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GENERAL INTRODUCTION

In this thesis on effective range theory and the electromagnetic
interaction, we study two aspects which are of importance in the ana-
lysis of proton-proton scattering data and the description of thas
process with the help of a potential model.

The first part of this thesis describes a generalized effective
range formalism which at present 1s used to analyse experimental
proton-proton scattering data for laboratory energies below 30 MeV.

In principle 1t could be used up to 300 MeV; in this way the original
energy region for which effective range theory was believed to work
fine (0 - 10 MeV) is extended up to the first inelastic channel.

The main goal of the first part is to provide a thorough basis
for the modified effective range theory. We will consider only single
channel scattering and omit generalizations to coupled channels (which
are rather straightforward). As an application we will show this theory
can be used to determine the pion-nucleon coupling constant.

The effective range theory was originally developed fourty years
ago [La 44, Sch 47). In 1ts most simple form i1t gives a prescription of
the total phase shift as a function of the energy in terms of a few
phenomenological parameters. However, in proton-proton scattering this
total phase shift is very difficult to parametrize since it contains
also a part which 1s generated by the electric interaction. Therefore
this part i1s subtracted from the total phase shift and the remainder,
the so-called nuclear phase shift i1s parametrized. In this way Coulomb-
and vacuum polarization corrected effective range formulas have been

derived in the past [Be 49, He 60].



Also one has tried to incorporate in the effective range theory
some information of the most well-known part of the nuclear
interaction the one pion exchange mechanism. However, this was done
only 1in an approximated form or with the help of techniques which are
difficult to handle 1n practice [CFS 59, No 64]. In the most frequently
used method ~ the Cini, Fubini, Stanghellini approximation - two
approximations were made which tend to cancel each other in the 0 - 10
MeV region. the one pion cut 1s replaced by one pole - weakening the
total attraction -~ and the remainder of the interaction i1s parametrized
such that i1t cannot support the short range repulsion, which has the
reverse effect. The first approximation appeared to be critical when
a few years ago the second approximation was removed [Em 79, Sa 79]
and a pion-nucleon constant g2/4ﬂ = 20 was obtained from the 0 - 30
MeV proton-proton data.

In this thesis we will show how to incorporate in the effective
range theory every interaction which can be solved 1n closed form or
computed with numerical methods. Also we will pay attention to the
phenomenological representation of that part of the interacticn that
1s unknown (or less well-known)

The basic i1dea behind the generalized effective range theory 1is
that the interaction between two particles can be considered as to
consist of two parts. one part for which one has a good theoretical
description (for instance a potential model) and another part for
which this description does not exist or 1s too complicated to handle
1n first instance. In proton-proton scattering one could consider the
electric interaction and the long range pion-exchange mechanism as

the well~known part, the medium- and short-range nuclear interaction

11



as the second and less well-known part.

The generalized effective range theory will combine these two
aspects of the interaction in a simple way and predict phase shifts as
a function of the energy once one has choosen a suitable parametri-
zation of the second part of the interaction; independent of this
phenomenological parametrization the first part of the interaction,
1ncluded 1n the definition of the effective range function, 1s always
represented correctly in the total phase shift.

The success of effective range theory strongly depends on the
amount of the interaction which can be taken into account exactly.
Every part of the ainteraction which 1s not or incorrectly incorporated
1n the basic effectaive range functions must be represented in the
phenomenological part. This 1s especially the case for the long range
electric interaction since it involves an infinite number of terms in
a partial wave series of the amplitude.

Therefore this electromagnetic interaction is considered in detail
1n the second part of this thesis. A method 1s developed to obtain a
potential 1n configuration space which describes the electromagnetic
1nteraction not only in lowest (nonrelativistic) order, but which also
contains relativistic corrections. It 1s possible to apply thais
potential to higher scattering energies or to situations where, due to
other interactions, the particles obtain relativistic velocities 1in
the potentral region., Effective range functions for this "relativistic”
Coulomb potential are derived 1n the last chapter.

The results of the second part of this thesis are not only of
i1mportance for the actual application of the effective range theory.

In fact the same method can also be applied to the strong interactions.

111



Starting from a field thcoretical description of the interaction, we
w1ll review and modify the standard techniques which are used to-

obtain effective potentials which must describe this interaction.

Since this reduction can only be performed by successive approximations,
we will use a method based on an expansion in terms of the nucleon mass.
In this way 1t 1s possible to pursue a consistent course 1n the book-

keeping of terms which must be kept and neglected.
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Part One:

Effective Range Theory







CHAPTER I

Effective range theory: introduction and historical review

1. Basic effective range theory

Effective range theory has been used in physics for more than
thirty years to characterize and analyse two particle scattering in the
low energy (near threshold) region. In this thesis we will deal mainly
with two nucleon scattering. However, the results can often be applied
to any other two particle system.

Effective range theory borrows 1ts importance from the fact that
for low energies, scattering i1s mainly determined by the s-wave phase
shift. This can be verified experimentally by observing the spherical
symmetry of the scattering in the center of mass system at low
energles*. Experimentally we can measurc the cross section at different
energies of the incident particle which gives the behaviour of the
s-wave phase shift 60 as a function of the energy. It appears that 60
(and therefore the cross section), up to first order, 1s determined by
just two numbers as a function of the energy near threshold in the

effective range approximation:

r k2 (1)

N[

1
k cot 60 =-3 +

with k the center of mass momentum of a nucleon™™.

* For proton-proton scattering however, little 1s seen of this symmetry

due to the Coulomb interaction, but apart from this complication the
discussion will hold for a suitable definition of the phase shift.
We will return to this point later.

*¥*The usual convention¥ = ¢ = 1 1s used.



The quantity "a" 1s called the scattering length and 1s related to the
total cross section at zero energy by (neglecting Coulomb complications):

. _ 2 x
Otot(h =0) = 47 a (2)

which shows that a has the dimension of a length. The other quantity
"r" 1s called the effective range and has also the dimension of a
length. The name "scattering length" comes from the observation that
the scattering wave function (radial, s-wave), outside the range of the

potential appears to be:

~ sin (kr + 60) ~ sin (k(r-a))
§>0

and seems to be shifted over a length "a" with respect to the wave
function without scattering. The value of the "effective range" 1s a
rough 1ndication of the spat:ial size of the 1nteraction as we will see
later.

The fact that the function k cot GO (and 1n proton-proton scatter-
1ng a combination like. k Cg(n) cot 60 + 2nk h(n)) has been taken to
pararetrize, 1s explained in effective range theory which was developed
by Landau [La 44] and by Schwinger [Sch 47} using the variational method
and further exploited by Blatt and Jackson [Bl 49]. A simpler deduction
was proposed by Bethe [Be 49] who also modified the theory for

proton-proton scattering (Coulomb interaction). In this chapter we will

*For neutron-proton scattering there are in fact two s-wave phases, one
dealing with total spin triplet, the other with total spin singlet
scattering and the formula becomes:

a2) .
S

(o1
[}
S
=
Blw
TR

a2+
t



follow Bethe's method since 1t 1s simple and intuitively clear.
Consider the scattering of a particle in the £ = 0 state by a
(central) potential (or two particle scattering in the "relative"
system) .
The radial part of the wave function satisfies the radial

Schrodinger equation; for energy E1 and wave function u,:

" 2_ =
uy + (k1 v(r)) u, = 0 (3a)

with kl the center of mass momentum and V(r)* the potential multiplied

with two times the reduced mass. For another energy E2 and wave

function u,, we have:

n 2_ =
uy + (k2 v(r)) u, 0 (3b)

Equations (3a) and (3b) are second order differential equations and
each has two 1ndependent solutions. The "physical" wave function has

the boundary condition:
ul(O) = uz(O) =0 (4)

Phase shifts 61 and 62 are determined by the asymptotic (r > ®) limt
of these solutions; for potentials which fall off faster than %—for

r > ® one has:

u, (r) ~ sin (k

1 r + 51)
o

1

uz(r) ~ sin (k2r + 62
e

Let us normalize the wave functions by:

*For the moment the potential 1s assumed to be energy i1ndependent and

local.



sin (klr + 61)

M T, Y

sin (kzr + 8.} (6)

uz(r) —_— =1n & = u2(r)
r>® 2
which implies:
ul(O) = u2(0) =1
and
- 2 - - 2 -
" = " =
ul! + k1 u1 u + k2 u2 0

Multiplying eq. (3a) with u, and eq. (3b) with u, and subtracting both

2 1

equations, we obtain after integrating the result over r from O to

infinity:

Vo ' = -
(u2u1 uluz) (k2 kl) Of u,u, dr (7a)

The same procedure gives for the barred functions:

-x) [ wu,ar (7b)

Subtracting the last two equations the values at infinity

at the left hand side do not contribute since barred and unbarred
functions coincide by definition. For r = O there i1s only a contribut-
1on from the barred ones due to boundary condition (4) and therefore,

using eq. (6) we get:
22 ==
cot 51 = (k2 k.) f (ulu

k, cot §, - k
2
! 0

2 - u1u2) dr (8)

1 2
This equation 1s exact and forms the basis of the classic effective range
theory. As 1t stands, however, 1t gives no 1mmediate information since
the barred functions in the integrand at the right hand side contain

the phase shifts (appearing also in the left hand side) and the unbarred

pnysical wave functions are not measurable. Equation (8) can be derived



1n another way when one realizes that the physical wave functions uy

and u2 are orthogonal for E1 # E2 and therefore:

2 2 - - 2 2 - -
(k2 - kl) Of (ulu2 - uluz) dr = (k2 - kl) of u,u, dr .

Since Gl and 52 are explicitly known (eq. (6)), the remaining integral

can be calculated, resulting into the left hand side of eq. (8) (see

[Au 58]). Defining the "mixed effective range":

2 2 - -
p(kis ky) =2 Oj (uu, - uuy) dr (9)
eq. (B) becomes:
1 2 2 2 .2
k2 cot 62 - k, cot 61 =3 (k2 - kl) D(kl, k2) (8b)

We observe that the main contribution to the integral, defining p,
comes from inside the potential range. In this region the physical wave
function will depend only slightly on the momentum (1f 1t 1s not too
big). Also the comparison functions ﬁl and 52 are i1n first order

independent on the energy for small r since they are defined to be 1

1n the origin. Therefore the approximation:
2 2 .
p(kl, kz) =~ p(0,0) - r (10a)

1s probably not too crude for small momenta. Using the result of
standard scattering theory that the s-wave phase shift goes to zero

linear i1n k one defines:

1
o[

= lim k, cot 6§ (10b)
1 1
k=0
1
In this way we obtain the effective range approximation (k = k2):

2

k cot § = - +=rk (11)

|
N =

which 1s tne lowest order Taylor expansion of the exact formula:

K cot 6 = - + 4+ 142 0u?,0) (12)

[
(NI



It 1s difficult to make an estimate of the accuracy of the
approximation eq. (11) without explicit knowledge of the potential. The
arguments based on the energy independence of the physical and
comparison wave functions lead to the conditions:

k2 << V(r) 1inside the

kr << 1 potential region

1
For the neutron-proton scattering system in the S, state, which

0
potential in the outer regions approximates the one pion potential:
-m;x
e
0.16 Mred "

these conditions (for r = ﬁ— ) lead to:
T

Llab << 20 Mev.

Another estimate 1s based on the analytic properties in k2 of eq.
(12) . The s-wave scattering amplitude can be written as:

20y 1 _ 1
21k "k cot § - 1k

(13)
1 1 2 2
-3 + 5 p(k7,00k" - 1k

It follows from standard scattering theory that this amplitude (and
therefore p(k2,0)) wi1ll possess dynamical singularities in the complex

k plane starting at:

= ! —_—
k _12

with m the lowest exchanged mass 1n the potential. Thercfore an
m
2
expansion of p(k,0) will diverge for momenta: |k| > ?} which

corresponds to the condition:

Elab > 10 Mev.

In the neutron-proton system the effective range approximation appears

to be good within a few per cent up to 40 MeV.



2. Effective range theory in the proton-proton system

The proton-proton system differs from the neutron-proton system
(considered 1n section 1) in several aspects:
1. The interaction 1s complicated by long range electric interactions

(Coulomb + vacuum polarization);

2. Experimental data are very accurate.

Due to the electric interaction the theory as developed in section
1 cannot be used. Besides the complication that the asymptotic form of
the wave function as used in eq. (5) ff 1s not correct, 1t appears
that effective range functions of the form: k cot 6 will have an

essential singularity at F = 0 MeV due to the Coulomb interaction,

lab
and a cut starting at - 10—3 MeV due to the vacuum polarization. These
problems were solved by Bethe and Heller [Be 49, He 60].

The Coulomb singularities are removed in the effective range

function (s-wave) Pc(kz):
c, 2. _ 2 c
P (k") = k Co(n) cot & + 2nk h(n) (14)

with 6% the phase shift defined by the asymptotic limit of the physical

wave function:

u(0) =0

(15)
u{r) — ~ sin (kr - n log 2kr + 0. + %)
rre

0

n = Coulomb parameter = %% ’ 00 = Coulomb phase = arg I'(l + in).
In eq. (14) Co(n) and h(n) are complicated functions which depend only

on the Coulomb interaction. For their definition we refer to chapter

III. A similar procedure can be applied to the vacuum polarization.

Defining: GE =8¢ - To, K being the vacuum polarization phase shift,
c,v, 2
Heller derived the effective range function P (k7):



c,v, 2 k Cz(n) E
P ' (k") = —=—— [(1+4x) cot § = tan 1,.] + 2nk (h(n) + & (n)) (16)
1-¢, 0 0 0

with XO' ¢0 and f_ functions obtained from the vacuum polarization

0

,v(k2) removes also the nearest

interaction only. The function PC
-3
vacuum polarization singularities at - 10 MeV. It appears that the

nearest singularity 1s now determined by the pion interaction at

Elab = - 10 MeV.

The behaviour of PC'V(kz) as a function of the energy, 1s roughly

the same as the one derived for the 1SO neutron-proton system eqg. (12}
and 1s discussed 1n chapter VI.

Due to the very accurate proton-proton sacttering data in the low
energy region, the effective range approximation of the effective range
function:

L A (n

Pc,v(kZ) - _
c,v 2
a

1s too crude; one adds another expansion parameter p - the shape - and
obtains what 1s called the shape dependent approximation:

l c,v k2 c,v 3 .4

c,v, 2. _
P (k7) = aC'V 3 Y -p r k (18)

This approximation 1s believed to work fine up to 10 Mev; for larger
energles deviations become bigger (partially caused by the cut at

- 10 Mev from the pion interaction). In the shape dependent approximat-

c,v _C,Vv

c,v v
1on of P’ (k2) the parameters a , X and pc'

are purely

phenomenological parameters, determined by experiment only. To get rid

of one parameter and also to extend approximately the radius of
convergence of the series, the Cini-Fubini-Stanghellini approximation

was derived [CFS 59, Wo 62, No 64]:

10



c,v.,4
PC'V(kz) - _ 1 + l rc,v k2 _ r3 p k
ac,v 2 1+ c,vk2
4 (19)
pc,v' a®"V = functions of a“'", 'V and pion coupling constant

We will comment later on the accuracy of this approximation.

From the discussion up to now 1t will be clear that effective range

theory has two different aspects:

(1) the calculation of a suitable effective range function

which must be as smooth as possible as a function of
energy;

(11) the choice of a suitable parametrization of the effective
range function with a minimum number of phenomenological
parameters.

These two points are closely connected with each other and with the

analytic properties of the effective range function. We will not use

Bethe's method, as described in section 1, for several reasons:

(1) For higher partial waves and/or Coulomb interactions i1t looses
1ts simplicrty and rnvolves much computational work;

(21) In Bethe's method the analytic properties of the effective range
function do not clearly emerge;

(111) It 1s difficult to find out which parametrization must be used

and how many parameters will be needed.

11



CHAPTER II

General effective range theory for finite range potentials

1. Introduction

Consider single channel scatteraing, described by the radial
Schrodinger equation:
d 2 a(p+1)

— + (k
dr2 r2

-V)] u=20 (1)

with V a local, energy independent potential (multiplied with two times

the reduced mass), satisfying the following properties:

V(xr) —> drops exponentially
>

V(r) 1s analytic in r for Re r > O.

Generalizations for potentials which have a 1/r tail or a simple pole
at the origin will be treated 1in the following chapters.
The phase shift 51 of V, 1s determined from the asymptotic behaviour of

the regular solution of (1), defined by:

rJL+1
ulr) T Zwn

0 2)
u(r) —*> constant % (cos 52 jl(kr) + sin 61 nl(kr))kr
r—)@

where Iy and n are the spherical Bessel and Neumann functions.

*
L

The collection of all d§!s contains the scattering information of

L

the potential V. For instance the scattering amplitude 1s given by:

*We take the Messiah convention for nys, 1.e. an opposite sign for n,

compared with most authors [Me 61]:

ng(z) —> 2 Qaey e

z+0

12



2186
s e L -1
£,(8) = gzo (22+1) ==~ P, (cos 8) (3)

The phase shifts 51 will be fitted in such a way that they can reproduce
the experimental information. To connect data at dirfferent energies one
often uses the effective range expansion:

~+
2, . kZL 1

P(k%) = cot §_ = -~ —L-+ E r kT o+ ... (4)
L al 2 72

However, the series expansion(4) has a radius of convergence 1in k2
which 1s determined by the behaviour of the potential for r = <,

Assuming:
_qu
V() — ~e (5)

o

then we will prove that (4) 1s convergent for |k2| < Ui/4.

Suppose the potential 1s a superposition of two parts:

v(r) = VL(r) + Vs(r) (6)
~u T
with: VL(r) — ~ e
r—)m
-ur

Vs(r) —_— ~ e
r o

: > 2 -
and us My o VL and VS both analytic in r (Re r > 0)
The potential VL will be supposed to be known 1n closed form and

with a range which i1s longer than the potential V, which 1s unknown (or

S
not well known). The expansion of the effective range function (4) ais
limted by the potential VL with the longest range.

The purpose of general effective range theory 1s to disentangle
the information from the potentials VL and VS 1n such a way that
finally we have a formalism in which only the Vs potential 1s represent-

ed by phenomenological parameters; this i1n contrast with eq. (4) where

a, and r, parametrize V,

3 as well as VL.

s

13



As applications of the decomposition (6) one could imagine:

np scattering with: VL =0

\'

3 nuclear potential

which 1s 1n fact the trivial decomposition and will ultimately
lead to the old effective range formalism, eq. (4);

or:

np scattering with: V_ = pion potential

L

Vs = nuclear minus the pion potential

-1
After generalization to potentials with an r tail and/or a simple
pole i1n the origin:

pp scattering wath: VL = Coulomb potential

Vs

vacuum polarization + nuclear potential
which 1s obtained by using the effective range function

pS(k%), eq. (1.14);

or:

pp scattering with: VL = Coulomb + vacuum polarization potential
Vs = nuclear potential

leading to the effective range function Pc'v(kz), eq. (16);
or:
pp scattering with: VL = Coulomb + vacuum polarization + pion
potential

VS = nuclear minus the pion potential.

L
The effective range function P (k2) for a long range potential VL' 1s
determined by the properties of the solutions of the radial Schrddinger
equation 1n which only VL 1s present. This will be studied in the next

section.

14



2. The long range potential VL

Agaln we start with the radial Schrodinger equation, now for

potential VL only:

2
(d_+(k2_l_MVL) veo . -

dr2 r2

This second order linear differential equation has two independent
solutions, which we will define by boundary conditions at the origin:
the regular solution Vo with:

1 241 242
VR(r) —> Gan ~t + Ofr ) (8)
r+0

the i1rregular solution Vi with:

vp () — (22-1)1! e oMY

r~>0

) (9)
They satisfy the Wronskian relation:
= ' - ' =
w(vR,vI) viv viv 1

The regular solution 1s uniquely determined by the boundary condition

(8) . The i1rregular solution, however, is not completely fixed by (9):

one can add a multiple of the regular solution; we will return on this
point 1n the following (see also appendix I).

Defining 52 and n by:

L

- 1
jl(r) = k£+1 jl(kr) kr

- ) (10)
nk(r) =k nk(kr) kr

one can write the integral equations:

*We will omt the subscript indicating the angular momentum 1in the

following.

15



™

v_(r) = 5 (r) + f Glr,r') v_(r') v_(r") dr’
R ¢ 0 L R (11)
VI(r) = a nl(r) +b Jl(r) + [ Glx,en VL(r') VI(r') dr’
(r > €)
with:
a = W(3, vI) r=e
- (12)
b = w(vI, n) =
and G(r,r') =0 r <r'
_ B _ _ (13)
=32(r)ng(r') —nz(r)Jl(r') r>r'

The number ¢ 1s finite, not equal to zero. The integral equation for

v, s not defined for € = 0 due to the singularity of the integrand at
-24

r = 0 (like r ). In appendix I we give more details about the

regular and irregular solution and a short proof of the following

analytic properties.

- - 2
v j, and n, are for finite r entire functions of k™. This 1s a
2z ZoIite *

R" 1’ L

consequence of the fact that the boundary conditions (8), (9) are

2
analytic in k ;

- vz and 51 are entire functions in r (Re r > 0);

-V, 1s analytic in r (Re r > 0} except for a singularity at the

origin and a cut starting at r = 0 along the negative axis. The

modr fied Neumann function Ei has only a pole in the origin.

We can rewrite eq. (11) into:

r r
VR(r) = (1 + Of n, VL Vo dr')jl(r) - (Of 3, VL vR dr') nﬁ(r)
(14)
and:
r _ R _
v () = (@ - Ef 3pVp vy drting(x) + (b + CJ Vo v dr') 3, ()
(15)

16



Since VL has a finite range we can write Ve and Vi for r » » as a

linear combination of the Bessel and Neumann functions (x kr). We will
do this 1n a special way and define three functions: NI' HL and GL

connected with the asymptotic limt:

N_ (cos 6 1, + s1n 6 n ) kr
(16)

_—
L
oo
v, —> ‘li'(COS 8 n, - sin 6 I, ) kr
roo

- HLNL (cos GL 1, + sin 6L nl) kr

In eq. (16) we have used: w(vR,vI) = 1.

Using eq. (10), (14), (15) and (16) we obtain:

tan GL = -k

1 -
N, cos GL =—— (1+ [ n v vR) (17

N_ sin
L 6L

]

[}
kg
—
[ )]
=

<
<

S ®
cos L _ 3 J‘
N_k LL

Vo ov.)
1, e L I

Iy

sin § ®
L -2-1 -
NLk - H N cos GL =k (b + Ef n, v VI)

Analytic properties of NL' HL and GL are derived by first defining the

functions:

* - - 22+1
[ g2 3 k7T v v ar (18)

which are related to the well-known Jost-functions*:

*[Ne 66] eq. 12.144 after rewriting, using our conventions.
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L :
g = 1H+R

Furthermore we define
w

+ p— —_—
S =b3f1 k29~+1 a + f (n. T2 jlk22+l)v v_ dr (19)

In appendix I we prove:

+ +
~ S , R are analytic in the whole k-plane except on the negative
N
L
1maginary axis: k < -1 > H

-5, R are analytic 1n the whole k-plane except on the positive

imaginary axis: k > +1 ?% i
* 1
- lim R (k) = Of ;—) except along the negative/positive 1imaginary
k »o
axis.
s~ _ 1
- lim > T 1+ O (=) except for the negative/positive
Koo k e+1 k

1maginary axis.

+ +
- s *(x*) = £ (k)

s™* k*) = sF (k)

. - (20)

Tx

R*(k*) = R (k)

R* (k*) = R (k)

+
The properties of S are only valid when there 1s a restriction on the
amount of regular solution contained in the definition of the irregular
solution (see appendix I). Using these properties and egs (17), (18),

(19) one can prove:

- _+
22— - _2%=
k 24-1 tan §_ = % R-R k 2i-1 1s analytic in the complex k-plane

+ -
L 2+R +R
u
except for singularities along the imaginary axis for k > 1 5 and

u
k < -1 —E-, and except for (i1solated) poles coming from zero's of

- 2
2+RT+R™.

The symmetry properties eq. (20) give: k_”'-1 tan GL 15 a real function

18



(on the real axas) and is even 1in k.
@

Since f 51 VL vR 1s, 1n general, at k2 = 0 unequal to zero (note
0
that Jland VR have boundary conditions which do not depend on k2), we
-22-1
can use the inverse of k tan 6L and obtain the effective range

function and expansion eqg. (4). Furthermore:

28~ -20-
lim k 24-1 tan GL =0 (k 24 2) from which we observe, among others, that
k »

the s-wave effective range function:

2
PQ=O(k ) = k cot GL

1s linear in k2 for k2 + @ and that lim GI =0 ().
kz-"=°
+ - +
- k“ln(k)el6L=1+R=‘[ (21a)
L E+
1s analytic except for singularities on the negative 1maginary axis:
b
L
k -1 = .
-1

+
Furthermore kl 1 NL(k) 1s real on the real axas and even in k.

Since 1im GL =0 ( %—) and lim (1+R+) =1+ 0 ( %—) one obtains:

ko ko
Lok e k) =1+0 (1)

L k
k »=

From the expression for N_ cos 6L, eg. (17) one observes that:

L

lim k]L+1 NL(k) = finite (1n general).
k-0

-16
Note that e *°L has also singularities in the upper half plane,
N
starting at k = +1 7? . Therefore NL(k) must have a singularity

structure at the same place i1n the upper half plane, .n such a way

lGL —16L

that 1t cancels the singularities of e 1n the product: NL e
This 1s an i1mportant property which allows calculation of NL(k) with

dispersion integrals. Similar properties hold for:

+ +
2+1 el(sL

L =1+R =°[_ (21b)

k N_ (k)
except that upper- and lower-plane are interchanged.

19



- The expression.

g1 YL
*x e N (k) ;— +H1) =stw

L
Nk
L
has the same analytic properties as the Jost functions, eqg. (2la).

Dividing through ££+ =1+ R+ we get:

—— 4+ H = - ——— (22a)

which 1s analytic except for singularities along the negative 1maginary
H
L

axis: k < =1 - - Moreover this function has poles due to the zero's

of the Jost function, which are usually interpreted as bound state ox

resonance poles. With upper and lower plane interchanged, similar

properties hold for:

z_ -u - LT (22b)
NLk 1+ R

Furthermore one proves: HL(k) 1s real on the real k-axis and 1s even
in k.
+ +
Using the asymptotic limts for S , R and NL(k) one cbtains:

23
lim HL(k) =0 (k L) and for the zero energy limit: lim HI(k) = finite.
k o k>0

Once NL 1s calculated, this allows calculation of HL(k) with dispersion
integrals. Subtraction is needed due to the behaviour for k > =;
therefore H(k) can be determined up to a polynomial in k2 of degree

22 2
k from 1ts singularity structure in the k“ plane. This ambiguity
corresponds with the freedom one has 1n the definition of the irregular
solution, Changing the irregular solution by adding a multiple of the

regular solution:
v. v+ FkY) v (23)
I I R

will give the same analytic properties for eq. (22) (and HL), provided

20



F(kz) 1s an analytic function in k2 with 1im F(k2) =0 (kZQ) (see
|k o

+
appendix I). One proves that S° similarly changes:
+ + + 2
S (k) » S (k) + (1 + R (k)) F(k")
Therefore:

2 2 2
HL(k ) > HL(k ) - F(k7) (24)

The functions NL' and GL, determined by the long range potential

HL
VL’ are used in the definition of the effective range function of the

total potential: V = V_ + VS, as we will show 1n the following.

L

3. The total potential: V=V  +V

L S

Let us return to the total potential: Vv = VL + Vs , and 1ts

physical (regular) solution: u. The Schrodinger equation reads:

2

vt - MU g) w0 (25)
dr r

with the Dboundary conditions for u(r) at r = 0:
2+1

_r
(22+1) 1!

2

u(r) r0 (£* (26)

th
The £ partial wave phase shift § 1s determined by the asymptotic

behaviour of u(r):

u(r) — constant (cos § 1y + sin § nl) kx (27)
rr®

Just as the regular solution v_, defined in section 2, the wave function

R

u(r) 1s analytic in k2 for finite r since 1t has boundary conditions

at r = 0 which are analytic 1in kz. It satisfies the integral equation:

a(m) =vo(n) + [ art 6Mr,r') voe) u(xh (28)
0

with:

21



GL(r,rW

=0 r <r'
(29)
GU(r,r") = v (r') v (r) - v (r') v, (x) r>rt
! I R R I -
GL 1s the complete Greens function of the long range potential.
We rewrite eq. (28) into:
r r
= ' - [
u(r) = (1+ [ v, Vg udr') v(n - ( [ vy Vg uary v, () (30)
0 0
r r 2
The integrals: f dr' v_ V_ u and f dr' v_ V_, u are analytic in k
0 I S 0 R 'S

1n the whole complex k2 plane since Vir Ypr o u and Vs are analytic, for

finite r. This analyticity 1s affected in the limt r + <. Defining:
A~ 1+ f dr' v. V_ u
0 I S
@ (31)

and using the i1nequalities of appendix I, eq. (5) and eq. (14), which
also hold for the regular solution u(r), one proves:
A and B are even and real i1n k and analytic in the region:

LlS -dgl
[Im k <_-2— 1f: IVS(r)| —> ~g 'S .
o

Moreover, when Vs(r) 1s an analztlc* potential, one proves that:

A and B are analytic in the whole k-plane except for
u

singularities along the imaginary axis for k > 1-%2
u
S
< -1 — .
and k < -1 >

Therefore, except for simple poles coming from zeros of B, % 1s even and

analytic in the same region. Due to the boundary conditions

*Meant 1s analyticity in r. See [Ne 66] for a more careful definition
1
and discussion; we will always use potentials analytic in the 2 T

class, and 1in this chapter they are also restricted to:

V(0) = finite.
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A
at r = 0 also the lamt k » 0 1s, in gencral, well defined for E-and

unequal zero. Combining eqs (27), (30), (31) and (16) we obtain:

u(r) — A vR(r) + B VI(r)
r o

B
> - = -
(A NL cos GL sin § B HL NL cos GL)JE(kr) kr

Lo NLk L
B
+ (A NL sin 6L + NLk cos 6L - B HL NL sin GL)nE(kr) kr
So: B
A §_ - -
NL cos L K sin 6L B HL NL cos GL
cot § = B (32)
+ — -
A NL sin 6L NLk cos GL B HL NL sin GL
Defining:
L
= +
§ 6L ds (33)

one rewrites eqg. (32) 1into the simple form:

cot 62 A
—_——2 4+ H = 5 (34)

N_k
L

The effective range function of the total potential V with respect to

1ts long range component VL 1s defined as:

L
2 cot GS

L
P(k):_Z__HL (35)
NLk

These definitions need some comments:

- the phase shift 6:, defined by eq. (33), can be considered as the
phase shaft of the total potential: V = VL + Vs with respect to
solutions of the potential VL. Defining:

© 1
v = Vv
RN R (36)

]
v. =N + N
Lk VI HL L k VR

-

one proves:
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v_ —> (cos 6L I, + sin 5L nl) kr
(37)

-~ + c
v_ —> (~s1in 6L 3 cos SL n,) kr

& L

and:

8

u —> = (cos GL v_ + sin GL ;w)
S s I

o

L
— (cos (6L + Ss) 1,

L
+ § + 6
sin ( L S) nl) kr
The analyticity of 62 1s limited by singularities starting at
u
k=+=+1 —%i coming from the long range potential VL.

- The functions NL and HL have singularities along the imaginary axis
H
starting at k = = 1 -5 -

L
- However the singularities from GS, NL and HL, starting at
ML L 2
k = £+ 1 — cancel out 1n the effective range function P (k”), analytic

1n the complex plane, except for simple poles and singularities along

u

the i1maginary axis starting at k = + 1 ?? ; 1Lf Hg > UL then an expansion
2 L, 2

in k- of P (k") will converge better than a simlar expansion of the

k21+1 cot 6.

effective range funct1m1ofthetotalphaseshlft:P(k2) =
L. 2
- As stated before, P (k") 1s an even and real function in k, and one

can prove:

+
um PP k% = o w?*?
ko
L, 2

lim P (k") #0 , 1n general.

k>0
When we take as VL the triwvial potential VL = 0, we obtain: 6L =0,

—-L-1 - -

NL =k , and HL can be chosen to be: HL =0 (VR = 31, VI = nl). In

L
this case P becomes:

L k21+1

VL=O

29+1

cot 62 =k cot §

which 1s the ordinary effective range function. Considering all this
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for the neutron-proton interaction as described by the one-boson-
exchange models with lightest mesons the m and n (neglecting for the
moment 2n uncorrelated exchange) we observe that: P(k2) has a cut 1in
the complex energy plane starting at - 10 MeV (laboratory energy).
Taking as VL the pion exchange potential, 1t will lead to a larger
analyticity region for PL(kz): PL(kZ) has a cut starting at about
- 150 MeV. Sultable parametrizations of PL(kz) will be discussed later.
In the next section we will discuss the connection of the effect-
1ve range function with the partial wave amplitude and derive some more

properties.

4. Effective range functions and the partial wave amplitude

We define outgoing and incoming solutions of the long range

potential v

- 1
v, ( ;3;-+ HL) Ve + vI
L (38)
- it
v_=( 2+HL)VR+VI
NLk

In the asymptotic limt we have:

iy,
v, — 2 0 ) ke * (39)
- r>® L

The solutions v, (r) are analytic in the whole complex k-plane for
+
finite r, except for singularities along the negative- (v ) and

n
- L
positive- (v ) 1maginary axis for |k| 1_75>(conform eqs (22)). Moreover

(+)

*: =
hl (kxr) = nl(kr) +a Jl(kr)
lim héi)(kr) = el(kr_(gn/z))/kr
FN'-D
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they have poles at the zeros of the Jost functions Jtli' With the usual

methods one prcves:

4
e_idL

1+|kr| )E e;(Im k)r

CaT

|v (r)] < constant ~ (40)
+ Nka+1

The integral equation (30) for the solution of the total potential V

can be written as:

Nik r
= — )
u(r) + o <v+(r) (1 + Of vo Vg u dr')
r
v 1+ [ v ovou dr'o (41)
0
For real k one has:
L L
u(r) — =% v () - ey ()
e L
1 ( l(dL+sz) h(+) _ e-l(6L+65) h(")) kr (42)
N_k 4 £
hana N
Therefore: ©
L]
215L 1+ Of v_ Vs u dr
e S = — (43)
L}
1+ f v, Vs u dr
0
and of course: § =6 + GL
: L s

Due to the limted analyticity of v, and v_ 1n the integrands of eq.
L H
218
(43), e 1% (and also 6g) 1s only analytic for |Im k| 5_7;-(except for

possible poles from zeros of the denominator): Analyticity 1s restricted

wn first instance by the long range potential VL' Furthermore at the

bound state Or resonance enerqies of the long range potential VL we

have:
L
e?%s 2 g (44)

since V , ( —%— + HL), has a pole at these energies. This corresponds
N:k
L

wlth the fact that bound states (resonances) of the long range

potential VI are (in general) different from bound states and
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rescnance energies of the total potential: VL + VS

= w

1f: e216L

L
then, 1n general: ez“S = e216L e2163 # oo

The effective range expression (34) automatically takes care of thas

since at the bound state poles of the potential VL:

Nik =0 , H N2k =1 and # ®

W

(the proof of thas is straightforward).

