MULTIQUARK STATES
IN THE BAG MODEL

P. J. G. Mulders






MULTIQUARK STATES IN THE BAG MODEL



PROMOTOR
PROF DR IR J J DE SWART



MULTIQUARK STATES
IN THE BAG MODEL

PROEFSCHRIFT

TER VI RKRUGING VAN DE GRAAD VAN DOCTOR IN Dt
WISKUNDE EN NATUURWETENSCHAPPEN
AAN DE KATHOLIEKE UNIVERSITEIT TE NIUMEGEN,
OP GEZAG VAN DE RECTOR MAGNIFICUS,
PROF DR P G A B WIJDEVELD.
VOI1 GENS BESLUIT VAN HET COI LEGE VAN DECANEN
IN HET OPENBAAR TE VERDEDIGEN
OP VRIJDAG 2 MEI 1980
DLS NAMIDDAGS TE 2 UUR PRECITS

door

Petrus Johannes Gerardus Mulders

geboren te Venray

Krips Repro Meppel
1980



Graag wil 1k hier 1edereen bedanken, die heeft bijgedragen aan de
totstandkoming van dit proefschrift.

In de eerste plaats zijn dit de huidige en vroegere medewerkers
van het Instituut voor Theoretische Fysika, die op velerlei wijzen hun
stempel gedrukt hebben op dit proefschrift. In het bijzonder noem 1k
Ad Rerts, die met dit onderzoekprogramma in Nijmegen begonnen 1s, 1k
kan terugzien op drie jaren van zeer prettige samenwerking. Wilma
Lemmers-Vink wil 1k bedanken omdat zij] met groot enthousiasme gezorgd
heeft voor de vormgeving van het drukklare manuscript. I wish to thank
Professor Ronald Bryan for reading the manuscript.

Ock wil 1k de medewerkers van de afdelingen Illustratie, Foto-
grafie, Reprografie en het Universitair Reken Centrum noemen.

D1t proefschrift i1s een gedeelte van het onderzoekprogramma van
de Stichting voor fundamenteel onderzoek der materie (F.O.M.), welke
financieel gesteund wordt door de Nederlandse organisatie voor zuiver-

wetenschappel:jk onderzoek (Z2.W.0.).



Chapter 1

Chapter 2

Chapter 3

Contents

Introduction

1.1. Elementary particles

1.2. Interactions of the elementary particles
1.3. QCD

1.4. Hadrons

1.5. Tne MIT bag model

1.6. The spherical bag approximation

1.7. The color interactions

1.8. The light hadron spectrum

1.9. Stringlike bag configurations

The mass operator for multiquark states

2.1, The spherical bag

2.2. Fine structure 1n the spherical bag

2.3. The strainglike bag

2.4. Fine structure in the stringlike bag
2.5. An example: the orbitally excited Q—é mesons
2.6. Phenomenological contributions

2.7. Resonant behavior of multiquark states
Baryon resonances

3.1. The masses of baryon resonances

3.2. The mass spectrum of nonstrange baryons
3.3. The mass spectrum of strange baryons
3.4. The mass spectrum of (exotic) Y = 2 baryons
3.5. The coupling to baryon-meson channels

3.6. Decay of nonstrange baryon resonances

page

12

13

17

19

22

25

27

31

32

42

46

52

53

57

63

67

71

85

90

92

99



Chapter 4 Dibaryon resonances
4.1. Masses of six-guark states
4.2. Stability and decay of dibaryons
4.3. Nonstrange (Y = 2) dibaryon resonances
4.4, The Y = 1 dibaryon resonances
4.5. The Y = 0 dibaryon resonances
Appendix A Conventions and Notations
Appendix B SU(n) groups
References
Samenvatting

Curriculum vitae

116

119

129

140

143

145

155

165

169



CHAPTER 1: INTRODUCTION

In the last tharty years there has been a proliferation of the
strongly 1nteracting subnuclear particles or hadrons, of which the
nucleons are the oldest known ones. The quark model, proposed in 1964
[Gel 64, Zwe 64] gave a natural explanation for the large number of
hadrons. It also explainea the regularities in the quantum numbers
which had to be assigned to these hadrons in order to understand their
stability and their decay moues. The known hadron spectrum could be
satisfactory described by states consisting of a quark and an anti-
quark (Qé), the mesons, and by states consisting of three quarks (Q3),
the baryons. States with such quantum numbers that could not be
realizea by Qé or Q3 states were called exolic¢ hadrons. No real exotics
were known; states like the deuteron or possible other canaidates were
explained as bound states or resonances as the result of the (attrac-
tive) meson exchange forces between the hadrons.

In the last few years this situation has changed, for wnich two
main reasons can be pointed out. The first reason 1s the MIT bag model,
developed 1n 1974 [Cho 74], which made 1t possible to make quantitative
predictions for multiquark states. Jaffe [Jaf 77.2] convincingly showed
that tne JPC =o' mesons, e(760), S*(980) and &§(980) are c¢ryptc-exotic
states; they are exotic because of their quark content (Q2§2), but tney
have non-exotic gquantum nambers whicnh can be also realized by Q§ mesons.
Jaffe [Jaf 77.1] also preaicted (exotic) Q6 states and i1ndicated that
tne #(1405) 1s a possible crypto-exotic baryon [Jaf 76]. The second
reason 1s the experimental indications wnich exist for (real) exotic

Q6 states 1n the baryon-baryon channels and exotic Q4§ states with



exotic hypercharge Y = 2 (Z* resonances) .

The MIT bag model 1s a phenomenological application of Quantum
Chromo Dynamics (QCD), which describes the color interactions between
the quarks. The fact that the gquarks are (permanently) confinea to tne
hadron might be a consequence of QCD. In anticipation of the proof of
this a group of theorists at MIT developed a relativistic quark model
with built-in confinement [Cho 74]. The model has been very successful
in describing the masses and some of the static parameters of the light
Qé and Q3 hadrons [DeG 75]. Also the calculation of tne masses of the
9262 mesons [Jaf 77.2, Jaf 77.3] has been very successful and has
proven that probably reliable calculations for multiquark states can be
performed.

The descraption of orbitally excited hadrons by a bag containing
one or more quarks in higher orbits has not been very successful
[DeG 76]. This as contrasted with the phenomenological extension of the
bag medel to stringlike rotating bags [Joh 76]. For the actual calcula-
tions of those orbitally excited multiquark states sligntly different
approaches are possible. In the approaches followed by the MIT group
[Jaf 78] and the Nijmegen group [Mul 78.2, Mul 79.1] the intercepts M

0

2
of the trajectories (the mass squared M| versus the orpital angular

L
momentum £) are the masses of the physical & = 0 (s-wave) hadrons, for
which the MIT bag model has proven to be successful. Our approach
differs from the one by Jaffe 1in the treatment of the color interac-
tions. Jaffe postulates straight parallel trajectories for al/ multi-
quark states with a certain color configuration; the color interactions
become weaker for increasing orbital angular momentum. We postulate

straight parallel trajectories for the multiquark states with a certain
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color configuration when we neglect the color interactions. The
splitting due to the color interactions 1s assumed to be 1ndependent of
the orbital angular momentum; this 1s an assumption wnich follows more
naturally. Our specific choice for the treatment of the color interac-
tions has been confirmed by the behaviour of the trajectories for the

3
orbitally excited Q° baryons.

The resulting mass operator enables us to determine the mass
spectrum for all multiquark states witnout any otner parameters than
the quark masses and the three bag parameters which have been deter-
mined from the light Q0 and Q3 hadron spectra. The proper calculation
for the orbital excitations with small angular momentum £ (for the
baryons those ones with & = 1) needs some phenomenological contribu-
tions.

In the past few years we have considered the following s-wave

- 2-2
multiquark states and their orbital excitations: QQ and Q Q mesons,
3 4= 6
Q7 and Q Q baryons and Q  dibaryons. In addition to calculating their
masses we have considered their stability and possible decay modes and
we tried to assign tnem to experimental states. The classification of
multiguark states has also led to an alternate classification of the
3
ordinary Q° baryon resonances.
- 2-2 6

The results for the QQ, the Q9 Q and the s-wave Q states were the

subjects of the tnesis of A.T. Aerts [Aer 79.1], while the Q3, the
a_ 6
s-wave Q Q and the Q states are the subjects of thas thesis.

The content of this thesis 1s as follows: this introduction ais
followed by a more extensive discussion of the MIT bag model and the
underlying concepts. The second chapter deals with the phenomenological

mass operator for multiquark states. As an example we treat the



trajectories for orbitally excited QQ mesons. We also briefly discuss
the stability of the multiquark states. The baryon resonances, Q3 and
Q4§, are the subject of the third chapter and the dibaryon resonances

are the subject of the fourth chapter.



1.1. Elementary particles

Whenever physicists have found symmetric patterns in nature, they
have searched for an explanation. Usually the symmetry indicates a
composite structure of the system in question: The SU(3) multiplets
1n which the nadrons can be arranged, arise 1n a natural way when these
hadrons are composite. In 1964 three quarks (u, d, s) were proposed as
mathematical basic states [Gel 64, Zwe 64]. Although these quarks have
not been seen as free particles, there 1s at present little doubt of
their existence as real constituents inside the hadrons. For a review
of the developments in the past twenty years we refer the reader to
the thesis of A.T. Aerts [Aer 79.1].

In this thesis we will consider the quarks and leptons as the
"elementary" particles, as there are at present no indications - except
maybe their number - for a composite structure. Five gquarks are known.
The properties in wnich these five quarks differ from each other are
summarized 1n the flavor assigned to each quark. Next to these there
are internal degrees of freedom. The quarks are fermions with spin 1/2.
Two possible spin or helicity states are possible, in the latter case
called left- and right-handed. Besides the ordinary electric charge,
through which the quarks couple to the photon, the quarks have a
"color" charge, through which they couple to gluons. There are three
colors which are the basis of an SU(3) symmetry, referred to as color
SU(3) or SuU(3,C). A list of the quarks 1s given 1in table 1.1.

Quarks with different flavors are considered as different quarks,
because the flavor of a quark 1s not affected by the strong interac-
tions. This may be expressed by the association of a conserved quantum

number to each flavor: isospin (I) and its third component (13),



quark flavor Q/e I I Y S C B

3
u up 2/3 1/2 +1/2 +1/3 0 0 0
d down -1/3 1/2 -1/2 +1/3 0 0 0
s strange -1/3 0 0 -2/3 -1 0 0
c charm 2/3 0 0 0 0 1 0
b bottom -1/3 0 0 0 0 0 1
(t top 2/3 )

Teble 1.1: The quarks, their [lavors, charges in muiltiples of e and

"elavor" quantum numbers.

strangeness (S) or equivalently hypercharge (Y), charm (C) and beauty
(B) . Although flavor 1s not affected by tne strong interactions, quarks
with different flavor do not behave completely the same with respect to
strong interactions because they have a different mass. This mass of
course 1s not the physical mass, as quarks have not been observed as
free particles, but 1t 1s model-dependent, e.g. the mass entering in
the Lagrangian which describes the interactions between the quarks.
The u- and d~quarks, who have the lightest masses, have very
similar properties and form the basic representation of the isospin
SU(2) symmetry group, referred to as SU(2,I). The s-quark 1s heavier
than the nonstrange (n) quarks, bat 1t 1s still useful to introduce
flavor SU(3) as a symmetry, referred to as SU(3,F). In fact this
symmetry was introduced first to classify the hadrons [Gel 61, Nee 61,
Gel 62].

Next to the quarks, tne leptons exist as physical "elementary"
particles. Tnree generations of leptons exist. The first generation

- +
contains the electron e (and 1ts antiparticle the positron e ) and
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the electron-neutrino ve, a massless (m < 60 eV [PDG 78]) fermion which
has only a left-handed component (and 1ts right-handed antiparticle Ge).
The second generation differs from the first one only through the mass.
The muon u_ 1s much heavier than the electron, but i1ts corresponding
neutrino \)u 1s still massless. The third generation (17) 1s stall
heavier. The leptons only feel weak and electromagnetic interactions
and 1t 1s useful to classify them i1n representations of an SU(2) weak
1sospln group, referred to as SU(2,W) [Gla 61]. The leptons are clas-

sified 1n the singlet and doublet representations of SU(2,W):

singlets: eR ’ “R v TR v
el ) )
doublets: -0, [ = , -,
e_ [T T
\L/ \ 'L/ L/

The subscripts R and L stand for right- or left-handed respectively.
Also the quarks feel the weak interactions, which excellently are
described when the quarks are classified in singlet and doublet repre-

sentations of SU(2,W) in the following way:

singlets: Up dR v Sp 4 Cp s bR vt
; 2 / \ //t\
doublets: ( 2,) , ! c,) .| bt/ .
R # VUL \P/L
where approximately d' ~¥d =cos & d+ sin® s, s'=~s = - sin §_d
c c c c c

+ cos GC s and b' = b. Oc 1s called the Cabibbo angle, which from
experiments 1s determined to be sin ec == (0,22. Clearly the top-quark,
included in table 1.1, 1is necessary to complete the third generation

of quarks.

1.2. Interactions of the elementary particles

Except for gravity, the interactions between the fundamental



particles are mediated by vector boson exchanges. This is well-known
for electrodynamics where the pnoton 1s exchanged. The abelian U(1l)
gauge group for electrodynamics 1s generated by the charge operator and
the photon 1s the gauge field, introduced to make the theory invariant
under local gauge transformations.

Non-abelian gauge theories [Yan 54, Abe 73] are the generalization
of the abelian U(1) gauge theory. The internal symmetry group 1s a Lie
group generated by a number of generators, Fa, which do not commute;

(F2,FP] = 1 £3PC §C (1.1)

abc
f b are the structure constants. Gauge fields Az are introduced to

make the theory locally gauge invariant. The non-abelian gauge theories
[Gla 65] together with the mechanism of spontaneously broken symmetries
{Hig 64, Kip 67] led to the Weinberg-Salam model [Wei 67, Sal 68]: the
weak and electromagnetic interactions are unified in a non-abelian
gauge theory in which the gauge group 1s SU(2,W) ® U(1l), generated by
four generators Tl, 1 =1 to 3 and Y. The four gauge particles are
named wi, WS and Bu. The SU(2,W) ® U(l) symmetry is broken down to a
U(1l) symmetry when the stable vacuum is only invariant under transfor-
mations generated by the charge operator Q = T3 + Y/2. Three gauge
bosons acquire a mass and one gauge boson, the photon Au' stays mass-
less. Zu and Au are linear combinations of WS and BL' The quarks and

leptons couple to the photon field via the electric current

3, =1wY.JQ¢ . (1.2)

+
They couple to e.g. the charged intermediate bosons wu via the weak

current

Iyvrhy, T ’ (1.3)



+
where T = T1 1 T2 and for doubplets Tl = 11/2 (rl are the Darac
matrices). The ¢y-fields are the singlets or doublets aiscussed in

section 1.1. Explicitly we get for lepton doublets, e.g. the electron

and 1ts neutrino, tne leptonic current

+ -
ju,l ~ e Y“ Vg ’ (1.4)

and for quarks, e.g. the u- and d'-quarks, the hadronic current

+ - -
~ q' ~
b] 1 uL Yu L 1u

9 . .
on Y, (cos v_d +sin 9 s)) (1.5)

L
In Egs 1.4 and 1.5 we have used the particle symbol for the field, e.g.
e 1nstead of we. Eq. 1.5 shows that the weak interactions do affect the
flavor of the quarxs. Up to now all experaimental results concerning the
weak 1nteractions agree with the Weinberg-Salam model.

The strong interactions are also described in a non-abelian gauge
theory [Fri 71]. The color-symmetry not only gives three extra degrees
of freedom, e.g. necessary to solve the statistics problem for baryons
[Gre 64] or to get the correct results for the ratio
R = 0(e+e— 4 hadrons)/o(e+e- -> u+u_), the ratio T'(1 » e wv)/I (1 » all),
and for F(no + YY), but 1t also 1s the source for the strong interac-
tions [Nam 66). The interactions between the quarks are mediated by
exchange of gluons, which are the gauge bosons in the non-abelian

gauge theory for color SU(3), called Quantum Chromo Dynamics (QCD).

1.3. gcp [Mar 78]

In order to describe the interactions between the quarks in QCD,
we write down the Lagrangian for the quarks and the gluons (see appen-

dix A for conventions),



2 QCD=-%G‘3 Y _ I+ my . (1.6)

Hy

where P = DUYU and Du 1s the covariant derivative,

a a
D =94 - A F 1.7
u " 194 ( )

a
F , a=1 to 8, are tne representation matrices of the generators of

SuU(3,C), which satisfy the commutation relations of Eg. 1.1. For the

quarks, wnich belong to the triplet representation of color (c = 3),

a

F = Aa/2 (Aa are the eight Gell-Mann SU(3) matrices); for the anti-
quarks 2= - A;/Z. The gluons also carry color; they belong to the
octet representation (c = 8), for which (Fa)bc =-1fabc. The field-
strength tensor Giv 1s given by

Giv =2, Ai -3, A: + g £2°€ AIJ A: . (1.8)

The Lagrang:ian °ZTQCD 1s 1nvariant under local SU(3) gauge transfor-
mations.

The hope 1s that QCD will be able to describe the strong inter-
actions, just as QED does for the electromagnetic interactions. We
mention some of the nice features of QCD.

1.3.1. Renormalicability. Non-abelian gauge theories can be quantized

and 1n 1971 't Hooft has proven their renormalizability [Hoo 71].

1.3.2. Asymptotic freedom [Pol 73, Gro 73]. Although for high energies

or zero quark-masses there 1s no dimension 1in ’Z;CD (g dimensionless),

there 1s a typical scale A = 0.1 to 1 GeV for QCD. This scale enters

2
as an integration constant in the renormalized coupling constant g(Q ),

where Q2 = - q2 > 0 are the typical momenta. g(Q2) follows from
3 g(9) 2
=25 = B(g()) . (1.9)
9 1n Q

10



For SU(N) gauge theories with Nf fermions (= number of flavors) B(g)
can be calculated in perturbation theory,
2 N_, - 11N
k(g) = — 5 9t ... . (1.10)
48 ©

Then, provided Nf 1s not too large and 3 < 0,

2 2
1
9_(L) a~ (1.11)
Q2 large 11 N- 2N 2
£ Q
A
where ln Az 1s the i1ntegration constant. This means that the coupling
constant goes to zero for large momenta (or small distances); this 1is
denoted asymptotic freedom. Asymptotic freedom 1s experimentally seen
1n deep inelastic scattering experaiments, where the nucleon 1s probed
by the photon or the intermediate bosons, exchanged between charged
leptons and the nucleon. They reveal the quarks inside the hadron as
almost free pointlike constituents.
1.3.3. Confinement. Asymptotic freedom allows perturbation theory for
large Qz. Troubles arise for low Q2. The coupling constant grows and
Egs 1.10 and 1.11 are not valid anymore. The hope 1s that nonperturba-
tive approaches to QCD will prove that i1t 1s i1mpossible to split a
colorless system into two colored fragments, at least beyond distances
-1
much larger than & =~ =~ 1 fm,
1.3.4. Unification. When one 1s able to describe the strong interac-

tions 1n QCD all the interactions with the exception of gravity are

described by the gauge group
SU(3,C) ® SU(2,W) ® U(1)

This symmetry can be obtained from a simple Lie group by spontaneous

symmetry breaking, where the smallest group which contains the color,
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the weak 1sospin and the electromagnetlc gauge groudps 1s SU(S).
SU(5) D Su(3,C) ® su(2,Ww) ® U(1) D sU(3,C) x U(1,EM) .

The symmetry 1s consecutively broken down. Above the "grand unifica-
tion" scale (Q 2 1016 GeV) there 1s only one coupling constant. There
are 24 gauge bosons in the case of SU(5). At tne first stage of
breaking 12 gauge bosons acquire masses of the order of 1016 GeV.

These gauge bosons couple to leptons and quarks, and they violate
baryon number converting quarks into leptons and vice versa. The
second stage of breaking 1s that in the Weinberg-Salam model. Three
gauge bosons (wi,z) acquire masses of the order of 102 GeV. The remain-

1ng symmetries are SU(3,C) (eirght massless gluons) and U(1l,EM) (one

massless photon).

1.4. Hadrons

The picture that we have of the strongly interacting particles,
called hadrons, 1is that of an extended object in which the "valence"
quarks determine the flavor and spin properties. Color 1i1s the source
for the strong interactions, which are mediated by gluon exchange. The
colored quarks are confined to the hadron, which is colorless. This
allows only Qmén states (states with m quarks and n antiquarks) with
(m-n) a multiple of three, or equivalently an integer baryon number
(quarks have baryon number B = 1/3, antiquarks have B = - 1/3). The
hadrons with B = 0 are the mesons, e.g. Qé and Q2§2; baryons have
B =1, e.qg. Q3 and Q4§; dibaryons have B = 2, e.g. Q6.

Inside the hadron (at short distances) the 1nteractions between

the quarks are weak (asymptotic freedom). The juar<s are almost free

12



and for large Q2 perturbation theory 1s allowed i1n various reactions
involving quarks, gluons and leptons. One has to remember that initial
state quarks come from hadrons and tnat final state quarks recombine
into jets which contain a number of aligned hadrons.

Properties concerning the nadron itself involve low Q2 (large
distances) where perturbation theory 1s not possible anymore. Such a
property 1s e.g. the mass of the hadron. Still there are systematics
in hadronic mass spectra. In the J—M2 plane (J = total spin, M = mass)
tne haarons lie on straight (Regge) trajectories with a universal slope
a', J~ J'Mz. These trajectories and also the spectrum of bound states
and resonances of a heavy quark and a heavy antaquark (cc or bb)
indicate that the energy in a quark-antiquark system 1is roughly
linear in the quark-antiguark separation, with a tension T ~ 0.2 GeV2
~ 1 GeV fm_l. Other systematics are the N-A and A-I splittings which
can be understood as arising from spin-spin interactions in one-gluon-
exchange models [Ruj 75].

It 1s hoped that finally these and other low Q2 properties will
be explained by QCD. Now only phenomenological models based on QCD

2
explain the low Q properties.

1.5. The MIT bag model [Cho 74, Jaf 79.2]

In the MIT bag model the hadrons are described by a bag which
contains quarks and gluons. The bag 1s a region of space - or better
a tube 1n space-time - to which the quark and gluon fields are confined.
Inside the bag a positive energy density B 1s added to the energy
density of quark and gluon fields. The value of B determined from
3 B1/4

the light hadron spectrum 1s B =~ 59 MeV fm ° or = 0.145 Gev. It
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sets the scale in the bag model and can be compared witn the QCD
parameter A in section 1.3. The introduction of the bag pressure B
leads to confinement as only systems with a finite volume have a
finite energy. No gluon fields exist outside the bag, so no color flux
can leave the bag, hence bags are color singlets: the model has built-
1n color confinement.

The energy-momentum tensor for a bag becomes

(TR By v
TB = [T Bg ] GB . (1.12)
where GB(x) = 1 1nside the bag and BB(x) = 0 outside the bag. TLv 1s
tne energy-momentum tensor for quarks and gluons, described by ’Z;CD
in eq. 1.6,
Hv 1l = uey agyp .v _a 1 _a apJy HV
== - + [~ ¢ . .
T zwyDlp G aAp [4GpoG lg (1.13)

Translation invariance requires conservation of the energy-momentum

tensor

HV HV [TRY)
3 T =f[oa T 6.+ [n T
(a, ™1 6, + In,

. 75 ~ Bn"] 8, =0 (1.14)

where 6B 1s the 6-function at the boundary of the bag (S) defined by

[ atx §5x) £(x) = [ ax £(x) (1.15)
S

in a covariant way. nu 1s the inward directed unit vector, normal to
the boundary S. Inside the bag one therefore finds the ordinary
equations of motion for fermion and vector fields

(B +my =0 ’ (1.16)

D, M= -1 g Y Fy . (1.17)

or explicitly
(B +my=1qy Fya ' (1.18)

14



~ v
- d G =

199y FPy+gt? A’ G

bc b _cuv

(1.19)

Besides these equations a set of boundary conditions emerges,

uv

v
n T - Bn =20
U

On the surface they

1
- =G G
4

apv

require:

v
o]

1
3

1
n

’

- L
Bu (v T 9) -B=0

The most general form for the matrix [ ais

[ = e

where o 1s an arbitrary real number. From eq.

lC!YS

(1.20)

(1.21a)
(1.21b)

(1.21c)

(1.22)

1.21a follows that

;ﬁ = 3[ and therefore ;Fw s = 0. Tne boundary conditions 1.21 are
sufficient to assure also the conservation of the other currents,

required by i1nvariance under U(1,EM) transformations,

ro=aby o , (1.23)
i1nvariance under Lorentz transformations,
MHPO L P MO O ke %_7 (" P9 4 P Wy v
+ 6" a% - " A° , (1.24)
and invariance under SU(3,C) transformations,
Jav =1g @ Yv l:,::\ v+ g fabc Aﬁ chv . (1.25)
Also the current associated with the U(1) symmetry ¢ - eluw (phase
factor),
=1ty ' (1.26)

15



1s conserved. Noteworthy i1s that the transformation

o

voret T Y5y (1.27)
- - 1

> e T

gives other, equivalent boundary conditions. Generally 1t 1s not a
symmetry as m ; ¥ 1s not invariant under such a transformation. However
in the case of massless fermions, 1t becomes a U(l) symmetry with a

conserved current

H - H N
g =12 vy Yg ¥ . (1.28)

This chiral symmetry is broken when one chooses a specific value for

o for doing calculations. This does not matter for chirally invariant
operators like f av Tuv(x), but 1t does for non-invariant operators
like f av @(x) ¥ (x). For instance the spectrum, determined from the
Hamiltonian H = f av Too(x) 1s invariant under a change of choice for
a. As we are mainly interested in spectra, we will not discuss possible
solutions which have been proposed to restore the chiral symmetry

[Cho 75, Ino 75, Joh 79.2, Bro 79].

Egqs 1.18, 1.19 and 1.21 describe both the quark and gluon fields
inside the bag and the surface of the bag. The quark and gluon fields
are already determined completely by the equations 1.18 and 1.19 with
the homogeneous boundary conditions 1.2l1a and 1.21b. E.g. 1n the case
that there are only gluons in the bag, neglecting the self-coupling
(g > 0) we find for tne color-electric and color-magnetic fields,
which are the components of the field-strength tensor ij,

> ra

V'E =0
N sa 1nside the bag . (1.29)
VxB =0

16



on the surface. (1.30)

Tnese equations are analogous to those for electromagnetic fields in

a cavity surrounded by a superconducting medium, but with the roles of
> >

E and B reversed. The egs 1.29 and 1.30 uniquely determine a solution.
The i1nhomogeneous boundary condition in eq. 1.21c may be understood as
a pressure balancing. The pressure of the quarks and gluons i1s balanced

by B, which acts as a pressure exerted from the outside on the bag.

1.6. The spherical pag approximation [DeG 75]

A general solution of the MIT bag model, outlined in the previous
section does not exist (in four aimensions). Approximate solutions
exlst 1n certain cases, when some assumptions have been made. The
first assumption implies that after subtraction of the confining part,
which 1s responsible for the existence of the bag, only weak color
1nteractions remain. We then can start with free quarks and afterwards
incorporate the weak color interactions as a perturbation.

St1ll no general solution exists. However, 1f as a next step the
bag 1s approximated by a static sphere (nu = (0, -r)), a solvable set

of equations 1s obtained,

(3 + m) ¢l =0 inside the bag (1.31)
- >
AN . = #l (1.32a)
9 -
w (E wlwl)l =28 , (1.32b)

where 1 lapels the fermions i1n the bag. These approximations are
thought to be valid for light (relativistic) quarks. The quarks are

moving with velocities close to c¢. They can reach tne surface where
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they are bounced off. Eq. 1.32b, which implies that the bag pressure
1s balanced only by the pressure of the quarks, can be used. Heavy
quarks have a different behaviour. They act as a static source for the
color fields, through whaich they interact with the bag. In that case
(see section 1.8) the pressure of the gluon fields also has to be
included in the guadratic boundary condition.

The only static classical solution of the Dirac equation in a
spherical bag satisfying egs 1.31 and 1.32 are the j = 1/2 solutions.
This 1s the consequence of the restriction to scatic¢ solutions in

spherical bags. The positive parity solutions are

aty
Tty =N [ o Jo ko)X -1Et (1.33)
Ylr,t) = = =" . . e . .
1V — 3, (kr) (g°x) X
o1 1
Instead of energy E = po, momentum k = |E| ana quark mass m, we often

will use the dimensionless quantities a = ER, X = kR and ¢ = mR

(a2 = x2 + uz). The energy spectrum 1is discrete, due to the linear
boundary condition, which allows positive and negative energy eigen-
values a/R, a well-known feature of the Dirac equation. The negative
parity solutions are 75¢*(—;,t) with energy eigenvalues -o/R. The
energy eigenvalue a/R, depends on the product of the fermion mass and
the bag radius, x = x(y) and a = a(u). For the lowest mode

x(u) i:ﬁ=2.043 and x(u) ﬁ:: .

