elements. This was justified by the fact that the probed impact parameters were relatively large, resulting in long collision times $\tau=\mathrm{b} / \mathrm{v}_{\mathrm{r}}$ compared to the rotation time of the individual molecules. As the present experiments are sensitive to smaller impact parameters, this substitution cannot be made. In fact the relative rotation of the molecules during the collision should be regarded in the deflection function. This approach was followed by Gislason and Herschbach ${ }^{11}$ for diatomic molecules. They found that if the colliding molecules make resonant transitions ($\hbar \omega=|\delta \mathrm{E}|=0$) the deflection function is practically identical with that for nonrotating molecules. An approximation (estimated accuracy of about 20\%) was used in order to get an analytical expression for the deflection function in the case of non-resonant collisions. This expression yields decreasing deflection angles for increasing ω. In the approximation of Gislason and Herschbach ${ }^{11}$ this $\omega=|\delta E| / \hbar$ equals the difference in angular velocities of the two molecules. For two symmetric top molecules the problem is more difficult. Each rotating dipole has a nonrotating component proportional to K and directed along the angular momentum vector \vec{J} and also a rotating component perpendicular to $\overrightarrow{\mathrm{J}}$. For two symmetric top molecules, each in a quantum state with $\mathrm{K}=\mathrm{J}$, one can expect a deflection angle as function of the impact parameter as given in Eq. (20). It is, however, not likely that a reasonably accurate analytical expression can be obtained, describing the deflection angle for two symmetric top molecules in arbitrary quantum states. Therefore instead of $\pi^{2} / 8$ in Eq. (20) an adjustable parameter k_{g} is introduced for each scattering gas and fitted to the experimental results. The same parameter is used for all investigated
transitions. Moreover it should be mentioned that the influence of the quadrupole moments on the deflection is neglected.

For the data acquisition the digital measuring procedure of I was adapted to the new experimental condition: pump power on/off. The base-line intensities are now measured by making use of the possibilities for remote control of the frequency synthesizing system $S R S^{12}$. In order to correct for possible influence of the pump cavity on the signal cavity the centre-line and base-line intensities of both attenuated and unattenuated microwave signals were measured with and without pumping power. For the same reasons base-line intensities are determined separately for $I_{p}^{O^{*}}$ and I_{p}^{0} when measuring the ratio $I_{p}^{O^{*}} / I_{p}^{0}$ (Eq. (6)). This measurement was performed before and after each experimental run in order to determine the factor F_{p} (cf. Eqs. (6), (7) and (9)). As the calculations on the trajectories of the molecules through the state selector are not reliable (Sect. 3), no theoretical values for the ratios of population differences $R_{S}{ }_{S}$ (Eq. (8)) are available. Consequently these ratios have to be determined from the experiment. To this end the stagnation pressure of the primary beam and the voltage of the state selector were always set to the same values $\left(1.6 \times 10^{5}\right.$ Pa and 30 kV , respectively) in all measurements.

Rotational cross sections were determined for a number of inversion doublets and transitions (Table 1). The scattering gases were $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$. The following relations were used to extract information out of the measurements:

$$
\begin{equation*}
\frac{\Delta I_{s}}{I_{s}^{0}}=\left(\frac{I_{s}}{I_{S}^{0}}\right)^{*}-\left(\frac{I_{s}}{I_{S}^{0}}\right) \tag{21}
\end{equation*}
$$

and

Figure 3: ζ and ζ^{0} as function of the secondary beam flow (NH_{3}) for the transition $p=(2,2) \rightarrow s=(3,2)$. In the upper part the attenuation of the $(3,2)$ microwave line intensity is shown.

Figure 4: $\Delta I_{s} / I_{s}$ as function of $I_{p}^{0^{*}} / I_{p}^{\circ}$ for the transition $p=(1,1) \rightarrow s=(2,1)$ and a secondary beam flow of 0.65 sccm $\mathrm{CH}_{3} \mathrm{~F}$.

$$
\begin{equation*}
\frac{\Delta I_{s}}{I_{s}}=\frac{I_{S}^{0}}{I_{s}}\left[\left(\frac{I_{s}}{I_{s}^{0}}\right)^{*}-\left(\frac{I_{s}}{I_{s}^{0}}\right)\right] \tag{22}
\end{equation*}
$$

where the asterisk indicates the situation with pump power. In Fig. $3 \zeta^{0}$ and ζ are shown as function of the secondary beam flow for the $p=(2,2) \rightarrow s=(3,2)$ transition and $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering. From this figure it is clear that 5 is linear in the secondary beam flow. This justifies the assumptions made in the derivation of Eq. (9). To investigate the influence of the pumping efficiency $\Delta I_{s} / I_{s}$ was measured for different pump powers for the transition $p=(1,1) \rightarrow$ $s=(2,1)$ and a secondary beam flow of $0.65 \operatorname{sccm} \mathrm{CH}_{3} \mathrm{~F}$. In Fig. 4 the result is shown as function of $I_{p}^{0^{*}} / I_{p}^{0}$. All points are lying clearly on the theoretically expected straight line (cf. Eqs. (6) and (9)), which crosses the horizontal axis at the point $I_{p}^{0 *} / I_{p}^{0}=1$. This confirms that ζ and ζ^{0} are independent of the pumping efficiency.

In the expression for ζ^{0} (Eq. (7)) the ratio of population differences $\mathrm{R}_{\mathrm{S}}^{\mathrm{p}}$ depends on the state selector voltage V. The difference between the effective cross sections $\sigma_{p \rightarrow s}^{\alpha, e f f}-\sigma_{p \rightarrow s}^{\gamma, e f f}$ in Eq. (7) is determined by the acceptance angle of the signal cavity, as seen by the molecules in the centre of mass (Eq. (2)). This acceptance angle depends therefore on the trajectories of the molecules through the scattering region and consequently on the operation of the state selector. In order to investigate a possible influence of this operation upon the experimental cross sections, ζ^{0} was measured as a function of v for the transition $p=(1,1) \rightarrow s=(2,1)$ and a secondary beam flow of $0.65 \mathrm{sccm} \mathrm{CH}_{3} \mathrm{~F}$ (Fig. 5). Also the microwave line intensities on the (1,1) and (2,1) inversion transitions were measured as function of v in order to correct for the v dependence of $\mathrm{R}_{\mathrm{s}}^{\mathrm{p}}$. From Fig. 5 it is seen that the intensity on the $(2,1)$ transition changes with a factor 10 between $\mathrm{V}=18 \mathrm{kV}$ and 30 kV . However, 5^{0}

Figure 5: (a) Microwave line intensities (in arbitrary units) for the (1,1) (dotted) and (2,1) (dashed) inversion transitions and $R_{21}^{11}(\mathrm{~V}) / \mathrm{R}_{21}^{11}(30 \mathrm{kV})$ (solid line) as function of the state selector voltage V;
(b) ζ^{0} (dashed) and $\left(\mathrm{R}_{21}^{11}(30 \mathrm{kV}) / \mathrm{R}_{21}^{11}(\mathrm{~V})\right) \times \zeta^{0}$ (solıd line) as function of v.
corrected for the V-dependence of R_{s}^{p} by multiplying with $R_{21}^{11}(30 \mathrm{kV}) / R_{21}^{11}(\mathrm{~V})$, is nearly independent of v. This proves that $\sigma_{p \rightarrow s}^{\alpha, e f f}-\sigma_{p \rightarrow s}^{\gamma, e f f}$ is almost independent of the state selector voltage for the applied range, which in turn justifies the treatment of the primary beam as a line bearn in the apparatus functions.

For each set of pump and signal inversion doublet levels measurements were performed as function of the secondary beam flow. A straight line was fitted through the ζ values, plotted against the secondary beam flow, yielding not only the slope but also an intercept of the vertical axis. A non-zero intercept could be caused by background scattering; within three standard deviations all intercepts were equal to zero. The errors found in slopes and intercepts originate mainly from the experimental error in ζ. Using the method as described in Sect. 4, for all transitions the probabilities were evaluated for the interaction between dipole and quadrupole moments of both primary and secondary beam molecules (Table 4 of I). With the computed probabilities and apparatus functions (see Appendix B) theoretical apparatus cross sections were calculated from Eq. (16). For each scattering gas the adjustable parameter K_{g} was introduced in Eq. (20). From the calculation of the apparatus functions also ($n 2$) eff as function of the secondary beam flow was obtained (Eq. (13)). With the aid of Eq. (12), finally, theoretical values for the slope of ζ as function of the secondary beam flow were obtained, with the ratios of population differences $R_{s}=\left(R_{p}^{s}\right)^{-1}$ as adjustable parameters. The fit of the theoretical slopes to the experimental values yielded values for ${ }_{g}$ and R_{s}^{p} (Table 2). With the values for $\mathrm{R}_{\mathrm{s}}^{\mathrm{p}}$ and (n 2) eff again the experimental cross sections ${\underset{p}{\sigma \rightarrow s}}_{\alpha, a p p}^{\alpha}-\underset{p \rightarrow s}{\gamma, a p p}$ were obtained from the experimental slopes. For the calculation of the uncertainties in the experimental cross sections the errors in the experimental slopes and in R_{s}^{p} were regarded as not correlated. A summary of these results is given in Table 1 for both types of apparatus functions (see Sect. 3). The uncertainties in the theoretical apparatus cross sections originate from the errors in K_{g} and were calculated by the fit program.

	$\sigma_{p \rightarrow s}^{\alpha, a p p}-\sigma_{p \rightarrow s}^{\gamma, a p p}$				
	type A			type B	
	$\mathrm{p} \rightarrow \mathrm{s}$	theory	experiment	theory	experiment
$\begin{array}{r} \mathrm{NH}_{3} \\ 1192 \mathrm{~m} / \mathrm{s} \\ 0.332 \times 10^{17} \mathrm{~m}^{-2} \end{array}$	$(1,1) \rightarrow(2,1)$	17.8(15)	15.1(13)	15.9(17)	14.6(12)
	$(2,1) \rightarrow(1,1)$	13.1(12)	16.9(26)	11.7(13)	17.5(27)
	$(2,2) \rightarrow(3,2)$	13.9 (12)	14.6 (13)	16.1(16)	16.7 (13)
	$(3,2) \rightarrow(2,2)$	14.0 (10)	16.8 (23)	15.2(14)	14.7(19)
	$(2,1) \rightarrow(3,1)$	24.0 (22)	21.1(35)	27.6 (29)	23.6 (35)
	$(3,1) \rightarrow(2,1)$	24.5 (20)		26.2 (27)	
	$(1,1) \rightarrow(3,1)$	-1.13(15)	-2.08(50)	-1.63(31)	-2.25(51)
$\begin{array}{r} 1078 \mathrm{~m} / \mathrm{s} \\ 0.434 \times 10^{17} \mathrm{~m}^{-2} \end{array}$	$(1,1) \rightarrow(2,1)$	120.1 (56)	130.2(94)	116.9(94)	125.9(84)
	$(2,1) \rightarrow(1,1)$	99.1 (69)	95.7(80)	94.4(67)	98.9(78)
	$(2,2)+(3,2)$	13.2(11)	$11.0(12)$	14.8(16)	12.5(12)
	$(3,2)+(2,2)$	14.0(13)	14.9(24)	14.3(17)	13.1 (20)
	$(2,1) \rightarrow(3,1)$	18.3(16)	19.4(29)	19.9(16)	21.7 (29)
	$(3,1) \rightarrow(2,1)$	25.5 (35)		24.2(32)	
	$(1,1) \rightarrow(3,1)$	-0.10(4)		-0.04(2)	
$\begin{array}{r} 1014 \mathrm{~m} / \mathrm{s} \\ 0.590 \times 10^{17} \mathrm{~m}^{-2} \end{array}$	$(1,1) \rightarrow(2,1)$	21.5 (46)	21.1 (18)	20.8(37)	20.4(16)
	$(2,1) \rightarrow(1,1)$	15.7(34)	22.5 (42)	15.1 (29)	23.3 (43)
	$(2,2) \rightarrow(3,2)$	0.63 (18)	0.59 (48)	$0.62(15)$	0.68 (54)
	$(3,2) \rightarrow(2,2)$	0.62 (18)		0.60 (16)	
	$(2,1) \rightarrow(3,1)$	1.23 (38)	2.3(44)	1.15 (32)	2.5 (49)
	$(3,1) \rightarrow(2,1)$	1.13 (39)		1.06 (31)	
	$(1,1) \rightarrow(3,1)$	-0.004(1)		-0.001 (1)	

TABLE 1 : Sumary of theoretical and experimental apparatus cross sections (in $10^{-20} \mathrm{~m}^{2}$). In the first column also $<\mathrm{v}_{\mathrm{r}}>$ and $(\mathrm{n} 2)$ eff for a flow of 1 sccm are given.

$\mathrm{K}_{\mathrm{NH}_{3}}$	$0.78(12)$	$1.10(11)$
$\mathrm{K}_{\mathrm{CH}}^{3} \mathrm{~F}$	$0.66(13)$	$0.86(10)$
$\mathrm{K}_{\mathrm{CF}_{3} \mathrm{H}}$	$2.15(30)$	$2.29(27)$
R_{21}^{11}	$3.96(26)$	$4.09(25)$
R_{32}^{22}	$4.07(35)$	$3.57(28)$
R_{31}^{21}	$17.2(24)$	$15.5(19)$

TABLE 2 : Values of K_{g} and the population ratios R_{s}^{p}, obtained in the fits.

All computations for the apparatus functions and theoretical predictions of cross sections were performed with a numerical error smaller than 1\%, which is well below the experimental error.