The analyticity of eq. (43) 1s limted in the upper half plane
u
(physical sheet) to the region: Im k 5_7;-. Therefore we define a
u
S
t 1 1 for: Imk < — :
quantity which 1s analytic in the upper half plane for m s

v
of ®s " Nik 2165
- === (75 - 1)
=, 21
1+ [ v Vo u (45)
0 . 2.2
= NLk f(SL

It 1s related with the asymptotic limt:

2.2
u(r) ~— = (VR + NLk fGL v+) (46)
> S

which 1s proven by rewriting eq. (30) into:
r

r
u(r) = (1 + Of dr' v, VoW v(n) - (Of dr' v, v w v wn

We change the normalization of u(rx) defining:

u(r) = u(z) (48)

o

1+ f dr' v,. V_u
+ S
0
The wave function of the total potential: um(r) 1s analytic in the whole

complex k-plane except for singularities in the lower half plane, along
u
the imaginary axis for Imk < - 7;-and except for poles due to the

vanishing of the denominator of eq. (48) (bound states or resonances of
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the total potential: VL + VS' compare with eq. (43) and prove:

e216 = «©) . Furthermore um(r) satisfies:
® r
[ -] - _ R @™ _ r [+
u (2) = vp(e) - v @ ([ ar'vveu) - v (@ ([ dr'vouou)
r 0
=v_I(r) - f GL'+(r,r')V (r")u (r')dr" (49)
R 0 S
with:
+
et = vpr) v, (x) (50)

where r, 1ndicates the smaller of r and r', and r_ the larger.

We obtain:

NiszaL =- ] v vg u dr' (51)
s 0

Using the 1nequalities for Ve and v, one obtains:

IGL,+

2+1 /1 L
(xr,x) | < constant ]r<| ' < +|kr)|\ ellm kK|re- Imk r,

+ \1+[kr ] F
| 148" | < > (52)

and for Imk > O:

e-Im k(rs~r.)

[z, e —— = (53)

r,r's=
Except for those points in the upper half plane where a long range
bound state 1s present, this gives an additional exponential damping in
r and r' of the integrand of eg. (49) ain the upper half plane. Neglect-
ing these bound states for the moment one proves the following

properties with the usual methods using egs (49), (51), (52):

Nik2 fGL 1s analytic in the upper half of the complex momentum plane,
except ior singularities along the imaginary axis starting at + 1 %;
and poles corresponding with bound states of the total potential V

"

(note: NL and fGL are only analytic up tok =1 ?; .
S

a
Moreover: the successive Born approximations of u , from eqg. (49)

(1n symbolic notation):
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@

= - + - ..
u VR G VS vR G VS G VS VR

2
lead to successive Born approximations of Nik féL:

2,2
= - v \% - ... 4
NLk de VR s vR + vR s G VS vR (54)

which has an additive singularity structure, which mecans:

2,2 . .
the nth Born approximalion o) FvZk st, defined by:
S

v V.GV L.V
- Vp Vs GV G s Yr

n times VS
Mg
18 analytie up to k = + 1 n > in the upper half plane.

Otherwise stated:

the dynamical singularilies tn the upper halj plane (not the bound
u

8 ., .o 2,2 S
states!) along the imaginary axis for N7k fGL fromk =1 5 up to
" ? 5
k=1n 7? are completely given by the first (n—1) Borm approximations.

2
For these reasons it 1s Nik fGL which 1s most useful i1n dispersion
s

techniques (however, an explicit solution of the wave functions
corresponding with the long range potential VL 1s required). In the

2
lower half plane these properties do not hold: Nik fGL 1s only analytic
M S

up tok = -1 7; !! Returning to the bound states of VL’ we note that

2
at these energies: Nik = 0; therefore with eq. (44) we get:

_ 1
fég N 21k

~

2 2
; Nk fo, =0 k, = momentum of V
8. LBy, 8 BL L
bound state (55)

Now we are ready to make the connection with the total partial wave

amplitude; using § S+ 6: one obtains:

L

L
8
£ = 28y _ 2oL _ + 2101 e?°s _
§ 21k 21k 21k
_ 2167,
= fGL + e st (56)
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216y,

2
s er_,k

obtains the well-known result:

2
Using the properties of Nik de and those of =

(eq. (21)) one

u
S
ezltSL fGL 1s analytic in the upper half momentum plane up to k = + 1 5
S
(except bound state poles).

The effective range function (35) can now be obtained in another

way:
Pl Lot el em =2 vm o+ —L (57)
N2k s Lo e n&?
L L éé- L

From the properties of Nik2 de and 1/(Nik) + HL 1t 1s clear that PL
s

y
1s analytic in the upper half momentum plane up to k =1 =S (except for

2
L
1solated poles 1f fGL = 0). Since the left hand side 1s even 1in k (Gs
S
1s odd, Ni and HL arc even 1n k!) the same property also holds for the
lower half plane. That PL is real on the real axis, follows from the

fact that 6;, N_ and HL are real for physical k.

L
In the next section we will see how we can use all this to define

effective range functions without the restrictions of local, non-

relativistic Schrddinger theory.

5. Definition of the effective range function using 1ts analytic

properties

Elastic single channel effective range theory can be derived 1f

the total partial wave amplitude f, satisfies the decomposition

$

theorem:
Take.

f. = f + remainder (58)
§ 6L

with £s the partial wave amplitude for a long range interaction which
L
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torms part of the total interaction.
Total interaction = long ranje + short(er) range interaction
(range = J/uL) (range = l/us) (59)
Then the singularity structure in the upper hal’ momentum plane rust be

spiit up according to:

YL
fs > analytic vp tok = + 1 -
ML
13[ s analyiie vp lok = + 1 -
U
remainder. analytic up to k = + 1 7;

provided: w, < Moo and except for poles corresponding with bound states
£

L
(either from the total interaction or from its long range part).

This decomposition theorem has a much wider range than local, non-
relativistic Schrodinger scattering theory alone and can be applied to
most types of interactions whether nonlocal, energy dependent or
derived from field theory. It 1s also valid for coupled channels,
however, we will use 1t only for single channel partial waves for

the moment.

Due to unitarity we can write eq. (58) on the physical axis as:

£o= g5 + et ¢

L
L §

with: 215L
e S _

= — ; : [ 1 .
oL 71k ; L * s rea

s’ 'L

This 1s of course also true for unphysical momenta, howcver, 1n that
L

case GS 1s not necessarlly real. Suppose we could find two functions

NL and H. with the analytic properties:

L
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(’k N 13 analytic in tne uprer azil,” rlme ana has {(simple)
¢ zeros at the boend states ol the lmy ran.e inter-
\ action.
2+1 . ,
A\k Ny 18 even and real in k.
+ L+1 .
,kl ! N, —— 1 and limk N, = finite number.
L [k [+ k+0
—%— + Hp 18 analytic in the wpper hal’ plane except for
N_k
x L (¢imple) poles at the bound states. At the bound
\ states the residue of‘HI + —%— must be twice the
) * o Npk
residue oj‘x/(NLk)
[ . ,
bR s even and real in k.
H (k) e ,
Sl — 0 and H(k) — iniie number
k k o k-0
l cot Gé
Then we can define: PP = ——— + H 61)
2 L
N_k
L
and prove:
216
i 1 e L
Pl 2 vp v — 62)
WA LT g G2ib 22
L dé L

n
1s even and real in k, analytic for momenta :kl < -éi except for possible

poles corresponding with: féé = 0 (1.e. the short range interaction
becomes "transparent"). If we have a complete knowledge of the long
range interaction (1.e. phase shifts and bound states) the functions
NL and HL can be solved in terms of GL and BL (bound state momenta) ;

assuming for the moment that there are no bound states, requirement A

leads to the dispersion integral, valid for k in the upper half plane:

2+1
+o 1n (k' N_) - a6
2+1 . 1 L 1, ,
In 77" N (k) =i 8 (k) = 5o _m,r — ak
63)

For k 1n the upper half plane, infinitely close to the positive real
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axis, eq. (63) leads to:

) +o GL ‘.
2+1 "Wt I Kok O
k NL(k) = e
5 ® GL(k')
-%p [ k' &' ——
hid 0 k'2—k2
= e (64)

where we have used the fact that 6L 1s odd 1in k. Furthermore require-

ment B leads to the subtracted dispersion relation:

22
—— tH, - I R
NLk 3=0 °°
1 ,20+1
S— + H_ - ik
k29.+1 +o NLk'
AT _mf 2 (65)

Taking the real part of the left and right hand side we obtain for k

close to the real axis*:

1 3 2 2042
= — 4+ = - [
By (k) z o 0 k ~x P dak
(66)
Using egs (64) and (66) NI and HL can be calculated once the phase shift

GL 15 known for all energies. This could be of importance 1f there is

*Use:
1 ~ 1 _ 1 ) 1
k¥ gokere) k2 N kckere) kM krere) kPP kt-ie) 2
S S
k(k'—ie)21+1
and: n-2
oo , oo F(k')-F(0)...- “——0 r{""2) (g
[ ax’ F(k') - p f ax! (n-2)!
. k-2 e k"
im (n-1)
+ 1) (0
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no Schrodinger equation which could be used to solve N

L HL and 6L

for instance GL 1S given by a Born approximation or by an effective
range approximation. We will return on this in chapter IV.

Formula (64) can be generalized for the case that there are bound
state poles in the upper half plane. Suppose there are poles at

k =1 Bn, then consider:

+

k an kIL+1 N e—léL
k-an L

I (67)

n

which has no zeros in the upper half plane since the zeros of the Jost
function are simple.

Now we can take the logarithm of (67) and follow the same steps as

before. One gets:

® 8§ (k')
2 - .g_ P 'f k' dk' L_
g+t Bn " 0 Kt 2ok
k N (k) =TT (1 +—) e (68a)
L 2
n k
for real physical k, or:
+o §_ (k")
1 , L
o1 Bi = dk KK + 2 GL(k)
k N (k) =TI 1+—)e (68b)
L 2
n k
for k 1n the upper half plane, or:
+m §_ (k")
1 , L
o+ Bi m _mJ’ ' e T W
k N (k) =TT (1 + —= ) e (68c)
L 2
n k

1n the lower half plane.
The singularity in egs (68a,b,c) at k = 0 1s only apparent since
lim §_(k) = nm ¥ which causes the principal value integral in eq. (68a)

k0
2+1
to be singular too, giving a finite value for k NL at k = 0.

*Absence of CDD poles and property "A" are assumed.
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CHAPTER III

Effective range theory for potentials which

contain the Coulomb interaction

1. Introduction

In this chapter we will consider the problems which arise when the
potential contains the Coulomb interaction with infinite range. For
proton-proton scattering the total potential 1s written as the sum of
the (finite range) nuclear potential and the (infinite range) electric

potential:

v=yv (1)

+ Vv
nuc elec

In the real physical world Ve wlll contain the Coulomb, magnetic

lec
moment and vacuum polarization potential.

For the moment we will consider only the Coulomb potential in 1its
nonrelativistic form:
2Mred 0Ll-"

velec = r (2)

with Mred the reduced mass and L the fine structure constant.
In chapter VI of part II of this thesis we will study the case of
a "relativistic" Coulomb potential (containing in fact also an r-z
part) . For the vacuum polarization, which can be evaluated only
numerically, we refer to chapter IV,
When one tries to include the potential of eq. (2) in the calcula-
tions of chapter II, one meets two problems:
First of all the potential 1s not analytic in r anymore but contains a

simple pole at the origin. This 1S not a serious problem since all of

the results can easily be generalized for potentials being analyt:ical
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except for a simple pole at the oragin.
More serious 1s the fact that the potential falls off like r_1 for
r + ®, which i1mplies that the limiting wavefunction for r - « cannot
be written as a fixed (independent of r) linear combination of Bessel
and Neumann functions as in eq. (I1I.2).

However, considering single channel partial wave scattering, we

could write the radial wave function u for potential V and the £'th

1,
partial wave, in the asymptotic limit as:
(x) <P+ e 3

—_—
ul r (cos N sin N 1) (3)

r—)‘m

with FE and Gl the standard regular and irregular Coulomb wave functions,
and 6§ the so-called nuclear phase shift (witn respect to Coulomb wave

>
functions). The total wave function Y(r) 1s a linear combination of

ul(r) wlth the spherical harmonic Yi(e):

® u,(r)
> 3 0
w(r) = ¥ a, —— ¥ (8) . (4)
2=0
Choosing:
c
a, = ¥ Var e et Ontoe) (5)
with:
M a
g, = arg I'(2+1+1n) and n = —EEE——E

one obtains:

e L T R e )
kr 2 4
r+o 2=0
C
© 216N G _+1F
Ve _ymonn wt 22 e (e
020 21k Y £

The first summation of eq. (6) 1s the solution of pure Coulomb

scattering (Vnuc =0, GE = 0) and can be rewritten as (r = =):
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286
el(kz+nln K (£-2)) ) n e—lnln (sin 5 )+210O
2k 51n2 )
2
el(kr—nln 2kr)
x s (7

r
which represents an incoming "plane wave" along the z-direction and an
outgoing spherical wave multiplied with the Coulomb amplitude:

-1nln (sln2 %—) + 2100
£ (8) = - —n__ . (8)
c 20
2k sin —
2
The decomposition in partial wave amplitudes reads:
- 2102
£.(0) = [ (2e+1) S
2=0

-1

31k PQ(cos 0) (9)

The summation on the right hand side, however, does not converge in
the ordinary sense, 1.e. point-like. The partial sums diverge oscilla-
tory and have no limit.

This problem can be solved by considering this partial wave sum as
an Abel-summation [Ge 79] or considering eq. (9) 1n the sense of
distributions [Ta 74].

The second summation of eq. (6) gives for r - «:

216C
@ 2102 e N, 2 -1 0 eJ.(kr—nln 2kr)
z e S~ — Y/an (22+1) Y. (6) -_— (10)
=0 21k L r

and modifies the outgoing spherical wave of eq. (7), leading to the

total amplitude:

C
o 21c£ eZlaN,E -1 ~ 0
£(8) = £_(8) + Y e — Yam (20+41) ¥ (8) (11)

2=0

On the partial wave level this can be written as (with the

restriction concerning the summation of the Coulomb part):

£(8) = ) (22+41) £ P (cos 6) (12a)
20 L
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fZ = f0 + e £ c
L 8
N, 2 c
210 216
e -1 2102 e N, L 1
Tmk ot TEx (12)

Eg. (12b) resembles egs (II.56) and (II.58). Therefore 02 can be

considered 1n a way as the phase shift caused by the Coulomb potent:ial

and:

§ =0 + 6 (13)

as the total phase shift for the total potential: V =V + Vv .
- e nuc elec

In the next section we will review some properties of the Coulomb
functions FQ and Gl and related quantities which we will need 1n the

following.

2. The Coulomb wave functions

Consider the radial Schrddinger equation for the Coulomb potential:

2M o
N (k2 _ red F _ 2(2+1) )y v =0 (14)

L r 2 2
Y

which, using p = kr, can be rewritten into:

2
2% _2n 2l B}
) 4 + (1 5 5 ) vl =0 (15)
ap P
with:
- red aF
n X .

As two 1ndependent solutions of eq. (15) one usually takes the
so-called Coulomb wave functions Fl(n,p) and Gl(n,p). The first one

1s regular at the origin. Their asymptotic behaviour for p -+ « 1s:

FE(HID) —> sin (p - n log 2p - % LT o+ 01)
pro
(16)

1
- — — +
Gl(n’p) —> cos (p n log 2p > Lm 01)
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where the Coulomb phase shift 1s defined by:
02 =arg Tl (£ + 1 + 1n) (17)

For the regular Coulomb wave function one can derive the series

expansion:
T2
Fone) =c ) L A (m 0" (18)
n
n=4%+1
with:
2 2
2mn \1/2 1 n 1/2
c (n) = ——————) —_— 0 (1 +-5) , >0
2 (eZHn_l (22+1) ! a=1 s2
(19)
2 1/2
co(n) = (%) /
e n-1
and:
2 _ 2 __n_
Boyg(m =t ’ Rora (M = 77
(20)
(nin-1)-2(2+1)) a¥(m) = 2n 2% (m - A% _m)
n n) = en n-1 n n-2 n
From eqs (18) and (20) one derives:
d 2+1 £
Fg(n,O) =0 ’ d—rFE(n,kr) — (4+1) Cl(n) k r
>0
2

Therefore the boundary conditions at r = 0 are not analytic in k ;
hence Fl(n,p) 1s not analytic for finite r and will have poles at the
same places as Cl(n).

We defane:

1
F (n,p) (21)
2041y 11 K>t ¢, (n) .

Fl(n,o) =

which has the boundary conditions (similar to eq. (II.8)):

1 241 +2

= 2
Fg(n,o) — G~ + O(r } .

>0

Therefore El(n,kr) w1ll be an entire function of k2 and r. The 1irregular
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Coulomb function Gl(n,p) has the expansion:

2n q, (n) } § 2 n
G, (nsp) = F (n,0) {ln 2p + + D_(n) a (n)p
2 Cg(n) o pl(n) L n=-4 n
(22)
with the definitions:
a,m kg _21{1 1, e DUHD o r, ()
PoM lo 6% s=1 S I'(1+in) p, (n)
‘() = (-1 F+1 n %&{ 2" [in-t+n)
g VISE - Y nt(2a+l-n) T(in-1)
n=0
28+1 2
2 n
p,(n) = ———"—— 1 (n°4n’) . 2> 0
2e+1){(22) '} n=1
Po(n) = 2n
D (n) = —— 1t (23)
L (28+1) Cl(n)

and vy Euler's constant.
- 2 .
The coefficients an(n) satisfy:

2

2
a1+1(n) =0 , An(n) =0 forn > 4 + 1

)2
alm =1,

L L L
(n-2-1) (n+2)a_(n) = 2n ai_l(n) ~a _,(n - (2n-1) p () A (n)

(24)
Also Gl(n,p) satisfies non-analytic boundary conditions at r = 0O:
- - 2
G (o) — D, mk¥rte 1+ F (o) Inr
2 L 2 2
r+0 c_ (n)
0
q,(n)
+1{ “( -+ In 2k) 2n F, (n,p) (25)
Py Co(n)

Defining:
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e E’
Gl(n,p) = (28-1)!! {(22+1) k cl(n) Gl(n,p)

3
k Fl(n,o)

- (qg(n) +p,(n) 1In 2k) o } (26)
£

One can prove:

- - N +
G,ne) > oDt r (1w )+ (e ? 2D K24
jandd]
x pl(n) FQ(n,p) In r (27)
22+1
with the term of order r , between the brackets in the first term of

eq. (27), vanishing.
The boundary condition at r = 0 of 5E(n,p) 1s analytic in k2 and
therefore 62(n,p) 1s an entire function of k2 and also in r, except for
the branch cut due to the 1ln r term and the pole at r = 0.

In this way we have constructed a regular and irregular solutiaon,
El and 62, sim lar to the solutions VR and VI used 1n section II.Z2.
Comparing egs (21), (26) wath eqg. (I1.16), using eqg. (16), 1t seems

reasonable to define:

1
N_(k) =
¢ (@+1) 11 c, (n) g+
(28)
Bo(K) = (2L+1) ! (22-1)11 k241 (@, (M + p, (M) 1n 2K)

Indeed, when we use the definition of the effective range function

PC = (cot Gg)/(Nék) + H_ again, we obtain:

C
P = (een it ¢, () 2 kM e o8
? N
F Ul (2a-1) 1 K2 (@ (M) + p, (M) 1In %) (29)

28+1
which 1s, up to a polynomial of degree k which 1s conventionally

put 1nto the parametrized right hand side of the effective range
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1dentity, i1ndeed the correct form of the Coulomb effective range
function (cf. eq. (14) or references [Sw 62], [Ja 50]). Note that we
drd not prove yet that this function will also have analytic properties
as 1n chapter II.

Consider the Coulomb counterpart of eq. (II.21a):

Lt+1 -1ap (k) _ 1 =10, (n)
ko Nok) e = e, m (30)
Using:
£ -7 n/2
_2 e F(1+1+1n)L
C, tn) = T(22+2) for real n ([Ab 65],14.1.7)
one obtains:
T n/2
2+1 -0y _ e r(e+1)
k™7 Nk) e = TTrinan (3D

which can be continued analytically in the complex k-plane and indeed
corresponds with the Coulomb Jost function ([Ne 66],eq. 14.41a).

This function 1s highly singular for k = 0 and has zeros when:
L+1+in = n ' n=20, -1, -2, ... (32)

corresponding with the Coulomb bound states.
Furthermore:

lim kﬂ'+1 Nc(k) e_lcl =

ko

+
but i1in contrast with the result in section II.2 kl 1 Nc(k) 1S not even

in k (we will return on thas).

The counterpart of eq. ([(I.22a) 1s:

;kz + Hc =1 k”’+1 ((22+1) 1! 2 Ci(n) + (22+1) 11 (22-1) !
N k
¢ x 24+ (@, + p, In 2K) (33)
2
p,(n) C_(n)
2 -1
Using: Cg(n) = 2mn (e ™ _ 1) and Ci(n) = —%;—733%37—- B

one writes eq. (33) into:
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£ 204+
(polynomial of degree k2 ) + (polynomal of degree k ! with
zeros at 2n = #1, #2,..., *8) x (1e "'I(1+1n) T (1-1n)

+ n(¥(1+an) + Y (i-1n) - 2 1n n) (33b)

The poles from the ' and ¥ terms cancel out partially; due to the zeros
in the front factor there are only simple poles left at the positions
of the Coulomb bound states, eq. (32).

Furthermore, there is a cut starting at k = 0 due to the 1ln n
term and an essential singularity at k = 0. This cut 1s conventionally

put along the negative k-axis and therefore:

1k

2 2 + Hc 1s analytic in the upper half plane except for poles at the
Nk
¢ Coulomb bound states*.

From the fact that NC, HC and ol are real on the positive real

axis follows:

* =
Né(k ) = Nc(k)
* (k*) =
Hc(k ) Hc(k) (34)
* () =
cl(k) oz(k)

One proves also:

= gy 1T _
N k) = (=D e™ N (k)
o (k) = = 0, (k) - (35)
Ho (k) = H (k) & 5"—(‘3—'12’- , - forImk >0
(kN ()

+ for Imk < 0

*Corresponding properties, with upper- and lower-half plane interchanged

are valid for: kl+1 N e+102

c and - (lk)/(Nikz) + HC. The proof i1s left

to the reader.
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Using egs (34), (35) and the analytic properties one derives for k 1in

the upper half plane and a repulsive Coulomb (no bound states):

o
kll+1 Nc(k) e—109“=exp {—% J Y —k——zcl(k') +321}
0 k' -k
(=L 2, (36)
1k 2k2 - Ck
+ Hc(k) = 1k + — f dk! —T (2=0)
(k N_()) " 0 k' k

(Compare with eqs (ITI.64 - II.68).)
In the next section we will not use the usual "Coulomb functions"

0. . We gquote once more their

CE' qi, Pg' ... anymore, only NC, Hc, 2
definition:
F(r) = N_ F(r)
G(r) = -1—G(r) - H N_ F(r) (37
* N k c ¢
C
W(F,G) = F'G - FG' = 1

3. Long range potentials containing the Coulomb interaction

We assume that the total potential V can be decomposed according

2 M a
red F
= + _— =
V= Vg vL+ = (38)

with:

Vg (n) — ~ e Hst

“uLE
—_—— o~
VL(r) e

As far as the behaviour for r - 0 1s concerned, we will assume
that VL and VS are analytic in r except for possibly a simple pole 1in

the origin. This 1s a restriction with respect to the usual assumption
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-2+€
1n scattering theory which allows a r behaviour at the origin.

Since field theoretical potentials have been shown to make sense 1in the
external region only and since there is nothing which guarantees that
the potential picture holds at small distances we consider the
assumption of analyticity (except for a simple pole) for the potential
not too restrictive (1t includes also Yukawian potentials). As stated
before, the treatment of the potentials with a simple pole at r = 0,
does not differ essentially from the finite case.

Following the same steps as in section II.2 we first consider the
long range part of eq. (38)%*:

2 M a
v+ red F

L r
The regular and irregular solutions are defined with the boundary

conditions at r = 0.

v_(r) — ____1__77 r!L+1 . o(!_ll+2)
R o 24D
*x (39)
v () — (28-1) 1! oMY
r>0

They satisfy the integral equations:

*Sometimes we will refer to this long range part with: VL, 1.e., putting
2M_a
F
the Coulomb part into VL: "vL H VL + ——5;——-“. When explicit formulas

are used, containing VL' one must always use the "finite range" part
as VL; the Coulomb part 1s represented by the use of Coulomb wave

functions instead of Bessel or Neumann functions.
**Th1s 1s of course not sufficient; as before we will fix the "amount

A,

of regular solutions contained in VI" by requiring that the

term 1n the expansion must be zero.



r

ve(r) = F (@) + Of (F, (x) Gr") ~ G, (x) Fo(x*)) vV (r') vp(r") ar’
-— - r - -— -— -
VI(r) = a Gl(r) + b Fl(r) + Ef (Fl(r) Gl(r') - Gl(r) Fl(r'))
VL(r') vI(r') ar! (40)
with:
a = W(F,VI)’r=€
(41)

Since the boundary conditions (39) are analytic in k2, the solutions
Ve and vI are also analytic in k2 (for finite r). The functions NL' HL
and the phase shift Gi of VL in the presence of the Coulomb field are

defined by:

(o] C
—> N §CF + sin 8 G
v L (cos L sin 6/ 17.)

R re L
(42)
1 C C
v. — —— (cos 8 G - sin S8  G,)
I oo NLk L 2 L R
(o4 R C
- HL NL (cos cSL FSL + sin 6L GQ)
From eqs (37), (40), (42) follows:
NcosGC=N(1+j'dr'(—3 Vv)+H N [ d' F Vv
L L (o} 0 L LR CcC C 0 L LR
© (43)
. c _ 1 A
NL sin GL = Nk f dr FE VL R
c 0
and: . c
sin § c ®
- —— . H = - + ]
Nk LNL cos GL HCNC {-a Ef F, VLvI dr'}
+ = L
+ N, b f G v v, dr'}
€ (44)
C
cos GL c 1 ©
_ q = — - T
N K H N sin 6L NK {a Ef F, Viv; dr'}

46



Equations (43) can be used to form the linear combinations:

- L -
=N —_—
c {1+ (G, + Hy * —5—) F)) v v ar'} (45)
0 Nk

= 16C
N e +190
The integral in the right hand side of eq. (45), with = replaced by a

finite upper bound has the following analytic properties:

1

-G, F_ and v_ are analytic ain k2 for finite r. Since (H_ *

TR R c -2 ) 1s
ch
analytic in the upper/lower momentum plane, except for
poles at k = +1BC,—LBC - with ch a Coulomb bound state - and the

cut along the negative k-axis, thais 1s also the case for the integral

with finite upper bound.

One proves:

G, *_ 1 F)

) Fyp = g - Fy

= 1 1
G, + (H, t_ — —
L (o] N2k L NCk
C
This combination has an exponential damping for r + « 1f k lies 1n the
upper/lower momentum half plane. Now one can prove with the usual
methods that the integral for r -+ « 1s umiformly converging in this
region and therefore*:
N -
L. +1GE
NC

is analytic in the upper/lower complex k half plane except

for singularities at the Coulomb bound states (+_13C).

Also NL e-+lsg has singularities 1n the upper/lower half plane (although
NC 15 zero at the Coulomb bound states, this zero 1s not simple and does

not cancel the pole from the integral). This 1s not the result we

expected from the properties of eq. (II.21). However, éi 1s not the

-1
*In fact all of this 1s not trivial due to the r behaviour for r » ®
1n the potential. Bounds on the wave functions for £ = 0 are given e.q.

by Cornille and Martin [Co 62].
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"total phase shift" of the long range potential + Coulomb, but rather.

Cc
+
8L * 9
L+1  —410p X
Multiplying eq. (45) with k e we obtain:
c -
- + 10
kJl.+1 NL(k) e 41 (Sp+ayg) _ kR 1 Nc(k) e +102
G t_ -2 )F ar'} (46
x {1+ [ (G + (B, TS5 )F )V vear'}h (46)
0 Nk
C
The factor: kL+1 NC e t10L 1s analytic in the upper/lower half plane

and contains simple zeros at k = +1BC/—:LBC which cancel the poles from

the integral at the same places.

C
2+1 - +8
One obtains: k NL e +1(0g+61) 1s analytic in the complex k
"L
plane except for: singularities due to VL starting at k = ;4 1 >

along the imaginary axis, the branch cut along the negative k-axis
and the essential singularity at k = 0 from the Coulomb interaction,

Furthermore one proves that:

@

=0 & 1+ ([ (El + (H, + —%— ) fleder' =0
0 ch

2+1 —l(ég+0£)
NL e

k

- k
© Vo — ~ (G, + 1 Fl) —r ~ e (Im k) z

r—>® r>™

2+1 e—1(6€+01)

Therefore, a zero of k NL corresponds with an exponential

damping of tne regular wave function in the upper half momentum plane,

2Myeq OF
1.e. bound states of the potential: VL + — The procedure,

leading to eq. (46), can also be applied to egs (44). One obtains:

- c -
N e +l(6L+°Q)(H +___£_) - N e +10% b - aE_ + i )
L L N2k C C N2k
C C
_ s 1 - '
+ [ @y + o =—) Fp) voviar') 47
[ ch

With the same arguments one proves:
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Expression (47) 1s analytic in the upper/lower half plane. Since

C
e-l(6L+OE)

NL has the same properties and 1s zero at the bound state

momenta of the total long range potential one obtains:

HL o —%— 1s analytic 1in the upper/lower half plane except for poles
Nk
L at k = +1BL,—1BL where 1BL 1s the momentum of a bound state
2Mreq Of
of : VL + — In the other half plane singularities start at
1]
L
k=-"4+1 > and there could be poles at k = YL/-YL with YL the momentum

of a resonance (or virtual bound state). Also the cut along the
negative k-axis and the essential singularity 1s present.
Considering the symmetry properties 1n the momentum plane: the

C
fact that NL, HL, GL are real on the positive k-axis gives:

* (k) =
NL(k ) N, (k)

* (K
HL(k ) HL(k) (48)
C C
* (k) =
GL (k*) GL(k)

The transformations for k > - k are not so simple as 1n chapter II.

One proves:

¢ C
NL(k) e—l(ﬁL(k)+Gl(k)) - (_1)2+1 ™M NL(—k) e+l(6L(_k)+°E(_k))
1 _ -1
N2k ' HL +k ) N2k i -k (49)
L L

for Imk > 0O

With the analytic properties, eqs (48) and (49) lead to:

C @
- +1 + 2 '
eI M g s kM N ) e (- 2 ak B Sy
L C T 2.2 L
0 k'"-k
2 e (NL')Z -1
—%— + HL(k) = constant + ik + Z%__ f dk' -—EL_E_—ET__ (50)
NLk 0 k' -k
2Mred aF
for 2 = 0, Imk > 0 and the case that the potential VL + ————;———-has
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no bound states.

Equation (50) can be used to compute N_ and HL 1f the phase shaft

L

62 1s known from other sources.

4. The effective range function

In this section we will include the short range part into the
potential and derive its effective range function with respect to the
long range potential with Coulomb interaction.

First we will follow the method used 1n section II.3, then the
analytic properties of the amplitude will be considered according to
section II.4.

The regular solution of the total potential V, defined in eq. (38)

satisfies the integral equation:

r
ulr) = (1 + Oj ar' v (r') Voir') u(r')) vp(r
r
- (Of dr' vp(r') vg(xr') u(r')) v (x) (s1)

It has the boundary condition:

1 L+1 L+2
u(r) — Gen ° + O(r )
. M
2

and 1s an analytic function of k™.

In the asymptotic limt we write 1t as:

u(r) — A vR(r) + B vI(r) (52)
e
with:
@D
A=1+ [ &' v _v_u
0 I 'S
® (53)
= - '
B f dr vR VS u
0
Since: Vs(r) — ~ e st , A and B will be analytic functions 1in k2
Y=o
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s

to k = *_
up to 15

, where singularities start along the i1maginary axis.
Using eqs (42) and the definition of the phase shift 6; for

potential V, according to eq. (3), one obtains:

L cot 6L + H_ = A (54)
N2k S L B
L
with:
c o]
= +
GN 6L 6S
Therefore the effective range function:
Pl - Lot 6l v m (55)
N2k S L
L
will be analytic in k2 except for singularities along the negative k2
2
u
axis for k2 < - vy and except for poles due to the zeros of B.

L
Also at the threshold, k = 0, P 1s well defined in general due
to the k-independent boundary conditions (except when B accidentally

1s zero at thas point). Furthermore, taking vL = 0 (only Coulcmb

interaction as long range potential), one obtains: vR = FR' vI = Gl'

_ L _ b2, _ CL2
L - = H., GS = 0, leading to: P (k) = P (k") (the ordinary
Coulomb effective range function, eq. (29)).

Now we will turn to the partial wave amplitude. According to eq.

(12b) the total amplitude can be written as the sum of the Coulomb

partial wave amplitude and a correction term for the nuclear part:

£ o= £ +et g (56)
2 Oy 6C
N
with: c
. B EZLUE_I . . e216N_1
= —— . =S -
gz 21k GS 21k

Using: Gg = Gi + 6; one gets:
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(4
+ eZIGL f

f = f
Cc
(51(\:1 81, Gé‘
Cc L
_ ezlGL—l + e215§ eZlGS—l (57)
21k 21k

which splits the nuclear part of the amplitude into a long range (VL)
and a short range (Vs) part. Note that:

C
£ o= £ +e2M08 g 4 B0

(58)
2 5$ 55
The first two terms on the right hand side represent the partial wave
2 M o

red F

amplitude for the potential: V_ +
L r

We define outgoing and incoming (irregular) solutions of the long
range potential:

1
= _ =

Ve (HL - ) Vet v (59)
NLk

C
+_
e 16p, +_1kr
v -—

—_ +_ F) — ~
+_ N K (Gi 1 1) e
 anand L r>o

These wave functions are analytic in k except for the singularities

caused by the (HL +. =) factor. One obtains:

NLk
o
+
216L : 0) - VS )
e“7’s = (60)
o0
1+ f v, V_u
+ S
0
with singularities along the i1maginary axis starting at
b
k=+_1 ?% and poles, comng from v_ and from zeros of the denominator.

Also the Coulomb cut starting at k = 0 along the negative k-axis 1s
present.
A better behaviour in the (physical) upper half momentum plane

has:
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Nk = - (61)

1+ f Vi VS u

-

which 1s analytic up to k = + l‘éi except for poles from zeros of the
denominator (corresponding with bound states of V). At the threshold it
still contains the essential Coulomb singularity and of course the cut
along the negative aris.

