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CHAPTER 1 

INTRODUCTION 

1. General ï-ntroduotion 

Analytical chemists should produce qualified and relevant information 

about products and processes in an optimal way [G0T2, KAjh] or at least 

provide the strategies to do so [ KA79]· 

Basically, the main tool for the extraction of the requested information, 

available to the analytical chemist, is the analytical procedure, which is 

the way the determination of the identity and/or amount of the compounds is 

effected. 

The selection of the best analytical method for solving a given problem is a 

task, with which the analytical chemist is confronted daily. Although many 

comparisons between various analytical methods are reported frequently, still 

no systematical strategy exists to select the best method. 

Vandeginste [ VAT7 ] made an attempt to select between atomic absorption and 

u.v.-v.i.s. absorption spectrometry by pattern recognition. This research 

clearly demonstrates that before trying to solve the method-selection problem, 

the analytical chemist has to collect a large amount of data that relates the 

analytical procedures to their analytical problems. To my knowledge, up to now 

such collections have never been assembled to this purpose. 

Apart from the creation of strategies for procedure selection, the optimization 
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of existing and development of new analytical procedures remains extremely 

important. Moreover, nowadays,sopnisticated data nandling is more and more 

required for the extraction of useful information from single or combined 

analytical results [ VT77, RE73, VS76]. Consequently the analytical chemist 

must study these data handling methods and pay attention to their limitations 

[ VA75] and applicability. 

Clearly, the amount of information of a single analysis or a series of 

analyses depends on the difference of the uncertainty about the product or 

process, before and after the analytical result is obtained. 

Müskens [ MU78] and others [GR73, VJ77] have shown that the sampling frequency, 

the accuracy of the analysis and the dead time, or delay time of the analysis 

determine the possibility of controlling a process. Optimal control is achieved 

when the sun of analysis and process costs is minimal. The analysis costs are 

mainly determined by the analytical accuracy, sampling frequency and delay 

time. Therefore, it is important to minimize costs of analytical response time 

and accuracy. The delay time consists of two parts: the real analysis time and 

the waiting time in the laboratory, which is the tine lag between the moment 

the sample is received at the laboratory and the start of the analysis. The 

delay of samples in an analytical laboratory normally exceeds the analysis 

time greatly as most of the time is spent waiting. Therefore, the study of the 

organization of analytical laboratories is important, especially the process 

of queueing. 

Delay times are directly related to the costs of the analysis, as there exists 

a relation between the amount of facilities (analysts- and apparatus) and 

delay time. This leads to the next level of optimization the analytical 

chemist is concerned with, namely the optimization of combinations of 

analytical procedures. 

All these developments led to the inclusion of new mathematical techniques 

such as information theory, pattern recognition, operations research and 

control theory, in the scope of analytical cnemistry [KO78]. This helps 

the analytical chemist in producing better analytical information in an 

optimal way. 

2. Problem formulation 

Clearly, the quantitative study of waiting line situations in analytical 

laboratories should permit a better use of the capacity of laboratories and 
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a reduction of delays. However, up to now only a few studies have Ъееп 

reported on laboratory activities [VAT
1
*, SC76, SC77] . 

Obviously, an analytical laboratory is a complex organization, which can be 

defined as follows: "It is the rational coordination of the activities of a 

number of people for the achievement of some common explicit analysis or 

analytical goals, through division of labour and function and through a 

hierarchy of authority and responsibility". Cook [ COTb] . 

It is evident that the goal of a search for quantitative relations between 

several variables in the laboratory should never be a substitute for human 

creativity or human flexibility. However, it should be an aid for the 

analytical chemist in decision-making. A complex organization such as an 

analytical laboratory really is, can never be simplified to a model governed 

by a set of strictly mathematical rules. Clearly human response under different 

conditions is difficultly predictable. In contrast, it is impossible to study 

the mentioned relations from experiments with the real laboratory itself. 

Therefore, some alternative system should be used, a so-called model, which 

is similar to the real system in the characteristics of interest. This 

alternative system cannot be expected to exactly reproduce these 

characteristics of interest. This is the price to be paid for simplicity and 

accessibility of the alternative system. 

In the work described here, a model is constructed and validated for an 

existing laboratory for molecular spectroscopic analysis, dealing with i.r., 

p.m.г.,
 13
C-n.m.r. and m.s. analyses. In this model the time lag between 

the arrival of a sample and the production of the analytical result is studied. 

In an analytical laboratory and especially a spectroscopic laboratory various 

questions should be answered: 

First of all the question about forecasting the delay time as a function of 

the mean sample traffic, number of analysts and instruments. Thereafter, 

strategies should be determined for the selection of the analytical method 

taking into account the estimated probability the various analytical methods 

might solve the requested structure, and the state (queue lengths, available 

capacity) of the laboratory. Also decision rules must indicate the best mode 

of action after an analytical method fails to elucidate the structure. 

Finally, the assignment of priorities involves priority between samples from 

different research groups, priority between samples unsuccessfully analyzed, 

and priority of 'easy' (short analysis times) over 'difficult' problems 

(long analysis times). 
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There are various tjTJes of priority disciplines: 

When an absolute priority rule is applied, all samples of a higher priority 

are always analyzed before samples of a lover priority irrespective of their 

waiting time. In contrast, the application of a time dependent priority rule or 

dynamic priority, has the effect of considering some samples to have a higher 

priority than others, but takes into account the undesirability of having low 

priority samples wait too long. 

Another effect that should be clarified is the influence of other activities 

of the analyst, who interrupts the analytical process, while still samples 

are waiting. 

Generally speaking, two types of models are suitable for this study. 

In the first place, strictly mathematical models with theoretically deduced 

solutions, developed in queueing theory. Secondly, simulation models which 

describe the operation of the real system in terms of individual events of 

the individual elements or compounds of the system. 

In complex systems of networks of queues, such as analytical laboratories, 

consisting of multiserver nodes and governed by state-dependent decision 

rules, queueing theory cannot provide exact results. However, queueing theory 

gives a good picture of the behaviour of queues in very simple single server 

systems. Because an investigation which is not based upon a theory or a 

formal hypothesis is just blind groping in the dark, the effect of various 

variables and strategies for those simple single server systems were 

calcula-ed firstly by queueing theory, giving a hypothesis about the effects 

to be expected from the simulation experiments. Furthermore, simulations of 

those simple systems confirmed the validity of the simulation model. 