In addition to the measurements, yielding the values given in Table 1 , also combinations of those doublets with $\Delta K \neq 0$ were tried. But no effects were observed larger than three experimental standard deviations. Also for some combinations with $\Delta K=0$ no value for the rotational cross section could be obtained. In some cases (e.g. $\mathrm{CF}_{3} \mathrm{H}$) cross sections are simply too small; in other cases (cf. $(3,1) \rightarrow(2,1))$ the ratio of population differences is too small. But for all transitions the ratio between parity conserving and changing apparatus cross sections is roughly the same (Table 3). All transitions in Table 1 are of the $\Delta J= \pm 1, \Delta K=0$ type, except for the $(1,1) \rightarrow(3,1)$ transition of $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering. Although the experimental error is quite large for the last transition, it clearly indicates that for a rotational transition with $\Delta J= \pm 2, \Delta K=0$ the parity conserving collision-induced transitions are dominant over those changing the parity. This is just the opposite situation as with the $\Delta J= \pm 1, \Delta K=0$ rotational transitions, where the parity changing collisioninduced transitions are dominant.

The agreement between theory and experiment is satisfactory in view of the assumptions and simplifications made for the interpretation. In the present investigation the experimental cross sections can be obtained from the experimental data via the ratios of population differences R_{s}^{p}. These ratios are determined by fitting a theoretical model to the experimental results. This model includes not only the calculation of transition probabilities, deflection functions and apparatus functions, but also their relation to the measured effects (Eq. (12)). The number of experimental data used in the fits is twice the number of fit parameters. Consequently the fits test, besides the models used, also the deduced experimental cross sections and their consistency for different transitions and scattering gases. The fact that both fits, with different types of apparatus functions, yield almost the same values for the ratios of population differences and nearly the same experimental cross sections, is regarded as a strong support for the present interpretation. Both types of apparatus functions treat the primary beam as a line beam and differences between them are apparently compensated by the deflection function. Differences between these (line-beam) apparatus functions and (real-beam) apparatus functions that take into account the radial and angular distribution of the primary beam, are expected to be small, because the acceptance angle and consequently the latter functions are nearly independent of the state selector voltage (Sect. 5). Therefore nearly the same experimental cross sections would be obtained also with the real-beam apparatus functions. The values for x^{2}, found in the fits with apparatus functions of type A and B, are 48.4 and 38.6 , respectively. These quite large values indicate that the used models could be improved. The energy defect $\delta \mathrm{E}$ (Eq. (15)) is not treated properly either in the apparatus function or in the deflection function.

From Table 2 it is seen that the fit with the "nonresonant" apparatus function (type A) Yields smaller values for K_{g} than the fit with the "resonant" apparatus function (type B). It appears that when the collision dynamics in the apparatus function are treated as if the molecules are making "resonant" transitions, the factor K_{g} in the deflection function is closer to the "nonrotating" value of $\pi^{2 / 8}\left(E q .(20)\right.$ and further). The scattering gas $C F_{3} H$ yields a value for K_{g} well above this "nonrotating" factor. It is however determined mainly by transitions between the $(1,1)$ and $(2,1)$ inversion levels of ammonia. For the other two scattering gases K_{g} is determined also by transitions between the $(2,2)$ and $(3,2)$ and between the $(2,1)$ and $(3,1)$ inversion levels. The difference in K_{g} for $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$ can be understood from the rotational constants of these molecules. The molecule $\mathrm{CF}_{3} \mathrm{H}$ is an oblate symetric top with relatively high population of levels (J, K) with large K values (at a temperature of 300 K). This means that the molecule is preferentially rotating around an axis almost parallel to the symmetry axis and behaves as an almost "nonrotating" dipole. The molecule $\mathrm{CH}_{3} \mathrm{~F}$, however, is a prolate symmetric top with well-populated levels (J, K) for low K values, resulting in a "rotating" dipole (Sect. 4) and a smaller factor K_{g}. As with diatomic molecules, for symmetric tops rotation of the dipole moment decreases the deflection angle. The ammonia molecule as scattering partner is a special case, because almost the complete cross section comes from "resonant" collisions. The agreement between theory and experiment could be improved by introducing a separate factor K_{g} in the deflection function for each rotational transition, which would make the deflection function dependent on (J, K). But both the limited amount of experimental data and the fact, that the energy defect cannot be treated exactly in the computation of the apparatus function, render such refined treatment highly questionable. Even with the present interpretation the uncertainties in theoretical and experimental values are overlapping for practically all measured cross sections.

In Table 3 the parity changing (α) and conserving (γ) contributions to the rotational apparatus cross sections are given for both types of apparatus functions used. The table contains also the integral cross sections ($\alpha-$ and γ type) for each transition. For all transitions measured, the a-type transition connects upper and lower levels and the γ-type transition connects upper with upper and lower with lower inversion doublet levels (Eq. (3) and Fig. 2). Comparison of $\sigma^{\gamma, a p p}$ with $\sigma^{\alpha, a p p}$ in Table 3 shows that the first one is only about 10% of the second one. So only the latter is really probed in the maser. This is due to the fact that the dipole-dipole interaction, which is the main Interaction for large impact parameters and small deflection angles, contributes only to $\sigma^{\alpha, a p p}$ and not to $\sigma^{\gamma, a p p}$. The parity conserving transitions originate from interactions involving the quadrupole moment of ammonia, which have rather a short-range character. Therefore the integral cross sections for these transitions depend more critically on the normalization procedure (Sect. 4) for the transition probabilities than those for parity changing transitions. In the small impact parameter region there is a coupling due to this procedure between the probabilities for parity changing (α) and conserving (γ) transitions. This may produce too large cross sections of type γ on transitions with small cross sections of type α. Nevertheless for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering the ratio between the cross sections for excitation and deexcitation is for all parity changing and conserving transitions within a few percent equal to the ratio following from the principle of detailed balance.

The angles in the centre of mass system for which the apparatus function of type B has the value 0.5 are $2.8^{\circ}, 2.2^{\circ}$ and 1.9° for $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}_{3}$ respectively. From Table 3 it is seen that with this angular resolution for NH_{3} about 35% of the cross sections for parity changing and about 8% of the cross sections for parity conserving transitions are probed. For $\mathrm{CH}_{3} \mathrm{~F}$ these

	$\mathrm{p} \rightarrow \mathrm{s}$	$\sigma_{p \rightarrow s}^{\alpha}$	$\sigma_{p \rightarrow s}^{\gamma}$	$\sigma_{p \rightarrow s}^{\alpha, \text { app }}$	$\sigma_{p \rightarrow s}^{\gamma, a p p}$	$\sigma_{p \rightarrow s}^{\alpha, a p p}$	$\sigma_{p \rightarrow s}^{\gamma, a p p}$
NH_{3}	$(1,1) \rightarrow(2,1)$	59.4	21.3	19.6	1.9	17.3	1.3
	$(2,1) \rightarrow(1,1)$	43.6	14.7	14.6	1.5	12.8	1.1
	$(2,2) \rightarrow(3,2)$	47.4	19.2	15.4	1.5	17.5	1.4
	$(3,2) \rightarrow(2,2)$	39.4	14.7	15.3	1.4	16.5	1.3
	$(2,1) \rightarrow(3,1)$	72.3	9.7	24.7	0.6	28.2	0.6
	$(3,1) \rightarrow(2,1)$	66.3	8.0	25.1	0.6	26.8	0.6
	$(1,1) \rightarrow(3,1)$	0	18.4	0	1.1	0	1.6
$\mathrm{CH}_{3} \mathrm{~F}$	$(1,1)+(2,1)$	211.6	99.7	132.6	12.5	125.6	8.7
	$(2,1) \rightarrow(1,1)$	176.1	73.9	107.5	8.4	100.4	6.0
	$(2,2) \rightarrow(3,2)$	55.6	55.5	17.2	4.0	17.4	2.6
	$(3,2) \rightarrow(2,2)$	52.8	71.8	17.5	3.5	16.6	2.3
	$(2,1) \rightarrow(3,1)$	62.8	29.5	20.0	1.7	21.0	1.1
	$(3,1) \rightarrow(2,1)$	93.1	29.2	26.9	1.4	25.2	0.9
	$(1,1) \rightarrow(3,1)$	0	12.8	0	0.1	0	0.04
$\mathrm{CF}_{3} \mathrm{H}$	$(1,1) \rightarrow(2,1)$	110.5	103.5	22.5	1.0	21.6	0.8
	$(2,1) \rightarrow(1,1)$	108.4	78.0	16.3	0.6	15.7	0.6
	$(2,2) \rightarrow(3,2)$	23.2	50.4	0.7	0.1	0.7	0.1
	$(3,2) \rightarrow(2,2)$	22.4	71.4	0.7	0.1	0.7	0.1
	$(2,1) \rightarrow(3,1)$	38.9	27.1	1.3	0.05	1.2	0.03
	$(3,1) \rightarrow(2,1)$	57.2	27.2	1.2	0.04	1.1	0.03
	$(1,1) \rightarrow(3,1)$	0	13.3	0	0.004	0	0.001

TABLE 3 : The theoretical integral cross sections and the parity changing and conserving parts of the apparatus cross section (in $10^{-20} \mathrm{~m}^{2}$) for both types of apparatus functions.
$\cdot K)=(1,1)$ and $(2,1)$ levels, where they are twice as large. This is due to gher transition probabilities at large impact parameters. Consequently the mmalization procedure becomes effective at quite a large impact parameter id decreases the probability for smaller impact parameters. With the 'attering gas $\mathrm{CF}_{3} \mathrm{H}$ only parity changing transitions between the $(J, K)=(1,1)$ id (2,1) doublet levels are probed for about 18%. The cross sections for the her transitions are too small to be measured in the maser.

The dependence of the integral cross section for parity changing 'ansitions on the rotational quantum numbers is also different for the three 'attering gases. For NH_{3} the cross section shows no clear behaviour, whereas Ix $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CF}_{3} \mathrm{H}$ the cross sections connecting the $(1,1)$ and $(2,1)$ levels are 4 times as large as those connecting the $(2,2)$ and $(3,2)$ levels. The cross ctions for transitions between the (2,1) and (3,1) levels are again only mewhat larger than the latter. For parity conserving transitions the integral oss section shows a more complicated dependence on the rotational quantum mbers. This might be due to the more short-range character of the interactior at are responsible for these transitions.Comparison of the α-type cross ctions for the three scattering gases shows, that for the $(J, K)=(1,1)$ to $(2,1$ ansition the ratios $\mathrm{NH}_{3}: \mathrm{CH}_{3} \mathrm{~F}: \mathrm{CF}_{3} \mathrm{H}$ are roughly 1:4:2. Besides the differences ' permanent multipoles (Table 4 of I) and the influence of the rotational antum numbers via the 3-j symbols in Eq. (18), also the population stribution over the initial states of the secondary beam molecules plays an portant role in the explanation of these facts (Eq. (17)). For ammonia as a attering gas, all collision-induced transitions are almost completely sonant and only one initial state of the secondary molecule is contributing the cross section. This results in nearly constant cross sections as nction of the rotational quantum numbers and an almost constant fraction of
the integral cross section that is probed in the maser. For the other two scattering gases there are many initlal states of the secondary beam molecule, from which the molecule can make almost resonant transitions, due to the smaller rotatıonal constants. However only the states fram which transitions can be induced with energy differences matching the $(1,1)-(2,1)$ transition of NH_{3} are well-populated in these molecules. This results in larger cross sections for transitıons between these inversion doublets, compared to other transıtıons.

Because incomplete integral cross sections are measured in the maser, a direct confrontation of the experimental results with the outcome of other experiments is not possible. Nevertheless quite a large fraction of the integral cross sections is probed and can be explained using the modification of Anderson's theory (Eq. (19)). Therefore it is interesting to use this theory for a predıction of the outcome of other experıments. oka ${ }^{2}$ performed many experiments on collısion-ınduced population transfer in NH_{3} using a steadystate double-resonance method. The interpretation of the measurements with a simplified form of Anderson's theory yielded a poor agreement between observed and calculated relative intensity changes $\Delta I / I^{4}$. Peterson ${ }^{13}$ has used the sudden approximation formalism to predict the $\Delta I / I$ values, measured by oka for the system $\mathrm{NH}_{3}-\mathrm{NH}_{3}$, but did not find any improvement compared with oka's attempt. For a relative velocity of $865 \mathrm{~m} / \mathrm{s}$, being the mean relative velocity in a cell at 300 K , all cross sections, which are needed in the interpretation, including lnversion cross sections, are calculated using the modification of Anderson's theory presented in this paper. It should be noted that, whereas in the maser cross sections summed over the final rotational substates M_{J}^{\prime} of the ammonia molecule are measured (Eq. (16)), the relative intensity changes measured in Oka's experıments are expressed in M_{J}-averaged rate constants (Eq. (9) of Ref. 4)

$$
\begin{equation*}
\frac{\Delta I}{I}=\frac{\nu_{p}}{\nu_{s}} \frac{k_{\alpha}^{\uparrow-k} \gamma^{\uparrow}}{k_{\alpha}^{\uparrow+k_{\gamma}}{ }^{\uparrow+2 k_{\beta}+k_{\xi}}} \tag{23}
\end{equation*}
$$

where ν_{p} and ν_{s} are the frequencies of pump and signal inversion transitions, respectively; the arrows indicate that transitions $s \rightarrow p$ have to be taken; the subscript β stands for inversion transitions of the signal doublet and ξ indicates the sum over all other transitions out of the signal doublet. The rate constants can be expressed in cross sections by $k=\left\langle v_{r} \sigma\right\rangle$. In Fig. 6 a comparison is made between the experimental and theoretical values of $\Delta I / I$. The agreement is good, especially if compared to that obtained by Oka ${ }^{4}$, whose calculated values are on the average a factor five too large. The maximum in the deviation between theory and experiment for $\mathrm{K}=3$ is also found by Oka. There is no easy explanation for this maximum in the deviation; the fact that it appears for ortho $-\mathrm{NH}_{3}\left(\mathrm{k}=3 ; \mathrm{I}_{\mathrm{H}}=3 / 2\right)$ may be purely accidental. Shimizu et al. ${ }^{3}$ calculated a cross section of $25 \times 10^{-20} \mathrm{~m}^{2}$ from their laser double-resonance experiment on the $(3,2) \rightarrow(2,2)$ transition. But both experiment and its interpretation are subject to serious doubts.