In terms of the classical solutions the energy of a bag is

E= [avrOm = [ av [Z 250 a]
1 1
B B 1
a (R)
- 1 { + 47 3
z R av y y + - BR (1.34)

With the use of this expression for the energy the quadratic boundary
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condition 1n eq. 1.32b can be rewraitten

JE
== 0 (1.35)

The mass operator for a bag with free quarks and antiquarks is the
quantized formulation of eq. 1.34,

a_ (R) Z
1 0 4m 3
R - R + 3 BR . (1.36)

M. (R) =) N
OB =1 N
1
Nl 1s the number operator, which counts the numbers of quarks and
antiquarks with energy al(R)/R. If all quarks are in the lowest bag
mode, 1 labels the flavors in the bag and al(R) = a(mlR). The term
- ZO/R 1s introduced to account for the correct zero-point energy and
the subtraction of the center of mass motion. It has been shown that a
1/R contraibution (independent of the number of quarks in the bag) 1is
present in the zero-point correction [DeG 75] ana for the subtraction
of the center of mass motion [Don 79], although also other terms may
contribute [Ben 76]. From these contributions terms proportional to R3
4n 3
can be included in the volume term TY-BR . As the contriputions have
not yet been calculated, they have to be included i1in a phenomenological
way, and in order to make the number of parameters not larger than

strictly necessary, only the parameter Z_. 1s introduced.

0

The mass operator Mo in eq. 1.36 depends on the bag radius which

1s determined by minimizing the expectation value with respect to R,

< —=—>=0 (1.37)

1.7. The color interactions [DeG 75]

Color interactions are included as a perturbation by adding to

the energy densaity for fermions those terms, which contain the (static)
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gluon faields,

00 00 a _ap 1 a a.V
= - + = . .
T Tquarks JA A 4 Guv G (1.38)

2
In lowest order (ac) the only contraibutions are given by the diagrams

which are the i1nteractions arising from eignt abelian fields Ea and
éa, whose sources are the quarks. The fields can be considered as
abelian fields as there are no gluon self-couplings to this lowest
order.

1.7.1. The color-electric interactions

The color-electric field generated by the color-charge of a quark
1s given by Gauss' law;

N
V-2 =92 2 gt Py ] (1.39)

This gives at tne surface of a spherical bag,

a

>a F
E g

>

R

= S (1.40)
47 R3

a
Provided the quarks in tne bag couple to a color-singlet, z Fl = 0,
1
the color-electric fields satisfy the homogencous boundary condition

J AEY =0 (1.41)
1
pR

Neglecting the self-energy contribution the color-electric interactions

contribute

AEe - 2 [_ %, f av él(x)~ﬁ (%) + f av ]S(x) AO(X)]
1#) B ’ B ’
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=% I JavE i 0+ | (RE) a®
1#3 B J 1#) g

By assumption almost the complete color-electric effects are already
included in the volume term, e.g. the higher order (confining) parts
or 1n the mass terms for tne quarks, e.g. the self-energy contribution.
For a numbexr of identical quarks, coupling to a color-singlet, 1t 1s
assumed that AEe = 0. Thas can be obtainea by adding a part of the

self-energy diagram to the color-electric energy. Then AEe can be

written
> >
se =L 7 favE 0B
e 2 ’ 1 J
1,7 B
ElJ(R)
=3 o, —Rp—F,°F, , (1.42)
1,]
a _a 2
where Fl'FJ = 5 Fl FJ (summation over group indices) and ac =qg /4-.

a
For i1dentical quarks AEe 1s proportional to the quadratic Casimir

operator of color SU(3)

2 a a
Fo= () Fl)(Z F) = ¥ F)“F , (1.43)
1 J 1,]

which for color-singlets has the eigenvalue fi = 0 (see appendix B).

If there are different quarks in the bag a small contribution is left,
due to the flavor-dependence of the functions ElJ(R). The values of the
functions ElJ(R) = E(mlR,mJR) can be found in ref [DeG 75], e.g.

E(0,0) = 0.139 and for p = mR =~ 1.4, whaich 1s a typical value for a
strange quark i1n a baryon the values are E(O,u) == 0.163 and

E(u,u) = 0.185, In this thesls we restrict ourselves to the light
quarks {(u, d, s), for which tne contribution AEe 1s of the order of or
smaller than 5 MeV. Therefore the color-electric energy contribution

1s neglected.

21



1.7.2. The color-magnetic interactions

The color-magnetic field, generated by the color current of a
quark 1s found from Maxwells equation
> + >
VxBr=3=guTary (1.44)

- >
A solution satisfying the boundary condition n x Bl = 0 for each quark
can be found. Neglecting the self-energy contribution the color-magnetic

interactions contribute

sg_ = § [% favd B 0 - [avsy ok (x)]
173 B J B J
= -% I favE 0B o
1#3 B J
M__(R)
=- 7 o 2 (ro)-(rFo) (1.45)
c R 11 73 ! ’
1>)
a_a - ->
where (F g )+(F o ) = Z (F'F_ )(0 -J_) 1s the summation over the group-
11 J 5 +3 13

indices. The values of the functions Ml](R) = M(mlR,ij) can be found
in ref [DeG 75], e.g. M(0,0) = 0.177 and for u = 1.4, M(O,u) =~ 0.142
and M(p,u) = 0.118.

Including the color interactions between the quarks, the mass

operator between the quarks becomes
M(R) = My(R) + BE_(R) + AE_(R) (1.46)

and the quadratic boundary condition requires

M
<32 =0 (1.47)

1.8. The light hadron spectrum

In order to apply the mass formula eq. 1.46 to the light baryon
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particle F_‘F A A A M_[Gev] M [Gev]
1 B exp

J nn ns ss
N -2/3 -2 - - 0.938 0.939
iy +2 - - 1.233 1.232
A -2 - - 1.105 1.116
by +2/3 -8/3 - 1.144 1.193
L* +2/3 +4/3 - 1.382 1.385
z - -6/3 +2/3 1.289 1.318
o* - +4/3 +2/3 1.529 1.533
Q - - +2 1.672 1.672
T -4/3 -4 - - 0.280 0.138

n -4 - - 0.280 +)
¢ +4/3 - - 0.783 0.776
w +4/3 - - 0.783 0.783
K,K - -4 - 0.497 0.496
K*,K* - +4/3 - 0.928 0.892

ng - - -4 0.695 +)
4 - - +4/3 1.068 1.020

+ nn = nn and n, = ss are the 1deally mixed combinations which
contain only nonstrange or only strange quarks (exp mn = 0.549

GeV and mn, = 0.958 GeV).

Table 1.2. The eigenvalues of the operotors Fi'Fj, A A and by

nn’ ns E]

(¢q. 1.48), the bag masses calculated by the MIT group,

and the experimental masses.

and meson spectra one has to evaluate the expectation values of the
two-particle operators Fl'FJ and 01-0J (see appendix B). AEm 1s davided
1n three parts, namely tne interactions between nonstrange, between

strange and between nonstrange and strange quarks,

a

C
BE == M (R )} (F -F_)(o_ -0_)
m R nn n.5n n1 n2 n1 n2
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-

+M__(R) ) (F_-F_)(6_+0_ ) +M (R ) (F -F_)(0_+0)
s.>s S:l 52 &:1 42 ns n,s n S n s

“q

-2 M R A_+M (RVA_+M (R A | (1.48)
R nn nn ss ss ns ns|

r
-

[N
The eigenvalues of the operators A _, A and A have been given in
nn ns ss
table 1.2 for the light baryons and mesons. The masses obtained from
eqs 1.46 and 1.47 are compared with the experimental masses. The

parameters B, Z

o' %e and m_ (mn = 0) have been determined from the
masses of the N, A, 2 and w [DeG 75]. They are 31/4 = 0.145 Gev,
Z0 = 1.84, ac = 2.20 and ms = 0.279 GeV.

One of the nicest features of the color-magnetic interaction is
that 1t correctly explains the splittings between the light hadrons.
It 1s a strong argument in favor of color-dependent interactions. E.g.
a spin-span interaction due to an interaction between ordinary magnetic
moments, instead of color-magnetic moments, would render the nucleon
heavier than the delta. The dependence of the color-magnetic inter-
actions on the quark-masses causes the A-I splitting, although 1its
magnitude MA - MZ = % (Mnn - Mns) 1s too small.

The results for the baryons and the vector mesons are satisfying.
The color-magnetic splaittings are roughly of the orxrder of 20 % of the
unperturbed mass. This justifies treating the color-magnetic inter-
actions as a perturbation, although the (effective) coupling constant
ac seems rather large. For the pseudoscalars the agreement between the
bag masses and the experimental masses 1s worse. The n and n' are not
1deally mixed, as predicted by the bag mass operator. They have a

strong mixing due to annihilation effects. Also the pion mass comes out

wrong. This, however, 1s not remarkable, as the color-magnetic contri-
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bution 1s more than half the unperturbed mass. Johnson [Joh 79.2] has
shown tnat also the subtraction of the center of mass motion is

different for the pion.

1.9. Stringlike bag configarations

In the spherical bag approximation only the quarks are important.
They provide the pressure necessary to balance the bag pressure at the
boundary. As already noted in section 1.6 this will be different for
heavy quarks, which act as a static source for the color fields. The

color fields now provide the pressure at the boundary. This means that

- %Gj\/ ¢ =B , (1.49)
or
% (C*.E® - 82.8%) =8 . (1.50)

>,
In the (instantaneous) rest frame of the pag and the quarks (8% = 0)
eqg. 1.50 becomes

%éaia =B (1.51)

The linear boundary condition reguires
- >,
RET =0 . (1.52)

Assuming that the quarks only act as a source for the color-electrac
tields, a stringlike solution exist between the (two) sources (fig.
1.1) with a cross section A. Using Gauss' law (from eq. 1.19),
[E2|A = g F?, we get

1 ra ra _ 2,2
> E «E~ = 2n o fC/A B (1.53)

wnich shows that 1t 1s impossible to separate the color sources by
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N
o/

Fig. 1.1. Stringlike solution between two separated color sources.

squeezing the bag (A > 0), because the energy density becomes infinite.
Eliminating tne cross section of the bag from egs 1.51 and 1.53 and

1 ra 2a
multiplying 1t with the energy density E—E ‘E” + B = 2B we find a
constant linear energy density

T = (8mna_ B f2)1/2 . (1.54)
0 c c

Using the bag parameters the result for two sources, one belonging to
the color irreducible respresentation (irrep) 3 and the other to the

conjugate irrep 3%, is
2
TO =~ 0.18 GeV . (1.55)

The stringlike "solution" of the bag 1s not only applicable to heavy
quarks, but also in the case of rotating bags. In the rotating bag the
quarks, acting as sources reside at the ends and the color forces
provide the centripetal forces.

The value ofTo 1n eq. 1.55 1s reasonable both for bags containing
heavy quarks and for rotating bags. In the former case 1t 1s the tension

in the linear potential between two heavy quarks; 1n the latter case it

is related to the slope, &' =(2nTO)-1, of the Regge trajectories.
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CHAPTER 2: THE MASS OPERATOR FOR MULTIQUARK STATES

The MIT bag model nicely reproduces the masses of the light (s-
wave) baryons and mesons (section 1.8). We want to retain these success-
ful features 1n a mass operator which i1s applicable to both the s-wave
hadrons and the orbitally excited hadrons. In order to do this we must
make some further approximations in the spherical bag approximation
which allow the generalization to orbitally excited hadrons. Moreover
we require that the connection remains between the intercepts of the
trajectories for orbitally excited hadrons and the spherical bag
s-wave or L = 0 states. Thais 1s achieved through the assumption that
the spherical bag states are the intercepts of the trajectory, when
the color-magnetic interactions are neglected (section 1.6).

For orbitally excited hadrons a strainglike bag 1s assumed 1in
which the quarks reside at the ends i1n two clusters. These clusters of
quarks are the color sources; this leads to a constant linear energy
density (section 1.9). A classical relativistic calculation shows that
with quarks which are light compared to the total energy of the bag,
the trajectories are linear in the Mz—i plane; the slope depends on
the color irrep to which the clusters at the ends of the bag couple.

The color-magnetic interactions in a spherical bag (section 1.7)
explain the splittings i1n the mass spectra of the light hadrons. This
1s called the fine structure of the spectra. The (short range) inter-
actions between each pair of guarks depend on their color and spin.
The strength depends on the flavor of these quarks. The averaging of
this strength renders a factorization of the flavor-dependent strength

and the ceclor- and spin-dependent group-theoretical factor A. This is
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an approxination that makes hadrons with the same flavor configuration,
but with different isospins, degenerate, e.g. the s-wave baryons
(1116) and £(1193).

For the orbital excitations 1t 1s assumea that the interactions
between quarxs at differerlL ends vanish for large x values. Tnis 1is
satisfied for the multiquark systens where i1t can be checked, namely
the orbitally excited Q-é mesons and Q-Q2 baryons, already for & =1
the strengtn of tne interaction between quarks at different enas is
largely reducea.

The color-magnetic i1nteraction within the clusters 1s assumed to
factorize like 1t does 1n a spherical bag. The group-theoretical

factors for the clusters, A, and A

1 o can be evaluated; the strength,

nowever, 1s unknown. We assumec that the expression found for the
strength in (colorless) spherical bags i1s also applicable for a
(colored) cluster of quarks, 1.e. that the strength depends on the
flavor and the number of quarks in the same way. Our treatment of the
multiguark nadrons 1s sumnarized in table 2.1 and described in detail
in sections 2.1 - 2.4.

Our method of calculation for the masses of multiquark states
does not need other parameters than those from ref. [DeG 75] introduced
1n tne spherical bag approximation and determined from the light
(s-wave) baryon and meson spectra. The calculation for other s-wave
and all orbitally excited multiquark states 1s juwrume ter—;reéc. Our way
of calculation 1s rather similar to the one py Jaffe [Jaf 77.2, Jaf
77.3]. In the spnerical bag approximation we Lse a slightly different
averaging procedure for the strength of the color-magnetic interactions.

We also make some otner approximations; we use a radius for a bag
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Ground-state orpital excitations
shape of the bag spherical stringlike
(radius R = I, N1/3)
quarks almost free in at ends; sources
the bag for color fields
an 3 ZO 2 2
= —— - — = t
mass without color MO 3 BR R Ml MO + (1/a')2
1nteractions al(R)
+ ) N (2.1 /aY) = 2rr, [2.3]
(multiplet mass) 1
color-magnetic M= md [2.2] Moo= mlA1 +myb, [2.4]
contraibution m = m(N;Nl) [2.2.1] m = m(N;N ) [2.4.1]
A = A(e,s,08) [2.2.2] A = a(cy,s,,08) [2.4.2]

Table &.1: Mass operator for rmltiquark states. The equations are

explained in the sectiors indicated within square brackeis.

which depenas on the number of quarks and antiquarks in 1t and which
1s independent of the flavor, spin and color of the quarks and anti-
quarks.

Jaffe proposed the following mass formula for the orbatal
excitations [Jaf 78]:

2

M2 = +Mm)2 + (1/a")2 (2.1)

0
where Mm only includes the color-magnetic interactions between quarks
in the same cluster; he adds this contribution to the intercept mass

M.. The mass M_ + Mm 1s the result of the spherical bag calculation.

0° 0
We think that 1t 1s more natural to add the color-magnetic i1nteraction

to the multiplet masses Ml:
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2 , 1/2
M = rmo + (1/a*) ] + M . (2.2)

The difference with the approach of Jaffe 1s tnat we must make
assumptions about the strength of the color-magnetic interactions
beyond the spherical bag approximation. Wnile Jaffe gets straight
parallel trajectories for all multiquark states, we only find parallel
trajectories for the multiplet masses. The ainclusion of the color-
magnetic interactions causes the trajectories to diverge slightly.
Another approach has been proposed by Chan et al. [(cha 77, cha 78].
Their mass formula has the same structure as eq. 2.2. They, however,
treat the intercepts and the strength of the color-magnetic inter-
actions as free parameters. This strength i1s fixed using the light
hadrons. The intercept of each trajectory is fixed by assigning one of
the states on 1t to an experimental candidate. The relation between

the intercept mass M_ and the physical & = O states 1s lost in tnis

0
way. We think that i1t 1s premature to extract parameters from
assignments 1in the present situation where for multiquark states

other than Qé and Q3 states all candidates still need confirmation or
at least clarification.

The content of this chapter 1is as follows. We discuss in detail
the spherical and stringlike bags and the fine structure. As an example
we consider the Q—é mesons. Next we mention two phenomenological
contributions to the mass, namely the exchange contributions and the

hyperfine structure. We finally discuss the connection between the

predicted multiquark states and physically observed resonances.
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2.1. The spherical bag

The mass of a spherical bag without color interactions 1s given

by eq. 1.36:

Z o (R)
_ 4r 3 0 1
My (R) = 5~ BR =+ E N, . (2.3)

R
This equation 1s valid for light quarks, as discussed 1in section 1.6.
The actual mass 1s found by minimizing the expectation value of MO

with respect to the bag radius R. This gives

aa
4 -1 1
R = (47B) [Z N (@ (R) = R—=) - ZO] (2.4)
1
As long as a linear approximation for ul(R) = a(mlR) 1s valid we can
write
R~ (ame) V4 (w0 - zoll/4 , (2.5)
where a (0) = an = 2.043. This can be accurately parametrized by (see
table 2.2):
R = r, N1/3 with ¥y = 3.63 GeV-1 . (2.6)
N multiquark R [GeV-l] r Nl/3 [Gev_l]
min 0
system eq. 2.5
2 00 4.48 4.57
3 Q3 5.27 5.24
4 QZQZ 5.81 5.76
5 Q4Q 6.23 6.20
6 Q6 6.58 6.60
9 Q9 7.39 7.55
12
12 Q 7.99 8.31
Table 2.2: Parametrization of eq. 2.5 by R = r, 1‘.’1/3. The parameters

in eq. 2.5 are 31/4 = 0.145 GeV and Zp = 1.84. The radius

r, = 3.63 cev L.
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The result 1s that the mass of the ground state, which depends on the
bag radius (R) and the quark flavors (Nl), only depends on the flavors
so MO(R;hn,NS,...) = MO(N;Nn,Ns,...). When we only consider the
{(light) u, d and s quarks (for which the approach 1s valid) we can
write

MO = MO(N;NS) - (2.7)

The results up to N = 6 are given 1in table 2.3.

N 0 1 2 3 4 5 6
S

N

2 .673 .833 .992

3 1.092 1.255 1.418 1.581

4 1.463 1.628 1.794 1.960 2.125

5 1.804 1.972 2.140 2.307 2.475 2.643

6 2.125 2.295 2.464 2.634 2.803 2.973 3.142

Table 2.38: The masses i, (N;5_) in GeV for the spherical bays neglecting
o

0

color intera~iions.

2.2. Fine structure in the spherical bag

In a spherical bag the color-magnetic interaction has the form

M__(R)
M =- ) o —2— (Fo) - (Fo) (2.8)
153 R 1 J

For simple systems like Qé and Q3 it 1s not difficult to separately
evaluate all nonstrange-nonstrange, nonstrange-strange and strange-
strange contributions (section 1.8). This soon becomes complicated 1f
the number of quarks and antiquarks (N) 1s larger than three, however,
because more than one color configuration 1s possible. While an the

3
Q system the Q2 subsystem necessarily belongs to the color irrep
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2-2
gf, there arc two possibilities in the Q9 Q system, ¢ = gf and

<

¢ = 6. A simplification [Jaf 77.2] 1s taking an average value for the

strength of tne ainteractions,

MlJ(R) o Mav(R) ' (2.9)

and obtaining factorization of the color-magnetic contribution. We

choose the following averaging procedure;

1

Bl Nn(Nn—l)M (R) + % NS(NS—I)MSS(R) + NnN M (R)
M_(R) = an s ns , (2.10)
av L nn-1)
2
and get
Mav(R)
Mm=4c—R—1§J - (F:I)l-(FG)J . (2.11)

The price of tnis averaging 1s that all multiquark states with the
same flavor configuration, 1.e. tne same number of strange quarks,
but with different 1sospins, are degenerate. Eq. 2.11 1s exact for
hadrons which belong to a totally symmetric flavor irrep, e.g.
f = 10 for the baryons. An estimate of the errors made for mixed
symmetric flavor irreps, e.g. f = 8 for tne baryons, can be readily
ootained from the values of the functions MlJ(R) for nonstrange and
strange quarxs {(section 1.8). This gives errors 5 15 % in the color-
magnetic contribution as compared with the values obtained from
eq. 2.8. Thereby we have to keep in mind that eq. 2.8 did not give
tne correct 1sospin splitting between the i and L [DeG 75].

We make one other approximation. We do not minimize the eigen-

value of the mass operator M = M0 + Mm with respect to tne bag radius,

but we use the radius R =r Nl/3

0 to evaluate the color-magnetic

contribation. Only a small error is introduced in this way. Altnough
the color-magnetic contribution may give a reasonably large energy
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shift, it only causes a small shift in the radius. The approximate
radius 1n eq. 2.6 gives a minimum value for the expectation value
<M0(R)> and 1t gives a value for <M(R)> which 1s still in the neigh-
borhood of the minimum value. An estimate of the error made by taking
the value of R 1n eqg. 2.5, independent of flavor, color and spin,

instead of minimizing gives
aM e L fﬂ. M (2.12)
2 MO m
For a typical example, the nonstrange baryons N and 4, we find
AM == 10 MeV. This shows that this approximation does not seriously

influence the results of ref. [DeG 75].

2.2.1. The strength of the color-magnetic interactions

N1/3

Using the radius R = r the strengtn of the color-magnetic

0
interactions becomes

M .
av(R’Nn'Ns)

m(R;Nn,NS) = m(N;NS) B - — 1/3 (2.13)
R=r0N

The values up to N = & have been given 1in table 2.4. These results

can be parametrized in the following way;

m(N;N ) > a N3 g NSN_I R (2.14)

with a = 107 MeV and b = 28 MeV; thas parametrization i1s exact for

N_ = 0.
s

2.2.2. The group-theoretical factor A

The calculation of 4,

A=- ) (Fc)l-(Fs)J , (2.15)
1>)

requires group-theoretical methods. Operators associated with SU(3,C)

and SU(2,S) appear 1n A. Using the quadratic Casimir operators Fz for
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NS 0 1 2 3 4 5 6
N
2 85.1 70.2 58.2
3 74.4 64.3 55.5 47.9
4 67.6 60.1 53.3 47.0 41.2
5 62.7 56.8 51.2 46.0 41.3 36.9
6 59.0 54.1 49.5 45.1 40.9 37.0 33.4

Table 2.4: The strength m(N;NS) for the color-magnetic interactions.

su(3,c), 52 for sU(2,S) and Azs for SU(6,CS) (see appendix B) A can

be rewritten [Jaf 77.3]

1 2 1 .2 1 2
A = 2N + Acs(tot) -3 S (tot) - 5 Fc(tot)

2
2 2.2, 0 .2
+ FC(Q) +3 5°(Q) ACS(Q)
2 - 2 2 - 2 =
+ FC(Q) +3 ST(Q) - ACS(Q) . (2.16)

In parentheses 1s indicated whether the color, spin and color-spin
for quarks (Q), antiquarks (5) or for the entire system (tot) 1is

meant.

The quark and antiquark parts of the expression in eq. 2.16 can

be simplified. Consider a system of N quarks with a symmetric spatial

wave function (all quarks are in s-waves). The wave function of the
QN—system 1s completely antisymmetric with respect to SU(3,F) ®
su(2,S) ® SU(3,C) or with respect to SU(3,F) ® SU(6,CS). This means
that the product of the permutation operators

pS pf - - (2.17)
13 1)

for all quark pairs, or 1f we only consider nonstrange quarks

PSPt = -1 (2.18)
13 1)
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This leads to a relation between the color-spin SU(6,CS) and the
2 2
flavor SU(3,F) Casimir operators Acs and Ff,

A2 + 2 F2 =

1
s ¢ > N(18 - N) ’ (2.19)

or 1n the case of nonstrange quarks to a relation between the color-

spin SU(6,CS) and the isospin SU(2,I) guadratic Casimir operators

A2 and 12,
cs

A2 + 2 12 = 2 N(12 - N) (2.20)
cs 3

For a state containing only quarks (or only antiquarks) the color-spin

operators can be replaced by flavor operators A(N;c,s,cs) = A(N;c,s,f):
1 1 2 2 1 .2
= = — - — + — P .
A 2 N(10 N) + 3 S” + Ff 3 F. , (2.21)
or for nonstrange quarks A(N,c,s,cs) = A(N;c,s,1):
1 i .2 2 1 2
= - = - = = F . .
A 3 N(6 N) + 3 S + I + 2 Fe (2.22)

As an exanple consider the color-magnetic splaitting of the baryons
or the (QJ)1 system. By (QN)c we 1ndicate an N-quark system coupling
to the color irrep c. The (Q3)1 system 1s totally antisymmetric. The
color irrep 1s 1 and the corresponding Young diagram 1s [13]. The
Young diagram corresponding to the flavor-spin irrep 1s the associate
diagram {3] (the rows of the associate diagram are the columns of the

original diagram). The flavor-spin irrep for the (Q3)1 system therefore

£ s A
j—ee 10 3/2 + 2
@
e
N\
N 8 1/2 -2

Fig. 2.1: The color-magnetic splitiing of the s-wave baryons.
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1s the symmetric 1rrep {56} (see appendix B4). For each (£,s)
multiplet A can be calculated from eq. 2.21. The splitting 1s given

in fig. 2.1. The masses of the s-wave baryons, M, + mA, can be calcu-

0
lated using tables 2.3 and 2.4 and they can be compared with the

results of ref. [DeG 75] and the experimental results (table 2.5).

particle M [Gev] M [Gev] M [Gev]
B exp
N 0.938 0.943 0.939
A 1.233 1.241 1.232
A 1.105 1.126 1.116
L 1.144 1.126 1.193
¥ 1.382 1.384 1.385
- 1.289 1.307 1.318
o* 1.529 1.529 1.533
Q2 1.672 1.677 1.672

Table 2.5: Comparisorn belween ilhe baryon masses M'B From [DeG 751, M

using our mass operator, and the experimentcl masses Mea:r'
v/

In tables 2.6 and 2.7 the splitting of the colorless (Q3)1 and
(Q6)1 states 1s given (using eq. 2.21). For multiquark states contain-
1ng both quarks and antiguarks eg. 2.16 1s needed and the situation 1is
more complex. A depends on the colorspin, color and spin of the quarks,
the antiquarks and the entire system. For a Qan state A 1s 1n general
neither diagonal in the states |Qan;[cs],g,s> nor in the direct
product states |Qm;[cs],g,s> ] l@n;[cs],gjs>; we nave to know the
Clebsch-Gordan coefficients for this product in order to evaluate A.

For the (Qé)1 states evaluation of A 1s no problem and the results are
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given in table 2.8. For the (Q4Q)1 states the calculation 1s possible,
when certain Clebsch-Gordan coefficients are known. Consider for
instance the first two states in table 2.9. $1 and ¢2 are the direct

|Q4;[31],_3_,O> ® IQ;[15],;*,1/2> and

product states, ¢1
¢, = |Q4;[31],211> ® |§;[15],§f,1/2>. The product states, wnich must be
colorless, can belong to the color-spin irreps [21] or [4213] when the

total spin 1s s = 1/2. They are

|[211,1,1/2> -1/2 3744,
3 = . (2.23)
|[4217],1,1/2> Y374 172,

Using eq. 2.23 1t 1s possible to evaluate A; the eagenvalues and

elgenstates expressed i1n the basis states ¢1 and ¢, are given 1n table
=2

2.9. Also for the (QZQ ), states [aer 79.1, BAer 79.2] the eigenvalues

and eigenstates of A have been given (table 2.10).

3

(Q )1 f s A
B 8 1/2 -2
D 10 3/2 2

Table ?.6: kigenvalues of b for (Qd)l states belonging to the fs

irrep {56}.
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ERRATA

List of Abbreviations:

HE = haematoxylin eosin stain.

page 101: 23"d 1ine: Fig. 38 should be Fig. 37
page 166 should be read before page 165

page 178: 1. should be exchanged with 3.

page 206: DIPASQUA should be DIPASQUALE






%84, o 3 ©9) | (9D) recouplchf

- f cs ¢C s | £ cs c__ cs s A cigenstates l

o, |3 (21 * 03 [2°] 3 [1°1 of-10.8a [.ss2 .e13][s, 1 e vV :

5, 6 1 6* (42'1 o -0.20 {_ .813 -.582 ¢2‘1 PP w :
¢ (2141 4 -4 PV vv
b, [42'1 2| s/3 w
4 | 3* (21 3* ofe* (1Y 3 (2141 1{-10/3 V273 V173 r¢5 ] PV v
» 6 1 e o|13°1 1| 83 |73 V273)le, | VoW
0, e 1171 3 1]3 [2°) 3 (21*7 1 ]-10/3 /373 /173 [+, VW
o 6 0 6* (132231 1| es3 ~173 V373 s, | VW
¢ | & [1%) 6 ofe* [17] e* [1°] o | -4.84 582 .813] '¢9 PP wW
%10 3* 1 3 221?21 o 5.51 .813 -.582)[s .| PP Vv
o1y [21%] 1 0 PV v
2P 122141 2 8/3 v

table 2.10: Eigenvalues

mesor—meson

1374

and eigenstates of A for (QZQZ)

channels (see table 2.8).

