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C H A P T E R I 

GENERAL INTRODUCTION AND SUMMARY 

In the study of molecular gases, liquids and solids knowledge of 

the intermolecular potentials is basic. These intermolecular potentials 

are a function of the distance between the molecules involved and the 

orientation of these molecules with respect to each other. 

In the past, potentials were exclusively obtained from experiment, 

by assuming a model potential, e.g. of the Lennard-Jones or Buckingham 

(atom-atom) type, with a limited number of parameters, chosen such that 

the experimental data was well reproduced. This data was obtained from 

experiments such as molecular beam scattering, molecular beam spectros­

copy, collision induced IR absorption, pressure induced line broadening 

and from bulk properties (virial coefficients, transport properties). 

In several cases, however, this approach produced potentials which, 

whilts describing some experimental data quite well, did not reproduce 

experiments not included in the fitting. This could be due to either 

an inaccurate representation of the potential, the experiment may be 

sensitive to a different region of the potential than the measurements 

used in the fit, or to some deficiencies, in the models used for the 

experimental interpretation. In order to solve this problem, one must 

find other sources to obtain more information about the potential. 

Nowadays, it is possible to obtain fairly accurate intermolecular 

potentials, by approximately solving the Schrödinger equation, applying 

so called ab initio quantum mechanical methods. This is not only due 

to theoretical improvements in the quantum chemical methods, but also 

to the increased power of modern computers. Still, rather small sys­

tems such as Nj-N- and C-H.-CjH. are on the border of computational 

possibilities. 

In this thesis the Schrödinger equation is solved in the Born-

Oppenheimer approximation: i.e. the electronic equation is solved for 

a fixed nuclear geometry; varying the nuclear geometry yields the 

intermolecular potential. Model potential parameters can then be ob­

tained by fitting a model potential of the atom-atom type to the 

results of ab initio calculations for a number of orientations and 

distances (for nitrogen and ethene in chapters II and V respectively). 

Next, these model potentials can be used, for example, in lattice 

dynamics calculations on molecular solids for comparison with experi­

mental data (chapters IV, V and VI). 

These (atom-atom) model potentials have the disadvantage that 
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they are difficult to improve systematically. Another analytical re­

presentation of the intermolecular potential, the so called spherical 

expansion, does not have this drawback. The potential is expanded in 

angular functions, depending on the orientations of the molecules; the 

expansion coefficients depend only on the intermolecular distance. 

These (Fourier) coefficients can be expressed as angular integrals 

over the intermolecular potential multiplied by angular functions and 

calculated by numerical integration techniques (Gauss type quadratures) 

(for the Nj-dimer in chapter II and III). 

The ab initio calculations are very expensive, even for rather 

small systems (for the (N-Jj potential: 3 hours on IBM 370/158 for each 

geometry). Evaluation of cheaper, but still accurate methods is impor­

tant for obtaining intermolecular potentials for larger systems. One 

of these methods, the so called Gordon-Kim method, based on the ex­

pressions in the electron-gas theory of atoms and molecules, is tested 

on the nitrogen dimer (chapter III). 

In a number of phenomena, not only is the intermolecular potential 

important, but also the effect of molecular collisions on other proper­

ties. For example, in the interpretation of collision induced IR ab­

sorption spectra (CIA) of dense gases, a knowledge of the dipole moment 

is required. This dipole occurs whenever two or more unlike or more 

than two like atoms are interacting. Just as the intermolecular poten­

tial, it is a function of the intermolecular distance and the orienta­

tions of the molecules. To calculate this interaction dipole accurately 

is even more difficult than the evaluation of the intermolecular poten­

tial and, so, only small systems can be considered. In chapter VII the 

interaction dipole for the HeH_ system is calculated. The collision 

induced IR absorption in this system is believed to be responsable 

for the greenhouse effect on the heavy planets, which have an atmos­

phere containing mainly helium and hydrogen. 

For large separations the intermolecular potential can be approxi­

mated by the multipole expansion. The terms in this expansion depend 

only on the properties of the molecules involved: permanent and transi­

tion multipole moments and polarizabilities. In other words, one can 

reduce the problem of calculating the potential in the long range re­

gion to the determination of the separate monomer properties. The cal­

culation of these properties is mostly done at the Hartree-Fock (in­

dependent particle) level of accuracy. In some cases, the results are 

not sufficiently accurate, however, to obtain reliable intermolecular 
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potentials and more sophisticated methods are necessary. 

One of these methods for obtaining the effects of electron correla­

tion is the Configuration Interaction (CI) method. The wavefunction is 

written in terms of (spin adapted) configuration functions and the 

variational solutions of the Schrödinger equation are obtained by dia-

gonalization of the Hamiltonian matrix. For larger molecules the method 

becomes rather complicated. For example, not all of the spin-symmetry 

coefficients, necessary for the construction of the Hamiltonian matrix 

from the molecular integrals, can simultaneously be kept in the main 

storage of the computer; neither can the molecular integrals. Further­

more, the complete Η-matrix does not fit into main storage during its 

construction and diagonalization and obtaining all eigenvalues and 

eigenvectors becomes impossible. This implies that special techniques 

are necessary to avoid severe computational problems. In chapter VIII 

a computer program is described, which has been developed for large 

scale CI calculations. 

As an application of the CI method, the hyperpolarizabilities of 

hydrogen are calculated as a function of the internuclear distance 

(in chapter IX). The calculation is performed at the "full CI" level 

(i.e. including all singlet configurations which can be constructed 

within the given orbital basis). Because the hyperpolarizabilities 

are highly sensitive to the quality of the basis set, large bases are 

needed and, even for this two electron system, the full CI calculation 

is not an easy job. 

For many-electron systems full CI becomes impractical: The expan­

sion of the wavefunction has to be shortened. This can be accomplished 

either by using a better molecular orbital basis (natural orbitals) or 

by truncating the configuration space, or both. There are, of course, 

several methods of doing this, each with advantages and drawbacks. In 

chapter X two are investigated: The Iterative Natural Orbital (INO) 

method with a configuration space containing all single and double ex­

citations from the Hartree-Fock ground state and INO with a "first-

order" wavefunction (containing all single excitations from a full 

CI space, which is generated by the valence orbitals). Tests are 

performed on the Be atom, where the electron correlation effects 

on the polarizability are relatively large. Next the methods are 

used to calculate the polarizability of the CN ion. 
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For more details about the problems treated and the results ob­

tained, the reader is referred to the individual chapters, which have 

their own abstracts, introductions and conclusions. 
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C H A P T E R I I 

Np-N interaction potential from ab initio calculations, 

with application to the structure of (N-,)., 

Rut M. Berns and Ad van der Avoird 

Institute of Theoretical Chemistry 

University of Nijmegen 

Toernooiveld, Nijmegen 

The Netherlands 

Abstract 

The short range electrostatic and (first order) exchange contri­

butions to the N^-N^ interaction energy have been calculated ab ini­

tio as a function of the N_ orientations and the distance (139 geo­

metries) . Using a numerical integration procedure, the results have 

been represented analytically in the form of a spherical expansion. 

At R = 0.3 nm this expansion is accurate to better than 0.5% if we 

include the first 18 independent terms, to 2% if we truncate after 

L,=L_=4 and to 16% if we truncate after L.=L
D
=2. In combination with 

A B A b _ c : _ 7 

the long range multipole expansion results (electrostatic R ,R , 

R terms, dispersion R ,R ,R terms) calculated by Mulder et 

al., this yields an anisotropic N^-N- interaction potential in the 

region of the Van der Waals minimum, which can be fairly well re­

presented also by a site-site model. The potential is in good agree­

ment with the available experimental data for the gas phase and for 

the ordered (a and γ) crystal phases of solid N_. The structure of 

the Van der Waals molecule (N_)_ is discussed; its energy is lowest 

for the crossed structure: ΔΕ =1.5 kJ/mol, R = 0.35 nm (for the 

m m 

isotropic potential the well characteristics are: ΔΕ = 0.75 kJ/mol, 
R = 0.417 nm). The (staggered) parallel and the T-shaped structures 
m 
are slightly higher in energy. The internal N_ rotation barriers 

— 1 

vary from 0.2 kJ/mol (17 cm ) to values comparable with the disso­

ciation energy. 

Supported in part by the Netherlands Foundation for Chemical 

Research (SON) with financial aid from the Netherlands Organiza­

tion for the Advancement of Pure Research (ZWO) 
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К Introduction 

Knowledge of the intermolecular interaction potential is basic 

for understanding the properties of molecular gases, liquids and 

solids. In principle, this interaction potential can be derived from 

experimental sources. In practice one has to introduce model poten­

tials with a limited number of parameters and then to fit these para­

meters to the experimental data. For nitrogen much work has been done 

in this direction (see [1,2]) using gas phase data (vinal coeffi­

cients, viscosity data) as well as solid state properties (from X-

ray diffraction, IR, Raman and nuclear resonance spectroscopy, neu­

tron scattering). Model potentials which have been used [1,2] are 

molecular ones, isotropic or elliptical,and atom-atom potentials, 

with distance dependent functions mostly of the Lennard-Jones (12-6) 

or Buckingham (exp-6) type. Sometimes, these have been supplemented 

with the electrostatic quadrupole-quadrupole interaction [2]. In 

spite of all these efforts, there is still no N -N interaction po­

tential available at present that is universal,in the sense that 

it fits all the different experimental data. Especially, the aniso-

tropy of the potential, its dependence on the relative N^-N- orien­

tations, has not been established unequivocally. 

Another way to determine the N^-N- interaction potential is by 

ab initio calculations. Such calculations, which yield the anisotrop­

ic interactions, have been performed by Mulder et al. [3] in the long 

range region where the interaction potential can be expanded as a 

multipole series, i.e. in powers of the distance R. Here, we report 

results for shorter distances, including the physically important 

region around the Van der Waals minimum. These have been obtained 

from ab initio calculations which avoid the multipole expansion of 

the interaction operator and which take the intermolecular exchange 

into account (in first order). The results are given for a set of 

intermolecular distances and molecular orientations, but, also, we 

present two analytical representations of the interaction potential. 

The first one is a spherical expansion in terms of the angles de­

scribing the molecular orientations. Such an expansion is obtained 

directly in the long range if one substitutes a spherical multipole 

expansion into the Rayleigh-Schrödinger perturbation expressions 

for the interaction energy [4,5]; in the short range a fitting or 
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numerical integration procedure is required,which we describe. Also, 

we discuss the convergence of this spherical expansion. The second 

approximate representation of the ab initio results is in the form 

of an atom-atom potential. 

2̂ . Ab initio calculations and results 

The interaction energy between two N^ molecules A and В has 

been calculated in a general space fixed coordinate system as a 

function of the orientations, described by the polar coordinates 

ω. = (Θ
Α
'Φ

Α
) an<ä ω_ = (θ

η
,φ ), and the distance vector R = (Κ,Ω) = 

(Κ,Ο,Φ). In order to simplify the calculations, we have chosen a 

special frame with the z-axis along R (0=Φ=0) and molecule В in 

the xz plane (Ф
в
=0), and we have varied only the "internal" coordi­

nates, Κ,θ.,θ-,φ . The energy has been calculated up to second or­

der in perturbation theory. 

a. The first order interaction energy, including exchange, is 

defined as: 

лтт^
1
)/ D\ / ι , Α , Β , „AB ι A B, ΔΕ (ω

Α
#ω

Β
,Η) = (Α Ψ

0
 Ψ

0
|Η \A ψ

0
 Φ

0
> 

- <Ψ>Α |Ψ£> - < Ψ > Β Ι Ψ ? (1) 

Α Β 
The nitrogen monomer wave functions ψ. and ψ- have been taken 

as ground state Hartree-Fock MO-LCAO functions (Slater determi­

nants) . The N-N distance was fixed at the experimental value of 

AR A В 

0.10 9 4 nm [6] . The operators Η , Η and Η are the dimer and 

monomer hamiltonians, respectively; A is the normalized anti-

symmetrizer of the dimer. For the expansion of the MO's the АО 

basis set D of Mulder et al. [3], including two d-type polari­

zation functions, has been used. This large basis is necessary 

in order to obtain reliable molecular multipole moments [ 3] . 

This first order energy ΔΕ can be separated into an electro­

static component, ΔΕ
1
?·' , defined by (1) with the operator A 

replaced by the identity, and an exchange component defined as: 

Δ Ε
(ΐ) =

 Δ Ε
(ΐ) _

 Δ Ε
(ΐ) 

exch. elee. 
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For large intermolecular distances one can approximate ΔΕ . 

by a power series in R by substituting the multipole expansion 

.c .̂L. • i. ^ · j. w
A B
 „ A B „ A

 T T
B for the interaction operator V =H -H -H : 

A E
W t . =

 Σ C
n^A^B'^

 R
"

n 

η 

with n=5
f
7,9

/
etc. Actually»this expansion is an asymptotic 

series. The deviation Δ Ε
( 1 )

 = ΔΕ , - Δ Ε
( 1

^ is due to the 

pen. elee. mult. 

penetration between the charge clouds of the two nitrogen mole­

cules, which increases exponentially with decreasing distance. 

The second order interaction energy, without exchange, is 

defined as: 

, , .A . Β ι,,AB ι ,A ,B
S
 ι 2 

«,ь+о,о 4-VEo E
b 

The second order exchange energy has been neglected as it is 

rather small in the region around the Van der Waals minimum 

for those cases where it has been evaluated [7]. The excited 
A В 

monomer wave functions, ψ and ψ, , are constructed by exciting 

one electron to a virtual ground state Hartree-Fock MO; the 

energy differences in the denominator are replaced by orbital 

energy differences. This choice is sometimes called the un­

coupled Hartree-Fock perturbation method [ 8 ] . The same method 

and some other perturbation methods have been applied to the 

long range Ν,-Ν. interaction energy by Mulder et al. [3], who 

also discussed the quantitative defects of these methods. The 

second order energy can be separated into an induction and a 

dispersion part: 

Δ
Ε

( 2 )
 = Ζ 

a ,b+0,0 

= Σ ...+ Σ ...+ Σ ... 

a=)=0 a=0 a+0 

b=0 b+O Ь=|=0 

= ΔΕ.'
2
' я + ΔΕ.«

2
'

 в
 +

 U
EJ

2
> = ΔΕ.

(2
) + ΔΕ<

2
> 

ind.A ind.B disp. ind. disp. 



For large intermolecular distances one can again substitute the 

multipole expansion for V and obtain the series: 

ΔΕ"·
2
' = Σ С (ω,,ω,,,Ω) κ"

η 

mult. η —Α — Б — 
η 

with η=6,8,10,etc. The charge penetration effect is defined by 

the difference: 

ΔΕ
( 2 )
 = ΔΕ

(2
> - ΔΕ

(2
> 

pen. mult. 

For the calculation of the second order energy the MO's have 

been expanded in the basis G' of Mulder et al. [3] which con­

tains d and f type atomic polarization functions. The addition 

of f functions to the first order basis D, but, also, a some­

what different optimization of the orbital exponents,is neces­

sary in order to ensure approximate completeness of the excited 
A В 

state wave functions, ψ and ψ, [3,9] . 

The first order interaction energy and its components have been 

calculated, in first instance, for 6 orientations and several dis­

tances of the N_ molecules in the dimer (34 different geometries). 

The results are listed in table 1 and plotted for two parallel N-

molecules as a function of distance in fig. 1. From these results 

we observe that the first order penetration and exchange effects 

are quite important already at the Van der Waals minimum. (This mi­

nimum lies at R = 0.413 nm for the isotropic potential, see below, 

and at R = 0.36 nm for the parallel dimer, see fig. 1). This conclu­

sion agrees with the penetration effect calculations by Ng et al. 

[10] . 

The second order interaction energy has been calculated for 10 

geometries only, see table 2 and fig. 1. We have found, ]ust as Mul­

der et al. [ 3] , that the induction energy can be neglected with res­

pect to the dispersion energy. The second order penetration energy 

is much smaller than the corresponding first order contribution. 

Therefore, the second order energy can be well represented by the 
(2 ) 

dispersion multipole series, ΔΕ ' disn ·
 M u l d e r e t a 1

· [3] have 

pointed out, however, that the dispersion multipole coefficients 

obtained by the uncoupled Hartree-Fock perturbation method (but al-
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Table 1 : First order interaction energy contributions 

g e o m e t r y a ' 

V e B ' * A 
R[ nm] 

9 0 Ο , 9 0 Ο , 0 Ο 

0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

9 0 ° , 9 0 ° , 9 0 ° 
0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

4 5 Ο , 4 5 Ο , 0 ° 
0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

4 5 ° , 1 3 5 ° , 0 ° 
0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

0 ° , 0 Ο , 0 ° 
0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 
0 . 4 6 3 
0 . 4 8 9 
0 . 5 1 6 
0 . 5 4 2 

0 Ο , 9 0 Ο , 0 Ο 

0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

Δ Ε ( 1 ) Ъ1 

[ k J m o l " 1 ] 

3 . 9 9 1 
1 . 5 6 2 
0 . 6 4 0 
0 . 2 9 1 
0 . 1 5 4 

3 . 5 1 9 
1 . 3 3 1 
0 . 5 0 5 
0 . 2 0 1 
0 . 0 8 9 

1 5 . 6 1 9 
5 . 7 5 3 
1 . 9 7 5 
0 . 5 8 8 
0 . 1 0 9 

2 7 . 1 8 7 
1 0 . 4 4 0 

4 . 0 4 5 
1 . 6 2 5 
0 . 7 0 6 

1 0 4 . 5 8 9 
4 3 . 9 2 5 
1 5 . 9 5 9 

6 . 2 9 9 
2 . 5 8 6 
1 . 1 5 2 
0 . 5 8 2 
0 . 3 4 0 
0 . 2 2 4 

1 7 . 5 1 5 
6 . 3 4 5 
2 . 1 3 3 
0 . 6 1 3 
0 . 0 9 9 

Д Е ( 1 )

Ь ^ 
e x c h . 

[ k J m o l - 1 ] 

4 . 4 8 1 
1 . 5 6 4 
0 . 5 3 1 
0 . 1 7 6 
0 . 0 5 6 

4 . 1 5 4 
1 . 4 6 1 
0 . 4 9 9 
0 . 1 6 6 
0 . 0 5 4 

2 1 . 6 8 9 
7 . 9 8 5 
2 . 8 5 5 
0 . 9 9 2 
0 . 3 3 5 

3 5 . 1 3 2 
1 2 . 5 0 8 

4 . 3 4 0 
1 . 4 6 9 
0 . 4 8 4 

1 4 2 . 6 3 0 
5 5 . 6 2 9 
1 8 . 8 8 2 

6 . 6 0 0 
2 . 2 4 9 

2 4 . 1 1 3 
8 . 7 1 8 
3 . 0 6 7 
1 . 0 5 0 
0 . 3 4 9 

Δ Ε ' 1 ' Ъ> 
e l e e . 

[ k J m o l " 1 ] 

- 0 . 4 9 0 
- 0 . 0 0 2 

0 . 1 0 9 
0 . 1 1 5 
0 . 0 9 8 

- 0 . 6 3 5 
- 0 . 1 3 0 

0 . 0 0 6 
0 . 0 3 5 
0 . 0 3 5 

- 6 . 0 7 0 
- 2 . 2 3 2 
- 0 . 8 8 0 
- 0 . 4 0 4 
- 0 . 2 2 6 

- 7 . 9 4 5 
- 2 . 0 6 8 
- 0 . 2 9 5 

0 . 1 5 6 
0 . 2 2 2 

- 3 8 . 0 4 1 
- 1 1 . 7 0 4 

- 2 . 9 2 3 
- 0 . 3 0 1 

0 . 3 3 7 

- 6 . 5 9 8 
- 2 . 3 7 3 
- 0 . 9 3 4 
- 0 . 4 3 7 
- 0 . 2 5 0 

Δ Ε ( 1 ) ο ) 
A E m u l t . 

[ k J m o l " 1 ] 

0 . 3 7 5 
0 . 2 5 9 
0 . 1 8 7 
0 . 1 3 9 
0 . 1 0 5 

0 . 1 3 4 
0 . 0 9 6 
0 . 0 7 1 
0 . 0 5 3 
0 . 0 4 0 

- 0 . 6 4 9 
- 0 . 4 6 7 
- 0 . 3 3 7 
- 0 . 2 4 6 
- 0 . 1 8 2 

1 . 3 9 1 
0 . 8 8 9 
0 . 5 9 3 
0 . 4 0 9 
0 . 2 9 1 

4 . 1 7 7 
2 . 5 2 5 
1 . 6 0 1 
1 . 0 5 7 
0 . 7 2 1 

- 0 . 7 4 7 
- 0 . 5 3 3 
- 0 . 3 8 4 
- 0 . 2 8 0 
- 0 . 2 0 8 
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table 1 continued 

a) Coordinate system described in text; data for 105 additional orien­

tations have been calculated at R = 0.3 nm (see table 4) 

b) Monomer MO's and integrals calculated with the ATMOL3 program. 

We thank dr. M.F. Guest, Daresbury Laboratory, UK, for making 

tnis program available to us and mr. J. van Lierop for assis­

tance with the implementation. Interaction energies evaluated 

with the program COULEX written by P.E.S. Wormer, Nijmegen. 

GTO basis set 9s, 5p, 2d contracted to 4s, 3p, 2d. (basis D 

of ref. [3]) 

c) Obtained from the multipole moments of ref. [3], calculated in 

the same basis D 

11 



ΔΕ (к J/mol) 

Fig. 1. Different contributions (as defined in the text) to the 

interaction energy between two parallel N- molecules; 

ab initio results, see tables 1 and 2. 

12 



so by other perturbation methods starting from Hartree-Fock monomer 

wave functions) are rather inaccurate for N
?
-N-. Using accurate semi-

empincal data for C, and for the dipole polanzability (from dipole 

oscillator strength distributions) in combination with their ab ini­

tio results, they have made better estimates for the higher multi-

pole coefficients С
д
 and C.- and the corresponding anisotropy fac­

tors. From here on, we shall use the latter results ( [ 3] , table 6) 

in order to represent the second order N
7
~Np interaction energy. 

The total, first plus second order, interaction energies have 

been plotted in fig. 2. 

3_. Analytical representation of the interaction potential 

a. Spherical expansion 

The dependence of the (anisotropic) interaction potential be­

tween two molecules A and В on the orientations of these molecules 

can be explicitly expressed in the form of a spherical expansion 

[11-13]. For two identical homonuclear diatomic molecules this ex­

pansion reads: 

Δ Ε ( ω , , ω η , Η ) = ( 4 π ) - , / ' Σ Σ V (R) (2 - 6Τ ) 
"А - В т , т т

 L A ' L B ' L L A ' L B 
(4π; 

, 3 / 2 

L A 

<L* 

Σ 

> L B 

L В 

Σ 
L 

even) 

h K.'VL^A'iV^ + V^^L^A^B'^] ( 3 a ) 

"Α'"Β 

with the angular functions giver by 

L A , L B , L А В м ^ ^ 
Λ Α L B L \ 

м м \ ы u »д / L. ,М, —A L^fM,, —В h г fi — ,Μ ,M \М M M/ A ' A В В 

(3b) 

The functions Y (ω) are spherical harmonic; [14] which are coupled 

with the aid of a Wigner 3-] symbol I
 M
"
 M
"
 M
 I to a scalar. I.e., 

the angular functions A
L
 r L are invariant under rotations of the 

total system [ 13] . The expansion coefficients т τ τ » which are 
І J
A'''-

,
B'•

L , 

functions of the distance only, completely determine the orienta-

tional dependence of the intermolecular interaction potential. 

13 



Table 2: Second order interaction energy contributions 

g e o m e t r y 

Θ Α ' Θ Β ' Φ Α 
R[ nm] 

9 0 ° , 9 0 O , 0 ° 
0 . 3 3 1 
0 . 3 5 7 
0 . 3 8 4 
0 . 4 1 0 
0 . 4 3 7 

9 0 ° , 9 0 ° , 9 0 ° 
0 . 3 3 1 

4 5 ο , 4 5 ο , 0 ο 

0 . 3 3 1 

4 5 ° , 1 3 5 ° , 0 ° 
0 . 3 3 1 

0 Ο , 0 ° , 0 ° 
0 . 3 3 1 

0 Ο , 9 0 ο , 0 Ο 

0 . 3 3 1 

"Sí." 
[ k J m o l " 1 ] 

- 0 . 0 7 0 
- 0 . 0 1 8 
- 0 . 0 0 7 
- 0 . 0 0 3 
- 0 . 0 0 2 

- 0 . 0 6 6 

- 1 . 4 6 2 

- 2 . 8 5 8 

- 1 7 . 9 9 6 

- 1 . 2 5 0 

Δ Ε ( 2 ) o } 

m u l t . , i n d . 

[ k J m o l " 1 ] 

- 0 . 0 1 5 
- 0 . 0 0 9 
- 0 . 0 0 5 
- 0 . 0 0 3 
- 0 . 0 0 2 

- 0 . 0 1 9 

- 0 . 0 4 2 

- 0 . 0 7 6 

- 0 . 3 1 2 

- 0 . 0 9 7 

Δ Ε < 2 ) »> 
d i s p . 

[ k J m o l " 1 ] 

- 5 . 0 4 5 
- 3 . 0 7 4 
- 1 . 9 3 1 
- 1 . 2 5 0 
- 0 . 8 3 3 

- 4 . 6 0 6 

- 1 0 . 1 6 2 

- 1 2 . 5 2 8 

- 2 4 . 8 9 9 

- 1 0 . 0 3 3 

Δ Ε ( 2 ) o ) 

m u l t . , d i s p . 

[ k J m o l " 1 ] 

- 5 . 0 4 6 
- 3 . 0 0 9 
- 1 . 8 7 7 
- 1 . 2 1 6 
- 0 . 8 1 3 

- 4 . 6 5 4 

- 1 0 . 0 9 9 

- 1 1 . 4 1 7 

- 1 9 . 3 1 4 

- 9 . 6 2 9 

a) Coordinate system defined in text 

b) Monomer MO's and integrals calculated with the IBMOL package 

written by E. Clementi and coworkers; interaction energies with 

a program written by R.M. Berns, Nijmegen, which is a modifica­

tion of the program written by T.P. Groen, Utrecht. 

GTO basis 9s, 5p, 2d, If contracted to 4s, 3p, 2d, If (basis 

G' of ref. [3]) 

c) Obtained from the multipole coefficients in table 4 of ref. [3], 

which have been calculated with the same basis G' 

14 



ДЕ(к 

0 0 

J/mol I 

-0 5 

-10 

-15 

0 35 010 \\ 01.5 

ι — 

/ / 

I 1 
9O°9CC0' 

\ 
\ 

\ 

'A 
\ \\ 
^ \ A ^ \ \\ 

^ \ Д 
^ \ Л v \ Л 4 \ λ 

\ VA/ 

055 R(nm) 

0,0,0 

— · — ab initio 

spherical 

expansion 

Fig. 2. Total interaction energy at 6 different orientations. 

"Ab initio": first order energy from table 1, second 

order energy from the dispersion multipole 

coefficients of ref. \_Ъ~\ (table 6), see 

our table 5. 

Spherical expansion see table 5. 
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For a given potential ΔΕ(ω ,ω ,R) they can be expressed as 

•3/2 

A Ö 
(4) 

VLA,LB,L
(R) = ( 4 π )

" /<%
А
/аь

в
/ап А

Ь А Г Ь В /
Ь К ' ^ В ' ^

) Л Е
К ^ В '

Й ) 

Here,we have used the orthonormality of the angular functions 

A
L

A
,L

B
,L· Since

 A

0 0 0
 = (4π) and /<ίω

Α
/άω

Β
|αΩ = (4π) it is ob­

vious that V- _
 n
(R) is just the isotropic potential. 

' ' AB 

In the long range, where the multipole expansion for V can 
be used, the first and second order interaction energies, ΔΕ I. 

,Χ) mult. 
and ΔΕ ,. , are easily obtained in the form (3). All one has to do 

mult.'
 A B 

is use an expansion of V in terms of spherical multipoles [ 4] ; in 

first order this leads directly to the result (3), in second order 

some angular momentum recoupling has to be done [4,5] . In both cases, 

the expansion coefficients V L
 L

 L'^^
 a r e

 simply powers of R then, 

multiplied by constant coefficients С
 A
'
 B
' , which contain the prop­

erties of the systems A and В (multipole moments in first order, mul­

tipole transition moments and excitation energies in second order). 

These multipole coefficients have been calculated for N.-N^ by Mulder 

et al. [3]. So, the present paper only deals with the spherical ex­

pansion of the (ab initio) calculated short range interactions, 

Δ Ε
( 1 )

 and
 A

E
( 1 )

h
 . 

pen. exch. 

At first we have tried a procedure which has been used for H^-He 

[15,16] and H--H [17]. From the interaction energy calculated for 

five different orientations (at a given distance R) we have computed 

the first five spherical expansion coefficients: V. „
 0
, V- . _, 

V_ , _, V_ , _, V_ , .. This simply involves the solution of a sys­

tem of five simultaneous linear equations. The results for the sixth 

orientation have been used as a check on the accuracy of the expan­

sion coefficients. This procedure has been repeated for different 

choices of orientations, but the results were always poor. So we 

concluded that, either the spherical expansion is far from having 

converged with these first five terms, or the applied procedure is 

not numerically stable (if the remaining terms in the expansion are 

small but not negligible), or both. In order to investigate these 

questions we have proceeded as follows. 
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Ъ. Atom-atom representation of the аЪ initio potential 

The interaction energy between the two N^ molecules has been 

approximated by an atom-atom potential: 

ΔΕ
Α Β
 = Σ Σ V 

leA jeB
 1 3 

with V being dependent only on the distance r between the atoms: 
1J ID 

V (r ) = q q r"
1
 - С r~ + A exp(-B r ) 

ID iD
 n

i D ID ID ID ID * ID ID 

The electrostatic interaction potential, which is added to the 

Buckingham (exp-6) potential,depends on the charges q , q of the 

atoms. It is obvious that this model as such cannot represent the 

electrostatic interaction between N
?
 molecules, since the atomic 

charges should be zero. Therefore, we have chosen for a generalized 

atom-atom (site-site) model with two positive and two negative 

charges (of equal magnitude) placed symmetrically on the N-N axis. 

Also the force centers of the exponential and the r site-site 

potentials have been allowed to shift (independently) along the 

N-N axes. The (three parameter) point charge model could in prin­

ciple represent the first three non-zero multipele moments of N^; 

in fact, it can do this only if they satisfy the relation: 

Q
2 0

 Q
6 0 -

 ( Q
4 0

) 2
 - f

 Q
2 0

 Q
6 0' ™hxcb d o e s n o t h o l d f o r t h e c a l

" 
culated multipole moments of N- [ 3] . We have fitted the site-site 

potential parameters to the ab initio results, calculated for six 

orientations and six distances 0.30 £ R _< 0.44 nm. The fits have 

been performed in three separate steps, just as for ethylene [18], 

in order to avoid correlation between the fit parameters. 

(i) The charges q = q = -q and the position parameters ζ and 
_
 -1 (1) 

ζ have been found by fitting Σ ζ q q r to ΔΕ ;. , cal-

_
9
 ι з

 χ
 J

 1
3 mult.' 

culated up to R terms inclusive, using the multipole mo­

ments of ref. [3], (mean deviation 6.5% for 36 points). 

(n) The parameter С = С and the positional parameter of the 
— ft — 6 

r force centers have been found by fitting Σ Σ С r to 
(2) -10 ID ^ 

ΔΕ ' , calculated up to R terms inclusive from the 
mult. 

multipole coefficients of ref. [3], table 6, (mean deviation 

6.3%, or 9.7% if the force centers were fixed on the nuclei). 
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(in) The sum of the short range contributions ΔΕ and ΔΕ , , 

^ pen. exch. 

emerging from the present ab initio calculations, has been 

fitted by the exponential site-site potential Σ ζ A exp(-B r. ). 

ι 3 i-J 

Both short range components indeed appear to behave as an ex­

ponential. This has yielded the parameters A = A^_
N
 and 

Β = &Ν_Ν (mean deviation 9.2%); the optimum positions of the 

force centers practically coincide with the nuclear positions, 

in this case. 

The results have been listed m table 3. We conclude that for N^-N. 

the generalized atom-atom (site-site) potential forms a rather good 

representation of the ab initio results (see also figs. 3 and 4). 

Especially for the short range interactions the fit is much better 

than for the ethylene case [ 18] . Possibly this is due to the effect 

of the nitrogen lone pair electrons balancing the effects of chem­

ical bonding on the charge distribution. (The fact that the inter-

molecular interaction is not an additive (isotropic) atom-atom in­

teraction is caused, of course, by the chemical bonding). Also for 

a much larger set of orientations where the N^-N^ interaction poten­

tial has been calculated ab initio (see below), the site-site poten­

tial yields a rather good description of the anisotropy (see next 

section, table 4). 

c. Spherieal expansion of the ab гпгіго potentbal by пипеггоаі 

integration 

Since the site-site potential yields a rather good description 

of the ab initio calculated N.-N. potential, we can now ase the first 

in order to obtain a reliable spherical expansion of the latter. 

First, we have made a spherical expansion of the site-site potential. 

For this known potential the expansion coefficients can be obtained 

from formula (4), by performing the angular integration. This inte­

gration can be considerably simplified: 

- using the invariance of ЛЕ and A].
 L L

 under rotations of the 

total system. This reduces the integration to the three "internal" 

angles ._,
 0
,ф- (0=Ф=ф_=0). The angular functions can be written as: 

A B A В 

LA'LB'L 4 

( L A - M A ) : < L B - M A ) 

) ( 2 L + 1 ) ( 2 L + 1 ) ] * L B Мд 

64π J MA=0 MA'U 

L / L A L B L \ MA Мд 
I ) Ρ (cose ) P A ( c o s 6 D ) COSM. 
\м_ -мй o/ ^ A L B

 в й 

I 1 I T A T \ * - * ' - ' ' Э , - ' - П / '-»voi *» ψ * 

( L A + V : ( L B + M A ) : | 4 ""A Ql A L B B A A 
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Table 3. Atom-atom potential fitted to the "ab initio" data 

Electrostatic : 

I II 

Parameters
 f i t f o r 0

_зз<
к
<

0 > 4 4 nm f l t f o r
 o.30<R<0.44 nm 

charges
0
-' q=q

+
=-q- 0.373 еЪ)

 0.379 eb) 
positions

0
-' z

 +
 ,z_ [ nm] ±0.0847,^0.1044 ±0 .0848, ±0 . 1041 

Short range A [ кJ mol ] 770000 559000 
repulsion: В [nm

-1
] 40.37 39.49 

(exchange + 
penetration) 
(exchange + force centers

0
·
1
 z

S R
 I nm] ±0.0547 ±0.0547 

Dispersion: С [ kJ mol"
1
 nm

6
] 0.001511(0.001407)

d) 

force centers z
D
 [nm] ±0.0471 

aj Molecular multipole moments calculated with this point charge model 

Q
2 ( 0

 = -4.449 

ab initio [3]: 

Q_
 n
 = -4.449 10

 4 0
C m

2
, Q.

 n
 = -8.046 10

 6 0
C m

4
, Q,

 n
 = -11.063 10"

80
C m

6 

¿ ι U 4 , U о , U 

Q
2 0
 = -4.487 10

 4 0
C m

2
, Q

4 0
 = "9.233 10"

60
C m

2
, Q

6 0
 = "6.129 10

 8 0
C m

6 

b) e = 1.602 Ю
- 1 9

 С 

о) Optimized force centers z
q R
 = ±0.0554 nm practically coincide with the nuclear positions 

z
N
 = ±0.0547 nm 

d) In parentheses: optimized parameter С if the force centers are fixed on the nuclei, 

z
D
 = ±0.0547 nm 



O W 90°90°ϋ° 9Ü°90°9Q° 
l·- οΤοΐ' 

3. Orientational dependence of different long range (multipole) 

and short range (penetration plus exchange) contributions 

to the interaction energy, at R = 0.4 nm. 

Spherical expansion, see table 5. 

Atom-atom potential I of table 3. 



Δ Emm 

(к J/mol) 

-0.5 -

-2.0 -
- 0.35 

Fig. 4. Orientational dependence of the Van der Waals minimum. 

The well depth ЛЕ . and equilibrium distance R . 

m m . m m . 

have been obtained by varying R for each orientation 

д,
 в
,ф . "Ab initio", spherical expansion and atom-

atom potentials defined as in figs. 2 and 3. 



M 
where the P

T
 are associated Legendre functions [14]. 
Li 

- using the symmetry properties of the system. This reduces the in­

tegration intervals. 

Since the angular functions depend only on cos6,
r
 cos6

B
 and созф

д 

(the function cos Μ φ can easily be expanded as a function of 

созф ) and the volume element is d(соз )d(cos6
n
)αφ one can sub­

stitute η = cos9 , η = соз and ζ = созф and obtain the inte­

gral : 

k 1 1 1 у -* 
V
L L L

( R ) = 87T
 ^

d n
A^

d r l
B ^dÇA ^ - Ч » L

A'
L
B'

I j
 0

 A
0
 B

 -1
 A A 

A
L ,L »L^A^B^A^

 A E
(

a r c c o s
 Π

Α
# arceos n

B
, arceos ζ-,Κ) 

This integral is very suitable for numerical integration. The 

best method for our purpose (which is to apply it to ab initio re­

sults) is one of the Gaussian integration techniques, since these 

give the highest accuracy with the smallest number of integration 

points [19]. For Legendre functions it is best to choose the Gauss-

Legendre modification. (Parker et al. [20] have used this technique 

in a one-dimensional integration required to obtain the Ar-СО poten­

tial.) We have used the formula's 25.4.30 and 25.4.38 of ref. [21]. 

Since we only have to find the spherical expansion of the short 

range contributions ΔΕ and ΔΕ , (see section 3a), we have 4
 pen. exch. 

applied this integration method to the exponential part of the 

site-site potential, section 3b, term (in). Some experimentation 

with the grid and with the expansion length has led to the conclu­

sions that: 

- the first 18 terms in the spherical expansion are necessary to 

represent the short range potential to an accuracy better than 

one percent in each point. 