The present investigation shows that it is possible to measure cross sections for rotational (de-)excitation of anmonia in a beam maser. Only for collision-Induced transitions with $\Delta \mathrm{K}=0$, effects could be observed. Interpretation, using a modified form of Anderson's theory and permanent multipole interaction, yielded good agreement between theory and experiment. Moreover this modification gives a satisfying agreement with the steady-state doubleresonance experiments of Oka^{4}.

Figure 6: Comparison between double-resonance experiments of Oka on NH_{3} and calculations with the theory presented in this paper (unfilled circles for 0.3 m cell; filled circles for 3 m cell; crosses for theoretical results); pumping $\mathrm{J}=\mathrm{K}+1$, signal $\mathrm{J}=\mathrm{K}$.

The authors thank Professor J. Reuss for his critical reading of the manuscript and Mr. N. van Hulst for his enthusiastic assistance during the measurements. The technical assistance of Messrs. J. Holtkamp and E. van Leeuwen is greatly appreciated.

The primary beam is regarded as a line beam with only one velocity. Per travelled path length dz through the scattering region the change of the flux $N_{J K M u}$ of molecules in a particular rotational substate is

$$
\frac{d N_{J K M u}}{d z}=\sum_{\substack{J^{\prime} K^{\prime} M^{\prime} \\ i=u, Z}} n \frac{v_{r}}{v_{1}} \sigma_{J^{\prime} K^{\prime} i \rightarrow J K u}^{e f f} N_{J^{\prime} K^{\prime} M^{\prime} 1}
$$

$$
\begin{equation*}
-n \frac{v_{I}}{v_{1}} \sigma_{J K}^{\text {tot }} N_{J K M u} \tag{A1}
\end{equation*}
$$

The corresponding relation for $N_{J K M Z}$ is obtained by interchanging u and Z in Eq. (A1). Herein v_{1} is the primary beam velocity, v_{r} is the relative velocity, n is the density of the secondary beam, $\sigma_{J K}^{\text {tot }}$ is the integral total cross section for state $|J, K\rangle$ averaged over M_{J} and

$$
\begin{equation*}
\sigma_{J^{\prime} K^{\prime} i \rightarrow J K u}^{e f f} \equiv \int_{i d} \frac{d \sigma}{d \Omega} J^{\prime} K^{\prime} i \rightarrow J K u \tag{A2}
\end{equation*}
$$

is the differential cross section for the transition $\left|J^{\prime}, K^{\prime}, i\right\rangle \rightarrow|J, K, u\rangle$, averaged over M_{J}^{\prime} and M_{J} and integrated over those angles in the centre of mass that correspond to angles in the laboratory system within the acceptance angle of the detector.

The dependence of the density and the cross section in Eq. (A1) on the different internal states of the secondary beam molecule is not indicated for brevity's sake. The cross sections for rotational transitions are smaller than those for inversion transitions and also smaller than the elastic cross sections. So only a very small part of the molecules that collide twice will make a rotational transition. With the assumption that only molecules that make a single collision contribute to the first term of Eq. (A1) the
following expression

$$
\begin{equation*}
N_{J K M i}=N_{J K M i}^{0} \quad e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J K}^{t o t}} d z^{\prime} \tag{A3}
\end{equation*}
$$

is substituted in this term. Herewith Eq. (A1) can be written in the form

$$
\left.\begin{array}{l}
\frac{d}{d z}\left[e^{\int_{0}^{z} \pi \frac{v_{r}}{v_{1}}} \sigma_{J K}^{\text {tot }} d z^{\prime}\right. \\
N_{J K M u} \tag{A4}
\end{array}\right]=.
$$

where $N_{J K M i}^{0}$ is the flux of molecules entering the scattering region in a particular substate. If $\sigma_{J K}^{\text {tot }}$ and $\sigma_{J ' K}^{\text {tot }}$, are almost equal, Eq. (A4) has the approximate solution

$$
\begin{gather*}
N_{J K M u}=\left[N_{J K M u}^{0}+\sum_{\substack{J^{\prime} K^{\prime} M^{\prime} \\
i=u, Z}}\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J^{\prime} K^{\prime} i \rightarrow J K u}^{e f f} d z^{\prime}+o\left(n^{2}\right)\right\}\right. \tag{A5}\\
\left.\times N_{J^{\prime} K^{\prime} M^{\prime} i}^{0}\right] e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J K}^{\mathrm{tot}} d z^{\prime}}
\end{gather*}
$$

Herein $O\left(n^{2}\right)$ stands for terms proportional to $n^{2} \times\left(\sigma_{J^{\prime} K^{\prime}}^{\text {tot }}-\sigma_{J K}^{\text {tot }}\right)$.
If the pump and signal inversion doublets are denoted by (J_{p}, K_{p}) and (J_{s}, K_{s}), respectively, the following expression is obtained for the difference Δ between the situation with and without pumping

$$
\begin{aligned}
& \times e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{J_{s} K_{s}}^{\text {tot }}} d z^{\prime}
\end{aligned}
$$

The term $0\left(n^{2}\right)$ in Eq. (A5) can be omitted for small densities of the secondary beam. From the dependence of the experimental results on the secondary beam density it can be checked whether the used densities are not too large. With the definition

$$
\begin{equation*}
\Delta\left(\mathrm{N}_{\mathrm{u}}-\mathrm{N}_{Z}\right)_{\mathrm{JKM}} \equiv \Delta \mathrm{~N}_{\mathrm{JKMu}}-\Delta \mathrm{N}_{\mathrm{JKM} Z} \tag{A7}
\end{equation*}
$$

substitution of Eq. (A6) Yields

$$
\begin{aligned}
& \Delta\left(N_{u}-N_{Z}\right)_{J_{s} K_{s} M_{s}}=\sum_{M_{p}}\left[\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\sigma_{J_{p} K_{p} u \rightarrow J_{s} K_{s} u}^{\text {eff }}-\sigma_{J_{P} K_{p} u \rightarrow J_{s} K_{s}}^{\text {eff }}\right) d z^{\prime}\right\}\right.
\end{aligned}
$$

$$
\begin{align*}
& \times \Delta N_{J_{p} K_{p} M_{p} Z}^{0} Z e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}}} \sigma_{J_{s} K_{s}}^{\text {tot }} \quad d z^{\prime} \tag{AB}
\end{align*}
$$

Following Oka^{2} we write

$$
\begin{equation*}
\sigma_{J_{p} K_{P} u \rightarrow J_{s} K_{s} u}=\sigma_{J_{p} K_{p} Z \rightarrow J_{s} K_{s} Z \equiv \sigma_{p \rightarrow s}^{\gamma}}^{\gamma} \tag{A9a}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{J_{p} K_{p} u \rightarrow J_{s} K_{s}}=\sigma_{J_{p} K_{p}} \downarrow \rightarrow J_{s} K_{s} u=\sigma_{p \rightarrow s}^{\alpha} \tag{A9b}
\end{equation*}
$$

if $\left|K_{p}-K_{S}\right|$ is even and

$$
\begin{align*}
& \sigma_{J_{p} K_{p} u \rightarrow J_{s} K_{s} u}=\sigma_{J_{P} K_{p}} Z \rightarrow J_{s} K_{s} Z \equiv \sigma_{p \rightarrow s}^{\alpha} \tag{A9c}\\
& \sigma_{J_{p} K_{p} u \rightarrow J_{s} K_{s} Z}=\sigma_{J_{p} K_{p}} Z \rightarrow J_{s} K_{s} u
\end{align*}
$$

if $\left|K_{p}-K_{s}\right|$ is odd. In this notation α stands for parity changing, γ for parity conserving transitions, p for $J_{P} K_{p}$ and s for $J_{s} K_{s}$. Using these definitions $E q$. (A8) yields for $\left|K_{p}-K_{S}\right|$ is even

$$
\begin{align*}
\Delta\left(N_{u}-N_{Z}\right)_{J_{s} K_{s} M_{s}}=\sum_{M_{p}} & {\left[\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\sigma_{p \rightarrow s}^{\gamma, \text { eff }}-\sigma_{p \rightarrow s}^{\alpha, \text { eff }}\right) d z^{\prime}\right\}\right.} \\
& \left.\times \Delta\left(N_{u}-N_{Z}\right)_{J_{p} K_{p} M_{p}}^{0}\right] e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{s}^{t o t} d z^{\prime}} \tag{A10}
\end{align*}
$$

The intensity $I_{J K}$ of a detected inversion transition is proportional to the population difference of the levels involved, i.e.

$$
\begin{equation*}
I_{J K}(:) \sum_{M}\left(N_{u}-N_{Z}\right)_{J K M} \tag{A11}
\end{equation*}
$$

With Eqs. (A10) and (A11) the following expression is obtained, after summing over M_{s}, for the relative intensity change $\Delta I_{s} / I_{s}^{0}$

$$
\begin{align*}
& \times e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{s}^{\text {tot }}} \mathrm{d} z^{\prime} \tag{A12}
\end{align*}
$$

The efficiency of the microwave pumping on doublet (J_{p}, K_{p}) enters Eq. (A12) via $\sum_{M_{p}} \Delta\left(N_{L}-N_{Z}\right)_{J_{P}}^{0} K_{P} M_{p}$. This efficiency can be determined experimentally by comparing the signals from the probe cavity with ($\mathrm{I}_{\mathrm{p}}{ }^{*}$) and without ($\mathrm{I}_{\mathrm{p}}^{0}$) pumping. Now a multiplier F_{p} is introduced

$$
\begin{equation*}
F_{p}=\frac{1}{1-\frac{I_{p}}{I_{p}^{0}}}=-\frac{\sum_{p}\left(N_{u}-N_{Z}\right)_{J_{p}}^{0} K_{p} M_{p}}{\sum_{M_{p}} \Delta\left(N_{u}-N_{L}\right)^{0} J_{p} K_{p} M_{p}} \tag{A13}
\end{equation*}
$$

which is unity if in the pump cavity upper and lower levels of the (J_{p}, K_{p}) doublet are equally populated. A quantity ζ^{0} independent of the pumping efficiency is obtained by multiplying Eq. (A12) by F_{p}

$$
\begin{align*}
& \zeta^{0} \equiv F_{p} \frac{\Delta I}{s} \frac{I_{s}^{0}}{I_{s}}=R_{s}^{p} \sum_{M_{s}}\left\{\int_{0}^{z} n \frac{v_{r}}{v_{i}}\left(\begin{array}{c}
\sigma_{p \rightarrow s}^{\alpha, e f f}-\sigma_{p \rightarrow s}^{\gamma, \text { eff }}
\end{array}\right) d z^{\prime}\right\} \\
& \times e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{s}^{\text {tot }} d z^{\prime}} \tag{A14}
\end{align*}
$$

where $R_{s}{ }^{p}$, the ratio of population differences, is given by

$$
\begin{equation*}
R_{s}^{P}=\frac{\sum_{p}\left(N_{u}-N_{Z}\right)_{J_{p}}^{0} K_{p} M_{p}}{\sum_{M_{s}}\left(N_{u}-N_{Z}\right)_{J_{s}}^{0} K_{s} M_{s}} \tag{A15}
\end{equation*}
$$

For small acceptance angles the elastic and inversion effects cancel for the microwave line intensity (see I). In the assumption that with the present angular resolution the same cancellation occurs one can write (Eq. (19) of I)

$$
\begin{equation*}
e^{-\int_{0}^{z} n \frac{v_{r}}{v_{1}} \sigma_{s}^{t o t}}=\frac{I_{s}}{I_{s}} \tag{A16}
\end{equation*}
$$

The validity of this assumption is confirmed by the linear dependence of the experimental results on the secondary beam density. Substitution of Eq. (A16) into Eq. (A14) yields

$$
\zeta \equiv F_{p} \frac{\Delta I_{s}}{I_{s}}=R_{s}^{p} \sum_{M_{s}}\left\{\int_{0}^{z} n \frac{v_{r}}{v_{1}}\left(\begin{array}{l}
\sigma_{p \rightarrow s}^{\alpha, \text { eff }}-\sigma_{p \rightarrow s}^{\gamma, e f f} \tag{A17}
\end{array}\right) d z^{\prime}\right\}
$$

From Eq. (A17) it is seen that 5 is linear in the secondary beam density n, while $\Delta I_{s} / I_{s}^{0}$ (Eq. (A12)) and also ζ^{0} are not. This simplifies considerably the determination of cross sections from the observed signal intensity changes.

