PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/148127

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

EFFECTIVE RANGE FORMALISM AND THE ELECTROMAGNETIC INTERACTION WITH APPLICATIONS TO PROTON-PROTON SCATTERING

EFFECTIVE RANGE FORMALISM AND THE EIECTROMAGNETIC INTERACTION WITH APPLICATIONS TO
 PROTON-PROTON SCATTERING

PROMOTOR:
PROF. DR. IR. J. J. DE SWART

EFFECTIVE RANGE FORMALISM AND THE ELECTROMAGNETIC INTERACTION WITH APPLICATIONS TO PROTON-PROTON SCATTERING

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN
 AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. P. G. A. B. WIJDEVELD, VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN
 IN HET OPENBAAR TE VERDEDIGEN OP DONDERDAG 18 MAART 1982
 DES NAMIDDAGS TE 4 UUR

door

GERARDUS JOZEF MATHIAS AUSTEN
geboren te Heerlen

Op deze plaats wil $1 k$ graag ledereen bedanken die het totstandkomen van dit proefschrıft mogelljk heeft gemaakt.

In de eerste plaats zıjn dit de huldige en voormalige medewerkers van het Instıtuut voor Theoretısche Fysica te Nıjmegen die door middel van opbouwende dıscussıes en ıdeeen steeds voor mıj klaar stonden. In het bljzonder zou lk hler willen noemen Dr. M.M. Nagels en Dr. T.A. Rıjken op wiens werk ik heb voortgebouwd. Zonder de inspanningen van Drs. W. van der Sanden zou het niet mogelıjk zijn geweest om de ideeen in de praktıjk te toetsen en de programmatuur in korte tıjd klaar te krıjgen.

Verucr wil lk Mevrouw W. Vink danken, die op bekwame wluze ervoor gezorgd heeft dat het manuscrıpt ultgetıkt en drukklaar gemaakt werd.

Bovendien wil $1 k$ noemen de medewerkers van de diverse dienstverlenende afdelingen van de Faculteit der Wiskunde en Natuurwetenschappen, $1 n$ het bıjzonder de afdeling Illustratıe en de medewerkers van het Unıversitalr Reken Centrum.
GENERAL INTRODUCTION 1
PART ONE: EFFECTIVE RANGF THEORY
Chapter I: Effective Range Theory: Introduction and 3
Hıstorıcal Review
1: Basıc effective range theory 3
2: Effectuve range theory in the proton-proton system 9
Chapter II: General Effective Range Theory For Finite Range 12
Potentials
1: Introduction 12
2: The long range potential V_{L} 15
3: The total potential: $V=V_{L}+V_{S}$ 21
4: Effective range functions and the partial wave 25
amplıtude
5: Definition of the effective range function using 30
its analytıc propertıes
Chapter III: Effective Range Theory For Potentials Which 35
Contaln the Coulomb Interaction
1: Introduction 35
2: The Coulomb wave function 38
3: Long range potentlals contalning the Coulomb 44
interactıon
4: The effective range function 50
Chapter IV: The Fffective Range Identıty: Parametrizating 56
the Effective Range Function
1: Introduction 56
2: The effective range function and the pole 59
approximation
3: CFS approxımations 64
Chapter v. Approximations and Numerical Calculations of 71
N_{L}, H_{L} and δ_{L}
1: Introduction 71
2: Pole approximations 72
3: Born approximations 78
4: Numerical calculation of the effective range 80
functions $1 n$ proton-proton scattering
5: Approximations versus exact calculations 87
Chapter VI: Application To the Proton-Proton System: Deter- 93
mination of the π^{0} pp Coupling Constant From Low
Energy Scatterıng Data
1: General characterıstics of the NN system in the 93
${ }^{1}$ ${ }^{1} S_{0}$ partial wave
2: Determination of the pion coupling constant from 98s-wave phase shıfts; test with the help of apotential model
3: Determanation of the $\pi^{0} \mathrm{pp}$ coupling constant 106
from experımental data
Appendix114

PART TWO: THE ELECTROMAGNETIC INTERACTION
Chapter I: Introduction and Motivation 123
Chapter II: The Bethe-Salpeter Equation, BSIIT Three 130Dimensional Approximation and the Electromagnet 1 c
Interactıon
1: Introduction and the Bethe-Salpeter equation 130
2: BSLT-equatıons or relatıvıstıc three-dımensional 136
scattering equations
3: The electric potential as derived from the BSLT 143equations
Chapter III: Three Dimensional Equations in " φ " Theory 152
1: Chorce of the pseudopropagator 152
2: The $1 / \mathrm{M}$ expansion 161
3: Calculation of the first three terms in the $1 / M$ 164expansion for the potential
4: Comparıson between different pseudopotentials 171
Chapter IV: The Electromagnetic Potential: Spın-0 - Spın-0 174
Scatterıng
Chapter V: The Potentıal For Spın-1/2 - Spın-1/2 Scatterıng 181
Chapter VI: The Electric Potential In Low Energy Nucleon- 194
Nucleon Scattering
1: Corrections for the Coulomb amplitude 194
2: Corrections on the effective range functions 202
Appendix A: Contributions from 6th order dıagrams in φ^{3} 207
theory to the potential
Appendix B: Equivalent potentials in the Lippmann-Schwinger 211
equation
Appendix C: The potentials in configuration space 217
REFERENCES 219
SAMENVATTING 223
CURRICULUM VITAE 229

In thas thesis on effective range theory and the electromagnetic interaction, we study two aspects which are of importance in the analysis of proton-proton scattering data and the description of this process with the help of a potential model.

The first part of this thesis describes a generalized effective range formalism which at present is used to analyse experimental proton-proton scattering data for laboratory energies below 30 Mev. In principle it could be used up to 300 MeV ; $1 n$ this way the origanal energy region for which effective range theory was belleved to work fine ($0-10 \mathrm{MeV}$) is extended up to the first inelastic channel.

The main goal of the first part is to provide a thorough basis for the modified effective range theory. We will consider only single channel scattering and omit generalızations to coupled channels (which are rather straightforward). As an appllcation we will show this theory can be used to determine the pion-nucleon coupling constant.

The effective range theory was originally developed fourty years ago [La 44, Sch 47]. In its most simple form it gives a prescription of the total phase shift as a function of the energy in terms of a few phenomenological parameters. However, in proton-proton scattering this total phase shift is very difficult to parametrize since it contains also a part which is generated by the electric interaction. Therefore this part is subtracted from the total phase shift and the remainder, the so-called nuclear phase shift is parametrized. In this way Coulomband vacuum polarızation corrected effective range formulas have been derıved $1 n$ the past $[\mathrm{Be} 49, \mathrm{He} 60]$.

Also one has tried to incorporate $1 n$ the effective range theory some information of the most well-known part of the nuclear interaction the one pion exchange mechanism. However, thas was done only in an approximated form or with the help of techniques which are difficult to handle in practice [CFS 59, No 64]. In the most frequently used method - the Cini, Fubini, Stanghellini approximatıon - two approximations were made which tend to cancel each other in the $0-10$ MeV region, the one pion cut is replaced by one pole - weakening the total attraction - and the remainder of the interaction 15 parametrized such that it cannot support the short range repulsion, which has the reverse effect. The first approximation appeared to be critical when a few years ago the second approximation was removed [Em 79, Sa 79] and a pion-nucleon constant $g^{2} / 4 \pi=20$ was obtaıned from the $0-30$ MeV proton-proton data.

In this thesis we will show how to incorporate in the effective range theory every interaction which can be solved in closed form or computed with numerical methods. Also we will pay attention to the phenomenological representation of that part of the interaction that is unknown (or less well-known)

The basic idea behind the generallzed effective range theory is that the interaction between two particles can be considered as to consist of two parts. one part for whlch one has a good theoretical description (for instance a potential model) and another part for which this description does not exist or 15 too complicated to handle in first instance. In proton-proton scattering one could consider the electric interaction and the long range pion-exchange mechanism as the well-known part, the medium- and short-range nuclear interaction
as the second and less well-known part.

The generalized effective range theory will comblne these two aspects of the 1 nteraction $1 n$ a simple way and predict phase shitts as a function of the energy once one has choosen a sultable parametrization of the second part of the interaction; independent of this phenomenological parametrization the first part of the interaction, included in the definition of the effective range function, 15 always represented correctly in the total phase shift.

The success of effective range theory strongly depends on the amount of the interaction which can be taken into account exactly. Every part of the interaction which is not or incorrectly incorporated In the basic effective range functions must be represented in the phenomenological part. This ls especidlly the case for the long range electric ınteraction since it involves an infinite number of terms in a partial wave series of the amplitude.

Therefore this electromagnetic interaction is considered in detall in the second part of this thesis. A method is developed to obtain a potentıal in confıguration space which descrıbes the electromagnetıc interaction not only in lowest (nonrelatıvistic) order, but which also contains relativistic corrections. It is possible to apply this potential to higher scattering energies or to situations where, due to other interactions, the partıcles obtaın relatıvıstic velocıtıes in the potential region. Effective range functions for this "relativistic" Coulomb potentıal are derived in the last chapter.

The results of the second part of this thesis are not only of importance for the actual application of the effective range theory. In fact the same method can also be applied to the strong interactions.

Starting from d field theoretical description of the interaction, we will review and modify the standard techniques which are used to. obtain effective potentials which must describe this interaction. Since this reduction can only be performed by successive approximations, we will use a method based on an expansion in terms of the nucleon mass. In this way it is possible to pursue a consistent course in the bookkeeping of terms which must be kept and neglected.

Part One:

Effective Range Theory

Effective range theory: introduction and historical review

1. Basic effective range theory

Effective range theory has been used in physics for more than thirty years to characterıze and analyse two particle scattering in the low energy (near threshold) reglon. In this thesis we will deal malnly wath two nucleon scattering. However, the results can often be applied to any other two particle system.

Effective range theory borrows its importance from the fact that for low energies, scattering is mainly determined by the s-wave phase shıft. This can be verıfıed experimentally by observing the spherical symmetry of the scattering in the center of mass system at low energles*. Experımentally we can measure the cross section at different energıes of the incident particle which gives the behaviour of the s-wave phase shift δ_{0} as a function of the energy. It appears that δ_{0} (and therefore the cross section), up to first order, is determined by Just two numbers as a function of the energy near threshold in the effective range approximation:

$$
\begin{equation*}
k \cot \delta_{0}=-\frac{1}{a}+\frac{1}{2} r k^{2} \tag{1}
\end{equation*}
$$

with k the center of mass momentum of a nucleon**.

[^0]The quantity "a" is called the scattering length and is related to the total cross section at zero energy by (neglecting Coulomb complications):

$$
\begin{equation*}
\sigma_{\text {tot }}(\mathrm{E}=0)=4 \pi \mathrm{a}^{2} * \tag{2}
\end{equation*}
$$

whlch shows that a has the dimension of a length. The other quantity "r" $1 s$ called the effectıve range and has also the dimension of a length. The name "scattering length" comes from the observation that the scattering wave function (radial, s-wave), outside the range of the potentral appears to be:
$\sim \sin \left(k r+\delta_{0}\right) \underset{\delta \rightarrow 0}{\approx} \sin (k(r-a))$
and seems to be shifted over a length "a" with respect to the wave function without scattering. The value of the "effective range" is a rough indication of the spatial size of the interaction as we will see later.

The fact that the function k cot δ_{0} (and in proton-proton scatterıng a combination lıke. $\left.k C_{0}^{2}(\eta) \cot \delta_{0}+2 n k h(n)\right)$ has been taken to parametrize, is explained in effective range theory which was developed by Landau [La 44] and by Schwınger [Sch 47] using the varıational method and further explolted by Blatt and Jackson [Bl 49]. A simpler deduction was proposed by Bethe [Be 49] who also modifled the theory for proton-proton scattering (Coulomb interaction). In this chapter we will

[^1]$$
\sigma_{\text {tot }}=4 \pi\left(\frac{3}{4} a_{t}^{2}+\frac{1}{4} a_{s}^{2}\right)
$$
follow Bethe's method since it is simple and intuitıvely clear. Consider the scattering of a particle in the $\ell=0$ state by a (central) potential (or two partıcle scatterıng $1 n$ the "relatıve" system).

The radıal part of the wave function satısfies the radıal

Schrodinger equation; for energy E_{1} and wave function u_{1} :

$$
\begin{equation*}
u_{1}^{\prime \prime}+\left(k_{1}^{2}-v(r)\right) u_{1}=0 \tag{3a}
\end{equation*}
$$

with k_{1} the center of mass momentum and $V(r) *$ the potentıal multiplied wlth two times the reduced mass. For another energy E_{2} and wave function u_{2}, we have:

$$
\begin{equation*}
u_{2}^{\prime \prime}+\left(k_{2}^{2}-v(r)\right) u_{2}=0 \tag{3b}
\end{equation*}
$$

Equations (3a) and (3b) are second order differential equations and each has two independent solutions. The "physical" wave function has the boundary condition:

$$
\begin{equation*}
u_{1}(0)=u_{2}(0)=0 \tag{4}
\end{equation*}
$$

Phase shifts δ_{1} and δ_{2} are determined by the asymptotic $(x \rightarrow \infty)$ limut of these solutions; for potentials which fall off faster than $\frac{1}{r}$ for r $\rightarrow \infty$ one has:

$$
\begin{align*}
& u_{1}(r) \underset{r \rightarrow \infty}{\sim} \sin \left(k_{1} r+\delta_{1}\right) \tag{5}\\
& u_{2}(r) \underset{r \rightarrow \infty}{\sim} \sin \left(k_{2} r+\delta_{2}\right)
\end{align*}
$$

Let us normalize the wave functions by:

[^2]\[

$$
\begin{align*}
& u_{1}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{\sin \left(k_{1} r+\delta_{1}\right)}{\sin \delta_{1}} \equiv \bar{u}_{1}(r) \\
& u_{2}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{\sin \left(k_{2} r+\delta_{2}\right)}{\sin \delta_{2}} \equiv \bar{u}_{2}(r) \tag{6}
\end{align*}
$$
\]

which ımplıes:

$$
\bar{u}_{1}(0)=\bar{u}_{2}(0)=1
$$

and

$$
\bar{u}_{1}^{\prime \prime}+k_{1}^{2} \bar{u}_{1}=\bar{u}_{2}^{\prime \prime}+k_{2}^{2} \bar{u}_{2}=0
$$

Multiplying eq. (3a) with u_{2} and eq. (3b) with u_{1} and subtracting both equations, we obtain after integrating the result over r from 0 to infinity:

$$
\begin{equation*}
\left.\left(u_{2} u_{1}^{\prime}-u_{1} u_{2}^{\prime}\right)\right|_{0} ^{\infty}=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{\infty} u_{1} u_{2} d r \tag{7a}
\end{equation*}
$$

The same procedure gives for the barred functions:

$$
\begin{equation*}
\left.\left(\bar{u}_{2} \bar{u}_{1}^{\prime}-\bar{u}_{1} \bar{u}_{2}^{\prime}\right)\right|_{0} ^{\infty}=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{\infty} \bar{u}_{1} \bar{u}_{2} d r \tag{7b}
\end{equation*}
$$

Subtracting the last two equations the values at infinity
at the left hand side do not contribute since barred and unbarred functions colncide by definition. For $r=0$ there is only a contributIon from the barred ones due to boundary condition (4) and therefore, using eq. (6) we get:

$$
\begin{equation*}
k_{2} \cot \delta_{2}-k_{1} \cot \delta_{1}=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{\infty}\left(\bar{u}_{1} \bar{u}_{2}-u_{1} u_{2}\right) d r \tag{8}
\end{equation*}
$$

This equation $1 s$ exact and forms the basis of the classiceffective range theory. As it stands, however, it gives no immediate information since the barred functions in the integrand at the right hand side contain the phase shifts (appearıng also in the left hand side) and the unbarred pnysical wave functions are not measurable. Equation (8) can be derived
in another way when one realızes that the physical wave functions u_{1} and u_{2} are orthogonal for $E_{1} \neq E_{2}$ and therefore:

$$
\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{\infty}\left(\bar{u}_{1} \bar{u}_{2}-u_{1} u_{2}\right) d r=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{\infty} \bar{u}_{1} \bar{u}_{2} d r
$$

Since \bar{u}_{1} and \bar{u}_{2} are explicitly known (eq. (6)), the remaining integral can be calculated, resulting into the left hand side of eq. (8) (see [Au 58]). Defining the "mixed effective range":

$$
\begin{equation*}
\rho\left(k_{1}^{2}, k_{2}^{2}\right)=2 \int_{0}^{\infty}\left(\bar{u}_{1} \bar{u}_{2}-u_{1} u_{2}\right) d r \tag{9}
\end{equation*}
$$

eq. (8) becomes:

$$
\begin{equation*}
k_{2} \cot \delta_{2}-k_{1} \cot \delta_{1}=\frac{1}{2}\left(k_{2}^{2}-k_{1}^{2}\right) \rho\left(k_{1}^{2}, k_{2}^{2}\right) \tag{8b}
\end{equation*}
$$

We observe that the main contribution to the integral, defining p, comes from inside the potential range. In this region the physical wave function wall depend only slightly on the momentum (if it is not too big). Also the comparison functions \bar{u}_{1} and \bar{u}_{2} are in first order independent on the energy for small r since they are defined to be 1 in the origin. Therefore the approximation:

$$
\begin{equation*}
\rho\left(k_{1}^{2}, k_{2}^{2}\right) \simeq \rho(0,0)=r \tag{10a}
\end{equation*}
$$

$1 s$ probably not too crude for small momenta. Using the result of standard scattering theory that the s-wave phase shift goes to zero linear in k one defines:

$$
\begin{equation*}
-\frac{1}{a}=\lim _{k_{1} \rightarrow 0} k_{1} \cot \delta_{1} \tag{10b}
\end{equation*}
$$

In this way we obtain the effective range approximation ($k \mathrm{k}_{2}$):

$$
\begin{equation*}
k \cot \delta=-\frac{1}{a}+\frac{1}{2} r k^{2} \tag{11}
\end{equation*}
$$

which $1 s$ tne lowest order Taylor expansion of the exact formula:

$$
\begin{equation*}
k \cot \delta=-\frac{1}{a}+\frac{1}{2} k^{2} \rho\left(k^{2}, 0\right) \tag{12}
\end{equation*}
$$

It $1 s$ difficult to make an estimate of the accuracy of the approxımation eq. (11) without explıcıt knowledge of the potential. The arguments based on the energy independence of the physical and comparıson wave functions lead to the conditions:

$$
\begin{array}{l|l}
k^{2} \ll V(r) \\
k r \ll 1 & \text { inside the } \\
\text { potential region }
\end{array}
$$

For the neutron-proton scattering system in the ${ }^{1} S_{0}$ state, which potential in the outer regions approximates the one pion potential:

$$
0.16 \mathrm{M}_{\text {red }} \frac{e^{-m_{\pi^{r}}}}{r}
$$

these conditions (for $r=\frac{1}{m_{\pi}}$) lead to:

$$
E_{l a b} \ll 20 \mathrm{MeV} .
$$

Another estimate $1 s$ based on the analytic properties in k^{2} of eq.
(12). The s-wave scattering amplitude can be writton as:

$$
\begin{equation*}
\frac{e^{21 \delta}-1}{21 k}=\frac{1}{k \cot \delta-1 k}=\frac{1}{-\frac{1}{a}+\frac{1}{2} \rho\left(k^{2}, 0\right) k^{2}-1 k} \tag{13}
\end{equation*}
$$

It follows from standard scattering theory that this amplıtude (and therefore $\rho\left(\mathrm{k}^{2}, 0\right)$) will possess dynamical singularities in the complex k plane starting at:

$$
k=1 \geq \frac{m_{\pi}}{2}
$$

with m_{π} the lowest exchanged mass in the potential. Therefore an expansion of $\rho\left(k^{2}, 0\right)$ wıll diverge for momenta: $|k|>\frac{m_{\pi}}{2}$ which corresponds to the condition:

$$
E_{l a b}>10 \mathrm{MeV}
$$

In the neutron-proton system the effective range approximation appears to be good wathin a few per cent up to 40 MeV .

2. Effective range theory in the proton-proton system

The proton-proton system differs from the neutron-proton system (considered 1 n section 1) in several aspects:

1. The interaction is complicated by long range electric interactions (Coulomb + vacuum polarization);
2. Experimental data are very accurate.

Due to the electric interaction the theory as developed in section 1 cannot be used. Besides the complication that the asymptotic form of the wave function as used in eq. (5) ff 15 not correct, it appears that effective range functions of the form: $k \cot \delta$ will have an essential singularity at $\mathrm{F}_{1 \mathrm{ab}}=0 \mathrm{MeV}$ due to the Coulomb interaction, and a cut starting at $-10^{-3} \mathrm{MeV}$ due to the vacuum polarızation. These problems were solved by Bethe and Heller [Be 49, He 60].

The Coulomb singularities are removed in the effective range function (s-wave) $P^{C}\left(k^{2}\right)$:

$$
\begin{equation*}
P^{c}\left(k^{2}\right) \equiv k C_{0}^{2}(\eta) \cot \delta^{c}+2 \eta k h(\eta) \tag{14}
\end{equation*}
$$

with δ^{c} the phase shift defined by the asymptotic limit of the physical wave function:

$$
\begin{align*}
& u(0)=0 \\
& u(r) \underset{r-\infty}{\longrightarrow} \sim \sin \left(k r-n \log 2 k r+\sigma_{0}+\delta^{c}\right) \tag{15}
\end{align*}
$$

$\eta=$ Coulomb parameter $=\frac{M \alpha}{2 k}, \sigma_{0}=$ Coulomb phase $=\arg \Gamma(1+1 \eta)$.
In eq. (14) $C_{0}(n)$ and $h(n)$ are complicated functions which depend only on the Coulomb interaction. For their definition we refer to chapter III. A simılar procedure can be applied to the vacuum polarization. Defining: $\delta^{E}=\delta^{C}-\tau_{0}, \tau_{0}$ being the vacuum polarization phase shift, Heller derıved the effective range function $p^{c, v}\left(k^{2}\right)$:

$$
\begin{equation*}
P^{c, v}\left(k^{2}\right) \equiv \frac{k c_{0}^{2}(n)}{1-\phi_{0}}\left[\left(1+x_{0}\right) \cot \delta^{E}-\tan \tau_{0}\right]+2 n k\left(h(n)+\ell_{0}(n)\right) \tag{16}
\end{equation*}
$$

with X_{0}, ϕ_{0} and l_{0} functions obtained from the vacuum polarization interaction only. The function $P^{c, v}\left(k^{2}\right)$ removes also the nearest vacuum polarızation singularıties at $-10^{-3} \mathrm{MeV}$. It appears that the nearest singularıty is now determined by the pion interaction at $E_{l a b}=-10 \mathrm{MeV}$.

The behaviour of $p^{c, v}\left(k^{2}\right)$ as a function of the energy, is roughly the same as the one derıved for the ${ }^{1} S_{0}$ neutron-proton system eq. (12) and is discussed in chapter VI.

Due to the very accurate proton-proton sacttering data in the low energy region, the effective range approximation of the effective range function:

$$
\begin{equation*}
p^{c, v}\left(k^{2}\right)=-\frac{1}{a^{c, v}}+\frac{1}{2} r^{c, v} k^{2} \tag{17}
\end{equation*}
$$

is too crude; one adds another expansion parameter p - the shape - and obtains what is called the shape dependent approximation:

$$
\begin{equation*}
P^{c, v}\left(k^{2}\right)=-\frac{1}{a^{c, v}}+\frac{1}{2} r^{c, v} k^{2}-p^{c, v} r^{3} k^{4} \tag{18}
\end{equation*}
$$

This approximation is believed to work fine up to 10 MeV ; for larger energıes deviations become bigger (partially caused by the cut at - 10 MeV from the pion interaction). In the shape dependent approxımation of $p^{c, v}\left(k^{2}\right)$ the parameters $a^{c, v}, r^{c, v}$ and $p^{c, v}$ are purely phenomenological parameters, determined by experıment only. To get rid of one parameter and also to extend approximately the radius of convergence of the serıes, the Cini-Fubini-Stanghellini approximation was derıved [CFS 59, Wo 62, No 64]:

$$
\begin{align*}
& P^{c, v}\left(k^{2}\right)=-\frac{1}{a^{c, v}}+\frac{1}{2} r^{c, v} k^{2}-r^{3} \frac{p^{c, v} k^{4}}{1+q^{c, v} k^{2}} \tag{19}\\
& p^{c, v}, q^{c, v}=\text { functions of } a^{c, v}, r^{c, v} \text { and } p \text { pon couplıng constant }
\end{align*}
$$

We will comment later on the accuracy of this aporoximation.

From the discussion up to now it will be clear that effective range theory has two different aspects:
(1) the calculation of a suitable effective range function which must be as smooth as possible as a function of energy;
(11) the choice of a suitable parametrization of the effective range function with a minımum number of phenomenological parameters.

These two points are closely connected with each other and with the analytic properties of the effective range function. We will not use Bethe's method, as described in section 1, for several reasons:
(ı) For hıgher partıal waves and/or Coulomb interactıons it looses its simplicity and involves much computational work;
(11) In Bethe's method the analytic properties of the effective range function do not clearly emerge;
(111) It is dıfficult to find out which parametrızation must be used and how many parameters will be needed.

1. Introduction

Consider sangle channel scattering, described by the radial
Schrodinger equation:

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\left(k^{2}-\frac{\ell(\ell+1)}{r^{2}}-v\right)\right) u=0 \tag{1}
\end{equation*}
$$

with V a local, energy independent potential (multiplied with two times the reduced mass), satisfyıng the following properties:

$$
\begin{aligned}
& V(r) \underset{r \rightarrow \infty}{\rightarrow} \text { drops exponentially } \\
& V(r) \text { is analytic in } r \text { for } R e r>0 .
\end{aligned}
$$

Generalızations for potentials which have a $1 / r$ tail or a simple pole at the origin will be treated in the following chapters.

The phase shift δ_{ℓ} of $V, 1 s$ determined from the asymptotic behaviour of the regular solution of (1), defined by:

$$
\begin{align*}
& u(r) \underset{r \rightarrow 0}{\longrightarrow} \sim \frac{r^{\ell+1}}{(2 \ell+1)!!} \tag{2}\\
& u(r) \underset{r \rightarrow \infty}{\longrightarrow} \operatorname{constant} \times\left(\cos \delta_{\ell} J_{\ell}(k r)+\sin \delta_{\ell} n_{\ell}(k r)\right) k r
\end{align*}
$$

where J_{ℓ} and $n_{\ell}{ }^{*}$ are the spherical Bessel and Neumann functions.
The collection of all $\delta_{l}^{\prime} s$ contains the scattering information of the potential V. For instance the scattering amplitude is given by:

[^3]$$
n_{\ell}(z) \underset{z \rightarrow 0}{\longrightarrow} z^{-\ell-1}(2 \ell-1)!!
$$
\[

$$
\begin{equation*}
F_{V}(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \frac{e^{21 \delta} \ell}{2 I k}-1 P_{\ell}(\cos \theta) \tag{3}
\end{equation*}
$$

\]

The phase shifts δ_{ℓ} will be fitted in such a way that they can reproduce the experimental information. To connect data at different energies one often uses the effective range expansion:

$$
\begin{equation*}
P\left(k^{2}\right) \equiv k^{2 \ell+1} \cot \delta_{\ell}=-\frac{1}{a_{\ell}}+\frac{1}{2} r_{\ell} k^{2}+\cdots \tag{4}
\end{equation*}
$$

However, the serıes expansion(4) has a radıus of convergence in k^{2} which is determined by the behaviour of the potential for $r \rightarrow \infty$. Assumıng:

$$
\begin{equation*}
V(r) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-\mu_{L} r} \tag{5}
\end{equation*}
$$

then we will prove that (4) is convergent for $\left|k^{2}\right|<\mu_{L}^{2} / 4$.
Suppose the potential is a superposition of two parts:

$$
\begin{equation*}
V(r)=V_{L}(r)+V_{S}(r) \tag{6}
\end{equation*}
$$

with:

$$
\begin{aligned}
& V_{L}(r) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-\mu} L^{r} \\
& V_{S}(r) \underset{r \infty}{\longrightarrow} \sim e^{-\mu} S^{r}
\end{aligned}
$$

and: $\mu_{S}>\mu_{L}, V_{L}$ and V_{S} both analytic in $r(\operatorname{Re} x \geq 0)$.
The potential V_{L} will be supposed to be known in closed form and with a range which is longer than the potential V_{S} which is unknown (or not well known). The expansion of the effective range function (4) is limited by the potential V_{L} with the longest range.

The purpose of general effective range theory is to dusentangle the information from the potentials V_{L} and V_{S} in such a way that finally we have a formalism in which only the V_{S} potential is represented by phenomenological parameters; this in contrast with eq. (4) where a_{ℓ} and r_{ℓ} parametrize V_{S} as well as V_{L}.

As applications of the decomposition (6) one could imagine:
np scattering with: $\quad V_{L}=0$
$V_{S}=$ nuclear potential
which is in fact the trivial decomposition and will ultimately lead to the old effective range formalısm, eq. (4);
or:
np scattering with: $\quad V_{L}=$ pion potential
$V_{S}=$ nuclear minus the plon potential
After generalization to potentials with an r^{-1} tail and/or a simple pole in the origin:
pp scattering with: $\quad V_{L}=$ Coulomb potentıal

$$
V_{S}=\text { vacuum polarization }+ \text { nuclear potential }
$$ which ls obtalned by using the effective range function $P^{C}\left(k^{2}\right)$, eq. (1.14);

or:
pp scattering with: $\quad V_{L}=$ Coulomb + vacuum polarization potential

$$
V_{S}=\text { nuclear potential }
$$

leading to the effective range function $p^{c, v}\left(k^{2}\right)$, eq. (16);
or:
pp scattering with: $\quad V_{L}=$ Coulomb + vacuum polarization + pion potential
$V_{S}=$ nuclear manus the plon potential.
The effective range function $P^{L}\left(k^{2}\right)$ for a long range potential V_{L}, is determined by the properties of the solutions of the radial schrodinger equation in which only V_{L} is present. This will be studied in the next section.

Again we start with the radial Schrodinger equation, now for potential V_{L} only:

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\left(k^{2}-\frac{\ell(\ell+1)}{r^{2}} v_{L}\right)\right) v=0 \tag{7}
\end{equation*}
$$

This second order linear differential equation has two independent solutions, whlch we will define by boundary conditions at the origin:
the regular solution v_{R} with:

$$
\begin{equation*}
v_{R}(r) \underset{r \rightarrow 0}{\longrightarrow} \frac{1}{(2 \ell+1)!!} r^{\ell+1}+O\left(r^{\ell+2}\right) \tag{8}
\end{equation*}
$$

the irregular solution V_{I} with:

$$
\begin{equation*}
v_{I}(r) \underset{r \rightarrow 0}{\longrightarrow}(2 \ell-1):!r^{-\ell}+O\left(r^{-\ell+1}\right) \tag{9}
\end{equation*}
$$

They satısfy the Wronskıan relatıon:
$W\left(v_{R}, v_{I}\right)=v_{R}^{\prime} v_{I}-v_{I}^{\prime} v_{R}=1$

The regular solution is uniquely determined by the boundary condition (8). The irregular solution, however, 15 not completely fixed by (9): one can add a multiple of the regular solution; we will return on this polnt in the following (see also appendix I).

Defining $\bar{\jmath}_{\ell}$ and \bar{n}_{ℓ} by:

$$
\begin{align*}
& \bar{J}_{\ell}(r)=\frac{1}{k^{\ell+1}} \jmath_{\ell}(k r) k r \\
& \bar{n}_{\ell}(r)=k^{\ell} n_{\ell}(k r) k r \tag{10}
\end{align*}
$$

one can write the integral equations:

[^4]\[

$$
\begin{align*}
& v_{R}(r)=\bar{J}_{\ell}(r)+\int_{0}^{\infty} G\left(r, r^{\prime}\right) v_{L}\left(r^{\prime}\right) v_{R}\left(r^{\prime}\right) d r^{\prime} \tag{11}\\
& v_{I}(r)=a \bar{n}_{\ell}(r)+b \bar{J}_{\ell}(r)+\int_{\varepsilon}^{\infty} G\left(r, r^{\prime}\right) v_{L}\left(r^{\prime}\right) v_{I}\left(r^{\prime}\right) d r^{\prime}
\end{align*}
$$
\]

wath:

$$
\begin{align*}
& a=\left.W\left(\bar{J}, v_{I}\right)\right|_{r=\varepsilon} \tag{12}\\
& b=\left.W\left(v_{I}, \bar{n}\right)\right|_{r=\varepsilon}
\end{align*}
$$

and $G\left(r, r^{\prime}\right)=0 \quad r<r^{\prime}$

$$
\begin{equation*}
=\bar{J}_{\ell}(r) \bar{n}_{\ell}\left(r^{\prime}\right)-\bar{n}_{\ell}(r) \bar{\jmath}_{\ell}\left(r^{\prime}\right) \quad r \geq r^{\prime} \tag{13}
\end{equation*}
$$

The number ε is finite, not equal to zero. The integral equation for $v_{\text {I }}$ is not defined for $\varepsilon=0$ due to the singularity of the integrand at $r=0$ (like $r^{-2 \ell}$). In appendix I we give more details about the regular and irregular solution and a short proof of the following analytıc properties.
$-v_{R^{\prime}} v_{I}, \bar{j}_{\hat{\chi}}$ and \bar{n}_{ℓ} are for fimite rentire functions of k^{2}. This is a consequence of the fact that the boundary conditions (8), (9) are analytic in k^{2};
$-v_{R}$ and \bar{J}_{ℓ} are entire functions in r (Re $r \geq 0$);

- V_{I} is analytic in r (Re $r \geq 0$) except for a singularity at the orıgin and a cut starting at $r=0$ along the negative axis. The modifled Neumann function \bar{n}_{ℓ} has only a pole in the origln.
We can rewrite eq. (11) into:

$$
\begin{equation*}
v_{R}(r)=\left(1+\int_{0}^{r} \bar{n}_{\ell} v_{L} v_{R} d r^{\prime}\right) \bar{\jmath}_{\ell}(r)-\left(\int_{0}^{r} \bar{j}_{\ell} v_{L} v_{R} d r^{\prime}\right) \bar{n}_{\ell}(r) \tag{14}
\end{equation*}
$$

and:

$$
\begin{equation*}
v_{I}(r)=\left(a-\int_{\varepsilon}^{r} \bar{J}_{\ell} v_{L} v_{I} d r^{\prime}\right) \bar{n}_{\ell}(r)+\left(b+\int_{c}^{r} \bar{n}_{\ell} v_{L} v_{I} d r^{\prime}\right) \bar{j}_{\ell}(r) \tag{15}
\end{equation*}
$$

Since V_{L} has a finlte range we can write v_{R} and v_{I} for $r \rightarrow \infty$ as a Ilnear combination of the Bessel and Neumann functions (x kr). We will do this in a special way and defıne three functions: N_{I}, H_{L} and δ_{L} connected with the asymptotic limat:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{R}} \underset{\mathrm{r} \rightarrow \infty}{ } \mathrm{~N}_{\mathrm{L}}\left(\cos \delta_{\mathrm{L}} \mathrm{~J}_{\ell}+\sin \delta_{\mathrm{L}} \mathrm{n}_{\ell}\right) \mathrm{kr} \tag{16}\\
& v_{I} \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{N_{L} k}\left(\cos \delta_{L} n_{\ell}-\sin \delta_{L} J_{\ell}\right) k r \\
& -H_{L} N_{L}\left(\cos \delta_{L} J_{\ell}+\sin \delta_{L} n_{\ell}\right) k r
\end{align*}
$$

In eq. (16) we have used: $W\left(v_{R^{\prime}}, v_{I}\right)=1$.
Using eq. (10), (14), (15) and (16) we obtaln:

$$
\begin{align*}
& \tan \delta_{L}=-k^{2 \ell+1} \frac{\int_{0}^{\infty} \bar{\jmath}_{\ell} V_{L} V_{R}}{1+\int_{0}^{\infty} \bar{n}_{\ell} V_{L} V_{R}} \\
& N_{L} \cos \delta_{L}=\frac{1}{k^{\ell+1}}\left(1+\int_{0}^{\infty} \bar{n}_{\ell} V_{L} v_{R}\right) \tag{17}\\
& N_{L} \sin \delta_{L}=-k^{\ell} \int_{0}^{\infty} \bar{\jmath}_{\ell} v_{L} v_{R} \\
& \frac{\cos \delta_{L}}{N_{L} k}-H_{L} N_{L} \sin \delta_{L}=k \hat{\ell}^{\hat{\ell}}\left(a-\int_{\varepsilon}^{\infty} \bar{\jmath}_{\ell} V_{L} V_{I}\right) \\
& -\frac{\sin \delta}{N_{L} k}-H_{L} N_{L} \cos \delta_{L}=k^{-\ell-1}\left(b+\int_{\epsilon}^{\infty} \bar{n}_{\ell} V_{L} v_{I}\right)
\end{align*}
$$

Analytic properties of N_{L}, H_{L} and δ_{L} are derived by first defining the functions:

$$
\begin{equation*}
\mathrm{R}^{ \pm}=\int_{0}^{\infty}\left(\overline{\mathrm{n}}_{\ell}+_\overline{\mathrm{J}}_{\ell} \mathrm{k}^{2 \ell+1}\right) \mathrm{V}_{L} \mathrm{v}_{\mathrm{R}} \mathrm{dr} \tag{18}
\end{equation*}
$$

which are related to the well-known Jost-functions*:

[^5]$$
\mathcal{L}_{l \pm}=1+R^{ \pm}
$$

Furthermore we define

$$
\begin{equation*}
s^{+}=b \mp ı k^{2 \ell+1} a+\int_{\varepsilon}^{\infty}\left(\bar{r}_{\ell} \pm 1 \bar{J}_{\ell} k^{2 \ell+1}\right) v_{L} v_{I} d r \tag{19}
\end{equation*}
$$

In appendix I we prove:

- S^{+}, R^{+}are analytıc $1 n$ the whole k-plane except on the negative 1 magınary axıs: $k \leq-1 \frac{1}{2}$;
$-S^{-}, R^{-}$are analytic in the whole k-plane except on the positive 1 maginary axıs: $k \geq+1 \frac{\mu_{L}}{2}$;
$-\lim _{k \rightarrow \infty} R^{ \pm}(k)=O\left(\frac{1}{k}\right)$ except along the negatıve/positıve 1 magınary
axis.
$-\lim _{k \rightarrow \infty} \frac{S^{-}}{k^{2 \ell+1}}=\mp 1+O\left(\frac{1}{k}\right)$ except for the negative/positıve lmaginary axis.

$$
\begin{align*}
-S^{+}\left(-k^{*}\right) & =S^{ \pm}(k) \\
S^{+} *\left(k^{*}\right) & =S^{\mp}(k) \\
R^{ \pm}\left(-k^{*}\right) & =R^{-}(k) \tag{20}\\
R^{ \pm}\left(k^{*}\right) & =R^{\mp}(k)
\end{align*}
$$

The properties of $S^{ \pm}$are only valıd when there $1 s$ a restriction on the amount of regular solution contained in the definition of the irregular solution (see appendix I). Using these properties and eqs (17), (18), (19) one can prove:
$-k^{-2 \hat{2}-1} \tan \delta_{L}=\frac{1}{1} \frac{R^{-}-R^{+}}{2+R^{+}+R^{-}} k^{-2 \hat{x}-1}$ is analytıc in the complex k-plane except for singularıtıes along the 1 maginary axıs for $k \geq 1 \frac{\mu^{\mu}}{2}$ and $k \leq-1 \frac{\mu_{L}}{2}$, and except for (1solated) poles comng from zero's of $2+\mathrm{R}^{+}+\mathrm{R}^{-}$.
The symmetry properties eq. (20) give: $k^{-2 \ell-1} \tan \delta_{L} 1 s$ a real function
(on the real axis) and is even in k.
Since $\int_{0}^{\infty} \bar{\jmath}_{\ell} V_{L} v_{R}$ is, in general, at $k^{2}=0$ unequal to zero (note that \bar{J}_{ℓ} and ${ }^{0}{ }_{R}$ have boundary condrtions which do not depend on k^{2}), we can use the inverse of $k^{-2 \ell-1}$ tan δ_{L} and obtain the effective range function and expansion eq. (4). Furthermore:
$\lim _{k \rightarrow \infty} k^{-2 l-1} \tan \delta_{L}=O\left(k^{-2 l-2}\right)$ from which we observe, among others, that
the s-wave effective range function:

$$
P_{\ell=0}\left(k^{2}\right)=k \cot \delta_{L}
$$

is lınear $\ln k^{2}$ for $k^{2} \rightarrow \infty$ and that $\underset{k^{2} \rightarrow \infty}{\operatorname{lnm}} \delta_{I}=O\left(\frac{1}{k}\right)$.
$-k^{\ell+1} N_{L}(k) e^{-1 \delta_{L}}=1+R^{+}=\mathcal{L}_{\ell^{+}}$
15 analytıc except for sıngularities on the negatıve 1 magınary axıs:
$k \leq-1 \frac{\mu_{L}}{2}$.
Furthermore $k^{l+1} N_{L}(k)$ is real on the real axis and even $1 n k$. Since $\lim _{\mathrm{k} \rightarrow \infty} \delta_{\mathrm{L}}=O\left(\frac{1}{\mathrm{k}}\right)$ and $\lim _{\mathrm{k} \rightarrow \infty}\left(1+\mathrm{R}^{+}\right)=1+0\left(\frac{1}{\mathrm{k}}\right)$ one obtains:
$\lim _{k \rightarrow \infty} k^{\ell+1} N_{L}(k)=1+O\left(\frac{1}{k}\right)$
From the expression for $N_{L} \cos \delta_{L}$, eq. (17) one observes that: $\operatorname{llm} k^{\ell+1} N_{L}(k)=$ finıte (in general). $k \rightarrow 0$ Note that $e^{-1 \delta_{L}}$ has also singularities in the upper half plane, starting at $k=+1 \frac{\mu_{L}}{2}$. Therefore $N_{L}(k)$ must have a singularity structure at the same place in the upper half plane, $\perp n$ such a way that it cancels the singularities of $e^{-1 \delta_{L}}$ in the product: $N_{L} e^{-1 \delta_{L}}$. This is an 1 mportant property which allows calculation of $N_{L}(k)$ with dispersion integrals. Similar properties hold for:

$$
\begin{equation*}
k^{\ell+1} N_{L}(k) e^{+1 \delta_{L}}=1+R^{-}=\mathcal{L}_{\ell^{-}} \tag{21b}
\end{equation*}
$$

except that upper- and lower-plane are interchanged.

- The expression.

$$
-k^{\ell+1} e^{-1 \delta} L N_{L}(k)\left(\frac{1}{N_{L}^{2} k}+H_{L}\right)=s^{+}(k)
$$

has the same analytic properties as the Jost functions, eq. (21a). Dividing through $K_{l^{+}}=1+R^{+}$we get:

$$
\begin{equation*}
\frac{1}{N_{L}^{2} k}+H_{L}=-\frac{S^{+}}{1+R^{+}} \tag{22a}
\end{equation*}
$$

which is analytıc except for singularıties along the negative imagınary axıs: $k \leq-1 \frac{\mu^{L}}{2}$. Moreover this function has poles due to the zero's of the Jost function, whlch are usually interpreted as bound state or resonance poles. With upper and lower plane interchanged, similar properties hold for:

$$
\begin{equation*}
\frac{2}{N_{L}^{2} k}-H_{L}=\frac{S^{-}}{1+R^{-}} \tag{22b}
\end{equation*}
$$

Furthermore one proves: $H_{L}(k)$ is real on the real k-axis and is even lnk.

Using the asymptotic limits for S^{+}, R^{+}and $N_{L}(k)$ one obtains: $\lim _{k \rightarrow \infty} H_{L}(k)=O\left(k^{2 \hat{\lambda}}\right)$ and for the zero energy limit: $\lim _{k \rightarrow 0} H_{L_{1}}(k)=$ finıte. Once $N_{L} 1 s$ calculated, this allows calculation of $H_{L}(k)$ with dispersion integrals. Subtraction is needed due to the behaviour for $k \rightarrow \infty$; therefore $H(k)$ can be determned up to a polynomal in k^{2} of degree $k^{2 \ell}$ from its singularity structure in the k^{2} plane. This ambiguity corresponds with the freedom one has in the definition of the irregular solution. Changing the irregular solution by adding a multiple of the regular solution:

$$
\begin{equation*}
v_{I} \rightarrow v_{I}+F\left(k^{2}\right) v_{R} \tag{23}
\end{equation*}
$$

will give the same analytic properties for eq. (22) (and H_{L}), provided
$F\left(k^{2}\right)$ is an analytıc function $1 n k^{2}$ with $\lim F\left(k^{2}\right)=0\left(k^{2 l}\right)$ (see appendix 1). One proves that $s^{ \pm}$simularly changes:

$$
S^{+}(k) \rightarrow S^{+}(k)+\left(1+R^{ \pm}(k)\right) F\left(k^{2}\right)
$$

Therefore:

$$
\begin{equation*}
H_{L}\left(k^{2}\right) \rightarrow H_{L}\left(k^{2}\right)-F\left(k^{2}\right) \tag{24}
\end{equation*}
$$

The functions N_{L}, H_{L} and δ_{L}, determined by the long range potential $V_{L^{\prime}}$ are used in the definition of the effective range function of the total potential: $V=V_{L}+V_{S}$, as we will show in the following.
3. The total potential: $V=V_{L}+V_{S}$

Let us return to the total potentral: $V=V_{L}+V_{S}$, and its physical (regular) solution: u. The Schrodinger equation reads:

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\left(k^{2}-\frac{\ell(\ell+1)}{r^{2}}-v\right)\right) u=0 \tag{25}
\end{equation*}
$$

with the boundary conditions for $u(r)$ at $r=0$:

$$
\begin{equation*}
u(r) \underset{r \rightarrow 0}{\longrightarrow} \frac{r^{\ell+1}}{(2 \ell+1)!!}+o\left(r^{\ell+2}\right) \tag{26}
\end{equation*}
$$

The $\ell^{\text {th }}$ partial wave phase shıft δ is determined by the asymptotic behaviour of $u(r)$:

$$
\begin{equation*}
u(r) \underset{r \rightarrow \infty}{\longrightarrow} \text { constant }\left(\cos \delta J_{\ell}+\sin \delta n_{\ell}\right) k r \tag{27}
\end{equation*}
$$

Just as the regular solution $v_{R^{\prime}}$ defined in section 2 , the wave function $u(r)$ is analytic in k^{2} for finite r since it has boundary conditions at $r=0$ which are analytic in k^{2}. It satisfies the integral equation:

$$
\begin{equation*}
u(r)=v_{R}(r)+\int_{0}^{\infty} d r^{\prime} G^{L}\left(r, r^{\prime}\right) v_{S}\left(r^{\prime}\right) u\left(r^{\prime}\right) \tag{28}
\end{equation*}
$$

w2th:

$$
\begin{array}{llrl}
G^{L}\left(r, r^{\prime}\right) & =0 & r<r^{\prime} \tag{29}\\
G^{L}\left(r, r^{\prime}\right) & =V_{I}\left(r^{\prime}\right) V_{R}(r)-v_{R}\left(r^{\prime}\right) v_{I}(r) & r \geq r^{\prime}
\end{array}
$$

G^{L} is the complete Greens function of the long range potential.
We rewrite eq. (28) into:

$$
\begin{equation*}
u(r)=\left(1+\int_{0}^{r} v_{I} V_{S} u d r^{\prime}\right) v_{R}(r)-\left(\int_{0}^{r} v_{R} v_{S} u d r^{\prime}\right) v_{I}(r) \tag{30}
\end{equation*}
$$

The integrals: $\int_{0}^{r} d r^{\prime} v_{I} V_{S} u$ and $\int_{0}^{r} d r^{\prime} v_{R} v_{S} u$ are analytic in k^{2} in the whole complex k^{2} plane since V_{I}, v_{R}, u and V_{S} are analytic, for finıte r. This analyticity is affected in the limıt $r \rightarrow \infty$. Defining:

$$
\begin{align*}
& A-1+\int_{0}^{\infty} d r^{\prime} v_{I} v_{S} u \tag{31}\\
& B \equiv-\int_{0}^{\infty} d r^{\prime} v_{R} v_{S} u
\end{align*}
$$

and using the 1 nequallties of appendix I, eq. (5) and eq. (14), which also hold for the regular solution $u(r)$, one proves:
A and B are even and real in k and analytic in the region:
$|\operatorname{Im} k| \leq \frac{\mu_{S}}{2}$ д $f:\left|V_{S}(r)\right| \rightarrow \underset{r \rightarrow \infty}{\rightarrow} \simeq e^{-\mu_{S} r} \quad$.
Moreover, when $V_{S}(r)$ is an analytic* potential, one proves that:
A and B are analytıc in the whole k-plane except for singularıtıes along the imaginary axis for $k \geq 1 \frac{\mu^{1}}{2}$ and $k \leq-1 \frac{\mu_{S}}{2}$.

Therefore, except for simple poles coming from zeros of $B, \frac{A}{B}$ is even and analytic in the same region. Due to the boundary conditions
*Meant is analyticity in r. See [Ne 66] for a more careful definition and discussion; we will always use potentials analytic in the $\frac{1}{2} \pi$ class, and in this chapter they are also restricted to:
$V(0)=$ finite.
at $r=0$ also the lımet $k \rightarrow 0$ is, in gencral, well defined for $\frac{\pi}{B}$ and unequal zero. Comblnıng eqs (27), (30), (31) and (16) we obtaln:

$$
\begin{aligned}
& u(r) \rightarrow A v_{R}(r)+B v_{I}(r) \\
& r+\left(A N_{L} \cos \delta_{L}-\frac{B}{N_{L}^{k}} \sin \delta_{L}-B H_{L} N_{L} \cos \delta_{L}\right) J_{\ell}(k r) k r \\
& \quad+\left(A N_{L} \sin \delta_{L}+\frac{B}{N_{L} k} \cos \delta_{L}-B H_{L} N_{L} \sin \delta_{L}\right) n_{\ell}(k r) k r
\end{aligned}
$$

So:

$$
\begin{equation*}
\cot \delta=\frac{A N_{L} \cos \delta_{L}-\frac{B}{N_{L}^{k}} \sin \delta_{L}-B H_{L} N_{L} \cos \delta_{L}}{A N_{L} \sin \delta_{L}+\frac{B}{N_{L} k} \cos \delta_{L}-B H_{L} N_{L} \sin \delta_{L}} \tag{32}
\end{equation*}
$$

Defining:

$$
\begin{equation*}
\delta \equiv \delta_{I}+\delta_{S}^{L} \tag{33}
\end{equation*}
$$

one rewrites eq. (32) into the simple form:

$$
\begin{equation*}
\frac{\cot \delta_{S}^{L}}{N_{L}^{2} k}+H_{L}=\frac{A}{B} \tag{34}
\end{equation*}
$$

The effective range function of the total potential v with respect to its long range component V_{L} is defined as:

$$
\begin{equation*}
P^{L}\left(k^{2}\right) \equiv \frac{\cot \delta_{S}^{L}}{N_{L}^{2} k}-H_{L} \tag{35}
\end{equation*}
$$

These definitions need some comments:

- the phase shift δ_{S}^{L}, deflned by eq. (33), can be considered as the phase shift of the total potential: $V=V_{L}+V_{S}$ with respect to solutions of the potential V_{L}. Defining:

$$
\begin{align*}
& v_{R}^{\infty}=\frac{1}{N_{L}} v_{R} \tag{36}\\
& v_{I}^{\infty}=N_{L} k v_{I}+H_{L} N_{L} k v_{R}
\end{align*}
$$

one proves:

$$
\begin{align*}
& v_{R}^{\infty} \underset{r \rightarrow \infty}{\longrightarrow}\left(\cos \delta_{L} J_{\ell}+\sin \delta_{L} n_{\ell}\right) k r \tag{37}\\
& v_{I}^{\infty} \underset{r \rightarrow \infty}{\longrightarrow}\left(-\sin \delta_{L} J_{\ell}+\cos \delta_{L} n_{\ell}\right) k r
\end{align*}
$$

and:

$$
\begin{aligned}
& u \underset{r \rightarrow \infty}{\longrightarrow} \simeq\left(\cos \delta_{S}^{L} v_{R}^{\infty}+\sin \delta_{S}^{L} v_{I}^{\infty}\right) \\
& \underset{r \rightarrow \infty}{\longrightarrow}\left(\cos \left(\delta_{L}+\delta_{S}^{L}\right) J_{\ell}+\sin \left(\delta_{L}+\delta_{S}^{L}\right) n_{\ell}\right) k r
\end{aligned}
$$

The analyticity of δ_{S}^{L} is limited by singularıties starting at $k= \pm 1 \frac{\mu_{L}}{2}$ coming from the long range potential V_{L}.

- The functions N_{L} and H_{L} have singularities along the imaginary axis starting at $k= \pm 1 \frac{\mu_{L}}{2}$.
- However the singularities from δ_{S}^{L}, N_{L} and H_{L}, starting at $k= \pm 1 \frac{\mu_{L}}{2}$ cancel out in the effective range function $P^{L}\left(k^{2}\right)$, analytic in the complex plane, except for simple poles and singularities along the 1 magınary axıs startıng at $k= \pm 1 \frac{\mu_{S}}{2} ; 1 f \mu_{S}>\mu_{L}$ then an expansion in k^{2} of $\mathrm{P}^{\mathrm{L}}\left(\mathrm{k}^{2}\right)$ will converge better than a similar expansion of the effective range function of the total phase shıft: $P\left(k^{2}\right)=k^{2 \ell+1} \cot \delta$. - As stated before, $\mathrm{P}^{\mathrm{L}}\left(\mathrm{k}^{2}\right)$ is an even and real function in k, and one can prove:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} P^{L}\left(k^{2}\right)=0\left(k^{2 \ell+2}\right) \\
& \lim _{k \rightarrow 0} P^{L}\left(k^{2}\right) \neq 0 \quad, \text { in general. }
\end{aligned}
$$

When we take as V_{L} the trivial potential $V_{L} \equiv 0$, we obtain: $\delta_{L}=0$, $N_{L}=k^{-\ell-1}$, and H_{L} can be chosen to be: $H_{L}=0\left(V_{R}=\bar{J}_{\ell}, V_{I}=\bar{n}_{\ell}\right)$. In this case P^{L} becomes:

$$
P^{L} \underset{V_{L}=0}{\longrightarrow} k^{2 \ell+1} \cot \delta_{S}^{L}=k^{2 \ell+1} \cot \delta
$$

which is the ordınary effective range function. Consıdering all this
for the neutron-proton interaction as described by the one-bosonexchange models with lightest mesons the π and η (neglecting for the moment 2π uncorrelated exchange) we observe that: $P\left(k^{2}\right)$ has a cut in the complex energy plane starting at - 10 MeV (laboratory energy). Taking as V_{L} the pion exchange potential, it will lead to a larger analytıcity region for $P^{L}\left(k^{2}\right): P^{L}\left(k^{2}\right)$ has a cut starting at about - 150 MeV. Suıtable parametrizatıons of $\mathrm{P}^{\mathrm{L}}\left(\mathrm{k}^{2}\right)$ will be discussed later.