Model building requires a knowledge of computer programming, statistics, 

probability theory and experimental optimization techniques. Because in a 

simulation model a great number of variables is involved, a good experimental 

optimization method is very important in order to obtain the desired 

information. 

Computer simulation experiments and modelling in general, usually consists 

of the following stages [NA66]: 

After the formulation of the problem (Chapter I), laboratory data should 

be collected and processed (Chapter II), such as the interarrivai times of 

the samples, the mean down time of the instruments and the delay times of 

the samples. Some of these observations, such as those concerning the arrival 

of samples and the delivery of the analytical results can be obtained fron 
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the book-keeping of the laboratory. Other data can be obtained from 

interviews with the analysts, e.g. to find out which priority policies are 

used to select an analytical method in the laboratory. 

The most difficult: and time-consuning stage of computer simulation is the 

formulation of the mathematical model. Because here all variables, parameters 

and relationships must be specified (Chapter IV). The variables are selected 

on the basis of an estimate of their relative importance (Chapter III). If 

one or more important variables are missed, the simulation results become 

inaccurate. In contrast the inclusion of too many variables renders the 

computer simulation needlessly complex. 

The next stage is to estimate the parameters of the distributions of several 

variables (Chapter II), including tests for autocorrelation. To do this, 

various statistical ^ests can be used. 

The most important stage of the simulation is the validation of the computer 

model (Chapter V). Some assurance of the validity of forecasts of future 

behaviour of the modelled laboratory, can be provided by a demonstration that 

for at least one alternative version of the simulated system and one set of 

conditions, the modol produces results that are consistent with the known 

performance of the investigated laboratory. 

The ultimate test of a computer simulation model is the degree of accuracy 

with which the model predicts the behaviour of the actual system in the 

future (Chapter V). 

Once the validity of the computer model is satisfactory, the model can be 

used to conduct actual simulation experiments, which may be designed by 

experimental design techniques (Chapter VI). 
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CHAPTER 2 

THE DESCRIPTION OF DELAY AND QUEUE BEHAVIOUR IN 

A LABORATORY FOR STRUCTURAL ANALYSIS 

A first step towards modelling reality is the collection and processing 

of data from the system considered. During the period I/6/I976 - 1/6/1978. 

the arrival dates of all samples at the various analytical sections and the 

dates of completion of the analysis were registered in the spectroscopic 

laboratory for structural analysis at Philips-Duphar B.V. at Weesp, 

the Netherlands. 

The data from I/6/1976 - 1/6/1977 were used to dotermine various parameters 

of the system and to validate the simulation model, described in Chapter IV. 

The data from 1/6/1977 - I/6/1978 were used to test the predicting power of 

the simulation model. 

The laboratory receives about 3000 samples per year. These samples are 

analyzed in four sections: infrared (i.r.), proton magnetic resonance (p.m.r.), 

mass (m.s.), and carbon nuclear magnetic resonance (
 13
C-n.n.r. ) spectrometry. The 

analysis consists of two steps: the measurement and the interpretation of the 

spectrum. 

From the collected observations the statistical Oroperties of the flow through 

the network and the queue levels in each section could be calculated. 

Published in part in: 

B.G.M. Vandeginste, Analyt. Chim. Acta, СТО, accepted for publication. 

B.G.M. Vandeginste, Communication presented at the lUPAC Congress, Helsinki 

(1979) 

7 



1. The laboratory: a network of queues 

Itio laboratory under investigation can Ъе considered as an open network, 

consisting of h nodes (the k sections) which receive samples from two 

different origins. In an open network, samples arrive from external sources 

(the environment) and each sample eventually leaves the system. Tn contrast, 

in a closed network, the samples circulate through the network without 

external arrivals or departures [LETT]. An open network where the samples 

visit a node only once is called an open acyclic network. 

In Fig. TI-1, a sketch is given of the network of the analytical sections. 

The arrows connecting each section indicate the direction of the sample flow. 

The mean flow (samples per day) towards and from each section is also given. 

λ? 2 4 (2.7) 

f = 4.1 (4.8) 

λ: 2.1 αβ) 

Τ=β.7 (5.0) 

Fig. II-l: The sample flow (samples/day) through the laboratory network. 
(numbers in parentheses are simulated data) f : mean delay time, \: sample flow 

Although similar networks of servers are quite common, a relatively snail 

theoretical hasis exists for analyzing networks of queues. An excellent review 

and critique of the results available for modelling networks of queues with 

random flows is given by Lemcine [Lü77]. 

The total sample flow to and from each node (section) is tabulated in 



tabic II-1 . These observations indicate that the total flow in the network 

exceeds the nimber of received samples, as on tne average more than 1 analysis 

(I.28) is done on a sample. 

Table TI-1 

Mean, and varianae of input and output flow (samples per day) at the 
speotrosaop-Lo laboratory of Philips-Duphar, period 1/6/1976 - 1/6/Ί977 

Section 

I.r. 

P.m.r. 

M.s. 

"C-n.m.r. 

Total 

Lab 

input (samples/day) 

mean 

2.Э 

7.7 

?.1 

2.5 

15.1 

11.θ 

variance 

13.2 

20.3 

lt.? 

U.2 

ItU.I 

output (samples/day) 

moan 

2.8 

7.7 

?.1 

2.5 

15.1 

11.8 

vari ance 

7.5 

50.0 

5.9 

11.1 

77-6 

From the flow through the network, the conditional probability (p..) of 

transfer of samples fron one to another section coald be established 

(Table II-2). Moreover, the probability could be calculated that a method 

will be selected in the first instance or after one or more other methods 

failed (Table 11-3). 

Table 11-2 

Conditional probabilities (p ..) of transfer of samples from one to another 
section, and the probability3 (q.) that a sample in node (i) leaves the 
system 

ïroX 

OUT 

I.r. 