- the required number of integration points for (n. » n,, r ζ. ) is 

(6,6,5) . 

Next we have performed ab initio calculations of ΔΕ (for­

mula (1)) at these grid points [21]. (Using the full symmetry their 

number can be further reduced from 180 to 105.) The intermolecular 

distance for which we have chosen to do this is R = 0.3 nm, since 

this distance is relevant both for beam scattering experiments and 

for solid state properties [2]. The expansion coefficients which 
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result from the numerical integration of the ab initio points are 

given in table 4. 
SR We observe that the short range coefficients V
T T T

 indeed 
і>д,ьв

г
іі 

decrease with increasing L. and L ; the expansion is convergent. 

Most of the terms with L ,L =4,4 and 6,2 are less than one percent 
SR 

of the isotropic coefficient V
 n

. For fixed L
b
,L the coeffi-

cients increase with increasing L. The 18 term expansion deviates 

less than 0.5% from the ab initio results; truncation of the series 

after ІІД/ІІ = 4,4 leads to an error of 2%; truncation after L„, L_ = 
A B A B 

2,2 to 16% error. 

If one wants to determine the distance dependence of the expan-
SR 

Sion coefficients
 ь L

 L (
R
) this procedure should be repeated for 

a set of distances R. The ab initio calculations are rather expen­

sive, however, (about 3 hours of IBM 370/158 CPU time per point) and 

so we have instead used a different, more approximate method. We 
SR 

have assumed that all expansion coefficients
 v
L

a
,L

n
,L of the short 

range energy have the same exponential distance dependence: 

VÇ,LB,L
(R> =^,L B,L

( R ) = С.І,
В
,І.

(
 explA-B^R-R^-B^R-R^

2
] 

with R- = 0.3 nm. The parameters A, B, and B. have been optimized by 

fitting the spherically expanded ΔΕ'
1
' with the coefficients given 

'•••'SR Í1 \ ( 1 ^ Ь
У
 V
T A Tr. τ (

R
) to the ab initio values of ΔΕ * ' + ΔΕ

v
 ' calcula-^А»-Ьв#ь> pen. exch. 

ted for six orientations and six distances 0.3 £ R <_ 0.44 nm. The 

accuracy of the fit is 7%; the results (see table 5), in combina­

tion with the long range results [3], yield a fairly good represen­

tation of the ab initio calculations for the N^-N interaction po­

tential (see figs. 2 and 4). 

£. Applications of the N^-Ng interaction potential; 

comparison with experimental data 

a. Isotropic potential 

Our calculated isotropic ^„-П- potential, V
 n

 -(R), can be 

compared with some empirical isotropic potentials from gas phase 

vinal coefficients, viscosity data and from solid state properties 

[22]. Since the latter have only been determined in the simplified 
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Table 4. Spherical expansion coefficients (formula 4) of the 

short range (penetration and exchange) interaction 

energy 

Ь
Л
,Ь ,L vf

R

 T T
 [kJ mol

 1
] at R = 0.3 nm 

А В L
A
,L

B
,L 

0 , 0 , 0 

2 , 0 , 2 

2 , 2 , 0 
2 , 2 , 2 
2 , 2 , 4 

4 , 0 , 4 

4 , 2 , 2 
4 , 2 , 4 
4 , 2 , 6 

4 , 4 , 0 
4 , 4 , 2 
4 , 4 , 4 
4 , 4 , 6 
4 , 4 , 8 

6 , 0 , 6 

6 , 2 , 4 
6 , 2 , 6 
6 , 2 , 8 

a b i n i t i o 

4 4 . 2 5 8 

2 3 . 8 7 1 

2 . 9 4 7 
- 4 . 7 3 4 
1 3 . 1 5 4 

4 . 3 0 9 

0 . 3 1 4 
- 0 . 7 3 2 

3 . 1 5 1 

0 . 0 0 5 
- 0 . 0 0 6 

0 . 0 2 6 
- 0 . 1 3 1 

1 . 0 3 5 

0 . 3 8 9 

0 . 0 1 1 
- 0 . 0 5 7 

0 . 3 9 9 

a t o m - a t o m 

4 9 . 7 6 9 

2 6 . 9 3 6 

3 . 6 7 4 
- 5 . 7 9 4 
1 4 . 6 6 7 

3 . 5 5 1 

0 . 3 8 0 
- 0 . 7 0 1 

2 . 5 2 0 

0 . 0 1 0 
- 0 . 0 1 5 

0 . 0 3 3 
- 0 . 1 0 7 

0 . 5 7 3 

0 . 2 6 4 

0 . 0 1 8 
- 0 . 0 4 9 

0 . 2 5 0 

a) Calculated by numerical integration from the ab initio 

data for a grid of 180 (105 independent) orientations 

(АО basis, see table 1) 

b) Same as a), for the repulsive part of the atom-atom 

potential II (table 3, exponential term) 
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T a b l e 5 . S p h e r i c a l e x p a n s i o n of t h e c o m p l e t e i n t e r a c t i o n p o t e n t i a l 

( f o r m u l a 3) 

Vr T T (R) = v 2 R

 T T ( 0 . 3 ) e x p { - 0 . 0 0 1 5 3 - 3 5 . 6 ( R - 0 . 3 1 - 2 0 . 5 ( R - 0 . 3 ) 2 } 
L A ' L B ' L ЬА'ЬВ' 

+ C

L A ' L B ' L

R - ( L A + L B + 1 )

 + r

L A ' L B ' L

 R - 6 
L A + L B + 1 С б 

+ C 3 A ' L B ' L R - 8

 + C ^ ' L B ' L R - 1 0 

R m nm; 

vf R , . ( 0 . 3 ) from t a b l e 4 , ab i n i t i o 
L A ' L B ' L 

L o n g r a n g e ( m u l t i p o l e ) c o e f f i c i e n t s 

E l e c t r o s t a t i c D i s p e r s i o n 

a) 

L
A '

L
B '

L

 C

L
A '

L
B '

L

 r

L
A '

L
B '

L

 r

L
A '

L
B '

L 

L
A '

L
B '

L C
L

a
+L

n
+l ^6

 C
8
 C

10 
L +L +1 

[ кJ mol nm ] [ кJ mol nm ] [ kJ mol nm ] [ кJ mol nm ] 

-4.231 10~
3
 -2.946 10~

4
 -2.239 io""' 

-1.815 1 0
- 4
 -5.277 1 0

_ 5
 -5.974 10"

6 

-3.638 10~
5
 -4.932 1 0

_ 6
 -1.219 1 0

_ 6 

-4.505 10"
6
 1.026 1 0 ^ 3.692 10~

7 

-3.764 10"
6
 -6.098 10

 7
 -2.256 10"

7 

0 , 0 , 0 

2 , 0 , 2 

2 , 2 , 4 
2 , 2 , 2 
2 , 2 , 0 

4 , 2 , 6 

4 , 4 , 8 

6 , 2 , 8 

-

-

1.849 
-
-

7 . 6 5 5 

6 . 0 7 8 

8 . 4 6 5 

i o " 3 

i o " 5 

1 0 " 6 

i o " 7 

L
A '

L
B '

L 

a) Note that the long range multipole coefficients С defined in 
LA,L

n
,M

 n 

this paper are different from the С of ref. [3]; the two 

definitions are, of course, related by a simple linear transformation 
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forms of Lennard-Jones (12-6) or Buckingham (exp-6) potentials we 

shall not compare the shape of the potentials but only their main 

characteristics: the scattering diameter (σ), the equilibrium dis­

tance (R ) and the well depth (ΔΕ ). The results listed in table 6 

m m 

show that the agreement is good,so that we expect our calculated 

potential to explain quantitatively the experimental bulk data (at 

least those which have been used to determine the empirical poten­

tial parameters). 

b. tl„ crystal properties 

Our site-site potential fitted to the ab initio data (section 

3b) has been used to calculate the equilibrium structure and the 

cohesion energy of the ordered (a and γ) phases of solid N
9
. The 

results, unit cell dimension a = 0.561 nm for the cubic a-phase, 

cohesion energy 6.43 kj/mol (corrected for the zero-point lattice 

vibrations), and a = 0.403 nm, с = 0.500 nm for the tetragonal γ-

phase, are in good agreement with the experimental data [1,2], a = 

0.564 nm, heat of sublimation (at 0
ο
κ) 6.92 kJ/mol for α-N-, 

a = 0.396 nm, с = 0.510 nm for γ-Ν-. Also the phonon frequencies 

at various wave vectors, obtained from harmonic or self-consistent 

pnonon lattice dynamics calculations using our non-empirical site-

site potential, agree nicely with the experimental data. Further 

details will appear in a forthcoming paper [ 23] , which is concerned 

with the properties of solid N
2
 in the α and γ phases and their 

temperature and pressure dependence. 

c. Stability and structure of (Ν„)„ 

In the gas phase at 77 К stable N
2
 dimers, so-called Van der 

Waals molecules, have been observed and their infrared spectrum 

has been measured [ 24] . In spite of this knowledge of the spectrum, 

the structure of this N
2
 dimer has not been established. Mainly on 

the basis of favourable quadrupole-quadrupole interactions a 

T-shaped equilibrium structure (Θ =90°, 0 =φ
Λ
=0

ο
) has been proposed 

А В A 

[24]. Addition of the higher multipole interactions plus the aniso­

tropic dispersion interactions from ab initio calculations gives 

further support for the stability of this T-shaped complex, but al­

so suggests another possible structure of equal stability, the 

staggered parallel one (0 =Θ
Β
=45

0
, φ =0°) [ 3] . A more approximate 

model including the short range repulsion [ 25] predicts a T-shaped 
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Table 6. Characteristics of the isotropic potential 

σ [ nm] R [ nm] ΔΕ [kJ mol ] 
m m 

Calculated V
0 0

(R) 0.376 0.417 0.748 

(table 5) 

Lennard-Jones (12-6) 0.370 0.415 0.793 

from virial coefficients 

(ref. [22], page 209) 

Lennard-Jones (12-6) 0.36Θ 0.413 0.763 

from viscosity data 

(ref. I 22] , page 209) 

Buckingham (exp-6) 0.363 0.404 0.947 

from virial coefficients 

and crystal data 

(ref. [22], page 181) 

Buckingham (exp-6) 0.362 0.401 0.844 

from viscosity data 

(ref. [22], page 181) 



or a crossed (θ=θ =φ =90 ) (Ν?), structure, but if the molecular 

shape parameters are somewhat modified the outcome is a T-shaped or 

a staggered parallel structure [26]. Beam deflection measurements 

[27], which are sensitive to the dipole moment of the molecular 

complex, have not demonstrated the existence of such a dipole on 

(NO«. Several possible (N^J^ structures must have a zero dipole, how­

ever, because of symmetry (for instance,the staggered parallel one and 

the crossed one) and for the remaining structures (such as the T-shaped) 

the interaction induced dipole may be too small to be detectable. 

With our quantitative knowledge of the anisotropic Ν -N. inter­

action potential, including both the long range and the short range 

contributions, we can make somewhat more definite remarks on the N 

dimer structure and confront these with the available experimental 

information. To this end we have studied the potential surface of 

Ш7)J a s a
 function of the "internal" angles θ ,θ and φ and the 

distance R. It is of course not possible to present the complete 

hypersurface pictorially; in figs. 2 and 4 we have shown some 

typical cuts through the surface, fig. 3 displays the angular de­

pendence of the different long range and short range contributions 

to the potential. Especially fig. 4 contains much information since 

the distance R has been varied to find the energy minimum ΔΕ of 

m m . 

(N
2
)

2
 and the equilibrium distance R for each orientation 

(θ,,θ_,φ
Λ
). In fig. 3 we observe that, indeed, the T-shaped and the 

staggered parallel structure have maximum electrostatic attraction. 

The dispersion energy is most favourable, of course, for the linear 

structure (
 д
=0 =ф =0°). For distances m the neighbourhood of the 

Van der Waals minimum the short range exchange repulsion is the 

dominant anisotropic term, however. Since it increases very steeply 

when the molecular charge clouds start to overlap (especially in the 

linear structure), it determines to a large extent the distance of 

closest approach of the molecules. If, for a given orientation,the 

long range interactions are not maximally attractive (when compared 

with other orientations, for equal distance R), but the molecules 

can approach each other closely, the Van der Waals well may still 

be relatively deep. This is, for instance, wnat happens for the 

crossed (N )
2
 structure. In general, one can observe this role of 

the short range repulsion from fig. 4, where the well depth ΔΕ 

shows a strong correlation with the equilibrium distance R 

m m . 
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Only when the short range repulsion is not very sensitive to a 

change of orientation (for instance, the rotation over φ m the 

N_ dimer with θ=θ =90 , see fig. 3) the long range interactions 

(in this case, the electrostatic ones, even though they are re­

pulsive) can still be important m determining the equilibrium 

structure. 

This crucial role of the short range interactions for the 

dimer structure (leading to closest packing) may suggest that the 

structure of nearest neighbour pairs in the molecular crystal 

forms a good indication for the equilibrium structure of the Van 

der Waals dimer. This has indeed been suggested [28]. Our 

results (see table 7) demonstrate, however, that maximum bin­

ding energy for the N- dimer does not occur for the nearest 

neighbour orientations from the crystal. And, in fact, it is not 

obvious, even if only packing considerations determine the struc­

ture, that the optimum packing m a crystal where each molecule 

is surrounded by several neighbours,must correspond with optimally 

packed dimers. The crystal neighbours should not have too unfa­

vourable pair energies,though, but the results in table 7 show 

that this is not the case. 

The absolute minimuin in our N -N^ potential surface (a com­

plete search is made using the site-site potential, a cruder one 

on the spherically expanded potential),occurs for the crossed 

structure at R = 0.35 nm and ΔΕ = 1.5 kJ/mol (see table 7). This 

minimum lies considerably closer and deeper than the minimum of 

the isotropic potential (R = 0.417 nm, ΔΕ = 0.75 kJ/mol). The 

equilibrium distance is close to the value (R = 0.37 nm) inferred 

from the infrared spectrum [24], but the T-shaped structure pro­

posed in this paper [24] has not been confirmed, due to the 

anisotropy of the short range repulsions. (Actually, our 

minimum for the T-shaped structure lies much further outwards, 

at R = 0.42 nm). The potential surface is rather flat around the 

minimum, however, the balance between the attractive and repulsive 

contributions is subtle and different possible structures are near 

in binding energy. In some directions the barriers for internal 

N
2
 rotations are rather low; for instance, for a complete rotation 

over φ in the dimer with д=
 в
=90 it is about 0.2 kJ/mol 

(17 cm
- 1
) with practically no variation of the equilibrium dis­

tance (see fig. 4). This agrees nicely with the estimate of 15 
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Table 7. (N
?
)

?
 structure and binding energy 

R [ nm] θ. θ φ
Δ
 ΔΕ [kj mol

 1
] 

Most stable 

dimer structure
0; 0.364a)(О.346Ъ),0.250°)) 90° 90° 90° 1. 35a)

 (1. i6b),1.Ъ2с)
) 

a-N, crystal 

neighbour pair 0.399 {0.404е>) 90° 35° 55° 1.05(1.05e}) 

γ-Ν_ crystal 

neighbour pair 0.379 (0 .398
е
'') 90° 42° 90° 0.94 (1.09e> ) 

a) Neglecting the energy of the nuclear motions; complete search of the potential energy 

surface has been performed with the atom-atom potential I of table 3 

b) From the spherical expansion, table 5 

о J From the ab initio first order energy (table 1) and the second order energy from the 

dispersion multipole coefficients of ref. [3] (table 6), see table 5 and fig. 2 

d) Experimental crystal structure, see ref. [ 1] , nearest neighbour pair energy ΔΕ calcu­

lated with atom-atom potential I 

e) R and ΔΕ obtained with the atom-atom potential I (table 3) for fixed N_ onen-

min. min.
 r

 2 

tations from d) 



to 30 cm from the IR spectrum [ 24] . So we expect the N molecules 

in the dimer to make rather wide angular oscillations (librations) 

or, maybe, hindered rotations (the rotational constant of free N_ 
-1 ¿ 

is 2.0 cm ). This is comparable to the situation in the plastic 

crystal phase, ß-N_. In other directions, rotations of the mole­

cules are strongly quenched; the complex must almost dissociate 

before such a rotation becomes possible (for instance, rotations 

through the linear structure, see fig. 4). Before, we can make a 

conclusive comparison with the experimental spectrum, we have to 

solve the dynamical problem for the nuclear motions, which may be 

not an easy job in this case. 

Note added 

After completion of this manuscript we have received a pre­

print by Ree and Winter [29], also containing ab initio results 

for the Np-N^ potential. These authors have concentrated on the 

short range, strongly repulsive, region of the potential. The 

smaller basis set which they have used (overestimating, for in­

stance, the N~ quadrupole moment), in combination with the super-

molecule SCF method (leading to some basis set superposition 

error), is less adequate for the long range and for the region 

of the Van der Waals minimum, which we have concentrated on. 

Moreover, they have not included the dispersion energy contribu­

tion. 
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Abstract 

A detailed potential for the interaction between two rigid Nj mo­

lecules is given in the form of a spherical expansion. The interaction 

energy is found as the sum of the so-called Hartree-Fock part of the 

electron gas expression including the Rae correction and the "ab ini­

tio" dispersion energy in the multipole expansion. Potential surface 

cuts computed with this expansion agree to a large extent with a simi­

lar potential completely based on ab initio calculations. Comparison 

of the experimental second virial coefficient curve with the curves 

obtained from a four dimensional quadrature using both "ab initio" 

and electron gas potentials demonstrates the usefulness of these po­

tentials, and underlines the importance of the anisotropic contribu­

tions. 

Supported in part by the Netherlands foundation for Chemical Research 

(SON) with financial aid from the Netherlands Organization for the 
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1. Introduction 

It has recently been shown that it is possible to construct a de­

tailed reliable anisotropic potential for the interactions between two 

N_ molecules by means of ab initio calculations ¡_l]. Crystal proper­

ties, such as structure, cohesion energy and lattice vibration frequen­

cies, derived with this potential were found to be in close agreement 

with the experiment |_1,22|. In order to construct this potential, per­

turbation theory was applied including exchange in first order. The 

first and second order long range parts were based on the multipole 

expansion, where orientation and distance dependence are uniquely de­

fined in the form of a spherical expansion |_3j · Also the short range 

part of the first order energy, containing the penetration and ex­

change contributions, was represented by a (distance dependent) sphe­

rical expansion. The individual coefficients in this expansion were 

determined by numerical integration of the interaction energy for a 

number of judiciously chosen orientations. The distance dependence 

was assumed to be equal for all short range terms and was adjusted 

so as to reproduce the potential curves for six typical orientations. 

The procedure used is clear; the actual computation of accurate 

energies requires enormous amounts of computer time, however. The 
4 

bottleneck is the computation of the ^ 1/8 N (N equals the total 

number of basisfunctions used for the ab initio description of the 

two molecules) two electron integrals that are needed in the (short 

range) expressions for the first order energy for each configuration. 

When one also wants to determine the influence of internal degrees 

of freedom on this potential -as is needed for the description of 

many inelastic collision processes- computer time will be prohibi­

tive. Also the ab initio calculation of detailed anisotropic poten­

tials for polyatomics will be an enormous labour. Interest in 

cheaper, but still accurate methods, is therefore very vivid. 

A promising method in this respect is the one based on the ex­

pressions in the electron gas theory of atoms and molecules. With the 

original formulation of the theory for the special case of the inter­

action between closed shell atoms and ions, as given by Gordon and 

Kim |_4] , in many cases very realistic potential curves could be ob­

tained |_53 , in other cases the results were poor |_б] . 

From the many critical comments that have been given. Rae's 

analysis of the consequences of the neglect of the so-called self 

35 



exchange terms \_Ί^} appears to have been the most valuable. In the ac­

cordingly corrected treatment all noble gas pairs could be described 

very accurately ¡_8] . In the case of molecules there has been consi­

derable discussion with respect to the applicability of this so-called 

Rae correction. On some occasions it was found that the potential sur­

face cuts computed with ab initio techniques differed largely from the 

electron gas results |_бЗ and that the inclusion of the Rae correction 

factor did not diminish the discrepancies |_6,9]. 

It has to be noted, however, that also the ab initio results were 

not always completely reliable. Improper treatment of the basis set 

superposition error and neglect or severe underestimation of dispersion 

contributions are the most notorious. The accurate Ν,-Ν- potential re­

ferred to the beginning forms a very attractive test for the electron 

gas approach and for the importance of the Rae correction. 

In the following section we will describe the results of the com­

putation of the interaction energy for two N- molecules at a large 

number of orientations and distances. Again the results are presented 

as a spherical expansion. The distance dependence of each term will 

be given. As we will see that also in the N^ case the correlation 

energy part in the electron gas formulation gives rather unrealistic 

results, we just copy the second order energy from the ab initio cal­

culations |_10j in order to get a complete potential. The correctness 

of the expansion and fitting procedures will be shown by comparing 

the predicted results and the directly computed values for a few 

interesting potential surface cuts. During the preparation of this 

paper we became aware of the work of Ree and Winter |_1 Ό ' "^
10 a^-so 

compared ab initio and electron gas results for the interaction be­

tween two nitrogen molecules. Their study was however meant for very 

short intermolecular distances only; long range dispersion terms were 

neglected. 

We have not repeated the structure and lattice dynamics calcula­

tions that have been performed with the ab initio potential. Rather 

we have compared the ab initio and electron gas potentials with 

respect to their ability to predict the temperature dependence of 

the second vinal coefficient over the 75-700 К range. 

2. Theoretical and computational aspects 

2.1. Monomer_electron_densities 

Input to the computer program for the Gordon-Kim (GK), or when 
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the Rae correction is included (GKR), type energy terms (see below) is 

a Hartree-Fock type wavefunction for the monomer, where the molecular 

Orbitals are given as a linear combination of Slater type atomic Or­

bitals (STO's). In the ab initio calculations, we want to compare our 

results with, contracted cartesian gaussian type atomic orbitals 

(CGTO's) were used. We therefore preferred to compute a Hartree-Fock 

wavefunction starting from a basis set that did not differ too much 

from the one used in the ab initio calculations |_1,10j. For the 

description of the core and valence shell we chose as many STO's as 

there were CGTO's in the ab initio calculations for the first order 

energy. The exponents were copied from ref. |_123l . In order to get 

a proper description of the permanent multipole moments we added a 

3d and a if STO with exponents 2.0 and 2.4 respectively. The total 

SCF energy, found at the experimental internuclear distance of 2.034 

Bohr, was -108.9830 Hartree, compared to -108.9732 in ref. Ц ю ^ and 

-108.9929 in the supposed Hartree-Fock limit Lis]. The computer pro­

gram used for the Hartree-Fock calculation was the Alchemy program 

|_lO· Apart from the energy also the permanent multipole moments 

were computed with the help of this program. The results are included 

in Table I. 

2.2. The_interaction_ener2¥_in_the_electron_2as_a£groach 

In the electron gas approach the energy of a system is found as 

the sum of a potential (Coulomb), kinetic, exchange and correlation 

energy term. Each of these contributions is completely determined by 

the charge density distribution in the system. In the formalism of 

Gordon and Kim |_43 the interaction energy between two systems A and 

B, E . , defined by 

Eint = W A B » - VPA' - VPB»' (1) 

is obtained by using the electron gas formulae. The densities р
д
 and 

P
B
 of the two interacting molecules are taken from ab initio SCF or 

CI calculations and P
AB
r the density in the interacting system, is 

taken as the sum of p. and p-. In this way also the interaction energy 

can be obtained as the sum of four terms. The expressions for the 

separate terms are given in many papers ]_4,153 and will not be re­

peated here. The electrostatic term is rigorously equal to the elec­

trostatic part of the first order interaction energy according to 

perturbation theory. 
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TABLE I 

Permanent multipele moments for N_ 

ab , ab from , from 
. .,_ . b . . . . с d e 
initio initio approx.p approx.p 

Q
2
 -4.487 -4.952 -5.231 -5.199 10"

40
Cm

2 

Q
4
 -9.233 -9.442 -9.843 -9.830 1o"

60
Cm

4 

Q
6
 -6.129 -5.228 -5.035 -5.026 10"

80
Cm

6 

a. multipole moments are defined by: Q, = <0|Σ Z.r. Р.|0>. 
i 

b. obtained with CGTO wavefunction (ref. |_1θ], table ID). 

c. obtained with STO wavefunction, this work. 

d. computed analytically from expansion for charge density used in 

electron gas energy expressions. 

e. computed by numerical integration using expansion for charge 

density. 
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It has often been stated ]_1бЗ, that the kinetic energy part 

should equal the difference between the expectation value of the ki­

netic energy operator using the first order (anti-symmetrized product) 

wavefunction and the sum of the monomer kinetic energies. In the few 

cases,where a numerical comparison has been made, great differences 

are observed |_16,17_ . Also the exchange part in first order pertur­

bation theory -that should be defined as the difference between the 

complete first order energy and the sum of Coulomb and kinetic energy-

appears to differ from the exchange contribution in the electron gas 

approach. We therefore adhere to a more pragmatic point of view and 

only require the sum of Coulomb, kinetic and exchange terms, also 

often referred to as the Hartree-Fock part of the electron gas binding 

energy, to be equal to the first order perturbation theory results. 

In order to correct the exchange term for spurious self exchange con­

tributions, it is sufficient -as shown by Rae |_72)
-
 to multiply the 

original exchange term in the Gordon-Kim formulation by a factor that 

depends only on the total number of electrons in the system. The fac­

tor approaches zero for two electrons and becomes unity only in the 

limit of a very large number of electrons. Although in a later paper 

|_θ3 Rae has suggested that it would be better to set the number of 

electrons in this factor equal to the number of valence shell elec­

trons in the isolated molecule, we have nevertheless in our calcula­

tions based the factor on 28 electrons. We found that with this fac­

tor the best agreement with the ab initio results was obtained. 

The expression for the correlation energy contribution in the 

original Gordon and Kim (GK) formulation \_4^\ is somewhat question­

able and produces unrealistic results. In the complete potential we 

have therefore, as others ]_183/ replaced the correlation contribu­

tion by the second order dispersion energy from perturbation theory. 

In the case of N, it was shown that all relevant distances the use 

of the multipole expansion for this term was justified |_1J . However, 

since the individual molecules are described with the help of accurate, 

but uncorrelated, LCAO SCF wavefunctions, a scaling in the second 

order energy is necessary, as is demonstrated in |_1θ], where also 

the values of the scaling factors are derived. 

This definition of the exchange theory is not the one usually en­

countered in the first order in exchange perturbation theory. 
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The program used for the computation of the GK (or GKR) interac­

tion energies has been written by Parker and Pack and was obtained 

from QCPE |_19^. Details of the program can be found in |_15]. In the 

first part of the program the monomer charge distribution, as deter­

mined from the Hartree-Fock wavefunctions for the monomers, is approxi­

mated by a sum of STO's. The coefficients of this expansion are found 

from a weighted linear least squares procedure. In total 43 expansion 

functions were used, of which 7 were located on the centre of mass 

and the remainder on the two nuclei. The exponents were chosen as the 

sums of the exponents of those pairs of basisfunctions in the Hartree-

Fock calculation that correspond to the largest elements in the density 

matrix. For the least squares fit 50 radial and 40 angular points were 

considered. The largest distance (with the centre of mass as the origin) 

was 12 Bohr. The standard deviation was .019 (the relative standard 

deviation was .0069). With the help of this approximate charge density 

we also (analytically) computed the multipole moments (see Table I). 

The difference with the values obtained from the original Hartree-Fock 

density is rather large and indicates that the approximate charge den­

sity is not completely correct. We were not able to obtain significant 

improvement with other expansion sets. Probably the restriction to a 

maximum SL value of 2 for the expansion functions is responsible. 

In the second part of the program, which calculates Ε. , the 

numerical integration -a 3 dimensional Gauss-Legendre quadrature-

over the charge density functionals is executed. Here we used 48 in­

tegration points for each of the two angle variables and 45 integra­

tion points for the radial variable. Using the same integration grid 

also the permanent multipole moments are determined numerically. The 

results (see Table I) differ only slightly from the ones computed 

analytically from the same approximate charge distribution. This 

difference must be attributed to the numerical integration procedure. 

In order to give an accurate analytical representation of the aniso­

tropic potential we have used a spherical expansion technique (see 

next section). For this purpose we computed the intermolecular po­

tential for 105 orientations at 6 intermolecular distances. The com­

putation of the energy at the 630 points required three hours of cpu 

time on a Cyber 175/100 (actually the GK and GKR approach costs 

around one hundredth of the computer time needed in the ab initio 

approach for the same number of points). 
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Fig. 1. Definition of internal coordinates. 

2.3. Re£resentation_in_terms_of_a_s£herical_ex2ansion 

Since the spherical expansion technique has been formulated in 

great detail in refs. |_1,10,20], we only summarize the main aspects 

for clarification of our computational procedure. 

For two linear molecules in Σ states the distance and orienta­

tion dependence of the interaction energy can be written as 

E i n t ' W ? ' = <
4 π ) 3 / 2

 Τ

Σ

 Τ

Σ

 T

Z V
L

a
L

R
L

( R ) A
L

a
L

n
L

( f
A'

f
B'

6
> <

2
> 

L L
B
 L A B A B 

Here f·. = ( д/Фд) an(ï ^D = ^ п'Фв^ define the orientations of the 

molecular axes and R = (Η,θ,φ) is the vector which connects the 

molecular centres of mass (pointing from A to B). All variables 

are measured relative to the same arbitrary coordinate system. The 

expansion coefficients VL
A
LnL' that are functions of distance only, 

completely determine the orientational dependence of the potential. 

Because the interaction energy is invariant under rotation of 

the arbitrary coordinate system, we may choose a special coordinate 

system where we need only consider the three internal angles θ ,θ ,φ, 

(θ=φ=φ =0) (see fig. 1). The angular functions then can be expressed 

as: 

min(LA,L
B
)

 M 

A
T
 .

 T
 = Σ Х

т т т м
 Р

т
 (сов .) P

T
 (соз .̂) созМф (3) 

L
A

L
B

L
 M=0

 L
A

L
B

L M L
A

 A LB B 

M 
The P

T
 are associated Legendre functions according to the definition 

- - t 

in |_2lJ. The numerical factor XLaLnL M
 i s

 giv
611
 by 

In ref. |_l] the factor (-1) has been accidentally omitted. 
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L
A

L
B

L M 

(2L
A
+1) (2L

B
+1) (2L+1) 

64π
3 

(L
A
-M)!(L

B
-M)! 

(LA+M)Í(LB+M)! 
f LA LB L \ 
\ M -M o I 

<2-δ
Μ(0
)(-1) (4) 

The symbol ( ) stands for a 3-j coefficient. 

Once the interaction potential is known, the expansion coeffi­

cients can be found from 

V
T
 (R) = π

1
 ƒ d соз , ƒ d cose

n
 ƒ αφ Α

τ
 (θ,,θ

η
,φ) 

L L L _ A _ В L L L A В 

E
int

( 8
A'

e
B'*'

R ) 

2π 

ƒ 

0 

(5) 

For the interaction between two identical homonuclear molecules the 

lower integration limits for cosà, and соз - can be replaced by 0 

and the upper limit of the φ integration can be lowered to π (the 

final result then has to be multiplied by 8 of course). In that 

case also only even values of Ι,.,Ι·- and L have to be taken into ac­

count, furthermore V L
A
L

B
L is symmetric in the first two indices. 

As the interaction energy can be decomposed in short range 

and first and second order long range contributions, the
 ь

, L
R
L 

can be analyzed in the same terms: 

V
L L L

( R ) 
L
A

L
B

L 
V
L

R
L L

( R ) 
L
A

L
B

L 

1 mult. 2 disp. 
V (R) + V (R) 

L
A

L
B

L L
A

L
B

L 
(6) 

For the long range first and second order contributions both 

the orientation and distance dependence can be calculated directly: 

1 mult. 
V
L L L

( R ) 
L
A

L
B

L 

2 disp. 
V
L L L ^

1 
L
A

L
B

L 

C
L A L B L

 R 

'(L
A+
L

B+
1) 

and 

c
 Α Β -η 
η 

(7a) 

(7b) 
n=6,8,10 

The relation between the multipole moments and the coefficients 
C
L A + LD + 1 i

5
 given in ref. |_223 . In ref. |_1θ3 it is shown how the 

dispersion coefficients С
 A B

 can be found. The short range coef-

SR
 n 

ficients V
L A L R

L are thus obtained by subtracting the long range con­

tributions from V
L A
L B L ·

 F o r t
'

le
 description of the distance depen­

dence of the short range coefficients a relation of the form: 
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V
L

R
L L =

 a
L L L

 e b R + C R 2
 «8) 

L
A

L
B

L L
A

L
B

L 

was used in ref. |_lj , with necessarily the same b and с for each L., 

L„ and L. Others have used interpolation methods in stead of a fit 
о 

in comparable cases |_2l3· In this paper each short range component 

is fitted separately to a relation of the form of eq. (8). 

The numerical integration of eqn. (5) was, as in |_l3 / performed 

with a Gauss-Legendre quadrature of the potential computed at six 

θ and six θ_ angles and with a Gauss-Chebyshev quadrature for the 

five θ angles. Because of symmetry only 21Θ , θ pairs have to be 

considered. The standard deviation of the spherical expansion (using 

the first 18 terms and derived from the recalculated potential at 

the integration grid) was less than 0,5% at the shortest R value and 

increasing to about 10% at the largest R value. At this largest R 

value the short range contribution is already small when compared 

with the long range contributions. 

2.4. The_seçgnd_virial_coefficient 

For a system consisting of general molecules the second vinal 

coefficient B, is given by: 

B2(T) = N A ƒ...ƒ |~1-exp<-Eint<RA,RB,<,>A/li.B)/kTGdRAdRBdü)AdyB (9) 

Here R stands for the position vector of the centre of mass of mole­

cule A in a space fixed coordinate system, ш
д
 determines the orienta­

tion of the molecule by the three eulenan angles. 

For identical homonuclear diatomic molecules this expression can 

be simplified considerably by the removal of redundant coordinates 

and by the use of symmetry. When we introduce the spherical expansion 

(2) for the intermolecular potential we obtain: 

1 1 π
 ^ - -к/о 

B,(T) = 2N ƒ ƒ ƒ ƒ | Ι-εχρί-Ηπ)-
3
^ Σ Σ Г 

А
 0 0 0 0 L

A
>L

D
 L(even) 

V
L

A
L

B
L

(R
>* СА

Ь д Ь в Ь
( *

,+А
Ь

А
І.

в
І.

<
 В' А'*>3

 ( 2
-

5
L

A
,L

B

) / k T
^ 

2 

dcosO
A
 dcose

B
 d<t> R dR (10) 

In the case of an isotropic potential (all V L
A
L

B
L
 a r e

 zero but 

V
n n n

) expression (10) becomes identical to the formula for B- for 
-3/2 

the monoatomic gas (A
000
(Θ

Α
,θ

Β
,φ) = (4π) ) 

43 



B
2
(T) = 2πΝ

Α
 ƒ |_1-exp{-V

000
(R)/kT}3 R

2
dR (11) 

In the numerical evaluation of eq. (10) the integral was re­

placed by a four dimensional Gauss-Legendre quadrature. Since the 

behaviour of the interaction energy, when expressed as in (6), is 

incorrect at very short distances (the potential becomes negative 

again) we had to set a lower limit of 2.3 Â for the R integration 

(within this distance the molecules were considered as hard spheres, 

small variations of this limit showed little influence on the final 

results). At the long distance end above 25 A no more significant 

contribution was found. In this interval only 60 radial integration 

points were needed. The angular integration was already stable at 

6 6 , 6 θ„ and 6 φ angles. Since at all distances the same set of 

angular functions ALALDL(
 д
, -,ф) ^5

 needed, much computer time can 

be saved when both the radial functions V
L A
L

B
L (

R
) and the angular 

functions AL-L-L(θ.,θ_,φ) are computed before the actual integration 

is performed. Although the potential is rather complicated the inte­

gration of eq. (10) with 12960 points for 20 temperatures in the 75 

to 700 К interval required only 4 seconds on the Cyber 175/100. 

3. Discussion 

In Table II we have summarized the results of the spherical ex­

pansion for the short range part of the electron gas interaction 

energies. The spherical expansion coefficients based directly on the 

ab initio calculations |_1_| , are only available for one distance 

(0.3 nm). At that distance we see that the leading term, the isotrop­

ic one»is nearly equal in the ab initio and the electron gas approach, 

if the Rae correction is included in the latter (GKR). The anisotropic 

components are somewhat smaller, in general, in the GKR than in the 

ab initio calculations. At this stage we are not able to decide 

whether the difference in the anisotropy is caused by the differ­

ence in the monomer wavefunctions used in the ab initio and electron 

gas expressions, or by the electron gas model itself, or by the 

numerical procedures used in this method. It is clearly seen that 

omission of the Rae factor causes -because of a much too large ne­

gative exchange contnbution-a far too weak repulsion. 

