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CHAPTER 1 

FUNCTION AND BIOCHEMISTRY OF BLOOD PLATELETS 
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INTRODUCTION 

Platelets show in spite of their tiny size and absence of a 

nucleus the characteristics of a variety of secretory and ex­

citatory cells. The ability of platelets to adhere to surfaces 

and to form aggregates is the basis of their physiological 

function: their contribution to normal hemostasis and mainte­

nance of endothelial integrity. They also play a role in the 

pathogenesis of thrombosis, atherosclerosis and transplanta-

ti on rejecti on ( 1 ) . 

1.1. PHYSIOLOGY AND FUNCTION 

1.1.1. Platelet Structure 

The use of electron microscopy has much revealed about the pla­

telet structure ( 2 ) . The data are compiled in Figure 1. 

Platelets contain no nucleus and no DNA. Their membrane is tri-

laminary and contains many proteins, particularly glycoproteins, 

Platelets contain a quantity of subcellular organelles and 

structures. The most important are: 

- Mitochondria: organelles containing structures and enzymes 

for the Krebs cycle. 

- a-Granules : organelles accumulating a.o. heparinneutrali-

sing protein (platelet factor 4 ) , ß-thrombo-

globulin, a growthfactor and mucopolysaccha­

rides ( 3 ) . 

- Dense bodies: the most condense of all subcellular structures. 

They store vasoactive amines (such as seroto­

n i n ) , adenine-nucleotides (ATP and ADP) and 

cal ci urn (3) . 

- Lysosomes : vesicles perhaps identical to α-granules, which 

contain acid hydrolases like acid phosphatase, 

beta-glucuronidase and cathepsin. 

- Mi crotubules: tubular filaments in the equatorial plane of 

the platelets directly under the cytoplasmatiс 

membrane. Very probably the microtubules have 

contractile properties ( 4 ) . It has been shown 
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that depending on the functional situation 

the microtubules in the platelets are present 

or absent, which suggests that they can be 

built up or broken down very quickly. 

- Membrane- : the so called "Dense Tubular System" and the 

systems "Surface Connected Canalicular System". 

The Dense Tubular System is visible in E.M. 

as tubular structures, which are probably com­

parable to the sarcoplasmatiс reticulum in 

striated muscles. 

The Surface Connected Canalicular System is 

built up of a larger tubular system and is in 

fact produced by intrusions of the platelet 

outer membrane. The content of the Surface 

Connected Canalicular System is for this 

reason in open connection with the platelet 

surrounding bloodplasma. 

1.1.2. Platelet Function 

Platelet adhesiveness 

When platelets come into contact with foreign surfaces they 

stick to it (adhesion). During adhesion a spreading of the 

platelets occurs in which process pseudopods are formed (5,6). 

Directly after damage of a vessel platelets adhere onto the 

underlying structures like collagen, microfibrils and base­

ment membrane. 

Platelet "shape change" 

As a result of the stimulus which induces adhesion or aggre­

gation a shape change of platelets occurs. The disc-like form 

changes into a "spiny-sphere" and the microtubules disappear, 

possibly because of contraction or because of désintégration. 

After the "shape change" other changes in morphology occur 

like the formation of pseudopods and swelling. Besides, 

"release" starts. These last mentioned changes are not rever­

sible any more and belong as such not to the essentially re­

versible shape change. 
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FIGURE 1 

Structure of blood platelets 

Reprinted with permission from: J.White and J.Gerrard; Am.Joum.of 

logy 83, 591, 1976. 



Platelet "release" reaction 

Induced by various events (see under platelet aggregation) and 

during platelet adhesion an expulsion occurs of organelles con­

taining enzymes, nucleotides and ions. This phenomenon is cal­

led the "release" reaction ( 7 ) . Electron microscopy revealed 

that the release reaction is caused by a contraction of the 

microtubules. During contraction the organelles of the platelet 

are moved towards the centre. The content of the dense bodies 

(release I) and of the α-granules (release II) are pressed into 

the Surface Connected Canalicular System and in this way expel­

led out of the platelet. 

Platelet aggregation 

Adhesion of platelets to foreign surfaces is accompanied by 

sticking of free platelets passing by in the blood stream to 

the already adhered platelets and to each other. This process 

is called platelet aggregation ( 8 ) . Platelet aggregation can be 

'induced by various stimuli and requires extracellular calcium. 

Λ lot of knowledge has been obtained about the aggregation process 

by in vitro stuüics. When very snail quantities of aggrega­

tion inducers are added to a platelet suspension under stirring 

then the occurring aggregation appears to be completely rever­

sible and after a certain time the aggregates disperse again. 

This reversible phase of aggregation is called the first phase. 

At higher concentrations of the stimulus the aggregation beco­

mes irreversible, that means that the first phase of aggrega­

tion is followed by a second phase. In general the second phase 

is caused by a release of ADP which at a certain level becomes 

so intensive that it forms as such a stimulus for further aggre­

gation by which a snowballeffeet of aggregation occurs ( 7 ) . 

However, recently it has been demonstrated (9) that a causal 

relation between release and "second phase" aggregation does 

not hold for all inducers. 

Platelet factor "availability" 

It has been found that stimules which cause aggregation bring 

about changes in the platelet membrane ( 1 0 ) . During these mem­

brane changes not only the electrostatic properties of the 
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platelet change (11) but also structures and receptors come 

available which are normally not accessible. This process is 

called the "availability reaction". One of the most important 

structures that become available are phospholipids (platelet 

factor 3) which at their surface stimulate the interaction of 

coagulation factors (12). 

Platelet fusion and contraction 

The exposion of phospholipids together with the temporary stand­

still of the bloodstream within a platelet clump gives the 

coagulation mechanism the opportunity to interact, resulting in 

the formation of traces of thrombin. 

Thrombin causes a complete release of the platelet content and 

the platelets melt to an irreversible packed mass in which no 

individual cells can be recognized. After platelet fusion spon­

taneous contraction of the platelet aggregate occurs. This 

phenomenon is well known as retraction. This contraction points 

to the existence of a contractile system that controls platelet 

shape, governs extrusions and contractions of pseudopods, and 

causes release. 

In conclusion it can be stated that the special function of 

platelets in the coagulatory mechanism is, besides the delive­

ring of phospholipids, especially to shape time for interac­

tion of coagulation factors within the platelet aggregate. 

1.2. PLATELET BIOCHEMISTRY 

1.2.1. Introduction 

It is very remarkable that aggregation and release reaction of 

platelets can be induced by so many different substances. This 

implies that the biochemical processes (13,14) within the pla­

telets are more important than the physical or chemical type of 

the stimulus. 

It was formerly thought that in all cases the induction of 

aggregation proceeds through release of ADP and consecutive ADP-

aggregation ( 1 5 ) . On this supposition a number of theories for 
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aggregation were based, the theory concerning inhibition of an 

ecto-ATPase by ADP being the most important (16,17). The cur­

rent view is that aggregation occurs after induction of the 

release reaction, formation of prostaglandins or increase of the 

cytoplasmic calciumconcentration. In normal platelets the three 

phenomena act synergistically and are closely related (18). The 

magnitude of aggregation is modulated by the level of cyclic AMP. 

It is therefore difficult to study the effect of a certain sti­

mulus specifically on one of the separate pathways. 

Prostaglandin synthesis and intracellular calcium are together 

with the level of cyclic AMP intracellular regulatory mecha­

nisms that control platelet function. The release reaction may 

occur as a secondary effect of intracellular changes. 

Many of the aggregation' inducing substances do not enter the 

cell, but stimulate the platelets via interaction with the mem­

brane. Obviously the relation between membrane reactions and 

intracellular metabolic processes is very important. 

In the next sections various aggregation inducers and the intra­

cellular regulation mechanisms are discussed. 

1.2.2. Platelet Aggregation Inducers 

All kinds of stimuli which induce aggregation also cause "shape 

change" and "platelet-factor 3-availabi 1 ity" and if strong 

enough "release reaction". The following substances are known 

to be aggregation inducers: 

Adenosine Diphosphate (ADP) 

ADP is a very specific inducer of platelet aggregation. This spe­

cific action of ADP was first shown by Gaarder et al. in 1961 

(1 9 ) . ADP induces aggregation in concentrations of 10 M to 

10" M but only if traces of calcium and fibrinogen are present 

(16,20). Without calcium present no aggregation occurs but only 

shape change. ADP in concentrations of more than 10 M can induce 

release and irreversible platelet aggregation. 

ADP as such cannot enter the cell and for this reason a specific 

ADP receptor was supposed to be present on the platelet membrane. 

Studies of Nachman and Ferris (21,22) indeed suggest that ADP 
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binds to a specific receptor. Very recently Bennett et al. (23) 

reported the binding of ADP to 4 proteins in platelet homoge-

nates, of which one polypeptide also binds ADP in intact plate­

lets. This polypeptide probably represents the ADP receptor. The 

exact mechanism of ADP-induced aggregation is not known. A few 

enzynatic theories have been developed, such as the inhibition 

of a platelet ecto-ATPase (16,17). Recently another membrane 

enzyme, nucleotide diphosphokinase, has been proposed as a pos­

sible mediator of ADP induced aggregation (24,25). This enzyme 

catalyses the transfer of a terminal phosphate of ATP to ADP. 

Substances that diminish the activity of this enzyme came out 

to be also inhibitors of platelet aggregation. 

Till now no theory has gained general acceptance. 

Prostaglandi ns 

Prostaglandins play an important role in the aggregation process. 

The relevance of stable prostaglandins for platelet function 

was already recognized years ago. In the last years it has been 

shown that platelets themselves produce unstable metabolites of 

arachidonic acid. Aggregation inducers stimulate specifically 

the liberation of arachidonate from the platelet membrane (26, 

2 7 ) . The platelet can metabolize arachidonate to the very 

strong aggregation inducers endoperoxides (28-31) and thrombo­

xane Ap (32). The inhibition of the synthesis of these metabo­

lites by drugs like aspirin completely abolish the release reac­

tion and second phase aggregation (33,34). The importance of 

the prostaglandin system has been extended by the recent dis­

covery of a very strong aggregation inhibitor, prostacyclin or 

PGI21 which is synthesized in the endothelial cells of the 

vessel wall from endoperoxides (35,36). The mechanisms of action 

of prostaglandins will be discussed in more detail under the 

heading "Intracellular Regulatory Mechanisms". 

Col lagen 

Collagen induces very specifically a strong release reaction 

when platelets adhere to it. The released ADP gives rise to an 

enhancement of the aggregation (37). 
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Chiang and coworkers (38) have reported that platelets con­

tain a specific collagen receptor that might be the enzyme gly-

cosyltransferase (39). This supposition is in accordance with 

the concept that adhesion is based on the formation of an 

enzyme-substrate complex between carbohydrate residues of col­

lagen and the enzyme on the platelet membrane (40, 4 1 ) . How­

ever, some doubt has been thrown upon this concept (42-44). 

lonophores 

lonophores are antibiotics that make membrane permeable to 

cations. The ionophores A23187 and X537A are specific for cal­

cium (45,46). In low concentrations the ionophore A23187 indu­

ces the same morphological changes, aggregation and release 

as other aggregation inducers ( 4 7 ) . In high concentrations it 

causes destruction of the platelet ( 4 8 , 4 9 ) . The former idea 

that ionophore aggregates pi atei ets only via the release-reac­

tion (50) has been rejected since thrombin-treated platelets 

(without releasable pool) can still be aggregated by ionophore 

(51). The mechanism of action is discussed in more details 

under the heading "Intracellular Regulatory Mechanisms". 

Other aggregation inducers 

Besides ADP, arachidonate metabolites, collagen and ionopho­

res that are used in this study, there are other aggregation 

inducers. The most important are thrombin, adrenalin, seroto­

nin and ristocetin (see for reviews: 1 0 , 1 4 ) . 

1.2.3. Intracellular Regulatory Mechanisms 

A. Regulatory Role of Calcium 

Calcium plays an important regulatory role in many cells ( 5 2 ) , 

particularly in muscle cells (53) and secretory cells ( 5 4 ) . 

The similarities between platelets and these cells have led to 

many studies on the relationship between calcium and platelet 

rel ease. 

Research on the role of calcium in platelet aggregation is 

hampered by the facts that extracellular calcium ions are 

essential for induction of aggregation (55) and that the con-
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centration of calcium within the various platelet compartments 

varies considerably ( 5 6 ) . 

There are, however, strong indications that intracellular cal-

ciumions play an essential role in platelet stimulus-response 

coupling (57) : 

1. Platelets are contractory cells like muscle cells and with 

secretory properties like endocrine cells, leukocytes and mast-

cells ( 5 8 ) . In all these cells calcium regulates the contrac­

tile function of the cells. 

2. As described under "Aggregation Inducers", ionophores can 

induce aggregation and release in platelets by raising the 

intracellular cal ciumconcentration. The ionophore A23187 indu­

ces release, even when no extracellular calcium is present (50, 

5 9 , 6 0 ) . This indicates that intracellular liberation of calcium 

is sufficient for release induction ( 6 0 ) . When extracellular 

calcium is present the ionophore causes uptake of calcium (48, 

50,60) and aggregation occurs. 

3. The third piece of evidence for a role of calcium is more 

direct. Drugs that inhibit intracellular calcium fluxes also 

inhibit aggregation e.g. D-O and chlorotetracycline ( 6 2 ) , local 

anesthetics such as dibucain and tetracain (63) and other synthe­

tic compounds (6 4 , 6 5 ) . Also other indications for calcium re­

distribution during aggregation have been reported (6 6 , 6 7 ) . 

These three pieces of evidence are indications that intracellu­

lar calcium regulates platelet function. The origin of the cal­

cium which raises the cytoplasmatic calcium concentration can 

either be extracellular, from transport into the cell, or intra­

cellular, being made available by calcium redistribution". 

There are four types of calciumfluxes in platelets ( 6 8 ) : 

1. Calciumions are liberated from membranes, particularly for 

shape change. This pool is easily exchangeable. 

2. Liberation of calcium from vesicular storage organelles into 

the cytoplasm, inducing the release reaction as proposed by 

White ( 6 0 ) . 

3. Release from the storage organelles (dense bodies) directly 

into the extracellular fluid ( 6 9 ) . 

4. A rearrangement of the plasmamembrane during release results 

in an increased amount of calcium binding sites and calcium 
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exchange. 

This last mentioned calciumflux is more a result than a 

cause of platelet stimulation (70-72). 

Most important in the regulatory role of calcium might be the 

calcium flux out off the storage vesicles of platelets. Such 

a membrane vesicle system, comparable to the sarcoplasniс reti­

culum ("relaxing factor") of muscle, has been demonstrated in 

blood platelets (73-75). It has been localised in the Dense 

Tubular System as an ATP dependent and cyclic AMP-stimulated 

active calciumtransport system (76-78). Käser-Glanzman et al. 

(76,78) have also concluded that the same Dense Tubular System 

plays a key role in transporting calcium out of the cytoplasm. 

lonophores would mainly facilitate the intracellular calcium-

fluxes from these vesicular pools. 

The mechanism by which calcium exerts its effects as an intra­

cellular messenger in platelets probably resembles the mechanism 

i η other cel 1 s . 

It influences especially the contractile proteins of cells, 

partly via regulation of phosphorylation and dephosphorylation 

reactions. In platelets calcium affects the contractile protein 

thrombostheniη and the microtubule proteins ( 2 , 7 9 ) . These pro­

teins are extremely important in maintaining the shape of pla­

telets at rest, changing it upon stimulation and in the release 

reaction. 

In conclusion, calcium is essential for platelet function, 

inside and outside the platelets. Extracel 1ularly it is indis­

pensable for aggregation, although not for release induction by 

inducers that directly influence the intracellular calcium. 

Intracel1ularly it may well be the basic platelet regulator, 

as suggested by Holmsen (80). 

B. Regulatory Role of Cyclic Nucleotides 

Cyclic Nucleotides in general 

The pioneerwork of Sutherland and coworkers (81) has shown that 

many hormones ("first messengers") in a variety of cells act 

through the intracellular messenger cyclic AMP ("second messen­

g e r " ) . Cyclic AMP is important in many cell- and tissue-functions, 
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for instance the energy metabolism (82,83), growth and diffe­

rentiation (84) and transmission of signals (85,86). Cyclic AMP 

is formed from ATP by the enzyme adenylate cyclase and degraded 

to AMP by phosphodiesterase. Adenylate cyclase is influenced 

a.o. by hormones via specific receptors on the membrane of the 

cell. These receptors are in some way coupled to the enzyme but 

the exact mechanism is not known (87). 

Another cyclic nucleotide is cyclic GMP, which is synthesized 

by guanylate cyclase and broken down by specific phosphodies­

terases. It is found in many cells but the physiological func­

tion of this nucleotide is much less clear. 

Enzymes of the platelet cyclic nucleotide system 

The enzymes of the platelet cyclic nucleotide system are not 

well characterized. Adenylate cyclase has many features in com­

mon with adenylate cyclases of other cells, such as stimulation 

by fluoride, PGEj and glucagon (88-90) and a need for GTP (91, 

92 ) . The enzyme is membrane bound for the largest part (93,94). 

Calcium is a strong inhibitor of its activity (89,94), while 

magnesium is essential for its activity. 

The platelet guanylate cyclase is for more than 95 % present in 

soluble form in the cytoplasmatiс compartment (95,96) and has 
2 + 

been isolated by chromatography (97). It needs Mn for optimal 

activity, while Mg and Ca stimulate it slightly in the pre­

sence of Mn
 +

. 

Platelets contain at least three enzymatically different phos-

phosdiesterases (98-100), which are all exclusively located in 

the cytosol (94). One of the phosphodiesterases is a more spe­

cific cGMP phosphodiesterase, one a more specific cAMP phos­

phodiesterase and the third is non-specific. 

Cyclic AMP and platelet function 

After the first report on cAMP and platelet function in 1965 

(101), it was four years before the research really started. 

Since then an enormous amount of reports has been published 

about this subject as well as a number of reviews (13,102-104). 

The general consensus is that an increase in the cAMP concentra­

tion inhibits platelet function. But whether the reverse holds 
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true, that is that aggregation inducers lower cAMP content, is 

a matter of much controversy. 

The effects of drugsand aggregation inducers on cAMP metabolism 

have mostly been studied in lysed cell preparations. 

The essential question is, however, whether changes in cAMP con­

centration or metabolism in intact platelets are related to pla­

telet function and vice versa. The study of this question is 

hampered by the imperfections of the methods available (105-107). 

Salzman reported that isolation of platelets (by centrifugation 

or gel fi 1tration) induces changes in the cAMP metabolism (108, 

109). 

Measurement of platelet cAMP in platelet-rich plasma is diffi­

cult since more than 75 % of the total cAMP in PRP samples origi­

nates from the plasma. Moreover, the cAMP in platelets is stored 

in more than one compartment (110,111). Since ATP cannot enter 

the cell, it is necessary to use labeled adenine as a precursor 

for ATP in studying the synthesis or degradation of cAMP in 

•intact cells (either adenylate cyclase or phosphodiesterase ac­

tivity). The very low conversion of labeled adenine into labeled 

cAMP in intact platelets (0.03 % - 0.1 % (104)) poses tremendous 

technical problems. 