P.m.r. 

M.s. 

13C-n.m.r. 

OUT (qi) 

-

0.68 

0.83 

O.7O 

О.83 

i.r. 

0.17 

-

O.O6 

O.O8 

0.07 

p.m.r. 

0.57 

0.17 

-

0.17 

0.05 

m.s. 

0.10 

0.08 

0.07 

-

0.06 

13
C-n.m.r. 

0.16 

0.07 

0.03 

0.05 

-
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Table ІІ-З 

Probabilities of the methods to be selecved 

first selection 

% good 

second 

% good 

third 

% good 

fourth 

% good 

i .r. 

0.17 

0.65 

0.27 

O.76 

0.21 

O.58 

0.25 

O.92 

p.n.r. 

0 . 5 7 

0.8І* 

0.29 

O.76 

0.29 

O.72 

0.2-7 

O.85 

n.s . 

0.10 

O.72 

0.29 

0.61* 

0.28 

0.78 

0.25 

0.83 

13
C-n.m.r. 

O.16 

0.8U 

0.15 

O.78 

0.22 

O.69 

0.23 

O.9I 

"0 of samples 
completed 

79.6 

9h.5 

98.3 

99. В 

Jackson [JA57] derived a balance or conservation equation [Eqn. II-1] for 

open networks, descrihing the equilihrium rate of flow through node i, a., 

as the sum of the external input rate λ., and the total rate of internal 

Ν
 1 

transfers to node i, γ ρ..α· 
1 = 1

 ϋ J 

я 
α. = λ. + Σ p..a. i = 1, ... Ν 

1 1
 j=i

 0 1 0 

ΙΙ-1 

with ρ.· the probability that a sample leaves node j towards node i. For each 

section (i), the external arrival rate (λ.) and total arrival rate (a.) were 

de-cermined (Table Il-'-t). 

The departure flow rate from section (i) equals a.q., where q. represents the 

probability that a sample in section (i) leaves the system. 

These values are tabulated in TablesII-2 and II-U. Substitution of the values 

α., λ. and p.. in Eqn. IT-
1
 demonstrates that the conservation equation is 

valid for the laboratory. Moreover, as q(i) and λ(ί) are different from zero 

for each section the network is open. 

Table II-4 

Vevifioation of the balance equation 

Section 

I.r. 

P.m.r. 

M.s. 

B
C-n.m.r. 

Sum 

λ-cbserved 

2.01 

6.73 

1.18 

I.89 

11.81 

O-ooserved 

2.8 

7.7 

2.1 

2.5 

o-c alculated 

2.8I 

7.68 

2.09 

?.i+2 

a.q. = Y. 
1
 l
l 'l 

1.90 

6.39 

1Λ7 

2.08 

11.81* 
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At equilibrium the total external input flow rate to the network equals the 

total external departure flow rate. 

Thus 

Ν N 

Σ λ. = Σ a.q. II-2 

1=1 ι=1 

The validity of Eqn. TT-2 in our systen is shown in Table II-U. 

2. Input and output of the laboratory 

2.' Probability density functions 

When the aggregate effect of a large number of individuals or particles is 

under observation in nature, often Poisson processes appear. 

A Poisson process appears when the following conditions are fulfilled: 

(i) the number of events (the number of arrivals) is a random variable which 

is independent for non overlapping timo intervals. 

(ii) the probability of a definite number of events during a certain time 

interval is only dependent on the length of that interval. For all 

intervals of constant length this probability is equal, and is 

independent of the absolute time t. 

(iii) the probability of a single event during a small interval is proportional 

to the length of that interval. The probability of more than one event in 

such an interval is negligible. 

The Poisson process is widely used in queueing theory. Numerous examples have 

been shown that in many queueing problems (e.g. telephone calls [KLT5]> 

airplane arrivals [ ЛС68 ], patient arrivals in a hospital) , the arrival 

process (e.g. the number of arrivals per day) can be modelled by a Poisson 

distribution. 

When the external input to an open network has a Poisson distribution, and the 

external input streams are assumed to be independent, and the analysis rate is 

also independent of the sample arrivals, then [JA5T] each node in the network 

behaves as an independent queue with Poisson input. This facilitates the study 

of networks of queues considerably. 

Therefore, the arrival processes of the samples at the laboratory and at each 

individual section were compared to the theoretical Poisson distribution. 

Fig. II-2 shows the calculated histograms and best fitting Poisson distribution. 

A goodness of fit test by means of a Chi-square test (a suitable test for 

discrete distributions [ KR70] ) indicated that the arrival distribution 

functions were significantly different from the Poisson distribution. 
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Fig. 11-2: Histograms of the probability (%) of an input density a (samples/ 
day) to the sections of the laboratory. — experimental data, · Fitted Poisson 
distribution (same mean) 

Consequen-ly, the possibility to get exact results froii the application of 

queueing theory becomes hampered. Fig. TI-3 indicates clearly that the 

probability density function (p.d.f.) of the output rate is completely 

different from the p.d.f. of the input rate, and is far fron a Роіззоч process. 
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Fig. II-3: Histograms of the probability (%) of an output density у (samples/ 
day) from the sections of the laboravory. · Fitted Poisson distribution (same 
mean),—experimental data 

2.2 Autocorrelation functions of inpat and output flow 

An autocorrelation analysis is applied to investigate the fluctuations of a 

process variable during a certain observation period. Since the autocorrelation 

function of a stochastic stationary variable tends to zero, deterministic parts 

of the signal are easily detected [MU78]. 

Autocorrelograms of the input and output rate were calculated for two reasons : 

(i) when the input and output streans пеег certain conditions (such as the 
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independency of the number of arrivals each day), analytical results may be 

easier obtained from queueing theory [ ГіЕТТІ . (ii) The statistical description 

of a system variable is not complete, when only the probability density 

function is known. Here, the correlation between the value of a system variable 

at different times should be determined. This completes the description of 

the input to the laboratory, necessary to create a similar input process in 

the simulation model (Chapter IV). 