The results of the fit of the exponential distance dependence 

of the short range expansion coefficients according to eq. (8), are 
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TABLE II 

Spherical expansion coefficients V - _ (R) of the short range inter­

action energy 

R(nm) 

L A L B L 

0 , 0 , 0 

2 , 0 , 2 

2 , 2 , 0 
2 , 2 , 2 
2 , 2 , 4 

4 , 0 , 4 

4 , 2 , 2 
4 , 2 , 4 
4 , 2 , 6 

4 , 4 , 0 
4 , 4 , 2 
4 , 4 , 4 
4 , 4 , 6 
4 , 4 , 8 

6 . , 0 , 6 

6 , 2 , 4 
6 , 2 , 6 
6 , 2 , 8 

a b 

i n i t i o b ) 

0 . 3 0 0 

4 4 . 2 5 8 

2 3 . 8 7 1 

2 . 9 4 7 
- 4 . 7 3 4 
1 3 . 1 5 4 

4 . 3 0 9 

0 . 3 1 4 
- 0 . 7 3 2 

3 . 1 5 1 

0 . 0 0 5 
- 0 . 0 0 6 

0 . 0 2 6 
- 0 . 1 3 1 

1 . 0 3 5 

0 . 3 8 9 

0 . 0 1 1 
- 0 . 0 5 7 

0 . 3 9 9 

GKC) 

0 . 3 0 0 

2 2 . 0 4 8 

1 3 . 2 7 0 

1 . 2 5 9 
- 2 . 2 4 3 

6 . 7 6 9 

2 . 0 6 8 

- 0 . 0 5 3 
- 0 . 1 0 9 

1 . 1 6 3 

- 0 . 0 7 2 
0 . 0 8 3 

- 0 . 0 9 1 
0 . 0 8 3 
0 . 1 4 8 

0 . 2 5 2 

- 0 . 0 3 3 
0 . 0 3 3 
0 . 1 5 0 

GKRd) 

0 . 3 0 0 0 . 3 3 1 0 . 3 5 7 0 . 3 8 4 0 . 4 1 0 0 . 4 3 7 

4 1 . 1 5 6 1 4 . 6 1 8 5 . 8 1 3 2 . 1 4 5 0 . 7 4 7 0 . 2 4 8 

2 0 . 6 0 6 7 . 9 0 8 3 . 4 1 6 1 . 3 7 6 0 . 5 4 9 0 . 2 2 9 

1 . 6 3 6 0 . 8 3 0 0 . 4 3 4 0 . 1 8 5 0 . 0 7 6 0 . 0 3 0 
- 3 . 0 1 3 - 1 . 3 8 4 - 0 . 6 7 8 - 0 . 2 8 4 - 0 . 1 1 4 - 0 . 0 4 4 

9 . 8 5 5 3 . 8 3 6 1 . 6 8 1 0 . 6 7 4 0 . 2 6 2 0 . 0 9 9 

2 . 8 5 1 1 . 2 4 2 0 . 6 0 4 0 . 2 7 7 0 . 1 3 7 0 . 0 7 7 

- 0 . 0 5 9 0 . 0 2 6 0 . 0 2 1 0 . 0 0 2 - 0 . 0 0 4 - 0 . 0 0 6 
- 0 . 1 5 3 - 0 . 1 1 2 - 0 . 0 5 9 - 0 . 0 1 7 - 0 . 0 0 1 0 . 0 0 5 

1 . 6 3 6 0 . 6 6 6 0 . 3 0 1 0 . 1 2 0 0 . 0 4 6 0 . 0 1 7 

- 0 . 0 7 5 - 0 . 0 2 5 - 0 . 0 1 4 - 0 . 0 0 9 - 0 . 0 0 6 - 0 . 0 0 4 
0 . 0 8 7 0 . 0 3 0 0 . 0 1 7 0 . 0 1 1 0 . 0 0 7 0 . 0 0 5 

- 0 . 0 9 5 - 0 . 0 3 3 - 0 . 0 1 9 0 . 0 1 3 - 0 . 0 0 8 - 0 . 0 0 6 
0 . 0 8 3 0 . 0 2 3 0 . 0 1 3 0 . 0 1 1 0 . 0 0 8 0 . 0 0 6 
0 . 2 5 2 0 . 1 0 7 0 . 0 4 7 0 . 0 1 4 0 . 0 0 3 - 0 . 0 0 1 

0 . 3 0 2 0 . 1 8 9 0 . 1 0 7 0 . 0 7 0 0 . 0 5 1 0 . 0 3 8 

- 0 . 0 3 4 - 0 . 0 1 1 - 0 . 0 1 3 - 0 . 0 1 2 - 0 . 0 0 9 - 0 . 0 0 8 
0 . 0 3 2 0 . 0 1 5 0 . 0 1 7 0 . 0 1 7 0 . 0 1 5 0 . 0 1 3 
0 . 1 8 6 0 . 0 9 2 0 . 0 4 0 0 . 0 1 9 0 . 0 1 0 0 . 0 0 6 

a. Units are kJ/mol. 

b. Copied from ref. |_lj · 

c. Hartree-Fock part of the electron gas expression for the inter­

action energy minus first order long range contributions. 

d. As c, but with Rae correction included in the exchange contri­

bution. 
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given in Table III. Both the linear and the quadratic term in R are 

rather different for the various coefficients. We have also tried to 

fit the short range components without the quadratic term. This fit 

was in most cases much worse. Although the leading components have 

an about equal linear term, the use of only one equal linear term 

in formula (5) for all components produces an incorrect potential. 

In ref. |_l] it was found, however, that when besides an equal li­

near term, also an equal quadratic term for all components was in­

cluded, rather accurate potential curves for six specific orienta­

tions could be obtained (see below). 

The first order long range coefficients, based on the multi-

pole moments given in the 4th column of Table I, are included in 

Table III. For completeness we also copied in this table the second 

order long range terms from the ab initio calculations Lio]. 

In order to compare the ab initio and GKR results somewhat more 

in detail, we have reconstructed from the spherical expansion and 

distance dependence fit of the coefficients, potential surface cuts 

at six different orientations (see Fig. 2). At the same time we have 

directly computed the (GKR) first order energy at six distance points 

and added the second order energy from the multipole expansion. We 

see that generally a good agreement is found between ab initio and 

GKR curves. Also the agreement between the points that have been com­

puted directly and the curves that are based on the spherical expan­

sion and distance fit are good, except for the Τ configuration (90, 

0, 0 in Fig. 2). For this Τ configuration the differences occur 

principally at the larger distance. We believe that this is caused 

by strongly orientation dependent errors introduced during the 

numerical integration used for the GK or GKR energies. From the ob­

served increase with R of the standard deviation for the spherical 

expansion (see part IIIc), we conclude that the errors in the GK 

or GKR energies become more important at large R. Since we expect 

the orientation dependent errors to average out to a large extent 

by the use of eq. (5), the results predicted by the analytical re­

presentation should be the more accurate. Indeed for the Τ configu­

ration, the curve based on expansion and fit for GKR lies closer to 

the ab initio curve than the points that are calculated directly in 

GKR. 

In Fig. 3 we compare the coulombic part of the first order 

energy obtained from the ab initio calculation (ref. |_l3)
 o n

 the 
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TABLE III 

Spherical expansion of interaction energy ' ' 

2 
L L L

 C
L L L L L L (L +L +1) 

V
T T T

 R) = a,
 T T

e + С .R 
L
A

L
B

L L
A

L
B

L L
A

+ L
B

+ 1 

L

A

L
B

L
 -6 Л -8

 r

L
A

L
B

L
R-

10 

+C6
 R + C

8
 R + C

10 

LL^L a b с С . С, C„ С 
A B L +L +1 6 8 10 

А В 

0,0,0 1.742 10 - 8.32 - 39.50 - -4.231 10~
3
 -2.946 10~

4
 -2.239 IO"

5 

2,0,2 1.802 10
4
 -15.01 - 25.25 - -1.815 10~

4
 -5.277 10~

5
 -5.974 lu"

6 

2,2,0 1.611 , 20.39 - 67.71 - -3.764 10~f -6.098 10~J -2.256 I0Z7 

2,2,2 -2.262 10 10.05 - 55.85 - -4.505 10 1.026 10 -3.692 10 

2,2,4 4.009 10 -10.64 - 31.32 2.449 10~ -3.638 10~ -3.638 10 -1.219 10~ 

4,0,4 9.159 10
4
 -39.67 17.50 

4,2,2 - -

4,2,4 -2.729 10 -17.24 - 22.00
 5 

4,2,6 8.071 10 1.19 - 47.32 9.177 IO" 

4,4,0 -2.322 10| -16.74 - 9.39 
4,4,2 1.373 10 -13.23 - 13.57 
4,4,4 -8.066 -10.20 - 16.89 
4,4,6 5.754 - 9.99 - 16.14 
4,4,8 3.744 10~ 73.41 -147.10 

6,0,6 3.558 10
3
 -41.75 35.43 6.594 10~

6 

6,2,4 -2.853 10"1 - 8.42 
6,2,6 1.063 10" - 4.94 

6,2,8 3.583 10 36.99 14.28 7.486 lu" 

a. derived from short range GKR coefficients (Table II), multipole moments 

(Table I, column 4) and dispersion coefficients from réf. [_10j . 

b. short range coefficients valid for 0.23 S R £ 1.2 nm 

с V in KJ/mol, R in nm. 
A В 
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Fig. 2. Potential surface cuts for six different orientations. 

Solid lines based on spherical expansion of GKR results; 

dashed lines based on spherical expansion of ab initio 

calculations (ref. ¡_0 ; · computed directly with GKR 

method; • computed directly with ab initio method 

(réf. Cl]). 
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Fig. 3. Coulomb part of the interaction energy for six different 

orientations. Solid lines based on spherical expansion 

of the Coulomb contribution in the electron gas expres­

sion for the interaction energy; · computed directly in 

electron gas program; χ computed directly with ab initio 

program (ref. \_\\ ) . 
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one hand and from the GKR approach on the other. We look for the 

latter both at the results of direct calculations and at the results 

predicted by the spherical expansion made at the various distances 

(no fit of the distance dependence of the expansion coefficients 

for the coulombic energy was made). We see that the disagreement 

between ab initio points and GKR points is again largest for the Τ 

configuration. As before, use of the spherical expansion reduces 

the difference between GKR and ab initio values. 

From the spherical expansion analysis of the electron gas cor­

relation energy we found that at all distances the value for the iso­

tropic component was about three times smaller than the value ob­

tained from the ab initio dispersion coefficients (C
fi
 /R +0„ /R 

+C /R ). Also the anisotropic terms in the electron gas correla­

tion energy differ from the ab initio dispersion energy terms. 

Furthermore they do not have the correct distance dependence. 

Although the second vinal coefficient certainly does not form 

the most stringent test of the amsotropy of a potential, we believe 

that it does give an additional indication of the correctness or 

shortcomings of a potential. In Fig. 4 we compare the predictions 

Bj (cm3) 

600 ΤΙΚ) 

Fig. 4. Temperature dependence of the second vinal coefficient. J 

experimental points with spread taken from Ref. |_23j . Solid 

line obtained with formula (10) and data from Table III. 

Dashed line obtained with the ab initio expansion (ref. |_0 ' 

Curves marked iso obtained with isotropic (V ) potential. 

^ ooo
 c 

(formula (11)). 
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based on the ab initio and on the GKR potential with the experimental 

results |_24_| . Since the GKR and the ab initio potential are not very 

different, it is not surprising that they predict similar curves. It 

is, however, very encouraging that both curves are so close the ex­

perimental one, taking into account that no adjustable parameters 

appear. The GKR potential does slightly better over the whole range, 

this may be caused by the more detailed description of the distance 

dependence of the short range spherical expansion coefficients. We 

have tried to trace the origin of the remaining discrepancies -the 

too low Boyle temperature and the too large slope at low temperature-

by scaling the short range isotropic component and all dispersion 

terms by small amounts. This leads only to minor improvements, how­

ever, and it is contrary to the philisophy of a non-empirical poten­

tial. Since the ab initio and the GKR potentials are so similar we 

tend to the conclusion that neglect of intramolecular correlation in 

the determination of the monomer electron densities and possibly still 

some minor inaccuracy in the dispersion terms are responsible for the 

small differences. 

Finally we want to comment on the isotropic potentials frequent­

ly used to generate second virial coefficients. From Fig. 4 we see 

that the isotropic part of the ab initio or GKR potential produces 

B_ curves rather far away from the experimental one. In ref. |_25] , 

the same conclusion was reached in an analysis of model potentials 

for the construction of B^ curves for N_. Also the neglect of some 

first and second order long range coefficients in the expansion leads 

to incorrect B- curves. We do not share the conclusion of ref. |_25] , 

that "quadrupole-quadrupole interaction makes a negligible contribu­

tion to B2(T) for N " . In ref. |_25_| temperatures below 273K were not 

considered. It is exactly in the low temperature range that the ef­

fect of a nonzero quadrupole moment shows up. At 75K the B9 value 
3 -1 

found with the GKR + dispersion potential is -273.2 cm mol (exper­
imental value -274 cm mol ). Neglect of the contribution due to 

224 
quadrupole-quadrupole interaction (the Cj- coefficient from Table 

3 -1 III is chosen to be zero) gives -287.9 cm mol ). 

For diatomic and larger molecules, the so-called inversion, i.e. 

obtaining the intermolecular potential from experimental Bj curves, 

seems to us impossible. For instance the minimum of the isotropic 

part of the GKR + dispersion potential is found at 0.422 nm (ab ini­

tio, ref. L O / 0.417 nm) . This value is larger than the value used 
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in model potentials that have been adjusted especially to reproduce 

the B_ curves (0.388-0.404 nm in ref. |~2б] ) . Also the isotropic well 
¿
 -ι 

depth of the GKR + dispersion potential of 0.709 kJ mol (- 85.3 К, 

the ab initio value in ref. |_l] was 0.748 kJ mol" ~ 90.2 K) is 

smaller than in these model potentials (95.175 K) in refs. |_26,273)· 

It is clear that if, moreover, these model potentials are assumed to 

be isotropic, the resulting parameters are void of any physical 

meaning. 
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C H A P T E R I V 

Lattice dynamics of solid N-, 

with an "ab initio" intermolecular potential 
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Abstract 

We have performed harmonic and self-consistent phonon lattice 

dynamics calculations for α and γ N. crystals using an intermolecular 

potential from ab initio calculations. This potential contains elec-

-9 

trostatic (multipole) interactions, up to all R terms inclusive, 

anisotropic dispersion interactions, up to all R terms inclusive, 

and anisotropic overlap interactions caused by charge penetration and 

exchange between the molecules. The lattice constants, cohesion ener­

gy, the frequencies of the translational phonon modes and the Grün­

eisen parameters for the librational modes are in good agreement with 

experimental values, confirming the quality of the potential. The fre­

quencies of the librational modes and those of the mixed modes are less 

well reproduced, especially at temperatures near the ot-ß phase transi­

tion. Probably, the self-consistent phonon method used does not fully 

account for the anharmonicity in the librations. 
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1. Introduction 

During the past several years, a considerable number of experimen­

tal and theoretical investigations (see [ 1] and references therein) 

have been made of the molecular motions and mtermolecular potentials 

in solid nitrogen as one of the simplest molecular crystals. Lattice 

dynamics studies have been performed, mostly because they are consid­

ered to be very critical tests of model potentials, since the phonon 

excitations in solids are much more sensitive for the details of the 

mtermolecular potential than gas phase properties. All the potentials 

have been semi-empirical, i.e. they have been based on simplified mod­

els, especially for the short range forces but also for the anisotropic 

long range interactions, and the parameters have been fitted to the ex­

perimental data. Here, we present, for the first time, lattice dynamics 

calculations for the ordered low temperature α and γ phases of solid N_, 

starting from an anisotropic mtermolecular potential from ab initio 

calculations [2,3]. 

One has to remember that the accuracy by which the experimental 

lattice mode frequencies can be reproduced depends not only on the qua­

lity of the potential used, but also (sometimes critically) on the 

method (approximations) employed to solve the dynamics of the crystal. 

Therefore, we have applied the harmonic model [ 4] , as well as the self-

consistent phonon procedure [5] which corrects for the effects of an-

harmonicity in the potential. So, this work can be regarded both as a 

check on the calculated N^-N potential and as a test of the approxi­

mations commonly used in lattice dynamics studies of molecular crystals. 

2. Methods and potential 

The harmonic [ 4] and self-consistent phonon [ 5] treatments of the 

lattice vibrations in molecular crystals have been described in detail 

elsewhere. Before solving the harmonic dynamical equations, we have 

minimized the lattice energy for the given potential as a function of 

the lattice constants, as required theoretically [ 4] . The self-consis­

tent phonon (SCP) method is one way to correct for the effects of the 

anharmonicity m the potential. This method uses a harmonic model with 

effective force constants that are derived by minimizing the first or-
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der expression of the free energy for the actual potential employed. 

These force constants are calculated as the second derivatives of the 

potential averaged over the molecular displacements; the latter are 

described by the displacement-displacement correlation function. Since 

this function depends on the lattice mode frequencies and eigenvectors, 

which are related to the force constants via the dynamical equations, 

the calculations have to be carried out self-consistently. The free 

energy is minimized also with respect to the lattice constants (and 

the molecular orientations in the unit cell if these are not fixed by 

symmetry, as m nitrogen). 

The SCP method has been applied earlier to a-N- with a Lennard-

Jones 12-6 atom-atom potential [6]. Since this method has been formu­

lated for (rare gas) atomic crystals [5], which have no librational 

degrees of freedom, the authors [6] have actually solved the dynamical 

equations for the individual N atoms after introducing an intramolecu­

lar N-N force constant. They found some deviations of the librational 

frequencies from experiment, however, which they ascribed to deficien­

cies in the intermolecular potential (in particular, the lack of qua-

drupole-quadrupole interactions). The SCP method which we have applied 

is a generalization [ 7] of the original formalism [ 5] , which does ex­

plicitly include the librational motions of the molecules, but assumes 

(in the kinetic energy expression and in the displacement-displacement 

correlation function) that the amplitudes of the librations are rela­

tively small. 

The angle dependent N9-N9 potential on which our lattice dynamics 

calculations are based, has been obtained from ab initio calculations 

[2,3]. It includes the long range electrostatic (multipole-multipole) 
-5 -7 -9 interactions (all R , R and R terms), the dispersion interactions 

(all R , R and R terms) and the short range (overlap) forces 

arising from charge penetration (electrostatic effects) and exchange 

(Pauli repulsion). The induction (multipole-induced multipole) inter­

actions, which would lead to the largest deviations from a pairwise 

additive intermolecular potential [ 8-10] , are negligibly small for N2 

[2,3]. The remaining three-molecule interactions, in which the long 

range triple-dipole dispersion energy and the short range exchange 

contributions are the dominant terms, are estimated to be only a few 

percent of the pair energies in the range of the Van der Waals mini-
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mum [10,11]. 

If one expands the angular dependence of our N -N potential in 

spherical harmonics describing the rotations of the individual mole­

cules (A and B), one finds that the anisotropic dispersion interac­

tions are important up to L = L = 2 inclusive, while the electro­

static and overlap contributions have to be taken up to L = L = 4 
A В 

inclusive [2,3]. For comparison, the most extensive and probably the 

best empirical potential [ 1] used in N_ crystal studies only contains 

isotropic (L = L = 0) dispersion interactions and quadrupole-quadru-
pole (L, = L_ = 2) electrostatic contributions. We have not used the 

A B 

spherical expansion of the potential in the present lattice dynamics 

calculations, however, but instead we have applied an atom-atom 

exp-6-1 potential with the parameters fitted to the ab initio results. 

It has been shown [2] that, in the case of N^, the atom-atom (or 

rather site-site) model yields a fairly good representation of the 

intermolecular potential, even in describing its angular dependence. 

It is necessary to use two positive and two negative charges (symme­

trically) placed on the N-N axis for representing the electrostatic 

multipole interactions and, preferably, slightly shifted force cen­

ters for the dispersion interactions, too. The site-site potentials 

with the dispersion centers on the nuclei and with shifted centers, 

have been named potentials A and B, respectively; the parameters 

are listed in table 1 (cf. table 3 of [2]). 

The lattice dynamics calculations have been made for a-N^ assu-

ming the space group РаЗ(Т.) [12], including 54 neighbouring mole­

cules in the lattice sums for the (free) energy and the force con­

stants. Only a single lattice constant (a) had to be optimized for 

this cubic phase. For the γ-phase, which is stable under pressures 

above 3.5 kbar, the space group is P4
2
/m η m (D41.) [13] and we have 

taken 42 neighbouring molecules into account; two lattice parameters 

(a and c) had to be optimized due to the tetragonal symmetry. The 

SCP program developed by Wasiutynski [ 7] has been adapted to these 

α and γ lattice symmetries; there are 4 and 2 molecules per unit cell, 

respectively. For the calculations under pressure we have used the 

procedure prescribed by Pawley et al. [14] for the harmonic model and 

we have minimized the Gibbs free energy instead of the Helmholtz quan­

tity in the SCP method [ 7] . 
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Table 1 

Atom-atom potential fitted to ab initio results [2] 

:e centers ι have positions +Z and -Z on the N-N 
1 1 

(different for each contribution, in principle). 

Contributions 

Electrostatic 

Overlap 

A exp(-Bri:)) 

Dispersion 

Parameters 

charges" 

positions 

A 

В 

positions 

с 
positions 

q+ = -q_ 

z + , z_[Â] 

[kJ/mol] 

[A"1] 

Z 0 [ A ] 

[kJ A /mo 

zD [A] 

1] 

P o t e n t i a l 

0 

A 

0.373 

.847,1.044 

770 000 

4.037 

0.547 

1407 

0.547 

P o t e n t i a l В 

0 

0.373 

.847,1.044 

770 000 

4.037 

0.547 

1511 

0.471 

19 

a) in unit charges e = 1.602 10 С 
b) nuclear positions are Z., = ± 0.547A 

N 
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3. Results 

The results calculated for the lattice constant, the cohesion en­

ergy and the frequencies of various phonon modes are listed in tables 

2 and 3 for the a and γ phases, respectively, at zero pressure and 4 

kbars. They can be compared with the experimental data [13,15-17] in­

cluded in these tables. Phonon frequencies have been measured by in­

elastic neutron scattering in α-N at 15K [ 16] and by Raman spectros­

copy in γ-Ν at 4.2K [17] ; the SCP calculations have been performed 

at the same temperatures. We have also included the results obtained 

by Raich and Gillis [ 1] with their recommended empirical potential 

(1), but not the earlier semi-empirical calculations as these were ex­

tensively discussed by the latter authors. 

Our calculated lattice constants and cohesion energy are in good 

agreement with the experimental data. Raich and Gillis [ 1] have used 

these quantities, for the α phase, as fitting data for their potential, 

but the present calculations do not contain such fitting procedures, 

since the potential is entirely determined a priori. The lattice mode 

frequencies from the harmonic calculations are always higher than the 

experimental values, except for the librational B. mode in the γ 

phase. Potential В which has a somewhat smaller anisotropy in the dis­

persion interactions (the force centers are closer) than potential A, 

yields slightly higher frequencies in particular for the librational 

(the g modes at the Г point in the Bnllouin zone and the R modes at 

the R points) and mixed (M point) modes. This seems contradictory, but 

it must be remembered that the anisotropy m the dispersion interac­

tions in fact reduces the larger anisotropy in the electrostatic qua-

drupole interactions [ 3] . 

The SCP formalism, which we have only applied with potential A 

since it is very (computer) time consuming, consistently lowers the 

frequencies. This can be understood, since the effective potential, 

averaged over the molecular displacements, is softer than the bare po­

tential at the Van der Waals minimum [ 7] . This lowering brings the 

frequencies of the translational modes (u modes at Г and R modes at 

R) into excellent agreement with experiment. The librational and 

mixed mode frequencies remain substantially too high, however, al­

though the anharmonic SCP corrections are always in the right direc­

tion (except for the γ phase В frequency which is somewhat too low 

already). In principle, this might be due to the potential still not 
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Table 2 

ϊ-Ντ crystal data, at zero pressure and Τ = 1 5K 

Experiment 

Semi-empirical 
calculations [ 1] 

Harmonic, 
potential 1 

Present calculations 

Harmonic SCP 

potential A potential В potential A 

Lattice 
constant 
a [A] 

Lattice 
energy^ 
[ kj/mol] 

Phonon 
frequencies 
ω[ cm

- 1
] 

Γ(Ο,Ο,Ο) 

í5 
й 
T
u 

E
u 
Tu 

М(тт/а,тт/а,0) 

м
12 »12 

м
12 
Ml2 
м
12 

Η(π/3,π/3,π/3) 

Ri 

R¡3 

R23 

Ηΐ 
R ^ 

5.644 

6.92 

32.3 
36.3 
59.7 
46.θ 
48.4 
54.0 
69.4 

27.8 
37.9 
46.8 
54.9 
62.5 

33.9 

34.7 

68.6 

43.6 

47.2 

5.6 

6.9 

37.5 
47.7 
75.2 
45.9 
47.7 
54.0 
69.5 

29.6 
40.6 
51.8 
59.0 
66.4 

34.4 

35.7 

68.3 

50.7 

57.8 

,ο) 

^) 

5.644 

6.00 

5.611 

6.43 

5.796 

6.05 

40.8 
50.7 
74.3 
52.4 
52.0 
57.6 
77.5 

34.7 
45.9 
57.3 
62.5 
69.6 

36.6 

38.6 

76.3 

55.6 

58.3 

42.4 
52.9 
77.7 
52.8 
52.6 
58.9 
78.8 

34.9 
46.4 
59.1 
64.4 
72.3 

37.1 

39.2 

77.6 

58.1 

61.0 

39.5 
48.5 
70.3 
48.8 
48.4 
53.5 
72.0 

32.5 
43.3 
54.0 
58.5 
64.9 

34.2 

35.9 

71.0 

52.7 

55.7 

a) from [ 16] , lattice energy from [ 15] 

b) experimental: heat of sublimation at OK [15] 

calculated: lattice energy at OK including zero-point motions 

c) fitted to experiment in optimization of the potential parameters 
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Table 3 

γ-Ν crystal data, at 4 kbars and 4K 

Experiment 
a) 

Semi-empirical 
calculations [ 1] , 

Harmonic, 
Potential 1 

Present calculations 

Harmonic SCP 

potential A potential В potential A 

Lattice 

constants 

a [A] 

с [A] 

3 . 9 5 7 

5 . 1 0 3 

3 . 9 4 0 

5 . 0 8 6 

4 . 0 5 2 

5 . 0 2 9 

4 . 0 3 2 

5 . 0 0 0 

4 . 1 0 0 

5.1ΘΘ 

Phonon 

frequencies 

ω[ cm ] 

Γ(0,0,0) 

E
g 

B
ig 

A
2g 
E 
u 

B, 

55.0 

98.1 

~ 

— 

-

50.5 

74.8 

105.1 

58.3 

103.1 
lu 

57.9 

86.5 

109.7 

72.0 

110.3 

60.1 

89.2 

111.2 

71.4 

113.8 

56.5 

85.2 

107.1 

69.3 

107.4 

a) lattice constants from [13], phonon frequencies from [17] 
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having the correct anisotropy, but it has been argued before [1] that, 

irrespective of the precise potential used, the librational modes re­

quire larger anharmonic corrections than the translational ones (this 

is related to their larger relative amplitudes). The SCP method, es­

pecially the version that we have used which assumes relatively small 

librational amplitudes (see section 2), might be less effective in 

correcting for the anharmonic effects in the librations. 

The best potential of Raich and Gillis [ 1] with parameters fitted 

to the experimental data for solid N^, yields somewhat lower frequen­

cies already in the harmonic approximation and slightly better overall 

agreement with the experimental data than the harmonic model applied 

with the ab initio potential. Still, some of their librational fre­

quencies are considerably too high also, while other values are lower 

than the experimental ones (especially the γ phase В frequency, which 

we find too low, is even much lower in their case). It is uncertain 

whether the anharmonic corrections would systematically improve the 

quality of their results, as they do in our case. 

The remaining discrepancy between the SCP results and the experi­

mental librational frequencies is clearly illustrated in fig. 1. Here, 

we have displayed the temperature dependence in the frequency of the 

lowest librational E mode in the a phase [ 18] . When the α-β transi­

tion temperature (35.6K) is approached, the amplitudes of libration 

increase and mode-mode coupling may occur. Apparently, the (present) 

SCP model cannot completely follow this trend. 

In fig. 2 we have shown the pressure dependence of the 3 = £ mode 

frequencies (ω ) at 12K, calculated by the SCP method. This dependence 

is related to the molar volume (v) dependence of these modes measured 

by the Grüneisen parameters: 

/ Э In ω 

1
 \ 3 In ν 

So, the results presented in fig. 2 can be indirectly compared with 

experiment by looking at the Grüneisen parameters that have been 

measured for the librational frequencies in both the α [18] and the 

γ [17] phase. If the quadrupole-quadrupole interaction would be the 

only anisotropic contribution to the potential these parameters would 

be equal to 5/6. Table 4 shows good agreement between the SCP and the 

measured results at 8K; this confirms the quality of the anisotropic 
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Δ ω -
[cm-1] 

0.0 

-1.0 

-2.0 

SCP 

calculation 

experiment * 

i. J. 
10 20 30 ¿»0 

Τ [ К ] 

Fig. 1. Temperature dependence of the E librational frequency in 

the α phase. The difference Δω is defined as ω(Τ) - ω(Τ = 0),· 

experimental data from Lis] • 
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6 θ 
ρ[kbars] 

Fig. 2. Pressure dependence of the lattice mode frequencies in the 

α and γ phases, calculated by the SCP method at 12K. Closed 

lines represent the librational modes, dashed lines the 

translational ones. 
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Table 4 

Grüneisen parameters at 8K for the librational modes in 

the a and γ phases of solid nitrogen 

α-N 

Y-N
2 

E
g 
τ 
g 
τ 
g 

E 

g 
B
ig 

Grüneisen parameters 

Experiment 

1.95 

1.63 

1.68 

2,3 

2.3 

SCP calculations, 

potential A 

2.00 

1.90 

1.68 

2.28 

2.02 

a) for a-N2 from [18], for γ-Ν2
 from [17] 
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ab initio potential as the Grüneisen parameters are critically depen­

dent on the shape of the potential. The experiment [ 18] finds the 

parameters of the α-phase to be practically temperature independent, 

however, whereas the SCP calculations predict a rather strong depen­

dence, see fig. 3. This discrepancy indicates again that the (our) 

SCP method is not fully capable of reproducing the anharmonic effects 

occurring in the (α-phase) librations especially at higher tempera­

tures . 

4. Conclusions 

Our lattice structure and dynamics calculations with the ab initio 
N
2~

N
2 P

o t e n t l a
l [2] yield good agreement with experiment for the lat­

tice constants and the translational mode frequencies of α and γ N̂ , 

crystals. The anharmonic corrections by the self-consistent phonon 

method essentially improve the latter. The SCP method also yields 

good Grüneisen parameters for the librational modes in a and γ nitro­

gen at low temperature. Furthermore, the cohesion energy of a-N. is 

rather accurately calculated, especially with the best atom-atom repres­

entation of the ab initio potential, potential B. So, we may conclude 

that the ab initio potentlal [2] is quite realistic, both in its ra­

dial and angular dependence. 

In the librational frequencies some discrepancies with the experi­

mental data remain even in the SCP values, although the anharmonic cor­

rections generally point to the right direction. Apparently, the libra­

tional modes have relatively large amplitudes especially in the (low 

pressure) α phase near the α-З transition temperature, and the SCP 

method used [7] cannot completely deal with this case. One should im­

prove on the small amplitude expansion for the librational motions 

or, possibly, use a quantum mechanical libron treatment [19] in terms 

of free rotor basis functions instead of the harmonic oscillator basis. 

In that case, the spherical expansion [ 2] of the ab initio potential 

is very useful. Also classical molecular dynamics (computer simulation) 

studies of the librational motions in solid NL· [ 20] may be worth trying 

with the ab initio potential [ 2] instead of the approximate Lennard-

Jones 12-6 atom-atom potential. 
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30 40 
Τ [ К ] 

Fig. 3. Temperature dependence of the Grüneisen parameters for the 

librational modes in the α phase, calculated by the SCP 

method at zero pressure (closed lines). Experimental values 

(—о—) from '"18~| . 
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Abstract 

The long range (electrostatic, dispersion, induction) and short 

range (exchange and penetration) interaction energy between ethylene 

molecules has been calculated by ab initio methods as a function of 

the molecular orientations and distances. The results, when fitted 

with an exp-6-1 atom-atom potential and used in a harmonic lattice 

dynamics calculation on the ethylene crystal, yield fair agreement 

with the experimental structure data, IR and Raman phonon frequencies. 

Although the fit with the atom-atom potential is reasonably good, some 

specific deviations from the ab initio results indicate the importance 

of the effects of chemical bonding on the intermolecular potential 

(leading to non-central and non-pairwise additive atom-atom forces) . 

The usual empirical atom-atom potentials are grossly corroborated, 

their main defect being the neglect or underestimate of electrostatic 

(quadrupole-quadrupole) interactions. 
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1. Introduction 

Practically all calculations to date on the lattice stability 

and dynamics of molecular crystals have used simple empirical expres­

sions for the interaction potential between the molecules. Very pop­

ular, for instance, is the use of so-called atom-atom potentials [1] 

of the Lennard-Jones (12-6) or Buckingham (exp-6) type. The parame­

ters occurring in these potentials are derived from experimentally 

known crystal data, such as the structure, the cohesion energy, the 

elastic constants [2-4], or sometimes they are obtained by fitting 

the calculated lattice frequencies to measured IR and Raman spectra 

[5] or to phonon dispersion curves from inelastic neutron scattering 

[6]. 

It is not certain that these empirical potentials correspond 

with the "real" interaction potential between the molecules, first 

of all, because the atom-atom potential model still lacks a sound 

physical basis and has never been thoroughly tested [7] and, secondly, 

because the crystal properties may not be equally sensitive to all 

aspects of the interaction potential. Some interactions, the electro­

static forces for example, may to some extent average out in the crys­

tal [ 8] and it is typical that in many of the empirical potentials 

[ 1,2] these forces are left out completely, while the potentials still 

yield a reasonable description of several crystal properties. 

For small, mostly diatomic molecules more detailed information 

about the interaction potential is becoming available, from beam 

scattering experiments [9,10] , relaxation measurements [ 11] and spec­

troscopic studies [ 12,13] . Only for the simplest case of the H2 mole­

cule, however, one has now rather good knowledge of the shape and the 
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anisotropy of the interaction potential, mainly as a result of ab ini­

tio calculations on the H
2
-H

2
 (14-20] and Η,-Ηβ [19-25] interactions. 

Some of this information has already been used in lattice dynamics 

calculations on solid H. [26, 27]. 

It is important to obtain similar information about the intermo­

lecular interaction in the hydrocarbon crystals, in view of the various 

physically interesting effects displayed by these crystals. They have 

been subject of extensive semi-empirical studies [1-3,28-37], especial­

ly by Williams [2,3,28-30] who has been using atom-atom potentials , 

with carefully optimized empirical parameters. Although Williams ' cal­

culated results show a nice quantitative agreement with the experimen­

tal properties considered (which have been used, for the main part, 

in the parameter fit), the remaining discrepancies [ 30] indicate al­

ready that the empirical atom-atom potentials must still be deficient 

in some respects. 

Therefore, we thought it useful to perform an ab initio study 

of the interaction between ethylene molecules and to apply the results 

to a calculation of the structure and the dynamics of the ethylene 

crystal. This study is a continuation of earlier ab initio work on 

the ethylene dimer [38-40,8] and the crystal [8]. Thus, we can find 

out in how far the atom-atom potential model can be theoretically 

justified, how the empirical parameters compare with the theoretical 

results and which are the deficiencies of the model that must be 

corrected. On the other hand, since several experimental properties 

have been measured on solid ethylene, the crystal results provide 

a check on the accuracy of our ab initio calculations. 

A similar study, concerning the static crystal properties, has 

recently been carried out for some hydrogen bonded systems [41,42] . 
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2. Ab initio calculations of the ethylene-ethylene interaction 

Although our first calculation of the ethylene-ethylene inter­

action potential [38] was actually the most elegant one, since it 

yielded all short range (exchange and penetration) and long range 

(electrostatic, induction and dispersion) interactions in the single 

consistent formalism of the Multistructure Valence Bond method, 

further ab initio calculations [39,40] and some preliminary lattice 

dynamics studies have shown that the basis set employed originally 

was too small. As a result we had underestimated both the (first 

order) exchange repulsion and the (second order) induction and dis­

persion attractive interactions. Therefore, we have extended the basis 

and we have performed the calculation of the first order and second 

order interaction energy separately, for several intermolecular dis­

tances R and for several orientations, П
д
 and Ω , of the ethylene 

molecules in the dimer. 

The first order energy, defined as: 

ΔΕ
( 1 )

(Κ,Ω
Α
,Ω

Β
)=<^ Ψ Χ | Η

Α Β
| / Ι ΨΧ>-<Φ2|Η

Α
|Ψ£>-<

Ψ
5|Η

Β
|Ψ£> , (1) 

was calculated "exactly", [43] which means that all occurring one-

and two-electron integrals were accurately evaluated and that the 

result is valid at all distances. The ethylene monomer wave functions, 

A В 
ψ

η
 and φ

η
, were taken as ground state Hartree-Fock MO-LCAO wave func-

AB A В 
tions (Slater determinants), the operators Η ,H and Η are the dimer 

and monomer hamiltonians, respectively, and A is the antisymmetrizer 

over the dimer (including normalisation). For the expansion of the 
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MO's a double-zeta basis of Gaussian type atomic orbitala (basis В 

of réf. 39) was used and sometimes [ 44] , for comparison, also a 

still more extended basis containing 3d orbitals on С and 2p on H 

(basis С of ref. 39) . 

This first order energy comprises an electrostatic component, 

ΔΕ (1) . , which is obtained from expression (1) by substituting the 

identity operator for A, and a short-range exchange contribution, 

ΔΕ . Ξ ΔΕ - ΔΕ . , arising from the antisymmetrization. For 

large distance the electrostatic energy can be approximated by the 

multipele expansion: 

UEmÌit. - V^A'V1*"5 + С7^А^В
) П
"

7 +
 ' · ·

 (2) 

and the deviation, ΔΕ , - ΔΕ ;. = ΔΕ , is due to the penetra-

elec. mult. pen.
 r 

tion between the charge clouds A and B, at short distance. The two 

leading terms in the multipole interaction energy, ΔΕ : , have 

been calculated in refs. 8 and 39 for the same basis sets. All the 

first order results have been collected in tables 1 and 2. 