These singularities can be made explicit, using egs (59) and

(53) - (55):
L
218
2 5_
Niﬁ = 21k - L, 2 1 3 ©2)
P (k™) - (—=— + H))
N2k L
L

The factor (1/Nik + HL) 1s responsible for the Coulomb singularities at
k = 0 and singularities starting at k = -~ 1 ?? in the lower half plane.

The effective range function PL(kz) does not contain singularitices in
upper or lower half plane up to k = +- 1 %? (neglecting accidental
poles).

The function defined by eq. (61) with nice analytic properties 1in
the physical plane, has (for VL = 0!!) been derived by Hamilton
[ra 73], calling it the effective function, and 1s the starting point
1in dispersive calculations for the Coulomb corrections on the hadronic

amplitude. We define:

o = u (63)

@

(1 + Of v, Vg u dr')

which satisfies:

W) = vp(n) - et &) vg o (64)
0
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with:

L,+ _
G (r,xr') = VR(I<) v+(r>)
Now:
2,2 ®
= - )
N k£ { vp Vg u dr (65)

L
8g 0
As 1n the case without Coulomb 1nteraction one can prove that the

2
singularaity structure of Nik £ L S "additive" 1in the successive Born
§
S

approximations of the integral equation (64) (the proof of this, which

,+

L

needs bounds on G , 1s not trivial; see [Co 62]). Note that this
L

additivity 1s not present in the effective range function P : the

discontinuity along the first part of the cut 1s also influenced by

the higher Born approximation. One obtains:

disc A disc ( — L + —i-+ H_))
B N2k2f N2k L
L L L
8s
2.2
- disc (NLk f L)
8s
= in the upper half plane.
2,2
Nk £ |
L 6L
s

u

S
The numerator 1s linear in the potential V_ for momenta: 1 7?-< k <y

S s’
However, the denominator contains all orders.
Finally we observe that at the bound state momenta of the long

range potential, 1BL:

2, 2
NLk fGL =0
S
and:
e21(01+6L) £ _ 1 e21(01+6L) ( w)
T I k18
S L L

Therefore the poles at k = 1BL 1n the different terms of the total

amplitude:
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£ o= o+ el1%n g 4 Q2oL
L 24 § L

will cancel each other giving a finite total sum.
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CHAPTER IV

The effective range identity: parametrizing

the effective range function

1. Introduction

Once the long range potential 1s known the functions N, OH and ‘SL

(GE) can be computed. The phase shift 6§ of the total potential is given

by:
c_.C
6N = dL + GS
1 (1)

L A
— + = =
N2k cot és HL m
L

If the short range potential VS 1s known explicitly one could compute
A anda B fromegs (3.53) and use them in (1). However, it will be clear
that 1t is much simpler in this case to calculate the total phase

shift 63 directly by solving the Schrédinger equation. In that case the
short range potential must be parametrized (coupling constants, masses)
and these parameters are adjusted such as to give an accurate descript-
ion of the experimental data (cross sections, polarizations, binding
energies, quadrupole moment and so on).

This is the standard method which Hamada-Johnston [Ha 62],
Bressel-Kerman [Br 69], Reid [Re 68] and many others use for the
analysis of proton-proton scattering data up to 300 MeV lab energy.
However, this method has several disadvantages:

- it 1s rather computer time consuming since for every experimental
energy the Schrddinger equation must be solved several times.
~ 1t requires an a priori knowledge of the form of the potential, long

range as well as intermediate and short range.



However, only the long range part (one pion exchange and electric
1nteractions) i1s believed to be well-known. The medium and short-range
behaviour of the nucleon-nucleon intcraction 1s more difficult to
derive but it scems to be more or less well described in terms of o-,
w-, and t¢-exchange together with some additional repulsion.

At really short distances, less than 0.4 or 0.5 fm, the 1interact-
rons optained naively from meson exchange must be cut off in some
(pnenomenological) way. Also the origin of the short range repulsion
("core") remains unclear yet.

All this 1mplies that the potential will contain pure phenomenolo-
gical functions which could lead to the following troubles:

- since the predicted cross sections, polarizations, etc, are very

sensitive for relatively small changes in the parameters, fitting to

the experimental data directly 1s difficult. Moreover, 1f the potential

contains wrong or pathological sub-potentials, fitting the parameters

w1ll lead to a potential with a very delicate balance between the

several parts 1in order to compensate for these unphysical features.

~ althougn different potentials, which agreé with each other 1in the

long range part, result into (roughly) the same phase shifts, the

behaviour for smaller distances could be substantially different;

however, they agree about the following features:

The nucleon-nucleon interaction seems to have:

- a long range one pion exchange (OPE) part (+ possible electric
interactions)

- a medium range strong attractive force

- a short range repulsion.

For these reasons we propose the following procedure to analyse
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nucleon-nucleon scattering data:
1. 1nclude 1n the long range potential VL all potentials which are
C

, H and 6L (SL) (for

explicitly known and calculate the functions NL L

instance for p-p scattering: OPE + electric potentials).

2. parametrize the right hand side of eq. (1) in such a way that it is
able to describe some general characteristics of the short range part
(for p-p: medium range attraction + short range repulsion).
Disadvantages of this procedure are:

- the parametrization must be done for every partial wave separately,
therefore increasing the number of parameters. Perhaps one must find

a method to predict parameters for higher partial waves from the lower
ones.

- the parameters are not "physical”, in the sense that they merely
represent 1n another way experimental data; they only connect data at
different energies with each other. It 1s not possible to extract from
them 1n a simple way "physical" quantities like coupling constants or
to use them in another physical situation (for instance crossing from
NN + NN to NN > NN) .

On can sce already on beforehand how many parameters are at least
necessary to describe the nucleon-nucleon interaction; namely 6,
corresponding with:

- strength and range of the OPE potential,

- strength and range of the medium range interaction,

- strength and range of the short range repulsion.

Whether and how these characteristics are really observable will be
considered in chapter VI.

In the next section we will give a speclal parametrization of the
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rignt hand side of eq. (1): the pole approximation.

2. The effective range function and the pole approximation

The most simple parametrization of the effective range function
PL 1s the Taylor expansion in k2, written in the well-known form:

2 L™ L 4

2 1 1 L
PL(k)———L+ErSk -r Pk + ... (2)
%

L L
The notation as, rs, ... 1s used in order to indicate the fact that

we are dealing with the parametrization of 62 (phase shift of the
short range potential with respect to the long range potential).

The serlies eq. (2) 1s converging for momenta:
2
u
2 S
k < — 3
k) < 3 (3)

(or less when B = 0 at shorter distance from the origin, causing a
simple pole in PL).

The bound eq. (3) 1s caused by dynamical singularities along the

2
2 u
negative k  axis: k= < - 2 In order to improve convergence for
momenta at a finite distance (# 0) of the singularities onc often uses
L B [n,M] 2
Padé approximants. A Padé approximant Q (k) of the functaion

2
PL(k )}, 1s defined as the ratio of two polynomials:

R (k?2)
N,M 2 M
ol ](k)=—2 (4)
Sy ()
with RM and SN polynomials of degree M and N in k2 respectavely, with

coefficirents determined by the requirement®:

*For a review of the properties of Padé approximants we refer to:
G.A. Baker jr.: Essentials of Padé approximants; Academic Press Inc.

(1975).
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2 (N+M+1)

@Ml 2y PL(kz)) = o(k ) (5)

lbm
k >0
Under certain conditions one can prove that-

Q[N,M]

lim (kz) = PL(kz) (meant 1s not especially the effective range

?Gﬁ:ZLOn, but any function with singularities in the complex k2 plane,
providing 1t satisfies certain properties). This 1s i1n principle valid
for k2 1n the entire complex plane.

Egs (4) and (5) are a pure mathematical definition of the para-

metrization:

- Q[N,M] (kz) (6)

2
P (k
I_.()
In the following we will demonstrate the physical content of such an
approximation.
2,2
We recall the properties of NLk £ L, as defined 1n eq. (3.61):
8
S
In the physical k2 plane (corrsponding with the upper half momentum )
u

plane) 1t has singularities along the negative k2 axis for- k2 < - 7? .

Typical examples are cuts 1f the potential 1s a superposition of
Yukawa's, poles 1f the total potential consists of exponentials in
r. Due to the mapping from k - k2 1t has also a cut along the positive

real axis, with discontinuity:

arsc %% £ ) =22 m k% £ ) =2 Ale 12 o
Lo R e T
S S s
Therefore for physical energies:
Im k2 g ) = —— |N2k2 £ l2 (8)
L GL Nzk L 6L
S L S
which will be called the modified optical theorem. For momenta:
o 2.2
- jr-< k™ < 0 one proves: NLk £ L 18 real and from eq. (3.50) one
2+1 bs 2.2
derives. lim k N(k) = 1. Furthermore 1t appears that NLk £ L 1s
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bounded for k2 -+ 0 1n the physical plane, except when a (bound state)
pole 1s lying on top of the threshold.

Following tne "N/D" method [Che 60] we write:

N
Nk~ £ L=D (2)
S5
where N(k2) contains only (dynamical) left hand singularities in the
complex k2 plane and 1s analytic everywhere else; D(kz) contains only

the unitarity cut and 1s analytic everywhere elsc.

Furthermore we require:

lim D(k2) =1 (10)
32 |+
2 -
and from lim 6L =0 ( l-) and lim N2k =0 (k 22) 1t follows:
S k L
koo k
lim  N(k%) ~ Kk 2%72 (11)
K2 | =0

In principle one could calculate the singularities in the left hand
plane from egs (3.64) and (3.65). One believes that for smaller
energies only the nearby singularity structure 1s of importance so
that 1t 1s sufficient to calculate only the first and second Born
approximation [Lu 64]. a problem, however, i1s that even the first Born

approximation can only be calculated (1f V_ 1s known) 1f the long

S

_ 2Mred OF

range potential VL 1s rather traivial: VL =0, V or any

L

potential which can be solved in closed form. Therefore, instead of

parametrizing the short range potential V

the singularity structure of Nf‘k2 £ L Of all the possible methods, we
8
S

will consider only the approximation of the left hand singularities

g' e choose to parametrize

by a sequence of poles, merely because the equations can then be solved
1n closed form. In prainciple 1t 1s possible to simulate in this way

almost every singularity structure; in practice, however, this would

61



reguire a large number of poles and the simplicity would be lost.

We will take one pole for each characteristic feature of the short

range potential. For s-wave proton-proton scattering this would mean:

- for VL = electric 1interaction: 3 poles representlng:Vs = OPE + medium

randge attraction + short range repulsion.

- for VL = OPE potential + electric interaction: 2 poles representing:
medium + short range interaction.

Approxamating the left hand singularities by n poles, N(kz) must be of

the form:

n A

nad) = f s (12)
1=1 k +|.1‘_L

with 2n free (real) paraneters: {Xl, ul}. However, the condition eq.

(11) gives & restrictions:

, Alpl =0 ; k=0, ..., &-1 (13)

It~
N
~

1

and therefore the total number of free parameters 1s only (2n-%).
From eqs (13) 1t follows that only a nontrivial (N # 0) solution 1s
possible 1f: n > {; therefore for the lth partial wave a minimum of
L+1 poles 1s required (with R+2 free parameters).

N(kz) can be written in several forms:

2 n Al 1 n vl
N(k%) = ¥ = v, + ¥ )

121 k2+U2 k2£+2 0 =1 k2+U2
1 1
2

U (k™)

_ n-24 12 (14)
v_ (k™)
n

with Vn and Un _1 polynomials in k2 of degree n and n-%-1 respective-

-
ly; of course the coefficients {Vl} are related to {Al, ul}.

From the analytic properties of D, (eq. (7)) one derives the

integral equation:
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(-}
[ ax? 21 2 212
0 k' -k N_k

D) =1 - N(k'?) (15)

R

Using eqgs (14) and (2.65), (2.66) (also valid 1f the Coulomb 1nteract-

10n 1s included, eq. (3.50)) one can perform the integration resulting

into:
n T
D) =1 - NoD) (o4 H - W kD)) + ] (16)
LW 2
NLk 1=1 k +ul

with wg(kz) a polynomial of degree & (the first term in the right hand

side of eq. (2.66)) and Tl a real number:

v
T, = 2 fm ak' ! 1 *
1 o W2 202
L 1
Therefore:
2 N 1
NLk féL " b n 1,
s 1+ )
2 2
1=1 k +ul 2 N
2 *W (k) - = - HY
N(k™) Nk
= —- ! (17
R (k™)
S S
2 2 L
Spegop k) Nk

with Rn and Sn real polynomials 1in k2 of degree n and n-2-1

-2-1
respectively.
Comparing with eq. (3.62) gives:

) R_(k?)
P, (k) = —— (18)

o

*This integral can be rewritten with help of the integral (2.66),

(3.50) (generalized for £ # 0).
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2 2
An n-pole approximation of NLk £ L therefore 1s equivalent with a
§
Padé approximation of order [n-i-1, n] of the effective range function:

2. I[n-g-1,n) 2
PL(k ) = QL (k™) (19)
The number of coefficients in the Padé Qin—l—l,n](kz) 1s (2n-2%);

therefore instead of fitting {Al,ul} (with restrictions of eg. (13)) 1t
1s more convcnient to consider the Padé coefficients as frec para-
meters¥*. In the past mixed forms have been derived with (a few) Padé
coefficients as well as pole parameters as independent parameters. We
w1ll consider tnem in the next section for the cases VL = 0 and

_ 2Mred Qe

VL i a— therefore they are paramectrizations for the "classical”

effective range functions.

3. CFS approximations

CFS approximations have been used to include in nucleon-nucleon
scattering (np and pp) some information about the OPF interaction.
First we will consider the np case with VL = 0. The short range
interaction - 1dentical with the total potential - contains one pion
exchange + medium range attraction + short range repulsion.

In the original CFS approximation, derived for s-waves, the OPE

cut 1s replaced by one pole with:

2
v

L
2
M

position

5 (20)

Hh

(M = nucleon mass)

]

residue

I\J|

*It i1s not true, however, that every choice of Padé coefficients

2.2 2
leads to "physical" poles in NLk £ 1.e. along the negative k

L ’
8s
axi1s, witn real residues.
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This choice can be justified 1n several ways. The argument of Cini-
Fubini-Stanghellini [CFS 59] was based on the observation that the
total (partial wave summed) amplitude will have a pole at: K =-hn_,
wlth residue f2M. Since the total amplitude at ¢ = 90o can be approxi-
mated for small energies by the s-wave partial amplitude (p-waves do

not contribute at 90o and 2 > 2 waves are small) one has:

—_—t ... (21)

which corresponds with (20).
Another argument 1s that eq. (21) 1s the [1,0] Padé of the farst

Born approximation (giving the OPE cut) of the s partial wave amplitude:

2 2 2
BA, T _ £M 4k £
oo = -3 ln (1+ ) — ——

(22)
2 2
4k Mo k*0 2k +uTr

The medium- and short ranged interactions arc also replaced by poles;

using one pole for both interactions together one can solve the

*
equations in section 2 (NNk =1, H =0, § = 0) and arrive at:
L L _3L4
cp_k
P(k2) = k cot éN = - l-+ % rk2 - ————1————3
a 1+4 .k
-2
with: uﬁ
sz 3 4 1 f2M 1 1
d=(2-"—(5V2-—-Zun))/(1l-=—(5V2-—=))
2
un 2 Uﬂa m pﬂ 4 ura
(23)

9]
n

1 4
(1-Ed)(2/2—uﬂr—u—ﬂ:)

Using one pole for the pion according to eq. (20), and one pole for

the medium- and short range interaction each, one obtains:

*Of course this 1s not the method used by CFS or the most simple method

for this trivial potential. See also [Wo 62], [No 64].



2 2
k2 _ _PK é1+tk )2 (24)
(1+qk“) (1+sk”)

N[

P(k2) =k cot § = - 1-+
N a

where p and q are complicated functions of a, r, t, s, f2 and un.

The approximation of eq. (23), with a total of two poles 1n the
amplitude will be called the CFS (2) approximation. Eq. (24), which
will result in a total of three poles, will be called the CFS (3)
approximation.

The CFS approxlimations can be generalized in order to account for

the Coulomb interaction [Wo 62], [No 64]. One takes:

v - M uF
L r !
N2 = L ; H = 2nk h(n) (25)
L 2 L
%

and uses the same method as before, replacing the OPE cut by one pole
and using one or more poles for the remaining interactions. One takes

for the pion pole:

2
Mo
position = - - x Yo
(26)
residue = sz x 6
2 c

with YC and 6C Coulomb modification factors (we will return on this 1in
the following).
Representing the medium- and short-range interactions by one pole,

one arrives at the Coulomb corrected CFS (2) approximation:

pc(kz) = Cgk cot ag + 2nk h(n)
4
=_L+lrc__&k_ 27)
22N el
N
P,q = very complicated functions of ac, rC, u_, f2, a_.
N N hid F

Emmen [Em 79] calculated the case where the vacuum polarization
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1s included in the long range potential, and also the generalization
of CFS (3). We refer to chapter V for an alternative form of the CFS
approximations, which 1n many aspects 1s more convenient to use.

In chapter VI we will consider the merits of the CFS (2) and
CFS (3) approximations applied in nucleon-nucleon scatteraing.

To determine the Coulomb modification factors in eq. (26) we
will follow Wong and Noyes [Wo 62].

Consider the OPE part of the total interaction, for the 150
wave represented by the Yukawa potential:

2 e "t

vV =~-Mf
T

(28)

2

2
The OPE cut 1in NCk £ 1s determined by the first Born approximation

c
SN

of egs (64 and (65) 1in V1T (the singularaty structure 1s additive!):

NKTE o= - f Vo(r') V_(r') v(r') dr' (29)
N

Since VL = Coulomb potential we have:

= 1
VR(r) =F (r) = % F

0 0 0
and:
2 @ —u“r'
N2k2 £ - M [ ar £ F2(r') (30)
C C 2 2 r' 0
6N inm k C0

2 B 1 M1
2 £ -2-
S T el
C C 2 2k 2k
8 in 4k
N
ax?
X F(i+in,1+1n;2;- '—2—) (31)
Mo

with F the ordinary hypergeometric function.

F(a;b;c;2) is analytic in the 2z plane, cut along the real axis from

2

z = 1 to =, corresponding with a cut from k™ = - jf-to - ® 1n the k2

plane. This cut can be made explicit by using the identity ([Ab 65],
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eq. 15.3.6, [Wo 62]):

2 - 2
F(l+in,1+1n;2;- é%r ) = 45:2332— F(l+1n,1+1n,1+2xn;1+i%r )
b " (1-1n) H
4k2 -21n ['(21in) 4k2
+ (1+ —7?-) n_otein) F(l-in,1-a1n;1-21n;1+ —7?-)
M I (1+41n) uo
giving:

2.2 Mf2 T(~21n) 2k . 21n 4k2
Nk~ f = — (1 + —) F(l+1in,1l+1n;1421n;14+ —& )
¢ 6 11 w2 [r?(1-1n) M 2

N un n ' un
2
20230y 2R 230 oy teing 1-2an; 14 S5 (32)
2 iy 2
" (1+1n) m U

We can now clearly see that neither F nor the I' functions are singular

1y
1n the upper half plane for k > —51 and that the discontinuity along
2 -2
tne OPE cut i1s given only by the (1 'ffi ) n factor.
T

Expanding F and the T' functions in orders of n, leaving terms of
order n2 and nigher one finds:

k=1x+eLl P
N2k2 £ X > L = am ME |1 - 254 -21n
C Cc 2 i 2k2 lﬂr
N |k=1x-€

(33)

One sees that eq. (33) reduces to the familiar expression for the one

meson cut in the zero charge limit.

-2
The multiplicative factor |1 _i%h n 1s the Coulomb modifica-
hi

tion of this cut.

Tne Noyes approximation of this cut 1s to replace 1t by a pole at

with the residue of eq. (20) multiplied with this factor at

,
[0}
.
.
NEgo i

k=1 . Therefore 1n eq. (26):
Y. =1 Ma
c _ MF /2 (34)
6C=!/2-1| n

The OPE-cut 1s represented by a pole at the same position as in
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the non-Coulomb case. However, the Coulomb modification factor 1is
greater than 1 and increases rapidly when k approaches the branching
point at 1 ;;—. Therefore the position of the effective pole should
perhaps be smaller than 1 ;%-; in this way the points closer to the
branching point would obtain more weight.

This can be verified explicitly by constructing the [1,0] padé

in k2 of the Born approximation eq. (31); expanding eqg. (31) ain k2

(keeping n fixed), one obtains:

k-0 2 2
vl e o B e 2B L qamf 2w L Gsa
C C 2 U1 2
GN in Mo m U

Neglecting powers of k4, n2 and higher one has.

ME 4 nk
) k-0 7 (13 b )
N k™ £ ~ (35b)
C C 1 2
N k2 + —3-(1 - g_mg)
2 3 un

This corresponds with:

8 nk

Yo = (1= 3%

¢ 3 (35¢)
4 nk

6. = (1 + =12,

C 3 My

Compared with the Wong-Noyes prescription eq. (34) this results into

a pole which lies 7 % (1.4 Mev lab energy for NN) closer to the
threshold and a residue which 1s 3 % lower. Although this 1s rather
small, 1t could result into larger differences in the shape corrections.
For 1S0 np * a reduction of the pole position and residue with 7 % and

3 % respectively, would lead to a shape which 1s roughly 20 % larger

in the low energy region compared with eq. (23).

*Only used as an example since the results can be calculated in a

simple way.
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At the end of this chapter we will anticipate some results of
chapter VI. It appears that the approximations CFS (2) and CFS (3)
are not accurate enough when applied to low energy proton-proton
scattering (0 - 30 MeV) (in view of the very accurate data nowadays).
This was already noted by Naisse [Na 77] who compared the CFS (2)
shape prediction with the shape from a potential model.

In our opinicn the replacement of the OPE cut by one simple pole

1s too crude, especially for energies close to threshold.
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CHAPTER V

Approximations and numerical calculations of NLL—EL and GL

1. Introduction

The effective range function PL can only be used in a practical
situation when numerical values can be obtained for NL' HL and 6L.

However, only for a few cases (VL = 0, VL = Coulomb-potential,

VL = Borgmann potentials) these functions can be computed exactly in
closed form. In the other cases we must calculate them numerically or
use approximations.

The approximations can be divided into three classes:

1. Pole approximations;

2. Born approximations;

3. Approximations using as 1nput a simplified analytical

structure.
Sometimes combinations are possible.

In the Born approximations all functions are expanded in the
coupling constant and only the lowest term 1s kept. Unitarity in the
amplitude 1s violated and also the nearest singularities are not exact
(additivety of the singularity structure 1s only valid for the
amplitude). Unitarity and the nearest singularities can be taken exact-
ly into account by using approximations of type 3. One could calculate
the phase shift GL using for instance the N/D method and after that
NL and HL with formulas like eqg. (3.50). As input one could take the
discontinuity of the most nearby cuts. One believes that the behaviour

of the amplitude at lower energies 1s influenced largely by the

characteristics of the "nearby" cuts, while the effects of the more
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"distant" cuts may be neglected [Lu 64].

Born approximations will work fine for weak potentials or larger
energies.

We have considered pole approximations already in chapter IV: the
singularaities 1n the complex plane are approximated by one or more
poles. Their advantage 1s that everything can be solved in closed form.

In the next sections we will consider only pole and Born
approximations. Furthermore some aspects of (exact) numerical calcula-
tions 1n pp scattering with vL = Coulomb + vacuum polarization + OPE

potential will be considered.

2. Pole approximations

2.1. Without Coulomb interaction

Suppose the long range potential VL contains no long range Coulomb
interaction. We will restrict ourselves to the s-wave and replace the

(dynamical) singularity structure of:
e216L 1

s, = 71k ()
2

L
i £fM
by a simple pole at k = 1 73-w1th residue = (cf. eqg. (4.20)).

Solving the N/D equations [Che 60] will gave:
2

n 2 1 2 1 2
keot 6 =5 (S —0) 4 (S—+ =) k (2)
L2 2, w2 2y W2

NL and HL can be obtained with the help of eqs (2.64) and (2.66), which

1s straightforward but rather tedious.

2 -218
It 1s more convenient to use the analytic properties of kiNLe L

and 1k/N§k2 + H  (eqs (2.21) and (2.22)). From eq. (2) one obtains:

L

o216n _ (kta) (k+6)
(k-a) (k=B)
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with: a = 1 &% , the position of the dynamical singularity;
2myo -
and: g = u o EMY2 - dp

T2

> , the real or virtual bound state of VL.
£°MV2 + 4.

2 -
We require k2NL e 218 to be analytic in the upper half plane with a
(double) zero at the bound state position; moreover kzNi must be real

and even in k. One sees easily that:
S U M -2 (4)

does the job (also: lim kzNi =1).

ke
2. 2
Furthermore, we regquire that (ik/k NL + HL) may not have singula-
rities in the upper half plane except for the bound states, where i1t

must have a simple pole. Furthermore, H  must be real and even 1in k, and

L
we wlll make use of the ambiguity 1nE&be requiring HL(O) = 0. One

obtains*:

2 2 B

2 =
H (k) = (B" - o) (1 +— 5 ) (5)

X
B
Egs (4) and (5) determine the form of the effective range function PL'

which 1s parametrized in order to give the phase shift 6;.

*One must distinguish between two cases: virtual and real bound state.
For a virtual bound state, -B lies in the upper half plane and there-
fore the pole in lk/Nik2 at this point must be cancelled by HL'

For a real bound state, -f lies in the lower half plane and gives
no troubles. However - 1k/Nik2 + HL must be analytic in the lower
half plane and gives the same result. It corresponds with the condition

2
that the residue of HL and lk/Nik must be the same at a bound state

pole.
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Using the n-pole approximation of section IV.2, where the dynamical
singularities of the short range potential vs are also represented by
poles, one obtains the following equations which must be used to obtain

the total phase shift §:

k cot GL = - ﬁ— + % r k2 (eq. (2))
L
. lo,1] 2
29, (x“)
-j%— cot 62 +H = Qi“'l’“](kz) (eq. (4.6))
Nk _
§ =6 + & (6)

The long range potential VL 1s represented by a one pole approximation,
the short range VS by an n pole approximation. It can be expected
therefore that the total potential V = VL + VS 1s 1n fact approximated
by (n+l) poles. Indeed, one proves:

1 (k2 - az)2

(a+B)2 QEn-l,n] + ng'll + const.

k cot & =

Qéo.l](kz) . I,

with: const = 1 % (a-B) .

Therefore (cf. eq. (4.19)):

2
k cot & = polynomial in k™ of degree (n+l) (8)

polynomial 1in k2 of degree (n)

For n = 1 the short range potential 1s represented by one pole and one
can prove that eq. (7) 1is indeed equivalent with the CFS (2)
approximation: eq. (4.23). For n = 2 eq. (7) leads to the CFS (3)
approximation of eq. (4.24). However, egs (6) and (7) are quite
general and allow us to use other than 2952 approxaimations for the

short range potential. For every parametrization of P eq. (6) will

LI
guarantee that there 1s a pole, representing VL, at the same place

(according to eq. (4.20)) 1n the total partial wave amplitude:
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218
e -1
s 21k

2.2 With Coulomb interaction

Suppose the long range interaction consists out of the Coulomb
potential and a finite range potential (e.g. the OPE potential). In

that case the expressaion:

C

216
22 22770 -
Nk Ee TN TEm )

will have in the upper half momentum plane only dynamical singularities
corresponding with the finite range potential (modified by the Coulomb
interaction).

Using a one pole approximation for these singularities, one proves,
following section 1V.2, for & = 0:

22 i
N k fsv-L+lrck2—lk—H (10)
L L 2L 2 C
L

2
k
NC
o] C
with aL and rL functions of the pole position and residue, which can

be calculated explicitly. We define:

+ 1 1 ¢ .2 1k
F R SR - -
(k) ctoILk 2,2 He
4, c (11)
- 1 1 C .2 1k
F (k) = - ;E + 5‘ rL k™ + N2k2 - HC
L C

Denoting the position of (pure) Coulomb bound states with BC, the

position of the dynamical singularaty of eq. (9) by o and the bound
state of VL by B (assuming the Coulomb potential 1is regu151ve)*, one
*Therefore, Im BC < 0, Ima » 0 and Im B > O for a real bound state;

Im B < 0 for a vartual bound state.
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proves (cf. egs (3.33)):
F+ and F are analytic in the complex momentum plane except for the
cut along the negative axis, the essential singularity at the origin
and except for poles at BC (F+) and - Bc (F-).
Furthermore F+ wi1ll be zero in the upper half plane for k = a and
possibly k = f. In the lower half plane F 1s zero at k = -a and
k = -B.

According to section III.3 the functions NL and HI must be chosern

s

such that:

—21(5. + 0.)
K2 Ne e L 0 (12)

15 analytic in the upper half plane, with a (double) zero at k = B.
Also:

1k

S+ (13)
(NLk)

L
must be analytic in the upper half plane, except for a pole at k = B.

Choose:

22 _ 22 art (k) F (k)

kN, =k N —C5 3 2.2 (14)
(r’)" (k" - a”)
L
Now one obtains:
2.2 ~=21(8;+30) 2 2 -210 art (k)2
- L+o0) _ -210g __4(F (k))
kNLe =k N, © c 2 > (15)

wH? w?-a?)
The double zero of the denominator at k = a 1s cancelled by a
corresponding one of the numerator. In the lower half plane the double
zeros at k = Bc (from kzNé e-Zlco) are cancelled by the pole of F+ at
this position. The only zero in the upper half plane 1s at k = B8,

+
where F vanishes.

Furthermore, one sees that kzNi 1s real on the positive real
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axls and the symmetry property of eq.
of egs (3.35). For k > © one obtains: lim k NL =

Of course, one can obtain eq.

eq. (3.50) using:

1 C

- + =

Nzk cot GL HC
C

(3.49) can be verified with help
2.2

1.

koo

(14) from the i1ntegral expression

1 1 .c .2
-+ =1 k
c 2L
a
L

(le)

The derivation of HL' using the properties of eq. (13), 1s similar.

After manipulating the several expressions one finds that:

+
_1 ..c2 2 2. 2 F +4F 1 1 c.2
HL = (rL) (k ) o + c > rL k (17)
FF a
L
gives:
2 2.2
1k _1 c2 (k-a) 1 1 c. 2
>3 + HL =3 (rL) " + c 5 rL k (18)
k NL F aL

and has the correct properties.

1 1 Cc . 2
s - =+ =r k
The term ac > TL
L

, analytic in the whole momentum plane, is

subtracted i1n order to obtain the correct asymptotic lamit:

lim ( S + H_ ) - 1k + const.
oo k2N2 L

L
The function HL 1s real for physical k and 1t 1s convenient to gauge

1t such that: H(0) = 0. One obtains:

<52 . - o€ (5 2

+F
52 = L (2422 F L2, L 4 (19)
L 8 F+F— 2L

The effective range function PL 1s now determined. Using the n-pole

approximation for the short range potential Vs again, the total phase

shaft 6§ of V = VL + V_ with respect to Coulomb functions is

S
parametrized according to:
1 C __ 1L ., 1 c 2
;;5 cot GL + HC = ac + 3 I k (eq. (16))
C L
- lo,1] 2
2 Q0 (k™)
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— cotd + H_ = QI[J“'I’"](kZ)
k.

e}

o L
6y = 8. * &g (20)

It 15 not travial to prove that eqgs (20) are equivalent with:

Lot €+ m = o012
kN2 N [o] C
c
C (r )2(k2—02)2
- L (21)
[n-1,n] fo0.1]
4(QL + Qc + const.)
with: 2 ¢ 4
(r’) a  a
L 1
const, = - —m—m@m@— + —
4 C
a
L

For n = 1, eq. (21) 1is equivalent with the Coulomb corrected
CFS (2) approximation (the position and residue of the VL pole must be
chosen according to eqs (4.26) and (4.34)). Taking n = 2 gives the

Coulomb corrected CFS (3) approximation.

3. Born approximations

In this section we will consider Born approximations for NL, HL,

GL for the long range potential:

—ur
2 e M

VL(r) = - Mf (22)

We will treat only the & = 0 case; generalizations for higher partial
waves and for a VL which contains also a Coulomb interaction, will be
left to the reader and are straightforward.

The first Born approximation we will consider, 1is derived by
expanding formulas (2.17) ain f2, keeping only the lowest orders;
using: vR(r) o So(kr) = EE%FEE and vI(r) o2 EO = cos kr '

and replacing € by O since everything should be 1independent on 1t, one

obtains:
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__1 ' ' 2 )
§. = ” f dr VL(r ) sin~ (kr')

L
0
1 o«
Nk=1+= f dr' v_(r') sin kr' cos kr' (23)
L k L
0]
H = f dr’ (s;Ln2 kr' - cos2 kr') v_(x'")
L 0 L

However, as 1t stands HL 1s only properly defined 1f VL(O) = finite
(caused by replacing € by 0 too hasty). One could add a cut-off factor
to the definition in eq. (22). However, one obtains also a finite

expression for HL 1f one subtracts the value at k2 = 0:
) 2 1] 2 1] )
f dr' (sin” kr' - cos™ kx' + 1) VL(r )
0

2
HL(k ) - HL(O)

=2 f dr' 51n2 kr' v_(r") (24)
0 L

The integrals can be solved explicitly, giving:

2 2
Mf 4k
6L(k) = 75:- In (1 + ——5—}
M
M2 2k
kN (k) = 1 - jﬁ:-arctan ( o ) (25)
2 2
2 Mf 4k
HL(k ) - HL(O) =- = In (1 + —5—)

"

We will call the approximations of eqg. (25), the Born I approximations.
The Born II approximations, which will appear to be slightly
better than Born I 1in practice, start with the same approximation for
the phase shift GL, however, used in combinations with eqs (2.64) and
(2.66) 1n order to calculate NL and HL.
NL can be computed exactly, HL 1s expanded in f2; neglecting

terms of order f6 and higher one obtains:

2 2
Mf 4k
5L(k) = jﬁ:’ln (1 + :Ff-) (by definition)
2
kNL(k) _ e-(f M/2k) arctan (2k/u) (26)
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2 2 2 4,2
2 _ _ Mf _ £ ak” . 2f°M 6
H (k%) - H (0) = - =— (1 = ) 1n (1 + =) + O(£)

u

One could consider the Born II approximations, eq. (26), as a

consistent set of functions NL' HL, 6L which are exact for a long range
potential VLwhlch would give the phase shift:

2 2
Mf 4k
§ = ——1 + —
LS ¢ 7 )
u
Therefore, the Born II approximation represents in a certalin sense a
real "physical" situation (which 1s an approximation of eq. (22)),
while the Born I can be considered as an "approximation of an
approximation".
In section 5 we will compare the pole and the Born approximations
with the functions NL, HL and 6L calculated exactly with the help of

numerical methods. Tne numerical aspects will be treated i1n the next

section.