P.2.1 Theory 

When a stochastic process generates random variables (e.g. the number of 

samples arriving per day) and there is a random variable χ for each time t, 

a time series is observed. A common property of time series is the 

covariance of [ х
+ +
 - УІ and [χ - μ], where τ is the time lag, i.e. the 

number of time intervals between the respective values of the time series. 

For stationary processes, the covariance function ψ (τ) and autocorrelation 

function φ (τ) for a time lag τ are respectively defined as [ GR731 : 

ψ

Χ
χ

( τ )
 =

 Ε
[ Κ -

μ )
 · Κ

+
τ -

μ ) ] τΙ-^ 

Φχχ
( τ )
 =*xx

( T ) /
*xx

( 0 ) τ1-1 

The autocorrelation function of a first order stochastic stationary time series 

has an exponential shape [MU78] 

Φ
χ χ
(τ) = ε-Ι

τ
Ι

/Τ
χ TT-5 

Τ is called the time constant of the time series. Τ is a measure for the 
x x 

frequency of the fluctuations of the time series. A large value of Τ 

indicates that the variations are slow. Tn contrast, a low value of Τ is 

found when the variations are fast (Fig. II-4). The autocorrelation function 

of a discrete time series can be estimated from Eqn. II-6 

< > x x ( T > = i ^ ¿ ( x i - * ) { x i + T - *
) / s x τ1-6 

where s
2
 is the estimated variance of χ and N the number of observations. 

χ 

When the time series is composed from a deterministic part and a stochastic 

part, the stochastic part of the time series does not contribute to the 

autocorrelation for sufficiently large values of Τ and the deterministic part 
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саг. Ъе detected. For example, Müskens [MU78] calculated the autocorrelation 

function of a time series composed from a stochastic part (e ) and a 

deterministic part 

f. = A sir. (2iTt/L+B ) II-T 
t ρ ρ 

with E[e
+
] = 0 , and ЕЦ.] = f(t) 

The autocorrelation function of x, approximately equals 

φ (τ) = [¡A2 СОЗ(2ТГГ/І.) + σ
2
 . φ (τ)]/(^Λ

2
 + σ

2
) ΙΤ-8 

ν
χχ ρ e ее ρ e 

Because the autocorrelation function has to Ъе calculated from a finite time 

series, the accuracy of the estimation of this function should Ъе estatolished. 

Bartlett [BAk6, 3070] derived the variance of the estimated autocorrelation 

•xx<
T
> 

o2I *«<*>] " ¿ T l ' « ω +Фхх<і-т> · Фхх(^) + ^ X

( T ) · *xx(^ -
j=_0O 

^ХХ^ · W ^ · K^-l» ^ 9 

Since the theoretical autocorrelation function has the exponential shape 

(Eqn. II-S), the variance equals 

!
 ( 1 + Φ

χ χ
ί ΐ ) ) ( ΐ

-
Φ
χ χ

( τ ) ) 

XX 

Consequently, the estimation of the autocorrelation function equals 

Φ
χ χ

( τ )
 І

 u ( P )
 ·

 σ [ Φ
x x

( τ ) , T I
"

1 1 

with u(P) the excentricity of the normal distribution with a confidence of ?%. 

2.2.2 The observed autocorrelograms of sample input and output of the laboratory. 

The autocorrelograms of the number of daily arrivals at and daily departures 

from the individual sections and the total laboratory were calculated 

according to Eqn. II-6 and are shown in Fig. Lï-k and II-5. The auto­

correlograms of the input indicate that the input processes are not 

autocorrelated. 

These observations indicate that the number of arrivals on one day cannot be 

15 



forecasted froTi the number of arrivals at the preceeding day. In contrast to 

these observations tno autocorrelograms of tne output process (Fig. TT-5) 

show a distinct deviation from tne exponential shaDe. 

The autocorrelogran of the output of the laboratory reveals a periodicity of 

'j days, suspecting the laboratory to release the analytical results with a 

periodicity of 5 days. 
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Fig. II-4: A.utoaorvelogvams of the input density to the sections and the 
entire laboratory 

6̂ 



1 . • 

.в • 

. 6 • 

.4 · 

.2 -

0 

Φ„ 
1. -

.8 . 

. 6 • 

Λ • 

.2 -

0 

ι к и 
ι 

,Α. 
V 

ι 

Φ„ 
1. . 

.8 -

.6 • 

.4 • 

Λ • 

0 

Ι 

PMR 

1 1 I I 

/ лм.М 
ulijn Ι, τ 

20 40 fJavsJ 

MS 

A A 
w r ι T 

1 1 
20 40 [days] 

LAB 

У І Ш Ш І 
20 40 [days] 

Ф , . 
1. · 

.8 · 

.6 -

.4 -

.2 -

0 

' 

Ф„ 
1 . • 

л • 

л -

.4 • 

.2 . 

0 

IR 

Ш И Л Л 
TfUi ι ι 

10 20 30 40 

CMR 

Ι ά\ umi 
Ι 1 I ν 

20 40 

τ 

[lays] 

Τ 

[days] 

Fig. ΙΤ-5: Autoaorrelograms of the output, density from the sections and the 
entire labora tory. 

3. The queue levels in the network 

3.1 Autocorrelograms and histograms of Che queue levels 

Since data on queue sizes were not explicitely available of this network of 

analytical sections, the queue sizes wore calculated from the differences 

between input and output each day. 
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Fig. ΙΙ-β The number (Ν) of sarrples in the sections of the ЪаЪо аъо у as a 
function of time (t) (days), with nistograms. Shaded histograms are fitted 
Gaussian distributions with same mean and standard deviation as the 
observations. 
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The queue size here is defined as the total number of samp.les, including 

spectra and samples under investigation, which are present in the laboratory, 

or in a node of the network. As an analytical section (e.g. mass spectrometry) 

is represented as a node of the network, no discrimination was made between 

queues of samples waiting for an instrument or analyst, and the various piles 

of spectra belonging to each analyst. 

Fig. IT-6 shows the fluctuations of the number of samples in queue, with a 

sample interval of 1 day, with their histograms. 

Kolmogorov-Smirnov tests [ K-S ] [ KRTO] executed on the relative cumulative 

density functions indicated that no significant difference could be detected 

with the Gaussian relative cumulative density function having the same mean 

and standard deviation. 