The second order energy was calculated in the multipole expan­

sion, truncated after the two principal terms: 

ΔΕ
( 2 )

(К,П
Д
,П

В
) = -C

6
(n

A
,n

B
)R

 б
 - С

8
(£

д
,П

в
)к"

8
 (3) 

and the second order Rayleigh-Schrödinger perturbation expressions for 

the orientation dependent coefficients C, and С were also evaluated 
b о 

by ab i n i t i o c a l c u l a t i o n s . To t h i s end, Mulder e t a l . [39,4 5] have 

75 



TABLE 1 Electrostatic energy 

dimer 

«A'^B 

I 

II
f
> 

III 

IV 

V 

VI 

VII 

XII 1 

σ 

a) 
geometry 

1 R(bohr) 

! 7 

1 8 

1
 10 

12 
1 15 
| 20 

1 7 
8 

1 10 

1
 12 

15 
20 

7 
8 
9 
10 
12 
15 
20 

7 
8 
10 
12 
15 
20 

7 
8 
10 
12 
15 
20 

7 
8 
10 
12 
15 
20 

7 
8 
9 

12 
15 
20 

7 
8 
10 
12 
15 
20 

3) 

ΔΕ«}»
 Ь ) 

elee. 

[ kcal/mole] 

0.5226 
0.5008 
0.2085 
-
-
-

0.2434 
0.2963 
0.1439 
-
-
-

-3.1958 
-0.6170 

-0.1851(-0.1907) 
-0.0964(-0.0997) 

-
-
-

-3.7029 
-0.6986 
-0.1033 

-
-
-

-3.4614 
-0.2050 
0.1176 
-
-
-

-3.2847 
-0.6359 
-0.0461 

-
-
-
_ 

-2.7724 
-0.1688 

-
-
-
_ 

-
-
-
-
-

-

ΔΕ
(1
>
 b ) 

mult. 

[kcal/mole] 

0.4959 
0.3953 
0.1882 
0.0857 
0.0312 
0.0080 

0.4729 
0.2932 
0.1324 
0.0657 
0.0259 
0.0072 

-0.1552 
-0.1639 
-0.1230 
-0.0861 
-0.0417 
-0.0156 
-0.0040 

-0.2056 
-0.1829 
-0.0898 
-0.0426 
-0.0157 
-0.0041 

0.5866 
0.3056 
0.1019 
0.0414 
0.0137 
0.0033 

-0.6615 
-0.2347 
-0.0366 
-0.0059 
0.0004 
0.0006 

0.7039 
0.3535 
0.1933 
0.0447 
0.0145 
0.0034 

-0.0231 
-0.1067 
-0.0715 
-0.0367 
-0.0142 
-0.0038 

0.0 

[ kcal/mole] 

0.9799 
0.5534 
0.2049 
0.0884 
0.0308 
0.0077 

0.5119 
0.3224 
0.1394 
0.0665 
0.0254 
0.0068 

-0.3067 
-0.2074 
-0.1364 
-0.0902 
-0.0417 
-0.0152 
-0.0039 

-0.3865 
-0.2335 
-0.0938 
-0.0422 
-0.0152 
-0.0039 

1.0211 
0.4241 
0.1119 
0.0413 
0.0130 
0.0030 

-0.6123 
-0.2266 
-0.0367 
-0.0062 
0.0003 
0.0005 

1.3373 
0.5116 
0.2370 
0.0452 
0.0140 
0.0032 

-0.3060 
-0.1898 
-0.0789 
-0.0363 
-0.0133 
-0.0035 

0.036 

ΛΕ
 d

'
e ) 

Û E f i t @ 

I kcal/mole] 

0.8990 
0.5221 
0.2009 
0.0888 
0.0316 
0.0080 

0.4791 
0.3060 
0.1358 
0.0661 
0.0258 
0.0071 

-0.4402 
-0.2934 
-0.1920 
-0.1268 
-0.0585 
-0.0214 
-0.0055 

-0.4887 
-0.2918 
-0.1182 
-0.0538 
-0.0196 
-0.0051 

1.3843 
0.5392 
0.1266 
0.0437 
0.0131 
0.0030 

-0.8981 
-0.3653 
-0.0711 
-0.0166 
-0.0021 
0.0001 

2.6724 
0.9006 
0.3842 
0.0668 
0.0204 
0.0047 

-0.0553 
-0.0520 
-0.0318 
-0.0175 
-0.0073 
-0.0021 

0.23 
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a) The orientations (0.,Ω_) of the molecules numbered by the Roman 

figures are indicated schematically in fig. 2. 

b) From ab initio calculations; definitions, see the text. The GTO 

basis used is: 0(9,5/4,2), H(4/2) (ref. 39, basis Β), for the 

results in parentheses: 0(9,5,1/4,2,1), H(4,1/2,1) (ref. 39, 

basis 0). 

c) Atom-atom fit with the point charges shifted from the nuclei, 

see fig. 1. This fit was made for the distances R = 12, 13, 14, 

15, 16, 18, 20, 22 bohr. 

d) Atom-atom fit with the point charges on the nuclei. The same 

distances were used in the fit as in c). 

e) The empirical atom-atom potential (2j from ref. 2 9 yields an 

electrostatic energy which differs from this fit by exactly a 

factor of 0.37. This leads to a root mean square deviation 

σ = 0.62 with respect to ΔΕ ' 

^ mult. 

f) For this orientation R is the distance between the two molecular 

planes. 

g) The root mean square relative deviation is defined as: 

Σ (ΔΕ,. -ΔΕ
( 1
>.)

2 

0 0
 fit mult 

1_ -A'-B 
N
R R Σ ΔΕ

(1
>
 2 

Ω
Α
,Ω

Β 

mult 

i 

where the summations run over all the orientations (Ω,,ίΟ in 

this table and the distances R = 12 - 22 bohr (N
R
 = 8). The 

summation over the orientations was carried out before taking 

the ratios, since for some orientations the electrostatic energy 

is very close to zero. 
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TABLE 2 Short range energy 

dimer 

I 

ii
h
> 

III 

IV 

V 

VI 

VII 

VIII 

с 

geometry 

R(bohr) 

7 
8 
10 

7 
e 
10 

7 
8 
9 
10 

7 
8 
10 

7 
8 
10 

7 
8 
10 

8 
9 

10. 
11. 

8 
9 

10. 
11. 

i' 

5 

5 

5 
5 

(1)
 Ь ) 

ΔΕ
1 1
' 

[ kcal/mole] 
2.4498 
0.8685 
0.2182 

1.4151 
0.5199 
0.1498 

7.1000 
1.2387 

0.1098(0.1021) 
-0.0555(-0.0588) 

7.6388 
1.2821 

-0.0605 

17.3186 
2.9360 
0.1705 

7.1250 
0.6744 

-0.0142 

12.4209 
1.9890 
0.1902 
0.0734 

7.8373 
1.1378 
0.0321 

-0.0053 

-

ΛΕ'
1
»
 C ) 

short range 

[ kcal/mole] 

1.4699 
0.3151 
0.0133 

0.9032 
0.1975 
0.0104 

7.4066 
1.4461 
0.2462 
0.0347 

8.0251 
1.5155 
0.0333 

16.2972 
2.5118 
0.0586 

7.7372 
1.2963 
0.0225 

11.9094 
1.7521 
0.0956 
0.0164 

8.1044 
1.2354 
0.0548 
0.0028 

0.0 

d) 
ÛEfit (3) 

[kcal/mole] 

1.4198 
0.2742 
0.0101 

0.9704 
0.1919 
0.0074 

6.6205 
1.2806 
0.2454 
0.0468 

6.7170 
1.2934 
0.0470 

15.4433 
2.5771 
0.0745 

8.2481 
1.6617 
0.0604 

10.8979 
1.8549 
0.1340 
0.0236 

B.0638 
1.5248 
0.1208 
0.0221 

0.13 

e) 

UEfit(I) 

I kcal/mole] 

0.7830 
0.1495 
0.0054 

0.5552 
0.1078 
0.0040 

5.6981 
1.0863 
0.2026 
0.0373 

6.6206 
1.2059 
0.0394 

18.1144 
3.0438 
0.0858 

10.0932 
2.0217 
0.0699 

12.2708 
2.0806 
0.1452 
0.0247 

9.4368 
1.7505 
0.1320 
0.0231 

0.33 

f) 
ÛEempirlcal(î) 

[kcal/mole] 

0.4604 
0.0709 
0.0017 

0.3185 
0.0501 
0.0012 

4.4580 
0.7173 
0.1126 
0.0174 

5.2915 
0.8153 
0.0188 

21.9214 
3.2852 
0.0719 

9.2440 
1.7096 
0.0487 

13.6009 
2.0207 
0.1145 
0.0168 

8.8979 
1.4834 
0.0937 
0.0144 

0.45 

9) 
ÛEemplrlcal(2) 

[kcal/mole] 

0.4435 
0.0685 
0.0016 

0.3148 
0.0496 
0.0012 

5.2510 
0.8543 
0.1349 
0.0209 

6.5263 
1.0032 
0.0230 

25.7024 
3.8871 
0.0861 

11.6088 
2.1391 
0.0605 

16.0984 
2.4152 
0.1381 
0.0203 

11.0085 
1.8337 
0.1155 
0.0177 

0.53 



a) The orientations (Ω,,Ω
0
) of the molecules are indicated schemati-

cally in fig. 3. 

b) From ab initio calculations, basis B; results in parentheses 

with basis С (see table 1). 

c) Defined as: Δ Ε
1
^ ^ = ΔΕ

( 1 )
 - AE

(1
J . . , where 

short range point charge 

ΔΕ J . . is the electrostatic energy from the best long 
point charge ^" ^ 

range fit to the ab initio results in table 1, fit 0 . 

d) Atom-atom fit to ΔΕ . . (for the shortest two distances, 

short range 

R) as described in the text, but without averaging constraints 

for the C-Η parameters. 

e) Same as d) with averaging constraints for the C-Η parameters. 

f) From Williams [ 26] . 

g) From Williams [ 29] . 

h) For this orientation R is the distance between the two molecular 

planes. 

i) The root mean square relative deviation: 

R
 HA'^B 

( U E
flt ~

 U E
s h L t ranqe

) 

(ΔΕ
( 1 )
 )

2 
v
 short range 

for the smallest two distances (N = 16) 
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used another basis set (D of ref. 39), which is also an extension 

of basis В with 3d Orbitals on С and 2p's on H with the purpose of 

providing a nearly complete set of virtual states in the second 

order expression [ 39] . As a check on this basis several completeness 

tests have been performed and the calculated molecular dipole pola-

rizability of ethylene (a = 26.5 a.u., η = 41.1 a.u., a = 
•'

 J
 XX УУ ζ ζ 

23.2 a.u.) agrees rather well with experiment [46,47] (α
χ χ
 • 

26.1 a.u., a = 36.4 a.u., a = 23.0 a.u.). Also the orientational-
yy ζ ζ 

ly averaged C^ plus C_ contribution [ 40] is in good agreement with 
Ό о 

the experimental result from viscosity data [ 48] . The calculation 

(2) 
of the separate contributions to ΔΕ , i.e. the induction and 

the dispersion energy, for several conformations of the ethylene 

dimer is described in refs. 8 and 39 and some results are listed 

in table 3. 

Although we cannot be certain about the accuracy of the ab 

initio interaction energies listed in tables 1,2 and 3, we have 

tried to make some estimates of this accuracy. 

The calculated molecular quadrupole moment, Q_
 n
, agrees fair-

ly well with the experimental value [ 49] and hardly changes when 

the АО basis set in the calculations is further extended. Also the 

different first order energy contributions ΔΕ , , ΔΕ . , 

.(i)
 Al

.(i) 
J
per 

ЛЕ
v
 , ,_ , ΔΕ are practically insensitive to basis set extension 
—jit. pen.

 1 J 

and so we expect both the long range interaction, ΔΕ t. , which 

is nearly equal to
 Л Е

е
і і

с
 f

o r
 large R, and the "overlap" contribu­

tions ΔΕ . and ΔΕ to be rather accurate. The main error in 

exch. pen. 

80 



these first order results is caused by the neglect of the intramo­

lecular electron correlation and, on the basis of experience with 

smaller molecules, we estimate this error to be not larger than 

10% of the interaction energy in the whole region of interest. 

The same agreement with the scarce experimental quantities 

available is found for the second order properties: the dipole po-

larizability I 39] and the isotropic C
fi
 value [40]. Also it was 

checked that the second order results are practically "saturated" 

with respect to basis set extension. In contrast with the first 

order energy, however, which was evaluated "exactly", the second 

order energy was calculated in the multipole expansion only. This 

implies the neglect of charge overlap effects so that, formally, 

the results are just valid for large distances. Moreover, the mul­

tipole expansion was truncated after the first two terms, while 

we found [ 39І that this expansion converges rather slowly for 

short distances. The resulting errors must cancel to some extent, 

though, and we estimate on the basis of previous studies [8,39,40] 

that the maximum error in the second energy, which occurs for the 

nearest neighbour contacts in the ethylene crystal, is still not 

larger than about 20%. 

As we have indicated in table 3, the induction energy is 

only a very small fraction of the total second order interaction, 

so that it can be neglected with respect to the dispersion en­

ergy. 
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TABLE 3 Dispersion energy 

dimer 

vaB 

I 

IX 

III 

X 

V 

XI 

VII 

XII 

a) 
geometry 

R(bohr) 

12 

15 

19 

12 

15 

19 

12 

15 

19 

12 

15 

19 

12 

15 

19 

12 

15 

19 

12 

15 

19 

12 

15 

19 

a
f ) 

ΔΕ
(2
> Ь) 

[kcal/mole] 

0.0782 

0.0203 

0.0049 

0.1487 

0.0348 

0.0077 

0.1163 

0.0280 

0.0063 

0.1646 

0.0378 

0.0083 

0.1323 

0.0314 

0.0070 

0.0826 

0.0213 

0.0051 

0.1806 

0.0415 

0.0091 

0.0888 

0.0225 

0.0053 

0.0 

U E
fit

C )
Q 

[kcal/mole] 

0.0804 

0.0219 

0.0055 

0.1457 

0.0323 

0.0070 

0.1160 

0.0280 

0.0064 

0.1686 

0.0346 

0.0072 

0.1332 

0.0304 

0.0067 

0.0845 

0.0227 

0.0056 

0.1857 

0.0375 

0.0076 

0.0895 

0.0235 

0.0057 

0.071 

ΔΕ
 d ) 

empirical 

Q 
[kcal/mole] 

0.0626 

0.0172 

0.0043 

0.1207 

0.0264 

0.0056 

0.0936 

0.0225 

0.0051 

0.1460 

0.0289 

0.0059 

0.1124 

0.0252 

0.0055 

0.0669 

0.0179 

0.0045 

0.1586 

0.0311 

0.0062 

0.0720 

0.0188 

0.0046 

0.20 

empirical 

© 
[ kcal/mole] 

0.0600 

0.0166 

0.0041 

0.1226 

0.0264 

0.0056 

0.0926 

0.0222 

0.0050 

0.1542 

0.0296 

0.0059 

0.1162 

0.0254 

0.0055 

0.0650 

0.0175 

0.0043 

0.1656 

0.0317 

0.0062 

0.0711 

0.0185 

0.0045 

0.21 

82 



a) The orientations £,»£„ of the molecules are indicated schemati­

cally in fig. 4. 

b) From ab initio calculations in the multipole expansion (see text) 

using the non-empirical mean energy approximation with basis set 

D (see ref. 39, formulas 4 and 5). 

The induction energy is not tabulated since it is always smaller 

than the dispersion energy by a factor of 35 or more. 

c) Atom-atom fit for R = 12, 13, ... , 19 bohr as described in the 

text. 

d) From Williams [ 28] . 

e) From Williams [ 29] . 

f) The root mean square relative deviation σ is defined as in table 

2, for R = 12, 13, ... , 19 bohr (Ν = 64). 
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2_. Analytic fit by atom-atom potentials 

A Fitting_Erocedure_and_results 

Since the atom-atom potential model has been extensively ap­

plied (with empirical parameters) and since it is rather convenient 

for lattice dynamics calculations, we have chosen this model to fit 

our ab initio calculated interaction potential between two ethylene 

molecules. The interaction energy between two molecules, A and B, 

is written as: 

А В 
Σ Σ 

i j 

ΔΕ
Α Β
 = l t

 ч ц
 (4) 

with 

V,.(г..) = q.q. гТ^ - Α.. гТ^ + В.. ехр(-С.. г..) 
ІЗ ID 1 3 ID i: iD ID ID iD 

(5) 

where the first term in Vj . should account for the electrostatic 
iD 

energy between two atoms with net charges q. and q. at a distance 

r. ., the second term for the Iona range attractive interactions 
13' 

and the last term for the short range repulsions. At first, we 

have tried to fit the total first plus second order interaction 

energy by adapting all parameters at once, but as there is a high 

degree of correlation between the fit parameters we have used the 

following procedure. 

(i) The first order electrostatic energy as calculated in the mul­

tipele expansion, ΔΕ ' , for several conformations for R * 

12.0 to 22.0 a.u.(see table 1) is fitted by the term: 
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vl)' = W) *l] ( 5 a ) 

which contains the following fit parameters for every atom i: 

the charge q. 

the coordinates (х.іУ.) that fix the position of the charge 

i, which is displaced in the molecular plane with respect 

to the corresponding nucleus, (see fig. 1) 

Altogether, because of symmetry and charge neutrality, this yields 

4 independent fit parameters for the ethylene molecule. 

A model with the charges centered on the nuclei contains 

only one independent parameter, which could be fitted to the 

main component Q- . of the molecular quadrupole moment, for 

instance. Such a model could not correctly represent the elec­

trostatic interaction as a function of the molecular orienta­

tions, however [ 8] . The fit to the electrostatic interaction is 

much improved by the present 4-parameter model with the shifted 

charges (Table 1, fig. 2). A model with the charge centers dis­

placed from the nuclei is also physically reasonable, since it 

reflects the effects of the chemical bonding. 

We have chosen to fit only the long range part of the 

electrostatic energy, ΔΕ ' , which is nearly equal to ΔΕ ' 

for large R, because for shorter distance the "exactly" calcu­

lated behaviour of ΔΕ . could not be correctly represented 

elee. -' ^ 

by the point charge model. This is due to the penetration be­

tween the charge clouds: the deviation of ΔΕ ! .
 u
 „ from 

point charge 

ΔΕ
 l e c

 begins to occur at the same distance as the deviation 
between ΔΕ^. ' and ΔΕ

1
, '. . This penetration interaction is 

elee. mult.
 c 

a short range effect, it has about the same distance dependence 
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q = 0.1975 (0.9275,1.2335) 

(0.8308,1.0095)® 

U 
/ q^-0.527/» (0.,0.55ί,9) \ 

Fig. 1. Point charges (in unit charges) and coordinates (in A) in 

the ethylene molecule. The charges q' with positions (c'J 

and Cñy , which are shifted with respect to the nuclei 

(cj and (HJ , are obtained from the best fit of the long 

range electrostatic interaction in the dimer (see table 1 , 

fig. 2). The charges q on the nuclei fix the main compo­

nent of the molecular quadrupole moment, Q- η. 
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[kcal/mole]-
0.100 Electrostatic interaction, R=12 bohr 

t t t -
ι > < 

I - t I 

Fig. 2. Orientation dependence of the electrostatic interaction in 

the ethylene dimer (see also table 1); 

ab initio: calculated in the multipole expansion, 

ΔΕ (1) 

©
mult . 

: po int charges s h i f t e d from the n u c l e i 

(see f i g . 1) 

fit (2) : point charges on the nuclei 

empirical (2j : point charges from Williams |_29] 

The molecular orientations are indicated by giving two 

views of the dimer. For orientation II R is the distance 

between the molecular planes. 

87 



as ΔΕ . , and so we have added the difference (ΔΕ , 

exch.' elee. 
ÛEDoint charae^ t o t h e shol't ran'3e exchange repulsion, 
ΔΕ . [ 501 . The sum of these two "overlap" contributions exen. 

has been fitted with an exponential function (ii). 

The short range interactions arising from penetration, 

ΔΕ . - ΔΕ ' . , , and from exchange, ΔΕ '. , have been 
elee. point charge' ^ ' exch.' 

fitted by: 

V-rlap
 = B i j e x p (

_
C i j r i j ) (5b) 

The present results and, even more so, our previous ab initio 

results for smaller systems [24,51,52] which have been calcu­

lated for a wider range of distances, show that the short range 

interactions indeed display a nearly exponential distance de­

pendence. 

In fitting the orientational dependence of the short range 

interactions we have met the following problem, however. If all 

the parameters B
c c
, C

c c
, B

C H
, C

C H
, B

H H
, C

H H
 in the atom-atom 

potential of type (5b) were freely varied to obtain the best 

fit to the ab initio short range repulsion calculated for 8 

different orientations and 2 or 3 distances of the molecules in 

the ethylene dimer, we obtained several results with small nume­

rical deviations but with quite unphysical interaction parameters. 

An example is shown by the fit (5) in fig. 3 which has a much 

smaller mean square deviation (see table 2) from the ab initio 

results than the final fit described below. The carbon-hydrogen 

repulsion is absent in this fit (B̂ u = 0)# however, and its 



[kcal/mole] 
50 

4.0 

3.0 

2.0 -

1.0 -

0.0 

Short range interaction, R = 8 bohr 

empirical (2) ! 

ι t t w 

t w î ^ 
>-< 

>4>-< 

M 

— >-4 

Fig. 3. Orientation dependence of the short range repulsion in the 

ethylene dimer. (see also table 2); 

ab initio: calculated "exactly", ΔΕl
 ' - ΔΕ

(
 ' (see text) 

0 fit 

it© fi 

empirical 

empirical 

atom-atom potential with averaging constraints 

for the C-Η parameters 

atom-atom potential without averaging con­

straints 

1
l) : atom-atom potential from Williams |_28] 

T ) : atom-atom potential from Williams \_2э2 

The molecular orientations are indicated as in fig. 2. 
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application to the lattice structure optimization and the pho-

non calculations yielded quite unrealistic results. We have 

tried, without success, to avoid this problem by taking a 

different form of the atom-atom repulsion, e.g. r , or by 

shifting the atomic force centers away from the nuclei to the 

charge centers from fit (i). 

We explain this problem as follows. The true interaction 

potential between the molecules does not have the atom-atom 

model potential form; it will include non-central forces be­

tween the atoms as well as non-additive three-atom and higher 

interactions. This is illustrated by the results in table 2 

where we see, for instance, that the carbon-carbon repulsions, 

which are the ones with the longest range, actually have a 

smaller exponential decay for the geometries I and II than for 

other geometries. The exponent C c c , if it were only fitted to 

the results of geometries I and II, would have a value 2.95Ä 

This particular effect is caused, we think, by the relatively 

diffuse carbon π-electron clouds. As a result of such effects 

there is probably a sizable deviation between any atom-atom 

model potential and the true potential. Fitting the potential 

parameters for a limited set of dimer geometries it may be pos­

sible to obtain smaller deviations but this will not give a 

better atom-atom potential (for arbitrary other geometries). 

Therefore, in using a restricted set of ab initio results, as 

we have done, one must be very careful in fitting . 

We have used the following procedure: the hydrogen-hydro­

gen repulsion parameters, В and С , were obtained from the 
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the difference in interaction energy between geometries V and 

VI and from the difference between VII and VIII,which are both 

caused mainly by the hydrogen contacts. The agreement between 

these two results is good. Then we have fitted the carbon-carbon 

repulsion parameters (B and С ) to the ab initio results for 

^ cc cc 

all orientations while the carbon-hydrogen parameters were con­

strained to be averages: 
B
CH

 = (B
CC * ' W 

C
CH = <

C
CC

 + C
H H

) / 2 

and the hydrogen-hydrogen parameters were kept fixed. For this 

fit we have used the results at the shortest two distances where 

the ab initio results for the exchange and penetration interac­

tions are expected to have the highest relative accuracy. Al­

though the mean square deviation is considerably larger than 

the value for the best unrestricted parameter fit, we think 

that the present fit gives a better representation of the real 

interaction potential and that the resulting errors are mainly 

inherent to the atom-atom potential model. Trying to improve 

on this model would augment the number of parameters consider­

ably and would require a much larger set of ab initio results 

to make a reliable fit of these parameters. 

(iii) The second order dispersion attraction was fitted by an 

atom-atom potential: 

yrdisp · „ -6 ,[. . 
V
ij

 P
 - -

 A
ij

 r
ij

 ( 5 c ) 
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It has appeared already in ref [ 8] that the first two multipole 

— 6 _ Q 
terms -C,R -C

Q
R in the dispersion energy between two ethy-

b о 

lene molecules could be rather well represented, for several 

molecular orientations, by an atom-atom potential of the r 

type. This is confirmed by the present results shown in table 

3 and fig. 4. If we choose the three parameters A , A 

CC CH 
and A independently they show a rather high correlation, 

HH 

i.e. almost equally good fits can be obtained for quite dif­

ferent combinations of the parameters. Therefore, we have 

applied the constraint A = (A _ . A ) which can be justi-

CH CC HH 

fied by theoretical arguments and which has also been used in 

deriving most of the empirical parameter sets. This constraint 

hardly affects the quality of the fit and it gave much better 

defined values of the two independent parameters. 

From the results in table 3 it is evident that the fit 

between the atom-atom potential and the ab initio dispersion 

energy becomes worse for very large distances: the atom-atom 

interaction energy between the molecules is not sufficiently 

anisotropic for large R. This defect of the r atom-atom po­

tential is easily explained by making an expansion of the r 

atom-atom interaction energy around the molecular centers of 

mass. The leading term in this expansion is an isotropic R 

interaction between the molecules, while the exact coefficient 

C, for the interacting molecules depends on the molecular 

orientations. 

The second order induction interactions have been neglected 

in the fit for reasons explained in section 4. 
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Fig. 4. Orientation dependence of the long range dispersion inter­

actions in the ethylene dimer (see also table 3); 

calculated in the multipole expansion, ab initio 

fit© 

empirical 

empirical 

ΔΕ 
(2) 
mult. 

: atom-atom potential (with averaging con­

straint for the C-Η parameter). 

^l) : atom-atom potential from Williams |_283 

2) : atom-atom potential from Williams |_293 
The molecular orientations are indicated as in fig. 2. 
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The set of parameters in the atom-atom potential (l) 

which have been obtained from the fits (i), (ii) and (iii) 

are collected in table 4. For comparison we have also listed 

two of the most frequently used empirical parameter sets for 

hydrocarbons, one without electrostatic interactions and one 

including these, which were both proposed by Williams [28,29] . 

The overall quality of the fit appears from tables 1, 2 and 

3, whereas the ability of the fitted and empirical atom-atom 

potentials to represent the orientational dependence of the 

interaction energy is illustrated by figs. 2, 3 and 4. 

В Conclusions 

he conclude that the long range electrostatic and dispersion 

interactions (i) and (in), are very accurately fitted by the atom-

atom potentials. Ihe quality of fit (i) is definitely lower for some 

orientations if the point charges were constrained to be at the nu­

clear positions. The fit (in) becomes slightly worse for very large 

R due to the incorrect asymptotic behaviour of the r atom-atom 

potential. The fit of the short range overlap repulsion (il) shows 

a significantly larger mean square deviation than the long range fits. 

This must probably be assigned to the deviations of the exact inter-

molecular potential from a central atom-atom potential due to the 

effects of chemical bonding. Considering the large overlap between 

chemically bonding atoms the importance of such effects on the inter-

molecular overlap repulsion is not surprising ( 53] . 

For some orientations (with relatively small repulsion) the 

atom-atom potential deviates by a factor of 2 from the ab initio 

94 



TABLE A Potential parameters 

Parameters 

В 

t kcal/mole] 

С 

[A"
1
] 

A 

[kcal дб 
1
 mole ' 

q 

[unit charges] 

C-C 

C-H 

H-H 

C-C 

C-H 

H-H 

C-C 

C-H 

H-H 

с 

H 

ab initio fit 0 

27116 

6378 

1500 

3.16 

3.43 

3.70 

876 

132 

20 

*) 
-0.5274 ' 

+0.2637 *' 

empirical 

83630 

8770 

2650 

3.60 

3.67 

3.74 

568 

125 

27.3 

-

-

© empirical '̂2 

71461 

14316 

2868 

3.60 

3.67 

3.74 

449.3 

134.3 

40.15 

-0.24 

+0.12 

With the charges shifted from the nuclei (see fig. 1); from 

the fit (f) with the charges on the nuclei we find 

q
r
 = -0.3950, q

H
 = +0.1975. 
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result. If we consider the very pronounced anisotropic character 

of the short range repulsions, however, (a factor of 50 difference 

AB 
in ΔΕ for different orientations at the same R), as well as their 

AB 
strong distance dependence (a large deviation in ДЕ corresponds 

with a small shift in R), we may still say that the atom-atom po­

tential gives a reasonable description of the short range repulsion. 

About the empirical atom-atom potentials we can make the fol­

lowing observations. Although the individual parameters A _ and A,.
H 

are different [ 54] , the total atom-atom interaction for the disper­

sion energy is in remarkably good agreement with the ab initio result, 

yielding a nearly constant fraction of 80% of this result for dif­

ferent orientations. The remaining difference of 20% can have sev­

eral reasons, but it may be due also to the inaccuracy of the ab ini­

tio result for the dispersion energy, which has been computed in 

the multipole expansion only (see section 2). For the short range 

repulsions the most striking difference is the longer range (smaller 

exponent) of the C-C interactions in the ab initio calculations 

(C-- = 3.16Λ ). The empirical exponent of 3.60Ä was found from 

the layer spacing and compressibility of graphite [ 55] and was fixed 

while the other parameters, A and B, were empirically optimized [ 2] . 

In relation to this ab initio result, it is interesting that Williams 

has observed [ 2] that the substitution of optimized A and В parameters 

into the graphite calculation [ 55] would have yielded an exponent 

of 3.20A
_1
 or 2.94A

_1
. Ke ascribes this to the "softness" of the 

Ti-electron clouds, which is confirmed by our ab initio calculations 

(the fit of C-p on the ir-stacked geometries I and II yields a value 

of 2.95Л ). The exponent for the K-Η repulsion is in very good agree-

96 



ment. Although the deviation between the theoretical and the empiri­

cal atom-atom repulsions is definitely larger than for the dispersion 

attraction, the strong anisotropy in the short range repulsion is 

still rather well represented by the empirical potential. The 

electrostatic interactions are not well represented by the empirical 

atom-atom potentials. In most empirical parametrizations, e.g. in the 

first Williams' potential in table 4, they are simply omitted. In 

some other parametrizations (the second Williams ' potential in our 

table 4) they are included, and it has recently been argued [ 20] 

that this considerably improves the calculated results for the lat­

tice structure and the phonon frequencies. Etili, the charges in the 

empirical models are much smaller than the values from our theoretical 

atom-atom potential and this will lead to an underestimate of the 

electrostatic (mainly quadrupole-quadrupole) interaction. Probably, 

this lack of electrostatic interactions between the molecules is 

implicitly corrected for by the adjustment of the other empirical 

parameters. 
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4. Lattice dynamics calculations on the ethylene crystal 

Before using the intermolecular potential derived from dimer 

calculations in the crystal we must consider the problem of addi-

tivity of the interactions between molecules (which may still hold 

even if the additivity assumption does not hold for the atom-atom 

potentials). The electrostatic interactions are exactly palrwise 

additive. For the exchange interactions between molecules the many-

body components are expected to be small [ 56] because the intermo­

lecular overlap is quite small. For the dispersion forces the most 

important many-body component is the Axilrod-Teller or triple-dipole 

energy which is also small compared with the pair energy [ 57] . The 

only component in the first and second order interaction energy 

for which pairwise additivity does not even hold approximately is 

the induction energy. This energy is already very small in the 

ethylene dimer, however, relative to the other terms and we can 

expect it to be even smaller in the crystal, because there each 

molecule is surrounded by a more symmetric environment. Therefore, 

we can safely neglect the induction energy in our calculations for 

the ethylene crystal and assume pairwise additivity for all other 

interactions. 

The precise structure of the ethylene crystal is known only 

recently from X-ray [ 58] and neutron [ 59] diffraction. Both for 

normal ethylene and for the completely deuterated substance the 

symmetry group is the monoclinic space-group P2^/n (C-, ), with 

two centrosymmetric molecules in the unit cell (fig. 5). For a long 
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Fig. 5. Structure of the ethylene crystal, symmetry Р2../П {Z = 2) 
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time, there has been some uncertainty regarding the positions of 

the hydrogen atoms, i.e. about the rotation of the molecular plane 

around the C-C axis. From the older X-ray data [60] and simple 

packing considerations two crystal structures appeared possible, 

which are both in agreement with the measured IR spectra [61] and 

which differ only in that the two molecules in the unit cell are 

tilted in the same or in opposite sense around their C-C axes, thus 

leading to a screw-axis in the a or b direction, respectively. 

Actually, several lattice dynamics calculations [33-36] with empiri­

cal atom-atom potentials were performed in an attempt to settle 

this problem. 

In our lattice dynamics calculations we have assumed the fa-

structure, which proved to be the correct one [58,59]. As a first 

step, which is theoretically required [ 6 2] but which is often not 

made in practice, we have optimized the 7 structural parameters 

(the unit cell dimensions a, b, с and the angle β and the 

angles ζ, η, ζ describing the molecular orientation) for the given 

potential. This optimization was carried out by minimizing the 

lattice energy with respect to all 7 parameters simultaneously, 

using the procedures contained in the MINUIT program package [63] 

(with repeated checks that the minimum obtained was really the abso­

lute one). The lattice sum was taken over 42 neighbouring molecules 

[64], after checking that the inclusion of further shells did not 

influence the results anymore (except, slightly, the total cohesion 

energy). The structural data are listed in table 5. Then, the force 

constants were evaluated and the dynamical problem was solved in the 

harmonic approximation: 
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2 6 
Σ Г 

σ·=1 β=1 
^ ' ( q ) - ω

2
(5.1) M

a e
 δ

σ σ 1 (6) 

The tensor M contains the molecular mass (M 
α β 

Μ δ
α ρ
 for α,β = 1, 

2, 3) and the moments of inertia (M = I for a, 6 = 4 , 5, 6), 
ap a—j

 r
 p~3 

The dynamical matrix is given by; 

Ό1ΐ& = τ φ

0 β 
ар ., op 

ç;:).-!!.«!·^·: 

and the force constants : 

42 

*αβ \a a') 
ΛΑ 

Эи°(Я) 3u° (1·) 
Ο ρ 

have been evaluated at the equilibrium positions of the molecules 

found from the energy minimization. The indices 

σ,σ' label different sublattices, 

1,1' label different unit cells, 

α,β = 1, 2, 3 denote translational coordinates (x, y, ζ), 

α,β = 4, 5, 6 denote rotational coordinates (0 , θ , Θ ). 

χ у ζ 

The quantities ü)(q,j) are the phonon frequencies for the given wave 

vector q and branch j. All calculations were carried out in an ortho-

gonal fixed frame a, b, с . For details of the formalism we refer to 

the review paper by Venkataraman [6 2] . 

We expect that the effect of anharmonic corrections is not 

very large for ethylene since the temperature effect on the IR spec­

tra 166] is small (for 10
O
K < Τ < 65

0
Κ). Actually, we have studied 

this effect in a self-consistent phonon calculation [ 67] , using an 

empirical potential. Also the other approximation which is inherent 
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TABLE 5 Lattice dynamics of the C^Hr crystal 

potential: experiment ab initio fit(j) empiricalQ) 
Ъ) 

empir ic i c a l @ C' f i t 0 w i t h q=0 d ^ fit(2) 
e) 

unit cell 
f) 

f) 
molecular 

orientation 

elfi 
ЫА] 

c[A] 

Й degrees] 

ξ[ degrees] 

η[ degrees] 

1*.626 

6.620 

It.OÔT 

9h.h 

-21.0 

- 1 4 . 6 

ζ[ degrees] - З ^ . З 

1*.730 

6.205 

U.005 

88.5 

-31.7 

- 9 . 3 

- 3 1 . 3 

I*.856 

6.3l<2 

3.832 

96.8 

-36.2 

-5 .0 

-27 .8 

lt.726 

6.1*35 

Ь.ІЗЗ 

9І*.0 

-27.0 

- 1 1 . 7 

- 3 1 . 8 

it.eui» 

6.516 

3.886 

99.0 

-зил 
- 7 . 1 . 

- 2 8 . 7 

І4.763 

5.990 

U.13B 

8 8 . 1 

-26.3 

-8 Л 

- 3 1 . 8 

s h o r t range 
cohes ion 

\ d i s p e r s i o n 
energy 
[ kcal/mole] 

e l e c t r o s t a t i c 

t o t a l M 

-u. eu 
8.89 

1.1*1 

5.U6 

-3.1*2 

7.U6 

0 

U . o U 

-3.08 

6.58 

0.42 

3.92 

- 3 . 8 8 

8.16 

0 

4.28 

-4.93 

8.87 

I.69 

5.63 

I R h ) 

ω [ cm ] 

Raman 

ω [ cm ] 

( 1 . 0 7 ) 

73 

110 

73 

90 

97 

57 
( 1 . 0 5 ) 7 3 ( 1 . 0 7 ) 

( 1 . 0 6 ) „ , , ( 1 . 0 7 ) 
9h " 

( 1 . 2 2 ) Ç | ( 1 . 2 2 ) 

( 1 . 2 0 ) g ] / 1 . 2 2 ) 

( 1 . 2 4 ) β 7 ( 1 . 1 7 ) 

75 

94 

126 

501 

Во' 

ios' 

1.07) 

1.07) 

1.07) 

1.21) 

1.19) 

1.20) 

„ , , ( 1 . 2 0 ) , 3 , ( 1 - 1 8 ) , 5 7 ( 1 · ^ ) ι 

167 

177 

( 1 . 3 6 ) 1 β , ( ΐ · Μ > 

( 1 . 3 1 ) г і ^ і - ^ о ) 
196 

249 

I .Ul) 

ι .4 ι ) 

50 

60 

90 

51' 

74' 

831 

02 

156 

139 

1.07) 

1.07) 

1.07) 

1.21) 

1.18) 

1.21) 

1.17) 

1.4ο) 

1.41) 

6ο 

67 ' 

115 

55' 

87' 

ιοοι 

114 

183' 

19з' 

1.07) 

1.07) 

( 1 . 0 7 ) 

( 1 . 0 7 ) 
63 

75 
1.07) , 0 8 ( 1 . 0 7 ) , , 3 

1.20) „ ( 1 . 2 2 ) 

1.07) 

1.07) 

1.07) 

59 

96 

132 

( 1 . 0 7 ) 

( 1 . 0 7 ) 

( 1 . 0 7 ) 

1.17) 

1.21) 

59 38 

8 9 ( 1 · 1 9 ) 79 

9 4 ( 1 · 2 0 ) 90' 
1.18) , 2 8 ( 1 . 1 8 ) , 3 , 

1 . 4 1 ) 1 Л 5 ( 1 . 4 0 ) 1 б з , 

1 . 4 1 ) , . 7 , ( 1 . 4 0 ) 1 7 0 Ι 

1.21) 

1.18) 

1.18) 

ι .4ο) 

23 

89 

99 

139 

52 

66 
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1 · 2 2 ! U 6 ( l . 2 1 > 56* 

76 ( 

82 ( 

ЮЗ* 

ι4ο 
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( 1 . 2 0 ) 

( 1 . 3 3 ) 

( 1 . 3 5 ) 

1 - U 1 ) 1 4 4 ( 1 · 2 5 ) 142 ( 

1.07) 

1.07) 

1.07) 

1.20) 

1.18) 

1.21) 

1.18) 
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1.41) 
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75 

93 
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72 
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a) Best atom-atom fit to the ab initio potential. 

b) From Williams |~283l · 

c) From Williams |~293 . 

d) Potential from ab initio fit M j with the electrostatic (point 

charge) term omitted. 

e) Atom-atom fit with the point charges on the nuclei. 

f) Experimental results from ref. 58 at Τ = 85 К. 