1

states and the recoupling to color-singlet



2.3. The stringlike bag

We have considered stringlike bag configurations in section 1.9.

Tne characteristic feature 1s a constant linear energy density

2,1/2

TO= (87 ac B fc)

1n the instantaneous rest frame of the string.

As long as the motion 1s non-relativistic the Schrodinger equation
with a linear potential seems to be the best description of this system
of two separated color sources. However, 1f the system consists of
light quarks, 1t 1s certainly relataivistic. This can be treated
classically and such a classical model will be our starting point; 1n
the non-relativistic limit of heavy quarks the quantum mechanical
result 1s recovered introducing a quantum defect [Joh 79.1].

Consider a string with masses m, and m, at the ends and a lainear

1

energy density TO 1n the rest frame. If this string rotates with an
‘/—‘2

angular frequency w the energy density becomes T = TO/ 1-v~. This also

happens 1in the stringlike bag where the energy density comes from the

color-electric and color-magnetic fields and the bag pressure. In the

2

1 »
rest frame the linear energy density 1is ( 5 E + B) AO' which using

>
the boundary condition é—Ez = B (eq. 1.51) can be rewritten to

T0 = (B + B) AO = 2B AO ’ (2.24)

from which the cross section of the bag (Ao) can be eliminated using

Gauss' law. In the rotating system the linear energy density becomes

1 >2 1 >2 > > >
T = ( B} E + 2 B™ + B) A, which using B = v X E and the boundary
1 22 >2
condition 3 (E- - B”) = B can be rewritten to

l—v2 1-v2 1—v2

2 T
T =( ! g+ Y _ 5+ B)A V1-v? = -2 . (2.25)
0 7

In the string the velocity v can be used as a coordinate. The
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velocities of the ends, vy and v, are determined by the equation

2

T /1-v =mv w//l v1 . (2.26)

0

The energy of the string is given by

™ oy T f"z 1

E = —; —
Vi-v ' ;l—v2 ' @ -v

1 2 1

+ arcsin v, + + arcsin v B (2.27)
vy 1 v, 2

2 2

P A U\ B B
= Y J 7 .
mVl—vf w/&—vg wz -v1 l—v2
T
[ 2 /
= —95- vy 1—v1 + arcsin vy + v, 1—v§ + arcsin V2] . (2.28)
2w

We want to consider three limiting cases

2.3.1. m, and m, non-relativistic; E=~m

1 2 m

172

Introducing M = m, + m, and u = m, /(m +m ) we find the following

1 2
relation between the energy E and the orbital angular momentum £,
2
T-\1/3
N Y (O 2.29

This is exactly the result for the Bohr quantized linear potential
v(r) =‘Tor.The quantum mechanical result for orbitally and radially
excited levels is reproduced rather precisely by a replacement of the
argument

M(nr,l) =E(R + 2. + an) . (2.30)

0

The constant lo is called the quantum defect; y is a factor by which

the radial quantum number n_ has to be multiplied. For the linear
potential, 10 =~ 1.376 and y = 1.8. A comparison with the exact levels

for the linear potential is given in table 2.11. In the cases of the
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Coulomb potential and the harmonic oscillator the replacement in eq.

2.30 1s exact. For the Coulomb potential £

0 Y = 1 and for the three-

dimensional harmonic oscillator 10 = 3/2, vy = 2.
level 2 (TO>—1/3 (% + 20 + an)2/3
(n+1g  3 \7 £

1s 1.237 1.237
1p 1.779 1.781
2s 2.163 2.161
14 2.248 2.250
2p 2.585 2.593
1f 2.673 2.675

Table 2.11: Comparison between the exact Lcvels for a linear potential
and the levels with the use of a quantum defect Ly = 1.376

and radial factor y = 1.4.

2.3.2. m, non-relativistic, m

1 relativastic; E=~m, >> m

2 1 2

The relation between E and L becomes (with m =~ m_)

1
(m T £)1/2

1/2 2 . 0
o ¥ [1 * 3 — + ...] . (2.3D)

E=m+ (n T

This intermediate case 1s e.g. applicable to the charmed mesons
[Joh 79.1].

; >>
2.3.3. m, and m2 relativistic; E ml,m2

In this case the velocities of the ends approach the velocity of
light. The limits of eqs 2.27 and 2.28 are E ~ 1 To/w ana
£ o2 TO/2m2. The relation between E and % as

g2 = 2n T, L= (1/a%) & , (2.32)

44



which form linear trajectories in the MZ-E plane. If we assume that the
same procedure as has been followed 1n section 2.3.1 gives the correct

quantum mechanical result, we find

2 _ '
MR = (1/a') (2 + EO)
= Mg + (1/a')8 (2.33)
This yields linear trajectories with an intercept & = - lo or
Mé = (Ro/a'). Taking this intercept mass MO to be the (average) mass

of the s-wave states calculated in the spherical bag approximation
neglecting the color-magnetic interactions, 1s an assumption that takes
account of the connection between the s-wave states and the orbitally
excited states, as 1s experimentally observed for baryon-meson and
meson-meson resonances.

The slope of the trajectories

2,172

(1/a') = 2m (81 o« B £7) (2.34)
c c

1/4

calculated from the bag parameters o, = 2.20 and B = 0.145 GeVv

yields 1/a' =~ 1.1 GeV2 and 1s 1n excellent agreement with the experi-
mental slope of baryon and meson trajectories. In this case, Q—ﬁ or
Q—Q2, the color structure is g;gf (the color i1rreps to which the quarks
at the ends belong are ¢ = 3 and ¢ = 3*) and fz = 4/3, For multiquark
states with N > 3 not only the color structure 3-3%, but also 6-6*

and 8-8 are possible, e.g. (Q2)6-(§2)6* and (QQ)B—(QQ)B. Orbital
excitations with such color structures have different slopes. The slope
1/a' 1s proportional to the square root of the eigenvalue of the
quadratic Casimir operator fz. For a §;§f structure fi = 10/3 and
(l/aé) = /575 (1/&5); for a 8-8 structure fi = 3 and (1/aé) =

3/2 (1/05)
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2.3.4. Other bag-shapes

One could ask why a stringlike configuration i1s preferred above
other configurations, e.g. starlike configurations. Classically there
1s an argument in favor of a linear straing. Consider a starlike
configuration with n arms. At each end there 1s a cluster with the
(smallest) color charge 3 or 3*. The linear energy density in each arnm

1s T. = 1/27na!

0 3 For large £ (or light clusters) it immediately follows

(analogous to egs 2.27 and 2.28) that E = n7T0/2m and & = nﬂT0/4w2,
and we find

E% = n (1/2a3) 2 (2.35)

This shows that starlike configurations (n > 2) are heavier than the

stringlike configuration (n = 2)

2.4. Fine structure in the stringlike bag

While 1n the spherical bag the strength of the color-magnetic
interactions can be calculated, one has to make assumptions in a
stringlike bag. The first assumption 1s that the color-magnetic spin-
spin interactions between the color-magnetic moments of two quarks
vanishes 1f the two quarks are spatially separated at different ends

of the stringlike bag, 1.e. for large f. We can write

Mm = mlAl + m2A2 + V12 . (2.36)

The part m (or m2A2) 1s the color-magnetic interaction contribution

1A1
of the cluster 1 (or 2) at the end of the bag. The average strength of

the interaction 1s m, (or m2). Al (oxr 32) 1s the group-theoretical

factor

8, = A N, cius,.cy5)) =~ y (Fa) -<1=o)J . (2.37)
11>31 1 1
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where the summation i1s over quarks in cluster 1. contains the

Vi2
interactions between the color-magnetic moments of two quarks at
different ends of the bag. It also contalns interactions between the
color-magnetic moments of the quarks and the color fields in the
stringlike bag. It causes the hyperfine splitting of the mass spectrum

(section 2.6.2). Neglecting V the color-magnetic interaction is the

12
sum of two contributions from the quark clusters at the ends of tne
bag. The masses of orbitally excited multiquark states are obtained by

adding the color-magnetic contribution to the multiplet mass Ml'

2.4.1. The strength of the color-magnetic interactions in a cluster

The strengtn of the color-magnetic interactions in a stringlike
bag cannot be calculated like in the spherical bag, nor can it be taken
as a free parameter 1n cases other than the baryon resonances; for
multiquark states with N > 3 only very few candidates with well-estab-
lished quantum numbers exist. We simply use the strength in a spherical
bag to estimate the strength in a cluster. We assume the strength to
be given by m(N,Ns) from eq. 2.13 or table 2.4 the strength of the
color-magnetic interaction for a cluster depends on the number and
flavor of the quarks in 1t, but it 1s independent of the color of the
cluster.

A

?.4.2. The group theoretical factors Al' 5

The factors Al and A2 are evaluated as described in section 2.2.2.

All formulae derived in this section can be applied for clusters
m=n
Q

Q

)c; in section 2.2.2 tables have been given for the colorless
3 = 4~ 2=2
clusters (Q7),, (Q6)1, (QQ),, (QQ), and (Q°Q),.
As an example of a colored cluster we consider the color-magnetic

splitting of the (Q2)3* clusters. The wave function 1s totally anti-
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symmetric. The color part (c = }f) 1s antisymmetric (Young diagram
[12]). The flavor-spin irrep is symmetric, fs = {21} (Young diagram
[2]). For each (fjs) multiplet A can be calculated from eq. 2.21. The
splitting 1s given in fig. 2.2.

The splittings of the (Qz)a*, (92)6, (Q3)8, (Q4)3, (Q4)6* and
(Q5)3* cluster are given in tables 2.12 - 2.17. Like in the colorless
case the colored clusters containing quarks and antiquarks are more
difficult to evaluate than the clusters containing quarks only. For
the simplest clusters namely (Qé)8 and (QZQ)3 the splittings are given

in tables 2.18 and 2.19.

£ s A
(02)3* . 6 1 +2/3
— -~
N
N\
N\
S 3* 0 -2

Fig. 2.2: The color-magnetic splitiing of the (Q?)S* cluster.

(Q2)3* f s A Table 2.12:

T 3% 0 -3 eigenvalues of & for the (Q2)3*

T 6 1 2/3 eclusters, belonging to the fs irrep

1 P
| {21},

2 ” .

Q7 £ s A Table 2.13:
, 2
7 £ +

3 3% 1 -1/3 eigenvalues of b for the (@ )6

¢ 6 o 1 clusters, belonging to the fs irrep

2 =

{15},
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@, | f s 5
9, 1 1/2 - 7/2 Table 2.14:
¢y 8 1/2 - 1/2 eigenvalues of A for the
5 8 3/2 1/2 (Qd)g clusters, belonging to
b4 10 172 5/2 the fs <rrep {70}.

(Q4)3 £ s A (Q3)1(Q)3 recoupling

¢ 3 0 -4 BQ

%, 3 1 -10/3 BQ

2, 6* 1 -4/3 BQ

by 15 0 0 BQ

s 15 1 2/3 BQ DQ

P 15 2 2 DQ

¢, 15 1 14/3 0

Table 2.15: eigenvalues of A for the (Q4)3 clusters belonging to the

fs irrep {2101} and recoupling to the baryon-quark channels

(see table 2.6).
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s | £ A
% 3 -7/3
¢2 6* -1 Table 2.16:
95 6* 1 eigenvalues of o for the (Q4)
o4 15 5/3 | clusters, belonging to the fs
¢ 15 5 irrep {105,}.

(QS) 3% £ s A (Q3) 1 (Qz) 3% recoupling

* 3* 1/2 -4 BT, BT1

) »* 32 -3 BT,

¢4 6 1/2 -2 BT, BT,

4 6 3/2 -1 BT, DT

g 15% 1/2 0 BT BT, DT,

¢ 15%* 3/2 1 BT, DT,

¢, 15% 5/2 8/3 DT,

g 24 1/2 3 BT, DT,

b 24 3/2 4 BT, DT DT,

10 21 1/2 8 DT,

50

6‘*

2.17: eigenvalues of & for the (QS)z* clusters belonging to the

fs Zrrep (420} and recoupling vo baryon-diquark channels

(see tables 2.6 and 2.12).



15

Q Q0
(Q@)8 f cs c s £ cs c s cs s A
o, |3 1 o3 w2 | oz 1)y o a2 |21 o 1/2
¢, 1 | - 1/6
Table 2.18: eigenvalues of A for the (Q@)a clusters.
2. 2
QD | 0
£ cs c s cs s A eigenstate (QQ) 1(Q) 3 recoupling
) 3* (2] ¥* 0 [1] 1/2 | -5.42 582 -.813[e,] P0 s)
4, 6 1 131y 12 | -0.25 813 .582|[4,]| o V0
¢ (311 32 | a3 vo
? 6 [1?1 & 0 [1] 172 | -2.42 _.582 .813] s,] m0 Vo
o ¥ 1 [ 2%%1 e 2.75 813 .582|[¢.| B0 VO
b 2217 32 | a3 vQ

Table 2.19: eigenvalues of A for the (QZQ)J clusters and the

channels (see table 2.8).

recoupling to meson-quark




2.5. An example: the orbitally excited 9-0 mesons

For Q—Q mesons the mass operator

M= MQ + mlA1 + m2A2 (2.38)

reduces to M = ME as there 1s one particle at each end, so Al = \2 = 0.

For nonstrange orbirtally excited Q-0 mesons the multiplet masses ME'

found from Mi = Mé + (1/05)1 with MO(Z;O) = 0.673 GeV and 1/&3 =1.1

Gevz, are compared with the experimental masses in table 2.20. As

¢ M [Gev] aFc Yexp fcev]
I=1 I=20

0 0.67 o™" 7(0.138) n(0.549)

1 0(0.776) £ (0.783)
1 1.25 1 B(1.231)

ot 51 (~1.27) (1 (~1.3)

1 A (1.28) D(1.276)

2 A, (1.312) £(1.271)
2 1.63 27t A, (~1.64)

1 e (~1.60)

-

3 g(1.688) w(1.668)
3 1.94 3t

Pa ~ 1.95

3++

4t ~1.98 h(2.04)

Table 2.40. Preatcted and experimental Q3 mesons. The exrerimevital

masses are taken from refs [PuG 781, [0za 781 and [Dau 79]).
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expected the color-magnetic interaction between the quark and the anti-
quark, which reside at different ends, vanishes and the ¢- and 7-
trajectories become degenerate in the M2—Q plane. Already for & =1
they are very close. The QQ ¢ = 1 states containing nonstrange quarks
all lie around 1.25 GeV. For almost all of these states candidates
exist in this region. The scalar mesons (JPC = 0++) € (700), S*(980)

and 6 (980) do not belong to the 3P0 Q0 nonet. They have a very natural
explanation as & = 0 QZQZ states [Jaf 77.2]. From tables 2.3, 2.4 and

=2 ++
2.10 1t 1s found that the lowest Q2Q s-wave states have JPC =0

and A = - 10.84. The nzﬁz (I = 0) state has a mass M =~ 0.7 GeV; the
two (degenerate) nsns (I = 0 and 1) states have a mass M~ 1.2 GeV
(n = nonstrange quark, s = strange quark). The shift of the position
of the two degenerate states to the KK threshold at 0.98 GeV 1is due

to the strong coupling of the states to the KK channel [Jaf 79.1,

Som 80].

2.6. Phenomenological contributions

2.6.1. Exchange contribution

In this section we discuss the first of two possible contributions
to the mass, namely the exchange contribution. Quarks reside at the
ends of the stringl:ike bag but their wave functions nevertheless may
overlap. For a system of identical particles the wave functions must
have a definite symmetry. This leads to exchange contributions which
depend on the symmetry of the spatial part of the wave function. These
contributions are absent in the Q—§ system as the wave function need
not have a definite symmetry; they are present in a bag with more
quarks or antiquarks, but will vanish for large % values when the
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quarks at different ends are spatially separated.

To find a (first-order) expression for the exchange contributions
we neglect all splittings due to color, flavor and spin 1interactions.
For each quark two spatial wave functions are possible, 1> or |2>,
indicating whether the quark belongs to the cluster at end 1 or at end

N N

2. For an N-quark state Q "-Q the spatial part of the wave function

for the QN1 system belongs to the symmetric irrep of S(Nl)' the

symmetric or permutation group of N1 objects. This 1rrep 1s represented
N

by the Young diagram [N1] (see appendix B) . The symmetry of the Q

system 1s given by the Young diagram [NZ]' The spatial part of the

total wave function then belongs to the reducible representation of

S(N) girven by the product of these symmetric irreps of S(Nl) and S(Nz).

The reduction of this representation in 1its (N2+1) 1rreducible

components (say N :_Nl) 1s given by

2
N2 N2

[NI] ® [N2] = 5 [N1+N2—v,v] = Z [N-v,v] . (2.39)
v=0 v=0

These i1rreps can be simply labeled by v = 0 to N2. As the mass

operator M (eq. 2.3) 1s a scalar operator under permutations, 1t can

0

be written as
My =1nh, P , (2.40)
v
where hv 1s the eigenvalue of MO for states whose (spatial) wave
functions belong to the irrep [N-v,v] of S(N) and Pv 1s the projection
operator on this irrep. The eigenvalues hv can be expressed 1n terms
of (N2+1) exchange integrals. The simplest two are the direct matrix

element

<12..... 1M 12, ... > .M (2.41)
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and the two-quark interchange matrix element
> = = . .
121..... Me (2.42)

When we assume that all other (more-quark) excnange matrix elements do

not contribute, M. can be expressed in M

0 and Me:

d

My = My - M é {(Nl—\)) (N,~v) - v} P (2.43)

Tne minus sign in eq. 2.42 and 2.43 1s introduced because we expect a
negative contribution of the exchange integrals in the case of the

2
baryonic Q-0 excitations. In this case eqg. 2.43 becomes

M, = Md - Me (2 P

0 - P} (2.44)

0 1

The exchange integral 1s analogous to the one in the Helium atom, but
the sign 1s different. In the Helium atom the exchange contribution
comes from the electric interaction between the two electrons

~ (- e)2 > 0. In our case 1t comes from the color interaction between
two quarks ~ g2 Fl-Fz, which for two quarks coupling to a color irrep
3* © 3 8 3 equals - 2 92/3 < 0. It also follows that Me can be positive
or negative when the number of quarks and antiquarks is larger than
three since a two-quark subsystem can then also couple to a color irrep
6 < 38 3 for which 92 F1~F2 = g2/3.

The total wave function of an N-quark system 1s antisymmetric. A
spatial wave function with a symmetry given by the Young diagram
[N-v,v] 15 uniquely combined with a color-spin-flavor (csf) wave
function with a symmetry given by the associated diagram [2v,1N—v]'
Pv therefore also projects out the allowed color ® spin ® flavor

representations.

For baryon resonances the projection operators Pv even project out
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flavor-spin SU(6) irreps since for Q3 baryons the color part is
completely antisymmetric ([13]). States for which the flavor-spin part
belongs to the symmetric irrep {56} = [3] or the mixed symmetric irrep
{70} = [2,1] have a spatial part belonging to the symmetric irrep [3]
(v = 0) or the mixed symmetric irrep [2,1] (v = 1) respectively. Using
the projection operators P and P on the 56- and 70-dimensional

56 70

representations of flavor-spin SU(6) we can write eq. 2.44 as [cut 77]

M=M, - Me (2 P56 - P7O) B (2.45)

We expect that tne exchange contributions are not very important
for bags with a color gfgf structure and masses above 2 GeV. This as
based on the observation that for & = 2 Q2—Q baryons with M =2 1.9 GeV
the exchange contributions are already rather small compared to the
£ =1 Q2—Q baryons (M = 1.5 - 1.8 GeV). The cross section of a bag only
depends on the color structure ngf. The separation of the ends there-
fore does not depend on the angular momentum %, but rather on the
mass. This leads to the expectation that the mass 1s a craiterion for
the exchange contributions and that these contributions can be neglected
above 2 GeV.

2.6.2. Hyperfine structure

The color-magnetic interactions i1in a spherical bag or in the
clusters of a stringlike bag are responsible for splittings in the
mass spectra of multiquark states which we call the fine structure.
Other effects due to color interactions we will call the hyperfine
structure. One contribution 1s the color-magnetic interaction between
the magnetic moments of two quarks at different ends of the bag. This

residual color-magnetic 1nteraction is written as
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M(res)

o = m12/\12 B (2.46)
where LI 1s tne strength and A12 1s the group-theoretical factor
b= - ) (Fo)ll'(Fc)l2 , (2.47)

1,01,
where the summation 1s over pairs of quarks at different ends. The

factor A12 1s the difference between A& and Al + A2,

A12 = A - Al - A2 ’ (2.48)

and depends on the color-spin, color and span of the clusters and the
entire system. Other interactions in (stringlike) orbitally excited
bags may be spin-orbit- and tensor-like interactions.

The excnange and hyperfine interaction terms can be included in a
phenomenological way. We will only consiaer them when we discuss our
results obtained from the mass formula in table 2.1 and when the

experimental mass spectrum requires the inclusion of them.

2.7. Resonant behavior of multiquark states

The masses of multiquark states are calculated in a zero-width
approximation. A set of quarks and antiquarks 1s confined to a bag.
If their number is larger than three there are color-singlet subsystems
in such a bag, e.g. (@3),(09), < (@%5)),, (@)),(d, = %), and
(Q3)1(Q3)1 c (Q6)1. These subsystems need not be confined, the multi-
quark bag can very easily fission into two bags, and very large widths
are expected.

Jaffe and Low [Jaf 79.1] argued that the zero-width approximation

1s not valid and that one has to use a new method of analyzing the

data; the masses calculated in the bag model are the positions of poles
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in the P-matrix.

The P-matrix 1s related to the S-matrix via
P = vk (1" (xy) + 0" (x)SI(xy) + O(xO)S]_l k , (2.49)

where I(x) and O(x) are the incoming and outgoing waves. We use dimen-

si1onless wave functions u({x) = u(r)//E} X = kr, x. = kb, where b 1s the

0
distance beyond which the color-singlet subsystems are free. If no

long-range potentials like the Coulomb-potential are present O(x) and

I(x) become for an %-wave channel and large X:

o(x) » x hél)(x) s (= ¥l (2.50a)
I(x) > x héZ)(x) > (1)t X ; (2.50b)

The relation between P and K-matrices 1is
P =/ [Fr(xg) + G' (%) KI[F(x) + G(xo)xl'1 /x (2.51)

where F(x) and G(x) are tne regular and irregular solutions which when

no long-range potentials are present become:
F(x) - x ji(x) -+ sin (x - Lm/2) , (2.52a)
G(x) » - x nl(x) » cos (x - u/2) . (2.52b)

The P-matrix 1s 1n general a multichannel matrix, I, O, and /E-belng
diagonal matrices; 1t 1s real for real energies, symmetric and it has

fewer singularaities than the K-matrix. The P-matrix equals
P =k oprix) ¢'1(xb) vk . (2.53)

In a potential-scattering problem 1t has poles at the energy values
E = En where En are the eigenvalues in the problem when we impose the
boundary condition ¢(xb) = 0. The P-matrix formalism naturally applies
to multiquark states as the (QZQZ)1 states are the solutions in the
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(Qﬁ)l(Qé)1 channel after imposing the bag model boundary conditions.
The one~dimensional P-matrix for an f£-wave channel 1s found from

eq. 2.51 and Kl = tan 01:

tan (51 - ¢£) = Im Ll/(Pl/k - Re Ll) R (2.54)

where

¢L = - Fl(xo)/Gi(xO) and L1 = Oi(xo)/ol(xo) . (2.55)

Ll and ¢2 can be obtained from the recursion relations

2 2

ImL =xImL /lW/x-RL %+ (ImnL, "] {2.56a)
2

Re Ll = - /% + x(&/x - Re Ll—l)/[(l/x - Re LE-I)

(L, %) (2.56b)
-1
-1
¢L = ¢l—1 + tan [1m Li_l/(2/x - Re Ll—l)] . (2.56¢)
The explicit expressions for £ = 0 and 2 = 1 become
Po/k = cot (xo + oo) ’ (2.57)

_ 1o 2 _ -1 2
Pl/k =[-1 + Xy cot (xo + 6 tan xo)]/(l + xo).(2.58)

1

The residues of the poles in the P-matrix are proportional to the
projection operators on the channels in which the poles occur. Like
for the S-matrix a small residue gives a rapid varaiation in the phase
shift (xo = kb 1s approximately constant in the neighborhood of the
resonance momentum kR), while a large residue gives a smooth variation
in the phase shift.

We discern a few possibilities. First consider an unstable state,
which easily fissions i1in an S-wave. From eq. 2.57 1t follows that the
relation ka + 60 = m holds for the first pole. This means that thas

state gives a positive (attractive) phase shift when ka < 7 and that
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1t gives a negative (repulsive) phase shift when ka > W,

An example 1s the €(700); this 1s the lowest Q2Q2 state
(JPC = 0++, IG = O+) coupling to the I = Q0 nnm S-wave. It causes a
strong attraction (kR =~ (0,32 GeV and with a reasonable value
be~6 GeV_1 we find kpb = 2.9 < m). A P-matrix analysis [Jaf 79.1] of
the I = 0 71 S-wave gives a pole at 0.69 GeV. In S-matrix analyses the
€ meson corresponds to a pole far from the real axis [Pro 79],

M = (0.66 - 0.32 1) GeV and therefore appears as a wide resonance
[Nag 75] wath M = 0.76 GeV and T = 0.64 GeV.

These unstable states which fission into open channels generally
will not show up as (clear) S-matrix poles but contribute to the
background, especially when the positions of the poles are near k = u/b.
For instance 1f we have P-matrix poles at positions nm/b (n integer)
with residues 2n2/b3 there 1s no contribution to the phase shift. Eg.

2.57 and the expansion

@

xcotx=1+z 2—22
n=1 X -nnm

(2.59)

even shows that 6 might be zero. A nice example 1s the lowest

exotic I = 2 meson, a Q2§2 state with A = - 4.84 predicted at 1.14 Gev
coupling to the I = 2 71 S-wave (kR = 0.55 GeV). This nn-wave shows a
negative phase shift. There 1s no pole in the S-matrix, but the
P-matrix analysis [Jaf 79.1] shows a pole at 1.04 GeV.

When there 1s a barrier which prohibits the decay, the states are
more stable and usually will show up in the S-matrix. Examples of such
barriers are weak coupling and angular momentum barriers for decays
1n L-waves with L # O.

Consider the p meson as a first example. The ¢ meson 1is (mainly)
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a Qé meson and for the coupling to the I = 1 nn P-wave creation of a

quark-antiquark pair 1s necessary. The coupling to (Q§)1(Q§)1 1s there-

fore suppressed and the P- and S-matrix poles almost coincide.
Another example 1s the S* predicted at 1.2 GeV. This 1s a QZQZ

state which couples strongly to KK, the coupling to 7mr 1s suppressed

as this requires anninilation of an ss pair and the creation of an nn

pair. A two-channel P-matraix analysis of the I = O, Ti-KK S-wave shows

a pole at 1.04 GeV. The one-channel (reduced) P-matrix analysis shows

a pole at the KK threshold at 0.98 GeV, which (as expected) lies below

the pole in the full P-matrix analysis. In a coupled-channel S-matrix

analysis [Som 80] the poles which in zero-width approximation lie

above the KK threshold also shift to the KK threshold when the couplang

between the bag and the decay channels 1s increased.
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CHAPTER 3: BARYON RESONANCES

Excited baryons are described under the assumption that the quarks
are confined to a stretched bag. For the simplest (three-quark) baryon
resonances two quarks, referred to as the diquark, reside 1n one end
and the third quark resides at the other end. The excitation energy
for orbital excitations comes from the color fields inbetween the color
sources, which are tne quarks. The color-electric field lines are
collimated 1n a flux tube [Joh 76], which leads to the constant linear
2.1/2

energy density T, = (8naCch)

0 In casc of three-quark baryons the

color structure must be (Qz)a*—(Q)3 and fi = 4/3, but for four-quark-
one-antiquark baryons different color structures are possible, e.g.
(©%9) 3—(92)3* and (QZQ)G*-(QZ)B-

The essential difference between this model and quark-shell models
[Hor 73] 1s tnat the gluons play an important role in the excited
states. For the ground state baryons containing light quarks 1in a
spherical bag [DeG 75] the gluons can be discarded, but for heavy
quarks or high orbital angular momenta the color-electric and color-
magnetic fields dominate the bag energy. The quarks are only the
sources of these fields and their wave functions are no longer impor-
tant. In this case the bag 1s stringlike [Joh 76]. An intermediate case
1s the bag which contains light quarks and has small angular momentum.
This system can be approximately described by a bag with quarks in
higher waves taking into account surface deformations [Reb 76, DeG 78].
The system can also be approximately described by a stringlike bag
taking into account the possibility of the exchange of quarks between
the ends [Mul 78.4, Mul 79.1], which 1s discussed in this chapter and
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which links up better with our general treatment of the multiguark
states.