In the next section we will discuss the connection of the effectıve range function with the partial wave amplitude and derive some more propertıes.
4. Effectıve range functıons and the partlal wave amplıtude

We define outgoing and incoming solutions of the long range potential V_{L} :

$$
\begin{align*}
& v_{+}=\left(\frac{1}{N_{L}^{2} k}+H_{L}\right) v_{R}+v_{I} \tag{38}\\
& v_{-}=\left(\frac{-1}{N_{L}^{2} k}+H_{L}\right) v_{R}+v_{I}
\end{align*}
$$

In the asymptotic limat we have:

$$
\begin{equation*}
v_{ \pm}(r) \rightarrow \underset{r \rightarrow \infty}{\longrightarrow} \frac{e^{ \pm 1 \delta_{L}}}{N_{L} k} h_{\ell}^{(\pm)}(k r) k r \tag{39}
\end{equation*}
$$

The solutions $v_{ \pm}(r)$ are analytic in the whole complex $k-p l a n e$ for finite r, except for singularıties along the negative- (${ }^{+}$) and positıve- $\left(v^{-}\right)$lmagınary axıs for $|k| \geq \frac{\mu_{L}}{2}$ (conform eqs (22)). Moreover

```
\({ }^{*} h_{\ell}^{(1)}(k r) \equiv n_{\ell}(k r) \pm 1 J_{\ell}(k r)\)
    \(\operatorname{llm}_{r \rightarrow \infty} h_{\ell}^{( \pm)}(k r)=e^{1(k r-(\ell \pi / 2))} / k r\)
    \(+\rightarrow \infty\)
```

they have poles at the zeros of the Jost functions $\dot{\mathcal{K}}_{\ell^{ \pm}}$. With the usual methods one proves:

$$
\begin{equation*}
\left|v_{+}(r)\right| \leq \text { constant } \quad\left|\frac{e^{ \pm i \delta_{L}}}{N_{L} k^{\ell+1}}\right| \quad\left(\frac{1+|k r|}{|r|}\right)^{\ell} e^{\mp(I m k) r} \tag{40}
\end{equation*}
$$

The integral equation (30) for the solution of the total potential V can be written as:

$$
\begin{align*}
& u(r)=+\frac{N_{L}^{2}}{2 L}\left(v_{+}(r)\right. \\
&\left(1+\int_{0}^{r} v_{-} v_{S} u d r^{\prime}\right) \tag{41}\\
&\left.-v_{-}(r)\left(1+\int_{0}^{r} v_{+} v_{S} u d r^{\prime}\right)\right)
\end{align*}
$$

For real k one has:

$$
\begin{align*}
u(r) & \underset{r \rightarrow \infty}{\longrightarrow} \simeq e^{l \delta_{S}^{L}} v_{+}(r)-e^{-1 \delta_{S}^{L}} v_{-}(r) \\
& \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{N_{L} k}\left(e^{I\left(\delta_{L}+\delta_{S}^{L}\right)} h_{l}^{(+)}-e^{-1\left(\delta_{L}+\delta_{S}^{L}\right)} h_{\ell}^{(-)}\right) k r \tag{42}
\end{align*}
$$

Therefore:

$$
\begin{equation*}
e^{21 \delta_{S}^{L}}=\frac{1+\int_{0}^{\infty}{ }^{\mathrm{v}}-\mathrm{v}_{S} u d r^{\prime}}{1+\int_{0}^{\infty} v_{+} V_{S} u d r^{\prime}} \tag{43}
\end{equation*}
$$

and of course: $\quad \delta=\delta_{L}+\delta_{S}^{L}$
Due to the limited analyticity of v_{+}and v_{-}in the integrands of eq. (43), $\mathrm{e}^{21 \delta_{S}^{L}}$ (and also δ_{S}^{L}) is only analytıc for $|I m k| \leq \frac{\mu_{L}}{2}$ (except for possible poles from zeros of the denomator): Analyticity is restricted in first instance by the long range potential V_{L}. Furthermore at the bound state or resonance energies of the long range potentral V_{L} we have:

$$
\begin{equation*}
e^{21 \delta_{S}^{L}}=0 \tag{44}
\end{equation*}
$$

sınce $v^{+},\left(\frac{1}{N_{L}^{2} k}+H_{L}\right)$, has a pole at these energies. This corresponds with the fact that bound states (resonances) of the long range potential V_{L} are (in general) different from bound states and
resonance energies of the total potential: $\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{S}}$:
${ }_{1 f}: \quad e^{21 \delta_{L}}=\infty$
then, in general: $e^{21 \delta}=e^{21 \delta_{L}} e^{21 \delta_{S}^{L}} \neq \infty$
The effective range expression (34) automatıcally takes care of this sunce at the bound state poles of the potential V_{L} :

$$
N_{L}^{2} k=0 \quad, \quad H_{L} \quad N_{L}^{2} k=1 \quad \text { and } \quad \frac{A}{B} \neq \infty
$$

(the proof of this is stralghtforward).
The analyticity of eq. (43) is limited in the upper half plane (physical sheet) to the region: Im $k \leq \frac{\mu_{L}}{2}$. Therefore we define a quantity which is analytic in the upper half plane for: Im $k \leq \frac{\mu_{S}}{2}$:

$$
\begin{align*}
-\frac{\int_{0}^{\infty} v_{R} v_{S} u}{1+\int_{0}^{\infty} v^{+} v_{S} u} & =\frac{N_{L}^{2} k^{2}}{21}\left(e^{21 \delta_{S}^{L}}-1\right) \tag{45}\\
& \equiv N_{L}^{2} k^{2} f_{\delta_{S}^{L}}
\end{align*}
$$

It is related with the asymptotic limat:

$$
\begin{equation*}
u(r) \underset{r \rightarrow \infty}{\longrightarrow} \simeq\left(v_{R}+N_{L}^{2} k^{2} f_{\delta_{S}^{L}} v_{+}\right) \tag{46}
\end{equation*}
$$

which is proven by rewriting eq. (30) into:

$$
\begin{equation*}
u(r)=\left(1+\int_{0}^{r} d r^{\prime} v_{+} v_{S} u\right) v_{R}(r)-\left(\int_{0}^{r} d r^{\prime} v_{R} v_{S} u\right) v^{+}(r) \tag{47}
\end{equation*}
$$

We change the normalızation of $u(r)$ defining:

$$
\begin{equation*}
u^{\infty}(r)=\frac{u(r)}{1+\int_{0}^{\infty} d r^{\prime} v_{+} v_{S} u} \tag{48}
\end{equation*}
$$

The wave function of the total potential: $u(x)$ is analytic in the whole complex k-plane except for singularıties in the lower half plane, along the 1 maginary axıs for $I m k \leq-\frac{\mu_{L}}{2}$ and except for poles due to the vanıshing of the denomınator of eq. (48) (bound states or resonances of
the total potential: $V_{L}+V_{S}$, compare with eq. (43) and prove: $e^{21 \delta}=\infty$). Furthermore $u^{\infty}(r)$ satisfies:

$$
\begin{align*}
u^{\infty}(r) & =v_{R}(r)-v_{R}(r)\left(\int_{r}^{\infty} d r^{\prime} v_{+} v^{\prime} s^{\infty}\right)-v_{+}(r)\left(\int_{0}^{r} d r^{\prime} v_{R} v_{S} u^{\infty}\right) \\
& =v_{R}(r)-\int_{0}^{\infty} G^{L,+}\left(r, r^{\prime}\right) v_{S}\left(r^{\prime}\right) u^{\infty}\left(r^{\prime}\right) d r^{\prime} \tag{49}
\end{align*}
$$

with:

$$
\begin{equation*}
G^{L,+}\left(r, r^{\prime}\right)=v_{R}\left(r_{<}\right) v_{+}\left(r_{>}\right) \tag{50}
\end{equation*}
$$

where $r_{<}$indicates the smaller of r and r^{\prime}, and $r_{>}$the larger.
We obtaln:

$$
\begin{equation*}
N_{L}^{2}{ }^{2} f_{f_{S}^{L}}=-\int_{0}^{\infty} v_{R} V_{S} u^{\infty} d r^{\prime} \tag{51}
\end{equation*}
$$

Using the inequalities for v_{R} and v_{+}one obtains:

$$
\begin{equation*}
\left|G^{L,+}\left(r, r^{\prime}\right)\right| \leq \frac{\text { constant }}{\left|1+R^{+}\right|}\left(\frac{\left|r_{<}\right|}{1+\left|k r_{<}\right|}\right)^{\ell+1}\left(\frac{1+\left|k r_{>}\right|}{\left|r_{>}\right|}\right)^{\ell} e^{|\operatorname{Imk}| r_{<}-\operatorname{Im} k r_{>}} \tag{52}
\end{equation*}
$$

and for $\operatorname{Im} k \geq 0$:

$$
\begin{equation*}
\left|G^{L,+}\left(r, r^{\prime}\right)\right| \xrightarrow[r, r^{\prime} \rightarrow \infty]{ } \simeq e^{-\operatorname{Im} k\left(r_{>}-r_{<}\right)} \tag{53}
\end{equation*}
$$

Except for those points in the upper half plane where a long range bound state $1 s$ present, this gives an addıtıonal exponentıal damping in r and r^{\prime} of the integrand of eq. (49) in the upper half plane. Neglecting these bound states for the moment one proves the following propertıes with the usual methods using eqs (49), (51), (52): $N_{L}^{2} k^{2} f_{\delta L_{S}}$ is analytic in the upper half of the complex momentum plane, except for singularıtıes along the 1 magınary axıs starting at $+1 \frac{{ }^{4} S}{2}$ and poles corresponding with bound states of the total potential V (note: N_{L} and $f_{\delta L}$ are only analytic up to $k=1 \frac{\mu_{L}}{2}$!). Moreover: the successive Born approximations of u^{∞}, from eq. (49) (in symbolic notation):

$$
u^{\infty}=v_{R}-G v_{S} v_{R}+G v_{S} G v_{S} v_{R}-\ldots
$$

lead to successive Born approximations of $N_{L}^{2} k^{2}{\underset{\delta}{\delta}}^{L}$:

$$
\begin{equation*}
N_{L}^{2}{ }^{2} f_{\delta_{S}}=-v_{R} V_{S} v_{R}+v_{R} V_{S} G V_{S} v_{R}-\ldots \tag{54}
\end{equation*}
$$

which has an additive singularıty structure, which means: the $n^{\text {th }}$ Borm approximation of $h_{L}^{2} \mathcal{K}^{2} f_{\delta L}$, defined by:

$$
+{ }^{v_{R}} \underbrace{v_{S} G v_{S} G \ldots v_{S}}_{n \text { times } v_{S}}{ }^{v_{R}}
$$

is analytic "p to $\mathrm{k}=+1 \mathrm{n} \frac{{ }^{\mu} \mathrm{S}}{2}$ in the upper half plane.
Otherwise stated:
the dynamical singularities in the upper half plane (not the bound states!') along the imaginary axis for $N_{L}^{2} k^{2} f_{\delta}^{L}$ from $k=1 \frac{{ }_{S}}{2}$ up to $\mathrm{k}=1 \mathrm{n} \frac{{ }^{\mu} \mathrm{S}}{2}$ are completely given by the first ($n-1$) Born approximations. For these reasons it is $N_{L}^{2} k^{2} f_{\delta_{S}}$ which is most useful in dispersion techniques (however, an explicit solution of the wave functions corresponding with the long range potential V_{L} is required). In the lower half plane these properties do not hold: $N_{L}^{2} K^{2} f_{\delta_{S}^{L}}$ is only analytic up to $k=-1 \frac{\mu_{L}}{2}:$: Returning to the bound states of V_{L}, we note that at these energies: $N_{L^{2}}^{2}{ }^{2}=0$; therefore $w 1$ th eq. (44) we get:

$$
f_{\delta L}=-\frac{1}{2 \imath k_{\beta_{L}}} ; \quad N_{L}^{2} k_{\beta_{L}}^{2} f_{\delta L}=0 \quad ; \quad k_{\beta_{L}}=\begin{gather*}
\text { momentum of } V_{L} \\
\text { bound state } \tag{55}
\end{gather*}
$$

Now we are ready to make the connection with the total partial wave amplitude; using $\delta=\delta_{L}+\delta_{S}^{L}$ one obtains:

$$
\begin{align*}
f_{\delta} \equiv \frac{e^{2 ı \delta}-1}{2 ı k} & =\frac{e^{21 \delta_{L}}-1}{21 k}+e^{21 \delta_{L}} \frac{e^{21 \delta_{S}^{L}}-1}{2 ı k} \\
& \equiv f_{\delta_{L}}+e^{21 \delta_{L}} f_{\delta_{L}} \tag{56}
\end{align*}
$$

Using the properties of $N_{L}^{2} k^{2} f_{\delta_{S}^{L}}$ and those of $\frac{e^{21 \delta_{L}}}{N_{L}^{2} k^{2}}$ (eq. (21)) one obtains the well-known result: $e^{21 \delta_{L}} f_{\delta \mathrm{L}}$ is analytic in the upper half momentum plane up to $k=+1 \frac{\mu_{S}}{2}$ (except bound state poles).

The effective range function (35) can now be obtained in another way:

$$
\begin{equation*}
P^{L}=\frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L}=\frac{1}{N_{L}^{2} k}+H_{L}+\frac{1}{f_{\delta L}^{L} N_{L}^{2}{ }^{2}} \tag{57}
\end{equation*}
$$

From the properties of $N_{L}^{2} k^{2} f_{\delta_{S}}$ and $1 /\left(N_{L}^{2} k\right)+H_{L}$ it is clear that p^{L} is analytic in the upper half momentum plane up to $k=1 \frac{{ }^{\prime} S}{2}$ (except for isolated poles if $f_{\delta_{S}}=0$). Since the left hand side $1 s$ even in $k\left(\delta_{S}^{L}\right.$ is odd, N_{L}^{2} and H_{L} are even in $\left.k!\right)$ the same property also holds for the lower half plane. That P^{L} is real on the real axis, follows from the fact that δ_{S}^{L}, N_{L} and H_{L} are real for physical k.

In the next section we will see how we can use all this to define effective range functions without the restrictions of local, nonrelativistic Schrödinger theory.
5. Definition of the effective range function using its analytic

properties

Elastıc single channel effective range theory can be derıved if the total partial wave amplıtude f_{δ} satısfies the decomposition theorem:
sake.

$$
\begin{equation*}
f_{\delta}=f_{\delta_{L}}+\text { remannder } \tag{58}
\end{equation*}
$$

with $j_{\delta_{L}}$ the partial wave ampliluae for a long range interaction which
iorms part of the total interastion.
Total interaction $=$ long ranje + short (er) range interaction

$$
\begin{equation*}
\left(\text { range }=1 / \mu_{L}\right) \quad\left(\text { range }=1 / \mu_{S}\right) \tag{59}
\end{equation*}
$$

Then the singuiarity structure in the upper hal. momentum plane must be spitt up accordin. to:

$$
\begin{aligned}
& f_{\delta}: \text { analytic up to } \mathrm{k}=+1 \frac{\mu_{\mathrm{L}}}{2} \\
& f_{\delta_{L}}: \text { analytic up lo } \mathrm{k}=+1 \frac{\mu_{\mathrm{L}}}{2}
\end{aligned}
$$

remainder. analytic up to $k=+1 \frac{\mu}{2}$
provided: $\mu_{L}<\mu_{S}$, and except for poles corresponding with bound slates (eitiler from the total interaction or from its long ranye part). This decomposition theorem has a much wider range than local, nonrelativastic Schrodinger scattering theory alone and can be applied to most types of interactıons whether nonlocal, energy dependent or derıved from field theory. It is also valıd for coupled channels, however, we will use it only for single channel partial waves for the moment.

Due to unitarıty we can write eq. (58) on the physical axis as:

$$
\begin{equation*}
f_{\delta}=f_{\delta_{L}}+e^{2 I \delta_{L}} f_{\delta_{S}^{I}} \tag{60}
\end{equation*}
$$

with:

$$
f_{\delta_{S}^{L}}=\frac{e^{21 \delta_{S}^{L}}-1}{21 k} \quad ; \quad \delta=\delta_{L}+\delta_{S}^{L} ; \delta_{S}^{L}, \delta_{L} \text { real }
$$

This is of course also true for unphysical momenta, however, in that case $\delta_{S}^{\text {L }}$ is not necessarily real. Suppose we could find two functions N_{L} and H_{L} with the analytic properties:
($\mathrm{k}^{\ell+1} \mathrm{~N}_{\mathrm{L}} \mathrm{e}^{-1 \delta_{L}}$ is andiytic in the uprer nal. rime and has (simple) zeros at the Downd suates of the lomy runse interaction.
$A \begin{cases}k^{\ell+1} N_{L} & \text { is even and real in } k . \\ k^{\ell+1} N_{L} \underset{|k| \rightarrow \infty}{\longrightarrow} 1 & \text { and } \lim _{k \rightarrow 0} k^{\ell+1} N_{L} \quad=\text { finite number. }\end{cases}$
$\left(\frac{1}{N_{L}^{2} k}+H_{L}\right.$
is analytic in the upper hal: plane except for
(simple) poles at, the bound states. At the bound states the residue of $\mathrm{H}_{\mathrm{L}}+\frac{1}{\mathrm{~N}_{\mathrm{L}}^{2}}$ mast be twice the residue of $1 /\left(\mathrm{N}_{\mathrm{L}}^{2} \mathrm{k}\right)$
is even and reat in k .

and prove:

$$
\begin{equation*}
P^{L}=\frac{i}{N_{L}^{2} k}+H_{L}+\frac{1}{f_{\delta L} e^{2 i \delta_{L}}} \frac{e^{21 \delta_{L}}}{N_{L}^{2} k^{2}} \tag{62}
\end{equation*}
$$

is even and real in k, analytic for momenta $|k|<\frac{\mu_{S}}{2}$ except for possible poles corresponding with: $f_{\delta L}=0$ (1.e. the short range interaction becomes "transparent"). If we have a complete knowledge of the long range interaction (i.e. phase shifts and bound states) the functions N_{L} and H_{L} can be solved in terms of δ_{L} and B_{L} (bound state momenta): assuming for the moment that there are no bound states, requirement A leads to the dispersion integral, valid for k in the upper half plane:

$$
\begin{equation*}
\ln \left(k^{\ell+1} N_{L}(k)\right)-i \delta_{L}(k)=\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{\ln \left(k^{, \ell+1} N_{L}\right)-1 \delta_{L}}{k^{\prime}-k} d k^{\prime} \tag{63}
\end{equation*}
$$

For k in the upper half plane, infinıtely close to the positive real
axıs, eq. (63) leads to:

$$
\begin{align*}
k^{\ell+1} N_{L}(k) & =e^{-\frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{\delta_{L}}{k^{\prime}-k} d k^{\prime}} \\
& =e^{-\frac{2}{\pi} P \int_{0}^{\infty} k^{\prime} d k^{\prime} \frac{\delta_{L}\left(k^{\prime}\right)}{k^{\prime}-k^{2}}} \tag{64}
\end{align*}
$$

where we have used the fact that δ_{L} is odd in k. Furthermore requirement B leads to the subtracted dispersion relation:

$$
\begin{align*}
\frac{1}{N_{L}^{2} k}+H_{L}-i k^{2 \ell+1}= & \sum_{j=0}^{2 \ell} \frac{1}{j!} H^{(J)}(0) k^{J}+ \\
& +\frac{k^{2 \ell+1}}{2 \pi I} \int_{-\infty}^{+\infty} \frac{\frac{1}{N_{L}^{2} k^{\prime}}+H_{L}-i k^{\prime}{ }^{2 \ell+1}}{k^{\prime 2 \ell+1}\left(k^{\prime}-k\right)} \tag{65}
\end{align*}
$$

Taking the real part of the left and right hand side we obtain for k close to the real axis*:

$$
\begin{equation*}
H_{L}(k)=\sum_{J=0}^{2 \ell} \frac{1}{J!} H^{(J)}(0) k^{J}+\frac{2}{\pi} k^{2 \ell+2} P \int_{0}^{\infty} \frac{\frac{1}{N_{1}^{2} k^{2 \ell+2}}-1}{k^{\prime 2}-k^{2}} d k^{\prime} \tag{66}
\end{equation*}
$$

Using eqs (64) and (66) N_{L}, and H_{L} can be calculated once the phase shift $\delta_{L}{ }^{1 s}$ known for all energies. This could be of importance if there is
*Use:

$$
\begin{aligned}
\frac{1}{k^{\prime}} \begin{aligned}
2 \ell+1 \\
\left(k^{\prime}-k-1 E\right)
\end{aligned} & \frac{1}{k^{2 \ell+1}\left(k^{\prime}-k-1 E\right)}-\frac{1}{k^{2 \ell+1}\left(k^{\prime}-1 E\right)}-\frac{1}{k^{2 \ell}\left(k^{\prime}-i \varepsilon\right)^{2}} \\
& \cdots \frac{1}{k\left(k^{\prime}-i \varepsilon\right)^{2 \ell+1}}
\end{aligned}
$$

and:

$$
\begin{align*}
\int_{-\infty}^{+\infty} d k^{\prime} \frac{F\left(k^{\prime}\right)}{\left(k^{\prime}-1 E\right)^{n}}= & P \int_{-\infty}^{+\infty} d k^{\prime} \frac{F\left(k^{\prime}\right)-F(0) \ldots-\frac{k^{\prime n-2}}{(n-2)!} F^{(n-2)}(0)}{k^{\prime n}} \\
& +\frac{i \pi}{(n-1)!} F^{(n-1)}(0) \tag{0}
\end{align*}
$$

no schrodinger equation which could be used to solve N_{L}, H_{L} and δ_{L} : for instance δ_{I} is given by a Born approximation or by an effective range approximation. We will return on this in chapter $I V$.

Formula (64) can be generalızed for the case that there are bound state poles $1 n$ the upper half plane. Suppose there are poles at $k=1 \beta_{n}$, then consider:

$$
\begin{equation*}
\prod_{n} \frac{\mathrm{k}+1 \beta_{\mathrm{n}}}{\mathrm{k}-1 \beta_{\mathrm{n}}} \mathrm{k}^{\ell+1} \mathrm{~N}_{\mathrm{L}} e^{-1 \delta_{L}} \tag{67}
\end{equation*}
$$

which has no zeros in the upper half plane since the zeros of the Jost function are simple.

Now we can take the logarıthm of (67) and follow the same steps as before. One gets:

$$
\begin{equation*}
k^{\ell+1} N_{N_{L}}(k)-\pi_{n}\left(1+\frac{\beta^{2}}{k^{2}}\right) e^{-\frac{2}{\pi} P \int_{0}^{\infty} k^{\prime} d k^{\prime} \frac{\delta_{L}\left(k^{\prime}\right)}{k^{\prime 2}-k^{2}}} \tag{68a}
\end{equation*}
$$

for real physical k, or:

$$
\begin{equation*}
k^{\ell+1} N_{L}(k)=\prod_{n}\left(1+\frac{\beta_{n}^{2}}{k^{2}}\right) e^{-\frac{1}{\pi} \int_{-\infty}^{+\infty} d k^{\prime} \frac{\delta_{L}\left(k^{\prime}\right)}{k^{\prime}-k}+2 \delta_{L}(k)} \tag{68b}
\end{equation*}
$$

for k in the upper half plane, or:

$$
\begin{equation*}
k^{\ell+1} N_{L^{\prime}}(k)=J_{n}\left(1+\frac{\beta^{2}}{k^{2}}\right) e^{-\frac{1}{\pi}} \int_{-\infty}^{+\infty} d k^{\prime} \frac{\delta_{L}\left(k^{\prime}\right)}{k^{\prime}-k}-1 \delta_{L}(k) \tag{68c}
\end{equation*}
$$

in the lower half plane.
The singularıty in eqs $(68 a, b, c)$ at $k=0$ is only apparent since
$\lim _{\mathrm{I}}(\mathrm{k})=n \pi{ }^{*}$ which causes the princıpal value 1 ntegral in eq. (68a) k $\downarrow 0$ to be singular too, giving a finite value for $k^{\ell+1} N_{L}$ at $k=0$.

[^6]
Effective range theory for potentials which

contain the Coulomb interaction

1. Introduction

In this chapter we will consider the problems which arise when the potential contains the Coulomb interaction with infinite range. For proton-proton scattering the total potential is written as the sum of the (finıte range) nuclear potential and the (infinite range) electric potential:

$$
\begin{equation*}
v=v_{\text {nuc }}+v_{\text {elec }} \tag{1}
\end{equation*}
$$

In the real physical world $v_{e l e c}$ will contain the Coulomb, magnetic moment and vacuum polarization potential.

For the moment we will consider only the Coulomb potential in its nonrelativistic form:

$$
\begin{equation*}
V_{\text {elec }}=\frac{2 M_{\text {red }} \alpha_{F}}{r} \tag{2}
\end{equation*}
$$

with $M_{r e d}$ the reduced mass and α_{F} the fine structure constant.
In chapter VI of part II of this thesis we will study the case of a "relativistic" coulomb potential (containing in fact also an r^{-2} part). For the vacuum polarızatıon, which can be evaluated only numerically, we refer to chapter IV.

When one tries to include the potential of eq. (2) in the calculations of chapter II, one meets two problems:

First of all the potential is not analytic in r anymore but contains a simple pole at the origin. This ls not a serıous problem since all of the results can easily be generalızed for potentials being analytical
except for a simple pole at the origin.
More serious is the fact that the potential falls off like r^{-1} for $r \rightarrow \infty$, which implies that the limiting wavefunction for $r \rightarrow \infty$ cannot be written as a fixed (1ndependent of r) linear combination of Bessel and Neumann functions as in eq. (II.2).

However, considering single channel partial wave scattering, we could write the radial wave function u_{ℓ}, for potential V and the ℓ 'th partial wave, in the asymptotic limıt as:

$$
\begin{equation*}
u_{\ell}(r) \underset{r \rightarrow \infty}{\longrightarrow}\left(\cos \delta_{N}^{C} F_{\ell}+\sin \delta_{N}^{C} G_{\ell}\right) \tag{3}
\end{equation*}
$$

with F_{ℓ} and G_{ℓ} the standard regular and irregular Coulomb wave functions, and δ_{N}^{C} the so-called nuclear phase shift (witn respect to Coulomb wave functions). The total wave function $\psi(\vec{r})$ is a linear combination of $u_{\ell}(r)$ with the spherical harmonic $Y_{\ell}^{0}(\theta)$:

$$
\begin{equation*}
\psi(\vec{r})=\sum_{\ell=0}^{\infty} a_{\ell} \frac{u_{\ell}(r)}{k r} Y_{\ell}^{0}(\theta) \tag{4}
\end{equation*}
$$

Choosing:

$$
\begin{equation*}
a_{\ell}=(1)^{\ell} \sqrt{4 \pi(2 \ell+1)} e^{1\left(\delta_{N}^{C}+\sigma_{\ell}\right)} \tag{5}
\end{equation*}
$$

wıth:

$$
\sigma_{\ell}=\arg \Gamma(\ell+1+1 \eta) \text { and } \eta=\frac{M_{\text {red }} \alpha_{F}}{k}
$$

one obtains:

$$
\begin{align*}
\psi(\vec{r}) & \underset{r \rightarrow \infty}{\longrightarrow} \sum_{\ell=0}^{\infty} e^{10_{\ell}} \frac{\sqrt{4 \pi(2 \ell+1)}}{k r}(1)^{\ell} F_{\ell}(\eta, k r) Y_{\ell}^{0}(\theta) \\
& +\sum_{\ell=0}^{\infty} e^{1 \sigma_{\ell}} \frac{e^{21 \delta_{N}^{C}} \mathrm{C}}{21 k} \sqrt{4 \pi(2 \ell+1)}(1)^{\ell} \frac{G_{\ell}+1 F_{\ell}}{r} Y_{\ell}^{0}(\theta) \tag{6}
\end{align*}
$$

The first summation of eq. (6) is the solution of pure Coulomb scattering $\left(V_{n u c}=0, \delta_{N}^{C}=0\right)$ and can be rewritten as $(r \rightarrow \infty)$:

$$
\begin{gather*}
\mathrm{e}^{1(k z+\eta \ln k(r-z))}-\frac{\eta}{2 k \sin ^{2} \frac{\theta}{2}} e^{-\ln \ln \left(\sin ^{2} \frac{\theta}{2}\right)+21 \sigma_{0}} \\
\times \frac{e^{1(k r-\eta \ln 2 k r)}}{r} \tag{7}
\end{gather*}
$$

which represents an incoming "plane wave" along the z-direction and an outgoing spherical wave multiplied with the Coulomb amplitude:

$$
\begin{equation*}
f_{c}(\theta)=-\frac{\eta}{2 k \sin ^{2} \frac{\theta}{2}} e^{-1 \eta \ln \left(\sin ^{2} \frac{\theta}{2}\right)+21 \sigma_{0}} \tag{8}
\end{equation*}
$$

The decomposition in partial wave amplitudes reads:

$$
\begin{equation*}
f_{c}(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \frac{e^{21 \sigma_{\ell}}-1}{21 k} \mathbf{P}_{\ell}(\cos \theta) \tag{9}
\end{equation*}
$$

The sumation on the right hand side, however, does not converge in the ordinary sense, l.e. point-like. The partial sums diverge oscillatory and have no limit.

This problem can be solved by considering this partial wave sum as an Abel-sumation [Ge 79] or considerıng eq. (9) in the sense of distributions [Ta 74].

The second summation of eq. (6) gives for $r \rightarrow \infty$:

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} e^{22 \sigma_{\ell}} \frac{e^{21 \delta^{c}} \mathrm{~N}, \ell}{21 k}-1 / \sqrt{4 \pi(2 \ell+1)} Y_{\ell}^{0}(\theta) \quad \frac{e^{1(k r-\eta \ln 2 k r)}}{r} \tag{10}
\end{equation*}
$$

and modifies the outgoing spherical wave of eq. (7), leading to the total amplitude:

$$
\begin{equation*}
f(\theta)=f_{c}(\theta)+\sum_{\ell=0}^{\infty} e^{21 \sigma_{\ell}} \frac{e^{21 \delta_{N}^{C}}, \ell}{21 k}-1 \sqrt{4 \pi(2 \ell+1)} Y_{\ell}^{0}(\theta) \tag{11}
\end{equation*}
$$

On the partial wave level this can be written as (with the
restriction concerning the sumation of the coulomb part):

$$
\begin{equation*}
f(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \mathrm{f}_{\ell} \mathrm{P}_{\ell}(\cos \theta) \tag{12a}
\end{equation*}
$$

$$
\begin{align*}
f_{\ell} & =f_{\sigma_{\ell}}+e^{21 \sigma_{\ell}} f_{\delta^{C}} \\
& =\frac{e^{21 \sigma_{\ell}} \ell}{21 k}-1 \tag{12b}\\
& +e^{21 \sigma_{\ell}} \frac{e^{21 \delta_{N}^{C}, \ell}-1}{21 k}
\end{align*}
$$

Eq. (12b) resembles eqs (II.56) and (II.58). Therefore σ_{ℓ} can be considered in a way as the phase shift caused by the Coulomb potential and:

$$
\begin{equation*}
\delta=\sigma_{\ell}+\delta_{N, \ell}^{C} \tag{13}
\end{equation*}
$$

as the total phase shift for the total potential: $v=V_{n u c}+V_{e l e c}$.
In the next section we will review some properties of the Coulomb functions F_{ℓ} and G_{ℓ} and related quantities which we will need in the following.

2. The Coulomb wave functions

Consider the radial schrōdinger equation for the coulomb potential:

$$
\begin{equation*}
v_{\ell}^{\prime \prime}+\left(k^{2}-\frac{2 M_{r e d}^{\alpha} \alpha_{F}}{r}-\frac{\ell(\ell+1)}{r^{2}}\right) v_{\ell}=0 \tag{14}
\end{equation*}
$$

which, using $\rho=k r$, can be rewritten into:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \rho^{2}} v_{\ell}+\left(1-\frac{2 \eta}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}\right) v_{\ell}=0 \tag{15}
\end{equation*}
$$

with:

$$
\eta=\frac{M_{\text {red }}{ }^{\alpha_{F}}}{k}
$$

As two independent solutions of eq. (15) one usually takes the so-called Coulomb wave functions $F_{\ell}(\eta, \rho)$ and $G_{\ell}(\eta, \rho)$. The first one is regular at the orıgin. Their asymptotic behaviour for $\rho \rightarrow \infty$ is:

$$
\begin{align*}
& F_{\ell}(\eta, \rho) \underset{\rho \rightarrow \infty}{\longrightarrow} \sin \left(\rho-\Pi \log 2 \rho-\frac{1}{2} \ell \pi+\sigma_{\ell}\right) \tag{16}\\
& G_{\ell}(\eta, \rho) \underset{\rho \rightarrow \infty}{\longrightarrow} \cos \left(\rho-\Pi \log 2 \rho-\frac{1}{2} \ell \pi+\sigma_{\ell}\right)
\end{align*}
$$

where the Coulomb phase shift is defined by:

$$
\begin{equation*}
\sigma_{\ell}=\arg \Gamma(\ell+1+1 \eta) \tag{17}
\end{equation*}
$$

For the regular coulomb wave function one can derive the series expansion:

$$
\begin{equation*}
F_{\ell}(\eta, \rho)=C_{\ell}(\eta) \sum_{n=\ell+1}^{\infty} A_{n}^{\ell}(\eta) \rho^{n} \tag{18}
\end{equation*}
$$

with:

$$
\begin{align*}
& C_{\ell}(\eta)=\left(\frac{2 \pi n}{e^{2 \pi n}-1}\right)^{1 / 2} \frac{1}{(2 \ell+1)!!} \prod_{s=1}^{\ell}\left(1+\frac{n^{2}}{s^{2}}\right)^{1 / 2}, \ell>0 \\
& C_{0}(\eta)=\left(\frac{2 \pi \eta}{e^{2 \pi n}-1}\right)^{1 / 2} \tag{19}
\end{align*}
$$

and:

$$
\begin{align*}
& A_{\ell+1}^{\ell}(n)=1, \quad A_{\ell+2}^{\ell}(n)=\frac{\eta}{\ell+1} \\
& (n(n-1)-\ell(\ell+1)) \quad A_{n}^{\ell}(n)=2 \eta A_{n-1}^{\ell}(\eta)-A_{n-2}^{\ell}(\eta) \tag{20}
\end{align*}
$$

From eqs (18) and (20) one derives:

$$
F_{\ell}(n, 0)=0 \quad, \quad \frac{d}{d r} F_{\ell}(\eta, k r) \underset{r \rightarrow 0}{\longrightarrow}(\ell+1) C_{\ell}(n) k^{\ell+1} r^{\ell}
$$

Therefore the boundary conditions at $r=0$ are not analytic in k^{2}; hence $F_{\ell}(\eta, \rho)$ is not analytic for finite r and will have poles at the same places as $C_{\ell}(\eta)$.

We define:

$$
\begin{equation*}
\bar{F}_{\ell}(\eta, \rho)=\frac{1}{(2 \ell+1)!: k^{\ell+1} C_{\ell}(\eta)} F_{\ell}(\eta, \rho) \tag{21}
\end{equation*}
$$

which has the boundary conditions (similar to eq. (II.8)):

$$
\bar{F}_{\ell}(\eta, 0) \underset{r \rightarrow 0}{ } \frac{1}{(2 \ell+1)!!} r^{\ell+1}+o\left(r^{\ell+2}\right)
$$

Therefore $\bar{F}_{\ell}(\eta, k r)$ will be an entire function of k^{2} and r. The irregular

Coulomb function $G_{\ell}(\eta, \rho)$ has the expansion:

$$
\begin{equation*}
G_{\ell}(\eta, \rho)=\frac{2 \eta}{C_{0}^{2}(\eta)} F_{\ell}(\eta, \rho) \quad\left\{\ln 2 \rho+\frac{q_{\ell}(\eta)}{P_{\ell}(\eta)}\right\}+D_{\ell}(\eta) \sum_{n=-\ell}^{\infty} a_{n}^{\ell}(\eta) \rho^{n} \tag{22}
\end{equation*}
$$

wath the definitions:

$$
\begin{align*}
& \frac{q_{\ell}(\eta)}{p_{\ell}(\eta)}=\sum_{s=0}^{\ell} \frac{s}{s^{2}+\eta}-\sum_{s=1}^{2 \ell+1} \frac{1}{s}+\operatorname{Re} \frac{\Gamma^{\prime}(1+i \eta)}{\Gamma(1+i n)}+2 \gamma+\frac{r_{\ell}(\eta)}{p_{\ell}(n)} \\
& r_{\ell}(\eta)=\frac{(-1)^{\ell+1}}{(2 \ell)!} \operatorname{Im} \sum_{n=0}^{2 \ell}\left\{\frac{2^{n}}{n!(2 \ell+1-n)} \frac{\Gamma^{\prime}(i n-\ell+n)}{\Gamma(i n-\ell)}\right\} \\
& p_{\ell}(\eta)=\frac{2^{2 \ell+1} n}{(2 \ell+1)\{(2 \ell)!\}^{2}} \prod_{n=1}^{\ell}\left(n^{2}+n^{2}\right) \quad, \quad \ell>0 \\
& p_{0}(\eta)=2 \eta \\
& D_{\ell}(\eta)=\frac{1}{(2 \ell+1) C_{\ell}(n)} \tag{23}
\end{align*}
$$

and γ Euler's constant.
The coefficients $a_{n}^{\ell}(n)$ satisfy:

$$
\begin{align*}
& a_{-\ell}^{\ell}(n)=1, \quad a_{\ell+1}^{\ell}(n)=0, \quad A_{n}^{\ell}(n)=0 \quad \text { for } n>\ell+1 \\
& (n-\ell-1)(n+\ell) a_{n}^{\ell}(n)=2 n a_{n-1}^{l}(n)-a_{n-2}^{\ell}(n)-(2 n-1) p_{\ell}(n) A_{n}^{\ell}(n) \tag{24}
\end{align*}
$$

Also $G_{\ell}(\eta, \rho)$ satisfies non-analytic boundary conditions at $r=0$:

$$
\begin{align*}
G_{\ell}(\eta, \rho) & \underset{r \rightarrow 0}{\longrightarrow}\left\{D_{\ell}(\eta) k^{-\ell} r^{-\ell}+\ldots\right\}+\frac{2 \eta}{c_{0}^{2}(\eta)} F_{\ell}(\eta, \rho) \text { ln } r \\
& +\left\{\frac{q_{\ell}(\eta)}{p_{\ell}(n)}+\ln 2 k\right\} \frac{2 \eta}{c_{0}^{2}(n)} F_{\ell}(\eta, \rho) \tag{25}
\end{align*}
$$

Defining:

$$
\begin{align*}
\bar{G}_{\ell}(n, 0)= & (2 \ell-1)::\left\{(2 \ell+1) k^{\ell} C_{\ell}(n) G_{\ell}(n, 0)\right. \\
& \left.-\left(q_{\ell}(n)+p_{\ell}(n) \ln 2 k\right) \frac{k^{\ell} F_{\ell}(n, \rho)}{C_{\ell}(n)}\right\} \tag{26}
\end{align*}
$$

One can prove:

$$
\begin{align*}
\overline{\mathrm{G}}_{\ell}(\eta, \rho) \underset{r \rightarrow 0}{ } & (2 \ell-1):!r^{-\ell}\{1+\ldots\}+((2 \ell-1):!)^{2}(2 \ell+1) \mathrm{k}^{2 \ell+1} \\
& \times \mathrm{P}_{\ell}(\eta) \overline{\mathrm{F}}_{\ell}(\eta, \rho) \ln r \tag{27}
\end{align*}
$$

with the term of order $r^{2 \ell+1}$, between the brackets in the first term of eq. (27), vanıshıng.

The boundary condition at $r=0$ of $\bar{G}_{\ell}(\eta, \rho)$ is analytic in k^{2} and therefore $\bar{G}_{\ell}(\eta, \rho)$ is an entire function of k^{2} and also in r, except for the branch cut due to the $\ln r$ term and the pole at $r=0$.

In this way we have constructed a regular and irregular solution, \bar{F}_{ℓ} and \bar{G}_{ℓ}, similar to the solutions V_{R} and V_{I} used in section II.2. Comparıng eqs (21), (26) with eq. (II.16), using eq. (16), it seems reasonable to define:

$$
\begin{align*}
& N_{C}(k)=\frac{1}{(2 \ell+1):!C_{\ell}(\eta) k^{\ell+1}} \tag{28}\\
& H_{C}(k)=(2 \ell+1)!!(2 \ell-1):!k^{2 \ell+1}\left(q_{\ell}(\eta)+p_{\ell}(\eta) \ln 2 k\right)
\end{align*}
$$

Indeed, when we use the definition of the effective range function $P^{C} \equiv\left(\cot \delta_{N}^{C}\right) /\left(N_{C}^{2} k\right)+H_{C}$ again, we obtain:

$$
\begin{align*}
P^{C}= & \left((2 \ell+1)!: C_{\ell}(\eta)\right)^{2} k^{2 \ell+1} \cot \delta_{N}^{C} \\
& +(2 \ell+1)!!(2 \ell-1):!k^{2 \ell+1}\left(q_{\ell}(\eta)+p_{\ell}(\eta) \ln 2 k\right) \tag{29}
\end{align*}
$$

which 2 s , up to a polynomial of degree $\mathrm{k}^{2 \ell+1}$ which is conventionally put into the parametrized right hand side of the effective range
identity, indeed the correct form of the Coulomb effective range function (cf. eq. (14) or references [Sw 62], [Ja 50]). Note that we did not prove yet that this function will also have analytic properties as in chapter II.

Consider the Coulomb counterpart of eq. (II.21a):

$$
\begin{equation*}
k^{\ell+1} N_{C}(k) e^{-1 \sigma_{\ell}(k)}=\frac{1}{(2 \ell+1)!!C_{\ell}(n)} e^{-1 \sigma_{\ell}(n)} \tag{30}
\end{equation*}
$$

Using:

$$
C_{\ell}(\eta)=\frac{2^{\ell} e^{-\pi n / 2}|\Gamma(\ell+1+1 \eta)|}{\Gamma(2 \ell+2)} \text { for real } \eta \quad([\mathrm{Ab} 65], 14.1 .7)
$$

one obtalns:

$$
\begin{equation*}
k^{\ell+1} N_{C}(k) e^{-1 \sigma_{\ell}}=\frac{e^{\pi n / 2} \Gamma(\ell+1)}{\Gamma(\ell+1+1 n)} \tag{31}
\end{equation*}
$$

which can be continued analytically in the complex k-plane and indeed corresponds with the Coulomb Jost function ([Ne 66],eq. 14.41a).

This function is highly singular for $k=0$ and has zeros when:

$$
\begin{equation*}
\ell+1+1 \eta=n \quad, \quad n=0,-1,-2, \ldots \tag{32}
\end{equation*}
$$

corresponding with the Coulomb bound states.
Furthermore:
$\lim _{k \rightarrow \infty} k^{\ell+1} N_{C}(k) e^{-1 \sigma_{\ell}}=1$
but in contrast with the result in section II. $2 k^{\ell+1} N_{C}(k)$ is not even in k (we will return on this).

The counterpart of eq. (II.22a) is:

$$
\begin{gather*}
\frac{1 k}{N_{C}^{2} k^{2}}+H_{C}=1 k^{2 \ell+1}((2 \ell+1)!!)^{2} c_{\ell}^{2}(n)+(2 \ell+1)!!(2 \ell-1)!! \tag{33}\\
\times k^{2 \ell+1}\left(q_{\ell}+p_{\ell} \ln 2 k\right)
\end{gather*}
$$

Using : $C_{0}^{2}(\eta)=2 \pi \eta\left(e^{2 \pi n}-1\right)^{-1} \quad$ and $\quad c_{\ell}^{2}(\eta)=\frac{p_{\ell}(\eta) c_{0}^{2}(\eta)}{2 \eta(2 \ell+1)}$, one writes eq. (33) into:
(polynomal of degree $k^{2 \ell}$) + (polynomal of degree $k^{2 \ell+1}$ with

$$
\begin{align*}
& \text { zeros at } 2 \eta= \pm 1, \pm 2, \ldots, \pm \ell) \times\left(1 e^{-\pi \eta} \Gamma(1+1 \eta) \Gamma(1-1 n)\right. \\
& +\eta(\psi(1+1 \eta)+\psi(1-1 \eta)-2 \ln \eta) \tag{33b}
\end{align*}
$$

The poles from the Γ and ψ terms cancel out partially; due to the zeros in the front factor there are only simple poles left at the positions of the Coulomb bound states, eq. (32).

Furthermore, there is a cut starting at $k=0$ due to the $1 n n$ term and an essential singularity at $k=0$. This cut is conventionally put along the negative k-axis and therefore:
$\frac{1 k}{N_{C}^{2}{ }^{2}}+H_{C}$ is analytıc in the upper half plane except for poles at the Coulomb bound states*.

From the fact that N_{C}, H_{C} and σ_{ℓ} are real on the positıve real axus follows:

$$
\begin{align*}
& N_{C}^{*}\left(k^{*}\right)=N_{C}(k) \\
& H_{C}^{*}\left(k^{*}\right)=H_{C}(k) \tag{34}\\
& \sigma_{\ell}^{*}\left(k^{*}\right)=\sigma_{\ell}(k)
\end{align*}
$$

One proves also:

$$
\begin{align*}
& N_{C}(+k)=(-1)^{\ell+1} e^{\pi \eta} N_{C}(-k) \\
& \sigma_{\ell}(+k)=-\sigma_{\ell}(-k) \tag{35}\\
& H_{C}(-k)=H_{C}(k) \pm \frac{i k\left(e^{2 \pi \eta}-1\right)}{\left(k N_{C}(k)\right)^{2}}, \quad-\text { for Im } k>0
\end{align*} \quad+\text { for } I m k<0 .
$$

[^7]Using eqs (34), (35) and the analytic properties one derives for k in the upper half plane and a repulsive Coulomb (no bound states):

$$
\begin{align*}
& k^{\ell+1} N_{C}(k) e^{-1 \sigma_{\ell}}=\exp \left\{-\frac{2}{\pi} \int_{0}^{\infty} d k^{\prime} \frac{k^{\prime}}{k^{\prime}-k^{2}} \sigma_{\ell}\left(k^{\prime}\right)+\frac{\pi \eta}{2}\right\} \\
& \frac{1 k}{\left(k N_{C}(k)\right)^{2}}+H_{C}(k)=1 k+\frac{2 k^{2}}{\pi} \int_{0}^{\infty} d k^{\prime} \frac{\left(\frac{1}{N_{C} k^{\prime}}\right)^{2}-1}{k^{\prime}-k^{2}} \quad(\ell=0) \tag{36}
\end{align*}
$$

(Compare with eqs (II.64-II.68).)
In the next section we will not use the usual "Coulomb functions" $c_{\ell}, q_{\ell}, p_{\ell}, \ldots$ anymore, only $N_{C}, H_{C}, \sigma_{\ell}$. We quote once more their definition:

$$
\begin{align*}
& \bar{F}(r)=N_{C} F(r) \\
& \bar{G}(r)=\frac{1}{N_{C} k} G(r)-H_{C} N_{C} F(r) \tag{37}\\
& W(\bar{F}, \bar{G}) \equiv \bar{F}^{\prime} \bar{G}-\bar{F}^{\prime} \bar{G}^{\prime}=1
\end{align*}
$$

3. Long range potentials containing the coulomb interaction

We assume that the total potential V can be decomposed according to:

$$
\begin{equation*}
V=V_{S}+V_{L}+\frac{2 M_{r e d}{ }^{\alpha_{F}}}{r} \tag{38}
\end{equation*}
$$

with:

$$
\begin{aligned}
& V_{S}(r) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-\mu_{S} r} \\
& V_{L}(r) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-\mu_{L} r} \\
& \mu_{L}<\mu_{S}
\end{aligned}
$$

As far as the behaviour for $r \rightarrow 0$ is concerned, we wlll assume
that V_{L} and V_{S} are analytic in r except for possibly a simple pole in the orlgın. This is a restriction with respect to the usual assumption
in scatterıng theory which allows a $r^{-2+\varepsilon}$ behaviour at the orıgan. Since field theoretical potentials have been shown to make sense in the external region only and since there is nothing which guarantees that the potential picture holds at small distances we consider the assumption of analyticity (except for a slmple pole) for the potential not too restrictıve (ıt includes also Yukawıan potentials). As stated before, the treatment of the potentials with a simple pole at $r=0$, does not differ essentially from the finite case.

Following the same steps as in section II. 2 we first consider the long range part of eq. (38)*:

$$
V_{L}+\frac{2 M_{r e d}{ }^{\alpha} F}{r}
$$

The regular and irregular solutions are defined with the boundary conditions at $r=0$.

$$
\begin{align*}
& v_{R}(r) \rightarrow \underset{r \rightarrow 0}{\longrightarrow} \frac{1}{(2 \ell+1)!:} r^{\ell+1}+O\left(r^{\ell+2}\right) \tag{39}\\
& v_{I}(r) \underset{r \rightarrow 0}{\longrightarrow}(2 \ell-1):!r^{-\ell}+O\left(r^{-\ell+1}\right)
\end{align*}
$$

* *

They satisfy the integral equations:

[^8]\[

$$
\begin{gather*}
v_{R}(r)=\bar{F}_{\ell}(r)+\int_{0}^{r}\left(\bar{F}_{\ell}(r) \bar{G}_{\ell}\left(r^{\prime}\right)-\bar{G}_{\ell}(r) \bar{F}_{\ell}\left(r^{\prime}\right)\right) v_{L}\left(r^{\prime}\right) v_{R}\left(r^{\prime}\right) d r^{\prime} \\
v_{I}(r)=a \bar{G}_{\ell}(r)+b \bar{F}_{\ell}(r)+\int_{\varepsilon}^{r}\left(\bar{F}_{\ell}(r) \bar{G}_{\ell}\left(r^{\prime}\right)-\bar{G}_{\ell}(r) \bar{F}_{\ell}\left(r^{\prime}\right)\right) \\
V_{L}\left(r^{\prime}\right) v_{I}\left(r^{\prime}\right) d r^{\prime} \tag{40}
\end{gather*}
$$
\]

with:

$$
\begin{align*}
& a=\left.W\left(\bar{F}^{\prime}, v_{I}\right)\right|_{r=\epsilon} \\
& b=\left.W\left(v_{I}, \bar{G}\right)\right|_{r=\varepsilon} \tag{41}
\end{align*}
$$

Since the boundary conditions (39) are analytic in \mathbf{k}^{2}, the solutions v_{R} and v_{I} are also analytic in k^{2} (for finite r). The functions N_{L}, H_{L} and the phase shift δ_{L}^{C} of V_{L} in the presence of the Coulomb field are defined by:

$$
\begin{align*}
& v_{R} \tag{42}\\
& \mathrm{r}_{\mathrm{r} \rightarrow \infty} N_{L}\left(\cos \delta_{L}^{C} F_{\ell}+\sin \delta_{L}^{C} G_{\ell}\right) \\
& v_{I} \underset{r \rightarrow \infty}{\longrightarrow} \\
& \frac{1}{N_{L} k}\left(\cos \delta_{L}^{C} G_{\ell}-\sin \delta_{L}^{C} G_{\ell}\right) \\
&-H_{L} N_{L}\left(\cos \delta_{L}^{C} F_{\ell}+\sin \delta_{L}^{C} G_{\ell}\right)
\end{align*}
$$

From eqs (37), (40), (42) follows:

$$
\begin{align*}
& N_{L} \cos \delta_{L}^{C}=N_{C}\left(1+\int_{0}^{\infty} d r^{\prime} \bar{G}_{\ell} v_{L} v_{R}\right)+H_{C} N_{C} \int_{0}^{\infty} d r^{\prime} \bar{F}_{\ell} v_{L} v_{R} \\
& N_{L} \sin \delta_{L}^{C}=-\frac{1}{N_{C} k} \int_{0}^{\infty} d r^{\prime} \bar{F}_{\ell} v_{L} v_{R} \tag{43}
\end{align*}
$$

and:

$$
\begin{aligned}
& -\frac{\sin \delta_{L}^{C}}{N_{L} k}-H_{L} N_{L} \cos \delta_{L}^{C}=H_{C} N_{C}\left\{-a+\int_{E}^{\infty} \bar{F}_{\ell} V_{L} v_{I} d r^{\prime}\right\} \\
& \\
& +N_{C}\left\{b+\int_{E}^{\infty} \bar{G}_{\ell} v_{L} v_{I} d r^{\prime}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\cos \delta_{L}^{C}}{N_{L} k}-H_{L} N_{L} \sin \delta_{L}^{C}=\frac{1}{N_{C} k}\left\{a-\int_{\varepsilon}^{\infty} \bar{F}_{\ell} V_{L} v_{I} d r^{\prime}\right\} \tag{44}
\end{equation*}
$$

Equations (43) can be used to form the linear combinations:

$$
\begin{equation*}
N_{L} e^{-{ }^{+} 1 \delta_{L}^{C}}=N_{C}\left\{1+\int_{0}^{\infty}\left(\bar{G}_{\ell}+\left(H_{C} \pm \frac{1}{N_{C}^{2} k}\right) \bar{F}_{\ell}\right) v_{L} v_{R} d r\right\} \tag{45}
\end{equation*}
$$

The integral in the right hand side of eq. (45), with ∞ replaced by a finite upper bound has the following analytic properties:
$-\bar{G}_{\ell}, \bar{F}_{k}$ and v_{R} are analytic in k^{2} for finite r. Since $\left(H_{C}{ }^{+}{ }_{-} \frac{1}{N_{C}^{2} k}\right)$ is analytıc in the upper/lower momentum plane, except for poles at $k=+1 \beta_{C},-1 \beta_{C}-w 1 t h 1 \beta_{C}$ a Coulomb bound state - and the cut along the negative k-axis, this is also the case for the integral with finite upper bound.

One proves:

$$
\bar{G}_{\ell}+\left(\mathrm{H}_{C}+_{-} \frac{1}{N_{C}^{2} k}\right) \bar{F}_{\ell}=\frac{1}{N_{C} k}\left(G_{\ell}+_{-} 1 \bar{F}_{\ell}\right)
$$

This combination has an exponential damping for $r \rightarrow \infty$ if k lies in the upper/lower momentum half plane. Now one can prove with the usual methods that the integral for $r \rightarrow \infty$ is unlformly converging in this region and therefore*:
$\frac{\mathrm{N}_{\mathrm{L}}}{\mathrm{N}_{\mathrm{C}}} \mathrm{e}^{-+1 \delta \frac{\mathrm{~L}}{\mathrm{~L}}}$ is analytic in the upper/lower complex k half plane except for singularities at the coulomb bound states (${ }^{+}{ }_{-1} \beta_{C}$).
Also $N_{L} e^{-+1 \delta_{L}^{C}}$ has singularities in the upper/lower half plane (althougr N_{C} is zero at the Coulomb bound states, this zero is not simple and does not cancel the pole from the $1 n t e g r a l)$. This $2 s$ not the result we expected from the properties of eq. (II.21). However, δ_{L}^{C} is not the

[^9]"total phase shıft" of the long range potentıal + Coulomb, but rather.
$$
\delta_{L}^{C}+\sigma_{\ell}
$$

Multiplyang eq. (45) with $k^{\ell+1} e^{-+1 \sigma_{\ell}}$ we obtain:

$$
\begin{align*}
k^{\ell+1} N_{L}(k) e^{-+1\left(\delta_{L}^{C}+\sigma_{\ell}\right)} & =k^{\ell+1} N_{C}(k) e^{-+1 \sigma_{\ell}} \\
& \times\left\{1+\int_{0}^{\infty}\left(\bar{G}_{\ell}+\left(H_{C}+-\frac{1}{N_{C}^{2}}\right) \bar{F}_{\ell}\right) v_{L} v_{R} d r^{\prime}\right\} \tag{46}
\end{align*}
$$

The factor: $k^{\hat{\imath}+1} \mathrm{~N}_{\mathrm{C}} \mathrm{e}^{-+1 \sigma_{\ell}}$ is analytic in the upper/lower half plane and contains simple zeros at $k=+1 \beta_{C} /-1 \beta_{C}$ which cancel the poles from the integral at the same places.

One obtains: $k^{\ell+1} N_{L} e^{-+1\left(\sigma_{\ell}+\delta_{L}^{C}\right)}$ is analytic in the complex k plane except for: singularıtıes due to V_{L} startıng at $k=-\quad{ }_{+} \frac{\mu_{L}}{2}$ along the 1 magınary axıs, the branch cut along the negatıve k-axis and the essential singularity at $k=0$ from the Coulomb interaction. Furthermore one proves that:

$$
\begin{aligned}
& k^{\ell+1} N_{L} e^{-1\left(\delta_{L}^{C}+\sigma_{\ell}\right)}=0 \leftrightarrow 1+\left(\int _ { 0 } ^ { \infty } \left(\bar{G}_{\ell}+\left(H_{C}+\frac{1}{N_{C}^{2}}\right) \bar{F}_{\ell} v_{L} v_{R} d r^{\prime}=0\right.\right. \\
& \Leftrightarrow v_{R} \underset{r \rightarrow \infty}{\longrightarrow} \sim\left(G_{\ell}+1 F_{\ell}\right) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-(I m k) r}
\end{aligned}
$$

Therefore, a zero of $k^{\ell+1} N_{L} e^{-1\left(\delta_{L}+\sigma_{\ell}\right)}$ corresponds with an exponential damping of the regular wave function in the upper half momentum plane, 1.e. bound states of the potentral: $V_{L}+\frac{2 M_{r e d}{ }^{\alpha} F}{r}$. The procedure, leadıng to eq. (46), can also be applıed to eqs (44). One obtalns:

$$
\begin{align*}
N_{L} e^{-+1\left(\delta_{L}^{C}+\sigma_{\ell}\right)}\left(H_{L}\right. & \left.+-\frac{1}{N_{C}^{2} k}\right)=-N_{C} e^{-+1 \sigma_{\ell}}\left\{b-a\left(H_{C}+l_{-} \frac{1}{N_{C}^{2} k}\right)\right. \\
& \left.+\int_{\varepsilon}^{\infty}\left(\bar{G}_{\ell}+\left(H_{C}+\frac{1}{N_{C}^{2} k}\right) \bar{F}_{\ell}\right) V_{L} v_{I} d r^{\prime}\right\} \tag{47}
\end{align*}
$$

With the same arguments one proves:

Expression (47) is analytic in the upper/lower half plane. Since $N_{L} e^{-1\left(\delta_{L}^{C}+\sigma_{\ell}\right)}$ has the same properties and $i s$ zero at the bound state momenta of the total long range potential one obtalns: $\mathrm{H}_{\mathrm{L}}+_{-} \frac{1}{\mathrm{~N}_{\mathrm{L}}^{2}}$ is analytic in the upper/lower half plane except for poles at $k=+1 \beta_{L},-1 \beta_{L}$ where $1 \beta_{L}$ ls the momentum of a bound state of: $V_{L}+\frac{2 M_{r e d} \alpha_{F}}{r}$. In the other half plane singularities start at $k=-+1 \frac{\mu_{L}}{2}$ and there could be poles at $k=\gamma_{L} /-\gamma_{L}$ with γ_{L} the momentum of a resonance (or virtual bound state). Also the cut along the neqatıve k-axıs and the essentıal singularıty 1 s present.