The angles ξ, η, ζ describing the molecular orientation are 

defined as follows: Start with the molecule lying in the ac* 

plane, the C-C axis along the a-axis, and rotate by ξ, η, ς 

about the a, b and c* axes, respectively. 

g) Experimental result from ref. 69, corrected for the zero point 

vibrational energy (0.5 kcal/mole, from ref. 67). 

h) Experimental frequencies from ref. 66 at Τ = 20 К. 

i) Experimental frequencies from ref. 35 at Τ = 30 К. 

The number in parentheses denotes the isotope ratio
 ш
с?Н4

/
'

ш
С?04· 

The calculated frequencies in the first column have been obtained 

from the dynamical matrix at the experimental geometry, those 

in the second column at the equilibrium geometry for the given 

potential (Except for the fit M ) with q = 0, where the first 

column was calculated at the equilibrium geometry for the full 

fit (T) potential.). 
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in the present formalism, the rigid molecule approximation, is 

expected to hold rather well for ethylene since the lowest internal 

vibration mode lies at a frequency of 810 cm [ 35] , far above the 

lattice modes. 

We have performed the calculation of the IR and Raman fre­

quencies u)(q=0) both for normal C-Η. and for C.D in order to look 

at the isotopie shifts in the Raman spectrum; the phonon dispersion 

curves have been calculated for C.D (fig. 6) since inelastic neutron 

scattering experiments can be expected in the near future I 68] . For 

comparison with other lattice dynamics calculations on ethylene 

which have not optimized the structure parameters for the atom-

atom potential used, we have also performed some calculations of the 

phonon frequencies in the experimental [58] structure. 

The results for the theoretical atom-atom potential are listed 

in table 5, together with the results for the two empirical Williams 

potentials from table 4. Since these empirical potentials neglect or 

undervalue the effect of the electrostatic forces, we have studied 

the effect of these forces by performing a calculation with the 

theoretical atom-atom potential without the electrostatic (point 

charge) interactions (with or without reoptimizing the crystal struc­

ture) . Also we have carried out phonon calculations using the theo­

retical potential with the atomic charges centered on the nuclei . 

В Conclusions 

The structure of the ethylene crystal calculated with the in­

teraction potential from ab initio calculations is in rather good 

agreement with the experimental structure [ 58] . The lattice cohesion 
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energy is just slightly too high [ 69] . The frequencies of the 

lattice modes agree reasonably well with the IR and Raman data 

[66,35]. Particularly we find, in accordance with the experimen­

tally observed isotope shifts in the Raman frequencies that the 

two highest frequency modes correspond with librations of the mo­

lecules around their C-C axes. 

The theoretical model potential with the atomic charges cen­

tered on the nuclei , besides making a less good fit to the ab ini­

tio electrostatic interaction, also behaves considerably worse in 

the lattice calculations. 

When comparing with the results for the empirical potentials 

we observe that the latter are still giving better crystal proper­

ties, especially the second Williams potential which comprises an 

electrostatic term. We must keep in mind, however, that part of 

these properties (the structure and the cohesion energy for a 

series of related hydrocarbons), have actually been used for para­

metrizing these potentials, whereas the other properties, the pho-

non frequencies, are strongly related with the criterion used for 

optimizing the empirical parameters [ 30] (the minimization of the 

forces on the molecules for the experimental crystal structure). 

The latter relation is confirmed by Williams' recent conclusion 

[30] that the inclusion of the phonon frequencies in the parametri-

zation of the empirical atom-atom potentials hardly changes the po­

tential obtained from the static crystal properties. The ab initio 

potential has not been adapted to any empirical data and, therefore, 

we can consider the agreement with the experimental crystal proper­

ties as very satisfactory. 

The omission of the electrostatic (point charge) interactions 
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Fig . 6a 

x [S.o.oJ г [ο,ξο.] γ 
05 (H 0.3 02 01 0 01 02 03 0 4 05 

Γ [Ο,Ο,ξ] Ζ 

О 01 02 03 Oí, 05 

106 



F i g . 6b 

X [W] Γ [Ο.ξ.0] Y 
OB Oí, 03 02 01 0 01 02 03 0¿ 05 

f [o.o. ξ] ζ 
О 01 02 03 Oí, 05 

Fig. 6. Phonon dispersion curves in C2D4 for q along the Χ (= a*), 

Y (= b* = b) and Ζ ( = с*) directions in the ethylene crys­

tal. 

a. Calculated with the ab initio atom-atom potential, 

- fit © . 
b. Calculated with the atom-atom potential, empirical 

(Τ) , from Williams |~293 . 

For each potential the crystal structure is relaxed to 

equilibrium (within the given symmetry) before calculating 

the dynamical matrix. The crosses at the Г-point (q = 0) 

indicate the experimental results from IR (u) and Raman 

(g) spectroscopy. 
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from the ab initio potential has a distinct (lowering) effect on 

the phonon frequencies, in particular for the higher librational 

modes. This is quite understandable in view of the strong orienta-

tional dependence of these interactions. It is typical that the 

empirical potentials which underestimate or even neglect these 

(mainly molecular quadrupole-quadrupole) interactions still yield 

the correct magnitude for the phonon frequencies. This could be 

caused by a slight adaptation of the empirical parameters in 

the short range repulsions. If such potentials are used for 

the calculation of (macroscopic) properties which are dependent on 

the long range anisotropy of the interactions between the molecules 

this could lead to serious errors. 

While we have found that the empirical potentials are in 

reasonable agreement with the ab initio calculations, except for 

the electrostatic contribution, we can also conclude that further 

parameter optimization of the (empirical) atom-atom potentials for 

the hydrocarbons, taking into account even more experimental solid 

state data, is probably not meaningful. We think on the basis of 

our ab initio results that remaining discrepancies between calcula­

ted and experimental crystal properties are due to the deficiencies 

of the atom-atom model. Possibly the use of other data, from beam 

scattering,relaxation measurements or Van der Waals molecules, 

could support our conclusions about the importance of electrostatic 

interactions. 
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Dynamical and optical properties of the ethylene crystal; 

self-consistent phonon calculations using an "ab initio" 

intermolecular potential 
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Abstract 

Using an intermolecular potential from ab initio calculations,we 

have calculated the structure and solved the lattice dynamics problem 

of the ethylene crystal in the self-consistent phonon formalism. The 

anharmonic effects, as included by this formalism, systematically 

improve the optical mode frequencies, in comparison with experiment, 

but the corrections to the harmonic frequencies are still substantial­

ly too small. The crystal structure and its pressure dependence are 

well represented. From the phonon polarization vectors we have also 

evaluated the Raman scattering and infrared absorption intensities of 

the optical modes, applying a scheme which takes into account the 

mutual polarization of the molecules (the "local field corrections"). 

The Raman intensities agree quite well with experiment, the infrared 

intensities are less realistic, probably due to the neglect of inter­

molecular overlap effects in the intensity calculations. Using an em­

pirical atom-atom potential for hydrocarbons instead of the ab initio 

potential, the assignment of the optical lattice modes by their calcu­

lated frequencies was not fully consistent with the Raman intensity 

ratios obtained from their polarization vectors. 
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1. Introduction 

As a first step in any lattice dynamical study which is not pure­

ly phenomenological the potential of the solid must be defined. To 

date, practically all calculations on molecular crystals have used 

simple empirical intermolecular potentials, mostly of the atom-atom 

type [1-3] (pairwise additive isotropic interactions between the 

atoms in different molecules), with parameters fitted to the experi­

mental data. The lattice dynamics is usually treated in the harmonic 

approximation; sometimes [3-5) , the calculated phonon frequencies are 

included in the optimization of the (atom-atom) potential parameters. 

The danger of such treatments is that possible deficiencies in the 

model potential and in the dynamical model are blurred: the fit of 

the parameters to the experimental data may (partly) compensate 

these deficiencies. 

In the present study of the ethylene crystal we have tried to 

improve on the usual treatments in three ways. In the first place, 

we have used an intermolecular potential derived from ab initio cal­

culations [6-9], with no empirical fit parameters. The crystal lat­

tice structure calculated with this potential agrees well with ex­

periment. When used in a harmonic lattice dynamics calculation the 

potential has yielded fairly good phonon frequencies also [6], al­

though the best empirically fitted potentials match the experimental 

data still somewhat better. Part of the remaining discrepancies may 

originate from the harmonic model, however, and the second character­

istic of the present study is that we have used the self-consistent 

phonon method [ 10] in order to correct for the effects of anharmoni-

city. Thus, the importance of these effects can be assessed and the 

temperature and pressure dependence of the crystal properties can 

be calculated and compared with experiment. The third point con­

cerns the assignment of the phonon modes. The optical modes (wave 

vector 2 = 0 ) can be observed by IR and Raman spectroscopy. The 

(symmetry) character of these modes is not usually measured, however, 

except for the distinction between g and u modes in centrosymmetnc 

crystals,which modes are Raman and IR active, respectively. So, if 

only the frequencies of these modes are obtained from lattice dy­

namics calculations and compared with optical spectra, the agreement 

may seem reasonable but some of the modes may be interchanged. More­
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over, the frequencies, i.e. the eigenvalues of the dynamical problem, 

may depend less sensitively on the potential than the corresponding 

eigenvectors. Therefore, we have provided addjtional information by 

calculating also the intensities of the optical modes, wnich depend 

on the phonon eigenvectors. For this purpose, we have applied a for­

malism for the Raman and IR intensities in molecular crystals [11,12] 

which explicitly includes the (electrostatic) long range interactions 

between the molecules. 

2. Methods and potential 

2.1. Intermolecular_gotential 

The ab initio calculations leading to the ethylene-ethylene po­

tential used in the present studies have been reported in a previous 

paper [6], as well as the fitting procedure which yields the para­

meters in the analytical representation of the results. This analy­

tical representation has the form of a pairwise additive isotropic 

atom-atom potential with distance dependent functions of the exp-6-1 

type, just as some of the empirical hydrocarbon potentials [2,3] (a 

Buckingham exp-6 potential, supplemented with Coulombic interactions 

between atomic point charges). The "atomic" point charges have been 

shifted away from the nuclei, however, since this yields a much bet­

ter representation of the ab initio calculated (long range) electro­

static interaction between the molecules. The coefficients of the 

r attractive terms have been obtained by fitting r attractions 

between the carbon and hydrogen atoms (C-C,C-H and H-Η) to the 

(long range) anisotropic dispersion interactions between the mole­

cules (from ab initio calculated multipole expansion coefficients 

[8]). The repulsive exponential terms represent the overlap inter­

actions obtained from an ab initio calculation of the (first order) 

interaction energy between two ethylene molecules which includes 

these overlap (charge penetration and exchange) effects by retaining 

the exact intermolecular interaction operator, instead of its multi-

pole expansion, and using wave functions antisymmetnzed over the 

dimer. The resulting repulsive interactions indeed fall off exponen­

tially with the intermolecular distance. The induction (multipole-

induced multipole) interactions are very small [8,9] and, since 

these would yield the dominant three-body contributions [13,14],we 
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can expect the ethylene crystal potential to have small deviations 

from pairwise (molecule-molecule) additivity [15,16] (a few percent 

of the binding energy, at the Van der Waals minimum). 

The ab initio data [6] have been calculated for eight different 

orientations of the ethylene molecules and several intermolecular 

distances. For the long range r interactions the atom-atom model 

works very well (if the "atomic" charges are shifted); the fit of 

the overlap (exponential) terms is somewhat less good, but the 

onentational and distance dependence of the ab initio potential is 

reasonably well represented. The parameters determining the analyti­

cal "ab initio" potential are collected in table 1, together with 

the parameters in a recent hydrocarbon atom-atom potential [ 2] fit­

ted to the experimental data. In ref. [6] we have seen that the 

most striking difference between the ab initio potential and va­

rious empirical hydrocarbon potentials [2,3] is that the latter 

substantially underestimate the electrostatic multipole-multipole 

interactions between the C-,Η. molecules. 
¿ 4 

2.2. Self-consistent_ghonon_method¿_imglementation_for_moleçular 

cristaIs 

The self-consistent phonon (SCP) formalism for lattice dyna­

mics calculations has been developed for applications to the light 

rare gas crystals (helium, in particular) which have anharmonic 

interaction potentials in combination with relatively high zero-

point vibrational energies [ 10] . The formalism starts from the 

following dynamical eigenvalue equations, just as the harmonic 

model: 

D(a) e(2) = ш
2
(

а
) M e(a) (1) 

where the tensor M contains the masses M of the atoms in each sub-

lattice σ : 

С '
 = Μ σ ά

σσ'
δ
αβ

 ( α
'

β
 =

 χ
'*

 o r z ) ( 2 ) 

The eigenvalues ω (cjl and eigenvectors e (cj) are the frequencies 

and polarization vectors of the phonon modes with wave vector <j. 

In the harmonic approximation D is the Fourier transform of the 
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Table 1 

Parameters of the atom-atom potentials used for ethylene (C_H.) 
a) 

V(r ) = -A .r 
JO 

.r . + В . exp(-C r ) + q q.r 
D i] i] ^

v
 i] 13'

 4
i^] i; 

Parameters Ab initio potential [ 6] Empirical potential [ 2] 

A C-C 

[ k c a l A m o l e - 1 ] C-H 

H-H 

876 

132 

20 

449.3 

134.3 

40.15 

[kcal mole ] 

[A"
1
) 

[unit charges] 

C-C 

C-H 

H-H 

C-C 

C-H 

H-H 

с 
H 

27116 

6368 

1500 

3.16 

3.43 

3.70 

-0.5274
1 

+0.2637
1 

b) 

Ь) 

71461 

14316 

2868 

3.60 

3.67 

3.74 

-0.24 

+0.12 

a) atomic coordinates 

(in molecular frame) 

C: (±0.6685, 0.0 , 0.0)A 

H: (±1.2335,±0.9275, 0.0)A 

b) "atomic" charges shifted 

to positions: C : (±0.5549, 0.0 , 0.0)A 

H': (±1.0095, ±0.8308, 0.0)A 
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force constant matrix £: 

Da

al'ig) = Σ Ф а е ' и ) e x P l 1 a - S ^ ) ] (3> 

where the force constants are the second derivatives of the potential 

for the equilibrium structure of the crystal; RiSL) is the direct lat­

tice vector of the unit cell Í.. In the SCP method the force constants 

are replaced by effective force constants which are derived [ 10] by 

minimizing the quantum statistical expectation value of the free ener-

gy,F,of the system, i.e. the canonical ensemble average of the "exact" 

anharmonic potential V over the harmonic oscillator states: 

F = Σ [0"1
ln{2 sinh ^βω (g.)} - h ω iq) coth ^βω^)] 

+ ^N Σ <V(R . il) + u . il))) (4) 

R^.U) ~αα 

The vector R . il) is defined as R , il) = RU) + R , - R where R„ 
—σσ —σσ ' — —σ —σ —σ 

is the vector joining the origin of the unit cell with the σ sublat-

tice. The relative atomic displacements are u .(î.) = u , il) - u (0) 
c —00 —o —o 

and the vectors u (Î.) denote the displacements of the σ atoms in 
—σ 

unit cell I, relative to their equilibrium positions, R(i,) + R . The 

temperature enters into the formalism via the quantity S = h/кТ. The 

minimization of expression (4) with respect to the effective force 

constants £ leads to the following expression for these force con­

stants : 

С " ' "
5
 =

 < V
a

 4 l ' V (
5aa'

( i ) +
^ a -

( i ) ) > ( 5 ) 

This means that the second derivatives of the potential V have now 

to be averaged over the relative atomic displacements u , il). The 

averaging of any quantity Q, whether it is the potential in equation 

(4) or its second derivatives in equation (5), can be expressed by 

means of the displacement-displacement correlation function Xt 

< Q ( R a ; J , U ) + u o a , («·))> = ( 2 ι τ ) " 3 / 2 [ d e t f X ) ] " ' 5 

ƒ du 0 ( £ σ σ , («·) + u) e x p t - b u λ - 1 u) (6) 
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These functions λ̂  are given by: 

λ
αβ
(σ,σ\!1) =<[u

<jl
(4) - u

a
(0)] J u

a
, («-) -u

o
(0)]

3
> (7) 

and they can be calculated from the following expression: 

λ „Ισ,σ',ί,) = ^¡z Σ I 1 - cos g.R (I) ] ω (3) " 1
 coth ^βω (3) χ 

αρ cw j j 
3' J 

e
,<3)^ e^ajj' (8) 

where с is the light velocity, if e (3) is normalized as e (3).M. 

e (3) = 1. Since the expression (8) contains the eigenvalues and 

eigenvectors of the dynamical equation (1), the equations (1) to 

(8) have to be solved self-consistently. 

The first application of this formalism to molecular crystals was 

made by Raich et al. [17] for the α phase of solid N
2
. Actually, these 

authors treated the motions of the individual N atoms, which interact 

via an mtermolecular atom-atom potential and an intramolecular har­

monic or Morse type potential describing the N, stretch. Wasiutynski 

[ 18] has extended the formalism by considering explicitly the libra-

tional motions that occur in molecular crystals. In that case, one 

has translational displacements u = (x,y,z) and rotational displace­

ments u = ( , ,e ) of the (rigid) molecules; together these are 
x
 У

 z
 £

 r 

grouped in a six-dimensional displacement vector u = (u ,u ) = {u ; 

α=1,....,6}. Wasiutynski starts from the same dynamical equations (1), 

but the dimension of the problem is doubled, since the eigenvectors 

e (3) have librational components, e (3) for α = 4,5,6. The mass 

tensor (2) must be extended as follows: 

Μ σ . = 0 f o r α = 4 , 5 , 6 and β = 1,2,3 
OIR 

and f o r α = 1,2,3 and β = 4 , 5 , 6 (9) 

Μ σ

0 = Ι σ . . , f o r α = 4 , 5 , 6 and β = 4 , 5 , 6 
αβ α - 3 , β - 3 

where 1 is the moment of inertia tensor of the molecules in the 

σ sublattice (in the crystal system of axes) . The effective force 

constant matrix £, and its Fourier transform D, have mixed transla-

tional-rotational (tr and rt) and pure rotational (rr) elements, in 

addition to the pure translational (tt) elements given by eq. (5). 

Also the displacement-displacement correlation functions (7),(8), 

1. 1- 1 tt , tr , rt , , rr 

have such components λ ,λ ,λ and λ̂  
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For intermolecular potentials which consist of additive atom-

atom contributions (or interactions between generalized force centers 

on the molecules, such as the potential described in section 2.1), 

Wasiutynski has worked out the calculation of the effective force 

constants (5) in terms of the atomic displacement-displacement cor­

relation functions. These can be related to the molecular functions 

λ̂  ,λ ,λ and λ̂  by substituting into eq. (7) the following rela­

tion between atomic displacements u(m) and the rigid molecule transla­

tions u and rotations u : 

u(m) = иЬ
 + u

r
 χ R(m) (10) 

where R(m) is the position vector of atom m relative to the molecular 

center of mass. It must be realized, however, that eq. (10) and also 

the harmonic oscillator kinetic energy expression in terms of u = 

(θ ,θ ,θ ) are exact only for infinitesimal rotations u . So the SCP 

method, as generalized to molecular crystals by Wasiutynski [18] may 

be less effective in correcting the harmonic model for larger ampli­

tude anharmonic librations. Numerical calculations which have been 

carried out [ 19] on the ordered (a and γ) phases of solid N, (using 

an ab initio interaction potential [20] similar to the present one) 

confirm this observation. The SCP corrections for the translational 

mode frequencies lead to almost perfect agreement with experiment; 

the librational frequencies, especially at temperatures near the α-β 

phase transition, remain somewivat in error. 

Wasiutynski has applied this generalized SCP method to the cubic 

hexamethylene tetramine crystal with one molecule in the primitive 

unit cell [18j . The application of the formalism to the monoclinic 

ethylene crystal, space group P2 /n, with two molecules in the pri­

mitive cell, is rather straightforward. The integrations over the 

atomic displacements (6) which have to be made for the potential, 

in the free energy expression (4), and for its second derivatives, 

in the effective force constant matrix (5), have been carried out 

numerically by Gauss-Hermite quadrature [21], using 3 and 5 points, 

respectively. Non-diagonal terms in the displacement-displacement cor­

relation functions λ appear to be very small [18] ; when evaluating ex­

pression (6), the off-diagonal terms in λ̂  have been neglected. The 

Helmholz free energy (4), or the Gibbs free energy G = F + pv for 

crystals under constant pressure, has been minimized, not only with 

respect to the effective force constants as implied by the SCP 

method, but also with respect to the lattice structure: the unit 
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cell parameters and the positions and orientations of the molecules 

in the primitive cell (if not determined by the crystal symmetry). 

This structure optimization is repeated in each SCP iteration. As a 

starting point for the SCP iterations we have used the eigenvalues 

and eigenvectors from a harmonic calculation. 

The summations over g in equations (4) and (8) replace exact 

integrations over the first Bnllouin zone, and so it is important 

to choose a set of wave vectors £ which correctly represent these 

integrals. In principle, we have chosen a uniform mesh in recipro­

cal space. The set of 3 must reflect the complete symmetry of the 

crystal, however, including the point group operations. Since the 

tensor λ̂  given by equation (8) transforms under symmetry operations 

in the same way as the force constant tensor ¿, eq. (5), one can 

restrict the set of 3 to the fundamental wedge {% of the Bnllouin 

zone) and use the appropriate weight factors and transformation 

properties in the summations (4) and (8). In this wedge we have 

taken 312 points. 

Finally, it must be mentioned that the lattice sums occurring 

in equations (3) and (4) have been performed over 42 nearest molecules 

in the ethylene crystal. The crystal structure is known from X-ray 

diffraction [22], but the monoclinic cell parameters a,b,c and β and 

the Euler angles ξ,η,ς corresponding with the equilibrium orienta­

tions of the molecules have been optimized in the calculations (by 

minimizing the free energy as mentioned above) . This minimization 

was carried out by the program package MINUITS [23] . The calcula­

tions have been made also for deuterated ethylene, for which the 

crystal structure under pressure is known [24]. 

2.3. 5§u)§D_ìD£§!}2ìÌì§§ 

In a sample of randomly oriented crystallites as one has for 

the Raman measurements on ethylene [25], the polarized Stokes in­

tensity for a non-degenerate lattice mode j with normal coordinate 

Q and frequency ω is given by [26]: 

4 

1, = 3 Ë ς Ι Η Γ Ι ( 1 1 ) 

•> 2π с
0
 ω [l-exp(-ßu) )] α,S

 U
] 

where ω is the frequency of the scattered light, ω = ω.-ω . 

The tensor ^ describes the (high frequency) electric 
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susceptibility of the crystal. In the simplest 

("oriented gas") model the molecules in the crystal are assumed 

to be non-interacting and the crystal susceptibility ^ is given 

by the sum of the molecular polarizability tensors α , expressed in 

the crystal principal axes system. Actually, the susceptibility χ 

which is the response function of the crystal to external electric 

fields, is modified by the interactions between the molecules. The 

principal correction term to the response function is due to the 

internal field from the induced dipoles, which changes the local 

field and, thereby, the induced dipole moments. Including this term 

one obtains [27]: 

X = "ν
 Σ ,(I-S-LÏ ..α (12) 

σ, σ 

where ν is the unit cell volume, α is the ЗпхЗп tensor containing 

the molecular polarizability tensors: a , = 6 ,α , L is the 

ЗпхЗп Lorentz tensor which is composed of 3x3 

Lorentz tensors L , [27] and η is the number of sublattices. In 
—σσ 

principle, other correction terms due to higher multipoles, to over­

lap interactions and to dispersion forces between the molecules 

should be included as well. We expect the induced dipole field cor­

rection term to be dominant, however, as it is for the collision 

induced (depolarized) Raman intensities in compressed gases [ 28] 

and, therefore, we have neglected all other interaction terms. 

In crystals where the molecules lie on centers of symmetry 

(such as ethylene) the optical (£ = 0) modes are purely transla-

tional (u) or purely rotational (g); only the g modes are Raman 

active. In that case, the susceptibility derivative simplifies to 

[111 : 

Э
Х
 Э

Х
 r

 α 

= ^ Σ — ρ - < e V (13) 
3 Q

3

 σ α Эи
а,а ' 

where (e ) are the (rotational) components (a=4,5,6) of the eigen­

vector for the librational mode ] (with cj = 0) which multiply the 

rotational displacements, u = (θ ,θ ,θ ), of the molecules σ. 

From (12), noting that the Lorentz tensors L do not change by ro­

tational displacements (they depend only on the molecular posi­

tions) , one finds, after some manipulation [11]: 
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ЭХ
 4 π

 _! 3α
σ
 _ 

= — Σ (1-a.L) t (1-L.a)
 1

11 ^ г ν , „ σ'σ . г σσ" 
Эй σ ,σ Эй 

α ,σ α ,σ 

= 11° (14) 
-α 

да 
The derivatives of the molecular polanzabilities (in the crystal 

3 u
a,a 

axes system) with respect to the rotational displacements of the mole­

cules (about the crystal axes) are completely determined by the rota­

tional transformation properties of the molecular tensors α . So,for 

a given crystal structure the quantities £ can be calculated from 

the molecular polanzabilities α and their rotational derivatives 

(both transformed to the crystal axes system) and from the Lorentz 

tensors L. From the lattice dynamics calculations (see section 2.2.) 

we have obtained the eigenvectors e and, thus,we can compute the in­

tensity of the (unpolarized) Raman band for each mode ] by the for­

mula: 

I

]

= — T-—— Γ Σ | Σ Όαβ^γΙ2 ( 1 5 ) 

3 2-псы [ l -exp(-Bu) )] о, S σ,γ Ύ a c J Ύ 

The molecular polarizability of ethylene has been measured [29] 

and calculated by ab initio methods [ 8] . For the present calcula­

tions we have used the experimental values (which are not very dif­

ferent from the calculated ones): α = 36.4, о = 26.1, α = 22.9 

xx yy ζ ζ 

atomic units, in a molecular frame with the x axis along the C-C 

bond and the molecule lying in the xy plane. 

2.4. Infrared_intensities 

A model for the infrared intensities of lattice vibrations which 

is consistent with the description of the Raman intensities [11] 

(section 2.3.), has recently been proposed [12]. The integrated ab­

sorption intensity for phonon mode j measured with unpolarized ra­

diation is: 

2ir
2
h
 3 Z 2 

Γ
3

 =
 ν«ο

3
11-£χρ(-β

Μ3
>] l 'эо^

1 ( 1 б ) 

3Z 
where -rrr- is the dipole moment change induced in the unit cell by 

the (g = 0) mode with normal coordinate Q . This normal coordinate 

is composed of molecular displacements; for ethylene only the trans-

lational displacements u (the u modes) are involved. For molecules 

without intrinsic dipole moments (such as ethylene) a dipole moment 
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can be induced by the interactions with the neighbours according to 

the following three mechanisms: polarization by the electric field 

of the neighbours (and by external fields) , dispersion forces and 

(short range) overlap effects. In compressed (pure) gases it has been 

found [31] that the first term yields the main contribution to the 

collision induced IR absorption (although the overlap effects are 

non-negligible; in gas mixtures they are even dominant [31-33] ) . 

Just as in our model for the Raman intensities, we have neglected 

the overlap and dispersion interactions. The remaining polarization 

term yields the following (linear response) expression [ 12] for the 

dipole moment induced in a given molecule σ by the displacements ц 

of other molecules σ" : 

Ζ
0
 = - Σ χ , . Σ Β , „ u

t
,

1
 (17) 

The tensor γ , is part of the electric susceptibility tensor of 

the crystal including the local field corrections, cf. eq. (12): 

^ Ί Γ , , - , - Ι σ' /,„v 

Χ
σσ
. = — а-в-У

а
а. · 1 (18) 

and В , „ contains the derivatives of the electric field at site 
—σ ' σ " 

σ' with respect to the displacements of the molecules σ". In order 

to calculate the internal electric field in the crystal the mole­

cules can be represented by continuous charge distributions, by 

point multipoles or by sets of point charges distributed over the 

molecules (not necessarily on the nuclei). We have chosen the lat­

ter representation, just as for the calculation of the electro­

static contribution to the crystal free energy and force constants 

(see sections 2.1. and 2.2.) . Then, the field derivative matrix 

В takes the form: 

^e'
 =
m|a·

 q
°

, ( m ) l Vß l í W ^ ^ ^ r 1 U9) 

where q ,(m) are the point charges placed on molecule σ' at posi­

tions R(m) relative to the center of mass and the vectors R.-it^) 

are defined as in eq. (4). The induced molecular dipole moments 

(17) can be summed over the unit cell and the dipole moment deri­

vatives appearing in the infrared intensity (16) can be found by 

using the relation between the normal coordinates Q and the molecu-

t 3 

lar displacements u . Thus,we obtain: 
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dZ 9 Ζ Э Ẑ  , ι 

Э С Г =
 Σ
 Э ^ =

 Σ
 ,

Σ -Τ- %]α 
3
 σ

 3 σ σ' ,α Эи
а ( а 1 

= - Σ „ 1
σσ
.. · Β

σ
..

σ
, . (θξ)

0
' (20) 

The susceptibility tensor γ . can be calculated as in section 2.3 

from the molecular polarizabilities and the Lorentz tensor for the 

given crystal structure. For the same structure and a given set of 

molecular point charges (see table 1) the field derivatives В can 

be evaluated, using Ewald 's method [26] (which has 

been used also for the calculation of the Lorentz tensor). The eigen­

vectors e, are those from the lattice dynamics calculation again, 

but now for the translational £ = 0 modes (the u modes). 

3. Results and discussion 

The results of the crystal structure optimization with the ab 

initio potential and with an empirical hydrocarbon potential 

[2] (see section 2.1.) are shown in table 2. In the harmonic model 

calculation we have minimized the internal energy of the crystal 

(at T=0)/ neglecting the zero point vibrations; in the SCP calcula­

tions we have minimized the Gibbs free energy for the temperatures 

and pressures where the experimental structure determinations [24] 

were done. The overall agreement between the calculated and experi­

mental data is fairly good, which is satisfactory especially for 

the ab initio potential since it contains no empirical fit parameters. 

In the SCP calculations (at zero pressure) the lattice appears to 

dilate relative to the harmonic calculation; this effect is mainly 

due to the zero point motions. The largest relative increase oc­

curs for the parameter b (which is smaller than the experimental 

value).The dilation is smaller for the ab initio potential, which 

is what one would expect since the empirical potential is somewhat 

softer (it yields lower phonon frequencies, see below). The lattice 

contraction which is obtained by increasing the pressure to 1.9 kbar 

is very well reproduced by the SCP calculations. 

The phonon frequencies ω (g) have been calculated for 312 wave 

vectors £ in the fundamental wedge of the Brillouin zone, which is 

necessary for calculating the free energy (4) and the SCP effective 

force constants (5) via equations (6) and (8). In table 3 the re­

sults are shown just for 2 = £, since only the optical frequencies 

have been measured sofar І25,34] . The agreement between calculations and 
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Table 2 

Crystal structure of C-D., space group P2 /n (Z=2) 

structure 

parameters 

Τ = 85 Κ , ρ 99 Κ , ρ = 1.9 kbar 

calculated (hamcnic)
a
' calculated (SCP) 

b) 

empirical ab initio empirical ab initio 

potential [ 2] potential [ 6] potential [ 2] potential [ 6] 

experimental 

[24] 

calculated (SCP) 
b) 

empirical ab initio 
potential [ 2] potential [ 61 

experimental 

[241 

l a t t i c e 

c o n s t a n t s 

m o l e c u l a r 

o r i e n t a t i o n s 

a [A] 

Ь [A] 

с [A] 

g [ d e g r e e s l 

ξ [ degrees] 

; η [ degrees] 

ζ [ degrees] 

4.726 

6.435 

4.135 

93.9 

-27 .0 

-11.7 

- 3 1 . 8 

4.730 

6.205 

4.004 

88.5 

-31.7 

- 9 .3 

-31.3 

4.799 

6.610 

4.212 

93.4 

-27.8 

-11.2 

-32.0 

4.782 

6.334 

4.064 

88.2 

•32.2 

• 9 .1 

•31.5 

4.613 

6.610 

4.037 

94.5 

-27.0 

-14 .6 

- 3 4 . 3 

4.716 

6.546 

4.121 

94.2 

-28.2 

-11.6 

-31.9 

4.710 

6.280 

4.000 

89.1 

-32.0 

- 9.4 

-31.6 

4.506 

6.558 

3.977 

95.2 

-26.8 

-14.2 

-34.3 

a) by minimizing the internal energy (T=0) 

b) by minimising the free energy 

c) Euler angles defined as follows: Start with the molecule lying in the ac* plane, the C-C axis along the a axis, and rotate by 

ζ,η and ζ about the a, b and c* axes, respectively. 



Table 3 

Optical (3 = £) phonon frequencies [cm ] in the C^D . crystal 

T=30K,p=0 

calculated (harmonic) calculated (SCP) 

symmetry empirical ab initio empirical ab initio 
potential [2] potential [6] potential [2] potential [6] 

experimental 

[25,34] 

T=99K,p=1.9 kbar 

calculated (SCP) 

ab initio 
potential [ 6] 

l i b r a -

t i o n a l 

modes 

t r a n s -

l a t i o n a l 

modes 

B q 
Ag 

Ag 

Bg 

Ag 

B g 

Au 

A U 

Bu 

3 1 . 1 
6 5 . 7 a ) 

7 6 . 3 a ) 

111 .1 

116 .3 

120.7 

5 9 . 1 

69 .9 

105.2 

41 .6 

66 .9 

87 .6 

134 .5 

139 .5 

1 7 6 . 3 

69 .9 

87 .7 

1 1 8 . 3 

33 .4 

6 4 . 8 a ) 

7 4 . 3 a ) 

107 .2 

111 .7 

118 .2 

54 .9 

6 5 . 6 

9 9 . 2 

42.6 

66 .6 

84 .6 

130 .3 

136.0 

172.7 

66 .6 

83 .2 

113.4 

60 

75 

78 

95 

123 

135 

-

69 

104 

-b) 

44.6 

74.1 

90 .2 

139.4 

146.5 

181.4 

73.1 

89.0 

124.8 

a) If these modes were assigned by their Raman intensities, their order would have to be reversed 

(only for the empirical potential, see table 5) 

b) Measured at 20K [34] 



experiment is reasonable, but somewhat less good than we have recently 

found [19] for the N
2
 crystal, where especially the translational 

mode frequencies were reproduced almost perfectly by the SCP treat­

ment with an ab initio potential. This is probably due to the 

ab initio potential for C_H. and, in particular, its analytic 

(atom-atom) representation, which has been obtained from fewer ab 

initio calculated points, being somewhat less accurate. (Moreover, 

the atom-atom model appeared to be more realistic for the Nj-N^ po­

tential than for the C^H -C H potential, in the short range region). 

In all cases, except for the lowest frequency B_ mode, the SCP 

anharmonic corrections lower the harmonic frequencies; the effective 

force constants are smaller than the second derivatives at the po­

tential minimum. Гог the ab initio potential all SCP corrections 

improve the agreement with the experimental frequencies, i.e. they 

point in the right direction, but they are still considerably too 

small. (If the potential is not completely realistic they can not, of 

course, fully remove the discrepancy). For the empirical potential [2] 

the SCP corrections actually make the results worse, in some cases 

This must probably be ascribed to the empirically fitted potentials 

containing already some effects of the anhar-ionic lattice vibrations 

implicitly. Increasing the pressure to 1.9 kbar raises all the phonon 

frequencies, changing the temperature in the range from 0 to 100 К 

has practically no effect (less than 1 cm ). 

A result which is striking, is that we have found practically 

no difference between the SCP eigenvectors e (g) and the harmonic 

ones, although the frequencies (the eigenvalues) do differ. So, for 

the calculations of the Raman and IR intensities we have used the 

eigenvectors from the harmonic calculations. The Raman intensities 

are shown in tables 4 and 5, for ethylene and deuterated ethylene. 

First, we observe from the ^iffpronce between the absolute inten­

sities in the columns 4 and 5 of table 4 that the local field 

corrections to the crystal electric susceptibility [11] are quite 

important. (Note that the Raman intensities depend on the fourth 

power of the matrix (1.-0.L) , see equations (14) and (15)) . For 

the relative intensities, which is what can be reliably extracted 

from the measurements [25], the "oriented gas" model yields about 

the same results as the model which includes these corrections. 