In terms of the apparatus function G used in I, Eq. (9) can be written as

$$
\begin{align*}
\zeta= & R_{S}^{P} \sum_{V_{r, m}} 2 \pi \int d \theta_{c m} \sin \theta_{c m} G_{p \rightarrow s}\left(v_{r, m}, \theta_{c m}\right) \\
& \times \sum_{M_{S}}\left[\frac{d}{d \Omega} \sigma\left(\theta_{c m}, v_{r, m}\right)_{p \rightarrow s}^{\alpha}-\frac{d}{d \Omega} \sigma\left(\theta_{c m}, v_{r, m}\right)_{p \rightarrow s}^{Y}\right] \tag{B1}
\end{align*}
$$

The subscript $p \rightarrow s$ of the apparatus function indicates that the change in kinetic energy of the molecules has to be taken into account in the calculation of the relative velocity after the collision ${ }^{6}$. In order to simplify the computation of the differential cross sections for rotational transitions a uniform mean relative velocity is assumed:

$$
\begin{align*}
& \left\langle v_{r}\right\rangle=\frac{\sum_{v_{r, m}} v_{r, m} G_{p \rightarrow p}{ }_{\left(v_{r, m}, 0\right)}^{\sum_{v_{r, m}}}{ }_{G_{P \rightarrow P}}\left(v_{r, m}, 0\right)}{} \tag{B2}\\
& =\frac{1}{(n Z)} \sum_{\text {eff }} I\left(\hat{v}_{2 i j}\right) P\left(v_{2}\right) v_{r}^{2} \frac{\Delta v_{2} \Delta z_{i}}{r_{i j}^{2} v_{1} v_{2}}
\end{align*}
$$

where the expression for (n Z) eff is (see I)

$$
\begin{equation*}
(n Z)_{\text {eff }}=\sum_{v_{r, m}} G_{p \rightarrow p}\left(v_{r, m}, 0\right)=\sum_{i j v_{2}} I\left(\hat{v}_{2 i j}\right) P\left(v_{2}\right) v_{r} \frac{\Delta v_{2} \Delta z_{i}}{r_{i j}^{2} v_{1} v_{2}} \tag{B3}
\end{equation*}
$$

Herein 1 gives the position on the line beam (divided in sections Δz), J gives the channel on the effuser, $I\left(\hat{v}_{21 J}\right)$ is the secondary beam intensity in the direction $\hat{v}_{2 l]}{ }^{6}, P\left(v_{2}\right)$ is the Maxwellıan velocity distribution of the secondary beam molecules and $r_{1 J}$ is the distance between channel j and point 1 on the line beam. At the velocity $\left\langle v_{r}\right\rangle$ a (new) normalized apparatus function is defined as

$$
\begin{aligned}
& =\frac{1}{(n l)_{\text {eff }}} \sum_{l J v_{2}} I\left(\hat{v}_{21 J}\right) P\left(v_{2}\right) v_{r} \frac{\Delta v_{2} \Delta z_{1}}{r_{\text {lJ }}^{2} v_{1} v_{2}}\left(\int_{1 d} \frac{d \phi_{c m}}{2 \pi}\right) \theta_{\mathrm{cm}^{1 J v_{2}}}
\end{aligned}
$$

the subscript $1 d$ (inside detector) under the integration sign indicates that the integral is confined to those angles that correspond to trajectories through the detector after the collısion. Introducing a step size $\Delta \theta_{\mathrm{cm}}$, Eq. (B4) can be written as

$$
\begin{aligned}
& H_{p \rightarrow s}\left(\theta_{c m, k}\right)=\frac{1}{(n Z)_{e f f}} \sum_{l J v_{2}} I\left(\hat{v}_{21 J}\right) P\left(v_{2}\right) v_{r} \frac{\Delta v_{2} \Delta z_{1}}{r_{1 J}^{2} v_{1} v_{2}} \\
& \times \frac{1}{\Delta \theta_{\mathrm{cm}}} \int_{1 d} \frac{\mathrm{~d} \Omega_{\mathrm{cm}}}{2 \pi} \frac{\mathrm{~T}_{\mathrm{k}}\left(\theta_{\mathrm{cm}}\right)}{\sin \theta_{\mathrm{cm}}} \\
& \text { with } \mathrm{T}_{\mathrm{k}}\left(\theta_{\mathrm{cm}}\right)=1 \text { for } \theta_{\mathrm{cm}, \mathrm{k}}-\frac{1}{2} \Delta \theta_{\mathrm{cm}} \leqq \theta_{\mathrm{cm}} \leqq \theta_{\mathrm{cm}, \mathrm{k}}+\frac{1}{2} \Delta \theta_{\mathrm{cm}}
\end{aligned}
$$

$$
T_{k}\left(\theta_{c m}\right)=0 \quad \text { otherwise }
$$

To simplify the computation of the integral in Eq. (B5) two transformations are performed*:
(1) from the centre of mass system to the laboratory system (lab)

$$
\begin{equation*}
\mathrm{d}_{\mathrm{cIn}}=\left(\frac{v_{1}^{\prime}}{u_{1}^{\prime}}\right)^{2} \quad \frac{1}{\cos \alpha} \mathrm{~d}_{1} l_{a b} \tag{B7}
\end{equation*}
$$

(2) from the laboratory system to the plane of the detector opening

$$
\begin{equation*}
d \Omega_{1 a b}=\frac{1}{R^{2} \cos \xi} \quad d x_{d} d Y_{d} \tag{B8}
\end{equation*}
$$

Herein v_{1}^{\prime} is the primary velocity in the laboratory system after the collision, u_{1}^{\prime} is the same velocity in the centre of mass system, α is the angle between those two velocities, $\left(x_{d}, Y_{d}\right)$ is taken in the detector opening, R is the distance between the point where the collision takes place and $\left(X_{d}, Y_{d}\right), \xi$ is the angle between \vec{v}_{1}^{\prime} and the machine axis.

With these transformations the computation of $H_{p \rightarrow s}\left(\theta_{\mathrm{Cm}}, k\right.$) is done following the Monte Carlo method, where each "event" is determined by the choice of $\left(i, j, v_{2}, x_{d}, Y_{d}\right)$.

In terms of the apparatus function $\mathrm{H}_{\mathrm{p} \rightarrow \mathrm{s}}\left(\theta_{\mathrm{cm}}\right)$, the expression for ζ (Eq. (B1)) is

[^0]$\zeta=R_{s}^{p}(n \tau){ }_{\text {eff }} 2 \pi \int d \theta_{c m} \sin \theta_{c m} H_{p \rightarrow s}\left(\theta_{c m}\right)$
$\times \sum_{M_{s}}\left[\frac{d}{d \Omega} \sigma\left(\theta_{c m^{\prime}}\left\langle v_{r}\right\rangle\right)_{p \rightarrow s}^{\alpha}-\frac{d}{d \Omega} \sigma\left(\theta_{c m^{\prime}}\left\langle v_{r}\right\rangle\right)_{p \rightarrow s}^{\gamma}\right]$

1 D.B.M.Klaassen, J.M.H.Reijnders, J.J.ter Meulen and A.Dymanus, J.Chem.Phys. 76, 3019 (1982)

2 T.Oka, "Collision-induced transitions between rotational levels", Advances in Atomic and Molecular Physics 9, 127 (1973)

3 F.Matsuhima, N.Morita, S.Kano and T.Shimizu, J.Chem.Phys. 70, 4225 (1979); T.Shimizu, F.Matsuhima and Y.Honguh, page 212, Laser Spectroscopy V, Ed. A.R.W.McKellar, T.Oka and B.P.Stoicheff, Springer, New York (1981)

4 T.Oka, J.Chem.Phys. 48, 4919 (1968)
5 N.v.Hulst, Internal Report, Katholieke Universiteit, Nijmegen, The Netherlands (1981)

6 D.B.M.Klaassen, Quarterly Report 55 of the Atomic and Molecular Research Group, Fysisch Laboratorium, Katholieke Universiteit, Nijmegen, The Netherlands (1977)

7 P.W.Anderson, Phys.Rev. 76, 647 (1949)
8 C.J.Tsao and B.Curnutte, J.Quant.Spectrosc.Radiat.Transfer 2, 41 (1962)

9 J.S.Murphy and J.E.Boggs, J.Chem.Phys. 47, 691 (1967); J.Chem.Phys. 50, 3220 (1969)

10 H.A.Rabitz and R.G.Gordon, J.Chem. Phys. 53, 1831 (1970)
11 E.A.Gislason and D.R.Herschbach, J.Chem.Phys. 64, 2133 (1976)
12 J.A.Th.Verhoeven, Thesis, Katholieke Universiteit, Nijmegen, The Netherlands (1969)

13 K.L.Peterson, J.Chem.Phys. 75, 5655 (1981)

BEAM MASER INVESTIGATION OF INELASTIC SCATTERING OF NH 3
III. CROSS SECTIONS FOR ROTATIONAL TRANSITIONS INDUCED BY CO ${ }_{2}, \mathrm{~N}_{2}$ and H_{2}

D.B.M. Klaassen, J.J. ter Meulen and A. Dymanus Fysisch Laboratorium, Katholieke Universiteit Toernooiveld, 6525 ED Nijmegen, The Netherlands

ABSTRACT

Cross sections for rotational transitions between various low-lying inversion doublets of NH_{3} in collisions with $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and H_{2} are measured in a doubleresonance beam maser set-up ${ }^{2}$. A modification of Anderson's theory presented in Ref. 2 yields values for the cross sections that are in good agreement with the experimental results for CO_{2} and N_{2}. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ transition probabilities are evaluated in Anderson's theory using "bent" trajectories. Induction and dispersion terms up to R^{-7} are considered in the long-range intermolecular potential. For the short-range repulsive part two empirical potentials are proposed with parameters that are fitted to the experimental results. Integral cross sections for rotational transitions calculated with these potentials are also presented.

In the first paper ${ }^{1}$ (hereafter referred to as I) of a serles on collisioninduced population transfer in ammonia, the special importance of $\mathrm{NH}_{3}-\mathrm{H}_{2}$ collısions for the interstellar ammonia problem was indicated. A brıef summary of known techniques used to obtain state-to-state collision cross sections showed that they elther cannot be applied to ammonia or give only indirect information about the cross sections. In a consecutive paper ${ }^{2}$ (hereafter referred to as II) a double-resonance beam maser experiment was described. Measurements for ammonıa-polar gas systems demonstrated that direct information on the rotational cross sections could be obtained. The differential equations governing the population transfer in ammonia lnduced by collısions were solved and a method for comparison of experiment with theory was presented.

In this investigation the same experimental method is applied to ammonianonpolar gas systems. Before the ammonia beam collıdes with the secondary beam a sharp change in the population of the upper and lower levels of a specific inversion doublet $1 s$ produced by strong radiation of a microwave cavity tuned to that inversion transition. Transitions induced by collisions with the secondary beam can transfer this change in population to a different doublet, to which a cavity behind the scattering region is tuned. For the system $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ collision-induced rotational transitions are measured between a number of inversion doublets at a secondary beam temperature of 300 K . For nitrogen as scatterıng partner one rotational transition is investigated at three secondary beam temperatures: $77 \mathrm{~K}, 300 \mathrm{~K}$ and 350 K . Wıth molecular hydrogen as scattering gas, cross sectıons are determined for collislon-induced transitions between the $(J, K)=(1,1)$ and $(2,1)$ inversion levels and between the $(2,2)$ and $(3,2)$ levels.

In II a modification of Anderson's theory was described that ylelds a proper description of transıtion probabılıtıes at small lmpact parameters. This modification is used for CO_{2} and N_{2} taking only dipole-quadrupole and quadrupole-quadrupole $1 n t e r a c t i o n s$ into account. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ these interactions are not sufficient to explain the observed cross sections. Induction and dispersion potential terms, contalning the quadrupole polarızabılıty, are found to be competitlve with the low-order permanentmultipole interaction. Moreover, the main contribution to the rotational cross sections turns out to orıginate from the small impact parameter region. Therefore, instead of the straight-line approximation, "bent" paths are used in Anderson's theory. As the short-range repulsive potential for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ is not known from ab initıo calculations, a model function is introduced for this short-range part of the potential with parameters adapted to the experımental results. With this empirical potential integral state-to-state cross sections are calculated and used for the interpretation of line broadening experiments ${ }^{3}$ and the steady-state double-resonance experiments of Oka ${ }^{4}$. Also for these investigations a reasonable agreement between theoretical and experimental results is found, which supports the potential and cross sections obtalned.

The experimental set-up and method are described in I and II. In the present investigation the secondary beam is not always at room temperature. When molecular hydrogen is used as scattering gas, the cryopump is kept at a temperature of about 3.5 K . At this temperature the vapour pressure of the hydrogen frozen on the cryopump is well below the background pressure of $6 \times 10^{-5} \mathrm{~Pa}$ in the molecular beam apparatus 5 . In order to keep the cryopump at such a low temperature, the shield by which it is surrounded is cooled with liquid nitrogen. The multi-channel array, mounted on this shield, and the secondary beam are then also at liquid nitrogen temperature.

With nitrogen as scattering gas, measurements were performed for three temperatures of the secondary beam. In addition to room and liquid nitrogen temperature, a temperature of 350 K was achieved by circulation of warm water through the reservoir to which the shield is attached, which carries the secondary beam source. The water is kept at constant temperature by a thermostat (Tamson).

In II a modified form of Anderson's theory was presented to explain the observed rotational cross sections. The modifications were required for the calculation of the transition probabilities in the small impact parameter region and for the proper treatment of so-called "off-resonance" transitions. In this investigation essentially the same theory is used for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ the resonance function ${ }^{6}$ is calculated using "bent" trajectories instead of straight paths.