4. Numerical calculation of the effective range functions in proton-

proton scattering

In this section we willl consider the numerical procedures for the
calculation of the "OPE-Coulomb-vacuum polarization" effective range
1
function in the S-wave ( SO).

As long range potential VL we take:

2 e-ur MaF
V() =~-£fM + — + MV (r) (27)
L r vac
2 2 2 2
with M the proton mass, u the neutral pion mass, f = %;—JLE ’
4aM

the 'ﬂopp coupling constant squared, and vvac the vacuum polarization

potential [Du 57]. In principle the calculation of N_, H

[
L L and L s

simple and 1s based on their definitions in section III.3:

80



(1) Solve the radial Schrddinger equation:
" 2
v+[k—VL(r)]v=0 ,

twice, with boundary conditions:

v _(r) — r + O(r2)
R
0

v_(xr) — 1 + O(r)
1
r>0

(11) Using a suitable method, solve the differential equation up to
a certain point where the OPE and vacuum polarization part can be
neglected with respect to the Coulomb potential.

Cc C C
(111) Calculate SL, NL and HL using the definitions of eq. (3.42) by
matching the calculated wave functions to Coulomb wave functions.
To solve the differential equation we use the Numerov method [Nu 33]

(sometimes called the Cowell method) which solves the second order

differential equation:
v" = Av (28)

with the relations:

- h2
vir) = (1 - HA(I)) v(r)
(29)
5 2
2 +=h" A(r) 6 _(vi)
V{r+h) = Bf () - v(r-h) +0 (Y &),
h 240
1 - 13 A

This method gives rather accurate phase shifts, however, the
accuracy on NL and HL 1s much less when the potential has a singular

point at r = 0*. Therefore we solve the differential eguation from

*see next page.
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r = 0 up to a certain point with a series expansion and use the Numerov
method as soon as the bad influence of the singular point r = 0 on the
accuracy can be neglected.

The potential eq. (27) 1s expanded 1in r:

W-vi ca+Z2+cEErar o)) ...
L r r
with:
a2M
2 2 F
a=Kk +pr-Tm
5 202M 5
b= - MaF - MEf~ + I (y + g + 1n m)
2
o 2abM
T 3m 5
2 2 2a
d= - EE_E_.+ __Eﬁ m2 (30)
2 27

with y Eulers constant, y = 0.5772..., and m the electron mass. We
refer to Durand [Du 57] for details about the vacuumpolarization
potential.

The solution of the radial Schrddinger equation in the neighbour-
hood of r = 0 can be written as:

y oo " (31)
nm
n,m

v(r)

and one obtalns recurrence relations for the coefficients anm in the

*This can be seen 1n the following way: take for instance a potential
which 1s very repulsive near the origin; 1in that case the regular
solution will decrease exponentially to zero for r » 0. This means
that the wave function 1s almost zero in that region (compared with
the value for r - =). The phase shift 1s more sensitive for the
radius of the repulsion than the actual value of the potential; thas
1s however not the case for NL and HL. Try 1t with a repulsive square

well.
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usual way.

The result for the regular solution VR! with boundary conditions:

vR(O) =0, Vé(O)

1 appears to be:

1 2 c 2 3
vR(r) =r - 5 br® - > r (In r - 2)
2 19 83 2 3
+ (- 5 a + > b - 77 bc + 132 c)r
bec 19 2 3 1 2 3 2 4
( A = c’) r  lnr + 12 c” ¥~ 1InT r + O(r’) (32)
The 1rregular solution vI has boundary condition vI(O) =1, and

furtherxmore we require that the amount of regular solution contained

in v_ (1.e.
1 (

We get:

VI(r)

terms proportional with r + ...) 1s zero.

1+ (c-b)r Inr - %—r ln2 r + (- %-a + %} bc - % b2 - %% c2)
r2 + (- %%-bc + %—bz + %;-cz)rz Inr + ( % bc - %} c2)r2
1n2r + %; r2 ]_n3 r + (- fg ab - %%%—bzc + é%—ba + %ﬁ%} bc2
% d + f%%-ac -~ %%é%—c3)r3 + (- % ac - %%% bc2 + %% bzc

f; b3 + %%%—c3 + % ab)r3 Inr + ( %g—bcz - g%-bzc

g%% c3 + %% )r3 ln2 r + (- %—bc2 + f%%—c3)r3 In"r

%;—r3 ln4 r + 0(r4) (33)

In practice the series expansions are used from r = 0 up to

r = 0.005 A“ (Aﬂ ~ 1.4 fm); then the Numerov method 1s used with

1nitial step length: h = 0.001 Xﬂ. The step size 1s doubled at 0.2,

0.6, 1.4, 3.0 and 6.2 An and we integrate out up to 15 fm, where the

pion potential can be neglected. This takes about 1000 steps and an

83



accuracy of more than 6 digits 1s reached i1n the interval 0 < Elab <
300 MeV. For r > 15 fm the vacuum polarization potential still exists
with a range of 200 fm, which means we still have more than 1000 fm to
go before 1t can be neglected. Instead of using the Numerov method to
perform this integration (which would take something like 10000 steps
more), we corrected the results obtained at 15 fm in another way. We
quote some results from the variable phase approach to potential

scattering [Ca 67] modified for the long range Coulomb potential:

The solution of the radial Schrodinger equation can be written as:

v(r) a{r) (cos &(r) F(r) + sin §(r) G(r))

(34)

v (r) ka(r) (cos &(r) F'(r) + san 8(r) G'(x))

(in fact this 1s the definition of a(r) and §(r)). F(r) and G(r) are
the standard Coulomb regular and irregular (s-wave) wave functions.

One proves*:

§' (x)

VL(r) {cos &8(r) F(r) + sin &(r) G(x)} 2

w |-

o' (x) - %-a(r) VL(r) {cos §(r) F(r) + sin &(r) G(x)}

x {sin §(r) F(r) ~ cos 6{(r) G(r)} (35)

Note that for tne regular solution:

c
lim §(xr) = 6L
r—o
lim a(r) = N (36)
r->o L

The regular solution 1s solved with the help of the Numerov method up

*See note on page 45 : VL = long range potential eq. (27) - Coulomb

part.

84



to 15 fm; therefore §(15) and a(15) are known. The extrapolation to

infinity 1s made by integrating eqgs (35):

L [ dar v_(r) (cos §(r) F(x) + san §(x) G(r))?
kK . L

8 (=) 5(15) -

(=) a(15) exp {- % f dr VL(r) (cos §(r) F(r) + sin 8(r) G{(r))

' x (sin §(r) F(r) - cos &§(r) G(r))}

(37)

The functions 8 (x) and a(r), which occur in the integrands, are,

however, unknown. We will approximate them by a constant: the value at

15 fm. This must be a good approximation since VL between 15 fm and

® 15 just Lhe vacuum polarization which is rather small, and so §(x)

and a(r) will remain close the values they had at 15 fm. In fact this

procedure 1s a kind of first Born approximation for the vacuum

polarization in the region: 15 < r < =, (Effective range functions

corrected for vacuum polaraization only, have been calculated in the

past always in Born approximation: [He 60].)

One obtains:

C_z 1 2 = 2 - - .1 2 =
OL =4 m cos” § FVF . sin § cos § FVG X sin~ 8 GVG
(38)
- 1 = - 1 2 3 2 <
NL = N exp {- E‘Sln § cos 8§ (FVF - GVG) - X (sin” § - cos” S8)FVG!}

with: § = §(15) , N = a(15)

and: oyp ® F2(x)
FVG) = [ ar Vo @ | Fir) 6o
GVG, 15 G“(r)

These integrals are calculated once as a function of the energy. The
corrections can then be made for every long range potential (containing
vacuum polarization) without solving the equations every time up to

1000 fm. For the irregular solution VI, defining HL, a similar procedure
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1s applied.

For vI 1t 1s convenient to define:
B(r) = cot §(x) (39)

with 6 (r) defined in eq. (34) (8(r) is not the same function as in the

regular case!). One proves:

B'(r) = é‘VL(r) (B(r) F(r) + G(r))2 (40)
and:
- N2k H. + tan éc
L L L
lim B(xr) = > c
> 1 - NLk HL tan GL

The value of B(15) can be calculated from the values of vI and vi at

this point. One extrapolates to « with:

@

B (=) )i VL(r) (B(r)F(x) + G(r))2

I
™
+

|

15
2 2 = 1
VE + — =
F X B FVG + X GVG (41)

R
™
+
|-
™I

where E = B(15).

Finally we mention two trivial checks which are made after a
calculation of NL, HL and 6L and which give an indication of the
numerical error.

Tne first one takes place at 15 fm and checks whether the

v! v_ - v_ vl =1 1is still satisfied. Deviations
R I R I

Wronskian relation:
give an indication of the error caused by the series expansion and the
Numerov method.

The second check gives an indication of the error caused by using

the above-mentioned extrapolation technique from 15 fm to «. After

the calculation of GE, NL and B(»), we use these functions instead of

§, N and B 1n the right hand side of eqs (38) and (41), and calculate

86



Gi, NL and HL again. The difference between the new and old values
gives an wmpression of the neglected higher Born terms. For energies
between 0.3 and 0.5 MeV an accuracy of five digits 1s reached, above
0.5 MeV more than six.

One more problem are calculations at <ero energy which are
necessary when one tries to gauge HL with the condition: HL(O) = 0.
For k = 0 the wave functions F and G are not well-defined and also NL
w1ll diverge (repulsive Coulomb). Although one can get around these
singularities we will avoid 1t, since the gauging at zero enerdgies 1s
not essential. We choose energy 0.35003 MeV as subtraction point; this
1nfluences only the actual value of ag, however, not the physical
c _ (L

s+ &€

observable total phase shift: GN = &g L

5. Approximations versus exact calculations

In this section we will compare the pole- and Born-approximations
with each other and with the results obtained by solving the radial
Schrodinger equalion exactly. We will neglect Coulomb- and vacuum-
polarization since they only make calculations more complicated than
necessary for our purpose: a qualitative insight in the performance of
the several methods.

We use the long range potential:

2 e_“r

vL(r) = - Mf (42)

1
to represent the OPE interaction (for instance in the 'S np channel).

0
2.2
In figures V.1 and V.2 we have plotted the functions: 1/NLk , HL

and GL' 1n the one-pole (CFS) approximation, the Born I and II

approximation, together with the Schrodinger (S) solution as a function
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2 2
of k (k =1 Elab =~ 40 MeV). Figure V.l contains the resull for the
"physical" coupling constant f2 = 0.08, figure v.2Z for f2 = 0.01.

The results speak for themselves, onc could conclude that E2 = 0.08

1s certainly too big to get reliable results from the Born approxima-
tions. For f2 = 0.01 the Born approximations (in particular Born 1I)
correspond within a few per cent with the Schrodinger solution. Always
the Born II approximation appears to be the best, while mostly CFS 1is
the worst approximation of the exact solution.

It would therefore be obvious to conclude tnat 1t 1s better to use
the Born approximations than the CFS formulas. This 1s, however, not
always true.

One must realize that the long range potential VL (and therefore

NL' H_, GL) 1s not directly observable, only the total phase shift:

L
L

= + .
dN 6L 0S

The "short range" phase shift 62 1s paramctrized in the one pole

approximation of P as:

1 L 1 1 L. 2

— + = - — =

Nzk cot GS HL T + 3 rS k (43)
L aS

In practice, however, ag and r; are fixed by the total phase shaift

L
GN = GL + SS via 1ts effective range relation:

N U G
k cot GN = a; + > Iy kK™ + ... (44)

aN and rN, the total scattering length and cffective range, are

L
experimentally known and therefore ag, rs must be refitted for every

approximation of the long range potential VL in ordexr to give the
same a and Iy Once this 1s done eq. (43) will predict only the

deviation of k cot SN from the shape i1ndependent approximation:

-t WP
N
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For this purpose we define the shape function p

k cot §& +-l— L r k2
2 N aN 2 N
p(k7) = 2 (45)
k
- ~ 2_
tor aN = 10 XT, rN -2 Aj ()\Tl ~ 1.4 fm) and £~ = 0.08 the shape

functions for the different approximations are given in figure V.3a.
Now the Born approximations appear to be totally wrong, giving
even the wrong sign for the shape function!! In contrast with this, the
CFS approximation has only a deviation of 20 % compared with the
Schrodinger results. For a smaller coupling constant, f2 = 0.01, the
Born approximations improve, which 1s shown in figure V.3b. Note that
the CFS approximation now deviates 30 % from the Schrodinger solution
(however, the absolute value of P has decreased). These unexpected
good results of the one pole (CFS) approximation are partially
explained by figure V.4. We have plotted the ratio of the CI'S-, Born-
approximations and the Schrédinger functions. It appears that these
ratios for the CFS approximations arc about the same and almost a
constant as a function of the energy (0.6 - 0.5). Therefore multiplying
eq. (43), calculated for Lhe CFS approximation, with a factor 1/0.6
(both left- and righthand side) will result into an equation which 1s
in fact the corresponding Schrodinger effective range identity (within

15 %).
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CHAPTER VI

Application to the proton-proton system:

determination of the ﬂopp coupling constant

from low energy scattecring data

1. General characteraistics of the NN system in the 1S0 partial wave

To study the behaviour of the effective range function in the 1SO
nucleon-nucleon partial wave, we will leave out the Coulomb- and
vacuumpolarization potential. Using Coulomb- and vacuumpolarization
corrected effective range functions will give the same general

behaviour differing only in minor points (e.g. the scattering length

which 1s - 7.8 fm instead of - 17 or - 24 fm).

As discussed already in section 4.1 the s-wave nuclear interaction
can be divided into three parts:

1. A long range attraction with a range of 1.4 fm due to pion exchange.

2. A medium and short range interaction (overall attractive) with a
range of 0.5 - 0.7 fm caused by the exchange of heavier mesons
(py w, €, 27 and so on).

3. A short range repulsion not due to the exchange of simple mesons and
often represented by a phenomenoclogical hard or soft core or by a
more physical Pomeron "exchange" potential.

These three features can be recognized i1n the behaviour of the effective

range function k cot 6N as a function of the cnergy. In figure VI.l we

have used the Nijmegen OBE potential [Na 78]* to calculate the

*The pomeron coupling constant and pion coupling constant are slightly

changed to reproduce a 1SO np scattering length of - 23.7 fm.
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effective range function from Elab = 0 to 250 MeV. Other models would

give plots with the same characteristics.

I
[(ﬁ;) ]

Keot &

1.1 410
3 rkl

AT R S, SR A 2 g 1 7 . 3
Figure vI.1: Ejfective range function k cot GN and shape independent

, , , , 1
approximation in the SO np wave.

These characteristics are: the effective range function 1s positive
from 0 MeV up to about 250 MeV; at this point 1t has a pole and it
becomes negative for higher energies. The pole in this region 1is
caused by the zero of the phase shift near 250 MeV and 1s a consequence
of the repulsive core which starts dominating at higher energies. At
lower energies the total potential 1s overall attractive. However, the
influence of the repulsive part 1s felt also at lower energies. This

1s seen 1n figure VI.2 where we have plotted the shape function:

11 2

k cot SN +

a
2, _ N
k) = y (1)

k

Pope
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Note that the shape independent approximation of the effective range
function: p(kz) = 0, corresponds with the replacement of the complicated
left hand singularity structure of the NN interactions by only one pole
(which 1s attractive). It will be clear that this 1s a poor way to

represent the three-fold nature of the NN interaction.

Pl

10

L | 1 d 1

L 200 20
80 120 160 P[!
%j—/ ELap [MeV]

-05F

Figure VI.2: Shape junction of the OBE model (PI) and tne Crs (2)

approximalion (PIV).

In fact the shape function of the NN interaction 1s negative below
30 MeV, becomes positive then and has the above-mentioned pole at 250
MeV, caused by the repulsion. Furthermore we note that the approxima-
tions 1n which the medium- and short range interaction are replaced

by just one pole (e.g. the CFS (2) approximation with VL = 0 and

—ur
2
Vg = 2 poles*, or the approximation VL R

and VS = 1 pole;

*equivalent with VL = 1 pole, vg = 1 pole.
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see also figure V.3), will give a negative shape for every energy.

For tne CFS (2) approximation this i1s observed in eq. (4.23):
-3

2
Pors (2) (k™) = - (2)

(c,d > 0)
It appears that the pole representing the short range interaction must
be "attractive" to produce the same ay and Iy as the NN interaction.
Only when the medium-range attraction and the short-range repulsion are
each represented by onc pole the "cross-over" at 30 MeV can be explained.
The CFS (3) approximation gives (eq. (4.24)):

b(1+tk?)

x?) = - : -
(1+gk“) (1+sk%)

Pers (3) (3)

with: p > 0, g > 0, t,s < 0.
2 1 2 1
The cross-over 1s at k= = - E, the pole position at k= = - ;.
In tne CI'S approximation the OPE interaction i1s approximated by one
pole. However, we could also represent 1t by a Yukawa potential:

2 e_l“r

= - Mf
v, M

and calculate 1ts effective range function exactly. Approximating V

S
by two effective poles results into a shape function PY(Z) defined by:
L, 4
Pk

2 1 1 L. 2 S
Pk = - L tyTg k- Ll 2
s s
L
= + &
6N 6L S 1 1 2 4
kcot § +—-—1r k
N a 2 N
by, (KD = N
Y(2
(2) W4
L L L
with agr Ig functions of aN and £y Choosing Pg < 0 (not too big) and

qg < 0, will also result into a cross-over and pole for py(z)(kz), as

we wlll see 1n the next section.
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In figure VI.3 we have plotted PoBE again, on an enlarged scale
for the energy region 0 - 30 MeV. The shaded area and the dotted curve
give an indication of the magnitude of the errors on the experimental
data 1in terms of the shape function. Note that these errors correspond
wlth pp scatteraing single energy analysis and are shifted to the
horizontal axis (p = 0) for a clearer view.

We arrive at the i1mportant conclusion:

Already at enerjies below 38U MeV one must account jor tne three-yold
natuare oj tne Vi interactionin the parametrization of tre phase shift
GV’ in proton-proton scaitering.

In the next section we will compare the two possible candidates:

CFS (3) and "Yukawa + 2 poles” with the shape predicted by the OBE model.
| Y}
P Uimge)™)

L ;7;7;?237?7r7”7"7——**

iy + 2 g
+

19, PN X R s
ittt 20
&****

&

Elab[MEV]

Figure VIL3: UBn potential shape (P, in jig. VI.2) for the enerjy region
4

0 - 30 MeV. Shaded area gives indicalion of the experimental error due
to the error in the phuse shijt, dotted curve variation caused by an

error of 0.015 jm in the efTective range r,. Both are shifted to the

N

p = 0 axts.
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2. Determination of the pion coupling constant from s-wave phase shifts;

test with the help of a potential model

In section 1 we saw that only the CFS three pole or the "Yukawa
effective range function with 2 poles" are possible candidates for a
sultable parametrization of the NN phase shift in an energy region
from 0 - 300 Mev.

These parametrizations each depend on 6 1independent parameters,
for which we will take:

aN: scattering length

r : effective range

2 N
[} 2
ZF'f : pion coupling constant
b: pion mass
E _: the cross-over point, 1.e. the energy where the shape function

=0 (E__ ™~ 30 Mev)
co
E__: the pole position, 1.e. the energy where the phase shift
passes zcro (E ~ 250 MeV).
po

Only the CFS (3) approximation can be expressed in closed form in
these parameters (eq. (3)). For the "Yukawa + 2 poles" approximation
(short hand: Y(2)) these numbers must be calculated numerically using
egs (4) and the method described in section V.4.

From these 6 parameters, the pion mass 1s known from other
sources. Also the pion-nucleon coupling constant can be considered as
known from other experiments. However, one must realize that in pp
scattering it 1i1s the “O which causes the nearest branch cut, while in
the other experiments (mainly nN scattering or threshold pion photo-
production) 1t 1s the charged pion coupling constant which 1s deter-

mined. Therefore pp scattering 1s almost the only source from which we
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can determine the ﬂO coupling constant and we will consider 1t as a
free parameter.

From the other four parameters Epo 1s only of importance when one
analyses the 0 - 300 MeV region. For analyses in the 0 - 40 MeV energy
band 1t 1s sufficient to fli Epo at 250 MeV (or =) and consider only
aN, rN, f2 and Eco as being free; 1n this way one includes already 1in
the low energy analysis some i1information from scattering at higher
energies.

Before turning to the actual proton-proton data 1in section 3, we
will first test the different methods (CFS (3), Y(2)) 1in a non-trivial
way with the help of the Nijmegen OBE potential model [Na 78]. It is
1mportant to realize that in the ideal case that CFS (3) and Y(2) were
exact (1.e. no approximations 1in the theory; in our case the poles);
they should reproduce the potential model predictions (whether the OBE
model represents physics, 1S another question).

In figure VI.4 we have plotted, for the 0 - 30 MeV region, the
shape functions defined in egs (1), (2), (3) and (4), each calculated
with the same parameters:

2

a =-23.7fm, r =28¢fm, Z—n=14.213, U= 138 Mev ,

E ~ 30 MeV , E ~ 250 MeV (roughly)*
co po

*This 1s of course not true for pCFS[Z)' eq. (2) which cannot produce

a cross-over and pole; 1t 1s faxed by ays r f2 and y only (eqg. 4.23).

NI
For technical reasons we did not use Eco and Epo' but points at 35

and 160 MeV to fix the parametrization in CFS (3) and Y(2).
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Comparing with the OBE model one observes:

- CFS(2) has too much shape (of course, i1t contains no repulsion and
therefore no cross-over),

- CFS(3) predicts a shape which i1s too small;

- Y(2) agrees remarkably well with the "exact" shape;

—- Considering the "error-band"” in figure VI.3, the difference between
CFS (3) and Y(2) 1s certainly statistical relevant in a multl—energx
analysis of low energy pp data.

In figure VI.5 we have plotted the difference between the exact

(OBE) shape and the CFS (3), respectively Y(2) shape for energies

between 0 and 240 MeV. We see that for energies between 40 and 180 MeV

both CFs (3) and Y(2) differ only little with the OBE shape; 1n terms
of the s-wave phase shift they correspond with deviations in the order
of 0.01 - 0.05 degreces (experimental errors 1n pp scattering are in
the order of 0.5 degree). Only in the neighbourhood of the 250 Mev
pole tne differences become larger. However, in the phase shift this
corresponds only with an error of approximately 0.2 degree.

We conclude:

- the effective range model, Y(2), in which OPE 1s represented by a
Yukawa potential and the remaining interaction by two poles, 1s able
to represent a complicated potential model very well (certainly far
within experimental errors);

- representing the OPE interaction also by a pole will result into
deviations in the 0 - 30 MeV region comparable with the errors in
s-wave single energy phase shift-analysis.

This does not mean that it 1s not possible to obtain a good fit using

the CFS (3) approximation. This 1is 1llustrated in figure VI.6 where we
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2 2
plotted the same OBE shape with %? = 14.21, however, used %}'= 16 and

18 1n the calculation of CFS(3) and ¥(2). It appears that the shape 1is

very «ensitive to the pion coupling constant.

Pl

5 1 1% P E(ap (MeV]

’ OBE shape;

//, P os g2/47 = 14.2
4
P P = CFS(3) shape; Pr Py = Y(2) shape;
m-"m ; o-'n
g%/4n = 16,18 g2/4m = 16,18

Fiyure VI, 68: Deperdence of the shape funciion on the pion—nu-leom

coupling constant.

One observes that CFS(3) with a coupling constant of 17 (20 % too high)
w1ll reproduce the shape of the OBE model with a coupling constant

of 14.2 reasonable. That the OPE part of the interaction seems to be
too weak in the CFS(3) approximation is clear, since the left hand pion
cut starting at - 10 MeV 1s replaced by a pole at - 20 MeV with a
weight which 1s an average of the total discontinuity from - 10 MeV

up to - «,

To obtain an i1nsight into what can be expected 1f one tries to
0
determine the @ pp coupling constant from pp scattering data, we first
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tried to reproduce the coupling constant used in the OBE model with the
help of the effective range formalism with OBE phase shifts as input
data. To be as realistic as possible we modified the OPE potential used
in [Na 78] with some additional nonlocal terms and refitted slightly.
The coupling constant used in the potential model was: %;F = 13.61.
After that, proton-proton s-wave phase shifts* were calculated at
energies between 0 and 30 MeV representative for the experimental
cross—section measurements nowadays. Also phase shifts at 50, 100, 150,
225 and 325 MeV were calculated corresponding with the energies of the
recent VPI analysis [Ar 80]. Errors were assigned to the phase shifts
1n three differcent ways:

(a) Using the numerical errors (ranging from 3.10_3 degrees at
0.5 MeV to 3.1072 degree at 150 Mev);

(b) Using an experimental error resulting from single energy
analysis at that point [sa 79, Ar 80];

(c) Using the same error as (b), we varied also the phase shift
around the calculated value to simulate a statistical
distraibution.

In table VI.1 we compare the pion coupling constant predicted by

the Y(2) and CFS(3) effective range functions from OBE phase shifts
1n two different energy regions: O -~ 30 Mev and O - 150 MeV, using

errors (a):

*For technical reasons vacuum polarization was omitted.
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2
9
OBE _
v 13.61 Y(2) CFS(3)
0 - 30 Mev 13.9 £ 0.4 16.44
2 2
x /data = 0.02 x /data = 1.34
0 - 150 Mev 13.89 + 0.13 14.48
2 2
x /data = 0.07 x /data = 9.13

. 2 .4
Table vi.1: % coupling constant and x°/data determined jrom potential

prase shij'ts witn numerical error.

Since numerical errors are not of statistical nature the x2/data gives
only an impression how well the potential phases can be reproduced by
an effective range model. The error quoted 1s not the statistical
cerror but the maximum variation possible with the phase shifts within
the error-band. The Y(2) effective range formalism 1s able to repro-
duce the potential phase shifts within the numerical error and also
predicts the pion coupling constant within 2 %. For the CFS (3) this
1s not the case. As expected the resulting pion coupling 1s too large
(~ 20 %) 1in the 0 - 30 MeV region. Adding data at higher energies
wmproves the prediction since CFS (3) becomes better in the region
above 40 MeV. Table VI.2 1s the result of the calculations with the
experimental errors (b) and (c). One observes the error which can be
expected i1n the analysis of experimental data and the influence which
a statistical distrabution of the data may have. Results for the CFS
(3) method are similar with exception of the central value which 1is

too high (16 - 17 1in the 0 - 30 MeV region).
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OBE
e = 13.61 Y(2), errors (b) Y(2), errors (c)
0 - 30 MeVv 13.9 + 1.4 13.6 + 1.4
2
x“/data = 0.98
0 - 150 Mev 13.9 * 0.6 13.0 + 0.6
2 2
x“/data = 0.0005 x /data = 0.88
0 - 325 Mev 13.8 + 0.5
2
X~ /data = 0.001

lable VI.2: m coupling constant aetermined by Y(2) cjective ranje

Junction witn experirental errors (see text).

We conclude: 1f an OBE potential model represents physics
reasonable, one can determine the pion-nucleon coupling constant very
well with the help of the Y(2) effective range formalism. The CFS(3)
method will result into coupling constants which are too big: 7 % -
25 % depending on the energies which are used: datla at lower energies

will give a larger deviation.

Before turning to the actual data we want to make a few remarks
on these numerical checks. It seems to be possible now to determine
g2/4n with a "model" error of 0.3 and an experimental error of 1.4 in
the low encrgy region (0.6 1f one includes data up to 150 MeV).
However, we have "proven" this only 1f nature 1s represented reasonable
by a Nijmegen OBE potential. Besides the pion, this model contains as
lowest meson mass 549 MeV from the n. Therefore the quantity Nik2 f L

85

(with VL = OPE interaction) has singularities starting at - 160 Mev

1in the complex (laboratory) energy plane. It seems to be reasonable
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that a cut structure at such a distance from the origin can be repre-
sented by two poles as 1s done 1n Y(2).

However, a phenomenon like uncorrelated two-pion exchange (two
pion excnange diagrams minus the contribution already taken into
account by the i1teration of the one pion exchange potential in the
Schrodinger equation) will produce an additional cut starting as low
as - 40 MeV, and could influence the fit. Whether this 1s indeed the
case, can only be seen after calculations with the help of an explicit
representation of the uncorrelated two pion exchange mechanism [Pa 70,
Ta 52, Br 53]. If the assumption and approximations made in the effect-
ive range theory are clearly 1in conflict with experimental data we
expect that some or all of tne following things will happen:

I. The pion coupling constant strongly depends on the energy range which
1s used. This 1s for instance observed for CFS (3) in table VI.1.

II. In this section we have dealt only with s-waves. In the analysis of
experimental data, however, one must also parametrize the peraipheral
waves which are less dependent on the inner parts of the potential and
which will give also a value for the pion coupling constant. In the

case of a clear conflict between theory and experiment the value
obtained for g2/4n from the s-wave will differ from the value obtained

from the peripheral waves.

3. Determination of the nogp coupling constant from experimental data

In this section we will not consider the rather complicated and
technical process of data collection, calculation of observables from
phase shifts, search procedures and so on, which are connected with

the actual analysis of proton-proton scattering.
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We refer to the internal reports of Emmen, van Dongen and van der
Sanden [Em 79, Do 79, sa 79], and to the work of Sher, Signell and
Heller [sh 70], for details about low energy analyses. Data up to 500
MeV are analysed by the Livermore and VPI group {Mc 68, MG 69, ar 74,
Ar 80]. Also the paper of Naisse [Na 77] 1s of interest since he pays
special attention to the CFS (2) approximation in the 0 - 12 MeV energy
region,

The data consisted out of more than fifty groups of cross-section
and polarization measurements between 0.3376 and 30 MeV. To check the
consistency of the s-wave effective range function with higher energies
we added as data also the most recent single energy s-wave phase shifts
at 50, 100, 150, 200 and 325 Mev from [ar 80].

The parametraization of the phase shifts was done with the help of
old and new techniques:

- the f and higher part:ial waves are represented by the Coulomb
corrected one pion exchange mechanism (Born approximation) ;

- the p- and d-waves are parametrized according to Sher's [Sh 70]
method with the only difference that the central, tensor and span-
orbit p-wave combination are used as independent waves rather than

3

the P and 3P waves.

3
Pyo 2

o’
- the s-wave was approximated in two ways:
a. the Coulomb- and vacuumpolarization corrected CFS (3) approxima-
tion;
b. the two pole approximation of the effective range function PL(kz)

with: VL z Coulomb- + vacuumpolarization + OPE-interaction*.

We referred to this method already with the notation: Y(2).

*OPE-1nteraction 1s represented by a Yukawa potential.
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A leastchi-squarea fit was performed for the data sets:
I O - 30 MeV ecxperimental data
IT O - 30 MeV experimental data +
50, 100, 150 MeV s-wave phase shifts [Ar 80]
III 0 - 30 MeV experaimental data +
50, 100, 150, 200 and 325 MeV s-wave phases [Ar 80].
As far as the s-wave 1s concerned we searched for aN, tN, g2/4u, Eco
in data sets I and II, keeping Epo fixed at 253 MeV. For dataset III

we also searched for the pole position E o

The results for the pion-nucleon coupling constant are given 1n

table VI.3.
s-wave -
arametrizataon
ﬁ\i\\ ¥(2) CFS (3)
T
I 15.9 £+ 1.0 17.8 + 1.0
II 15.89 * 0.56 17.59 + 0.55
III 15.21 + 0.47 16.42 * 0.47

Table VI.3: pron coupling constant determined with the help of both
s-wave paramerrizarions jfor tne energy regions I, [[ and

111,

In table VI.3 the same coupling constant 1s used 1n the s-wave
parametrization and the peripheral waves. Fitting the coupling constant
2
in the s-wave (gs/4n) and the peripheral waves (gz/4n) separately we

obtain the results of table VI.4.
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Y (2) CFS (3)
2 2
gs/4ﬂ =16.4 + 1.3 gs/4ﬂ = 20.8 + 1.3
I
g§/4n = 15.4 + 1.3 g§/4Tr = 15.4 t 1.3
2 2
II gs/4ﬂ = 15.9 + 0.6 gs/4ﬂ = 17.8 £+ 0.6
2 2
gs/4ﬂ = 15.2 £ 0.5 gs/4n = 16.5 % 0.5
IIT > 5
gs/4m = 15.5 * 1.4 go/4m = 15.9 + 1.4

Taple /i.4: "s~wave" and "peripneral wave' pion coupling constants.

In table VI.4 one observes the phenomena already expected from the

previous section:

- tne "s-wave" coupling constant determined by CFS (3) 1s much larger

than the value obtained by using Y(2);

- the CFS (3) value 1s strongly dependent on the analysed energy region

and drops more than 25 % when data at higher energies are added;

- the low energy "s-wave" result for CFS (3) 1s clearly in conflict

with the coupling constant determined from the peripheral waves;

- the ¥(2) coupling constants are (within the error) not dependent

on the energy region, and agree with the value from the peripheral

waves.

Therefore the CFS(3) method can be rejected as a suitable para-

metrization. This 1s not because CFS (3) will not fit the experimental

data*, but because the fitted value of the coupling constant is not

stable and not in agreement with the value from the peripheral waves.

*In fact tne chi-squared 1s somewhat higher than Y(2) but this does not

exclude the phase shifts as predicted by CFS (3).
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The Y(2) parametrization seems to be a reliable method within the
current understanding of the nucleon-nucleon interaction. However, the
predicted value of the coupling constant could be influenced by
singularities which are rather close to the origin (for instance
uncorrelated two pion exchange). Since the predicted coupling constant
1s not significantly dependent on the analysed energy region and also
1n agreement with the one from the peripheral waves there 1s no real
1ndication that this i1s also the case.

Another cause which could influence the fitted value of g2/4n 1s
a systematic deviation 1n the s-wave phase shift. This will be clear
since the pion coupling 1is roughly proportional with the deviation from
the straight line in the low energy region in the effective range plot
(the shape).

This phenomenon 1s demonstrated in a fit we performed using s-wave
phases as input data also in the 0 - 30 MeV region. We used phase
shifts from the single energy analysis from van der Sanden and Emmen
[sa 79, Em 79] (where necessary we corrected them for vacuumpolariza-
tion approximately). To these data we added the results from the
Livermore group [MG 6%] up to 325 MeVv.

To our surprise we obtalned:
2
gn/4n = 13.5 * 0.7 .

This 1s rather strange when one realizes that the single energy phase
shifts 1n the low energy region were obtained from (almost) the same
set of experimental data*, which in an energy dependent fit gave:
¥There are added some new data at 9.85 MeV and recent data from the VPI
group [Ar 80] since that time, which resulted 1nto a lower error; the

fitted value of g§/4ﬂ was not affected significantly.
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15.2 * 0.5,

In the single energy phase shift analysis one 1s, however, not
able to fit all of the higher partial waves, and therefore (potential)
model values for the tensor and spin orbit p-wave combination were
used in [Em 79] and [Ssa 79]. These model values (for GT) appeared to
be slightly and systematically too negative compared with the results
of the multi-energy analysis where 6T was fitted (deviation ~ 8 %).