Cyclic AMP and dibutyri1-cycli с AMP inhibit in vitro adhesion 

(112), aggregation, release (113,114) and clot retraction (115). 

They also show similar effects in vivo (116). 

Adenylate cyclase activators and phosphodiesterase inhibitors 

all inhibit platelet function. The adenylate cyclase activators 

include some prostaglandins such as PGE, and prostacyclin (35, 

117-121), adenosine and its 2-substituted dérivâtes (122) and 

ß-adrenergiс agonists (123). Phosphodiesterase inhibitors are 

mostly used for fortifying the effects of adenylate cyclase 

activators. The most important phosphodiesterase inhibitors are 

theophyllin, papaverin and dipyridamole (124). 

Recently the inhibitory action of some drugs on platelet adeny­

late cyclase have been reported. These drugs are synthetic ana­

logues of deoxyadenosine, such as 2,5 di-deoxyadenosine and 9-

(tetrahydro-2 furyl) adenine (called SQ 22536) (125-127). 

SQ 22536 antagonizes the effects of substances that stimulate 

platelet adenylate cyclase, such as P G E ^ P G I
2
 and adenosine. 
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Also the basal, unstimulated adenylate cyclase activity is in­

hibited by SQ 22536 and 2,5 di-deoxyadenosine (126) and Salzman 

reported even a lowering of the platelet cAMP concentration 

(123). However, there is no agreement on the effect of these 

compounds on platelet aggregation. Haslam reported that they do 

not induce aggregation themselves and have no effect on aggre­

gation induced by known inducers (126,127). Salzman repor­

ted a stimulation by SQ 22536 of the prostaglandin endoperoxide 

induced aggregation but no consistent effect on aggregation in­

duced by ADP and other agonists (125). 

These results show that lowering of platelet cyclic AMP or ade­

nylate cyclase activity is not enough for inducing aggregation. 

It is possible that only a fraction of the platelet cAMP regu­

lates platelet function and that this fraction is not influen­

ced by the adenosine analogues. This would be in accordance with 

the lack of correlation between the cAMP level and the amount 

of aggregation (128). 

Aggregating agents and cyclic AMP 

Perhaps the most controversial issue in the research of the 

last years on platelets is the question whether aggregating 

agents lower adenylate cyclase activity and/or cAMP content of 

platelets, or even induce aggregation through this inhibition. 

The results with almost all inducers are consistent with regard 

to inhibition of stimulated adenylate cyclase and the accumula­

tion of cAMP, but the reports on effects on basal adenylate 

cyclase are contradictory. Such contradictory results have been 

reported for ADP, serotonin, adrenalin and noradrenalin (see 

reviews 13, 102-104) and also for the most recently discovered 

aggregation inducers, the prostaglandin endoperoxides and 

thromboxane A 2 (129-133). 

Haslam measured basal adenylate cyclase activity by determi­

ning the rise in cAMP during inhibition of phosphodiesterase 

(104). He found that various aggregating agents show opposite 

effects on basal adenylate cyclase activity: ADP inhibited the 

enzyme, but adrenaline stimulated it and noradrenaline, seroto­

nin and vasopressin had no effect. 
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Aggregating agents and cyclic GMP 

Almost all aggregation inducers, e.g. collagen, adrenalin, sero­

tonin and arachidonate and its metabolites cause an increase in 

cGMP levels (94,104,134,135). The meaning of this increase is 

unknown since ascorbic acid and fatty acids other than arachi-

donic acid also raise the cGMP level without effect on aggrega­

tion (94,134,136,137). 

Ways of action of cyclic AMP 

Cyclic AMP exerts its effects on cellular functions mainly 

through regulation of phosphorylation of proteins by kinases and 

phosphorylases. Platelets contain protein kinases that do not 

differ from those of other cells (138-144). Part of these enzy­

mes are probably regulated by cAMP and part are cAMP independent 

but calcium regulated (145). Three or four main proteins are 

phosphorylated (140,145). 

Dibutyryl-cAMP inhibits the stimulation of phosphorylation of 

•two of these proteins during aggregation (143,146). However, the 

physiological significance is not yet clear (142,146,147). Theo­

ries for regulation of platelet function by phosphorylation/ 

dephosphorylation reactions have been put forward by Booyse 

(139) and Assaf (148) but they are highly speculative. 

cAMP does influence the two other regulatory systems. It inhi­

bits the membrane phospholipase activity (149) and lowers the 

availability of arachidonate for cyclooxygenaso (150,151). 

Besides this, cAMP also stimulates a calciun puno (76). In this 

way cAMP might promote compartmentalization of calcium and 

inhibit the phospholipase activity (152,153). 

C. Regulatory Role of Prostaglandins 

Platelets synthesize stable prostaglandins (154-156). The re­

search on prostaglandins in platelets received a new impetus 

with the discovery that drugs such as aspirin and indomethacin 

inhibit prostaglandin biosynthesis (157-159). The inhibition of 

this systhesis is accompanied by an inhibition of the platelet 

release reaction (33,34). Since the prostaglandin synthesis is 

enhanced during aggregation, particularly when induced by 
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ІпЫЫіеп «Ktrt thiir ictlen ara Indicated by the numerili 1,2 and Э, rapacchralx 

FIGURE 2 

Metabolic pathway o f arachidom'c acid 

Reprinted w i t h permission from S.Moneada and J.R.Vane: B r i t . M e d . B u l l . 

34, 130, 1978. 
25 



arachidom'c acid (160) it is clear that they play a role in 

platelet functionality. 

Prostaglandin endoperoxides and thromboxanes 

Stable prostaglandins do not induce aggregation. In the last 

yearssome unstable metabol i tes of arachidom'c acid were found 

to induce aggregation: the prostaglandin endoperoxides (28-31) 

and the thromboxanes (32). (Fig. 2 ) . 

These metabolites are synthesized from arachidonate, which is 

incorporated in phosphatides of membranes (161) and liberated 

by a specific phospholi pase h?· Aggregation inducers stimulate 

specifically the liberation of arachidonate (26,27). The arachi-

donate can be metabolized in two ways: conversion through the 

enzyme lipoxygenase into the inactive compounds HPETE and HETE 

or conversion through the enzyme cyclooxygenase, that produces 

prostaglandin endoperoxides PGG- and PGH- (162,163), formerly 

called "Labile Aggregation Stimulatory Substance" or LASS (164). 

The endoperoxides, strong aggregation inducers and vasoconstric­

tors, are very unstable in aqueous solution (tj approx. 5 min) 

and are converted into stable prostaglandins or a 17-cnrbon 

hydroxyacid plus mal ondi aldehyde. During aggregation the endo-

peroxides can be released (31,165). 

In platelets the endoperoxides can be converted through the 

enzyme thromboxane synthetase into thromboxane Α., (TxA-), that 

is an even stronger aggregation inducer and vasoconstrictor 

(166-168). This substance is very unstable (166). Perhaps endo-

peroxides have to be converted into TxA- before they can induce 

aggregation (131,166,169-171). In aqueous media TxA- is conver­

ted into the stable thromboxane B-, that has no effect on pla­

telets. 

During platelet stimulation also a burst in oxygen uptake is 

observed. This is partly a reflection of the prostaglandin 

endoperoxide synthesis (172). 

The prostaglandin synthesizing system has been isolated from 

platelet microsomes (173) and is located in the Dense Tubular 

System (174). The two enzymes cyclooxygenase and thromboxane 

synthetase have been isolated and characterized (175-179). 
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Patients with a deficiency in cyclooxygenase (180,181) or 

thromboxane synthetase (181) have a mild bleeding tendency. 

Defects in lipoxygenase lead to an increased tendency to spon­

taneous aggregation (183) and a raised endoperoxide level has 

been noted in thrombosis (184). The effects of aspirin and 

other non-steroid anti-inflammatory drugs mimic enzyme défi­

ciences. These drugs act through interference with cyclooxy­

genase (group one in Fig. 2) and induce a mild bleeding ten­

dency (185-187). A second group of drugs, interfering with 

prostaglandin biosynthesis, are the thromboxane synthetase 

inhibitors. These include benzydamine, imidazole, endoperoxide 

analogues (173,188-193) and perhaps sulphinpyrazon (194). 

How endoperoxides and TxA^ induce aggregation is not known 

precisely (195). They do not aggregate by release induction 

only (196) since shape change and aggregation have been de­

monstrated without release occurring (197,198). They affect the 

stimulated adenylate cyclase but not the basal enzyme activi­

ty (129-133), just as other aggregation inducers. 

A very intriguing suggestion has been made by Gerrard and White 

(175,199). They suppose that TxA^, which is synthesized in the 

Dense Tubular System, is liberated into the cytoplasm and acts 

as a physiological ionophore by transporting calcium out of the 

Dense Tubular System into the cytoplasm (199,200). Indirect 

support for this hypothesis emerges from the observation that 

aggregation with ionophore and thrombin probably directly rai­

ses the cytoplasmatiс calcium concentration and is independent 

of cyclooxygenase products (49). 

Prostacyclin or PGI2 

The discovery of a specific vessel wall prostaglandin, prosta­

cyclin or PGI2 (35,36,201), has put the regulation of platelets 

in a new light. It is synthesized enzymatically from endoperoxi-

des and is the strongest aggregation inhibitor and vasodilator 

discovered until now (35,202). It inhibits platelet adhesion 

to subendotheli um (203) and the formation of platelet plugs 

(203,204) and even disperses platelet aggregates. Prostacyclin 

is very unstable in blood at 37
0
C and is degraded to the relati-
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vely inactive G-oxo-PGF- (201). Fresh venous and arterial 

slices and microsomes of pig, rabbit, dog and man synthesi?e 

PCI- (205-209). The generation of prostacyclin by lungs (210, 

211) has led to the proposal that prostacyclin is a circulating 

anti-coagulant (211,212). The site of production is the endothe­

lial cell layer of the vessel wall (213,214). Also cultured 

endothelial cells produce PGI« (215). The conversion of arachi-

donate into PGIp amounts to no more than 1 %, while endoper-

oxides are converted to an extent of more than 80 % (35,36,205, 

216,217). The synthesis of PGI^ is inhibited by lipid peroxides 

(group 3 in Figure 2) (204,217). 

Inhibition of the formation of lipid peroxides may be important 

for thrombosis prevention. The mechanism of action of prosta­

cyclin is stimulation of the platelet adenylate cyclase by 

binding to a specific receptor (218). It raises thus the pla-

• l O O O 

vtefi , , _ 
" » " [CYCIJ ,HP ' 

FIGURE 3 

Model o f human p l a t e l e t homeostasis i n v i vo . 

Reprinted w i th permission from F.Gorman e t a l . . Prostaglandins 13, 386, 1977. 
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telet cAMP concentration (119-121), inhibiting also the phos-

pholipase A- activity of the platelet membrane (149). 

The discovery of prostacyclin has tremendous consequences for 

the understanding and research on platelet regulation in vivo. 

Endoperoxides are preferentially used as substrate by prosta­

cyclin synthetase, and might be provided by the platelets. 

This leads to a very elegant scheme of platelet regulation in 

vivo (see Fig. 3) (120,121): stimulation of the platelets 

leads to formation of endoperoxides and TxA^ with lowering of 

the platelet сЛМР content. 

However, the endoperoxide can enter the vessel wall and be con­

verted into PGI-i which raises the cAMP content in platelets. 

In vivo platelet function would be balanced by these opposing 

mechanisms. When the vessel wall is damaged or absent (in 

vitro) this regulation is out of balance and aggregation is 

promoted. 

Although recent results (219,220) indicate that the endopero-

xides are not easily exchanged between platelets and vessel 

wall, the clinical implications of the existence of partly 

similar enzyme systems in platelets and vessel wall are very 

important. Drugs that inhibit the cyclooxygenase of platelets, 

such as aspirin, also influence the vessel wall cyclooxygenase 

and PGIo production (221,222). Selective thromboxane synthe­

tase inhibitors may be useful for thrombosis prevention (219). 

D. Interrelationships between regulatory functions 

At the moment it is not known precisely which mechanism regu­

lates the responses of platelets to physiological stimuli. The 

interrelationships between the regulatory processes can be 

surveyed only by fitting together the separately observed 

processes and developing a theory on that basis. 

Holmsen (223) has developed such a theory. He proposed that 

all platelet reactions are the consequence of one basic plate­

let function. This basic platelet mechanism would be elevation 

of the cytoplasmatiс calciumconcentration ( 8 0 ) . Platelets can 

respond in different ways to stimulation, depending on the 

strength and character of the stimules. Recently (80) he has 

29 



ref ined t h i s t h e o r y and made a l i s t of p l a t e l e t r e a c t i o n s in 

o r d e r of i n c r e a s i n g s t r e n g t h : 

INDUCERS• 
SHAPE AGGRE- ARACHIDONATE DENSE 

*' GRANULE -
H 

SECRETION 
CHANGE GATION LIBERATION 

α GRANULE 

SECRETION 

The arachidonate liberation, resulting in endoperoxide and 

thromboxane formation,and the release of ADP, serotonin and 

calcium would act as positive feedback loops. Most data known 

about the aggregation process can be fit into this hypothesis. 

Stimulation of platelets with ADP starts by binding of ADP 

to the platelet membrane with induction of shape change, then 

aggregation etc. 

Kinlough-Rathbone et al. (18,224) showed that the arachidonate 

liberation and calcium elevation can be induced directly e.g. 

by thrombin or ionophores. This means that there are different 

starting points in the scheme of Holmsen, all resulting in the 

same consequences.aggregation and/or release. 

In normal platelets the diverse regulation mechanisms influence 

each other. 

The synthesis of TxA- can lead, possibly by functioning as a 

ionophore (114,199,200), to an elevation of the cytoplasmic 

calciumconcentration. 

An elevation of the cytoplasmatiс calciumconcentration in its 

turn stimulates the liberation of arachidonate via the enzyme 

phospholipase A- (225-227). As well prostaglandin endoperoxides/ 

TxA
?
 as an elevated calciumconcentration inhibit platelet ade­

nylate cyclase (95,129-133). 

A lowering of platelet cyclic AMP is not sufficient for indu­

cing aggregation (126,127). However, since an elevated cAMP 

level inhibits as well the liberation of arachidonate (76, 

149-151) as possibly also the enzyme cyclooxygenase (228,229), 

low levels of cAMP probably pror.iote aggregation. 

Besides, elevated cAMP levels stimulate the removal of calcium 

out off the cytoplasm (152,153). Cyclic AMP might act as a 

negative feedback mechanism in platelet regulation. 
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aggregation A 
I¿ inducers I 

Λ adenylate cyclase 
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I phosphodiesterase 
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aggregation 
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aggregation A 
inducers I 

Î 1 . platelet stimulation 

ι ν ' platelet inhibition 

FIGURE 4 

Interrelationships of platelet regulation mechanisms 

stimulation of enzymes or elevation of metabolites by aggregation 

inducers. 

inh ib i t ion of enzymes or decrease of metabolites by aggregation 

inducers. 

stimulation of enzymes or elevation of metabolites by aggregation 

inh ib i tors . 

inhibi tors of enzymes or decrease of metabolites by aggregation 

inh ib i tors . 

These i n t e r r e l a t i o n s h i p s lead to a network of feedback mecha­

nisms (see f i g . 4 ) , which can e x p l a i n the p e r f e c t c o n t r o l sys­

tem t h a t i s needed f o r the very s u b t l e r e g u l a t i o n of p l a t e l e t 

f u n c t i on. 
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CHAPTER 2 

LITHIUM: CHEMISTRY, BIOCHEMISTRY AND PHARMACOLOGY 
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INTRODUCTION 

Lithium has important biological actions, which is demonstra­

ted by its therapeutical effect in some mental illnesses for 

which it is in use as a potent drug in psychiatric practice 

since 1949 ( 1 , 2 ) . The mode of action of lithium on cellular 

function and biochemical or metabolic processes is unknown. 

A clarification of the mechanism of its action on platelet 

metabolism may offer an important lead for the elucidation of 

its action on the functionality of other cells. Knowledge 

about the mechanism of its action could also be useful for 

understanding the normal regulatory mechanisms of platelets. 

The key to the solution of the mechanism of the action of 

lithium could lie in its special chemical and biological pro­

perties ( 3 ) . 

2.1 CHEMISTRY OF LITHIUM 

Lithium is the smallest of the alkali metals and shows a strong 

tendency to form monovalent cations ( 4 ) . Lithium has much in 

common with sodium and potassium but surprisingly it also 

displays properties of the bivalent earth alkali metals e.g. 

of calcium and magnesium. This is demonstrated by its binding 

constant for complex anions (e.g. EDTA) which lies between 

those for Na/K and Ca/Mg. The explanation of this hybridic 

behaviour is given by the specific physical properties of li­

thium: the ionradius of Li (0.60Й) is almost equal to that 

of Mg (0.64 8) while the charge density (0.22 Coul/8 ) resem­

bles that of Ca (0.16 Coul/8 ). The physical properties of 

the other al kal i metal s show a much greater difference to those 

of the earth-alkali metals: Na and К have a ionradius of 

0.95 8 and 1.33 8 and a charge density of 0.088 and 0.045 

Coul/S respectively. These physical properties of lithium 

could possibly explain many of its biological effects as sug­

gested by Frausto da Silva et al. ( 5 ) : lithium may substitute 

in ligand formation in vivo for Ca/Mg though the affinity of 

Ca/Mg for natural ligands is greater than that of lithium, 

since in therapeutic circumstances the concentration of li-
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thium is higher than that of free calcium and magnesium. 

2.2 PHARMACOLOGY OF LITHIUM 

In normal conditions the concentration of lithium in animal 

tissues is extremely low. The concentration in the blood at 

which therapeutic effects may be obtained lies between 0.5 

and 1 mmol/1 plasma ( 6 ) . The effective concentration range 

is very narrow since at values above 2 mM toxic side effects 

occur. 

Many investigations on the effects of lithium have been done 

by replacing in the media sodium by lithium at experimental 

concentrations of 50 to 150 mM ( 3 ) . For this reason, much of 

the research on lithiurrt is irrelevant because these concent­

rations are in the toxic range. In chronic use the same re­

sults are often achieved with much lower concentrations than 

necessary in vitro. In therapeutic use lithium is administered 

Orally as Li^CO, after which it is absorbed from the gastro­

intestinal tract and distributed to the various tissues, such 

as heart, kidneys, muscle, bone and brain ( 7 ) . The clearance 

of lithium is effected by glomerular excretion and tubular 

reabsorption in the same manner as sodium. In contrast with 

sodium, potassium and calcium, no great differences exist 

between intracellular and extracellular lithium concentrations 

in many tissues, in which aspect lithium behaves like magne­

sium. Higher concentrations are reported in bone ( 8 ) , thyroid 

and probably also in kidneys ( 9 ) . 