The Q3 ground states belong to the multaiplet [56,0+] 1in the
Su(6,FS) x 0(3) classification. Many baryon resonances have been found,
which can be also classified in flavor-spin multiplets but these
assignments are not always definite. For instance, a nucleon resonance
with J° = 3/2 ~ can belong to the [70,1 ), [56,17) or [70,3”] multai-
plets. Often one tries to make a more definite assignment by consider-
1ng the mass or the coupling to decay channels. For instance a nucleon
with JP =3/2 belonging to the [70,37] multiplet has spin s = 3/2
and decouples from the AK channel.

In combining three quarks one generally finds the flavor-spin
multiplets

{6} @ {6} ® {6} = {56} @ {70} @ {70} & {20} (3.1)
and 1n a quark model where the quarks reside in orbitals (nr+1)l with
energlies E1S < E1p < E25 < E1d < ... (harmonic oscillator, linear
potential) one finds (after elimination of spurious states) multiplets
[s6,071, [70,171, [56,071, [56,2%1, [70,2%], [70,0*1, [20,17], [70,37]
[s6,1"1, ... . The orderaing of the multiplets depends on the form of
the potential [Fag 79, Dal 79].

In the strainglike bag the flavor-spin content i1s determined by
the product of the irreps to which the quarks at the ends belong. The
diquark belongs to the antisymmetric color irrep gf and the symmetric
flavor-spin irrep {21}. Therefore the flavor-spin content for baryon
resonances 1S

{21} ® {6} = {56} @ {70} . (3.2)

The eigenstates for the baryons, however, do not purely belong to one
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of the flavor-spin irreps {56t or {70} except for travial cases like
A(3/2), 1.e. a A resonance with spin 3/2, and £(3/2) which only appear
in the irrep 156} or N(3/2), A(1/2), A(3/2) and 2(1/2) which only
appear in the irrep {70}. The other states are mixtures of the 1irreps
{56} and {70;. For small £ values the exchange contributions, due to
the tunneling of a quark from one end to the other, are large and the
mi1xing 1s small. For large & values the exchange terms vanish and the
fine structure splitting, which breaks flavor-spin symmetry, remains;
in thls case the mixing 1s strong. We mention here that even for s-wave
baryons, indications exist that in the decay the flavor-spin symmetry
1s broken [zra 79].

The number of flavor-spin multiplets in the case of strangliake
(excited) bags 1s considerably smaller than the number of them in the
quark-shell model 1f we restrict ourselves to excitations of the bag
1n which the quarks are not excited. For instance all flavor-spin
irreps {20} are absent.

Baryons (B = 1) with more than three quarks are also possible,
e.g. s-wave Q4§ states [Jaf 76, Mul 78.2, Som 78, Str 79], s-wave
QSQZ states [Str 79] and their orbital excitations [Mul 78.2, Mul 78.3,
Fuk 78, Hgg 78]. Except when they have a very low mass or when the
decay to open channels 1s 1inhibited by some barrier these states will
not show a clear resonance behavior.

The content of this chapter i1s as follows. In section 3.1 we apply
the multiquark mass formula of chapter 2 to the Q3 and Q4§ baryons. For
the low-lying Q3 baryons the phenomenological contributions can be
1ncluded as many experimental candidates are present. In section 3.2

we consider the nonstrange baryons. For £ > 2 the mass formula gives
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a good description of the mass spectrum without the phenomenological
contributions. For £ = 1 a good description can be obtained when these
contributions are included. In section 3.3 we consider the strange
baryons. In the sections 3.2 and 3.3 we also discuss the possibility
of Q4§ baryon resonances. In section 3.4 we discuss the (exotic) Y = 2
baryon resonances.

Q3 baryon resonances can decay in baryon-meson channels via
quark-antiquark creation. The coupling of the resonances to the decay
channels in the 3P model is treated in section 3.5 and applied to the

0

nonstrange baryons in section 3.6.
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3.1. The masses of baryon resonances

3.1.1. The multiquark mass formula

Using the mass formula for multiquark states discussed in chapter

2, we find the masses from

M

MO +m A (3.3)

for the (Q3) and (Q4§)1 states and from

—

M 1/2

[M§+ (1/a") 2] +m A, +m b (3.4)

171 272

for orbitally excited systems. While for the three-quark system only
one configuration 1s possible, namely (Q2)3*-(Q)3, there are more
possibilities for the four-quark-one-antiquark system, namely
(©°9) 1= 10%) jur (©%0) 1= @5, @) =@ 40 ©°D) 4 (@D and (©7) 4 (9D) .

In the baryon sector the presence of Q3 states makes the detection
of the far more unstable Q4§ states difficult. We will therefore mainly
concentrate on the Q3 states.

The fine structure of the spectrum 1s determined by the color-
magnetic interactions between the quarks in the clusters. For Q2—Q
baryons the fine structure 1s therefore determined by the splitting of
tne diquark (see fig. 2.2), A = - 2 for theikrdlquark and A = + 2/3 for
theTi-dlquark. The most natural way to classify the baryon resonances
1s therefore according to their diquark content. We distinguish A
states, consisting of aTkrdlquark and a quark, and B states, consisting
of anTl-dlquark and a quark. As the strength of the color-magnetic
1interaction also depends on the number of strange quarks in the
diquark, there are small differences in the color-magnetic contri-
putions for the A and B states (table 3.1). Another possible classifi-

cation 1s the usual classification in SU(6,FS) and SU(3,F) multiplets.
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type diquark Resonances Mm [Mev]

fly,1)s and their span s
A(nn-n) 3*( 2/3,0 )0 N(1/2) - 170
B(nn-n) 6 (2/3,1 ) N(1/2) N(3/2) A(1/2) A(3/2) + 57
A(nn-s)  3*( 2/3,0 )0 A(1/2) - 170
A(ns-n) 3*%(-1/3,1/2)0 M(1/2) £(1/2) - 140
B(ns-n) 6 (-1/3,1/2)1 A(1/2) A(3/2) Z(1/2) £(3/2) + 47
B(nn-n) 6 ( 2/3,1 )1 L(1/2) I(3/2) + 57
A(ns-s) 3*(-1/3,1/2)0 2(1/2) - 140
B(ss-n) 6 (-4/3,0 )1 2(1/2) =2(3/2) + 39
B(ns-s) 6 (-1/3,1/2)1 2(1/2) £(3/2) + 47
B(ss-s) 6 (-4/3,0 )1 Q(1/2) Q(3/2) + 39

Table 3.1. (Q?)S*_(Q)S orbitally excited baryons, diquark-quark basis
states and the color-magnetic energy. The spin s has to be
combined with the orbital angular momentum i to find the

total spin J.

The flavor-spin basis and the diquark-quark bases are related via the
unitary transformation given 1in table 3.2.

3.1.2. Exchange contraibutions

2
The Q -Q baryon resonances are the lowest orbitally excited
states and we may expect exchange contributions. Effectively the wave
2
function for the Q -Q system 1is

L) -
b~ x@2i0,) ryr ) ) (3.5)

where the part x(Qf,Qz) describes which quarks reside in end 1 or end

2 and the degrees of freedom like flavor, color and spin of the quarks.
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y =1 ~ N ~N ~ ~
~ ~ ~ S~ ™~
— - ™ — ™
(N/A) = z =1 P 3
o ol ol g‘[ 9:|
© ‘S =) =) e
i = = = D
A(nn-n) N(1/2) | VY172 -V1/2
B(nn-n) N(1/2) | Y1/2 +V1/2
B(nn-n) N(3/2) 1
B(nn-n) A(1/2) 1
B(nn-n) A(3/2) 1
y=0 —_ ~ - ~- . - ~ —~ —~
N N N N N N o N o~
~ ~ ~ ~ ~ ~ ~ ~ ™~
(A/E) ) ot z N z z Z a2 c
< < < < “ “ “ “ “
®] -] o] | o] o] gl gl |
) ° =) S S ) S v =)
L2 = = = o = = 2 =
aA(nn-s) A(1/2) | v1/3 V173 -¥1/3
A(ns-n) A(1/2) |-Y1/6 V2/3 V1i/6
B(ns-n) A(1/2) |-vV1/2 0 -vV1/2
B(ns-n) A(3/2) 1
A(ns-n) I(1/2) Y1/2 -¥1/2 ©
B(nn-s) %(1/2) Y1/3 Y173 V1/3
B(ns-n) £(1/2) -Y1/6 -Y1/6 v2/3
B(nn-s) L(3/2) Y173 V273
B(ns-n) E£(3/2) v2/3 -v1/3
(table 3.2)
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N N N N N
~ ~ ~ ~ ~
(2) z z Z < c
lll lll 131 ] al
@] o] é' é' o|
) =) S < =)
n = = 2 &
A(ns-s) Z(1/2) vi/2 =/172 0
B(ns-s) Z(1/2) v1/6 Y176 v2/3
B(ss-n) Z(1/2)| -/1/3 -/1/3 V1/3
B(ns-s) -(3/2) v2/3 V173
B(ss-n) Z(3/2) Y173 -v2/3
y=-2 g g
ol !
() = c
g o
=) ©
R o
B(ss-s) Q(1/2) 1
B(ss-s) Q(3/2) 1

Table 3.2: The unicary transformation matrices between the diquark-

b . . , . 3
quark bastis and the Flavor-spin basis for § baryons.

L -
The part RB Y; ) descraibes the spatial wave function of the bag; r12

gives the relative position of the ends (1 and 2) of the bag. Neglect-
ing the color, flavor and spin of the quarks x reduces to [112>,

121> or |211>, 1ndicating which quarks reside at end 1 and which quark
resides at end 2. It 1s easily seen from

(%) - (2)
L () ———— j122> Ry(r ) Y

tunneling

112> RB(r12) Y (r12)
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(2)

— E -
= (97 [211> Ry(x ) ¥ T (x,)  (3.6)

12
that the tunneling of a quark gives an exchange contribution. The
tunneling of a quark 1s proportional to the exchange of the other two

quarks. With the factor (-)l and using eq. 2.45 we can write

MT = (=) Me (2 P56 - P7O) (3.7)

From eq. 2.45 we see that next to the exchange contribution in eq. 3.7
also a constant contribution, which we denote as 4M, may be present.

3.1.3. Hyperfine structure

Three types of hyperfine interactions have been discussed 1in
section 2.6.2. We have not included spin-orbit and tensor-like inter-
actions. The spin-orbit term 1s not needed in the nonstrange baryon
spectrum and the inclusion of tensor-like contributions creates
difficulties because we do not have explicit expressions for quark
wave functions like i1n quark-shell models [Isg 77, Rei 78].

For small £ values we do include a term for the residual color-
magnetic interactions (eq. 2.46). This corresponds to the contact term
et 3
Sl-S:I $ (rlJ) in refs [Isg 77]. The strength of the color-magnetic

1nteractions between quarks at different ends, m12, 1s taken as a

parameter and the group-theoretical factor A12 can be written as

(3.8)

3.2. The mass spectrum of nonstrange baryons

For each & (# 0) the Q2—Q baryon resonances belong to the
flavor-spin representation {21} ® {6}; this representation can be

decomposed into the flavor-spin irreps {56} @ {70}. From table 3.2
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we see that the nonstrange baryons can be labeled NA(1/2), NB(1/2),
NB(3/2), AB(1/2) and AB(3/2) 1n the diquark-quark basis or N56(1/2),
N70(1/2), N70(3/2), A70(1/2) and A56(3/2) 1n the flavor-spin basas;
the subscrapts of N(3/2), A(1/2) and A(3/2) even can be omitted.
Between parentheses the spin s of a state 1s given. Actually such a
state stands for a multiplet of states with total angular momentum

J = ]E—si, |L—s'+1,..,|£+s|, and parity P = (—)1. Often we use instead
of JP the notation L 2I 2J indicating the Nn-wave to which a resonance
couples, the isospin and the total angular momentum.

We will separately discuss the mass spectra for orbitally
excited Q2—Q baryon resonances with & = 1, & = 2 and large & (& > 2);
also other possible baryon resonances, namely Q4§ states and radially
excited baryon resonances are discussed.

3.2.1. QP =1 Q2—Q baryon resonances

Using the multiquark mass formula eqg. 3.4 we calculate the masses
by adding the color-magnetic splitting (table 3.1) to the multiplet

mass Ml = 1,514 GeV. Tne A-states are predicted at 1.344 GeV, the

B-states at 1.573 GeV. There 1s a large discrepancy between these
masses and the experimental negative parity baryon resonances. To
explain the experimental mass spectrum we include some phenomenological
terms; the mass operator becomes (section 3.1)

M=M + M+ (o) m_(2 P

2 - P7O) +mA+m A . (3.9)

56 12712

M and m are calculated and AM, Me and m are parameters. From table

2 12

3.2 the mass operator can be evaluated between the basis states in the
diquark-quark or the flavor-spin basis. Except for the exchange term

(MT) the mass operator i1s diagonal in the diquark-quark basis.
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To illustrate the effect of the exchange term we consider the nucleon
and A resonances. Well established [H8h 78, cut 79] are the N(1/2)
states, S11(1.53) and D13(1.52), the A(1/2) states, S31(1.61) and
D33(1.72), and the N(3/2) states, S11(1.67), D13(1.70), and D15(1.68).

The parameter m follows from the difference between the N(3/2) and

12
A(1/2) states which equals M

N(3/2) T MA(1/2) =4 m - So o, is small.
From a fit of the above resonances it follows that the values of Me

and AM are strongly correlated. This is shown in fig. 3.1 where the
spectrum of the £ = 1 N and A resonances has been plotted as a function
of Me' The best value of AM has been given below the values of Me' To
decide on the value of Me we need the other N{1/2) and A{3/2) states,
for which one- and two-star resonances exist as candidates [H&h 78,

Cut 79]. For the N(1/2) states, candidates are the S11(1.88) and

D13(1.83) resonances; for the A(3/2) states, candidates are the
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531(1.89), D33(2.01), and D35(1.91) resonances. A fit of these resonan-
ces from the analyses of the Karlsruhe-Helsinki group [H3h 78] and

the CMU-LBL group [Cut 79] yields the following parameters for & = 1;

AM = 1.83 Mev |, Me = 83 Mev , m12 = 10.1 Mev .

It leads to the masses in table 3.3. In table 3.4 these masses are
compared with the experimental masses. It 1s notewortny that there
are i1ndications, although sometimes very weak, for all the predicted

resonances. Moreover, there are no i1ndications for more negative

parity resonances 1n the region 1.5 - 1.9 Gev.

Mass Eigenstate

1.509 N1(1/2) -0.901 0.433 NA(1/2) -0.331 0.944 N56(1/2)
1.829 N2(1/2) 0.433 0.901 NB(1/2) 0.944 0.331 N70(1/2)
1.684 N(3/2)

1.644 A(1/2)

1,934 A(3/2)

Tzble 3.4: The masses (in GeV) and eigenstates of the & = 1 nonstrange

baryon resonarces.

3.2.2. s-wave Q4§ states

Other possible baryon rescnances with negative parity are the
Q4§ states. We think that they do not strongly influence the Q3 baryon
mass spectrum, although the Q3 baryons do contain Q4§ admixtures. Thas
can be readily seen from the part HQPC in the Hamiltonian responsible

for the creation of a quark-antiquark pair (with quantum numbers

& =o";
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(wave) JP

Mo Mexp [#6h 78] Mexp [Ccut 79])
Nucleon resonances:
N, (1/2) (s11) 172 ~ 1509 1526 + 7 1540 + 20
(D13) 3/2 ~ 1509 1519 + 4 1525 + 15
N (3/2) (s11) 1/2 ~ 1684 1670 + 8 1640 + 30
(D13) 372 ~ 1684 1731 + 15 1670 + 25
(p15) s5/2 ° 1684 1679 + 8 1680 * 15
N, (1/2) (s11) 1/2 ~ 1829 1880 * 20
(D13) 3/2 ~ 1829 1830 + 50
Delta resonances:
A (1/2) (s31) 172 ~ 1644 1610 + 7 1620 1 20
(D33) 3/2 ~ 1644 1680 * 70 1730 * 30
A (3/2) (s31) 1/2 ~ 1934 1908 + 30 1850 + 35
(D33) 372 ~ 1934 2010 + 100
(p35) 5/2 ~ 1934 1901 + 15 1930 *+ 20
Table 3.4: Comparison of the calculated mass spectrum and the

Hope

1 3 3, .= 4=
197> = e [(Q7)(QQ) 4> = z e, (@D ,>

experimental masses for & = 1. ALl masses are in MeV.

(3.10)

certainly does not vanish, as 1t 1s involved in the decay of a baryon.

4-
We will more extensively discuss the Q Q admixtures in section 3.6.1.

4-
The predicted nonstrange Q Q states and their masses (using tables

2.3, 2.4 and 2.9) are givenin table 3.5. Although some assignments could

4
be made, there 1s no general agreement between the predicted Q Q

states and the experimental negative parity baryons. Especially the
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(wave) JP mass (wave) JP mass
nucleon resonances: nucleon resonances:
(s11) 1/2 ~ 1.51 (s11) 1/2 ~ 1.68
(D13) 3/2 ~ 1.62 (s11y 1/2 = 1.90
(s11) 1/2 ~ 1.71 (D13) 3/2 ~ 1.99
(D13) 3/2 ~ 1.83 (D13) 3/2 ~ 2.06
(st1) 1/2 ~ 1.98 (s11) 1/2 ~ 2.06
(p13) 3/2 ~ 2.01 (s11y 1/2 ~ 2.07
(D15) 5/2 ~ 2.01 (D13) 3/2 ~ 2.16
delta resonances: (s11) 172 ~ 2.28
(D33) 3/2 ~ 1.62 (D13) 3/2 ~ 2.31
(s31) 1/2 ~ 1.71 (D15) 5/2 ~ 2.31
(s31) 1/2 ~ 1.98 delta resonances:
(D33) 3/2 ~ 2.01 (D33) 3/2 ~ 1.99
(D33) 3/2 ~ 2.01 (s31) 1/2 ~ 2.07
(D35) 5/2 ~ 2.01 (s31) 1/2 ~ 2.28
(s31y 172 ~ 2.26 (D33) 3/2 ~ 2.31
I = 5/2 resonances: (D33) 3/2 ~ 2.31
3/2 " 2.01 (D35) 5/2 2.31
1/2 ~ 2.26 (s31) 172 2.52

, 2 N .,
Table 3.5: The predicted Y = 1 § § states, for sta'es containing
cnly novstrarage guarxs ([) and fer states covtaivwing a

strange quark—antiquark patr (TI). All masses are in GeV.
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clustering in (%,s) multiplets 1s absent for Q4Q states.

In section 2.7 1t has been explained that the Q4§ states generally
will not appear as resonances in baryon-meson channels, but only as
poles in the P-matrix. In the low-energy region, where the only open
channel 1s Nm, we can use the one-dimensional P-matrix (eq. 2.54),
which for the S-wave is PO = k cot (kb + 60). This means that in the
low-energy region a Q4Q state gives attraction in the baryon-meson
channel when ka < m, and that 1t gives repulsion when ka > m.
Examples are the Nmn Sll-wave, wnere the phase shift for low energies 1s
positive and the N7T S3l-wave, where the phase shift for low energies 1is
negative. The lowest Q4§ state (Y = 1) lies at 1.51 GeVv (kR = 0.45 GeV)
for the Sll-wave and at 1.71 GeV (kR = 0.59 GeV) for the S3l-wave. With
a typical value for b = 6 GeV-1 the phase shift behavior can be ex-
plained sance kR(Sll)b =2.7 <7 <3.5= kR(S31)b. This 1s also an
1ndication that the calculations for the lowest Q4Q resonances are
trustworthy. While the Q4§ states give slowly rising or falling back-
ground contributions to the phase shift, the Q3 resonances, which
appear as poles i1n the S-matrix, give a more rapid (smaller width)
1ncrease of the phase shift. A P-matrix analysis of the baryons 1s
complicated because, except for very low energies, 1t will meet with a
large inelasticaity [Roi 79].

+
3.2.3. LP = 2 QZ—Q baryon resonances

The calculation of the masses of the & = 2 Q2—Q baryon resonances
gives a satisfactory result without the inclusion of any of the
phenomenological terms in eq. 3.9 containing the parameters AM, Me and
m,. The result of this calculation (I) 1s given in table 3.6 and the

comparison with the experimental masses in table 3.8.
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Mass (I) Eirgenstate (I)

1.672 NA(1/2) ) 0.707 -0.707 N56(1/2)
1.899 NB(1/2) ) 0.707 0.707 N70(l/2)
1.899 N(3/2)
1.899 A(1/2)
1.899 A(3/2)

Table §.6: The masses (in GeV) and eigenstates of the & = ? nonstrange
baryon resonances from the mass operator without phenomeno-

logical contributions.

If one i1ncludes the phenomenological contributions one finds the
following parameters for £ = 2:

AM = 42 Mev , Me = 34 Mev , = 27 MevV .

M2
This leads to the masses (II) given ain table 3.7. The values of the

parameters AM and Me confirm our expectation that the parameters will

vanish for large . The fact that the parameter mlz(l) 1s larger for

Mass (II) Eigenstate (II)
1.681 N1(1/2) 0.957 0.289 NA(1/2) 0.881 -0.473 N56(1/2)
1.866 N2(1/2) ) -0.289 0.957 NB(1/2) ) 0.473 0.881 N70(1/2)
2.011 N(3/2)
1.902 A(1/2)
1.909 A(3/2)

Table 3.7: The masses (in GeV) and eigenstates of the L = 2 nonstrange
baryon resonances from the mass operator with phenomenolo—

ical contribulions.
g
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P
(wave) J M (1) M (x1) M [#HS6h 791 M _ [cut 79]
calc calc exp exp

nucleon resonances:

N (1/2)  (P13) 3/2 * 1672 1681 1710 + 20 1740 * 80
(F15) 5/2 © 1672 1681 1684 + 3 1680 + 15 (B)
N,(1/2)  (P13) 3/2 7 1899 1866
(F15) 5/2 ¥ 1899 1866 1882 + 10
N(3/2) (p11) 1/2 % 1899 2011 2050 + 20 (a)
(p13) 372 7 1899 2011
(F15) 5/2 ¥ 1899 2011
(F17) 7/2 ¥ 1899 2011 2005 + 150 1970 + 80 (B)
delta resonances:
a(1/2)  (P33) 3/2 7 1899 1902 (see A(3/2))
(F35) 5/2 7 1899 1902 (see A(3/2))
A(3/2)  (P31) 172 7 1899 1909 1888 1 20 1920 * 50 (B)
(p33) 3/2 7 1899 1909 1868 + 10 1960 + 80 (B)
(F35) 5/2 * 1899 1909 1905 + 20 1920 * 30 (B)
(F37) 7/2 ¥ 1899 1909 1913 + 8 1950 + 20

(A) This resonance might be also explained as a (3s) radial excitation.

(B) Additional resonances possible.

Table 3.8: Comparison of the calculated mass spectra and the experi-

mental masses for & = 2. All masses are in MeV.

o

2 = 2 than for & = 1 is understandable, because we try to fit a small
contribution, while other comparable contributions, like spin-orbit
and tensor contributions have been neglected.

In the case of £ = 2 it is less evident than for £ = 1 that almost
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all states are present because the B states are (almost) degenerate.
The only resonances for which there are still no indications are tne two
(degenerate) (P13) 3/2 * nucleon resonances. For some of the experi-
mentally found resonances indications exist that additional resonances
are present [cut 79].

3.2.4. Radially excited Q3 baryon resonances

In addition to the positive parity resonances discussed in the
previous section, a number of other low-lying (M < 2.0 GeV) positive
parity resonances exist. The P11 (1.42) and P33 (1.52) resonances can
be 1dentified as the nonstrange members of a [56,0+] multiplet. The
P11 (1.72) resonance 1s a possible member of the lowest [70,0+] multi-
plet. For two other resonances, P13 (1.54) and P31 (1.55), which could
be the other two nonstrange members of the [70,0+] multiplet, there
exist only very weak indications [PDG 78].

In the quark-shell model excited hadrons contain quarks which
reside 1n higher waves. The N = 2 excitations contain a [56,0+] and a
[70,0+] multiplet. The physical states are linear combinations of the
(15)2(25) and (ls)(lp)2 configurations. The cother linear combinations
(also a [56,0+] and a [70,0+] multiplet) nave to be eliminated, being
spurious states [kar 68]. In a harmonic oscillator scheme all N = 2
levels are degenerate, but anharmonic contributions will split the
multiplets. The [56,0"] generally will have the lowest energy.

In the bag model quarks can be also placed 1n orbits. For radial
excitations, however, the static spherical bag approach does not apply.
The (15)2(25) exclLtations couple to breathing excitations of the
surface through the boundary conditions (egs 1.21) i1n the bag model

[DeG 78]. Using section 1.6 with one of the (nonstrange) quarks in the
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Mass Eigenstate

5

1.399 N1(1/2f] 0.974 0.228][N,(1/2) 0.850 -0.527) [N (1/2]
1.727 [N,(1/2))  [-0.228 0.974 N, (1/2) 0.527  0.850) [N, (1/2)
1.682 N(3/2)
1.782 A(1/2)

1.537 A(3/2)

Iable $8.3: The masses (in GeV) and ergerstates oy the nomstrange

radially exciled baryors.

2s mode (x2S = 5.396) a multiplet mass M(nn-n*) = 1.684 GeV 1s found.
The surface oscillations can be introduced 1n a phenomenoclogical way
and lower the mass of the [56,0+] multiplet [DeG 78, Bow 79].

We have tried to use the mass formula for orbital excitations also

for radial excitations;

M=M -M (2P - P70) +mAN+m . (3.11)

0* e 56 12°12
This 1s possible because all terms preserve their meaning Ior a
radially excited baryon, which also constitutes a Q2—Q system. For m
we use the value from table 2.4; MO*' Me and m,, are determined from
the resonances P11 (1.42), P33 (1.52) and P11 (1.72). Thas yields the
parameters

M = 1.610 Gev , Me = 48 Mev , = -~ 25 Mev ,

0% Mo

and gives the masses and eigenstates in table 3.9. The two (Pll) 1/2 *

resonances are mixtures of the flavor-spin irreps {56: and {70}. The
N1(1/2) couples stronger to photons than the N2(1/2) {Bow 77], 1in

agreement with the experimental couplings of the P11 (1.42) and P11

81



(1.72).

3.2.5. Orbitally excited Q4§ resonances

Low-lying orbitally excited Q4§ states («x = 1) also lead to
positive parity baryons. The lowest (QZQ)a-(Q2)3* state consists of an
nzﬁ cluster wath A = - 5.42 and (1,s) = (1/2,1/2) and an n2 cluster
with A = - 2 and {(1,s) = (0,0) (a nonstrangeq%;dlquark). The color-
magnetic energy equals Mm = = 0.57 GeV and (without phenomenological
contributions) we find two nucleon resonances with JP =1/2 + and
3/2 * at 1.52 GeV. The nzﬁ cluster recouples to a pion or p-meson and
a nonstrange quark (table 2.19); this nonstrange quark recombines with
the nonstrangerﬂilquark to a nucleon. The states therefore can decay
in 7N P-waves. They can also decay in 11N S-waves after quark-antiquark
creation. There are also low-lying (QBQ)B*-(Q)3 states but these are
even more unstable because the (Q3§)3* cluster has two colorless sub-
systems, namely (Q3)1(§)3* and (Qé)l(Q2)3*, while a (Q2§)3 cluster has
only one colorless subsystem, namely (QQ)I(Q)3.

There might be some candidates for orbitally excited Q4Q states,
namely the narrow mass enhancements produced in TN > = (7N) and
N > = (n7N) [PDG 78, Hir 79] and also the P13 (1.54) and P31 (1.55)
observed in N » 1N [Lon 77], which we already mentioned in section

3.2.4.

3.2.6. Baryon resonances with large & (& > 2)

We will only consider Q2—Q baryons. For £ > 2 we assume that the
phenomenological contributions vanish. The structure of the baryon

spectrum then i1s determined by the fine structure of the diquark and

L 3

1(11+1) -2 } , (3.12)

M=M + m(2;0) { l—sl(sl+1) + 1

82



predicted experimental
P
(wave) J mass ref.
1=3 N, (1/2) 1.95 (D15) 5/2 1.92 [sax 80]
N (1/2), N(3/2) 2.18 (D13) 3/2 - 2.08 [Aye 76,u5h 78,Cut 79]
(D15) 5/2 _ 2.23 [Aye 76,u5h 78]
(G17) 7/2 _ 2.14 [Aye 76,H5nh 78]
(G19) 9/2 2.27 [Aye 76,H8nh 78]
A(1/2), A(3/2) 2.18 (D35) 5/2 ~ 2.31 [Hon 78]
(G37) 7/2 : 2.22 [Hen 78]
(G39) 9/2 2.17 [aye 76]
2=4 N, (1/2) 2.20 (u19) 9/2 1 2.21 [Aye 76,u5n 78]
NG (1/2), N(3/2) 2.42
A(1/2), A(3/2) 2.42 (F37) 7/2 : 2.43 [ush 78]
(139) 9/2 2.22 {uan 78]
(83,1t) 1172 * 2.42 [Aye 76,H5h 78]
=5 N (1/2) 2.42
N (1/2), N(3/2) 2.64 (G19) 9/2 - 2.79 [gsh 78]
(I1,11) 11/2 ~ 2.58 {nah 78]
A(1/2), A(3/2) 2.64 (G39) 9/2 2.47 [Hoh 78]
(I3,13) 13/2 ~ 2.79 [B3h 78]
=6 N, (1/2) 2.62  (K1,13) 13/2 7 2.61 [wah 78]
NB(1/2), N(3/2) 2.85
A(1/2), A(3/2) 2.85 (K3,15) 15/2 = 2.99 {usn 78]
9=7 N, (1/2) 2.81
N, (1/2), N(3/2) 3.04 3.03 [pDG 78]
A(1/2), £(3/2) 3.04
2=8 N, (1/2) 2.99
NB(1/2), N(3/2) 3.22
A(1/2), B(3/2) 3.22 3.23 [pDG 78]
Table 3.10: Predicted nonstrange baryons and experimentally found

baryon resonances with 3 < & < 8. All masses are in GeV.

where (il'sl) are the isospin and spin of the diquark. For each & the

state NA(1/2) has the lower mass, while the B states, NB(1/2), N{(3/2),

A(1/2) and A(3/2) are degenerate at a higher mass. The predicted masses
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I NUCLEON -
I TRAJECTORIES

10 F

S B o= —a—
I . * KH 78
r /- o PDG 78
L ,’:/'
0 _.': L N L 1 \ N I N N N N ,
0 5 10 15

MZin Gev?