Strictly the K-S test may only be applied on uncorrelated observations. 

For correlated observations a greater probability that a given value will 

be exceeded, should be taken into account 

From the calculated autocorrelation functions of the queue sizes, shown in 

yig. II-T it is easily seen that the queue sizes are highly autocorrelated. 

Because testing procedures for comparing historical data and data obtained 

by digital simulation can be characterized by autoregressive models, and 

because serial correlation in time is itself often an important characteristic 

of the simulated system, the parameters of autoregressive models of queue 

sizes were calculated. 

The results of fitting an autoregressive model of order 1 (AR(l)) to these 

time series are presented in Table II-5. 

The algorithm of an AR model of order ρ equals 

N
t = *1

N
t-1

 + Ф
2 2

 +
 ··· Vt-P

 + a
t

 ττ-'2 

where Ν = η -η is the difference in the queue level from the mean level 

at time t and a is a normal random variable with mean zero and variance a2, 

the so called residual variance,φ ... φ are the parameters of а ΑΒ(ρ) 

model. 
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Fig. II-7: Autoaorrelograms of the queue sizes (tl) in the sections. 
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Table II-5 

Summary of the AR(1) model parameters of the queue lerigths (number of waiting 
samples) 

p a r a m e t e r s 

mean of 
s e r i e s 

v a r i a n c e 
s e n e s 

Φι 
94% 

v a r [ a ] 

of 

I . г . 

' 1 . 5 

1*6.2 

0 . 8 3 

+ 0 . 1 7 

11*. 37 

Ρ . - π . г . 

39 .1 

2 2 8 . Э 

0 . 8 1 

+ 0 . 1 7 

78.i* 

M . s . 

13.9 

3i*.8 

0 . 8 5 

+ 0 . 1 7 

9-7 

1 3 C - n . r a . r . 

16.8 

1*3.6 

0 . 8 1 

+ 0 . 1 7 

15.0 

LA3 

81.Í+ 

582 .7 

0 . 8 3 

+ 0 . 1 7 

181 .3 

When the AR( 1 ) model is adequati?, the depeidonce of N en -he past history-

is completely accounted for by the term φ N... in the model. 

For a first order model, φ is equal to the autocorrelation function at 

τ=1 (φ (l)) and all higher order terms (φ„ ... φ ) are not significantly 

different from zero. 

The parameters φ
1
 and eventually φ_ Follow fron the autocorrelation values 

φ (l) and φ (2) according to the Yule-Walker equations [B0
7
0 ] 

*i =^xx
(l)(1

 -Ф^гПІАі-ф^О)*) 11-13 

! > 2 = [ Ф х *
( 2 )

- Ф х *
( 1 ) 2 1 / ( 1

- Ф х х
( 1 ) 2 ) TT-IU 

For a first order AR model φ (?) " φ (i)
2
 (Eqn. TI-5) and tiereforo, 

φ
2
 = 0 and ф

1
 = Φ

χ χ
(ΐ). 

The residuals a are independent variables, thus a, does not depend upon 

its own past history a ,, a „ ..., or Efa,, a ]= 0 for τ^Ο 

From the equation a = N. - φ N it follows that the residual variance 
t t 1 t~ 

eqaals 

Ν N 
ol = Ζ (аП = Σ (Ν. - φ ̂  J

2 

a
 t=i t=i

 1
 --

1 
τι-15 

Straignt forward elaboration of tne latter eqaation yields for AR(l) models 

< - ^ - ^ II-I6 
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where σ̂
τ
 ^ч the variance of the tme series. 

Verification of the relation φ (2) = φ (i)
2
 proved the validity of the AR(l) 

model. A reiiarkable result fron the nodel parameters listed in "ahle II-5 is 

that although the number of facilities 11 the various analytical sections is 

quite different, and also the queue levels are very differing, the time 

constants of the time series of the queues are quite similar. 

4. The analysis times at the departments 

The measuring times and interpretation times of every fourth samule 

arriving at the laboratory were rtcorded during approximately two months 

by the analyst who does the analysis. 

The sample preparation was included m the measuring t n e , but the transfer 

times and administration times, directly coupled with the analysis of the 

saiiple were excluded. Because the mears of these 'Dimes were calculated during 

a relatively short period ( m comparison to the observation period of the 

laboratory), and the small size of the sample, only rough estimations (s- •» 

10 - 15/0 of these means could be obtained (Taole II-6). Because the low 

accuracy of tie measured standard error (s2^ (F-test) only a rough estimate 

of the variation coefficient was obtained (Table II-6). 

Table II-6 

Statistical parameters of the measuring and interpretation times 

S e c t i o n 

I . r . 

P . m . r . 

V.s. 
1 3 C - n . n . r . 

numoer 
of o b s . 

18 

132 

30 

15 

measurement 

mean 

0.U? 

0.U8 

0 . 6 2 

1.83 

s -
X 

o.oU 

0 . 0 1 

0 . 0 7 

0 . 18 

t i m e 

„2 s 
X 

0.029 

0 .020 

O.I52 

0.1*76 

h r s ) 

0 . ? 

0 . 1 

O.U 

<* 

+ 0 

+ 0 

+ 0 

0 . l i t + 0 

5 

05 

3 

5 

i n t e r p r é t â t 

mean 

0 . 7 2 

0 . 9 3 

0 . 8 8 

1.57 

s -
X 

0 .11 

0 . 0 7 

0 . 1 2 

0 .37 

i o n t i m e 

s 2 

X 

0 . 2 0 

О.67 

0.U5 

2.0lt 

0 

0 

0 

0 

( h r s 

< 

lt+ 1 

8 + 0 

6 + 1 

8 + 3 

2 

7 

2 

2 

5. The delays in the network 

5.1 Statistical parameters of the delay times 

Various delay times can be distinguished m the laboratory, depending on which 

group or class of samples is considered. 
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Firstly, the delay time of all samples with the same final analytical method, 

or subjected to the заліе number of analyses can be distinguished. Secondly, the 

delays in the sections, and the mean overall delay of all samples. 