Considering the symmetry properties in the momentum plane: the fact that $N_{L}, H_{L}, \delta_{L}^{C}$ are real on the positive k-axis gives:

$$
\begin{align*}
& N_{L}^{*}\left(k^{*}\right)=N_{L}(k) \\
& H_{L}^{*}\left(k^{*}\right)=H_{L}(k) \tag{40}\\
& \delta_{L}^{C}\left(k^{*}\right)=\delta_{L}^{C}(k)
\end{align*}
$$

The transformations for $k \rightarrow-k$ are not so simple as in chapter II. One proves:

$$
\begin{align*}
& N_{L}(k) e^{-1\left(\delta_{L}^{C}(k)+\sigma_{\ell}(k)\right)}=(-1)^{\ell+1} e^{\pi \eta} N_{L}(-k) e^{+1\left(\delta_{L}^{C}(-k)+\sigma_{\ell}(-k)\right)} \\
& \left(\frac{1}{N_{L}^{2} k}+H_{L}\right)_{+k}=\left(\frac{-1}{N_{L}^{2} k}+H_{L}\right)_{-k} \tag{49}
\end{align*}
$$

for $\operatorname{Im} k>0$.
With the analytic properties, eqs (48) and (49) lead to:

$$
\begin{align*}
& e^{-1 \delta_{L}^{C}(k)} k^{\ell+1} N_{L}(k)=k^{\ell+1} N_{C}(k) \exp \left\{-\frac{2}{\pi} \int_{0}^{\infty} d_{k^{\prime}}^{\infty} \frac{k^{\prime}}{k^{\prime 2}-k^{2}} \delta_{L}^{C}\left(k^{\prime}\right)\right\} \\
& \frac{1}{N_{L}^{2} k}+H_{L}(k)=\text { constant }+2 k+\frac{2 k^{2}}{\pi} \int_{0}^{\infty} d k^{\prime} \frac{\left(\frac{1}{N_{L} k^{\prime}}\right)^{2}-1}{k^{\prime 2}-k^{2}} \tag{50}
\end{align*}
$$

for $\ell=0, \operatorname{Im} k>0$ and the case that the potentıal $V_{I}+\frac{{ }^{2 M} r_{\text {red }}{ }^{\alpha} F}{r}$ has
no bound states.
Equation (50) can be used to compute N_{L} and H_{L} if the phase shift δ_{L}^{C} is known from other sources.

4. The effective range function

In this section we will include the short range part into the potential and derive its effective range function with respect to the long range potential with Coulomb interaction.

First we will follow the method used in section II.3, then the analytic properties of the amplıtude will be considered according to section II. 4.

The regular solution of the total potential V , defined in eq. (38) satisfies the integral equation:

$$
\begin{align*}
u(r)=\left(1+\int_{0}^{r} d r^{\prime}\right. & \left.v_{I}\left(r^{\prime}\right) v_{S}\left(r^{\prime}\right) u\left(r^{\prime}\right)\right) v_{R}(r) \\
& -\left(\int_{0}^{r} d r^{\prime} v_{R}\left(r^{\prime}\right) v_{S}\left(r^{\prime}\right) u\left(r^{\prime}\right)\right) v_{I}(r) \tag{51}
\end{align*}
$$

It has the boundary condition:

$$
u(r) \underset{r \rightarrow 0}{\longrightarrow} \frac{1}{(2 \ell+1)!!} r^{\ell+1}+O\left(r^{\ell+2}\right)
$$

and is an analytic function of k^{2}.

In the asymptotic lımıt we write it as:

$$
\begin{equation*}
u(r) \underset{r \rightarrow \infty}{\longrightarrow} A v_{R}(r)+B v_{I}(r) \tag{52}
\end{equation*}
$$

wıth:

$$
\begin{align*}
& A=1+\int_{0}^{\infty} d r^{\prime} v_{I} v_{S} u \tag{53}\\
& B=-\int_{0}^{\infty} d r^{\prime} v_{R} v_{S} u
\end{align*}
$$

Since: $V_{S}(r) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{-\mu_{S} r}, A$ and B will be analytic functions in k^{2}
up to $k=+-1 \frac{{ }^{4} s}{2}$, where singularaties start along the imaginary axis. Using eqs (42) and the definition of the phase shift δ_{N}^{C} for potential V, according to eq. (3), one obtains:

$$
\begin{equation*}
\frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L}=\frac{A}{B} \tag{54}
\end{equation*}
$$

with:

$$
\delta_{N}^{C}=\delta_{L}^{C}+\delta_{S}^{L}
$$

Therefore the effective range function:

$$
\begin{equation*}
P^{L}=\frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L} \tag{55}
\end{equation*}
$$

will be analytıc in k^{2} except for singularıties along the negative k^{2} axis for $k^{2} \leq-\frac{\mu^{2}}{4}$ and except for poles due to the zeros of B.

Also at the threshold, $k=0, p^{L}$ is well defined in general due to the $k-ı n d e p e n d e n t$ boundary conditions (except when B accidentally is zero at this point). Furthemore, taking $V_{L}=0$ (only Coulomb interaction as long range potential), one obtains: $v_{R}=\bar{F}_{\ell}, v_{I}=\bar{G}_{\ell}$, and $N_{L}=N_{C}, H=H_{C}, \delta_{S}^{L}=0$, leading to: $P^{L}\left(k^{2}\right)=P^{C}\left(k^{2}\right)$ (the ordinary Coulomb effective range function, eq. (29)).

Now we will turn to the partial wave amplitude. According to eq.
(12b) the total amplitude can be written as the sum of the coulomb partial wave amplitude and a correction term for the nuclear part:

$$
\begin{equation*}
f_{\ell}=f_{\sigma_{\ell}}+e^{21 \sigma_{\ell}} f_{\delta_{N}^{C}} \tag{56}
\end{equation*}
$$

wath:

$$
f_{\sigma_{\ell}}=\frac{e^{21 \sigma_{\ell}}-1}{21 k} \quad, \quad f_{\delta_{N}^{C}}=\frac{e^{2 ı \delta_{N}^{C}}-1}{21 k}
$$

Using: $\delta_{N}^{C}=\delta_{L}^{C}+\delta_{S}^{L}$ one gets:

$$
\begin{align*}
f_{\delta_{N}^{C}}^{C} & ={ }_{f_{\delta_{L}^{C}}^{C}}+e^{21 \delta_{L}^{C}} f_{\delta_{S}^{L}} \\
& =\frac{e^{21 \delta_{L}^{C}}}{21 k}+e^{2 I \delta_{L}^{C}} \frac{e^{21 \delta_{S}^{L}}-1}{21 k} \tag{57}
\end{align*}
$$

which splits the nuclear part of the amplitude into a long range (V_{L}) and a short range $\left(V_{S}\right)$ part. Note that:

$$
\begin{equation*}
f_{\ell}=f_{\sigma_{\ell}}+e^{21 \sigma_{\ell}} f_{\delta_{I}^{C}}+e^{2 I\left(\sigma_{\ell}+\delta_{L}^{C}\right)} f_{\delta_{S}^{L}} \tag{58}
\end{equation*}
$$

The first two terms on the right hand side represent the partial wave amplitude for the potential: $V_{L}+\frac{2{ }^{M} r_{\text {red }} \alpha_{F}}{r}$.

We define outgolng and incoming (irregular) solutions of the long range potential:

$$
\begin{equation*}
v_{H_{-}}=\left(H_{L}+-\frac{1}{N_{L}^{2} k}\right) v_{R}+v_{I} \tag{59}
\end{equation*}
$$

with:

$$
v_{+_{-}} \underset{r \rightarrow \infty}{\longrightarrow} \frac{e^{+_{-}-1 \delta_{L}^{C}}}{N_{L} k}\left(G_{\lambda}+_{-} 1 F_{\ell}\right) \underset{r \rightarrow \infty}{\longrightarrow} \sim e^{+_{-} 1 k r}
$$

These wave functions are analytıc in k except for the singularities caused by the $\left(H_{L}+_{-} \frac{1}{N_{L}^{2} k}\right)$ factor. One obtalns:

$$
\begin{equation*}
e^{2 i \delta_{S}^{L}}=\frac{1+\int_{0}^{\infty} v_{-} v_{S} u}{1+\int_{0}^{\infty} v_{+} v_{S} u} \tag{60}
\end{equation*}
$$

with singularıties along the imaginary axis starting at $k=+_{-} l \frac{L^{L}}{2}$ and poles, comng from v_{-}and from zeros of the denominator. Also the Coulomb cut starting at $k=0$ along the negative k-axis is present.

A better behaviour in the (physical) upper half momentum plane has:

$$
\begin{equation*}
N_{L}^{2} k^{2} \frac{e^{21 \delta S_{S}^{L}}-1}{21 k}=-\frac{\int_{0}^{\infty} v_{R} v_{S} u}{1+\int_{0}^{\infty} v_{+} v_{S} u} \tag{61}
\end{equation*}
$$

which is analytic up to $k=+1 \frac{\mu}{2}$ except for poles from zeros of the denominator (corresponding with bound states of V). At the threshold it still contains the essential Coulomb singularity and of course the cut along the negative aris.

These singularities can be made explicit, using eqs (59) and (53) - (55):

$$
\begin{equation*}
N_{L}^{2} k^{2} \frac{e^{21 \delta_{S}^{L}}-1}{2 I k}=\frac{1}{P^{L}\left(k^{2}\right)-\left(\frac{I}{N_{L}^{2} k}+H_{L}\right)} \tag{62}
\end{equation*}
$$

The factor ($1 / N_{L}^{2} k+H_{L}$) $1 s$ responsible for the coulomb singularities at $k=0$ and singularıtıes startıng at $k=-1 \frac{\mu_{L}}{2} \quad$ in the lower half plane. The effective range function $P^{L}\left(k^{2}\right)$ does not contain singularities in upper or lower half plane up to $k=+_{-} \frac{{ }^{\mu}}{} \frac{s}{2}$ (neglecting accidental poles).

The function defined by eq. (61) with nice analytic properties in the physical plane, has (for $V_{L}=0!!$) been derived by Hamilton [Ha 73], calling it the effective function, and is the starting point in dispersive calculations for the Coulomb corrections on the hadronic amplitude. We define:

$$
\begin{equation*}
u^{\infty}=\frac{u}{\left(1+\int_{0}^{\infty} v_{+} v_{S} u\left(r^{\prime}\right)\right.} \tag{63}
\end{equation*}
$$

which satisfies:

$$
\begin{equation*}
u^{\infty}(r)=v_{R}(r)-\int_{0}^{\infty} d r^{\prime} G^{L,+}\left(r, r^{\prime}\right) V_{S} u^{\infty} \tag{64}
\end{equation*}
$$

with:

$$
G^{L_{,}+}\left(r, r^{\prime}\right)=v_{R}\left(r_{<}\right) v_{+}\left(r_{>}\right)
$$

Now :

$$
\begin{equation*}
N_{L}^{2} k^{2} f{ }_{\delta}^{L}=-\int_{0}^{\infty} v_{R} v_{S} u^{\infty} d r^{\prime} \tag{65}
\end{equation*}
$$

As in the case without Coulomb interaction one can prove that the singularıty structure of $N_{L}^{2} \mathrm{k}^{2} \underset{\delta_{S}^{L}}{ }$ is "additıve" in the successive Born approximations of the integral equation (64) (the proof of this, which needs bounds on $G^{\text {L, }+, ~} 15$ not trivial; see [Co 62]). Note that this additivity is not present in the effective range function P^{L} : the discontinuity along the first part of the cut is also influenced by the higher Born approximation. One obtains:

$$
\begin{aligned}
\operatorname{disc} \frac{A}{B}= & \operatorname{disc}\left(\frac{1}{N_{L}^{2} k^{2} f}+\left(\frac{1}{N_{S}^{2} k}+H_{L}\right)\right) \\
& -\operatorname{disc}\left(N_{L}^{2} k^{2} f_{\delta_{S}^{L}}^{L}\right) \\
= & \frac{N_{L}^{2} k^{2} f_{\delta_{S}^{L}} \mid}{} \quad \text { in the upper half plane. }
\end{aligned}
$$

The numerator is linear in the potential V_{S} for momenta: $1 \frac{\mu_{S}}{2}<k \leq \mu_{S}$. However, the denominator contains all orders.

Finally we observe that at the bound state momenta of the long range potential, $1 \beta_{L}$:

$$
\mathrm{N}_{\mathrm{L}}^{2} \mathrm{k}^{2} \mathrm{f}_{\delta_{\mathrm{S}}^{\mathrm{L}}}=0
$$

and:

$$
\left.e^{21\left(\sigma_{\ell}+\delta_{L}\right)} \underset{\delta_{S}^{L}}{f} \underset{k \rightarrow 1}{ }-\frac{1}{2 ı k} e^{21\left(\sigma_{\ell}+\delta_{L}\right)} \underset{k \rightarrow 1}{ } \underset{L}{ } \infty\right)
$$

Therefore the poles at $k=1 \beta_{L}$ in the $\alpha_{1} f f e r e n t$ terms of the total amplıtude:

$$
f_{\ell}=f_{\sigma_{\ell}}+e^{2 i \sigma_{\ell}} f_{\delta_{L}}+e^{2 i\left(\sigma_{\ell}+\delta_{L}\right)} f_{\delta_{S}^{L}}
$$

will cancel each other giving a finite total sum.
the effective range function

1. Introduction

Once the long range potential 15 known the functions N_{L}, H_{L} and δ_{L} $\left(\delta_{L}^{C}\right)$ can be computed. The phase shift δ_{N}^{C} of the total potential is given by:

$$
\begin{align*}
& \delta_{N}^{C}=\delta_{L}^{C}+\delta_{S}^{L} \\
& \frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L}=\frac{A}{B} \tag{1}
\end{align*}
$$

If the short range potential V_{S} is known explicitly one could compute A and B fromeqs (3.53) and use them in (1). However, it wall be clear that $1 t$ is much simpler in this case to calculate the total phase shift δ_{N}^{C} directly by solving the Schrodinger equation. In that case the short range potential must be parametrized (coupling constants, masses) and these parameters are adjusted such as to glve an accurate description of the experımental data (cross sections, polarizations, binding energies, quadrupole moment and so on).

This is the standard method whrch Hamada-Johnston [Ha 62], Bressel-Kerman [Br 69], Reid [Re 68] and many others use for the analysis of proton-proton scattering data up to 300 MeV lab energy. However, this method has several disadvantages:

- it is rather computer time consuming since for every experimental energy the Schrodinger equation must be solved several times.
- lt requires an a priori knowledge of the form of the potential, long range as well as intermediate and short range.

However, only the long range part (one pion exchange and electric interactions) $u s$ belleved to be well-known. The medium and short-range behaviour of the nucleon-nucleon interaction is more difficult to derive but it scems to be more or less well described in terms of $\hat{\mathrm{N}}$, $\omega-$, and ε-exchange together with some additional repulsion.

At really short distances, less than 0.4 or 0.5 fm , the interactıons obtalned nasvely from meson exchange must be cut off in some (pnenomenological) way. Also the orıgin of the short range repulsion ("core") remalns unclear yet.

All this umplies that the potential will contan pure phenomenologlcal functions which could lead to the following troubles: - since the predicted cross sections, polarizations, etc, are very sensitıve for relatively small changes in the parameters, fitting to the experimental data directly is difficult. Moreover, if the potential contains wrong or pathological sub-potentials, fitting the parameters will lead to a potential with a very delicate balance between the several parts in order to compensate for these unphysical features. - althougn different potentials, which agree with each other in the long range part, result anto (roughly) the same phase shıfts, the behavıour for smaller distances could be substantıally different; however, they agree about the following features: The nucleon-nucleon interaction seems to have:

- a long range one pion exchange (OPE) part (+ possible electric interactions)
- a medium range strong attractive force
- a short range repulsion.

For these reasons we propose the following procedure to analyse
nucleon-nucleon scattering data:

1. include in the long range potential V_{L} all potentials which are explicitly known and calculate the functions N_{L}, H_{L} and $\delta_{L}\left(\delta_{L} C_{\text {}}\right.$ (for anstance for $p-p$ scatterıng: $O P E+$ electric potentials).
2. parametrize the right hand side of eq. (1) in such a way that it is able to describe some general characteristics of the short range part (for $p-p$: medium range attraction + short range repulsion). Disadvantages of this procedure are:

- the parametrization must be done for every partial wave separately, therefore increasing the number of parameters. Perhaps one must find a method to predict parameters for higher partial waves from the lower ones.
- the parameters are not "physical", in the sense that they merely represent in another way experimental data; they only connect data at different energies with each other. It is not possible to extract from them in a simple way "physical" quantıties like coupling constants or to use them in another physical situation (for instance crossing from $\mathrm{NN} \rightarrow \mathrm{NN}$ to $\mathrm{NN} \times \mathrm{N} \overline{\mathrm{N}})$.

On can see already on beforehand how many parameters are at least necessary to describe the nucleon-nucleon interaction; namely 6, corresponding with:

- strength and range of the OPE potential,
- strength and range of the medium range interaction,
- strength and range of the short range repulsion.

Whether and how these characteristics are really observable will be considered in chapter VI.

In the next section we will give a special parametrization of the
rıgnt hand side of eq. (1): the pole approximation.

2. The effective range function and the pole approximation

The most simple parametrization of the effective range function P_{L} is the Taylor expansion in k^{2}, written in the well-known form:

$$
\begin{equation*}
P_{L}\left(k^{2}\right)=-\frac{1}{a_{S}^{L}}+\frac{1}{2} r_{S}^{L} k^{2}-r_{S}^{L^{3}} p_{S}^{L} k^{4}+\cdots \tag{2}
\end{equation*}
$$

The notation $a_{S}^{L}, r_{S}^{L}, \ldots$ is used in order to indicate the fact that we are dealing with the parametrization of δ_{S}^{L} (phase shift of the short range potential with respect to the long range potential).

The series eq. (2) $1 s$ converging for momenta:

$$
\begin{equation*}
\left|k^{2}\right|<\frac{\mu_{S}^{2}}{4} \tag{3}
\end{equation*}
$$

(or less when $B=0$ at shorter distance from the origin, causing a simple pole in P_{L}).

The bound eq. (3) 15 caused by dynameal singularities along the negative k^{2} axis: $k^{2}<-\frac{\mu_{S}^{2}}{4}$. In order to improve convergence for momenta at a finite distance ($\neq 0$) of the singularities one often uses Padé approxımants. A Padé approxımant $Q^{[N, M]}\left(k^{2}\right)$ of the function $P_{L}\left(k^{2}\right)$, is defined as the ratio of two polynomials:

$$
\begin{equation*}
Q^{[N, M]}\left(k^{2}\right)=\frac{R_{M}\left(k^{2}\right)}{S_{N}\left(k^{2}\right)} \tag{4}
\end{equation*}
$$

with R_{M} and S_{N} polynomals of degree M and N in k^{2} respectively, with coefficients determined by the requirement*:

[^10]\[

$$
\begin{equation*}
\lim _{2^{2} \rightarrow 0}\left(Q^{[N, M]}\left(k^{2}\right)-P_{L}\left(k^{2}\right)\right) \Rightarrow O\left(k^{2(N+M+1)}\right) \tag{5}
\end{equation*}
$$

\]

Under certain conditions one can prove that.
 $\mathrm{N}, \mathrm{M}+\infty$ function, but any function with singularities in the complex k^{2} plane, providing it satisfies certaln properties). This is in principle valid for k^{2} in the enture complex plane.

Eqs (4) and (5) are a pure mathematical definition of the parametrization:

$$
\begin{equation*}
P_{L}\left(k^{2}\right)=Q^{[N, M]}\left(k^{2}\right) \tag{6}
\end{equation*}
$$

In the following we will demonstrate the physical content of such an approximation.

We recall the properties of $N_{L}^{2} k^{2} f_{\delta_{S}^{L}}$ as defined in eq. (3.61):
In the physical k^{2} plane (corrsponding with the upper half momentum plane) it has singularities along the negative k^{2} axis for $k^{2} \leq-\frac{\mu^{2}}{4}$. Typical examples are cuts if the potential is a superposition of Yukawa's, poles $1 f$ the total potential consists of exponentials in r. Due to the mapplng from $k \rightarrow k^{2}$ it has also a cut along the positive real axis, with discontinuity:

Therefore for physical energies:

$$
\begin{equation*}
\operatorname{Im}\left(N_{L}^{2} k^{2} \mathrm{f}_{\delta_{S}^{L}}\right)=\frac{1}{N_{L}^{2} k}\left|N_{L}^{2} k^{2} \mathrm{f}_{\delta_{S}^{L}}\right|^{2} \tag{8}
\end{equation*}
$$

which will be called the modified optical theorem. For momenta: $-\frac{\mu_{S}^{2}}{4}<k^{2}<0$ one proves: $N_{L^{2}}^{2} f_{\delta_{S}^{L}}$ is real and from eq. (3.50) one derives. $\lim _{k \rightarrow \infty} k^{\ell+1} N(k)=1$. Furthermore $1 t$ appears that $N_{L}^{2} k^{2} f_{\delta_{S}}^{L} 1 s$
bounded for $k^{2} \rightarrow 0$ in the physical plane, except when a (bound state) pole is lying on top of the threshold.

Following tne "N/D" method [Che 60] we write:

$$
\begin{equation*}
N_{L}^{2} k^{2} f_{\delta_{S}^{L}}=\frac{N}{D} \tag{9}
\end{equation*}
$$

where $\mathrm{N}\left(\mathrm{k}^{2}\right)$ contains only (dynamical) left hand singularities in the complex k^{2} plane and is analytıc everywhere else; $D\left(k^{2}\right)$ contains only the unitarity cut and is analytic everywhere elsc.

Furthermore we require:

$$
\begin{equation*}
\lim _{\left|\mathrm{k}^{2}\right|_{\rightarrow \infty}} D\left(\mathrm{k}^{2}\right)=1 \tag{10}
\end{equation*}
$$

and from $\lim _{\mathrm{k} \rightarrow \infty} \delta_{\mathrm{S}}^{\mathrm{L}}=O\left(\frac{1}{\mathrm{k}}\right)$ and $\lim _{\mathrm{k} \times \infty} \mathrm{N}_{\mathrm{L}}^{2} \mathrm{k}^{2}=0\left(\mathrm{k}^{-2 \ell}\right)$ it follows:

$$
\begin{equation*}
\left|\mathrm{k}^{2}\right|_{-\infty} \mathrm{N}\left(\mathrm{k}^{2}\right) \sim \mathrm{k}^{-2 \ell-2} \tag{11}
\end{equation*}
$$

In principle one could calculate the singularities in the left hand plane from eqs (3.64) and (3.65). One belleves that for smaller energies only the nearby singularity structure is of importance so that it is sufficient to calculate only the first and second Born approximation [Lu 64]. A problem, however, is that even the first Born approximation can only be calculated (if V_{S} is known) if the long range potential $V_{L} 1 s$ rather trivial: $V_{L}=0, V_{L}=\frac{2 M_{r e d} \alpha_{F}}{r}$ or any potential which can be solved in closed form. Therefore, instead of parametrizing the short range potential V_{S}, we choose to parametrize the singularıty structure of $N_{L}^{2} k^{2} f_{\delta_{S}^{L}}$. Of all the possible methods, we will consider only the approxımation of the left hand singularitıes by a sequence of poles, merely because the equations'can then be solved in closed form. In principle it is possible to sımulate in this way almost every singularıty structure; in practice, however, this would
require a large number of poles and the simplicity would be lost.
We will take one pole for each characteristic feature of the short range potential. For s-wave proton-proton scattering this would mean: - Eor $V_{L}=$ electric interaction: 3 poles representing: $V_{S}=O P E+$ medium range attraction + short range repulsion.

- for $V_{L}=O P E$ potential + electric 1 nteraction: 2 poles representing: medium + short range interaction.

Approximating the left hand singularities by n poles, $N\left(k^{2}\right)$ must be of the form:

$$
\begin{equation*}
N\left(k^{2}\right)=\sum_{1=1}^{n} \frac{\lambda_{1}}{k^{2}+\mu_{1}^{2}} \tag{12}
\end{equation*}
$$

wath $2 n$ free (real) parameters: $\left\{\lambda_{1}, \mu_{1}\right\}$. However, the condition eq.
(11) glves ℓ restrictions:

$$
\begin{equation*}
\sum_{1=1}^{n} \lambda_{1} \mu_{1}^{2 k}=0 \quad ; \quad k=0, \ldots, \ell-1 \tag{13}
\end{equation*}
$$

and therefore the total number of free parameters $1 s$ only $(2 n-\ell)$. From eqs (13) lt follows that only a nontrivial ($N \neq 0$) solution is possible $ı f: n>\ell$; therefore for the $\ell^{\text {th }}$ partial wave a minimum of $\ell+1$ poles is required (with $\ell+2$ free parameters).
$N\left(k^{2}\right)$ can be written in several forms:

$$
\begin{align*}
N\left(k^{2}\right) & =\sum_{1=1}^{n} \frac{\lambda_{1}}{k^{2}+\mu_{1}^{2}}=\frac{1}{k^{2 \ell+2}}\left(v_{0}+\sum_{1=1}^{n} \frac{v_{1}}{k^{2}+\mu_{1}^{2}}\right) \\
& =\frac{U_{n-\ell-1}\left(k^{2}\right)}{V_{n}\left(k^{2}\right)} \tag{14}
\end{align*}
$$

with V_{n} and $U_{n-\ell-1}$ polynomals $1 n k^{2}$ of degree n and $n-\ell-1$ respectively; of course the coefficients $\left\{v_{1}\right\}$ are related to $\left\{\lambda_{1}, \mu_{1}\right\}$.

From the analytic properties of D, (eq. (7)) one derives the integral equation:

$$
\begin{equation*}
D\left(k^{2}\right)=1-\frac{1}{\pi} \int_{0}^{\infty} d k^{\prime 2} \frac{1}{k^{\prime}{ }^{2}-k^{2}} \frac{1}{N_{L}^{2} k^{2}} N\left(k^{\prime 2}\right) \tag{15}
\end{equation*}
$$

Using eqs (14) and (2.65), (2.66) (also valid if the Coulomb interaction is included, eq. (3.50)) one can perform the integration resulting into:

$$
\begin{equation*}
D\left(k^{2}\right)=1-N\left(k^{2}\right)\left(\frac{1}{N_{L}^{2} k}+H_{L}-W_{\ell}\left(k^{2}\right)\right)+\sum_{1=1}^{n} \frac{\tau_{1}}{k^{2}+\mu_{1}^{2}} \tag{16}
\end{equation*}
$$

with $W_{\ell}\left(k^{2}\right)$ a polynomial of degree ℓ (the first term in the rıght hand side of eq. (2.66)) and τ_{1} a real number:

$$
\tau_{1}=\frac{2 v_{1}}{\pi} \int_{0}^{\infty} d k^{\prime} \frac{1}{N_{L}^{2} k^{2 \ell+2}} \frac{1}{k^{\prime 2}+\mu_{1}^{2}}
$$

Therefore:

$$
\begin{align*}
N_{L}^{2} k^{2}{ }_{f}{ }_{\delta}^{L}= & \frac{N}{D}=\frac{1}{1+\sum_{I=1}^{n} \frac{{ }^{2} 1}{k^{2}+\mu_{1}^{2}}} \\
& =\frac{1}{N\left(k^{2}\right)}+W_{\ell}\left(k^{2}\right)-\frac{1}{N_{L}^{2} k}-H_{L} \tag{17}\\
& \frac{R_{n}\left(k^{2}\right)}{S_{n-\ell-1}\left(k^{2}\right)}-\frac{1}{N_{L}^{2} k}-H_{L}
\end{align*}
$$

with R_{n} and $S_{n-\ell-1}$ real polynomials in k^{2} of degree n and $n-\ell-1$ respectively.

Comparing with eq. (3.62) gives:

$$
\begin{equation*}
P_{L}\left(k^{2}\right)=\frac{R_{n}\left(k^{2}\right)}{S_{n-\ell-1}\left(k^{2}\right)} \tag{18}
\end{equation*}
$$

*This integral can be rewritten with help of the integral (2.66), (3.50) (generalızed for $\ell \neq 0$).

An n-pole approximation of $N_{L}^{2} K^{2} f$ therefore 15 equivalent with a Pade approximation of order $[n-\hat{x}-1, n]$ S of the effective range function:

$$
\begin{equation*}
P_{L}\left(k^{2}\right)=Q_{L}^{[n-\ell-1, n]}\left(k^{2}\right) \tag{19}
\end{equation*}
$$

The number of coefficients in the Pade $Q_{L}^{[n-\ell-1, n]}\left(k^{2}\right)$ is $(2 n-\ell)$; therefore instead of fitting $\left\{\lambda_{1}, \mu_{1}\right\}$ (with restrictions of eq. (13)) it $1 s$ more convenıent to consıder the Padé coefficients as frec parametcrs*. In the past mixed forms have been derıved with (a few) Padé coefficients as well as pole parameters as independent parameters. We will consider tnem in the next section for the cases $V_{L}=0$ and $V_{L}=\frac{2 M_{r e d} \alpha_{F}}{r}$; therefore they are parametrizations for the "classical" effective range functions.

3. CFS approximations

CFS approximations have been used to include in nucleon-nucleon scattering (np and pp) some information about the OPF interaction. First we will consider the $n p$ case with $V_{L}=0$. The short range interaction - identical with the total potential - contains one pion exchange + medium range attraction + short range repulsion.

In the orıginal CFS approxımation, derıved for s-waves, the OPE cut is replaced by one pole wath:

$$
\begin{align*}
& \text { position }=-\frac{\mu_{T}^{2}}{2} \\
& \text { residue }=\frac{f^{2} M}{2} \quad(M=\text { nucleon mass }) \tag{20}
\end{align*}
$$

[^11] axis, witn real residues.

This choice can be Justified in several ways. The argument of Cini-Fubini-Stanghellını [CFS 59] was based on the observation that the total (partial wave summed) amplitude will have a pole at: $\overrightarrow{\mathrm{k}}^{2}=-\mu_{\pi}^{2}$, with residue $f^{2} M$. Since the total amplitude at $0=90^{\circ}$ can be approximated for small energies by the s-wave partial amplıtude (p-waves do not contribute at 90° and $\ell \geq 2$ waves are small) one has:

$$
\begin{equation*}
\frac{e^{21 \delta_{0}}-1}{21 k} \simeq f_{\text {tot }}\left(0=90^{\circ}\right)=\frac{f^{2} M}{2 k^{2}+\mu_{\pi}^{2}}+\ldots \tag{21}
\end{equation*}
$$

which corresponds with (20).
Another argument is that eq. (21) 15 the [1,0] Pade of the first
Born approximation (giving the OPE cut) of the s partial wave amplitude:

$$
\begin{equation*}
\mathrm{f}_{\ell=0}^{\mathrm{BA}, \pi}=\frac{\mathrm{f}^{2} M}{4 \mathrm{k}^{2}} \ln \left(1+\frac{4 \mathrm{k}^{2}}{\mu_{\pi}^{2}}\right) \underset{\mathrm{k} \mu 0}{\longrightarrow} \frac{\mathrm{f}^{2} M}{2 k^{2}+\mu_{\pi}^{2}} \tag{22}
\end{equation*}
$$

The medium- and short ranged interactions are also replaced by poles; using one pole for both interactions together one can solve the equations in section $2^{*}\left(N_{L} k=1, H_{L}=0, \delta_{L_{4}}=0\right)$ and arrive at:

$$
P\left(k^{2}\right)=k \cot \delta_{N}=-\frac{1}{a}+\frac{1}{2} r k^{2}-\frac{c \mu_{T}^{-} k^{4}}{1+d \mu_{\pi}-2^{2}}
$$

$$
\begin{align*}
& d=\left(2-\frac{f^{2} M}{\mu_{\pi}}\left(\frac{3}{2} \sqrt{2}-\frac{4}{\mu_{\pi}{ }^{a}}-\frac{1}{2} \mu_{\pi} r\right)\right) /\left(1-\frac{f^{2} M}{\mu_{\pi}}\left(\frac{1}{4} \sqrt{2}-\frac{1}{\mu_{\pi} a}\right)\right) \tag{23}\\
& c=\left(1-\frac{1}{2} d\right)\left(2 \sqrt{ } 2-\mu_{\pi} r-\frac{4}{\mu_{\pi^{a}}}\right)
\end{align*}
$$

Using one pole for the pion according to eq. (20), and one pole for the medium- and short range interaction each, one obtains:

[^12]$P\left(k^{2}\right)=k \cot \delta_{N}=-\frac{1}{a}+\frac{1}{2} r k^{2}-\frac{\mathrm{pk}^{2}\left(1+t k^{2}\right)}{\left(1+q k^{2}\right)\left(1+s k^{2}\right)}$
where p and q are complicated functions of a, r, t, s, f^{2} and μ_{π}.
The approximation of eq. (23), with a total of two poles in the amplitude will be called the CFS (2) approximation. Eq. (24), which will result in a total of three poles, will be called the CFS (3) approximation.

The CFS approximations can be generalızed in order to account for the Coulomb interaction [wo 62], [No 64]. One takes:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{M} \alpha_{\mathrm{F}}}{\mathrm{r}} \\
\mathrm{~N}_{\mathrm{L}}^{2} \mathrm{k}^{2}=\frac{1}{\mathrm{C}_{0}^{2}} & ; \tag{25}
\end{array}
$$

and uses the same method as before, replacing the OPE cut by one pole and using one or more poles for the remaining interactions. One takes for the pron pole:

$$
\begin{align*}
& \text { position }=-\frac{\mu_{\pi}^{2}}{2} \times \gamma_{C} \\
& \text { residue }=\frac{f^{2} M}{2} \times \delta_{C} \tag{26}
\end{align*}
$$

with γ_{C} and δ_{C} Coulomb modification factors (we will return on this in the following).

Representing the medıum- and short-range interactions by one pole, one arrıves at the Coulomb corrected CFS (2) approximation:

$$
\begin{align*}
P_{C}\left(k^{2}\right) & =C_{0}^{2} k \cot \delta_{N}^{C}+2 \eta k h(n) \\
& =-\frac{1}{a_{N}^{C}}+\frac{1}{2} r_{N}^{C}-\frac{\mathrm{pk}^{4}}{1+q k^{2}} \tag{27}
\end{align*}
$$

$p, q=$ very complicated functions of $a_{N}^{C}, r_{N}^{C}, \mu_{\pi^{\prime}} f^{2}, \alpha_{F}$.
Emmen [Em 79] calculated the case where the vacuum polarization
is included in the long range potential, and also the generalization of CFS (3). We refer to chapter V for an alternative form of the CFS approximations, which in many aspects is more convenient to use.

In chapter VI we will consider the merits of the CFS (2) and

CFS (3) approximations applied in nucleon-nucleon scattering.

To determine the Coulomb modification factors in eq. (26) we w1ll follow wong and Noyes [wo 62].

Consider the OPE part of the total interaction, for the ${ }^{1} S_{0}$ wave represented by the Yukawa potential:

$$
\begin{equation*}
V_{\pi}=-M f^{2} \frac{e^{-\mu_{\pi} r}}{r} \tag{28}
\end{equation*}
$$

The OPE cut in $\mathrm{N}_{\mathrm{C}} \mathrm{k}^{2} \mathrm{f}{ }_{\delta_{N}}$ is determined by the first Born approximation of eqs (64 and (65) in V_{π} (the singularıty structure $1 s$ additive!):

$$
\begin{equation*}
N_{C}^{2} k^{2} f_{\delta_{N}^{C}}=-\int_{0}^{\infty} v_{R}\left(r^{\prime}\right) v_{\pi}\left(r^{\prime}\right) v_{R}\left(r^{\prime}\right) d r^{\prime} \tag{29}
\end{equation*}
$$

Since $V_{L}=$ Coulomb potential we have:

$$
v_{R}(r)=\bar{F}_{0}(r)=\frac{1}{C_{0} k} F_{0}
$$

and:

$$
\begin{equation*}
N_{C}^{2} k^{2} f{ }_{\delta}^{C}{ }_{N}=\frac{M f^{2}}{k^{2} C_{0}^{2}} \int_{0}^{\infty} d r^{\prime} \frac{e^{-\mu_{\pi^{\prime}} r^{\prime}}}{r^{\prime}} F_{0}^{2}\left(r^{\prime}\right) \tag{30}
\end{equation*}
$$

This can be written in closed form:

$$
\begin{array}{r}
N_{C}^{2} k^{2} \underset{\delta_{N}^{C}}{ }=-\frac{M f^{2}}{4 k^{2}}\left(\frac{\mu_{\pi^{1}}^{2 k}}{2 k}\right)^{-2-1 \eta}\left(1+\frac{\mu^{1}}{2 k}\right)^{21 \eta} \\
\times F\left(1+1 \eta, 1+1 \eta ; 2 ;-\frac{4 k^{2}}{2}\right) \tag{31}
\end{array}
$$

with F the ordinary hypergeometric function.
F(a;b;c;2) is analytic in the 2 plane, cut along the real axis from $z=1$ to ∞, corresponding with a cut from $k^{2}=-\frac{\mu^{2}}{4}$ to $-\infty$ in the k^{2} plane. This cut can be made explicit by using the identity ([Ab 65],
eq. 15.3.6, [Wo 62]):

$$
\begin{aligned}
& F\left(1+1 \eta, 1+1 \eta ; 2 ;-\frac{4 k^{2}}{⺊_{\pi}^{2}}\right)=\frac{\tilde{\Gamma}(-21 \eta)}{\Gamma^{2}(1-1 \eta)} F\left(1+1 \eta, 1+1 \eta, 1+2 \imath \eta ; 1+\frac{4 k^{2}}{\mu_{\pi}^{2}}\right) \\
& +\left(1+\frac{4 \mathrm{k}^{2}}{\mu_{\pi}^{2}}\right)^{-21 \eta} \frac{\Gamma(21 \eta)}{\Gamma^{2}(1+1 \eta)} F\left(1-1 \eta, 1-2 \eta ; 1-21 \eta ; 1+\frac{4 \mathrm{k}^{2}}{\mu_{\pi}^{2}}\right)
\end{aligned}
$$

givang:

$$
\begin{align*}
N_{C}^{2} k^{2} f_{\delta_{N}}^{C} & =\frac{M f^{2}}{\mu_{\pi}^{2}}\left\{\frac{\Gamma(-21 \eta)}{\Gamma^{2}(1-1 \eta)}\left(1+\frac{2 k}{1 \mu_{\pi}}\right)^{21 \eta} F\left(1+1 \eta, 1+1 \eta ; 1+21 \eta ; 1+\frac{4 k^{2}}{\mu_{\pi}^{2}}\right)\right. \\
& \left.+\frac{\Gamma(21 \eta)}{\Gamma^{2}(1+1 \eta)}\left(1-\frac{2 k}{1 \mu_{\pi}}\right)^{-21 \eta} F\left(1-1 \eta, 1-1 \eta ; 1-21 \eta ; 1+\frac{4 k^{2}}{\mu^{2}}\right) \right\rvert\, \tag{32}
\end{align*}
$$

We can now clearly see that neıther F nor the Γ functions are singular in the upper half plane for $k>\frac{1 \mu \pi}{2}$ and that the discontinuity along tne OPE cut $i s$ given only by the $\left(1-\frac{2 k}{1 L_{\pi}}\right)^{-21 \eta}$ factor.

Expanding F and the Γ functions in orders of η, leaving terms of order η^{2} and nagher one fands:

$$
\begin{equation*}
\left.N_{C}^{2} k^{2} f{ }_{\delta_{N}}^{C}\right|_{k=1 x-\varepsilon} ^{k=1 x+\varepsilon} \underset{\mu_{\mu}}{x>\frac{\pi}{2}}=1 \pi \quad=\quad \frac{M f^{2}}{2 k^{2}}\left|1-\frac{2 k}{1 \mu_{\pi}}\right|^{-21 \eta} \tag{33}
\end{equation*}
$$

One sees that eq. (33) reduces to the famllar expression for the one meson cut in the zero charge limit.

The multiplicative factor $\left|1-\frac{2 k}{1 \mu_{\top}}\right|^{-21 \eta}$ is the Coulomb modification of this cut.

Tne Noyes approximation of this cut is to replace it by a pole at $k=1 \frac{\mu_{r}}{V_{2}}$ with the residue of eq. (20) multiplied with this factor at $k=1 \frac{L_{\pi}}{\sqrt{2}}$. Therefore 1 n eq. (26) :

$$
\begin{align*}
& \gamma_{C}=1 \tag{34}\\
& \delta_{C}=|\sqrt{ } 2-1|
\end{align*} \quad-\frac{M \alpha}{\mu_{\pi}} \sqrt{2}
$$

The OPE-cut is represented by a pole at the same position as in
the non-Coulomb case. However, the Coulomb modification factor is greater than 1 and increases rapidly when k approaches the branching polnt at $1 \frac{\mu}{2}$. Therefore the position of the effective pole should perhaps be smaller than $1 \frac{\mu \pi}{\sqrt{2}}$; in this way the polnts closer to the branching point would obtain more weight.

This can be verified explicitly by constructing the [1,0] Padé $1 n \mathrm{k}^{2}$ of the Born approximation eq. (31); expanding eq. (31) in k^{2} (keeping η fixed), one obtalns:

$$
\begin{equation*}
\left.\left.N_{C}^{2} k^{2} \underset{\delta_{N}^{C}}{\stackrel{k \rightarrow 0}{\sim}} \underset{\mu_{\pi}^{2}}{\sim} \frac{M f^{2}}{\mu_{\pi}^{2}}\left(1+\frac{2 k}{\mu_{\pi} 1}\right)^{21 \eta} \right\rvert\, 1-(1+1 \eta)^{2} \frac{2 k^{2}}{\mu_{\pi}^{2}}+\ldots\right\} \tag{35a}
\end{equation*}
$$

Neglecting powers of $\mathrm{k}^{4}, \mathrm{n}^{2}$ and higher one has.

$$
\begin{equation*}
N_{C}^{2} k^{2} E_{\delta_{N}^{C}}^{\substack{\mathrm{k} \\ 1 \pi}} \frac{\frac{M \mathrm{I}^{2}}{2}\left(1+\frac{4}{3} \frac{\eta k}{\mu_{T}}\right)}{k^{2}+\frac{\mu_{\pi}^{2}}{2}\left(1-\frac{8}{3} \frac{\eta k}{\mu_{\pi}}\right)} \tag{35b}
\end{equation*}
$$

This corresponds with:

$$
\begin{align*}
& \gamma_{C}=\left(1-\frac{8}{3} \frac{\eta k}{\mu_{\pi}}\right) \tag{35c}\\
& \delta_{C}=\left(1+\frac{4}{3} \frac{\eta k}{\mu_{\pi}}\right)
\end{align*}
$$

Compared with the Wong-Noyes prescription eq. (34) this results into a pole which lies 7 (1.4 MeV lab energy for NN) closer to the threshold and a resique which is 3 g lower. Although this is rather small, it could result into larger differences in the shape corrections. For ${ }^{1} S_{0} n p^{*}$ a reduction of the pole position and residue with 7% and 3 \% respectively, would lead to a shape which is roughly 20 larger in the low energy region compared with eq. (23).

[^13]At the end of this chapter we wall antıcipate some results of chapter VI. It appears that the approximations CFS (2) and CFS (3) are not accurate enough when applied to low energy proton-proton scattering ($0-30 \mathrm{MeV}$) (in view of the very accurate data nowadays). This was already noted by Nalsse [Na 77] who compared the CFS (2) shape prediction with the shape from a potential model.

In our opinion the replacement of the OPE cut by one simple pole is too crude, especially for energies close to threshold.

Approximations and numerical calculations of $\mathrm{N}_{\mathrm{L}}, \mathrm{H}_{\mathrm{L}}$ and $\delta \mathrm{L}$

1. Introduction

The effective range function P_{L} can only be used in a practical situation when numerical values can be obtained for N_{L}, H_{L} and δ_{L}.

However, only for a few cases $\left(V_{I_{1}}=0, V_{L}\right.$ = Coulomb-potential, $V_{L}=$ Borgmann potentials) these functions can be computed exactly in closed form. In the other cases we must calculate them numerically or use approximations.

The approxımations can be divided into three classes:

1. Pole approximations;
2. Born approximations;
3. Approximations using as input a simplified analytical structure.

Sometimes combinations are possible.
In the Born approximations all functions are expanded in the coupling constant and only the lowest term is kept. Unitarity in the amplitude $1 s$ violated and also the nearest singularities are not exact (additivety of the singularity structure $1 s$ only valıd for the amplitude). Unıtarıty and the nearest sıngularitıes can be taken exactly into account by using approximations of type 3. One could calculate the phase shift δ_{L} using for instance the N / D method and after that N_{L} and H_{L} with formulas lıke eq. (3.50). As input one could take the discontinulty of the most nearby cuts. One belleves that the behaviour of the amplitude at lower energies is influenced largely by the characteristics of the "nearby" cuts, while the effects of the more
"distant" cuts may be neglected [Lu 64].
Born approximations will work fine for weak potentials or larger energies.

We have considered pole approxımations already in chapter IV: the singularities in the complex plane are approximated by one or more poles. Theır advantage $1 s$ that everything can be solved in closed form.

In the next sections we will consider only pole and Born approximations. Furthermore some aspects of (exact) numerical calculations in pp scattering with $V_{L}=$ Coulomb + vacuum polarızation + OPE potential will be considered.

2. Pole approximations

2.1. Without Coulomb interaction

Suppose the long range potential V_{L} contains no long range Coulomb interaction. We will restrict ourselves to the s-wave and replace the (dynamıcal) singularıty structure of:

$$
\begin{equation*}
f_{\delta_{L}}=\frac{e^{21 \delta_{L}}-1}{21 k} \tag{1}
\end{equation*}
$$

by a simple pole at $k=1 \frac{\mu}{\sqrt{2}}$ with residue $\frac{f^{2} M}{2}$ (cf. eq. (4.20)). Solving the N/D equations [Che 60] will give:
$k \cot \delta_{L}=\frac{\mu^{2}}{2}\left(\frac{2}{f^{2} M}-\frac{1}{\mu \sqrt{2}}\right)+\left(\frac{2}{f^{2} M}+\frac{1}{\mu \sqrt{2}}\right) k^{2}$
N_{L} and H_{L} can be obtained with the help of eqs (2.64) and (2.66), which 15 stralghtforward but rather tedious.

It is more convenient to use the analytic properties of $k_{L}^{2} N_{L}^{2} e^{-21 \delta_{L}}$ and $1 \mathrm{k} / \mathrm{N}_{\mathrm{L}}^{2} \mathrm{k}^{2}+\mathrm{H}_{\mathrm{L}}$ (eqs (2.21) and (2.22)). From eq. (2) one obtains:

$$
e^{21 \delta_{L}}=\frac{(k+\alpha)(k+\beta)}{(k-\alpha)(k-\beta)}
$$

with: $\alpha=1 \frac{\mu}{\sqrt{2}}$, the position of the dynamical singularity; and: $\quad \beta=1 \frac{\mu}{\sqrt{2}} \frac{f^{2} M \sqrt{ } 2-4 \mu}{f^{2} M \sqrt{ } 2+4 \mu}$, the real or virtual bound state of V_{L}. We require $k^{2} N_{L}^{2} e^{-21 \delta_{L}}$ to be analytic in the upper half plane with a (aouble) zero at the bound state position; moreover $k^{2} N_{L}^{2}$ must be real and even in k. One sees easıly that:

$$
\begin{equation*}
k^{2} N_{L}^{2}=\frac{k^{2}-\beta^{2}}{k^{2}-\alpha^{2}} \tag{4}
\end{equation*}
$$

does the job (also: $\lim _{k \rightarrow \infty} k^{2} N_{L}^{2}=1$).
Furthermore, we require that $\left(1 \mathrm{k} / \mathrm{k}^{2} \mathrm{~N}_{\mathrm{L}}^{2}+\mathrm{H}_{\mathrm{L}}\right)$ may not have singularities in the upper half plane except for the bound states, where it must have a simple pole. Furthermore, H_{L} must be real and even in k, and we will make use of the ambiguity in H_{L} by requiring $H_{L}(0)=0$. One obtains*:

$$
\begin{equation*}
H_{L}\left(k^{2}\right)=\frac{1}{\beta}\left(\beta^{2}-\alpha^{2}\right)\left(1+\frac{\beta^{2}}{k^{2}-\beta^{2}}\right) \tag{5}
\end{equation*}
$$

Eqs (4) and (5) determine the form of the effective range function P_{L}, which is parametrized in order to give the phase shift δ_{S}^{L}.
*One must distinguish between two cases: virtual and real bound state. For a virtual bound state, $-\beta$ lies in the upper half plane and therefore the pole in $1 k / N_{L}^{2} k^{2}$ at thas point must be cancelled by H_{L}.

For a real bound state, $-\beta$ lies in the lower half plane and gives no troubles. However $-1 k / N_{L}^{2} k^{2}+H_{L}$ must be analytic in the lower half plane and gives the same result. It corresponds with the condition that the resıdue of H_{L} and $1 k / N_{L}^{2} k^{2}$ must be the same at a bound state pole.

Using the n-pole approximation of section IV.2, where the dynamical singularities of the short range potential V_{s} are also represented by poles, one obtalns the following equations whlch must be used to obtain the total phase shift δ :

$$
\begin{align*}
& k \cot \delta_{L}=-\frac{1}{a_{L}}+\frac{1}{2} r_{L} k^{2} \quad \text { (eq. (2)) } \\
& \equiv Q_{0}^{[0,1]}\left(k^{2}\right) \\
& \frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L}=Q_{L}^{[n-1, n]}\left(k^{2}\right) \quad \text { (eq. (4.6)) } \\
& \delta=\delta_{L}+\delta_{S}^{L} \tag{6}
\end{align*}
$$

The long range potential V_{L} is represented by a one pole approximation, the short range V_{S} by an n pole approximation. It can be expected thereforc that the total potential $V=V_{L}+V_{S}$ is in fact approximated by $(n+1)$ poles. Indeed, one proves:

$$
\begin{equation*}
k \cot \delta=Q_{0}^{[0,1]}\left(k^{2}\right)+\frac{1}{(\alpha+\beta)^{2}} \frac{\left(k^{2}-\alpha^{2}\right)^{2}}{Q_{L}^{[n-1, n]}+Q_{0}^{[0,1]}+\text { const. }} \tag{7}
\end{equation*}
$$

wath: const $=1 \frac{\alpha}{\beta}(\alpha-\beta)$.
Therefore (cf. eq. (4.19)) :

$$
\begin{equation*}
k \text { cot } \delta=\frac{\text { polynomial in } k^{2} \text { of degree }(n+1)}{\text { polynomial in } k^{2} \text { of degree }(n)} \tag{8}
\end{equation*}
$$

For $n=1$ the short range potential is represented by one pole and one can prove that eq. (7) is indeed equivalent wath the CFS (2)
approxımation: eq. (4.23). For $n=2$ eq. (7) leads to the CFS (3) approximation of eq. (4.24). However, eqs (6) and (7) are quite general and allow us to use other than pole approximations for the short range potential. For every parametrization of P_{L}, eq. (6) will guarantee that there is a pole, representing V_{L}, at the same place (according to eq. (4.20)) in the total partial wave amplitude:

$$
f_{\delta}=\frac{e^{2 ı \delta}-1}{2 ı k}
$$

2. 2 With Coulomb interaction

Suppose the long range interaction consists out of the Coulomb potential and a finite range potential (e.g. the OPE potential). In that case the expression:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{C}}^{2} \mathrm{k}^{2} \underset{\delta_{\mathrm{L}}^{\mathrm{C}}}{ }=\mathrm{N}_{\mathrm{C}}^{2} \mathrm{k}^{2} \frac{\mathrm{e}^{21 \delta_{\mathrm{L}}^{\mathrm{C}}-1}}{21 \mathrm{k}} \tag{9}
\end{equation*}
$$

will have in the upper half momentum plane only dynamical singularities corresponding with the finite range potential (modified by the Coulomb interaction).

Using a one pole approximation for these singularities, one proves, following section IV. 2 , for $\ell=0$:

$$
\begin{equation*}
N_{C}^{2} k^{2} f_{\delta_{L}^{C}}=\frac{1}{-\frac{1}{a_{L}^{C}}+\frac{1}{2} r_{L}^{C} k^{2}-\frac{1 k}{N_{C}^{2} k^{2}}-{ }_{C}{ }_{C}} \tag{10}
\end{equation*}
$$

with a_{L}^{C} and r_{L}^{C} functions of the pole position and residue, which can be calculated explicitly. We define:

$$
\begin{align*}
& F^{+}(k)=-\frac{1}{a_{L}^{C}}+\frac{1}{2} r_{L}^{C} k^{2}-\frac{1 k}{N_{C}^{2} k^{2}}-H_{C} \tag{11}\\
& F^{-}(k)=-\frac{1}{a_{L}^{C}}+\frac{1}{2} r_{L}^{C} k^{2}+\frac{1 k}{N_{C}^{2} k^{2}}-H_{C}
\end{align*}
$$

Denoting the position of (pure) Coulomb bound states with β_{C}, the position of the dynamical singularity of eq. (9) by a and the bound state of V_{L} by β (assuming the Coulomb potential is repulsive)*, one

[^14]proves (cf. eqs (3.33)):
F^{+}and F^{-}are analytic in the complex momentum plane except for the cut along the negative axis, the essential singularıty at the origin and except for poles at $\beta_{C}\left(F^{+}\right)$and $-\beta_{C}\left(F^{-}\right)$.
Furthermore F^{+}will be zero in the upper half plane for $k=\alpha$ and possibly $k=\beta$. In the lower half plane F^{-}is zero at $k=-\alpha$ and $\mathrm{k}=-\beta$.

According to section III. 3 the functions N_{L} and H_{L} must be choser such that:

$$
\begin{equation*}
k^{2} N_{L}^{2} e^{-2 i\left(\delta_{L}+\sigma_{0}\right)} \tag{12}
\end{equation*}
$$

is analytic in the upper half plane, with a (double) zero at $k=\beta$. Also:

$$
\begin{equation*}
\frac{1 k}{\left(N_{L} k\right)^{2}}+H_{L} \tag{13}
\end{equation*}
$$

must be analytıc in the upper half plane, except for a pole at $k=\beta$. Choose:

$$
\begin{equation*}
k^{2} N_{L}^{2}=k^{2} N_{C}^{2} \frac{4 F^{+}(k) F^{-}(k)}{\left(r_{L}^{C}\right)^{2}\left(k^{2}-\alpha^{2}\right)^{2}} \tag{14}
\end{equation*}
$$

Now one obtains:

$$
\begin{equation*}
k^{2} N_{L}^{2} e^{-2 I\left(\delta_{L}+\sigma_{0}\right)}=k^{2} N_{C}^{2} e^{-21 \sigma_{0}} \frac{4\left(F^{+}(k)\right)^{2}}{\left(r_{L}^{C}\right)^{2}\left(k^{2}-\alpha^{2}\right)^{2}} \tag{15}
\end{equation*}
$$

The double zero of the denomanator at $k=\alpha$ is cancelled by a corresponding one of the numerator. In the lower half plane the double zeros at $k=\beta_{C}$ (from $\left.k^{2} N_{C}^{2} e^{-21 \sigma_{0}}\right)$ are cancelled by the pole of F^{+}at this position. The only zero in the upper half plane is at $k=\beta$, where F^{+}vanıshes.

Furthermore, one sees that $\mathrm{k}^{2} \mathrm{~N}_{\mathrm{L}}^{2}$ is real on the positive real
axis and the symmetry property of eq. (3.49) can be verıfied with help of eqs (3.35). For $k \rightarrow \infty$ one obtains: $\lim _{k \rightarrow \infty} k^{2} N_{L}^{2}=1$.