The relative intensities calculated with the ab initio poten­

tial agree reasonably well with experiment, except for the very 
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Table 4 

Raman intensities of optical modes in the CpH. crystal 

calculated a) 

mode 

symmetry empirical potential [ 2] 

experimental 
[25] 

ab initio potential [ 6] 

frequencies relative frequencies absolute 
[cm-1] intensities^' [cm-1] intensities0' 

relative frequencies relative 
intensitiesb' [ cm-1] intensities1-1' 

oriented with local 
gas model field cor­

rections 

38 

79 

90 

131 

163 

170 

0.66 

0.81 

1.00 

0.19 

0.17 

0.04 

50 

80 

105 

157 

196 

249 

0.09 

0.24 

0.13 

0.04 

0.03 

0.005 

0.34 

0.97 

0.51 

0.15 

0.11 

0.024 

0.35 

1.00 

0.53 

0.15 

0.11 

0.025 

73 

90 

97 

114 

167 

177 

0.19 

1.00 

0.42 

0.20 

0.006 

0.002 

a) from the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors). 

b) relative to the most intense mode 

c) in arbitrary units 



Table 5 

Raman intensities of optical modes in the C-D. crystal 

mode 

symmetry 

calculated 
a) 

empirical potential [ 2] 

frequencies relative 

[cm ] intensities 

ab initio potential [6] 

frequencies relative 

[ cm" ] intensities 
b) 

expe 

f r e q u e n c i e s 

[ c m - 1 ] 

60 

75 

78 

95 

123 

135 

r ime 
[25] 

n t a l 

r e l a t i v e 

i n t e n s i t i e s 

0 .17 

1.00 

0 .50 

0 .20 

0 .08 

0 .013 

31 

66 

76 

111 

116 

121 

0.64 

0.66 

1.00 

0.20 

0.14 

0.014 

42 

67 

88 

134 

139 

176 

0.43 

1.00 

0.52 

0.13 

0.08 

0.015 

a) from the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors) 

b) relative to the most intense mode 



low intensities of the two highest frequency modes in ethylene. 

These modes correspond with almost pure rotational oscillations of 

the C
2
H. molecules about their C-C axes (in phase, A , or out of 

phase, B
q
) . Since the proton mass is low, the amplitudes of these 

oscillations are relatively large. Apart from possible experimental 

inaccuracies in these low intensities, the SCP formalism and the 

model used for calculating the Raman intensities are probably less 

reliable in this case. For the corresponding modes in C^D. (see 

table 5) the agreement is much better. 

The Raman intensities calculated with the empirical potential 

[2] show an interesting discrepancy, both for C^H and for C-,D.. If 

one were to assign the lowest two A modes by their intensities, 

rather than by their frequencies,then their order would be reversed 

Looking at the frequencies alone, one could not detect such a dis­

crepancy and the danger of trying to improve the empirical fit 

parameters by using the measured phonon frequencies [ 3] is clearly 

demonstrated here. Also, the overall agreement with the measured 

relative Raman intensities is less good for the empirical potential 

than it is for the ab initio potential. 

Table 6 shows that the agreement between the calculated rela­

tive IR intensities and the measured data [34] is rather bad, both 

for the ab initio potential and for the empirical one; the latter 

seems to give slightly worse results. Maybe the ethylene films on 

which the IR intensity measurements have been made, do not corre­

spond with the model of randomly oriented crystallites for which 

formula (16) has been derived. Due to the symmetry, the induced 

dipole moment must lie along the crystal b axis for the A
u
 modes, 

while it follows from the calculations that the В mode yields a 

dipole transition moment nearly parallel to the a axis. A compari­

son with polarized IR spectra would be very informative. On the 

other hand, the model used for calculating the induced dipole mo­

ments is probably too crude. In particular, the neglect of over­

lap effects on the induced dipoles may lead to inaccuracies. The 

reason why the calculated IR intensities are worse than the Raman 

intensities could be that the latter appear already in the "orien­

ted gas" model, i.e. they depend in the first instance ]ust on the 

molecular polanzability tensors (in particular, on their rotatio­

nal transformation behaviour). A result which seems to be consis­

tent with experiment is that the lowest frequency A
u
 mode, which 

has not been observed until now, is indeed calculated to have a 
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Table 6 

Infrared intensities of optical modes in the C-Η. crystal 

mode 

symmetry 

calculated 

empirical potential [ 2] 

frequencies relative 

r "li 4 - 4 - b ) I cm J intensities 

ab initio potential [ 6] 

frequencies relative 

[ cm ] intensities 
b) 

experimental 
[34] 

frequencies relative 

[ cm ] intensities 
b) 

63 

75 

113 

0.10 

0.33 

1.00 

74 

93 

126 

0.16 

0.72 

1.00 

73 

110 

1.00 

0.66 

a) from the harmonic calculations (the eigenvectors are practically the same as the SCP eigenvectors) 

b) relative to the most intense mode 



low relative intensity. 

4 . Conclusions 

Summarizing the discussions, we conclude that the intermolecular 

CjH. potential from ab initio calculations [6-9] yields a fairly good 

structure and reasonably good phonon frequencies for the ethylene 

crystal. If the anharmonic effects are taken into account by the self-

consistent phonon method, the frequencies are systematically improved; 

the corrections are substantially too small to yield agreement with 

experiment, however. The effects of pressure on the ethylene crystal 

structure and on the phonon frequencies are well represented by the 

SCP calculations. From the calculation of the (relative) intensities 

of the Raman active optical modes it was found that the calculated po­

larization vectors of these modes are fairly realistic, too. 

An empirical hydrocarbon atom-atom potential [2] also yields 

a fairly good crystal structure and reasonably good phonon frequencies, 

but now the harmonic frequencies are not always improved by the SCP 

corrections. This might be expected since the empirical potential pro­

bably contains the effects of the (anharmonic) lattice vibrations 

implicitly already; so, the results will not be improved by again 

adding these effects, explicitly. The polarization vectors obtained 

from this empirical potential are less realistic, as shown by the 

comparison of the Raman intensities. In particular, it was found in 

this case that the assignment of two Ag modes by their frequencies is 

not consistent with their intensity ratio. So, this assignment may 

have to be reversed, but then the agreement with the measured fre­

quencies is deteriorated. 

The model [11] which we have used to calculate the Raman inten­

sities in the ethylene crystal appeared to work quite well; the ab­

solute intensities are strongly affected by the local field correc­

tions, but the relative intensities practically do not change from 

the "oriented gas" results. The model for the IR intensities [12] 

has still to be improved, probably by taking the overlap induced 

dipole moments into account. 
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C H A P T E R V I I 

Ab initio calculations of the collision-induced dipole in He-H^, 

I. A Valence Bond approach. 
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Universiteit van Nijmegen 

Toernooiveld, Nijmegen 

The Netherlands 

Abstract 

The collision-induced dipole in the system He-H- is calculated 

in the multistructure Valence Bond method, using the non-orthogonal 

monomer Orbitals. In the region around the collision diameter, which 

contributes most to the collision-induced IR absorption, the long 

range results (the leading terms are the quadrupole-induced dipole 
-4 -7 

on He with R dependence and the dispersion dipole with R depen­

dence) are modified by overlap effects. The short range behaviour 

is determined, moreover, by the appearance of other important terms, 

the exchange dipole and the overlap-induction dipole on H-, which 

vanish in the long range. Since all the short range contributions 

have approximately the same (exponential) dependence on the inter-

molecular distance, they can be collected and added as a single ex-
-4 -7 

ponential dipole function to the R and R long range terms. Of 
-7 

the latter terms the R dispersion dipole is of little importance. 
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1. Introduction 

During a collision between two unlike atoms or molecules the 

intermolecular interaction generates a dipole moment in the collision 

complex, which for obvious reasons is called a "collision induced 

dipole". Because collision induced dipoles are a function of the 

intermolecular separation, the relative orientation of the molecules 

and the intramolecular vibrational coordinates, they give rise to 

absorption and emission of radiation involving all three types of 

degrees of freedom L O · T h e absorption and emission due to transla-

tional and rotational motion are observed as broad bands in the far 

infrared (100-600cm ); the collision induced vibrational transitions 

are associated with much shorter wavelengths, for instance the vibra­

tional transitions of H- lie around 4500cm 

Much work has been done on the measurements of these spectra, 

see for instance ref. 2 or the compilation of Rich and McKellar 

|_3j for extensive literature surveys. Since the pioneering work of 

Van Kranendonk L O and Poll and Van Kranendonk |_53| much effort has 

also been put into the development of a theory explaining the line-

shapes. For a review of these theories we refer to ref. 1. 

Considerably less attention has been paid to the mechanism that 

yields the collision induced dipole itself, and especially the in­

fluence of the short range effects,such as exchange and penetration, 

has rarely been studied; consequently their role in the induction 

mechanism is at present not well understood. More has been written 

about the long range forces, and in particular the importance of a 

permanent multipole on one molecule inducing a dipole on the other 

has often been stressed, as it gives the leading contribution in a 

1/R expansion of the dipole moment |_6-73 . This effect is of course 

absent in the collision of two noble gas atoms. Here, the long range 

induced dipole is caused by the London dispersion forces as has been 

discussed in refs. 10 and 11. 

The few papers that deal with short range forces all consider 

pairs of atoms. Matcha and Nesbet |_12] performed some SCF calcula­

tions on noble gas pairs, and Lacey and Byers Brown |_13] did first 

order perturbation calculations on the same systems and a few other 

atomic pairs. Nobody to date, however, has included the relevant 

long and short range effects in one single calculation; hence the 

question of the relative importance of these effects is still un­

decided. 
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In this paper we will consider long and short range contribu­

tions to the collision induced dipole for the first time within one 

formalism: the multistructure Valence Bond (VB) method. We have 

chosen to undertake this study on the He-H« system for several rea­

sons: In the first place the induced vibrational spectrum has been 

interpreted recently |_143> enabling a comparison of the calcula­

tions with the experiment (although a comparison with the results 

of this paper is only partially possible, since the translational 

band has not yet been interpreted and we do not consider changes in 

the vibrational coordinate. In a second paper we will give a more 

detailed analysis including vibration). A second reason for the 

choice of He-H
2
 is that we have previously calculated part of its 

potential energy surface |_15]
f
 also using the VB formalism so that 

we had a wave function at our disposal. (It has appeared that the 

dipole moment could not be directly calculated from this wave func­

tion, however, since it is much more sensitive to orthogonalization 

of the orbital basis than the interaction energy), Finally, mixtures 

of noble gases with H- belong to the most widely investigated systems, 

and He-Η- is the simplest example of such a mixtures at least from 

the quantum chemist's point of view. 

As has been pointed out before |_1бЗ» the VB method changes for 

increasing intermolecular distance into an ordinary perturbation 

method. One can use this feature of VB as a selection criterion for 

VB structures, that is, one includes in the calculation only the VB 

structures that are known to give important contributions in the 

long range. Doing this, one assumes implicitly that short range 

forces are not yet so dominant in the region of interest that they 

make a modelling after long range theory impossible. Our experience 

with calculations around the Van der Waals minimum is that this 

assumption holds reasonably well for the energy, and it is interes­

ting to see whether this also works for the dipole moment, especially 

since the distances of interest are somewhat shorter in this case. 

The region most sensitively probed by the experiment ranges from 

4.5 to 8 bohr and the sensitivity peaks ;just inside the scattering 

diameter. 

2. Theory 

The Valence Bond method is a variational method; therefore it 

requires the solution of a secular problem with the Hamiltonian ma-
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trix elements having the following form: 

<Y Ф
А
Ф^ІН

А
 + H

B
 + VlY Φ

Α
, Φ ^

1
> 

a b ' ' a' b' 

A В 

Here Η is the Hamiltonian of monomer A, Η of monomer В and V des­

cribes the interaction between the two. The operator Y is the spin-

free equivalent of a singlet spin projector times the antisymmetri-

zer; it is a linear combination of all electron permutations. In 

this work Y is an NP-type Young projector and hence our VB struc­

tures are the spin-free equivalents of spin-bonded functions |_17]. 

д 

The a-th excited state Φ of molecule A is a product of SCF Orbi­

tals obtained from a Hartree-Fock calculation on the free monomer; 

Φ, is constructed analogously. In accordance with the usual second 

order perturbation theory for long range forces |_183 only singly 

excited states on each of the monomers are taken into account. This 

means that we do not take intramolecular correlation into considera­

tion. 

Two different spin coupling schemes are possible: A and В can 

both be excited to a triplet or to a singlet state. Since we have 

found earlier |_15] that the VB structures arising from triplet-

triplet coupling hardly mix into the VB ground state of the complex, 

we do not include these kinds of states. 

For larger intermolecular distances the differential overlap 

between orbitals on A and В becomes negligible, and hence Y facto-
д 

rizes effectively into a product of two singlet Young projectors Y 
Β Α В 

and Y , with Υ acting on the electrons of A only and Y acting on 

the electrons of B. 

As we have discussed earlier |_1б2|, the solution Ч'
 в
 of the 

secular problem corresponding to the lowest energy, may be thought 

of as having been obtained in the long range from a perturbation 

treatment (PT) in a finite basis. Defining the resolvent R
Q
 of the 

unperturbed Hamiltonian H + H in this basis Lis]: 

R Ξ z , labxabl 0 , ΔΕ , 
a,b ab 

where |ab>=|Y
A
 Φ

Α
>|Y

B
 Φ

Β
>, and 

E
ab =

 (E
0 - Φ

 + (E
0 - Φ 
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we can write |_19] : 

|ψ
ρτ
> = (1 + R

0
 V + R

0
 V R

0
 V + . . )|00> 

Here we have used that the first order interaction is zero m the 

long range. 

The dipole moment of the complex can now be approximated by: 

<ΐ
ρ τ
> = <Ψ

ρτ
|?|4'

ρτ
> 

where μ = μ + μ and μ = L r q (a sum over the particles α of 

acA a и
 + 

A, which have charges q and position vectors r ). An anologous de 
finition holds for μ . Using the above perturbation expansion of Ψ PT 
one writes through second order m V for <μ

ρ τ
>: 

<:
pT
> = <00[î(0'0> + μ

( 1
'

0 )

 +
 ;

( 1
'

1
>
 +
 î<2'0>|00> d ) 

where the effective dipole moment operators are given by: 

-40,0) = -

Î ( 1 ' 0 ) = S R 0 V + V R 0 : 

y ' " = V R0 μ R0
 V 

(2,0) 
μ R

0
 V R

0
 V

 +
 V R

0
 V R

0
 μ 

The first contribution to <μρ
Τ
>, which is of zeroth order in V, is 

the vector sum of the permanent moments on the monomers, this contri­

bution is zero for He-H_. The term of first order in V corresponds 

to a permanent moment on A inducing a dipole on В plus a permanent 

moment on В inducing a dipole on A. We will elaborate the matrix ele­

ment <00|μ ' |00> in the appendix, where a formula is derived for 

the induced dipole in a pair of molecules of arbitrary symmetry. For 

the complex under consideration only part of the (1,0)-contribution 

occurs, because He does not have any multipole moment. The third and 

fourth terms have no classical counterparts, we will refer to them 

as (1,1)-dispersion and (2,0)-dispersion respectively. Byers Brown 

and Whisnant ]_10_| have named these terms dispersion of type II and 

type I, respectively. 

Although the solution of the secular problem contains in prin­

ciple a superposition of all orders of perturbation, we can never-
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theless separate to a certain extent the different orders of pertur­

bation within the VB framework by relying on the high symmetry of 

the monomers and assuming that third and higher order effects are 

negligible. In order to explain the procedure we need a few defini­

tions. The He states of different symmetry species (i.e. of differ­

ent L-quantum number) and of different symmetry subspecies (i.e. of 

different M-quantum number) are labelled by λ. The indices λ are in 

1-1 correspondence with the set of spherical harmonics or their real 

form, the tesserai harmonics. Similarly μ labels the I^-states of 

different symmetry; the notation common for homonuclear diatomics is 

used to denote μ explicitly. We can now write R- as follows: 

R
0
 = Σ Ζ R (X;y), (3) 

λ U 

where R
0
(X,^) includes a sum over all states of symmetry λ on He and 

a sum over all H^-states characterized by y. 

For a linear complex lying along the z-axes the multipole expan-
-4 

sion for V through R dependence takes the form (for neutral monomers) 

V = R
- 3
 £-2V

3
(z;z) + V

3
(x;x) + V

3
(y;y)] 

+ 3R"
4
 |~- ̂ V

4
(3z

2
-r

2
;z) + V

4
(xz,-x) + V

4
(yz;y)] (4) 

- 3R"
4 \~_- ^V

4
(z;3z

2
-r

2
) + V

4
(x;xz) + V

4
(y;yz)] 

Here V, (z;z) stands for ( Σ q ζ ) ( Σ σ„ ζ,,) and similar definitions 
3 αεΑ ^α α'

 χ

βεβ

 4
β β' 

hold for the other interactions. In the case of a perpendicular, Τ 

shaped, complex, which can be obtained from the linear one by rota­

ting H
2
 around the y-axis over 90 , we substitute: 

V
4
(z;3z

2
-r

2
) = - ^V

4
(z;3x

2
-r

2
) + |v

4
(z;z

2
-y

2
) 

into the expansion of V, in order to have again only terms which are 

adapted to the local symmetries (the symmetries of the subsystems). 

Using (3) and (4) one can expand the effective dipole operators 

defined in (2), see tables I and II. In deriving these tables we 

have translated the operators μ and μ to the centers of mass of 

the respective monomers, which is allowed for neutral subsystems. 

Now we can define the different dipole moment contributions in 
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TABLE I 

Decomposition of the effective dipole moment operators defined in 

(2) into symmetry adapted components for the linear case. 

μ = 4 R μ R
n
(z;a )V

4
(z;3z -r ) + hermitean conjugate 

¡<1'1) = 3 R-
7{v:l(z;z)Rn(z;a„)p"

e Rp ( 3z2-r2 ;σ„) V,, (3z
2
-r

2
 ; z) 

+
 V

3
< x ; x ) R

0
< x ;

V u
)

U
^

e
 R

0
 (xz ;π

χ f U
) V

4
 (xz ,x) 

+
 v
3

(
y'-y)

R
o

( y ;
\,u

) y
z

e
 V y

z ;
V u

, v
4

(
y

z ;
y

) } 

JJ 

-3 Ε"
7
{ν

3
(ζ;ζ)Ρ

0
(ζ;σ

ιι
)μ

ζ

2
 RQ (Z ; σ ) V

4
 (z ; 3z

2
-r

2
 ) 

H
2 

+ V3(x;x)R
0
(x;

W x f U
)u

z
 RQ(χ;π

χ;g
)V

4
(x;xz) 

H
2 

+ V
3
(y;y)R

0
(y^

y f U
)

y z
 R

0
(y;ir

yfg
)V

4
<yjyz)} 

+ hermitian conjugate 

î(2,0) = 3 R-7 μ
ζ

β
 R

0
(z;a

g
){V

3
(z;z)R

0
(3z

2
-r

2
;a

u
)V

4
(3z

2
-r

2
;z) 

+ V
3
<X;X)R

0
(XZ;TT

X u
)V

4
(xz;x) 

+ V
3
(y;y)R

0
(yz;w

yfU
)V

4
(yz;y) 

+ V
4
(3z

2
-r

2
;z)R

o
(z;0

u
)V

3
(zjz) 

+ V
4
 (xz;x)R

0
 (χ

/
·π

χ u
)V

3
(x;x) 

V 4 < y z ; y ) R 0 < y ; T T ) V 3 < y ; y ) } 

(continued) 
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Table I continued 

OR"
7
 μ

ζ

2
 R

0
(s;a

u
){V

3
(z;z)R

0
(z;a

g
)V

4
(z;3z

2
-r

2
) 

+ ν
3
(χ;χ)Κ

0
(χ;π

χ
 )V

4
(x;xz) 

+ V
3
(y;y)R

0
(y;Tr

yjg
)V

4
(y;yz) 

+ V
4
(z;3z

2
-r

2
)R

0
(z;a

u
)V

3
(z;z) 

+ V
4
(X;XZ)R

0
(X;TT

X U
) V

3
( X ; X ) 

+ V
4
(y;yz)R

0
(y;Tr

yjU
)V

3
(y;y)} 

+ hermitean conjugate 
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TABLE II 

Decomposition of the effective dipole moment operators defined in 

(2) symmetry adapted components for the perpendicular case 

μ ' = - -τ R μ R
0
(ζ;σ )V.(ζ ;Зх -г ) + hermitean conjugate 

ΐ
( 1
'

1 )
 = 3 R"7{V3(z,z)R0(z^ZíU)w"

e R0(3z
2-r2^ZfU)V4(3z

2-r2;z) 

+ V3 (χ;χ)Η0
(χ,·σ

π
)μ

ζ

θ
 RQ (xz ;a

u
) V

4
 (xz ;x) 

He 
+ V

3
(y;

y
)R

0
(

Y
;

W y ; U
)p

2
 RQ(yz;л

у
^

u
)V

4
(yz;y)} 

IJ 

- 3 R "
7
{ - I

V
3 ( Z ; Z ) R

0
( Z ^

Z ( U
)

P Z

2
 R

0
(z;a

g
)V

4
(z;3x

2
-r

2
) 

tr 

+
 |v

3
(z;z)R (ζ;π

ζ
 )μ

 2
 R (ζ;δ )V(

Z
;z

2
-y

2
) 

ζ -y ;g 
H
2 

+ V
3
(x;x)R

0
(x;a

u
^

z
 R0 (x;irz ) V

4
 (x;xz) 

+ V3(y;y)R0(y;^rU)yz
¿ R0 (y ; 6zy ;g) V4 (y ;yz) } 

+ hermitean conjugate 

£ ( 2 ' 0 ) = 3 R " 7 μ « 6 R o ( z ; a g ) { V 3 ( z ; z ) R 0 ( 3 z 2 - r 2 ; ï ï Z j U ) V 4 ( 3 z 2 - r 2
; z ) 

+ V 3 ( x ; x ) R 0 ( x z ; a u ) V 4 ( x z ; x ) 

+ V 3 ( y ; y ) R 0 ( y z ; T T y ^ u ) V 4 ( y z ; y ) 

+ V 4 ( 3 z - r 2 ; z ) R 0 ( z ; l T z u ) V 3 ( z ; z ) 

+ V 4 ( x z ; x ) R 0 ( x ; o u ) V 3 ( x ; x ) 

+ V 4 ( y z ; y ) R 0 ( y ; H y í U ) V 3 ( y ; y ) } 

( c o n t i n u e d ) 
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Table II continued 

IT 

- 3 R"
7
 U

Z

2
 R

0
(s;T

Z f U
)i- ^V

3
(z;z)R

0
(z

?
o

g
)V

4
(z?3x

2
-r

2
) 

+ |v (z;z)R (ζ;δ
 2 2

 )ν
4
(ζ;ζ

2
-γ

2
) 

ζ -y ,g 

+ ν
3
(χ;χ)Η

0
(χ;π

ζ
 )V

4
(x;xz) 

+ V
3
(y;Y)R

0
(y

;
6

2y;g
)V

4
(y;yz) 

- ^ν
4
(ζ;3χ

2
-Γ

2
)Η

0
(ζ;π

2 u
)V

3
(z;z) 

+ |v4(z;z
2-y2)R0(z;nZíU)V3(z;z) 

+ V4(x;xz)R0(x;ou)V3(x;x) 

+
 4

(у;у
2
)Н

0
(у,л

у
^

и
)
 3
(у;у)} 

+ hermitean conjugate 
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the VB formalism. Let us agree to call a VB structure of local symme­

try (ζ;σ ) which represents He in an excited state and H- in its 

ground state a "He-induction structure", then we see from tables I 

and II that a calculation on a basis that consists of only the He 

induction structures and the ground state gives the (1,0)-part of 

the dipole moment. We also see from tables I and II that He induction 

structures contribute to the (1,1)- and (2,0) part, but that they 

only do so in cooperation with "dispersion" VB structures (singly 

excited on both monomers) of other local symmetry. If, for instance, 

the dispersion structures of (ζ;σ ) symmetry are added to the basis 

the He induction structures will give a contribution to the (1,1) 

and (2,0) dispersion dipoles on H
2
, and to the (2,0)-dispersion 

dipole on He, both in the case of the linear complex. 

In analogy we call a VB structure representing He in its ground 

state and H
0
 in an excited a -state (linear complex) or π -state 
ζ u ζ ,u 

(perpendicular complex) an "H_ induction structure". As can be seen 

from tables I and II these structures alone do not give a long range 

contribution to the dipole; in the short range they give a dipole 

moment on H-, which is induced by penetration of the He-atom into 

the charge cloud of the H
2
-molecule, causing incomplete screening of 

the He nucleus, and by the repulsive exchange force originating from 

the overlap. We refer to this effect as H
2
 overlap-induction. 

The total dipole moment <y,
7
,,> -

 <
4',,_ μ Ψ,,

Ι1
> is obtained from a 

VD И VhJ 

VB calculation including the ground state, the He induction struc­

tures, the H
9
 induction structures and the dispersion structures 

-7 
which determine the R contribution in the long range (see tables 
I and II); the latter structures also account for part of the higher 
-9 

(R , etc.) dispersion contributions. Such a VB calculation yields 

the coefficients in the following expansion: 

I W = \J
Y Ф
а

Ф
Ь

> C
ab <

5
> 

a,b 

The VB dipole moment is split into three parts: 

<u > = C 2
 <Y Ф

А
ф

В
1иІУ Φ

Α
Φ

Β
> + 2 Σ' <Y ф

А
ф

В
ІиІУ Φ

Α
Φ

Β
> С С У

 В ^00
 ψ

0 0
| μ |

 0 0 ,_ 0
ψ
0

| μ |
 a b ab 00 

a ,b 

+
 Σ' Σ' <Y ΦΪφξ|Ϊ|Υ Φ^Φ

Β
,> C

a b
 C

a
,

b
, (6) 

a,b a ,b 

Then, summarizing, we define the following contributions: 
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(ι) The exchange dipole is the expectation value of μ over the 

ground state VB structure. This contribution, which is due to 

the antisymmetrization only and vanishes in the long range, 

is practically equal to the first term of (6) since the coef­

ficient C
o 0
 is very close to unity. 

(II) The induction dipole on He is the dipole obtained from a VB 

calculation including all induction VB structures on He, to­

gether with the ground state. Analogously for the (overlap-) 

induction dipole on H.,. These contributions form part of the 

second term in (6). 

(III) The (2,0) dispersion dipole is obtained from the same term 
А В -*• A B 

as the induction dipoles, i.e. 2 Г' <Y Φ.Φ-ΙμίΥ Φ Ф
0
> С _ С

0 0 

for molecule A, but now the coefficients С
 n
 are modified by 

au 

the admixture of the appropriate (2,0) dispersion structures 

(see tables I and II) in the VB calculation. Subtracting the 

induction dipoles defined in (li) yields the (2,0) dispersion 

dipole. This procedure is justified since the long range ex­

pansion of the second term in (6) is the following: 

2 < 00|p<R
0
V + R

0
VR

0
V)|00> = <0θ|μ

( 1
'

0 )
 + u

( 2
'

0 )
|00>, 

which can be proved by substituting the long range results 

for the VB coefficients: 

C
a b
 =• <ab|1 • R

0
V
 +
 R

0
VR

0
V|00> 

(iv) Analogously, if we substitute these coefficients into the 
2 

third term of (6) and retain only the term in V we find: 

<00|VR
0
 μ R

0
V|00> = <00|μ

 ( 1
 '

1
' |00> 

and, so, the (1,1) dispersion dipole in VB is defined as the 

third term in (6) restricted to those matrix elements that 

yield the corresponding long range dispersion contribution 

(tables I and II). 

Because in VB the wave functions are antisymmetnzed and 

the exact interaction operator is used instead of only the lowest 

terms in the multipole expansion, the dispersion terms are mo-
-7 

dified by exchange and penetration and will no longer have an R 
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dependence for smaller distances. The (1,0) He induction term 

-4 

too will deviate from a strict R dependence. Hj overlap-induc­

tion will become an important contribution, as will the exchange 

dipole. Decreasing R we will also find that more and more matrix 

elements which are vanishing in the long range will be giving 

contributions, because of the breakdown of local selection rules, 

and hence that the separately distinguished contributions (i) to 

(iv) will no longer completely add up to <у
у в
>. 

3. Computations 

Two geometries of the He-H- are considered: a perpendicular, 

Τ shaped, one and a linear conformation. In both cases the intermolec­

ular distance is varied from 4.0 to 10.0 bohr, whereas the H-Η dis­

tance is kept fixed at 1.40 bohr. 

The SCF monomer orbitals, from which the VB structures are con­

structed, are taken from Geurts et al. ¡~15j. The A.O. basis used 

in that reference is a 11(6,4,1/1,2,1), He (6 ,2 ,1/1,1,1) G.T.O. basis, 

with the exponents of the polarization functions optimized for a 

calculation of the dispersion energy. 

At the start of this work it was our intention to use the VB 

wavefunctions as well from ref. 15. The VB structures in that work 

are derived from orthogonalized orbitals, and if one uses these the 

dipole induced on He by H_ at a distance of 8.0 bohr in the perpen-
-5 

dicular geometry comes out to be -29.14 10 a.u.. The same contri­
bution to the dipole moment of the complex can be calculated clas-

He H2 Η, 
sically. Employing the values a. = 1.335, <Q

n
 > = 0.4931, <QA > = 

Η 
0.3639 and <QI,

2> = 0.2365, all calculated from the basis of Geurts 
6
 _5 

et al., one finds a classical value of -23.77 10 a.u.. Judging 

from our experience in calculating Van der Waals energies this 

difference of about 20% between the VB and the long range result 

was considered too high, so we calculated the same dipole in a basis 

originating from the pure, and hence non-orthogonal, monomer orbi­

tals. This gave -23.89 10 a.u., a number in perfect agreement with 

the classical result. It is easy to understand why orthogonalization 

has such a relatively large effect: by mixing the orbitals on A with 

those on B, and vice versa, one contaminates the VB structures with 

charge transfer structures, and an amount of charge of 0.66 10 a.u. 
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transferred from one molecule to the other is already sufficient to 

explain the above differences. So, because of this sensitivity of 

the calculated collision induced dipoles to the artificial charge 

transfer introduced by orthogonalization, all subsequent calcula­

tions had to be performed in a basis of VB structures derived from 

the original non-orthogonal monomer MO's. The method employed by us 

is described in ref. 20. 

Unfortunately such a calculation is rather difficult, and be­

cause the Van der Waals energy is hardly affected by orthogonaliza­

tion, our program handling non-orthogonal Orbitals was never devel­

oped past a pilot stage. As the main limitation is that it can handle 

at most eight non-orthogonal, non-doubly occupied, orbitale simulta­

neously, we were forced to divide up the calculations into smaller 

pieces. 

From the perturbation results given in tables I and II it is 

clear that in the long range a VB calculation, involving all struc­

tures that give an R dependence, can be split. In the linear case, 

for instance, we see that a calculation based on the ground state and 

structures of (ζ,σ ) and (ζ;σ ) symmetry gives one term of the (1,1) 

dispersion dipole on H- and one term of the (2,0) dipole on He, (and 

the He induction, of course). Another calculation, based on (ζ,·σ )-

and (χζ;π (-structures, gives a different term of the (2,0) dipole 

on He and no contribution to the (1,1) dipole. As far as perturbation 

theory holds, such terms are strictly additive. 

Earlier |_1б] it was noted in energy calculations that a similar 

additivity also holds for shorter distances. Several tests on the 

dipole moment of this complex at R = 5.2 and 8.0 bohr have shown that 

here too the additivity predicted by long range theory holds excel­

lently, even though at 5.2 bohr exchange and penetration are far 

from negligible. This makes it possible to partition the orbital set 

into subsets of different local symmetry and to divide the complete 

VB calculation into smaller ones based on choices out of these sub­

sets guided by tables I and II. 

However, a complication arises here from the fact that the 

tables I and II are derived under the assumption of orthogonal states 

and hence orthogonal orbitals. So, additivity holds only strictly in 

that case; or, in other words, the orbitals figuring m the resol­

vents of tables I and II must be interpreted as orthogonalized or­

bitals. The orthogonalized orbitals can of course be expanded in 
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terms of the original orbitale. Substituting these expansions into 

the resolvents, it follows that coupling matrix elements occur that 

are zero in the long range. The strength of these coupling matrix 

elements is determined by the intermolecular overlap of the orbitals 

involved, which is negligibly small in most cases. Such mixing does 

not occur for orbitals of different global symmetry (С
ш
 and C^ for 

the linear and the perpendicular case, respectively) which have zero 

overlap, and the corresponding parts of the resolvent are still addi­

tive. 

The latter property was used when making a first partitioning 

of the VB calculation with the non-orthogonal orbitals. In the linear 

case we have included the dispersion structures of (σ,σ) type and 

those of (π,π) type in two separate VB calculations; in the perpen­

dicular case we had to make a further splitting of the VB calculation. 

The number of orbitals in each VB calculation was restricted by in­

specting the weight of the structures in the VB wave function of 

Geurts et al. |_15j in which these orbitals occur. Moreover, we have 

performed numerous tests to check that no important overlap contri­

butions were neglected and that additivity holds between the separate 

VB calculations. 

4. Results and discussion 

In tables III and IV the different contributions to the dipole 

moment are given for the linear and the perpendicular case, respec­

tively. Note that the (1,1) contribution is absent for the Τ shaped 

complex. Because this contribution is only 10% of the (2,0) dipole 

for the linear geometry, a number in accordance with the findings 

of Byers Brown and Whisnant |_10,1l]], and because the (2,0) disper­

sion itself is already very small, we decided that it was not worth 

the effort to calculate this small effect in the perpendicular case 

as well. 

As will be shown in a second paper, the region responsible for 

the collision induced absorption in He-Hj stretches from 4.5 to 8.0 

bohr. We see that the two short range effects, exchange and H, over­

lap-induction, are dominant there, although the dipole moment in He 

induced by the permanent moments on H- is also sizable. This latter 
-4 

term has a strikingly good R dependence down to R = 5.2 bohr. As 
— 6 —8 

far as the absence of higher multipole terms (R , R ,etc.) is con-
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TABLE ill. Decomposition of the VB dipole moments for the linear geometry . 

All dipole moments are in 10 a.u. . 

R 

|"bohr3 

4.0 

5.2 

5.6 

6.0 

7.0 

8.0 

10.0 

Exchange 

1768.48 

249.07 

121.96 

57.73 

7.57 

0.78 

0.00 

H.-overlap 

induction 

2870.56 

377.87 

184.18 

87.97 

12.57 

1.53 

0.02 

He-induction 

1020.39(834.33) 

300.81 (282.87) 

214.89(208.97) 

159.07(157.76) 

83.93 (84.34) 

49.02 (49.17) 

20.00 (20.00) 

(2,0)-disp 

384.21 

51 .92 

11.14 

-5.32 

-7.69 

-3.33 

-0.57 

(1,1)-disp 

-25.05 

-5.35 

-3.39 

-2.07 

-0.71 

-0.26 

-0.05 

Rest 

-394.99 

-63.93 

-29.59 

-12.81 

-1 .24 

-0.10 

0.00 

^ в' 

5623.60 

910.39 

499.19 

284.57 

94.43 

47.64 

19.40 

a. The decomposition is performed according to the definitions (i) to (iv) given in 

the text. 

b. Positive direction of the dipole moment corresponds with negatively charged H_ and 

positively charged He. 

c. In parentheses the multipole expansion results are given, calculated as a sum of the 
— Δ — f i — f t 

R , R and R terms. 



TABLE IV. Decomposition of the VB dipole moments for the perpendicu­

lar geometry. All dipole moments are m 10 a.u. (see 

captions table III) 

R 

| > o h r 

4 . 0 

5 . 2 

5 . 6 

6 . 0 

7 . 0 

8 . 0 

1 0 . 0 

3 
E x c h a n g e 

1 1 3 6 . 9 7 

1 7 2 . 3 7 

8 4 . 2 1 

3 9 . 2 4 

4 . 7 4 

0 . 4 3 

0 . 0 0 

H 2 - o v e r l a p 

i n d u c t i o n 

1 1 4 2 . 0 2 

1 7 6 . 5 7 

8 5 . 6 7 

4 0 . 7 0 

5 . 6 4 

0 . 6 5 

0 . 0 0 

H e - i n d u c t i o n 

- 2 1 9 . 3 5 ( - 3 6 4 . 6 3 ) 

- 1 1 6 . 2 3 ( - 1 3 0 . 6 1 ) 

- 9 1 . 9 8 ( - 9 7 . 5 5 ) 

- 7 2 . 5 8 ( - 7 4 . 3 0 ) 

- 4 0 . 6 5 ( - 4 0 . 3 7 ) 

- 2 3 . 8 9 ( - 2 3 . 7 7 ) 

- 9 . 8 0 ( - 9 . 7 9 ) 

( 2 , 0 ) - d i s p 

5 2 . 3 6 

- 2 6 . 8 9 

- 2 3 . 8 7 

- 1 8 . 3 6 

- 7 . 4 6 

- 2 . 8 4 

- 0 . 5 4 

R e s t 

- 1 3 2 . 9 6 

- 2 2 . 5 7 

- 1 1 . 2 4 

- 5 . 3 4 

- 0 . 9 3 

- 0 . 2 3 

0 . 0 1 

< l J VB > 

2 2 4 9 . 0 4 

1 8 3 . 2 5 

4 2 . 7 9 

- 1 6 . 3 4 

- 3 8 . 6 6 

- 2 5 . 8 8 

- 1 0 . 3 3 

cerned, this can be understood since the hexadecapole and higher per­

manent moments of H- are relatively small |_2l]. What is surprising, 

however, is the absence of short range effects, while short range 

forces become non-negligible at around 7.0 bohr, which can also be 

seen from the fact that the dispersion terms fail to have an R de­

pendence for distances shorter than 7.0 bohr. The (2,0)-dispersion 

even changes sign in that region. 