Considering the delays in one section, samples which were or were not analyzed 

before in another section can be distinguished. The means and variances of 

mentioned delay times are presented in Table IT-'f. 

Table 11-7 

Summary of the parameters of the delays in the investigated laboratory 

parameter 

mean (days) 

variance 

best fitting 

d
max(^) 
d
o.95m 

F(x) 

mean (days) 

variance 

mean (days) 

variance 

Section 

I.r. 

lt.1 

2U.7 

2-Er 

8.43 

5.98 

I.r. 

6.2 

37.0 

P.m.r. 

5.1 

21.2 

2-Er 

4.27 

samples wi 

P.m.r. 

5.9 

68.7 

samples with th 

1 

5.1 

18.6 

2 

11.1 

62.8 

M.s. 

6.7 

It 7 Λ 

2-Er 

If. 09 

6.73 

13
C-n.m.r. LAB 

6.7 6.88 

37.0 55.25 

2-Er 

3.52 

6.2)+ 

th the same final method 

e 

M.s. 

9.θ 

33.2 

13
C-n.m.r. 

8.3 

96.6 

same number of analysis 

3 

19.7 

165.6 

k 

26.8 

356.0 

The histograms of these delay times are presented in Fig. II-8 en IT-9. 

Kolmogorov-Smirnov tests executed on the delay tines in the sections 

indicated that the two-stage Erlangian distribution was the best fitting 

distribution. 

The probability density function of the r-stage Erlang function equals [ KL75] 

I \Г-1 -ryx 
ΐ { ϊ )

 (r-1)! 

for r=2 f(x) = Ι+μ xe , with a mean —, and with a cumulative density 

IT-17 
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function e iua . to 

F(x) = 1-(2yx + l ) e " r l J X 
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Fig. II-8: (α) IKstogroms of the delays (Τ) (days) гп the sections of the 
laboratory. · Fitted two stage "Ллпдіаа distribution, (b) Histograms of 
the delays (T) (days) of the samples with the same final analytical method. 
Shaded figures are the aumulatioe density functions of the histograms. 
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same number (p) of sections 
Shaded figures are cumulative 
density functions of the 
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In Chapter TIT, it will be demonstrated that 

this exponential shape of the cumulative 

density function of the waiting time is 

very characteristic for many waiting time 

systems. 

The histogram of the overall delay in the 

laboratory indicates that the 'a priori' 

probability to obtain the result within 

21 days equals ЭЬ^· The delay time of an 

individual analytical result may depend 

on tne state of the laboratory, especially 

the number of waiting samples in front of 

the arriving sample. Fig. 11-10 describes 

the condixional probability function of 

the delay, as a function of the total 

number of samples in the system at the 

moment of the arrival of the sample. It 

is seen that no dependence of the delay 

on the state of the laboratory can be 

detected. 
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Fig. 11-10: Conditional 0.9S probability limit 
for a sample to be analyzed within a delay 
(T' ..) as a function of the number (N) of 
sampCes in the laboratory, correlation 
coefficient: ρ = 0.26 
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Table TI-8 also deTions"cra-ces that the strategy on sample priorities, as anpxied 

in the laboratory, results η longer delay tines at the m.s. and
 13
C-n.m.r. 

sections Tor samples which were submiOted unsuccessfully to other aralytical 

methods. 

Table II-8 

Comparison of the delay times at the апаіуігааі sections for samples wfoch 
were directly reoevved from the е ъгоптепі, and samples which were 
unsuccessfully sxbmitted to other analytical methods 

S e c t i o n 

I . r . 

P . m . r . 

M.s. 
1 3 C - n . m . r . 

.AB 

4 0 t s u b m i t t 

mean 

3.9 

5.1 

5 .8 

6 . 1 

6 . 1 

d e l a y 

ed b e f o r e 

v a r ι, Τ ) 

О.О^ 

0 . 0 2 

0 . 1 3 

0 .10 

0 .10 

( d a y s ) 

s u b m i t 1 

mean 

U.T 

5.3 

7.9 

8.9 

6.5 

.ed o e f o r e 

а г ( ^ ) 

0 . 2 5 

0 .20 

0 . 3 2 

оЛз 
0 . 0 8 

S t u d e n t ' s t 

v a l u e 

0Л5 

1.1*6 

3 . 5 * 

3 . 6 * 

^ . 5 * 

0.005 (200) = 2.6 

The variance of tne esti.-nation of Τ (var(T)) m Table II-7 3s corrected for 

autocorrelation in the data. Assuming a first order AE process, the variance 

of Τ (var(T)) can be calculated according to [WAT5, МОбТ] , 

1-
(T) тгЕ 1 + Т (ι -

Ί 
(1-Ф,) 

)] II-1 о 

There are two princiDal ̂ astoTiers of the ̂ acilLties of the analytical 

laboratory, denoted as Fl and F2. When the samples of both users have the 

same priority, one should expect their delays to be equal. 

The data compiled in Table IT-9, demonstrate that the Fl samples have a 

smaller overall delay than the F2 samples. 

However, the data base of both groups was to small to allow a conclusion 

on which section(s) give different priority. 
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Table II-9 

Comparison of the delays of Fl and F2 samples 

S e c t i o n 

I . r . 

P . m . r . 

M . s . 

1 3 C - n . m . r . 

s a m p l e s w i t h t h e 
s a n e e x i t node 

I . r . 

P . m . r . 

M . s . 

1 3 C - n . m . r . 

s a m p l e s w i t h t h e 
same number of 
v i s i t e d s e c t i o n s 

1 

2 

3 

1* 

o v e r a l l 

F1 

Τ 

3.81 

lt. 98 

6.68 

6 . 3 0 

5 . 3 3 

5 .79 

9.1t9 

7 .96 

l,.82 

11.16 

19.1+1 

? 8 . 0 

6.63 

v a r ( f ) 

o.oH 

0 . 0 3 

0 . 1 5 

0 . 1 ? 

0.2ll· 

0 . 0 5 

0.1*3 

0 .25 

0 . 0 ? 