Fig. 3.2: The A and B nucleor trajectories. For the Karlsruhe-Helsinki
(KH 78) points [H6h 78) the spin ond parity are known and
the best guess fcr % has been made. For the two plotted
Particle Data Group points [PRG 78] no 7t is known. We Just

rade the besl choice jor R.

and possible candidates up to { = 8 are given in table 3.10. The
predicted trajectories for nucleon and delta resonances have been
plotted together with the experimentally established resonances 1in
figs 3.2 and 3.3. The trajectories directly follow from our assump-
tions; no free parameters had to be fitted. The agreement with the

experimental data is fairly good, although still many of the predicted
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Pig. 3.3: The delta trajectory. See caption of fig.

resonances have to be found.

3.2.

For the interpretation of the baryon resonances the coupling to

baryon-meson channels 1s often useful and sometimes even necessary. An

example 1s the (D15) 5/2 ~ resonance found at 1.92
T p > k20 [sax 80]. As the B states decouple from
section 3.6.6) 1t must be the A state predicted at

(D15) 5/2 ~ state at 2.23 GeV [Hoh 78] probably 1s

3.3. The mass spectrum of strange baryons

In this section we calculate the mass spectra

GeV 1n the reaction
the AK channel (see
1.95 GeV and the

a B state.

of orbitally and
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radially excited strange Q2—Q baryons, A, I, -, and § resonances. We
restrict ourselves to the A and ! resonances when we discuss the

experimental mass spectra and the possibility of Q4Q states showaing up.
These resonances are labeled by their JP values or by the KN-waves,

LI 2J, to which they couple.

3.3.1. Q2—Q baryon resonances

We use the mass formula in eq. 3.9 for orbitally excited strange

and m are assumed to be flavor-inde-

baryons. The parameters AM, M1 12

pendent. The results from sections 3.2.1, 3.2.3 and 3.2.4 are used to
+

P P
calculate the masses for strange baryon resonances with £ =1, 2

+
and 0*" (radial excitations). The multiplet mass for radial excitations

states mass eigenstates

(spin) [Gev]

QP = 1 states

A(1/2) 1.582 [0.086 0.974 -0.2097] [56,8
1.639 -0.295 0.225 0.929( (70,1
1.944 L0.952 -0.018 0.307] (70,8

A(3/2) 1,79 70,8

Z(1/2) 1.653 [~0.290 0.957 -0.0217 [56,8
1.759 -0.026 0.014 1.000 70,g:|
1.954 | 0.957 0.200 0.021] | 70,10

£(3/2) 1.802 ~0.019  1.000] [56,10
2.049 1.000  0.019] _7o,g]

2(1/2) 1.779 -0.274 0.962 -0.018] [56,8
1.881 -0.021 0.013 1.000| (70,8
2.073 0.961 0.274 0.018] L7o,&}

2(3/2) 1.919 -0.015  1.000 _ss,g
2.171 1.000  0.015 | _70,_]

Q(1/2) 2.049 70,10

Q(3/2) 2.299 56,10

(table 3.11)
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lp = 2" states
£(1/2) 1.788 [0.882 0.164 -0.4427[5e6,8
1.871 -0.169 0.985 0.028( | 70,1
1.959 | 0.440 0.050 0.897]|70,8
£(3/2) 2.102 70,8
L(1/2) 1.809 [0.907 -0.421 -0.0087 56,8
1.966 0.415 0.898 -0.146]]70,8
1.997 [ 0.069  0.129 0.989 ] L70:1Q
£(3/2) 2.003 0.999 -0.044] —56,19]
2.109 0.044 0.999] 70,8
£(1/2) 1.916 0.918 -0.397 -0.007] f56,8
2.065 0.395 0.913 -0.103| /70,8
2.100 0.048 0.091 0.995 L7o,1g
£(3/2) 2.106 0.999 —0.038] ’56,19]
2.206 0.038 0.999] 70,8
Q(1/2) 3.319 70,10
Q(3/2) 2.217 56,10

(table 3.11)

1s calculated the same as for nonstrange baryons. Using the spherical
bag approximation with one quark in a (2s) state (q*) one finds

M(nn-n*) = 1.684 GeV, M(nn-s*) = 1.754 GeV and M(ns-n*) = 1.849 GeV.

As for nonstrange baryons we use M = M(gg~g*) + AM x with

0* 0

AM =

0% - 74 MeV (flavor-independent). The masses and eigenstates are

given in table 3.11.

The comparison of the predicted states with the experimentally
established resonances [Lan 76, PDG 78, Oza 78, Als 78, Cam 78] 1is
shown 1n fig. 3.4. Owing to the abundance of predicted resonances,

assignments are often difficult and only a few general conclusions can

be drawn. The first conclusion 1s that the calculated masses of the
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L(1/2)

A(3/2)

1(1/2)

I(3/2)

-(1/2)

5(3/2)

Q(1/2)
Q(3/2)

., *+
X =0

states

1.491
1.663
1.880
1.837

1.586
1.816
1.925
1.651
1.793

1.665
1.980
2.065
1.782
1.975

2.064
1.919

[[0.774
-0.326
0.542

[ 0.895
0.399

-0.201

0.845
0.424
-0.327

0.357
0.933
0.052

0.445
0.836
~0.322

0.955
~-0.296
-0.535

0.696
-0.479

0.976
-0.218

-0.5237]
0.153
0.839 |

-0.039
0.378
0.925
0.296
0.955

0.024
0.580
0.815
0.218
0.976

—_ e L

56,8
70,1
L70,8
70,8

56,8
L7o 10
(56,10
70,8 ]
56,8

70,8
| 70,10

(56, 10]
70,8
70,10
56,10

L______J

Taeble 3.11:

The masses

and ergenstates of

from eqs 5.9 and 3.11.

strange baryon resonances

£ = 1 states in the region 1650 - 1900 MeV reasonably explain the

resonance structure 1in this region, although some resonances are still

missing. Below 1650 MeV and above 1900 MeV the situation 1is less clear.

P
The lowest negative parlity resonances are the 41(1405), J =

and the A(1520), 35

= 3/2

1/2 ,

_, resonances. The lowest A(1/2) state 1is

calculated at 1580 MeV. The assignment of this state 1s not only

troublesome because of the discrepancy between the predicted and

experimental masses, especially the A(1405), but 1t also asks for an

P
explanation of the large spin-orbit splitting between the J =
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Pig. 3.4:

The comparison of Lhe predicted A and T baryons and the
experimenral resonances. Each predicted level stands for a

miltiplet with J° values J = l2-s|, |&-s{+l,..,|2+s| and

i . . ., B
P = (=)". As no spin-orbit term is included these levels

are predicted degenerate.
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and 3/2 ~ resonances. This might be due to a spin-orbit interaction
which 1s large for the strange baryons and small for the nonstrange
baryons [Rei 78]. A solution can be also found from the Q4§ mass
spectrum.

3.3.2. s-wave Q4Q states

In the region below 1.55 GeV there are no Q3 states with y = 0
predicted. There, however, are predicted two Q4Q states, namely degene-
rate (S01) 1/2 ~ and (s11) 1/2 " resonances with a strong attractive
color-magnetic energy contribution (A = - 9.045). Their mass 1s
M = 1.46 GeV using our approximations (sections 2.1 and 2.2). Using the
"exact" spherical bag approximation (sections 1.6 and 1.7) these states
are also degenerate and have a mass M = 1.416 Gev [Jaf 76]. This Q4§
state lies close to the KN and 7% thresholds and therefore might be
assigned to the A(1405) which 1s a KN bound state decaying into 7E.
This assignment does explain the low mass of the A(1405) with respect
to other A resonances, but 1t does not explain another problem with

the A(1405), namely the discrepancy between the theoretical and experi-

mental values for the ratio R = |gRN/gﬂ“ . The experimental value 1s
L

R =~ 2.1. For the lowest Q4§, JP = 1/2-, state the calculated value 1s

R = ¥2/3 whach 1s i1dentical to the theoretical value for a (f,s) =

(1,1/2) state in the [70,1 ] multiplet. For the lowest $F =1 Q2—Q
baryon (table 3.11) which 1s a mixture of flavor-spin basis states we
find R = 1.22. A candidare for the Q4§ I-state 1s the I(1480) [PDG 78,

Eng 79].

3.4. The mass spectrum of (exotic) Y = 2 baryons

A possibility to study the influence of Q4Q states without being

90



P P
(wave) J mass (wave) J mass

ZB resonances Z’; resonances

(so1) 1/2 ~ 1.71 (D13) 3/2 ~ 1.80

(003) 3/2 ~ 1.99 (s11) 1/2 ~ 1.89

Z; resonances (s11) 172 = 2.13
3/2 - 2.16 (p13) 3/2 ~ 2.16
1/2 = 2.40 (p1s) 5/2 ~ 2.16

Table 3.12: The predicted Y = 2 Q44_2 states. ALl masses are in GeV.

hinderd by the presence of 93 states 1s offered in the Y = 2 baryon
region (Z* resonances). Tne resonances are labeled by their JP values
or by the KN-waves, LI 2J, to which they couple. Multiquark baryons
with Y = 2 must contain four nonstrange quarks and one strange anti-
quark. The predicted mass spectrum of the s-wave Q4§ states 1s gaven
1n table 3.12.

The JP = 1/2 ~ resonances strongly couple to the KN S-wave. They
probably will not show up as clear resonances but will give an attrac-
tive phase shift in the SOl-wave (M = 1.71 GeV, kR = 0.45 Gev,

k b= 2.7 < 1) and a repulsive phase shift in the Sll-wave (M = 1.89

R

Gev, kR = 0.60 Gev, ka =~ 3.6 > 7).

[t}

The coupling of JP 3/2 " and 5/2 ~ resonances to the KN-waves 1s
suppressed. They couple strongly to K*N, KA or K*¥A waves. The lowest of
these resonances are the D13 (1.80) and D03 (1.99). Experimentally
indications exist for a DO3 (1.865) resonance [PDG 78, Oza 78].

Orbitally excited Q4Q states might be responsible for positive

parity Z* resonances. In the I = 0 channel the lowest QZQ—Q2 excitation
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consists of an n2§ cluster with A = -~ 5.42 and (1,s) = (0,1/2) and a
nonstrangeTo-dlquark. This gives a KN POl (1.72) resonance. Experimen-
tal indications for such a resonance, POl (1.78) exist [PDG 78]. In
the I = 1 channel the lowest QZQ—Q2 excitation consists of an n2§
cluster with A = - 2,42 and (1,s) = (1,1/2) and a nonstrangeTOﬂilquark.
This gives a KN P11 (1.91) resonance. Slightly higher, the combination
of the n2§ cluster with A = - 5.42 and a nonstrangeTl—dlquark gives a
P13 (1.94) resonance for which indications exist around 1.90 GeVv

[pDG 78].

3.5. The coupling to baryon-meson channels

The decay of an excited baryon into a baryon and a meson proceeds
via quark-antigquark creation. The vertex for this decay i1s given 1in
fig. 3.5. In the Quark-Pair-Creation model (or 3PO model) 1t 1s
described by

3 3., =
Hope 1977 = ¢ | @) (90) 4> . (3.13)

The created quark-antiquark palr has vacuum gquantum numbers

J =0 , I = O+, color singlet. All other quarks are assumed to
have the same gquantum numbers in initial and final states. This
assumption determines that the dependence on isospin, spin and total
spin (J) quantum numbers i1s contained in recoupling factors for iso-
spin, spin and angular momenta. The quark pair creation still depends
on the flavor of the created pair (nn or s5), the center of mass
momentum k in the final state and the spatial wave functions, 1.e. the
orbital angular momenta £ and L in initial and final state.

The transition matrix element for the decay B* -~ BM 1s
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///

(1.81) {
“‘>\\_: } (ins1) }S,l,J,I

S,L,JI ;
, L, 0, —— (|2132)
{[2.82) { ;

—P——,

Fig. 3.5: The vertex for the decay of baryon resonances to baryon-

<pM|H

QPC

meson channels.

(qq) |B*> = <B«(11,Sl)(1q,Sq)11,51)M(I2,52),I,S)L,J[

%*
HQPC|B ((1y,8)(1,,5,)1,8)8,3> . (3.14)

Here the 1initial and final state baryons are diquark-quark basais

states. The physical initial and final state baryons generally are a

linear combination of diquark-quark states. The initial states are

exclted baryons and the eigenstates have been given in tables 3.3,

3.6, 3.7 and 3.9. The final states belong to the [56,0+] ground state

multiplet and the recoupling to diquark-quark states has been given

in table 3.2. The meson 1s an s-wave Qé state. The transition matrix

element for the diquark-quark baryons is [Jaf 78]

a ¥ = a) - q) g -
<BM[Hpo (@) [B*> = € (k,2,L,q2) -9 (a2 gg'g; (3.15)

wnere the

spins and

93-symbol [LB 68];

and

®1 N 12 fos oy
s, I, = [(213+1)(253+1)(231+1)(232+1)] - 12 s, 3,
®3 13 fy 83 3y

coefficients 9rr 9g and g, are the recoupling of isospins,

angular momenta. The coefficients g are proportional to a
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s1 1/2 S1 s & J
95 = I8, 1/2 S2 . 95 = 1 1 0 , (3.16)
S i S S L J
) 1y 1/2 I1 . B 1, 0 I1 B
gI(nn) = ¥Y2/3 1, 1/2 12 ’ gI(ss) = /1/3 1, 0 I2 = /T/3.
I 0 I 1 0 1

The square root factors in the expressions for gI are i1ntroduced such
that 1f € (k,ﬁ,L,nE) =€ (k,l,L,sE) the created Qﬁ pair 1s an SU(3)
flavor singlet and flavor SU(3) 1s not broken. Both tne 1nitial and
final states are color singlets; the color recoupling factor for

states with a color structure gfgf 1s

x
g 3 g * 31
= * = * 1| =
9. e, 3* ¢, 303 1 1. (3.17)
c 1 c 111

The orbital angular momentum L in the final state 1s L = 2 % 1, as

parity conservation forbids L = &. The quantity
- < *> .
g BM|HQPC|B /e (3.18)

15 called the coupling constant in the decay B* - BM. The isospan,
span and angular momentum recoupling coefficients are given in tables
3.13, 3.14 and 3.15. Instead of 91 the coefficients 31 are given in
table 3.13. These coefficrents describe the i1sospin recoupling of a
baryon resonance to a baryon and a meson, where the final state baryon
1s a member of the flavor-spin irrep {56} and therefore a linear
combination of diquark-quark states.

In order to compare the widtns of baryon resonances we take into
account certaln phase space factors. We use the quantity

Y 2

k
=g e BL(kR) [ (3.19)

94



with R = 3 Gev_1 in the barrier factor BL(x) for which we use [Bla 52]

-1 2 2 2
B (x) = x (JL(X) + nL(x))
-2L F  (2L-2)!(2L-29)! 22
= (2x) Y : 5 (2%) (3.20)
=0 e (-2)!]
Ny -
gI(nn) N Nnn Am Ann
No Nw Ap Aw
A(nn) (n)N 1/4 1/12 - -
B(nn) {(n)N -1/36 1/12 4/9 -
B(nn) (n)A -1/9 - 5/18 1/6
,\12 n K \— ;\ *l *
gI(nn) NK “f W Pt L¥a Ann Lnn Z*n
NK* AK* hp Ip T¥p Aw Y P ¥y
A(nn) (s)A 1/3 - - - - - - -
A(ns) (n)A - - - 1/4 - -1/36 - -
B{(ns) (n)? - - - -1/12 1/3 -1/12 - -
A(ns) (n)? - - 1/36 1/6 - - 1/12 -
B(nn) (s)L -1/9 4/9 - - - - - -
B(ns)(n)7T - - 1/12 -1/18 2/9 - -1/36 1/9
gi(nﬁ) AK IK T*K =1 Sk En :*nn
AK* I K* XKk p =*p ) _*w
A(ns) (s) = 1/36 1/4 - - - - -
B(ns) (s) - 1/12 -1/12 1/3 - - - -
B(ss) (n)_ - - - -1/6 1/6 -1/18 1/18

(table 3.13)
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ai (nn) =K =*K
TK* ERRE
B(ss}) (s)& -2/9 2/9
Ei(sé) AK IK T*K
AK* LK* I*K*
A(nn) (n)N 1/9 - -
B(nn) (n)N - 1/9 1/9
B(nn) (n)A - 1/9 1/9
32(55) An In v¥n ZK =K
I s s s - -
Ao Lo ¥ IK* hu &
A(nn) (s)A 1/9 - - - _
A(ns) (n)A - - - 1/6 -
B(ns) (n) A - - - 1/18 2/9
A(ns) (n)I - - - 1/6 -
B(nn) (s)X - 1/9 1/9 - -
B(ns) (n)Z - - - 1/18 2/9
Si(sé) Eng E*ns QK
¢ *¢ QK*
A(ns) (s)= 1/6 - -
B(ns) (s)= 1/18 2/9 -
B(ss) (n)= - - 1/3

(table 3.13)
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8§<s§> fin

B(ss) (s)2 1/

3

Y
Table 3.1%: The tsospin recoupling coeffrcients gr (see text). The

.. W2 . R .
squared cocffizients gr have beer given but the signs of

EI have been preserved. N © Mg and ¢ are ideally mixed
stuter, 7.2, vn and ss.
2
g s BP DP BV BV DV DV DV
S = 1/2 3/2 1/2 3/2 1/2 3/2 5/2
A, s =1/2 3/4 - -1/4 1 - - -
B, s =1/2 -1/12 -1/3 25/36 1/9 2/9 5/9 -
B, s = 3/2 2/3 5/12 2/9 5/9 -1/9 1/36 1

Takle 3.14: The
the

D =

. s .. 2 .
spin recoupling coeffictents. g has been given, buv

. +
sign of gg has been preserved. B = 1/2 = baryon,

3/8 * baryon, P = 0 meson, and V = 1 meson.

2
S s J L 95
2 28 - 1
1/2 1/2 L - 1/2 2 -1 5 x 5%
2 20 + 3
L+ 1/2 L+ 1 - 5-x 7% 5 2
1
3/2 2 - 3/2 2 -1 E
1 L+ 1
L - 1/2 -1 18 x 7
1 L
L+ 1/2 L+ 1 Tgx Tt 1
2+ 3/2 L+ 1 l
6

(table 3.15)
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Qa
N

J
. 1. (-1 -1)
3/2 1/2 L 1/2 £ 5 x T2 + 1)
9 l_x 28 + 3
3 29 + 1
1 2% - 1
L+ 1/2 2 T% 5T
¢ lx (22 +3)(2 + 2)
9 (20 + 1) (R + 1)
2 2 - 3
3/2 L - 3/2 2 EX T
- 8 (2 -1)(22 + 2)
L-1/2 25 " 22L + 1)
. 2. (2 - 122 +3)
15 (20 + 1) (22 + 2)
2 (20 - 1)(22 +3)
L1z R 15 2020 + 1)
. 8 20(% + 2)
45 (22 + 1) (2 + 1)
2 20 + 5
2+ 3/2 L 15)( 2%+ 2
1. (2 - 2)(28 - 3)
5/2 3/2 2 3/2 2 3OX (2% * 1)
. 1 22 + 3
L =X
3 28 + 1
1. (20 -3) (R -1)
Lotz 10" (22 + D
. 1, 2 +3)(+2)
5 (22 + 1) (2 + 1)
1 (2 - 1)(20 - 1)
Lr1/2 R 5% T2+ D)
1y _l_x (L + 2)(22 + 5)
10 (28 + 1)(2 + 1)
1 22 - 1
Lo+ 372 . 3% 2+ 1
2 -l—x (22 + 5)(2 + 3)
30 (22 + 1)(2 + 1)
Table 3.15: The recoupling coefficient for argular momenta. 05 has been
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3.6. Decay of nonstrange baryon resonances

3.6.1. The (S11) 1/2 ~ nucleon resonances (L =1)

The mass spectrum for the (S11) 1/2 ~ nucleon resonances has been
given 1n section 3.2.1. The resonances are listed in table 3.16 to-
gether with their coupling to the Nw, A7, Nn, K and IK channels (the

n 1s a linear combination of “n and ns, nanely n = 0.511 nn - 0.860 nSL

(Si1) 1/2 ~ resonances NT A N1 AK LK
N1(1509) -0.901 0.433 0. NA(1/2) -.123 -,124 -.044 -.087 -.014
N2(1684) = 0. 0. 1. NB(1/2) ~-.045 -.101 .040 .0 .091
N3(1829) 0.433 0.901 0. N(3/2) .077 -.259 .006 .042 -.029

Table 3.16: The (S11) 1/2 ~ QJ resonances and their couplings to the

lowest BM channels.

Experimentally the lowest three (S11) 1/2 " resonances have the follow-
1ng branching ratios [PDG 78]:

(1) N(1530) has a large branching ratio to Nn (65 %) and a branching
ratio of 30 % to N7;

(11) N(1670) nas branching ratios of 55 % to Nm, 30 % to Nm® (Np and
A~) and 10 % to AK;

(111) N(1880) has a branching ratio of 5 - 10 % to Nm.

The couplings in table 3.15 cannot explain the exXperimental branching
ratios. The usual solution [Hey 75] 1s introducing a mixing between the

lowest two (S11) resonances. The mixing angle 1s about 300;

H v3i/a  -1/2 N,
~ L (3.21)
N 1/2  V/3/4 N,

The couplings of these mixed states Ni and Né are given in table 3.17.
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(S11) 1/2 ~ resonances N7 AT Nn AK LK

N -0.780 0.375 -0.500][N,(1/2)] -.084 -.057 -.058 -.075 -.058
N -0.451 0.217  0.866] |N,(1/2)| -.100 -.150 .013 -.044 .072
N(3/2)

#! to the lowest BM

Table 3.1/: The couplings o the mixed states W] 5

]’

channels.

The mixing explains the coupling of the N{1670) to AK, but tne large
coupling of the N(1530) to Nn still has not been explained.

We think that there 1s no considerable mixing between the N1(1509)
and N2(1684). First there 1s no term in the mass operator which
explains such a mixing. Secondly the small mass differences between
the two N1(1/2) states (JP = 1/2 " and 3/2 —) and between the three
N(3/2) states (JP = 1/2 -, 3/2 ~ and 5/2 7) indicate that only a small
mixing 1s allowed, except 1f one wants to believe accidental degenera-
cles. We propose another solution. The coupling of excited baryons
(QZ-Q) to BM channels, derived in section 3.5, can be expanded in the
following way:
<@ (D) | 100>

<| [>

[}

HQPC
) <(Q3)(Qé):l(Q4Q)l><(Q4§)li!QZ—Q> . 13.22)

1

If all (Q4Q) states are degenerate there would be no difference between
the decay in fig. 3.5 and the decay where the Q4Q states really act as
(on mass shell) intermediate particles. However, the Q4§ states are

not degenerate, but rather are split by the color-magnetic interac-

tions. The nearby levels therefore give a larger contribution than the
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levels which lie far away. From table 3.5 we see that there are Q4Q
states with JP = 1/2 - which almost coincide with the positions of the
L =1 Q3 resonances. For the (D13) 3/2 - Q3 resonances there are no
really close-lyang Q4Q states present. This can explain why there
exists a large influence of the Q4Q states on the (S11) 1/2 ~ Q3
resonances, and only a small influence on the (D13) 3/2 ~ resonances
(see section 3.6.2). The coupling to BM channels for the lowest three

(Q4Q) 1/2 7 states 1s given in table 3.18 [Som 78, Str 79]. The

normalization of the couplings 1is such that the sum over the couplings

state N7 An Nn AK LK
Nl*(l.Sl) -0.750 0. 0.221 0. 0.
NZ*(1.68) 0. 0. -0.525 -0.249 0.748
N3*(1.71) 0.349 0. 0.309 0. 0.

Table 3.18: Coupiing of the lowest Q4@ states with JP =1/2 " to the

lowest BM channels.

squared gives 1. To incorporate the larger influence, which 1s expected
from Nl*(l'Sl) in the decay of N1(15O9) and from Nz*(1.67) and

N3*(1.71) in the decay of N2(1684) we conslder the states
tr o= - *
N1 0.993 N1 0.125 N1 .

* *
0.99 N2 + 0.10 N2 + 0.02 N3 .

(3.23)

L
N2
The coupling to BM channels 1s given in table 3,19. The quantities ?,

calculated for Ni' and Né' from the couplings in table 3.19 and for

N3 from the couplings in table 3.16, are proportional to the widths T

1f the matrix element 1s the same for the decay of all & = 1 baryons.
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state AT Nny AK LK

Ni' -0.028 -0.123 -0.072 -0.086 -0.014

Nl' -0.038 -0.100 -0.007 -0.025 0.165
Table 3.19: Coupling of the mized states ! It to the lowest BM

channels.

1y !
) A12

av
Phase space factors and barrier factors have been included in [' (eq.

3.1 ). The results are given in table 3.20. The combinations N!' and

1

"
Né' have been chosen such that the quantities ' explain the ratios

between the experimental branching ratios. Of course this choice 1s

" theoretical experimental
resonance channel I Vxx' fraction (%) fraction (%)
Ni'(1509) N7 2.33 x 10_4 0.34 34 30

AT 0.38 0.14 6 ~ 1
Nn 4.15 0.45 60 65
Né'(1684) NT 4.88 0.59 59 55
AT 2.40 0.42 29 4 - 15
Nn 0.11 0.09 1
AK 0.84 0.25 10 10
N3 (1829) N 21.52 0.25 25 ~ 9
AT 40.10 -0.34 47
Np(2S) 10.26 -0.17 12
others 14.02 16

Table o.20: The

" - ,
quantity T, the predicted amplitude at resonance and

brarching ratio, and the compirison with the expevrimental
J > o

branching ratio for the (£11) 1/7 ~ rucleon resonances.
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rather arbitrary as 1t 1s not based on any calculation; 1t only inda-

cates the possible influence when a complete analysis of the decays of
4

negatlve parity baryon resonances including the Q'Q states 1s perform-

ed.

3.6.2. The (D13) 3/2 ” nucleon resonances (2 =1)

The eilgenstates have been listed in table 3.3. We can calculate
the couplings to the baryon-meson channels and compare them with the
experimental branching ratios via the quantity F. The results are given

1n table 3.21. For the (D13) 3/2 ~ states there 1s reasonable agreement

theoretical experaimental

resonance channel g ? Vxx' fraction (%) fraction (%)
N1(1509) N 0.194 20.65x 10—4 0.82 82 55

A'(4S) -0.155 4.36 -0.38 17

Aﬂ(4D) ~-0.088 0.19 -0.08 1 } 23

Nn 0.070 0.01 0.02 0 <1
N2(1684) NT -0.023 0.58 0.01 1 10

Aﬂ(4S) 0.143 45.19 -0.01 70

av(®p) -0.181  7.87 0.01 29} 15 - 40

Nn 0.020 0.11 -0.00 3

AK 0. 0. 0 ~ 1
N3(1829) N . -0.122 23.21 0.23 23 ~ 6

Am('S) -0.115 35.05 0.28 34

A"(4D) -0.182 19.80 0.21 19

others 24.48 24

Table 3.21: The coupling g, the quantity ?, the predicted amplitude at
resonance and branching ratio, and the comparison with the
experimental branching ratios for the & = 1 QS (D13) 3/2 ~

rucleon rescrnances.
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with the experimental results, like in the older flavor-spin analyses
[Hey 75]. There 1s no need for a strong mixing. In this case the
presence of Q4Q resonances does not strongly influence the decay modes.
The Q4§ state with JP = 3/2 " at 1.616 GeV lies neither close to the
N1(1509) nor close to the N2(1684).

3.6.3. The (D15) 5/2  nucleon resonance (L = 1)

The results for the N(1684) are given 1in table 3.22, There 1s a
reasonanle agreement with the experimental results. This resonance does
not mix with other (D15) 5/2 = resonances. There are no other % = 1
(D15) resonances; the 2 = 3 resonances and the Q4Q states lie above
1.9 GeVv.