Regarding a comparison with the results of Poll and Hunt |_14] 

obtained from an interpretation of the experimental spectrum, we note 

that one can write: 

μ
//

 = A
01 "

 / 2 A
21

 + / 3 A
23 

μ
1
 » A

0 1
 • è /2 A21 - i /3 A23 

Here the Α-values are the ones defined by Poll and Hunt in their pa-

rametnzation of the dipole moment of an atom-diatom system; μ ,, stands 

for the dipole moment of the linear complex and μ. for the dipole 

moment of the Τ shaped complex. Clearly, for the isotropic part Α.. 

of the dipole moment one has 
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A
oi

 Ξ
 Ι

( μ
//

 + 2
ν 

Since Α.- has a short range component, as well as a long range compo­

nent due to dispersion, the following parametrized form for A... is 

physically reasonable: 

A
0 1
 = С exp C-R/p] + DR

- 7 

The dispersion part is obtained by fitting -^(μ., + ΐν ) at large distan-
_7 -

s
 " J. 

ces (7 to 10 bohr) to the form DR , which goes quite well. The short 

range contribution is obtained by fitting the same expression at 

short distances, (4.0 to 5.6 bohr) after the dispersion part is sub­

tracted. We then find a good exponential behaviour. In this manner 

the following values are resulting: С = 38.8 a.u., ρ = 0.58 bohr, 

D = -61.8 a.u. (The exchange dipole alone yields ρ = 0.61 bohr). The 

value of ρ is in reasonable agreement with the value ρ = 0.624 bohr 

quoted by Poll and Hunt |_14j; more detailed fits including varia­

tions in the rotational and vibrational coordinates of H_ are presen­

ted in a forthcoming paper. 

The parameter A — is mainly due to induction. From the formula 

derived in the appendix we get: 

IT 

A
23 •

 / 3 a
0

e < Q
2

2 > R
"

4 

As we have seen earlier, one gets essentially the same result for the 

He induction dipole whether we apply this formula or fit the VB He 
4 

induction results at large distances, both methods give A--, = 1.14/R . 

Using the accurately computed values of ref. | 22] and ref. [_23] for 

He Η 2 4 

a., and <Q
2
 >, respectively, one gets Aj-j = 1.16/R . 

Comparing the different contributions to the collision induced 

dipole, as given in tables III and IV, one finds as the most important 

conclusion of this paper that a very good description of the collision 

induced dipole moment is obtained by including exchange, H--overlap 

induction and, as the only long range effect, the quadrupole induc­

tion dipole on the He-atom. The two different short range effects 

have practically the same, exponential, distance dependence. 

When looking at heavier rare gas systems one must keep in mind 

that the polanzability of the He-atom is extraordinary small. There­

fore, one can expect for heavier rare gases the long range effects 
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to be more important, but also the exchange and penetration to start 

at larger distances. In any case, it is clear from our results that 

the effects of short range forces on the collision induced spectra 

cannot be neglected. 
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APPENDIX 

In this appendix the matrix element <00|vi ' |00> is expressed 

in a series in 1/R. No assumption is made regarding the symmetries of 

the subsystems, the only condition is that they are neutral. Speciali­

zing the resulting expression to an atom-diatom system it becomes the 

well-known classical formula describing an isotropic polanzable 

charge in the field of permanent multipoles. 

We will follow Fano and Racah's notation |_24] in writing a 

Clebsch-Goraan series as an irreducible tensonal product, denoted 

by square brackets. The spherical harmonics C. it) used below have 

the phase of Condon and Shortley and are normalized to 4іт/(2Я.+ 1). 

We evaluate 

<00|μ
(1
'

Ο)
|00> = <00](y

A
+M

B
)R

0
 V + V RQ(y

A
+y

B
)|00> 

First the term <00|μ R. V|00> is considered, the other terms follow 

then by analogy. Because the monomer В is neutral, we may measure μ 

from any origin; we choose the center of mass of B. 

Expanding R
n
, and inserting the multipole expansion for V |_17j 

we get: 

<00|μ
Β
 R

n
 V|00> = Ζ (-1)

 a
( ^ ) (2L+1) R"

L
"

1
 Σ

1
 ΔΕ"\' 

W
0 a b

 (1) 

xi :<o¡ í B ib> χ I : C L ( R ) χ : < O | Q A ιο> χ <biQj I O > : I ( L ) : I ( O ) : I I ; I ) 

a b 

В ~*"R 

Here: μ is the v-th spherical component of μ 

L
 - *

a
 * *Ь 

R = (R,R) IS the vector pointing from the center of mass of A 
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to the center of mass of В 

г
*а

т
а 

Hb
m
b 

о _ (r ) (a summation over the charges q be-Σ q r 
acA

 a a
 ~а'*"а 

longing to molecule A and having position vectors r 

as for A 

Instead of the irreducible product arising in this expression we 

would rather have the following one: 

(λ) ^ . _ (1) 

' ν 
i+B, ϊΒ ;C<o|ÍB ¡b> χ < Ы о £ | o > ] b χ < O ! Q £ | O > 3 " • χ c L ( R ) l (2) 

because here the irreducible tensors on В are coupled first, and 

hence we may be able to substitute the dipole/Jl.-pole polarizability 

of B. Furthermore, this irreducible product gives the simplest possi­

ble behaviour under rotation of the monomers. 

One readily derives that the required recoupling coefficient is 

|~ (2λ+1) (2L
h
+1) (2L+1)3

 x
 G, where G is the graph given in fig. 1. 

This graph breaks on three lines |_253 , and so we get for the recoup­

ling coefficient: 

|_(2λ + 1) (2L +1) (2L+1)JÍ (-1) г
0 1 L

M
1 

Lbi _ 

*b
 L 

Fig. 1. Graph G representing the recoupling coefficient referred to 

in the appendix. 
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.(2λ+1)(2L
h
+1)_è 

- — I {*a ) ^ ь
}
 (з) '- з -' Ч г

ь
 L 

where the expressions between curly brackets are the usual Wigner 

6j-symbols. 

Define the irreducible i. -pole/i'-pole polarizability of В by: 

H.B i:<0|Q^
b
|b>x<b|Q^|0>] (4) 

а
<

1
ь '

1
ь

, ь
ь
 =
 b' E»-EI

 (4) 

0 b 
Then: 

< 0 0 | y ^ R 0 V + V R0 y > 0 > = У2 Σ ( - υ " 3 ( £ ,* К - 1 " 1 

a b 

x Σ Γ ( 2 λ + 1) (2L. +1) ( 2 L + 1 ) " | * 
Х,ЬЪ -

Χ {
2

a î bL
b }< Tv + (-1'V τ%) (5) 

where : 

т ^ CC^,.
 ) L h
 x <o|Q?|o>]<^xc

L
,R,]^) 

"b' b 

and further one easily shows: 

, - , , ν τ % -. , . η - V V 1 ZG* « <o|3î |o>:<^ χ cL(R)Dy) 
D B a 

To our knowledge this formula for the dipole moment induced on a 

molecule of arbitrary symmetry by another molecule, also of arbi­

trary symmetry, has not been given before. The vector Τ has the 

following physical interpretation: a permanent moment
 <
0|0л |0> 

on A induces an irreducible tensor of order L, on В via the dipole/ 

I. -pole polarizability of B. These two monomer tensors couple to 

give a dimer tensor of order λ, which in turn couples with the geo-
- * • ^ -»-

metrical tensor C
T
 (R) to the v-component of the vector T. 

L· 

If В is an atom (in a state |γ
0
 L. M

0
>) the polarizability ten­

sor (4) is a scalar: 

<Y0 ь0І loi j IY, ι-,χ-τ, bjlotbl lr0 V 
x Б 5 \°Ι 

E Ï O L 0 E Y 1 L 1 
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where {Ь0,Ъ.,1. } is the triangular delta, and the double barred ma­

trix elements are the usual reduced matrix elements introduced by 

applying the Wigner-Eckart theorem. 

In the case of Í_=1 the above definition for the dipole/dipole 

polanzability of an atom differs by a factor J/3 from the more 

usual definition: 

в .,„ в
 h

 в _ 2 y, y <olr1
lb><b[r

i
|o> 

a
(i,i)o

 = è/3 ao' w h e r e ao = 3 I 7 J IB ' ri = x'y'z 

b " 0 
If A is a linear molecule in a Ε-state, one easily proves: 

< 0 ^ î m l0 > = С г т < V < Q Î >' a a a a a 

where R. is the unit vector that specifies the orientation of A, and 
A 

<Qn > is the component of the S. -pole along the molecular axis. If 
^а a 

A is a homonuclear diatomic, only even Î. -values occur. One finally 

arrives at: 

<00|y"e R0 V + V R 0 g"
e|00> = уз Σ C(J.

a
 + 1) (2Äa + 1) (2га

+з)1|* 

ι 
a •ί -2 

χ R a a f ν > ι : δ , <R
H
 ) χ cl +1

(R): 

Note that this formula has been derived without using the gradient 

formula, as is usually done |_8,9]. 
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MACINTOS: THE MANY ATOM CONFIGURATION 

INTERACTION PROGRAM FOR ORTHOGONAL SPIN ORBITALS 
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1. Introduction 

One of the methods used in the study of electronic correlation ef­

fects is the Configuration Interaction (CI) method [ 1 ] . In the CI meth­

od the wavefunction is written as a linear combination of predefined 

(spin adapted) configuration functions and the variational solutions 

of the Schrödinger equation are obtained by diagonalization of the 

Η-matrix. The possible number of configuration functions increases very 

rapidly with the number of electrons and orbitals; in practice this 

means that one very soon runs out of computer storage and execution 

times become excessively long if no special programming techniques 

are used. 

The program MACINTOS is especially designed for performing large 

scale CI calculations. The program belongs to the class of conventional 

CI programs and is based on the concept of a formula tape [1]. It takes 

a list of configuration with an arbitrary spin value as input, and in­

terprets them as bonded functions [2] . This flexibility in input makes 

the program slower than, for example, direct CI programs [3], where 

certain classes of configurations are treated simultaneously. 

The advantage of bonded functions over other spinfunctions is that 

the number of different spin symmetry coefficients is limited to a few 

and all are powers of two. This keeps the formula tape short. The price 

one pays, however, is the non-orthogonality of different bonded func­

tions with the same spatial occupancies. 

The first version of the program was written in 1972 and the old 

as well as the new program are essentially based on Reeves' algorithm 

[2] for Η-matrix elements between bonded functions. This algorithm as 

well as the Yoshimine algorithm [4] for sorting two-electron spin sym­

metry coefficients stored on the formula tape, have been considerably 

improved. 

The program has the following limits: 

1) number of orbitals: 107 

2) number of configurations: 32767 

3) number of open-shell singlet pairs: 62 

In most cases, the capacity of the hardware, not these, will be the 

real limit. The only input needed for the program is, besides a list 

of configurations, a list of molecular integrals (ATMOL-format [5] ). 

For a number of cases it is possible to let the program generate this 

list of configurations, with or without the use of Abelian spatial 

162 



symmetry. 

The program was developed on and designed for an IBM 370/158 com­

puter and written in standard FORTRAN IV. The program is machine in­

dependent except for a few parts, such as the packing of indices, 

where machine dependent algorithms have been used. Furthermore there 

are numerous routines in assembly language which provide system faci­

lities not accessible from FORTRAN, such as dynamic core allocation, 

obtaining date and time, checking allocated datasets, etc. The program 

consists of a number of independent sections, which can be executed 

separately and correspond to phases in the solution of the generalized 

eigenvalue problem. We will first give a brief description of the 

theory and next describe the various sections. 

2. Theory 

We give here only a brief description of the theory involved 

(for more details see Ref. 1 ) . 

We are interested in solutions of the Schrödinger equation 

Ηψ = Εφ (1 ) 

where Η is given by 

Η = Σ h + Σ g (2) 

u у< 

where h and g are one- and two electron operators respectively. 

The method we use for the solution of eq. 1 is based on the varia­

tion principle, which states that the energy functional 

Ε [ ψ ] = < Ή Η | Ψ > о , 

<ψ|ψ> 

is stationary with respect to all variations in the function ψ if and 

only if ψ coincides with the exact eigenfunction of H. 

In our case we approximate φ by a linear combination of predeter­

mined functions Φ , so 

ψ = Σ C
s
 Φ

5
 (4) 

Ξ 

and substitution of eq. 4 into eq. 3 gives the well known secular equa-
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tion or generalized eigenvalue problem: 

H с = E S с (5) 

where Н ^ = ^ І Н І Ф ^ (6) 

S
IJ =

 <Ф
ІІ «7) 

This can be transformed to the standard eigenvalue problem by using 

the unitary transformation matrix U, which diagonalizes S: 

U
+
S U = 1 (8) 

The eigenvalue problem becomes then: 

H' c' = E с' (9) 

where 

H' = U
+
 H U and (10) 

с' = У
+
 с (11) 

We will take the functions Φ equal to spin bonded functions, 

which implies that we have to evaluate Η-matrix elements between bonded 

functions [1] . In general the matrix elements can be written as: 

Η = G { Σ h"<i|h|j> + Σ' g " <ik|g|jl>} (12) 

i<j -
1
 i,j,k,l

 J 

where the prime denotes a summation over canonically ordered indices 

only. 

After the secular equation (5) has been solved properties can be 

calculated. This can be very easily done, in the case of one-electron 

properties, by using the first order density matrix or natural Orbi­

tals. The first order density matrix is defined as 

Р
і: - pJ

C; CQ GPQ hïï , 2- 6ij r 1' "3) 

where с ,c are the expansion coefficients defined in eq. 4. Natural 
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Orbitals are the eigenvectors of the matrix £. Molecular one-electron 

properties can now given by 

<ψ|θ|ψ> = Σ ρ <i|Q|j> = Σ nv<v¡Q[v> (14) 
iS j -' ν 

where ν indicates natural orbitals with eigenvalues (occupation num­

bers) η . 

3. Generation of a list of configurations 

To start a CI calculation it is necessary to have a list of con­

figurations. This list can optionally be generated by a section of the 

program, which is able to produce the following classes of configura­

tions: full valence space, full valence space with all single excita­

tions and full valence space with all single and double excitations. 

For this purpose the orbitals are divided in three classes: 

a) frozen: always doubly occupied. 

b) valence: from these orbitals the full CI valence space is built. 

c) virtual: excitations from the valence space are made to this class 

of orbitals. 

The number of configurations is of course dependent on the number of 

orbitals and electrons in each class and the total spin value. 

The generator can use spatial symmetry, but the corresponding 

group has only one-dimensional real representations (the largest such 

group being D,. ). 

The generator is based on the distinct row table, which is used 

in unitary group theory lЗІ . The distinct row table is generated for 

the input values, number of electrons, orbitals and spin, and then 

traced for all paths. Each path has a one-to-one correspondence to a 

bonded function. The spatial symmetry is used when a bonded function 

is generated. 

4. Reordening the list of configurations 

This step is necessary because during the actual calculation of 

the matrix elements in the next section it is assumed that bonded 

functions with the same spatial occupancy are adjacent and furthermore 

it makes the whole CI calculation much more efficient. As a result, 

the transformation matrix in eq. 8 becomes block diagonal, which means 
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that the transformation of the Η-matrix (eq. 10) can be done very 

efficiently. 

The reordening is done by constructing a binary tree, which next 

is traversed in postorder [6] . For this purpose the representation of 

the configuration is changed to orbital occupancies. The resulting 

order of the configurations is according to increasing weight (orbital 

occupancy). 

5. Generation of spin symmetry coefficients 

This section is concerned with the calculation of the spin symme­
try coefficients G

T T
, h. . and g. ., , appearing in eq. 12. See for the 

1
 IJ ij ^1]к1 e-r- -э ι 

theoretical background of the method Ref. [7] and [ 8] . A recent rede-

rivation of the formulae by the use of Jucys diagrams has been given 

in Ref. [ 9] . 

The section is based on Reeves' algorithm [2] for matrix elements 

between bonded functions (eq. 12). The algorithm, dating from 1966, 

has been improved in several aspects: 

1) The determination of the number of non-coincidences (= NONCO) be­

tween bra and ket is done only once for each block of H-matrix 

elements (all involving the same pair of orbital products in bra 

and ket). The time for determining NONCO and for the pairing of 

Orbitals in bra and ket is linear in the number of electrons, 

rather than quadratic, as it was in the original algorithm. This 

has been achieved by representing a bonded function as an ordered 

orbital product and a permutation defined such that it returns the 

bonded function when acting on the orbital product. 

2) The construction of the Pauling superposition pattern (Rumer dia­

gram) has been separated into two consecutive steps. First the odd 

and even chains are determined by starting traces at the unpaired 

electrons. If no even chains are present one has to scan through 

the unpaired electrons only once; if even chains (which come in 

pairs) are present this is done twice. Then the cycles are deter­

mined by scanning with steps of two (rather than one) through the 

paired electrons. 

3) during the pattern construction the positions of mismatching Orbi­

tals are recorded. This makes it unnecessary to move the non-coin­

cidences to the end of the list of the orbitals. 

4) The coefficients g. ., , multiplying a two electron integral has the 
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form: 

t χ u χ С 

where the quantities t and u are occupation numbers 0<t, u<2 and 

С is a coefficient that can take on seven values (±2,±1,±i,0). 

5) The quantity G
T T

 depends only on the index of bra and ket (not 
ι, J 

on any integral index) and is given by: 

G
I , J = ± ( ^ )

± 9 l
'

J 

where g
 τ

 is an integer. 
l, J 

We store on a separate file the exponent g
T T

 together with the 

ι, J 

two signs, all packed in one byte. This g-file has the same block 

structure as the Η-matrix file (only NONCO < 2 blocks are stored to­

gether with the block index). The "jk-coefficients" t χ u χ С are 

stored rowwise together with the pertinent integral index and the 

Η-matrix column index; this takes six bytes per coefficient. Row 

indices are superfluous since diagonal Η-matrix elements are non zero, 

and hence an end-of-row mark is all that is needed. The coefficient 

h.. multiplying an one electron integral can take only three values 
IJ 

(0,1 and 2). The coefficient h. . is packed in four bytes together 
with the integral index and the Η-matrix column index. Again only an 

end-of-row mark is needed to indicate the row index. 

6. Generation of orthogonalization matrix 

This section is concerned with the calculation of the matrix U 

defined in eq. 8, needed for the solution of the generalized eigen­

value problem. 

The method used is a Löwdin-orthonormalization. The S-matrix is 

constructed and has block diagonal form, so each block can be treated 

separately. For each block the S matrix is constructed, which has 

the advantage of being symmetric. 

7. Sorting of two-electron spin symmetry coefficients 

Generation of the two-electron spin symmetry coefficients g.... 

by Reeves' algorithm was outlined in section 5. The coefficients 
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depend on both the configuration and molecular integral indices. They 

are generated such that the configuration indices I and J are ordered 

canonically, but the integral indices i,j,k and 1 are not in the canon­

ical order. As long as all two-electron integrals fit in main storage 

this would cause no problems. However, with large basis sets this is 

no longer possible. In most cases it is possible to have only a frac­

tion of the integrals in storage and all references to integrals not 

in storage can not be resolved. This is why the two-electron coeffi­

cients need to be reordered. The sorting is done using an idea of 

Yoshimine [4] but with a modified method of tracing the records con­

taining the coefficients. In the original Yoshimine algorithm back 

chaining on indices stored on disc is performed, which makes it later 

necessary to construct the two-electron part of the Η-matrix backwards. 

In the new algorithm, however, an array is reserved for storing record 

indices in such a way that it is possible to trace forward through the 

file. The two-electron part of the Η-matrix can be constructed in the 

same way as the one-electron part. The main advantage of this is that 

bases truncated from above can easily be dealt with, without having to 

construct a new formula tape for each truncation. 

8. Construction of H-matrix 

In this section the Η-matrix (or rather only the lower triangle) 

is constructed out of the spin symmetry coefficients from section 5 and 

the molecular integrals. The Η-matrix is usually a rather sparse matrix 

(only 10% non zero elements) and it is efficient to use this structure 

during storage of the matrix. The Η-matrix has to be built in steps. 

Namely, the molecular integral file is segmented in loads such that 

each load fits in core. In the i-th step all the integrals of the 

i-th load are multiplied by the pertinent spin symmetry coefficients 

and added to the two-electron part of the Η-matrix. The modified Yos­

himine sort of the formula tape ensures that a coefficient g. ., . and 

its corresponding integral (ij|kl) are simultaneously in core. Further­

more the processing of the Η-matrix in each step is in canonical order 

in I and J, i.e. I Ä J = 1,...,NCONF. Hence the lower triangle of the 

Η-matrix is constructed rowwise. The one-electron part is then added 

to the two-electron part, finally the matrix elements are multiplied 

by the coefficient G , according to formula 12. 
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9. Orthogonalization of Η-matrix 

This is the first phase of the solution of the generalized eigen­

value problem. The Η-matrix constructed as in section 8 is transformed 

using the transformation matrix described in section 6 and formula 10. 

The transformation matrix has block diagonal form and the H-matrix 

has many blocks of zero matrix elements. The transformation uses infor­

mation about the block structure, in order to avoid multiplications 

with blocks containing zeros. 

10. Diagonalization of H-matrix 

This is the second step in the solution of the eigenvalue problem. 

The program has two different diagonalization routines available. The 

first routine is a standard full storage diagonalization. The routine 

calculates all eigenvalues and eigenvectors of a symmetric matrix. The 

matrix is first reduced to tridiagonal form by a sequence of Househol­

der transformations [10] and the eigenvalues and eigenvectors found by 

the QR method [l 01 . Finally the eigenvectors of the original matrix 

are obtained by transforming the vectors, which yielded the tridiagonal 

form. 

The second routine is specially written for obtaining the lowest 

eigenvalue and eigenvectors of large matrices, which do not fit in 

storage. The eigenvalues and eigenvectors are calculated iteratively 

using the method of optimized relaxations (MOR) [11] with successive 

over-relaxation [12] . The relaxation is applied simultaneously to the 

several trial vectors. Each iteration is followed by the diagonaliza­

tion of the iteration matrix [13] in order to improve the separation 

of the eigenvector components in the trial vectors. 

11. Back transformation of eigenvectors to original basis 

This is the last phase of the solution of the secular equation. 

The eigenvectors from section 10 are transformed according to eq. 11 

by using the transformation matrix described in section 6. 

169 



12. Construction of the first order density matrix and natural Orbitals 

From the eigenvector of section 11 the density matrix is contruc-

ted using the one-electron spin coefficients, described in section 5, 

according to formula 13. The natural orbitals are obtained by diagona-

lizing the density matrix. 

13. Calculation of energy contributions 

This section is concerned with configuration selection. Configura­

tion selection is often necessary because as the number of basis func­

tions is increased, there comes a point where the number of (spin-adap­

ted) configuration functions becomes too large to be handled as one 

secular problem. Here one method of shortening the CI expansion of the 

wavefunction is described briefly. First a reference space is defined, 

which contains the most important configurations. Next all remaining 

configurations are investigated separately, by adding each configura­

tion to the reference space and computing the lowest eigenvalue in the 

extended reference space. If the addition of a configuration lowers 

the energy by more than a certain threshold, that configuration is 

selected. After a complete scan of the configuration space a CI calcu­

lation on basis of the selected configurations is performed. The eigen­

value is calculated, in the extended reference space, by the use of a 

formula derived by partitioning [14] of the Η-matrix. This formula is 

more efficient than performing a diagonalization for the extended 

reference space. For this purpose a preliminary CI calculation on the 

basis of the reference space is performed and all eigenvalues and eigen­

vectors are saved. For every configuration the following equation has 

to be solved: 

Y Y* 
H + Σ - ^ - - e = О 

a a
 λ

 ε
-

ε
λ 

where Υ
λ
 = Σ Н

а і
 с.

х
, 

ι 

ε.,с, are the eigenvalues and eigenvectors, respectively of the 

reference space. Η is the diagonal Η-matrix element of the added con-
aa 

figuration, Η is the matrix element between the added configuration 

th
 a
^" 

and the i configuration in the reference space. This equation is 

solved using the Newton-Raphson [15] scheme. In order to obtain conver-
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gence, it is important to choose a proper starting value for ε. It is 

easy to prove that for 

.2 
2 Y ; 

ε
ο ~ Η —, < c < e

o ' 
aa

 o
0 

the process converges towards the lowest eigenvalue e. 

14. Example 

Some characteristics of a typical large-scale CI calculation are 

given as an example. This calculation was performed in order to obtain 

the dipole polarizability of CN [16]. The configuration space used has 

the dimension 17748. It consists of a full CI basis within valence 

orbitals (dim. 230) and all single excitations from the valence Orbi­

tals to the virtual orbitals. The total CI basis is generated by the 

use of the configuration generation subprogram, with the following 

specifications : 

14 

3 

7 

44 

singlet 

C„ 

- number of electrons 

- number of frozen orbitals 

- number of valence orbitals 

- number of virtual orbitals 

- spin 

- spatial symmetry group 

- symmetry of configurations 
4 

Run statistics CPU Time (in minutes on 

IBM 370/158) 

1) Generation of spin symmetry coefficients: 

number of Gì j coefficients 

number of h?» . coefficients 
1 r 3 

number of S-matrix coefficients 
number of g.'. , . coefficients 

432 

15, 157, 731 

1, 408, 645 

34, 516 

48, 829, 649 

2) Sorting of spin symmetry coefficients: 80 

3) Construction of H-matrix: 

(3 integral loads) 

57 
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4) Orthogonalization of Η-matrix: 44 

Diagonalization of Η-matrix: 195 

start vector: eigenvector of valence 

space extended with zero's 

only lowest eigenvalue and eigenvector 

are calculated, with an iteration thres­

hold of 10 on the vector 

time per iteration 15 

6) Backtransformation of lowest eigenvector, 

construction of density matrix and calculation 

of natural Orbitals: 3 

Total CPU time is 811 minutes. However, for calculations with the 

same configuration space, such as geometry optimalizations or finite 

field calculations, 299 minutes are necessary, because the same sorted 

spin symmetry coefficients can be used. 
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1. Introduction 

Electric hyperpolanzabilities are important for the understanding 

of non-linear optical phenomena [1] . However, measurements of the 

higher order polarizabilities are difficult, and little experimental 

information on these quantities currently exists. On the other hand, 

these properties are easily calculated by the common quantum chemical 

methods developed over the last two decennia. But, because experimental 

results are scarce, it is difficult to assess whether the ordinary 

quantum chemical methods such as LCAO-SCF [2] and CI (configuration 

interaction) [3] are reliable enough for these higher order electric 

properties. 

Fortunately, in the case of H- very accurate computational results 

are available [ 4,5,6,7], which surpass in quality the existing experi­

mental data. In one of the more recent ones of these publications [6] 

it is pointed out that the computed hyperpolanzabilities are extremely 

sensitive to the quality of the wavefunctions used. Since in that work 

explicitly correlated wavefunctions of the James-Coolidge type have 

been employed, it is not clear how this conclusion applies to an 

approach based on orbitals. Transferred to the LCAO-SCF-CI method, 

this conclusion may mean that correlation effects are predominant, 

that high quality atomic orbital basis sets are required, or even 

that both factors are equally important. Finding the cause of this 

sensitivity will enhance our experience necessary for gauging the 

quality of calculations on heavier molecules, where James-Coolidge 

type calculations are impossible, and orbital approaches are at 

present the only viable option. 

In this paper we present higher order polarizabilities of H-, 

obtained by means of the common LCAO-SCF-CI technique [2,3] and com­

pare the results, where possible, with the high quality calculations 

of Ref.'s 4,5,6 and 7. Since the errors in our results are very 

small (the largest being 4.5%), we thought it worthwhile to calculate 

the full distance dependence of the components of the first three 

non-vanishing polanzability tensors. Only the distance dependence 

of the second order polansability has been published before [4] . 

In order to define the quantities presented in this paper, we 

note that all calculations have been performed with the H
2
-molecule 

placed in a homogeneous electric field F t І . In that case a Taylor 
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expansion in the field yields the energy expression [91 

t m l * 1 m 1 m 2 
E ( F ) = E (Ó) - Σ Q. (Ó)F m - l y T. a ' / F ^ F m 

m, 1 m ^ η 2 

. m m m 
- -γ Σ β. ' ¿ * Fm Fm Fm (1) 

J ! _ 1 1 1 m, m- m, 
m.m- 1 2 3 

m 3 
ι m m m m 

- TT Σ γ ' .. , F F F F + . . . 
4 ! 1 1 1 1 m, m_ m_, m. 

Ш-Шр 1 2 3 4 

m
3

m
4 

and for the 2 -pole moment [9] the expression: 

. _,. mm. . mm.m 
Q f ( F ) = Q j f O ) + Σ α Μ

1 F m + l y Σ ß M . F m F 
J6 IL κ.1 m- 2 ! £1 1 m„ m_ 

m. 1 m.m 1 2 

- і т п . т _ т ^ 
+ TT Σ γ „ . 1 , , J F F F + . . . (2) 

3 ! ' £ 1 1 1 m, m_ m_ 
m.m 1 2 3 

m 3 

Explicit formulae for the symmetrized polarizability tensors appearing 

in these equations have been derived by Gray and Lo t 9] , who have used 

Rayleigh-Schrödinger perturbation theory. We will deviate from these 

authors by using tesserai (real) harmonics rather than spherical (com­

plex) harmonics, thus, for S, = 1 the values 1,0,-1 of m refer to x,z 

and y respectively. 

Atomic units are used throunhout this paper: 

1 a.u. of length (bohr) = a0= 5.29177 χ 10~
1
 m. 

1 a.u. of energy = E ~ 4.3598 χ 10~18
J = 2.6255 χ 10 J/mol. 

-19 
1 a.u. of electric charge = e ~ 1.60219 χ 10 С. 

1 a.u. of dipole moment = ea» ; 8.4784 χ 10 Cm. 

2 -41 2 

1 a.u. of quadrupole moment = ea
n
 ~ 4.48658 χ 10 Cm . 

1 a.u. of dipole polarizability = 4ттг
г
.а:' = 1.64878 x 10~

4 1
C

2
m

2
J~

1
 . 

3 7 2 —65 

1 a.u. of dipole hyperpolarizability = (4ITÌ-) a^/e = 6.2353 χ 10 

С m J 

1 a.u. of quadrupole hyperpolarizability = (4тте
п
)

 ап/е ~ 1-6967 
ln
-63^3 4-2 

χ 1 0 С m J 
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In the case of centrosymmetric molecules one has «„. = Y j
1 l 1

 = 0 

for even I, and Q. (0) = 3,,.... = 0 for odd I. So, the first three non-

vanishing tensors for H_ are Q^-, 6,-, (the tensor В „ - in Bucking­

ham's notation [10]) and γ--^. These are the tensors presented in 

this paper. 

Finally, we want to point out that in the derivation of Eq. (2) 

the Hellmann-Feynman theorem has been applied. Therefore, the tensors 

a.... and Ύι-ι-ιι obtained from (1) will be equal to those obtained from 

(2) so far as the Hellmann-Feynman theorem holds. This forms an extra 

test on the accuracy of the wavefunctions used. 

2. Computations 

All calculations have been performed with an АО-basis of Carte­

sian Gaussian-type orbitals. On each hydrogen atom the 10s basis of 

Ref. 11 has been placed, with the exponents scaled by a factor 1.2. 

The rather loose contraction (4,2,2,1,1) has been applied in order 

to have sufficient flexibility among the diffuse orbitals. On each 

atom four uncontracted p-orbitals were added, with exponents ranging 

from 2.0 to 0.068, and also two uncontracted d-orbitals with a, = 1.69 

and ai = 0.06. The compact p- and d-orbitals improve the ground state, 

whereas the more diffuse orbitale are necessary for a correct descrip­

tion of the hyperpolanzabilities [12] . The resulting 58-dimensional 

H[5s,4p,2d] basis yields an SCF energy 3.3 10 a.u. above the Hartree-

Fock limit [13], at an interatomic distance (R) of 1.4 bohr. This 

basis has been used for all interatomic distances, no rescaling or 

recontraction has been performed. 

The orthonormal orbitals, necessary for a configuration inter­

action (CI) calculation, have been provided for each value of R by 

an SCF calculation with field zero. As a full CI wavefunction is in­

variant under an orthogonal transformation of the orbitals, it is 

not necessary to use finite field SCF MO's. However, in order to 

study the electronic correlation effects we have performed finite 

field SCF calculations for several values of R. 

The CI program used [14] is a conventional one, which is to say 

that it is based on a full formula tape and an explicitly calculated 

Η-matrix. The formula tape is generated by an improved version of 

Reeves' algorithm [15], and sorted by Yoshimine's bucket sort [ібі. 

The latter algorithm has been modified by keeping the chaining 
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indices in core, rather than storing them with the buckets. This 

enables forward chaining of the buckets, which in turn facilitates 

the construction of the H-matnx, because this matrix can now be 

constructed in increasing row order and stored directly onto tape. 

Furthermore, the CI basis can be truncated from above without recal­

culation of part of the formula tape. 

The secular problem is solved by Shavitt's version [17] of the 

method of overrelaxation (M.O.R.). The integrals come from the ATMOL 

four-index transformation program [18]. The maximum number of spin-

adapted configuration functions that can be handled is mainly a func­

tion of the available random access storage (disc), so far we have 

gone up to dimension 18000 [19]. 

In order to extract the (hyper) polanzability tensors from the 

computed energy, dipole and quadrupole values we have applied a homo-

geneous electric field F in three different directions: parallel, 

perpendicular and under an angle of 45° to the bond. Using aroup 

theory [20,10] (cf. also the Appendix) one can show for D . symmetry 

that ot.. has two, β
? 1 1

 has four and γ.... has three linearly in­

dependent components. We find from Eq.'s (1) and (2) the 13 different 

polynomials given in Table I, which after differentation at F = 0 

give rise to 20 linear equations, (see below). Hence we have 11 more 

equations than unknowns. This overcompleteness gives a check on the 

numerical stability of the results and the validity of the Hellman-

Feynman theorem. In all cases the results proved to be consistent. 

Initially we have tried to find the coefficients in the polynomials 

given in Table I by a least squares polynomial fitting procedure. How­

ever, the results appeared to be very sensitive to the interval of F 

used, especially the components of γ.... were unstable. Therefore we 

decided to differentiate numerically the computed induction energies 

and induced moments. To that end we have written the required deriva­

tives as 10 term expansions in powers of the central-difference opera­

tor [2l]. Because the energy and quadrupole are symmetric and the 

dipole is antisymmetric under inversion of the field direction 

(cf. Table I), only ten function values have to be calculated. 

A point of concern is the step size ΔΡ. A value of ΔΓ = 4.10 a.u. 

proved to be optimal. Smaller values give effects too small to be 

numerically significant. Using larger values we experienced conver­

gence problems in the M.O.R. diagonalization method, particularly 

for the largest F-values. 
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TABLE I 

Explicit forms of the polynomials in the homogeneous field 
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In total we have performed full CI calculations for 30 different 

field values and for 34 different interatomic distances ranging from 

R = 0.2 to 6.0 bohr. Clearly in a case as this a CI approach based 

on a formula tape offers great advantages. We had to prepare only 

three different formula tapes: one for the field parallel to the 

bond (in the Abelian subsymmetry C- the problem has dimension 631), 

one for the field perpendicular to the bond (dimension 534) and one 

for the field under an angle (dimension 1039). 

In order to get sufficient significant digits in the final re­

sults we had to choose very low thresholds m all computational 

steps. This caused the M.O.R. diagonalization to become very slowly 

convergent: usually 25 to 30 cycles were needed, even thouoh the 

starting vector was always a very good approximation to the final 

vector, as it came from the previous field strength. (One should 

realize, however, that the Η-matrix is not sparse at all, since no 

matrix elements are zero, because of the presence of three or more 

mismatching orbitals in bra and ket) . 

In a conventional CI program, where the Η-matrix is precalcu-

lated, the large number of cycles does not soon form a serious 

bottleneck, and indeed we were able to run all the calculations 

interactively (under VM/CMS on an IBM 4341). 

3. Results and discussion 

In order to establish to which extent the present calculations 

are reliable, we compare in Table II our results with the very ac­

curate data derived from explicitly correlated James-Coolidge type 

wavefunctions [4,5,6,7] , as far as they are available. We see a 

very good agreement, both for the interatomic distance close to the 

equilibrium, as well as for R = 4.0 bohr, where all (hyper)polanza-

bility components are large. 

In the presentation of the correlation effects and the distance 

dependence of the complete tensors α-., ß-)11 and γ 1 1 1 1
 it is conve­

nient to distinguish isotropic and anisotropic components. The latter 

are defined in such a way that they vanish in the case of spherical 

symmetry, that is, in the united and in the separated atom limit. 

The former, denoted by A-, B. and G«, respectively, are the only 

components arising for S-state atoms. The different components are 

defined in Table III, and in the Appendix the group theoretical 
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TABLE II 

Comparison of quadrupole moment and (hyper)polarizabilities with 

accurate computational data. All quantities are expressed in a.u. 
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TABLE III 

Definition of components of the (hyper)polarizabilities such that 

they are invariant under 0
ш
. . Indices on the tensor components 

refer to tesserai (real) harmonics in Racah's normalization. Sub­

scripts on the invariants refer to the irreps of S0(3) they belong 

to. Components not listed are zero. 
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rationale of these definitions is given. Note that, as is usual, A. 

is proportional to the trace of the polanzability tensor, and also 

that A- is the common anisotropy factor. 

The correlation effects on the quadrupole moment and the (hyper) 

polarizabilities are listed in Table IV for two distances: R = 1.4 

and 3.2 bohr. As is to be expected, the closed-shell Hartree-Fock 

method breaks down completely for the larger distance. However, for 

the near equilibrium value of R the correlation effects are surprising­

ly small, and accordingly the SCF results, too, are not far from the 

accurate values quoted in Table II. No values for В., G„ and G. have 

been given for R = 1.40 bohr. At this distance, which is relatively 

close to the united atom limit, the computed hyperpolarizability com­

ponents are very nearly linearly dependent. As a result of this the 

higher anisotropy factors become very small, so that correlation ef­

fects cannot be given with enough accuracy. 