0 . 3 6 

1.5 

11*.8 

0 . 0 3 

F2 

Τ 

1*.92 

5.29 

6 . 9 8 

8 .1 

8 .88 

6 . 2 5 

11.1*2 

9.'*7 

5 . 6 3 

11.12 

2 0 . 6 7 

21*. 67 

7 .50 

v a r ( T ) 

0 . 3 5 

0 . 0 6 

0 . 5 2 

0 . 5 2 

1.1І+ 

0 . 1 1 

1.65 

1.16 

0.071* 

0 . 5 9 

7 . 0 8 

15.0 

0 . 1 0 

S t u d e n t ' s t 

v a l u e 

I . 7 6 

1 .0 

0 . 3 7 

2 . 2 5 

3 .02 

1.0 

1.3 

1.3 

2 . 6 7 

O.Oli 

0.1*3 

0 . 6 1 

?. lt1 

о.оі
(1 s i d e ) = ?.33 

6. Cross aorrelations in the netuork 

A property of an open network of queues is that the number of samples at 

the various nodes at each time point is an independent random variable [LE77] 

i.e. the fluctuations of the number of samples in each analytical 

department should not be correlated. Moreover, it is proven [LET"
7
] that the 

traffic flows on the various exit arcs of the network are independent 

processes under equilibrium conditions. Both properties were verified by 

calculating the cross correlograms of the sample flow from and to each 

analytical section according to the algorithm: 

E [ ( y t - u ) ( x t + T - P x ) ] 
Φ ( τ ) 

У Х /E[y-p 12Ε[χ-μ J 2 
11-20 
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The cross corrclogram of a finite discrete time series can be estinated 

according to 

Ν-τ (y.-y)(χ- -χ) 

V x
( T )
 • ,L (Î-T-1)S,!B,. ^ ' 1=1 к У 

The cross correlation is significantly differing from zero when 

1>
ух
(т) 5- и(Р)а[ф

ух
(т)] 

with 

σ 2
ν

τ ) ] ¿Ί-Φ "(1)Д1) [ мит ] II-?? 

хх УУ 

Tne results of this test are listed in Table IT-10. It shows that the number 

of samples in each section are not mutually correlated. This imiolies that a 

large nunber of waiting samples in one section does not necessarily mean 

that the other sections are also saturated. 

Table 11-10 

Corretati-on at т=0 between the number of samples in 
each section (99% aonfidence interval) 

I . r . 

P.m.r . 

M.s. 

1 3 C-n.m.r . 

I . r . 

1 

P.m.r . 

0 . 3 

+ 0.39 

1 

M . S . 

0 . 3 

+ о.зб 

0.3 

+ 0.39 

1 

1 3 C-n.m.r. 

0 . 3 

+ 0.38 

0.3 

+ 0.38 

0.2 

+ 0.36 

1 

Cross correlations between the input flow and nunber of samples in the 

system (table TI-11) show that the arrival processes do hardly depend on 

the state of the system. The number of samples sent to a section does not 

depend on the saturation of that section. Thus samples are not preferably 

moved to that section with the lowest saturation. 

The correlations between the number of samples (x) in a section and the 
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delay (y) of the sairroles a r r i v i n g a t a soot ion are s i g n i f i c a n t l y d i f f e r e n t 

from zero (Table I I - 1 ? ) , but the c o r r e l a t i o n s are too small t o allow tie 

conclusion t n a t the f l u c t u a t i o n s of the delay t i n e are coirpletely explained 

by the f l u c t u a t i o n s in the number of wai t ing samples, whereas the r e s i d u a l 

var iance i s more tTan 90% of Lh^ t o t a l var iance . 

Table ГТ-11 

Correlation between the input flow (x) and nuròer of samples in the system 

Φ 

r e s i d u a l v a r i a n c e 

I . r . 

0 .301 

+ 0 . 1 6 3 

0 . 9 1 

P . n . r . 

0 .405 

+ O.I63 

0.81» 

M . s . 

0 . ? 6 3 

+ 0 . 1 6 3 

0 . 9 3 

1 3 C - n . m . r . 

0 . 3 0 3 

+ О . І 6 3 

0 . 9 1 

Table TI-12 

Correlation between the number of sarrples (x) in a section and the delay (y) 
of the samples, arriving at the laboratory (99% aonfidence interval) 

Φ ух 

r e s i d u a l v a r i a n c e 

I . r . P . m . r . M . s . 1 3 C - n . n . r . LAB 

о . ? П т ( - 5 ) * 0 . 1 9 ( - 3 ) 0 . 1 9 ( - 3 ) 0 . 2 S ( - 6 ) 0 . 2 ? ( 1 1 ) 

+ 0 . I 8 + O . I 8 + 0 · 1 Τ + 0 . 2 0 + 0 . 2 1 

0.9^ 0 .96 0 . 9 6 0 . 9 2 0.9Ì+ 

'tine lag (τ) for which maxinal correlation is observed is given in 
parentheses. 

6. Conclusions 

In this section several statistical properties on the sample flow through 

the spectroscopic laboratory for structural analysis of Philips Duphar have been 

determined. It has been demonstrated that this laboratory can be represented 

by a network of queues, having properties which are generally valid for networks 

in an equilibrium state : i.e. the conservation equation, and the independency 

of the number of samples in the various sections. 

The queue levels in the laboratory, which are Gaussian distributed, can 

adequately been described by a first order Autoregressive model. 
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CHAPTER 3 

DETERMINATION OF THE EFFECT OF SOME DESCRIPTORS 

OF DELAY IN AN ANALYTICAL LABORATORY 

BY QUEUEING THEORY 

Applications of queueing theory in analytical chemistry are restricted to 

the rather general ones mentioned in the introduction Ъу Adeberg and Doerffel 

[ AD75] . Most of all analytical results ohtained with queueing theory, are 

derived for systems in a 'steady state'. That mea-is that the arriving stream 

and service time are stochastic variables, which are described in terms of 

time-independent probability distribution functions. Consequently, many 

laboratories cannot be studied by queueing theory. For example, the sample 

input of some clinical and industrial control laboratories is described by 

a time dependent probability distribution. In the early morning the laboratory 

is almost empty, and by the evening al] samples have been processed. Jackson 

[ JA57] and Baskett[ВА75] demonstrated that for open networks of queues, where 

the arrival processes do not depend on the state of the system, each node 

can be considered individually. Ch.TT demonstrated that the arrival processes 

to the sections of the laboratory are indeed independent of the number of 

samples in the laboratory. However, here, no exact analytical results can be 

obtained as no theoretical results are known for complex systems: i.e. systems 

with batch input and output, where analyses are interrupted for other activi­

ties, and where eventually the expertise of the analysts is different. However 

queueing theory reveals the important variables in queueing systems. From these 

theoretical considerations, the relative importance of various variables can 

be estimated. 
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1. General results 

1.1 Relation between the mean number of samples in the system, the mean arrival 

rate and the mean delay time. 