The pp differential cross section can be written as [Sh 70]:

g =0__(nuc) + ¢ int) + g__(Coul+ 5
pp PP PP( ) PP uL+vp) 5

with o _(nuc), o _(i1nt) and o (Coul+vp) the so-called nuclear,
PP ppP PP
interference and Coulomb + vacuumpolarization terms. For higher energies

the 1S nuclear phase shift 1s mainly determined by the nuclear part*:

0
2 2 2 36 GLS 2
= = + —
k opp(nuc) sin 6150 + 18 GT ( 55 ( 5 )7
T
2
+ 9 cos” 6 (p-wave phases) (6)
Therefore i1t 1s the quantity:
)
2 2 36 LS .2 2 2
sin 615 + 18 GT ( -5 + ( 5 )7) & sin 615 + 26 6T
0 T 0
§
( T%fi 1s small) (7)
T

which 1s determined in a single energy analysis, rather than 615 .
0

[¢)
*At 90 the interference term 1s zero and the argument holds exactly.
For smaller angles this interference term influences the total cross

section. However, thlis intereference term depends both on 615 and on
0

GC; therefore a variation in 615 can be corrected by fitting GC. The
0
interference part of the single energy analysis will therefore

probably be correct since SC 1s fitted (GT and GLS not) .
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Therefore we corrccted the 615 from the single encrgy analysis with
0

the formula:

sJ.n2 61 (corrected) + 26 éi(multl-energy)

So

= s:.n2 615 (si1ngle-energy) + 26 Gi(potontlal model) (8)
0

These corrections appeared to be small, ranging from + 0.0140 at

5 MeV, + 0.09o at 10 MeV up to 0.3° at 26 MeV. The extra "shape"
caused by these corrections will influence the pion coupling
constant obtained from a fit to these phase shifts. We obtained after

these corrections:
2
gn/4ﬂ = 15.0 + 0.7 R

which agrees with the fit directly to the data. Therefore 1t appears
that tne determination of an "s-wave" pion coupling constant 1is
strongly correlated with the p-waves, especially the tensor combina-
tion GT; therefore polarization measurements and cross sections at
o
90" are important.
0
Summarizing our result: the 7 pp coupling constant as determined

by tne data below 30 MeV 1s:
15.9 £ 1.0 .

Taking also s-wave information up to 325 MeV into account:
15.21 + 0.47 .

These values seem to be rather high compared with the "conventional”
value: 14.43 t 0.41 [MG 69] obtained by a multi-energy phase shift
analysis. However, Viollier [Vi 74), using the phase shifts of [MG 69]
1n dispersion relations and correcting for the Coulomb interaction,

arrived at: 15.3 + 0.3.
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As a final remark: 1t must be possible to decrease the error on
the coupling constant by including also the peripheral waves for
Elab > 30 MeV ain the fit. Since the Livermore analysis gives an error
of 0.4 (from the peripheral waves) 1t 1s likely that an accuracy of

0.3 could be reached in a multi-energy fit of the data betwecn 0 and

300 Mev.



APPENDIX

In this appendix we will sketch the proof of the different analytic
properties for the solutions of the radial Schrodinger equation:

v" 4+ (k2 - giﬂgll-— V) v=20 (1)

r

We strongly recommend the reader first to study chapter 12 of the book
of Newton [Ne 66], or chapters 11 and 12 of the book of Taylor [Ta 72].
For the moment we will assume that V i1s a potential analytic in r,
independent of k2, 1n some region which contains the origin r = 0.
Modifications for potentials which have a simple pole at r = 0 will
be given between: < >,
Equation (1) has a regular solution of the form:
1 g+l 1
)

vR(r) = TEE:TTTT r r r ’ r =1, r1 =0

=1, T, # 0> (2)

A
N
!

where VR(r) 1s real analytic in k2 and analytic in r in the same region
as V(r).
This can be proven by deriving and manipulating the integral

equation*;

X
velr) =3 + [ (3(x) B(x') - Alx) 3(x')) V(r') v (r') ar'

0
(3)
as 1s done by Newton and Taylor [Ne 66, Ta 72], or by studying the

recursion relation for the expansion coefficients r

(n+2) (n+2043)r . + kK> r_ - i vr_ =o0 (4)
n+2 1]
1+J=n

with v, defined by the expansion for V(r):

*n and 5 as defined in chapter II.
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v rt <V(r) = z v or'> (5)
1 a0t

v(r) =

or~18

The series (5) converges within a certain distance from the origin.

One proves: the coefficients r are real polynomials 1n k2 with
highest terms kn for even n and kn_3 for odd n <k" even n, kn_1 odd n>.
Therefore a finite summation in (2) 1s always analytic in kz. One can
prove that the summation (2) 1s uniformly converging (for bounded k2
and r) and therefore VR(r) 1s also analytic in k2.

Furthermore, with the help of the integral equation (3) one

proves:

A+1
|VR(r)| < constant S 1 e]Im kr| 6)

( o+ [xe)
So far, as the regular solution Vpr 18 concerned these properties are
well-known. However, eq. (1) has another, irregular solution, of the
form:

-2

v (x) = ck?) vo(r) Inr+ (201! x 7

Il ~18
1}
o]
™

with Sq = 1, sy = 0 <sO =1, s1 # 0>.

That vI 1s indeed a solution can be proven by putting it into the

Schrodinger equation (1) and deriving the relation:

2 2
(n+2) (n+1-22) sn+2 + k sn + C(k )(2n—2JL+3)rn_2‘L+1
- ] vs =0 (8)
1]
1+3=n

From (8) the coefficients S, (polynomials in k2 of the same degree as

rn) can be calculated and also the function C(kz):

2 1 2
Ck) = 52— ¥ vs -k%. .) (9)
22+1 1492281 173 2%-1
which 1s a polynomial 1n k2 of degree k”'—2 <k2£>.



The coefficient 521+1 1s not defined from the recursion relation
(8) and can be choosen freely 1t corresponds with adding a multiple

of the regular solution to the irregular solution. We will define our

standard irregular solution with the choice:

Syeer = O (10

It 1s quite possible to make another choice; 1t will not affect the
properties in the following as long as:
2 2
521+1(k ) 1s a polynomial of k” of degree (22).
With the help of equation (7) and(8) one can prove:
Vi 1s a real analytic function of k2 and except for the ln r singulari-

ty also analytic in r i1n the same region as V(r).

For the irregular solution one proves the integral equation:

r
vi(x) = an(r) + bj(r) + [ ar' (S(r)r—m(r')—ﬁ(r)i(r'))V(r')vI(r')
€ (11a)
with: r > € > 0
and: a n(e)+b I(e) = v_(¢) a = - W(v IS)I
) . 1 = Doe (11b)
1 ' = ' =
an' (e)+b3' (e) VI(L) b W(vI,n)|E

Note that the integral in (lla) 1s not defined for ¢ = 0 since the
integrand 1s singular for r - 0 (£ # 0) <all 2>. Equation (lla) can be
used to solve vI(r) in rterated form; with the help of this method one

proves:

|VI(r)| < constant la!(lﬁ%ﬁfl)g + |b| (I:H%&T)i+l
rl Vst [1+]xe]) 22 |1m kr|
+ |a] (ﬁ;‘;() (TJETL) e (12)

In the following we will need some more restrictions on the ana-
lyticity of the potential V. We will assume that V(r) 1s analytic in

the region Re r > 0, finite i1n the origin or atmost having a simple
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pr Hr

pole here, and falls off exponentially like e {or e /x, etc.) for
r >, Rer > 0.
When one 1s interested i1n the analytic properties of effective

range functions, 1t appears to be convenient to define the integrals:

Rt = i (5+15k2“1)vV dr'
R
0
® 2041
R= [ (-13x"") vy ar
0 . (13)
step-2k* o (n+15k2“1)vVIdr'
F
20+1 ®
S =b+1k" T a+ f (n-13 k22+1) v oo dar'
£

Although S+_ seem to depend on the value of € this 1s in fact not the
case, as can be proven with the help of egs. (11).

With the usual methods, using the analyticity in k of the
integrand, the analyticity of a and b 1n k2, the analyticity and
exponential decreasing of the potential and the bounds of egs (6) and
(12) one proves:

- S+, R+ are analytic in the complex k-plane except for the negative
1maginary axis where singularities are possible for
-» < Imk < - /2.

- S-, R are analytic in the complex k-plane except for the positive
1maginary axis where singulartities are possible for
+ W/2 < Imk <=,

Furthermore, one obtains:

—* -
YT (-x*) = sTT k)
- -
s k% = s
" ' (14)
R (-k*) = R (k)
—* -
R kH = Rk



Using eq. (6) one proves:

+ -
lim IR (k)] =0 ( T%T-) (except negative/positive 1maginary axis)
|| >
< <0 ( ———%:E-) with & any number > 0 > (15)
||
From the recursion relations (4) and (8) one derives for £ = EEE%EEEE :
1
1im a=1+0 ( - )
> k
x| (16)

lim b=0 (}(21)

|| >=

+-—
Using the bound eq. (12) and the fact that S does not depend on € one

gets:
st 1
lim T “+ 1+ 0 { TET ) (except for the negative/ (17)
|k|+@ k positive 1maginary axis)
Note 1:

Sometimes 1t 1s convenient to have a bound on vI(r), like eq. (12),

which 1s not dependent on e. Using eg. (12) and eq. (16) one proves

immediately:
|v (1) | < constant ( %‘%“E—L )& o lm kx| (18)
1
constant

and |k| > |k | #0 .

for lrl >

k min

With the help of the expansion eq. (7) the validity of eq. (18) can be

constant

extended also to [rl < "
|

Furthermore, using eq. (16) and egs (7) and (8) again in the region

Ikl < |k [, one proves:

min

1+|ke| % r ¢+ |1Im kr|
le(r)l < | constant ( —W%T—L } 7 + constant ( T%ﬁ};r) e

(19)

which 1s valid for all r and k (Re r > Q).
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Note 2:

In chapter II we derived for potentials which are finite in the origin:

§(k) —— 0O ( T%T )

[k |-

+

kllN(k)—»1+o(l)
k
koo

2
%—> constant
K ko

For potentials which have a simple pole 1n the origin this becomes:

1

lim §(k) < O ( )

with § any
i
T \
ko || \ number > Q
2
lim H(gl) < constant Ikl<s
ko= K
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Part Two:

The Electromagnetic Interaction







CHAPTER I

Introduction and motivation

In the second part of this thesis we will study some aspects of
the electromagnetic interaction. It 1s impossible for us to give at
this place a survey of the many different techniques used to descraibe
this type of interaction. In the following we will only try to outline
the historical background of one of the situations where an accurate
description of the electromagnetic interaction 1s necessary: low
energy proton-proton scattering.

Field theoretical methods are extensively used in the last four
decades to describe the electromagnetic interaction between charged
particles. The problems concerning the infrared catastrophe, the self
energy of the charged particle, mass- and charge renormalization are
solved within quantum electrodynamics. The predictions for quantities
like the hydrogen bound state levels, the anomalous magnetic moment
of the electron and muon are in excellent agreement with experiment.

The success of quantum electrodynamics encouraged the application
of the same kind of techniques to other types of interactions. In the
following we will refer especially to the interaction between two
nucleons.

The electromagnetic force 1s mediated by the photon which 1is
transmitted between the source (the electromagnetic current) and the
charged particle. This electromagnetic force 1s present in the two
nucleon system., However, besides that, another much stronger type of
1nteraction 1s present.

Yukawa proposed that the nucleon 1s the source of a force field,



called the meson field, in thc same way as an electrically charged
object 1s the source of an electromagnetic field. The gquantum associated
with this field was called the pion, discovered 1in 1947. Until about
1960 many people have tried to construct field theoretical nuclear
potentials due to one pion exchange (OPE) or two pion exchange. However,
these methods failed to describe the experimental data.

After the discovery of the p and w meson, fields associated with
these particles were added, leading to the so-called One Boson Exchange
models (OBE). Extensive work in the past two decades shows that a more
or less satisfactory description 1s reached (for references we refer
to the theses of Nagels [Na 75] and Rijken [Ry 75]). However, this
in prainciple field theoretical description of the nuclear interaction
differs in at least two aspects from standard quantum electrodynamics.

First of all the nucleons and mesons arc not "fundamental”, but
consist out of quarks. This in contrast with the "fundamental"
electrons and electromagnetic field (photon). This shows that a simple
description like OBE models 1s at most a good approximation of the
physical world. One can doubt whether all of the concepts of standard
field theory can be applied.

Secondly, when one assumes that field theory is applicable to
these i1nteractions, one meets the difficulty that the intrinsic strength
of the nuclear i1nteraction 1is much bigger than in the electromagnetic
case. The coupling between charge and photon 1s small enough to allow
for a perturbative procedure which "converges" rather fast¥. This 1is

not the case for the strong interactions: truncation of the series

*In fact one believes 1t 1s a so-called asymptotic series.
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after a finite number of terms will lead to serious troubles. First of
all one looses "physics" which 1s contained in higher order exchanges
and which cannot be neglected as 1n electrodynamics due to the small-
ness of the coupling constant. Secondly one comes in conflict with
unitaraty.

Unitary troubles can be solved by using the so-called Bcthe-
Salpeter equation [BS 51]; however, the loss of some "physics" contained
1n higher order terms 1s inevitable. As an additional complication, the
Bethe-Salpeter equation, even in approximated form, cannot be solved
exactly and must be treated numerically which is very (computer) time
consuming and not traivial.

For these reasons several approximation schemes were developed
for the Bethe-Salpeter equation, from which we mention the
Blankenbecler-Sugar-Logunov-Tavkhelidze (BSLT) "three dimensional™
scattering equations. The BSLT-equations are equaiions 1n momentum
space and give difficulties when one tries to include the electromagne-
tic interaction (with a zero mass photon). Therefore they are often
translated to configuration space which, however, leads to other
approximations. At this point one has an equation which resembles the
ordinary Schrdodinger equation in coordinate space i1n many aspects
and the electromagnetic interaction is often represented by a simple
Coulomb potential.

Tnis situation, from physics up to physical model i1s depicted in
figures I.1 and I.2.

With the help of the last type of approximations a part of the
N1jmegen High Energy Physics group has studied the nucleon-nucleon

interaction i1n detail during the last decade, and found no clear



local

phiZizitjn renormalizable
L g field theory with
quarks
nucleon and mesons

approximate renormalization consider only one boson
using "physical" coupling constants N exchange diagrams: unitarize
and masses; neglect "self energy” w.h.o. the Bethe-Salpeter
diagrams equation

approximate BS equation by
> |more convenient ones: BSLT
eqs + Schrdd. eqs

Fijure I.1.
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indication that one of the approximations was clearly bad, consideraing

the experaimental data*.

Much work was done, especially in the last step of the approxima-

*At this point we must mention the work of Rijken [Ry 75] who arrived
ultimately at essentially the same equations using another starting

point: analytic S-matrix approach using the "New Strip Approximation”.
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tion, to make the Schrddinger cquations as equivalent as possible to
the BSLT-equations. A clear advantage of the (configuration space)
Schrodinger equation 1s that the electric interaction can be added in
a rather simple way to the strong interaction. Due to the zero mass of
the photon 1t 1s extremely difficult to handle this in the (momentum
space) BSLT-equations. Up to a few years ago, the electric interaction
was represented by a simple Coulomb potential of the form % ; one
arrives at this potential by simple using the approximation scheme,
described above, using the photon exchange mechanism, and 1t 1s fully
consistent with the local configuration space potentials as derived
by Nagels and Rijken [Na 75, Ry 75] between 1970 and 1975. However,
since that time the Nijmegen group has improved its descraiption of the
strong nuclear interaction by including also nonlocal types of
interaction in 1ts configuration space potentials (the step BSLT -
Schrodinger equation forces one to neglect some nonlocal terms; the
most crude approximation leads to local potentials). Also the electric
part of the interaction needed therefore revision and we used the same
approximations as for the nuclear interaction in first instance.

However, to our (unpleasant) surprise, this led to a nonunique
electric potential which was 1n general not able to describe a very
fundamental problem in physics: the bound state levels of the hydrogen
atom. Unless we made some special assumptions 1t predicted only the
Balmer part of the energy levels, but failed in the description of the
fine slructure splaitting.

This was a serious short-coming of our conventional method since
the fine structure splitting in the bound state levels corresponded

with the newly calculated (nonlocal) corrections in the potentials.
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A critical revision of all the approximations was necessary which led
ultimately to a different approach of the last two steps of the
approximations: from boson excnange diagrams via one boson exchange
to three dimensional approximations and the configuration space
potential.

In the sccond part of this thesis we will consider the last two
steps of approximations in figures I.l1 and I.2. Our starting point will
be boson exchange diagrams where the renormalization has been taken
into account by using physical coupling constants, masses and form
factors. Typical renormalization features like the anomalous magnetic
moment, the Lamb shift, or the vacuum polarization are therefore not
contained 1in our starting model and must be put in by hand as effective
potentaials.

Although the title suggests that the [ollowing 1s only a calcula-
tion of the electric potential in nucleon-nucleon scattering, it will
appear that the methods can also be applied, in prainciple, to the
strong nuclear interaction. In fact, the electric potential derived in
this thesis, can only be applied 1n combination with a nuclear

1interaction derived with the same methods.

In chapter II we will give a short review of the Bethe-Salpeter
equation, the three dimensional BSLT equations and we will show that
the last approximation in general leads (in lowest order) to an
1ncorrect bound state structure for the hydrogen atom.

3 like model to outline the basic

In chapter III we will use a "@
concept of the derivation of a configuration space potential from

boson exchange diagrams. Since an exact calculation 1s not possible

this 1s done 1n a perturbative way, using the inverse of the mass of
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the scattering particles as expansion parameter.

In chapters IV and V we will apply this method to more "physical"
cases: spin 0 - spin O and spin 1/2 - span 1/2 scattering and show that
the derived potential describes the hydrogen bound state levels well,
1ncluding terms of order a; (aF = fine structure constant).

In chapter VI we will consider the electric potential in low

energy proton-proton scattering and derive modified effective range

functions.
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CHAPTER 11

The Bethe-Salpeter equation, BSLT three dimensional

approximation and the electromagnetic interaction

1. Introduction and the Bethe-Salpeter equation

In this section we will list some of our conventions, review some
well known properties of the summation of Feynman diagrams with the
help of the Bethe-Salpeter (B.S.) equation and discuss the approxima-
tions in the Blankenbecler-Sugar (BSLT) pseudopotential approach.

We are interested in the elastic scattering of two spin-1/2

particles a and b:
a+b+>a+b (1)

with 1nitial four-momenta and p._ and final momenta p' and p'. One-
Pa b a b

particle states are normalized according to:
3 3, >
<p,s|p',s'> = (2m)2E(p) 67 (p-p") 6, (2)

with s and s' denoting the component of the spin along the z-direction
and:
>2 2.1/2
E(p) = (B° + n)) Y/ (3)
m being the mass of the particle; in the case of unequal mass
scattering we will denotc the mass of particle a with m and 1ts on
e +2 2,1/2
shell energy with E(p), for particle b with M and D(p) = (p° + m")

respectively.

The Dirac spinors we use are normalized according to:
- > ->
u(p,s')ul(p,s) = 2m 65,5 (4a)

for positive energy spinors, and:
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v(p,s)vip,s) = ~2m & 4b
vip,s')v(p,s) = -2m o's (4b)

>
for negative energy spinors. Fourvectors will be denoted: p = (po,p),

and:
p"Epp =p -p (5)
For the Dirac spinors we will use the Pauli-Dirac representation:

—_— X
u@,s) = VE(@) +m e (6)
—_— X
E(;) +m °

-5
with ¢ the Pauli spin matrices and Xs a Pauli spinor. The y-matrices

have the following form:

IS
0 -10 1 0

=¥
i
¥
—<
Q
I

1 0 0 -1
Y, = ' Ye =
4 0 -1 > -1 0
- > + >
and: u(p,s) = u (p,S)Y4 .

The scattering process (1) 1s described with the help of the

scattering operator T with matrix elements:

< > = <p! sp) ! ; >

f|T|1 pa,sa,pb,sblTlpa,sa,pb,sb (8)
It 1s customary to define an ¥ matrix, which 1s a 16x16 matrix in

spinor space, and which, sandwiched between Dirac spinors gives the
corresponding T-matrix elements:
- - > > >
<f|T|1> = U(P;,S;)U(pgrsg)”fl(p',p:P)u(pa,sa)u(pb,sb) (9)
with P the total four-momentum of the system:
P=p

= ' ’
a + pb p) + Pb (10)



and p the relative momentum defined by

pa = P'IP *P
with u, + g, =1 (11)

Py = M,P - P

and similarly for p'. In the center-of-mass frame one has:
> > -+ >
P= (/5,00 ; p, = (E(P),p) : py = (D(p),P) ;
> e -+ >
v o= 1 ] | - y,-p' s
P (E(p"),P") ., Py (D(p'),-P")

and therefore:

p

> > >
(qu(p) - plD(p).p)

-> > -+ (12)
p' = (LE(P') - ulD(p'),p')

2
The " matrix 1s defined for all four-momenta p, p', P, however
represents only the physical scattering process (1) when p and p'
satisfy equation (12) and P = (E(§)+D(E),O) = (¥s,0), which puts both
the initial and final particles on the energy- and the mass-shell.

In field theory the “Y-matrix can be obtained when one sums the

infinite set of Feynman diagrams of fig. II.1.

T T T A 7
! | ! AN P :
: ! | N ,/ 1
M= i + | [ x + { + -
f 1 i VAN t
| | | v \\ |
1 ! i i N 1
1 i 1 L S 1
fig. II.1

This infinite summation 1is clearly an impossible task, and one even
does not know whether this series converges. Truncation of this series
will give problems with the unitarity of the scattering matrix. By

rearranging the diagrams of fig. II.l one can obtain a matrix equation



of the form:

d4k rr
I Mi_l (p' ,k;P)G(k;P)M(k,p;P)
(2m) (13)

' . o AET X
M (p',piP) = M (p',piP) + i

which 1s the so-called Bethe-Salpeter equation [BS 51; Ge 51; Sch 51]

without 2-particle unitarity troubles when UVt 1s truncated.

rr
Ml stands for the airreducible kernel and consists of all

"i1rreducible" Feynman diagrams (fig. II.2).

M I|’I’=

+
+
g
+

I

1

1

|

fig. II.2
G 15 the Greens function, which for two spin-1/2 particles consists

of the two-particle propagator:

(u1P+k) Yu + 1m 1g2P—k) YU + 1M-
G(k,P) = -1 L L2

(14)
(u1P+k)2+m2—la jsz—k)2+M2—1e

The BS equation can be depicted as:

Pa P Py <P,
M = MII’I’ +
Py—< <- P P o
P;==5 2 Pa
M| oG M
Py~ o <— Py
fig. II.3
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The BS—equation 1s still an equation which (except for some simple
cases) 1s not exactly solvable. Moreover one can doubt whether 1t as
valid to describe a scattering process like NN * NN with the help of

a local renormalizable field theory. The nucleons are not considered as
confined three quark states but as elementary particles (e.g. the bare
nucleon) which are "dressed" withmeson clouds and renormalized to give
physical coupling constants and masses (we refer to [sw 77] for an
extensive discussion on this poant).

For these reasons one takes only a limited number of diagrams in
the irreducible kernel into account and uses the BS-equation merely as
a method to incorporate some general features of a relativistic
scattering process: relativistic unitarity, retardation, covariance,
and several conservation laws.

Most of the time, the first step 1s to remove all self-energy
graphs from the irreducible kernel and to consider them as being
represented by the use of physical masses and coupling constants (form
factors) i1n the propagators and vertices. Then we are left with the

err depicted in fig. II.4.

T ~ e ~ —r—
! AN yd N 7 ¢
irr i NS NS
- N 7
MT= i + w + w_ s 4 ————
~ s X
! 77N N
! z N s N
1 L AN L L A
fig. I11.4

rr
Also this at must be truncated. A commonly used approximation is to
keep only the first (one-meson-exchange) term. This gives, once the

BS-equation 1s solved, the so-called ladder approximation ML to M:
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fig. II1.5

The crossed (fourth order) diagram 1s also sometimes taken into account,
however, one has rarely gone beyond the fourth order because of the
great computational work i1nvolved.

The BS-equation with the approximated irreducible kernel 1is still
a very complicated equation and hard to solve. Its main problem is the
four-dimensional integration over the momenta of the intermediate
particles and the complicated singularity structure of the kernel due
to the Lorentz metric of the particle propagators. To simplify the
numerical treatment one often applies a "Wick rotation” [Wi 54] to the
BS-equation. The basic 1dea 1s to remove the singularities due to the
Lorentz metric via a rotation of the integration path ko > lko and a
simultaneous transformation of the externmal variable Py ? 1pg,- However,
the validity of this procedure cannot be rigorously proven. Also the
integral equation involving two independent variables |;| and Iko[
(the i1ntegration over the angle can be avoided by making a partial wave
decomposition) requires Wuch computer space and time. Instead of
explicitly solving the equation with matrix inversion, one often
1terates the BS-equation, starting with err, by putting the approxima-

te solution 1n the righthandside of equation (13) again; in this way

one generates the coefficients of an expansion in the coupling constant
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(frg. II.5) which can be used to construct a Padé approximant of the
exact solution. For detailed information we refer to the literature
[Le 67, Le 66; FL 75], a review of the BS-equation 1s given by
Nakanishi [Na 69].

Because of these difficulties in the BS-equation some alternative
equations have been proposed which may be considered as certain
approximations to the BS-equation such that relativistic covariance
and unitarity are preserved but the integration over the relative energy
variable 1s removed. These equations, called the Blankenbecler-Sugar-

Logunov-Tavkhelidze equations (BSLT-egs), will be discussed next.

2. BSLT-eguations or relativistic three-dimensional scattering equations

The unitarity of the S matrix implies for the transition matraix

T as produced by the BS-equation via eq. (9)*

fa 3 3
N ST S D) fd Pan? Pon L
f1 f1 6 > >
spins (27) 4E(pan)D(an)
n
+ 4
X T § (1:’n - Pl) T, (15)

Using the total and relative four-momenta as defined by eqs (10) and

(11) 1t 1s not daifficult to rewrite this as:

+ 2 d4k 0 > >
T, - T = (@S ] [ —7 8@ - Ek - D)
1 fa 4
Spins (2m)
n
8§ (k%-u_E(k_)+n,D(k_))
o T+ n 2 n 1 n T (16)
fn ni

> >
4E(k_)D(k_)
n n

*We restrict ourselves to the energy region where we have only
(physical) two-particle intermediate states: 1.e. two-particle

unitarity.
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Define the operation "#":

+
- Y(a)Y(b) M+ (a)Y;b)

ey 4 T4 f1 '4

Since 1n eq. (16) only physical two-particle states contribute, 1.e.

positive enerqgy states on mass- and energy-shell, we can write this as:
- »')_ +'){M¢ M } -> > - (2 2 z f d4kn
ulpllulpp) M, - ¥} ulp )ulp) = (2m) "1 2
spins (2m)
n

0 > -> 0 -> >
S(p -E(kn)-D(kn))é(k -th(kn)+u1D(kn))

IEHIEN M u® ) uE)
a b i a 4E (K )D(K )

) ) ) ( )
k, M 17

x u(k u( ) U(P )U(P

[ollow1ng Blankenbecler and Sugar and others [Bl 66; Lo 63], the BS

two-particle propagator 1s written as a sum of two terms:
G=g+ (G-~-g) (18)

where g 1s to be an appropriate nonrelativistic propagator corresponding
to G, and 1s constructed in such a way that i1t possesses the singularaty
structure of G 1n the physical region. The BS-equation (13) can now be

written in symbolic operator form as two equations:

M

W+Wagl

irr (19)

W=M

+ M5 G - )W

Here W 1s called the pseudopotential which must be "hermitean" in the

physical two-particle region where only elastic scattering 1s possible:

This requirement coincides with the unitarity condition as required by
(17) for M and which must be generated by g 1n the first equation of

(19) :

137



Dt ) M (20)

* *
ML - M = -
i / 2 fn(g(kn,PO) g(kn,PO) ni

fa fa

(2m)

resulting into:

g" k2% - gk,2% = 47 6@ - E® - pENSKO - wEE + u,D(K))

Np—— I u®)akuk)udk 21)
F—— u( a)U( a)u(bu( b) (
E(k)D(k) spans

Of course, eq. (21) does not determine totally the exact form of g. It
only guarantees that the singularity structure of g in the physical
region gives a "hermitean" pseudopotential ¥ and a relativistic two-
particle unitary transition matrix T (in fact also G satisfies eq. (21)
but 1t has also a singularity structure in the unphysical region due

to 1ts ability to propagate negative energy states).

The most common and useful form of g is:

> > 0 > d
g®.2%) = n(k, %) 2n6 (® - wE® + u,p(K))
x J udukouk)uk,) (22)
utkglulkgiutigjuiky,
spins

and eq. (21) 1s equivalent with:

L

Im h(k,p0) §@° - E®) - D) (21")

> >
4E (k) D(k)

In this case the integration over ko 1s travial. Defining Wfl as the

matrix elements of Wfl' obtained by sandwiching Wfl between Dirac
spinors, the BSLT-equation for the T matrix between positive energy
states reads:

I d3§

> >
T l(p',E;/s,) = wfl(E-,E;/s) + 7 W (p'.k;vs)

£ SpLns (211)3
n

x h(k,vs) T(k,p,vs) (23)

Note that the fourth component of the momentum k, needed in the
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calculation of W, 1s gaven by:

0 > >
k™ = pE(k) - W, D(k) (24)

The pseudopotential W 1s 1n general dependent on the energy Vs. Thas
has two reasons. First of all in the definition of the pseudopotential,

r irr
Ty o (G - g)W, the energy dependence enters via the i1teration

W=N
AL

due to the (G - g) term. Secondly / could contain terms like:

)U

(p, * Py, (P, *+ pp)° = (use (11) and (24)) =

B+ 307 - (u/s + u,(EEHEGED) - u (DEDED))
x (2u,7s = Wy (E(B)4E(R')) + u (D(B)+D(B"))) (25)

This energy dependence 1s often considered as undesirable, and causes
some authors to make special choices for the weights with the purpose
to get rid of this feature. However, in fact i1t 1s an automatic
consequence of the BSLT reduction and 1t violates or contradicts
nothing as long as:
The BSLT pseudo equation is considered as an effective equation with
tne only purpose to produce the correct scattering matrix.
Hence. 1t 1s an error to consider the pseudopotential as a quantum
mechanical potential and to impose on 1t all requirements which
a (nonrelativistic) potential must satisfy (e.g. energy independent).
Note that the transition matrix T now satisfies a three dimensional
equation which appears to be easily solvable once h 1s determined
(we will return to this point). In fact all remaining problems due to
the relataivistic nature of the BS equation have moved now into the
equation for the pseudopotential:

lrr

W=MTT ¢ MG - g (26)
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which still 1s a fourdimensional integral equation. The hope is that
one 1s able to make such a good choice for g that 1in the low energy
region the second term on the righthandside of eq. (26) 1s a small
correction and that the approximation:

W= Mt (27)

15 not too crude.

In making the approxaimation (27) however one runs the risk to
1ntroduce unphysical features i1n the scattering problem. For 1instance
Swart [Sw 77] showed that for equal mass NN scattering the introduction
of a scalar exchange via a derivative coupling leads to a spin-flip
term 1n the pseudopotential, which is forbidden by charge independence.

This term i1s zero when one makes the symmetric choice for By and Myt

A similar phenomenon can be seen i1in eq. (25). Taking My = 1,

H, 0 one has:
> > 2 > > -+ -+
(pa+p') (p. +p')u = (pt+p') " - (D(p)+D(p'))(2/s—D(p)—D(p')) (28)
a’y' b b

The lefthandside of eqg. (28) 1s clearly symmetric under particle
exchange: a <> b. However, the righthandside not since 1t transforms
into:

> > 2 > - > >

(p+p') " - (E(p)+E(p')) (2Vs-E(p)-E{(p"))
which 1s only equal to the righthandside of (28) for on shell momenta,
e.g. 1f:

> > > -
Vs = E(p) + D(p) = E(p') + D(p")

Of course, all these phenomena will disappear when one takes more

terms of the pseudopotential into account; the next step would be:
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W= M o+ T (Gegy it (29)

However, unless one solves for the pseudopotential exactly (which 1s
cquivalent with solving the B.S. equation) one can always run into
troubles.

We will now turn to the definition of the function h occurring
in the propagator g, eq. (22). The usual procedure 1s to assume real
analyticity of h i1n some variable, except for singularities given by
eq. (21'). We mention three usual forms:

Thompson (analyticity in Vs), [Th 70]:

1 1
h =-— (30)
T 4ED e E(3)-D(p) +1¢
Partovi and Lomon (analyticity ain s), [pa 70]:
E+D 1
_ (31)
P 2ED - > 2
s-(E(p)+D(p)) "+1e
Nagels (analyticity in qi; Vs = E(qs)+D(qs)), [Na 75]:
1 1
by = 2@ 2 2 (32)
qs—p +1lc

As has been pointed our by Yaes [va 71], there 1s an infinite set of
Green functions satisfying (21). They differ only a multiplicative

factor which 1s a function of Vs and momentum 52, and which becomes

unity on the energy shell.

It will be convenient to write hT, h_ and hN 1n terms of the

P
nonrelativaistic Lippmann-Schwinger propagator hL defined by:

2Mr mM
Tz 2 0 M T (33)
qs—p +1€E

2 >
One obtains h =N (p,/s) * hL (34)

with:
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2 2
g2 oL _t 9.7P
T 4ED ZMr ;S—E—D

22

2 oEmm 1 TP (35)
P 2ED 2Mr s—(E+D)2

N2 - 1 1

N 2 (E4D) 2Mr
>
Note that for on shell momentum p:

2 2 2 1 1
=N TN T oG ™ (36)

4
]

The BSLT-equation (23) reads (omitting the particle state labels):

3
TR /s) = WE L BiYs) + [ SR wEKive) N
(2m)
2Mr > > >
x ——5— N(k) T(k,p;¥s) (37)
qs-k +1€

"
Defining the non-relataivistic ] operator and potential V Dby:

—
T .pivs) = N(B*) T(B'.p:Vs) N(B)

(38)

V(p',pivs) = N(p') W(p',B:vs) N(®)

—_
We see that J satisfies the Lippmann-Schwinger equation with the

potential V:

3
TE Bive) = V@ Bive) + [ 2E vE Kive
(2m)

2M
x ——— T(I,E;/s) (39)
qs—p +1¢e

Moreover, one proves that non-relativistic expressions go over an
P
their relativistic counterpart by replacing s by T. For instance:

do
The unpolarized differential cross section aﬁ-from:

o
e T 2

L non-relativistically

4n2
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into

B 12 IT(E',E)IZ relativistically;
P e4n‘s
and the unitarity equation, from
2 .2
3 q -k
-+ d’k s + —
5 - {— = 2m1 f 3 8¢ n ) q( Y
(2m) r
into 4
o= oo [ 2K sl m®) D))
4 2 1
(2m)
x §(/s=E(K)-D(K)) —= T'T .