When both primary and secondary beam molecules have large dipole or quadrupole moments, the transition probabilities derived in the permanentmultipole interaction scheme (Eq. (18) of II) are sufficient to describe the scattering process. For molecules with small permanent multipoles other terms in the intermolecular potential may become important. The long-range part of the intermolecular potential can be split into an electro static, an induction and a dispersion part ${ }^{7}$. Within the framework of Anderson's theory the contribution of a large number of individual terms in the potential to the transition probability is well-known $8,9,10$. For the systems $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ calculations of pressure broadened line widths show, that the contribution of induction and dispersion terms in the intermolecular potential is negligible relative to the dipole-quadrupole interaction ${ }^{11}$. Similar (pressure broadening) calculations, however, indicate that for the ammonia-hydrogen system besides the electrostatic terms also the induction and dispersion terms up to R^{-7} play an important role in the intermolecular potential ${ }^{11}$. These conclusions are confirmed by our computations of rotational transition probabilities, which included all these potential terms. Moreover, these computations show that for the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ system besides the dipole-quadrupole and quadrupolequadrupole interaction only the induction and dispersion terms proportional to R^{-7} are important. The contributions of these terms to the transition
probability are summarized in Appendıx A. Two (parıty changing) contributions (Eqs. (A1) and (A2)) orıgınate from the quadrupole-induced dıpole interaction and the dispersion interaction caused by the anısotropy in the quadrupole polarızabılıty of the ammonıa molecule. A thırd (parıty conserving) contribution (Eq. (A3)) comes from the dispersion interaction proportional to the $1 s$ otropic quadrupole polarızabilıty of the ammonia molecule. This last contribution, given by Eq. (A3), is non-zero only for $\Delta K= \pm 3$ transitions, whereas the contributions gaven by Eqs. (A1-A2) are non-zero for $\Delta K=0$ transıtıons.

The probabilities for rotational transitions for the systems $\mathrm{NH}_{3}-\mathrm{CO}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ are so large, that for small impact parameters the normalization procedure (Eq. (19) of II) is working properly. This means that small impact parameters do not contribute significantly to the integral cross section for an individual rotational transition. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ the transation probabilıtıes are much smaller. Consequently the normalization procedure becomes effectıve only for very small lmpact parameters. For the $(1,1) \rightarrow(2,1)$ transition this results in a contribution of about 75% to the integral cross section from lmpact parameters smaller than the zero-crossing of the isotropic Lennard-Jones $(12,6)$ potential, $\sigma=0.345 \mathrm{~mm}$. Since in the straight-path approximation, used to evaluate the resonance functions, the distance of nearest approach is equal to the impact parameter b, a different method has to be followed for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$. A simple, but also rather artificial, approach is introduclng, in the ordinary stralght-path approximation, a somewhat arbitrary parameter d and setting the transition probabilıty $P(b)=P(d)$ for $b \leq d^{13}$. Physıcally more satısfactory is the "bent"-trajectory approximation adapted for the present calculations. In this approximation each trajectory $1 s$ replaced by two straight-line segments; the angle between these segments $1 s$ equal to the deflection angle of the 1 sotropic $L-J(12,6)$ potential ${ }^{14}$ (see Appendix B).

The anisotropic potential for the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ system is not well-known to date. For similar systems ab initio calculations have been performed for $\mathrm{H}_{2} \mathrm{CO}-\mathrm{He}$ by Green et al. ${ }^{15}$ and Garrison et al. ${ }^{16}$ and for NH_{3}-He by Green ${ }^{17,18}$. The calculations of Bonamy and Robert ${ }^{19}$ were limited to the long-range part of the NH_{3}-He potential. Therefore some model has to be used for the anisotropic $\mathrm{NH}_{3}-\mathrm{H}_{2}$ potential. Most potential models ${ }^{20}$ commonly used in the interpretation of molecular beam scattering data, contain several adjustable parameters. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ reasonable estimates for the long-range anisotropic potentials are available ${ }^{11}$. However, the present experiments yield only a limited number of data that can be used for the determination of the adjustable parameters (see Sect. 4). Instead of using an anisotropic potential model with a few adjustable parameters we have chosen two different models each with only one adjustable parameter that does not affect the long-range behaviour. In the first model (e-type) each long-range potential term proportional to $\mathrm{R}^{-\mathrm{n}}$ is multiplied by

$$
\begin{equation*}
h_{c}(R)=1-e^{-c(R / \sigma-1)} \tag{1}
\end{equation*}
$$

and in the second model (LJ-type) by

$$
\begin{equation*}
h_{d}(R)=1-d(\sigma / R)^{12-n} \tag{2}
\end{equation*}
$$

Both models have a minimum in the potential. With the e-type model the zerocrossing is fixed at $R=\sigma$. The second potential model has the form of an isotropic $L-J(12, n)$ potential. The factors c and d in Eqs. (1) and (2) are determined from the experiment. For the two types of potentials the expression for the resonance functions with bent trajectories is given in Appendix B. Resonance functions for straight and bent trajectories are compared in Fig. 1, where $\omega=|\delta E| / \hbar(E q$. (15) of $I I)$ and v_{r} is the relative velocity.

Figure 1: Comparison between resonance functions for dipole-quadrupole interaction with bent (solid line) and straight (dashed line) trajectories.

For large values of $\omega \mathrm{b} / \mathrm{v}_{\mathrm{r}}$ the functions are identical. The resonance function calculated with bent trajectories shows a sharp maximum at the impact parameter that corresponds to the rainbow angle. This is caused by the fact that with bent trajectories negative deflection angles (attraction) result in longer and positive deflection angles (repulsion) result in shorter interaction times than with the corresponding straight paths. For small values of $\omega \mathrm{b} / \mathrm{v}_{\mathbf{r}}$ the resonance function for bent trajectories is several orders of magnitude smaller than the one for straight paths. This can be explained by the fact that with bent trajectories the distance of closest approach has a non-zero lower limit (see Fig. 6), whereas for straight paths this distance becomes equal to zero. Consequently the transition probabilities for backward scattering, obtained from the resonance functions by dividing by the appropriate power of the impact parameter (Eqs. (A1)-(A3)), are finite.

For the interpretation of the experimental results also a deflection function for the systems $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ is needed. In II it was pointed out that for two polar symmetric top molecules it is quite difficult to construct such a function that takes into account the relative rotation of the molecules. This is even more difficult for the system of a polar symmetric top molecule and a linear molecule possessing a quadrupole moment, because of the complicated expression for the interaction. Therefore for $\mathrm{NH}_{3}-\mathrm{CO}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ the classical deflection function for a potential $V(R)=C_{4} / R^{4}$ is adopted 21

$$
\begin{equation*}
\theta_{\operatorname{cIn}}(b)=\frac{3}{4} \frac{c_{4}}{\left(\frac{1}{2} \mu v_{r}^{2}\right)} b^{-4} ; \tag{3}
\end{equation*}
$$

μ is the reduced mass and C_{4} is proportional to the product of primary dipole $\left(\mu_{1}\right)$ and secondary quadrupole $\left(Q_{2}\right)$ moment. As in II an adjustable parameter K_{g}, which is fitted to the experimental results, is introduced by setting ${ }_{3}^{\mathcal{Z}_{4}} C_{4}=\kappa_{g} \mu_{1} Q_{2}$.

$$
\underset{p \rightarrow s}{\sigma_{p}^{\alpha, a p p}}-\underset{p \rightarrow s}{\gamma, a p p}
$$

	transition$\mathrm{p} \rightarrow \mathrm{~s}$	type A		type B	
		theory	experiment	theory	experiment
	$(1,1) \rightarrow(2,1)$	11.2(11)	13.2(12)	11.4 (10)	12.8(11)
	$(2,1) \rightarrow(1,1)$	7.9 (8)	9.3(13)	8.1 (7)	$9.6(13)$
CO_{2}	$(2,2) \rightarrow(3,2)$	2.9(3)	2.6 (3)	$3.2(3)$	2.9(3)
$1050 \mathrm{~m} / \mathrm{s}$	$(3,2) \rightarrow(2,2)$	2.7 (3)		$2.9(3)$	
$0.481 \times 10^{17} \mathrm{~m}^{-2}$	$(2,1) \rightarrow(3,1)$	5.6 (7)	$3.8(10)$	6.1 (6)	4.2(11)
	$(3,1) \rightarrow(2,1)$	5.1 (6)		5.5 (5)	
	$(1,1) \rightarrow(3,1)$	-0.07(2)		-0.05(1)	

TABLE 1 : Summary of theoretical and experimental apparatus cross sections (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ scattering, for both types of apparatus functions (A and B). In the first column also $\left\langle v_{r}\right\rangle$ and (n l) eff for a secondary beam flow of 1 sccm are given.
a. The system $\mathrm{NH}_{3}-\mathrm{CO}_{2}$

Measurements were performed for a number of rotational transitions $p=\left(J_{p}, K_{P}\right) \rightarrow s=\left(J_{s}, K_{s}\right)$ given in Table 1. Calculated cross sections were fitted to the experimental results following the procedure described in II. Both non-resonant (type A) and resonant (type B) apparatus functions were used (Sect. 3 of II). The resulting values of K_{g} (Eq. (3)) are given in Table 2. As the primary beam conditions were kept the same as in previous experiments (II) the ratios of population differences R_{s}^{p} were taken as determined in II. Transition probabilities were calculated for dipole-quadrupole and quadrupole-quadrupole interaction. The molecular constants used for NH_{3} are given in Table 4. The quadrupole moment and rotational constant used for CO_{2} are $14.33 \times 10^{-40} \mathrm{Cm}^{2}$ and 11.67 GHz , respectively ${ }^{22}$. The experimental apparatus cross sections shown in Table 1 are determined from the measurements in the same way as in II (Sect. 5 of II).
b. The system $\mathrm{NH}_{3}-\mathrm{N}_{2}$

With nitrogen as a scattering gas, measurements were performed on the $(2,2) \rightarrow(3,2)$ rotational transition of ammonia for three temperatures of the secondary beam (see Table 3). For each temperature new apparatus functions were calculated, but the same factor K_{g} was used for all temperatures. The factor K_{g} obtained and ratios of population differences R_{s}^{P} used are given in Table 2. As with CO_{2} only low-order multipole interactions are considered in the theoretical calculations. The quadrupole moment and rotational constant used for N_{2} are $5.0 \times 10^{-40} \mathrm{Cm}^{2}$ and 59.96 GHz , respectively ${ }^{22}$. The fit with the apparatus functions of type A yielded a χ^{2} value (the sum of least squares)

${ }^{\mathrm{K}} \mathrm{CO}_{2}$	$2.55(25)$	$2.64(13)$
$\mathrm{K}_{\mathrm{N}_{2}}$		
R_{21}^{11}	$3.96(26)$	$4.09(25)$
R_{32}^{22}	$4.07(35)$	$3.57(28)$
R_{31}^{21}	$17.2(24)$	$15.5(19)$

TABLE 2 : Population ratios R_{S}^{P} adopted from II and values for K_{g} obtained in the fits.

secondary beam temperature (K)	$\left\langle\mathrm{v}_{\mathbf{r}}\right\rangle(\mathrm{m} / \mathrm{s})$	$(\mathrm{n} Z)_{\text {eff }}\left(\mathrm{m}^{-2}\right)$	$\begin{aligned} & \quad \sigma_{p \rightarrow s}^{\alpha, a p p} \\ & \text { theory } \end{aligned}$	$\begin{aligned} & -{\underset{p}{\gamma \rightarrow s}}_{\gamma, \text { app }} \\ & \text { experiment } \end{aligned}$
77	992	0.719×10^{17}	0.71 (11)	0.60 (8)
300	1103	0.395×10^{17}	1.12(17)	1.13(14)
350	1128	0.372×10^{17}	1.08 (16)	1.55(19)

TABLE 3 : Summary of the theoretical and experimental apparatus cross sections (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering on the $(2,2) \rightarrow(3,2)$ transition. The $(n 2)$ eff value is given for a secondary beam flow of 1 scm.
that was twice as large as the value obtained with the apparatus functions of type B. So only the results obtained with the type B functions are summarized in Table 3.
c. The system $\mathrm{NH}_{3}-\mathrm{H}_{2}$

With normal hydrogen as scattering gas, only effects for the $(1,1) \rightarrow(2,1)$ and $(2,2) \rightarrow(3,2)$ transitions were found. No effects could be measured on the $\Delta k \neq 0$ transitions between the inversion doublets with low (J, K) values (k is the signed K value). Since the cross sections for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ are very small their measurements required rather lengthy time averaging procedures. As an example, the results shown in Fig. 2 are obtained by combining measurements of several days at the same flow setting. Each point in Fig. 2 is the average of about 150 measuring cycles. The Gaussian distribution of the results from the individual cycles confirmed that all settings of the apparatus could be reproduced within the experimental error. The values for ζ are an order of magnitude smaller than for $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ scattering (Fig. 3 of II). Calculations of transition probabilities showed that $\Delta J_{2} \neq 0$ transitions of the hydrogen molecules are negligible. This means that for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ scattering the apparatus functions of type A, with the energy defect set equal to that of the primary beam molecule (see Eq. (15) of II and further), should be used. For the $(1,1) \rightarrow(2,1)$ and $(2,2) \rightarrow(3,2)$ transitions the apparatus functions have values of about 0.95 and 0.70 , respectively, at $\theta_{c m}=0$ (Fig. 3). This is due to a rather large loss of kinetic energy in the centre of mass system for these transitions (26% and 39%, respectively). Computations of transition probabilities established that the inversion splitting of the ammonia molecule can be disregarded for the calculation of the energy defect $\hbar \omega$, except of course for the inversion transitions. Moreover they showed that over the entire range of impact parameters the values of transition probabilities are

Figure 2: ζ as function of the secondary beam flow (H_{2}) for the transition $p=(1,1) \rightarrow s=(2,1)$. In the upper part the attenuation of the $(2,1)$ microwave line intensity is shown.