Of course, one can obtain eq. (14) from the integral expression eq. (3.50) using:

$$
\begin{equation*}
\frac{1}{N_{C}^{2} k} \cot \delta_{L}^{C}+H_{C}=-\frac{1}{a_{L}^{C}}+\frac{1}{2} r_{L}^{C} k^{2} \tag{16}
\end{equation*}
$$

The derivation of H_{L}, using the properties of eq. (13), is similar. After manipulating the several expressions one finds that:

$$
\begin{equation*}
H_{L}=\frac{1}{8}\left(r_{L}^{C}\right)^{2}\left(k^{2}-a^{2}\right)^{2} \frac{F^{+}+F^{-}}{F^{+} F^{-}}+\frac{1}{a_{L}^{C}}-\frac{1}{2} r_{L}^{C} k^{2} \tag{17}
\end{equation*}
$$

glves:

$$
\begin{equation*}
\frac{1 k}{k^{2} N_{L}^{2}}+H_{L}=\frac{1}{4}\left(r_{L}^{C}\right)^{2} \frac{\left(k^{2}-\alpha^{2}\right)^{2}}{F^{+}}+\frac{1}{a_{L}^{C}}-\frac{1}{2} r_{L}^{C} k^{2} \tag{18}
\end{equation*}
$$

and has the correct properties.
The term: $-\frac{1}{a_{L}}+\frac{1}{2} r_{L}^{C} k^{2}$, analytic in the whole momentum plane, is subtracted in order to obtain the correct asymptotic limit:

$$
\lim _{k \rightarrow \infty}\left(\frac{1 k}{k^{2} N_{L}^{2}}+H_{L}\right) \rightarrow 1 k+\text { const. }
$$

The function H_{L} is real for physical k and it is convenient to gauge it such that: $\mathbf{H}(0)=0$. One obtains:

$$
\begin{equation*}
H_{L}\left(k^{2}\right)=\frac{\left(r_{L}^{C}\right)^{2}}{8}\left(k^{2}-\alpha^{2}\right)^{2} \frac{F^{+}+F^{-}}{F^{+} F^{-}}-\frac{1}{2} r_{L}^{C} k^{2}+\frac{a_{L}^{C}\left(r_{L}^{C}\right)^{2}}{4} \alpha^{4} \tag{19}
\end{equation*}
$$

The effective range function P_{L} is now determined. Using the n-pole approxamation for the short range potential V_{S} again, the total phase shift δ_{N}^{C} of $V=V_{L}+V_{S}$ with respect to Coulomb functions is parametrized according to:

$$
\begin{align*}
\frac{1}{\mathrm{kN}_{C}^{2}} \cot \delta_{L}^{C}+H_{C} & =-\frac{1}{a_{L}^{C}}+\frac{1}{2} r_{L}^{C} k^{2} \tag{16}\\
& \equiv Q_{C}^{[0,1]}\left(k^{2}\right)
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{\mathrm{kN}_{L}^{2}} \cot \delta_{S}^{L}+H_{L}=Q_{L}^{[n-1, n]}\left(k^{2}\right) \\
& \quad \delta_{N}^{C}=\delta_{L}^{C}+\delta_{S}^{L} \tag{20}
\end{align*}
$$

It is not trivial to prove that eqs (20) are equivalent with:

$$
\begin{align*}
\frac{1}{k N_{C}^{2}} \cot \delta_{N}^{C} & +H_{C}=Q_{C}^{[0,1]}\left(k^{2}\right) \\
& -\frac{\left(r_{L}^{C}\right)^{2}\left(k^{2}-\alpha\right)^{2}}{4\left(Q_{L}^{[n-1, n]}+Q_{C}^{[0,1]}+\text { const. }\right)} \tag{21}
\end{align*}
$$

with:

$$
\text { const. }=-\frac{\left(r_{L}^{C}\right)^{2} a_{L}^{C} a^{4}}{4}+\frac{1}{a_{L}^{C}}
$$

For $n=1$, eq. (21) is equivalent with the Coulomb corrected CFS (2) approximation (the position and residue of the V_{L} pole must be chosen according to eqs (4.26) and (4.34)). Takıng $n=2$ gıves the Coulomb corrected CFS (3) approximation.

3. Born approximations

In this section we will consıder Born approxımations for N_{L}, H_{L}, $\delta_{\text {L }}$ for the long range potential:

$$
\begin{equation*}
v_{L}(r)=-M f^{2} \frac{e^{-\mu r}}{r} \tag{22}
\end{equation*}
$$

We wall treat only the $\ell=0$ case; generalızatıons for higher partıal waves and for a V_{L} which contains also a Coulomb interaction, will be left to the reader and are straightforward.

The first Born approximation we will consider, is derived by expanding formulas (2.17) in f^{2}, keeping only the lowest orders; using: $v_{R}(r) \simeq \bar{J}_{0}(k r)=\frac{\sin k r}{k}$ and $v_{I}(r) \simeq \bar{n}_{0}=\cos k r \quad$, and replacing \in by 0 since everything should be independent on it, one obtains:

$$
\begin{align*}
\delta_{L} & =-\frac{1}{k} \int_{0}^{\infty} d r^{\prime} v_{L}\left(r^{\prime}\right) \sin ^{2}\left(k r^{\prime}\right) \\
N_{L} k & =1+\frac{1}{k} \int_{0}^{\infty} d r^{\prime} v_{L}\left(r^{\prime}\right) \sin k r^{\prime} \cos k r^{\prime} \tag{23}\\
H_{L} & =\int_{0}^{\infty} d r^{\prime}\left(\sin ^{2} k r^{\prime}-\cos ^{2} k r^{\prime}\right) V_{L}\left(r^{\prime}\right)
\end{align*}
$$

However, as it stands H_{L} is only properly defined if $V_{L}(0)=$ finite (caused by replacing E by 0 too hasty). One could add a cut-off factor to the definition in eq. (22). However, one obtains also a finite expression for H_{L} if one subtracts the value at $k^{2}=0$:

$$
\begin{align*}
H_{L}\left(k^{2}\right)-H_{L}(0) & =\int_{0}^{\infty} d r^{\prime}\left(\sin ^{2} k r^{\prime}-\cos ^{2} k r^{\prime}+1\right) V_{L}\left(r^{\prime}\right) \\
& =2 \int_{0}^{\infty} d r^{\prime} \sin ^{2} k r^{\prime} V_{L}\left(r^{\prime}\right) \tag{24}
\end{align*}
$$

The integrals can be solved explicitly, giving:

$$
\begin{align*}
& \delta_{L}(k)=\frac{M f^{2}}{4 k} \ln \left(1+\frac{4 k^{2}}{\mu^{2}}\right) \\
& k N_{L}(k)=1-\frac{M f^{2}}{2 k} \arctan \left(\frac{2 k}{\mu}\right) \tag{25}\\
& H_{L}\left(k^{2}\right)-H_{L}(0)=-\frac{M f^{2}}{2} \ln \left(1+\frac{4 k^{2}}{\mu^{2}}\right)
\end{align*}
$$

We will call the approximations of eq. (25), the Born I approximations.
The Born II approximations, which will appear to be slıghtly better than Born I in practice, start with the same approximation for the phase shift δ_{L}, however, used in combinations with eqs (2.64) and (2.66) in order to calculate N_{L} and H_{L}.
N_{L} can be computed exactly, H_{L} is expanded in f^{2}; neglecting terms of order f^{6} and higher one obtains:

$$
\begin{align*}
\delta_{L}(k) & =\frac{M f^{2}}{4 k} \ln \left(1+\frac{4 k^{2}}{\mu^{2}}\right) \quad \text { (by definıtion) } \\
K N_{L}(k) & =e^{-\left(f^{2} M / 2 k\right)} \arctan (2 k / \mu) \tag{26}
\end{align*}
$$

$$
H_{L}\left(k^{2}\right)-H_{L}(0)=-\frac{M f^{2}}{2}\left(1-\frac{f^{2} M L}{k^{2}}\right) \ln \left(1+\frac{4 k^{2}}{\mu^{2}}\right)-\frac{2 f^{4} M^{2}}{\mu}+O\left(f^{6}\right)
$$

One could consider the Born II approximations, eq. (26), as a consistent set of functions N_{L}, H_{L}, δ_{L} which are exact for a long range potential V_{L} which would give the phase shift:

$$
\delta_{L}=\frac{M f^{2}}{4 k} \ln \left(1+\frac{4 k^{2}}{\mu^{2}}\right)
$$

Therefore, the Born II approximation represents in a certain sense a real "physical" situation (which is an approximation of eq. (22)), while the Born I can be considered as an "approximation of an approximation".

In section 5 wo will compare the pole and the Born approximations with the functions N_{L}, H_{L} and δ_{L} calculated exactly with the help of numerical methods. Tne numerical aspects will be treated in the next section.
4. Numerical calculation of the effective range functions in protonproton scatterıng

In this section we will consider the numerical procedures for the calculation of the "OPE-Coulomb-vacuum polarization" effective range function in the S-wave (${ }^{1} S_{0}$).

As long range potential V_{L} we take:

$$
\begin{equation*}
V_{L}(r)=-f^{2} M \frac{e^{-\mu r}}{r}+\frac{M a^{F}}{r}+M V_{v a c}(r) \tag{27}
\end{equation*}
$$

with M the proton mass, μ the neutral pion mass, $f^{2}=\frac{g^{2}}{4 \pi} \frac{\mu^{2}}{4 M^{2}}, g^{2}$ the $\pi^{0} \mathrm{pp}$ coupling constant squared, and $v_{v a c}$ the vacuur polarization potential [Du 57]. In principle the calculation of $N_{L} H_{L}$ and δ_{L} is simple and is based on their definitions in section III. 3 :
(1) Solve the radial Schrödinger equation:

$$
v^{\prime \prime}+\left[k^{2}-v_{L}(r)\right] v=0
$$

twice, with boundary condıtions:

$$
\begin{aligned}
& v_{R}(r) \underset{r \rightarrow 0}{\longrightarrow} r+O\left(r^{2}\right) \\
& v_{I}(r) \underset{r \rightarrow 0}{\longrightarrow} 1+O(r)
\end{aligned}
$$

(11) Using a suitable method, solve the differential equation up to a certain point where the OPE and vacuum polarızation part can be neglected with respect to the Coulomb potential.
(111) Calculate $\delta_{L}^{C}, N_{L}^{C}$ and H_{L}^{C} using the definitions of eq. (3.42) by matching the calculated wave functions to Coulomb wave functions. To solve the differential equation we use the Numerov method [Nu 33] (sometimes called the Cowell method) which solves the second order differential equation:

$$
\begin{equation*}
v^{\prime \prime}=A v \tag{28}
\end{equation*}
$$

with the relations:

$$
\begin{align*}
\bar{v}(r) & =\left(1-\frac{h^{2}}{12} A(r)\right) v(r) \\
\bar{v}(r+h) & =\frac{2+\frac{5}{6} h^{2} A(r)}{1-\frac{h^{2}}{12} A(r)} \bar{v}(r)-\bar{v}(r-h)+0\left(\frac{h^{6} v^{\left(v_{1}\right)}(r)}{240}\right) \tag{29}
\end{align*}
$$

This method gives rather accurate phase shifts, however, the accuracy on N_{L} and H_{L} is much less when the potential has a singular point at $r=0^{*}$. Therefore we solve the differential equation from

[^15]$r=0$ up to a certaln polnt with a series expansion and use the Numerov method as soon as the bad influence of the singular point $r=0$ on the accuracy can be neglected.

The potential eq. (27) is expanded in r :

$$
k^{2}-V_{L}(r)=a+\frac{b}{r}+c \frac{\ln r}{r}+d r+O\left(r^{2}\right) \ldots
$$

with:
$a=k^{2}+M f^{2} \mu-\frac{\alpha_{F}^{2} M}{2} m$
$b=-M \alpha_{F}-M F^{2}+\frac{2 \alpha_{F}^{2} M}{3 \pi}\left(\gamma+\frac{5}{6}+\ln m\right)$
$c=\frac{2 \alpha_{F}^{2} M}{3 \pi}$
$d=-\frac{M f^{2} \mu^{2}}{2}+\frac{2 \alpha_{F}^{2} M}{2 \pi} m^{2}$
with γ Eulers constant, $\gamma=0.5772 . .$. and m the electron mass. We refer to Durand [Du 57] for details about the vacumpolarization potential.

The solution of the radial Schrōdinger equation in the nelghbourhood of $r=0$ can be written as:

$$
\begin{equation*}
v(r)=\sum_{n, m} \alpha_{n m} r^{n} \ln ^{m} r \tag{31}
\end{equation*}
$$

and one obtains recurrence relations for the coefficients $a_{n m}$ in the

[^16]usual way.
The result for the regular solution v_{R}, with boundary conditions: $v_{R}(0)=0, v_{R}^{\prime}(0)=1$ appears to be:
\[

$$
\begin{align*}
v_{R}(r) & =r-\frac{1}{2} b r^{2}-\frac{c}{2} r^{2}\left(\ln r-\frac{3}{2}\right) \\
& +\left(-\frac{1}{6} a+\frac{1}{12} b^{2}-\frac{19}{72} b c+\frac{83}{432} c^{2}\right) r^{3} \\
& +\left(\frac{b c}{6}-\frac{19}{72} c^{2}\right) r^{3} \ln r+\frac{1}{12} c^{2} r^{3} \ln n^{2} r+O\left(r^{4}\right) \tag{32}
\end{align*}
$$
\]

The irregular solution v_{I} has boundary condition $v_{I}(0)=1$, and furthermore we require that the amount of regular solution contained In v_{I} (i.e. terms proportional with $r+\ldots$ is zero. We get:

$$
\begin{align*}
V_{I}(r)= & 1+(c-b) r \ln r-\frac{c}{2} r \ln ^{2} r+\left(-\frac{1}{2} a+\frac{27}{8} b c-\frac{3}{4} b^{2}-\frac{73}{16} c^{2}\right) \\
& \times r^{2}+\left(-\frac{11}{4} b c+\frac{1}{2} b^{2}+\frac{33}{8} c^{2}\right) r^{2} \ln r+\left(\frac{3}{4} b c-\frac{13}{8} c^{2}\right) r^{2} \\
& \times \ln ^{2} r+\frac{c^{2}}{4} r^{2} \ln ^{3} r+\left(-\frac{1}{18} a b-\frac{137}{108} b^{2} c+\frac{7}{36} b^{3}+\frac{1241}{432} b c^{2}\right. \\
& \left.-\frac{1}{6} d+\frac{17}{108} a c-\frac{5213}{2592} c^{3}\right) r^{3}+\left(-\frac{2}{9} a c-\frac{431}{144} b c^{2}+\frac{67}{72} b^{2} c\right. \\
& \left.-\frac{1}{12} b^{3}+\frac{331}{108} c^{3}+\frac{1}{6} a b\right) r^{3} \ln r+\left(\frac{55}{48} b c^{2}-\frac{5}{24} b^{2} c\right. \\
& \left.-\frac{469}{288} c^{3}+\frac{a c}{12}\right) r^{3} \ln ^{2} r+\left(-\frac{1}{6} b c^{2}+\frac{59}{144} c^{3}\right) r^{3} \ln ^{3} r \\
& -\frac{c^{3}}{24} r^{3} \ln n^{4} r+0\left(r^{4}\right) \tag{33}
\end{align*}
$$

In practice the series expansions are used from $r=0$ up to $r=0.005 \lambda_{\pi}\left(\lambda_{\pi} \simeq 1.4 \mathrm{fm}\right)$; then the Numerov method is used with initial step length: $h=0.001 \lambda_{\pi}$. The step size 15 doubled at 0.2 , $0.6,1.4,3.0$ and $6.2 \lambda \pi$ and we integrate out up to 15 fm , where the pion potential can be neglected. This takes about 1000 steps and an
accuracy of more than 6 digats is reached in the interval $0<E_{l a b}$ < 300 MeV . For $r>15 \mathrm{fm}$ the vacuum polarızation potential still exists with a range of 200 fm , which means we still have more than 1000 fm to go before it can be neglected. Instead of using the Numerov method to perform this integration (which would take something like 10000 steps more), we corrected the results obtained at 15 fm in another way. We quote some results from the variable phase approach to potential scattering [Ca 67] modified for the long range Coulomb potential: The solution of the radial Schrodinger equation can be written as:

$$
\begin{align*}
& \mathrm{V}(r)=\alpha(r)(\cos \delta(r) F(r)+\sin \delta(r) G(r)) \\
& \mathrm{V}^{\prime}(r)=k \alpha(r)\left(\cos \delta(r) F^{\prime}(r)+\sin \delta(r) G^{\prime}(r)\right) \tag{34}
\end{align*}
$$

(in fact this 15 the definition of $\alpha(r)$ and $\delta(r)) . F(r)$ and $G(r)$ are the standard Coulomb regular and irregular (s-wave) wave functions. One proves*:

$$
\begin{align*}
\delta^{\prime}(r)=- & \frac{1}{k} V_{L}(r)\{\cos \delta(r) F(r)+\sin \delta(r) G(r)\}^{2} \\
\alpha^{\prime}(r)=-\frac{1}{k} \alpha(r) V_{L}(r) & \{\cos \delta(r) F(r)+\sin \delta(r) G(r)\} \\
& \times\{\sin \delta(r) F(r)-\cos \delta(r) G(r)\} \tag{35}
\end{align*}
$$

Note that for the regular solution:

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \delta(r)=\delta_{L}^{C} \\
& \lim _{r \rightarrow \infty} \alpha(r)=N_{L} \tag{36}
\end{align*}
$$

The regular solution is solved with the help of the Numerov method up

[^17]to 15 fm ; therefore $\delta(15)$ and $\alpha(15)$ are known. The extrapolation to infinity is made by integrating eqs (35):
\[

$$
\begin{array}{r}
\delta(\infty)=\delta(15)-\frac{1}{k} \int_{15}^{\infty} \operatorname{dr} V_{L}(r)(\cos \delta(r) F(r)+\sin \delta(r) G(r))^{2} \\
\alpha(\infty)=\alpha(15) \exp \left\{-\frac{1}{k} \int_{15}^{\infty} d r V_{L}(r)(\cos \delta(r) F(r)+\sin \delta(r) G(r))\right. \\
\times(\sin \delta(r) F(r)-\cos \delta(r) G(r))\} \tag{37}
\end{array}
$$
\]

The functions $\delta(r)$ and $\alpha(r)$, which occur in the integrands, are, however, unknown. We wall approximate them by a constant: the value at 15 fm . This must be a good approximation since V_{L} between 15 fm and ∞ is just the vacuum polarization which is rather small, and so $\delta(r)$ and $\alpha(r)$ will remain close the values they had at 15 fm . In fact this procedure $1 s$ a kind of fırst Born approximation for the vacuum polarization in the region: $15<r<\infty$. (Effective range functions corrected for vacuum polarızation only, have been calculated in the past always in Born approximation: [He 60].)

One obtains:

$$
\begin{aligned}
& \delta_{L}^{C}=\bar{\delta}-\frac{1}{k} \cos ^{2} \bar{\delta} F V F-\frac{2}{k} \sin \bar{\delta} \cos \bar{\delta} F V G-\frac{1}{k} \sin ^{2} \bar{\delta} G V G \\
& N_{L}=\bar{N} \exp \left\{-\frac{1}{k} \sin \bar{\delta} \cos \bar{\delta}(F V F-G V G)-\frac{1}{k}\left(\sin ^{2} \bar{\delta}-\cos ^{2} \bar{\delta}\right) F V G\right\}
\end{aligned}
$$

with: $\bar{\delta}=\delta(15), \quad \overline{\mathrm{N}}=\alpha(15)$
and:

$$
\left(\begin{array}{l}
F V F \\
F V G \\
G V G
\end{array}\right) \equiv \int_{15}^{\infty} d r V_{V a c}(r)\left(\begin{array}{l}
F^{2}(r) \\
F_{(r)}^{2}(r)(r) \\
G^{2}(r)
\end{array}\right)
$$

These integrals are calculated once as a function of the energy. The corrections can then be made for every long range potential (containing vacuum polarization) without solving the equations every time up to 1000 fm . For the 1 rregular solution V_{I}, defining H_{L}, a sımılar procedure
$1 s$ applıed.

For v_{I} it 15 convenient to define:

$$
\begin{equation*}
\beta(r)=\cot \delta(r) \tag{39}
\end{equation*}
$$

wath $\hat{o}(r)$ defined in eq. (34) $(\delta(r)$ is not the same function as in the regular case!). One proves:

$$
\begin{equation*}
\beta^{\prime}(r)=\frac{1}{k} V_{L}(r)(\beta(r) F(r)+G(r))^{2} \tag{40}
\end{equation*}
$$

and:

$$
\lim _{r \rightarrow \infty} \beta(x)=\frac{-N_{L}^{2} k H_{L}+\tan \delta_{L}^{C}}{1-N_{L}^{2} k H_{L} \tan \delta_{L}^{C}}
$$

The value of $\beta(15)$ can be calculated from the values of v_{I} and v_{I}^{\prime} at this point. One extrapolates to ∞ with:

$$
\begin{align*}
\beta(\infty) & =\bar{\beta}+\frac{1}{k} \int_{15}^{\infty} V_{L}(r)(\beta(r) F(r)+G(r))^{2} \\
& \simeq \bar{\beta}+\frac{1}{k} \bar{\beta}^{2} F V F+\frac{2}{k} \bar{\beta} \text { FVG }+\frac{1}{k} \text { GVG } \tag{41}
\end{align*}
$$

where $\bar{\beta}=\beta(15)$.

Finally we mention two trivial checks which are made after a calculation of N_{L}, H_{L} and δ_{L} and which give an indication of the numerical error.

Tne first one takes place at 15 fm and checks whether the Wronskian relation: $V_{R}^{\prime} v_{I}-v_{R} v_{I}^{\prime}=1$ is still satısfied. Deviations give an indication of the error caused by the series expansion and the Numerov method.

The second check gives an indication of the error caused by using the above-mentioned extrapolation technique from 15 fm to ${ }^{\infty}$. After the calculation of δ_{L}^{C}, N_{L} and $B(\infty)$, we use these functions instead of $\bar{\delta}, \bar{N}$ and $\bar{\beta}$ in the right hand side of eqs (38) and (41), and calculate
δ_{L}^{C}, N_{L} and H_{L} again. The difference between the new and old values gives an impression of the neglected higher Born terms. For energies between 0.3 and 0.5 MeV an accuracy of five digits is reached, above 0.5 MeV more than six.

One more problem are calculatıons at $\langle e r o$ energy which are necessary when one tries to gauge H_{L} with the condition: $H_{L}(0)=0$. For $k=0$ the wave functions F and G are not well-defined and also N_{L} will diverge (repulsive Coulomb). Although one can get around these singularities we will avoid it, since the gauging at zero energies is not essentıal. We choose energy 0.35003 MeV as subtraction point; this influences only the actual value of a_{S}^{L}, however, not the physical observable total phase shift: $\delta_{N}^{C}=\delta_{S}^{L}+\delta_{L}^{C}$.
5. Approxımatıons versus exact calculations

In this section we will compare the pole- and Born-approximations with each other and with the results obtained by solving the radial Schrodınger equation exactly. We will neglect Coulomb- and vacuumpolarization since they only make calculations more complicated than necessary for our purpose: a qualitative insight in the performance of the several methods.

We use the long range potential:

$$
\begin{equation*}
V_{L}(r)=-M f^{2} \frac{e^{-\mu r}}{r} \tag{42}
\end{equation*}
$$

to represent the OPE interaction (for instance in the ${ }^{1} S_{0} n p$ channel). In figures V. 1 and $V .2$ we have plotited the functions: $1 / N_{L}^{2} k^{2}, H_{L}$ and δ_{L}, in the one-pole (CFS) approximation, the Born I and II approximation, together with the Schrodinger (S) solution as a function
of $k^{2}\left(k^{2}=1 \Leftrightarrow E_{l a b} \simeq 40 \mathrm{MeV}\right)$. Figure V. 1 contalns the result for the "physical" coupling constant $F^{2}=0.08$, figure $V .2$ for $f^{2}=0.01$.

The results speak for themselves, one could conclude that $\mathrm{f}^{2}=0.08$ is certainly too big to get rellable results from the Born approximations. For $f^{2}=0.01$ the Born approximations (in partıcular Born II) correspond within a few per cent with the Schrodanger solution. Always the Born II approxımation appears to be the best, while mostly CFS is the worst approximation of the exact solution.

It would therefore be obvious to conclude tnat it is better to use the Born approximations than the CFS formulas. This is, however, not always true.

One must realize that the long range potential V_{L} (and therefore $\left.N_{L}, H_{L}, \delta_{L}\right)$ is not directly observable, only the total phase shift: $\delta_{N}=\delta_{L}+O_{S}^{L}$.

The "short range" phase shift δ_{S}^{L} is parametrized in the one pole approximation of P_{L} as:

$$
\begin{equation*}
\frac{1}{N_{L}^{2} k} \cot \delta_{S}^{L}+H_{L}=-\frac{1}{a_{S}^{L}}+\frac{1}{2} r_{S}^{L} k^{2} \tag{43}
\end{equation*}
$$

In practice, however, a_{S}^{L} and r_{S}^{L} are fixed by the total phase shift $\delta_{N}=\delta_{L}+\delta_{S}^{L}$ via its effective range relation:

$$
\begin{equation*}
k \cot \delta_{N}=-\frac{1}{a_{N}}+\frac{1}{2} r_{N} k^{2}+\ldots \tag{44}
\end{equation*}
$$

a_{N} and r_{N}, the total scattering length and effective range, are experimentally known and therefore a_{S}^{L}, r_{S}^{L} must be refitted for every approximation of the long range potential V_{L} in order to give the same a_{N} and r_{N}. Once this $1 s$ done eq. (43) will predict only the deviation of $k \cot \delta_{N}$ from the shape independent approximation: $-\frac{1}{a_{N}}+\frac{1}{2} r_{N} k^{2}$.

For this purpose we define the shape function p
$p\left(k^{2}\right)=\frac{k \cot \delta_{N}+\frac{1}{a_{N}}-\frac{1}{2} r_{N} k^{2}}{k^{4}}$
for $a_{N}=-10 \lambda_{T}, r_{N}-2 \lambda_{T}\left(\lambda_{\pi} \simeq 1.4 f \mathrm{~m}\right)$ and $f^{2}=0.08$ the shape functions for the different approximations are given in figure V.3a. Now the Born approximations dppear to be totally wrong, giving even the wrong sign for the shape function:! In contrast with this, the CFS approximation has only a deviation of 20% compared with the Schrodınger results. For a smaller coupling constant, $f^{2}=0.01$, the Born approximations improve, which is shown in figure V.3b. Note that the CFS approximation now deviates 30% from the Schrodinger solution (however, the absolute value of P has decreased). These unexpected good results of the one pole (CFS) approximation are partially explained by figure V.4. We have plotted the ratio of the CrS-, Bornapproximations and the Schrōdınger functions. It appears that these ratios for the CFS approximations are about the same and almost a constant as a function of the energy (0.6-0.5). Therefore multiplyıng eq. (43), calculated for the CFS approximation, with a factor 1/0.6 (both left- and righthand side) will result into an equation which is in fact the corresponding Schrodinger effective range identity (within 15 \%).

Figure V.1: The junctions $1 / N_{L}^{2} k^{2}, H_{L}$ and δ_{L} calculated with the help of the Schrödinger equation (S), Born (BI, BII) and one pole (CFS) approximations; coupling constant $f^{2}=0.08$.

Figure V.2: The same as figure V.1; coupling constant $f^{2}=0.01$.

Eigure V. E: Shape functions jor k cot δ, obtained from a one pole approximation of the snort ranje potential; notation as in fig. V.1. $a: j^{2}=0.08 ; D: j^{2}=0.01$.

Figure V. I: Ratio jor $1 / N_{L}^{2} k^{2}$ (continuous curve) and d_{L} (dashed curve) 0_{j} tine difjerent approximations and the Scinrodinger solutions.

Application to the proton-proton system:

 determination of the $\pi^{0} \mathrm{pp}$ coupling constantfrom low energy scattering data

1. General characteristics of the NN system in the ${ }^{1} S_{0}$ partial wave To study the behaviour of the effective range function in the ${ }^{1} S_{0}$ nucleon-nucleon partial wave, we wall leave out the Coulomb- and vacuumpolarızatıon potentıal. Usıng Coulomb- and vacuumpolarization corrected effective range functions will glve the same general behaviour differing only in minor points (e.g. the scattering length which 2 s - 7.8 fm instead of - 17 or - 24 fm).

As discussed already in section 4.1 the s-wave nuclear interaction can be divided into three parts:

1. A long range attraction with a range of 1.4 fm due to pion exchange.
2. A medıum and short range interaction (overall attractive) with a range of $0.5-0.7$ fm caused by the exchange of heavier mesons ($\rho, \omega, \varepsilon, 2 \pi$ and so on).
3. A short range repulsion not due to the exchange of simple mesons and often represented by a phenomenological hard or soft core or by a more physical Pomeron "exchange" potentıal.

These three features can be recognized in the behaviour of the effective range function k cot δ_{N} as a function of the energy. In figure VI. 1 we have used the Nıjmegen OBE potential [Na 78]* to calculate the

[^18]effective range function from $E_{l a b}=0$ to 250 MeV . Other models would glve plots with the same characterıstıcs.

 approximation in the ${ }^{1} S_{0}$ np wave.

These characteristics are: the effective range function is positive from 0 MeV up to about 250 MeV ; at this point it has a pole and it becomes negative for higher energies. The pole in this region is caused by the zero of the phase shift near 250 MeV and 15 a consequence of the repulsive core whach starts dominating at higher energies. At lower energues the total potential is overall attractive. However, the Influence of the repulsive part $1 s$ felt also at lower energles. This is seen in figure VI. 2 where we have plotted the shape function:

$$
\begin{equation*}
=\frac{k \cot \delta_{N}+\frac{1}{a_{N}}-\frac{1}{2} r_{N} k^{2}}{k^{4}} \tag{1}
\end{equation*}
$$

Note that the shape independent approximation of the effective range function: $p\left(k^{2}\right)=0$, corresponds with the replacement of the complicated left hand singularity structure of the $N N$ interactions by only one pole (which is attractive). It will be clear that this is a poor way to represent the three-fold nature of the NN interaction.

Figure VI.2: Shape junction of the OBE model (P_{I}) and the CAS (2) approximation $\left(P_{I V}\right)$.

In fact the shape function of the NN interaction is negative below 30 MeV , becomes positive then and has the above-mentioned pole at 250 MeV , caused by the repulsion. Furthermore we note that the approximations in which the medıum- and short range interaction are replaced by Just one pole (e.g. the CFS (2) approximation with $V_{L}=0$ and $V_{S} \equiv 2$ poles*, or the approximation $V_{L}=-f^{2} M \frac{e^{-\mu r}}{r}$ and $V_{S} \equiv 1$ pole;

[^19]see also figure V.3), will give a negative shape for every energy.
For the CFS (2) approximation this is observed in eq. (4.23):
\[

$$
\begin{align*}
& \mathrm{p}_{\mathrm{CFS}(2)}\left(\mathrm{k}^{2}\right)=-\frac{\mathrm{c} \mu_{\pi}^{-3}}{1+\mathrm{d} \mu_{T}^{-2} k^{4}} \tag{2}\\
& (\mathrm{c}, \mathrm{~d}>0)
\end{align*}
$$
\]

It appears that the pole representing the short range interaction must be "attractıve" to produce the same a_{N} and r_{N} as the $N N$ interaction. Only when the medium-range attraction and the short-range repulsion are each represented by onc pole the "cross-over" at 30 MeV can be explanned. The CFS (3) approximation gives (eq. (4.24)):

$$
\begin{equation*}
\mathrm{p}_{\operatorname{CFS}(3)}\left(\mathrm{k}^{2}\right)=-\frac{\mathrm{p}\left(1+t \mathrm{k}^{2}\right)}{\left(1+q k^{2}\right)\left(1+s k^{2}\right)} \tag{3}
\end{equation*}
$$

wath: $p>0, q>0, t, s<0$.
The cross-over 1 s at $k^{2}=-\frac{1}{t}$, the pole position at $k^{2}=-\frac{1}{s}$.
In tne CIS approximation the OPE interaction is approximated by one pole. However, we could also represent it by a Yukawa potential:

$$
V_{L}=-M f^{2} \frac{e^{-\mu r}}{r}
$$

and calculate its effective range function exactly. Approximating V_{S} by two effective poles results into a shape function $P_{Y(2)}$ defined by:

$$
\begin{aligned}
P_{L}\left(k^{2}\right) & =-\frac{1}{a_{S}^{L}}+\frac{1}{2} r_{S}^{L} k^{2}-\frac{P_{S}^{L} k^{4}}{1+q_{S}^{L_{k} k^{2}}} \\
\delta_{N} & =\delta_{L}+\delta_{S}^{L} \\
\left(k^{2}\right) & =\frac{\cot _{N}+\frac{1}{a_{N}}-\frac{1}{2} r_{N} k^{2}}{}
\end{aligned}
$$

with a_{S}^{L}, r_{S}^{L} functions of a_{N} and r_{N}. Choosing $P_{S}^{L}<0$ (not too big) and $q_{S}^{L}<0$, will also result into a cross-over and pole for $P_{Y(2)}\left(k^{2}\right)$, as we will see in the next section.

In figure VI. 3 we have plotted $p_{\text {OBE }}$ agaln, on an enlarged scale for the energy region $0-30 \mathrm{MeV}$. The shaded area and the doted curve glve an indication of the magnitude of the errors on the experimental data n n terms of the shape function. Note that these errors correspond with $p p$ scattering single energy analysis and are shifted to the horizontal axıs $(p=0)$ for a clearer view.

We arrive at the $1 m p o r t a n t$ conclusion:
Alreauj at enerjies below 30 , Met one must account jor the three-folu nature oj the W interaction in the jurametrization of tne phase shift Sw, in proton-roton scaitering.

In the noxt section we will compare the two possible candidates:

CFS (3) and "Yukawa +2 poles" with the shape predicted by the OBE model.

ivzure VI. 3: UBu potential shape (P_{I} in jig. VI. 2) jor the enerju region $0-30$ MeV. Snaded area gives indication of the experimental error due to the error in the pinase sinivt, dotted curve variation caused by an error of 0.015 jm in the ejjective range r_{N}. Both are shifted to the $p=0$ axis.
test with the help of a potential model

In section 1 we saw that only the CFS three pole or the "Yukawa effective range function with 2 poles" are possible candidates for a suıtable parametrızation of the $N N$ phase shift $2 n$ an energy region from 0-300 MeV.

These parametrizations each depend on 6 independent parameters, for which we will take:
$a_{N}:$ scattering length
$r_{N}:$ effective range
$\frac{g^{2}}{4 \pi}, f^{2}:$ pion coupling constant
$\mu:$ plon mass
$E_{C O}$: the cross-over point, l.e. the energy where the shape function $=0\left(\mathrm{E}_{\mathrm{Co}} \approx 30 \mathrm{MeV}\right)$
$E_{p o}$: the pole position, l.e. the energy where the phase shift passes zero ($\mathrm{Epo}_{\text {po }} \approx 250 \mathrm{MeV}$).

Only the CFS (3) approximation can be expressed in closed form in these parameters (eq. (3)). For the "Yukawa +2 poles" approximation (short hand: $Y(2)$) these numbers must be calculated numerically using eqs (4) and the method described in section V. 4.

From these 6 parameters, the plon mass $1 s$ known from other sources. Also the plon-nucleon coupling constant can be considered as known from other experiments. However, one must realize that in pp scattering it is the π^{0} which causes the nearest branch cut, while in the other experiments (malnly πN scattering or threshold pion photoproduction) it is the charged pion coupling constant which is determined. Therefore pp scattering ls almost the only source from which we
can determine the π^{0} coupling constant and we will consider it as a free parameter.

From the other four parameters $E_{p o}$ ls only of importance when one analyses the 0-300 MeV regıon. For analyses in the $0-40 \mathrm{MeV}$ energy band it is sufficient to $\underline{f i x}^{E_{p o}}$ at 250 MeV (or ∞) and consider only a_{N}, r_{N}, f^{2} and $E_{C O}$ as being free; in this way one includes already in the low energy analysis some information from scattering at hıgher energies.

Before turning to the actual proton-proton data $1 n$ section 3, we will first test the different methods (CFS (3), y(2)) in a non-trivial way with the help of the $N 1$ megen OBE potential model [Na 78]. It is important to realıze that in the ideal case that CFS (3) and $Y(2)$ were exact (i.e. no approximations in the theory; in our case the poles); they should reproduce the potential model predictions (whether the OBE model represents physics, is another question).

In figure VI. 4 we have plotted, for the $0-30 \mathrm{MeV}$ region, the shape functions defined in eqs (1), (2), (3) and (4), each calculated with the same parameters: $a_{N}=-23.7 \mathrm{fm}, \quad r_{N}=2.8 \mathrm{fm}, \frac{g^{2}}{4 \pi}=14.213, \quad \mu=138 \mathrm{MeV}$, $E_{c o} \approx 30 \mathrm{MeV}, E_{\mathrm{po}} \approx 250 \mathrm{MeV}$ (roughly)*

[^20]
ziy. r.s. Ine cost shape (P_{i}) witn tine preuiciions oj: - the two- and
 we \therefore in witin twh poles for the short rarge interaction ($P_{I I}$).

$\because i_{0} .5$: Dij, erences Detweer the approximated snapes and the DBr snare; Letween 80 ana 13$)$ ived the vertical scale is entaryed.

Comparing with the OBE model one observes:

- CFS (2) has too much shape (of course, it contains no repulsion and therefore no cross-over),
- CFS(3) predicts a shape which is too small;
- Y(2) agrees remarkably well with the "exact" shape;
- Consıderıng the "error-band" in figure VI. 3, the difference between CFS (3) and $Y(2)$ is certannly statıstical relevant in a multı-energy analysis of low energy pp data.

In figure VI. 5 we have plotted the difference between the exact (OBE) shape and the CFS (3), respectively $Y(2)$ shape for energıes between 0 and 240 MeV . We see that for energies between 40 and 180 MeV both CFS (3) and $Y(2)$ differ only little with the OBE shape; in terms of the s-wave phase shift they correspond with deviations in the order of $0.01-0.05$ degrees (experımental errors in pp scattering are an the order of 0.5 degree). Only in the neighbourhood of the 250 MeV pole tne differences become larger. However, in the phase shift this corresponds only with an error of approximately 0.2 degree. We conclude:

- the effective range model, $Y(2)$, in whlch OPE $1 s$ represented by a Yukawa potentıal and the remaining interaction by two poles, is able to represent a complicated potential model very well (certainly far within experimental errors);
- representing the OPE interaction also by a pole will result into deviations in the $0-30 \mathrm{MeV}$ region comparable with the errors in s-wave single energy phase shıft-analysis.

This does not mean that it is not possible to obtain a good fit using the CFS (3) approximation. This is illustrated in figure VI. 6 where we
plotted the same OBE shape with $\frac{g^{2}}{4 \pi}=14.21$, however, used $\frac{g^{2}}{4 \pi}=16$ and 18 in the calculation of $\operatorname{CFS}(3)$ and $Y(2)$. It appears that the shape is very sensitive to the pion coupling constant.

Irgur VI. 6: Dependence of the shape function on the pion-nu-Zeon coupling constant.

One observes that CFS(3) with a coupling constant of 17 (20 \% too high) will reproduce the shape of the OBE model with a coupling constant of 14.2 reasonable. That the OPE part of the interaction seems to be too weak in the CFS(3) approximation is clear, since the left hand pion cut starting at - 10 MeV is replaced by a pole at - 20 MeV with a weight which is an average of the total discontinuity from - 10 MeV up to - ∞.

To obtain an insight into what can be expected if one tries to determine the $\pi^{0} p p$ coupling constant from $p p$ scattering data, we first
tried to reproduce the coupling constant used in the OBE model with the help of the effective range formalism with OBE phase shifts as input data. To be as realistic as possible we modified the ope potential used in [Na 78] with some additional nonlocal terms and refitted slightly. The coupling constant used in the potential model was: $\frac{g^{2} \pi}{4 \pi}=13.61$. After that, proton-proton s-wave phase shıfts* were calculated at energıes between 0 and 30 MeV represenlative for the experımental cross-section measurements nowadays. Also phase shifts at $50,100,150$, 225 and 325 MeV were calculated corresponding with the energies of the recent VPI analysis [Ar 80]. Errors were assigned to the phase shifts in three different ways:
(a) Using the numerıcal errors (ranging from 3.10^{-3} degrees at 0.5 MeV to 3.10^{-2} degree at 150 MeV);
(b) Using an experimental error resulting from single energy analysis at that polnt [Sa 79, Ar 80];
(c) Using the same error as (b), we varied also the phase shift around the calculated value to simulate a statıstıcal distribution.

In table VI. 1 we compare the pion coupling constant predicted by the $Y(2)$ and $C F S(3)$ effective range functions from OBE phase shifts In two different energy regions: $0-30 \mathrm{MeV}$ and $0-150 \mathrm{MeV}$, using errors (a):

[^21]| $\frac{g_{\mathrm{OBE}}^{2}}{4 \pi}=13.61$ | $Y(2)$ | $\operatorname{CFS}(3)$ |
| :--- | :---: | :---: |
| $0-30 \mathrm{MeV}$ | 13.9 ± 0.4 | 16.44 |
| $0-150 \mathrm{MeV}$ | $x^{2} /$ data $=0.02$ | $x^{2} /$ data $=1.34$ |
| | $x^{2} /$ data $=0.89 \pm 0.13$ | 14.48 |

I'able V1.1: π coupling constant and $x^{2} /$ data determined from potentzal phase shij'ts witn numerical error.

Since numerical errors are not of statistical nature the x^{2} /data gives only an impression how well the potential phases can be reproduced by an effective range model. The error quoted 25 not the statistical error but the maximum variation possible with the phase shifts within the error-band. The $Y(2)$ effective range formalism is able to reproduce the potential phase shifts within the numerical error and also predicts the pion coupling constant within 2%. For the CFS (3) this is not the case. As expected the resulting pion coupling is too large (~ 20 \%) in the $0-30 \mathrm{MeV}$ region. Adding data at higher energies improves the prediction since CFS (3) becomes better in the region above 40 MeV . Table VI. 2 is the result of the calculations with the experımental errors (b) and (c). One observes the error which can be expected in the analysis of experimental data and the influence which a statistical distribution of the data may have. Results for the CFS (3) method are similar with exception of the central value which is too high (16-17 in the 0-30 MeV region).

$\frac{g_{\mathrm{OBE}}^{2}}{4 \pi}=13.61$	$\mathrm{Y}(2)$, errors (b)	Y(2), errors (c)
$0-30 \mathrm{MeV}$	13.9 ± 1.4	$13.6+1.4$
		$x^{2} /$ data $=0.98$
0-150 MeV	13.9 ± 0.6	13.0 ± 0.6
	$x^{2} /$ data $=0.0005$	$x^{2} /$ data $=0.88$
$0-325 \mathrm{McV}$	13.8 ± 0.5	
	$x^{2} /$ data $=0.001$	

I'able VI.2: n coupling constant aetermined by $Y(2)$ ojjective ranje junction witn experimental errors (see text).

We conclude: if an OBE potentıal model represents physics reasonable, one can determine the pion-nucleon coupling constant very well with the help of the $Y(2)$ effective range formalism. The CFS(3) method will result into coupling constants which are too big: 7 \% 25 \% depending on the energies which are used: data at lower energies will give a larger deviation.

Before turning to the actual data we want to make a few remarks on these numerical checks. It seems to be possible now to determine $g^{2} / 4 \pi$ with a "model" error of 0.3 and an experimental error of 1.4 in the low encrgy region (0.6 if one includes data up to 150 MeV). However, we have "proven" this only if nature is represented reasonable by a Nıjmegen OBE potential. Besides the pion, this model contains as lowest meson mass 549 MeV from the n . Therefore the quantity $\mathrm{N}_{\mathrm{L}}^{2} \mathrm{k}^{2} \mathrm{f}{ }_{\delta} \delta_{\mathrm{S}}^{\mathrm{L}}$ (with $V_{L} \equiv$ OPE interaction) has singularities starting at -160 MeV s in the complex (laboratory) energy plane. It seems to be reasonable
that a cut structure at such a distance from the origin can be represented by two poles as is done in $Y(2)$.

However, a phenomenon lıke uncorrelated two-pion exchange (two pion excnange diagrams mınus the contribution already taken into
 Schrodinger equation) will produce an additional cut starting as low as - 40 MeV , and could influence the fit. Whether this is indeed the case, can only be seen after calculations with the help of an explicit representation of the uncorrelated two pion exchange mechanism [Pa 70 , Ta 52, Br 53]. If the assumption and approximations made in the effective range theory are clearly in conflict with experimental data we expect that some or all of tne following thangs will happen: I. The pion coupling constant strongly depends on the energy range which ıs used. This $1 s$ for 1 nstance observed for CFS (3) in table VI.1. II. In this section we have dealt only with s-waves. In the analysis of experımental data, however, one must also parametrize the peripheral waves whlch are less dependent on the 1 nner parts of the potential and which will give also a value for the pion coupling constant. In the case of a clear conflict between theory and experiment the value obtained for $g^{2} / 4 \pi$ from the s-wave will differ from the value obtalned from the perıpheral waves.
3. Determination of the $\pi^{0} \mathrm{pp}$ couplıng constant from experimental data

In this section we will not consider the rather complicated and technical process of data collection, calculation of observables from phase shifts, search procedures and so on, which are connected with the actual analysis of proton-proton scattering.

We refer to the internal reports of Emmen, van Dongen and van der Sanden [Em 79, Do 79, Sa 79], and to the work of Sher, Signell and Heller [Sh 70], for detalls about low energy analyses. Data up to 500 MeV are analysed by the Lıvermore and VPI group [MG 68, MG 69, Ar 74, Ar 80]. Also the paper of Naisse [Na 77] is of interest since he pays special attention to the CFS (2) approximation in the $0-12 \mathrm{MeV}$ energy region.

The data consisted out of more than fifty groups of cross-section and polarızation measurements between 0.3376 and 30 MeV . To check the conslstency of the s-wave effective range function with higher energies we added as data also the most recent sangle energy s-wave phase shifts at $50,100,150,200$ and 325 MeV from [Ar 80].

The parametrization of the phase shıfts was done with the help of old and new techniques:

- the f and hıgher partial waves are represented by the coulomb corrected one pion exchange mechanism (Born approximation);
- the p- and d-waves are parametrızed according to Sher's [Sh 70] method with the only difference that the central, tensor and spinorbit p-wave combination are used as independent waves rather than the ${ }^{3} P_{0},{ }^{3} P_{1}$, and ${ }^{3} P_{2}$ waves.
- the s-wave was approxımated in two ways:
a. the Coulomb- and vacuumpolarization corrected CFS (3) approximation:
b. the two pole approxlmation of the effective range function $P_{L}\left(k^{2}\right)$ with: $V_{L} \equiv$ Coulomb- + vacumpolarızatıon + OPE-ınteraction*. We referred to this method already with the notation: $\mathbf{Y}(2)$.

[^22]A least chı-squarea fit was performed for the data sets:

I $0-30 \mathrm{MeV}$ experimental data

II $0-30 \mathrm{MeV}$ experimental data +
50, $100,150 \mathrm{MeV}$ s-wave phase shıfts [Ar 80]

III $0-30 \mathrm{MeV}$ experimental data +
bo, 100, 150, 200 and 325 MeV s-wave phases [Ar 80].
As far as the s-wave 15 concerned we searched for $a_{N}, r_{N}, g^{2} / 4 \pi, E_{C O}$ In data sets I and II, keepıng $E_{\text {po }}$ flxed at 253 MeV . For dataset III we also searched for the pole position $E_{p o}$.

The results for the plon-nucleon coupling constant are given in table VI. 3.

s-wave parametrization	Y(2)	CFS (3)
Iataset	15.9 ± 1.0	17.8 ± 1.0
II	15.89 ± 0.56	$17.59+0.55$
III	15.21 ± 0.47	16.42 ± 0.47

lable l'I. 3: puon coupling constant determined with the help of both s-wave parametrizations for tine energy regions I, II and LII.

In table VI. 3 the same coupling constant is used in the s-wave parametrization and the peripheral waves. Fitting the coupling constant In the s-wave $\left(g_{S}^{2} / 4 \pi\right)$ and the perıpheral waves $\left(g_{>}^{2} / 4 \pi\right)$ separately we obtain the results of table VI. 4.

	$\mathrm{Y}(2)$	CFS (3)
I	$g_{S}^{2} / 4 \pi=16.4 \pm 1.3$	$g_{S}^{2} / 4 \pi=20.8 \pm 1.3$
$g_{>}^{2} / 4 \pi=15.4+1.3$	$g_{>}^{2} / 4 \pi=15.4 \pm 1.3$	
	$g_{S}^{2} / 4 \pi=15.9+0.6$	$g_{S}^{2} / 4 \pi=17.8 \pm 0.6$
	$g_{S}^{2} / 4 \pi=15.2 \pm 0.5$	$g_{S}^{2} / 4 \pi=16.5 \pm 0.5$
$g_{>}^{2} / 4 \pi=15.5 \pm 1.4$	$g_{>}^{2} / 4 \pi=15.9+1.4$	

Iaole 1..4: "s-wave" and "peripneral wave" pion coupling constants.

In table VI. 4 one observes the phenomena already expected from the previous section:

- tne "s-wave" coupling constant determıned by CFS (3) is much larger than the value obtained by using $Y(2)$;
- the CFS (3) value is strongly dependent on the analysed energy region and drops more than 25 \& when data at hıgher energles are added;
- the low energy "s-wave" result for CFS (3) is clearly in conflict with the coupling constant determined from the peripheral waves;
- the $Y(2)$ couplang constants are (within the error) not dependent on the energy region, and agree with the value from the peripheral waves.

Therefore the CFS(3) method can be rejected as a suitable parametrization. This is not because CFS (3) will not fit the experimental data*, but because the fitted value of the coupling constant is not stable and not in agreement with the value from the perıpheral waves.

[^23]The $Y(2)$ parametrization seems to be a rellable method within the current understanding of the nucleon-nucleon interaction. However, the predicted value of the coupling constant could be influenced by singularıtıes which are rather close to the origin (for instance uncorrelated two pion exchange). Since the predicted coupling constant is not significantly dependent on the analysed energy region and also in agreement with the one from the peripheral waves there is no real ındlcation that this $1 s$ also the case.

Another cause which could influence the fitted value of $g^{2} / 4 \pi$ is a systematıc deviation in the s-wave phase shıft. Thıs wıll be clear since the pion coupling is roughly proportional with the deviation from the straight line in the low energy region in the effective range plot (the shape).

This phenomenon is demonstrated in a fit we performed using s-wave phases as input data also in the $0-30 \mathrm{MeV}$ region. We used phase shifts from the single energy analysis from van der Sanden and Emmen [Sa 79, Em 79] (where necessary we corrected them for vacuumplarizatıon approxımately). To these data we added the results from the Livermore group [MG 69] up to 325 MeV .

To our surprise we obtalned:

$$
g_{\pi}^{2} / 4 \pi=13.5 \pm 0.7
$$

This is rather strange when one realızes that the single energy phase shifts in the low energy region were obtalned from (almost) the same set of experimental data*, whlch in an energy dependent fit gave:

[^24]15.2 ± 0.5.
In the single energy phase shift analysis one 15 , however, not able to fit all of the hıgher partial waves, and therefore (potential) model values for the tensor and spin orbit p-wave combination were used in [Em 79] and [Sa 79]. These model values (for δ_{T}) appeared to be slightly and systematically too negative compared with the results of the multi-energy analysis where δ_{T} was fitted (deviation ~ 8 \%).

The pp differential cross section can be wrıtten as [Sh 70]:

$$
\begin{equation*}
\sigma_{p p}=\sigma_{p p}(\text { nuc })+\sigma_{p p}(\text { (1nt })+\sigma_{p p}(\text { Coul }+v p) \tag{5}
\end{equation*}
$$

with $\sigma_{p p}(n u c), \sigma_{p p}(1 n t)$ and $\sigma_{p p}$ (Coul+vp) the so-called nuclear, ınterference and Coulomb + vacuumpolarızation terms. For hıgher energies the ${ }^{1} S_{0}$ nuclear phase shift is mannly determined by the nuclear part*:

$$
\begin{align*}
\mathrm{k}^{2} \sigma_{\mathrm{PP}}(\mathrm{nuc})= & \sin ^{2} \delta_{1} S_{0}+18 \delta_{T}^{2}\left(\frac{36}{25}+\left(\frac{\delta_{L S}}{\delta_{T}}\right)^{2}\right) \\
& +9 \cos ^{2} \theta \text { (p-wave phases) } \tag{6}
\end{align*}
$$

Therefore it is the quantaty:

$$
\begin{align*}
\sin ^{2} \delta_{1_{S_{0}}}+18 \delta_{T}^{2}(& \left(\frac{36}{25}+\left(\frac{\delta_{L S}}{\delta_{T}}\right)^{2}\right) \approx \sin ^{2} \delta_{1_{S_{0}}}+26 \delta_{T}^{2} \\
& \left(\frac{\delta_{L S}}{\delta_{T}}\right. \text { is small) } \tag{7}
\end{align*}
$$

which is determined in a single energy analysis, rather than $\delta_{1_{S_{0}}}$. *At 90° the interference term is zero and the argument holds exactly. For smaller angles this interference term influences the total cross section. However, this intereference term depends both on $\delta_{1_{S_{0}}}$ and on δ_{C}; therefore a variation in $\delta_{1_{S_{0}}}$ can be corrected by fitting δ_{C}. The interference part of the single energy andysis will therefore probably be correct since $\delta_{C}{ }^{15}$ fitted $\left(\delta_{T}\right.$ and $\delta_{L S}$ not).

Therefore we corrected the $\delta_{1_{S_{0}}}$ from the single energy analysis with the formula:

$$
\begin{align*}
\sin ^{2} & \delta_{1_{S_{0}}} \text { (corrected) }+26 \delta_{\mathrm{T}}^{2} \text { (multi-energy) } \\
& =\sin ^{2} \delta_{1_{S_{0}}}(\text { single-energy })+26 \delta_{\mathrm{T}}^{2}(\text { potential model }) \tag{8}
\end{align*}
$$

These corrections appeared to be sinall, ranging from $+0.014^{\circ}$ at $5 \mathrm{MeV},+0.09^{\circ}$ at 10 MeV up to 0.3° at 26 MeV . The extra "shape" caused by these corrections will influence the pion coupling constant obtained from a fit to these phase shifts. We obtained after these corrections:

$$
\mathrm{g}_{\pi}^{2} / 4 \pi=15.0 \pm 0.7
$$

which agrees with the fit directly to the data. Therefore it appears that tne determination of an "s-wave" pion coupling constant is strongly correlated with the p-waves, especially the tensor combination δ_{T}; therefore polarization measurements and cross sections at 90° are important.

Summarizing our result: the $\pi^{0} \mathrm{pp}$ coupling constant as determined by tne data below 30 MeV 1s:

$$
15.9 \pm 1.0
$$

Taking also s-wave information up to 325 MeV into account:

$$
15.21 \pm 0.47
$$

These values seem to be rather high compared with the "conventional" value: 14.43 ± 0.41 [MG 69] obtained by a multl-energy phase shift analysis. However, Viollıer [V_{1} 74], using the phase shıfts of [MG 69] In dispersion relations and correcting for the Coulomb interaction, arrıved at: 15.3 ± 0.3.

As a final remark: it must be possible to decrease the error on the coupling constant by including also the peripheral waves for $E_{\text {lab }}>30 \mathrm{MeV}$ in the fit. Since the Livermore analysis gives an error of 0.4 (from the peripheral waves) it is likely that an accuracy of 0.3 could be reached in a multı-energy fit of the data between 0 and 300 MeV.

In this appendix we will sketch the proof of the different analytic properties for the solutions of the radial Schrodinger equation:

$$
\begin{equation*}
v^{\prime \prime}+\left(k^{2}-\frac{\ell(\ell+1)}{r^{2}}-v\right) v=0 \tag{1}
\end{equation*}
$$

We strongly recommend the reader first to study chapter 12 of the book of Newton [Ne 66], or chapters 11 and 12 of the book of Taylor [Ta 72]. For the moment we will assume that V is a potential analytic in r, independent of k^{2}, in some region which contalns the origin $r=0$. Modificatıons for potentials which have a sumple pole at $r=0$ will be given between: < > .

Equation (1) has a regular solution of the form:

$$
\begin{align*}
v_{R}(r)=\frac{1}{(2 \ell+1)!!} r^{\ell+1} \sum_{1=0}^{\infty} r_{1} r^{l}, r_{0} & =1, r_{1}=0 \\
<r_{0} & =1, r_{1} \neq 0> \tag{2}
\end{align*}
$$

where $v_{R}(r)$ is real analytic in k^{2} and analytic in r in the same region as $V(r)$.

This can be proven by derıving and manipulating the antegral equation*:

$$
\begin{equation*}
v_{R}(r)=\bar{\jmath}(r)+\int_{0}^{r}\left(\bar{\jmath}(r) \bar{n}\left(r^{\prime}\right)-\bar{n}(r) \bar{\jmath}\left(r^{\prime}\right)\right) v\left(r^{\prime}\right) v_{R}\left(r^{\prime}\right) d r^{\prime} \tag{3}
\end{equation*}
$$

as 15 done by Newton and Taylor [Ne 66, Ta 72], or by studying the recursion relation for the expansion coefficients r_{1} :

$$
\begin{equation*}
(n+2)(n+2 \ell+3) r_{n+2}+k^{2} r_{n}-\sum_{1+j=n} v_{1} r_{j}=0 \tag{4}
\end{equation*}
$$

with v_{1} defined by the expansion for $V(r)$:

* \bar{n} and \bar{j} as defined in chapter II.

$$
\begin{equation*}
V(r)=\sum_{0}^{\infty} v_{1} r^{1} \quad\left\langle V(r)=\sum_{-1}^{\infty} v_{1} r^{1}\right\rangle \tag{5}
\end{equation*}
$$

The series (5) converges within a certain distance from the origin. One proves: the coefficients r_{n} are real polynomials in k^{2} with haghest terms k^{n} for even n and k^{n-3} for odd $n<k^{n}$ even n, k^{n-1} odd $n>$. Therefore a finite summation in (2) is always analytic in k^{2}. One can prove that the sumation (2) 1 s uniformly converging (for bounded k^{2} and r) and therefore $v_{R}(r)$ is also analytic in k^{2}.