4ED
Note that the differences between the BSLT propagators appear as
differences 1n the off shell behaviour of the Lippmann-Schwinger
potentials .

Also the 'r‘ operators will differ, but only in their off shell
behaviour. This 1s also a reason to be carefull with calculating for
1nstance quantities as a Quadrupole moment with wavefunctions obtained
from V. The i‘ operators will only give correct scattering phases
and bound state energies. Even this will only be true 1f the pseudo-
potential W 1s solved exactly. Approximations like eg. (27) will lead
to differences in the results calculated with NT' NL or NN. Which
choice 1s best (which means thesmallest "G-g") cannot be said at
beforehand. Therefore we will consider them 1n a situation where the

(exact) solution is known: the electron bound to an 1nfinite heavy

atomic nucleus by a Coulomb potentaial.

3. The electric potential as derived from the BSLT equations

For a hydrogen-like atom with an infinitely heavy nucleus the

Dirac equation with the Coulomb potential:

Ze2 Zaf

v=- anr = - r (40)



gives bound-state energies (we put i = ¢ = 1) LBS 57].

2 4
(Za ) (Za )
B = - g £ . LA S (41)

2 3 1+1/2 ~ 4n

The first term of eqg. (41) corresponds with the non-relativistic Balmer
formula, the second term 1s the first relativistic correction and 1is
called the fine-structure splitting.

For the actual hydrogen atom there are several corrections for eq.

{41) which we will list according to their order in g

ai: m must be replaced by the reduced mass,
a:: - other corrections due to the finite mass of the proton (recoil
corrections),
- 1nteraction between the magnetic moment of the proton and the
magnetic moment of the electron (hyperfine splitting);
ai: - mass and charge renormalization; vacuum polaticzation (Lamb

shift);
~ remaining corrections from two photon exchange diagrams;
and so on.

Taking the limit M > = and expanding Bn,j up to order a4 must
always give eq. (41) (proton magnetic moment ~ ﬁ-), when one uses a
theory which claims to describe the electromagnetic interaction between
two spin %—partlcles. A theory which does not stand this test 1is more
or less useless. Of course, the Bethe-Salpeter equation with an appro-
priate 1rreducible kernel 1s correct. However, the number of terms in
the 1rreducible kernel which are needed depends on the gauge of the
electromagnetic interaction. In the following we will use two gauges
explicitly:

- The manifestly Lorentz invariant Feynman gauge where the one photon

exchange contraibution 1s given by:
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n
> Y Y
(5
kMY =20, (42)
2 k“-1e
—_—
QM
- The Coulomb gauge with
Pn 0
2 oY L ¥y-GrR (R
e N e (43)
S k -1¢ k" -1¢
e N
QM

with k = K/|;i and Qm,QM the charges of the particles.
The Coulomb gauge 1s not manifestly Lorentz invariant. However, 1t has
the advantage that the dominating term for small energies, the YOY
part, 1s instantaneous and therefore does not depend on ko. All the
effects of the relative time are moved into the second term (exchange
of “"transverse photons") which 1s smaller in magnitude. Therefore we
expect that eq. (43) 1s suitable for a theory in which the retardation
1s not taken exactly into account and 1s approximated (for instance the
BSLT equations with approximated pseudopotential). This 1n contrast
with the prescription (42) where the retardation modifies the dominating
term (YOYO part) and is cancelled by the "longitudinal" photon in
higher order diagrams. In the BS-equation, using
eq. (42), the irreducible kernel can be approximated by the one-photon-
exchange graph to give the bound state energies of eq. (41). However,
1n the Feynman gauge one has to take also the crossed box into account
(Just to obtain the cancellation of the time like and longitudinal
photons) .

Now we will continue with the BSLT-approximations of the BS-

equation. For the pseudo-potential we will take the lowest order
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approximation given by eq. (42) or eq. (43). To arrive at the bound

state energies we will follow the program:

1. calculate the pscudo-potential matrix elements between positive
encrgy spinors using the prescription (24) for the zero components
of the momenta.

2. transform the pseudo-potential to a Lippmann-Schwinger potential
using eq. (38).

3. make an expansion 1n terms of the momenta and keep only terms of
order O and (momentum)z/(mass)2 .

4. transform the potential in momentum space to a configuration space
potential.

5. calculate the bound states.

Step 3 1s necessary to perform the transformation to a configuration

space potential. Instead of making the expansion after step 1 and 2 we

will give the results of step 1 and 2 immediately in expanded form:

1. Using the standard procedure (see [Na 75]) we arrive at:

o am >2 2 >2
vy = &Mm 9 q q
Wipp') =90 5 [+ S5+ Tt ym t ¥
k| 2M 2m
> > 3 3
o} o]
L > (qx}() . 1 2 > >
- i(o,+0,)" - i+ —) " (gxk)
1
2 2Mm 4m2 4M2
> > (44)
. (Ol'k)(o2 k) ) (g '*.) 22
aMm 1°%2" Zvm
> ]—zx» (EX_)
9 ( q)°2 Q) momentum
- 5 + terms “hass
16M " m
> > -> > _>++'
with: k=p'-p i q = Ej?‘
and: X=0 Feynman gauge (45)
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» > 2

X = - iki%%— Coulomb gauge (45)
Mmk

Furthermore:

k2 = fz - k2 = fz (a - iéigli (Eg - El)z) (46)

= - 0 E2 m M

1n the Feynman gauge, using (24)
and:
2 >2
k™ =k in the Coulomb gauge.

Note that the potential in the Feynman gauge depends on the choice of
the weights, i1n contrast with the potential in the Coulomb gauge (1in
fact the dependence on u1 and u2 occurs only i1n higher order momentum

terms). In the limt M »+ @ only a few terms survive:

4Mm 32 Wy Yy (g2
WP F 00, T3 (14 g v ham (- hT S
M- k m Moo k
> > >
01'(qu)
-1 —) (47)
4m

for the Feynman gauge. The Coulomb gauge gives the same expression with-
out the term which depends on the weights and corresponds with the
cholce:

YT wem ' L il 1n the Feynman gauge.

2. For the transformation to the LS potential i+t 1s convenient to

rewrite eq. (35), once expanded, into the form:
2

q 2
2Ny = L - S 2k _ 2
N(p)N(p") 4Mm(1 2wﬂ+xm +4 %)+.”) (48)
w1th:A _ 1 ) 1
P 4M2 4m
1 1 1
A = = - — - — (49)
T 4M2 4m2 4Mm
1
XN T 7 2Mm

Note that the A dependent term (= pseudo-propagator dependent) vanishes
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for on-shell momenta

2
2k 2
a T (50)

this 1s also true for the retardation terms in eq. (46):
>2 2 2

> > >
gk =0 1f p =p' = q (50')

3. The LS-potential i1n momentum space now reads (for M - =, QM‘-Qm=e).

2
2 2 2 q > > 2
- e a__ gk 3,8 9Kx)”
V = > (1 +a 3 5 + vy 5 + 5 =2 )
k m m m m k
2 3.3
k 4m
with: a = %—+ sz
B = - % Amz
Y = - Am
H
§ = 1lim m? (—2—— —102 .
m M
M-

This potential 1s dependent on the gauge (Coulomb gauge 5 = 0), on the
weights and also on the choice of the pseudo-propagator. On energy
shell (eq. (50) and (50')) nowever, this dependence disappears and the

potential is:

2
2 q 2 2 > > >
e s k g (gxk)
v = - — = - - i
on shell 53 (L+ fedy) 5= (B =) + 531 2
k m m k 4m
2 q° 2 2 2o
- - §§ (1 + —EE - ~—5') + %5 1 g—igE—L (52)
k 2m 8m 4m

for all gauges, weights and pseudo-propagators.

4. The momentum space potential can be transformed to configuration
space using the formula's of Appendix C.

5. The calculation of the bound state energies is now completely

straightforward by first solving the Schrddinger equation for the
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a
£
Coulomb potentlalr;‘ , and then treating the remaining terms in first

order perturbation theory. We comment only on two points:

a. The Lippmann-Schwinger equation (39) 1s an elgenvalue problem in the

center-of-mass momentum squared qi, and not in the center-of-mass
energy. Therefore 1n the hydrogen atom one solves the bound state

momentum and calculates the bound state energies via:

7/
Lim (M° + g% + /o + q2 -M-m (53)
Moo 5 S

w
]

/ﬁ2 + qi -m

b. Once transformed to configuration space, the potential eq. (51) will
(3) >
contain some 6 (r) functions which i1nfluence only s-waves. On
-> >
the other hand there 1s also a L.S potential present which acts only
in 2 > 1 states. These two potentials cooperate in such a way that the
resulting bound state energies do not depend on §

6(3)(;) function) anymore but only on & and j (total angular momentum)

2,0 (caused by the
as continuous variables.
The bound state energies (up to order a4) for the potential of

eq. (51) are:

az a4
5 . m _f+_f( 1 (20+2y-1/4)
Ry 3 +
n Jj 2 n2 n 3+1/2 n
8a+26-2
- - = 5
(20+88-1) 61'0 ST ) (54)
Using the values of o,B8,y and § of egq. (51) one obtains:
a2 (f 2
1 °f £ ( 1 3 2+8\m +26)
B =om ==+ — |— - =+ (55)
n,%,3 2 n2 2n3 J+1/2 4n 28+1
Note that the correct bound-states are obtained (eq. (41)) only 1f:
2
2+ 8xm + 26 =0 (56)
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In table II.l one sees whether the BSLT with the most simple
pseudo-potential satisfies this requirement for different pseudo-

propagators, weights and gauges:

Thompson Partavi-Lomon Nagels
Coulomb gauge
or:
es e no
Feynman gauge Y yes
- __M . = _m
“17 Mtm ' %27 Mo
Feynman gauge
M m no no no
EPt v BN o Mo

Table II.1l: the cases for which the BSLT equation with one photon

exchange gives the correct hydrogen atom (M + =),

For those cases which do not yield the correct hydrogen atom, the next
term 1n the pseudo-potential must be taken into account to obtain the
correct answer:

W(4) (2) (2)

YA X
1lrr 1Xr irr

j\\zéfp/// __g// (57
N

=M

= + 16 9)

For those cases which give the correct result the next term in the

(4) 4
pseudo-potential must therefore be small: W A~ 0 (at least up to a
1n B). This in fact 1s the advantage of the BSLT equation: using a first
order diagram as potential with a special pseudo-propagator (and weights)
causes higher order corrections to be small. However, one does not know
1n advance which 1s the most optimal choice and must therefore explicit-

ly calculate w(4).

150



In the next sections we will give a method to construct explicitly
the correct first order potential and propagator in such a way that
always the one photon (particle) excnange diagram and the planar box
and crossed box diagrams are represented correctly (up to a ccrtain
accuracy) by using this potential and (pseudo)propagator in a BSLT-

like equation.
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CHAPTER III

Three dimensional equations 1in “@3“ theory

1. Choice of the pseudopropagator

In this section we will present a method to construct a three
dimensional equation which will give (up to a certain order) the same

on-shell scattering matrix elements as the BS-cquation.

We will use a w3-11ke theory merely because 1t 1s the most simple
theory to outline the basic 1deas behind our method. Applications to
spin-1/2 - spin-1/2 and spin-0 - spin-0 scattering will be presented in
the next sections i1in a more concise form.

In thas ”®3" theory, applied to the scattering of scalar nucleons
wlth mass M-exchanging scalar bosons with mass u, the following set of

Feynman rules 1s used:

p' p
4
a. Vertex function: 1g 6( )(p—p'+k): T

(g 1s the coupling constant) H

1

1(k +u2—1e)

b. Nucleon propagator: ————F——
2 ——
1(pTHM ~1k) P
1
[}
)
1
c. Boson propagator: ——————— : 'Y
'
[

d. f d k4 for a loop integration.
(27)

e. An overall factor +i1.

The Bethe-Salpeter equation in the center-of-mass system reads*:

*For spinless external particles there 1s of course no difference

between ¥ and T or # and W as used 1n the previous section.
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4
Y(p',p,vs) = 1 T (p',p,Vs) + [ —d%'llrr(p',k;v/s) G(k,’s) k,p,Vs)
(21) (1

with:

G(p;/s) +1

(2)
(p2+M2—1E)((P—P)2+M2-lC)

>
with P - (/s,O) the total momentum.
Furthermore we do not consider renormalization corrections so that

1

M s represented by:

The external legs are on-shell e.g.:

> v >
R - I S P s
A7 RPRZI @
pa_ 2:P ’ Pb— 2!4.

Just like the BSLT-equations the three dimensional equation to be
> >
constructed will have a pseudopotential: M(p',p,/s), dependent only on
>
the three momenta and the total energy, and a pseudopropagator: g(p,VE)

which, used in the three dimensional equation:
M=NW+ WgM (%)

gives the correct on-shell M matrix element; stated otherwise: in the

formal solution of eq. (5):
M=+W+ WgW + WaglWgh + ... (6)

the pseudopropagator g serves to generate diagrams (or part of
diagrams) which do not occur in W, but are contributing to M:
rr

M= T+ v + ... (7
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In practice 1t will go just the other way around: first we choose a g
and an initial W and compare the 1teration of eq. (6) with those of eq.
(7) . Drfferences between the solutions will be added to the pseudo-
potential W and the procedure 1s 1terated with this corrected W. In fact
this 1s what happens 1n the pseudopotential equation (2.26).

Unlike the BSLT-equations we will not use a general principle like
the unitarity condition to construct a pseudopropagator, but use the
original BS-equation as a guide to choose g.

Therefore let us look more closecly at the diagrams which are

contained in the BS-equation.

a. The one-boson-exchange (OBE) diagram: ' contained in J rr:
—
1ts on-shell valuc 1s given by:
rr(2) >, > —gz
el (p',p;V%) = — (8)

, 2, 2
(p'-p} +H -1e
This term must be included in the pseudopotential; for reasons which

wlll be clear later we will take:

2
@ Bive) = T 9)
(p'-p) "+u —(Ep—EP,) -1€

W(Z)

Note that on-shell: E_ = E , = L. (10)
P p 2
b. The OBE-diagram 1s 1terated by the BS-equation and gives the first

reduceble diagram (the so-called planar box diagram):

(2.8 (¢08)  (5F)

<+ -¢ T -a— particle a
! |
! I
boson I i | boson I
| [
| |
-1 <« — particle b
(5,-3) (vv-¢"-3) (5.-5)
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given by:

2
f d4q _g2 1 -g

2m? e?-q?-vs/2) %18 (E;—qoz-lﬁ) (Efl—(/s—qo)z—lé) 20 (P-vs/2) %16
(11)

with e = (S—a)z + u2 . 6'2 = (E'-E)z + u

2
0
To construct a three dimensional counterpart we will perform the g

integration. The integrand of eq. (11) has poles 1n the complex qO

plane located at:

qo = + Ea - 18§ : positive energy pole particle a.
- Ea + 18 : negative energy pole particle a.
Vs - E; + 1§ : positive energy pole particle b.
Vs + E& - 16 : negative energy pole particle b.
Vs -
7{>i € ¥ 18 : boson I on mass shell.
/s

Tf-t e' ¥ 18 : boson II on mass shell.

Their positions in the complex plane are displayed in figure III.!l:

P+

a- I bt x

- -X X

] 1 1 L N ]

-Eq Bh & B W Vs +Eq
X % ¥
X b™
P- at

t boson poles
Figure III.1: Singularities of the box diagram; arrows indicate move-

ment of poles for increasing |q|.

When the intermediate particles are both on their mass shell, 1.e. when

0 0
= E> and Vs - = E>
q a q q

+ +
the poles a and b coincide. It 1s this pinching which 1s responsible
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s
for the unitarity cut and happens 1f: qo = E& =5 -

(Closing the integration in qo 1n the lower half plane we will pick up

the contributions of four poles: a+, b~ and P_ which we denote by

I, II

writing a "p " on the corresponding line in the box diagram:

8
A — N
T T T T v T T T
S I A B e O A P
: o= a S S A R R * ' | ! 4

! | I | | | I i | !
bl 1 1 1 1 A B T |

[ .
Trgure T11.2: crosing q integration in lower hal, plare.

Note that the direction of the arrow "p " 1ndicates whether i1t 1s a
positive or negative energy pole: when 1t 1s parallel with the direction
of time (from right to left) i1t 1s a positive energy pole, otherwise a
negative cnergy.

Closing the contour in the upper half plane would give of course
the same result for the box diagram, however, i1t would be the sum of

four other diagrams:

=
—

e —— —

b+

+

+
F——

-l

Ll
- — — - —

L —

tgure I11.3. closing qo integration in upper half plane.

In our case where particle a and b have the same mass the diagrams of
figs. III.2 and I11.3 are identical one by one. However, for unequal

mass scattering this 1s not the case: only the sum 1s equal. We will
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meet a simlar situation in the crossed box.

Furthermore note that the diagrams on the right in figs. III.? and
III.3 represent three dirensional integrals. To calculate the integrand
one can use the rules:

(1) put the particle with the "o " on 1ts mass shell with the zero
component of the momentum flowing 1n the direction of the arrow.
(11) calculate the four momenta of the other particles assuming energy-—

momentum conservation at each vertex.

1 | |
(111) replace the —fp—— , —€—— lines by — and 4 , ¥ by
|

2E !
q

).

1
(ot 5o+

2c
(1v) use Feynman rules for the other lines and leave the 1integration in

the zero component of the intermediate momentum.
1rr
The same procedure can be applied to the next term in M : the

crossed box graph. Closing integration in the lower half plane gives

the decomposition of fig. III.4, closing in the upper half plane

fig. III.S5:
7€ 7 v ~ i ~ ,
I e
\\ L N AY //‘ N /’ \\ e
X, = x a* + x b + x_p~ + =P
N s N ’ \ 4 \ N
’ \, ’ N\, 7 N i AN 7 AN
y N SN VAN N AN
Figure [I1.4: crossed box decomposition.
~> ~ ” < >
- < 7 ~ G ~ - .
N AN AN RN N4 4+
X = X3 + b + X P + X P
N 2N ; N N
s N s N, - AN ’ N ’ N
, Ny 7 N 7 N r N ) N

y
b~y
o

Figure I erossed box decomposition.
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Note that in the first decomposition two positive energy nucleon poles
are contributing and in the second decomposition two negative energy
nucleon poles. Calculating the diagrams explicitly shows that the two
positive energy poles of fig. III.4 cancel each other almost giving the
contribution of the two negative energy poles of fig. III.5. It 1s
therefore more convenient to use the decomposition of fig. III.5 rather
then fig. III.4.

The decomposition of a two loop diagram, the sixth order ladder-

graph, 1s given in fig. III.6.

o — e —— -
b e ———

+

r—-——_—_
A J

%___4_

b ———

b——————

———-——
+
+

——— - — A

——— - -

——— - -
+

—— — - —
+

-
+

——————]
——————

e -——

Y

,
o]
-

Frgure III.6: decomposition of sixth order laddergraph.
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The diagrams are ordered such that 1t invites to the following
construction of a three dimensional equation:

- chovse as pseudopropagator in symbolic notation:

—

g =
- and as first order pseudopotential:
W = | , corresponding with eq. (13.9),

where X denotes that these particles must be put on their positive

energy mass shells.

(2)

Then the equation M = ¥ + W(z)gM w1ll generate the terms of

type A 1n figs III.2 and III.6:

=
n
+

N\ (/% (e

mn
+
x

Terms of type B are not generatcd by the i1teration, and will be put in

the pseudopotential as fourth order contribution:

T K% ——————%  —————%

w2 + *

| -
+

_———

| 1 |
| ] |
] 1 1
] | '
| I \
] ' 1
1 1

In 6th order the i1teration will now generate the terms of type B, but
terms of type C are still missing. Moreover, we have neglected the
fourth order crossed box contribution. Including the graphs of fig.
II1.5 1n the pseudopotential the total potential correct up to fourth

order reads:
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) : i 1 1 1 : L]
(2 (4) ] ) i 1 ]
AR A R o . A
| ! i 1 1 | 1
H L 1 [ S E
ek ek KX T ¥
\\ // AN /‘ \\ ,/ \\ d
.
+ X + X + ’X\ + /x\
; N 20N , N , AN
e AN . AN R N . N
—_— S\ —_— s > N
Figure III.7: second and fourth order pseudopotcntiais.

Calculating the pseudopropagator g = we obtain the threc

dimensional equation:

3
49
p,) *+ J 3 Wi

» ] v, = ] L ' L
14(Pa:PboPaer) W(Paer:Pa, a,pb,pa,pb)
{(2n)
! M( ; ) (12)
2E Vs (Vs-2E +1¢) 9539 iPa Py
q q
with
= (&>,p) p_ = (Vs-E>,-D) p! = (E>,,B")
Pa P’ ’ b P’ ’ a p"
U= (Ys= i) - > = (Ve -
Py (Vs E;,, ') a, (E&,q) v G (Vs Ea,—q) .

This propagator g was first proposed by Gross [Gro 69] and corresponds

with the choice:

5 Vs+2E
Nor = BEP7SM (13)
or
1
A o= - —— (14)
Gr 4M2

(Compare with eqs (2.35), (2.49), putting E = D and M = m.)
So far everything is equivalent with the BSLT-equations except for the
arguments used for the choice of the pseudopropagator and the rather
complicated notation for the pseudopotential.

In the next step we will use the fact that we are not interested

1n a three dimensional equation which represents the BS-equation for
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all momenta and masses: our main goal 1s to construct a thrce dimension-
al equation which 1s equivalent to the BS-equation in the non-relati-
vistic region and includes some terms which are able to account for the
lowest order relativistic effects in the BS-equation. For this purpose
we have to define what a non-relativistic limit and a relativistic

correction 1s.

2. The 1/M expansion

The BS-equation 1s an integral equation in momentum space and it
appears to be convenient to use the following procedure:
- cxpand the BS-equation i1n powers of 1/M (scattering mass) with respect

to the point M = = for fixed momenta, exchanged masses and coupling

constants. In the lamat M -+ =, keeping all momcnta fixed, the velocities
(p/E) of the "external"” and “internal™ scattering particles will go to
zero. However, in doing so one meets a difficulty which we try to

explain with the help of the non-relativistic Schrddinger equation:
¥2 2 2
+ = )
{p ZMIgSV(r)} Y q_ v (15)

with gi a dimensionless coupling constant.

It 1s clear that taking the limt M + «® and keeping gi fixed wall

affect the effective "strength" of the potential, which seems to be

proportional with M (at fixed momenta!). The same phenomenon 1s observed

1n the expression of the cross-section 1n terms of the scattering matrix:

J‘—» - '2

[ (p'.p) 2
3 M

4n

do

L
ae ET r

Therefore we do not fix the dimensiocnless coupling constant in the
limt M - ® but fix the related quantity fg with the dimension of mass:

2 2
£ = .
S M gS
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For "(03“ the coupling constant g2 used in the vertex has the dimension
2
MeV . We introduce the related quantity f2 with the dimension of a mass:

2 - 2l

and then keep f2 fixed 1n taking the limt M > =, We will denote the
limit M +- =, while keeping the momenta and f2 fixed, with LIM.
Expanding the ¥ matrix in powers of f2:

M = f .4(2n) , M(Zn) ~ f2n
n=0

one can prove:

(2n) ~ fzn x constant x M

LIM M
and therefore:

LIM M ~ constant x M

Since:

do 1 2

5= 3 Mep|

641" s
also LIM g—; ~ constant.
We write
M, (p',p) Mz(p‘,p)
M(p',p) 5 = Mo(p',p) + m + 5 + ... (16)
£ ,momenta M

fixed

MO will be called the non-relativistic limit, and MI' M .. the (first)

2'
relativistic corrections, with Ml ~ constant:L M. Following the arguments
of sectaon 2 the "non-relativistic" 3 operator was defined by:

¢

> > > >
. (p'yp) =N r(p') M{(p',p) N r(p) . (17)

G G

Since LIM NGr ~ 1/M we have:

LIM T~ constant/M
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The corresponding expansion for i 1s:

> > > >
S RN T (p'p) Tz(p',p)
Tt = ptp) + + + ... (18)
0 M 2
M
with j ~ constant, /M.
1 i
satisfies by construction:
g > - > > d3]: > M G > >
'J (®'.p) =Vip',p) + [ 3 V(y';lz) - J k,p) (19)
(2m) qs—k +1f
or
- —
I = v+ vauy
with
-> 1 > > -> > o> >
§(p) = - 5 and Vip',p) = NGr(p')W(p',p)NGr(p)
qS—P +1€

Rl S
In order to obtain q (p',p) correctly up to the first three terms of
eq. (18), we must calculate the first three terms of the potential

> >
V(P':P):

>, > >, >
> > > - v.(p'.,p) V2(P 'P)
vip',p) = Vo(p',p) + m + > + ... (20)
M

with Vl ~ constanti/M.

This potential used in eg. (19) will then, after the transformation of
eq. (17) which also can be expanded in powers of 1/M, give the first
three terms of the M matrix in eqg. (16). In first instance the calcu-

lation of V., V

0 and V2 seems to be a formidable task since we must

1

first expand V 1n the coupling constant (corresponding with fig. III.6):

1
and then perform the 7 expansion for each term; rearranging them gives:

M
_ o(2) (4) (6)
VO = V0 + V0 + VO + ...
V. = V(2) . V(4) + V(6)

1 1 1 1 T
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and so on.

However, calculating these terms gives aninteresting pattern. We can

show that
(2)y _ ,(2) (2) .2
v = VO + V2 /M7 o+ L.
V(4) = 0 + V2(4)/M2 + ... (21)
V(G) = 0 + 0 + ...

The fact that in V(4)the 1/M2 term 1s leading and 1in V(6) the 1/M3 term,

1s caused by strong cancellations between the several diagrams and 1t
1s unlikely to be an accident. We conjecture (although we cannot prove
1t 1n general) that the same cancellations also happen at higher orders.
So:
In order to calculate the first three terms of eq. (168) it is sufficient
to consider only the second anl fourth order (in coupling constant)
diagrams For the pseudopotential.

/
The same statement 1s not true for an expansion of 4 1in the coupling
(6) ~ (6)

has terms of order q'é6) and but these are

-
constant: 3 2

generated completely by the pseudopotential up to fourth order by
solving the LS-equation (eq. (19)).

In the next section we will calculate the expansion of eq. (21)
for the first three terms and obtain the non-vanishing terms up to

second order in 1/M.

3. calculation of the first three terms i1n the 1/M expansion for the

potentaial.

The calculation of the second order (in coupling constant)

expansion 1s trivial.
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Using egs (9), (14), (19) and (2.48) we obtain:

2 q 2
2) +» > 1 1 2
V()(p"P):'szM-»z s |1-3- 5@ +kT'q§)
k" +u 2M aM
> > 2
pla_ L, (22)

2 2 2

kK'+u M

with a and E defined as 1n eq. (2.44).

For the fourth order expansion we use the terms of fig. III.7 and

obtain:
¥—————%
1
! : £
I ! =~ = | (momentum dep terms)
! | M
—_ 1
Using:
4 > > > 4) > = >
v )(p'.p) = MN(p') w' )(p',p)N(p)
-> l’llm W(4) ~ J— .
M 6
M M- M

We see that i1t contributes to Vé4).

Similar one shows:

AY

N N i 4

! % £ %[ (mom.a

=~ —
P ’ RN 3 * mom. dep.terms)
Vd AN Vd N
4 ~ rd \\
7’ N s > N

contributing to V;4).
For the remaining terms of the boX diagram the following notation is

used:

(€38,)  (¢°5) (Ef) x

VL0 LY L LS A

K \l'/k

(O
(E;-q p-q)

0 > >
k' = (q —E;,,q-p')

S ——

-
-
L]

< - <7
(vsles 5 ) ve-q°-) (vs-E35 )
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and the abbreviations.

€2 - e% - E2+u2 ) EI2 = EE' - ;,2+“2 .
3
Then we obtain (the integration f da_ 1s always implicitly under-
(2m)
stood) :
Ir———%
1 1

—————

ES - (E->,+s_')2 ES - (/s—E->,-€')2
q p q P

—_—
2 2
* . £f™M S * :f y
g - (E>,~E>tc') £
p P
Taking the limit M » = this diagram becomes:
2 > 2
4 q . -p' >,2 >2
f s 2¢’ p'"-p
* (1 + — + * + o..) (23)
85'3(62—6'2) Me E2_F,2 2M
(4) (4)
This diragram contributes to v1 and V2 .
Sim larly one obtains:
g
| [ 2 »2
! ! £ d57P 2¢
: 4 - 5 * (1 + e + 7
| ! Mo Be (e'"-g) €' -¢
_L—L—-
>2 > 2
P - 1
* .
_—Eﬁ__ + . ) (24)

In the crossed boxXx the momenta are defined according to:

) (E3,p)
—<—%

(Ep,p') (953
S
N\

% -
\\ ,’ K
X
// \ K'
// AN
<-4 <
(Vs-Ep -3) (9°+Vs-E3-E5",G-p-p') (Vs-E,5)
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> -> > >
defining q' =g - p - p' one obtains

. *2 > 2 > 2 2 2
AN ¢t o a+atTepttopT2q
/\\/ b —3—_2' * (1 + ﬁ - SeM
L7 ‘\\ M= 8e (e' -¢) ¢
_L/___L_
2e >,2 2
L e ‘e 2
Y72 2 m ¢ ) (25)
€' -¢
and
Hx——F%
% >2 > 2 2 > 2 2
~ ¢ cr aTHaTeptoptT-2qg
% 32z T PR
PAERN M Be' (e -e'") €
7z N
—_—
2ct ;2_»,?
+ :Z-Fj——E—ZM + ... ) (26)

These diagrams give contributions to V{4) and V;4).

However, one observes the cancellation of the terms contributing to

Vi4) 1f one adds the expressions (23) to (26). For the calculation of

the remaining terms, contributing to V;4), we change variables:
» -> —-> > -> -»>
p=1+4 ; p' =7 -A
q=1-§ ; gt =-1-34 (27)
-> > > > >
k=268+4 ; k' =58 -1%
3> 3
ana 2L, g
(2m) (2m)
f4 (*,2_>2)
Considering the terms of the form: * 2¢ P P
3 2 22 2M
f4 ( 2_*,2) Be (¢'"-€7)
and * 2¢t 2P 1t 1s not difficult to prove that they
8:‘3(52-5'2)2 2M

sum up to an expression:

., even function 1n g
->
23

which vanishes after the integration f

a’%
(217)3

The remaining terms sum up to:
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£ £ 28%487-8-282  28°-87-8-282
-T2 27 2.2 4 - 2 (28)
Be e'™M 16M(e = ') e’ €
Use the 1dentities:
7 3+ _ 1 ) 62-A2 +2 u2
§ 2,2 2,2 2,4 4_,
E E £ E e E E € (29)
g re 2,2 2
3 -5 1 -9 §7-A + 9 M
§ 2,2 2,2 4,2 2 4
€ e £ e €€ ee
re 4 4 > >
+ ' -
and f dag 3 K_A - f d33 € +€ mA 0
8 2 .2 2 4
[ (e —¢'7) e'e!
The contribution of the fourth order diagrams to Vé4) 18:
@ _ 1@ _ fh? . a% 1 1
Vo T oW T3 3\ 7.2t 5 2 (30)
aM zm (2m) €€’ g€

Assuming that the contributions to the 1/M and 1/M2 term from the higher
order dragrams are zero, the L.S.-potential correct up to second order

in the 1/M expansion 15:

2 q 2
£ 1 l s 1 2  k 2
V. +V, +V_ = - — 1 - —=-— (@G +=—-qg9)
0 1 2 4M ;2+u2 2M2 4M2 4 s
> > 2 2 3
+ (»fzk)z L2 +fua dqa( 214+ 412) (30
k" +u M 32M (2m) ee! e e

However, this potential has the unpleasant feature that i1t 1s not
linear i1n the coupling constant f2 (also the BS i1rreducibel kernel
contains non-linear diagrams!). Although in principle one could work
with a potential of this form, 1t leads immediately to non-additive
potentials. This means that 1f mesons of different masses are exchanged,

e.g. H, and u,, the total potential 1s not the sum of the potentials

2

derived for the meson with mass g, and the meson with mass p2 separate-

1

ly, but has additional contributions which contain ul and u2:

V(“1&“2) = V(ul) + V(uz) + W(ul,uz) (32)
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Furthermore we note that eq. (30) can be rewritten as:

42 3> 2.2
£’ g 1 M 579
T en’ | B2l qs-32+1e Mk 2’y 2
2 2
, s M ! (33)
M(K2+u2)2 qi—32+1e f'2+u2
and that the potential:
2 / 2 52 2 op?
v=- oo s ) (34)
4M E2+u2 \ K2+u2 2M2 £2+u2 2M2

1n the Lippmann-Schwinger equation (eq. (19)) with external momenta on

energy shell will produce terms:

W@ @
0 am p2, 2
4 _ 4 (4 4 £ a3y M {
v o s u v s S s o — s
16M (2m) 7 k“+p qs—q +1€ k' +p
2 »2
. f4u2 f d%& 1 M qs-q
an? T oem? {¥%4° O -g e &2t ?
2_+2
+ qs 1 M 1
(}—<>2+u2)2 qi—&2+1e §'2+u2
2 52 )
3 - -
f4u4 d'&, 974 M 574

+ (35)

64M6 (2ﬂ)3 (;2+u2)2 qi_a2+l€ (2,2+u2)2
Therefore: with external momenta on the enexgy shell the non-linear

(4) (4)

term V2 1s 1dentical with the term U2 of the once i1terated non-local

potential U which 1s linear in the coupling constant. Therefore the

potential of eq. (31) 1s (up to 1/M4 terms) equivalent with:
2

2 q 2 > > 2
S ) s 1 (32 L K qz) RGN
= - 1 _ s _ 1 k_ lg-k) =
2,2 me am® 4 s 202w
2 22K
9] qs q 4
Y52 27 7 (38)
kK +u M
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(2)
The last term 1n eqg. (36) will give no contribution in V on energy

shell but generates exactly the term Vé4) of eq. (30) 1n the i1teration:

vgV. The potential 1s now linear in the coupling constant at the cost

of an extra momentum dependent term. Moreover one can prove, that these

potentials arc additive (at least in the framework of "wj“ theory) .
Leaving detalls to the interested reader one shows:

(1) 1n eqg. (32):

£ 2

Yy
222 2. 1
+u1) (k' +u2) (k“+u

£

2 H
1

(953 [ \S 0 ]

3
-

Wlu,,u,)
U2 o o | ®

2 2

2
2
2, > 2.2
1) (k +u2)
+ (1 < 2)

(11) these terms are generated automatically by:
V(ul)gV(uz) + Vi) gvin,)

with V the potential of eq. (36).
(111) therefore:

V(Ll&uz) = v(ul) + v(uz)

In this way we arrive at a potential with relativistic corrections
which 1s linear in the coupling constant and also additive, and which
reproduces the first three terms of the 1/M expansion in the BS
M-matrix although the BS 1rreducible kernel i1s not linear and not
additive.