Figure 3: Apparatus functions for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ for the transitions $\mathrm{p}=(1,1) \rightarrow(2,1)$ (solid line) and $\mathrm{p}=(2,2) \rightarrow(3,2)$ (dashed line).

		NH_{3}	Ref.	H_{2}	Ref.
B	(GHz)	298.12	23	1777.3	22
c	(GHz)	186.71	23		
-	(Cm)	4.92×10^{-30}	24		
Q	(Cm^{2})	9.74×10^{-40}	85	2.17×10^{-40}	22
α	(m^{3})	2.22×10^{-30}	26	0.819×10^{-30}	26
${ }^{\text {A } / /}$	(m)	-0.0633×10^{-40}	10		
${ }^{\prime}{ }_{\perp}$	(m^{4})	0.793×10^{-40}	10		
A^{\prime}	(mi)	-0.81×10^{-40}	10		
ε	(J)		0.1573×10^{-20}		12
σ	(m)		3.45×10^{-10}		12
C_{6}	$\left(\mathrm{Jm}^{6}\right)$		1061×10^{-80}		

TABLE 4 : Molecular constants and potential parameters.

	$\sigma_{p \rightarrow s}^{\alpha, a p p}-\sigma_{p \rightarrow s}^{\gamma, a p p}$			
	transition $p \rightarrow s$	theory (e-type)	theory (LJ -typ	experiment
H_{2}	$(1,1) \rightarrow(2,1)$	$0.74(16)$	0.70 (14)	$0.570(75)$
$1426 \mathrm{~m} / \mathrm{s}$	$(1,1) \rightarrow(2,1)$	0.74 (16)	0.70 (14)	0.570 (75)
$0.257 \times 10^{17} \mathrm{~m}^{-2}$	$(2,2) \rightarrow(3,2)$	0.089 (34)	$0.084(36)$	$0.122(22)$

TABLE 5 : Summary of theoretical and experimental apparatus cross sections (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ scattering, for both types of potential models. In the first column also $\left\langle v_{r}>\right.$ and $(n l)$ eff for a secondary beam flow of 1 sccm are given.
well below the values at which the normalization procedure (see II) becomes effective. The actual computation of probabılıtıes for a rotational transıtıon is consıderably simplıfied by these observatıons, because the normalızation procedure can be left out and for each impact parameter the resonance functions have to be evaluated only once.

For each rotational transition calculations were performed, using the molecular constants given in Table 4. As discussed in Sect. 3, for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ the low-order permanent-multipole interactions are taken into account together with the induction and dispersion interactions proportional to R^{-7}. The population ratios used were those obtalned with the type B apparatus functions in II (Table 2). For both types of potentials (Eqs. (1) and (2)) the parameters c and d were varled to get the best agreement between theoretical predıctions and experımental results. The parameters c and d, the theoretıcal values for the cross sectıons, glven in Table 5, and therr uncertaintıes were determıned graphıcally from the experımental results. For c the average of the values that yıelded optımum agreement for the individual transitıons $1 s$ 6.6(24) and for d this average $1 s$ 1.0(4).

For the system $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ both fits yield a good agreement between theory and experiment. As with the polar secondary beam gases in II, a somewhat higher value for k_{g} is obtained in the fit with the "resonant" apparatus functions (type B). For the system $\mathrm{NH}_{3}-\mathrm{N}_{2}$ the agreement between theory and experiment is reasonable, except for some discrepancy at 350 K . This deviation might be caused by the fact that the measurements at 350 K were less extensive than those at the other two temperatures. The factor $K_{N_{2}}$ is larger than the factor ${ }^{\mathrm{KOO}_{2}}$. This leads to the conclusion that $\mathrm{NH}_{3}-\mathrm{N}_{2}$ collisions are more resonant than $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ collisions, due to the larger rotational constant of N_{2}. This conclusion is supported by the fact that for the $(2,2) \rightarrow(3,2)$ transition the energy defect (Eq. (15) of II) is zero for the initial states of CO_{2} and N_{2} with $J=38$ and 8 , respectively, whereas the largest contributions to the integral parity changing cross section come from initial states with J values around 26 and 8 , respectively.

The integral cross sections and the parity changing (α) and conserving (γ) contributions to the rotational apparatus cross sections are given in Table 6 for both types of apparatus functions. It is seen from this table that for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ scattering (as with the polar scattering gases) $\underset{p \rightarrow s}{\gamma, a p p} \leq 0.1{\underset{p}{\alpha, a p p}}_{\alpha, a p}^{o}$, except for the transitions between the $(J, K)=(2,2)$ and $(3,2)$ levels. For these transitions $\sigma_{p \rightarrow s}^{\gamma, a p p} \approx 0.2 \sigma_{p \rightarrow s}^{\alpha, a p p}$, whereas for $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering the parity conserving contribution is about 25% of the parity changing contribution.

The apparatus function of type B has the value of 0.5 at $\theta_{\mathrm{cm}}=2.05^{\circ}$ for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ scattering. With N_{2} as scattering gas, these angles are 2.46°, 2.33° and 2.28° for $77 \mathrm{~K}, 300 \mathrm{~K}$ and 350 K , respectively. With this angular resolution for $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering only about 4.5% of the integral cross sections for parity changing transitions is probed in the present experiment. For CO_{2}

N_{2}

77 K	$(2,2) \rightarrow(3,2)$	25.16	33.90	0.96	0.25
300 K	$(2,2) \rightarrow(3,2)$	31.00	35.59	1.53	0.40
350 K	$(2,2) \rightarrow(3,2)$	30.88	35.48	1.49	0.41

TABLE 6 : The theoretical integral cross sections and the parity changing and conserving parts of the apparatus cross section (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering, for both types of apparatus functions (A and B).

	$(1,1) \rightarrow(2,1)$	$5.9(12)$	$1.48(33)$	$0.97(20)$	$0.23(5)$
e-type	$(2,2) \rightarrow(3,2)$	$1.8(6)$	$1.07(24)$	$0.23(7)$	$0.14(3)$
L-type	$(1,1) \rightarrow(2,1)$	$6.3(21)$	$1.62(35)$	$0.94(17)$	$0.24(3)$
	$(2,2) \rightarrow(3,2)$	$2.1(11)$	$1.27(21)$	$0.24(6)$	$0.15(3)$

TABLE 7 : The theoretical integral cross sections and the parity changing and conserving parts of the apparatus cross section (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3} \mathrm{-H}_{2}$ scattering, for both types of potential models.
as scattering gas this fraction is 13.5% for transitions between the $(J, K)=$ (1,1) and (2,1) levels and 8 \% for the other transitions. Only $1-2 \%$ of the cross sections for parity conserving transitions is probed. As expected a smaller fraction of the integral cross sections is measured with non-polar scattering gases than with polar gases (see II). This is caused by the fact that the dipole-quadrupole interaction, which is mainly responsible for parity changing transitions (see Sect. 3), is only effective for small impact parameters, which result in large deflection angles.

Due to the short-range character of the dipole-quadrupole interaction the impact parameter below which the normalization procedure (Eq. (19) of II) reduces the transition probability is rather small. This results in quite largc contributions from the small impact parameter region (cf. the cross sections for parity conserving transitions in II, originating mainly from quadrupoledipole interaction). For example for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ scattering on the $(1,1) \rightarrow(2,1)$ and $(2,2) \rightarrow(3,2)$ parity changing transitions, 17% and 30%, respectively, of the integral cross sections stems from impact parameters smaller than 0.3 nm . For $\mathrm{NH}_{3}-\mathrm{N}_{2}$ scattering (300 K) on the $(2,2) \rightarrow(3,2)$ parity changing transition this number is 40%. Consequently the integral cross sections for $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ may be somewhat too large.

With hydrogen as scattering gas, the parameters c and d in the potential models (Eqs. (1) and (2)) were varied to find the best agreement between theoretical and experimental apparatus cross sections for the $(1,1) \rightarrow(2,1)$ and $(2,2) \rightarrow(3,2)$ transitions. Also the integral cross sections (α and γ) and the parity changing and conserving parts of the apparatus cross sections were calculated as function of these parameters. From these results the values given in Table 7 and their uncertainties were determined graphically (Sect. 4). From Table 8 it is seen that the relative contribution of a specific interaction to $\sigma_{p \rightarrow s}^{\alpha, a p p}-\sigma_{p \rightarrow s}^{\gamma, a p p}$ is not the same for the $(1,1) \rightarrow(2,1)$ and $(2,2) \rightarrow(3,2)$ transitions. Therefore a better matching betweentheory and experiment, which

$\begin{gathered} \text { transition } \\ p \rightarrow s \end{gathered}$	$\underset{k}{\text { contribution }}$	$\sigma_{p \rightarrow s}^{\alpha}$	$\sigma_{p \rightarrow s}^{\gamma}$	$\sigma_{p \rightarrow s}^{\alpha, \text { app }}$	$\sigma_{p \rightarrow s}^{\gamma, a p p}$
$(1,1) \rightarrow(2,1)$	1	3.86	0	0.641	0
	2	0	1.63	0	0.255
	3	0.20	0	0.028	0
	4	2.89	0	0.404	0
	total	6.96	1.63	1.073	0.255
$(2,2)+(3,2)$	1	0.98	0	0.144	0
	2	0	1.17	0	0.158
	3	0.24	0	0.034	0
	4	0.63	0	0.080	0
	total	1.85	1.17	0.259	0.158

TABLE 8 : Contributions of different interactions to the cross sections (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ scattering with $\mathrm{c}=6.9$.
$\mathrm{k}=1$ dipole-quadrupole
$k=2$ quadrupole-quadrupole
$\mathrm{k}=3$ induction and dispersion ($Z_{1}=3$; Eq. (A2))
$\mathrm{k}=4$ induction and dispersion ($\tau_{1}=1$; Eq. (A1))
results in smaller uncertainties in the calculated integral cross sections, would be obtained by introducing separate parameters c (and d) for each term in the potential. But only additional experimental data on other rotational transitions would make such a procedure possible. Although both potential models can certainly be improved it is satisfying that they give essentially the same integral cross sections.

In Fig. 4 the leading induction and dispersion term in the potential (resulting in the transition probability given by Eq. (A1)) is compared with the corresponding term in the $a b$ initio potential for $\mathrm{NH}_{3}-\mathrm{He}$ obtained by Green 17. The parameters σ and ε (the well depth of the isotropic L-J potential), used to construct Fig. 4, are those for the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ system. For the long-range part the $\mathrm{NH}_{3}-$ He potential is scaled with the appropriate $\mathrm{C}_{6}=4 \mathrm{E}^{6}$ constant ${ }^{27}$. The differences between the potentials for both models and the quite large uncertainties in the parameters c and d indicate, that the anisotropic potential is not well-determined from the present experiment. However, the shape of the NH_{3}-He potential of Green is similar to that of the present potential models, but its minimum is shifted to smaller intermolecular distances. In order to investigate which impact parameters are probed, a cut-off impact parameter $b_{c o}$ is introduced that replaces the lower integration limit in the expressions for the apparatus (Eq. (16) of II) and integral cross sections,

$$
\begin{equation*}
\sigma_{p \rightarrow s}\left(b_{c o}\right)=2 \pi \int_{b_{c o}}^{\infty}\left(2 J_{s}+1\right) p_{p \rightarrow s}(b) b d b \tag{4}
\end{equation*}
$$

The results of these calculations are given as a function of $b_{c o}$ in Fig. 5 . From this figure it is seen that the main contributions to the apparatus cross sections originate from impact parameters around 0.4 nm .

In Fig. 6a the deflection angle θ (Sect. 3) and the distance of closest

Figure 4: Comparison between obtained potentials for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ (e-type: dashed line; LJ-type: solid line) and the corresponding NH_{3}-He potential term (short dashes with dots, representing the points calculated by Green ${ }^{17}$; see text).

Figure 5: Cross sections for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}\left(1 \mathrm{n} 10^{-20} \mathrm{~m}^{2}\right.$) as function of the cut-off impact parameter $b_{c o}\left(\ln 10^{-10} \mathrm{~m}\right.$; Eq. (4)) for the (a) $(1,1) \rightarrow(2,1)$ and (b) $(2,2) \rightarrow(3,2)$ transition.

Integral, parity changing: solid lines.
Integral, parıty conserving: long dashes.
Apparatus, parity changıng: short dashes.
Apparatus, parıty conserving: dashed-dotted lınes.

Figure 6: (a) Deflection angle θ and distance of closest approach $R_{\text {ca }}$ (in $10^{-10} \mathrm{~m}$) as function of the impact parameter $\mathrm{b}\left(\right.$ in $10^{-10} \mathrm{~m}$) and (b) the isotropic potential shown as function of the intermolecular distance $R\left(\right.$ in $10^{-10} \mathrm{~m}$) for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$.
approach $R_{c a}$ are given as function of the impact paraneter b. For negative deflection angles $R_{c a}$ equals b and for positive deflection angles $R_{c a}=R_{0}=b / \cos \left(\frac{1}{2} \theta\right)$ (see Appendix B). In Fig. 6b the isotropic $L-J(12,6)$ potential is displayed. The shapes of isotropic and anisotropic potentials are almost identical for the system $\mathrm{NH}_{3} \mathrm{H}_{2}(\mathrm{~d}=1.0(4)$; Eq. (2)). The shaded area in Fig. 6 corresponds to the range of deflection angles for which the apparatus function for the $(1,1) \rightarrow(2,1)$ transition is larger than half its maximum value (Fig. 3). From Fig. 5 it is seen that about half of the apparatus cross sections for this transition originates from that region. For the corresponding distances of closest approach the (an)isotropic potential reaches almost its minimum value. The lower limit (0.33 nm) of the distance of closest approach is also indicated in Fig. 6. The integral cross sections are not sensitive to the anisotropic potential at smaller intermolecular distances. It turns out that the deflection angles for the probed impact parameters correspond to the inner branch of the deflection function. As the inner branch is quite steep, the range of probed impact parameters is rather small. This explains that in spite of the large acceptance angles compared to the polar scattering gases in II, only about 15% of the integral cross sections is measured via the apparatus cross sections.