2.3 BIOCHEMISTRY OF LITHIUM 

The basis of many biological effects of lithium is a substi­

tution for other cations, either Na/K or Ca/Mg. This substi­

tution can have direct effect on transport and concentration 

of the substituted catiors. Lithium can also replace the cat­

ions functionally, especially calcium and magnesium. This can 

lead to more indirect effects,· e.g. the interference of li­

thium with mi croen vironment and structure of membranes and 

proteins. This interference can result in effects of enzymes 
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and regulation mechanisms of cells via modification of the 

response to messengers, such as cyclic nucleotides and bioge­

nic amines. The following review of the literature contains 

inevitably simplifications with regard to some topics and the 

in vivo situation is undoubtedly far more complex. 

2.3.1. Direct Replacement Effects of Lithium 

Lithium can replace Na/K or Ca/Mg in transportsystems and so 

be transported through membranes. The most important enzymes 

in this respect are the Na, К - dependent - ATP ases (10). 

Lithium can substitute for both ions. 

Lithium stimulates the Na, K-ATP ases of erythrocytes (11-14), 

of muscle cells (15, 16) and of brain cells (17). In some tis­

sues no effect has been observed (18). Recently the transport 

processes of lithium in erythrocytes have been clarified by 

Duhm et al. (19). 

It appeared that three processes are involved: 

1. An active transport mediated by the Na , K-ATP ase (13,19). 

2. A counter exchange process between Li and Na across the 

membrane (20-22). 

3. A passive leakage into or out of the cell (19,23,24). 

Other cations may influence lithium transport as was shown in 

cerebral cortex (25) and in erythrocytes (26). 

Lithium interferes not only with Na,К transport but also with 

Ca,Mg transport processes. No conclusive picture has been pre­

sented on this topic, partly because of species specifity of 

the effects and also because of doubtful experimental condi­

tions, such as the presence of EDTA in the media (10). The 

effects of lithium on two enzymes involved in these Ca/Mg 

transport, the Mg-dependent ATP ase and the Ca, Mg-dependent 

ATP ase, have been studied extensively (10,12,14,27-29). The 

results are conflicting but there is no doubt that lithium 

interferes with calcium exchange processes (30-32). 

The interference of lithium with transport processes and the 

substitution of other cations induces changes in the electro­

lyte content of tissues and body liquids (33). For instance, 

the calcium and magnesium content of the blood is raised in 
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man ( 3 4 ) . 

Lithium can also interfere with other processes which require 

cations. Especially substitution of calcium has many important 

implications for the stimulus-secretion coupling and the re­

lease of neurotransmitters. Some reports contain indications 

that lithium can either replace calcium functionally or raise 

the intracellular calcium concentration for instance in neuro­

nes and cerebral tissue (35-40). Lithium probably liberates 

intracellular calcium in these tissues (41, 42) but a total 

substitution of calcium, also functionally, cannot be ruled 

out ( 4 3 ) . 

2.3.2. Indirect Replacement Effects of Lithium 

Besides the cation replacement effects lithium also influences 

a number of enzymes by altering the spatial structure or envi­

ronment of enzymes. The kinetics of enzymes that require mag­

nesium are especially influenced by lithium ( 2 ) . For this rea­

son Birch suggested that the main mechanism of action of li­

thium is the interference with magnesium and/or calcium de­

pendent processes (44). Important enzymes affected by lithium 

are those which are involved in the regulation of cellular 

functioning via the metabolism of the so called "messengers" 

e.g. : 

- the biogenic ami nes .important for neurotransmission and 

brai nfunction 

- cyclic AMP, which plays a role in functionality of almost 

every eel 1. 

Through these messengers and through modulation of various en­

zymes lithium affects various metabolic processes, such as 

carbohydrate metabolism (45), the metabolisms of amines and 

aminoacids (46,47) and DNA, RNA and protein synthesis (10). 

Biogenic Amines 

It is supposed that a number af mental disorders are caused 

by a di sequi 1 ibration in the concentration of biogenic amines 

like serotonin, indolamine and dopamine. The concentration of 
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biogenic amines would be too high (in mania) or too low (in depres­

sion) ( 2 ) . Conflicting results are reported on the effects of 

lithium upon the amines since it is reported that lithium has 

a therapeutic effect in both mania and depression ( 4 6 ) . This 

would imply a sort of normalizing influence of lithium on the 

underlying biochemical mechanisms. 

Cyclic AMP 

Lithium inhibits in many cells the adenylate cyclase activity 

and lowers the cAMP concentration (48) as was demonstrated in 

brain cells (49-53) .thyroid cells (9,54-56) and renal cells 

(57- 6 0 ) . In general no effect is observed on the activity of 

phosphodiesterases. The carbohydrate metabolism is affected by 

lithium via the cAMP system (45) partly through interference 

with the regulation of enzymes (61-63) .partly through modula­

tion of the response of adenylate cyclases on hormones such 

as glucagon ( 4 5 ) . Not all the actions of lithium can be ex­

plained by the inhibition of adenylate cyclases and it has 

been suggested that lithium might also act on a site not rela­

ted to adenylate cyclase (9, 6 9 - 7 3 ) . 

Still a few other adenylate cyclases are inhibited by lithium: 

the ACTH and fluoride stimulated adenylate cyclase of fat 

cells ( 6 4 ) , the epinephrin and inositol stimulated enzyme of 

guinea pig heart (65) and the ACTH stimulated adenylate cycla­

se of rat adrenals ( 6 6 ) . Lithium also affects the prostaglan­

din E, stimulated adenylate cyclase of platelets (67,68). 

Concluding remarks 

The actions of lithium clearly result from its similarity with 

other cations, especially magnesium. A number of cAMP mediated 

processes are affected by lithium induced inhibition of adeny­

late cyclase. Not all effects can be explained and other me­

chanisms (influence on protein kinase, Ca/Mg replacement or 

others) might be involved. 

2.4. LITHIUM AND PLATELETS 

The research on the effects of lithium on blood platelets 
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until now is mainly a reflection of the observed effects on 

other cells. The analogies between platelets and neurological 

cells have been the impetus for most investigations and much 

less the characteristic effects on platelets themselves. 

Analogous to the research about the effect of lithium on the 

metabolism of biogenic amines in synaptosomes ,the uptake of 

monoamines in platelets of lithium treated patients was inves­

tigated and turned out to be higher than in controls (69,70). 

Lithium did not exhibit these effects in human platelets in 

vitro and in rat platelets neither in vitro nor in vivo (71). 

Lithium stimulates in patients on lithium therapy the conver­

sion of the monoanines in platelets via nonoamine axidase 

(72,73). 

There are only a few reports concerning the effect of lithium 

on platelet function. Geerdink et al. (74,75) showed that 

lithium stimulates the aggregation of human platelets after 

90 min of incubation and especially prolonges the desaggre-

•gation phase. The stimulation of aggregation by lithium was 

observed after induction with ADP, adrenalin, collagen, sero­

tonin and thrombin, as well in platelet-rich plasma as in 

gelfiltered platelets. Lithium counteracted the inhibitory 

effects of db-cAMP, PGE, and theophyllin. Also the impaired 

aggregation of thrombopathiс platelets (uremia, release 

thrombopathia and after aspirin ingestion) was partly restored 

by lithium. Addition of lithium without further incubation in­

hibits the aggregation (75,76). 

Lithium stimulates the lactate production of the glycolytic 
14 

pathway and the incorporation of C-glucose into glycogen, 

without any effect on nucleotide concentrations ( 7 7 ) . 

A possible interaction of lithium with calcium was deduced 

from the similarity of the effects of EDTA and lithium (77) and 

from the reducing of the instantaneous inhibitory effect of 

lithium by calcium ( 7 8 ) . Anderson and Foulks (79) came to the 

same conclusion on the inhibitory effect of lithium on the 

aggregation of rabbit platelets. They suggested a competitive 

inhibition between lithium and calcium as mechanism for the action 

of lithium on platelets. 

Lithium affects the platelet cyclic AMP-system: The PGEj sti-

44 



mulated adenylate cyclase is inhibited by lithium in vivo and 

in vitro (after 45 min of incubation) ( 6 7 , 6 8 ) . Lithium has no 

effect on the basal conversion of labeled ATP into cAMP. Mag­

nesium enhances the stimulation of adenylate cyclase by P G E
1 

and reduces the effect of lithium, which points to an 

identical binding site for lithium and magnesium on the enzyme. 

However, no relation with physiological function of platelets 

was made in either one of these publications. 

A SHORT INTRODUCTION TO THE RESEARCH ON THE ACTION OF 

LITHIUM ON PLATELET BIOCHEMISTRY 

From the literature about platelet biochemistry and the bio­

logical effects of lithium on cellular function as reviewed 

in chapter 1 and 2 the following mechanisms for the action 

of lithium were considered worthwhile for further research: 

1. stimulation of platelet release reaction, 

2. increase of cytoplasnatiс cal ciumconcentration , 

3. inhibition of platelet adenylate cyclase, 

4. stimulation of platelet prostaglandin biosynthesis. 

These aspects have been investigated one by one and the results 

of the investigations are described in the following chapters. 

Chapter 3. An improved method for preparing platelet-rich 

plasma. 

Thrombosis Research 11, 429-432, 1977. 

For a v a r i e t y of experiments i t was necessary t o use p l a t e l e t -

r i c h plasma, which was devoid of leukocytes and e r y t h r o c y t e s . 

An improved method f o r p r e p a r i n g p l a t e l e t - r i c h plasma was de­

v e l o p e d , based on g r a d i e n t c e n t r i f u g a t i on on a cushion of 

Fi c o l 1 - I s o p a q u e . This method was used i n most experiments 

except i n those i n which t o t a l cAMP had t o be determined be­

cause the Fi col 1 -Isopaque appeared to i n t e r f e r e w i t h the b i n ­

d i n g assay. 
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Chapter 4. The effect of lithium on platelet aggregation and 

platelet release reaction 

Thrombosis Research 11, 297-308, 1977. 

The uptake of lithium by platelets was measured in time and 

with different lithium concentrations. The dose-response ef­

fects and the influence of different incubation times of li­

thium on aggregation were investigated in relation to the 

intraplatelet lithium concentration. A pure stimulation of th 

release reaction as a possible explanation for the lithium 

effect, was excluded by the fact that lithium still enhanced 

the platelet aggregation when no release was measurable. 

Chapter 5. Observations' on ADP aggregation of lithium chlorid 

incubated platelets in a variety of mammalian species. 

Haemostasis 9, 276-287, 1980. 

The experiments on rabbit platelets as reported by Anderson 

and Foulks ( 7 9 ) , by whom an inhibitory effect of lithium on 

aggregation was shown, were extended by investigations on the 

effects of lithium on platelets of eight mammalian species. 

Lithium induces species-specific effects on the aggregation, 

ranging from stimulation to inhibition. 

The effects of extracellular calcium do not support the sug­

gestion of a competitive inhibition between lithium and cal­

cium. A direct interference with the intraplatelet calcium 

is not evident from the effects of lithium on total intrapla­

telet calcium and magnesium and on ionophore A23137 induced 

aggregation. 

Chapter 6. Lithium inhibits adenylate cyclase of human piate­

le ts. 

Submitted for publication to Thrombosis and Haemostasis 

The effect of lithium on the cAMP metabolism of human and rab 

bit platelets was investigated·. Lithium does not induce chan­

ges in total cAMP content of human platelets, neither 

during incubation with lithium only , nor during subsequent 
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ADP induced aggregation. However, the adenylate cyclase activi­

ty of human platelets in rest and during aggregation is inhi­

bited by lithium, especially after previous stimulation of the 

enzyme by prostacyclin. In rabbit platelets this lithium effect 

is not observed. The aggregation inhibiting effect of prostacy­

clin is counteracted by lithium in human platelets but not in 

rabbit platelets. This correlates well with the presence of a 

lithium effect on adenylate cyclase in human platelets and the 

absence of that effect in rabbit platelets. 

Chapter 7. Lithium stimulates thromboxane В„ formation in 

human platelets. 

Submitted for publication to Prostaglandins 

Since it is known that cAMP levels influence the platelet pros­

taglandin biosynthesis, the effect of lithium on PGE-, PGF. and 

thromboxane B« formation was measured. 

Lithium stimulates the thromboxane Bo synthesis in human plate­

lets when aggregation is induced with agents, which at least 

partially induce aggregation by endoperoxide thromboxane forma­

tion. In resting platelets or when aggregation is induced with 

low concentrations of ADP no effect is observed. The synthesis 

of PGE« and PGF» is equally increased during aggregation of 

lithium incubated platelets compared to controls. In rabbit pla­

telets no stimulation of lithium on thromboxane Bp» PGE- and 

PGF„ formation is observed. 
2a 

In conclusion: the mechanism of the aggregation promoting effect 

of lithium in human platelets is most likely an inhibition of 

adenylate cyclase, by which the platelet thromboxane synthesis 

is increased during aggregation induction with proper agents. 
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INTRODUCTION 

The c o n t a m i n a t i n g l e u c o c y t e s and e r y t h r o c y t e s can i n t e r f e r e 

w i t h d e t e r m i n a t i o n s of p l a t e l e t m e t a b o l i c a c t i v i t y and f u n c ­

t i o n a l i t y i n p l a t e l e t - r i c h plasma. For experiments concerning 

the e f f e c t of l i t h i u m on human p l a t e l e t s (1) an improved method 

was developed f o r the p r e p a r a t i o n of p l a t e l e t - r i c h plasma, poor 

i n l e u c o c y t e s and e r y t h r o c y t e s and a s s u r i n g high recovery of 

p l a t e l e t s . 

MATERIAL AND METHODS 

P r e p a r a t i o n of P l a t e l e t - R i c h Plasma 

Blood from h e a l t h y v o l u n t e e r s was c o l l e c t e d i n p o l y p r o p y l e n e 

tubes and a n t i c o a g u l a t e d w i t h 0.1 volume of 3.8 % t r i s o d i u m 

c i t r a t e d i h y d r a t e ( w / v ) . P l a t e l e t - R i c h Plasma (PRP) was prepared 

as usual by c e n t r i f u g a t i o n of the b lood (10 m i n , 250 G at room 

temperature) or by c e n t r i f u g a t i on on a F ico!1- Isopaque cushion 

( F i c o l l : МЫ 4 χ 10 , Sigma; Isopaque: Nyegaard) prepared accor­

ding t o Loos and Roos ( 2 ) . 

Two p a r t s of b lood were c a r e f u l l y l a y e r e d w i t h a p o l y p r o p y l e n e 

p i p e t t e on one p a r t of Fi col1- Isopaque ( d e n s i t y 1.070 g/ml at 

25 C, c o n t a i n i n g 0.38 % t r i s o d i u m c i t r a t e d i h y d r a t e and a t r a c e 

o f dextran blue (MW 2 χ 10 , Sigma). A f t e r c e n t r i f u g a t i on f o r 

20 min at 250 G at room t e m p e r a t u r e , PRP was pressed out of the 

tube by pumping a sucrose s o l u t i o n w i t h a d e n s i t y of 1.075 g/ml 

i n t o the F i c o l l - I s o p a q u e l a y e r . PRP was s t o r e d i n capped p o l y ­

propylene tubes at room temperature and used w i t h i n 120 m i n u t e s . 

The p l a t e l e t count i n PRP samples used f o r a g g r e g a t i o n e x p e r i -

ments was a d j u s t e d at 10 /ml w i t h p l a t e l e t - p o o r plasma prepared 

by c e n t r i f u g a t i o n o f c i t r a t e d blood at 4000 G f o r 10 m i n . 

Aggregat ion 

P l a t e l e t a g g r e g a t i o n was measured p h o t o m e t r i c a l l y (3) w i t h a 

V i t a t r o n UC 200 c o l o r i m e t e r ( a t 600 nm) equipped w i t h a 
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Kipp-recorder. Cuvettes were thermostated at 37 С and contained 

2 ml PRP that was stirred at 1100 rpm with a plastified stirring 

bar. The maximal change in extinction was expressed in units. 

Metabolic parameters 

The content of ATP, ADP and AMP in platelets and the lactate 

production were determined enzymatically (4). Oxygen consumption 

of platelets was determined at 37
0
C in a closed thermostated 

cuvette with a capacity of 4 ml, and equipped with a stirring 

bar and a Clarke-type ρΟ,,-electrode (Radiometer, E5046). 

RESULTS 

Q u a l i t y c o n t r o l of PRP prepared by two d i f f e r e n t methods 

PRP was i s o l a t e d from the same blood samples, by d i f f e r e n t i a l 

c e n t r i f u g a t i o n (normal-PRP) as w e l l as by c e n t r i f u g a t i o n on a 

Fi col 1-Isopaque cushion (Fi col1-PRP). Some f u n c t i o n a l and meta­

b o l i c p r o p e r t i e s of these PRP samples were compared and the 

data are summarized i n Table I . 

The recovery of p l a t e l e t s in F icol l -PRP was b e t t e r and c o n t a ­

m i n a t i o n w i t h e r y t h r o c y t e s and l e u c o c y t e s was s m a l l e r . When 

F icol l -PRP was i s o l a t e d very c a r e f u l l y , recovery of p l a t e l e t s 

amounted 80-96 %. 

Fi col 1 -Isopaque i t s e l f d i d not cause changes i n p l a t e l e t f u n c ­

t i o n a l i t y . The a g g r e g a t i o n response r e p r e s e n t i n g the f u n c t i o n a ­

l i t y , was sometimes even b e t t e r i n F i c o l l - P R P . Also the re lease 

p r o p e r t i e s of the p l a t e l e t s could s t i l l be found a f t e r F i c o l l -

PRP p r e p a r a t i o n , as can be seen from r e s u l t s p u b l i s h e d e l s e ­

where ( 1 ) . 

These r e s u l t s i n d i c a t e t h a t no harm was done t o f u n c t i o n a l p r o ­

p e r t i e s of the p l a t e l e t s . To get an idea of the b iochemical 

p r o p e r t i e s of the p l a t e l e t s a f t e r F icol l-PRP p r e p a r a t i o n , a few 

m e t a b o l i c parameters were a lso d e t e r m i n e d . As Table I suggests 

no s i g n i f i c a n t d i f f e r e n c e s i n m e t a b o l i c a c t i v i t y e x i s t . 
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TABLE I 

Comparison of normal TRP w i t h F icol l -PRP 

Parameter Normal PRP Ficoll-PRP 

Recovery of platelets 60 + 10 
(n = 15) 

Contaminating ς 
Erythrocytes/lO0 plate- 40 - 200 
lets (n = 6) 

Contami nati ng,-

leucocytes/10 platelets 10 - 100 
(n = 6) 

Aggregation (n = 8) 100 

ATP (n = 6) 4.3 + 0,2 

ADP (n = 4) 3.6 + 0.3 

AMP (n = 2) 0.44+ 0.04 

0 ? consumption (n = 4) 5 2 + 6 

Lactate production Exp. 1 128 

Exp. 2 214 

88 + 8 percent 

4 - 2 0 

< 4 

100 - 125 units 

4.3 + 0.2 pmol/lO11 p i . 