For the proof that the contributions of the sixth order diagram

to VéG) ' V;G) and V2(6) are zero we refer to appendix A.

Finally we wish to remark that 1t 1s essential to take the crossed

box 1nto account. Neglecting the crossed box but calculating the

(4)

planar box will lead to a non-vanishing term V1

which, 1n genecral,

(4)

1s larger in magnitude then the next contribution: V2 . Since BSLT-
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equations with the most simple pseudcpotential: W = one boson exchange

(4)
1

diragram, will not contain a Vv contribution (1t enters via the

1
M rr(G-g)w term) we arrive at the conclusion that 1t 1s better to use

a BSLT-equation than the BS-equation in the ladder approximation.

4. Comparison betwecen different pseudopotentials

The correct pseudopotential (up to order 1/M2) which must be used
1n a Lippmann-Schwinger equation i1s given by (36). It contains the

following contributions:

2
f2 1 qs
- — —— (1 - —= ) = on shell value.
4aM ;2+p2 2M2
16M° K242 4
zero on shell,
£ 1 Gn’
T3 57 3 f%?_?? contributing only for
4M” k +u k +u
off-shell momenta.
f2 1 u2 2 2 k2

a )
57 252 2 9”9 3

However, in the context of the 1/M expansion the last three terms are

not completely independent. In appendix B 1t 1s shown that:
2 2 >>2 3+ K2
N +2 k 2, _ _2(g-k) 4 s 1
— (@ + = -q9) = - + O(—) (37)
>2 2 2 > 4
m? @22 S N I M

when used 1n a Lippmann-Schwinger equation with the external legs on

shell. This means that an equivalent form of eqg. (36) 1is:
2

£ 1 ( 9 1 o»2 k2 2 1 G0
Ve-——>—1-—+—(q +—-4q7) - = (38)
4aM E2+u2 2M2 2 4 s M2 ;2+u2

It 1s i1ncorrect to use for one potential eq. (36) and for the other eq.
(38) 1n a superposition of different potentials: in that case additive-

ty 1s lost. Explicitly:
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V(ul&pz) = V(ul;eq. (36)) + V(uz;eq. (36))
and also

V(ul&uz) = V(ul;eq. (38)) + V(uz;eq. (38))
but not:

V(ul&uz) = V(ul;eq- (36)) + V(uz;eQ- (38)) (wrong)

but
V(ul&uz) = V(ul;eq. (36)) + V(uz;eq. (38)) + W(u1,u2) (39)
The BSLT-&quations with the pscudopotential W = Miii will give
2
2 q >2
£ 1 ] >2 k 2 2
A = - =" (1 -—+ g + > -qg]) + (u,~u)
BSLT(2) 4M }-;2+u2 2M2 4 s 2"
> ; 2
« 2 (40)
Mk +u")

1 R X
AP =-— (for spin 0 particles also called ABBS)
2M
3
A = - —=
T 4M2
1
A = - —
N 2M2

These BSLT-potentials differ already in the first non-local terms with
the correct potential eq. (38). In the limit p +> 0 the two non-local

terms will cancel partially and we obtain, using eqg. (37) once more:

2
2 q
f7 1 S
V=-——(1-—) (41)
4aM K2 2M2
2 2
2 q (ho-H,) >2
£f7 1 S 2 "1 +2 k 2
v === (1-—+ A+ —)(@q +—=—-ag))) (42)
BSLT(2) 4M KZ 2M2 4M2 4 s

(4)

For u = 0 the term V2

(eq. (30)) vanishes, representing the contri-

butions of the planar box and crossed box not taken into account by
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the i1teration of the one boson exchange diagram with the Gross
propagator. Therefore the difference between (41) and (42) 1s not so
much the neglect of the crossed box diagram but rather the non-optimal
choice of the pseudopropagator. For the Gross pseudopropagator:

1
=0 i A, =-—75 (cfeq. (14))
Gr 4M2

|
-
~

Ul—

and i1ndeed: eq. (42) gives eqg. (41).
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CHAPTER 1V

The electromagnetic potential: spin-0 - spin-0 scattering

In this chapter we will derive a potential which describes the
electromagnetic interaction between two particles with spin zero.
Again we will not give the complete potential but only the lowest three
terms 1n the 1/M expansion, representing the “non-relativistic" part
of the electromagnetic interaction and the first two relativistic
corrections. We will consider unequal mass scattering and assign masses
m and M to particles a and b, according to the convention used in
section 2.

The Feynman rules change with respect to chapter III 1into:
a. Vertices:

1e(p+p')U * § function

AYAAVAY
]

]

—21e2g * § function
uv

b. factor % for graphs like containing closed photon loop.

c¢. photon propagator: )
€

]

Q
=4
<

N

As 1n section 3 we define the pseudopropagator in symbolic notation:

_<—
g =

*1n fact we will use: (g“v)/(l(k2+u2)), so that one 1s able to genera-

lize results to massive vector meson exchange.
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one derives:

2M
- N2 * I
gl ’s) = N (q,/8) * ——— (1
q_-q +ie
S
with 2_+2
2 qs d 1
Nor ~ 2 2 oM (2)
2E ((Vs-E ) “-D°) r
q q q
and
mM
M= M
In the L ( l-) expansion:
M m Xp s H
q2 q2 >2
A S E R Ny B S (3)
Gr 4Mm 2 2Mm 2
4m 4m

Note that this choice of g, which puts particle "a" on its mass shell,
will 1n the first instance lead to a non-relativistic potential

- WN . . c s .
(v NGr Gr) which is not symmetric in m and M

Also the lowest order pseudopotential is not symmetric:

EI

or: 9 s> 2
e {(E++E+,)(2/§—E+-E+,)+(p+p') }
(2) _ P P P _P
W = (4)
>2 2 2
k +y ~(E>-E>,)
P P
expanded:
(2) _ 2 1 1 »>2 > 2 1 1 2
W s dume (o -y ) PR ) H (st o) I
4m 2M
> > 2 32 .22
(p+p")  , _(p-p') , _1 (5)

4Mm >2 2

4m2(22+u2) k“+u

One obtains the L.S. potential:

2
) (2) (2) e 1 1 +2 112
Vo VAV =y () (5 - g 0K
k" +n 4m 16m
1 1 2 Q.52
+ (— +—%)q_ + - ) (6)
3
o % R
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This potential 1s derived by closing the intermediate momenta of
the ladderdiagrams in the lower half plane (compare figure III.Z2).
Closing the contour in the upper half plane (compare figure III.3)

would lead to:
¢ —
g = and: 1 = g
—— -
and the LS-potential of eq. (6) with m and M interchanged. Note that
2 2 »>2
these potentials are the same on energy shell: qs =g + k“/4 and
>
(k)'q)2 = 0. However, the off-shell behaviour 1s different and they
would ultimately lead to different scattering matrix elements (even up
to the first three terms in the % ’ é expansion) .
It 1s essential that one adds the remaining contributions of the
planar bex and crossed box diagram, because 1t will restore the

symmetry between the % and l-terms 1n the expansion.

As 1n "w " theory the diagrams:

P} o

do not contribute to Vé4) §4) é4). For the remaining diagrams

of the fourth order:

R R

one obtains in expanded form, using the tricks of chapter 3 (the

calculations are straightforward but rather tedious)*:

(4) (4) (4) _ 4
w0 +w1 +w2 —O+O+2_eM><
d3§ u2 + u2 + 2 (7)
3 2 ,4 4 ,2 2,2
(2m) ee! €' e’e!

(4)

*again each diagram contributes in leading order to W1

, however, 1n

the summation they cancel each other.
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4
The LS-potential V( ) 1s obtained by multiplying with just as 1in

1
4Mm *
chapter 3 this contribution 1s quadratically in the coupling constant

2)

and 1t will be included 1in V( through an additional term which

contributes only off-shell (in the second Born term):

2 +2 +2 2

e Méim 2 -2k Mim 2 2 K u
5% 2T 7 e -t e -9 -5 ) 8
k +u 2Mm 2Mm k +u

Adding the contribution of eq. (6) and (8) gives a potential which 1is

st1ll not symmetric in M and m, however, using the i1dentity of eq.

3.37). 5
2 2 >2 > > 2 RO S
Y Q2L KL 2. 2@0° a "% o
232022 a s 23252 2 @ted 4

one can rewrite the (K-E)Z term 1n eq. (6) (rcpresenting the expanded

retardation term) and cobtain the symmetric result:

2
1,1 1 1,2 1 2
Ve 2 0ty S et 2% T *
kK +u M m
1 os2 ®° 2 2
L L H
Towm 4t ) S
k +u

To obtain the complete fourth order potential one must include

the seagull graphs:
<ﬁwi

Performing the integration of the zero component of the loop momentum

one obtains the decomposition of picture (4.1) (we closed the inte-
gration such that only negative energy particle poles contribute;

however, closing in the other half plane would give the same result):
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NG

Figure 4.1: three dimensional representation seagull graphs; V

(4)
PR

inateating diagrams contributing to W

Only four diagrams contribute to wé4):
(4) - w(4)
seagull 2 e
3
P Y - u S SR (10)
3 2,2
(2m) €€

(2)

5 through an additional

Also this term will be represented in V

nonlocal term:

>2
-2k 2
S B .
52 2 * 3 (11)
K +u 4Mr

The total LS-potential, derived from a second and fourth order expansion

1
in e, containing the first three terms in the M E expansion 1s

therefore:

2 >2

e 1 1 2
V. +V +V_ = (1+(————-)q + 3=
0 1 2 ;2+“2 4M2 2Mm s 4M2
r r

2 32 + EE -4
RIS SR S, < S B (12)

16M2 4Mm §2+u2 2Mm
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Used 1n the Lippmann-Schwinger equation with reduced mass ﬁ%% at center
2
of mass momentum qs, this potential will give scattering matrix elements

which are related to the BS scattering matrix M by:
S -+> -
T @' p/s) = N (B, /5)M(p" piVeIN,_(B,Y5) (13)

We emphasize once more that this 1s only valid when the external
particle-momenta are on-shell (energy shell for the LS-equation, mass

shell for the BS-equation). For photon exchange the potential 1is:

2 »>2
1 1 >2 1 1 2
v = gf (1 + £L5 “lagm - )R - g ) (14)
k 4M 16M 4M
x r r
and 1n the limit M > =:
2
2 >2 >2 q
=& 4 _ gk s
Ve rads s+ Y ) (15)
m m m
with:
1 1 -1
C!—'4— ’ B—'le ’ Y_4 -

Following the method i1n section 2, one can prove that for attract-

ion (e2 < 0) this potential will give bound states at energies:

2 4
o o
_ _ _£ £ 20+2y-% 8a
Bn'l =m { —+ 5 - + (2a+86)61’O CYVey )y + ...} (1)
2n 2n
{Note the & term, caused by 6(3)(;) functions i1n the configuration

£,0

space potential.)

Using the values for a, B and vy:

U-2 a4
1% % 3 2
Bl *r 3 (m - qur) v ! an
n 2n

The bound states for a particle satisfying the Klein-Gordon equation in
the presence of a static Coulomb potential can be solved exactly,

giving [Me 61]:

2

a

_ £ -1/2

Bn,l +tm=m(l + ——= ) (18)

(n - eﬂ)2

179



with

_ 1 1.2 2.1/2
€, = L+ 3 {(2 + 5 ) af}

Expanded in the fine structure constant Ogr €Q. (18) will give indeed
eq. (17).

A BSLT-equation with a pseudopotential approximated by the one
photon exchange contribution, would give a potential with the same on

shell value, which means:

a+y =1L
=3
always: - B + %'= é (19)
2a +8B8 =0
02 0.4
1 £ f 3 8a
By =03+ (g3 -}
n 2n

One obtains the correct bound state levels 1f the pseudopropagator 1is
chosen such that: a = — .

Finally we wish to remark that the potential of eq. (12) 1s 1n general
not additive; using this potential in combination with a potential of

the @3 type by just adding them will result into terms corresponding
with non existing diagrams like:

\ L4
\ /
G;\ A 4
\\ /
/
\ /
\ /
\ /
/
\\ , 7

This can be avoided by not making the step from eq. (10) to eq. (11),

which will lead to the non-linear potential:

et 1,1 1 2 1 w2 1 2 R 2
',z “*WE-E’%'&;“ Tom TR )
Mm 4 [ dg 1 1
- ovm © (20)

3 2
(2r)? @3- 2?33 %
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CHAPTER V

The potential for spin-1/2 - spin-1/2 scattering

The derivation of the electromagnetic potential between two spin-
1/2 particles 1s more complicated than the treatment of the spin-0 case
because of the fact that the propagators and vertices become matrices
which involve positive and negative energy states.

The propagator of a spin-1/2 particle, which 1s off i1ts mass shell,

can be written in terms of Dirac spinors in the following way:

5 - - 5 -»> - >
o1 _ L u(p,s)ulp,ss) , & vip,s)vip,s) "

pO—E(;)+lE p0+E(B)—1e

1(p2+m2-1e)

The factors in the numerator, X uu and I v;, act as projection operators
on the positive and negative energy states (except for a normalization
factor) .

For the vertex, describing the coupling of a spin-1/2 particle,

with anomalous magnetic moment K, with a vector particle, we take:

K v
1I‘u =, + oot cvu k (2)
with k' = (p'—p)v .

For the photon propagator we will use the Feynman gauge (Coulomb gauge
will be treated at the end of this chapter).

The Bethe-Salpeter equation 1s a matrix equation i1n spinor space
which couples positive and negative energy states. We are interested in
the scattering from positive energy states into positive energy states,
which 1s described by sandwiching the M matrix between Dirac spinors:

++,++

Tfl

- > -, > -+ >
(pf,pl;P) = u(pf)u(—pf)Mfl(pf,pl;?)u(pl)u(—pl) (3)

+_
Due to the fact that: Fu # 0, the intermediate states will contain 1in

general a mixture of positive and negative energy states.
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As before we will decompose a Feynman diagram by performing the
integration ©f the zero component of the intermediate momentum. However,

now we will also indicate the positive (+) and negative (-) energy

++,++
states; the diagram of figure III.2 now becomes (for the T ' matraix
element) :
¢
+ +  + + + + +.— +
= +
+ + + +y— + + +1— +
<

Figure V.1: aecomposition box diagram in & dimensional integrals.

If a spin-1/2 intermediate particle lies on 1ts positive (negative)
energy shell, 1t will not contain negative (positive) components.
However, the accompanying particle remains 1n general off shell and
contains therefore positive - as well as negative energy states, except

>
when the three momentum P 1s on-shell:
> >
Vs = E(p) + D(p) .

In this way the boX diagram of fig. V.1 will contain 12 subdiagrams.

1 1
However, in the ﬁ ( E )} expansion 1t will appear that in the first three
terms only those diagrams contribute which contain no negative Dirac

Sp1nors.

As pseudopropagator we define in symbolic notation:
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one proves: > - > - >
g “1(q)“1(q) g uz(—q)uz(—q) @)

1
4E, (Vs-E_-D_+1¢)

5
gla,Vs) = =
aPq q Pq

This pseudopropagator corresponds with the choice of Thompson
[Th 70] and 1s, in contrast with the spin-0 - spin-0 case, symmetric 1in

the "upper" and "lower" particle.

The projection operator in the numerator is included in the matrix

elements. The lowest order pseudopotential then reads:

corresponding with:
@, (3, (-1, T Yu (Blu, (-B)
@ U P R T U IR TP
W (pt,pivs) = =3 5 (5)
'-p) +u"-(E_,-E_) -i
(p'-p) +u - ( - p) ie

We recall that this pseudopropagator and pseudopotential will generate

all the diagrams of the form:

Figure V.2

1n the three dimensional equation:

3>
T e pip) = WP (pr,pive) I-Jiiag w'?) (p,q:Vs)
(2m)
x g(a,/s)T T (a,pive) (6)

The pseudopotential (5) is symmetric with respect to

particles 1 and 2 except for the retardation term in the denominator.
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1
Expanding the pseudopotential eq. (5) 1in % v one obtaains,

neglecting w;Z), ... terms:

w2 (@, Bive)

|
¥*
-~
=
+
—~
+
+

4m 2m2 2Mm
(1+K) (14x)
MRS W S TP R

7
4M o Mm

> K—» ]—:-»-
1-02-( 0,) (ko

L (145, ) (146,) ®%

v N} (7)

> >

1}
with: k= (@-p) and q-EE

To obtain the corresponding LS potential one writes:

N 5 > 2Mr
glg,v/s) = NT(q,/S) * 5=, (8)

.4 +ie
and

V= NL(B';Vs) W(B'.,BiVs) N (B:Vs) (9)

Giving:

(2) (2) (2) e 1 1 3,22
\Y +Vv + Vv =% {(1 + ( — + — + — )q
0 1 2 —}:2+u2 al g AMm

K K
1 1 1 .2 1 2 2
(== + —— - ——)q" - ( + + +— + —=))k
am?  ag® AT teM%  teme MR 4p? 4P

> > 2
+ -jﬁ?izg——a-) + (spin dependent terms of eq. (7))} (10)

(K"+p")m

The first fourth order correction is the diagram:

Figure V.3
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1
To estimate 1ts contribution in the 1 "o expansion, table V.l can be

M
helpful:
v > v
gk o k
matrix > v0 V1
element Y0 Y 1 m m
++ 2 0
mom k
m mom mom + mom —
. m m
+-
0 mom
mom m mom k™ + I
-+

Jable V.1: leading term in é, %Aéxpansion for matriz elements of

vertices between different spin-1/2 states with mass m,
"mom" indicates terms which are proportional with some

momentum.

The “"contribution of a propagator" 1s dependent on the amount of four
momentum flowing through it. A particle line (mass m) of type —Pp—
or —€— always contributes % . The diagrams of fig. V.2, with n photon

lines, are proportional with:

n
Q2n Mm) , M, m>® (11)

(Mem) P71

Therefore the coupling constant will be written as (compare with
chapter 3):

2 Mm 2
£ —Me (12)

and one proves:

T++,++(2n) n
lim —_ > f constant .
M, M+m
>
p',p,f2 fixed

In the same way, the diagram of fig. V.3 gives:
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T(4)(flgure v.3) N (M&m)3

-+
M+m M, m>= M4m3

and contributes to M;4) and higher terms in the %

1
r o expansion.
We wi1ll not calculate the remaining fourth order contributions

explicitly, but rather give the total result*:

Figure V.4.
d3 4 2 1 1 2Me4
=L 2wt () S (13)
(2m) ee' ee! ee'

(4)

Agaln several terms are contributing to W1

, however, 1in the sum

they cancel each other, leaving only the term of eq. (13) which contra-

butes to wé4).

(4)

2 1s obtained by multiplying with —l~

L
The LS potential V N

> >
(= NT(p',/E)NT(p,/s)); once more we will include this contribution in

*For these diagrams one can neglect those with a negative energy state
and approximate the vertices by:

(Furu)++,++ - (FOF0)++,++ = 4Mm .
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V(Z) by an additional Véz) term which 1s zero on shell:

2 »2
M+ 2 *2 k M+ >2 k
=7 (g At + =5 ‘qﬁ -7 =3 (14)
K +p 4Mm 2M m k +u

This correction contributes to the central part of the potential and 1is
not symmetric in M and m; however, adding the (asymmetric) retardation

term of eq. (10) and using the LS-equivalence:

2 %2 2
@0’ . u? (azjz__qz) L 3T
n? (122 ? 2w @2en?)? 47 ml@%ad
one obtains:
retardation + fourth order corrections -+
(eq. 10) (eq. 14)
S = (5= (g -z-ﬁ) I I G (15)
22, 2’ 52 2" am ‘%47
k p K +L

which 1s symmetric in m and M.
When 6th and higher order Feynman diagrams give no additional
contributions, the first three terms in the %’, 1 expansion of the LS

M

potential for spin-1/2 - spin-1/2 scattering are:

VgtV + Y, S z;ipz (1 + ( Zif + ;ii + 2Mm )q ( ;i; + ;if )qz
- . (12:22) . (12:5) ) 33,

- m (14K)) (146) 20,0~ (3 K3, ) (16

4Mm
Before discussing some characteristics of this potential, we note that
r rH

one can obtain the same potential in the Coulomb gauge, when »;‘ is

r ro > > > o > o k"-1e

0 [-T-(I-k) (I'-k)

replaced by: +

>2 2

k -1e k -1e
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In that case the second order potential of eq. (10) would give the same

result, except for the retardation term (instantaneous Coulomb) and the

> - > oA
(I'-k) (I'-k)
2

additional term (longitudinal photon):
(2) (2) (2)
+ =
(VO Vl * V2 )Coulomb gauge ,u=0
e2 1 1 3 22 1 1 1 2
S {1+ (—+—=5+=—)q + (—5+—5- ——)q
ZZ 4M2 4rn2 4Mm 4M2 4m2 4Mm S
S S WO S N - S 1S
l16m 16M2 16Mn 4m2 4M2 Mmk2
+ (spin dependent terms of eqg. (7)) (17)

As for the corrections of fig. V.4, eq. (17) 1s the total potential

since there are no photon poles for the FOFO part of this vertex and
(4) (4)

the other terms do not contribute to W1 and W2 (see note on page
186) . Substituting into eq. (17):
2 | k2 2

> > 2 pis
Q@ _ 9 T 9
Mk 3 aMmk?

will give again eq. (16) (u = 0).
In the spin dependent terms of eq. (16) one recognizes the

different interaction mechanisms from a charged moving particle with

1+k
mass m and magnetic moment with the fields produced by a moving
1+
charged particle with mass M and magnetic moment oM

] 02 (L+k) (14x,) o N
2Mm 2 9y°0, = (ko)

>
o}

2))

< the 1nteraction energy of the magnetic moment of particle 1 with the
B field produced by the magnetic moment of particle 2.

2 (1+K1)

2

> >
10, * (kxq)
1
2m

W&lm

+* the interaction energy of the moving magnetic moment of particle 1
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with the electric field produced by particle 2.

2 (1+K1) Kx*
T B

W#lm
N

< the interaction energy of the magnetic moment of particle 1 with the
magnetic field produced by the moving charge of particle 2.

2 (1+K2)

(kxq
im0 (kxa)

F;\P)lm

= the interaction energy of the charge of particle 1 with the magnetic
field produced by the magnetic moment of particle 2.

2 (1+K2)

2

> >
10,° (kxq)
2M

thlﬂ)

= the interaction energy of the charge of particle 1 in the electric

field produced by the moving magnetic moment of particle 2.

= Thomas terms which describe the precession of the spins of particles

1 and 2.

The central part of the potential contains several contributions.

It 1s convenient to rewrite 1t into the form:

1 1 1 1 1 2
GurSr @ )35
k 4M 4m 4m aM
(1+x,) (14x,)
e — - L 2L i (18)
4m 8m aM 8M
22 R2
After transformation to confiquration space the (q +-z— ) term will
(3) >
contain no § (r) function and therefore:
Vc(;) = (r-dependent and momentum dependent terms)
(1+x.) (1+4x,)
2
Sl e — - L 2L e
4m 8m 4M 8M
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The terms:

(1+k ) (14k )
(—TI-LZ)G(” (£) and <—22———1—2)5(3’ s
4m 8m aM 8M

are the Darwin terms for the two spin-1/2 particles caused by the
Zitterbewegung.

The remainder:

>
e 1 1 1 +>2 K 1 1 2 1 22
— 1+ (——=+ "=+ >—)g +—=—)+ (—+—=)q. - —k
EZ 4M2 4m2 2Mm 4 4M2 4m2 s 4Mm
(20)

1s exactly equal to the central potential found in the spin-0 - spin-0

case: eq. (4.14). (The Darwin term for spin-0 - spin-0 1s of order

(-%I ,-%E ) and therefore does not appear in this order; [BD 65]
m M

page 203.) The central potential contains the static Coulomb-potential
- 1nteraction between the charge of particle 1 and the electric field
produced by particle 2 - and also terms which represent the interaction
between the moving charge and the magnetic field. Also relativistic
corrections are present (for instance the well-known replacement

7,2 2 P
P+m” > m + g; - B2y .+.). In the limt M > =, for electron-proton

8m3
scattering with K1 = 0, eq. (16) can be rewritten into the form of eq.
(2.51) wath:
1 1 1
0.—4 . B—1—6- B Y_Z , 6§ =0 (21)

which, using eq. (2.54), will give the correct hydrogen atom with an
infinitely heavy proton: eg. (2.41). However, we can do more, Neglecting

terms proportional with —L-and proportional with the magnetic moment of

M2
the proton one obtains for a Dirac electron (Kl =0):
2
e 1 2 2 1 1 >2
V== (1+(—+>—)qg +—5gqg (— + k)
2
E 4 2 2Mm 4m2 S 8Mm 16 2
2
1 1
+ S (gt —3) 10, (@) (22)
4m
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This interaction must reproduce the first order reduced mass corrections

to the fine structure levels. A particle with reduced mass m (= f%% )
1n the central potential:
2
v=—e—(1+a_c§2—s§2+yq2)
>2 s
k
will give bound states: 1M +m2_Mm
2 4 (2a+2y) - —
o o 4 2 2
A (i s S Mn
n,{ red 2 2 3 red n
n 2n
2 2 8a
+ mred(2a+88)61,0 - mred 5“—1) + .} (23)
The spin-orbit term will give an additional correction for & # O:
4
a
LT S T PR S
Mrea 3 ( 2 + Mm ) 1 1 ) L #0
n 2m E+3 J+§
4 (24)
3 % 1 1 1 1
"Mea 3 T2 e T T %0 (all &
n 2m 4= I+ -
2 2
Adding eqs (23), (24) and expanding, keeping only terms up to a4 and E,
gives: 2 4 3 1m
a a - - ==
1 £ f 4 4 M 1
B =m (->—=+—=( - =)
3 1
n,J red 2 n2 In n J+5
5 4 m2
+ O(@™) + Ofa —5-) + ...} (25)
M

This formula i1s i1in agreement with results obtained by others (see e.g.
[cr 69], eq. (4.4)).

Including the terms proportional with the magnetic moment of the
proton 1n eq. (16) will give rise to the hyperfine splitting. For a
complete calculation on this point we refer to [Gr 69].

Finally we wish to mention that the vector meson exchange potential
of eq. (16) 1s additive. The proof 1s rather straightforward: the

lowest order pseudopotential w(Z) (egq. (5)) 1s additive almost by
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definition:

1l

(2)
w (ul&uz)

W(Z)(ul) + W(Z)(u

) .

The fourth order potential, calculated from fig. V.4, appears to be:

3>
4 d 4 1 1 1 1
O s = [ 29 ame? + + + )
! (2m) 529'2 525'2 626'2 525'2
171 272 1 271
2 2 2 2 2 2
+ amd ¢ My N Hq . ) . ) . M1 .\ k1
i 529'4 545'2 529'4 e4e'2 545'2 522'4
11 171 272 272 172 271
Uz Uz
2 2 2 _ .2 2 2,2 2
+ 545'2 + 526'4 ) 5 with €, = k™ + By oioEp S k' + M
21 12 202,02 22,2
2 " My 7 By T 2
= 4)(1.11) + W(4)(u2) + (mxed terms) (26)

However, 1t 1s not difficult to show that this non-additive contribution
1s gencrated completely by .wo second order potentials which are zero

on shell (and additive!l):

2 2 >2 n
4Mme ( M+m (a 2 32 ) M+m qZ_E%_K_ ) 1 )
0l am® ain S 4 R

2
2 >2 U
+ 4Mme ( M+m (qZ_EQ_E_ ) + M+m q2'E%'E— ) 2 )
K2+g§ 4Mm2 s 4 2M2m K2+u§

In this way the LS potential V., + V, + V_ becomes additive.

0 1 2
The electric potential as derived in the Coulomb gauge, eq. (17),
1s not additive to the vector-meson exchange potentials of eq. (16);

one can verify this by explicit calculation.

Potentials for scalar meson exchange can be derived in the same
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way. They appear to be additive to each other and to the vector-meson

exchange potentials if one follows the procedure:

(i)

(ii)

(iii)

2
calculate V( ) by putting one of the two particles on mass shell;
(4) (4) L. .
calculate V1 + vV from the remaining meson pole diagrams

2
2)

and include this contribution in Vé as a term which is zero on
energy shell and linear in the coupling constant squared;
finally the contribution from the retardation in the meson
propagator can be replaced by two other terms (appendix B). It
is not necessary to do this; however, applying this trick to one
sub-potential and not to the others will destroy additivity.
Note that it will restore the symmetry in the potential which

was broken due to step (i) and (ii).
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CHAPTER VI

The electric potential in low energy nucleon-nucleon scattering

1. Corrections for the Coulomb amplitude

In the preceding chapter we derived the electric potential between
two spin-1/2 particles and applied i1t to the hydrogen atom. Another
field for which an accurate description of the electric interaction is
necessary 1s low energy proton-proton scattering. Due to 1ts long range
nature the electric interaction i1s dominating in the forward direction.
This "Coulomb peak" will grow in amplitude and width with respect to
the "nuclear" part of the scattering, 1f the energy decreases.

In this section we will consider the modifications in the usual
pp-scattering theory due to the first "relativistic" corrections in the
electric potential. We will restrict the discussion to the terms which
are 1ndependent of the magnetic moment because we believe that these
terms are more amportant for lower energies than the corrections due
to the electric spin-orbit and tensor force. Moreover these corrections
can be calculated almost in closed form.

The potential for the two proton system will be written as

(neglecting vacuum polarization) :

= +
v Velectrlc Vnuclear (1)

This decomposition suggests that the electric and nuclear potential are

additive. However, this 1s only of importance 1f one considers V
nuclear

as the potential between protons without charge or when one tries to

calculate Vnuclear 1n a non-phenomenological (physical) way (e.g. the

OBE prescription). As 1t stands one could also consider V as
nuclear

the difference between the total potential V and the electric potential
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; the only property for Vv we need in the following is

v .
elcctric nuclear

its finite range (exponential decreasing for r ~ «).
Neglecting spin dependent and magnetic moment dependent terms we

obtain from eq. (5.16):

e2 &2 qz ZZ
\Y o= (1 + =5+ + —) (2)
electric 22 M2 2M2 4M2

which becomes in configuration space:
2
u(1+—s—2)
2M 1 >2 a o 22
= h———— . — (VT = 4 =

Velcctric r 2 ( r * r v (3)

2M

The scattering amplitude can be written as:

£06) = felectric(e) * fnuclear(e) (4)

with f (8) the amplitude caused by V

s ., alone, and
electric electric ———'

f (0) by definition the difference between f£(9) and f . (9)
nuclear _— electric

(not the amplitude caused by V

alone) . Due to the finite range
nuclear

of Vv one can write £ (8) in a partial wave decomposition:
nuclear nuclear

£ olear'® = zzo (28+1) £, P (cos ) (5)

and one expects that for lower energies only a few of the coefficients

fl will contribute (for Elab < 5 MeV only £, is appreciable).

0

For the electric amplitude such a partial wave decomposition does

not exist; the scattering amplitude for an %-potentlal is [Ta 72]:

£ (n,8) = - - exp [2i0. - in log (51n2 1 9) ] (6)
o .21 0 2
= 2k sin” = 6
r 2
with =% and o, =arg I(l+ in)
n 2% 0 g n .

It can be shown that this amplitude does not allow for an expansion in

Legendre polynomials in cos 6 (uniformly nor pointwise convergent)

195



[Ta 74). However, 1t can be shown that in the sense of distributions*.

o 210

£ (n,8) = ) (2241) e -1y ( 8) (7
a 21k g €08
= 2=0
X
with 02 = arg ' (&+1+1inm).

The "Coulomb phase shifts" o, are connected with the asymptotic form of
the regular solution of the radial Schrodinger equation with potential
o

" through:

1

F,(n,kr) — sin (kr - % ET + 0, -~ n ln 2kr) + Of(r ) (8)

oo

L

The Schrodinger equation with a potentral of the form (3) can be solved
easily by a method 1nvented by Green [Gr 63]. De fining u, as the

original radial wave function and ¢, vy by:

a
*= e
1/2 (9)
v, = (1 + 2¢) u,
One proves.
" 2 2 -
vy (qs - M - L(8+1)/r ) v, =0 (10)

with W the "pseudopotential" reading:

2
a(l + —=) <
_ w1 e 2 26 g
W= 120 M T2 ) T (1)

Noting that the electric potential as defined in eqg. (3) 1s derived

with help of the %—expan51on up to second order, one observes that only

*By this we mean that both sides of the equality (7) have to be integra-
ted with a twice continuously differentiable test function vanishing at

cos 8§ = 1, 1n order to obtain convergence of the sum over & [Ta 74].
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terms linear in ¢ (produced by the 4 part of eq. (2)) have

2
M
significance and one could write:
2
q
a(l + E )
2 M2 2
W= —  * 0(¢™) (12)
r + ﬁ
leavaing terms of order cp2 which correspond with terms of order —14— in
M
1
the M expansion. Expanding the denominator one arrives at:
q2 CI2
a(l + 22 1+ 33
2 M2 az 2 M 2
W= = e 3 + O(pT) (13)
r
_ 2 2
and the radial Schrddinger equation (k™ = qs):
2 2
dari, mas ik, :
2 2(2+1) M M
" - - =
ve + [k 5 + 3 - J vl 0 (14)
r r
Defining: 2
ma(1 + 35 -
= = =v/(1+l)2—a2(1+1k—)
n= 2k v ¥ 2 2 2
M
1
= 1 —_
EREANE 2
K = =17 , z = - 21p = - 21kr (15)
eq. (14) can be written as:
32v 1 _ u2
R+[-l+5+4——]v=o (16)
2 L 4 z 2 L
3z z
which 1s Whittaker's equation with regular solution [Ab 70]:
1 1
-2Z% 2t 1
Mu(z)=e z M(E+U—K,1+2U,Z) (17)
L4

In the limt r + ®», z > -1® this solution behaves like ([Ab 70], eq.