About 50% of the integral cross sections for parity changing transitions originates from the dispersion and induction terms in the potential (Table 8). The ratio of these two contributions to the potential is 7 : 1 . From state-tostate small-angle scattering of CsCl and KCl with rare gas atoms Meyer and Toennies ${ }^{28}$ found an averaged ratio for these terms of $0.63: 1$ and $13.3: 1$ for CsCl and KCl , respectively. For these systems they take only the longrange part of the potential into account in their deflection function and interpretation.

In order to perform a further test of the potentials and of the method of calculating cross sections, for the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ system all cross sections necessary
$\left(J_{i}, K_{i}\right)=(1,1)$
$\left(J_{i}, K_{i}\right)=(2,2)$

$\left(J_{f}, K_{f}\right)$	$\sigma_{i \rightarrow f}^{\alpha}$	$\sigma_{i \rightarrow f}^{\gamma}$	$\left(J_{f}, K_{f}\right)$	$\sigma_{i \rightarrow f}^{\alpha}$	$\sigma_{i \rightarrow f}^{\gamma}$
$(1,1)$	2.060	0.053	$(2,2)$	1.660	0.090
$(2,1)$	0.983	0.173	$(3,2)$	0.330	0.127
$(3,1)$	0.052	0.067	$(4,2)$	0.017	0.010
$(4,1)$	0.010	0	$(5,2)$	0.003	0
$(4,4)$	0	2.427		0	1.768

TABLE 9 : Degeneracy-averaged cross sections (in $10^{-20} \mathrm{~m}^{2}$) for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ scattering; $c=6.9, v_{r}=1887 \mathrm{~m} / \mathrm{s}$.
to interpret line broadenıng (see I) and double-resonance experıments ${ }^{4}$ involving the $(J, K)=(1,1)$ and $(2,2)$ inversion levels, were calculated for a relatıve velocıty of $1887 \mathrm{~m} / \mathrm{s}$ (cell at 300 K). The resulting degeneracyaveraged cross sections are sumarized in Table 9 for $c=6.9$. For the transitions $(1,1) \rightarrow(4,4)$ and $(2,2) \rightarrow(5,5)$ the cross sections originate solely from the interaction leading to the probabılıty given by Eq. (A3). A numerıcal evaluation of the resonance functions $g_{3}(\omega \tau)$ and $g_{7}(\omega \tau)^{9,10}$ showed that they are almost $1 d e n t ı c a l$ for the stralght-path approximation. Therefore for the bent trajectories the g_{3} function 15 used instead of the g_{7} function. For ımpact parameters smaller than 0.23 nm the resulting probability (Eq. (A3)) is set equal to unity, since the theory predicts a larger value. Because the contributions to the other cross sections from this region are only a few percent (Fig. 5), the errors introduced by not using the normalization procedure for the transition probabilities are very small.

With the values of Table 9 cross sections for line broadening or T_{2} experiments on the $(1,1)$ and $(2,2)$ inversion transitions are found to be ${ }^{29}$ $34.9 \times 10^{-20} \mathrm{~m}^{2}$ and $31.7 \times 10^{-20} \mathrm{~m}^{2}$, respectively. The cross sections for T_{1} experıments on the same transıtions are $40.9 \times 10^{-20} \mathrm{~m}^{2}$ and $39.5 \times 10^{-20} \mathrm{~m}^{2}$, respectively. The theoretical values are in good agreement with the experimental results ${ }^{3}$ (see Table 1 of I). In steady-state double-resonance expermments Daly and Oka ${ }^{30}$ found for $\mathrm{NH}_{3}-\mathrm{H}_{2} \Delta \mathrm{I} / \mathrm{I}$ values of 5.2% and 2.3% for the combination $\left(J_{P}, K_{P}\right) \Leftrightarrow\left(J_{S}, K_{S}\right)=(2,1) \Leftrightarrow(1,1)$ and $(3,2) \Leftrightarrow(2,2)$, respectively. The values obtained with the results in Table 9 are 10% and 3.5\%, respectively (Eq. (23) of II). The agreement with the experimental values is reasonable if compared to that found for NH_{3}-He on the same transitions by Davis and Boggs ${ }^{31}$ and by Green ${ }^{18}$. With the same technique as used for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ Fabrıs and oka ${ }^{32}$ observed negative relative intensity changes for NH_{3} - He on these transitions, while theoretical predictions are positive ${ }^{18,31}$. In the same paper Fabris and oka ${ }^{32}$ reported also negative effects for $\mathrm{NH}_{3}-\mathrm{H}_{2}$ on a
number of combinations of pump and signal doublets with $\Delta k= \pm 3$. The largest effects were found for the combinations $(2,2)-(1,1),(4,4)-(1,1)$ and $(5,5)-$ $(2,2)$. In the present investigation only effects for $\Delta k=0$ transitions have been obsexved. No effects were found for the (2,2)-(1,1) transition, which might be due to the fact that the differential cross section is less peaked in forward direction for this transition than for the $\Delta k=0$ transitions. For $\Delta k= \pm 3$ transitions the potential model and collision theory used in the present investigation yield non-zero cross sections only for the (1,1)-(4,4) and $(2,2)-(5,5)$ transitions (Table 9). In Anderson's theory some new term in the potential would be needed to produce other $\Delta k= \pm 3$ transitions. But within the framework of the same theory such a potential term would not contribute to the cross sections for $\Delta k=0$ transitions. Therefore the values presented for the cross sections for the transitions between the $(1,1)$ and $(2,1)$ and between the $(2,2)$ and $(3,2)$ doublet levels are not influenced by the presence or absence of such a potential term.

Experiment and intexpretation, presented in this paper, show that for the systems $\mathrm{NH}_{3}-\mathrm{CO}_{2}$ and $\mathrm{NH}_{3}-\mathrm{N}_{2}$ the long-range permanent-multipole interactions are sufficient to explain the measured apparatus cross sections. For the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$, however, the short-range interactions are dominating. The influence of induction and dispersion terms is clearly demonstrated. With an empirical potential, which includes a repulsive part, a satisfying agreement between theory and experiment has been obtained. Using this potential cross sections for $\Delta J= \pm 1, \Delta k=0$ rotational transitions are predicted with an estimated accuracy of 30%. A reasonable overall agreement with other experiments has been obtained. The integral state-to-state cross sections for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ are important for the interstellar ammonia problem ${ }^{33}$ (see also I). For the relevant transitions and relative velocities these cross sections can be calculated from the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ potential obtained in the present investigation. For $\mathrm{NH}_{3}-\mathrm{H}_{2}$ this paper presents the first cross sections for
transitions between well-defined initial and final states, supported by experimental observations.

ACKNOWLEDGEMENTS

The authors thank Professor J. Reuss for his critical reading of the manuscript and Mr. N. van Hulst for his unfailing enthusiasm and assistance during the measurements. The technical assistance of Messrs. J. Holtkamp and E. van Leeuwen is greatly appreciated.

APPENDIX A : TRANSItION PROBABILItIES RESULTING FROM THE R^{-7} TERMS in the INTERMOLECULAR POTENTIAL

A summary of transition probabilities obtained within the framework of Anderson's theory is given by Robert et al. ${ }^{9}$ for a large number of terms in the long-range intermolecular potential. The induction and dispersion terms that are proportional to R^{-7} and relevant for the $\mathrm{NH}_{3}-\mathrm{H}_{2}$ are in their notation $U_{\mu_{1} \alpha_{2} Q_{1}}, U_{\alpha_{2} A_{1 / /}}$ and $U_{\alpha_{2} A_{1 \perp}}$ (with Q_{1} instead of θ_{1}). The resulting transition probability is obtained by adding all corresponding contributions and cross-term contributions as given in Ref. 9. When this probability is wrıtten as given by Eq. (18) of II, there are two contributions to the probability from the R^{-7} terms in the intermolecular potential that can only cause $\Delta k=0$ transitions.

1) with $\tau_{1}-1, \tau_{2}=0$ and

$$
\begin{equation*}
c_{1}=\frac{3 \pi}{8} \sqrt{\frac{3}{2}}\left\{\mu_{1} Q_{1} \alpha_{2}+\left(\frac{A_{1 / /}+2 A_{1}}{3 a_{1}}\right) c_{6}\right\} / \hbar v_{r} b^{6}, \tag{A1}
\end{equation*}
$$

the resonance function appropriate for this term is the g_{3} function ${ }^{9}$.
2) with $\tau_{1}=3, I_{2}=0$ and

$$
\begin{equation*}
c_{3}=\frac{\pi}{32} \sqrt{\frac{17}{7}}\left\{3 \mu_{1} Q_{1} \alpha_{2}-\left(\frac{4 A_{1}-3 A_{1 / /}}{3 \alpha_{1}}\right) c_{6}\right\} / \hbar v_{r} b^{6} ; \tag{A2}
\end{equation*}
$$

the resonance function appropriate for this term is the g_{4} function ${ }^{9}$. Furthermore there is also a contribution with $\tau_{1}=3$ and $\tau_{2}=0$, arising from the R^{-7} term $U_{\alpha_{2} A_{i}^{\prime}} 10,19$ that can only cause $\Delta K= \pm 3$ transitions:

$$
\begin{array}{r}
P_{p \rightarrow S^{\prime}}^{2 \rightarrow 2^{\prime}}=2 C^{2}\left[\left(\begin{array}{ccc}
J_{p} & 3 & J_{s} \\
-K_{p} & 3 & K_{s}
\end{array}\right)^{2}+\left(\begin{array}{ccc}
J_{p} & 3 & J_{s} \\
-K_{p}-3 & K_{s}
\end{array}\right)^{2}\right] \\
 \tag{A3}\\
\times\left(\begin{array}{ccc}
J_{2} & 0 & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}^{\prime}
\end{array}\right)^{2} g_{7}(\omega \tau)
\end{array}
$$

where

$$
\begin{equation*}
c=\frac{\pi}{48} \sqrt{\frac{4285}{7}} \frac{A_{1}^{\prime} c_{6}}{\alpha_{2} h v_{r} b^{6}} \tag{A4}
\end{equation*}
$$

and $g_{7}(\omega t)$ is the resonance function as given by Bonamy and Robert ${ }^{10}$. In the formulas given above, the following notation is used: μ_{1} is the dipole moment of the primary molecule, Q_{1} is the quadrupole moment of the primary molecule, α_{i} is the polarizability of the i-th molecule, C_{6} is the Lennard-Jones 12-6 potential constant; $A_{1}^{\prime}, A_{1 / /}$ and $A_{1 \perp}$ are the quadrupole polarizability and its anisotropies of the primary molecule 10,19 . The transition probabilities given by Eqs. (A1) and (A2) are parity changing, that of Eq. (A3) is parity conserving.

Figure A1: Geometry of the bent paths.

The contributions of $P_{Z_{1}} Z_{2}$ to the transition probability $p_{1 \rightarrow 1}^{2 \rightarrow 2 '}$ as given by Eq. (18) of II are deduced from the expression

$$
P_{Z_{1} Z_{2}}=\left(\begin{array}{ccc}
J_{1} & Z_{1} & J_{1}^{\prime} \tag{B1}\\
-K_{1} & 0 & K_{1}^{\prime}
\end{array}\right)^{2}\left(\begin{array}{rrr}
J_{2} & Z_{2} & J_{2}^{\prime} \\
-K_{2} & 0 & K_{2}^{\prime}
\end{array}\right)^{2} \quad \underset{m}{ }\left|I_{Z_{\mathrm{m}}}\right|^{2}
$$

where the subscript 1 (2) stands for the primary (secondary) beam molecule and primes indicate the final states; $I_{Z_{m}}$, with $Z_{=} Z_{1}+Z_{2}$, is the time integral fact or as defined by Eq. (9) of Gray and Van Kranendonk ${ }^{13}$. The time integrals $I_{\text {qm }}$ are usually calculated using straight trajectories. In the present investigation bent trajectorles instead of straight paths are used for the system $\mathrm{NH}_{3}-\mathrm{H}_{2}$ in combination with potentials that include a repulsive part.