3.8 + 0.6 ymol/10 p i . 

0.50+ 0.08 ymol/10 p i . 

5 6 + 8 umol/lO1 1 pl/hr 

117 pmol/lO1 1 pl/hr 

230 umol/1011 pl/hr 

Aggregat ion of normal PRP t a k e n as 100 u n i t s ( 2 . 1 χ 10 m ADP) 

D a t a : mean + S.D. 

DISCUSSION 

Since e r y t h r o c y t e s and leucocytes may a f f e c t p l a t e l e t meta­

b o l i s m and a g g r e g a t i o n ( 5 , 6 ) , admixture of these blood c e l l s has 

t o be m i n i m a l ; and, i n order t o prevent s e l e c t i v e l o s s , maximal 

recovery of p l a t e l e t s has t o be ensured. Moreover, i t i s p r e f e ­

r a b l e t o keep the p l a t e l e t s i n t h e i r n a t u r a l environment ( 7 ) . 

The usual p l a t e l e t i s o l a t i o n methods, e . g . d i f f e r e n t i a l c e n t r i -

f u g a t i o n and gel f i 1 t r a t i o n , do not f u l f i l l these requirements 

( 6 ) . The p r e p a r a t i o n of p l a t e l e t - r i c h plasma on a Fi col 1-Isopa-
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que cushion, as described in this paper, largely overcomes these 

problems. Recovery of platelets amounts to about 90 %. Neutral 

polymers like Ficoll have no effect on platelet adhesiveni ss, 

ADP-induced aggregation and release in vitro ( 8 ) . These findings 

were confirmed in this study and extended to some metabolic 

parameters. 

The aggregabi1 ity of platelets prepared by this method at least 

equals that of platelets isolated by differential centrifugation, 

suggesting that no harm is done to platelet populations by this 

isolation method. 

Ficoll-PRP has been used extremely satisfactory throughout all 

experiments. 
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ABSTRACT 

Lithium increases in vivo and in vitro the aggregating potency 

of human platelets. One of the mechanisms presumed to under­

lie this aggregation-promoting effect, potentiation of ADP 

release, was investigated in relation to lithium uptake. It ap­

peared that lithium is not taken up by human platelets against 

a concentration gradient, and equilibrium is achieved in about 

120 min. When platelets are incubated for this fixed time with 

different lithium concentrations, the aggregation response is 

related to the intraplatelet lithium concentration. When plate­

lets are incubated during increasing periods with a fixed li­

thium concentration, no direct correlation exists between in­

traplatelet lithium concentration and extent of aggregation. Af­

ter blocking the release with aspirin, the stimulatory effect 

of lithium on platelet aggregation was still observed. 

Low ADP concentrations, causing no measurable release, still 

caused more marked aggregation of platelets preincubated with 

lithium chloride than of platelets incubated with sodium chlo­

ride. It is concluded that the increase in platelet aggregation 

which occurs after incubation of platelets with lithium, is not 

caused merely by potentiation of the release reaction. 
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INTRODUCTION 

Lithium increases the intensity of platelet aggregation and 

prolongs the disaggregation phase ( 1 ) . This increase is already 

observed at concentrations of 1 mmolar as attained in the blood 

during oral lithium treatment of patients with mental diseases 

( 2 , 3 , 4 ) . The promoting effect on the aggregation phenomenon is 

independent of the kind of stimulus which induces the aggrega­

tion. An essential prerequisite for potentiation of in vitro 

aggregation is preincubation of the platelets with lithium ( 1 , 5 ) . 

Without incubation, lithium even reduces the intensity of aggre­

gation ( 5 ) . The mechanism by which lithium influences cell beha­

viour is not known. Because of the therapeutic effect of lithium 

in mental diseases, changes in neuronal synapse transfer mecha­

nisms and in other target cell membrane functions have been 

suggested ( 6 , 7 ) . 

In this study the hypothesis was tested whether lithium can 

change the platelet aggregabi1 ity by influencing the platelet 

release reaction. The platelet release reaction was studied by 
14 

measurement of C-serotonin release (8) and related to platelet 

aggregation pattern and intrapl atelet lithium concentration. 

It is shown that the effect of lithium on platelet aggregation 

cannot be explained by potentiation of the platelet release 

reaction only. 

MATERIAL AND METHODS 

Preparation of platelet-rich plasma 

Blood from healthy volunteers was collected in polypropylene 

tubes and anti coagulated with 0.1 volume of 3.Θ % trisodium 

citrate dihydrate ( w / v ) . Platelet-Rich Plasma (PRP)was prepared 

as described elsewhere (9) by centri fugation on a Ficoll-

Isopaque cushion. The platelet count in PRP samples used for 
о 

a g g r e g a t i o n and re lease experiments was a d j u s t e d at 10 /ml w i t h 

p l a t e l e t - p o o r plasma prepared by c e n t r i f u g a t i o n of c i t r a t e d 

blood at 4000 G f o r 10 min. 
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Aggregation 

Platelet aggregation was measured photometrically (10) with a 

Vitatron UC200 colorimeter (at 600 nm) equipped with a Kipp 

recorder. Cuvettes were thermostated at 37 0C and contained 

2 ml PRP that was stirred at 1100 rpm with a plastified stir­

ring bar. 

To compensate for intra-indivi dual differences in aggregabi1 ity 

between PRP samples, the following procedure was used: from 

each PRP, two ml samples were incubated in duplicate with 10 mM 

lithium for 120 minutes. The maximal change in optical density 

during aggregation of these standard samples with a certain 

concentration of ADP, was defined as 100 units of aggregation. 

By comparison with this change in optical density, the aggre-

gatory responses of other samples of that PRP specimen could 

be expressed in units. 

•Determination of lithium concentration in platelets 

Samples of platelet-rich plasma were incubated during various 

periods with varying lithium chloride concentrations at 37 C. 

After incubation platelets were separated from plasma with 

the aid of modified cytocrit tubes ( 1 1 ) . Tubes with a length 

of 63 mm and an internal diameter of 7 mm were fused to haema-

tocrit capillaries with a length of 75 mm and an internal 

diameter of 0.4 mm. The capillary end was sealed and the ca­

pillary part was filled with Fi col 1 -Isopaque (density 1.045 

g/ml and containing 0.38 % trisodium citrate dihydrate). 0.2 

ml of the same Fi col 1-Isopaque, to which 1 mg EDTA/ml had been 

added, was pipetted into the tubes. EDTA was added to this 

Fi col 1 -Isopaque solution to prevent clumping of the platelets 

in the shoulder of the tubes during sedimentation. 

On the Fi col 1-Isopaque cushion, 2 ml PRP was carefully layered 

and the platelets were separated from the plasma by centrifu-

gation at 4000 G during 10 min. In control experiments with 

platelets preloaded with serotonin, it was observed that this 
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platelet isolation method did not cause any release. In the 

plasma layer that was sucked off, the platelet count was de­

termined. The capillaries containing the sedimented platelets 

were frozen immediately in dry-ice/acetone. The capillaries 

were cut off just above the platelet column and the packed 

platelets were resuspended in 3 ml double distilled water. 

After lysis by freezing and thawing the platelet fragments 

were sedimented by centri fugati on at 4000 G during 10 min. The 

lithium concentration in the supernatant was determined with 

an Eppendorf emission flame photometer. In the experiments 

with a plasma lithium concentration of 1 mM it appeared to be 

necessary to dissolve the platelets from at least 3 cytocrit 

tubes in 3 ml water. To exclude the influence of other ions 

in these lithium determinations (12), a blank of lysed platelets 

not incubated with lithium was used. In parallel experiments, 
3 
H-Inuline (750 mCi/mmole; 0.5 pCi/ml PRP)was added before cen-

trifugation and the amount of trapped plasma was calculated 

from the radioactivity in the platelet sediment. The lithium 
о 

concentration is expressed in nanomoles per 10 platelets. 
О 

Since it is shown that the fluid volume of 10 platelets 
о 

amounts to 1 yl (13,14) the concentration in nanomoles/10 

platelets corresponds with mmoles/1 cell water. 

Serotonin uptake 

Samples of 2 ml PRP were incubated for 60 and 120 minutes at 

37
0
C with identical concentrations of LiCl and NaCl. 5 μΐ 

14 

C-serotonin (55 mCi/mmole, 5 yCi/ml, Amersham) was then added 

and, at appropriate time intervals, 100 yl samples were taken 

and diluted in 0.5 ml ice-cold saline containing 0.4 % w/v 

EDTA (15). After centri fugation at 4
0
C (4000 G, 5 min) 400 yl 

samples of the supernatant were added to 9 ml Instagel 

(Packard) and radioactivity was determined with a Liquid Scin­

tillation Counter (LKB 81000). The percentage of radioactive 

serotonin taken up by the platelets was calculated from the 

radioactivity added to PRP. 
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S e r o t o n i n re lease 

PRP samples of 2.5 ml were i n c u b a t e d f o r 120 min at 37 С w i t h 

i d e n t i c a l c o n c e n t r a t i o n s of L i C l or NaCl and w i t h 10 pi C-

s e r o t o n i n . Then a g g r e g a t i o n was induced by a d d i t i o n of ADP and 
14 the C - s e r o t o n i n appear ing i n the plasma determined i n the way 

as d e s c r i b e d above. The amount of C - s e r o t o n i n r e l e a s e d from 

the p r e - l o a d e d p l a t e l e t s i n t o the plasma, was expressed as per-
14 centage of the i n i t i a l C - s e r o t o n i n c o n t e n t . 

RESULTS 

Uptake of lithium ions 

Preliminary experiments showed that lithium ions do not attach 

to the outside of human platelets, for no lithium was found in 

platelet pellets isolated immediately after addition of lithium 

•chloride to PRP. The 1 ithiumcontent in platelets increased with 

Ю-

щ 6 

120 150 
time (mm ) 

FIGURE 1 

Lithium concentration in platelets during incubation with 10 mM LiCl 

(mean + S.D., η = 6 ) . 

64 



time of incubation and a plateau level was reached in about 120 

minutes (Fig. 1 ) . From this figure it can be concluded also that 

at the plateau level the intraplatelet 1 ithiumconcentration equals 

that of the surrounding plasma. The lithium content of platelets 

after 120 minutes of incubation with different concentrations of 

lithium chloride is presented in Table I and appears to correlate 

fairly well with the plasma concentrations. 

TABLE I 

C o n c e n t r a t i o n of L i t h i u m i n Blood P l a t e l e t s 

1 mM Li Cl : 1.33 + 0.36 (η = 9) 

5 mM L i C l : 5.16 + 1.3В (η = 10) 

10 mM L i C l : 10.56 + 1.80 (η = 17) 

Ρ Λ 

Concentrations in nanomoles/lO platelets after 120 min incubation at 37 C, 

with the indicated plasma l i thium concentration (mean + S.D.). 

R e l a t i o n between i n t r a p ! a t e l e t l i t h i u m c o n c e n t r a t i o n and p o t e n ­

t i a t i o n of a g g r e g a t i o n 

To i n v e s t i g a t e the e x t e n t to which the p o t e n t i a t i n g e f f e c t of 

l i t h i u m on p l a t e l e t a g g r e g a t i o n depends on the i n t r a p l a t e l e t 

l i t h i u m c o n c e n t r a t i o n , a g g r e g a t i o n was induced w i t h low ADP 

c o n c e n t r a t i o n s (1-2 χ 10 M), which d i d not induce a secondary 

r e l e a s e . Aggregat ion was induced i n a l l PRP samples a f t e r s t o ­

rage f o r 120 min at 37 С At d i f f e r e n t t ime i n t e r v a l s before 

a g g r e g a t i o n i n d u c t i o n , 10 mM l i t h i u m c h l o r i d e was added i n o r d e r 

t o achieve d i f f e r e n t i n c u b a t i o n t i m e s . In c o n t r o l e x p e r i m e n t s , 

sodium c h l o r i d e i n s t e a d o f l i t h i u m c h l o r i d e was added i n o r d e r 

t o exclude a p o s s i b l e i n f l u e n c e o f h y p e r t o n i c i t y ( 1 6 ) . A d d i t i o n 

o f 10 mM NaCl appeared t o have no e f f e c t on p l a t e l e t a g g r e g a t i o n , 

n e i t h e r immediate ly nor i n t i m e . 
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FIGURE 2 

Figure 2a: Effect of platelet incubation with 10 mM LiCl on ADP-induced 

aggregation ( ) and intraplatelet l i thium concentration ( ) during 

Aggregation was induced with 1.6 χ 10" м ADP. 

Figure 2b. Effect of different intraplatelet l i thium concentrations after 

120 min incubation with the appropriate LiCl concentrations on ADP induced 

aggregation. Aggregation was induced with 1.6 χ 10" м ADP. 

No aggregation: 0 units aggregation; max. aggregation with LiCl: 100 units 

aggregation. 

In F i g . 2a i n t e n s i t y of a g g r e g a t i o n and i n t r a p l a t e l e t l i t h i u m 

c o n c e n t r a t i o n are p l o t t e d a g a i n s t i n c u b a t i o n t ime (means of 

3 e x p e r i m e n t s ) . A f t e r 15 min i n c u b a t i o n w i t h 10 mM of L i C l , about 
о 

3 nmoles lithium/10 platelets had been taken up, at which time 

the aggregation intensity was lower than in the control. This 

lowering of the aggregation intensity after short incubation 

with 10 mM LiCl was observed in each experiment. Addition of 

10 mM sodium or rubidium chloride did not reduce the aggregation 

intensity after the same period of incubation. After 30 min incu-
Q 

bation about 4 nmoles lithium/10 platelets had been taken up, 

at which time the intensity of aggregation was almost equal to 

that in the control. After longer incubation, the aggregation 

intensity increased considerably. 

In another type of experiment aggregation was induced in PRP 

samples incubated during 120 min with different concentrations 

of lithium chloride (Fig. 2 b ) . After this time of incubation 
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equilibrium is reached and even an intraplatelet lithium con-
o 

centration as low as 2 nmoles/10 platelets caused an increase 

in aggregation intensity which was not observed after incubation 

with the same concentration of sodium chloride. 

100-

S 60-

E 40 

FIGURE 3 
14 0 

Uptake of C-serotonin in blood platelets at 37 С after incubation with 
10 mM NaCl ( ) or LiCl ( ) 

Uptake of ^ - s e r o t o n i n 

14 The uptake of C - s e r o t o n i n by p l a t e l e t s a f t e r p r e i n c u b a t i o n 

w i t h e i t h e r 10 mM L i C l or NaCl was examined t o exclude a p o s s i ­

b l e e f f e c t of l i t h i u m s ince r e p o r t s concern ing t h i s process are 

c o n t r a d i c t o r y ( 1 7 , 1 8 ) . As F i g . 3 shows l i t h i u m e x e r t s no i n f l u ­

ence on the q u a n t i t y or v e l o c i t y of s e r o t o n i n uptake. 

E f f e c t of l i t h i u m on pr imary a g g r e g a t i o n 

From the preceding exper iments i t i s concluded t h a t p r e i n c u b a t i o n 

o f p l a t e l e t s w i t h l i t h i u m i n f l u e n c e s aggregabi1 i t y . A f t e r a s h o r t 

i n c u b a t i o n p e r i o d l i t h i u m reduces aggregat ion i n t e n s i t y , whereas 

a f t e r longer i n c u b a t i o n per iods aggregat ion i s i n t e n s i f i e d , which 
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might be due to potentiation of the platelet release reaction. 

In order to examine this release phenomenon, aggregability and 
14 

C - s e r o t o m n re lease of p l a t e l e t s i n c u b a t e d w i t h 10 mM NaCl 

or L iCl were s t u d i e d a f t e r b l o c k i n g the re lease r e a c t i o n by 

a s p i r i n . I t appeared t h a t a f t e r a s p i r i n i n g e s t i o n , no s e r o t o n i n 

re lease was measurable. 

TABLE I I 

E f f e c t of L i t h i u m on A s p i r i n - t r e a t e d P l a t e l e t s 

14 
Preincubation C-serotonin Units of 

with 10 mM release {% ) aggregation 

Before aspirin NaCl ' 3 + 1 39 + 12 

LiCl 55 + 7 100* 

After aspirin NaCl 0 3 4 + 1 2 

LiCl 0 7 0 + 1 5 

14 
Aggregation and release of C-serotom'n of PRP incubated with 10 mM NaCl 

or LiCl (120 min, 370C), before and after aspirin ingestion (1000 mg ASA, 

2 hrs before venepuncture). ADP concentration: 4.2 χ 10~ M. Al l data are 

the mean + S.D. of four experiments. 

*Defined as 100 units of aggregation. 

Nevertheless the lithium incubated platelets still showed an in­

creased aggregation compared to the control platelets incubated 

with sodium chloride (Table I I ) . 

In an other type of experiments, aggregation in PRP was induced 

with decreasing quantities of ADP until no serotonin release was 

measurable. Even at these low ADP concentrations, 1 ithiumincuba-

ted platelets showed more pronounced aggregation (Table I I I ) . 
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14 
C - s e r o t o n i n re lease d u r i n g ADP-induced a g g r e g a t i o n 

The e f f e c t o f l i t h i u m on pr imary a g g r e g a t i o n shows t h a t the 

a g g r e g a t i o n promot ing e f f e c t i s o b v i o u s l y not due t o re lease 

p o t e n t i a t i o n . However, strong aggregation may by i t s e l f induce 

a secondary release. This aspect was invest igated with ADP con­

centrations as used in the preceding sections (2-4 χ 10 M). 

Representative aggregation- and release patterns of PRP incubated 

with 10 mM NaCl or L i C l , are shown in Fig. 4. 

TABLE I I I 

Effect of Lithium on Primary Aggregation 

14r ADP cone. 

χ 10"6M 

4.2 

2.1 

1.0 

0.5 

preincubation 

with 10 mM 

NaCl 

LiCl 

NaCl 

LiCl 

NaCl 

LiCl 

NaCl 

LiCl 

units of 

aggregation 

53 

100 

37 

64 

n.d. 

n.d. 

1 

12 

45 

100 

33 

54 

20 

29 

3 

14 

C-serotonin 

release 

3 

59 

0 

6 

n.d. 

n.d. 

0 

0 

(X) 

1 

35 

0 

3 

0 

0 

0 

0 

14 
Aggregation and C-serotonin ralease induced by dif ferent ADP con­
centrations after incubation during 120 min at 370C with 10 mN NaCl 
or LiCl (two experiments). 

The a g g r e g a t i o n of NaCl- incubated PRP was r e v e r s i b l e and no 

re lease was observed. A f t e r i n c u b a t i o n w i t h L iCl the s e n s i t i ­

v i t y of the p l a t e l e t s to ADP was increased t o such an e x t e n t 

t h a t a g g r e g a t i o n was i r r e v e r s i b l e w i t h a concomitant s e r o t o n i n 

re lease of 80 %. The o b s e r v a t i o n t h a t a f t e r 1 min of a g g r e g a t i o n 
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a great difference in aggregation i n t e n s i t y occurs before relea­

se is observed in e i ther sample, suggests that the release in 

l i thium-incubated PRP results from the i n t e n s i f i e d aggregation. 