We want to note that the Q4Q state with J° = 5/2 ~ and a mass
M = 2.01 GeV has only the Ap system as two-color-singlet component. The
Ap threshold coincides with the mass. Therefore this state may be
interesting experimentally, but as both the widths of 4 and p are large
there still may be no rapid increase of the phase shift. The
couplaing to other BM channels, e.g. N7, 1s suppressed, because a spin-

flip 1s required for the decay of an s-wave Q4Q 1n D-waves. We mention

resonance channel g T theoretical experimental
vxx' fraction (%) fraction (%)
N(1684) N -0.056 3.43x10"%  0.24 24 45
An(4D) -0.208 10.39 0.41 72 47
Nn 0.049 0.64 -0.10 4 < 0.5

Table 3.22: The coupling g, the quantity ?, the predicted amplitude at
resonance and branching ratio, and the comparison with the
experurertal branching ratio for the & = 1 Q3 (D15) 5/2 ~

nucleon resonance.
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theoretical

experimental

resonance channel g F vxx' fraction (%) fraction (%)
(S31) 1/2 = resonances
A(1644) Nm 0.032 3.38x 100 0.28 28 32
Aﬂ(4D) -0.227 8.60 -0.45 72 50
A(1934) Nm -0.091 31.30 0.35 35 ~ 8
Aﬂ(4D) 0.188 32.55 -0.35 36
LK 0.091 18.80 -0.27 21
others 7.88 9
(D33) 3/2 ~ resonances
A(1644) Nm -0.0590 2.42 0.09 9 15
4
An(4S) -0.102 21.43 0.26 76 45 - 60
Ar( D) =0.160 4.27 0.11 15
L 0.050 0. -0.
A(1934) Nt -0.045 3.80 0.04 4 ~ 5
AW(4S) 0.113 37.16 -0.13 41
an(®p) -0.143 18.83 0.09 21
Np(4S) ~-0.083 15.84 0.09 17
others 15.40 17
(D35) 5/2 ~ resonances
A(1934) Nm ~-0.111 23.14 0.38 38 4 - 12
Am ~-0.164 24.77 0.39 40
others 13.45 22
Table 8.28: The coupling g, the quantity ?, the predicted amplitude at

resonance and branching ratio, and the comparison with the

experimental branching ratio for the 1

resonance.

1 Q3 delta

this state because the Q4Q states for which the decay to BM channels is

suppressed might be the only ones which are stable enough to be
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detectable.

3.6.4. The § = 1 delta resonances

The results for delta resonances, given in table 3.23, agree
reasonably well with the experimental results. No strong admixtures
of Q4§ states or mixtures between different resonances with the same
quantum numbers are needed.

3.6.5. Nucleon and delta resonances coupling to NT

All of the predicted nucleon and delta states couple to Nm. The
spectroscopic notation used for these baryons gives the Nr wave. There
are large differences in the coupling strength. The strength for the
coupling to Nn 1s given in table 3.24. The resonances with the strong-
est coupling to NT are both NA(1/2) baryons (J = £ + 1/2) and the two

A(3/2) baryons with J = % = 3/2. Not all these resonances have been

resonance g;, resonance g§“
N (1/2) T = 2-1/2 .0a17x L2
N, (1/2) 3 = 4+1/2 0417 x “_;i/Tz
N(3/2) J = 2-3/2 .0031 A(3/2) J = 2-3/2 .0123
N (1/2) 3= 2-1/2 .0005x M2 pq1y2) 3= e-1/2 o021 x A2
NG3/2) 3 = a-1/2 .0010x EEL o a372) 5= g-1/2 Looar x 22
Ny (1/2) J = 2+1/2  .0005 x % A1/2) T = 8+1/2 .0021 x iniz
N(3/2) 3= B41/2 .0010% = A(3/2) T = 241/2 L0041 X £
N(3/2) J = 2+43/2 .0031 A(3/2) J = 4+3/2 .0123

Table 3.24: Coupling of nonstrange baryon rescrnances to Nm.
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predicted experimental

Nucleon resonances:

s11 : 1.51 , 1.68 , 1.83 1.53%, 1.67%, 1.88%*
p13 : 1.51, 1.68 , 1.83 , 2.18 1.52%, 1.70%, 1.83%, 2.08
D15 : 1.68 , 1.95 , 2.18(2x) 1.68%, 1.92(?), 2.23
G17 : 1.95 , 2.18(2x), 2.64 2.14

G19 : 2.18 , 2.42 , 2.64(2x) 2.27 , 2.79

I1,11: 2.42 , 2.64(2x), 3.04 2.58

I1,13: 2.64 , 2.81 , 3.04(2x)

L1,15: 2.81 , 3.04(2x), 3.39

L1,17: 3.04 , 3.16 , 3.39(2x) 3.03(2)

N1,19: 3.16 , 3.39(2x), 3.70

P11 : 2.01 (1.42), (1.72), 2.05%*
P13 : 1.68 , 1.87 , 2.01 1.71%

Fi5 : 1.68 , 1.87 , 2.01 , 2.42 1.68%, 1.88%

F17 : 2.01 , 2.20 , 2.42(2x) 2.01%

H19 : 2.20 , 2.42(2x), 2.85 2.21

H1,11: 2.42 , 2.62 , 2.85(2x)

K1,13: 2.62 , 2.85(2x), 3.22 2.61

K1,15: 2.85 , 2.99 , 3.22(2x)

M1,17: 2.99 , 3.22(2x), 3.56

Delta resonances:

S31 : 1.64 , 1.93 1.62*%, 1.88*%, (2.15)
D33 : 1.64 , 1.93 , 2.18 1.71%, 2.01*

D35 : 1.93 , 2.18(2x) 1.91%, 2.31

G37 : 2.18(2x), 2.64 2.22

G39 : 2.18 , 2.64(2x) 2.17 , 2.47

I3,11: 2.64(2x), 3.04

I3,13: 2.64 , 3.04(2x) 2.79

L3,15: 3.04(2x), 3.39
L3,17: 3.04 , 3.39(2x)

P31 : 1.91 1.90%*

P33 : 1.90 , 1.91 (1.56), 1.88%
F35 : 1.90 , 1.91 , 2.42 1.91%

F37 : 1.91 , 2.42(2x) 1.92%, 2.43
H39 : 2.42(2x), 2.85 2.22

H3,11: 2.42 , 2.85(2x) 2.42

K3,13: 2.85(2x), 3.22

K3,15: 2.85 , 3.22(2x) 2.99

M3,17: 3.22(2x), 3.56

M3.19: 3.22 , 3.56(2x) 3.23(?)

* candidates for £ = 1 and % = 2 states
( ) candidates for radial excitations

Table &§.25: Cormparison of predicted and experimentally found N

resonances for each wave.
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seen experamentally, while weaker resonances have been seen. For a more
clear overview we have constructed table 3.25, For each channel the
resonances which are predicted and those for which experimental
evidence exist, have been given. The underlined predicted states are
those which have the largest coupling to Nf. For most of them candi-
dates exist when they are the lowest resonance predicted in one of the
N7 channels. Besides this we can only note that many of the predicted

resonances are absent.

N7 predicted experimental [Sax 80]
2,2 5

wave M[Gev] (gAK/gNﬂ) (?AK/‘NH) M[Gev] (XAK/XNH)

s11 1.684 0.44 0.17 1.68 0.13

D13 1.684 0. 0. 1.65 0.03

D15 1.684 0. 0. 1.67 0.003

Pl1 radial excitation 1.73 0.51

P13 1.672 0.44 0.06 1.69 0.4

F15 1.672 0.44 0.0007

Ss11 1.829 0.30 0.18

D13 1.829 0.30 0.06 1.90 0.3

D15 1.949 0.44 0.16 1.92 0.4

Gl17 1.949 0.44 0.03 2.18 0.02

D15 2.176 0. 0.

G117 2.176 0. 0.

F17 2.195 0.44 0.18

H19 2.195 0.44 0.06

Table 3.26: Comparison of predictions and experimental results for the

ra.io between coupling to AK and I .
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3.6.6. Nucleon resonances coupling to AK

Only states on the A-trajectory couple to AK. Resonances coupling

to AK therefore are identified as resonances belonging to the A-
trajectory or they indicate the presence of admixtures of A-states.
For the (S11) resonances we discussed such mixing in section 3.6.1.
The predicted ratio between the coupling constants for the coupling
to AK and Nm 1s given in table 3.26. This 1s compared with the
experimental ratio of the branching ratios using the quantaty %. We
prefer the assignments of A-trajectory nucleons to the D15 and G17

resonances 1n ref. [Sax 80].
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CHAPTER 4: DIBARYON RESONANCES [Mul 79.2]

Although during the last twenty years several candidates for
dibaryon resonances nave been found, they have not been considered
very seriously until recently. One tried to explain nonstrange
dinucleon resonances as strong N3 or AA interactions [Arn 68, Kam 77.2]
or 1n three-body treatments as NN7 resonances [Ued 78, Klo 77].
Calculations of s-wave Q6 states [Jaf 77.1, Rer 78.1, Mat 77, Hgg 79]
and their orbital excitations [Mul 78.1, Rer 78.2, Mul 78.3, Lic 78]
show that one may cxpect some low-lying six-~guark states.

We will denote experimentally observed dibaryon resonances as
B2(Y, I, JP; mass) and the predicted six-quark states as D(Y, I, JP;
mass), where Y, I, J, and P are the hypercharge, isospin, spin, and
parity of tnese resonances. In the section 4.3, 4.4 and 4.5 where we
discuss the Y = 2, 1, and O channels respectively Y 1s omitted. The
mass 1s guoted 1n GeV.

Except for the deuteron, B2(2, 0, 1+; 1.875), which 1s a bound

3
state 1n the 351 + D1 NN wave, the longest known dibaryon resonance

+
1s the B2(2, 1, 2 ; 2.17) which first showed up as an enhancement at

the NA threshold in the cross section of the photodisintegration of
tne deuteron [Kec 56]. Later some more NN resonances with masses above
+_+ +
2.6 GeV were found 1n the reactions pp > 7 X [Lam 66], pp > 7' d
- -4 -
[Coc 63, and 68], Kd > K -~ n d [Den 71], and dp > ppn [Ala 76). Recent
measurements [Kam 77.1, Ike 79] of the proton polaraization in yd - pn
revealed a structure around 2.38 GeV, that can be interpreted as a
2 +
dibaryon resonance B (2, 0, 3 ; 2.38). Further recent evidence for

dibaryon resonances comes from the Argonne experiments [Aue 77, Boe 75,
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Bie 78, Hid 77] with polarized beams and targets. These experiments
1ndicate several resonances i1n the energy region below 2.5 GeV, the

3

clearest one being 32(2, 1, 37; 2.26), a F3 NN resonance [Hos 78,

Kro 78, Gre 78). Also the already mentioned resonance B2(2, 1, 2+;
2.17) 1s seen 1n these experiments [Hos 79]. In a recent md elastic
scattering experiment [Kan 79] the resonances in the 3F and probably

3

also the 150 wave have been seen. These resonances are naturally
explained as six—quark states.

The experimental information for the strange dibaryon resonances
mainly comes from invariant mass plots for the different channels. The
best established resonance 1s the B2(1, % R 1+; 2.129) which has been
seen in many different experiments. The spin and parity of this state
comes from models [Swa 79.1] where this state 1s satisfactory
explained as the companion of the deuteron in the flavor SuU(3)
irreducible representation 10*., A long standing difficulty has
been the shoulder [Tan 69] in the Ap invariant mass spectrum around
2.14 GeV. In this chapter a gquite natural explanation of this shoulder
as a JP =1 six-quark state will be given. In recent experiments
[sha 79] Shahbazian has clearly seen a i\p resonance at 2.256 GeV and
found evidence for more strange dibaryon resonances.

If the explanation for the dibaryon resonances as six-quark states
1s correct, then 1t 1s quite easy to understand why the lowest strange
dibaryon resonances are much closer to the corresponding two body
thresholds than the lowest dinucleon resonances. The color-magnetic
interactions split dibaryons which have different flavor and spin
structure. The more antisymmetric flavor irreps (with lower values

for the flavor SU(3) quadratic Casimir operator) have a lower energy.

112



These flavor irreps, e.g. £ = 8, or £ = 1 only contain members with
at least one or two strange quarks, they do not contain members with
only nonstrange quarks. As a consequence we expect the study of these
dibaryon resonances to be easier in AN final-state interactions,
despite the fact that the statistics and variety in pp scattering

experiments is of course much larger.
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4.1. The masses of dibaryon resonances

In order to calculate the masses of the Q6 states we use the mass
formula explained 1n chapter 2. Because only a few candidates exist we
cannot include the phenomenological contributions to the mass. More-
over, we think they are here less important as the masses are above
2 GeV (see section 2.6.1). Tne masses of the s-wave (QG)1 states are
found from

M=M, +m A (4.1)

The relevant values of Mo, m, and A can be found in tables 2.3, 2.4,
and 2.7. For orbitally excited dibaryons we have the following possi-
bilities:

3
©) =@ 5+ @@ 5 @ m@d s @y

The masses are found from

172 + mA, + mA (4.2)

2 1]
M—[MO+(1/0L)E] 2y By

The relevant values of M m A~ and A2 can be found 1n tables

o Mpr Far %y
2.3, 2.4, and 2.12 - 2.17.

This prescription enables us to compute the masses of the six-
quark states (only one cluster present) and their orbital excitations
(two clusters present). Several effects which can influence the actual
value of the masses have been omitted. First of all, we have neglected
the i1nfluence of decay channels and final-state interactions. Secondly,
we did not include splittings arising from the spin-orbit and tensor
forces, which presumably are rather small. Apart from these contribu-
tions, small mass-shifts may arise from mixing, but they are neglected.

We mention the color-magnetic interactions between the two clusters

and the exchange contributions, due to the overlap of the quark wave
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functions. They cause mixing between gfgf and Qf—g Q4-Q2 states and
also between §f§ and ifl_QB-Qa configurations (see also section 4.2).
We also want to mention the effect of tunneling of a guark from one end
of the bag to the other end. For baryons this causes an exchange-like
contribution to the mass, as the tuinneling of a quark 1s equivalent to
the exchange of the other two quarks. The Q2—Q structure 1s preserved.
For dibaryons, tunneling causes transitions between the various
structures
0°-g < 9%-9% «» 9’0’

In chapter 3 the tunneling effects turned out to be at most 100 MeV
for £ = 1 and to disappear rapidly for higher f£-values. The mixing due
to tunneling 1s strongest between those dibaryons which have approxi-
mately the same masses, e.g. for £ = 1 between the (QS)B*—(Q)3 and
(Q4)3-(Q2)3* or between the (Q4)6*—(Q2)6 and (Q3)8-(Q3)8 states.
Tunneling also may lead to the decay mode (Q4)3-(Q2)3* > (Q3)1-(Q3)1,
which will be considered in section 4.2.

In order to 1llustrate the mass formula we consider two examples.
We calculate the spectrum of the nonstrange (QG)1 and (Q4)3—(Q2)3*
dibaryons. For the (Q6)1 dibaryons the color-magnetic contribution,
calculated usaing tables 2.4 and 2.7, 1s added to the multiplet mass Mo,
which 1s found 1in table 2.3. This 1s 1llustrated for dinucleons in
fig. 4.1. For the (Q4)3—(Q2)3* dibaryons the color-magnetic interac-
tions contain two contraibutions, one from the Q2 system and the other
from the Q4 system. In the final spectrum this leads to degenerate
levels, as 1llustrated for dinucleons in fig. 4.2. In this figure the

masses for the & = 1 levels have been given. The other orbitally



{1,8) Mass

2 833

2 518

2 361
2 361

2 243

2 164

MO(Z 125)

Fig. 4.1: The color-magnetic splitting for the & = 0 Q6 dibaryons. ALl

rasses are in GeV.

excited (Q4)3—(Q2)3* levels show the same color-magnetic splitting,

only the multiplet mass 1s different: e.g., for £ = 2, M2 = 2.591 Gev.

4.2. Stability and decay of dibaryons

One of the main decay modes of the s-wave Q6 states 1s fission. If
1t 1s energetically favorable a Q6 state will decay into two colorless
baryons. The change in energy, neglecting the color-magnetic interac-
tion,

- 6 3
6M0 = MO(Q )y - 2 MO(Q ) ’ (4.3)

1s not very large (GMO =~ - 50 MeV)}. To determine whether fission into
two colorless parts 1s energetically favorable, one has to look at the
change 1n the color-magnetic interaction energy,

_ 6 3
M= M Q) - 2 M (Q) . (4.4)
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0,1
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Fig. 4.2: The color-magnetic splitting for the 1 =1 color-triplet

Q4~Q2 dibaryons. All masses are in GeV.

we will approximate this by

6
SM=m A1Z(Q ) ’ (4.5)
wlth
6, _ 6, _ 3, _ 3
A12(Q ) = A(Q7) AI(Q ) 32(Q ) . (4.6)
A12 15 a measure for the color-magnetic attraction in the Q6 cluster

between the two (Q3)1 subsets. The stability increases when A12
decreases. We will assume that the color-magnetic 1nteraction energy
determines also the stability of clusters other than (Q6)1. For example

a (Q4)3 cluster can fission into a colorless baryon and a quark,



h, - @) @, . (4.7)

The stability of this cluster 1s then measured by
4, _ 4 3
A12(Q ) = A(Q7) - A(QT) . (4.8)

In the following we will briefly discuss the various possibilities
for the decay of dibaryon resonances.

The first possibility 1s the fission of an s-wave Q6 dibaryon into
two baryons (BB). Because of parity conservation the final-state
baryons are in an even L-wave. The decay 1in S~waves 1s expected to have
a very large width. The decay in D- or higher waves 1s suppressed due
to the angular momentum barrier and due to the spin-flip of the quarks
that 1s required in order to conserve the total angular momentum. The

+
0, 1s given

vectorial change of the angular momenta, such that AJP
by AL = AS = 0 for the decay in S-waves and by \L = AS = 2 for the
decay i1n D-waves.

Fission 1s also possible for orbitally excited dibaryons but it
w1ll not be 1mportant because other decay modes will dominate. The
reason 1s that the orbitally excited baryon (Q - Q2) which 1s formed

1n the decay
(et - 10 — (e -0 ) — @) "), (4.9)
1s usually quite heavy.
Very important for the coupling of excited dibaryons to the BB
channels 1s the tunneling mode. In excited multiquark states the
quarks reside at the ends of the rotating stringlike bag. Nevertheless

1t 1s possible that a guark tunnels from one end of the bag through

the angular momentum barrier to the other end. This gives the
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recoupling

(eh, 2 ©0h,) — w2y . (4.10)
This tunneling will be easy when the tunneling quark 1s not "bound" to
the Q4 cluster (A12(Q4) > 0) and when L = £. Tnis coupling to the BB
channel will not be so strong when £ # L, because then the process has
to be accompanied by a spin-flip in order to conserve the total
angular momentum.

The final decay mode which we want to discuss proceeds via quark-

antiquark creation. The s-wave and excited color-triplet dibaryons

w1ll decay via Qé creation into BBM channels,

6 7=

®—= o8 - ©hehom ; (4.11)
0107 — G’y — ©) ) ) ; (4.12)
©°-0) — (@) — @ 9% B0 X (4.13)

In order to conserve angular momentum and parity, AJP = 0+, the Qé
pairr 1s created in a 3PO wave; r.e. AL = AS = 1 for this decay. The
total orbital angular momentum i1n the final state 1s L = £ + 1.
Color-sextet and color-octet orbital excitations with £ = 1 can
also decay easily via Qé creation. The reason 1s that the pair creation
can take away one unit of orbital angular momentum. This can then leave
all quarks 1in relative s-waves and the color 1s easily annihilated by
recoupling, e.qg.
%)

4 2 4 = 2 3 —
QD ea= Q7)) — ({Q7) 4 (Q) 3(Q) 35 (Q7) ) — (Q7) (@) ,{QQ), . (4.14)

4.3. Nonstrange (Y = 2) dibaryon resonances

In this section we discuss the nonstrange dibaryon resonances. The



p

mass width I J remarks refs
(GeV) (MeV) (NN wave)
elasticity
+
1.875 - 0 1 deuteron
3 3
{ Sl+ Dl)
2.17 ra235-100 1 2t yd + pn Kec 56
x=0.1 ('p,)  Ka»xrr"a Den 71
dp -+ ppn Ala 76
pp > pp (PWA) Hos 79
2.2-2.3 r=100-300 1 3" PP > PP Hos 78
x 0.2 ’ry)  (pwn,DA,P,LCM) Kro 78
Gre 78
nd + wd Kan 79
2.38 0? 3t vd@ > pn (P) Kam 77
(3D4+3G ) Ike 79
3 3
. + +
2.4-2.5 1=100-200 1 0 or 4 ? pp > pp Hos 78
(150 or 1G4) (PWA,DA) Kro 79
Gre 78
7d > nd Kan 79
~ 2.6 pp > ﬂ+X+ Lam 66
+
~ 2.9 PP > T X+ Lam 66
pp > n+d Coc 63
And 68
+
~ 3.6 pp *1m d And 68
+_ +
pp > 1 X Lam 66
~ 3.9 pp > T X' Lam 66

Table 4.1: Candidates for nonstrarge (Y = 2) dibaryon resonances.
PWA = partial wave analysis, DA = dispersion analysis,

LCM = legendre coefficient method, P = polarization.

predicted mass spectrum will be compared with the experimentally known

resonances, which have been listed in table 4.1. The lowest
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experimentally observed resonances are good candidates for six-quark
states. They are B2 (1, 2¥; 2.17), B%(1, 37; 2.2 - 2.3), B%(0, 3%; 2.38)
and B2(1, 0+ or 4+; 2.4 - 2.5), although the (I, JP) assignments of the
higher two are less definite.

The flavor and spin structure of the Y = 2 dibaryons 1s given in
table 4.2. This structure determines the magnitude of the color-magnet-
1C energy Mm. It also determines to which baryon-baryon (BB) channels
the dibaryon can couple. For the (Q6)1 states, which fission into two
colorless baryons in S-waves, and for the (Q4)3-(Q2)3* states, whach
decay via quark-tunneling into two colorless baryons in L-waves with
L = 2, the BB-channels have been given 1n table 4.2. The flavor and
spin structure i1s independent of the orbital angular momentum & of the
quark-bag. The mass of every dibaryon resonance 1s found by adding the
color-magnetic i1nteraction energy Mm to the multiplet-mass Ml' For the
(Q3)8—(Q3)8 dibaryons we have to take i1nto account the fact that we
are combining two identical fermion-systems.

The predicted masses are listed with greater accuracy than
warranted by the model 1n order to distinguish between the resonances.
We start the discussion with the s-wave Q6 states, which can fission

1nto baryon-baryon channels in even L-waves.

4.3.1. The s-wave Q6 states

D(0, 1+; 2.16) and D(1, 0+; 2.24) are the lowest predicted (QG)1

3
nonstrange dibaryons. They fission into S-waves, the S1 and 1SO NN

waves, respectively. These dibaryons are very unstable. The change 1in

color-magnetic energy, measured by A 1s very large; A = 14/3 and

12° 12

6, respectively. Such states probably do not show up as pronounced

resonances 1n a BB-channel; rather they only give a background
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(Q)1 Y = 2
=¥
SRR

Elya)s |8 2 S y My
10%(2,001  [x x 9 2164
27 (2,10  |x x| 118 2243
27 (2,12 X x 236 2361
10%(2,0) 3 x| 23 2301
35 (2,2)1 x x| 393 2518
28 (2,3)0 x| 708 2833
@b, - @), v=2

3 =2
oo

fly,1)s fly,1)s s 1 Z 3 3 M M, M, My
6%(4/3,001  3%*(2/3,0)0 1 0 x -260 2110 2331 253
15 (4/3,1)0 " ) 1 x -170 2200 2421 2626
15 (4/3,1)1 " 1 1 X x -125 2245 2466 2671
15 (4/3,1)2 " 2 1 x - 35 2335 2556 2761
6%(4/3,001 6 (2/3,1)1 0,1,2 1 x x - 33 2337 2558
15 (4/3,10 " 1 0,1,2 x x 57 2427 2648
15 (4/3,1)1 " 0,1,2 0,1,2 X x x 102 2472 2693
15_(4/3,2)1  3%(2/3,000 1 2 x x 145 2515 273
15 (4/3,102 6 (2/3,01 1,2,3 0,1,2 X x 192 2562 2783
15,4/3,2)1 6 (2/3,101  0,1,2 1,2,3 x x 372 2742 2963
Q) - (@, ¥=2

3* 3

fly,1)s fly,1)s s 1 Mm M1 M,
15%(5/3,1/2)1/2  3(1/3,1/01/2 0,1 9,1 0 2370 2591
15%(5/3,1/2) 3/2 " 1,2 o, 63 2433 2654
15%(5/3,1/2)5/2 " 2,3 0,1 167 2537 2758
24 (5/3,3/2)1/2 " 0,1 1,2 188 2558 2779
24 (5/3,3/2)3/2 " 1,2 1,2 251 2621 2842
21 (5/3,5/2)1/2 “ 0,1 2,3 S0z 2872 3093

(table 4.2)
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@ - @ ¥=2

fy,1)s f(y,1)s s 1 M M

m 1
6*(4/3,0)0 3*2/3,01 1 0 -96 2405
6*(4/3,0)0 6 (2/3,1)0 ¥ 1 18 2519
6%(4/3,0)2 3*2/3,001 1,2,3 0 39 2540
15 (4/3,D)1 I*R/3,01 0,1,2 1 84 2585
6*(4/3,0)2 6 (2/3,1)0 2 1 153 2654
15 4/3, D1 6 (2/3,1)0 1 0,1,2 198 2699
Es(4/3,2)0 3*(2/3,001 1 2 310 2811
55(4/3,2)0 6 (2/3,1)0 (o] 1,2,3 423 2924

©%g - @Yy ¥=2

fly,1)s fly,1)s s 1 M My
8(1,1/2)1/2 8(1,1/2)1/2 0,1 0,1 * -74 2409
8(1,1/2)3/2 8(1,1/2)1/2 1,2 0,1 ] 2483
8(1,1/2)3/2 8(1,1/2)3/2 0,1,2,3 0,1 * 74 2557
10(1,3/2)1/2 8(1,1/2)1/2 0,1 1,2 149 2632
101,3/2)1/2 8(1,1/2)3/2 1,2 1,2 223 2706
10(1,3/2)1/2 10(1,3/2)1/2 0,1 o,1,2,3 * 372 2859

* i even, s even, odd

2
s odd, 1 even
1 0odd, s even, 1 even
i

s odd,

Table 4.2: Y = 2 dibaryon resonances. The flavor and spin structure
of each cluster and of the combination is given. M, 18 the
color-magnetic contribution. M =mb for (Qs)z or
M, = mbg + myh, for the other dibaryons. M, g the sum of
the multiplet mass and the color-magnetic contribution
(eqs 4.1 and 4.2). It indicates a multiplet of resonances

with J = |8-s|,...,|2#s| and P = (=)*. 411 masses are in

GeV.
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contribution. This can be compared with the e(760) *» mm, which can be
1nterpreted as the fission of a QZQZ bag i1nto two mesons [gaf 77.2,

Jaf 79.1]. The momenta in the NN channel are kR = 0.54 GeV for the

p, 1*; 2.16) ana kg = 0.61 GeV for the D(1, 0*; 2.24). The behavior

of the phase shift expected from a P-matrix analysis, however, 1s
obscured by the attractive one-boson-exchange (O.B.E.) potential. This

leads to a bound state ain the 351 + 3D1 wave and a strong attraction

in the 1SO wave, A possible way to link the NN-potential [Nag 78] and

the six—quark bag states via deformed bags 1s discussed by DeTar [DeT
78, DeT 791.

+
D(0O, 3 ; 2.36) cannot fission i1n S-waves. It couples to the 7s3

AA-wave, but 1ts mass 1s below the AA threshold at 2.47 GeV. It can,
however, fission into BB-channels in an (even) L-wave with L # O,
accompanied by a spin-flip, or it can decay into BBM-channels through

3
guark-palr creation. Fission into a D3 NN-wave 1s possible. As the

coupling to NN 1s suppressed due to the angular momentum barrier and
the necessary spin-flip, a reasonable width may emerge. We think that
this state 1s responsible for the experimental resonance-structure

found around 2.38 GeV in deuteron photodisintegration [Kam 77.1].

Therefore we prefer to make the i1dentification B2(2.38) = D(2, O, 3+;

2.36) .