In the notation of Gray and Van Kranendonk ${ }^{13}$ the bent trajectories are defined for positive deflection angles θ by (see Fig. A1)

$$
\begin{equation*}
R_{t}=R_{0}\left\{1+z^{2}+2|z| \sin (\theta / 2)\right\}^{\frac{1}{2}} \tag{B2}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{0}=b / \cos (\theta / 2) \tag{B3}\\
& z=v_{r} t / R_{0} \tag{B4}\\
& \sin v_{t}=\frac{R_{0}}{R_{t}}\{|1+|z| \sin (\theta / 2)|\} \tag{B5}\\
& \cos v_{t}=\frac{R_{0}}{R_{t}}\{z \cos (\theta / 2)\} \tag{B6}
\end{align*}
$$

$$
\begin{equation*}
\phi_{t}=0 \tag{B7}
\end{equation*}
$$

The time t runs from $-\infty$ to $+\infty$ and the trajectory is symmetrical around $t=0$. The dimensionless variable corresponding to z is

$$
\begin{equation*}
x=\omega \mathrm{R}_{0} / v_{r} \tag{B8}
\end{equation*}
$$

For a potential term $\varepsilon_{q}(R)$ with a long-range radial dependence given by

$$
\begin{equation*}
\varepsilon_{\eta}(R)=\frac{s_{\eta}}{R^{n}} \tag{B9}
\end{equation*}
$$

the expression for the time integral $I_{\chi_{m}}$, using bent trajectories and the potential models $h(R)$ given by Eqs. (1) and (2), is

$$
\begin{align*}
\left|I_{q_{\mathrm{m}}}\right|^{2}=\left(\frac{R_{0} \varepsilon_{Z}\left(R_{0}\right)}{\hbar_{v_{r}}}\right)^{2} & {\left[\left\{\int_{-\infty}^{\infty} h\left(R_{t}\right)\left(\frac{R_{0}}{R_{t}}\right)^{n} \cos (x z) y_{\eta-m}\left(\vartheta_{t}, 0\right) d z\right\}^{2}\right.} \\
& \left.+\left\{\int_{-\infty}^{\infty} h\left(R_{t}\right)\left(\frac{R_{0}}{R_{t}}\right)^{n} \sin (x z) y_{\eta-m}\left(\vartheta_{t}, 0\right) d z\right\}^{2}\right] \tag{B10}
\end{align*}
$$

If the deflection angle θ is negative (attraction) ϕ_{t} changes from $O(\pi)$ to $\pi(0)$ when ϑ_{t} becomes $\pi(0)$, but the resulting expression (Eq. (B10)) is the same. The resonance functions are expressed in terms of $\left|I_{I_{m}}\right|^{2}$ as follows

$$
\begin{equation*}
f_{l}(x)=D_{l} \times b^{2(n-1)} \sum_{m}\left|I_{Z_{m}}\right|^{2} \tag{B11}
\end{equation*}
$$

The normalization constant D_{l} is defined by

$$
\begin{equation*}
\mathrm{D}_{Z}=\left[\mathrm{b}^{2(\mathrm{n}-1)} \sum \quad \sum_{\mathrm{m}}\left|I_{l_{\mathrm{m}}}\right|^{2}\right]^{-1} \tag{B12}
\end{equation*}
$$

with $\theta=0$ and $d(c)$ set equal to $0(\infty)$ in Eq. (B10). The advantage of this definition for the nomalization constants is, that the same constants $C_{\mathcal{Z}}$ in Eq. (18) of II can be used as with straight trajectories. It should be noticed that for the induction and dispersion term with $l=1$ (3) the notation $g_{3}\left(g_{4}\right)$ is commonly used for the resonance function ${ }^{9}$. From Eqs. (B11) and (B12) it is seen that the constant $S_{\mathcal{Z}}$ in $E q$. (B9) is not needed for the calculation of the resonance function.

1 D.B.M.Klaassen, J.M.H.Reijnders, J.J.ter Meulen and A.Dymanus, J.Chem.Phys. 76, 3019 (1982)

2 D.B.M.Klaassen, J.J.ter Meulen and A.Dymanus, to be published.
3 P.Varasani, J.Quant.Spectrosc.Radiat.Transfer, 12, 1283 (1972); J.S.Margolis, J.Quant.Spectrosc.Radiat.Transfer, 15, 637 (1975); J.S.Margolis and S.Sarangi, J.quant.Spectrosc.Radiat.Transfer, 16, 405 (1976); T.Amano, T.Amano and R.H.Schwendeman, J.Chem.Phys. 73, 1238 (1980)

4 T.Oka, "Collision-induced transitions between rotational levels", Advances in Atomic and Molecular Physics, Vol.9, Academic Press (1973)

5 J.M.H.Reijnders, Thesis, Katholieke Universiteit, Nijmegen, The Netherlands (1978)

6 C.J.Tsao and B.Curnutte, J.Quant.Spectrosc.Radiat.Transfer, 2, 41 (1962)
7 A.D.Buckingham, "Permanent and Induced molecular moments and long-range intermolecular forces", Advances in Chemical Physics, J.O.Hirschfelder, editor, Vol.12, Chap. 2, John Wiley \& Sons, New York (1967); H.Margenau and N.R.Kestner, Theory of Intermolecular Forces, Pergamon Press, Oxford (1969); S.Stolte and J.Reuss, "Elastic Scattering Cross Sections II: Noncentral Potentials", Atom-molecule collision theory, Ed. R.B.Bernstein, Plenum Press, New York (1979)

8 G.Birnbaum, "Microwave Pressure Broadening and its Application to Intermolecular Forces", Advances in Chemical Physics, J.O.Hirschfelder, editor, Vol.12, Chap.9, John Wiley \& Sons, New York (1967)

9 D.Robert, M.Giraud and L.Galatry, J.Chem. Phys. 51, 2192 (1969)
10 J.Bonamy and D.Robert, J.Quant.Spectrosc.Radiat.Transfer, 15, 855 (1975)
11 J.Bonamy, J.Quant.Spectrosc.Radlat.Transfer, 16, 213 (1976)
12 A.Kupperman, R.J.Gordon and M.J.Coggiola, Disc.Faraday Soc. 55, 145 (1973)

13 C.G.Gray and J.Van Kranendonk, Can.J.Phys. 44, 2411 (1966)
14 J.O.Hirschfelder, C.F.Curtiss and R.B.Bird, "Molecular Theory of Gases and Liquids", Chap. 1 and Appendix, J.Wiley \& Sons, New York (1965)

15 S.Green, B.J.Garrison and W.A.Lester Jr., J.Chem.Phys. 63, 1154 (1975)
16 B.J.Garrison, W.A.Lester Jr. and H.F.Schaefer III, J.Chem. Phys. 63, 1449 (1975); B.J.Garrison, W.A.Lester Jr., P.Siegbahn and H.F.Schaefer III, J. Chem. Phys. 63, 4167 (1975)

17 S.Green, J.Chem.Phys. 64, 3463 (1976)
18 S.Green, J.Cher.Phys. 73, 2740 (1980)
19 J.Bonamy and D.Robert, Chem.Phys.Letters, 6, 591 (1970)
20 H.Pauly, "Elastic Scattering Cross Sections I: Spherical Potentials", Atom-molecule collision theory, Ed.R.B.Bernstein, Plenum Press, New York (1979)

21 M.S.Child, "Molecular collision theory", page 23, Academic Press, London (1974)

22 P.B.Foreman, K.R.Chien and S.G.Kukolich, J.Chem.Phys. 62, 4710 (1975)
23 D.Laughton, S.M.Freund and T.Oka, J.Mol.Spectrosc. 62, 263 (1976)
24 E.A.Cohen and R.L.Poynter, J.Mol.Spectrosc. 53, 131 (1974)
25 J.A.Th.Verhoeven and J.M.H.Reijnders, Quarterly Report 27 of the Atomic and Molecular Research Group, Fysisch Laboratorium, Katholieke Universiteit, Nijmegen, The Netherlands (1970)

26 N.J.Bridge and A.D.Buckingham, Proc.Roy.Soc.A, 295, 334 (1966)
27 R.W.Bickes Jr., G.Duquette, C.J.N.van den Meifdenberg, A.M.Rulis, G.Scoles and K.M.Smith, J.Phys.B. 8 , 3034 (1975)

28 G.Meyer and J.P.Toennies, J.Chem.Phys. 75, 2753 (1981)
29 R.H.Schwendeman, "Transient effects in microwave spectroscopy", Annual Review of Physical Chemistry, Vol. 29 (1978)

30 P.W.Daly and T.Oka, J.Chem.Phys. 53, 3272 (1970)

31 S.L.Davis and J.E.Boggs, J.Chem.Phys. 69, 2355 (1978)
32 A.R.Fabris and T.Oka, J.Chem.Phys. 56, 3168 (1972)
33 J.S.Sweıtzer, Astrophys.J. 225, 116 (1978); M.Morris, P.Palmer and B.Zuckerman, Astrophys.J. 237, 1 (1980); T.Pauls and T.L.Wilson, Astron. Astrophys. 91, L11 (1980)

BOTSINGSDOORSNEDEN VOOR ROTATIEOVERGANGEN VAN NH 3

Het proefschrift beschrijft een experimenteel onderzoek van rotatieovergangen in ammoniak (NH_{3}) geinduceerd door botsingen met moleculaire waterstof $\left(\mathrm{H}_{2}\right)$ en andere moleculen. Inelastische overgangen van NH_{3} ten gevolge van botsingen met H_{2} vormen een belangrijk onderdeel van de modellen waarmee fysische processen in interstellaire wolken beschreven worden. De intensiteit van inversieovergangen van NH_{3}, waargenomen in de interstellaire ruimte, wordt door astrofysici gebruikt als een test voor deze modellen.

Het onderzoek werd verricht met behulp van een moleculaire-bundelmaser, waarin de primaire NH_{3} bundel gekruist wordt met een dwarsbundel. Met behulp van een microgolftrilholte werd toestandsgevoelig een bepaalde inversieovergang gedetecteerd. Een soortgelijke trilholte werd gebruikt om de bezetting van een ander inversiedoublet te beinvloeden voor het strooigebied. Met behulp van deze dubbelresonantietechniek werd de rotatietoestand van het ammoniakmoleculul voor en na de botsing bepaald.

De experimentele resultaten werden geinterpreteerd in termen van botsingsdoorsneden voor rotatieovergangen van NH_{3}. Met behulp van een semi-klassieke botsingstheorie werden voorspelingen gedaan van de te meten effecten. Metingen met als strooigassen amoniak, methylfluoride $\left(\mathrm{CH}_{3} \mathrm{~F}\right)$, fluoroform $\left(\mathrm{CF}_{3} \mathrm{H}\right)$, kooldioxide $\left(\mathrm{CO}_{2}\right)$ en stikstof $\left(\mathrm{N}_{2}\right)$ konden worden verklaard met bekende intermoleculaire potentialen. Voor het systeem $\mathrm{NH}_{3}-\mathrm{H}_{2}$ werd een empirische potentiaal bepaald. Met behulp van
deze potentiaal zijn integrale botsingsdoorsneden berekend voor een aantal rotatieovergangen van NH_{3}. Met deze berekende doorsneden kunnen experimenten elders aan het systeem $\mathrm{NH}_{3}-\mathrm{H}_{2}$ gedaan verklaard worden.
D.B.M.Klaassen werd op 17 december 1952 geboren te Geleen. Na het eindexamen gymnasium β aan de Scholengemeenschap St.Michiel te Geleen in 1971, volgde de natuurkundestudie aan de Katholieke Universiteit te Nijmegen. Het candidaatsexamen werd in maart 1974 behaald. Na het afstudeerwerk op de afdeling Atoom- en Molecuulfysica onder leiding van prof.dr.J.Reuss volgde het doctoraalexamen (cum laude) in maart 1977. In april 1977 werd het onderzoek dat in dit proefschrift wordt beschreven, begonnen op de afdeling Atoom- en Molecuulfysica onder leiding van prof.dr.A.Dymanus.

1. Bij de interpretatie van hun dubbelresonantie-experimenten aan NH_{3} dienen Matsuhima et al. en Shimizu et al. het door hen veronderstelde tweetrapsproces expliciet in rekening te brengen.

F.Matsuhima, N.Morita, S.Kano and T.Shimizu,
J.Chem.Phys. 70, 4225 (1979)
T.Shimizu, F.Matsuhima and Y.Honguh,
Laser Spectroscopy V, p.212, Ed. A.R.W.McKellar, T.Oka and B.P.Stoicheff, Springer-Verlag, New York (1981).

2. De verhouding waterstofdichtheid/ammoniakdichtheid is in de experimenten van Oka niet groot genoeg om de aan amoniak gemeten effecten alleen aan botsingen tussen ammoniak- en waterstofmoleculen toe te kunnen schrijven.
P.W.Daly and T.Oka, J.Chem.Phys. 53, 3272 (1970)
A.R.Fabris and T.Oka, J.Chem. Phys. 56, 3168 (1972)
3. Voor het systeem KCl-He kan het gedeelte van de intermoleculaire potentiaal rond het minimum niet zonder meer verwaarloosd worden.
G.Meyer and J.P.Toennies, J.Chem.Phys. 75, 2753 (1981)
4. Het gebruik van reciproque centimeters als frequentie-eenheid is slechts dan niet verwarrend wanneer uitgegaan wordt van de golflengte in vacuüm.
F.M.Behlen, D.B.McDonald, V.Sethuraman and
S.A.Rice, J.Chem.Phys. 75, 5685 (1981)
5. Bij de interpretatie van de absorptiepiek van CO-paren in edelgasmatrices, die tot nu toe nog niet volledig in overeenstemming met de experimenten is, moet Dubost ook de resonante dipool-dipool interactie van de aangeslagen toestand beschouwen.

$$
\text { H.Dubost, Chem.Phys. 12, } 139 \text { (1976) }
$$

6. De ontsiering door druk- en andere fouten in het boek van W.Demtröder over laserspectroscopie bereikt op pagina 512 een hoogtepunt.
W.Demtrōder, Laser Spectroscopy, Springer-Verlag, New York (1981)
7. Wie bij het ontwerpen van computerprograma's uitsluitend geimplementeerde talen gebruikt legt zich beperkingen op die niet alleen van notationele aard zijn.
B. Voor een chemicus of bioloog is het voldoende de chemie respectievelijk biologie te bestuderen, een fysicus of mathematicus echter dient de fysica respectievelijk mathematica te beoefenen.
van Dale's Groot Woordenboek der Nederlandse
Taal, Martinus Nijhoff, 's Gravenhage (1976)

Nijmegen, 23 juni 1982
D.B.M. Klaassen

[^0]: * M.A.D.Fluendy and K.P.Lawley, "Chemical Applications of Molecular Beam Scattering", page 40, Chapman and Hall, London 1973