-100 
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-60 

- 4 0 c 

о 
α 
σι 
ш -20 Ь 
α 
о 

*δ 
- о ю 

с 
I I T " " ι— ι _ — ι — 

0 1 2 3 5 10 

time (mm ) 

FIGURE 4 

Time curve of ADP-induced aggregation and release after 120 min incubation 

with 10 mM LiCl or NaCl. ADP concentration: 4.2 χ 10 M. 

DISCUSSION 

Lithiium increases as well in vivo as in vitro the aggregating 

potency of platelets. A prerequisite for this action of li­

thium is preincubation of the platelets with this ion. After pre 

incubation, even concentrations of 1 and 2 mmolar have a stimu­

latory effect on the aggregabi1 ity. Without preincubation higher 

concentrations reduce the aggregation intensity ( 5 ) . For this 

reason intraplatelet lithium concentration was studied in rela­

tion to the aggregabi1 ity of the platelets. 

The platelet aggregation-promoting effect of lithium depends on 

concentration and incubation time. This lithium effect is not 

due to changes in osmolarity (16) or membrane potential since 
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the effects were not observed after incubation with the same 

amounts of NaCl or RbCl. It appears that the time of preincu­

bation is more important than the actual intraplatelet lithium 

concentration attained. After short incubation, lithium reduces 

the aggregation intensity even when the intraplatelet concentra­

tion already amounts to 3 mmolar. The mechanism of this aggre­

gation-reducing effect remains unsolved, but it is possibly an 

effect on the outside of the platelet membrane. 

More important are the effects after long-term incubation of 

platelets with lithium, since these resemble the in-vivo situa­

tion. After 90-120 min incubation at 37 0C, the intraplatelet 

lithium concentration equals the plasma concentration. Such an 

equilibrium has also been observed in muscle cells ( 1 9 ) . At 

equilibrium the aggregation response correlates well with intra-

platelet lithium concentration (Fig. 2b) and even low concentra­

tions of LiCl (1 mM) induce an increased aggregation response. 

These results suggest an action of lithium on biochemical pro­

cesses in the platelet. One of the possible mechanisms is poten­

tiation of the release of ADP, that runs parallel to the relea­

se of C-serotonin ( 8 ) . 

Our investigations do not support this hypothesis. If lithium 

acted solely on the release reaction, then no differences in 

primary aggregation, induced by low concentrations of ADP, would 

be observed between 1 ithiumincubated samples and controls. But 

1 ithiumincubated samples still aggregate better than controls. 

Also after blocking the release completely with aspirin lithium 

preincubation enhances the aggregation. From these observations 

it can be concluded that the increase of aggregation is not only 

caused by potentiation of the release reaction. So, other possi­

ble mechanisms of this lithium effect have to be considered like 

an inhibition of adenylcyclase (20),a replacement of intracellu­

lar calcium or magnesium (19),or changes in platelet prostaglan­

din- and thromboxane synthesis ( 2 1 ) . These aspects are at the 

moment under study. 
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ABSTRACT 

In c i t r a t e d p l a t e l e t - r i eh plasma of e i g h t mammalian species 

l i t h i u m produces species dependent e f f e c t s on ADP-aggregation 

ranging from s t i m u l a t i o n to i n h i b i t i o n . Rais ing the e x t r a ­

c e l l u l a r ca lc ium concen t ra t i on enhanced aggregat ion o f both 

l i t h i u m - s t i m u l a t e d and l i t h i u m - i n h i b i t e d p l a t e l e t s , i n d i c a t i n g 

t ha t the e x t r a c e l l u l a r calc ium concen t ra t i on has no d i r e c t 

r e l a t i o n to the e f f e c t of l i t h i u m on p l a t e l e t f u n c t i o n . L i t h i um 

d id not induce changes in the t o t a l i n t r a p l a t e l e t ca lc ium 

and magnesium con ten t s . Aggregat ion o f p l a t e l e t s w i t h ionophore 

A23187 showed the same s p e c i e s - s p e c i f i c l i t h i u m e f f e c t s as 

aggregat ion induced by ADP. The data suggest t h a t l i t h i u m 

does not exe r t i t s e f fec ts on p l a t e l e t s through i n t e r f e r e n c e 

w i t h i n t r a - or e x t r a c e l l u l a r ca lc ium c o n c e n t r a t i o n s . 
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INTRODUCTION 

Addition of lithium to platelet-rich plasma has an instantaneous 

inhibitory effect on the ADP-induced aggregation ( 1 , 7 , 9 ) . After 

preincubation with lithium this inhibitory effect is maintained 

in rabbit platelets ( 1 ) , but the aggregation of human platelets 

appears to be stimulated considerably ( 6 , 9 ) . This latter effect 

occurs even at very low 1 ithiumconcentrations of about 1 mfl (9) 

which are reached in patients under lithium therapy. 

The mechanism of action of lithium on platelets is obscure. 

We could show that lithium does not stimulate human platelet 

aggregation merely by potentiating the release reaction ( 9 ) . 

One of the proposed mechanisms of action in other biological 

systems is an interaction of lithium with calcium- and/or magne­

sium-dependent processes ( 2 , 1 3 ) . Calcium plays an essential 

role in platelet aggregation not only extracel 1ularly (4) but 

also intracel1ularly (12). Anderson and Foulks (1) reported 

that the inhibition of the ADP-induced aggregation of rabbit 

platelets by lithium is antagonized by increasing the calcium 

concentration of the citrated plasma in which they are suspen­

ded. In view of a possible relation between intracellular 

calcium and/or magnesium contents and the effect of lithium on 

platelets, we investigated the effect of lithium on the aggrega­

tion of a variety of mammalian platelets with different intra­

cellular calcium and magnesium contents. 

MATERIAL AND METHODS 

Preparation of Platelet-Rich Plasma (PRP) 

Human platelet-rich plasma was prepared as described previously 

(10) by centri fugati on of blood, anticoagulated with 1/10 volume 

of 3.8 % (w/v) trisodium citrate, on a Fi col 1-Isopaque cushion 

(density 1.070 g/ml) for 20 min at 250 G. 

Animal blood, anticoagulated in the same manner with trisodium 

citrate, was obtained from Rhesus monkey. New Zealand white 

rabbit, Labrador dog, cat, sheep, cow and pig. Since preparation 
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o f PRP by t h e F i c o l l m e t h o d r e s u l t e d i n i n s u f f i c i e n t s e p a r a t i o n 

o f t h e e r y t h r o c y t e s f r o m t h e p l a s m a ( e . g . i n cow and r a b b i t ) , 

a n i m a l PRP was p r e p a r e d by d i f f e r e n t i a l c e n t r i f u g a t i on ( 1 0 min 

a t 300 G ) . 

The p l a t e l e t c o u n t o f PRP was d e t e r m i n e d w i t h a C o u l t e r C o u n t e r 

model В a t a p p r o p r i a t e s e t t i n g s . For a g g r e g a t i o n e x p e r i m e n t s , 

PRP was d i l u t e d w i t h a u t o l o g o u s p l a t e l e t - p o o r p l a s m a ( p r e p a r e d 

by c e n t r i f u g a t i on o f b l o o d a t 4000 G f o r 10 m i n ) t o a f i n a l p l a -
Q 

t e l e t c o u n t o f 2-3 χ 10 / m l . 

A g g r e g a t i o n o f P l a t e l e t s 

A g g r e g a t i o n was m e a s u r e d e s s e n t i a l l y a c c o r d i n g t o B o r n ( 3 ) w i t h 

some m i n o r m o d i f i c a t i o n s ( 9 ) . PRP-samples o f 1 ml were i n c u ­

b a t e d f o r 9 0 - 1 2 0 min a t 37 0 C i n a l l e x p e r i m e n t s b e f o r e i n d u c i n g 

a g g r e g a t i o n . A g g r e g a t i o n was i n d u c e d e i t h e r by ADP ( B o e h r i n g e r ) 

d i s s o l v e d i n V e r o n a l b u f f e r o r by i o n o p h o r e A23187 (a g i f t f r o m 

E l i L i l l y С о т р . ) . The i o n o p h o r e was s t o r e d i n DMS0 a t a c o n c e n t ­

r a t i o n o f 1 m g / m l . J u s t b e f o r e use a sample was t h a w e d and 

d i l u t e d t o a p p r o p r i a t e c o n c e n t r a t i o n s . 

Ten g l samples o f l i t h i u m c h l o r i d e o r s o d i u m c h l o r i d e ( M e r c k ) 

w e r e added a t a p p r o p r i a t e t i m e i n t e r v a l s b e f o r e a g g r e g a t i o n 

i n d u c t i o n t o e s t a b l i s h a f i n a l c o n c e n t r a t i o n o f 10 mM. I n t h e 

e x p e r i m e n t s i n w h i c h t h e p lasma c a l c i u m c o n c e n t r a t i o n was 

c h a n g e d , C a C ^ ( M e r c k ) was added e i t h e r 90 min b e f o r e o r j u s t 

b e f o r e a g g r e g a t i o n i n d u c t i o n . Samples i n c u b a t e d f o r t h e same 

t i m e w i t h NaCl were used as c o n t r o l s . 

Measurement o f P l a t e l e t C a l c i u m and Magnesium C o n t e n t s 

I n o r d e r t o measure p l a t e l e t c a l c i u m and magnesium c o n t e n t i t 

i s n e c e s s a r y t o s e p a r a t e t h e p l a t e l e t s f r o m t h e p l a s m a . T h i s 

was a c c o m p l i s h e d by l a y e r i n g 2 ml o f PRP on 0 . 7 5 ml o f a 10 % 

( w / v ) s o l u t i o n o f F i c o l l 4 0 0 . 0 0 0 ( S i g m a ) i n i s o t o n i c c h o l i n e 

c h l o r i d e ( M e r c k ) ( d e n s i t y 1.045 g / m l ) i n a p o l y s t y r e n e t u b e 

and c e n t r i f u g a t i n g f o r 8 min a t 4000 G i n a s w i n g - o u t r o t o r 

( S o r v a l l HB.) a t room t e m p e r a t u r e . 
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The p l a t e l e t poor plasma was p. ipetted o f f and the tubes were 

f rozen immediate ly i n d r y - i c e / m e t h a n o l . The p l a t e l e t p e l l e t 

was cut o f f and resuspended i n 3 ml o f a 5 % (w/v) s o l u t i o n o f 

t r i c h l o r o a c e t i c ac id (Merck) w i t h 0 .1 % (w/v) La-CU (Merck) 

and l e f t ove rn igh t at 4 C. Then the f l o c c u l a t e d p r o t e i n s were 

spun down and the amount o f calc ium and magnesium i n the super­

natant was determined w i t h a Perk in-Elmer Atomic Absorp t ion 

spectrophotometer (model 403) . The amount o f t rapped plasma 

was measured i n p a r a l l e l experiments w i th H - I n u l i n (Amersham) 

using a LKB-Liquid S c i n t i l l a t i o n Counter 81000. In con t ro l 

exper iments i t was observed t h a t t h i s p l a t e l e t i s o l a t i o n method 

d id not cause any measurable se ro ton in re lease ( 9 ) . 

DOG 
3 IC^pKml 
7/jM ADP 

SHEEP 
Î . X ^ p l / m l 
17^MADP 

1 RABBIT 
/ З . Ю в р і ; т і 
1 7juM ADP 

^ PIG 
3. IC^pl/ml 
2 6 ^ M ADP 

FIGURE 1 

ADP-induced aggregation curves of mammalian platelets after 90 minutes 

of preincubation with 10 mM NaCl or LiCl. 
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Uptake of Lithium into Platelets 

The amount of lithium taken up by the mammalian platelets after 

90 min of incubation with 10 mM LiCl was measured as described 

previously ( 9 ) . In short: after incubation with 10 mM LiCl the 

platelets were separated from the plasma by centri fugati on 

through a Fi col 1 -Isopaque layer, and the amount of lithium in 

the pellet was determined with an Eppendorf emission flame pho­

tometer. 

RESULTS 

Effects of Lithium on ADP-induced Aggregation of Mammalian 

Platelets 

The effect of lithium on the ADP-induced aggregation of pla­

telets from different mammals after 90 min of incubation differs 

markedly. Typical examples of aggregation patterns are shown in 

Fig. 1. and were obtained in PRP samples from at least 5 speci­

mens of each species. Not only the rate of aggregation, but also 

the maximal aggregation is influenced by lithium. The effect on 

maximal aggregation ranges from an increase (in man and cat) 

through almost no effect (cow and monkey) to a decrease (dog, 

rabbit, pig and s h e e p ) . In order to detect these effects of 

lithium on the aggregabi1 ity, only submaximal ADP concentrations 

were used (Fig. 1 ) . The tendency of the effect of lithium is 

uniform in each species but the actual amount of inhibition or 

stimulation varied interindivi dually to about 10 %. 

The velocity of desag'gregati on was decreased in man, monkey, 

cat and rabbit, whereas the steepness of aggregation was only 

lowered in sheep. 

Time- and ADP-concentration Dependency of the Lithium Effect 

on Aggregation 

The effect of different incubation times with sodium and li­

thium from 0 min (aggregation-induction immediately after addi­

tion of NaCl or LiCl) up to 90 min, were investigated. 
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units aggregation 

D-

r l · 
Man 
2 0 10apl/ml 
3 5 μΜ ADP 

Monkey 
2 0 10Bpl/ml 
2 6 f j M ADP 

bS 

20 40 60 80 40 60 Θ0 
mm ot incubation 

FIGURE 2 

Time dependency of the effect of 10 mM NaCl or LiCl on the aggregation of 

marmralian platelets ( · : NaCl jo: L iCl) . 

The points of zero min of preincubation were obtained by inducing aggre­

gation inriediately after adding NaCl or LiCl. The aggregation of the samples 

incubated with NaCl for 90 minutes, was taken as 100 units of aggregation for 

each species. 
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In almost all kinds of platelets a short incubation from 0 up 

to 10 min with sodium and lithium induces an inhibition of the 

aggregation (Fig. 2 ) . 

After prolonged incubation periods, however, a great variety in 

aggregation patterns is observed. In human and cat platelets 

from 30 min of incubation on, lithium produces a pronounced in­

crease of aggregation. The intensity of aggregation ( 0 D
m !
i of 

ΓΠα X 

l i t h i u m i n c u b a t e d and c o n t r o l b o v i n e - p l a t e l e t s r e t u r n s t o the 

s t a r t i n g values a f t e r 60 min of l i t h i u m i n c u b a t i o n . 

The decreased a g g r e g a t i o n of p l a t e l e t s of dog and p i g j u s t 

a f t e r a d d i t i o n of sodium or l i t h i u m , improves a f t e r prolonged 

i n c u b a t i o n both w i t h l i t h i u m and sodium, a l though a g g r e g a t i o n 

of l i t h i u m incubated samples remains i m p a i r e d . 

i**ts oogregation 

FIGURE 3 

ADP dose-response curves for mammalian platelets after 90 min of preincu­

bation with 10 mM NaCl or LiCl ( · : NaCl;o: L iCl) . 

The maximal aggregation of NaCl incubated PRP was taken as 100 units of 

aggregation for each species. 
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In rabbit platelets the initial degree of lithium inhibition 

remains almost unchanged up to 90 min of preincubation. 

In sheep platelets lithium produces a distinct inhibition of 

the aggregation only after prolonged incubation times. 

The sensitiveness of platelets for ADP varies considerably 

between different species and individuals. This leads to sprea­

ding of the degree of stimulation or inhibition by lithium. To 

get a more precise picture of the effect of long-term lithium 

preincubation on aggregation, ADP dose-response curves were 

made of which Fig. 3 shows typical examples. The results again 

illustrate the variety in effects between the different species. 

In platelets from some dogs lithium produces an increased ag-
- 5 

gregation with high ADP concentrations (> 10 M ADP) but mostly 

the effect remains inhibitory. 

Lithium Effect and Extracellular Calcium 

The results above indicate that there are at least two diffe­

rent effects of lithium; an instantaneous inhibitory effect and 

a long-term effect, varying from inhibition to stimulation. 

Addition of calcium to PRP after lithium preincubation increa­

ses the aggregation in platelets which show decreased aggre­

gation (rabbit), as well as in platelets which show an increase 

of aggregabi1 ity (human). Table I shows that raising the cal­

cium concentration increases the aggregation of both lithium-

incubated samples and controls up to a maximum. This is obser­

ved when calcium was added 90 min before as well as just before 

aggregation induction. 

Lithium Effect and Intracellular Calcium 

Large differences exist in divalent cation contents in the pla­

telets of different species (Table I I ) . To study the interaction 

of lithium with calcium and magnesi urn,the content of these ions 

in various mammalian platelets was determined after incubation 

with either 10 mM NaCl or LiCl. Control experiments revealed 

that lithium was taken up into the platelets of the species 
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TABLE I 

E f f e c t o f changing the e x t r a c e l l u l a r calcium concentrat ion on the ADP-induced 

aggregation of c i t r a t e d PRP 

no a d d i t i o n 

3 mM CaCl- 0 m i n . i n c . 
90 m i n . i n c . 

5 mM CaCl- 0 m i n . i n c . 
90 m i n . i n c . 

10 

Human 

mM NaCl 

100* 

140 
167 

162 
158 

platelets 

10 mM Li CI 

126 

167 
167 

174 
170 

Rabbit 

10 mM NaCl 

100* 

136 
130 

platelets 

10 mM LiCl 

74 

115 
120 

147 143 
spontaneous aggregation 

PRP was incubated f o r 90 min w i t h 10 mM NaCl or L i C l . 

CaCl- was added e i t h e r a t the beginning of the incubat ion per iod (90 m i n ) , 

or a f t e r 90 min of incubat ion j u s t before aggregation i n d u c t i o n (0 m i n ) . 

Aggregation was induced w i t h 2.4 μΜ ADP f o r human p l a t e l e t s and w i t h 

0.7 μΜ ADP r a b b i t p l a t e l e t s . 

*The maximal aggregation of these samples was defined as 100 units of 

aggregation. 

tested (man, cat, dog, sheep) till the intracellular concentra­

tion was about equal to the extracellular lithium concentration. 

This is in accordance with the results in other cells (13). Due 

to the uptake of lithium, 3-10 nanomoles of calcium and/or 
Q 

magnesium might be expelled from 10 platelets depending on their 

volumes. In fact, incubation with 10 mM LiCl did not induce a 

loss of that magnitude (Table II). No relation at all was found 

between the effect of lithium on aggregation of the platelets 

and cal cium-(Fi g. 4a) or magnesium content (Fig. 4b) (e.g. cat 

and pig thrombocytes have almost the same calcium and magnesium 

contents but show different 1 ithiumeffects). 
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TABLE I I 

Total calcium and magnesium content of control and lithium-incubated 

platelets. 