1
D(1, 2+; 2.36) 1s an intermediate case. It couples to the D2 NN-

5
wave through fission in a D-wave, but 1t can also couple to the 52

NA-wave through fission 1n S-waves. While for the latter decay possibi-
lity the coupling 1s larger (S-wave vs D-wave fission), for the former

+
more phase space 15 avallable, Experimentally an (I, JP) = (1, 2)

state shows up in the 1D2 NN-wave and 1in NNm just at the NA threshold
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(table 4.1). We therefore prefer to make the i1dentification
B2(2, 1, 2+; 2.17) - p(2, 1, 2+; 2.36). This situation can be under-
stood 1n a potential model [Gon 79] where the bag is coupled to a 1D2

NN and a 552 NA channel. In this model the pole positions are followed
in the complex energy plane. When the bag 1s weakly coupled to the NN
and NA channels tne D(1, 2+; 2.36) 1s represented by one set of conju-

gate poles on the third Riemann sheet (Im kNN < 0, Im kN < Q),

A
connected with the physical sheet above the NA threshold and another

set of conjugate poles on the fourth sheet (Im kNN >0, Im kN < 0),

A
connected with the second sheet above the NA threshold. The second
sheet (Im kNN <0, Im kNA > 0) 1is reached from the physical sheet by
passing the unitarity cut between the NN and NA thresholds, the poles
all lie near E =~ 2,36 GeV. When the coupling of the bag and the NN and
NA channels 1s increased the poles move. The poles on the third sheet
move away from the unitarity cut and the resonance structure around

E = 2.36 GeV weakens. Increasing the coupling strength the poles on the
fourth sheet move towards the NA threshold, Still above the threshold
they cross the unitarity cut into the second sheet and finally show up
as poles in the second sheet quite close to the NA threshold. This
means a NN resonance near the NA threshold. An analogous case 1s the
coupled mm and KK system. Here the S*(0.98 GeV) 1s predicted in the bag
model as a Q2§2 state at 1.20 GeV and shows up as a TT resonance near
the KK threshold [Jaf 79.1, Som 80].

The higher (QG)1 dibaryons D(2, 1+; 2.52) and D(3, 0+; 2.83) do

not couple to NN, but only to NA and AA.

4.3.2. Orbitally excited Q6 states

Other dibaryons which we expect to couple strongly to BB-channels
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are the (Q4)3—(Q2)3* states. Through tunneling they decay into BB-
channels. The stability depends on the color-magnetic energy gained
when the Q4 cluster fissions into a baryon and a quark. This 1s

measured by A12(Q4). Of all nonstrange Q4 clusters the cluster with

(£, s; A) = (15, 2; 2) has the smallest value A12, namely A12 = 0. The
cluster with (f, s; A) = (6, 1; - 4/3) has A12 = 2/3; the others have
A12 > 2.

The clusters with A12 > 0 are unstable. They easily fission and
the quark recombines after tunneling with the other diquark to a baryon
or the diquark and quark recouple after quark-antiquark creation to a
baryon and meson. If a large enough phase space 1s available, those
(Q4)3-(Q2)3* states decay easily into NN, NA and NNT. Probably their
widths still are large (I 2 300 MeV) and their elasticity 1s small
(x < 0.3).

The (Q4)3 cluster with (£, s; 4) = (15, 2; 2) 1s different. It

cannot easily fission in a A and a quark, because A = 0, and also the

12

fission 1nto a nucleon and a quark 1is suppressed because 1t cannot
happen 1n S-waves and has to be accompanied by a spin-flip. This
cluster therefore 1s less unstable and the width of the (Q4)3—(Q2)3*,
built from this cluster, might not be too large; the elasticity

will staill be small. The resonances with the highest total angular
momentum (j = & + s), which are most easy to detect, are the resonances

3

1
in the 3F3, G4, HS' ... waves. Therefore we thaink that 1t 1s the

(Q4)3-(Qz)3* states, containing the s = 2 (Q4) cluster, that have been

observed experimentally.

P - - -
D(0, JP; 2.110) wath J =0 , 1 and 2 are the lowest nonstrange

dibaryon resonances. The D(0, 17; 2.11) can decay in the 1P1 NN-wave .

126



It has a strong coupling to NN and cannot decay into NNT in S-waves,
and therefore should have a large elasticity. Thas 1P1 resonance, pre-
dicted at Tlab = .5 GeV 1s an important test for the validity of this
model for orbitally excited Q4-Q2 dibaryon resonances. In the neighbor-
hood of thas D(O, 1_; 2.11) resonance no otner I = 0 dibaryon resonan-
ces are predicted. Because 1ts mass 1s so low 1t will probably give

a clear signal in tne 1P1 NN-wave. We would like to urge the experi-
mentalists to look for this resonance i1n np-~scattering experiments in
the mass range 2.06 < M < 2.16 GeV, that 1s the laboratory momentum

range 0.94 GeV/c < P < 1.23 GeV/c, or the laboratory kinetic energy

lab

range 390 MeV < T < 610 MeV. The presence of this resonance in the

lab
lower part of this range 1s perhaps already excluded by present day
experiments.

The states with JP = 0 and 2 are extrancous states [Mul 78.1].
The quantum numbers (I, JP) = (0, 0—) and (0, 27) are forbidden for
the NN system. Thus these extraneous states cannot decay ainto NN;
however, they can decay into NNm. They can be produced in the reaction

pp > ﬂ+ X+ (4.15)
|
— NN-

The D(0, 2 ; 2.11) 1s experimentally likely to be rather narrow as 1t
cannot decay into NNT 1in S-waves.

- 3
D(1, 1 ; 2.200) couples to the P1 NN-wave and to NNT i1n S-waves.

p(1, 3°; 2.245) wath 3° =07, 17, ana 2° couples to the 3p WN-waves,

to NA and to NNW. All these resonances are probably rather unstable
and have small elasticities.
P _ p - - ~
D(1, 3 ; 2.335) wath J =1, 2 and 3 contains the relatively
3 3

P_+"F_ and 3F

stable (Q4) cluster with spin s = 2. They yield 3P1' 9 2 3
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NN rescnances whose widths are not too large, however, with a small
elasticity. Experimentally structure 1s seen in the 3P and 3F waves
(J < 3) 1n the region 2.2 - 2.3 GeV [Hos 78, Kro 78]. Clear evidence

exists for a resonance in the 3F3 NN-wave [Hos 78] with a small

elasticity (x = 0.2). The dispersion analysis [Gre 78] shows that the

structure comes mainly from the triplet uncoupled waves 3P1 and 3F3.

We thank that the complete structure in this region is rather complex,
P

due to the presence of many dibaryons. Including the D(1, J , 2.337)

as well, there are predicted in the region 2.2 - 2.35 GeV two 3P

S1X 3P

0'

3 3 3

1’ four P2+ F2 and two F3 NN resonances. As J = 3 1s the
highest spin and one of the 3F3 resonances 1S somewhat stable, it 1s

understandable why this resonance 1s most clearly seen. The great
number of 3Pl resonances might explain the effect in the traplet

uncoupled channels.

+ +
D(O, JP; 2.331) wath JP =1, 2+, and 3 1s the lowest & = 2

dibaryon. It couples to NN and NNT through tunneling and quark-anti-
quark creation respectively. It probably 1s a rather inelastac,

unstable resonance.

P P + + +
D(L, 3 2.556) with o =07, 1%, 2%, 37, and 4¥ 1s the £ = 2

(Q4)3—(Q2)3* dibaryon which contains the s = 2 (Q4) cluster. The

+ +
D(1, 1) and D(1, 3 ) are extraneous 1n NN. While many dibaryons (most

1

+
of them unstable) with JP = 2 ("D, NN-wave) appear 1in this reqion,

2

the D(1, 0+) and D{(1, 4+) resonances are more 1solated. Therefore

resonances 1in the 1SO and 1G4 NN-waves will show the most clear

resonant behavior, and they are candidates for the experimentally
observed structure in the region 2.4 - 2.5 GeV.

P P
The higher recurrences of the D(1, J ; 2.335) and D(1, J ; 2.556)
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lie at 2.76, 2.95, and 3.13 GeV for £ = 3, 4, and 5.
We think that the splittings due to the color-magnetic interaction
are reliable 1n so far as we may neglect the final-state interactions.
4 2
It appears that for the nonstrange dibaryon resonances (Q )3-(Q )3*
the observed masses are about 50 - 100 MeV lower than the predicted
ones, but this of course strongly depends on the assignments. More-
over, it 1s difficult to determine an experimental mass. This depends
on the method of analysis, e.g. for the 3F3 in refs [Hos 78] and
[Gre 78].
The i1mportance of dibaryon resonances, other than Q6 or
4 2 5
(Q )3-(Q )3*, 1s at present not clear to us. The Q -Q resonances
probably do not couple strongly to BB-channels. The nonstrange

(Q3)8—(Q3)8 dibaryons are probably very unstable. Through gluon

exchange (electric) they easily couple to BB-channels.

4.4. The ¥ = 1 dibaryon resonances

Experimental evidence exists for several Y = 1 dibaryon resonances
BZ(I, mass) . The evidence for the I = 1/2 resonances comes from Ap
invariant mass plots. A collection of such plots is given in fig. 4.3.

The most pronounced enhancement, B( %—, 2.13), lies near the IN
threshold with a mass M = 2,129 GeV and a width T =2 6 MeV. Thais
certainly 1s not a candidate for a six-quark state, rather, just like
the deuteron it 1s explained very well in potential theory [Swa 62,

Dos 78] as being a IN "bound" state showing up as a AN resonance. This

enhancement 1s accompanied by a shoulder [Tan 69] which can be fit by

1

a Breit-Wigner resonance B2( o 2.14) with M = 2.139 GeV and

I' =9 Mev.
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Recently B.A. Shahbazian and coworkers at Dubna [Sha 79] deter-
12
mined Ap invariant mass spectra 1n the reactions n C°~ > A(mp)X and

. C12 > A(mp)X. They found evidence for two more enhancements:

1
B2( %—, 2.18) and B2( 5 2.25). They try to explain the Bz( % , 2.18)
enhancement as an effect due to XN > fip conversion at large relative

2,1
momenta. They want to explain the B ( 5 2.14) resonance in the same

way. We prefer to retain the resonance explanation for the B2( % ’
2.18) enhancement. We note that 1t 1is also recognizable (although of
course not statistically significant) in most of the other analyses of
fig. 4.3.

The resonance B2( é—, 2.25) with mass M = 2.256 GeV and width
1 ~ 15 MeV 1s a 5 to 6 standard-deviation effect in the Dubna
experiments. This state also shows up weakly 1in most of the other
analyses. Shahbazian [sha 79] gives arguments why the Bz( % , 2.25)
state 1s clearly visible in their n C12 and 1 C12 experiments, while
it 1s not clearly visible in the K d experiments. Around 2.34 GeV an

enhancement B2 2.34) shows up 1n several analyses [Ber 76, Sha 73,

(EI
Kad 71)]. Beilliére et al. [Ber 76] calculate a 2.8 standard-deviation

significance, but conclude for no evidence for a resonance at thais

position.

Fig. 4.3: “p invariant-mass plots wn the reaction K d + Apm  (left) or
K -llucleus interactions (right). On the left from top to
bottom taken from [Tan 63, Cli 68, Bra 77, Sim 71, Ale 69,
Eas 711. Or the right from [Bei 76, Sha 79]. The plots are
ordered by their (increasing) K incident momentur. We have
drawn arrovs at 2.13, 2.14, 2.18, 2.24 and 2.34 GeV to guide
the eye.
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In the f\pT+ invariant mass plots Shahbazian et al. [sha 79] found
evidence for I = % resonances around 2.5 GeV and 2.99 GeV. A state at
2.5 GeV also shows up 1n the ﬂpn_ invariant mass plots.

In table 4.3 we have listed the predicted Y = 1 dibaryon resonan-
ces. What strikes us 1s the enormous number of predicted resonances.
In order to show up 1n the experimental data a resonance must have
strong enough coupling to the ‘N and/or SN channels and i1ts width may
not be unreasonably large.

The QG—states with JP = 0+ 1in the flavor irreps 8 and 27, and
wlth JP = 1+ in the irreps 8, 10 and 10*, can decay spontaneocusly in

the s-wave AN or IN channels. As 1n the NN case we expect these states

to have a very large width and therefore not be visible 1in invariant-

mass plots.

@, ¥=1
SRR
gc ooy
fly,1)s £z 'z 23 'E Mm MO
8 (1,1/2)1 X X X -126 2169
8 (1,1/2)2 x x -54 2241
10 (1,3/2)1 X x x x % 230
10%(1,1/2)1 X% x ¥ 2331
27 (1,1/2)0 X x x 108 2403
27 (1,3/2)0 x x 108 2403
27 (1,1/2)2 x x x 216 2511
27 (1,3/2)2 X X X X 216 2511
10%(1,1/2)3 x 216 2511
3B 1,3/2)1 X X X x J61 2656
35 (1,5/2)1 X x 361 2656
28 (1,5/2)0 x 649 2944

(table 4.3)
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@hy - @M. ven I~
e T
Ty god
fly,1)s fly,1)s s 1 2 & f 2 A E M M M
m 1 2
3 (1/3,1/2)0 3%( 2/3,0 )0 0 1/2 x x -411 2112 2322
3 (1/3,1/2)1 3*( 2/3,0 )0 1 1/2 x x -371 2152 2362
6%(1/3,1/2)1 3*( 2/3,0 )0 1 1/2 x x -250 2273 2483
6%(4/3,0 )1 3*(-1/3,1/2)0 1 1/2 X x -231 2292 2502
3 (1/3,1/2)0 6 ( 2/3,1 )1 1 1/2,3/2 X X X X x -184 2339 2549
15 (1/3,1/2)0 3*( 2/3,0 )0 ] 1/2 x x -170 2353 2563
15 (1/3,3/2)0 3*( 2/3,0 )0 0 3/2 -170 2353 2563
3 (1/3,1/231 6 (2/3,1 )1 0,1,2 1/2,3/2 x X x X -144 2379 2589
15 (4/3,1 )0 3*(-1/3,1/2)0 ] 1/2,3/2 x x -140 2383 2593
15 (1/3,1/2)1 3*{ 2/3,0 )0 1 1/2 X X x -130 2393 2603
15 (1/3,3/2)1 3% 2/3,0 )0 1 3/2 X X -130 2393 2603
15 (4/3,1 )1 3*(-1/3,1/2)0 1 1/2,3/2 x X x x -95 2428 2638
15 (1/3,1/2)2 3*( 2/3,0 )0 2 1/2 x -50 2473 2683
15 (1/3,3/2)2 3*( 2/3,0 )0 2 3/2 x -50 2473 2683
_E}(4/3,0 )1 E (=1/3,1/2)1 0,1,2 1/2 x x -43 2480 2690
6*(1/3,1/2)1 6 ( 2/3,1 )1 0,1,2 1/2,3/2 X X X x X -23 2500 2710
15 (4/3,1 )2 3*(-1/3,1/2)0 2 1/2,3/2 x x -5 2518 2728
15 (4/3,1 )0 6 (-1/3,1/2)1 1 1/2,3/2 x x 47 2570
15 (1/3,1/2)0 6 ( 2/3,1 )1 1 1/2,3/2 X x x x 57 2580
15 (1/3,3/2)0 6 ( 2/3,1 )1 1 1/2,3/2,5/2 x x 57 2580
15 (4/3,1 )1 6 (-1/3,1/2)1 0,1,2 1/2,3/2 X X X X X X 92 2615
15 (1/3,1/2)1 6 ( 2/3,1 )1 0,1,2 1/2,3/2 X X X X x x 97 2620
15 (1/3,3/2)1 6 ( 2/3,1 )t 0,1,2 1/2,3/2,5/2 X x x x 97 2620
15_(1/3,3/2)1 3*( 2/3,0 )0 1 3/2 x 110 2633
15.14/3,2 11 3*(-1/3,1/2)0 1 3/2,5/2 x x 175 2698
15 (1/3,1/2)2 6 ( 2/3,1 )t 1,2,3 1/2,3/2 x x 177 2700
15 (1/3,3/2)2 6 ( 2/3,1 )1 1,2,3 1/2,3/2,5/2 x x x 177 2700
15 (4/3,1 )2 6 (-1/3,1/2>1 1,2,3 1/2,3/2 X X x 182 2705
15.0(1/3,3/2)1 6 (2/3,1 )1 0,1,2 1/2,3/2,5/2 x X x 337 2860
15 (4/3,2 )1 6 (-1/3,1/2)1 0,1,2 3/2,5/2 X x x 362 2885

(table 4.3)
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5

(Q7) 34 - (Q)3 Yy =1

fly.,1)s fly,1)s s 1 L 1 M,
3"(2/3,0 Y172 3 1/3,1/2)1/2 0,1 1/2 ~227 2296 2506
3*(2/3,0 13/2 301/3,1/2)1/2 1,2 1/2 -170 2353 2563
6 (2/3,1 )1/2 30 1/3,1/2)172 o, 1/2,3/2 -114 2409 2619
6 (2/3,1 )3/2 EXS 1/1,1/2)1/2 1,2 1/2,3/2 =57 2466 2676
15%(2/3,0 )1/2 3 1/3,1/2)1/2 0,1 1/2 0 2523 2733
15*%(2/3,1 )1/2 3 1/3,1/2)1/2 0,1 1/2,3/2 0 2523 2733
15%(5/3,1/2)1/2 3(-2/3,0 )1/2 a, 1/2 Q 2523 27133
15%(2/3,0 )3/2 30 1/3,1/2)1/2 1,2 1/2 57 2580
E"(Z/],l Y3/2 3(1/3,1/2)1/2 1,2 1/2,3/2 57 2580
E‘(5/3,1/2)3/2 3(-2/3,0 )1/2 1,2 1/2 63 2586
15%(2/3,0 15/2  3( 1/3,1/2)1/2 2,3 1/2 152 2675
15*(2/3,1 )5/2  3( 1/3,1/21/2 2,3 1/2,3/2 152 2675
E‘(S/B,I/Z)S/Z 3(-2/3,0 )1/2 2,3 172 167 2690
24 (2/3,1 )y1/2  3( 1/3,1/2)1/2 o0, 1/2,3/2 170 2693
24 (2/3,2 )1/2 301/3,1/2)1/72 .1 3/2,5/2 170 2693
24 (5/3,3/2)1/2  3(-2/3,0 »»1/2 0, 3/2 188 2711
24 (2/3,1 )3y/2 30 /3,1/2)1/2 1,2 1/2,3/2 227 2750
24 (2/3,2 )3/2  3(01/3,1/2)1/2 1,2 3/2,5/2 227 2750
24 (5/3,3/2)3/2 3(-2/3,0 )1/2 1,2 3/2 251 2774
21 (2/3,2 Y172 3 1/3,1/2)1/2 0,1 3/2,5/2 454 2977
21 (5/3,5/2)1/2 3(-2/3,0 )1/72 C,1 5/2 502 3025

(table 4.3)
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1 2
Qg - Q9 Y -1

f(y,1)s £(y,1)s s 1 Mm M1

3 (1/3,1/291 3*(2/3,0 )t 0,1,2 1/2 ~169 2478

6*(4/3,0 )0  3*(-1/3,1/2)1 1 172 -91 2556

6%(1/3,1/2)0  3*( 2/3,0 )1 1 1/2 -89 2558

3 (/3,1/1 6 (2/3,1 )0 1 1/2,3/2 -55 2592

6*(4/3,0 )0 6 (-1/3,1/2)0 0 1/2 3 2650

6*(1/3,1/2)0 6 ( 2/3,1 )0 0 1/2,3/2 25 2672

6*(1/3,1/2)2  3*( 2/3,0 )1 1,2,3 1/2 32 2679

6*(4/3,0 )2 3%(-1/3,1/2)1  1,2,3  1/2 44 2691

15 (1/3,1/2)1 3*(2/3,0 )1 0,1,2 1/2 72 2719
1/3,3/2)1  3*(2/3,0 )1 0,1,2 3/2 72 2710

15 (4/3,1 )1 3%(-1/3,1/2)1  0,1,2 /2,3/2 89 2736
6*(4/3,0 )2 6 (-1/3,1/2)0 2 1/2 138 2785

6%(1/3,1/2)2 6 ( 2/3,1 )0 2 1/2,3/2 145 2792

15 (4/3,1 )1 6 (-1/3,1/2)0 1 1/2,3/2 183 2830
15 (1/3,1/2)1 6 ( 2/3,1 )O 1 1/2,3/2 185 2832
15 1/3,3/2)1 6 (2/3,1 )0 1 1/2,3/2,5/2 185 2832
15_(1/3,3/2)0 I*(2/3,0 )1 1 3/2 272 2919
15.(4/3,2 )0 3*(-1/3,1/2)1 1 3/2,5/2 315 2962
15 (1/3,3/2)0 & ( 2/3,1 )0 0 1/2,3/2,5/2 386 3033
15_04/3,2 )0 6 (-1/3,1/2)0 0 3/2,5/2 408 3055

(tible 4.3)

4.4.1. The s-wave Q6 states

D( é-, 2+; 2.24) 1s the lowest Q6 state wnich could be visible. It

1
belongs to an octet and couples to the D2 and 3D2 AN and 7N channels.
As can be seen in table 4.3 1t also couples to the S-wave L[*(1385)N

and AI channels, but 1ts mass 1s below the corresponding thresholds.

We would like to make the assignment D{ % ’ 2+; 2.24) = B2( %-; 2.25) .
Because this state 1s above the ANT threshold (Eth = 2.19 GeV) thas

state could also decay via 0 pair creation. The final-state must then
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g - @), ¥=1

fly,1)s fly,i)s s 1 M M

n 1
1(0,001/2 8(1,1/2)1/2 0,1 1/2 -262 2368
1(0,001/2 8(1,1/2)3/2 1,2 1/2 -188 2442
8(0,0)1/2 B8(1,1/2)1/2 0,1 1/2 -69 2561
8(0,1)1/2 8(1,1/2)1/2 0,1 1/2,3/72 -69 2561
1(,0)1/2 10(1,3/2)1/2 0,1 3/2 -39 2591
8(0,0)3/2 8(1,1/2)1/2 1,2 1/2 -5 2625
8(0,1)3/2 B(1,1/2)1/2 1,2 1/2,3/2 -5 2625
8(0,0)1/2 B(1,1/2)3/2 1,2 1/2 5 2635
8(,1n1/2 8(1,1/2)3/2 1,2 1/2,3/2 E 2635
8(0,0)3/2 8(1,1/2)3/2 0,1,2,3 1/2 69 2699
8(0,1)3/2 8(1,1/2)3/2 0,1,2,3 1/2,3/2 €3 2699
10(0,1)1/2 8(1,1/2)1/2 0,1 1/2,3/2 124 2754
8(0,0)1/2 10(1,3/2)y1/2 0,1 3/2 154 2784
8(,11/2 10(1,3/2)1/2 0,1 1/2,3/2,5/2 154 2784
100, 1/2 8(1,1/2)3/2 1,2 1/2,3/2 198 2828
8(0,0)3/2 10(1,3/2)1/2 1,2 3/2 218 2848
8(0,13/2 10(1,3/2)1/2 1,2 1/2,3/2,5/2 218 2848
10(0,11/2 10(1,3/2)1/2 0,1 1/2,3/2,5/2 347 2977

Table 4.3: The masses (in GeV) of Y = 1 dibaryon resonances. Each mass
Ml indicates a multiplet of resonances with

J = |2-s|,...,|2+s]| and P = ()%,

also contain an angular momentum barrier. The observed small width is

perhaps not in contradiction with this assignment.

1 + +

D( . 2 ; 2.51) and D( % , 2 ; 2.51) are companions of the

2
D(2, 1, 2+; 2.36) dinucleon resonance in the irrep 27. They couple not
only to the 1D2 AN and I = 1/2 IN channel and to the 1D2 I =3/2 LN
channel, but also to the 582 £*N and LA channels. Because their mass
is above the thresholds for these latter channels we expect, as
observed in the NN case, the resonance poles to shift (due to the

final-state interactions) to the neighborhood of these thresholds.
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On these grounds one could expect for these states an experimental

mass of about 2.32 GeV.

+
D( %-, 3 ; 2.51) 1s a companion of the 3D3 NN resonance
+
D(2, 0, 3 ; 2.36) 1n the irrep lgf. It couples to the 3D3 AN and IN
channels and to the 7S3 I*A channel. It i1s below the threshold for the

latter channel. It 1s also coupled to ANT via QQ pair creation. We
expect therefore a width for this state of the order of 100 MeV.

4.4.2. Orbatally excited Q6 states

Having discussed the relevant Q6 states we will turn now our
attention to the orbitally excited states. Of these we will discuss

only the states with the lowest masses.

L

D( , 1_; 2.11) belongs to a nonet in the configuration

[ASLN)

P - P -
(Q4)3-(Q )3 with s = 0, £ =1 and therefore J = 1 . We would like

1
to assign tnls state to the shoulder B2( 5 2.14) . This state 1s then

coupled to the 1P1 and 3P1 AN and IN channels. This state decays via
the tunnelang of a nonstrange quark into AN or IN or via the tunneling
of a strange quark into AN. No change of orbital angular momentum and

therefore no spin-flip 1s required in thais tunneling. The observed

small width, T = 9 MeV, does not seem unreasonable.

D{( %—, JP; 2.15) belongs again to a nonet in the configuration
4 2 P - P - -
(Q )3—(Q )3* but now with s =1, & =1 and therefore J =0, 1 and
- 3 1 3 3 3
2 . These states are coupled to the PO, P1+ Pl' and the P2+ F2

waves of the AN and IN channels. We would like to assign these states
to tne B2( % ; 2.18) enhancement. The decay via tunneling goes exactly
the same way as for the D( % , 17; 2.11) state. The assignments of
D(2.11) and D(2.15) to the states B2(2.14) and B2(2.18) 1s supported
by the fact that their mass difference 1s only 40 MeV. This mass
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difference 1s of color-magnetic origin. We believe that the mass

differences between states are much more accurately known in this

model (neglecting final-state interactions) than their total mass. It

1s even surprising that the total masses seem to be only 30 MeV off.
It 1s noteworthy that extraneous states can also occur in the

Y = 1 channel. For baryons with spin s = 1/2, belonging to the flavor

octet BB the flavor representation in the baryon-baryon system BBBB

1s given by
= %
808=1(108,827) @ (3 @108 10%) .
The flavor part of the wave function i1s symmetric for the flavor

1rreps lJ 8

84/ and 31, while 1t 1s antisymmetric for the irreps 8

—A'ﬁ

and 10*. According to the generalized Pauli principle, the symmetric

1 3 1 3
flavor wave functions are allowed only in the 'S, P, D, F, etc.

waves and the antisymmetric flavor wave functions are allowed only in

the 35, 1P, 3D, 1F, etc. waves of the BBBB system. Dibaryon resonances
P + o+ _+
belonging to the flavor irreps L or 27 with J = 1,3, 5, etc. and

+ - - -
belonging to the irreps 10 and lgf with JP =0;0, 2, 4, etc.

therefore cannot decay into B and are called extraneous to B_B_ (see

BBB 878

table 4.4). As an example consider the D( % ’ (0_, 1-, 2_); 2.339)

states. The flavor representation f 1s found from table 4.3;
f=38®6=8@10. as (Y, 1) = (1, 3/2) these states belong to the
1irrep 10. The states D( % , 0 ; 2.339) and D( % , 2°; 2.339) are thus
, (07, 27); 2.339) > IN 1s

1 - -

forbidden. The I = 1/2 analogues of these states, D(1, 5 , (0, 1,

2-); 2.339), are not extraneous. As (Y, I) = (1, 1/2) these states

3
extraneous. Therefore the decay D(1, 0}

belong to the irrep 8. This irrep, however, generally couples to both

the symmetric and antisymmetric octet in the B system. Another

8Ps
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baryon flavor allowed extraneous
X baryon (1sospin) BB waves dibaryon states
1 1 + + +
BBBB 1+ §D + 27 s0 D2 1, 3,5, ...
3
(NN) (r=1 P0,1,2
3 3 +
+ t 3
8 ¥ 10+ 20% 7S, DBy o3 0
(I =0) 1p1 0, 2,4, ...
1.5 15
B, 4Bipo 27 + 28 s,”s D, D
(A7) (I =1, 3) 3P,7P “ee
35 + 10% 3s,7s *,"p ot
5 -
(I=0, 2 lp,”p ... O

Table 4.4: kxtraneous dibaryon states (see text).

2 -
instructive example 1s formed by the Q4—Q states D(1, % , (0, 1,

27); 2.393) and D(1, (0 , 1, 27); 2.428). The flavor representa-

3
5 ’

tion 1s 1

® 3 =8@ 10 ® 27. As the flavor symmetry 1s broken, the
states with (¥, I) = (1, 3/2) do not belong to either the irrep 10 or
27, but rather are mixtures. The 0~ and 2" states then decay via the
27 component, which does couple to the BBBB system. The states at
2.393 GeV have the structure (n3s)3—(n2)3* and the states at 2.428

GeV the structure (n4)3—(ns) The energy difference 1s due to the

3%
different color-magnetic interactions of the nonstrange guarks n and
strange quarks s.

The lowest AN resonances are predicted much closer to the AN
threshold than the lowest NN resonances to the NN threshold. Therefore

tnese AN resonances are more pronounced than the NN resonances and 1t

1s advisable to plan nigh statistics experiments to reconfirm these AN
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- - -4
resonances. We think here of K4 » Apm or K He - (AN)X at

sufficiently high incident K momenta.