The largest correlation error occurs in the SCF quadrupole mo­

ment Q
2
, it is 7.5%. Since the Mtfller-Plesset theorem [22] applies 

to first order properties, but not to higher order properties, one 

would expect the correlation error in Q_ to be smaller than in the 

(hyper)polarizabilities. Remarkably enough this in contrast with the 

computational results. 

The (hyper)polanzability derivatives (differentiated with respect 

to R) are given in Table V again with the influence of correlation 

indicated. These derivatives have been computed by a two-term expan­

sion in the central-difference operator [21] with a step size of 

AR = 0.05 bohr, thus four grid points were required: R = 1.30, 1.35, 

1.4 5 and 1.50 bohr. From Table II of Kolos and Wolmewicz [4] one ob­

tains the estimate Al = 4.35 a.u. and A' = 3.38 a.u., both values 

agree very well with our CI results and show that the corresponding 

SCF results have an error of about 8%. Note that correlation effects 

are not so large as to make the SCF results meaningless. 

The distance dependence of the non-vanishing components of a.. - , 

ß 2 1 1 and У•,•,-,•, is given in Table VI, VII and VIII, respectively. The 

same results are presented graphically in Figs. 1, 2 and 3. The ani­

sotropy factors, having been defined in such a way that they are zero 

for R = 0 and for large R, must have one or more extrema in between. 

And indeed, one observes that A
2
 has a maximum. В.,, B^ and G. have a 

maximum and a minimum, and that B. and G^ have again only one extre-

mum. Note that the phases of the tensor components have been chosen 
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TABLE IV 

CORRELATION EFFECTS. 

All quantities are expressed in a.u. 

öS 
Ao 

A2 

B0 

B2 

B2 

B4 

Go 

G2 

G4 

TABLE 

SCF 

0.49357 

5.2231 

1.8396 

-109.305 

-57.188 

-21.732 

321. 

V 

R = 1.4 

CI 

0.45035 

5.1556 

1 .8822 

-107.972 

-62.122 

-22.951 

335. 

DIF.% 

8.8 

1.3 

2.3 

1.2 

7.9 

5.3 

4.2 

SCF 

1.76477 

18.1731 

18.9249 

-881.581 

-1035.79 

-515.04 

-21.139 

2979. 

1 117. 

-986 

R = 3.2 

CI 

0.95476 

12.1008 

9.3081 

-433.295 

-317.625 

-26.190 

-91.501 

2426. 

2416. 

3780 

DIF.% 

45.9 

33.4 

50.8 

50.9 

69.3 

94.9 

76.9 

18.6 

53.8 

126. 

Derivatives of hyperpolarizabilities with respect to R (at R = 1.40 a.) 

All quantities are expressed in a.u. 

SCF CI Dif.(%) 

Ao 

A2 

B¿ 
B2 

»2 

Gò 

4. 

3. 

-176 

-114 

-56 

574 

,76 

64 

4. 

3. 

-158 

-115 

-53 

550 

33 

,49 

9.0 

4.1 

10.2 

0.9 

5.3 

4.2 
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TABLE VI 

Distance dependence of the isotropic polarizability A. and the ani-

sotropy factor A 2. See Table III for the definition of these quan­

tities. All values are expressed in a.u. 

R 

0.20 

0.40 

0.60 

0.80 

1 .00 

1 .20 

1.30 

1.35 

1 .40 

1 .45 

1 .50 

1.60 

1 .80 

2.00 

2.20 

2.40 

2.60 

2.80 

A0 

1.5399 

1.8844 

2.3490 

2.9153 

3.5765 

4.3274 

4.7315 

4.9413 

5.1556 

5.3743 

5.5969 

6.0533 

7.0010 

7.9731 

8.9350 

9.8445 

10.6551 

11.3219 

A2 

0.0300 

0.0958 

0.2298 

0.4540 

0.7911 

1 .2602 

1.5530 

1.7127 

1.8822 

2.0612 

2.2500 

2.6556 

3.5734 

4.6073 

5.7073 

6.7999 

7.7945 

8.5951 

R 

3.00 

3.20 

3.40 

3.60 

3.80 

4.00 

4.20 

4.40 

4.60 

4.80 

5.00 

5.20 

5.40 

5.60 

5.80 

6.00 

00 

Ao 

11 .8100 

12.1008 

12.1974 

12.1236 

11.9188 

11 .6284 

11.2956 

10.9556 

10.6328 

10.3417 

10.0887 

9.8747 

9.6973 

9.5526 

9.4359 

9.3427 

9.0014 

A2 

9.1175 

9.3081 

9.1569 

8.6998 

8.0082 

7.1711 

6.2743 

5.3884 

4.5619 

3.8223 

3.1806 

2.6360 

2.1816 

1.8066 

1.4995 

1.2494 

0.0 
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Fig. 1. The isotropie (A-) and anisotropic (A-) component of the 

dipole-field polarizability as a function of the H-H 

distance. 
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TABLE VII 

Distance dependence of the invariant components of the hyperpolari-

zability tensor ß 5 1 1. See Table III for the definition of the 

quantities. All values are expressed in a.u. 

R 

0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.30 
1.35 
1.40 
1 .45 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
CD 

B0 

-12.101 
-17.544 
-26.301 
-39.023 
-56.468 
-79.298 
-92.888 
-100.242 
-107.972 
-116.076 
-124.551 
-142.587 
-182.687 
-227.120 
-273.893 
-320.118 
-362.300 
-396.897 
-421.055 
-433.295 
-433.950 
-425.052 
-409.676 
-391.082 
-372.021 
-354.393 
-339.227 
-326.874 
-317.240 
-309.993 
-304.721 
-301.007 
-298.482 
-296.840 
-297.414 

B2 

-7.055 
-9.458 

-13.453 
-19.630 
-28.920 
-42.593 
-51.536 
-56.611 
-62.122 
-68.077 
-74.497 
-88.775 

-123.180 
-164.774 
-211.182 
-257.829 
-298.146 
-325.064 
-332.514 
-317.625 
-281 .968 
-231.252 
-173.504 
-116.591 
-66.402 
-26.127 
3.445 

23.179 
34.767 
40.133 
41.077 
39.110 
35.402 
30.808 
0.0 

B2 

-0.556 
-0.980 
-2.069 
-4.253 
-8.029 
-14.034 
-18.093 
-20.419 
-22.951 
-25.695 
-28.648 
-35.184 
-50.538 
-67.924 
-84.959 
-97.841 

-101.863 
-92.552 
-67.176 
-26.190 
26.161 
82.747 
135.658 
178.467 
207.601 
222.447 
224.737 
217.184 
202.870 
184.540 
164.373 
143.950 
124.317 
106.106 
0.0 

B4 

-0.790 
-1.000 
-1.203 
-1.371 
-1.507 
-1.599 
-1.618 
-1.616 
-1 .613 
-1.608 
-1.603 
-1.604 
-1.780 
-2.615 
-5.072 
-10.673 
-21 .169 
-38.048 
-61.852 
-91.501 
-124.077 
-155.417 
-181.405 
-199.177 
-207.672 
-207.466 
-200.189 
-187.880 
-172.504 
-155.691 
-138.671 
-122.281 
-107.047 
-93.246 

0.0 
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Fig. 2. The isotropic (В
0
) and anisotropic (В^, В. and В.) compo­

nents of the quadrupole-(field) hyperpolarizability as a 

function of the H-Η distance. 
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Fig. 3. The isotropic (G.) and anisotropic (G_ and G.) components 

of the dipole-(field) hyperpolarizability as a function 

of the H-Η distance. 
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arbitrary, so it is not physically significant whether an extremum is 

a maximum or a minimum. 

In the region of the extrema, between 3 and 5 bohr, the deviation 

of H2 from spherical symmetry is the largest, the hydrogen molecule 

ressembles an atom the least in that region. One also sees illustrated 

in the figures that the hydrogen molecule in its equilibrium struc­

ture is fairly spherical: R = 1.4 is relatively close to the united 

atom limit. The three isotropic (hyper)polarizability curves show 

more or less the same qualitative behaviour as a function of R. All 

three go through an extremum. Kolos and Wolniewicz t 4] attribute the 

occurrence of the extremum in An to an expansion in the electronic 

charge cloud, which arises when two hydrogen atoms approach each 

other from infinity. This expansion is followed by a contraction 

when the hydrogen atoms penetrate deeper into each other. This seems 

a likely explanation for the behaviour of B. and Gn as well. 

4. Conclusions 

The most important conclusion of this work is that the finite 

field LCAO-SCF-CI method, which is based on orbitals, is capable of 

yielding results which are very near the accurate values obtained 

from explicitly correlated functions. This gives hope for applica­

tions to larger molecules, where at present only orbital approaches 

are feasible. 

Furthermore we have found that correlation effects for H- in its 

equilibrium structure are not predominant. (The situation is of course 

different for larger bond distances, where the restricted Hartree-

Fock approach yields meaningless results). Admittedly, many of the 

more interesting correlation effects, such as the coupling of pair 

clusters and the occurrence of higher clusters [23] , are absent in 

two-electron systems, and their importance for polarizability calcu­

lations remains to be assessed, but nevertheless our results suggest 

that it is necessary to spend much attention on the SCF calculations 

before CI is contemplated. The choice of an A.O. basis is of crucial 

importance; the errors introduced by an inadequate basis cannot be 

corrected by a CI calculation, and may easily exceed the size of the 

correlation effects. In this connection it may be pointed out that 

the present results are obtained with an extremely large orbital/elec­

tron ratio. Application of the same ratio to a simple molecule as N_ 
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implies the use of a 406-diinensional A.O. basis. Although the use of 

such a very large basis can hopefully be avoided by a careful optimi-

lization, it remains probably true that basis sets which are large 

by today's standards, are required for reliable SCF computation of 

(hyper)polarizabilities. This will make the calculation of the re­

maining correlation errors also a challenging task. 

APPENDIX 

On the symmetry adaptation of hyperpolarizability tensors 

In this appendix we will mention the group theoretical considera­

tions which have led to the definition of the quantities given in 

Table III. 

By definition the components of a (hyper)polarizability tensor 

span a symmetrized outer product of irreducible representation (irreps) 

of the full rotation-reflection group 0(3). These irreducible repre­

sentations are real and orthogonal, as we are dealing with tesserai 

harmonics in this work. As pointed out by Jahn [20] , a logical first 

step in the symmetry adaptation of a tensor to a molecular symmetry 

group is a reduction with respect to 0(3). Irreducible representations 

of 0(3) which are not symmetric under permutation of equal indices do 

not occur in this reduction. For instance, the polarizability tensor 

a., does not contain the L=1 representation, because this irrep is 

antisymmetric. In the same way it follows that γ
1 1 1 1

 contains irreps 

of even L only. In the case of two or more l-values being equal to 

unity, it is convenient to apply the isomorphism of the tensor with 

the space of homogeneous polynomials in x,y and z. Thus, for example, 

the irreducible components of Ύ ^ ^ are immediately written down from 

a table of tesserai harmonics. These irreducible components correspond 

to the homogeneous polynomials C™ (m=-4 , . . . ,4) ,-=· г C^ (m=-2 , . . . , 2) , 

1 4
 4 á ¿ 

and -щ r . In the case of ß 7 1 1 we first adapt by this correspondence 

the second and third index to 0(3), and then by vector coupling 

adapt the remaining indices to 0(3). 

The second step in the symmetry adaptation is the subduction of 

the 0(3) irreps to the point symmetry group G of the molecule. It is 

easy to see that only the tensor components which span the totally 

symmetric representation of G are non-vanishing, all the other com­

ponents are zero. In our case of D , symmetry the components adapted 

to 0(3) are automatically adapted to the point group of the molecule, 
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i.e. if we choose the bond along the ζ axis, and so only the compo­

nents belonging to Σ survive. In our case of gerade representations 

the tensor components of even L and with M equal to zero belong to 

this irrep. These components are given explicitly in Table III. 

An additional advantage of the preliminary adaptation to 0(3) is 

that in the case of a symmetry raising from D . to 0(3), which occurs 

in the united as well as in the separated atom limit of a diatomic, 

the only non-vanishing D . -invariants are those belonging to the L=0 

irrep of 0(3). The other invariants are therefore genuine anisotropy 

factors. 

Finally it must be remarked that the factors multiplying the re­

sulting invariants cannot be determined by group theory. We have made 

choices which make the expressions look simple. 
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1. Introduction 

Nowadays the Hartree-Fock method is used extensively -not only 

by theorists, but also by experimentalist- for the calculation of 

molecular properties, such as bonding distances and angles, dipole 

and higher moments, polarizabilities, etc. In the case of closed-

shell molecules In their equilibrium geometry, the Hartree-Fock 

model is fairly reliable, giving errors usually less than 10%. How­

ever, in certain situations the independent particle model is known 

to yield much larger errors. One such case is exemplified by the 
2 2 

Be atom, where the Hartree-Fock state (Is) (2s) gives a poor des­
cription of the ground state because of the near degeneracy of the 

2 2 2s- and the 2p-orbitals. Clearly, the configuration (Is) (2p) 

mixes strongly with the Hartree-Fock ground state. This gives rise 

to uncommonly large correlation effects on the energy and other 

properties of the Be atom. 

A notorious example of a complete breakdown of the restricted 

Hartree-Fock model regards the dissociation of bonds into open-shell 

fragments. Basically, one has to distinguish two different errors 

here. One is introduced by the restricted Hartree-Fock method, which 

can only describe electron configurations where none of the orbitals 

are singly occupied. This introduces artificial charge transfer into 

the wavefunction. The unrestricted Hartree-Fock method corrects this 

deficiency, as does the CI (Configuration Interaction) method with 

an appropriately chosen expansion basis. The second error is adherent 

to a model based on orbitals: the raising of spatial symmetry occur­

ring during the breaking of a bond is not reflected in the orbital 

energy spectrum. Even in the very elaborate MCSCF (Multi-Configura-

tion Self-Consistent Field) calculations of Roos et al. on the dis­

sociation of N2 |_lj , the p-orbitals do not converge to three-fold 

degenerate sets, as they should in the case of non-interacting ni­

trogen atoms. 

In the case where the Hartree-Fock method fails, one has to 

apply other methods for the calculation of wave functions. One of 

the methods most often used to improve upon the independent particle 

model is the Configuration Interaction (CI) method. In this method 

an orbital loses its physical meaning as (the square root of) a one-

particle density. However, the concept of an orbital being such a 

fruitful one, one often calculates orbitals from the CI wave func-
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tion: the so-called natural Orbitals. These are defined | 2] as the 

eigenvectors of the one-particle density matrix, and give, when 

employed in an independent particle type wave function, the best 

possible approximation to the CI state from which they are derived 

и. 
A common procedure, first introduced by Bender and Davidson |_3] 

is to iterate the CI calculations, using as the input orbitals the 

natural orbitals obtained in the previous step. One iterates until 

finally the natural orbitals entering the CI calculation are the 

same as those calculated. One then speaks of INO's (Iterative Natu­

ral Orbitals). 

In this chapter we will investigate the applicability of the 

CI-INO method for the determination of dipole polarizabilities. 

These polarizabilities are obtained from the calculated dipole mo­

ments of atoms or molecules placed in small but finite electric 

fields. The finite field method has proved to be an accurate method, 

not only for second order polarizabilities but also for higher order 

polarizabilities |_4^| . 

The procedure has been applied to the Be atom and the results 

are compared with full CI calculations, which give exact solutions 

within the given orbital basis. Furthermore, calculations have been 

started on a study of the CN anion, or more specifically on a study 

of its dipole polarizability as a function of the interatomic dis­

tance. Here we have an example of the breaking of a bond into open-

shell atoms. The choice of CN has been motivated by calculations 

in this institute on the potential energy surface of the KCN mole­

cules |_5] . The polarizability of CN plays an important rôle in 

a correct description of this surface. 

Unfortunately, due to lack of time, only the equilibrium dis­

tance of CN has been computed in full detail, so that no conclu­

sions regarding the bond breaking can be given. 

2. Method 

We have used the finite field method on the CI level, combined 

with the iterative natural orbital (INO) method. The CI-INO method 

is applied for obtaining the dipole moment of a molecule in a uni­

form electric field, from which the dipole polarizability is calcu­

lated. The iterative natural orbitals were first used by Bender and 
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Davidson |_3_| and later by many other workers |_6-133· By all these 

workers the INO method was applied for the calculation of energies. 

We will use it in this work for the determination of properties. 

For completeness we list here briefly the computational steps: 

0) perform a Hartree-Fock calculation, this yields molecular Or­

bitals (MO's). 

1) transform the integrals from the atomic orbital (АО) to the MO 

basis. 

2) perform a CI calculation using the Hartree-Fock orbitals as the 

input orbitals. 

3) determine the natural orbitals of the ground state by diagonali-

zing the one-particle first order density matrix. 

4) determine the natural orbitals on basis of АО's and calculate 

properties. 

5) repeat steps (1)-(4), with the same configuration basis and use 

the natural orbitals of (4) as the input orbitals, until conver­

gence. 

The iteration process is stopped if the natural orbital matrix in 

step (3) becomes the unit matrix, because this matrix of natural 

orbitals can be seen as the matrix transforming the orbitals of the 

(i-l) into those of the ι iteration. 

So far nothing has been said about the configuration bases con­

sidered. If we choose the CI space equal to the full CI space, no 

iterations are necessary, because in that case the formalism is 

invariant under a transformation of the orbitals. However, for most 

systems this is not possible, as the full configuration space is 

too large to be amenable. So one has to reduce the dimension of the 

CI expansion. There are many possibilities to do so, we have studied 

two common choices. The corresponding spaces are generated by: 

I) all single and double excitations from the Hartree-Fock ground 

state. 

II) all single excitations from a full valence space. This valence 

space is a full CI space and built from orbitals with the 

highest occupancies ( m the case of INO's) or lowest orbital 

energies (in the case of Hartree-Fock MO's). Furthermore we 

have chosen for CN the orbitals in such a way that dissocia­

tion into the proper atomic states is possible. 

Space I was chosen because this space gives good results for the 

dipole polanzabilities and is widely used. The first cycle in the 
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INO method is called Single and Double CI (SDCI). Space II has the 

main advantage of being able to describe the proper asymptotic be­

haviour of a diatomic wave function for increasing internuclear 

separations. INO-CI with this basis can be regarded as an extension 

of the full valence super-CI MCSCF method of Roos and coworkers [_lj. 

The space contains higher than double excitations relative to the 

Hartree-Fock ground state. The first cycle in the INO method with 

basis II is equivalent to Schaefer's |_7] FOCI (First Order CI) 

method. 

3. Results 

Because the INO method has not been used previously for the cal­

culation of polanzabilities, the method was first tested on the Be 

atom, where full CI results can be obtained. Additionally the results 

of the two CI expansions can be compared. In the case of CN compari­

son with a full CI result is not possible. 

3.1. The_Be_atom 

The atomic basis set used was a Be (10,4,1/7,4.1) CGTO set. The 

basis has been derived from the Van Duijneveldt 9s-6s basis |_143· 

We have extended the basis with a s-GTO with an exponent of 0.02. 

The uncontr-cted p-and d-functions have exponents of 6.3, 0.4, 0.141, 

0.05 and 0.1, respectively. The ATMOL3 package _15] is used for per­

forming the integral, Hartree-Fock and four-index transformation 

calculations. The CI calculations are performed by the use of a con­

ventional CI program developed in this institute |_1б2, and based 

on bonded functions. 

The dimensions of the space I and II, generated by the basis 

set of 25 contracted orbitals, are 1128 and 850, respectively. No 

spatial symmetry has been considered. The valence space,which was 

built from the first two s-orbitals and the first p-set, consists 

of 50 configurations. The full CI space derived from 25 orbitals has 

the dimension of 9415 (reduced by C- symmetry). The results of the 

calculations are given m table 1. From table 1 we see that INO-I 

is slightly better than INO-II. The INO-I does not change much 

during the iteration process, whereas the INO-II result reduces 

drastically during the iteration. Note that the FOCI (first cycle) 

result for the dipole moment is off by a factor of almost two. We 
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Table 1 

Results for Be-atom 

Space I Space II 

SCF 

SDCI 

INO: 2 

3 

4 

5 

FULL CI 

E(F=10
 3
) 

-14.57243124 

0.07808 

0.07811 

0.07811 

0.07811 

0.07811 

0.08109 

α 

44.964 

37.877 

37.133 

37.031 

37.019 

37.017 

36.525 

SCF 

FDCI 

INO: 2 

3 

4 

5 

6 

7 

8 

FULL CI 

E(F=10
 3
) 

-14.57243124 

0.02979 

0.04222 

0.04415 

0.04438 

0.04441 

0.04441 

0.04442 

0.04442 

0.08109 

α 

44.964 

65.285 

60.522 

45.753 

39.575 

36.877 

35.886 

35.530 

35.402 

36.525 

also see an increase in energy (for INO-I only) after a few cycles, 

an effect which has been reported by other authors |_9,1lJ as well. 

The number of diagonalization iterations increases considerably 

during the INO iterations (from 16 to 89) for the same accuracy in 

the eigenvector. It is likely that this is due to the occurrence 

of larger off-diagonal elements in the CI matrix |_173 . 

3.2. The_CN~_ion 

The atomic basis sets are а С (11 ,6 ,2/6 , 3 , 2) and N(11,6,2/6,3,2) 

CGTO sets. The basis sets are the same as used in Ref. | 5Ί for the 

calculation of the interaction potential of KCN. The internuclear 

distance was kept at 2.186a , which is the Hartree-Fock equilibrium 

distance \_5~l\ . During the CI calculations the three MO's with the 

lowest orbital energies are kept frozen. The polarizability tensor 

was obtained by applying a field under an angle of 45° to the axis 

and with a field strength of 10 /2. The dimensions of the spaces 

I and II, generated by the 54 contracted Orbitals, are 9487 and 
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Table 2 

Results for CN -ion with space I 

SCF 

SDCI 

INO: 2 

3 

4 

5 

6 

E(F=0) 

-92.33854733 

0.23018 

0.22951 

0.22933 

0.22929 

0.22928 

0.22928 

U
//
(F = 0) 

0.215129 

0.07021 

0.08134 

0.08396 

0.08455 

0.08468 

0.08470 

E(F=10
 4

) 

-92.33856907 

0.23019 

0.22952 

0.22933 

0.22929 

0.22928 

0.22928 

a
// 

27.3 

27.6 

27.7 

27.8 

27.8 

27.8 

27.8 

a

x 

17.696 

18.245 

18.395 

18.452 

18.475 

18.483 

18.487 

17748, respectively. The valence space was generated by the seven 

orbitals following the three frozen orbitals, and consists of 230 

configurations. During the generation of these spaces С point 

group synunetry has been taken into account (this is the only sym­

metry remaining when CN is in the field). The utilization of sym­

metry reduces the dimensions of the different CI spaces, but at the 

same time introduces a technical difficulty. For it can happen that 

during the INO iterations NO's of different spatial symmetry become 

degenerate, i.e. have the same occupation number. In such a case 

the eigenvectors of the first order density matrix are not automati­

cally adapted to the spatial symmetry (in this case С ) , and a sym­

metry projection followed by a renormalization of the NO's becomes 

necessary. As already noticed in the calculations on Be the required 

number of diagonalization iterations increases during the INO itera­

tions. The final results are given in table 2 and 3. 

4. Conclusions 

In all cases considered in this work the final INO result de­

rived from the CI space I is not much different from the single and 

double CI result obtained during the first cycle of the INO proce­

dure. This is true for the correlation energy as well as for the 

dipole moment (and hence for the polanzability) . So, it seems un-
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Table 3 

Results for CN -ion with space II 

E(F=0) 

92.33854733 

0.01939 

0.08330 

0.14135 

0.15529 

0.15749 

0.15781 

0.15786 

0.15787 

0.15785 

0.15786 

0.15786 

0.15786 

0.15786 

0.15786 

0.15786 

W//(F=0) 

0.215129 

0.10403 

0.16284 

0.05985 

0.04860 

0.05690 

0.06205 

0.06448 

0.06568 

0.06631 

0.06666 

0.06694 

0.06700 

0.06704 

0.06708 

0.06709 

E(F=10 4) 

-92.33856907 

0.08318 

0.14128 

0.15532 

0.15752 

0.15783 

0.15788 

0.15788 

0.15787 

0.15787 

0.15787 

0.15787 

0.15787 

0.15787 

0.15787 

"// 
27.3 

53.9 

50.0 

31 .6 

28.3 

27.8 

27.6 

27.5 

27.5 

27.5 

26.6 

27.0 

27.2 

27.2 

27.3 

1 

22 

17 

6 

3 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

) Result derived from H.F. orbitals and valence space only 
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necessary to have a SDCI calculation be followed by an INO analysis, 

which is costly and time consuming. 

However, if one is interested m dissociative processes SDCI 

is not an adequate method, because the corresponding wave function 

does not dissociate into the correct atomic states and the SDCI ener­

gy is not an extensive (in the thermodynamic sense) property. It 

can be expected that a CI method based on space II is much better 

suited to described the dissociation of a diatomic molecule, because 

the CI expansion includes the full valence space. But, the present 

calculations show clearly that in that case the INO iterations are 

a necessity. The polanzability after the first cycle can differ 

from the final result by more than an order of magnitude! This 

makes this method very expensive. 

In the case of the Be atom the two INO polarizabilities are not 

far from the full CI results, with the space I value being somewhat 

closer. The full CI value itself is in remarkably good agreement 

with the nearly exact value 36.58 a of Sims and Rumble |_1θ3. As 

is to be expected from the near degeneracy of the 2s- and 2p-or-

bitals, the influence of correlation on the polanzability is large 

(18.8%). This is different for the CN~ anion where the correlation 

effects on the polanzability are extremely small. If one compares 

the FFSCF (Finite Field SCF) results with the FFSCF results of 

Gready et al. C
1 9
D
 <α

//
 =
 30.05, а^ = 19.975 a

0
) , one must conclude 

that the actual choice of atomic orbital basis is of more importance 

for the final result than the inclusion of correlation effects. 
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S A M E N V A T T I N G 

Voor de bestudering van moleculaire qassen. vloeistoffen en vaste 

stoffen is kennis van de intermoleculaire potentiaal van essentieel 

belang. Deze intermoleculaire potentiaal is een functie van de afstand 

tussen de moleculen en de oriëntatie van de moleculen ten opzichte van 

elkaar. 

In het verleden, werd de potentiaal uitsluitend bepaald uit expe­

rimentele gegevens, door het aannemen van een modelpotentiaal (Lennard-

Jones of Buckingham (atoom-atoom) type), met een beperkt aantal para­

meters zodanig gekozen dat de experimentele gegevens goed gereprodu­

ceerd werden. In een aantal gevallen leidde deze procedure tot poten­

tialen die een aantal experimentele gegevens goed weergaven, maar 

andere gegevens welke m e t m de fit zijn meegenomen slecht. Dit kan 

veroorzaakt worden door een slechte vorm van de potentiaal, het expe­

riment is gevoelig voor een ander gebied van de potentiaal dan de 

gebruikte metingen of door tekortkomingen in de gebruikte modellen 

voor de interpretatie van de experimenten. Om dit probleem op te lossen 

is het noodzakelijk om meer informatie te verkrijgen uit andere bronnen. 

Tegenwoordig is het mogelijk om redelijk nauwkeurige intermolecu-

laire potentialen te verkrijgen, door de Schrödinger-verqelijking be­

naderd op te lossen, door toepassing van zogenaamde ab initio quantum­

mechanische methoden. Dit is niet alleen een gevolg van theoretische 

verbeteringen van de quantum-chemische methoden, maar ook van het toe­

genomen vermogen van moderne computers. Toch liggen systemen zoals 

NJ-NJ en C-H.-CjH nog aan de grens van de mogelijkheden. 

In dit proefschrift wordt de Schrödingervergelijking toegepast 

in de Born-Oppenheimer benadering: de electronische vergelijking wordt 

opgelost voor een vaste geometrie van de kernen; variatie van de geo­

metrie van de kernen levert de intermoleculaire potentiaal op. Het is 

nu mogelijk om de modelpotentiaal parameters te verkrijgen door het 

aanpassen van een modelpotentiaal aan de resultaten van de ab initio 

berekeningen voor een aantal oriëntaties en afstanden (voor stikstof 

en etheen resp. in hfdst. II en V). Vervolgens kunnen de potentialen 

gebruikt worden in bijvoorbeeld roosterdynamica berekeningen aan mole­

culaire kristallen, om vergelijking met experimentele gegevens mogelijk 

te maken (hfdst. IV, V en VI). 

Deze (atoom-atoom) model potentialen hebben het nadeel dat ze 

moeilijk systematisch verbeterd kunnen worden. Een andere analytische 

voorstelling van de intermoleculaire potentiaal, de sfensche expansie, 
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heeft dit nadeel niet. De potentiaal wordt geëxpandeerd m hoekfuncties, 

die afhangen van de oriëntaties van de moleculen; de expansiecoëfficiën­

ten zijn alleen afhankelijk van de intermoleculaire afstand. Deze 

(Fourier) coëfficiënten kunnen geschreven worden als integralen van de 

intermoleculaire potentiaal vermenigvuldigd met de hoekfuncties en ze 

kunnen berekend worden met behulp van numerieke integratie technieken 

(Gauss type integraties) (voor het Nj-dimeer in hfdst. II en III). 

De ab initio berekeningen zijn erg duur, zelfs voor vrij kleine 

systemen (voor de (Ν-)- potentiaal: 3 uren op IBM 370/158 per geo­

metrie). Evaluatie van goedkopere, maar nog wel nauwkeurige methoden 

is daarom belangrijk voor het berekenen van de potentialen van grotere 

systemen. Een van deze methoden, de zogenaamde Gordon-Kim methode, die 

gebaseerd is op uitdrukkingen uit de electronengas theorie voor atomen 

en moleculen, is getest op het N--dimeer (hfdst. III). 

Voor de verklaring van een aantal verschijnselen is niet alleen 

de intermoleculaire potentiaal belangrijk, maar ook het effect van 

moleculaire botsingen op andere eigenschappen. Bijvoorbeeld bij de 

interpretatie van botsingsgelnduceerde infrarood absorptiespectra (CIA) 

van gassen met hoge dichtheid, is kennis van het dipoolmoment nodig. 

Dit dipoolmoment ontstaat wanneer twee of meer verschillende of meer 

dan twee soortgelijke atomen met elkaar wisselwerken. Evenals de 

intermoleculaire potentiaal is de dipool een functie van de inter-

moleculaire afstand en de oriëntaties van de moleculen. De interactie-

dipool is nog moeilijker te berekenen dan de potentiaal; daarom kunnen 

alleen kleine systemen beschouwd worden. In hoofdstuk VII wordt de 

interactiedipool berekend van het He-H-, systeem. Naar men aanneemt is 

het de botsingsgelnduceerde IR absorptie in dit systeem die verant­

woordelijk is voor het broeikas-effeet dat wordt waargenomen op zware 

planeten met een atmosfeer die grotendeels uit helium en waterstof 

bestaat. 

Voor grotere afstanden tussen de moleculen kan de potentiaal be­

naderd worden door de multipoolexpansie. De termen m deze expansie 

hangen alleen af van de eigenschappen van de afzonderlijke moleculen: 

permanente en overgangs-multipoolmomenten en polariseerbaarheden. Met 

andere woorden, men kan nu het probleem reduceren tot de berekening 

van de eigenschappen van de monomeren. De berekening van deze eigen­

schappen wordt meestal uitgevoerd op Hartree-Fock ("independent par­

tiele") niveau. In een aantal gevallen echter, zijn de resultaten niet 

nauwkeurig genoeg om een betrouwbare potentiaal te construeren en zijn 

er dus verfijndere methoden nodig. 
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Een van deze methoden om het effect van electronencorrelatie te 

bepalen is de Configuratie Interactie (Cl) methode. De golffunctie 

wordt geschreven in termen van (spin aangepaste) configuratiefuncties 

en de variationele oplossingen van de Schrödingervergelijking worden 

verkregen door diagonalisatie van de Hamiltoniaan-matrix.Voor grote 

moleculen wordt de methode gecompliceerd. Bijvoorbeeld, niet alle 

spin-syrmnetrie coëfficiënten, nodig voor de constructie van de H-

matrix uit de moleculaire integralen, passen tegelijkertijd in het 

centrale geheugen van de computer, evenmin als de moleculaire integra­

len. Ook past niet de volledige Η-matrix in het centrale geheugen, 

gedurende de constructie en diagonalisatie, en het berekenen van alle 

eigenwaarden en eigenvectoren is onmogelijk. Dit impliceert dat bij­

zondere methoden nodig zijn. In hoofdstuk VIII is een computerprogramma 

beschreven, dat speciaal ontworpen is voor grote Cl berekeningen. 

Als een toepassing van de Cl methode, zijn de hyperpolariseerbaar-

heden van waterstof berekend als functie van de internucleaire afstand 

(in hoofdstuk IX). De berekening is uitgevoerd op het "full CI" niveau 

(d.w.ζ. alle singlet configuraties,die geconstrueerd kunnen worden 

binnen een gegeven orbital basis, zijn meegenomen). Omdat blijkt dat 

de hyperpolariseerbaarheden zeer gevoelig zijn voor de kwaliteit van 

de gebruikte basis, zijn grote basissets nodig, waardoor de berekening 

zelfs voor dit twee electronensysteem gecompliceerd wordt. 

Voor meer-electronen systemen wordt een "full CI" berekening on­

uitvoerbaar: De expansie van de golffunctie moet bekort worden. Dit 

kan bereikt worden door het gebruiken van een betere basis ("natural 

Orbitals") of door het verkleinen van de configuratieruimte of beide, 

elk met voor- en nadelen. In hoofdstuk X worden er twee onderzocht: De 

Iterative Natural Orbital (INO) methode met een configuratie ruimte 

die alle enkele en dubbele excitaties bevat vanuit de Hartree-Fock 

grondtoestand en INO met een "first-order" golffunctie (bevat alle 

enkele excitaties vanuit een volledige Cl ruimte, geconstrueerd uit 

de valentie orbitalen). De methoden worden getest op het Be-atoom, 

waar de electronencorrelatie effecten op de polariseerbaarheid 

relatief groot zijn. De methoden worden daarna gebruikt om de pola­

riseerbaarheid van het CN-ion te berekenen. 
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C U R R I C U L U M V I T A E 

De schrijver van dit proefschrift werd op 2 juni 1954 te Heerlen 

geboren. Na het volgen van het basisonderwijs werd in 1966 begonnen 

met de HBS-B opleiding te Kerkrade waarvan het einddiploma (cum laude) 

op 19 mei 1971 behaald werd. In datzelfde jaar werd een begin gemaakt 

met de chemiestudie aan de Katholieke Universiteit te Nijmegen. Het 

kandidaatsexamen (S4) en doctoraalexamen theoretische chemie, met 

bijvakken capita uit de natuurkunde en capita uit de wiskunde, werden 

respectievelijk op 18 februari 1974 en 27 juni 1977 behaald. Het 

laatstgenoemde doctoraal bijvak werd grotendeels aan de TH te Eind­

hoven (1975) verricht. In het kader van het hier beschreven promotie­

onderzoek op de afdeling Theoretische Chemie te Nijmegen volgde een 

aanstelling als wetenschappelijk medewerker, eerst in dienst van de 

KUN (1-9-77 tot 1-9-78) en vervolgens m dienst van SON/ZWO (sinds 

15-10-1978) . 

209 







STELLINGEN 

I 

Brooks en Schaefer vinden bij uitbreiding van de valentieorbital set in 
hun CI berekeningen onfysische resultaten. In tegenstelling tot de 
door hen geopperde veronderstelling dat de vergroting van de valentie 
set de oorzaak zou zijn, moet dit worden toegeschreven aan het ge­
bruik van de INO methode 

BR BrooksenHF Schaefer,J Am Chem Soc , 101,307(1979) 

II 

De aanduiding atoomenergie op antikernenergiestickers getuigt van 
weinig inzicht in de fysica, maar misschien wel van enig inzicht in de 
psychologie 

III 

De analytische uitdrukking voor de vermogensafhankelijkheid van de 
absorptie van CCb-laser straling door SFé-clusters, zoals die door 
Geraedts et al wordt gegeven, is onbevredigend omdat deze uitdruk­
king met geen acceptabel fysisch absorptiemodel correspondeert. 

J Geraedts, S Setmdi, S Stolte en J Rcuss, 
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IV 

De door Anderson gebruikte methode voor het berekenen van inter-
moleculaire potentialen is zowel methodologisch als fysisch onver­
antwoord 
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V 

De door Schaefer en Meyer getabelleerde waarden voor de C5 coëfli-
ciènten van het H2-H2 systeem moeten op theoretische gronden 
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VI 

Doordat Handy en Carter bij het evalueren van matnxelementen in 
hun variatieprobleem een te grof integratierooster toepassen, wordt 
het door hen beschreven stelsel expansiefuncties niet volledig ge­
bruikt. 

N C Handy en S Carter, Chem Phys Letters, 79, 118 ( 1981 ) 



VII 

Een computersysteem is hoogstens zo goed als zijn documentatie 

VIH 

Het is onlogisch en onrechtvaardig verschil te maken tussen echtgeno­
ten die wel of niet in dienst van een werkgever zijn geweest bij het 
bepalen van pensioenaanspraken bij het overlijden van een van hen. 

IX 

Pople et a l , Purvis en Bartlett hebben onlangs onafhankelijk van el­
kaar een methode voor het oplossen van grote stelsels niet homogene 
lineaire vergelijkingen voorgesteld Deze methoden zijn in feite on­
handige versies van de „conjugate gradient" methode. Als bovenge­
noemde auteurs kennis hadden genomen van de standaardwerken 
over numeneke wiskunde, dan hadden ze zich en hun lezers veel werk 
kunnen besparen. 
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X 

Zo nu en dan ontsnapt er één van de 200 000.000 FLOPS van de bij de 
weervoorspellmgen gebruikte CRAY-1 computer naar het weerbe-
ncht. 

16 oktober 1981 Ab initio calculations of 
intermolecular forces and 

R.M. Berns related properties. 