MAN 

MONKEY 

COW 

CAT 

DOG 

SHEEP 

RABBIT 

PIG 

Control 

Li 

Control 

Li 

Control 

Li-

Control 

Li-

Control 

Li 

Control 

Li 

Control 

Li-

Control 

Li 

Calci um 

22.8 + 

23.0 + 

28.4 + 

30.4 + 

14.8 + 

13.5 + 

6.8 + 

5.5 + 

7.0 + 

6.1 + 

6.7 + 

6.9 + 

10.3 + 

10.8 + 

9.9 + 

9.7 + 

4.0 

4.4 

5.3 

5.6 

1.3 

1.3 

1.1 

0.2 

2.1 

2.1 

1.7 

2.2 

2.6 

4.3 

2.3 

3.9 

Magi 

8.8 

8.8 

9.4 

9.7 

11.2 

10.9 

.24.9 

25.9 

.13.6 

12.2 

8.0 

8.0 

13.2 

12.9 

27.4 

28.2 

lesi um 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

2.3 

2.7 

1.4 

1.1 

2.0 

2.6 

2.3 

2.3 

3.0 

2.1 

0.7 

1.4 

0.9 

0.3 

4.8 

7.0 

Number of 

experiments 

8 

8 

6 

3 

4 

2 

4 

2 

8 

4 

4 

4 

4 

4 

4 

2 

Platelets were incubated for 90 minutes with 10 mM NaCl (control) 

or L iCl. 

Thereafter the calcium and magnesium content was determined and 
о 

expressed in nanomols/lO platelets (mean + S.D.) 
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FIGURE 4 

Calcium and magnesium content of mammalian platelets in relation to the 

effect of lithiumpreincubation on ADP induced aggregation. 

PRP was incubated for 90 min with 10 mM LiCl pr ior to aggregation induction. 

Control aggregation of each species was taken as 100 units of aggregation. 

A Calcium content versus l ithium effect 

В Magnesium content versus l ithium e f f e c t . 

L i t h i u m could a lso i n t e r f e r e w i t h the i n t r a c e l l u l a r c a l c i u m 

s h i f t s which are supposed to be e s s e n t i a l f o r a g g r e g a t i o n i n ­

d u c t i o n ( 1 2 ) . Aggregat ion of p l a t e l e t s w i t h ionophore A23187 

( s p e c i f i c f o r d i v a l e n t c a t i o n s and e s p e c i a l l y f o r Ca ) bypasses 

these i n t r a c e l l u l a r steps by t r a n s p o r t i n g e x t r a c e l l u l a r c a l c i u m 

i n t o the p l a t e l e t s or t r a n s l o c a t i n g i n t r a c e l l u l a r c a l c i u m . When 

mammalian p l a t e l e t s are aggregated by adding i o n o p h o r e , the same 

p a t t e r n of l i t h i u m e f f e c t s i s produced as i n a g g r e g a t i n g p l a t e ­

l e t s w i t h ADP (Table I I I ) . 
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TABLE I I I 

Aggregation of mammalian platelets induced by ionophore A23187 after 

incubation with 10 mM LiCl for 90 minutes. 

Species Aggregat ion a f t e r pg ionophore / 

Li i n cuba t i on ml PRP 

MAN 

MONKEY 

COW 

CAT 

DOG 

SHEEP 

RABBIT 

PIG 

200 

96 

104 

157 

84 

56 

79 

51 

units 

units 

units 

units 

units 

units 

units 

units 

2 

3 

4 

4 

3 

4 

1.5 

5 

pg/fiii 

ug/ml 

ug/ml 

ug/ml 

ug/ml 

yg/ml 

ug/ml 

ug/ml 

Control aggregation of PRP incubated with 10 mM NaCl was taken as 

100 units of aggregation for each species. 

DISCUSSION 

P l a t e l e t s d i sp lay d i s t i n c t species dependent p r o p e r t i e s , not 

only i n q u a n t i t a t i v e but a lso i n q u a l i t a t i v e aspects ( 1 8 ) . I t 

t h e r e f o r e i s doub t fu l whether conc lus ions about drug mechanisms 

obta ined from animal p l a t e l e t s can be app l i ed to human p.late-

l e t s . 

This p o i n t o f view i s supported by our s t udy , s ince we showed 

t h a t the e f f e c t s o f l i t h i u m on the aggregat ion behaviour o f 

mammalian p l a t e l e t s d i f f e r markedly ( F i g . 1 ) . 

The observa t ion t h a t a d d i t i o n o f l i t h i u m as we l l as o f sodium 

can induce an instantaneous impairment o f p l a t e l e t aggregat ion 

( F i g . 2) p o i n t s t o an e x t r a c e l l u l a r e f f e c t . This e x t r a c e l l u l a r 

i n h i b i t i n g e f f e c t s low ly disappears upon prolonged i n c u b a t i o n . 

As shown i n F ig .2 i n p l a t e l e t s from man and cat the long- te rm 

e f f e c t o f l i t h i u m is a s t i m u l a t i o n o f agg rega t i on . In bovine 
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and in monkey platelets lithium has no effect and in sheep, 

dog, rabbit and pig platelets it causes decrease,of the aggre­

gation. 

The effects of lithium which only occur after incubation must 

be the result of intracellular events. 

The long-term aggregation inhibition of rabbit platelets by 

lithium is counteracted by the addition of calcium (Table I ) . 

The same was observed by Anderson and Foulks ( 1 ) , who supposed 

that lithium acts as a competitive inhibitor of calcium. This 

hypothesis, however, is not supported by results on human pla­

telets, where calcium enhances the aggregation of lithium sti­

mulated platelets (Table I ) . 

Moreover, it is shown ('Fig. 4) that the effect of lithium does 

not correlate with the calcium and/or magnesium content of 

platelets from different mammals. The large interspecies diffe­

rences in intraplatelet calcium- and magnesiumcontents which we 

found are in agreement with published data (8,11,17,19,20). 

Although the total intraplatelet calcium concentration is not 

influenced by lithium, an interference with the process of the 

liberation of calcium into the cytoplasm, the area where cal­

cium plays its role, is still possible. 

With the present available techniques it is not possible to 

measure intracellular shifts of calcium by lithium. For this 

reason an indirect approach for investigating an intracellular 

interaction of lithium and calcium was used. 

The ionophore A23187 induces membrane leakage for divalent 

cations especially calcium ( 1 5 ) . This results in a rapid rise 

of the cytoplasmic cal ci uniconcentrati on either by transport of 

extracellular calcium into the cell or by liberation of intra-

cellularly stored calcium. This artificially induced rise in 

cytoplasmic cal ciumconcentration induces platelet aggregation. 

The effects of lithium on ionophore-induced aggregation are 

qualitatively the same as those on ADP-induced aggregation 

(Table I I I ) . This suggests that lithium does not interfere with 

the normal process of intracellular calcium liberation. 
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Also a displacement of calcium from storage sites during the 

incubation with lithium is not likely. Such a molecular displa­

cement may be expected to act in the same way in platelets from 

all animals tested due to an increased cytoplasmic calciumcon-

centration. The divergency of the effects of lithium on aggre­

gation of platelets of different species makes it unlikely that 

the action of lithium is restricted to a shift of calcium from 

intracellular stores. 

Investigations from Frausto da Silva and Williams (5) suggest 

that lithium ions can interfere with calcium- or magnesium-

dependent enzyme systems. The most probable site of action of 

lithium in platelets might be an inhibition of adenylate cycla­

se as shown for the stimulated enzyme (14,21). Another site of 

action may be an interference with prostaglandin synthesis 

e.g. with phospholi pase А^ which is calcium dependent ( 1 6 ) . 

The effect of lithium on both enzyme systems deserves further 

study. 
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ABSTRACT 

The ADP-induced aggregation of human platelets is markedly 

increased after preincubation with 1 ithiumchloride, whereas 

lithium has the opposite effect on rabbit platelets. Since this 

phenomenon might be related to cAMP metabolism, the influence 

of lithium on total cAMP content and adenylate cyclase activity 

was investigated. 

Lithium does not significantly change the total cAMP content of 

human platelets neither during incubation nor during ADP-induced 

aggregation. 

Basal adenylate cyclase activity, however, is slightly inhibi­

ted by lithium in human platelets. The inhibition of adenylate 

cyclase induced by ADP 'appears to be enhanced, the stimulation 

of adenylate cyclase induced by prostacyclin appears to be 

counteracted by lithium. 

In rabbit platelets the prostacyclin stimulated adenylate 

cyclase activity is not affected by lithium. 

These data suggest that a correlation exists between the in­

fluence of lithium on the aggregation of human and rabbit pla­

telets and the sensitivity of their adenylate cyclases for this 

i on. 
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INTRODUCTION 

Platelet aggregation induced by adenosine diphosphate (ADP) 

is markedly changed after preincubation of platelets with milli-

molar concentrations of lithium ions. The aggregation magnitude 

is increased in human platelets and decreased in rabbit plate­

lets (1- 3 ) . 

The mechanisms of these effects of lithium are not clear. Al­

though a slight increase of the release reaction occurs, we 

could show that this phenomenon cannot explain the increase of 

aggregation in human platelets ( 2 ) . 

Anderson and Foulks (4) suggested a competition between lithium 

and calcium as an explanation for the aggregation inhibition 

observed in rabbit platelets. 

We showed that this hypothesis does not hold since the effects 

of lithium on the aggregation of various mammalian platelets 

are independent from their different calcium contents and since 

calcium has the same effect on the aggregation of lithium inhi­

bited and lithium stimulated platelets (3). 

It has been shown that lithium inhibits adenylate cyclase in 

different cell types, particularly after stimulation of the 

enzyme ( 5 ) . In human platelets the basal enzyme activity is re­

ported to be unaffected by lithium, whereas stimulated adeny­

late cyclase appeared to be inhibited (6, 7 ) . A relation between 

platelet function and the effect of lithium on adenylate cyclase 

activity is not yet demonstrated. 

In general, stimulation of adenylate cyclase and/or inhibition 

of phosphodiesterase are accompanied by impaired platelet func­

tion (8, 9 ) . Aggregating agents, e.g. ADP, have no effect on 

platelet phosphodiesterase ( 1 0 ) , whereas the reported effects 

on adenylate cyclase are contradictory (10-17). 

Since the total cAMP content of platelets is measured by sub­

tracting the amount in platelet-poor-plasma from that found in 

platelet-rich-plasma, the reliability of this method is limited. 

Moreover, with this method no discrimination is made between 

metabolic and storage pool cAMP. In order to study the effect 

of lithium on cAMP synthesis, the conversion of labeled ATP 

into cAMP by adenylate cyclase was determined with and without 
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p r o s t a c y c l i n s t i m u l a t i o n (18) of the enzyme. 

MATERIAL AND METHODS 

Prepara t ion o f p i a t e l e t - r i c h - p l a s m a 

Human PRP was prepared as descr ibed p r e v i o u s l y (19) by c e n t r i -

f u g a t i o n (20 min at 250 G) of c i t r a t e d blood (1/10 volume of 

3.8 % (w/v) t r i s o d i u m - c i t r a t e ) on a F ico l1 - I sopaque cushion 

( s p e c i f i c dens i t y 1.070 g / m l ) . 

In cases where the cAMP content had to be de te rmined , PRP was 

obta ined by d i f f e r e n t i a l c e n t r i f u g a t i o n (10 n i n , 250 g ) , s ince 

F i c o l l appeared to i n t e r f e r e w i th the cAMP b ind ing p r o t e i n . 

Rabbit PRP was prepared by d i f f e r e n t i a l c e n t r i f u g a t i o n i n a l l 

cases, s ince the wi thdrawal of e r y t h r o c y t e s from PRP by the 

Fi co l1- Isopaque method appeared to be i n s u f f i c i e n t . 

P l a te l e t - poo r -p l asma (PPP) was prepared by c e n t r i f u g a t i o n o f 

c i t r a t e d blood at 4000 G f o r 10 min. 

Determinat ion of the c y c l i c AMP content of p l a t e l e t s 

Cyc l i c AMP was measured w i th a p r o t e i n b i nd ing method (20) 

(Boehr inger k i t ) . Samples o f 1 ml PRP were incubated f o r 90 min 

w i t h 10 mM NaCl or L iC l and then e i t h e r d e p r o t e i n i z e d immedia­

t e l y or a f t e r 1 min of aggregat ion w i t h 3 yM ADP. Dep ro te i n i za -

t i o n was achieved by b o i l i n g f o r 3 min a f t e r a d d i t i o n o f 0.5 

ml sodium acetate b u f f e r ( 0 . 1 t i , pH 4.0) i n c l u d i n g 6 mM EDTA. 

A f t e r c e n t r i f u g a t i on the cAMP content i n the supernatant was 

determined and expressed in pmol/ml PRP. In p a r a l l e l experiments 

the cAMP content of PPP samples was determined. The d i f f e r e n c e 

between PRP and PPP r e f l e c t s the cAMP content o f the p l a t e l e t s . 

In c o n t r o l experiments no e f f e c t o f L iC l or NaCl on the p r o t e i n 

b ind ing method was observed up to 10 mM endconcen t ra t i on . 

14 Determinat ion o f C-adenine uptake by p l a t e l e t s 

PRP samples o f 1.5 ml were incubated at 370C f o r 90 min w i t h 

r e s p e c t i v e l y 10 mM NaCl or L iC l a f t e r a d d i t i o n of 0.15 uCi 

(U- C)-adenine (spec, a c t i v i t y 286 mCi/mmol; Amersham). As 

i n d i c a t e d under R e s u l t s , 2 mM papaveri ne,an i n h i b i t o r o f phos­

phodiesterase ac t i v i t y>was added i n some exper iments 5 min 
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b e f o r e t e r m i n a t i n g the i n c u b a t i o n . From each sample 0.5 ml was 

c e n t r i f u g a t e d (1 min at maximum speed i n an Eppendorf t a b l e cen­

t r i f u g e ) and the r a d i o a c t i v i t y was counted i n the s u p e r n a t a n t . 
14 

From these data C-adenine uptake was c a l c u l a t e d . 

14 14 

Conversion of C-adenine i n t o C-ATP 

To the remaining PRP samples 0.2 ml 3N HC10. c o n t a i n i n g 2 mM 

unlabeled ATP was added. The tubes were l e f t on i c e f o r 15 min 

and were c e n t r i f u g a t e d at 4000 G f o r 10 min. From each sample 

10 μΐ of the s u p e r n a t a n t was s p o t t e d on E c t e o l a - c e l 1 u l o s e t h i n 

l a y e r p l a t e s (Marchery Nagel , Polygram Cel 300 E c t e o l a ) and 

developed w i t h 0.1 N HCl. The ATP spot was scraped o f f and the 

r a d i o a c t i v i t y d e t e r m i n e d . From these data and the adenine-uptake 

the percentage convers ion of adenine i n t o ATP was c a l c u l a t e d . 

D e t e r m i n a t i o n of adenylate cyclase a c t i v i t y of p l a t e l e t s 

The adenylate cyclase a c t i v i t y was determined as d e s c r i b e d by 

Haslam ( 1 6 ) . 1 . 2 5 ml samples of PRP were incubated at 370C f o r 

90-120 min w i t h 10 mM NaCl or L iCl and w i t h 0.5 yCi ( U - 1 4 C ) -
14 adenine (spec, a c t i v i t y 286 mCi/mmol, Amersham). The (U- C)-

adenine was p u r i f i e d b e f o r e use by chromatography as recommen­

ded ( 1 6 ) . 2 mM papaverine and/or a g g r e g a t i n g agents were added 

as ¿escribed under Resu l t s . From each PRP sample 0.25 ml was taken 
14 to determine the uptake of C-adenine in the way as descr ibed 

b e f o r e . 

Cyc l i c AMP was i s o l a t e d from the remaining 1 ml of PRP essen­

t i a l l y as descr ibed by Haslam and Tay lo r ( 2 1 ) . The samples 

were depro te i ni zed by adding 0.2 ml of i c e c o l d 3 N HC10., i n -
4 3 

e lud ing 10 dpm H-cAMP to determine the recovery and 2 mM co ld 

cAMP. A f t e r c e n t r i f u g a t i on the supernatants were p u r i f i e d on 

columns of 1 ml Dowex AG50-WX8 (H fo rm . Serva) by e l u t i o n w i t h 

HpO. The 3rd to 7th ml were c o l l e c t e d , l y o p h i l i z e d and the 

residues d i sso l ved i n 20 μΐ HpO. These samples were s u b j e c t e d 

t o two-dimensional t h i n l a y e r chromatography (22) on c e l l u l o s e 

sheets (Machery Nagel , MN 3 0 0 ) , in the f i r s t d i r e c t i o n w i t h 

b u t a n - 1 - o l - a c e t o n e - a c e t i c acid-14.8M H H 3 - w a t e r ( 9 0 : 3 0 : 2 0 : 1 : 6 0 

by volume) and i n the second w i t h i s o b u t y r i c a c i d - l M NH--0.1M 

EDTA (125:75:2 by volume). The cAMP spots were cut o u t , e x t r a c -
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ted with HgO and the radioactivity counted in a LKB 81000 

Liquid Scintillation Counter, equipped for C/ H double labe­

ling. 

Determination of the effect of prostacyclin ( P G I Q ) on cAMP 

content of platelets 

The effect of PGI- on the cAMP content of platelets was deter­

mined according to Best et al. (22). 2 ml of buffer (15 mM Tris-

HC1 pH 7.4, 120 mM NaCl , 4 mM KCl, 1.6 mM H g S 0
4
, 2 mM N a H

2
P 0

4
, 

10 mM glucose and 0.2 % BSA) and papaverine (2 mM endconcentra-

tion) were added to 4.5 ml of PRP which was previously incuba­

ted for 90 min at 37
0
C with 10 mM NaCl or LiCl. The reaction 

mixture also included 40 μΜ arachidonic acid and fresh rabbit 

aorta rings (30 mg/ml) prepared according to Moneada et al. 

(10). Samples of 0.5 ml were taken at appropriate time inter­

vals, added to 0.25 ml NaAC-buffer (0.1 M, pH 4,0 including 

б mM EDTA) and boiled for 3 min. After cooling on ice and cen-

trifugation the cAMP content of the supernatant was determined. 

Measurement of the effect of prostacyclin on aggregation 

The effect of prostacyclin was determined according to Bunting 

et al. (24). Rabbit aorta rings in different concentrations 

were incubated for indicated periods at 37
0
C in 1.5 ml 50 mM 

Tris-HCl (pH 7.5) containing 60 uM arachidonic acid. Of this 

incubation mixture 20 yl samples were added to 0.6 ml of PRP 

and incubated for another 3 min at 37 С before inducing aggre-

çation. Aggregation was induced with 2 μΜ ADP in human PRP and 

0-7 μΜ ADP in rabbit PRP and performed in duplicate. 

The aggregation inhibition percentages were calculated from 

the decrease in maximal aggregation in comparison with controls 

incubated with 20 μΐ Tris-HCl. 

RESULTS 

The effect of lithium on total cAMP content 

The effect of lithium on total cAMP content of human platelets 

was investigated before and during aggregation. The difference 
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TABLE I 

Lack of effect of lithium on cyclic AMP content of human 

platelets 

Exp, 

Exp. 