4.5, The Y = 0 dibaryon resonances

The calculated masses for the Y = 0 states are presented in
table 4.5. In the I = 0 channel the lowest state is D(O, O+; 2.164),
which is a AA bound state [Jaf 77.1]. only via weak interactions can
it decay into AN. It has not yet been found [car 78]. The states
DO, 17; 2.295) and D(O, 1 ; 2.297) are predicted not far above the
thresholds of the AA and ZN thresholds to which they couple strongly

+

after tunneling. A probably narrow state is D(0, 2 ; 2.414), which

requires a spin-flip to decay into =N and AA.

(Q )1 Y=0 o

NERASRERER

R L L L L A

*
f(y,1)s = “z] 24 ':l'z’ '2, a ;xd '<;1] T: M M
m 0
1 (0,000 X X X =297 2164
8 (0,0)1 X x X X x -115 2349
8 (0,1)1 X X X X X X Xx -115 2349
8 (0,0)2 x x -50 2414
8 (0,12 X X x x =50 2414
10 (0,11 X X X X X X X kk} 2497
10%(0, 1)1 X X x X X 33 2497
27 (0,0)0 X X% x x 99 2563
27 (©,10 X X X X X 99 2563
27 (0,2)0 x X X 99 2563
27 (0,0)2 X X x 198 2662
27 (0,1)2 X X X X X X 198 2662
27 (0,2)2 X X x x 198 2662
1_Q‘(0,1)3 X x 198 2662
35 (0,11 X X X X X X 330 2794
35 (0,2)1 X X X x 330 2794
28 (0,2)0 X X 594 3058

(table 4.5)
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@h; - @, =0 TEARRLRBRRE

gy aegead

» ¢ ® &
f(y,1)s fly,i)s s i S22 2498 4% Mm M,
3 (-2/3,0)0 #*(2/3,0 )0 0 O x x -383 2295
3 (1/3,1/2)0 3*(-1/3,1/2)0 0 0,1 X X X X =381 2297
3 (-2/3,0 )1 _3_"‘( 2/3,0 )0 1 0 X X =348 2330
3 (1/3,1/2)1 3¥*(-1/3,1/2)0 0 0,1 X X X X =341 2337
6*(-2/3,1 )1 3*( 2/3,0 )o 1 1 X X -241 2437
6*(1/3,1/2)1 3#*(-1/3,1/2)0 1 0,1 X X X X =221 2457
3 (1/3,1/2)0 6 (-1/3,1/2)1 1 0,1 X X X X X X x -194 2484
15 (-2/3,0 )0 3 2/3,0 )o 0 0 X X -170 2508
15 (-2/3,1)0 3*(2/3,0 )0 O 1 X x -170 2508
3 (-2/3,0)0 6 (2/3,1 )1 1 1 X X X X =157 2521
3 a/3,1/1 6 (-1/3,1/2)1 0,1,2 0,1 X X X X X Xx x -154 2524
15 (1/3,1/2)0 3*(-1/3,1/2)0 0 0,1 X X X X -140 2538
15 (1/3,3/2)0 3*(-1/3,1/2)0 0 1,2 X x -140 2538
15 (-2/3,0 )1 3*( 2/3,0 )O 1 0 X X X =135 2543
15 (<2/3,1 )1 3*( 2/3,0 )0 1 1 % x X x -135 2543
3 (-2/3,0 )1 6 (2/3,1 )1 0,1,2 1 X X X X -121 2557
15 (1/3,1/2)1 3‘(—1/3,1/2)0 1 0,1 X X X X x b3 -100 2578
15 (1/3,3/2)1 1‘(-1/3,1/2)0 1 1,2 X x X X X -100 2578
15 (-2/3,0 )2 3*( 2/3,0 )O 2 0 x -64 2614
15 (-2/3,1)2 3*¥( 2/3,0 )0 2 1 x x -64 2614
6*( 4/3,0)1 6 (-4/3,0 )1 0,1,20 X X -52 2626
é‘(1/3,1/2)1 6 (-1/3,1/2)1 0,1,2 0,1 X X X X X Xx x -33 2645
15 (1/3,1/2)2 3%(-1/3,1/2)0 2 0,1 X x ~-20 2658
15 (1/3,3/2)2 3*(-1/3,1/2)0 2 1,2 ® X X -20 2658
6*(-2/3,1 )1 6 (2/3,1 )1 0,1,20,1,2 x X X X -14 2664
15 ( 4/3,1)0 6 (-4/3,0 )1 1 1 x 38 2716
15 (1/3,1/2)0 6 (-1/3,1/2)1 1 0,1 X X X X X X X 47 2725
15 (1,/3,3/2)0 6 (~1/3,1/2)1 1 1,2 X =r X 47 2725
15 (-2/3,0 )0 6 ( 2/3,1 )1 1 1 X x X x 57 2735
15 (-2/3,1 )0 6 ( 2/3,1 )1 1 0,1,2 X x X X 57 2735
_1_55(—2/3,1 )1 3%( 2/3,0 )0 1 1 X X 79 2757
15 ( 4/3,1 )1 6 (-4/3,0 )t 0,1,2 1 x X X X 83 2761
15 (1/3,1/2)1 6 (-1/3,1/2)1 0,1,2 0,1 X X X X X X X X 87 2765
15 (1/3,3/2)1 6 (-1/3,1/2)1 0,1,2 1,2 X X X X X X X 87 2765
15 (-2/3,0)1 6 2/3,1 )1 0,1,2 1 X X X X X X 92 2770
15 (-2/3,1)1 6 (2/3,1 )1 0,1,20,1,2 X X X X X X X 92 2770
1_55(1/3,3/2)1 1"‘(-1/3,1/2)0 1 1,2 X X X 140 2818

(table 4.5)
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(94)3'(92’3* =0 §§E§§§§§§E

ol oy goedgogag

* * -+ »* :\
fly,1)s fly,1)s s 1 28z a0 al M M,
15 (-2/3,0 02 6 € 2/4,1 )1 1,23 1 x x 164 2842
15 (-2/3,1)2 6 (2/3,1 )t 1,2,30,1,2 X X X X 164 2842
15 (1/3,1/2)2 & (-1/3,1/2)1 1,2,3 0,1 x x X 167 2845
15 (1/3,3/2)2 6 (-1/3,1/2)t 1,2,3 1,2 X X X X x 167 2845
15 ( 4/3,1 )2 6 (-4/3,0 )1 1,2,3 1 x X 174 2852
Es(—z/:’,l )1 6 (2/3,1 )1 0,1,20,1,2 X X X x 306 2984
_1_55(1/3,3/2)1 6 (-1/3,1/2)1 0,1,2 1,2 X X X X X 327 3005
Es( 4/3,2 )1 6 (-4/3,0 )1 0,1,2 2 b4 x 354 3032

Tabie 4.5: The masses (in GeV) of Y = 0 dibaryon resonances. Each mass
M, indicates a miltiplet of resonances with

£
J = |88 ,..., |848] and P = ()",

Experimental evidence for an I = 0 dibaryon resonance is seen in

the enhancement in the AA invariant mass plots at 2.365 MeV with

+

:

T = 50 MeV [Bei 72, Sha 78]. This 1s a candidate for the D(0, 2
2.414) .,

In the I = 1 channel the lowest state 1s D(1, 17; 2.297), decaying
into 3. D(1, 2; 2.414) and p(1, 3%; 2.662) are narrow (9%, states
decaying into ZA and =N after a spin-flap.

In the I = 2 channel we mention D(2, 1 ; 2.538) decaying into i,
and D(2, (1, 27, 37); 2.658) decaying into AZ and LI*. In both cases
these states are the lowest above the thresholds of the channels

mentioned.
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Appendix A. Conventions and Notations

A.l. Metraic tensor

=-1 ,

Ik

A.2. y-Matrices

The y-matrices satisfy

r = 2
{Yh Yv} 9,

1

v

k € {1,2,3; , =

=0 when p # v .

(a.1)

We use the Pauli-Dirac representation. The matrices can be written as

the direct product of 2 x 2

(hermitean) matrices (the matrix 1 and

the Pauli matrices ok or ok, k € {1,2,3%). Explicitly the matrices are

o

Yo =t Py
Y T P2 %
Y4=_1YO=

Yo = 1YY Y,V

= Y YpYaY, = T

Some of the y-matrices are not hermitean; they all satisfy

|9

03 =

3

(.
(

pl =

+
Y, = YOYLYO == Y4YUY4

0
0
G

i

0

k

0 )
-11
-1 Ok)

0

0 )
-1

(o)

(A.2)

(A.3)

The contraction of a four-vector, e.g. pu and the matrices Yu 1s

denoted

A.3. Fermion fields

The Lagrangian for massive free fermion fields is

(A.4)
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-y +m oy , (A.5)
with

- +
Py, . (.6)

The left-handed component of the Dirac spinor, which in momentum space

is given by

X
v=VE +m P (.7
E+m X

is denoted by wL and is projected out in the following way,

1+ Y5
by, = 5]V . (A.8)
A.4. Units
We use units such that h = ¢ = 1. Then e.g. 1 Gev—1 = .1973 fm,
1 Gev'? = .389 mb, 1 Gev™! = 6.582 x 1072 sec.
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Appendix B. SU(n) groups

B.1. Irreducible representations of SU(n)

There is a one-to-one correspondence between irreducible represen-
tations (irreps) of the special unitary group SU(n) and the irreps of
the permutation groups SU(N), which are uniquely determined by Young
diagrams. A Young diagram for SU(n) has no more than n-1 rows and is
denoted by the number of blocks in each row (fi) or equivalently by the

number of columns with i blocks.

£ [ ] [ ]
f2
. or
fn—l
Xn—l ..... . Xl
[fl’f2""'fn—1] or (xl,Az,...,An_l) (B.1)

Using q = Ai + 1 the dimensions of an irrep of SU(n) is given by

a@y;) = {(ql)(q1+q2) ..... eressaeann (q1+q2+...+qn_1)/1!}

x (g /(-1 (B.2)

For a more detailed discussion of Young diagrams and useful formulae
we refer to text boocks on group theory {Wyb 74, Lit 59] and the review
on Young tableaux [Itz 66].
B.2. SU(2)

Relevant SU(2) groups are the isospin and spin SU(2) groups,
denoted by SU(2,I) and SU(2,S).
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B.2.1. Generators of SU(2)

The three generators of SU(2), when denoted by S k € {1,2,3},

k'

satisfy the commutation relations

S . (B.3)

[Sk’sl] =t Som Pm

In the two-dimensional (self-conjugate) defining representation the

generators are represented by the 2 x 2 matrices Sk = Uk/2, where Gk
are the Pauli matrices,
0 1 0 -1 1 0
g, = , 0. = g, = . B.4
1 1 0 2 1 0 ’ 3 0 -1 ( :

For 1sospin we use the notation I, for the generators and 1, for the

k k

Paul: matrices.

B.2.2. Irreps of SU(2), labeling, dimension and quadratic Casimr

operators

The SU(2) quadratic Casimir operator for an N-particle system

(particles labeled 1,3) 1s

s? = Y s.-s , (B.5)
173
ll]

where the dot means summation over the group indices k € (1,2,3}. The
eirgenvalue of this operator i1s S(S + 1) where S has half-integer or
1nteger values and 1s used to label the irreps, whose dimension 1s
28 + 1.

B.2.3. Two-particle operators and permutation operators

The two-particle operator 01'0] can be expressed using the quadra-

tic Casimir operator 52 for the two-particle irrep;
c ro_ =28"-3 (B.6)

The value 1n the symmetric and antisymmetric two-particle irreps 1s:
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Young diagram S g -0

B 0 -3

(. 1 1

The two-particle permutation operator for SU(2) 1s given by

(1 +0 0) . (B.7)
1T ]

N

1]

B.3. su(3) [swa 66]
The aimportant SU(3) groups are flavor SU(3) and color SU(3),
denoted by SU(3,F) and SU(3,C).

B.3.1. Generators of SU(3)

The elght generators of SU(3) are denoted by F*, a € {1,...,8}
and provided with a subscript c or f, 1f confusion about color and
flavor may arise. In the tnree-dimensional defining representation
(quarks) the generators are represented by the 3 x 3 matrices

F2 = Aa/2, where 2% are the eight Gell-Mann matrices,

(i) T ()

X (: : T) 5 (: :'f) ( ) ;)
1 . . 1 . . .1 .

7 () N G I (2.5
. 0 . . =2

b_

AT o= 2 6ab' The matrices in the conjugate

=

normalized to Tr A%

a*/

representation (antiquarks) are F& = - A 2.

B.3.2. Irreps of SU(3), labeling, dimension and gquadratic Casimr

operators
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The most common notations for SU(3) irreps are
(A, u) or D(X,u) or da , (B.9)

where (A,u) is the notation from eq. (B.1) and d is the labeling with
the dimension of the irrep,

)\+p)

d=(1+0N0+u(+ 5

(B.10)

As the classification of the irreps by their dimension is sometimes not
unique subscripts have to be used in this case. The eigenvalue of the

quadratic Casimir operator,

F2= ] F,-F, , (B.11)
i3

in the irrep D(A,u) is given by

£ 2 i+ + a4+ } (8.12)

1
= (A
3(
For some relevant irreps we have listed the dimension and the eigen-

value of the quadratic Casimir operator.

Young diagram (A, u) a f2
(0,0) 1 0
0O (1,0) 3 4/3
B (0,1) 3* 4/3
m (2,0) 6 10/3
B:’ (1,1) 8 3
aum (3,0) 10 6
H (0,2) 6% 10/3
HX 2,1) 15 16/3
Snnn (4,0) 15 28/3
HP (1,2) 15%  16/3
g (3,1) 24 25/3
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Young diagram O u) d £

oI (5,0) 21 40/3

E}EE] 0,3 10* 6
E}EFIJ (2,2) 27 8
E}]:EI] (4,1) 35 12

oI (6,0) 28 18

B.3.3. Decomposition SU(3) D SU(2) ® U(1)

Withain the SU(3) irreps D(XA,u) the states can be distinguished by the
SU(2) quantum numbers I and I3, and the hypercharge Y. The

decomposition SU(3) D SU(2) ® U(l) 1s given for some relevant irreps.

SU(3) irrep SU(2) ® U(1) content I(I,Y)
1 o (0,0)
3 =] (1/2,1/3) + (0,-2/3)
6 =) (1,2/3) + (1/2,-1/3) + (0,-4/3)
8 =) (1/2,1) + (0,0) + (1,00 + (1/2,-1)
10 ) (3/2,1) + (1,0) + (1/2,-1) + (0,-2)
15 =] (1,4/3) + (1/2,1/3) + (3/2,1/3) + (0,-2/3) + (1,-2/3)

+ (1/2,-5/3)

15, > (2,4/3) + (3/2,1/3) + (1,-2/3) + (1/2,-5/3) + (0,-8/3)
24 S (3/2,5/3) + (1,2/3) + (2,2/3) + (1/2,-1/3) + (3/2,-1/3)
+ (0,-4/3) + (1,-4/3) + (1/2,-7/3)
21 > (5/2,5/3) + (2,2/3) + (3/2,-1/3) + (1,-4/3)
+ (1/2,-7/3) + (0,-10/3)
27 > (1,2) + (1/2,1) + (3/2,1) + (0,0) + (1,0} + (2,0)
+ (1/2,-1) + (3/2,-1) + (1,-2)
35 S (2,2) + (3/2,1) + (5/2,1) + (1,0) + (2,0) + (1/2,-1)
+ (3/2,-1) + (0,-2) + (1,-2) + (1/2,-3)
28 > (3,2) + (5/2,1) + (2,0) + (3/2,-1) + (1,-2) + (1/2,-3)
+ (0,-4)
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B.3.4. Two-particle operators and permutation operators

Using the quadratic Casimir operator the two-particle operator
F *F_ 1s
1]

1 2
Fl-FJ = E-F - 4/3 ' (B.13)

and 1ts value in the symmetric and antisymmetric two-particle irreps 1s

Young diagram d F1~FJ

B 3* -2/3

] & 173

The two-particle permutation operator is

P =2 (L4+F .F) X (B.14)
1] 6 1]

B.4. SU(6)
The relevant SU(6) groups are the flavor-spin and color-spin
groups, denoted by SU(6,FS) and Su(6,CS).

B.4.1. Generators of SU(6)

One way of writing down the generators of SU(6) 1is using the
direct product of generators of SU(3) and SU(2). For the six-dimension-

al defining representation the 35 generators then are

1
7% %k
Fo k € {1,2,3}, a € {1,...,8} (B.15)
a
ok ®F
These generators 2% a € {1,...,35} are normalized such that
Tr a” AB =4 .
aB

B.4.2. Irreps of SU(6), dimension and quadratic Casimir operators

The 1rreps of SU(6) are denoted by [f], (X)) or {a'. [£]) and (X)
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are tne notations introduced 1n eq. (B.1). {d} 1s the classification
with the dimension, which, 1f not unique, 1s provided witn a subscript.
[£] 1s the most convenient notation, when one wants to reconstruct the
Young diagram, (/) 1s most convenient to calculate the dimension (see

2 2
eq. (B.2)) or the eigenvalue a of tne quadratic Casimir operator A" ;

Al = Y A -a ,
1]
ll]
2 2 2 2 2 2 2
a” = 3-[5 Al + 8 Az +9 Aa + 8 x4 + 5 AS
+30 A, +48 4, + 54 A+ 48 ), + 30 Ag
+8 XA, +6 A1A3 + 4 A1A4 + 2 AIAS

For some relevant irreps we have lasted the dimension and the eigen-

+ 12 A2A3

+ 8 A2X4 + 4 Azk

+ 6 A3A5 + 8 A4A5] .

value of tne guadratic Casimir operator

+ 12 A

3A4

[£) {a) a’ [£] {a) a2
[1] {6} 35/6 (2,1°1 (84} 95/6
112 {15} 28/3 [22,1] {210,} 131/6
(2] {213 40/3 (3,121 {336} 155/6
11’y 2o 21/2 [3,2] {420} 179/6
(2,11 {70} 33/2 [1%] {1} 0
[3] {56} 45/2 (2,11 (35} 12
111 (5% 28/3 (22,121 (189} 20
(2,11 {105} 52/3 [3,1°1 {280} 24
12’1 {105} 64/3 [2’1 {175} 24
3,11 {210} 76/3 {3,2,1] {896} 30
[1°] {6*; 35/6 [3%] {490} 36
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B.4.3. Decomposition SU(6) 2 SU(3) ® SU(2)

As SU(6) 1is important because 1t 1s the direct product of an SU(3)
and an SU(2) group, e.g. color and spin, which govern the color inter-
actions, we are often interested in the decomposition in SU(3) and

SU(2) irreps.

SU(6) 1rrep SU(3) ® SU(2) content Y (4,8)

{1} > (1,0
{6} = (3,1/2)

{15} > (3*,1) @ (6,0)

{21} > (3*,0) ® (6,1)

{20} > (1,3/2) @ (8.,1/2)

{70} o (1,1/2) @ (8,1/2) & (8,3/2) @ (10,1/2)

{s6} > (8,1/2) @ (10,3/2)

{105,} > (3,00 ® (3,1) @ (3,2) ® (6*,1) & (15,0) ® (15,1)

{105, > (3.1) @ (6%,0) @ (6*,2) ® (15,1) @ (15_,0)

{210,} > (3,0 @ (3,1) ® (6*,1) @ (15,0) ® (15,1) @ (15,2)
& (ﬁs,l)

{84, > (3%,1/2) @ (3*%,3/2) @ (6,1/2) @ (6,3/2) & (15%,1/2)

{210,} o (3*,1/2) @ (3%,3/2) @ (3*,5/2) ® (6,1/2) @ (6,3/2)
® (15%,1/2) @ (15%,3/2) @ (24,1/2)

{336} > (3*,1/2) ® (3%,3/2) ® 2(6,1/2) ® (6,3/2) ® (6,5/2)
® (15%,1/2) @ (15%,3/2) @ (24,1/2) @ (24,3/2)

{420} > (3%,1/2) @ (3*%,3/2) @ (6,1/2) @ (6,3/2) @ (15%,1/2)
@ (15%,3/2) @ (15%,5/2) ® (24,1/2) & (24,3/2) & (21,1/2)

{35} o> (1,1) @ (8,0) @ (8,1)

{175} > (1,1 & (1,3) & (8,1) ® (8,2) ® (10,0) & (10*,0)
& (27,1)
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SU(6) 1rrep SU(3) ® SU(2) content

{189} > (1,0) & (1,2) @ (8,0) ® 2(8,1) & (8,2) @ (10,1)
@& (10*,1) & (27,0)
{280} > (1,1) @& (8,0) @ 2(8,1) ® (8,2) @ (10,0) @ (10,1)
@ (10,2) ® (10%,0) @ (27,1)
{896} > (1,1) @ (1,2) & 2(8,0) @ 3(8,1) ® 2(8,2) @ (8,3)
® (10,0) & 2(10,1) @ (10,2) @ (10%,1) @ (10%,2)
@ (27,0) ® 2(27,1) ® (27,2) @ (35,0) & (35,1)
{490} > (1,0) @ (8,1) ® (8,2) @ (10,1) @ (10%,1) & (10%,3)

@ (27,0) & (27,2) @ (28,0) @ (35,1)

B.4.4. Two-particle operators and permutation operators

Using the quadratic Casimir operator of SU(6) the two-particle

operator A -A_ 1s
1 3

A =Lleo -
AR =5 Co - 35/6 (B.17)

and 1ts value in the symmetric and antisymmetric two-particle irreps is

Young diagram (4} Al’AJ
E3 {15} -7/6
() {21} 5/6

The two-particle permutation operator is

+ A -A . (B.18)
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Samenvatting

In 1964 werden "quarks" geintroduceerd om op een natuurlijke
wljze het grote aantal hadronen te verklaren. Hadronen zijn deeltjes
die sterke wisselwerkingen voelen; de bekendste zijn de nucleonen,
proton en neutron. De i1n 1964 bekende hadronen waren deeltjes opge-
bouwd uit een quark en een antiguark (Qé), mesonen of deeltjes opge-
bouwd uit drie quarks (Q3), baryonen. Deeltjes met zodanige eigenschap-
pen dat het onmogelijk Qé— of Qa-toestanden konden zijn, werden
exotische deeltjes genoemd. Echt exotische deeltjes waren er niet; het
deuteron bijvoorbeeld 1s geen exotisch deeltje met zes gquarks, maar een
gebonden toestand van een proton en een neutron ten gevolge van
attraktieve meson-uitwisselings-krachten.

In de afgelopen vijf jaren 1s de situatie sterk veranderd. Aller-
eerst kwam het "MIT bag model". Dit model maakte kwantitatieve voor-
spellingen mogelijk voor veel-quark toestanden. Jaffe liet zien dat de
7€ = 0% mesonen, €(760), S*(980) en §(980) crypto-exotische deeltjes
z1jn. Ze hebben een exotische quark-inhoud, namelijk Q2§2 maar ze
hebben quantumgetallen die ook voor Q0-mesonen mogelijk zijn. Jaffe
voorspelde ook echte exotische deeltjes opgebouwd uit zes quarks (Q6).
Naast deze kwantitatieve voorspellingen 1s er het toenemende aantal
experimenten die aanwljzlngen geven voor exotische Q6 toestanden 1in
baryon-baryon kanalen en exotische Q4Q toestanden, bijvoorbeeld
baryonen met hyperlading Y = 2 (z*'s).

Het "MIT bag model" 1s een fenomenologische toepassing van
Quantum-Chromo-Dynamika (QCD) dat de kleur-wisselwerkingen tussen

gekleurde quarks beschrijft, zoals Quantum-Elektro-Dynamika (QED) de
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elektromagnetische wisselwerkingen tussen geladen deeltjes beschrijft.
Een mogelijk, nog niet bewezen gevolg van QCD 1s de permanente opslui-
ting van quarks in het hadron. In het "MIT bag model" 1s dit a priori
1ngebouwd. Het model heeft succes geoogst met de berekening van de
massa's van de lichte hadronen (Qé en Q3) en met de beschrijving van
de laagstgelegen Q2§2 mesonen. Deze laatste berekening toonde de
betrouwbaarheid van berekeningen voor hadronen waarvoor het aantal
quarks en antiquarks groter dan drie 1is.

Bij kollextieve rotaties worden de veel-quark "bags" sigaarvormig.
Aan beide einden van de sigaarvormige "bag" bevinden zich een aantal
quarks, voor baryonen bijvoorbeeld twee aan de cne kant en een aan de
andere kant (Qz-Q). De beide grcepen van quarks aan de uirteinden hebben
een kleurlading die een sterke aantrekkende (kleur-elektrische) kracht
veroorzaakt. Het kleur-elektrische veld in de cylindervormige "bag" is
homogeen en geeft een konstante kracht. Dit leidt tot een lineair
verband tussen het kwadraat van de energie van de "pag" en het impuls-
moment %. Tussen de quarks in de uiteinden werken alleen zwakkere
kleur-magnetische wisselwerkingen die een fijnopsplitsing van de
rotatieniveaux geven.

Bovenstaande aannamen maken het mogelijk zonder parameters te
introduceren de massa's van roterende veel-quark systemen te berekenen.
Het blijkt echter voor het laagste rotatieniveau (& = 1) van de
baryonen nodig enkele fenomenologische bijdragen in rekening te
brengen. Deze z1jn het gevolg van het feit dat voor lichte deeltjes met
een klein impulsmoment de bag nog maar weinig van de bolvorm afwijkt
en een quark gemaxkelijk van de ene naar de andere kant kan tunnelen.

Het onderzoek naar de massa's, stabiliteit en vervalswijzen van
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= =2 —~
0, Q2Q B Q3, Q4Q en Q6 systemen 1s uitgevoerd samen met A.Th.M. Aerts.
= =2
De resultaten voor QQ-, Q2Q - en (L =0) Q6—systemen staan beschreven
in het proefschrift van A.Th.M. Aerts, terwijl die voor Q3, Q4§ en Q6

systemen staan beschreven in dit proefschrift.
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STELLINGEN

Een analyse van de effecten die lange-dracht interakties in het mmn-
kanaal (p uitwisseling) hebben, laat zien dat deze interakties weinig
1nvloed hebben op de posities van de polen 1n de P-matrix (Jaffe en
Low) ; eenzelfde analyse laat zien dat voor het NN-kanaal (7 uitwisse-
ling) grote verschuivingen in de posities van de polen te verwachten

z1jn.

R.L. Jaffe en F.E. Low, Phys.Rev. D 19, 2105 (1979)

II

De D15(1920) baryon resonantie in de reaktie n p - KA (Saxon et al.)
koppelt relatief sterk aan het AK-kanaal. In 7N analyses (Hohler et al.)
1s een D15(2180) resonantie gevonden. Het grote massaverschil tussen
deze resonanties en de koppeling aan het AK-kanaal geeft aanleiding
bovengenoemde resonanties als twee verschillende £ = 3 Q2—Q baryon

toestanden te klassificeren.

D.H. Saxon et al., Nucl.Phys. B162, 522 (1380)
G. Hohler et al., ZAED Physics Data 12-1 (1979)

dit proefschrift, H. 3

IIT

Bi1j het gebrurk van fantasie-namen voor deeltjes en hun eirgenschappen,
zoals quark, smaak, vreemdheid, tover, kleur, technicolor,is soms een
sceptische houding te bespeuren bij op andere terreinen werkzame

fysici; deze houdaing is onterecht.
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De drie-deeltjes golffunkties die gebruikt worden in niet-relativisti-
sche potentiaalmodellen om de baryon resonanties te klassificeren in
"flavor-spain" SU(6) multipletten, zi1Jn niet bruikbaar 1n geexcliteerde
"bags" door de extra vrijheidsgraad, die door de gluon-velden geaintro-

duceerd wordt.

G. Karl en E. Obryk, MNucl.Phys. B8, 6089 (1968)

Het meten en analyseren van de hoekverdeling van pionen i1n de reaktie
Kd~+nD
L
L+ N®

met een gepolariseerd deuteron "target", kan aanwijzingen geven voor
de spin en pariteit van de AN resonanties met massa's M = 2129 en

2139 Mev.

T.H. Tan, Phys.Rev.Lett. 23, 395 (1369)

VI

Bij 1n de toekomst te bouwen versnellers dient men mede in verband met
de kosten te overwegen of het bereiken van een hogere bundel-intensi-

telrt niet moet prevaleren boven het bereiken van hogere energieen.

R.R. Wilson, Set.Am. 242, no. 1, 26 (1980)



VII

Eén-gluon uitwisseling en quark verwisselingen geven geen volledige

beschrijving van nucleon-nucleon wisselwerkingen. Hieruit volgt dat de

berekening van de energie van een gedeformeerde zes-quark bag niet het

meson-ultwisselingsdeel van de NN potentiaal bevat, afgezien van de

moeilijkheden deze energie te relateren aan het NN systeem.

S.J. Brodsky, C.E. Carlson en H. Lipkin, Phys.Rev. D 20,

2278 (1879)

C. DeTar, Phys.Rev. D 17, 323 (1978)

VII1I

Een veelvoorkomende misvatting 1s dat de bandenstruktuur in vaste

stoffen een gevolg is van de roosterperiodiciteit.

IX

Het 1s hypocriet het opschrift "Atoomenergie - nee bedankt" op een

auto aan te brengen.

2 me1 1980 P.J.G. Mulders