Furthermore, with the help of the antegral equation (3) one
proves:

$$
\begin{equation*}
\left|v_{R}(r)\right| \leq \text { constant } \frac{|r|^{\ell+1}}{(1+|k r|)^{\ell+1}} e^{|\operatorname{Im} k r|} \tag{6}
\end{equation*}
$$

So far, as the regular solution v_{R}, is concerned these properties are well-known. However, eq. (1) has another, irregular solution, of the form:

$$
\begin{equation*}
v_{I}(r)=C\left(k^{2}\right) v_{R}(r) \ln r+(2 \ell-1)!!r^{-\ell} \sum_{1=0}^{\infty} s_{1} r^{1} \tag{7}
\end{equation*}
$$

with $s_{0}=1, s_{1}=0 \quad<s_{0}=1, s_{1} \neq 0>$.
That v_{I} is indeed a solution can be proven by putting it into the Schrodinger equation (1) and deriving the relation:

$$
\begin{gather*}
(n+2)(n+1-2 \ell) s_{n+2}+k^{2} s_{n}+c\left(k^{2}\right)(2 n-2 \ell+3) r_{n-2 \ell+1} \\
-\sum_{1+\jmath=n} v_{1} s_{j}=0 \tag{8}
\end{gather*}
$$

From (8) the coefficients s_{n} (polynomials in k^{2} of the same degree as r_{n}) can be calculated and also the function $C\left(k^{2}\right)$:

$$
\begin{equation*}
c\left(k^{2}\right)=\frac{1}{2 \ell+1} \quad\left(\sum_{1+\jmath=2 \ell-1} v_{1} s_{\jmath}-k^{2} s_{2 \ell-1}\right) \tag{9}
\end{equation*}
$$

which is a polynomıal in k^{2} of degree $k^{2 \ell-2}<\mathrm{k}^{2 \ell}>$.

The coefficient $s_{2 \ell+1}$ is not defined from the recursion relation
(8) and can be choosen freely it corresponds with adding a multiple of the regular solution to the irregular solution. We will define our standard irregular solution with the cholce:

$$
\begin{equation*}
\mathbf{s}_{2 \ell+1}=0 \tag{10}
\end{equation*}
$$

It is quite possible to make another cholce; it will not affect the properties in the following as long as:
$s_{2 \ell+1}\left(k^{2}\right)$ is a polynomial of k^{2} of degree (2ℓ).
With the help of equation (7) and (8) one can prove:
$V_{I} 15$ a real analytic function of k^{2} and except for the $\ln r$ singularıty also analytic in r in the same region as $V(r)$.

For the irregular solution one proves the integral equation:

$$
\begin{equation*}
v_{I}(r)=a \bar{n}(r)+b \bar{\jmath}(r)+\int_{E}^{r} d r^{\prime}\left(\bar{\jmath}(r) \bar{n}\left(r^{\prime}\right)-\bar{n}(r) \bar{\jmath}\left(r^{\prime}\right)\right) V\left(r^{\prime}\right) v_{I}\left(r^{\prime}\right) \tag{11a}
\end{equation*}
$$

with: $r>\varepsilon>0$
and: $\left.\begin{array}{rl}a \bar{n}(\varepsilon)+b \bar{J}(\varepsilon) & =v_{I}(\varepsilon) \\ a \bar{n}^{\prime}(\varepsilon)+b \bar{J} \prime(E) & =v_{I}^{\prime}(\varepsilon)\end{array}\right\} \equiv\left\{\begin{array}{l}a=-\left.W\left(v_{I}, \bar{J}\right)\right|_{E} \\ b=\left.W\left(v_{I}, \bar{n}\right)\right|_{E}\end{array}\right.$
Note that the integral in (11a) ls not defined for $\varepsilon=0$ since the integrand is singular for $r \rightarrow 0(\ell \neq 0)<a l l \ell>$. Equation (11a) can be used to solve $v_{I}(r)$ in iterated form; with the help of this method one proves:

$$
\begin{align*}
\left|v_{I}(r)\right| \leq & \text { constant }\left\{|a|\left(\frac{1+|k r|}{|r|}\right) \ell+|b|\left(\frac{|r|}{1+|k r|}\right) \ell+1\right. \\
& \left.+|a|\left(\frac{|r|}{1+|k r|}\right) \ell+1\left(\frac{1+|k \varepsilon|}{|E|}\right) 2 \ell\right\rangle e^{|\operatorname{Im} k r|} \tag{12}
\end{align*}
$$

In the following we wall need some more restrictions on the analyticity of the potential V. We will assume that $V(r)$ is analytic in the region $R e r>0$, finite in the origin or atmost having a simple
pole here, and falls off exponentially like $e^{-\mu r}$ (or $e^{-\mu r} / r$, etc.) for $r \rightarrow \infty$, Rer>0.

When one 15 interested in the analytic properties of effective
range functions, it appears to be convenient to define the integrals:

$$
\begin{align*}
& \mathrm{R}^{+}=\int_{0}^{\infty}\left(\overline{\mathrm{n}}+\perp \bar{j} \mathrm{k}^{2 \ell+1}\right) \mathrm{VV}_{\mathrm{R}} \mathrm{dr} \mathrm{r}^{\prime} \\
& \mathrm{R}^{-}=\int_{0}^{\infty}\left(\overline{\mathrm{n}}-1 \overline{\mathrm{j}} \mathrm{k}^{2 \ell+1}\right) \mathrm{V} \mathrm{v}_{\mathrm{R}} \mathrm{dr} \mathrm{r}^{\prime} \\
& S^{+}=b-1 k^{2 \ell+1} a+\int_{F}^{\infty}\left(\bar{\pi}+1 \bar{\jmath} k^{2 \ell+1}\right) v v_{I} d r^{\prime} \tag{13}\\
& \mathbf{S}^{-}=b+1 k^{2 \ell+1} a+\int_{\varepsilon}^{\infty}\left(\bar{n}-1 \bar{\jmath} k^{2 \ell+1}\right) v v_{I} d r^{\prime}
\end{align*}
$$

Although S^{+-}seem to depend on the value of ε this is in fact not the case, as can be proven with the help of eqs. (11).

With the usual methods, using the analyticity in k of the integrand, the analyticity of a and b in k^{2}, the analyticity and exponential decreasing of the potential and the bounds of eqs (6) and (12) one proves:
$-S^{+}, R^{+}$are analytic in the complex k-plane except for the negative imaginary axis where singularıties are possible for
$-\infty<\operatorname{Im} k \leq-\mu / 2$.

- S^{-}, R^{-}are analytic in the complex k-plane except for the positive 1maginary axis where singulartities are possible for $+\mu / 2 \leq \operatorname{Im} k<\infty$.

Furthermore, one obtains:

$$
\begin{align*}
& S^{++^{*}}\left(-k^{*}\right)=S^{+-}(k) \\
& S^{+-*}\left(k^{*}\right)=S^{-+}(k) \\
& R^{+{ }^{*}}\left(-k^{*}\right)=R^{+-}(k) \tag{14}\\
& R^{++^{*}}\left(k^{*}\right)=R^{-+}(k)
\end{align*}
$$

$$
\begin{align*}
& \lim _{|\mathrm{k}|+\infty}\left|\mathrm{R}^{+-}(\mathrm{k})\right|=0\left(\frac{1}{|\mathrm{k}|}\right) \quad \text { (except negatıve/positıve ımagınary axıs) } \\
& \ll 0\left(\frac{1}{|k|^{1-\delta}}\right) \text { with } \delta \text { any number }>0 \text { > } \tag{15}
\end{align*}
$$

From the recursion relations (4) and (8) one derives for $\varepsilon=\frac{\text { constant }}{k}$:

$$
\begin{align*}
& \lim _{|k| \rightarrow \infty} a=1+o\left(\frac{1}{k^{2}}\right) \tag{16}\\
& \lim _{|k| \rightarrow \infty} b=o\left(k^{2 \ell}\right)
\end{align*}
$$

Using the bound eq. (12) and the fact that S^{+-}does not depend on ε one gets:

$$
\lim _{|\mathrm{lm}| \rightarrow \infty} \frac{s^{+-}}{\mathrm{k}^{2 \ell+1}}=-+1+0\left(\frac{1}{|\mathrm{k}|}\right) \quad \begin{gather*}
\text { (except for the negative/ } \tag{17}\\
\text { positive lmaginary axıs) }
\end{gather*}
$$

Note 1:

Sometimes it is convenient to have a bound on $v_{I}(r)$, like eq. (12), which is not dependent on ε. Using eq. (12) and eq. (16) one proves ımmediately:

$$
\begin{equation*}
\left|v_{I}(r)\right| \leq \text { constant }\left(\frac{1+|k r|}{|r|}\right)^{\ell} e^{|\operatorname{Ira} k r|} \tag{18}
\end{equation*}
$$

for $|r|>\frac{\text { constant }}{|k|}$ and $|k|>\left|k_{\text {mın }}\right| \neq 0$.
With the help of the expansion eq. (7) the validity of eq. (18) can be extended also to $|r|<\frac{\text { constant }}{\left|k_{\mid}\right|}$.
Furthermore, using eq. (16) and eqs (7) and (8) again in the region $|k|<\left|k_{\text {min }}\right|$, one proves:

$$
\left|v_{I}(r)\right| \leq\{\text { constant }\left(\frac{1+|k r|}{|r|}\right)^{\ell}+\text { constant }\left(\frac{|r|}{1+|k r|}\right)^{\ell+1} \underbrace{|\operatorname{Im} k r|}_{(19)}
$$

which is valıd for all r and k ($\operatorname{Re} r>0$).

Note 2:

In chapter $I I$ we derived for potentials which are finite in the origin:

$$
\begin{aligned}
& \delta(k) \xrightarrow[|k| \rightarrow \infty]{\longrightarrow} 0\left(\frac{1}{|k|}\right) \\
& k^{\ell+1} N(k) \underset{k \rightarrow \infty}{\longrightarrow} 1+0\left(\frac{1}{k}\right) \\
& \frac{\mathrm{H}\left(\mathrm{k}^{2}\right)}{\mathrm{k}^{2 \lambda}} \underset{\mathrm{k} \rightarrow \infty}{\longrightarrow} \text { constant }
\end{aligned}
$$

For potentials which have a simple pole in the origin this becomes:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \delta(k)<0\left(\frac{1}{|k|^{1-\delta}}\right) \\
& \lim _{k \rightarrow \infty}\left(k^{\ell+1} N(k)-1\right)<0\left(\frac{1}{|k|^{1-\delta}}\right) \\
& \lim _{k \rightarrow \infty} \frac{H\left(k^{2}\right)}{k^{2 \ell}}<\text { constant }|k|^{\delta}
\end{aligned}
$$

number > 0

Part Two:

The Electromagnetic Interaction

In the second part of this thesis we will study some aspects of the electromagnetic interaction. It is ımpossible for us to give at this place a survey of the many different techniques used to describe this type of interaction. In the following we will only try to outline the historıcal background of one of the situations where an accurate description of the electromagnetic interaction is necessary: low energy proton-proton scattering.

Field theoretical methods are extensively used in the last four decades to describe the electromagnetic interaction between charged partıcles. The problems concerning the infrared catastrophe, the self energy of the charged particle, mass- and charge renomalızation are solved within quanturn electrodynamics. The predictions for quantities like the hydrogen bound state levels, the anomalous magnetic moment of the electron and muon are in excellent agreement with experiment.

The success of quantum electrodynamics encouraged the application of the same kind of techniques to other types of interactions. In the following we will refer especially to the interaction between two nucleons.

The electromagnetic force $1 s$ mediated by the photon which is transmitted between the source (the electromagnetic current) and the charged particle. This electromagnetic force is present in the two nucleon system. However, besides that, another much stronger type of interaction 15 present.

Yukawa proposed that the nucleon is the source of a force field,
called the meson field, in the same way as an electrically charged object is the source of an electromagnetic field. The quantum associated with this field was called the pion, discovered in 1947. Until about 1960 many people have tried to construct field theoretical nuclear potentials due to one pion exchange (OPE) or two pion exchange. However, these methods failed to describe the experimental data.

After the discovery of the ρ and ω meson, fields associated with these partıcles were added, leadıng to the so-called One Boson Exchange models (OBE). Extensive work in the past two decades shows that a more or less satisfactory description is reached (for references we refer to the theses of Nagels [Na 75] and RıJken [Ry 75]). However, this in principle field theoretical description of the nuclear interaction differs in at least two aspects from standard quantum electrodynamics.

First of all the nucleons and mesons are not "fundamental", but consıst out of quarks. This in contrast with the "fundamental" electrons and electromagnetic field (photon). This shows that a simple description like OBE models is at most a good approximation of the physical world. One can doubt whether all of the concepts of standard field theory can be applied.

Sccondly, when one assumes that field theory is applicable to these interactions, one meets the difficulty that the intrinsic strength of the nuclear interaction is much bigger than in the electromagnetic case. The coupling between charge and photon is small enough to allow for a perturbative procedure which "converges" rather fast*. This is not the case for the strong interactions: truncation of the series

[^25]after a finıte number of terms will lead to serious troubles. First of all one looses "physlcs" which is contalned in higher order exchanges and which cannot be neglected as in electrodynamics due to the smallness of the coupling constant. Secondly one comes an conflict with unitarıty.

Unitary troubles can be solved by using the so-called BetheSalpeter equatıon [BS 51]; however, the loss of some "physics" contalned in hlgher order terms is inevitable. As an additional complication, the Bethe-Salpeter equation, even in approximated form, cannot be solved exactly and must be treated numerically which is very (computer) time consuming and not trivial.

For these reasons several approximation schemes were developed for the Bethe-Salpeter equation, from which we mention the Blankenbecler-Sugar-Logunov-Tavkhelıdze (BSLT) "three dimensıonal" scattering equations. The BSLT-equations are equations in momentum space and glve difficulties when one tries to include the electromagnetic interaction (with a zero mass photon). Therefore they are often translated to configuration space which, however, leads to other approximations. At this polnt one has an equation which resembles the ordinary Schrodinger equation in coordinate space in many aspects and the electromagnetic interaction $1 s$ often represented by a simple Coulomb potential.

Tnis situation, from physics up to physical model $1 s$ deplcted in figures I.1 and I. 2.

With the help of the last type of approximations a part of the Nıjmegen Hıgh Energy Physics group has studıed the nucleon-nucleon interaction $1 n$ detall durjng the last decade, and found no clear
$\left|\begin{array}{c}\text { physics }= \\ \text { interacting } \\ \text { quarks }\end{array}\right| \rightarrow\left|\begin{array}{c}\text { local } \\ \text { renormalizable } \\ \text { field theory with } \\ \text { nucleon and mesons }\end{array}\right| \rightarrow$
$\left|\begin{array}{l}\text { approxımate renormalızatıon } \\ \text { using "physical" coupling constants } \\ \text { and masses; neglect "self energy" } \\ \text { dıagrams }\end{array}\right| \rightarrow\left|\begin{array}{l}\text { consıder only one boson } \\ \text { exchange dıagrams: unitarıze } \\ \text { w.h.o. the Bethe-Salpeter } \\ \text { equation }\end{array}\right|$
$\rightarrow\left|\begin{array}{l}\text { approximate BS equation by } \\ \text { more convenient ones: BSIT } \\ \text { eqs } \rightarrow \text { Schrōd. eqs }\end{array}\right|$
Eijure 1.1.

Eigure I.2.
indication that one of the approximations was clearly bad, considering the experimental data*.

Much work was done, especially in the last step of the approxima-

[^26]tıon, to make the Schrōdinger equatıons as equivalent as possible to the BSLT-equations. A clear advantage of the (configuration space) Schrodinger equation $1 s$ that the electric interaction can be added in a rather simple way to the strong interaction. Due to the zero mass of the photon $u t$ is extremely difficult to handle this in the (momentum space) BSLT-equatıons. Up to a few years ago, the electric interaction was represented by a simple Coulomb potential of the form $\frac{\alpha}{r}$; one arrıves at this potential by simple using the approximation scheme, described above, using the photon exchange mechanlsm, and it is fully consistent with the local configuration space potentials as derived by Nagels and Rljken [Na 75, Ry 75] between 1970 and 1975. However, since that time the Nljmegen group has lmproved its description of the strong nuclear interaction by including also nonlocal types of interaction in $1 t s$ configuration space potentials (the step BSLT \rightarrow Schrodinger equation forces one to neglect some nonlocal terms; the most crude approximation leads to local potentials). Also the electric part of the interaction needed therefore revision and we used the same approximations as for the nuclear interaction in first instance. However, to our (unpleasant) surprıse, this led to a nonunique electric potential which was in general not able to describe a very fundamental problem in physics: the bound state levels of the hydrogen atom. Unless we made some special assumptions it predicted only the Balmer part of the energy levels, but failed in the description of the fine sLructure splatting.

This was a serlous short-coming of our conventional method since the fine structure splıtting in the bound state levels corresponded with the newly calculated (nonlocal) corrections in the potentials.

A critical revision of all the approximations was necessary which led ultimately to a different approach of the last two steps of the approximations: from boson excnange dlagrams via one boson exchange to three dimensional approximations and the configuration space potentıal.

In the sccond part of this thesis we will consider the last two steps of approximatıons in figures I.1 and I.2. Our starting point will be boson exchange diagrams where the renormalızation has been taken into account by using physical coupling constants, masses and form factors. Typical renormalization features like the anomalous magnetic moment, the Lamb shıft, or the vacuum polarızation are therefore not contained in our starting model and must be put in by hand as effective potentials.

Although the tıtle suggests that the following is only a calculatıon of the electric potentıal in nucleon-nucleon scatterıng, it will appear that the methods can also be applied, in principle, to the strong nuclear interaction. In fact, the electric potential derived in this thesis, can only be applicd in combination with a nuclear interaction derived with the same methods.

In chapter II we will give a short review of the Bcthe-Salpeter equation, the three dimensional BSLT equatıons and we will show that the last approximation in general leads (in lowest order) to an incorrect bound state structure for the hydrogen atom.

In chapter III we will use a " φ " like model to outline the basic concept of the derivation of a configuration space potential from boson exchange diagrams. Since an exact calculation is not possible this is done in a perturbative way, using the inverse of the mass of
the scatterıng partıcles as expansion parameter.
In chapters IV and V we will apply this method to more "physical" cases: spin $0-\operatorname{spin} 0$ and $\operatorname{spin} 1 / 2-\operatorname{spin} 1 / 2$ scattering and show that the derived potential describes the hydrogen bound state levels well, including terms of order $\alpha_{F}^{4}\left(\alpha_{F} \equiv\right.$ fine structure constant).

In chapter VI we will consider the electric potential in low energy proton-proton scattering and derive modified effective range functions.

1. Introduction and the Bethe-Salpeter equation

In this section we will list some of our conventions, review some well known propertıes of the summation of Feynman diagrams with the help of the Bethe-Salpeter (B.S.) equation and discuss the approximatıons in the Blankenbecler-Sugar (BSLT) pseudopotential approach.

We are $1 n t e r e s t e d$ in the elastic scattering of two spin-1/2 partıcles a and $b:$

$$
\begin{equation*}
a+b \rightarrow a+b \tag{1}
\end{equation*}
$$

with lnitial four-momenta p_{a} and p_{b} and final momenta p_{a}^{\prime} and p_{b}^{\prime} - Oneparticle states are normalızed according to:

$$
\begin{equation*}
\left\langle p, s \mid p^{\prime}, s^{\prime}\right\rangle=(2 \pi)^{3} 2 E(p) \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \delta_{s s^{\prime}} \tag{2}
\end{equation*}
$$

with s and s^{\prime} denoting the component of the spin along the $z-d i r e c t i o n$ and:

$$
\begin{equation*}
E(p)=\left(\vec{p}^{2}+m^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

m being the mass of tho particle; in the case of unequal mass scattering we will denote the mass of particle a with m and its on shell energy with $E(p)$, for particle b with M and $D(\vec{p})=\left(\vec{p} 2+m^{2}\right)^{1 / 2}$ respectively.

The Dirac splnors we use are normallzed according to:

$$
\begin{equation*}
\bar{u}\left(\vec{p}, s^{\prime}\right) u(\vec{p}, s)=2 m \delta_{s^{\prime} s} \tag{4a}
\end{equation*}
$$

for positıve energy spınors, and:

$$
\begin{equation*}
\vec{v}\left(\vec{p}, s^{\prime}\right) v(\vec{p}, s)=-2 m \delta_{s^{\prime}} \tag{4b}
\end{equation*}
$$

for negative energy spinors. Fourvectors will be denoted: $p=\left(p^{0}, \vec{p}\right)$, and:

$$
\begin{equation*}
p^{2} \equiv p_{\mu} p^{\mu}=\vec{p}^{2}-p^{0^{2}} \tag{5}
\end{equation*}
$$

For the Dırac spinors we will use the Paulı-Dırac representation:

$$
\begin{equation*}
u(\vec{p}, s)=\sqrt{E(\vec{p})+m}\binom{x_{s}}{\frac{\vec{\sigma} \cdot \vec{p}}{E(\vec{p})+m} x_{s}} \tag{6}
\end{equation*}
$$

with $\vec{\sigma}$ the Paull spın matrices and X_{s} a Paull splnor. The γ-matrices have the following form:

$$
\begin{array}{ll}
\vec{\gamma}=\left(\begin{array}{cc}
0 & -1 \vec{\sigma} \\
\stackrel{\rightharpoonup}{\sigma} & 0
\end{array}\right) & , \quad \gamma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\gamma_{4}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & , Y_{5}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \tag{7}
\end{array}
$$

and : $\quad \overline{\mathrm{u}}(\overrightarrow{\mathrm{p}}, \mathrm{s})=\mathrm{u}^{+}(\overrightarrow{\mathrm{p}}, \mathrm{s}) \gamma_{4}$.
The scattering process (1) is described with the help of the scattering operator T with matrix elements:

$$
\begin{equation*}
\langle E| T|ュ\rangle \equiv\left\langle p_{a}^{\prime}, s_{a}^{\prime} ; p_{b}^{\prime}, s_{b}^{\prime}\right| T\left|p_{a}, s_{a} ; p_{b}, s_{b}\right\rangle \tag{8}
\end{equation*}
$$

It is customary to define an M matrix, which is a 16×16 matrix in spınor space, and which, sandwiched between Dirac spinors gives the corresponding T-matrix elements:

$$
\begin{equation*}
\langle f| T|ı\rangle=\bar{u}\left(\vec{p}_{a}^{\prime}, s_{a}^{\prime}\right) \vec{u}\left(\vec{p}_{b}^{\prime}, s_{b}^{\prime}\right) M_{f_{1}}\left(p^{\prime}, p ; p\right) u\left(\vec{p}_{a}, s_{a}\right) u\left(\vec{p}_{b}, s_{b}\right) \tag{9}
\end{equation*}
$$

with P the total four-momentum of the system:

$$
\begin{equation*}
p=p_{a}+p_{b}=p_{a}^{\prime}+p_{b}^{\prime} \tag{10}
\end{equation*}
$$

and p the relative momentum defined by

$$
\begin{array}{ll}
p_{a}=\mu_{1} P+p & \text { wlth } \mu_{1}+\mu_{2}=1 \\
p_{b}=\mu_{2} P-p &
\end{array}
$$

and similarly for p^{\prime}. In the center-of-mass frame one has:

$$
\begin{aligned}
P= & (V, s) ; p_{a}=(E(\vec{p}), \vec{p}) ; p_{b}=(D(\vec{p}),-\vec{p}) ; \\
& p_{d}^{\prime}=\left(E\left(\vec{p}^{\prime}\right), \overrightarrow{p^{\prime}}\right), \quad p_{b}^{\prime}=\left(D\left(\vec{p}^{\prime}\right),-\vec{p},\right) ;
\end{aligned}
$$

and therefore:

$$
\begin{align*}
& \vec{p}=\left(\mu_{2} E(\vec{p})-\mu_{1} D(\vec{p}), \vec{p}\right) \tag{12}\\
& p^{\prime}=\left(\mu_{2} E\left(\overrightarrow{p^{\prime}}\right)-\mu_{1} D\left(\overrightarrow{p^{\prime}}\right), \overrightarrow{p^{\prime}}\right)
\end{align*}
$$

'The 'i matrix ls defined for all four-momenta p, p ', P, however represents only the physical scattering process (1) when p and p^{\prime} satısfy equation (12) and $P=(E(\vec{p})+D(\vec{p}), 0)=(\sqrt{s}, 0)$, which puts both the $1 n \lambda t i a l$ and final particles on the energy- and the mass-shell.

In fleld theory the 1 -matrix can be obtalned when one sums the infinite set of Feynman diagrams of fig. II. 1.

fig. II. 1

This infinite summation is clearly an impossible task, and one even does not know whether this series converges. Truncation of this series will give problems with the unitarity of the scattering matrix. By rearranging the diagrams of fig. II. 1 one can obtaln a matrix equation
of the form:

$$
M_{f_{1}}\left(\mathrm{p}^{\prime}, \mathrm{P} ; \mathrm{P}\right)=M_{\mathrm{fl}}^{1 \mathrm{rr}}\left(\mathrm{p}^{\prime}, \mathrm{p} ; \mathrm{P}\right)+\int \frac{\mathrm{d}^{4} \mathrm{k}}{(2 \pi)^{4}} M_{\mathrm{fl}}^{1 \mathrm{rr}}\left(\mathrm{p}^{\prime}, \mathrm{k} ; \mathrm{P}\right) \mathrm{G}(\mathrm{k} ; \mathrm{P}) M(\mathrm{k}, \mathrm{p} ; \mathrm{P})
$$

which is the so-called Bethe-Salpeter equation [BS 51; Ge 51; Sch 51] without 2-particle unitarity troubles when $M^{2 r r}$ is truncated.
$M^{1 r r}$ stands for the irreducible kernel and consısts of all
"ırreducıble" Feynman dıagrams (fıg. II.2).

fig. II. 2
G 15 the Greens function, which for two spin-1/2 particles consists of the two-particle propagator:

$$
\begin{equation*}
G(k, P)=-1\left[\frac{\left(\mu_{1} P+k\right) \mu^{\gamma}+1 m}{\left(\gamma_{1} P+k\right)^{2}+m^{2}-1 \varepsilon}\right]\left[\frac{\left(\mu_{2} P-k\right)_{\mu} \gamma^{\mu}+1 M}{\left(\mu_{2} P-k\right)^{2}+M^{2}-1 \varepsilon}\right] \tag{14}
\end{equation*}
$$

The BS equation can be depıcted as:

fıg. II. 3

The BS-equation is still an equation which except for some simple cases) is not exactly solvable. Moreover one can doubt whether it is valıd to describe a scattering process lıke NN \rightarrow NN with the help of a local renormalızable field theory. The nucleons are not considered as confined three quark states but as elementary particles (e.g. the bare nucleon) which are "dressed" whth meson clouds and renormallzed to give physical coupling constants and masses (we refer to [Sw 77] for an extensive discussion on this polnt).

For these reasons one takes only a limited number of diagrams in the irreducible kernel into account and uses the BS-equation merely as a method to incorporate some general features of a relativistic scattering process: relativıstic unitarıty, retardation, covariance, and several conservation laws.

Most of the time, the first step is to remove all self-energy
 represented by the use of physical masses and coupling constants (form factors) $1 n$ the propagators and vertıces. Then we are left with the $M^{\text {III }}$ deplcted in fig. II. 4.

fig. II. 4

Also this $M^{1 r r}$ must be truncated. A commonly used approximation is to keep only the first (one-meson-exchange) term. This glves, once the BS-equation is solved, the so-called ladder approximation M_{L} to M :

fig. II. 5

The crossed (fourth order) diagram is also sometımes taken into account, however, one has rarely gone beyond the fourth order because of the great computational work involved.

The BS-equation with the approximated irreducıble kernel is stıll a very complicated equation and hard to solve. Its main problem 15 the four-dimensional integration over the momenta of the intermediate particles and the complicated singularity structure of the kernel due to the Lorentz metric of the particle propagators. To simplafy the numerical treatment one often applies a "Wick rotation" [W1 54] to the BS-equation. The basıc idea is to remove the singularities due to the Lorentz metric via a rotation of the integration path $k_{0} \rightarrow 1 k_{0}$ and a simultaneous transformation of the external variable $p_{0} \rightarrow 1 p_{0}$. However, the validity of this procedure cannot be ragorously proven. Also the Integral equation involving two independent variables $|\vec{k}|$ and $\left|k_{0}\right|$ (the integration over the angle can be avolded by making a partial wave decomposition) requires much computer space and time. Instead of explicitly solving the equation with matrix inversion, one often
 te solution in the rıghthandside of equation (13) again; in this way one generates the coefficients of an expansion in the coupling constant
(fig. II.5) which can be used to construct a pade approximant of the exact solution. For detailed information we refer to the literature [Le 67, Le 66; Fl 75], a review of the BS-equation is glven by Nakanıshı [Na 69].

Because of these difficulties in the BS-equation some alternative equations have been proposed which may be considered as certaln approximations to the BS-equation such that relativistic covariance and unitarity are preserved but the integration over the relative energy varıable $1 s$ removed. These equations, called the Blankenbecler-Sugar-Logunov-Tavkhelidze equations (BSLT-eqs), will be discussed next.

2. BSLT-equatıons or relatıvistic three-dimensional scattering equations

The unitarity of the S matrix $1 m p l i e s$ for the transition matrix $T_{f 1}$ as produced by the BS-equation via eq. (9)*:

$$
\begin{align*}
& \mathrm{T}_{\mathrm{fl}_{1}}^{+}-\mathrm{T}_{\mathrm{fl}_{1}}=(2 \pi)^{4} \sum_{\text {splns }} \int \frac{\mathrm{d}^{3} \mathrm{pa}_{n} \mathrm{~d}^{3} \mathrm{~Pb}_{n}}{(2 \pi)^{6}}-\frac{1}{4 \mathrm{E}\left(\overrightarrow{\mathrm{P}}_{\mathrm{a}_{n}}\right) \mathrm{D}\left(\overrightarrow{\mathrm{P}}_{\mathrm{b}_{n}}\right)} \\
& \text { n } \\
& \times T_{f n}^{+} \delta^{4}\left(P_{n}-P_{I}\right) T_{n I} \tag{15}
\end{align*}
$$

Using the total and relative four-momenta as defined by eqs (10) and (11) it is not difficult to rewrite this as:

$$
\begin{array}{r}
T_{f_{1}}^{+}-T_{f_{1}}=(2 \pi)^{2} \sum_{\text {spıns }} \sum_{n} \frac{d^{4} k_{n}}{(2 \pi)^{4}} \delta\left(P^{0}-E(\vec{k})-D(\vec{k})\right) \\
\times T_{f n}^{+} \frac{\delta\left(k_{n}^{0}-\mu_{2} E\left(\vec{k}_{n}\right)+\mu_{1} D\left(\vec{k}_{n}\right)\right)}{4 E\left(\vec{k}_{n}\right) D\left(\vec{k}_{n}\right)} T_{n \perp} \tag{16}
\end{array}
$$

[^27]Define the operation " \ddagger ":

$$
M_{f_{1}}^{\neq}=\gamma_{4}^{(a)} \gamma_{4}^{(b)} M_{f 1}^{+} \gamma_{4}^{(a)} \gamma_{4}^{(b)}
$$

Since in eq. (16) only physical two-partıcle states contribute, i.e. positive energy states on mass- and energy-shell, we can wrıte this as:

$$
\begin{align*}
& \bar{u}\left(\vec{p}_{a}^{\prime}\right) \bar{u}\left(\vec{p}_{b}^{\prime}\right)\left\{M_{f 1}^{\neq}-M_{f i}\right\} u\left(\vec{p}_{a}\right) u\left(\vec{p}_{b}\right)=(2 \pi)_{1}^{2} \sum_{s p_{n} n s} \int \frac{d^{4} k_{n}}{(2 \pi)^{4}} \\
& \bar{u}\left(\vec{p}_{a}^{\prime}\right) \bar{u}^{u}\left(\vec{p}_{b}^{\prime}\right) M_{f n}^{\neq} u\left(\vec{k}_{a}\right) u\left(\vec{k}_{b}\right) \frac{\delta\left(P^{0}-E\left(\vec{k}_{n}\right)-D\left(\vec{k}_{n}\right)\right) \delta\left(k^{0}-\mu_{2} E\left(\vec{k}_{n}\right)+\mu_{1} D\left(\vec{k}_{n}\right)\right)}{4 E\left(k_{n}^{7}\right) D\left(\vec{k}_{n}\right)} \\
& \times \bar{u}\left(\vec{k}_{a}\right) \bar{u}\left(\vec{k}_{b}\right) M_{n 1} u\left(\vec{p}_{a}\right) u\left(\vec{p}_{b}\right) \tag{17}
\end{align*}
$$

「ollowing Blankenbecler and Sugar and others [Bl 66; Lo 63], the BS two-partıcle propagator is wrıtten as a sum of two terms:

$$
\begin{equation*}
G=g+(G-g) \tag{18}
\end{equation*}
$$

where g is to be an appropriate nonrelativistic propagator corresponding to G, and is constructed in such a way that it possesses the singularity structure of G in the physical region. The BS-equation (13) can now be wrıtten in symbolic operator form as two equations:

$$
\begin{align*}
& M=W+W \operatorname{g} M \\
& W=M^{1 r r}+M^{2 r r}(G-g) W \tag{19}
\end{align*}
$$

Here W is called the pseudopotential which must be "hermitean" in the physical two-particle region where only elastic scattering is possible:

$$
W^{*}=W
$$

This requirement colncides with the unitarity condition as required by (17) for M and which must be generated by g in the first equation of (19) :

$$
\begin{equation*}
M_{f_{1}}^{\neq}-M_{f_{1}}=\int \frac{d^{4} k_{n}}{(2 \pi)^{4}} M_{f_{n}}^{\neq}\left(g_{\left(k_{n}, P^{0}\right)}^{\neq}-g_{\left(k_{n}, p^{0}\right)}\right) M_{n 1} \tag{20}
\end{equation*}
$$

resulting into:

$$
\begin{align*}
g^{\ddagger}\left(k, P^{0}\right) & -g\left(k, P^{0}\right)=\pi^{2} \delta\left(P^{0}-E(\vec{k})-D(\vec{k})\right) \delta\left(k^{0}-\mu_{2} E(\vec{k})+\mu_{1} D(\vec{k})\right) \\
& \left.\times \frac{1}{E(\vec{k}) D(\vec{k})} \sum_{\text {spins }} u\left(\vec{k}_{a}\right) \bar{u}\left(\vec{k}_{a}\right) u\left(\vec{k}_{b}\right) \bar{u}^{\left(\vec{k}_{b}\right.}\right) \tag{21}
\end{align*}
$$

Of course, eq. (21) does not determine totally the exact form of g. It only guarantees that the singularity structure of g in the physical regıon gives a "hermıtean" pseudopotentıal W and a relativistic twopartıcle unitary transıtion matrıx T (ın fact also G satısfies eq. (21) but it has also a singularity structure in the unphysical region due to $1 t s$ abılıty to propagate negatıve energy states).

The most common and useful form of g is:

$$
\begin{align*}
& g\left(\vec{k}, P^{0}\right)=h\left(\vec{k}, P^{0}\right) 2 \pi \delta\left(k^{0}-\mu_{2} E(\vec{k})+\mu_{1} D(\vec{k})\right) \\
& \times \sum_{\text {spins }} u\left(\vec{k}_{a}\right) \bar{u}\left(\vec{k}_{a}\right) u\left(\vec{k}_{b}\right) \bar{u}^{\prime}\left(\vec{k}_{b}\right) \tag{22}
\end{align*}
$$

and eq. (21) $1 s$ equivalent with:

$$
\operatorname{Im} h\left(\vec{k}, P^{0}\right)=-\frac{\pi}{4 E(\vec{k}) D(\vec{k})} \delta\left(P^{0}-E(\vec{k})-D(\vec{k})\right)
$$

In this case the integration over k^{0} is trivial. Defining $W_{f l}$ as the matrix elements of $W_{f_{1}}$, obtained by sandwiching $W_{f i}$ between Dirac spinors, the BSLT-equation for the T matrix between positive energy states reads:

$$
\begin{gather*}
T_{f_{1}}\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{\prime}\right)=W_{f_{1}}\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right)+\sum_{s p \not n s} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} W_{f n}(\vec{p}, \vec{k} ; / s) \\
 \tag{23}\\
\times h(\vec{k}, \sqrt{s}) \quad T(\vec{k}, \vec{p}, \sqrt{s})
\end{gather*}
$$

Note that the fourth component of the momentum k, needed in the
calculation of W, is given by:

$$
\begin{equation*}
k^{0}=\mu_{2} E(\vec{k})-\mu_{1} D(\vec{k}) \tag{24}
\end{equation*}
$$

The pseudopotential W is in general dependent on the energy $\sqrt{ }$ s. This has two reasons. First of all in the definition of the pseudopotential, $W=M^{1 r r}+M^{1 r r}(G-g) W$, the energy dependence enters via the iteration due to the $(G-g)$ term. Secondly $M^{2 r r}$ could contain terms like:

$$
\begin{align*}
&\left(p_{a}+p_{a}^{\prime}\right) \\
& \mu\left(p_{b}+p_{b}^{\prime}\right)^{\mu}=(\text { use }(11) \text { and }(24))= \\
&\left.(\vec{p}+\vec{p})^{\prime}\right)^{2}-\left(2 \mu_{1} \sqrt{s}+\mu_{2}\left(E\left(\vec{p}^{\prime}\right)+E\left(\vec{p}^{\prime}\right)\right)-\mu_{1}\left(D(\vec{p})+D\left(\overrightarrow{p^{\prime}}\right)\right)\right) \tag{25}\\
& \times\left(2 \mu_{2} \sqrt{ } / \mu_{2}\left(E(\vec{p})+E\left(\vec{p}^{\prime}\right)\right)+\mu_{1}\left(D(\vec{p})+D\left(\vec{p} \vec{p}^{\prime}\right)\right)\right)
\end{align*}
$$

This energy dependence is often considered as undesirable, and causes some authors to make special cholces for the welghts with the purpose to get rid of this feature. However, in fact it is an automatic consequence of the BSLT reduction and it violates or contradicts nothing as long as:

The $B S_{H}^{T} T$ pseudo equation is considered as an effective equation with the only purpose to produce the correct scattering matrix.

Hence. it is an error to consider the pseudopotential as a quantum mechanical potential and to impose on it all requirements which a (nonrelativistıc) potential must satısfy (e.g. energy independent). Note that the transition matrix T now satisfies a three dımensional equation which appears to be easily solvable once h is determined (we will return to this point). In fact all remaining problems due to the relativistic nature of the BS equation have moved now into the equation for the pseudopotential:

$$
\begin{equation*}
W=M^{1 r r}+M^{1 r r}(G-g) W \tag{26}
\end{equation*}
$$

which still is a fourdimensional integral equation. The hope $2 s$ that one $1 s$ able to make such a good cholce for g that in the low energy reglon the second term on the raghthandside of eq. (26) is a small correction and that the approximation:

$$
\begin{equation*}
W=M^{\mathbf{1 r r}} \tag{27}
\end{equation*}
$$

15 not too crude.

In making the approximation (27) however one runs the risk to introduce unphysıcal features in the scattering problem. For instance Swart [Sw 77] showed that for equal mass NN scattering the introduction of a scalar exchange via a derıvatıve coupling leads to a spın-flip term in the pseudopotential, which is forbidden by charge independence. This term is zero when one makes the symmetric cholce for μ_{1} and μ_{2} : $\mu_{1}=\mu_{2}=\frac{1}{2}$.

A similar phenomenon can be seen in eq. (25). Taking $\mu_{1}=1$, $\mu_{2}=0$ one has:

$$
\begin{equation*}
\left(p_{a}+p_{a}^{\prime}\right) \mu\left(p_{b}+p_{b}^{\prime}\right)^{\mu}=\left(\vec{p}+\vec{p}^{\prime}\right)^{2}-\left(D(\vec{p})+D\left(\vec{p}^{\prime}\right)\right)\left(2 \sqrt{s}-D(\vec{p})-D\left(\vec{p}^{\prime}\right)\right) \tag{28}
\end{equation*}
$$

The lefthandside of eq. (28) $1 s$ clearly symmetric under partıcle exchange: $a \leftrightarrow b$. However, the rıghthandside not since $1 t$ transforms anto:

$$
\left(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}}^{\prime}\right)^{2}-\left(E(\stackrel{\rightharpoonup}{\mathrm{p}})+E\left(\overrightarrow{\mathrm{p}}^{\prime}\right)\right)\left(2 \sqrt{\mathrm{~s}}-\mathrm{E}(\stackrel{r}{\mathrm{p}})-E\left(\overrightarrow{\mathrm{p}}^{\prime}\right)\right)
$$

which ls only equal to the righthandside of (28) for on shell momenta, e.g. $1 f:$

$$
\sqrt{s}=E(\vec{p})+D(\vec{p})=E\left(\vec{p}^{\prime}\right)+D\left(\vec{p}^{\prime}\right)
$$

Of course, all these phenomena will disappear when one takes more terms of the pseudopotential into account; the next step would be:

$$
\begin{equation*}
W=M^{1 r r}+V^{1 r r}(G-g) M^{1 r r} \tag{29}
\end{equation*}
$$

However, unless one solves for the pseudopotential exactly (which is equivalent with solving the B.S. equation) one can always run into troubles.

We will now turn to the definition of the function h occurring in the propagator g, eq. (22). The usual procedure is to assume real analytıcıty of h in some varıable, except for sıngularities given by eq. (21'). We mention three usual forms:

Thompson (analyticity in $\sqrt{ }$ s), [Th 70]:

$$
\begin{equation*}
h_{T}=\frac{1}{4 E D} \frac{1}{\sqrt{S}-E(\vec{p})-D(\vec{p})+1 \varepsilon} \tag{30}
\end{equation*}
$$

Partovi and Lomon (analyticity in s), [Pa 70]:

$$
\begin{equation*}
h_{P}=\frac{E+D}{2 E D} \frac{1}{s-(E(\vec{p})+D(\vec{p}))^{2}+1 E} \tag{31}
\end{equation*}
$$

Nagels (analytıcıty in $q_{s}^{2} ; ~ / s \equiv E\left(q_{s}\right)+D\left(q_{s}\right)$), [Na 75]:

$$
\begin{equation*}
h_{N}=\frac{1}{2(E+D)} \frac{1}{q_{S}^{2}-p^{2}+1 c} \tag{32}
\end{equation*}
$$

As has been pointed our by Yaes [Ya 71], there is an infinite set of Green functions satısfying (21). They differ only a multiplicative factor which 15 a function of $\sqrt{ }$ s and momentum p^{2}, and which becomes unity on the energy shell.

It wall be convenient to write h_{T}, h_{P} and h_{N} in terms of the nonrelativistic Lippmann-Schwinger propagator h_{L} defined by:

$$
\begin{equation*}
h_{L}=\frac{2 M_{r}}{q_{S}^{2}-p^{2}+1 \varepsilon} \quad ; \quad M_{r}=\frac{m M}{m+M} \tag{33}
\end{equation*}
$$

One obtalns $\quad h=N^{2}(\vec{p}, \sqrt{s}) * h_{L}$
with:

$$
\begin{align*}
& N_{T}^{2}=\frac{1}{4 E D} \frac{1}{2 M_{r}} \frac{q_{S}^{2}-p^{2}}{\sqrt{S}-E-D} \\
& N_{P}^{2}=\frac{E+D}{2 E D} \frac{1}{2 M_{r}} \frac{q_{S}^{2}-p^{2}}{s-(E+D)^{2}} \tag{35}\\
& N_{N}^{2}=\frac{1}{2(E+D)} \frac{1}{2 M_{r}}
\end{align*}
$$

Note that for on shell momentum $\stackrel{\rightharpoonup}{p}$:

$$
\begin{equation*}
N_{T}^{2}=N_{P}^{2}=N_{N}^{2}=\frac{1}{2 \sqrt{s}} \frac{1}{2 M_{r}} \tag{36}
\end{equation*}
$$

The BSLT-equation (23) reads (omitting the particle state labels):

$$
\begin{align*}
T\left(\vec{p}^{\prime}, \vec{p} / s\right)= & W\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{\prime}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} W\left(\vec{p}^{\prime}, \vec{k} ; / s\right) N(\vec{k}) \\
& \times \frac{2 M_{r}}{q_{s}^{2}-k^{2}+1 \varepsilon} N(\vec{k}) T(\vec{k}, \vec{p} ; / s) \tag{37}
\end{align*}
$$

Definıng the non-relativistic \mathcal{F} operator and potential v by:

$$
\begin{align*}
& T\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right)=N\left(\vec{p}^{\prime}\right) T\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right) N(\vec{p}) \\
& V\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right)=N\left(\vec{p}^{\prime}\right) W\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right) N(\vec{p}) \tag{38}
\end{align*}
$$

We see that \bar{J} satısfies the Lippmann-Schwinger equation with the potential V :

$$
\begin{align*}
\mathcal{T}\left(\overrightarrow{p^{\prime}}, \vec{p} ; / s\right)= & V(\vec{p} \cdot, \vec{p} ; / s)+\int \frac{d^{3} k}{(2 \pi)^{3}} v(\vec{p} \cdot, \vec{k} ; / s) \\
& \left.\times \frac{2 M_{r}}{q_{s}^{2}-p^{2}+1 \varepsilon} \quad \mathcal{(}, \vec{k}, \vec{p} ; / s\right) \tag{39}
\end{align*}
$$

Moreover, one proves that non-relativistic expressions go over in their relatıvistic counterpart by replacing T by T. For instance: The unpolarızed differential cross section $\frac{d \sigma}{d \Omega}$ from:

$$
\frac{p^{\prime}}{p} \frac{\left|\vec{F}\left(\overrightarrow{p^{\prime}}, \vec{p}\right)\right|^{2}}{4 \pi^{2}} M_{r}^{2} \quad \text { non-xelatıvıstıcally }
$$

into

$$
\frac{p^{\prime}}{p} \frac{1}{64 \pi^{2} s}\left|T\left(\vec{p}^{\prime}, \vec{p}\right)\right|^{2} \quad \text { relativistically; }
$$

and the unitarity equation, from

$$
J^{+}-\bar{J}=2 \pi 1 \int \frac{d^{3} k}{(2 \pi)^{3}} \delta\left(\frac{q_{s}^{2}-k^{2}}{2 M_{r}}\right) \sigma^{+} \zeta
$$

into

$$
\begin{aligned}
T^{+}-T= & (2 \pi)^{2} _\int \frac{d^{4} k}{(2 \pi)^{4}} \delta\left(k^{0}-L_{2} E(\vec{k})+\mu_{1} D(\vec{k})\right) \\
& \times \delta(\sqrt{ } s-E(\vec{k})-D(\vec{k})) \frac{1}{4 E D} T^{+} T
\end{aligned}
$$

Note that the differences between the BSLT propagators appear as differences in the off shellbehaviour of the Lippmann-Schwinger potentıals .

Also the \bar{j} operators will differ, but only in thear off shell behaviour. This is also a reason to be carefull with calculating for instance quantıtıes as a Quadrupole moment with wavefunctions obtained from v. The \bar{J} operators wall only give correct scattering phases and bound state energies. Even this will only be true if the pseudopotential W is solved exactly. Approximatıons like eq. (27) will lead to differences in the results calculated with N_{T}, N_{L} or N_{N}. Which cholce is best (which means the smallest "G-g") cannot be said at beforehand. Therefore we will consider them in a situation where the (exact) solution $1 s$ known: the electron bound to an infinite heavy atomıc nucleus by a Coulomb potentıal.

3. The electric potential as derived from the BSLT equations

For a hydrogen-like atom with an infinitcly heavy nucleus the Dirac equation with the Coulomb potential:

$$
\begin{equation*}
v=-\frac{z e^{2}}{4 \pi r}=-\frac{z \alpha_{f}}{r} \tag{40}
\end{equation*}
$$

gıves bound-state energies (we put $K=c=1$) [BS 57].

$$
\begin{equation*}
B_{n, J}=-\frac{m}{2}\left(\frac{\left(Z \alpha_{f}\right)^{2}}{n^{2}}+\frac{\left(Z \alpha_{f}\right)^{4}}{n^{3}}\left(\frac{1}{J+1 / 2}-\frac{3}{4 n}\right)+\ldots\right) \tag{41}
\end{equation*}
$$

The first term of eq. (41) corresponds with the non-relativistic Balmer formula, the second term is the first relativistic correction and is called the fine-structure splitting.

For the actual hydrogen atom there are several corrections for eq.
(41) which we will list according to their order in α_{f}.
α_{f}^{2} : m must be replaced by the reduced mass,
α_{f}^{4} : - other corrections due to the finite mass of the proton (recoll corrections),

- interaction between the magnetic moment of the proton and the maqnetic moment of the electron (hyperfine splitting):
α_{f}^{5} : - mass and charge renormalızation; vacuum polatızation (Lamb shift);
- remaınıng corrections from two photon exchange dıagrams; and so on.

Takıng the limıt $M \rightarrow \infty$ and expanding $B_{n, J}$ up to order α^{4} must always gıve eq. (41) (proton magnetic moment $\sim \frac{1}{M}$), when one uses a theory which claims to describe the electromagnetic interaction between two spin $\frac{1}{2}$ particles. A theory which does not stand this test is more or less useless. Of course, the Bethe-Salpeter equation with an approprate irreducible kernel 1 s correct. However, the number of terms in the irreducible kernel which are needed depends on the gauge of the electromagnetic interaction. In the following we will use two gauges explicitly:

- The manıfestly Lorentz ınvarıant Feynman gauge where the one photon exchange contribution is given by:

$$
\begin{equation*}
\frac{Q_{m}}{k \uparrow \zeta}=Q_{m}^{\zeta} Q_{M} \frac{\gamma_{\mu} \gamma^{\mu}}{k^{2}-1 \varepsilon} \tag{42}
\end{equation*}
$$

- The Coulomb gauge with:

$$
\begin{equation*}
\sum_{-\frac{\zeta}{Q_{M}}}^{\frac{Q_{m}}{\zeta}}=Q_{m^{\prime}} Q_{M}\left\{\frac{\gamma_{0} \gamma^{0}}{\vec{k}^{2}-1 \varepsilon}+\frac{\vec{\gamma} \cdot \vec{\gamma}-(\vec{\gamma} \cdot \hat{k})(\vec{\gamma} \cdot \vec{k})}{\vec{k}^{2}-1 \varepsilon}\right\} \tag{43}
\end{equation*}
$$

With $\vec{k}=\vec{k} /|\vec{k}|$ and Q_{m}, Q_{M} the charges of the particles.
The Coulomb gauge is not manifestly Lorentz invarıant. However, it has the advantage that the dominating term for small energıes, the $\gamma_{0} \gamma^{0}$ part, is instantaneous and therefore does not depend on k°. All the effects of the relative time are moved into the second term (exchange of "transverse photons") which $1 s$ smaller in magnitude. Therefore we expect that eq. (43) is suitable for a theory in which the retardation is not taken exactly into account and is approximated (for instance the BSLT equations with approxımated pseudopotential). This in contrast with the prescription (42) where the retardation modifies the dominating term ($\gamma_{0} \gamma^{0}$ part) and is cancelled by the "longıtudinal" photon in higher order dragrams. In the BS-equation, using
 exchange graph to glve the bound state energies of eq. (41). However, in the Feynman gauge one has to take also the crossed box into account (Just to obtain the cancellatıon of the tıme lıke and longıtudınal photons).

Now we will continue with the BSLT-approximations of the BSequation. For the pseudo-potential we will take the lowest order
approximation given by eq. (42) or eq. (43). To arrive at the bound state energies we will follow the program:

1. calculate the pseudo-potential matrix elements between posıtive energy spınors using the prescription (24) for the zero components of the momenta.
2. transform the pseudo-potential to a Lippmann-Schwinger potential using eq. (38).
3. make an expansion in terms of the momenta and keep only terms of order 0 and (momentum) ${ }^{2} /$ (mass 2.
4. transform the potential in momentum space to a configuration space potential.
5. calculate the bound states.

Step 3 is necessary to perform the transformation to a configuration space potential. Instead of making the expansion after step 1 and 2 we wll glve the results of step 1 and 2 immediately in expanded form:

1. Using the standard procedure (see [Na 75]) we arrive at:

$$
\begin{align*}
& W\left(\vec{p}, p^{\prime}\right)=Q_{m^{\prime}} Q_{M} \frac{4 M m}{\underline{k}^{2}}\left\{\left(1+\frac{\vec{q}^{2}}{2 M^{2}}+\frac{\vec{q}^{2}}{2 m^{2}}+\frac{\vec{q}^{2}}{M m}+X\right)\right. \\
& -i\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot \frac{(\vec{q} \times \vec{k})}{2 M m}-i\left(\frac{\vec{\sigma}_{1}}{4 m^{2}}+\frac{\vec{\sigma}_{2}}{4 M^{2}}\right) \cdot(\vec{q} \times \vec{k}) \\
& +\frac{\left(\vec{\sigma}_{1} \cdot \vec{k}_{1}\right)\left(\vec{\sigma}_{2} \cdot \vec{k}\right)}{4 \mathrm{Mm}}-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) \frac{\vec{k}^{2}}{4 \mathrm{Mm}} \tag{44}\\
& -\frac{\vec{\sigma}_{1} \cdot(\vec{k} \times \vec{q}) \sigma_{2} \cdot(\vec{k} \times \vec{q})}{16 M^{2} m^{2}}+\operatorname{terms}\left(\frac{\text { momentum }}{\text { mass }}\right) 4
\end{align*}
$$

whth: $\quad \vec{k}=\overrightarrow{p^{\prime}}-\vec{p} \quad ; \quad \vec{q}=\frac{\vec{p}+\vec{p}^{\prime}}{2}$
and : $\quad \mathrm{X}=0$
Feynman gauge

$$
\begin{equation*}
x=-\frac{(\vec{k} \cdot \vec{q})^{2}}{M \vec{k}^{2}} \tag{45}
\end{equation*}
$$

Furthermore:

$$
\begin{equation*}
\underline{k}^{2}=\vec{k}^{2}-k_{0}^{2}=\vec{k}^{2}\left(1-\frac{(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{\overrightarrow{\mathrm{k}}^{2}}\left(\frac{\mu_{2}}{m}-\frac{\mu_{1}}{M}\right)^{2}\right) \tag{46}
\end{equation*}
$$

in the Feynman gauge, using (24)
and:

$$
\underline{\mathrm{k}}^{2}=\overrightarrow{\mathrm{k}}^{2}
$$

in the Coulomb gauge.
Note that the potential in the Feynman gauge depends on the cholce of the weights, in contrast with the potential in the coulonb gauge (in fact the dependence on μ_{1} and μ_{2} occurs only in higher order momentum terms). In the limıt $M \rightarrow \infty$ only a few terms survive:

$$
\begin{align*}
W\left(p_{M \rightarrow \infty} p^{\prime}\right) \cong Q_{m} Q_{M} \frac{4 M m}{k^{2}} *(1 & +\frac{\vec{q}^{2}}{? m^{2}}+\operatorname{lnm}_{M \rightarrow \infty}\left(\frac{\mu_{2}}{m}-\frac{\mu_{1}}{M}\right)^{2} \frac{(\vec{q} \cdot \vec{k})^{2}}{\vec{k}^{2}} \\
& \left.-1 \frac{\vec{\sigma}_{1} \cdot(\vec{q} \times \vec{k})}{4 m^{2}}\right) \tag{47}
\end{align*}
$$

for the Feynman gauge. The Coulomb gauge glves the same expression without the term which depends on the welghts and corresponds with the cholce:

$$
\mu_{1}=\frac{M}{M+m} \quad, \quad \mu_{2}=\frac{m}{M+m} \quad \text { in the Feynman gauge. }
$$

2. For the transformation to the $L S$ potential $1 t$ is convenient to
rewrite eq. (35), once expanded, into the form:

$$
\begin{equation*}
N(\vec{p}) N\left(\vec{p}^{\prime}\right)=\frac{1}{4 M m}\left(1-\frac{q_{s}^{2}}{2 M m}+\lambda\left(q^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)+\ldots\right) \tag{48}
\end{equation*}
$$

with:

$$
\begin{align*}
& \lambda_{P}=-\frac{1}{4 M^{2}}-\frac{1}{4 m^{2}} \\
& \lambda_{T}=-\frac{1}{4 M^{2}}-\frac{1}{4 m^{2}}-\frac{1}{4 M m} \tag{49}\\
& \lambda_{N}=-\frac{1}{2 M m}
\end{align*}
$$

Note that the λ dependent term (\equiv pseudo-propagator dependent) vanlshes
for on-shell momenta

$$
\begin{equation*}
q^{2}+\frac{k^{2}}{4}=q_{s}^{2} \tag{50}
\end{equation*}
$$

this is also true for the retardation terms in eq. (46):

$$
\vec{q} \cdot \vec{k}=0 \quad \text { if } \quad \stackrel{p}{p}^{2}=\vec{p}^{\prime 2}=q_{s}^{2}
$$

3. The LS-potentıal in momentum space now reads (for $M \rightarrow \infty, Q_{M}-Q_{m}=e$).

$$
\begin{gather*}
v=-\frac{e^{2}}{k^{2}}\left(1+\alpha \frac{q^{2}}{m^{2}}-\beta \frac{k^{2}}{m^{2}}+\gamma \frac{q_{s}^{2}}{m^{2}}+\frac{\delta}{m^{2}} \frac{(\vec{q} \cdot \vec{k})^{2}}{\vec{k}^{2}}\right) \\
+\frac{e^{2}}{k^{2}} \geq \frac{\vec{\sigma} \cdot(\vec{q} \times \vec{k})}{4 m^{2}} \tag{51}
\end{gather*}
$$

with: $\quad \alpha=\frac{1}{2}+\lambda m^{2}$

$$
B=-\frac{1}{4} \lambda m^{2}
$$

$$
\gamma=-\lambda m^{2}
$$

$$
\delta=\lim _{M \rightarrow \infty} m^{2}\left(\frac{\mu_{2}}{m}-\frac{1}{M}\right)^{2}
$$

Thıs potential is dependent on the gauge (Coulomb gauge $f \equiv 0$), on the welghts and also on the cholce of the pseudo-propagator. On energy shell (eq. (50) and (50')) nowever, this dependence disappears and the potential 15:

$$
\begin{align*}
v_{\text {on shell }} & =-\frac{e^{2}}{\vec{k}^{2}}\left(1+(\alpha+\gamma) \frac{q_{s}^{2}}{m^{2}}-\left(\beta+\frac{\alpha}{4}\right) \frac{k^{2}}{m^{2}}\right)+\frac{e^{2}}{\vec{k}^{2}} \perp \frac{\vec{\sigma} \cdot(\vec{q} \times \vec{k})}{4 m^{2}} \\
& -\frac{e^{2}}{\vec{k}^{2}}\left(1+\frac{q_{s}^{2}}{2 m^{2}}-\frac{\vec{k}^{2}}{8 m^{2}}\right)+\frac{e^{2}}{\vec{k}^{2}} \perp \frac{\vec{\sigma} \cdot(\vec{q} \times \vec{k})}{4 m^{2}} \tag{52}
\end{align*}
$$

for all gauges, welghts and pseudo-propagators.
4. The momentum space potential can be transformed to configuration space using the formula's of Appendix C.
5. The calculation of the bound state energies is now completely stralghtforward by first solving the Schrodinger equation for the

Coulomb potentalal: $\frac{\mathcal{f}}{r}$, and then treating the remaining terms in first order perturbation theory. We comment only on two points:
a. The Lippmann-Schwinger equation (39) is an eigenvalue problem in the center-of-mass momentum squared q_{s}^{2}, and not in the center-of-mass energy. Therefore in the hydrogen atom one solves the bound state momentum and calculates the bound state energies vid:

$$
\begin{align*}
B & =\lim _{M \rightarrow \infty}\left(\sqrt{M^{2}+q_{s}^{2}}+\sqrt{m^{2}+q_{s}^{2}}-M-m\right) \tag{53}\\
& =\sqrt{m^{2}+q_{s}^{2}}-m
\end{align*}
$$

b. Once transformed to configuration space, the potential eq. (51) will contain some $\delta^{(3)}(\vec{r})$ functions which influence only s-waves. On the other hand there is also a $\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{S}}$ potentıal present which acts only in $\ell \geq 1$ states. These two potentials cooperate in such a way that the resulting bound state energies do not depend on $\delta_{\ell, 0}$ (caused by the $\delta^{(3)}(\vec{r})$ function) anymore but only on ℓ and J (total angular momentum) as contınuous variables.