Exp. 

Exp. 

. 1 

PRP 

. 2 

PRP 

. 3 

PRP 

. 4 

PRP 

+ 

+ 

+ 

+ 

PPP 

PRP 

ADP 

PPP 

PRP 

ADP 

PPP 

PRP 

ADP 

PPP 

PRP 

ADP 

no ai 

19.7 

27.5 

28.0 

29.9 

37.3 

36.2 

20.0 

24.9 

24.9 

N.D. 

ddi 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

¡ ti on 

1.4 

4.0 

2.4 

3.0 

5.1 

4.1 

1.4 

1.6 

2.0 

10 ml 

19.6 

25.1 

26.0 

29.7 

34.6 

34.0 

20.4 

24.7 

25.6 

9.4 

15.7 

15.1 

U 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

JaCl 

1.5 

2.9 

4.0 

5.4 

1.8 

4.8 

1.6 

3.2 

1.2 

0.5 

1.0 

2.2 

10 ml 

18.0 

24.7 

26.5 

29.1 

36.6 

34.0 

19.5 

26.2 

26.1 

10.0 

15.7 

15.1 

«1 LiCl 

+ 1.1 

+ 0.4 

+ 1.9 

+ 1.3 

+ 2.9 

+ 4.2 

± 1 · 7 

+ 2.0 

+ 3.3 

+ 0.9 

+ 0.1 

+ 0.8 

1 ml Samples of PPP and PRP were incubated at 370C for 90 min with 10 mM 

NaCl, 10 mM LiCl or without addit ion. Part of the samples were aggregated 

with ADP (2-5 yM) for 1 min. 

Al l samples were deproteinised and assayed for cAMP as described in Methods. 

Each figure is the mean + S.D. from at least two samples, each assayed in 

duplicate for cAMP ( in pmol/ml PRP or PPP). 

between the cAMP content of PRP and t h a t of PPP r e f l e c t s the 

cAMP content of the p l a t e l e t s . As is shown i n Table I the cAMP 

content o f PPP amounted to approx imate ly 70 % of the t o t a l cAMP 

i n PRP. No changes were observed in the cAMP content o f p l a t e ­

l e t s incubated w i t h l i t h i u m compared to the sodium incubated 

samples. Also aggregat ion by ADP does not induce de tec tab le 

changes i n cAMP con ten t . 
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The e f f e c t o f l i t h i u m on adenylate cyc lase a c t i v i t y 

The method we used f o r measuring the adenylate cyclase a c t i ­

v i t y i s an i n d i r e c t two-step r e a c t i o n : 1) l a b e l i n g of ATP 

from C-adenine and 2) convers ion of the labe led ATP i n t o 
14 

C-cAMP. A prerequisite for this method is that the specific 

radioactivity of platelet ATP is not affected by lithium. 

Therefore we first studied the conversion of labeled adenine 

into ATP in controls and in samples with lithium chloride 
14 

added. The total uptake of C-adenine by sodium and lithium 
incubated samples was equal (approx. 80 % ) . Platelet samples 

incubated with sodium and lithium convert the adenine into 

ATP equally (Table I I ) . Also papaverine, a phosphodiesterase 

inhibitor used in the determination of adenylate cyclase 

activity, had no effect on the conversion of labeled adenine 

into ATP. Since lithium has also no effect on the total ATP 
14 

content of platelets ( 2 5 ) , differences in C-cAMP, if detec­
ted, cannot be explained by differences in labeled precursor 
ATP. 

The basal conversion percentage of ATP into cAMP in different 

PRP samples usually amounted from 0.03 to 0.05 %. In normal 

platelets lithium nor ADP induced a change in the amount of 
14 14 

C-cAMP present after incubation with C-adenine. 
In the presence of a phosphodiesterase inhibitor the amount 

14 

of C-cAMP rises linearly for at least 1 minute and there­

fore is a real parameter for the basal adenylate cyclase ac­

tivity (16). As is shown in Table III the basal adenylate cyclase 

activity is inhibited for 3-17 % by lithium compared with the 

sodium incubated controls. The inhibition of adenylate cyclase 

during ADP induced aggregation of lithium incubated samples 

is even more pronounced. The lithium incubated samples showed 

11 to 65 % inhibition, the control samples 4-47 % inhibition 

of adenylate cyclase. 

Effect of prostacyclin on total cAMP content and aggregation 

of human platelets 

The inhibitory action of lithium on human platelet adenylate 

cyclase is much more obvious when the enzyme is stimulated 
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TABLE I I 
14 Π — 

Conversion of C-Adenine i n t o C-ATP by human p l a t e l e t s 

10 mM NaCl : 73.7 + 7.3 

10 mM NaCl + 2 mM p a p a v e r i n e : 77.5 + 6.7 

10 mM L i C l : 7 9 . 7 + 5 . 7 

10 mM L i C l + 2 mM p a p a v e r i n e : 80.1 + 3.6 

14 
Platelets were incubated with 0.15 pCi C-adenine/ml PRP. 

14 
Uptake and conversion into C-ATP were measured as described under Methods. 

Conversion is expressed as percentage of the adenine taken up (mean + 

S.D.: η = 4). 

TABLE III 

Effect of lithium on adenylate cyclase activity of human plate­

lets. 

Percentage inhibition 

Exp. 1 

Exp. 2 

Exp. 3 

Exp. 4 

Exp. 5 

10 mM Li 

: 11 % 

: 3 % 

: 10 % 

: 1 7 % 

: 6 % 

10 mM Na + ADP 

35 % 

5 % 

4 % 

47.5 % 

12 t 

10 mM Li 

41 % 

11 % 

20 % 

65 % 

18 % 

PRP samples were incubated with 10 mM NaCl or LiCl for 90-120 minutes 

at 370C. C-Adenine was included too in this incubation. Adenylate cyclase 

a c t i v i t y was determined as described under Methods as the difference in con-
14 14 

version of C-Adenine into C-cAMP in PRP samples, before and after 

incubation with 2 mM papaverine for 1 min. 

In some samples ADP was also added for this period. The percent inh ib i t ion 

of adenylate cyclase was calculated from the adenylate cyclase a c t i v i t y 

in samples incubated with 10 mM NaCl as control (0 % i n h i b i t i o n ) . 
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FIGURE 1 

Effect of prostacyclin on cyclic AMP content of human platelets. 

PRP was incubated with 10 mM NaCl or LiCl for 90 min. Increase of cAMP 

content by prostacyclin production in situ was measured as described under 

Methods and plotted against the time of incubation with aorta rings. 

• : PRP - aorta 

О : PPP + aorta 

• : PPP + 10 mM NaCl + aorta 

О : PRP + 10 mM LiCl + aorta 
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by prostacyclin. As is demonstrated in Fig. 1 the rise in 

cAMP content in lithium incubated samples is slower and the 

maximal cAMP content much lower than in controls. Control 

experiments with PPP and PRP without prostacyclin show that 

the cAMP content remains fairly constant during the incuba­

tion time when respectively no platelets, or no prostacyclin 

is present. The stimulation of platelet adenylate cyclase by 

prostacyclin causes an inhibition of the ADP induced aggre­

gation in human platelets (Table I V ) . 

TABLE IV 

I n h i b i t i o n by p r o s t a c y c l i n of ADP-induced a g g r e g a t i o n of human 

p l a t e l e t s 

I n h i b i t i o n o f a g g r e g a t i o n ( p e r e . ) 

I n c u b a t i o n t imes of a o r t a r i n g s 

3 m i n 6 m i η 9 m i n 

10 mg aorta 

20 mg aorta 

50 mg aorta 

Na 

Li 

Na 

Li 

Na 

Li 

20 % 

10 % 

30 % 

30 % 

95 % 

60 % 

35 % 

-20 %* 

75 % 

10 % 

95 % 

60 % 

N.D. 

N.D. 

65 % 

0 % 

93 % 

58 % 

PRP samples of 0.6 ml were preincubated for 90 min with 10 mM NaCl or 

Li CI at З ? ^ . 

Rabbit aorta rings were incubated at 37 С for indicated periods in 1.5 

ml 50 mM Tris-HCL pH 7.4. 20 μΐ of this incubation mixture was added to 

the PRP and l e f t at 37 С for 3 min before inducing aggregation with ADP 

(2μΜ). The decrease in O.D. max. in comparison with controls (Na - and 

L i - incubated samples without prostacyclin) was taken as percentage 

i n h i b i t i o n . 
* 
Stimulation of aggregation. 

The extent of inhibition correlates with the amount of aorta 

used and with the incubation time in the buffer. 

In human platelets the inhibition of aggregation is antagonized 

by preincubation with lithium (Table I V ) . The amount of inhi-
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bition (20 mg aorta/incubation mixture; 3 min of incubation) 

ranged in 4 experiments from 25 to 35 % in lithium incubated 

samples and in controls from 70 to 80 %. 

25 30 
t (mm ) 

FIGURE 2 
Effect of prostacyclin on cyclic AMP content of rabbit platelets 
For explanation see legend to Figure 1. 

E f f e c t o f p r o s t a c y c l i n on t o t a l cAMP content and aggregat ion o f 

r a b b i t p l a t e l e t s 

Because l i t h i u m does not s t i m u l a t e but i n h i b i t s the aggregat ion 

o f r a b b i t p l a t e l e t s the e f f e c t o f l i t h i u m on cAMP metabol ism 

of r a b b i t p l a t e l e t s was also determined. Since basal adenylate 

cyclase a c t i v i t y i s very low, the e f f e c t o f l i t h i u m on adeny­

l a t e cyclase a c t i v i t y could only be measured a f t e r s t i m u l a t i o n 

w i t h p r o s t a c y c l i n . As shown in F i g . 2 the i n f l u e n c e of l i t h i u m 
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on the stimulated adenylate cyclase activity in rabbit plate­

lets is completely different compared to that on human plate­

lets. Lithium and sodium incubated samples show an almost 

equal increase in cAMP content, indicating that lithium in this 

concentration does not affect the stimulated adenylate cyclase 

of rabbit platelets. The stimulation of platelet adenylate cy­

clase by prostacyclin causes an inhibition of rabbit platelet 

aggregation (Table V ) . However, in contrast to human platelets, 

lithium does not antagonize the aggregation inhibition (Table 

V ) . The amount of inhibition in rabbit platelets ranges from 

33 to 50 % for both lithium incubated samples and controls in 

4 experiments (20 mg aorta/incubation mixture, 3 min of incu­

bati o n ) . 

TABLE V 

Inhibition by prostacyclin of ADP-induced aggregation of 

rabbit platelets 

Incubation times of aorta rings 

1 mi π 3 min 

10 mg aorta 

20 mg aorta 

50 mg aorta 

Na 

Li 

Na 

Li 

Na 

Li 

17 % 

15 % 

26 % 

29 % 

62 % 

52 % 

38 % 

33 % 

41 % 

36 % 

50 % 

47 % 

Procedure was the same as described in Table IV except that aggregation 

was induced with 0.7 μΜ ADP. 

DISCUSSION 

C y c l i c AMP i s probably s t o r e d i n the p l a t e l e t i n var ious com­

partments of which o n l y a small p a r t plays a r e g u l a t o r y r o l e 

(26). I t i s t h e r e f o r e not s u r p r i s i n g t h a t l i t h i u m does not 

change s i g n i f i c a n t l y the t o t a l cAMP c o n t e n t o f human p l a t e l e t s 

(Table I ) . The o b s e r v a t i o n t h a t ADP-induced a g g r e g a t i o n d i d 

not decrease the cAMP c o n t e n t of p l a t e l e t s (Table I ) i s i n 
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c o n t r a s t w i t h the r e s u l t s of Salzman ( 1 3 - 1 5 ) , but i s i n agree­

ment w i t h the data of o ther i n v e s t i g a t o r s (10 -12 , 16) . 

Basal adenylate cyc lase a c t i v i t y i n human p l a t e l e t s was de te r -
14 14 

mined from the convers ion of (U- C)-adenine v ia C-ATP i n t o 
14 

C-cAMP, as well in the absence as in the presence of papave­

rine, an inhibitor of phosphodiesterase. The very low basal 

conversion of ATP into cAMP in the absence of papaverine (0,03-

0,05 %) and the lack of effect of ADP on this basal conversion, 

are in agreement with the findings of Haslam ( 1 6 ) . Preincuba­

tion with lithium does not affect this basal conversion of ATP 

into cAMP. 

When platelet phosphodiesterase is inhibited by papaverine, 

lithium appears to inhibit slightly the accumulation of cAMP 

(Table III). During aggregation with ADP the inhibition of this 

basal adenylate cyclase activity amounts 4 to 47 %, which is 

in agreement with the observations reported by Haslam (16). 

In lithium incubated samples the inhibition of platelet adeny­

late cyclase during ADP-induced aggregation is more pronounced 

than in controls (11-65 % ) . These results are in agreement 

with the recently described inhibition of adenylate cyclase 

by ADP in a purified human platelet plasma membrane prepara­

tion (17). 

In vivo platelet functioning is partly regulated by prostacy­

clin, the strongest and most physiological aggregation inhi­

bitor (10,27). Prostacyclin acts through stimulation of adeny­

late cyclase, thus raising the intracellular cAMP content (23, 

23, 2 9 ) . In Fig. 1 is shown that the stimulation of adenylate 

cyclase by prostacyclin in human platelets is antagonized by 

lithium. The results shown in Table IV demonstrate that the inhibi­

tion of ADP-induced aggregation of human platelets by prosta­

cyclin is counteracted by lithium.An inhibition of stimulated 

adenylate cyclase by lithium has also been reported by other 

investigators ( 6 , 7 ) . Their failure to detect an inhibition of 

the basal enzyme activity by lithium is probably due to the 

different methods used. 

Lithium also interferes with adenylate cyclase activities in 

other types of cells ( 5 ) , probably by replacing magnesium in 

the enzyme-magnesium complex, a common theory for the action 
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of lithium (30). However, this phenomenon might be species 

specific as was observed for other enzymes (31). 

We reported previously that lithium does not stimulate but 

inhibits the ADP-induced aggregation of rabbit platelets (3). 

From Fig. 2 it can be concluded that the stimulation of ade­

nylate cyclase by prostacyclin in rabbit platelets is not in­

hibited by lithium. In Table V it is shown that the inhibition 

of ADP-induced aggregation of rabbit platelets by prostacyclin 

is hardly affected by lithium. 

In view of these results it seems likely that the enhancement 

of human platelet aggregation by lithium is achieved by inhibi­

tion of adenylate cyclase activity. Other adenylate cyclase 

inhibitors show a more inconsistent effect on platelet aggre­

gation (32,33). 
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ABSTRACT 

The aggregation of human platelets is enhanced after preincu­

bation with lithium salts. Previously it was shown that lithium 

inhibits adenylate cyclase activity in human platelets. 

Enhancement of aggregation and inhibition of adenylate cyclase 

by lithium was not observed in rabbit platelets. 

In this paper it is shown that in human platelets lithium en­

hances considerably the synthesis of thromboxane Bp» whereas 

the synthesis of P G E 0 and PGF, was enhanced to a lesser ex-
J 2 Za 

tend. In rabbit platelets lithium had no effect on prostaglan­

din synthesis. It is concluded that lithium specifically stimu­

lates the synthesis of thromboxanes in human platelets, proba­

bly due to the previously reported inhibition of adenylate cy­

clase activity, resulting in an increased aggregabi1 ity . 



INTRODUCTION 

Unstable metabolites of arachidonic acid, prostaglandin endo-

peroxides (1,2) and thromboxanes ( 3 ) , play a regulatory role in 

platelet function. The cyclic AMP system is also involved in 

platelet function,in as far raising the cAHP content of plate­

lets results in a decrease of aggregation (4,5),a lowering of 

the availability of arachidonic acid to prostaglandin synthe­

sis (6-8) and possibly in an inhibition of the cyclooxygenase 

system (9 ,10) . 

We observed that preincubation with lithium causes a stimula­

tion of the aggregation of human platelets, together with an 

inhibition of the platelet adenylate cyclase activity ( 1 1 ) . 

This inhibition of adenylate cyclase and stimulation of aggre­

gation was not observed in rabbit platelets ( 1 1 ) . 

In order to establish the role of lithium in the relationship 

between platelet aggregation, adenylate cyclase activity and 

prostaglandin synthesis, the effects of lithium on prostaglan­

dins PGE„ and PGF
0
 and thromboxane B

0
 (TxB„) formation were 

2 2a 2 v 2 ' 

studied in as well human as rabbit platelets. 

MATERIAL AND METHODS 

Preparation of Platelet-Rich Plasma (PRP) 

Human PRP was prepared by centri fugating citrated blood (1 part 

of 3,8 % (w/v) tri sodiumcitrate on 9 parts blood) on a Ficoll-

Isopaque cushion for 20 min at 250 G ( 1 2 ) . Rabbit PRP wai prepa­

red by differential centri fugation (10 min, 300 G) of citrated 

blood ( 1 3 ) . 

PRP was preincubated for 90-120 min at 37
0
C with 10 mM LiCl or 

10 mM NaCl (as control). 

Aggregati on 

Aggregation in PRP was measured photometrically (14) with 

fications as described ( 1 3 ) . Aggregation was induced with 

donic acid (Sigma), diluted to appropriate concentrations 
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absolute ethanol under nitrogen just before use. In the experi­

ments on TxB2 generation, aggregation was also induced with ADP 

and collagen, both in Veronal buffer (0.15 M, pH 7.2). 

Preparation of samples for prostaglandin synthesis studies 

In PRP samples incubated with Na or L i
+
, the prostaglandin 

concentrations were determined either before or after 3 min of 

aggregation, induced by different agents. The plasma samples 

were prepared according to Thomas et al. (15,16). In short, 1 ml 
3 

PRP samples were acidified to pH 3.5 and small amounts (10 DPM) 

of H-PGF- were added for recovery determinations. The samples 

were extracted twice with 5 ml of ethyl acetate and the combined 

organic layers were drted and the residues taken up in 1 ml of 

water. These solutions were applied to Sephadex G-25 columns 

(Pharmacia) and eluted with distilled water. The low molecular 

mass effluents containing the prostaglandins, were collected, 

dried and dissolved in assay buffer (50 mM Tris - H C l , pH 7.4, 

containing 150 mM NaCl and 0.1 % (w/v) gelatin). Control experi­

ments with labeled PGF, , PGE- and TxB, revealed that the pro-
2a 2 2 r 

cedural losses observed were equal and always less than 40 %. 

3 
P r e p a r a t i o n of Η-Thromboxane B-

H-TxB, was prepared by a combined i n c u b a t i o n of seminal ve-
3 

s i d e microsomes and p l a t e l e t microsomes w i t h H-arachidonic 

a c i d (Amersham, 135 Ci/mmol). Seminal v e s i c l e microsomes were 

prepared accord ing t o Flower e t a l . (17) and p l a t e l e t m i c r o ­

somes according t o Ho e t a l . ( 1 8 ) . Seminal v e s i c l e microsomes, 

suspended i n 50 mM Tr is-HCl (pH 8.0) i n c l u d i n g 2 μΜ hemoglobin 

and 5 mM L - t r y p t o p h a n , were incubated at 370C w i t h H-arachido­

n i c a c i d i n a f i n a l c o n c e n t r a t i o n of 10 y C i / m l . 