13.5.1):
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ll
1l i

2 2
_ F(2+2¢")e e _ oA
Mk,u(z) — =21 TF+ien ] * sin (p-nlog 2p + Ggr =15 )
Z2Fr—1%
(18)

Expanding &' in powers of o one obtains:

2

a2(1 +ék—)
2 M2 4

" = - ———— e
L o= 8 TS} + 0

and comparing eg. (18) with eqg. (8) one obtains for the "relativistic

corrected Coulomb phase shifts”:

2
a2(1 + 3k )
. 2 2 dg
ot =g, -nt Tt M (I L, o0t a9
L R 2 L 29+1 2 aL
Writing oi = Ol + Al one obtains for the "relativistic corrected
Coulomb amplitude":
+
- e21(ol Al)_1
felectrlc(e) = 5 (28+1) —ZJ.k——PJi(COS ®)
£2=0
= - —" — exp [210, - 17 log (51n2 L 8) 1]
21 0 2
2k sin — ©
2
214
© 2102 e 1_1
+ ) (2r+1) e =——""P (cos 8) (20)
=0 21k L

(1n the sense of distributions).
We did not succeed in evaluating the last term of eq. (20) in closed

form. However, for laboratory energies > | MeVone can approximate:
3K

2M2

2 28+1

a2(1 + )

+ 0(a2n)

>
R
(STE]

and

o, =0y + O

wlth an error less than 15%, and obtain:
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£ Flab’! Mev-——”—ex [210 -1n log (sin’ & 8)]
electric 21 p o "N g isin 2
2k sin 3 0
2
2 3k
210 @ (1+3—2)n o«
0 M
+ e — z Pg(cos 8)
2=0
= - n exp [210, - 1n log (Sln2 1 8)1]
26 0 2
2k sin =
2
2
2 3k
21000' (1+—2—M—2-)1T
+ e —_— (21)
2k sin 5

The differences between eq. (21) and its extreme non-relativistic limit

eq. (6) are:

2
(1) The use of n = Ma(l + % EE )/2k 1nstead of n = %% . One can verafy
that this corresponds with M— . \4 =P //§2 +M2 expanded
orresp TERN =T Vian T Trap’ 1ab r &XP

lab
in M and expressed 1n the center of mass momentum k. In fact thas

"ad hoc" substitution for n has already been used during a long time
with the purpose to simulate some relativistic effects of the Coulomb
interaction.

(11) An additional correction to be added to the "classical" expression:
P

2
2 3k
20, @1 ¥373)
e 0 M
2k san )
2

Its contribution to the total electric amplitude 1s small, approximate-
ly:

D — e
\/Elab(MeV) x sin = x 1 O, .

Unfortunately in the region where the Coulomb interaction dominates
(small energires, small angles) this correction 1is also small (errors

on the experimental quantities are in the order of 1 %o) -
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In order to obtain a feeling about the magnitude of the second
correction in proton-proton scattering, we calculated cross sections

from the amplitude:

210

2
£(8) = £, (8) + e e

0 + fnuclear(e) (22)
2k sin —

T 2

with the nuclear amplitude approximated by 1ts s-wave partial wave

amplitude:

fnuclear(e) =e 21k (23)

and used the effective range approximation for 60:

2

+ = rk (24)

[

2
cok cot 60 + 2nkh(n) = -

1
2
with a = -7.8 fm, r = 2.7 fm.

These cross sections (for energies 0.5 - 10 MeV, CM angles 200-900)

were compared with those of the amplitude:

£(6) = fg (8) + fnuclear(e) (25)
r
with fnuclear(O) approximated by an s- and a p-wave contribution:
210 ezl(60+Ao)_1 210, e2m1_1
fucrear® =€ T *3e 0 Tz o8 f (28

We searched for AO and Al to obtain an impression to what extend the
relativistic correction can be simulated by a (nuclear) s- and p-wave
correction (table VI.1).

From table VI.1 we conclude that 1t 1s quite possible to simulate
the relativistic correction on the Coulomb amplitude by a change in the
nuclear s- and p-wave (better than 1:10000 in the cross sections). The
changes i1n the phases are in the order of 10-4 radians. The errors 1in

the experimental phase-shifts (from single energy analysis) are ranging

from 10_4 radians below 1 MeV up to 2-10_3 radians at 10 MeV for the
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mean rel. dev. (%o) mean rel.dev. (%o)

Energy (MeV) AO=A1=O fitted AO,A1 Ao(rad) Al(rad)
-5 -5

0.5 0.73 0.07 9.4 10 2.7 10
-4 -5

1.0 0.35 0.08 1.1 10 3.9 10
2.0 0.27 0.08 1.2 107% 5.7 107°
-4 -5

3.0 0.25 0.08 1.2 10 6.7 10
-4 -5

4.0 0.25 0.07 1.3 10 7.3 10
5.0 0.24 0.07 1.3107% 7.6 107°
-4 -5

6.0 0.24 0.07 1.3 10 7.8 10
7.0 0.24 0.06 1.3107% 7.8 107°
-4 -5

8.0 0.24 0.06 1.3 10 7.8 10
-4 -5

9.0 0.23 0.06 1.3 10 7.8 10
-4 -5

10.0 0.23 0.06 1.3 10 7.8 10

Table VI.1: Simulation of the relativistic correction of the Coulomb
amplitude by nuclear s— and p-waves (AO and AJ). The second
column gives the mean relative deviation between cross
sections calculated from eq. (22) and from eq. (25) with

the same fh The remaining columns give the correct-

uclear’
ions on the nuclear s— and p-waves needed to obtain an
optimal fit to the relativistic correction of the electric

amplitude.

-4 -
1so phase shift and from 10 radians up to 3-10 4 radians for the
central p-wave combination. Therefore 1t 1s unlikely that the second
correction of the Coulomb amplitude 1s observable in single energy

fits of proton-proton scattering data. Perhaps in a multi-energy fit

this effect 1s observable since the corrections on the s- and p-wave
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phase shifts are rather independent on the energy (typical for a JE
potential) and since the phase shifts of a finite range potentlalrare
strongly dependent on the energy. Definite statements, however, cannot
be made until such a fit has been performed. In the next section we
will study the changes in the effective range functions caused by the

"relativistic" Coulomb potential, which can be used i1n a multi-energy

fait.

2. Corrections on the effective range functions

We recall the definitions of the effective range functions for
potentials VL(r) with an %‘ tail:
1. The regular solution VR, wlth boundary conditions at r = O: VR(O)=O
must be a real analytical function of k2; in the limit r - « 1t defines

the phase shift Al and the function N:

v_(r) — N sin (kr -nln 2kr - l-ln + 0, +4) (27)
R oo 2 L L

2. The irregular solution vI' which 1s unequal to zero in the origin,
also a real analytical function of kz, satisfying the Wronskian

condition Vl'RVI - VRV:'[ = 1 , defines the function H:

1 1
VI(r) ;:: Nk oS (kr - nln 2kr - E’Eﬂ + GE + AE)

- HN sin (kr -nln 2kr - l—ln + 0, +4) (28)
2 L 2
If the total potential V can be written as:

v(r) = VL(r) + Vs(r) (29)

then the total scattering amplitude can be written as:
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® 2o, 24y

L e -1
£ oo (8) = £ (8) + To(21+1) e 5 Pylcos ©)
2 2=0
r
- 21(0 +h ) 2151_1
+ ¥ (2u+1) e S_—_"2p (cos 8) (30)
=0 21k L

wi1th 61 the phase shift of V with respect to the solutions of VL(r).

Then GQ satisfies:

1
- cot 61 + H = analytic function of k2 except for singularities
Nk

whose positions are determined by VS alone and

except for isolated poles. (31)
In our case we take:

VL(r) = velectrlc(r)

and using Green's trick we transform 1t to a local potential, arriving
at eqg. (13). However, in doing so, one also transforms the wave
functions according to eq. (9). Since ¢(r) vanishes in the limit

r > » this transformation does not affect the r » @ limit of the wave
functions. Also the "regular" or "irregular" nature and the analyticaity
in k2 of a wave functions are not affected (to avoid complications on
this point we will assume that the non-local corrections 1in Velectrlc
are small). There 1s a slight complication in the effective range
formalism since for non-local potentials the Wronskian between two
1ndependent solutions 1s not a constant (in r). Thas condition, usually

applied to the wave functions at the origin and for local potentials

therefore also holding for r -+ «, must be replaced by the condition:
W(VR,VI) —_ 1
Yoo

Another (and equivalent) method appears to be to first transform the
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potential with Green's trick and to calculate the effective range

functions with thais (local) pseudopotential.

Using the arguments of section 1 one arrives at:
2 2
3 k k
a(l + > 3 ) 2 1+ =

M (32)

<4
D Njw

= -
M

W
electric r

and using:

2
3 k
Mo (1 +5—2-)

N|w
IF
[N N

’ p:!l,'+%=/(1+-;—)2-0.2(1+

=

K = =-1n . z = -21p = -21kr

the radial Schrddinger equation for the £'th partical wave can be

written as:

2 - - “2.
3V 1 k.4 _
—2+[-4+z+ 5 v =0 (33)
9z z -
Two 1ndependent solutions are MK u(z) and MK _u(z) ([ab 70], eq.
’ ’
13.1.32, 33, 34):
'y
Mo (2) = e (w2100 ¥ T Mat + 1 4+ an, 220 + 1, -220)
r
(34)

Mo (z) = e® (=207 wM(-2' + an, -20', -21p)

(the solution MK " does not exaist for L' integer).
.-

A closer inspection of the properties of the Kummer functions at the

right hand side of eq. (34) shows that M and MK -u are entire and
14 ’
2 L'+1
real functions of k  and r, except for the factor (-21ip) and
-
(-2ip) .

Since M(a,b,0) = 1 we define the regular and irregular solutions

VR and VI:
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l'
2 ren 1
Vo®) = T (2% < u

(35)
[(2L") 1, -4
vV (t) = ———F— (5= M (2)
I 22 lr(z') 2k K,-U

VR and VI are real analytic in k2 and satisfy:

' — g =
VR VI VI VR 1

Using eq. 13.5.1 from [Ab 70] one proves:
S

2
T(2'+1l)e L
T L S0 (p~nlog 20 - 7 3 +a

VR(r) —

) (36)
r+ |T(2'+1+1n) |k

ll
therefore:
= - - T (-
AE =00, 9, "2 (L'-2)
and . (37)
r(2'+le
[T(e'+1t1n) |k

L'+1

Similarly:

1 L'
Vi) — e cos (p - nlog 20 - 7 75-+ 01,)
r>®
El
- HN sin (p - n log 2p = 7 5 + OEJ

with:

L} ] —_ 1
4o an k2% T(22 )g( 20")
[T (=2'2am) [“T(R"+1)T (")

1 1

x +
( -21mR'=1n m™ 21mR'-mn m™m
e - e e -e

) (38)

In this form these functions can be used in the effective range
expansion eq. (31). However, one observes that for &' = integer, H does
not exist. This corresponds with the fact that for such %' the solution
M u(z) 1s not valid anymore and must be replaced by a "logarithmc"

K,—
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type of solution ([Ab 70]; eq. 13.1.6). In our case &' 1s very close to
an integer and therefore H will be very big, causing large terms in the
right hand side of eq. (31). Now we can use the property that the

1rregular solution 1s defined up to a multiple of the regular solution.

Defining H_ as a real analytic function of k2 one observes that the

I
tit : - V_ + v

substitution VI T HI R

will not affect the analytical properties and boundary conditions of

the irregqular solution, but would lead to the effective range function:

H - HI instead of: H .

It 1s not difficult to prove that:

S WU ¢1 7S VTR S IR T St
Qg £'-2 (28) 1 (22+1) ! nk
x (822 + ()2 (-1 K2+ (k) D) ... (k) 2 (39)

Note that the right hand side of eq. (39) 1s an analytic function in

k2 and therefore we define:

0 (k2) _ 1 (21+1)!!(2E-1)!!221_j_
I L'-2 (22) 1 (22+1) ! nk
2 2
x 12k o) (e-nxH A L (o2 (40)
The effective range function:
L cot §, + H - H (41)
N2k 3 I
1s fimite for £' = £ and one can show that for &' = £ = 0 1t reduces
to the well known form:
2
kKCy cot & + 2nk h(n) - 2nk (42)

The factor 2nk 1s conventionally put into the right hand side of the
effective range identity, eq. (31), corresponding with the additional

replacement: H - HI +~ H - HI - lim (H - HI) .
k-0
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APPENDIX A

Contributions from 6th order diagrams 1in w3 theory

to

the potential

The Gth order diagrams which contribute to the BS scattering

amplitude are (without self energy graphs):

- -< 6———‘_’<
\‘ T T ™~
| | | \ /

| [} { ] \\ /

: | | | X/

I | | 1 \

/

! | | ) EARN

I | | | / \
-—l 1 L& | L AP
-~ T T~

\

7/

|
4

1

]

]

1

Fig. A1: stxth order contributions to M.

These dlagrams, involving the integration in two intermediate four-—

momenta could be written as a sum of diagrams involving only three

dimensional integrations, as done in chapter 3 (see fig. III.6).

However, this would require several pages and it 1s also not necessary

for our purposes.

We merely note that the potential of eq.

w1ll generate, 1terated with the LS propagator, already some of the 6

(3.36) 1na LS equation
th

1
order diagrams (up to second order in the ﬁ-expan51on); see fig. A2.

We can write these diagrams again as four-dimensional integrations;

using:
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———<——
+

1
:
|

+
_———
+

]
' : ! i ! : : ! I
] | ] | | ]
| | o+ | Loy b 1o+
] I ] i ! ! I |
! ] ! ] ] ! ] ! i
O I B L1 1 1 1 1
HT——~—>—7% ¥r—~——r K
\ ’ | \ \ ' \
| \ | / /
NS AN 4 AN Y.
| X + o X + + X +
! 7N VA | VA | N\
] VA I VAR ] 7N 5N
| ’ \ | / \ | / \ | ’ \
1 L L 1 Z A 1 Vi o 1 L A
X% H——a¢ ift-——-ﬁr-<lhT96 Y-
N/ i R4 ! N/ I N |
’ | \/ ! \ | \ ¥ \
X P+ X N+ X T X 4
\ | /N t VA /A
VA VAN ] A ! AN |
/ \ ! / \ ] /N ] VAN ]
L \ L —. AN 1 L - \ i L \ N |
Fig. A2: sixth order contributions generated by the potential of eq.
(3.36) in the LS equation.
—— 0 2n6 ( 0 E>) 0
Pa _ ¢ ap TP [ de
=) (2m  2Exv/s (/s-2E +ie) 2r 9 -
Py, P ot
= P-
Pa
The diagrams of fig. A2 become:
rtT—X% KT & —% Hr——aX
1 ] ! | ! | [ / \ /) 1 | |
o Pl AN NS Lo
I (O | ! [
S E A T R T /X\ + /)(\ ! Lo
] [ I | ] AN N | I !
1 | 1 | 1 | I/ \ ’ \ ) | | |
- 1 1 1 1 1 I 4 A ) L | 1 1
Fig. A3: same as fig. A2; written as four dimensional integrations.
The terms of fig.’A2 (fig. A3) do not contribute to W(6), since they
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since they are generated by W(z) and W(4). Therefore the total

6)

contribution to w( 1s the difference between the diagrams of fig. Al

and those of fig. A3:

\\ : ,I \\ ‘\ /, \\ Ir /,
N \ SO
N \ 4 \ /
54 X X
|6} NOY \ « 7
W= p 3 + W + NY
VR X \ / x
7/ N \ / N
v ! A 7/ A\ \ /
/ ] N\ 7/ \ / / N
£ 1 AN < I\ AN y) y) N
Y Fan\ T Fan\ ]f'\ Y ve v /\‘
Py Y LY N NAS
I | : ] \\ N/ ,
| / \/
+ ! ! [ X !
: : | I N\ A :
/ \
I I IA \ / A I
l [t 1 J\ | 1 // \ Y \\ 1
\J \J L S
S>
With: = - = 6-g

O~

Fig. A4: Lhe sixth order pseudopotential.

t
Note that fig. A4 1s nothing else than the 6 h order contribution as
derived from the pseudo-potential equation (2.25):

W= MTT 4 err(G—g)w

The diagrams of fig. A4 are calculated by [Mu 78].

Using the coupling constant f2 = gz/M, and using their results one

proves:
1im w(6) ~ EE
Moo M M3

E',ﬁ,fz fi1xed

and therefore:
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6

lim M V(6) ~ £§
Mo M
> > 2
p'sp,f fixed
which shows that*:
6) _ (&) _ _(6)
VO = V1 = V2 0.

*In [Mu 78] 1s used g2 and 1s proven that the diagrams of fig. A4

6
contribute separately to order gz ; however, in the summation the
M 6
leading terms cancel giving a contribution of order gg .
M
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APPENDIX B

Equivalent potentials in the Lippmann-Schwinger equation

We will prove that a potential:

> o
Vip',p) =) _,21
1k

1s equivalent with:

2
g
> > A 22 > 2 2
v'(p',p) =Z _’212-* (1 t 5 (p~+p"' —2qs)
1 k' +m
1
Am? >2 >, 2.2
1 >2 > 2 2 (p7-p'")
Yoz BRtnkag) s A e )
k +ml k +ml

(B.1)

(B.2)

for on shell momenta (= qi) and up to first order in A. Writing:

VI =V + AW (B.3)
(note: on shell V' = V) and the formal solution of the L.S. eguation:

T =V + VGV + VGVGV + ...
and (B.4)

T' = V' + V'GV' + V'GV'GV' + ...

2Mr
with: G = -
(p'qs) q2-52+1e
s

1t will be clear that 1t 1s sufficient to prove:

WGVG ... V+ VGAG ... V + ... +VGVG ... W=20 (B.5)

to obtain:

T =14+ O02)

Potentials V and W are sums of subpotentials with different

coupling constants. To prove (B.5) 1t will be sufficient to

Y WGV G..V +V GW.G..V
1) 1

+ «.. + VGV G..W =20
k k 1
1,J..k J J

k

masses and

prove that:

(B.6)



1
with: v =

1 K2+m2
1
»2>2 2 >2 2 2 92 22
p4p'T-2q. , p*p' =29 (P -p')
and W =———"+mn
oa@ed) r @ad? @)’

A specific term in (B.6) will be denoted with the self explaining

diagram:
Pp V PpW Py V P
Kamy Kamp  Kymg
Fig. B.1
> > -
leaving the integration in Pys Pys Pyr - the reduced mass, and using:
2 2 2
€, = kl + ml one proves that this diagram gives a term:
m2 m2 2 2
RSP U W B SN SN NN U SN N W
Tt 2 2 2 2 2 2 »2 5 2 4 2 22 4 2 2 4 222
€1 957P3 By 9gTPy 65 €5 9gTPy £, 9Py €5 957Py
>2 2
L (B.7)
E4 2 »2 L2 tre '
2957P 3
Now we can use
> > 2 > > > >
s> PPy my,  2(py=Py) " (Py~Py)
V2 22 - 22% 24" 42
172 172 172 172
and
> > 2 > > > >
> Py 2my  2(py=Py) *(py=Py)
Y2 22 " 22" 42" 2.4
172 172 172 172

>
so i1ntegrated with respect to P, we can use:
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> > > 2
(p,=P3) " (p,-Py) 1 ™2 551
F4€2 2t2£2 ' 52e4 (B8
172 172 172
> > > > 2
(py=p)) " (Py=P3) ! 5.8.2)
r254 252a2 L4L2 o
172 172 172
Simlarly, integrating with respect to 53 one proves:
> > 2
(P37P,) " (P57P,) __1 my 5.5
3452 2&252 E2€4 o
273 273 273
> > > &> 2
(P3P P3Py} L 2 5.8.4)
9264 2F2F2 L4€2 o
273 2 273
Using (B.B) one can rewrite (B.7):
2 2 > > > >
T U L S it UL PR 11
RTINS 4 ) 222
1 2 172 2 s *3 73
2 2 -> e »
PR U S W B i A M A 8 (B.9)
te E2 q2~§2 E4 E?ez t4 E2 U
1 %s "2 2 273 2 3

VoW v
'
- e = t
]
)
[)
]
Fig, B.2
with
P 7
T 2 2 > > > >
4 m m (p,~p,) * (p,*p,)
' L2, L2y Ty (B.10.1)
! T2 4 r2F2 E4 M
X €1 2 152 2
Kok
and
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I

—

Py

P2
77,3 2 2 - > > >
64 02 2 3
1 172 1

o
-

1
_ = (B.10.2)
£

&
N

—

bl
=

In the summation of eq. (B.6) there are two diagrams which cannot be

depicted as in fig. B.1:

v
"""" and e §

>
HoweveY, 1n these diagrams P, (54) 1s an external leg and therefore on

>2 +2?
shell: p1 = p4 = qz. Also these diagrams can be written with the

notation of eg. (B.10): one proves:

=
-
-

and

N =
1]
e
N

Now summing over all possible insertions of W in the ladder we will

obtain pairs of terms which cancel each other partially:
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R R R 2] ] R
"ﬂ///@ (-) +—> ) 5> )
i ' _ [tpy*P3) " (Py7Py
- ': '''' *o-o-e- T -\ a2z
' i £1%2
L ’ : (B.11)
Ky Kz K Kz (B, 4D * (B,-P.)
, 173 2’P3’)
E2€4
172

Note that the integration with respect to 52 sti1ll has to be performed;
changing variables.

> > > >

> > > g
p,=q9+4 ;3 py=q9-4 i py=gqg- ;

one proves:

> >y 2 > o r 2 24 @+hm? + 23- (§-Dyn?
_ 208+ 8-8)° + 29-4-D) a8 * 24 2 1

a4 44 (B.12)
152 £152
One must distingulish between two cases:

1. The two meson masses happen to be the same: m, = m

1 2" In this case

the term of eq. (B.12) 1s obwviocusly zero when integrated with respect

to g since 1t 1s odd in 3.

2. The two meson masses are not the same. In that case the diagrams:

Ry Bw A

m My
w1ll have a counterpart with m, and m, interchanged:

Ry mw®

It 1s not difficult to prove that the sum of these diagrams 1s also

> >
odd 1n 6 and therefore 1s zero once i1ntegrated in P,y.
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This completes the proof. We merely wish to note that the
transformation of eq. (B.1l) to eq. (B.2) has to be applied to all the
subpotentials. Also the proof i1s not affected when the coupling
constants gf contain terms which are proportional with Xi:

gi - gf (1 + A (mom.dep.terms) + .. ) .

In that case the momentum dependent terms i1n the coupling constant,
together with the transformation which 1s proportiocnal with }, will

give Az terms, which are neglected from the beginning.
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APPENDIX C

The potentials in configuration space

Below we list the Fourier transforms to confiquration space
for the different potential forms we encountered. The derivation 1s
straightforward but rather tedious and we refer to the literature for
the well-known techniques [Na 75, Ho 60, Pa 70]. The transformation is
done without cutoff and therefore the §-functions in the origin are

included in the result:

Spin independent potentials
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L = angular momentum operator.
-3 > -> ¢ > >

Sip = (01 r) (02 ) -0y 0, = tensor operator.

- 1 - >

s=3 (01 + 02) = total spin operator.
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SAMENVATTING

In dit proefschrift wordt een studie gemaakt van twee onderwerpen
die een rol spelen bij de bestudering van de nucleon-nucleon 1nteractie.
Alhoewel de resultaten in eerste instantie beschouwd worden vanuit het
kader van lage energie proton-proton verstrooiing, blijven de methodie-
ken niet alleen tot dit gebied beperkt, maar kunnen in zekere zin
overal tocgepast worden waar bi1j de analyse van verstrooiingsdata een
parametrisatie naar de energie gezocht wordt of waar de electromagne-

tische 1nteractie een rol speelt.

Het eerste gedeelte van dit proefschrift gaat over een gegenerali-
seerd effectieve drachts formalisme. Met behulp van effectieve drachts
methodieken probeert men experimenten op het gebied van twee deeltjes
verstrooiing, uitgevoerd bij verschillende energieen, met elkaar 1in
verband te brengen. In wezen 1S een effectieve drachts formule niets
anders dan een interpolatie- of extrapolatietechniek die faseverschui-
vingen, gemeten op bepaalde energieen, probeert onder te brengen in
een formule en die vandaaruit deze faseverschuivingen probeert te
voorspellen b1ij andere energieén.

De kracht van effectieve drachts theorieén ligt in het feit dat
men van de interactie die de verstrooiing bepaalt niet veel hoeft te
weten om ze toe te kunnen passen. Dit 1s aardig als men helemaal niets
weet; echter i1n een situatile waarin men bepaalde stukken van de inter-
actie wel meent te kennen zou het toepassen van effectieve drachts

formules 1n hun meest eenvoudige vorm ertoe leiden dat ock deze

stukken opnieuw geparametriseerd worden.
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We zullen dit aan de hand van lage energic proton-proton
verstrooiing proberen toe te lichten:
Men denkt dat de proton-proton verstrooiing bepaald wordt door de
volgende mechanismes:
- electromagnetische wisselwerkingen ten gevolge van de ladingen van de
protonen;
- vacuum polarizatie wisselwerking ten gevolge van het feit dat een
foton een electron-positron paar kan creeren;
- de nucleaire wisselwerking, bestaande uit:

(a) lange drachts pion uitwisseling,

(b) korte drachts interacties ten gevolge van de uitwlsseling van
zwaardere mesonen,

(c) een korte drachts repulsie, vaak op zuiver fenomenologische
manier beschreven door middel van een harde pit, of door middel
van Pomeron "uitwisseling”.

Bovenstaande volgorde geeft tevens de "bekendheid" van de interactie
aan: de kennis van de electromagnetische interactie 1s het grootst,
die van de korte drachts repulsie het kleinst. Past men effectieve
drachts methodieken nu toe op de experimenteel gemeten grootheden
zonder dat men de kennis die men van de proton-proton interactie
heeft, 4 priori al inbouwt, dan zal dit leiden tot een onbruikbaar
geheel, voornamelijk omdat de electromagnetische interactie een
oneindige dracht heeft. Dit heeft er in het verleden toe geleid dat het
Coulomb stuk van de electromagnetische interactie en de vacuum
polarizatie 1n de effectieve drachts formules werden ingebouwd. Op
deze manier hoefde men alleen de nucleaire wisselwerking nog op een

fenomenologische wijze weer te geven. Het encrgiegebied dat op deze

224



manier bestreken kon worden, lag tussen de 0 en 10 MeV laboratorium

energie. In de jaren zestig zi)n er pogingen gedaan om ook de lange

drachts pion uitwisseling in de formules te verwerken. Echter door de
gekozen methode kon dit slechts ain benaderde vorm gebeuren; in de
praktijk leidde dit ertoe dat er twee, elkaar tegenwerkende, benade-
ringen werden toegepast:

- de lange drachts pion interactie werd benaderd door een eenvoudige
pool 1n de partiele golf amplitude: dit leidde tot een verzwakking
van de attractie.

- er werd geen rekening gehouden met de korte dracht repulsie: dit
leidde tot een (schijnbare) versterking van de attractie.

De op deze manier verkregen formules werden toegepast in het gebied

tussen 0 en 40 MeV en werden tevens gebruikt om uit s-golven de pion-

nucleon koppclingsconstante te bepalen. Door de elkaar tegenwerkende
fouten kreeg men een resultaat dat in overeenstemming scheen te zijn
met waarden op andere manieren verkregen. Toen echter enkele jaren
geleden de korte drachts repulsie werd ingebouwd 1n de parametrizaties
van de effectieve drachts functie leidde dit meteen tot het naar voren
springen van de fout ten gevolge van de andere benadering: de gefitte
koppelingsconstante bleek meer dan 30% te groot te zi1ijn vergeleken met
de conventionele waarden. Dit leidde tot de noodzaak om het gehele
effectieve drachts formalisme kritisch te beschouwen.

In het eerste gedeelte van dit proefschrift beschrijven we de
fundamenten van algemene effectieve drachts theorie. We gebruiken
hiervoor niet de "klassieke" methode van Bethe (zie hoofdstuk I), maar
technieken gebaseerd op de analytische eigenschappen van de golffunc-

ties. Met behulp van deze methodes 1s men 1n staat om 1edere interactie
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die expliciet bekend is, exact in de effectieve drachts functie in te
bouwen. Aandacht wordt ook besteed aan de keuze van de fenomenologische
representatie van deze effectieve drachts functie, speciaal aan de zgn.
poolbenaderingen. In de laatste twee hoofdstukken wordt het effectieve
drachts formalisme in de praktijk getest: dit gebeurt zowel aan de hand
van een potentiaal model als aan de hand van experimentele grootheden.
De resultaten op deze manier verkregen, leiden tot de conclusie
dat het g=generaliseerde effectieve drachts formalisme, met daarin exact
ingebouwd de electrische interactie, de vacuum polarizatie en de lange
drachts pion wisselwerking, 1n staat moet 2ijn om reer nauwkeurig met
slechts drie parameters het gebied tussen O en 40 MeV te beschrijven
(we refereren hier alleen maar naar de s-golf) en met vier parameters
het gebled tussen 0 en 250 MeV. Tevens wordt het formalisme gebruikt

om opnieuw de waarde van de pion-proton koppelings-constante te bepalen.

In het tweede gedeelte van dit proefschrift beschouwen we een van
de 1nteracties die bij lage energie proton-proton verstrooiing een
belangrijke rol spelen: de electromagnetische wisselwerking. Om de
resultaten van het eerste deel in de praktijk te kunnen toepassen,
moet vooral dit gedeelte van de interactie zeer nauwkeurig bekend zijn
en i1n een dusdanige vorm gegoten worden dat er gemakkelijk mee gewerkt
kan worden. In de praktijk blijkt deze vorm een configuratie ruimte
potentiaal te zijn. De afleiding echter van een potentiaal beschrijving
uirt een velden theoretisch model (ons uitgangspunt), gaat gepaard met
benaderingen op diverse nivo's. In wezen gebruiken we de bekende
procedure uitgaande van Feynman diagrammen, de sommatie hiervan via

de Bethe-Salpeter vergelijking, de reductie naar de Blankenbecler-Sugar
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vergelijking, uiteindelijk leidend naar de Lippmann-Schwinger vergelij-
king en de configuratie ruimte potentialen. Deze reductie kan in de
praktijk niet exact gedaan worden en het 1s van belang dat een
consequente benadering aangehouden wordt in het verwaarlozen en
aanhouden van de diverse bijdragen tot de potentiaal. Daarom kiezcn we
voor een methode gebaseerd op een expansie i1n termen van de nucleon
massa M ten opzichte van het punt: M = ® (de statische limiet). Termen
tot en met orde 1/M2 worden nog meegenomen 1n de potentiaal. In het
laatste hoofdstuk worden de effectieve drachts functies voor deze
potentiaal afgelead.

De resultaten van het tweede gedeelte van dit proefschrift kunnen
ook gebruikt worden voor de afleiding van potentialen voor de sterke
wisselwerking. Het blijkt dat de electromagnetische potentiaal op deze
wijzce afgelerd alleen maar gebruikt kan worden in combinatie met een
nucleaire potentiaal op dezelfde manier verkregen. Voor de effectieve
drachts methodiek 1s dit van minder belang, omdat het grootste deel
van de nuclealre 1interactie toch op een fenomenologische manier wordt
beschreven. Echter in de meer "fysische" modellen, zoals de zgn. OBE-

potentialen, zal men rekening hiermee moeten {(gaan) houden.
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STELLINGEN

I
Het feit dat T. Sawada de singulariteiten afkomstig van een sterke Van-der-
Waals-kracht blijkbaar ook aantreft in de energie-afhankelijke fase-analyse
van Sher et al., maakt zijn analyse zeer twijfelachtig.
T. Sawada; Progr.Theor.Phys. 59, 149 (1978)

M.S. Sher, P. Signell, L. Heller; Ann.Phys. (N.Y.) §8, 1 (1970)

II
De invloed van vervalkanalen op het spectrum van een "confining" potentiaal
kan zeer groot zijn. Bij de beschrijving van systemen met grote vervalbreedtes
wordt hiermee vaak onvoldoende rekening gehouden.
A. Martin; Phys.Lett. 938, 338 (1980) en de hierin genocemde referenties

D.P. Stanley; A.I.P. Conf.Proc. 74, 392 (1981)

III
Een lckale potentiaal leidt in BSLT-achtige vergelijkingen tot een amplitude
die niet voldoet aan de Mandelstam-representatie. Dit kan vermeden worden
door retardatie in de potentiaal mee te nemen.
0.I. Zav'yalov, M.K. Polivanov, S.S5. Khoruzhii; Sov.Phys. JETP 18, 1135
(1964)

M.K. Polivanov, S5.5. Khoruzhii; Sov.Phys. JETP 19, 232 (1964)

v

Het gebruik van een Pu, Qu combinatie (nodig bij de Sachs-vormfactoren) voor

"
uv
combinatie (bij de Pauli-Dirac-vormfactoren) zal in het waterstofatoom leiden

de electromagnetische stroom van het proton, in plaats van een Yu’ g

tot ontoelaatbare afwijkingen in de Lamb-shift.



v
De niet-lokale termen van de Coulombwisselwerking moeten bij de berekening van
ladingssymmetriebrekende effecten in het nucleon-nucleon-systeem worden meege-
nomen. Ze geven een bijdrage 1in grootte vergelijkbaar met reeds bekende
effecten, zoals 7T-n en p-w menging.

E.M. Henley, T.E. Kelther; Nucl.Phys. A189, 632 (1972)

vi °
>2
B1ij het gebruik van EE-potentlalen in verstrooilngsproblemen moet men erop
r

verdacht z1ijn dat een deel van de door deze term veroorzaakte faseverschuiving

niet waarneembaar is.

VII
De constatering van Simonov, dat het verschil in grootte tussen de effectieve
drachten in de 1SO— en 3Sl-golven voor nucleon-nucleon-verstrooilng voorname-

li1jk veroorzaakt wordt door verschillen in residuen en posities van P-matrix-

polen, 1s onjuist.

Yu.A. Simonov; Phys.Lett. 1078, 1 (1981)

VIII
Thomson-verstrooling aan een nucleon schijnt aan te tonen dat tussentoestanden
met negatieve energie 1in nucleon-nucleon-verstrooiing niet onderdrukt zijn.
In dit argument wordt voorbijgegaan aan het feit dat het nucleon een samen-
gesteld deeltje i1s waarin Thomson-verstrooiing veroorzaakt kan worden door

creatie van een quark-antiquark-paar i1n de tussentoestand.



IX
"Computing" neemt een zeer belangrijke plaats in binnen het onderzoek ain de
fysica. Het verdient daarom aanbeveling om een fysicus-informaticus aan te
stellen om de fysicli op dit terrein te ondersteunen, zowel in het onderwijs

als 1n het onderzoek.

X
De bedrijfsgezondheidszorg voor de lagere overheird voldoet nog steeds niet
aan de wettelijke eisen zoals die gesteld worden aan de bedrijfsgezondheids-—
zorg 1n het bedrijfsleven. Dit 1s een van de voorbeelden waarin het spreek-

woord "Verbeter de wereld, begin bij Uzelf" op de overheid van toepassing 1is.

XI
Een adequate gezondheidszorg i1s alleen te verwezenlijken als iedereen bereid
1s om, zoveel als in zijn vermogen ligt, zelf kennis te vergaren omtrent en
verantwoordelijkheid te dragen voor zijn eigen gezondheid. Het 1s onjuist om
dit over te laten aan de behandelende artsen.

Het begrip "behandelend arts" moet meer worden "adviserend arts".

G.J.M. Austen

18 maart 1982