The bound state energies (up to order α^{4}) for the potential of eq. (51) are:

$$
\begin{align*}
B_{n, \ell, \jmath} & =-\frac{m}{2}\left\{\frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{n^{3}}\left(\frac{1}{\jmath+1 / 2}-\frac{(2 \alpha+2 \gamma-1 / 4)}{n}\right.\right. \\
& \left.\left.-(2 \alpha+8 \beta-1) \delta_{\ell, 0}+\frac{8 \alpha+2 \delta-2}{2 \ell+1}\right)\right\} \tag{54}
\end{align*}
$$

Using the values of α, β, γ and δ of eq. (51) one obtains:

$$
\begin{equation*}
B_{n, \ell, \jmath}=-m\left\{\frac{1}{2} \frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}\left(\frac{1}{J+1 / 2}-\frac{3}{4 n}+\frac{2+8 \lambda m^{2}+2 \delta}{2 \ell+1}\right)\right\} \tag{55}
\end{equation*}
$$

Note that the correct bound-states are obtalned (eq. (41)) only lf:

$$
\begin{equation*}
2+8 \lambda m^{2}+2 \delta=0 \tag{56}
\end{equation*}
$$

In table II. 1 one sees whether the BSLT with the most simple pseudo-potential satisfies this requirement for different pseudopropagators, welghts and gauges:

	Thompson	Partavi-Lomon	Nage 15
Coulomb gauge			
or:			
Feynman gauge	yes	yes	no
$\mu_{1}=\frac{M}{M+m} ; \mu_{2}=\frac{m}{M+m}$			
Feynman gauge			
$\mu_{1} \neq \frac{M}{M+m} ; \mu_{2} \neq \frac{m}{M+m}$	no	no	no
Trble II. 1: the rases for which the BSLT equation with one photon			

For those cases which do not yield the correct hydrogen atom, the next term in the pseudo-potential must be taken into account to obtaln the correct answer:

$$
W^{(4)}=M_{\perp r r}^{(4)}+M_{\perp r r}^{(2)}(G-g) M_{\perp r r}^{(2)}
$$

For those cases which give the correct result the next term in the pseudo-potentıal must therefore be small: $W^{(4)} \approx 0$ (at least up to α^{4} ın B). This $1 n$ fact $1 s$ the advantage of the BSLT equation: using a first order dıagram as potential with a special pseudo-propagator (and weıghts) causes higher order corrections to be small. However, one does not know in advance which is the most optimal cholce and must therefore explicitly calculate $\mathrm{W}^{(4)}$.

In the next sections we will give a method to construct explıcitly the correct first order potential and propagator in such a way that always the one photon (partıcle) excnange duagram and the planar box and crossed box diagrams are represented correctly (up to a cortain accuracy) by using this potential and (pseudo) propagator in a BSLTlıke equation.

Three dimensional equations in " $\varphi^{3 "}$ theory

1. Cholce of the pseudopropagator

In this section we will present a method to construct a three dimensional equation which will give (up to a certaln order) the same on-shell scattering matrıx elements as the BS-equation.

We will use a φ^{3}-like theory merely because it is the most simple theory to outline the basic ideas behind our method. Applications to spin-1/2 - spin-1/2 and spin-0 - spın-0 scattoring will be presented in the next sections in a more concise form.

In this " φ " theory, applied to the scattering of scalar nucleons with mass M-exchanging scalar bosons with mass μ, the following set of Feynman rules is used:
a. Vertex function: $1 g^{(4)}\left(p-p^{\prime}+k\right)$:
(g ls the coupling constant)

b. Nucleon propagator: $\frac{1}{1\left(p^{2}+M^{2}-1 \varepsilon\right)}$:

c. Boson propagator: $\frac{1}{1\left(k^{2}+\mu^{2}-I E\right)}$:

d. $\int \frac{d^{4} k}{(2 \pi)^{4}}$ for a loop integration.
e. An overall factor +1.

The Bethe-Salpeter equation in the center-of-mass system reads*:

[^28]with:
\[

$$
\begin{equation*}
G(p ; \sqrt{ })=\frac{+1}{\left(p^{2}+M^{2}-1 E\right)\left((p-p)^{2}+M^{2}-1 E\right)} \tag{2}
\end{equation*}
$$

\]

with $P-(V / s, 0)$ the total momentum.
Furthermore we do not consider renormalization corrections so that $M^{1 r r}$ is represented by:

The external legs are on-shell e.g.:

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{a}}=\left(\frac{\sqrt{ }}{2}, \overrightarrow{\mathrm{p}}\right) & , \quad \mathrm{p}_{\mathrm{b}}=\left(\frac{\sqrt{ }}{2},-\overrightarrow{\mathrm{p}}\right) \\
\mathrm{p}_{\mathrm{a}}^{\prime}=\left(\frac{\sqrt{s}}{2}, \overrightarrow{\mathrm{p}}^{\prime}\right) \quad, \quad \mathrm{P}_{\mathrm{b}}^{\prime}=\left(\frac{\sqrt{s}}{2},-\overrightarrow{p^{\prime}}\right) \tag{4}
\end{array}
$$

Just like the BSLT-equations the three dimensional equation to be constructed wall have a pseudopotentıal: $\omega\left(\begin{array}{c}p^{\prime} \\ \prime\end{array} \mathbf{p}^{\prime}, V^{\prime}\right)$, dependent only on the three momenta and the total energy, and a pseudopropagator: $g(\vec{p}, \sqrt{s})$ which, used in the three dimensional equation:

$$
\begin{equation*}
M=W+W g M \tag{5}
\end{equation*}
$$

gives the correct on-shell M matrix element; stated otherwise: in the formal solution of eq. (5):

$$
\begin{equation*}
M=W+W g W+W g W g+\ldots \tag{6}
\end{equation*}
$$

the pseudopropagator g serves to generate diagrams (or part of dıagrams) which do not occur in W, but are contrıbuting to M :

$$
\begin{equation*}
M=M^{1 r Y}+\vartheta^{1 r r} M_{G}^{1 r r}+\ldots \tag{7}
\end{equation*}
$$

In practice it will go just the other way around: first we choose a g and an initial W and compare the iteration of eq. (6) with those of eq. (7). Differences between the solutions will be added to the pseudopotential W and the procedure $1 s$ iterated with this corrected W. In fact this is what happens in the pseudopotential equation (2.26).

Unlıke the BSLT-equations we will not use a general prınciple like the unitarity condition to construct a pseudopropagator, but use the orlginal BS-equation as a gulde to choose g.

Therefore let us look more closely at the diagrams which are contained in the BS-equation.
a. The one-boson-exchange (OBE) diagram:
 contalned in $M^{\text {rr }}$: ıts on-shell value 15 given by:

$$
\begin{equation*}
M^{2 r r(2)}(\vec{p}, \vec{p} ; \sqrt{s})=\frac{-g^{2}}{(\vec{p} \cdot \vec{p})^{2}+\mu^{2}-1 \varepsilon} \tag{8}
\end{equation*}
$$

This term must be included in the pseudopotential; for reasons which Will be clear later we will take:

$$
\begin{equation*}
W^{(2)}(\vec{p},, \vec{p} ; \sqrt{s})=\frac{-g^{2}}{(\vec{p},-\vec{p})^{2}+\mu^{2}-\left(E_{p}-E_{p^{\prime}}\right)^{2}-1 E} \tag{9}
\end{equation*}
$$

Note that on-shell: $E_{p}=E_{P^{\prime}}=\frac{1}{2} \sqrt{ }$.
b. The OBE-diagram is iterated by the BS-equation and gives the first reduceble diagram (the so-called planar box diagram):

given by:

$$
\begin{equation*}
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{-g^{2}}{\varepsilon^{2}-\left(q^{0}-\sqrt{ } s / 2\right)^{2}-1 \delta} \frac{1}{\left(E_{q}^{2}-q^{\left.0^{2}-1 \delta\right)\left(E_{q}^{2}-\left(\sqrt{ } s-q^{0}\right)^{2}-1 \delta\right)}\right.} \frac{-g^{2}}{\varepsilon^{2}-\left(q^{0}-\sqrt{ } s / 2\right)^{2}-1 \delta} \tag{11}
\end{equation*}
$$

with $\varepsilon^{2}=(\vec{p}-\vec{q})^{2}+\mu^{2}, \varepsilon^{\prime 2}=(\vec{p} \cdot-\vec{q})^{2}+\mu^{2}$.
To construct a three dimensional counterpart we will perform the q^{0} integration. The integrand of eq. (11) has poles in the complex q^{0} plane located at:

$$
\begin{aligned}
& q^{0}=\quad+E \vec{q}-1 \delta: \text { positive energy pole particle } a . \\
& -\mathrm{E} \overrightarrow{\mathrm{q}}+1 \delta \text { : negatıve energy pole partıcle a. } \\
& \sqrt{s}-\mathrm{E} \overrightarrow{\mathrm{q}}+1 \delta: \text { positive energy pole particle } \mathrm{b} \text {. } \\
& \sqrt{ } s+E_{q}-1 \delta: \text { negative energy pole particle } b . \\
& \frac{\sqrt{ } s}{2} \pm \varepsilon \mp 1 \delta: \text { boson } I \text { on mass shell. } \\
& \frac{\sqrt{S}}{2} \pm E^{\prime} \mp 2 \delta: \text { boson II on mass shell. }
\end{aligned}
$$

Their positions in the complex plane are displayed in figure III. $1:$

Figure III. I: Singularities of the box diagram; arrows indicate movement of poles for increasing $|\vec{q}|$.

When the intermedıate particles are both on their mass shell, i.e. when

$$
q^{0}=E \underset{q}{E} \quad \text { and } \quad \sqrt{s}-q^{0}=E \vec{q}
$$

the poles a^{+}and b^{+}colncide. It $1 s$ this plnching which is responsible
for the unitarily cut and happens $1 \mathrm{f}: \mathrm{q}^{0}=\mathrm{E}_{\mathrm{q}}=\frac{\sqrt{s}}{2}$. Closing the integration in q^{0} in the lower half plane we will pick up the contributions of four poles: a^{+}, b^{-}and $P_{I, ~ I I ~ w h i c h ~ w e ~ d e n o t e ~ b y ~}^{-}$ writing a " " on the corresponding line in the box diagram:

Figure TII.2: cooszny q^{0} integration in lower hal, plane.

Note that the direction of the arrow " " indicates whether it is a positive or negative energy pole: when it is parallel with the direction of time (from right to left) it is a positive energy pole, otherwise a negative energy.

Closing the contour in the upper half plane would give of course the same result for the box diagram, however, it would be the sum of four other diagrams:

Figure III. S. closing q^{0} integration in upper half plane.

In our case where particle a and b have the same mass the diagrams of figs. III. 2 and III. 3 are identical one by one. However, for unequal mass scattering this is not the case: only the sum 15 equal. We will
meet a slmalar situalion in the crossed box.
Furthermore note that the diagrams on the right in figs. III.? and III. 3 represent three dirmsional integrals. To calculate the integrand one can use the rules:
(1) put the particle with the " on its mass shell with the zero component of the momentum flowing in the direction of the arrow.
(11) calculate the four momenta of the other particles assumng energymomentum conservation at each vertex.
(111) replace the , m__ lines by $\frac{1}{2 E_{q}}$ and $\left.\right|_{1} ^{1}$ $\frac{1}{2 \epsilon}\left(\right.$ or $\frac{1}{2 \epsilon^{1}}$).
(ıv) use Feynman rules for the other lines and leave the integration in the zero component of the intermediate momentum.

The same procedure can be applied to the next term in $M^{1 r r}$: the crossed box graph. Closing integration in the lower half plane gives the decomposition of fig. III.4, closing in the upper half plane fıg. III. 5:

Fijure IIT.4: crossed box decomposition.

Figure III.5: arossed box decomposition.

Note that in the first decomposition two positive energy nucleon poles are contributing and in the second decomposition two negative energy nucleon poles. Calculating the diagrams explicitly shows that the two positıve energy poles of fig. III. 4 cancel each other almost giving the contribution of the two negative energy poles of fig. III. 5 . It is therefore more convenient to use the decomposition of fig. III. 5 rather then fig. III. 4.

The decomposition of a two loop diagram, the sixth order laddergraph, 15 glven in fig. III.6.

Figure III.o: decomposition of sixth order laddergraph.

The diagrams are ordered such that it invites to the following construction of a three dimensional equation:

- choose as pseudopropagator in symbolic notation:

- and as first order pseudopotentıal:
$w^{(2)}=\frac{x}{x}$, corresponding with eq. (13.9),
where X denotes that these particles must be put on their positive energy mass shells.

Then the equation $M=W^{(2)}+W^{(2)} g M$ will generate the terms of type A in figs III. 2 and III. 6:

Terms of type B are not generated by the iteration, and will be put in the pseudopotential as fourth order contribution:

$$
W^{(2)}+W^{(4)}=
$$

In 6 th order the 1 teration will now generate the terms of type B, but terms of type C are still massing. Moreover, we have neglected the fourth order crossed box contribution. Including the graphs of fig. III. 5 in the pseudopotential the total potential correct up to fourth order reads:

Figure III.7: second and fourth order pseudopotentians. Calculating the pseudopropagator $g=$

\qquad we obtain the threc dimensional equation:

$$
\begin{align*}
M\left(p_{a}^{\prime}, p_{b}^{\prime} ; p_{a}, p_{b}\right)= & W\left(p_{a}^{\prime}, p_{b}^{\prime} ; p_{a}, p_{b}\right)+\int \frac{d^{3} q}{(2 \pi)^{3}} W\left(p_{a}^{\prime}, p_{b}^{\prime} ; p_{a}, p_{b}\right) \\
& \frac{1}{2 E_{q} / s\left(\sqrt{s}-2 E_{q}+1 E\right)} M\left(q_{a}, q_{b} ; p_{a}, p_{b}\right) \tag{12}
\end{align*}
$$

wath

$$
\begin{aligned}
& P_{b}^{\prime}=\left(\sqrt{s}-E \vec{p}^{\prime},-\vec{p} \vec{p}^{\prime}\right), q_{a}=(\underset{q}{ }, \vec{q}), q_{b}=(\sqrt{s}-E \vec{q},-\vec{q}) .
\end{aligned}
$$

Thls propagator g was first proposed by Gross [Gro 69] and corresponds wath the choice:

$$
\begin{equation*}
N_{G r}^{2}=\frac{\sqrt{s}+2 E_{p}}{\partial E_{p} \sqrt{ } S M} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{\mathrm{Gr}}=-\frac{1}{4 \mathrm{M}^{2}} \tag{14}
\end{equation*}
$$

(Compare with eqs (2.35), (2.49), putting $E=D$ and $M=m$.
So far everything is equivalent with the BSLT-equations except for the arguments used for the chonce of the pseudopropagator and the rather complicated notation for the pseudopotential.

In the next step we will use the fact that we are not interested in a three dimensional equation which represents the BS-equation for
all momenta and masses: our maln goal is to construct a three dimensional equation which is equivalent to the BS-equation in the non-relativistic region and includes some terms which are able to account for the lowest. order relativistic effects in the BS-equation. For this purpose we have to define what a non-relativistic limit and a relativistic correction is.

2. The $1 / \mathrm{M}$ expansion

The BS-equation is an integral equation in momentum space and it appears to be convenient to use the following procedure:

- expand the BS-equation in powers of $1 / \mathrm{M}$ (scattering mass) with respect to the point $M=\infty$ for fixed momenta, exchanged masses and coupling constants. In the limıt $M \rightarrow \infty$, keeping all momenta fixed, the velocıties (p / E) of the "external" and "ınternal" scatterıng partıcles will go to Lero. However, in dolng so one meets a difficulty which we try to explain with the help of the non-relativistic Schrōdinger equation:

$$
\begin{equation*}
\left\{p^{2}+2 M_{r} g_{s}^{2} v(r)\right\} \psi=q_{s}^{2} \psi \tag{15}
\end{equation*}
$$

with g_{s}^{2} a dimensionless coupling constant.
It is clear that taking the limit $M \rightarrow \infty$ and keeping g_{s}^{2} fixed will affect the effective "strength" of the potential, which seems to be proportional with M (at fixed momenta!). The same phenomenon 15 observed in the expression of the cross-section in terms of the scattering matrix:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{p}^{\prime}}{\mathrm{p}} \frac{\sqrt{\left.\left(\vec{p}^{\prime}, \overrightarrow{\mathrm{p}}\right)\right|^{2}}}{4 \pi^{2}} \mathrm{~m}_{r}^{2}
$$

Therefore we do not fix the dımensionless coupling constant in the lımat $M \rightarrow \infty$ but fix the related quantity f_{s}^{2} with the dumension of mass:

$$
f_{s}^{2}=M g_{s}^{2}
$$

For " φ^{3} " the coupling constant g^{2} used in the vertex has the dimension MeV^{2}. We 1 ntroduce the related quantity f^{2} with the dimension of a mass:

$$
f^{2}=g^{2} / M^{2}
$$

and then keep f^{2} fixed in takıng the limıt $M \rightarrow \infty$. We wall denote the limut $M \rightarrow \infty$, while keeping the momenta and f^{2} fixed, with LIM.

Expanding the M matrix in powers of f^{2} :

$$
M=\sum_{\mathrm{n}=0}^{\infty} y^{(2 \mathrm{n})} \quad, \quad M^{(2 \mathrm{n})} \sim \mathbf{f}^{2 \mathrm{n}}
$$

one can prove:
$\operatorname{LIM} M^{(2 n)} \sim f^{2 n} \times$ constant $\times M$
and therefore:

LIM $M \sim$ constant $\times M$

Since:

$$
\frac{d \sigma}{d d^{2}}=\frac{1}{64 \pi^{2} \mathrm{~s}}\left|M\left(\mathrm{p}^{\prime}, \mathrm{p}\right)\right|^{2}
$$

also LIM $\frac{d \sigma}{d \Omega} \sim$ constant.
We write

$$
\begin{equation*}
M\left(\mathrm{p}^{\prime}, \mathrm{p}\right) \underset{\substack{\mathrm{f}^{2}, \text { momenta } \\ \text { fixed }}}{=} M_{0}\left(\mathrm{p}^{\prime}, \mathrm{p}\right)+\frac{M_{1}\left(\mathrm{p}^{\prime}, \mathrm{p}\right)}{M}+\frac{M_{2}\left(\mathrm{p}^{\prime}, \mathrm{p}\right)}{\mathrm{M}^{2}}+\ldots \tag{16}
\end{equation*}
$$

M_{0} will be called the non-relativistic limıt, and M_{1}, M_{2}, \ldots the (first) relativistic corrections, with $M_{1} \sim$ constant ${ }_{1} M$. Following the arguments of section 2 the "non-relativistıc" \mathcal{F} operator was defined by:

$$
\begin{equation*}
\hat{\rho}\left(\overrightarrow{p^{\prime}}, \overrightarrow{\mathrm{p}}\right)=\mathrm{N}_{G r}(\overrightarrow{\mathrm{p}},) M\left(\mathrm{p}^{\prime}, \mathrm{p}\right) \mathrm{N}_{G r}(\overrightarrow{\mathrm{p}}) \tag{17}
\end{equation*}
$$

Since LIM $N_{G r} \sim 1 / M$ we have:
LIM ${ }^{\top} \sim$ constant/M

The corresponding expansion for T is:

$$
\begin{equation*}
\because(\vec{p}, \vec{p})=F_{0}\left(\vec{p}^{\prime}, \vec{p}\right)+\frac{T_{1}(\vec{p} ', \vec{p})}{M}+\frac{G_{2}\left(\vec{p}{ }^{\prime}, \vec{p}\right)}{M^{2}}+\ldots \tag{18}
\end{equation*}
$$

with $\vec{j}_{1} \sim$ constant $_{i} / M$.
satisfies by construction:

$$
\begin{equation*}
\mathcal{f}\left(\vec{p}{ }^{\prime}, \vec{p}\right)=v\left(\vec{p},,{ }_{p}^{x}\right)+\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} v\left(\vec{k}^{\prime}, \vec{k}\right) \frac{M}{q_{s}^{2}-k^{2}+1 f} \int(\vec{k}, \vec{p}) \tag{19}
\end{equation*}
$$

or

$$
\bar{Y}=v+V g M y
$$

with

$$
\dot{g}(\vec{p})=\frac{1}{q_{s}^{2}-p^{2}+1 F} \quad \text { and } \quad v\left(\vec{p}^{\prime}, \vec{p}\right)=N_{G r}\left(\vec{p}^{\prime}\right) W(\vec{p}, \cdot \vec{p}) N_{G r}(\vec{p})
$$

In order to obtain $\vec{f}(\vec{p}, \vec{p})$ correctly up to the first three terms of eq. (18), we must calculate the first three terms of the potential $\mathrm{v}(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}})$:

$$
\begin{equation*}
V\left(\vec{p}^{\prime}, \vec{p}\right)=v_{0}\left(\vec{p}^{\prime}, \vec{p}\right)+\frac{v_{1}\left(\vec{p}^{\prime}, \vec{p}\right)}{M}+\frac{v_{2}\left(\overrightarrow{p^{\prime}}, \vec{p}\right)}{M^{2}}+\ldots \tag{20}
\end{equation*}
$$

with $V_{1} \sim$ constant $_{i} / M$.
This potentıal used in eq. (19) will then, after the transformation of eq. (17) which also can be expanded in powers of $1 / M$, give the first three terms of the M matrix in eq. (16). In first instance the calculation of V_{0}, V_{1} and V_{2} seems to be a formıdable task since we must first expand V in the coupling constant (corresponding with fig. III.6):

$$
v=v^{(2)}+v^{(4)}+v^{(6)}+\ldots
$$

and then perform the $\frac{1}{M}$ expansion for each term; rearranging them gives:

$$
\begin{aligned}
& v_{0}=v_{0}^{(2)}+v_{0}^{(4)}+v_{0}^{(6)}+\ldots \\
& v_{1}=v_{1}^{(2)}+v_{1}^{(4)}+v_{1}^{(6)}+\ldots
\end{aligned}
$$

and so ont.

However, calculating these terms gives an interesting pattern. We can show that

$$
\begin{align*}
& v^{(2)}=v_{0}^{(2)}+v_{2}^{(2)} / M^{2}+\ldots \\
& v^{(4)}=0+v_{2}^{(4)} / M^{2}+\ldots \tag{21}\\
& v^{(6)}=0+0+\ldots
\end{align*}
$$

The fact that in $V^{(4)}$ the $1 / M^{2}$ term is leading and in $V^{(6)}$ the $1 / M^{3}$ term, is caused by strong cancellations between the several diagrams and it is unlıkely to be an accident. We conjecture (although we cannot prove It in general) that the same cancellatıons also happen at higher orders. So:

In order to calculate the first three terms of eq. (16) it is sufficient to consider only the second and fourth order (in coupling constant) diagrams for the pseudopotential.
The same statement is not true for an expansion of if in the coupling constant: $\vec{i}(6)$ has terms of order $\overline{G(6)}$ and $\underset{j}{(6)}$ but these are generated completely by the pseudopotentlal up to fourth order by solving the LS-equation (eq. (19)).

In the next section we will calculate the expansion of eq. (21) for the first three terms and obtaln the non-vanıshing terms up to second order in $1 / M$.
3. Calculation of the first three terms in the $1 / \mathrm{M}$ expansion for the potential.

The calculation of the second order (in coupling constant) expansion is trivial.

Usiny eqs (9), (14), (19) and (2.48) we obtaln:

$$
\begin{align*}
v^{(2)}(\vec{p}, \vec{p})=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}} & * \left\lvert\, 1-\frac{q_{s}^{2}}{2 M^{2}}-\frac{1}{4 M^{2}}\left(q^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)\right. \\
& +\frac{(\vec{q} \cdot \vec{k})^{2}}{k^{2}+\mu^{2}} \frac{1}{M^{2}}+\ldots| | \tag{22}
\end{align*}
$$

with \vec{q} and \vec{k} defined as $1 n$ eq. (2.44).

For the fourth order expansion we use the terms of fig. III. 7 and obtaln:

Using:

$$
\begin{aligned}
M V^{(4)}\left(\stackrel{p}{ }^{\prime}, \vec{p}\right) & =M \mathbb{N}\left(\vec{p}^{\prime}\right) W^{(4)}\left(\vec{p}^{\prime}, \vec{p}\right) N(\vec{p}) \\
& \rightarrow M_{M \rightarrow \infty}^{M} \lim _{M \rightarrow \infty} W^{(4)} \sim \frac{1}{M^{6}}
\end{aligned}
$$

We see that it contributes to $V_{6}^{(4)}$.
Similar one shows:

contributing to $v_{4}^{(4)}$.
For the remalning terms of the box diagram the following notation is used:

$$
\begin{aligned}
& k=\left(E \vec{p}-q^{0}, \vec{p}-\vec{q}\right) \\
& k^{\prime}=\left(q^{0}-E \vec{p}, \vec{q}-\vec{p}^{\prime}\right)
\end{aligned}
$$

and the abbreviations.

$$
\varepsilon^{2}=\varepsilon \underset{\vec{k}}{2}=\vec{k}^{2}+\mu 2, \quad \varepsilon^{\prime 2} \equiv \varepsilon \underset{\vec{k}}{2}=\vec{k}, 2+\mu 2
$$

Then we obtain (the integration $\int \frac{d^{3} g}{(2 \pi)^{3}}$ is always $1 \mathrm{mplicıtly}$ understood):

$$
\begin{aligned}
& =\frac{1}{\underset{\underset{q}{q}}{\underset{\sim}{\sim}}-\left(E \underset{p}{ },+\epsilon^{\prime}\right)^{2}} \frac{1}{\underset{\sim}{\underset{\sim}{f}}-\left(\sqrt{\prime}-E \underset{p^{\prime}}{\rightarrow}-E^{\prime}\right)^{2}} \\
& * \frac{f^{2} M}{E^{2}-\left(E \rightarrow,-E \rightarrow+\varepsilon^{\prime}\right)^{2}} * \frac{-f^{2} M}{2 E^{\prime}}
\end{aligned}
$$

Takıng the lımıt $M \rightarrow \infty$ this dagram becomes:

$$
\begin{equation*}
\frac{f^{4}}{\varepsilon \varepsilon^{\prime 3}\left(\varepsilon^{2}-\varepsilon^{\prime 2}\right)} *\left(1+\frac{q_{s}^{2}-\vec{p}^{\prime 2}}{M \varepsilon^{\prime}}+\frac{2 \varepsilon^{\prime}}{\varepsilon^{2}-\varepsilon^{\prime 2}} * \frac{\vec{p}^{\prime 2}-\vec{p}^{2}}{2 M}+\ldots\right) \tag{23}
\end{equation*}
$$

This diagram contributes to $V_{1}^{(4)}$ and $V_{2}^{(4)}$.
Simularly one obtains:

$$
\underset{\substack{1 \\ 1 \\ 1}}{\substack{1 \\ 1}} \underset{M \rightarrow \infty}{\rightarrow} \frac{f^{4}}{8 \varepsilon^{3}\left(\varepsilon^{\prime 2}-\varepsilon^{2}\right)} *\left(1+\frac{q_{S}^{2}-p^{2}}{M F}+\frac{2 \varepsilon}{\varepsilon^{\prime 2}-\varepsilon^{2}}\right.
$$

In the crossed box the momenta are defined according to:

definıng $\vec{q}^{\prime}=\vec{q}-\stackrel{\rightharpoonup}{p}-\vec{p}^{\prime}$ one obtains

$$
\underset{M \rightarrow \infty}{\rightarrow} \frac{-f^{4}}{8 \varepsilon^{3}\left(\varepsilon^{\prime 2}-\varepsilon^{2}\right)} *\left(1+\frac{\varepsilon}{M}-\frac{\vec{q}^{2}+\vec{q}^{\prime}+\vec{p}^{\prime} '^{2}-p^{2}-2 q_{s}^{2}}{2 \epsilon M}\right.
$$

$$
\begin{equation*}
\left.+\frac{2 \varepsilon}{\varepsilon^{2}-\varepsilon^{2}} \frac{\vec{p}^{\prime 2}-\vec{p}^{2}}{2 M}+\ldots\right) \tag{25}
\end{equation*}
$$

and

$$
\underset{M \rightarrow \infty}{\rightarrow} \frac{-f^{4}}{\left.8 \varepsilon^{\prime}\left(\varepsilon^{2}-\varepsilon^{\prime}\right)^{2}\right)} *\left(1+\frac{\varepsilon^{\prime}}{M}-\frac{\vec{q}^{2}+\vec{q}^{\prime}{ }^{2}+\vec{p}^{2}-\vec{p}^{\prime}-2 q_{S}^{2}}{2 \varepsilon^{\prime} M}\right.
$$

$$
\begin{equation*}
\left.+\frac{2 \varepsilon^{\prime}}{\varepsilon^{2}-\varepsilon^{\prime}}{ }^{2} \frac{\overrightarrow{\mathrm{p}}^{2}-\overrightarrow{\mathrm{p}}^{\prime}, 2}{2 M}+\ldots\right) \tag{26}
\end{equation*}
$$

These dagrams glve contributions to $V_{1}^{(4)}$ and $V_{2}^{(4)}$. However, one observes the cancellation of the terms contributing to $v_{1}^{(4)}$ if one adds the expressions (23) to (26). For the calculation of the remalnıng terms, contrıbuting to $v_{2}^{(4)}$, we change varıables:

$$
\begin{array}{lll}
\overrightarrow{\mathrm{p}}=\vec{\pi}+\vec{\Delta} & ; & \overrightarrow{\mathrm{p}} \\
\overrightarrow{\mathrm{q}}=\vec{\pi}-\vec{\Delta} \tag{27}\\
\overrightarrow{\mathrm{q}}-\vec{\delta} & ; & \overrightarrow{\mathrm{q}} \\
\vec{k}=-\vec{\pi}+\vec{\Delta} & ; & \overrightarrow{\mathrm{k}}^{\prime}=\vec{\Delta}-\vec{\delta}
\end{array}
$$

and $\int \frac{d^{3 \stackrel{\rightharpoonup}{q}}}{(2 \pi)^{3}} \rightarrow \int \frac{d^{3 \stackrel{\rightharpoonup}{\delta}}}{(2 \pi)^{3}}$
Considering the terms of the form: $\frac{f^{4}}{\theta_{\varepsilon}^{3}\left(\varepsilon^{\prime 2}-\varepsilon^{2}\right)^{2}} * 2 \varepsilon \frac{\left(\vec{p},{ }^{2}-p^{2}\right)}{2 M}$ and $\frac{f^{4}}{8 \varepsilon^{\prime 3}\left(\varepsilon^{2}-\varepsilon^{2}\right)^{2}} * 2 \varepsilon^{\prime} \frac{\left.\left(\vec{p}^{2}-\vec{p}\right)^{2}\right)}{2 M}$ it is not $d i f f i c u l t$ to prove that they sum up to an expression:
\sim even function $1 n \delta$ $\vec{\Delta} \cdot \vec{\delta}$
which vanishes after the integration $\int \frac{d^{3} \mathrm{c}}{(2 \pi)^{3}}$.
The remalning terms sum up to:

$$
\begin{equation*}
-\frac{f^{4}}{8 \varepsilon^{2} \varepsilon^{\prime}{ }^{2} M}+\frac{f^{4}}{16 M\left(\varepsilon^{2}-\varepsilon \prime^{2}\right)}\left\{\frac{2 \vec{\delta}^{2}+8 \vec{\pi} \cdot \vec{\Delta}-2 \vec{\Delta}^{2}}{\varepsilon^{\prime}}-\frac{2 \vec{\delta}^{2}-8 \vec{T} \cdot \vec{\Delta}-2 \vec{\Delta}^{2}}{\varepsilon^{4}}\right\} \tag{28}
\end{equation*}
$$

Use the ldentities:

$$
\begin{align*}
& \vec{\nabla}_{\delta} \frac{\vec{\delta}+\vec{\Delta}}{E^{2} E^{\prime}}=\frac{1}{E^{2} E^{\prime}}-2 \frac{\delta^{2}-\Delta^{2}}{E_{E} \prime^{4}}+2 \frac{\mu^{2}}{E^{4} \xi^{2}} \\
& \vec{\nabla}_{\delta} \frac{\vec{\delta}-\vec{\Delta}}{\varepsilon_{E}^{2},^{2}}=\frac{1}{E_{E}^{2} \prime^{2}}-2 \frac{\delta^{2}-\Delta^{2}}{E_{E}^{4} \prime^{2}}+2 \frac{\mu^{2}}{E^{2} E^{\prime}} \tag{29}
\end{align*}
$$

and $\int d^{3} \delta \vec{\nabla}_{\delta}\left(\frac{\vec{\delta} \pm \vec{\Delta}}{\varepsilon_{\varepsilon^{\prime}}{ }^{2}}\right)=\int d^{3} \vec{\delta} \frac{\varepsilon^{4}+\varepsilon,^{4}}{\left(\varepsilon^{2}-\varepsilon,^{2}\right)} \frac{\vec{\pi} \cdot \vec{\Delta}}{\varepsilon_{\varepsilon},^{4}}=0$
The contribution of the fourth order dagrams to $v_{2}^{(4)}$ is:

$$
\begin{equation*}
v_{2}^{(4)}=\frac{\overrightarrow{1}}{4 M^{2}} w_{2}^{(4)}=\frac{f^{4} \mu^{2}}{32 M^{3}} \int \frac{d^{3 \vec{\delta}}}{(2 \pi)^{3}}\left(\frac{1}{\varepsilon^{2} \varepsilon,^{4}}+\frac{1}{\varepsilon^{4} c^{2}}\right) \tag{30}
\end{equation*}
$$

Assuming that the contributions to the $1 / M$ and $1 / M^{2}$ term from the higher order dıagrams are zero, the L.S.-potential correct up to second order In the $1 / M$ expansion $15:$

$$
\begin{align*}
v_{0}+v_{1}+v_{2}= & -\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}} \left\lvert\, 1-\frac{q_{s}^{2}}{2 M^{2}}-\frac{1}{4 M^{2}}\left(\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)\right. \\
& +\frac{(\vec{q} \cdot \vec{k})^{2}}{\vec{k}^{2}+\mu^{2}} \frac{1}{M^{2}} \left\lvert\,+\frac{f^{4} \mu^{2}}{32 M^{3}} \int \frac{d^{3} \frac{\vec{q}}{(2 \pi)^{3}}}{\left(\frac{1}{\varepsilon_{\varepsilon},^{4}}+\frac{1}{\varepsilon_{E}^{4} \prime^{2}}\right)}\right. \tag{31}
\end{align*}
$$

However, this potential has the unpleasant feature that it is not linear in the coupling constant f^{2} (also the BS irreducibel kernel contains non-lınear diagrams!). Although in prıncıple one could work with a potential of this form, it leads 1 mredıately to non-addıtive potentials. This means that if mesons of different masses are exchanged, e.g. μ_{1} and μ_{2}, the total potential is not the sum of the potentials derived for the meson with mass μ_{1} and the meson with mass μ_{2} separately, but has additional contributions which contain μ_{1} and μ_{2} :

$$
\begin{equation*}
V\left(\mu_{1} \varepsilon_{2}\right)=V\left(\mu_{1}\right)+V\left(\mu_{2}\right)+W\left(\mu_{1}, \mu_{2}\right) \tag{32}
\end{equation*}
$$

Furthermore we note that eq. (30) can be rewritten as:

$$
\begin{align*}
& \frac{f^{4} \mu^{2}}{32 M^{3}} \int \frac{d \stackrel{3}{q}}{(2 \pi)^{3}}\left\{\frac{1}{\vec{k}^{2}+\mu^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 \varepsilon} \frac{q_{s}^{2}-q^{2}}{M\left(\vec{k}^{2}+\mu^{2}\right)^{2}}\right. \\
&\left.+\frac{q_{s}^{2}-\vec{q}^{2}}{M\left(\vec{k}^{2}+\mu^{2}\right)^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 \varepsilon} \frac{1}{\vec{k}^{2}+\mu^{2}}\right\} \tag{33}
\end{align*}
$$

and that the potential:

$$
\begin{equation*}
\mathrm{U}=-\frac{\mathrm{f}^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}}\left(1+\frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}} \frac{q_{s}^{2}-\overrightarrow{\mathrm{p}}^{2}}{2 M^{2}}+\frac{\mu^{2}}{\mathrm{k}^{2}+\mu^{2}} \frac{q_{s}^{2}-\vec{p}^{2}}{2 M^{2}}\right) \tag{34}
\end{equation*}
$$

in the Lippmann-Schwinger equation (eq. (19)) with external momenta on energy shell wall produce terms:

$$
\begin{align*}
& u^{(2)}=u_{0}^{(2)}=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}} \\
& u^{(4)}=U_{0}^{(4)}+U_{2}^{(4)}+U_{4}^{(4)}=\frac{f^{4}}{16 M^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{\vec{k}^{2}+\mu^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 E} \frac{1}{\vec{k}^{2}+\mu^{2}} \\
& +\frac{f^{4} \mu^{2}}{32 M^{4}} \int \frac{d^{3} \stackrel{\rightharpoonup}{q}}{(2 \pi)^{3}} \left\lvert\, \frac{1}{\vec{k}^{2}+\mu^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 \varepsilon} \frac{q_{s}^{2}-\vec{q}^{2}}{\left(\vec{k},{ }^{2}+\mu^{2}\right)^{2}}\right. \\
& \left.+\frac{q_{s}^{2}-\vec{q}^{2}}{\left(\vec{k}^{2}+\mu^{2}\right)^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 \varepsilon} \frac{1}{\vec{k},{ }^{2}+\mu^{2}}\right\} \\
& \left.+\frac{f^{4} \mu^{4}}{64 M^{6}} \int \frac{d^{3 \rightarrow}}{(2 \pi)^{3}} \left\lvert\, \frac{q_{s}^{2}-\vec{q}^{2}}{\left(\vec{k}^{2}+\mu^{2}\right)^{2}} \frac{M}{q_{s}^{2}-\vec{q}^{2}+1 \varepsilon} \frac{q_{s}^{2}-\vec{q}^{2}}{\left(\vec{k}^{2}+\mu^{2}\right)^{2}}\right.\right\} \tag{35}
\end{align*}
$$

Therefore: with external momenta on the energy shell the non-linear term $V_{2}^{(4)}$ is identical with the term $U_{2}^{(4)}$ of the once iterated non-local potential U which is linear in the coupling constant. Therefore the potential of eq. (31) is (up to $1 / M^{4}$ terms) equivalent with:

$$
\begin{align*}
V=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}} & {\left[1-\frac{q_{s}^{2}}{2 m^{2}}-\frac{1}{4 M^{2}}\left(\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)+\frac{(\vec{q} \cdot \vec{k})^{2}}{\vec{k}^{2}+\mu^{2}} \frac{1}{m^{2}}\right.} \\
& \left.+\frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}} \frac{q_{S}^{2}-\vec{q}^{2}-\frac{k^{2}}{4}}{M^{2}}\right] \tag{36}
\end{align*}
$$

The last term in eq. (36) wall give no contribution in $\mathrm{V}^{(2)}$ on energy shell but generates exactly the term $v_{2}^{(4)}$ of eq. (30) in the iteration: VgV. The potential is now linear in the coupling constant at the cost of an extra momentum dependent term. Moreover one can prove, that these potentıals are addıtıve (at least in the framework of " φ^{3} " theory). Leaving detalls to the interested reader one shows:

$$
\begin{aligned}
& \text { (1) } 1 \mathrm{n} \text { eq. (32): } \\
& \left.\begin{array}{l}
\text { in eq. (32): } \\
W\left(\mu_{1}, \mu_{2}^{2}\right)=\frac{f_{1}^{2} f_{2}^{2}}{32 M^{3}} \int \frac{d^{3} \stackrel{\rightarrow}{q}}{(2 \pi)^{3}}
\end{array} \frac{\mu^{2}}{\left(\vec{k}^{2}+\mu_{1}^{2}\right)^{2}\left(\vec{k}^{2}+\mu_{2}^{2}\right)}+\frac{\mu_{2}^{2}}{\left(\vec{k}^{2}+\mu_{1}^{2}\right)\left(\vec{k},{ }^{2}+\mu_{2}^{2}\right)^{2}} \right\rvert\, \\
& +(1 \leftrightarrow 2)
\end{aligned}
$$

(11) these terms are generated automatically by:

$$
v\left(\mu_{1}\right) g V\left(\mu_{2}\right)+v\left(\mu_{2}\right) g v\left(\mu_{1}\right)
$$

with V the potentalal of eq. (36).
(111) therefore:

$$
v\left(L_{1} \& u_{2}\right)=v\left(\mu_{1}\right)+v\left(\mu_{2}\right)
$$

In this way we arrive at a potential with relativistic corrections which is linear in the coupling constant and also additive, and which reproduces the first three terms of the $1 / M$ expansion in the $B S$ M-matrix although the BS irreducible kernel is not linear and not addıtıve.

For the proof that the contributions of the sixth order diagram to $v_{0}^{(6)}, v_{1}^{(6)}$ and $v_{2}^{(6)}$ are zero we refer to appendix A.

Finally we wish to remark that it is essential to take the crossed box into account. Neglecting the crossed box but calculatang the planar box will lead to a non-vanıshing term $\mathrm{v}_{1}^{(4)}$ which, in geneial, is larger in magnitude then the next contribution: $v_{2}^{(4)}$. Since BSLT-
equations with the most simple pseudopotential: $\mathcal{W}=$ one boson exchange diagram, will not contain a $V_{1}^{(4)}$ contribution (it enters via the $M^{1 r r}(G-g) W$ term) we arrive at the conclusion that it is better to use a BSLT-equation than the BS-equation in the ladder approximation.

4. Comparıson betwecn different pseudopotentials

The correct pseudopotential (up to order $1 / M^{2}$) which must be used in a Lippmann-Schwinger equation is given by (36). It contains the following contributions:

$$
-\frac{\mathrm{F}^{2}}{4 \mathrm{M}} \frac{1}{\vec{k}^{2}+\mu^{2}}\left(1-\frac{\mathrm{q}_{\mathrm{S}}^{2}}{2 \mathrm{M}^{2}}\right)=\text { on shell value }
$$

$$
+\frac{f^{2}}{16 M^{3}} \frac{1}{\vec{k}^{2}+\mu^{2}}\left(\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)
$$

$$
-\frac{f^{2}}{4 M^{3}} \frac{1}{k^{2}+\mu^{2}} \frac{(\vec{q} \cdot \vec{k})^{2}}{\vec{k}^{2}+\mu^{2}}
$$

zero on shell, contributing only for off-shell momenta.

$$
-\frac{f^{2}}{4 M^{3}} \frac{1}{\vec{k}+\mu^{2}} \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{k^{2}}{4}\right)
$$

However, in the context of the $1 / M$ expansion the last three terms are not completely independent. In appendix B it $1 s$ shown that:

$$
\begin{equation*}
\frac{\mu^{2}}{M^{2}\left(\vec{k}^{2}+\mu^{2}\right)^{2}}\left(\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)=\frac{2(\vec{q} \cdot \vec{k}) 2}{M^{2}\left(\vec{k}^{2}+\mu^{2}\right)^{2}}-\frac{\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}}{2 M^{2}\left(\vec{k}^{2}+\mu^{2}\right)}+O\left(\frac{1}{M^{4}}\right) \tag{37}
\end{equation*}
$$

when used in a Lippmann-Schwinger equation with the external legs on
shell. This means that an equivalent form of eq. (36) 1s:

$$
\begin{equation*}
V=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}+\mu^{2}}\left(1-\frac{q_{s}^{2}}{2 M^{2}}+\frac{1}{4 M^{2}}\left(\vec{q}^{2}+\frac{k^{2}}{4}-q_{s}^{2}\right)-\frac{1}{M^{2}} \frac{\left(\vec{q}^{2} \cdot{ }^{2}\right)^{2}}{\vec{k}^{2}+\mu^{2}}\right) \tag{38}
\end{equation*}
$$

It is incorrect to use for one potential eq. (36) and for the other eq. (38) in a superposition of different potentials: in that case additıvety is lost. Explicitly:

$$
V\left(\mu_{1} \& \mu_{2}\right)=V\left(\mu_{1} ; \text { eq. (36) }\right)+V\left(\mu_{2} ; \text { eq. (36) }\right)
$$

and also

$$
V\left(\mu_{1} \& \mu_{2}\right)=v\left(\mu_{1} ; \text { eq. (38) }\right)+V\left(\mu_{2} ; \text { eq. (38) }\right)
$$

but not:

$$
V\left(\mu_{1} \& \mu_{2}\right)=V\left(\mu_{1} \text {;eq. (36)) }+V\left(\mu_{2} ;\right. \text { eq. (38)) (wrong) }\right.
$$

but

$$
\begin{equation*}
V\left(\mu_{1} \& \mu_{2}\right)=V\left(\mu_{1} \text {;eq. }(36)\right)+V\left(\mu_{2} ; \text { eq. }(38)\right)+W\left(\mu_{1}, \mu_{2}\right) \tag{39}
\end{equation*}
$$

$$
\begin{align*}
& \text { The BSLT-ēquations with the pseudopotential } w=M_{\text {irr }}^{(2)} \text { will give } \\
& \mathrm{v}_{\text {BSLT }(2)}=-\frac{\mathrm{f}^{2}}{4 \mathrm{M}} \frac{1}{\vec{k}^{2}+\mu^{2}}\left(1-\frac{\mathrm{q}_{S}^{2}}{2 \mathrm{M}^{2}}+\lambda\left(\overrightarrow{\mathrm{q}}^{2}+\frac{\overrightarrow{\mathrm{k}}^{2}}{4}-\mathrm{q}_{\mathrm{S}}^{2}\right)+\left(\mu_{2}-\mu_{1}\right)^{2}\right. \\
& \left.\times \frac{(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{M\left(\vec{k}^{2}+\mu^{2}\right)}\right) \tag{40}
\end{align*}
$$

with μ_{1} and μ_{2} the weights and:

$$
\begin{aligned}
& \lambda_{\mathrm{P}}=-\frac{1}{2 \mathrm{M}^{2}} \quad\left(\text { for spin } 0 \text { particles also called } \lambda_{\mathrm{BBS}}\right) \\
& \lambda_{\mathrm{T}}=-\frac{3}{4 \mathrm{M}^{2}} \\
& \lambda_{\mathrm{N}}=-\frac{1}{2 \mathrm{M}^{2}}
\end{aligned}
$$

These BSLT-potentials differ already in the first non-local terms with the correct potential eq. (38). In the limit $\mu \rightarrow 0$ the two non-local terms will cancel partially and we obtain, using eq. (37) once more:

$$
\begin{align*}
& v=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}}\left(1-\frac{q_{S}^{2}}{2 M^{2}}\right) \tag{41}\\
& v_{B S L T(2)}=-\frac{f^{2}}{4 M} \frac{1}{\vec{k}^{2}}\left(1-\frac{q_{s}^{2}}{2 M^{2}}+\left(\lambda+\frac{\left(\mu_{2}-\mu_{1}\right)^{2}}{4 M^{2}}\right)\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right)\right) \tag{42}
\end{align*}
$$

For $\mu=0$ the term $V_{2}^{(4)}$ (eq. (30)) vanishes, representing the contributions of the planar box and crossed box not taken into account by
the 1 teration of the one boson exchange dıagram with the Gross propagator. Therefore the dıfference between (41) and (42) is not so much the neglect of the crossed box diagram but rather the non-optimal cholce of the pseudopropagator. For the Gross pseudopropagator:

$$
\mu_{1}=1 \quad ; \quad \mu_{2}=0 \quad ; \quad \lambda_{G r}=-\frac{1}{4 M^{2}} \quad \text { (cf eq. (14)) }
$$

and indeed: eq. (42) gives eq. (41).

The electromagnetic potential: spin-0 - spin-0 scattering

In this chapter we will derive a potential which describes the electromagnetıc ınteraction between two partıcles with spin zero. Again we will not give the complete potentaal but only the lowest three terms in the $1 / M$ expansion, representing the "non-relativistıc" part of the electromagnetic interaction and the first two relativistic corrections. We will consider unequal mass scattering and assign masses m and M to particles a and b, according to the convention used in section 2.

The Feynman rules change with respect to chapter III into:
a. Vertıces:

$$
=-21 \mathrm{e}^{2} \mathrm{~g}_{\mu \nu} * \delta \text { function }
$$

b. factor $\frac{1}{2}$ for graphs like

c. photon propagator:

$$
\left\{x=\frac{g_{\mu v}}{1 k^{2}}\right.
$$

*)

As in section 3 we define the pseudopropagator in symbolic notation:

[^29]one derives:
\[

$$
\begin{equation*}
g\left(q, V_{s}\right)=N_{G r}^{2}(q, \sqrt{ }) * \frac{2 M_{r}}{q_{s}^{2}-q^{+2}+i \epsilon} \tag{1}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
N_{G r}^{2}=\frac{q_{s}^{2}-\vec{q}^{2}}{2 E_{q}\left(\left(v_{s}-E_{q}\right)^{2}-D_{q}^{2}\right)} * \frac{1}{2 M_{r}} \tag{2}
\end{equation*}
$$

and

$$
M_{r}=\frac{m M}{m+M}
$$

In the $\frac{1}{M}\left(\frac{1}{m}\right)$ expansion:

$$
\begin{equation*}
N_{G r}^{2}=\frac{1}{4 M m}\left(1+\frac{q_{s}^{2}}{4 m^{2}}-\frac{q_{s}^{2}}{2 M m}-\frac{\vec{q}^{2}}{4 m^{2}}\right) \tag{3}
\end{equation*}
$$

Note that this choice of g, which puts particle " a " on its mass shell, will in the first instance lead to a non-relativistic potential ($\mathrm{V}=\mathrm{N}_{\mathrm{Gr}} \mathrm{WN}_{\mathrm{Gr}}$) which is not symmetric in mand M .

Also the lowest order pseudopotential is not symmetric:
$W^{(2)}=$

or:
expanded:

$$
\begin{align*}
W^{(2)}= & 4 M m e^{2}\left(1+\left(\frac{1}{4 m^{2}}-\frac{1}{4 M m}\right)\left(\vec{p}^{2}+\vec{p}^{\prime}{ }^{2}\right)+\left(\frac{1}{2 M^{2}}+\frac{1}{2 M m}\right) q_{s}^{2}\right. \\
& \left.+\frac{\left(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}}{ }^{\prime}\right)^{2}}{4 M m}+\frac{\left(\overrightarrow{\mathrm{p}}^{2}-\overrightarrow{\mathrm{p}},{ }^{2}\right)^{2}}{4 \mathrm{~m}^{2}\left(\vec{k}^{2}+\mu^{2}\right)}\right) \frac{1}{\vec{k}^{2}+\mu^{2}} \tag{5}
\end{align*}
$$

One obtains the L.S. potential:

$$
\begin{align*}
v_{0}^{(2)}+v_{1}^{(2)}+v_{2}^{(2)}= & \frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(1+\left(\frac{1}{4 m^{2}}+\frac{1}{2 M m}\right) \vec{q}^{2}+\left(\frac{1}{16 m^{2}}-\frac{1}{8 M m}\right) \vec{k}^{2}\right. \\
& \left.+\left(\frac{1}{4 m^{2}}+\frac{1}{2 M^{2}}\right) q_{s}^{2}+\frac{(\vec{k} \cdot \vec{q})}{m^{2}\left(\vec{k}^{2}+\mu^{2}\right)}\right) \tag{6}
\end{align*}
$$

Thıs potentıal $1 s$ derıved by closıng the intermediate momenta of the ladderdiagrams in the lower half plane (compare figure III.2). Closing the contour in the upper half plane (compare figure III.3) would lead to:
$g=$ and:
$W^{(2)}=$

and the LS-potential of eq. (6) with m and M interchanged. Note that these potentials are the same on energy shell: $q_{s}^{2}=\vec{q}^{2}+\vec{k}^{2} / 4$ and $(\vec{k} \cdot \vec{q})^{2}=0$. However, the off-shell behaviour $1 s$ drfferent and they would ultımately lead to dıfferent scatterıng matrix elements (even up to the first three terms in the $\frac{1}{M}, \frac{1}{m}$ expansion).

It $1 s$ essential that one adds the remalning contributions of the planar box and crossed box diagram, because it will restore the symmetry between the $\frac{1}{m}$ and $\frac{1}{M}$ terms in the expansion.

As in " φ " theory the diagrams:
 do not contribute to $V_{0}^{(4)}, v_{1}^{(4)}$ and $v_{2}^{(4)}$. For the remalning diagrams of the fourth order:

one obtalns in expanded form, using the tricks of chapter 3 (the calculations are straightforward but rather tedious)*:

$$
\begin{align*}
W_{0}^{(4)}+W_{1}^{(4)}+W_{2}^{(4)}= & 0+0+2 e^{4} M \times \\
& \int \frac{d^{3 \vec{\delta}}}{(2 \pi)^{3}}\left[\frac{\mu^{2}}{\varepsilon_{\varepsilon}^{2} \prime^{4}}+\frac{\mu^{2}}{\varepsilon^{4} \varepsilon^{2}}+\frac{2}{\varepsilon^{2} \varepsilon^{\prime 2}}\right] \tag{7}
\end{align*}
$$

*Agaın each diagram contrıbutes in leading order to $W_{1}^{(4)}$, however, in the summation they cancel each other.

The LS-potential $\mathrm{V}^{(4)}$ is obtained by multiplyıng with $\frac{1}{4 \mathrm{Mm}}$; Just as in chapter 3 this contribution is quadratically in the coupling constant and it will be included in $\mathrm{v}^{(2)}$ through an additional term which contributes only off-shell (in the second Born term):

$$
\begin{equation*}
\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(\frac{M+m}{2 M m^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right)+\frac{M+m}{2 M m^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right) \frac{\mu^{2}}{k^{2}+\mu^{2}}\right) \tag{8}
\end{equation*}
$$

Adding the contribution of eq. (6) and (8) gives a potential which is stıll not symnetric in M and m, however, using the 1 dentity of eq.

$$
\frac{\mu^{2}}{m^{2}\left(\vec{k}^{2}+\mathrm{L}^{2}\right)^{2}}\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right)=\frac{2(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{m^{2}\left(\vec{k}^{2}+\mu^{2}\right)^{2}}-\frac{\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}}{2 m^{2}\left(\vec{k}^{2}+\mu^{2}\right)}+0\left(\frac{1}{m^{4}}\right)
$$

one can rewrite the $(\vec{k} \cdot \vec{q})^{2}$ termin eq. (6) (representing the expanded retardation term) and obtain the symmetric result:

$$
\begin{gather*}
v=\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(1+\frac{1}{2}\left(\frac{1}{M^{2}}+\frac{1}{M m}+\frac{1}{m^{2}}\right) q_{s}^{2}-\frac{1}{4 M m} \vec{k}^{2}\right. \\
\left.-\frac{1}{2 M m}\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right) \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}\right) \tag{9}
\end{gather*}
$$

To obtain the complete fourth order potentıal one must include the seagull graphs:

Performing the antegration of the zero component of the loop momentum one obtains the decomposition of plcture (4.1) (we closed the integration such that only negative energy particle poles contrıbute; however, closing in the other half plane would give the same result):

Figure 4.1: three dimensional representation seagull graphs; V indicating diagrams contributing to $W_{2}^{(4)}$.