A f t e r 2 min p l a t e l e t microsomes, suspended i n 50 mM Tr is-HCl 

(pH 6.8) and i n c l u d i n g 2 mfl reduced g l u t a t h i o n , were added and 

the i n c u b a t i o n cont inued f o r 20 min. The r e a c t i o n was stopped 

by a c i d i f y i n g t o pH 3 w i t h HCl and the m i x t u r e was e x t r a c t e d 

t h r e e t imes w i t h 5 volumes of e t h y l a c e t a t e . A f t e r d r y i n g on 

MgSO» and e v a p o r a t i n g the s o l v e n t the res idue was taken up 
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in ethyl acetate and subjected to chromatography on silicagel 

plates, which were developed with chioroform-methanol-aceti с 

acid (90:5:5 v/v/v) according to Ho et al. (18). The
 3

H - T x B
2 

fraction was cut off, eluted and dissolved in assay buffer. 

Unlabeled TxB, was prepared in a similar way from unlabeled 
3 

arachidonic acid (Sigma) with negligible amounts of H-arachi-

donic acid added for estimating the conversion percentage. 

RIA procedure 

The procedures of the radioimmunoassays (RIAs) for PGF« and 

P G E
2
 were described by Thomas et al. (15,16). The RIA for TxB-

was developed according to the same technique. The antiserum 

against TxB» was kindly provided by dr F.A.Fitzpatrick (The 

Upjohn Company, Kalamazoo, Mich. USA) who described the speci­

ficity of this antiserum (20). His RIA procedure and the tech­

nique introduced here showed almost identical standard-dose 

response relationships for TxB«; minimum detectable quantity 

amounted 0.2-0.4 ng T x B
2
 standard per tube. 

RESULTS 

Arachidonic acid induced aggregation 

Incubation with 10 mM LiCl for 90 min enhanced the arachidonic 

acid induced aggregation of human platelets (Table I ) . The 

minimum concentration of arachidonic acid required to induce 

aggregation, was lower in lithium incubated samples than in 

controls. The concentration at which maximal aggregation was 

obtained was also lower in lithium incubated samples. 

Prostaglandin formation 

Preliminary experiments revealed that in the RIA for thrombo­

xane B2 the procedure with Sephadex chromatography produced 

better parallelism than the dilution technique of Fitzpatrick 

et al. (19) although at higher sample quantities linearity was 

not maintained perfectly. 
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TABLE I 

Effect of lithium on arachidonic acid induced aggregation of 

human platelets 

Cone, of Units aggregation 

arachidonic acid 10 mM NaCl 10 mM LiCl 

0.10 mM 0 б 

0.13 mM 5 86 

0.16 mM 7 95 

0.19 mM 12 98 

0.21 mM 85 100* 

0.22 mM 98 

Results are from one typical experiment 

Maximal aggregation defined as 100 units of aggregation 

The effects of lithium preincubation on human platelet prosta­

glandin formation are shown in Table II. Without aggregation 

induction the concentrations of TxB
0
, PGE

0
 and PGF- in lithium 

incubated samples did not differ from those in NaCl incubated 

controls. 

Aggregation with А0Р did not induce substantial prostaglandin 

synthesis, neither in sodi urn- nor in lithium chloride incubated 

samples. 

During collagen induced aggregation the platelet thromboxane EU 

synthesis was higher in lithium incubated than in sodium incu­

bated PRP. A less pronounced effect was seen on the synthesis 

of the two prostaglandins PGE
0
 and PGF

0
 . 

Ζ Za 

During aggregation induced by arachidonic acid, the TxB
?
 forma­

tion was also increased in lithium incubated samples compared 

to controls. The experiments on human platelets as shown in 

Table II were repeated three times and analysed by the paired 

T-test. It appeared that after aggregation with an arachido­

nic acid concentration of 1.2 mM, the contents of TxB- in nano-

grams/ml PRP after sodium incubation ranged from 450 to 750 

and in lithium incubated samples > 1900 (p < 0.01). 

116 



TABLE II 

Concentration of Thromboxane В-» PGE- and PGFg in human PRP, incubated with 10 mM NaCl 

or 10 mM LiCl 

No aggregation 

Ι μ Μ ADP 

4uM ADP 

5 yg collagen/ml 

10 yg collagen/ml 

0.8 mM arachidonic 

1.2 mM arachidonic 

acid 

acid 

10 

TxB 

mM NaCl 

8 

9 

10 

20 

82 

431 

745 

2 

10 mM L : 

8 

9 

9 

29 

425 

784 

1930 

¡CI 10 

PGE2 

mM NaCl 

0 .20 

0 . 2 3 

0 . 1 8 

0 .73 

0 . 9 8 

27 

45 

10 ι mM L i C l 

0 . 2 0 

0 . 2 9 

0 . 2 8 

0 . 9 1 

1.50 

31 

45 

10 

PGF 

mM NaCl 

0 . 3 9 

0 . 3 4 

0 . 3 4 

0 . 4 6 

0 . 7 0 

11.5 

2 4 . 3 

2a 

10 mM L 

0 . 4 0 

0 . 4 0 

0 . 3 5 

0 . 5 1 

1.28 

1 3 . 5 

2 4 . 5 

Platelets were incubated for 90 min with 10 mM NaCl or 10 mM L1C1 at 370C, before Inducing aggregation. 

PRP samples were processed as described in methods. Results are given from one typical experiment. 

All concentrations are in nanograms/ml PRP. 



The concentration of the prostaglandins PGE™ and PGF« was much 

higher now than during collagen induced aggregation, but almost 

no differences were observed between lithium incubated samples 

and controls. 

In rabbit platelets no differences were observed in the TxB-» 

PGE- or PGF» concentrations directly after incubation with 
Ζ Za 

either lithium or sodiumchloride or during aggregation (Table 

III). The measurements with arachidonic acid induced aggrega­

tion (0.8 mM) from which oneexample is shown in Table III were 

repeated four times. In sodium incubated rabbit platelet sam­

ples the thromboxane B» content ranged from 890 to 1200 and in 

lithium incubated samples from 900-1150 nanograms/ml PRP 

(p > 0 . 3 ) . Lithium had'no effect on arachidonic acid induced 

aggregation of rabbit platelets and only a slight inhibitory 

effect on ADP and collagen aggregation. 

DISCUSSION 

Human platelets exhibit an increased aggregation potency after 

incubation with 1 ithiumchlori de.This phenomenon was observed 

after aggregation induction with ADP, collagen, thrombin, adre­

nalin and ionophore A23187 (13,20,21). The influence of li­

thium on aggregation appeared to differ markedly for different 

mammalian species, e.g. lithium haá no effect or even dimini­

shes the aggregation potency of rabbit platelets (13). Till 

now no satisfying explanation for these effects of lithium has 

been given. 

Human platelets in which the cAMP level is elevated show a 

diminished aggregation potency, whereas it is suggested that 

a lowering of the cAMP level may result in an increased aggre­

gation potency. Since lithium lowers the cAMP content in cer­

tain tissues (e.g. brain and thyroid), Geerdink et al. (20) 

proposed that the effect of lithium on aggregation could be ex­

plained by an inhibition of adenylate cyclase activity in human 

platelets. A lowering of the cAMP level might also,due to acti­

vation of phospholipase A j , increase the availability of arachi 
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TABLE Π Ι 

Concentration of Thromboxane B
2
, PGE

2
 and PGF« in rabbit PRP, incubated with 10 mM NaCl 

or 10 mM LiCl 

Thromboxane Β­

ΙΟ mM NaCl 

1.3 

2.6 

35 

1000 

10 nW Li 

0.8 

1.7 

42 

910 

CI 10 

PGE 

mM NaCl 

0 . 0 1 

0 . 0 3 

0 . 1 3 

12 

2 

10 nW LiCl 

0 . 0 1 

0 . 0 4 

0 . 1 3 

14 

PGF 

10 mM NaCl 

0 . 4 3 

0 . 4 5 

0 . 6 6 

30 

2a 

10 mM Li 

0 . 3 9 

0 . 4 1 

0 . 7 4 

30 

No aggregation 

1 wM ЛОР 

15 yg collagen/ml PRP 

0.8 mM arachidonic acid 

Platelets were incubated for 90 min with 10 mM NaCl or LiCl at 370C before inducing aggregation. 

РПР samples were processed as described in methods. Results are given from one typical experiment. 

Л11 concentrations are in nanograms/ml PRP. 
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donic acid to the synthesis of prostaglandins ( 6 - 8 ) . 

We reported previously that lithium inhibits basal and stimu­

lated adenylate cyclase activity in human platelets and has no 

effect on this enzyme system in rabbit platelets (11). 

This paper describes the effect of lithium on the synthesis of 

PGE,, PGF
0
 and TxB- in human and rabbit platelets that show Ζ Za 2

 r 

completely different effects of lithium on the aggregation pat­

tern . 

It appears that lithium incubation as such does not change the 

basal levels of PGE-, PGF« and TxB2 in human platelets. During 

aggregation, induced with collagen or arachidonic acid the syn­

thesis of PGEp and PGF- is stimulated equally in human plate­

lets incubated with lithium chloride or sodium chloride. The 

synthesis of TxB-. however, is considerably stimulated by li­

thium when human platelet aggregation is induced by collagen or 

arachidonic acid (Table I I ) . 

In rabbit platelets, in contrast to human platelets, lithium 

has no effect on the synthesis of PGE2« PGF2 and TxBo during 

aggregation, induced by the various stimules (Table III). 

The observed basal levels of TxB- In human platelets are in 

agreement with the data of Fitzpatrick et al. (19,22). The 

amounts of TXB2 which were found during aggregation are much 

higher than reported by them (19,22). This discrepancy may be 

due to differences in the methods used. 

From the foregoing data we conclude that lithium enhances aggre­

gation by inhibition of adenylate cyclase resulting in an in­

creased thromboxane formation. The lack of influence of lithium 

on adenylate cyclase activity and thromboxane synthesis in 

rabbit platelets, together with a lack of effect on aggregation, 

supports strongly the proposed mechanism of lithium action. 

The fact that also ADP induced aggregation in human platelets 

is enhanced after lithium incubation, though thromboxane syn­

thesis is not stimulated, shows that the influence on thrombo­

xane synthesis is a secondary effect. The inhibition of adeny­

late cyclase plays apparently a key role in the effect of li­

thium on human platelet aggregation. 
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SAMENVATTING 

Dit proefschrift handelt over biochemisch onderzoek aan bloed-

plaatjes dat werd verricht naar aanleiding van de waarneming 

dat lithium de aggregatie van humane bloedplaatjes stimuleert. 

De effekten van lithium op bloedplaatjes werden nader gekarak­

teriseerd en de invloed van lithium op diverse biochemische 

regulatiemechanismen van т.п. humane bloedplaatjes werd bestu­

deerd. 

In het eerste hoofdstuk wordt een overzicht gegeven van de 

huidige kennis betreffende de funktie en de biochemische pro­

cessen van bloedplaatjes. Hierbij komen vooral ter sprake de 

verschillende processen die de bloedplaatjesfunktie besturen, 

te weten: intracellulaire verschuivingen van calcium, de spie­

gel van cyclische nucleotiden en de synthese van Prostaglandine 

endoperoxiden/thromboxanes. 

In het tweede hoofdstuk worden enige relevante chemische en 

biochemische eigenschappen van lithium beschreven. De overeen­

komsten en verschillen tussen lithium en andere ionen, т.п. 

natrium/kalium en calcium/magnesium worden besproken. Tevens 

worden in dit hoofdstuk de effekten van lithium op verschillen­

de regulatiemechanismen in cellen, het cyclisch AMP en het 

intracellulair calcium, behandeld. Bovendien worden de tot nu 

toe bekende effekten van lithium op bloedplaatjes, waaronder 

de stimulatie van de aggregatie beschreven. 

In hoofdstuk 3 wordt een verbeterde methode om plaatjesrijk plasma 

te bereiden m.b.v. centri fugatie op een Ficol 1-Isopaque kussen 

beschreven. Deze methode bleek uiterst nuttig te zijn bij het 

merendeel van de volgende experimenten. 

Hoofdstuk 4 behandelt de experimenten waarmee de stimulatie van 

de aggregatie van humane plaatjes door lithium werd gekwantifi­

ceerd. De invloed van verschillende koncentraties lithium en 

incubatietijd op de ADP-geinduceerde aggregatie werd onder­

zocht. Ook de stimulatie van de serotonine-release werd geme­

ten. Het bleek dat de effekten van lithium op de plaatjesfunk­

tie niet verklaard kunnen worden door een toegenomen release 

mechanisme alleen. Wel werd een stimulatie van de release 
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waargenomen. 

In hoofdstuk 5 zijn de uiteenlopende effekten van lithium op 

de aggregatie van bloedplaatjes bij verschillende zoogdieren 

beschreven. 

Deze effekten variëren van een stimulatie bij sommige diersoor­

ten tot een remming bij andere, terwijl bij een paar diersoor­

ten vrijwel geen effekt wordt gezien. Deze diversiteit van de 

waargenomen effekten wijst op de verschillende wijzen waarop 

lithium in verschillende dierplaatjes werkt. Een in de litera­

tuur voorgesteld mechanisme voor de werking van lithium, een 

specifieke interaktie met extracellulair calcium, werd weer­

legd. In zowel lithium gestimuleerde (humane)als lithium gerem­

de (konijne) plaatjes blijkt calciumtoevoeging eenzelfde sti­

mulatie van de aggregatie te veroorzaken. 

Aangezien aggregatie induktie met calciumionofoor in humane en 

konijneplaatjes dezelfde species-specifieke effecten van li­

thium vertoont, is een interaktie van lithium met intracellu­

lair calcium onwaarschijnlijk. 

In hoofdstuk 6 worden de effekten van lithium op het cyclisch 

AMP regulatiestelsel van humane en konijne bloedplaatjes be­

schreven. Ofschoon lithium geen verlaging van het totaal cy­

clisch AMP gehalte van bloedplaatjes veroorzaakt, blijkt het 

in humane plaatjes wel het cyclisch AMP synthetiserend enzym, 

adenylaat cyclase, te remmen. Dit is vooral duidelijk merk­

baar als dit enzym tevens gestimuleerd wordt met prostacycli ne, 

dat een sterk aggregatie remmende werking heeft. De remming 

van door prostacycline gestimuleerd adenylaat cyclase was in 

konijne plaatjes niet aantoonbaar. De effekten van lithium op 

de aggregatie van humane bloedplaatjes zijn in overeenstem­

ming met het effekt op het adenylaat cyclase: de remming van 

adenylaat cyclase door lithium gaat gepaard met een stimulatie 

van de aggregatie en een tegengaan van het aggregatieremmende 

effekt van prostacycli ne. In konijneplaatjes past het ontbre­

ken van het effekt van lithium op het adenylaat cyclase bij het 

gelijk blijven van het effekt van prostacycline; voor het licht 

aggregatieremmend effekt van lithium alleen moet een ander, tot 

nu toe onbekend, mechanisme verondersteld worden. 
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Aangezien beïnvloeding van het cyclisch AMP systeem ook gevol­

gen heeft voor de synthese van Prostaglandine endoperoxides en 

thromboxanen, worden de effekten van lithium op de aanmaak van 

deze sterk aggregatiebevorderende metabolieten in hoofdstuk 7 

beschreven. Zoals verwacht blijkt lithium deze synthese in huma­

ne plaatjes te stimuleren, mits natuurlijk de aggregatie ge­

ïnduceerd wordt met stoffen die via het Prostaglandine systeem 

werken, zoals arachidonzuur. In konijneplaatjes wordt dit ef-

fekt niet waargenomen. 

Aangezien lithium ook de aggregatie stimuleert die geïnduceerd 

wordt door stoffen die niet via het Prostaglandine systeem 

werken, zoals bijvoorbeeld ADP, is remming van de adenylaat 

cyclase aktiviteit toch het meest waarschijnlijke mechanisme 

waarlangs lithium de aggregatie van humane bloedplaatjes bevor­

dert . 
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STELLINGEN 

1 

Konklusies over het werkingsmechanisme van pharmaca in menselijke 

bloedplaatjes kunnen niet getrokken worden uit experimenten met 

bloedplaatjes van andere zoogdieren. 

Dit proefschrift. 

2 

In de door Anderson en Foulks voorgestelde hypothese aangaande 

een interaktie van lithium en calcium,als verklaring voor het 

aggregatie-remmend effekt van lithium op komene bloedplaatjes, 

wordt geen rekening gehouden met het stimulerende effekt van 

calcium op de aggregatie. 

Anderson & Foulks:Thromb.Haemostas.36,343,1976. 

Dit proefschrift. 

3 

In de effekten van lithium op menselijke bloedplaatjes neemt 

de remming van adenylaat cyclase een sleutelpositie in. 

Dit proefschrift. 

4 

Een dosering van 2 maal daags 80 mg. aspirine,zo nodig na een 

eerste oplaad-dosering van 500 mg.,is de meest optimale voor 

het remmen van de bloedplaatjesfunktie bij de mens. 

P.C.Huygens et al.:Scand.J.of Haemat.,in press. 

5 

Het bepalen van glucocorticoid receptors in leukemische cellen 

kan ook nuttig zijn voor de keuze van therapie bij patiënten 

met akute myeloide leukemie. 

E.B.Thompson:Cane.Treatment Rep.63,104,1979. 





6 

Voor de klassifikatie van akute leukemiën is de kleuring op niet-

specifieke esterasen onontbeerlijk. 

7 

De indeling van akute myeloide leukemiën volgens de FAB-klassi-

fikatie,т.п. het onderscheid tussen Ml en M2 en tussen M5A en 

M5B,kan verbeterd worden door gebruik te maken van de "rijpings-

index" . 

D.J. van Rhenen et al.:Brit.J.of Haemat.,in press. 

8 

De inspanningen en risiko's van pogingen om kontinue normogly-

cemie te bereiken bij patiënten met diabetes mellitus,teneinde 

de progressie van vaatafwijkingen te vertragen,zijn slechts 

gerechtvaardigd indien roken en orale contraceptiva worden 

gestaakt,gelet op de effekten hiervan op de vetstofwisseling. 

G.D.Calvert et al.:Lancet,ii,66,1978. 

A.C.Artzenius et al.:Lancet,i,1221,1978. 

9 

De stelling dat deeltijdarbeid in leidinggevende funkties 

niet mogelijk is,is onbeproefd en dus onbewezen. 

10 

De verruwing van het Nederlandse voetbal kan het best bij de 

wortel worden aangepakt,d.w.ζ. bij de begeleiders van pupil-

lenvoetbal. 

11 

Those Bloody Platelets : 

Nijmegen, 9 oktober 1980 Leon Imandt 