Only four diagrams contribute to $\mathrm{W}_{2}^{(4)}$:

$$
\begin{align*}
w_{\text {seagull }}^{(4)} & =w_{2}^{(4)}+\cdots \\
& =-2(M+m) e^{4} \int \frac{d^{3}{ }^{3}}{(2 \pi)^{3}} \frac{1}{\varepsilon^{2} \varepsilon^{2}}+\cdots \tag{10}
\end{align*}
$$

Also this term will be represented in $v_{2}^{(2)}$ through an additional nonlocal term:

$$
\begin{equation*}
\frac{e^{2}}{\overrightarrow{\mathrm{k}}^{2}+\mu^{2}} * \frac{\overrightarrow{\mathrm{q}}^{2}+\frac{\overrightarrow{\mathrm{k}}^{2}}{4}-q_{s}^{2}}{4 m_{r}^{2}} \tag{11}
\end{equation*}
$$

The total LS-potential, derived from a second and fourth order expansion in e, containing the first three terms in the $\frac{1}{M}, \frac{1}{m}$ expansion 15 therefore:

$$
\begin{align*}
v_{0}+v_{1}+v_{2} & =\frac{e^{2}}{\vec{k}^{2}+11^{2}}\left(1+\left(\frac{1}{4 M_{r}^{2}}-\frac{1}{2 M m}\right) q_{s}^{2}+\frac{\vec{q}^{2}}{4 M_{r}^{2}}\right. \\
& \left.+\left(\frac{1}{16 M_{r}^{2}}-\frac{1}{4 M m}\right) \vec{k}^{2}-\frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}} \frac{\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}}{2 M m}\right) \tag{12}
\end{align*}
$$

Used in the Lippmann-Schwinger equation with reduced mass $\frac{M m}{M+m}$ at center of mass momentum q_{s}^{2}, this potential will give scattering matrix elements which are related to the $B S$ scattering matrix M by:

$$
\begin{equation*}
\vec{f}^{\dot{f}}\left(\vec{p}^{\prime}, \vec{p}, V_{s}\right)=N_{G r}\left(\vec{p}^{\prime}, V_{s}\right) M\left(p^{\prime}, p ; V_{s}\right) N_{G r}(\vec{p}, \sqrt{s}) \tag{13}
\end{equation*}
$$

We emphasize once more that this is only valid when the external particle-momenta are on-shell (energy shell for the LS-equation, mass shell for the BS-equation). For photon exchange the potential is:

$$
\begin{equation*}
V=\frac{e^{2}}{\vec{k}^{2}}\left(1+\frac{\vec{q}^{2}}{4 M_{r}^{2}}-\left(\frac{1}{4 M m}-\frac{1}{16 M_{r}^{2}}\right) \vec{k}^{2}+\left(\frac{1}{4 M_{r}^{2}}-\frac{1}{2 M m}\right) q_{s}^{2}\right) \tag{14}
\end{equation*}
$$

and in the limit $M \rightarrow \infty$:

$$
\begin{equation*}
v=\frac{e^{2}}{\vec{k}^{2}}\left(1+\alpha \frac{\vec{q}^{2}}{m^{2}}-\beta \frac{\vec{k}^{2}}{m^{2}}+\gamma \frac{q_{s}^{2}}{m^{2}}\right) \tag{15}
\end{equation*}
$$

with:

$$
\alpha=\frac{1}{4} \quad, \quad \beta=-\frac{1}{16} \quad, \quad \gamma=\frac{1}{4}
$$

Following the method in section 2, one can prove that for attraction $\left(e^{2}<0\right)$ this potential will give bound states at energies:

$$
\begin{equation*}
H_{n, \ell}=m\left\{-\frac{\alpha_{f}^{2}}{2 n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}\left(\frac{2 \alpha+2 \gamma-\frac{1}{4}}{n}+(2 \alpha+8 \beta) \delta_{\ell, 0}-\frac{8 \alpha}{2 \ell+1}\right)+\ldots\right\} \tag{16}
\end{equation*}
$$

(Note the $\delta_{\ell, 0}$ term, caused by $\delta^{(3)}(\vec{r})$ functions in the configuration space potentıal.)

Using the values for α, β and γ :

$$
\begin{equation*}
B_{n, \ell}=m\left\{-\frac{1}{2} \frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}\left(\frac{3}{4 n}-\frac{2}{2 \ell+1}\right)+\ldots\right\} \tag{17}
\end{equation*}
$$

The bound states for a partıcle satısfyıng the Klein-Gordon equation in the presence of a static coulomb potential can be solved exactly, glving [Me 61]:

$$
\begin{equation*}
\mathrm{B}_{n, \ell}+\mathrm{m}=\mathrm{m}\left(1+\frac{\alpha_{\mathrm{f}}^{2}}{\left(n-E_{\ell}\right)^{2}}\right)^{-1 / 2} \tag{18}
\end{equation*}
$$

with

$$
E_{\ell}=\ell+\frac{1}{2}-\left\{\left(\ell+\frac{1}{2}\right)^{2}-\alpha_{f}^{2}\right\}^{1 / 2}
$$

Expanded in the fine structure constant $\alpha_{f^{\prime}}$ eq. (18) will give indeed eq. (17).

A BSLT-equation with a pseudopotential approximated by the one photon exchange contribution, would give a potential with the same on shell value, which means:

$$
\begin{array}{rlrl}
\alpha+\gamma & =\frac{1}{2} \\
\text { always: } & -\beta+\frac{\gamma}{4} & =\frac{1}{8} \tag{19}\\
2 \alpha+8 \beta & =0 \\
B_{n, \ell}=m & \left\{-\frac{1}{2} \frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}\left(\frac{3}{4 n}-\frac{8 \alpha}{2 \ell+1}\right)+\ldots\right\}
\end{array}
$$

One obtalns the correct bound state levels if the pseudopropagator is chosen such that: $\alpha=\frac{1}{4}$.

Finally we wish to remark that the potential of eq. (12) is in general not additive; using this potential in combination with a potential of the φ^{3} type by Just adding them, will result into terms corresponding with non existing diagrams like:

This can be avoıded by not making the step from eq. (10) to eq. (11), which will lead to the non-linear potential:

$$
\begin{gather*}
v=\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(1+\frac{1}{2}\left(\frac{1}{M_{r}^{2}}-\frac{1}{M m}\right) q_{s}^{2}-\frac{1}{4 M m} \vec{k}^{2}-\frac{1}{2 M m}\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right) \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}\right) \\
-\frac{M+m}{2 M m} e^{4} \int \frac{d^{3 \vec{q}}}{(2 \tau)^{3}} \frac{1}{(\vec{p}-\vec{q})^{2}+\mu^{2}} \frac{1}{\left(\overrightarrow{p^{\prime}}-\vec{q}\right)^{2}+\mu^{2}} \tag{20}
\end{gather*}
$$

The potential for $\operatorname{spin}-1 / 2-\operatorname{spin}-1 / 2$ scattering

The derivation of the electromagnetic potential between two spın1/2 particles is more complicated than the treatment of the spin-0 case because of the fact that the propagators and vertıces become matrices which involve positive and negative energy states.

The propagator of a spln-1/2 particle, which $1 s$ off its mass shell, can be written in terms of Dirac spinors in the following way:

$$
\begin{equation*}
\frac{m-1 p p}{1\left(p^{2}+m^{2}-1 \varepsilon\right)}=\frac{1}{2 E \vec{p}} \frac{\sum \sum_{j} u(\vec{p}, s) \vec{u}(\vec{p}, s)}{p^{0}-E(\vec{p})+1 E}+\frac{\sum_{s} v(\vec{p}, s) \vec{v}(\vec{p}, s)}{p^{0}+E(\vec{p})-1 E} \tag{1}
\end{equation*}
$$

The factors in the numerator, $2 \bar{u}$ and $\Sigma v \bar{v}$, act as projection operators on the positıve and negatıve energy states (except for a normalızation factor).

For the vertex, describing the coupling of a spın-1/2 particle, with anomalous magnetic moment k, with a vector particle, we take:

$$
\begin{equation*}
1 \Gamma_{\mu}=1 \gamma_{\mu}+\frac{k}{2 m} 1 \sigma_{V \mu} k^{v} \tag{2}
\end{equation*}
$$

wath $k^{V}=\left(p^{\prime}-p\right)^{v}$.
For the photon propagator we will use the Feynman gauge (Coulomb gauge will be treated at the end of this chapter).

The Bethe-Salpeter equation is a matrix equation in spinor space which couples positıve and negative energy states. We are interested in the scattering from positive energy states into positive encrgy states, which 1 s described by sandwlching the M matrix between Dirac spınors:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{fl}}^{++,++}\left(\mathrm{P}_{\mathrm{f}} ; \mathrm{P}_{1} ; P\right)=\overline{\mathrm{u}}\left(\overrightarrow{\mathrm{p}}_{\mathrm{f}}\right) \overline{\mathrm{u}}\left(-\overrightarrow{\mathrm{P}}_{\mathrm{f}}\right) M_{\mathrm{f}_{1}}\left(\mathrm{p}_{\mathrm{f}}, \mathrm{p}_{1} ; \mathrm{P}\right) \mathrm{u}\left(\overrightarrow{\mathrm{P}}_{1}\right) \mathrm{u}\left(-\overrightarrow{\mathrm{P}}_{1}\right) \tag{3}
\end{equation*}
$$

Due to the fact that: $\Gamma_{\mu}^{+-} \neq 0$, the intermediate states wall contain in general a mıxture of positive and negative energy states.

As before we will decompose a Feynman diagram by performing the integration of the zero component of the intermediate momentum. However, now we will also indıcate the positıve (+) and negative (-) energy states; the dıagram of fugure III. 2 now becomes (for the $\mathrm{T}^{++,++}$matrix element):

Figure V.1: aecomposition box diagram in 3 dimensional integrals.

If a spin-1/2 intermediate particle lies on its positive (negative) energy shell, it will not contain negative (positive) components. However, the accompanying partıcle remains in general off shell and contalns therefore posilive - as well as negatıve energy states, except when the three momentum \vec{P} is on-shell:

$$
\sqrt{s}=E(\vec{p})+D(\vec{p}) \quad .
$$

In this way the box diagram of fig. V. 1 will contan 12 subdiagrams. However, in the $\frac{1}{M}\left(\frac{1}{m}\right)$ expansion it will appear that in the first three terms only those diagrams contrıbute whıch contain no negative Dirac spinors.

As pseudopropagator we define in symbolic notation:

$$
g=+
$$

$$
\begin{align*}
& \text { one proves: } \\
& \qquad g(\vec{q}, \sqrt{s})=\frac{1}{4 E_{q} D_{q}} \frac{\sum_{s} u_{1}(\vec{q}) \bar{u}_{1}(\vec{q}) \sum_{s} u_{2}(-\vec{q}) \bar{u}_{2}(-\vec{q})}{\left(\sqrt{s}-E_{q}-D_{q}+1 \varepsilon\right)} \tag{4}
\end{align*}
$$

This pseudopropagator corresponds with the cholce of Thompson
[Th 70] and $1 s$, in contrast with the spin-0 - spin-0 case, symmetric in the "upper" and "lower" particle.

The projection operator in the numerator is included in the matrix elements. The lowest order pseudopotential then reads:

corresponding with:

$$
\begin{equation*}
W^{(2)}\left(p^{\prime}, p ; V s\right)=\frac{\bar{u}_{1}\left(\vec{p}^{\prime}\right) \bar{u}_{2}\left(-\vec{p}{ }^{\prime}\right) \Gamma_{1 \mu} \Gamma_{2}^{\mu} u_{1}(\vec{p}) u_{2}(-\vec{p})}{\left(\vec{p}^{\prime}-\vec{p}\right)^{2}+\mu^{2}-\left(E_{p},-E_{p}\right)^{2}-i c} \tag{5}
\end{equation*}
$$

We recall that this pseudopropagator and pseudopotentlal will generate all the diagrams of the form:

Figure V. 2
in the three dimensional equation:

$$
\begin{gather*}
T^{++,++}\left(p^{\prime}, P ; P\right)=W^{(2)}\left(p^{\prime}, p ; / s\right)+\int \frac{d^{3 \vec{q}}}{(2 \pi)^{3}} W^{(2)}\left(p^{\prime}, q ; \sqrt{\prime}\right) \\
 \tag{6}\\
\times g(\dot{q}, / s) T^{++,++}(q, p ; / s)
\end{gather*}
$$

The pseudopotential (5) is symmetric with respect to particles 1 and 2 except for the retardation term in the denominator.

Expanding the pseudopotential eq. (5) in $\frac{1}{m}, \frac{1}{M}$, one obtains, neglecting $W_{3}^{(2)}, \ldots$ terms:

$$
\begin{align*}
W^{(2)}\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{\prime}\right)= & \frac{4 M m e^{2}}{\vec{k}^{2}+\mu^{2}} *\left\{\left(1+\left(\frac{1}{2 M^{2}}+\frac{1}{2 m^{2}}+\frac{1}{M m}\right) \vec{q}^{2}-\left(\frac{k_{1}}{4 m^{2}}+\frac{k_{2}}{4 M^{2}}\right) \vec{k}^{2}\right.\right. \\
& \left.+\frac{(\overrightarrow{\mathrm{q}} \cdot \vec{k})^{2}}{\left(\vec{k}^{2}+\mu^{2}\right) \mathrm{m}^{2}}\right) \\
& +\left(-\frac{1}{4 m^{2}}+\frac{\left(1+k_{1}\right)}{2 m^{2}}+\frac{\left(1+k_{1}\right)}{2 M m}\right) i \vec{\sigma}_{1} \cdot(\vec{k} \times \vec{q}) \\
& +\left(-\frac{1}{4 M^{2}}+\frac{\left(1+k_{2}\right)}{2 M^{2}}+\frac{\left(1+k_{2}\right)}{2 M m}\right) i \vec{\sigma}_{2} \cdot(\vec{k} \times \vec{q}) \\
& \left.-\frac{1}{4 M m}\left(1+k_{1}\right)\left(1+k_{2}\right)\left(\vec{k}^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}-\left(\vec{k}^{2} \cdot \vec{\sigma}_{1}\right)\left(\vec{k}_{k} \cdot \vec{\sigma}_{2}\right)\right)\right\} \tag{7}
\end{align*}
$$

with: $\quad \vec{k}=\left(\vec{p}^{\prime}-\vec{p}\right)$ and $\vec{q}=\frac{\vec{p}+\vec{p}^{\prime}}{2}$
To obtain the corresponding LS potential one writes:
and

$$
\begin{equation*}
g(\vec{q}, \sqrt{ })=N_{T}^{2}(\vec{q}, \sqrt{ }) * \frac{2 M}{q_{s}^{2}-\vec{q}^{2}+i \varepsilon} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
V=N_{T}\left(\vec{p}^{\prime} ; \sqrt{s}\right) W\left(\vec{p}^{\prime}, \vec{p} ; \sqrt{s}\right) \quad N_{T}(\vec{p} ; \sqrt{s}) \tag{9}
\end{equation*}
$$

Giving:

$$
\begin{align*}
v_{0}^{(2)} & +v_{1}^{(2)}+v_{2}^{(2)}=\frac{e^{2}}{\vec{k}^{2}+\mu^{2}} *\left\{\left(1+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}+\frac{3}{4 M \mathrm{~m}}\right) \vec{q}^{2}\right.\right. \\
& +\left(\frac{1}{4 \mathrm{~m}^{2}}+\frac{1}{4 m^{2}}-\frac{1}{4 M m}\right) q_{s}^{2}-\left(\frac{1}{16 \mathrm{~m}^{2}}+\frac{1}{16 m^{2}}+\frac{1}{16 M m}+\frac{k}{4 m^{2}}+\frac{k_{2}}{4 \mathrm{~m}^{2}}\right) \overrightarrow{\mathrm{k}}^{2} \\
& \left.+\frac{(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{\left(\vec{k}^{2}+\mu^{2}\right) \mathrm{m}^{2}}\right)+(\operatorname{spln} \text { dependent terms of eq. (7))\}} \tag{10}
\end{align*}
$$

The first fourth order correction is the diagram:

Figure V. 3

To estimate its contribution in the $\frac{1}{M}, \frac{1}{m}$ expansion, table V. 1 can be helpful:

matrix element	γ_{0}	$\vec{\gamma}_{1}$	$\frac{\sigma_{v 0} k^{v}}{m}$	$\frac{\vec{\sigma}_{\mathrm{vi}} \mathrm{k}^{\mathrm{v}}}{\mathrm{~m}}$
+ --	m	mom	$\frac{\mathrm{mom}^{2}}{\mathrm{~m}}$	$\operatorname{morn}+\operatorname{mom} \frac{k^{0}}{m}$
+-	morn	m	mom	$k^{0}+\frac{\text { mon }}{}{ }^{2}$

Iable V.1: leading term in $\frac{1}{M}, \frac{1}{m}$ expansion for matrix elements of vertices between different spin-1/2 states with mass m, "mom" indicates terms which are proportional with some momentum.

The "contribution of a propagator" is dependent on the amount of four momentum flowing through 1t. A partıcle line (mass m) of type \longrightarrow or - always contributes $\frac{1}{\mathrm{~m}}$. The diagrams of $\mathrm{f}_{1 \mathrm{~g}}$. V.2, with n photon lines, are proportional with:

$$
\begin{equation*}
e^{2 n} \frac{(M m)^{n}}{(M+m)^{n-1}} \quad, \quad M, m \rightarrow \infty \tag{11}
\end{equation*}
$$

Therefore the coupling constant will be written as (compare with chapter 3):

$$
\begin{equation*}
f^{2}=\frac{M m}{M+m} e^{2} \tag{12}
\end{equation*}
$$

and one proves:
lım
$\xrightarrow[\mathrm{p}^{\prime}]{\stackrel{\mathrm{M}}{\mathrm{m}}, \stackrel{\mathrm{m}}{\mathrm{p}}, \mathrm{f}^{2}}$ fixed

$$
\frac{\mathrm{T}^{++,++(2 \mathrm{n})}}{\mathrm{M}+\mathrm{m}} \rightarrow \mathrm{f}^{2 \mathrm{n}} \text { constant } .
$$

$\frac{T^{(4)} \text { (figure V.3) }}{M+m} \underset{M, m \rightarrow \infty}{\rightarrow} \frac{(M \& m)^{3}}{M^{4} m^{3}}$
and contributes to $M_{4}^{(4)}$ and hagher terms in the $\frac{1}{M}, \frac{1}{m}$ expansion. We will not calculate the remalning fourth order contributions explicitly, but rather give the total result*:

Figure V.A.

$$
\begin{equation*}
\rightarrow \int \frac{d^{3} g}{(2 \pi)^{3}}\left\{2 e^{4} m \mu^{2}\left(\frac{1}{E^{2} E^{4}}+\frac{1}{E^{4} E^{2}}\right)+\frac{2 M e^{4}}{E_{E^{2}}^{2}}\right\} \tag{13}
\end{equation*}
$$

Again several terms are contributing to $W_{1}^{(4)}$, however, in the sum they cancel each other, leaving only the term of eq. (13) which contributes to $W_{2}^{(4)}$.

The LS potential $V_{2}^{(4)}$ is obtained by multiplying with $\frac{1}{4 \mathrm{Mm}}$ $\left(\approx N_{T}\left(\vec{p}^{\prime}, \gamma_{s}\right) N_{T}(\vec{p}, \sqrt{s})\right)$; once more we will include this contribution in

[^30]$$
\left(\Gamma_{\mu} \Gamma^{\mu}\right)^{++,++}=\left(\Gamma_{0} \Gamma^{0}\right)^{++,++} \simeq 4 \mathrm{Mm}
$$
$\mathrm{v}^{(2)}$ by an addıtional $\mathrm{V}_{2}^{(2)}$ term which is zero on shell:
\[

$$
\begin{equation*}
\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(\frac{M+m}{4 M m^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{k^{2}}{4}\right)+\frac{M+m}{2 M^{2} m}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right) \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}\right) \tag{14}
\end{equation*}
$$

\]

This correction contributes to the central part of the potential and is not symmetric in M and m; however, adding the (asymmetric) retardation term of eq. (10) and using the LS-equivalence:

$$
\frac{(\vec{q} \cdot \vec{k})^{2}}{m^{2}\left(\vec{k}^{2}+\mu^{2}\right)^{2}} \equiv \frac{\mu^{2}}{2 m^{2}\left(\vec{k}^{2}+\mu^{2}\right)^{2}}\left(\dot{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right)+\frac{\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}}{4 m^{2}\left(\vec{k}^{2}+\mu^{2}\right)}
$$

one obtains:
retardation + fourth order corrections \rightarrow
(eq. 10) (eq. 14)

$$
\begin{equation*}
\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(\frac{1}{2 M m}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right) \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}+\frac{1}{4 M m}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right)\right) \tag{15}
\end{equation*}
$$

which is symmetric in m and M .
When 6th and higher order Feynman diagrams give no additional contributions, the first three terms in the $\frac{1}{m}, \frac{1}{M}$ expansion of the LS potentıal for spın-1/2 - spın-1/2 scatterıng are:

$$
\begin{align*}
& v_{0}+v_{1}+v_{2}=\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left(1+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}+\frac{1}{2 M m}\right) \vec{q}^{2}+\left(\frac{1}{4 m^{2}}+\frac{1}{4 M^{2}}\right) q_{s}^{2}\right. \\
& \left.-\left(\frac{1}{8 M m}+\frac{k_{1}}{4 m^{2}}+\frac{1}{16 m^{2}}+\frac{k_{2}}{4 M^{2}}+\frac{1}{16 M^{2}}\right) \vec{k}^{2}-\frac{1}{2 M m}\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}\right) \frac{\mu^{2}}{\vec{k}^{2}+\mu^{2}}\right) \\
& +\frac{e^{2}}{\vec{k}^{2}+\mu^{2}}\left\{\left(-\frac{1}{4 m^{2}}+\frac{\left(1+\kappa_{1}\right)}{2 m^{2}}+\frac{\left(1+\kappa_{1}\right)}{2 M m}\right) 1 \vec{\sigma}_{1} \cdot(\vec{k} \times \vec{q})\right. \\
& +\left(-\frac{1}{4 M^{2}}+\frac{\left(1+K_{2}\right)}{2 M^{2}}+\frac{\left(1+K_{2}\right)}{2 M m}\right) \quad \vec{\sigma}_{2} \cdot(\vec{k} \times \vec{q}) \\
& \left.-\frac{1}{4 \mathrm{Mm}}\left(1+\mathrm{K}_{1}\right)\left(1+\mathrm{K}_{2}\right)\left(\overrightarrow{\mathrm{k}}^{2}{ }_{\sigma_{1}} \cdot \vec{\sigma}_{2}-\left(\overrightarrow{\mathrm{k}} \cdot \vec{\sigma}_{1}\right)\left(\vec{k} \cdot \vec{\sigma}_{2}\right)\right)\right\} \tag{16}
\end{align*}
$$

Before discussing some characterıstics of this potential, we note that one can obtain the same potential in the coulomb gauge, when $\frac{\Gamma_{\mu} \Gamma^{\mu}}{\vec{k}^{2}-1 \varepsilon}$ is replaced by: $\frac{\Gamma_{0} \Gamma^{0}}{\vec{k}^{2}-1 E}+\frac{\vec{\Gamma} \cdot \vec{\Gamma}-(\vec{\Gamma} \cdot \hat{k})(\vec{\Gamma} \cdot \hat{k})}{k^{2}-1 E}$

In that case the second order potential of eq. (10) would give the same result, except for the retardation term (instantaneous coulomb) and the addıtıonal $\frac{(\vec{\Gamma} \cdot \vec{k})(\vec{\Gamma} \cdot \hat{k})}{k^{2}}$ term (longıtudinal photon):

$$
\begin{align*}
& \left(V_{0}^{(2)}+V_{1}^{(2)}+V_{2}^{(2)}\right)_{\text {Coulomb gauge }, \mu=0}= \\
& \frac{e^{2}}{\vec{k}^{2}} *\left\{1+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}+\frac{3}{4 M m}\right) \vec{q}^{2}+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}-\frac{1}{4 M m}\right) q_{s}^{2}\right. \\
& \left.-\left(\frac{1}{16 m^{2}}+\frac{1}{16 M^{2}}+\frac{1}{16 M m}+\frac{k_{1}}{4 m^{2}}+\frac{k 2}{4 M^{2}}\right) \vec{k}^{2}-\frac{(\vec{q} \cdot \vec{k})^{2}}{M m k^{2}}\right) \\
& + \text { (spln dependent terms of eq. (7)) } \tag{17}
\end{align*}
$$

As for the corrections of fig. V.4, eq. (17) is the total potential since there are no photon poles for the $\Gamma_{0} \Gamma^{0}$ part of this vertex and the other terms do not contribute to $W_{1}^{(4)}$ and $W_{2}^{(4)}$ (see note on page 186). Substıtuting into eq. (17):

$$
\frac{(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{M \mathrm{~m} \vec{k}^{4}} \equiv \frac{\vec{q}^{2}+\frac{\overrightarrow{\mathrm{k}}^{2}}{4}-q_{s}^{2}}{4 M \vec{k}^{2}}
$$

wlll give again eq. (16) ($\mu=0$).

In the spin dependent terms of eq. (16) one recognizes the different interaction mechanisms from a charged moving particle with mass m and magnetic moment $\frac{1+\kappa_{1}}{2 m}$ with the fields produced by a moving charged particle with mass M and magnetic moment $\frac{1+K_{2}}{2 M}$:

$$
-\frac{e^{2}}{4 M m} \frac{\left(1+k_{1}\right)\left(1+\kappa_{2}\right)}{\vec{k}^{2}}\left(\vec{k}^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}-\left(\vec{k} \cdot \vec{\sigma}_{1}\right)\left(\vec{k}^{\prime} \cdot \vec{\sigma}_{2}\right)\right)
$$

\Leftrightarrow the interaction energy of the magnetic moment of particle 1 with the B field produced by the magnetic moment of particle 2.

$$
\frac{e^{2}}{\vec{k}^{2}} \frac{\left(1+\kappa_{1}\right)}{2 m^{2}} 1 \vec{\sigma}_{1} \cdot(\vec{k} \times \vec{q})
$$

\rightarrow the interaction energy of the moving magnetic moment of particle 1
with the electric field produced by particle 2.

$$
\frac{e^{2}}{\vec{k}^{2}} \frac{\left(1+k_{1}\right)}{2 M m}{ }_{10}^{\vec{\sigma}} \cdot(\vec{k} \times \vec{q})
$$

\Rightarrow the interaction energy of the magnetic moment of particle 1 with the magnetıc field produced by the moving charge of particle 2.

$$
\frac{e^{2}}{\vec{k}^{2}} \frac{\left(1+k_{2}\right)}{2 M m} 1 \vec{\sigma}_{2} \cdot(\vec{k} \times \vec{q})
$$

∞ the interaction energy of the charge of particle 1 with the magnetic field produced by the magnetic moment of particle 2.

$$
\frac{e^{2}}{\vec{k}^{2}} \frac{\left(1+k_{2}\right)}{2 m^{2}} 1 \vec{a}_{2} \cdot(\vec{k} \times \vec{q})
$$

\rightarrow the interaction energy of the charge of particle 1 in the electric field produced by the moving magnetic moment of particle 2.

$$
-\frac{1}{4 m^{2}} \frac{e^{2}}{\vec{k}^{2}} \perp \vec{\sigma}_{1} \cdot(\vec{k} \times \vec{q}) \quad,-\frac{1}{4 m^{2}} \frac{e^{2}}{\vec{k}^{2}} \perp \vec{\sigma}_{2} \cdot(\vec{k} \times \vec{q})
$$

- Thomas terms which describe the precession of the spins of particles 1 and 2.

The central part of the potential contains several contributions. It is convenient to rewrite it into the form:

$$
\begin{align*}
& \frac{e^{2}}{k^{2}}\left(1+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}+\frac{1}{2 M m}\right)\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}\right)+\left(\frac{1}{4 m^{2}}+\frac{1}{4 M^{2}}\right) q_{s}^{2}\right. \\
& \left.-\left(\frac{1}{4 M m}+\frac{\left(1+k_{1}\right)}{4 m^{2}}-\frac{1}{8 m^{2}}+\frac{\left(1+k_{2}\right)}{4 M^{2}}-\frac{1}{8 M^{2}}\right) \vec{k}^{2}\right) \tag{18}
\end{align*}
$$

After transformation to configuration space the $\left(\vec{q}^{2}+\frac{\overrightarrow{\mathbf{k}}^{2}}{4}\right.$) term will contain no $\delta^{(3)}(\vec{r})$ function and therefore:

$$
\begin{align*}
v_{c}(\vec{r}) & =(r \text {-dependent and momentum dependent terms }) \\
& -e^{2}\left(\frac{1}{4 M m}+\frac{\left(1+\kappa_{1}\right)}{4 m^{2}}-\frac{1}{8 m^{2}}+\frac{\left(1+\kappa_{2}\right)}{4 M^{2}}-\frac{1}{8 M^{2}}\right) \delta^{(3)}(\vec{r}) \tag{19}
\end{align*}
$$

The terms:

$$
\left(\frac{\left(1+k_{1}\right)}{4 m^{2}}-\frac{1}{8 m^{2}}\right) \delta^{(3)}(\vec{r}) \text { and }\left(\frac{\left(1+k_{2}\right)}{4 M^{2}}-\frac{1}{8 M^{2}}\right) \delta^{(3)}(\vec{r})
$$

are the Darwin terms for the two spin-1/2 particles caused by the Zıtterbewegung.

The remalnder:

$$
\begin{equation*}
\frac{e^{2}}{\vec{k}^{2}}\left(1+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}+\frac{1}{2 M m}\right)\left(\vec{q}^{2}+\frac{\vec{k}^{2}}{4}\right)+\left(\frac{1}{4 M^{2}}+\frac{1}{4 m^{2}}\right) q_{s}^{2}-\frac{1}{4 M m} \vec{k}^{2}\right) \tag{20}
\end{equation*}
$$

is exactly equal to the central potential found in the spin-0 - spin-0 case: eq. (4.14). (The Darwin term for spin-0 - spın-0 is of order ($\frac{1}{m^{4}}, \frac{1}{M^{4}}$) and therefore does not appear in this order; [BD 65] page 203.) The central potential contains the static Coulomb-potential - interaction between the charge of particle 1 and the electric field produced by particle 2 - and also terms which represent the interaction between the moving charge and the magnetıc field. Also relatlvıstic corrections are present (for instance the well-known replacement $\sqrt{p^{2}+m^{2}} \rightarrow m+\frac{p^{2}}{2 m}-\frac{p^{3}}{8 m^{3}}+\ldots$. In the $11 m \mathrm{~m}(\mathrm{M} \rightarrow \infty$, for electron-proton scattering with $k_{1}=0$, eq. (16) can be rewritten into the form of eq. (2.51) with:

$$
\begin{equation*}
\alpha=\frac{1}{4} \quad, \quad B=\frac{1}{16} \quad, \quad \gamma=\frac{1}{4} \quad, \quad \delta=0 \tag{21}
\end{equation*}
$$

which, using eq. (2.54), will glve the correct hydrogen atom with an infinitely heavy proton: eq. (2.41). However, we can do more. Neglecting terms proportional with $\frac{1}{\mathrm{M}^{2}}$ and proportional with the magnetic moment of the proton one obtains for a Dirac electron $\left(\kappa_{1}=0\right)$:

$$
\begin{align*}
V & =\frac{e^{2}}{\vec{k}^{2}}\left(1+\left(\frac{1}{4 m^{2}}+\frac{1}{2 M m}\right) \vec{q}^{2}+\frac{1}{4 m^{2}} q_{s}^{2}-\left(\frac{1}{8 M m}+\frac{1}{16 m^{2}}\right) \vec{k}^{2}\right) \\
& +\frac{e^{2}}{\vec{k}^{2}}\left(\frac{1}{2 M m}+\frac{1}{4 m^{2}}\right) 1 \sigma_{e l} \cdot\left(\vec{k} \times \vec{q}^{*}\right) \tag{22}
\end{align*}
$$

This interaction must reproduce the first order reduced mass corrections to the f_{1} ne structure levels. A partıcle with reduced mass $m_{r}\left(=\frac{m M}{m+M}\right)$ in the central potential:

$$
v=-\frac{e^{2}}{\vec{k}^{2}}\left(1+\alpha \vec{q}^{2}-\beta \vec{k}^{2}+\gamma q_{s}^{2}\right)
$$

wlll give bound states:

$$
\begin{align*}
& \text { give bound states : } \\
& B_{n, \ell}=m_{\text {red }}\left\{-\frac{1}{2} \frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}{\left(m_{\text {red }}^{2}\right.}_{(2 \alpha+2 \gamma)-\frac{1}{4} \frac{M^{2}+m^{2}-M m}{M^{2} m^{2}}}^{n}\right. \tag{23}\\
&+m_{\text {red }}^{2}(2 \alpha+8 \beta) \delta_{\ell, 0}^{\left.\left.-m_{\text {red }}^{2} \frac{8 \alpha}{2 \ell+1}\right)+\ldots\right\}}
\end{align*}
$$

The spin-orbit term will give an additional correction for $\ell \neq 0$:

$$
\begin{align*}
& m_{r e d}^{3} \frac{\alpha_{n^{4}}^{4}}{n^{3}}\left(\frac{1}{2 m^{2}}+\frac{1}{M m}\right)\left(\frac{1}{\ell+\frac{1}{2}}-\frac{1}{J+\frac{1}{2}}\right) \\
= & m_{r e d}^{3} \frac{\alpha_{n^{3}}^{4}}{\frac{f}{2 m^{2}}}\left(\frac{1}{M m}\right)\left(\frac{1}{\ell+\frac{1}{2}}-\frac{1}{J+\frac{1}{2}}-\delta_{\ell, 0}\right) \tag{24}
\end{align*}
$$

Adding eqs (23), (24) and expanding, keeping only terms up to α and $\frac{m}{M}$, gives:

$$
\begin{align*}
B_{n, J} & =m_{r e d}\left\{-\frac{1}{2} \frac{\alpha_{f}^{2}}{n^{2}}+\frac{\alpha_{f}^{4}}{2 n^{3}}\left(\frac{\frac{3}{4}-\frac{1}{4} \frac{m}{M}}{\Omega}-\frac{1}{J+\frac{1}{2}}\right)\right. \\
& \left.+O\left(\alpha^{5}\right)+O\left(\alpha^{4} \frac{m^{2}}{M^{2}}\right)+\ldots\right\} \tag{25}
\end{align*}
$$

This formula is in agreement with results obtalned by others (see e.g. [Gr 69], eq. (4.4)).

Including the terms proportional with the magnetic moment of the proton $1 n$ eq. (16) will give rise to the hyperfine splitting. For a complete calculation on this polnt we refer to [Gr 69].

Finally we wish to mention that the vector meson exchange potential of eq. (16) $1 s$ additıve. The proof $1 s$ rather stralghtforward: the lowest order pseudopotentıal $\mathrm{W}^{(2)}$ (eq. (5)) $1 s$ addıtıve almost by

$$
W^{(2)}\left(\mu_{1} \& \mu_{2}\right)=
$$

$$
=W^{(2)}\left(\mu_{1}\right)+W^{(2)}\left(\mu_{2}\right)
$$

The fourth order potential, calculated from fig. V.4, appears to be:

$$
\begin{equation*}
=w^{(4)}\left(\mu_{1}\right)+W^{(4)}\left(\mu_{2}\right)+(m n x e d \text { terms }) \tag{26}
\end{equation*}
$$

However, it is not difficult to show that this non-addıtive contribution is gencrated completely by wo second order potentials which are zero on shell (and additive:):

$$
\begin{aligned}
& \frac{4 M m e^{2}}{\vec{k}^{2}+\mu_{1}^{2}}\left(\frac{M+m}{4 M m^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right)+\frac{M+m}{2 M^{2} m}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right) \frac{\mu_{1}^{2}}{\vec{k}^{2}+\mu_{1}^{2}}\right) \\
+ & \frac{4 M m e^{2}}{\vec{k}^{2}+\mu_{2}^{2}}\left(\frac{M+m}{4 M m^{2}}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right)+\frac{M+m}{2 M^{2} m}\left(q_{s}^{2}-\vec{q}^{2}-\frac{\vec{k}^{2}}{4}\right) \frac{\mu_{2}^{2}}{\vec{k}^{2}+\mu_{2}^{2}}\right)
\end{aligned}
$$

In this way the $L S$ potential $v_{0}+V_{1}+V_{2}$ becomes additive.
The electric potential as derıved in the Coulomb gauge, eq. (17), 15 not addıtıve to the vector-meson exchange potentıals of eq. (16); one can verify this by explicit calculation.

Potentials for scalar meson exchange can be derıved in the same

$$
\begin{aligned}
& W^{(4)}\left(\mu_{1} \& \mu_{2}\right)=\int \frac{\mathrm{d}^{3} \underset{\mathrm{q}}{2}}{(2 \pi)^{3}} 2 \mathrm{Me}^{4}\left(\frac{1}{\varepsilon_{1}^{2} \varepsilon_{1}^{2}}+\frac{1}{\varepsilon_{2}^{2} \varepsilon_{2}^{\prime 2}}+\frac{1}{\varepsilon_{1}^{2} \varepsilon_{2}^{\prime 2}}+\frac{1}{\varepsilon_{2}^{2} \varepsilon_{1}^{2}}\right) \\
& +2 m e^{4}\left(\frac{\mu_{1}^{2}}{\varepsilon_{1}^{2} \varepsilon_{1}^{\prime}}+\frac{\mu_{1}^{2}}{\varepsilon_{1}^{4} \varepsilon_{1}^{\prime}}+\frac{\mu_{2}^{2}}{\varepsilon_{2}^{2} \varepsilon_{2}^{4}}+\frac{\mu_{2}^{2}}{\varepsilon_{2}^{4} \varepsilon_{2}^{\prime 2}}+\frac{\mu_{1}^{2}}{\varepsilon_{1}^{4} \varepsilon_{2}^{\prime 2}}+\frac{\mu_{1}^{2}}{\varepsilon_{2}^{2} \varepsilon_{1}^{4}}\right. \\
& \left.+\frac{\mu_{2}^{2}}{\varepsilon_{2}^{4} \varepsilon_{1}^{\prime 2}}+\frac{\mu_{2}^{2}}{\varepsilon_{1}^{2} \varepsilon_{2}^{\prime}}\right) ; \text { with } \varepsilon_{1}^{2}=k^{2}+\mu_{1}^{2} ; \varepsilon_{1}^{\prime 2}=k^{\prime 2}+\mu_{1}^{2} \\
& \varepsilon_{2}^{2}=k^{2}+\mu_{2}^{2} ; \quad \varepsilon_{2}^{\prime 2}=k^{\prime 2}+\mu_{2}^{2}
\end{aligned}
$$

way. They appear to be additive to each other and to the vector-meson exchange potentials if one follows the procedure:
(i) calculate $\mathrm{V}^{(2)}$ by putting one of the two particles on mass shell;
(ii) calculate $V_{1}^{(4)}+\mathrm{V}_{2}^{(4)}$ from the remaining meson pole diagrams and include this contribution in $V_{2}^{(2)}$ as a term which is zero on energy shell and linear in the coupling constant squared;
(iii) finally the contribution from the retardation in the meson propagator can be replaced by two other terms (appendix B). It is not necessary to do this; however, applying this trick to one sub-potential and not to the othors will destroy additivity. Note that it will restore the symmetry in the potential which was broken due to step (i) and (ii).

1. Corrections for the Coulomb amplitude

In the preceding chapter we derived the electric potential between two spln-1/2 particles and applıed it to the hydrogen atom. Another Eield for which an accurate description of the electric interaction is necessary 15 low energy proton-proton scattering. Due to 1 ts long range
 Thıs "Coulomb peak" will grow in amplıtude and width with respect to the "nuclear" part of the scatterıng, if the energy decreases.

In this section we will consider the modifications in the usual pp-scattering theory due to the first "relativistic" corrections in the electric potential. We will restrict the discussion to the terms which are independent of the magnetic moment because we belleve that these terms are more 1 mportant for lower energies than the corrections due to the electric spin-orbit and tensor force. Moreover these corrections can be calculated almost in closed form.

The potential for the two proton system wll be written as (neglectıng vacuum polarızatıon):

$$
\begin{equation*}
V=V_{\text {electric }}+V_{\text {nuclear }} \tag{1}
\end{equation*}
$$

This decomposition suggests that the electric and nuclear potential are additive. However, this is only of importance if one considers V nuclear as the potential between protons without charge or when one tries to calculate $V_{\text {nuclear }}$ in a non-phenomenological (physical) way (e.g. the OBE prescription). As it stands one could also consider $V_{\text {nuclear }}$ as the difference between the total potential V and the electric potential
$V_{\text {electric }}$ the only property for $V_{\text {nuclear }}$ we need in the following is its finite range (exponential decreasing for $\mathbf{x} \rightarrow \infty$).

Neglectıng spin dependent and magnetic moment dependent terms we obtaln from eq. (5.16):

$$
\begin{equation*}
v_{\text {electric }}=\frac{e^{2}}{\vec{k}^{2}}\left(1+\frac{\dot{q}^{2}}{M^{2}}+\frac{q_{s}^{2}}{2 M^{2}}+\frac{\vec{k}^{2}}{4 M^{2}}\right) \tag{2}
\end{equation*}
$$

which becomes in configuration space:

$$
\begin{equation*}
\mathrm{V}_{\text {elcctric }}=\frac{\alpha\left(1+\frac{q_{s}^{2}}{2 M^{2}}\right)}{r}-\frac{1}{2 M^{2}}\left(\vec{\nabla}^{2} \frac{\alpha}{r}+\frac{\alpha}{r} \vec{\nabla}^{2}\right) \tag{3}
\end{equation*}
$$

The scattering amplitude can be written as:

$$
\begin{equation*}
f(\theta)=f_{\text {electric }}(\theta)+f_{\text {nuclear }}(\theta) \tag{4}
\end{equation*}
$$

with $f_{\text {electric }}(\theta)$ the amplitude caused by $V_{\text {electric }}$ alone, and $f_{\text {nuclear }}{ }^{(0)}$ by definition the difference between $f(\theta)$ and $f_{\text {electric }}{ }^{(\theta)}$ (not the amplitude caused by $v_{\text {nuclear }}$ alone). Due to the finate range of $V_{\text {nuclear }}$ one can write $f_{\text {nuclear }}(\theta)$ in a partial wave decomposition:

$$
\begin{equation*}
f_{\text {nuclear }}(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell} P_{\ell}(\cos \theta) \tag{5}
\end{equation*}
$$

and one expects that for lower energies only a few of the coefficients f_{ℓ} will contribute (for $\mathrm{E}_{\mathrm{lab}}<5 \mathrm{McV}$ only f_{0} is appreciable).

For the electric amplitude such a partial wave decomposition does not exist; the scattering amplitude for an $\frac{\alpha}{r}$ potential is [Ta 72]:

$$
\begin{equation*}
f_{\frac{\alpha}{r}}(\eta, \theta)=-\frac{\eta}{2 k \sin ^{2} \frac{1}{2} \theta} \exp \left[2 i \sigma_{0}-i n \log \left(\sin ^{2} \frac{1}{2} \theta\right)\right] \tag{6}
\end{equation*}
$$

with $n=\frac{M \alpha}{2 k}$ and $\sigma_{0}=\arg \Gamma(1+i n)$.
It can be shown that this amplitude does not allow for an expansion in Legendre polynomials in $\cos \theta$ (uniformly nor pointwise convergent)
[Ta 74]. However, it can be shown that in the sense of distributions*.

$$
\begin{equation*}
\mathrm{f}_{\frac{\alpha}{\mathbf{r}}}(\eta, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \frac{e^{21 \sigma} \ell-1}{21 k} \mathrm{P}_{\ell}(\cos \theta) \tag{7}
\end{equation*}
$$

wıth $\sigma_{\ell}=\arg \Gamma(\ell+1+1 \Pi)$.
The "Coulomb phase shifts" $\sigma_{\hat{x}}$ are connected with the asymptotic form of the regular solution of the radial Schrodinger equation with potential $\frac{\alpha}{r}$ through:

$$
\begin{equation*}
F_{\ell}(\eta, k r) \underset{r \rightarrow \infty}{\longrightarrow} \sin \left(k r-\frac{1}{2} \ell \pi+\sigma_{\ell}-\eta \ln 2 k r\right)+O\left(r^{-1}\right) \tag{8}
\end{equation*}
$$

The Schrodinger equation with a potential of the form (3) can be solved easıly by a method invented by Green [Gr 63]. Defining u_{ℓ} as the orıginal radial wave function and $\phi_{1} v_{\ell}$ by:

$$
\begin{align*}
\phi & =\frac{\alpha}{2 M r} \\
v_{\ell} & =(1+2 \phi)^{1 / 2} u_{\ell} \tag{9}
\end{align*}
$$

One proves.

$$
\begin{equation*}
v_{\ell}^{\prime \prime}+\left(q_{s}^{2}-M N-\ell(\ell+1) / r^{2}\right) v_{\ell}=0 \tag{10}
\end{equation*}
$$

with W the "pseudopotential" reading:

$$
\begin{equation*}
W=\frac{a\left(1+\frac{q_{s}^{2}}{M^{2}}\right)}{r(1+2 \phi)}-\frac{1}{M}\left(\frac{\phi^{\prime}}{1+2 \phi}\right)^{2}+\frac{2 \phi}{1+2 \phi} \frac{q_{s}^{2}}{M} \tag{11}
\end{equation*}
$$

Noting that the electric potential as defined 1 n eq. (3) 1 s derived with help of the $\frac{1}{M}$ expansion up to second order, one observes that only

[^31]terms linear in ϕ (produced by the $\frac{\mathrm{q}^{2} \text { " }}{M^{2}}$ part of eq. (2)) have significance and one could write:
$$
W=\frac{a\left(1+\frac{3}{2} \frac{q_{S}^{2}}{M^{2}}\right)}{r+\frac{\alpha}{M}}+o\left(\phi^{2}\right)
$$
leaving terms of order φ^{2} which correspond with terms of order $\frac{1}{M^{4}}$ in the $\frac{1}{\mathrm{M}}$ expansion. Expanding the denominator one arrives at:
\[

$$
\begin{equation*}
W=\frac{\alpha\left(1+\frac{3}{2} \frac{q_{s}^{2}}{M^{2}}\right)}{r}-\frac{\alpha^{2}}{M} \frac{1+\frac{3}{2} \frac{q_{s}^{2}}{M^{2}}}{r^{2}}+O\left(\varphi^{2}\right) \tag{13}
\end{equation*}
$$

\]

and the radıal Schrödınger equation $\left(k^{2}=q_{s}^{2}\right)$:

$$
\begin{equation*}
v_{\ell}^{\prime \prime}+\left[k^{2}-\frac{\ell(\ell+1)}{r^{2}}+\frac{\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{r^{2}}-\frac{M \alpha\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{r}\right] v_{\ell}=0 \tag{14}
\end{equation*}
$$

Defining:

$$
\begin{align*}
& n \text { ning: } \\
& \begin{aligned}
\mathrm{M} \alpha\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right) \\
2 k
\end{aligned}, \begin{aligned}
\mu & =\sqrt{\left(\ell+\frac{1}{2}\right)^{2}-\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)} \\
& \equiv \ell^{\prime}+\frac{1}{2} \\
k & =-1 \eta
\end{aligned} z=-21 \rho=-21 k r
\end{align*}
$$

eq. (14) can be written as:

$$
\begin{equation*}
\frac{\partial^{2} v_{\ell}}{\partial z^{2}}+\left[-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right] v_{\ell}=0 \tag{16}
\end{equation*}
$$

which is Whittaker's equation with regular solution [Ab 70]:

$$
\begin{equation*}
M_{K, \mu}(z)=e^{-\frac{1}{2} z} z^{\frac{1}{2}+\mu} M\left(\frac{1}{2}+\mu-\kappa, 1+2 \mu, z\right) \tag{17}
\end{equation*}
$$

In the limıt $r \rightarrow \infty, z \rightarrow-1 \infty$ this solution behaves like ([Ab 70], eq. 13.5.1):

$$
\begin{equation*}
M_{k, H^{\prime}}(z) \underset{z \rightarrow-1^{\infty}}{\rightarrow}-2 \downarrow \frac{\Gamma\left(2+2 \ell^{\prime}\right) e^{+\pi \frac{\eta}{2}} e^{-1 \pi \frac{\ell^{\prime}}{2}}}{\left|\Gamma\left(\ell^{\prime}+1+1 \eta\right)\right|} * \sin \left(\rho-\pi \log 2 \rho+\sigma_{\ell^{\prime}}-\pi \frac{\ell^{\prime}}{2}\right) \tag{18}
\end{equation*}
$$

Expanding ℓ^{\prime} in powers of α one obtains:

$$
\ell^{\prime}=\ell-\frac{\alpha^{2}\left(1+\frac{3}{2} \frac{\mathrm{k}^{2}}{\mathrm{~m}^{2}}\right)}{2 \ell+1}+O\left(\alpha^{4}\right)
$$

and comparıng eq. (18) with eq. (8) one obtains for the "relativistic corrected Coulomb phase shıfts":

$$
\begin{equation*}
\sigma_{\ell}^{\prime}=\sigma_{\ell}-\pi \frac{\ell^{\prime}-\ell}{2} \propto \sigma_{\ell}+\frac{\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{2 \ell+1} \quad\left(\frac{\pi}{2}-\frac{\partial \sigma_{\ell}}{\partial \ell}\right)+O\left(\alpha^{4}\right) \tag{19}
\end{equation*}
$$

Writing $\sigma_{\ell}^{\prime}=\sigma_{\ell}+\Delta_{\ell}$ one obtains for the "relativistic corrected Coulomb amplitude":

$$
\begin{align*}
f_{\text {electric }}(\theta) & =\sum_{\ell=0}^{\infty}(2 \ell+1) \frac{e^{21\left(\sigma_{\ell}+\Delta_{\ell}\right)}-1}{21 k} p_{\ell}(\cos \theta) \\
& =-\frac{\eta}{2 k \sin ^{2} \frac{1}{2} \theta} \exp \left[21 \sigma_{0}-1 \eta \log \left(\sin ^{2} \frac{1}{2} \theta\right)\right] \\
& +\sum_{\ell=0}^{\infty}(2 \ell+1) e^{21 \sigma_{\ell}} \frac{e^{2 I \Delta_{\ell}}-1}{21 k} P_{\ell}(\cos \theta) \tag{20}
\end{align*}
$$

(1n the sense of distributions).
We did not succeed in evaluating the last term of eq. (20) in closed form. However, for laboratory energıes $>1 \mathrm{MeV}$ one can approxımate:

$$
\Delta_{\ell} \simeq \frac{\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{2 \ell+1} \frac{\pi}{2}+O\left(\alpha^{2} \eta\right)
$$

and

$$
\sigma_{\ell} \simeq \sigma_{0}+o(\eta)
$$

with an error less than 15%, and obtain:

$$
\begin{align*}
& f_{\text {electric }}^{\mathrm{E}_{\mathrm{lab}}>1 \mathrm{MeV}}-\frac{\eta}{2 k \sin ^{2} \frac{1}{2} \theta} \exp \left[21 \sigma_{0}-1 \eta \log \left(\sin ^{2} \frac{1}{2} \theta\right)\right] \\
& +e^{21 \sigma} 0 \frac{\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{m^{2}}\right) \pi}{2 k} \sum_{\ell=0}^{\infty} P_{\ell}(\cos \theta) \\
& =-\frac{\eta}{2 k \sin ^{2} \frac{\theta}{2}} \exp \left[21 \sigma_{0}-1 \eta \log \left(\sin ^{2} \frac{1}{2} \theta\right)\right] \\
& +e^{21 \sigma_{0}} \frac{\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{m^{2}}\right) \pi}{2 k \sin \frac{\theta}{2}} \tag{21}
\end{align*}
$$

The differences between eq. (21) and its extreme non-relativistic limit eq. (6) are:
(1) The use of $\eta=M \alpha\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right) / 2 k$ instead of $\eta=\frac{M \alpha}{2 k}$. One can verify that thls corresponds with $\eta=\frac{\alpha}{V_{l a b}}, V_{l a b}=P_{l a b} / \sqrt{P_{l a b}^{2}+M^{2}}$, expanded in M and expressed in the center of mass momentum k. In fact this "ad hoc" substıtution for η has already been used during a long time with the purpose to simulate some relativistic effects of the Coulomb interaction.
(11) An addıtional correction to be added to the "classıcal" expression:

$$
e^{21 \sigma_{0}} \frac{\alpha^{2}\left(1+\frac{3}{2} \frac{\mathrm{k}^{2}}{\mathrm{~m}^{2}}\right)}{2 k \sin \frac{\theta}{2}}
$$

Its contribution to the total electric amplitude is small, approxımately:

$$
\sqrt{E_{l a b}(M e V)} \times \sin \frac{\theta}{2} \times 1 \% 0
$$

Unfortunately in the region where the Coulomb interaction dominates (small energies, small angles) this correction $1 s$ also small (errors on the experimental quantities are in the order of 1%).

In order to obtain a feeling about the magnitude of the second correction in proton-proton scattering, we calculated cross sections from the amplitude:

$$
\begin{equation*}
f(\theta)=f_{\frac{\alpha}{r}}(\theta)+e^{21 \sigma_{0}} \frac{\alpha^{2} \pi}{2 k \sin \frac{\theta}{2}}+f_{\text {nucleax }}(\theta) \tag{22}
\end{equation*}
$$

with the nuclear amplıtude approxımated by 1 ts s-wave partial wave amplıtude:

$$
\begin{equation*}
f_{\text {nuclear }}(\theta)=e^{21 \sigma_{0}} \frac{e^{21 \delta_{0}}-1}{21 k} \tag{23}
\end{equation*}
$$

and used the effective range approximation for δ_{0} :

$$
\begin{equation*}
C_{0}^{2} k \cot \delta_{0}+2 \eta k h(\eta)=-\frac{1}{a}+\frac{1}{2} r k^{2} \tag{24}
\end{equation*}
$$

with $a=-7.8 \mathrm{fm}, r=2.7 \mathrm{fm}$.
These cross sections (for energies $0.5-10 \mathrm{MeV}, \mathrm{CM}$ angles $20^{\circ}-90^{\circ}$) were compared with those of the amplitude:

$$
\begin{equation*}
f(\theta)=\mathbf{f}_{\frac{\alpha}{\mathbf{r}}}(\theta)+f_{\text {nuclear }}(\theta) \tag{25}
\end{equation*}
$$

with $f_{\text {nuclear }}(0)$ approximated by an $s-$ and a p-wave contribution:

$$
\begin{equation*}
f_{\text {nuclear }}(\theta)=e^{21 \sigma_{0}} \frac{e^{21\left(\delta_{0}+\Delta_{0}\right)}-1}{21 k}+3 e^{21 \sigma_{1}} 1 \frac{e^{21 \Delta_{1}}-1}{21 k} \cos \theta \tag{26}
\end{equation*}
$$

We searched for Δ_{0} and Δ_{1} to obtain an 2 mpression to what extend the relativistic correction can be simulated by a (nuclear) s-and p-wave correctıon (table VI,1).

From table VI. 1 we conclude that $1 t$ is quite possible to simulate the relativistic correction on the coulomb amplitude by a change in the nuclear $s-$ and p-wave (better than 1:10000 in the cross sections). The changes in the phases are in the order of 10^{-4} radians. The errors in the experımental phase-shıfts (from single energy analysis) are rangıng from 10^{-4} radıans below 1 MeV up to $2 \cdot 10^{-3}$ radıans at 10 MeV for the

Energy (MeV)	$\left\lvert\, \begin{gathered} \text { mean rel dev. }(\% \mathrm{O}) \\ \Delta_{0}=\Delta_{1}=0 \end{gathered}\right.$	$\begin{aligned} & \text { mean rel.dev. (\%o) } \\ & \text { fitted } \Delta_{0} \cdot \Delta_{1} \end{aligned}$	$\Delta_{0}(\mathrm{rad})$	$\Delta_{1}(\mathrm{rad})$
0.5	0.73	0.07	9.410^{-5}	2.710^{-5}
1.0	0.35	0.08	1.110^{-4}	3.910^{-5}
2.0	0.27	0.08	1.210^{-4}	5.710^{-5}
3.0	0.25	0.08	1.210^{-4}	6.710^{-5}
4.0	0.25	0.07	1.310^{-4}	7.310^{-5}
5.0	0.24	0.07	1.310^{-4}	7.610^{-5}
6.0	0.24	0.07	1.310^{-4}	7.810^{-5}
7.0	0.24	0.06	1.310^{-4}	7.810^{-5}
8.0	0.24	0.06	1.310^{-4}	7.810^{-5}
9.0	0.23	0.06	1.310^{-4}	7.810^{-5}
10.0	0.23	0.06	1.310^{-4}	7.810^{-5}

Table VI.1: Simulation of the relativistic correction of the Coulomb armplitude by nuclear s - and p-waves (Δ_{0} and Δ_{1}). The second colurn gives the mean relative deviation between cross sections calculated from eq. (22) and from eq. (25) with the same $f_{\text {nuclear. }}$. The remaining columns give the corrections on the nuclear s-and p-waves needed to obtain an optimal fit to the relativistic correction of the electric amplitude.
${ }^{1} S_{0}$ phase shıft and from 10^{-4} radians up to $3 \cdot 10^{-4}$ radıans for the central p-wave combination. Therefore $2 t$ is unlikely that the second correction of the Coulomb amplitude is observable in single energy fits of proton-proton scattering data. Perhaps in a multi-energy fit this effect is observable since the corrections on the s - and p-wave
phase shifts are rather independent on the energy (typical for a $\frac{1}{r^{2}}$ potential) and since the phase shifts of a finite range potential are strongly dependent on the energy. Definıte statements, however, cannot be made until such a fit has been performed. In the next section we will study the changes in the effective range functions caused by the "relativıstıc" Coulomb potential, which can be used in a multı-energy fュt.

2. Corrections on the effective range functions

We recall the definitions of the effective range functions for potentials $V_{L}(r)$ with an $\frac{\alpha}{r}$ tall:

1. The regular solution $V_{R^{\prime}}$, with boundary conditions at $r=0: V_{R}(0)=0$ must be a real analytical function of k^{2}; in the limit $r \rightarrow \infty$ it defines the phase shift Δ_{ℓ} and the function N :

$$
\begin{equation*}
V_{R}(r) \underset{r \rightarrow \infty}{\longrightarrow} N \sin \left(k r-\eta \ln 2 k r-\frac{1}{2} \ell \pi+\sigma_{\ell}+\Delta_{\ell}\right) \tag{27}
\end{equation*}
$$

2. The irregular solution V_{I}, which is unequal to zero in the origin, also a real analytıcal function of k^{2}, satısfyıng the Wronskian condition $V_{R}^{\prime} V_{I}-V_{R} V_{I}^{\prime}=1$, defines the function H :

$$
\begin{align*}
V_{I}(r) & \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{N k} \cos \left(k r-\eta \ln 2 k r-\frac{1}{2} \ell \pi+\sigma_{\ell}+\Delta_{\ell}\right) \\
& -H N \sin \left(k r-n \ln 2 k r-\frac{1}{2} \ell \pi+\sigma_{\ell}+\Delta_{\ell}\right) \tag{28}
\end{align*}
$$

If the total potential V can be written as:

$$
\begin{equation*}
V(r)=V_{L}(r)+V_{S}(r) \tag{29}
\end{equation*}
$$

then the total scattering amplitude can be written as:

$$
\begin{align*}
\mathrm{f}_{\text {tot }}(\theta)= & \mathrm{E}_{\frac{\alpha}{\mathbf{r}}}(\theta)+\sum_{\ell=0}^{\infty}(2 \ell+1) e^{21 \sigma_{\ell}} \frac{e^{21 \Delta_{\ell}}-1}{21 k} P_{\ell}(\cos \theta) \\
& +\sum_{\ell=0}^{\infty}(2 \ell+1) e^{21\left(\sigma_{\ell}+\Lambda_{\ell}\right)} \quad \frac{e^{21 \delta_{\ell}}-1}{21 k} P_{\ell}(\cos \theta) \tag{30}
\end{align*}
$$

with δ_{ℓ} the phase shift of V with respect to the solutions of $V_{L}(r)$. Then δ_{ℓ} satısfies:

$$
\begin{align*}
\frac{1}{\mathrm{~N}^{2} \mathrm{k}} \cot \delta_{\ell}+\mathrm{H}= & \text { analytic function of } \mathrm{k}^{2} \text { except for singularities } \\
& \text { whose positions are determined by } V_{s} \text { alone and } \\
& \text { except for } 1 \text { solated poles. } \tag{31}
\end{align*}
$$

In our case we take:

$$
V_{L}(r)=V_{\text {electric }}(r)
$$

and using Green's trick we transform $1 t$ to a local potential, arriving at eq. (13). However, in doing so, one also transforms the wave functions according to eq. (9). Since $\phi(r)$ vanishes in the limit $\mathbf{r} \rightarrow \infty$ this transformation does not affect the $r \rightarrow \infty$ limit of the wave functions. Also the "regular" or "irregular" nature and the analyticity in k^{2} of a wave functions are not affected (to avold complications on this polnt we will assume that the non-local corrections in V electric are small). There is a slight complication in the effective range formalism sunce for non-local potentials the Wronskian between two independent solutions is not a constant (in r). This condition, usually applied to the wave functions at the origin and for local potentials therefore also holding for $r \rightarrow \infty$, must be replaced by the condition:

$$
W\left(V_{R^{\prime}}, V_{I}\right) \underset{r \rightarrow \infty}{\longrightarrow} 1
$$

Another (and equivalent) method appears to be to first transform the
potential with Green's trick and to calculate the effective range functions with this (local) pseudopotential.

Using the arguments of section 1 one arrives at:

$$
\begin{equation*}
W_{\text {electric }}=\frac{\alpha\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{r}-\frac{\alpha^{2}}{M} \frac{1+\frac{3}{2} \frac{k^{2}}{M^{2}}}{r^{2}} \tag{32}
\end{equation*}
$$

and using:

$$
\begin{aligned}
& \eta=\frac{M \alpha\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)}{2 k}, \mu=\ell^{\prime}+\frac{1}{2}=\sqrt{\left(\ell+\frac{1}{2}\right)^{2}-\alpha^{2}\left(1+\frac{3}{2} \frac{k^{2}}{M^{2}}\right)} \\
& \kappa=-1 \eta \quad, \quad z=-21 \rho=-21 k r
\end{aligned}
$$

the radial Schrödinger equation for the ℓ 'th partical wave can be written as:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial z^{2}}+\left[-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right] V=0 \tag{33}
\end{equation*}
$$

Two independent solutions are $M_{K, \mu}(z)$ and $M_{K,-\mu}(z)$ ($[A b 70]$, eq. $13.1 .32,33,34):$

$$
\begin{align*}
& M_{K, \mu}(z)=e^{1 \rho}(-21 \rho)^{\ell^{\prime}+1} M\left(\ell^{\prime}+1+1 \eta, 2 \ell^{\prime}+1,-21 \rho\right) \\
& M_{K,-\mu}(z)=e^{1 \rho}(-21 \rho)^{-\ell^{\prime}} M\left(-\ell^{\prime}+2 \eta,-2 \ell^{\prime},-21 \rho\right) \tag{34}
\end{align*}
$$

(the solution $M_{K,-\mu}$ does not exist for ℓ ' integer).
A closer inspection of the properties of the Kummer functions at the right hand side of eq. (34) shows that $M_{K, \mu}$ and $M_{K,-\mu}$ are entire and real functions of k^{2} and r, except for the factor $(-21 \rho)^{\ell^{\prime}+1}$ and $(-2 i \rho)^{-l^{\prime}}$.

Since $M(a, b, 0)=1$ we define the regular and irregular solutions V_{R} and V_{I} :

$$
\begin{align*}
& \mathrm{V}_{\mathrm{R}}(r)=\frac{2^{\ell^{\prime} \Gamma\left(\ell^{\prime}+1\right)}}{\Gamma\left(2 \ell^{\prime}+1\right)} \\
& \left(\frac{1}{2 k}\right)^{\ell^{\prime}+1} M_{K, \mu}(z) \tag{35}\\
& \mathrm{V}_{\mathrm{I}}(r)=\frac{\Gamma\left(2 \ell^{\prime}\right)}{2^{\ell^{\prime}-1} \Gamma\left(\ell^{\prime}\right)}
\end{align*}
$$

V_{R} and V_{I} are real analytıc in k^{2} and satısfy:

$$
v_{R}^{\prime} v_{I}-v_{I}^{\prime} v_{R}=1
$$

Using eq. 13.5.1 from [Ab 70] one proves:

$$
\begin{equation*}
V_{R}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{\Gamma\left(\ell^{\prime}+1\right)}{\left|\Gamma\left(\ell^{\prime}+1^{+}+1 \eta\right)\right| k^{\pi \frac{\eta}{2}}} \sin \left(\rho-\eta \log 2 \rho-\pi \frac{\ell^{\prime}}{2}+\sigma_{\ell},\right) \tag{36}
\end{equation*}
$$

therefore:

$$
\Delta_{\ell}=\sigma_{\ell \prime}-\sigma_{\ell}-\frac{\pi}{2}\left(\ell^{\prime}-\ell\right)
$$

and

$$
\begin{equation*}
N=\frac{\Gamma\left(\ell^{\prime}+1\right) e^{\pi \frac{\eta}{2}}}{\left|\Gamma\left(\ell^{\prime}+1 \pm 1 \eta\right)\right| k^{\ell^{\prime}+1}} \tag{37}
\end{equation*}
$$

Simularly:

$$
\begin{aligned}
V_{I}(r) & \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{N k} \cos \left(\rho-\eta \log 2 \rho-\pi \frac{\ell^{\prime}}{2}+\sigma_{\ell^{\prime}}\right) \\
& -H N \sin \left(\rho-\Pi \log 2 \rho-\pi \frac{\ell^{\prime}}{2}+\sigma_{\ell^{\prime}}\right)
\end{aligned}
$$

with:

$$
\begin{align*}
H & =4 \pi k^{2 \ell^{\prime}+1} \frac{\Gamma\left(2 \ell^{\prime}\right) \Gamma\left(-2 \ell^{\prime}\right)}{\left|\Gamma\left(-\ell^{\prime} \pm 1 \eta\right)\right|^{2} \Gamma\left(\ell^{\prime}+1\right) \Gamma\left(\ell^{\prime}\right)} \\
& \times\left(\frac{1}{e^{-21 \pi \ell^{\prime}-\pi n}-e^{\pi n}}+\frac{1}{e^{21 \pi \ell^{\prime}-\pi n}-e^{\pi n}}\right) \tag{38}
\end{align*}
$$

In this form these functions can be used in the effective range expansion eq. (31). However, one observes that for $\ell^{\prime}=1$ nteger, H does not exist. This corresponds with the fact that for such ℓ ' the solution $M_{K,-\mu}(z)$ is not valıd anymore and must be replaced by a "logarıthmic"
type of solution ([Ab 70]; eq. 13.1.6). In our case l' 1 s very close to an integer and therefore H will be very big, causing large terms in the right hand side of eq. (31). Now we can use the property that the ırregular solution $1 s$ defined up to a multiple of the regular solution. Defining H_{I} as a real analytıc function of k^{2} one observes that the substitution:

$$
V_{I} \rightarrow V_{I}+H_{I} V_{R}
$$

will not affect the analytical properties and boundary conditions of the irregular solution, but would lead to the effective range function:

$$
\begin{align*}
& H-{ }^{H} I \text { instead of: } H \text {. } \\
& \text { It } 1 \mathrm{~s} \text { not dlfficult to prove that: } \\
& \text { H } \underset{\ell^{\prime} \rightarrow \ell}{\sim} \frac{1}{\ell^{\prime}-\ell} \frac{(2 \ell+1)!:(2 \ell-1)!: 2^{2 \ell}}{(2 \ell)!(2 \ell+1)!} \frac{1}{n k} \\
& \quad \times\left(\ell^{2} k^{2}+(n k)^{2}\right)\left((\ell-1)^{2} k^{2}+(n k)^{2}\right) \ldots(n k)^{2} \tag{39}
\end{align*}
$$

Note that the rıght hand side of eq. (39) is an analytic function in k^{2} and therefore we define:

$$
\begin{align*}
\mathrm{H}_{\mathrm{I}}\left(\mathrm{k}^{2}\right) & =\frac{1}{\ell^{\prime}-\ell} \frac{(2 \ell+1)!!(2 \ell-1):!2^{2 \ell}}{(2 \ell)!(2 \ell+1)!} \frac{1}{n k} \\
& \times\left(\ell^{2} \mathrm{k}^{2}+(\eta k)^{2}\right)\left((\ell-1)^{2} \mathrm{k}^{2}+(n k)^{2}\right) \ldots(n k)^{2} \tag{40}
\end{align*}
$$

The effective range function:

$$
\begin{equation*}
\frac{1}{\mathrm{~N}^{2} \mathrm{k}} \cot \delta_{\ell}+\mathrm{H}-\mathrm{H}_{\mathrm{I}} \tag{41}
\end{equation*}
$$

15 finite for $\ell^{\prime}=\ell$ and one can show that for $\ell^{\prime}=\ell=0$ it reduces to the well known form:

$$
\begin{equation*}
k C_{0}^{2} \cot \delta_{0}+2 n k h(\eta)-2 n k \tag{42}
\end{equation*}
$$

The factor $2 n k$ is conventıonally put into the right hand side of the effectıve range 1 dentıty, eq. (31), corresponding with the additıonal replacement: $H-H_{I} \rightarrow H-H_{I}-\lim _{\mathrm{k} \rightarrow 0}\left(\mathrm{H}-\mathrm{H}_{\mathrm{I}}\right)$.

The $6^{\text {th }}$ order diagrams which contribute to the BS scattering amplitude are (wıthout self energy graphs):

Fig. A1: sixth order contributions to M.

These diagrams, involving the integration in two intermediate fourmomenta could be written as a sum of diagrams involving only three dimensional integratıons, as done in chapter 3 (see fig. III.6). However, this would require several pages and it is also not necessary for our purposes.

We merely note that the potential of eq. (3.36) in a LS equation will generate, iterated with the LS propagator, already some of the $6^{\text {th }}$ order diagrams (up to second order in the $\frac{1}{M}$ expansion); see fig. A2. We can write these diagrams again as four-dimensional integrations; using:

F'ig. A2: sixth order contributions generated by the potential of eq. (3.36) in the LS equation.

The diagrams of fig. A2 become:

Fig. A3: same as fig. A2; written as four dimensional integrations.

The terms of fig.'A2 (fig. A3) do not contribute to $W^{(6)}$, since they
since they are generated by $W^{(2)}$ and $W^{(4)}$. Therefore the total contribution to $W^{(6)}$ is the difference between the diagrams of fig. Al and those of fig. A3:

Fig. A4: the sixth order pseudopotential.

Note that fig. A4 is nothing else than the $6^{\text {th }}$ order contribution as derived from the pseudo-potential equation (2.25) :

$$
\mathrm{W}=\mathrm{M}^{1 r I}+\mathrm{M}^{1 r r}(\mathrm{G}-\mathrm{g}) \mathrm{W} .
$$

The diagrams of fig. A4 are calculated by [Mu 78]. Using the coupling constant $f^{2}=g^{2} / M$, and using their results one proves:

$$
\lim _{\substack{M \rightarrow \infty \\ \vec{p}^{\prime}, \stackrel{t}{p}, f^{2} \\ f_{1} x e d}}^{W^{(6)}} \frac{f^{6}}{M^{3}}
$$

and therefore:

$$
\begin{aligned}
& \lim _{M+\infty} \quad \mathrm{MV}^{(6)} \sim \frac{f^{6}}{M^{3}} \\
& \overrightarrow{\mathrm{p}}^{\prime}, \overrightarrow{\mathrm{p}}, \mathrm{f}^{2} \text { faxed }
\end{aligned}
$$

which shows that*:

$$
v_{0}^{(6)}=v_{1}^{(6)}=v_{2}^{(6)}=0
$$

*In [Mu 78] is used g^{2} and $1 s$ proven that the diagrams of fig. A4 contribute separately to order $\frac{g^{6}}{M^{4}}$; however, in the summation the leading terms cancel giving a contribution of order $\frac{g^{6}}{M^{5}}$.

Equivalent potentials in the Lippmann-Schwinger equation

We will prove that a potential:

$$
\begin{equation*}
V\left(\vec{p}^{\prime}, \vec{p}\right)=\sum_{1} \frac{g_{1}^{2}}{\vec{k}^{2}+m_{1}^{2}} \tag{B.1}
\end{equation*}
$$

is equivalent with:

$$
\begin{align*}
V^{\prime}(\vec{p}, \vec{p}) & =\frac{\sum_{1}^{2}}{1} \frac{\vec{k}^{2}+m_{2}^{2}}{} *\left(1+\frac{\lambda}{2}\left(\vec{p}^{2}+\vec{p}^{2}-2 q_{s}^{2}\right)\right. \\
& \left.+\frac{\lambda m^{2}}{\vec{k}^{2}+m_{1}^{2}}\left(\vec{p}^{2}+\vec{p}, 2-2 q_{s}^{2}\right)-\lambda \frac{\left(\vec{p}^{2}-\vec{p}^{2}, 2\right.}{\vec{k}^{2}+m_{1}^{2}}\right) \tag{B.2}
\end{align*}
$$

for on shell momenta $\left(=q_{s}^{2}\right)$ and up to first order in λ. Wrıting:

$$
\begin{equation*}
v^{\prime}=v+\lambda w \tag{B.3}
\end{equation*}
$$

(note: on shell $V^{\prime}=V$) and the formal solution of the L.S. equation:

$$
T=V+V G V+V G V G V+\ldots
$$

and

$$
T^{\prime}=V^{\prime}+V^{\prime} G V^{\prime}+V^{\prime} G V^{\prime} G V^{\prime}+\ldots
$$

with : $\quad G\left(p, q_{S}\right)=\frac{2 M_{r}}{q_{S}^{2}-\vec{p}^{2}+1 \varepsilon}$
it will be clear that it is sufficient to prove:

$$
\begin{equation*}
\text { WGVG } \ldots V+V G N G \ldots V+\ldots+V G V G \ldots W=0 \tag{B.5}
\end{equation*}
$$

to obtaln:

$$
T^{\prime}=T+O\left(\lambda^{2}\right)
$$

Potentials V and W are sums of subpotentials with different masses and coupling constants. To prove (B.5) it will be sufficient to prove that:

$$
\begin{equation*}
\sum_{\jmath \ldots k} W_{1} G V_{j} G \ldots V_{k}+V_{1} G W_{j} G \ldots V_{k}+\ldots+V_{1} G V_{j} G \ldots W_{k}=0 \tag{B.6}
\end{equation*}
$$

with: $\quad V_{1}=\frac{1}{\vec{k}^{2}+m_{1}^{2}}$
and

$$
w_{1}=\frac{\vec{p}^{2}+\vec{p}^{\prime}, 2-2 q_{s}^{2}}{2\left(\vec{k}^{2}+m_{1}^{2}\right)}+m_{1}^{2} \frac{\vec{p}^{2}+\vec{p}^{\prime}{ }^{2}-2 q_{s}^{2}}{\left(\vec{k}^{2}+m_{1}^{2}\right)^{2}}-\frac{\left(\vec{p}^{2}-\vec{p}, 2\right)^{2}}{\left(\vec{k}^{2}+m_{1}^{2}\right)^{2}}
$$

A speciflc term in (B.6) will be denoted with the self explaining diagram:

Fig. B. 1

Leaving the integration $1 \mathrm{n} \overrightarrow{\mathrm{p}}_{1}, \overrightarrow{\mathrm{p}}_{2}, \overrightarrow{\mathrm{p}}_{3}, \ldots$ the reduced mass, and using: $\varepsilon_{1}^{2}=\vec{k}_{1}^{2}+m_{1}^{2}$ one proves that this dıagram gives a term:

$$
\begin{align*}
\ldots & \frac{1}{\varepsilon_{1}^{2}}\left(-\frac{1}{q_{s}^{2}-\vec{p}_{3}^{2}} \frac{1}{2 \varepsilon_{2}^{2}}-\frac{1}{q_{s}^{2}-\vec{p}_{2}^{2}} \frac{1}{2 \varepsilon_{2}^{2}}-\frac{m_{2}^{2}}{\varepsilon_{2}^{4}} \frac{1}{q_{s}^{2}-\vec{p}_{3}^{2}}-\frac{m_{2}^{2}}{\varepsilon_{2}^{4}} \frac{1}{q_{s}^{2}-\vec{p}_{2}^{2}}-\frac{1}{\varepsilon_{2}^{4}} \frac{\vec{p}_{3}^{2}-\vec{p}_{2}^{2}}{q_{s}^{2}-\vec{p}_{3}^{2}}\right. \\
& \left.-\frac{1}{\varepsilon_{2}^{4}} \frac{\vec{p}_{2}^{2}-\vec{p}_{3}^{2}}{q_{s}^{2}-\vec{p}_{2}^{2}}\right) \frac{1}{\varepsilon_{2}^{2}} \ldots \tag{B.7}
\end{align*}
$$

Now we can use:

$$
\vec{\nabla}_{2} \frac{\vec{p}_{2}-\vec{p}_{3}}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}=\frac{1}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}+\frac{2 \mathrm{~m}_{2}^{2}}{\varepsilon_{1}^{2} \varepsilon_{2}^{4}}-\frac{2\left(\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{3}\right) \cdot\left(\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{1}\right)}{\varepsilon_{1}^{4} \varepsilon_{2}^{2}}
$$

and

$$
\vec{\nabla}_{2} \frac{\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{1}}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}=\frac{1}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}+\frac{2 \mathrm{~m}_{1}^{2}}{\varepsilon_{1}^{4} \varepsilon_{2}^{2}}-\frac{2\left(\vec{p}_{2}-\overrightarrow{\mathrm{p}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{3}\right)}{\varepsilon_{1}^{2} \varepsilon_{2}^{4}}
$$

so integrated with respect to \vec{P}_{2} we can use:

Similarly, integrating with respect to $\overrightarrow{\mathrm{P}}_{3}$ one proves:

$$
\begin{align*}
& \frac{\left(\stackrel{\rightharpoonup}{p}_{3}-\stackrel{\rightharpoonup}{p}_{4}\right) \cdot\left(\stackrel{\rightharpoonup}{p}_{3}-\vec{p}_{2}\right)}{\varepsilon_{2}^{4} \varepsilon_{3}^{2}}=\frac{1}{2 \varepsilon_{2}^{2}{ }^{\varepsilon}{ }_{3}}+\frac{\mathrm{m}_{3}^{2}}{{ }^{2}{ }_{2}{ }^{\epsilon}{ }_{3}^{4}} \tag{B,8,3}\\
& \frac{\left(\overrightarrow{\mathrm{p}}_{3}-\overrightarrow{\mathrm{p}}_{2}\right) \cdot\left(\overrightarrow{\mathrm{p}}_{3} \overrightarrow{\mathrm{p}}_{4}\right)}{\epsilon_{2}^{2}{ }_{2}^{4}}=\frac{1}{2 \mathrm{E}_{2}^{2}{ }^{2} 3}+\frac{\mathrm{m}_{2}^{2}}{{ }^{\varepsilon_{2}^{4} \varepsilon_{2}^{2}}} \tag{B.8.4}
\end{align*}
$$

Using (B.8) one can rewrite (B.7):

$$
\begin{align*}
& =\ldots \frac{1}{\epsilon_{1}^{2}}\left(-\frac{m_{2}^{2}}{\varepsilon_{2}^{4}}+\frac{m_{1}^{2}}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}+\frac{\left(\vec{p}_{2}-\vec{p}_{3}\right) \cdot\left(\vec{p}_{1}+\vec{p}_{3}\right)}{\varepsilon_{2}^{4}}\right) \frac{1}{q_{S}^{2}-\vec{p}_{3}^{2}} \frac{1}{\varepsilon_{3}^{2}} \cdots \\
& +\ldots \frac{1}{\varepsilon_{1}^{2}} \frac{1}{q_{S}^{2}-r_{2}^{2}}\left(-\frac{m_{2}^{2}}{\varepsilon_{2}^{4}}+\frac{m_{3}^{2}}{\varepsilon_{2}^{2} \varepsilon_{3}^{2}}+\frac{\left(\vec{p}_{3}-\vec{p}_{2}\right) \cdot\left(\vec{p}_{2}^{+}+\vec{p}_{4}^{\prime}\right)}{\varepsilon_{2}^{4}}\right) \frac{1}{\varepsilon_{3}^{2}} \cdots \tag{B.9}
\end{align*}
$$

So the diagram of fig. B. 1 can be written as the sum of two terms:

Fig.B. 2
with:

$$
\begin{equation*}
=\frac{1}{E_{1}^{2}}\left(-\frac{m_{2}^{2}}{\varepsilon_{2}^{4}}+\frac{m_{1}^{2}}{\varepsilon_{1}^{2} \varepsilon_{2}^{2}}+\frac{\left(\vec{p}_{2}-\vec{p}_{3}\right) \cdot\left(\vec{p}_{1}+\vec{p}_{3}\right)}{\varepsilon_{2}^{4}}\right) \tag{B.10.1}
\end{equation*}
$$

and

In the summation of eq. (B.6) there are two diagrams which cannot be deplcted as in fig. B. $1:$

However, in these diagrams $\vec{p}_{1}\left(\vec{p}_{4}\right)$ is an external leg and therefore on shell: $\overrightarrow{\mathrm{p}}_{1}^{2}=\overrightarrow{\mathrm{P}}_{4}^{2}=q_{s}^{2}$. Also these dragrams can be written with the notation of eq. (B, 10); one proves:

and

Now summing over all possible insertions of W in the ladder we will obtain pairs of terms which cancel each other partially:

Note that the integration with respect to $\overrightarrow{\mathrm{p}}_{2}$ still has to be performed; changing variables.

$$
\vec{p}_{1}=\vec{q}+\vec{\Delta} \quad ; \quad \vec{p}_{3}=\vec{q}-\vec{\Delta} \quad ; \quad \vec{p}_{2}=\vec{q}-\vec{\delta} \quad ;
$$

one proves:
$=-\frac{2 \vec{q} \cdot(\vec{\delta}+\vec{\Delta})(\Delta-\delta)^{2}+2 \overrightarrow{\mathrm{q}} \cdot(\vec{\delta}-\vec{\Delta})(\Delta+\delta)^{2}}{E_{1}^{4} \varepsilon_{2}^{4}}-\frac{2 \vec{q} \cdot(\vec{\delta}+\vec{\Lambda}) \mathrm{m}_{2}^{2}+2 \vec{q} \cdot(\vec{\delta}-\vec{\Delta}) \mathrm{m}_{1}^{2}}{E_{1}^{4} \varepsilon_{2}^{4}}$
One must distinguish between two cases:

1. The two meson masses happen to be the same: $m_{1}=m_{2}$. In this case the term of eq. (B.12) is obvously zero when integrated with respect to $\bar{\delta}$ since it is odd in $\vec{\delta}$.
2. The two meson masses are not the same. In that case the diagrams:

will have a counterpart with m_{1} and m_{2} interchanged:

It is not difficult to prove that the sum of these duagrams 15 also odd $1 n \vec{\delta}$ and therefore is zero once integrated in $\overrightarrow{\mathrm{p}}_{2}$.

Thas completes the proof. We merely wash to note that the transformation of eq. (B.1) to eq. (B.2) has to be applıed to all the subpotentials. Also the proof is not affected when the coupling constants g_{1}^{2} contain terms which are proportional with λ :

$$
g_{1}^{2}-g_{1}^{2}(1+\lambda(\text { mom.dep.terms })+\ldots)
$$

In that case the momentum dependent terms in the coupling constant, together with the transformation which 15 proportional with \rangle, will glve λ^{2} terms, which are neglected from the beginning.

The potentials in configuration space

Below we list the Fourier transforms to conflquration space for the different potential forms we encountered. The derivation $1 s$ stralghtforward but rather tedious and we refer to the literature for the well-known technlques [Na 75, Ho 60, Pa 70]. The transformation $1 s$ done without cutoff and therefore the δ-functions in the origin are included in the result:

Spin independent potentials

$$
\begin{aligned}
& \frac{1}{\vec{k}^{2}+m^{2}} \quad \leftrightarrow \quad \frac{1}{4 \pi} \frac{e^{-m r}}{r} \equiv \phi_{1} \\
& \frac{\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}}{\vec{k}^{2}+m^{2}} \quad \leftrightarrow \quad-\frac{1}{2}\left(\vec{\nabla}^{2} \phi_{1}+\phi_{1} \vec{\nabla}^{2}\right)-q_{s}^{2} \phi_{1} \\
& \frac{m^{2}}{\left(\vec{k}^{2}+m^{2}\right)^{2}} \quad \leftrightarrow \quad \frac{m}{8 \pi} e^{-m r} \equiv \phi_{2} \\
& \frac{\vec{q}^{2}+\frac{\vec{k}^{2}}{4}-q_{s}^{2}}{\left(\vec{k}^{2}+m^{2}\right)^{2}} \quad \leftrightarrow \quad-\frac{1}{2}\left(\vec{\nabla}^{2} \phi_{2}+\phi_{2} \vec{\nabla}^{2}\right)-q_{s}^{2} \phi_{2} \\
& \frac{(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{k}})^{2}}{\left(\overrightarrow{\mathrm{k}}^{2}+\mathrm{m}^{2}\right)^{2}} \quad \leftrightarrow \quad\left(\frac{m}{8 \pi} \frac{e^{-m r}}{r^{2}}+\frac{e^{-m r}}{8 \pi r^{3}}\right) \vec{L}^{2}+\frac{1}{2}\left(\vec{\nabla}^{2} \phi_{2}+\phi_{2} \vec{\nabla}^{2}\right) \\
& -\frac{m^{3}}{32 T} e^{-m r}+\frac{1}{4} \delta^{(3)}(\vec{r}) \\
& \frac{\vec{k}^{2}}{\overrightarrow{\mathrm{k}}^{2}+\mathrm{m}^{2}} \quad \leftrightarrow \quad-\left[\overrightarrow{\mathrm{V}}^{2} \phi_{1}\right]=\delta^{(3)}(\vec{r})-m^{2} \phi_{1}
\end{aligned}
$$

Spin dependent potentials

$$
\begin{aligned}
& \frac{1 \vec{S} \cdot\left(k^{\vec{k} \times \vec{q}}\right)}{\vec{k}^{2}+m^{2}} \quad \leftrightarrow \quad-\frac{m^{2}}{4 \pi}\left(\frac{1}{m r}+\frac{1}{m^{2} r^{2}}\right) \frac{e^{-m r}}{r} \vec{L} \cdot \vec{S} \\
& \frac{\left(\vec{\sigma}_{1} \cdot \vec{k}\right)\left(\vec{\sigma}_{2} \cdot \vec{k}\right)}{\vec{k}^{2}+m^{2}} \quad \rightarrow \quad-\frac{m^{2}}{4 \pi}\left(\frac{1}{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \frac{e^{-m r}}{r}+\frac{1}{3}\left(1+\frac{3}{m r}+\frac{3}{m^{2} r^{2}}\right)\right. \\
& \left.\times \frac{e^{-m r}}{r} S_{12}\right)+\frac{1}{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \delta(3)(\vec{r})
\end{aligned}
$$

$$
\frac{\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}}{\vec{k}^{2}+\mathrm{m}^{2}} \quad \leftrightarrow \quad \phi_{1} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
$$

$\overrightarrow{\mathrm{L}}=$ angular momentum operator.
$s_{12}=3\left(\vec{\sigma}_{1} \cdot \hat{r}\right)\left(\vec{\sigma}_{2} \cdot \hat{r}\right)-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}=$ tensor operator.
$\vec{s}=\frac{1}{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right)=$ total spin operator.
[Ab 65] M. Abramowitz, I.A. Stegun; Handbook of Mathematıcal Functıons:
[Ab 70] Dover, New York (1965)
[Ar 74] R.A. Arndt, R.H. Hackman, L.D. Roper; Phys.Rev. C 9, 555 (1974)
[Ar 80] R.A. Arndt, B.J. Verwest; contributed paper to "Polarization Symposium", Santa Fe ; "9th International Conference on the Few Body Problem", Eugene, August 1980, int.nu. DOE/ER/ 05223-29.
[BD 65] J.D. Björken, S.D. Drell; Relativistıc Quantum Mechanics; MOGraw-Hill (1965).
[Be 49] H.A. Bethe; Phys.Rev. 76, 38 (1949).
[B1 48] J. Blatt; Phys.Rev. 74, 92 (1948).
[Bl 49] J. Blatt, J.D. Jackson; Phys.Rev. 76, 18 (1949).
[Bl 66] R. Blankenbecler, R. Sugar; Phys.Rev. 142, 1051 (1966).
[Br 53] K.A. Brueckner, K.M. Watson; Phys.Rev. 92, 1023 (1953).
[Br 69] C.N. Bressel, A.K. Kerman, B. Rouben; Nucl. Phys. A124, 624 (1969) .
[BS 51] H.A. Bethe, E.E. Salpeter; Phys.Rev. 84, 1232 (1951), see also [Ge 51].
[BS 57] H.A. Bethe, E.E. Salpeter; Quantum Mechanics of One- and Two-Electron Atoms; Academuc Press (1957).
[Ca 67] F. Calogero; Variable Phase Approach to Potential Scattering; Academic Press (1967).
[Che 60] G.F. Chew, S. Mandelstam; Phys.Rev. 119, 467 (1960).
[CFS 59] M. Cini, S. Fubini, A. Stanghellini; Phys.Rev. 114, 1633 (1959).
[Co 62] H. Cornille, A. Martin; Nuov.Cım. 26, 298 (1962).
[Do 79] W. van Dongen; Int.report, Instıtute for Theoretıcal Physıcs, Unıversıty of N_{1} 〕megen; THEF-NYM-79.1 (1979).
[Du 57] L. Durand III; Phys.Rev. 108, 1597 (1957).
[Em 79] A. Emmen; Int.report, Institute for Theoretical Physics, University of N_{1} jmegen; THEF-NYM-79.14 (1979).
[Fl 75] J. Fleischer, J.A. Tjon; Nucl.Phys. B84, 375 (1975).
[Ge 51] M. Gell-Mann, F. Low; Phys.Rev. 84, 350 (1951).
[Ge 79] F. Gesztesy, C.B. Lang; Preprınt Unıversıty Graz, Instıtute for Theoretıcal Physıcs: UTP 09/79 (1979).
[Gr 63] A.M. Green; Nucl.Phys. 33, 218 (1963).
[Gr 69] H. Grotch, D.R. Yennie; Rev.Mod.Phys. 41-2, 350 (1969).
[Gro 69] F. Gross; Phys.Rev. 186, 1448 (1969).
[Ha 62] T. Hamada, I.D. Johnston: Nucl.Phys. 34, 382 (1962).
[Ha 73] J. Hamılton, I. Øverb申, B. Tromborg; Nucl.Phys. B60, 443 (1973).
[He 60] L. Heller; Phys.Rev. 120-2, 627 (1960).
[Ho 60] N. Hoshızakı, S. Machıda; Progr.Theor.Phys. 24, 1325 (1960).
[Ja 50] J.D. Jackson, J.M. Blatt: Rev.Mod.Phys. 22, 77 (1950).
[La 44] - L. Landau, J. Smorodınsky; J.Phys. (USSR) B, 154 (1944);

- J. Smorodınsky; J.Phys. (USSR) 11, 195 (1947).
[Le 66] M. Levine, J.A. Tjon, J. Wrıght; Phys.Rev.Lett. 16, 962 (1966)
[Le 67] M. Levine, J.A. Tjon, J. Wright; Phys.Rev. 154, 1433 (1967).
[Lo 63] A. Logunov, A. Tavkhelıdze; Nuov.Cım. 29, 380 (1963).
[Lu 64] M. Lumang; Phys.Rev. 136 B4, 1120 (1964).
[Me 61] A. Messiah; Quantum Mechanıcs; North Holland Publıshing Co. (1961).
M.H. MacGregor, R.A. Arndt, R.M. Wright; Phys.Rev. 173, 1272 (1968).
[MG 69] M.H. MacGregor, R.A. Arndt, R.M. Wrıght; Phys.Rev. 182, 1714 (1969).
[Mu 78] L. Mūller, W. Glockle; Preprınt July 1978; Unıversity Bochum, Institut fūr Theoretische Physik.
[Na 69] N. Nakanıshı; Progr.Theor.Phys.Suppl. 43 (1969).
[Na 75] M.M. Nagels; Thesis Unıversıty of Nıjmegen (1975), unpublished.
[Na 77] J.P. Nalsse; Nucl. Phys. A278, 506 (1977)
[Na 78] M.M. Nagels, T.A. Rıjken, J.J. de Swart; Phys.Rev. D 17, 768 (1978).
[Ne 66] R.G. Newton; Scatterıng Theory of Waves and Partıcles; McGraw-Hıll (1966).
[No 64] H. Noyes; C.R. du Congres Internatıonal de Physıque Nucléaıre; ed. P. Gugenberger; Vol. II, p. 172-173; Parıs; Edıtıons du Ctr-Natl de la Recherche Scıentıfıque; see [No 71, No 72].
[No 71] H.P. Noyes, H.M. Llpınski; Phys.Rev. C 4, 995 (1971).
[No 72] H.P. Noyes, Ann.Rev.Nucl.Sc. 22, 465 (1972).
[Nu 33] D. Numerov; Publ. do l'Observ.Astrophys. Central de Russie, 2, 188 (1933).
[Pa 70] M.H. Partovi, E.L. Lomon; Phys.Rev. D 2, 1999 (1970).
[Re 68] R.V. Reld Jr.; Ann.Phys. (N.Y.) SO, 411 (1968).
[Ry 75] T.A. Rijken; Thesis University of Nıjmegen (1975), unpublished.
[Sa 79] W. van der Sanden; Int.report, Instıtute for Theoretical
Physics, Unıversity of Nıjmegen; THEF-NYM-79.3 (1979).
[Sch 47] J. Schwinger, Harvard Lecture Notes (1947), see [B1 48].
[Sch 51] J. Schwinger, Proc.Natl.Acad.Scı. (U.S.) 37, 452 and 455 (1951).
[Sh 70] M. Sher, P. Signell, L. Heller; Ann.Phys. (N.Y.) 58, 1 (1970).
[Sw 62] J.J. de Swart, C. Dullemond; Ann.Phys. (N.Y.) 19, 458 (1962).
[Sw 77] J.J. de Swart, M.M. Nagels; Fortschrıtte der Physik 26, 215 (1978).
[Ta 52] M. Taketanı, S. Machıda, S. Ohnuma; Progr.Theor.Phys. 7, 45 (1952).
[Ta 72] J.R. Taylor; Scatterıng Theory; John Wiley \& Sons (1972).
[Ta 74] J.R. Taylor; Nuov.Cim. 23B, 313 (1974).
[Th 70] R. Thompson; Phys.Rev. D 1, 110 (1970).
[V1 74] R. Viollier; Phys.Lett. 48 B, 99 (1974).
[W1 54] G.C. Wıck; Phys.Rev. 96, 1124 (1954).
[Wo 62] D. Wong, H. Noyes; Phys.Rev. 126, 1866 (1962).
[Ya 71] R.J. Yaes; Phys.Rev. D 3, 3086 (1971).

In dit proefschrıft wordt een studie gemaakt van twee onderwerpen dıe een rol spelen bıj de bestuderıng van de nucleon-nucleon interactıe. Alhoewel de resultaten in eerste $1 n s t a n t ı$ beschouwd worden vanuit het kader van lage energie proton-proton verstrooling, blıjven de methodieken niet alleen tot dit gebied beperkt, maar kunnen in zekere $z i n$ overal toegepast worden waarblj de analyse van verstroolingsdata een parametrisatie naar de energie gezocht wordt of waar de electromagnetısche interactıe een rol speelt.

Het eerste gedeelte van dit proefschrıft gaat over een gegeneralıseerd effectıeve drachts formalısme. Met behulp van effectıeve drachts methodieken probeert men experımenten op het gebled van twee deeltjes verstroolıng, ultgevoerd blj verschillende energıeen, met elkaar in verband te brengen. In wezen $1 s$ een effectieve drachts formule niets anders dan een interpolatıe- of extrapolatıetechnıek die faseverschulvingen, gemeten op bepaalde energıeen, probeert onder te brengen in een formule en die vandaaruit deze faseverschuivingen probeert te voorspellen bıj andere energıeën.

De kracht van effectıeve drachts theorıeen ligt in het feıt dat men van de interactie die de verstrooling bepaalt nlet veel hoeft te weten om ze toe te kunnen passen. Dit is aardig als men helemaal niets weet; echter in een situatie waarın men bepaalde stukken van de interactie wel meent te kennen zou het toepassen van effectieve drachts formules in hun meest eenvoudige vorm ertoe leiden dat ook deze stukken opnleuw geparametriseerd worden.

We zullen dit aan de hand van lage energlc proton-proton
verstrooilng proberen toe te lichten:

Men denkt dat de proton-proton verstrooling bepaald wordt door de volgende mechanismes:

- electromagnetische wısselwerkingen ten gevolge van de ladingen van de protonen;
- vacuum polarızatie wisselwerking ten gevolge van het feit dat een foton een electron-positron paar kan creeren;
- de nuclealre wisselwerking, bestaande ult:
(a) lange drachts plon ultwisseling,
(b) korte drachts interacties ten gevolge van de ultwisseling van zwaardere mesonen,
(c) een korte drachts repulsie, vaak op zulver fenomenologische manler beschreven door mıddel van een harde plt, of door middel van Pomeron "ultwlsseling".

Bovenstaande volgorde geeft tevens de "bekendheıd" van de interactıe aan: de kennıs van de electromagnetısche interactıe $1 s$ het grootst, die van de korte drachts repulsie het kleinst. Past men effectieve drachts methodieken nu toe op de experimenteel gemeten grootheden zonder dat men de kennis die men van de proton-proton interactie heeft, á prıorı al ınbouwt, dan zal dıt leiden tot een onbruıkbaar geheel, voornamelıjk omdat de electromagnetısche interactıe een oneindige dracht heeft. Dit heeft er in het verleden toe geleid dat het Coulomb stuk van de electromagnetısche interactie en de vacuum polarızatıe in de effectıeve drachts formules werden ingebouwd. Op deze manler hoefde men alleen de nucleaıre wisselworking nog op een fenomenologısche wıjze weer te geven. Het encrgiegebled dat op deze
manıer bestreken kon worden, lag tussen de 0 en 10 MeV laboratorıun energıe. In de jaren zestig zıjn er pogingen gedaan om ook de lange drachts plon ultwisseling in de formules te verwerken. Echter door de gekozen methode kon dit slechts in benaderde vorm gebeuren; in de praktıjk leidde dit ertoe dat er twee, elkaar tegenwerkende, benaderıngen werden toegepast:

- de lange drachts pion interactie werd benaderd door een eenvoudige pool in de partıele golf amplıtude: dit leıdde tot een verzwakking van de attractie.
- er werd geen rekening gehouden met de korte dracht repulsie: dit leidde tot een (schijnbare) versterking van de attractie.

De op deze manıer verkregen formules werden toegepast in het gebied tussen 0 en 40 MeV en werden tevens gebrulkt om ult s-golven de plonnucleon koppelingsconstante te bepalen. Door de elkaar tegenwerkende fouten kreeg men een resultaat dat in overeenstemming scheen te zıjn met waarden op andere manıeren verkregen. Toen echter enkele jaren geleden de korte drachts repulsıe werd ingebouwd in de parametrizaties van de effectieve drachts functie leldde dit meteen tot het naar voren springen van de fout ten gevolge van de andere benadering: de gefitte koppelingsconstante bleek meer dan 30% te groot te zijn vergeleken met de conventionele waarden. Dit leldde tot de noodzaak om het gehele effectieve drachts formalisme kritısch te beschouwen.

In het eerste gedeelte van dit proefschrift beschrijven we de fundamenten van algemene effectieve drachts theorie. We gebruiken hlervoor nıet de "klassıeke" methode van Bethe (zıe hoofdstuk I), maar technieken gebaseerd op de analytısche elgenschappen van de golffunctıes. Met behulp van deze methodes is men in staat om ledere interactıe
die explıciet bekend $1 s$, exact $1 n$ de effectieve drachts functie in te bouwen. Aandacht wordt ook besteed aan de keuze van de fenomenologısche representatıe van deze effectieve drachts functie, speciaal aan de zgn. poolbenaderıngen. In de laatste twee hoofdstukken wordt het effectieve drachts formalısme $1 n$ de praktıjk getest: dıt gebeurt zowel aan de hand van een potentıal model als aan de hand van experimentele grootheden. De resultaten op deze manıer verkregen, leiden tot de conclusie dat het gegeneraliseerde effectieve drachts formalıme, met daarin exact lngebouwd de electrısche 1 nteractıe, de vacuum polarızatie en de lange drachts plon wisselwerking, in staat moet zijn om zeer nauwkeurig met slechts drıe parameters het gebled tussen 0 en 40 MeV te beschrijven (we refereren hıer alleen maar naar de s-golf) en met vier parameters het gebled tussen 0 en 250 MeV . Tevens wordt het formalısme gebruikt om opnleuw de waarde van de plon-proton koppelings-constante te bepalen.

In het tweede gedeelte van dit proefschrift beschouwen we een van de interacties die blj lage energıe proton-proton verstrooling een belangrıjke rol spelen: de electromagnetısche wisselwerking. Om de resultaten van het eerste deel $1 n$ de praktıjk te kunnen toepassen, moet vooral dıt gedeelte van de $1 n t e r a c t ı$ zeer nauwkeurig bekend zıjn en in een dusdanıge vorm gegoten worden dat er gemakkelıjk mee gewerkt kan worden. In de praktijk blijkt deze vorm een configuratie rummte potentıaal te zıjn. De aflelding echter van een potentiaal beschrijving ult een velden theoretısch model (ons ultgangspunt), gaat gepaard met benaderingen op diverse nıvo's. In wezen gebrulken we de bekende procedure ultgaande van Feymman dıagrammen, de sommatie hıervan via de Bethe-Salpeter vergelıjkıng, de reductıe naar de Blankenbecler-Sugar
vergelıjking, uiteındelıjk leıdend naar de Lippmann-Schwinger vergelıjking en de configuratie ruimte potentialen. Deze reductie kan in de praktıjk nıet exact gedaan worden en het is van belang dat een consequente benadering aangehouden wordt in het verwaarlozen en aanhouden van de diverse bıjdragen tot de potentiaal. Daarom kıezen we voor een methode gebaseerd op een expansie in termen van de nucleon massa M ten opzichte van het punt: $M=\infty$ (de statısche lımet). Termen tot en met orde $1 / M^{2}$ worden nog meegenomen in de potentiaal. In het latste hoofdstuk worden de effectieve drachts functies voor deze potentıaal afgeleıd.

De resultaten van het tweede gedeelte van dit proefschrift kunnen ook gebruikt worden voor de afleıding van potentialen voor de sterke wisselwerking. Het blıjkt dat de electromagnetısche potentıal op deze wijzc afgeleid alleen maar gebruikt kan worden in combinatie met een nucleaıre potentiaal op dezelfde manier verkregen. Voor de effectıeve drachts methodiek is dit van minder belang, omdat het grootste deel van de nuclearre interactic toch op een fenomenologische manier wordt beschreven. Echter in de meer "fysische" modellen, zoals de zgn. OBEpotentialen, zal men rekening hiermee moeten (gaan) houden.

Geboren: 30 maart 1949 te Heerlen.
Lagere School: sept. 1955 - Julı 1961 te Heerlen.
Gymnasıum β : sept. 1961 - Junı 1967; St. Bernardınuscollege te Heerlen. Katholıeke Universitelt Nıjmegen:
september 1967: eerste inschrijving
maart 1970: kandıdaatsexamen
december 1973: doctoraal examen (theoretısche natuurk unde)
dec. 1973 - Jull 1981: wetenschappelıjk medewerker aan het Instituut voor Theoretische Fysica van de Katholıeke Unıversıteıt te Nı jmegen.
vanaf oktober 1981: werkzaam bıj de afdelıng I.V.V. van de Facultelt der Wıskunde en Natuurwetenschappen te N IJmegen.

Het feit dat T. Sawada de singulariteiten afkomstig van een sterke Van-der-Waals-kracht blijkbaar ook aantreft in de energie-afnankelijke fase-analyse van Sher et al., maakt zijn analyse zeer twijfelachtig.
T. Scwada; Progr.Theor.Phys. 59, 149 (1978)
M.S. Sher, P. SigneZZ, L. Heller; Ann.Phys. (N.Y.) 58, 1 (1970)

II

De invloed van vervalkanalen op het spectrum van een "confining" potentiaal kan zeer groot zijn. Bij de beschrijving van systemen met grote vervalbreedtes wordt hiermee vaak onvoldoende rekening gehouden.
A. Martin; Phys.Lett. 93B, 338 (1980) en de hierin genoemde referenties D.P. Stanley; A.I.P. Conf.Proc. 74, 392 (1981)

III

Een lokale potentiaal leidt in BSLT-achtige vergelijkingen tot een amplitude die niet voldoet aan de Mandelstam-representatie. Dit kan vermeden worden door retardatie in de potentiaal mee te nemen.
O.I. Zav'yalov, M.K. Polivanov, S.S. Khoruzhii; Sov.Phys. JETP 18, 1135 (1964)
M.K. Polivanov, S.S. Khoruzhii; Sov.Phys. JETP 19, 232 (1964)

IV

Het gebruik van een P_{μ}, Q_{μ} combinatie (nodig bij de Sachs-vormfactoren) voor de electromagnetische stroom van het proton, in plaats van een $\gamma_{\mu}, \sigma_{\mu \nu} v^{\nu}$ combinatie (bij de Pauli-Dirac-vormfactoren) zal in het waterstofatoom leiden tot ontoelaatbare afwijkingen in de Lamb-shift.

De niet-lokale termen van de Coulombwisselwerking moeten bij de berekening van ladungssymmetriebrekende effecten in het nucleon-nucleon-systeem worden meegenomen. Ze geven een bijdrage in grootte vergelıjkbaar met reeds bekende effecten, zoals $\pi-\eta$ en $\rho-\omega$ menging.
E.M. Henley, T.E. Keliher; Nucl.Phys. A189, 632 (1972)
vI •
BiJ het gebruik van $\frac{\overrightarrow{\mathrm{L}}^{2}}{\mathrm{r}^{3}}$ potentialen in verstrooingssproblemen moet men erop verdacht zıjn dat een deel van de door deze term veroorzaakte faseverschuiving niet waarneembaar 15.

VII

De constatering van Simonov, dat het verschil in grootte tussen de effectieve drachten in de ${ }^{1} S_{0}$ - en ${ }^{3} S_{1}$-golven voor nucleon-nucleon-verstrooling voornamelıjk veroorzaakt wordt door verschillen in resıduen en posities van P-matrıxpolen, $1 s$ onjuist.

Yu.A. Simonov; Phys.Lett. 107B, 1 (1981)

VIII

Thomson-verstroolıng aan een nucleon schıjnt aan te tonen dat tussentoestanden met negatieve energie in nucleon-nucleon-verstrooling niet onderdrukt zijn. In dit argument wordt voorbıjgegaan aan het feit dat het nucleon een samengesteld deeltje is waarın Thomson-verstrooling veroorzaakt kan worden door creatıe van een quark-antıquark-paar in de tussentoestand.
"Computing" neemt een zeer belangrıjke plats in binnen het onderzoek in de fysica. Het verdient daarom aanbeveling om een fysicus-ınformaticus aan te stellen om de fysici op dat terrein te ondersteunen, zowel in het onderwijs als in het onderzoek.

X
De bedrıjfsgezondheidszorg voor de lagere overheld voldoet nog steeds niet aan de wettelıjke elsen zoals dre gesteld worden aan de bedrıjfsgezondheıdszorg in het bedrıjfsleven. Dit is een van de voorbeelden waarın het spreekwoord "Verbeter de wereld, begin bij Uzelf" op de overheld van toepassing is.

XI
Een adequate gezondheıdszorg $1 s$ alleen te verwezenlıjken als ıedereen bereid 15 om, zoveel als in $z 1 j n$ vermogen ligt, zelf kennis te vergaren omtrent en verantwoordelıjkheld te dragen voor zijn elgen gezondheld. Het is onjuist om dit over te laten aan de behandelende artsen.

Het begrıp "behandelend arts" moet meer worden "advıserend arts".

[^0]: * For proton-proton scattering however, little is seen of thas symmetry due to the Coulomb interaction, but apart from this complication the dascussion will hold for a suitable definltion of the phase shıft. We will return to this point later.
 **The usual convention $\hbar=c=1$ is used.

[^1]: * For neutron-proton scattering there are in fact two s-wave phases, one dealing with total spın triplet, the other with total spın singlet scattering and the formula becomes:

[^2]: *For the moment the potential is assumed to be energy independent and local.

[^3]: ${ }^{*}$ We take the Messiah convention for $n_{\ell}, 1 . e$. an opposite $s i g n$ for n_{ℓ} compared with most authors [Me 61]:

[^4]: *We will omıt the subscript indicating the angular momentum in the following.

[^5]: *[Ne 66] eq. 12.144 after rewriting, using our conventions.

[^6]: *Absence of CDD poles and property "A" are assumed.

[^7]: *Corresponding properties, with upper- and lower-half plane interchanged are valid for: $k^{\ell+1} N_{C} e^{+1 \sigma_{\ell}}$ and $-(1 k) /\left(N_{C}^{2} k^{2}\right)+H_{C}$. The proof is left to the reader.

[^8]: *Sometames we will refer to this long range part with: V_{L}, i.e. putting the Coulomb part into $V_{L}: ~ " V_{L} \equiv V_{L}+\frac{2 M_{r} \alpha_{F}}{r}$ ". When explicit formulas are used, containıng V_{L}, one must always use the "finıte range" part as V_{L}; the Coulomb part is represented by the use of Coulomb wave functions instead of Bessel or Neumann functions. **This is of course not sufficient; as before we will fix the "amount of regular solutions contained in V_{I} " by requiring that the " $r{ }^{\ell+1}$ " term in the expansion must be zero.

[^9]: *In fact all of this $1 s$ not trivial due to the r^{-1} behaviour for $r \rightarrow \infty$ in the potentıal. Bounds on the wave functions for $\ell=0$ are given e.g. by Cornille and Martin [co 62].

[^10]: *For a review of the properties of pade approximants we refer to:
 G.A. Baker Jr.: Essentıals of Padé approxımants; Academıc Press Inc. (1975).

[^11]: *It is not true, however, that every choice of Padé coefficients leads to "physıcal" poles in $N_{L}^{2} k^{2}{\underset{\delta}{S}}_{L}$, 1.e. along the negatıve k^{2}

[^12]: *Of course this is not the method used by CFS or the most simple method for thıs trıvıal potentıal. See also [Wo 62], [No 64].

[^13]: *Only used as an example since the results can be calculated in a simple way.

[^14]: *Therefore, $\operatorname{Im} \beta_{C}<0, \operatorname{Im} \alpha>0$ and $\operatorname{Im} \beta>0$ for a real bound state; Im $\beta<0$ for a virtual bound state.

[^15]: *see next page.

[^16]: *This can be seen $1 n$ the following way: take for instance a potentıal which is very repulsive near the origin; in that case the regular solution will decrease exponentlally to zero for $\boldsymbol{r} \rightarrow 0$. This means that the wave function is almost zero in that region (compared with the value for $r \rightarrow \infty$). The phase shift $1 s$ more sensitive for the radius of the repulsion than the actual value of the potential; this is however not the caso for N_{L} and H_{L}. Try it with a repulsive square well.

[^17]: *See note on page $45: V_{L}=$ long range potentzal eq. (27) - Coulomb part.

[^18]: *The pomeron coupling constant and pion coupling constant are slightly changed to reproduce $a^{1} S_{0}$ np scattering length of -23.7 fm .

[^19]: *equivalent with $V_{L} \equiv 1$ pole, $V_{S} \equiv 1$ pole.

[^20]: *This is of course not true for $\mathrm{p}_{\mathrm{CFS}}(2)$, eq. (2) which cannot produce a cross-over and pole; it is fixed by $\mathrm{a}_{\mathrm{N}}, \mathrm{r}_{\mathrm{N}}, \mathrm{f}^{2}$ and μ only (eq. 4.23). For technical reasons we did not use $E_{c o}$ and $E_{p o}$, but points at 35 and 160 MeV to fix the parametrization in CFS (3) and $Y(2)$.

[^21]: *For technical reasons vacuum polarization was omitted.

[^22]: *OPE-interaction is represented by a Yukawa potential.

[^23]: *In fact tne chi-squared is somewhat higher than $Y(2)$ but this does not exclude the phase shifts as predıcted by CFS (3).

[^24]: *There are added some new data at 9.85 MeV and recent data from the VPI group [Ar 80] since that time, which resulted into a lower error; the fitted value of $g_{\pi}^{2} / 4 \pi$ was not affected significantly.

[^25]: *In fact one believes it is a so-called asymptotic series.

[^26]: *At this point we must mention the work of Rijken [Ry 75] who arrived ultımately at essentially the same equations using another starting polnt: analytıc S-matrix approach using the "New Strip Approximation".

[^27]: *We restrict ourselves to the energy region where we have only (physical) two-particle intermedıate states: $1 . e$. two-particle unatarity.

[^28]: *For spınless external particles there is of course no difference between M and T or N and W as used $2 n$ the prevzous section.

[^29]: $*_{1 n}$ fact we will use: $\left(g_{\mu \nu}\right) /\left(1\left(k^{2}+\mu^{2}\right)\right)$, so that one is able to genera-
 lize results to massive vector meson exchange.

[^30]: *For these dlagrams one can neglect those with a negatave energy state and approximate the vertices by:

[^31]: *By this we mean that both sides of the equalıty (7) have to be integrated with a twice contınuously differentiable test function vanıshing at $\cos \theta=1$, in order to obtaln convergence of the sum over \& [Ta 74].