A general relation exists between the mean number of samples in a queucing 

system, the mean input flow and mean delay time. This relation is independent 

of the distributions of the input flow and analysis time, and therefore is valid 

for all kinds of queueing systems. Furthermore, the relation depends neither 

on the number of analysts in the system, nor on the particular queueing 

discipline in the system. 

Little [Lió!] derived Ohat: 

Ñ = αΤ IIT-1 

where Ñ is the mean number of samples in the laboratory (or section), α is 

the mean input flow and f, the mean delay time. 

The validity of Eqn. II1-1 for the laboratory under investigation is 

demonstrated in Table III-1 . This relationship applies also for each indivi­

dual section and each priority class of samples. 

Table III-l 
Vérification of Little's result, 

All samples 

section 

I.r 

P.m.r. 

M.s. 

13C-n.m.r. 

Lab 

Σα.Τ.= 81.6 

F-1 samples 

I.r. 

P.m.r. 

M.s. 

13
C-n.m.r. 

Lab 

mean flow (a) 

2.8 

7.7 

2.1 

2.b 

11.8 

2.07 

5.2 

1.68 

1.93 

8.60 

Τ (days) 

U.I 

5.1 

6.7 

6.7 

6.88 

3.81 

U.97 

6.7 

6.3 

6.63 

Ñ(observed) 

11.5 

39.1 

13.9 

16.8 

81.3 

7.9 

25.6 

11.? 

12.1 

56.8 

Ni calculated) 

11.5 

39.3 

11*. 1 

16.7 

81.2 

7.9 

25.8 

11.3 

12.2 

57.0 

T(calc) 

6.9? 

6.61* 
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Σα.Τ.= 57.lb 

F-2 samnles 

I . r . 

P.m.r. 

M.s. 
1 3 C-n.m.r 

Lab 

Σα.Τ.= 25 ?3 

0.76 

2.6 

οΛι 

о.бэ 

3.38 

ίι .9 

5.3 

7.0 

8.1 

7-5 

3.7 

13.8 

2.9 

h.9 

25.3 

3.7 

13.8 

2.9 

h.9 

25-3 7.U6 

The moan delay time of all samples in an open network of q nodes can be cal­

culated from the mean number of samples in each node and the external input 

flow to each node, according to 

q _ q 

Τ = Σ Ν./ Σ λ. 

1=1 ι=1 

111-2 

where λ. is the external input to node i. Substituting N.= ot.T. in Eqn. ITI-2 

we find that 

_ q _ q q 

Τ = Σ α.T. / Σ λ. = Σ α.T./ λ ΙΙΙ-3 
. , 1 1 ._, 1 . . 1 1 
ι=1 ι=1 ι=1 

where λ is the total external flow to the laboratory. 

The calculated value T=6.92, using Eqn. III-3, agrees reasonably well with the 

observed mean delay in the laboratory. Furthermore from Table III-1, it is 

clear that Sqn. ITI-3 applies also for each class of samples: i.e. the samples 

originating from user F-1 and F-? . In this way the average delay in the 

laboratory is decomposed into its single channel components. The analysis 

problem therefore reduces simply to the calculation of the delay time (T.) 

in each section. 

1.2 The utilization factor 

A basic parameter in queueing systems is the utilization factor (p). It is the 

ratio of the rate at which samples enter the system to the maximum rate at 

which the system can perform the work, that the samples bring into the system. 

For a single server system, the definition of ρ becomes: 

ρ = average arrival rate of samples и average analysis time 

ρ = λΕ[ΑΤ] Ill-lt 
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Eqn. Ill-h applies only when the average analysis tine is independent of the 

system state. Obviously a single server system can only reach a steady state 

when 0<p<1, because for p>1, more samples arrive in the laboratory than can 

be analyzed, causing the number of waiting samples to grow in an unlimited 

fashion. This factor can be interpreted as the fraction of the time the server 

(analyst) is busy: (l-p) is the fraction that the section is idle, waiting for 

ohe next sanple. 

xnerefore ρ = E[busy time]/{E [busy t ime]+E[idle time]} III-5 

For a system with several analysts (m) in the section, the utilization factor 

is defined as: 

ρ = XE[AT]/m III-6 

2. The basic model. 

2.1 The behaviour of systems with Markovian input. 

In a system with equally spaced interarrivai times and constant analysis times, 

no queues are formed when the utilization factor is less than or equal to one. 

Here, the analysis is always finished before the next sample arrives. Other­

wise, for p>1, no steady state is reached and the waiting tine is infinite. 

In all other systems queueing occurs as a consequence of the probability that 

a sample arrives before the analysis of the preceeding sample is finished. 

P.1.1. Mean values and distribution function of waiting and system time for 

a M/M/1 system. 

Queues are described by a shorthand notation A/B/m, where А, В and m represent 

the distributions for interarrivai time (IAT) and service time, and the number 

of channels. For example, in the M/M/1 system both the interarrival tine and 

service time are exponentially distributed, and there is only one service 

channel. That is the system for which most mathematical results are available. 

It can be easily demonstrated ihat a system with exponent:аІЛу distributed 

interarrival times is a Poisson process [ KL75], which has no memory. This 

means that the probability for a particular interarrival time does not depend 

on the last interarrival time. From this memoryless property of a Poisson 

process, with E[IAT], it follows that an idle analyst has on the average to 

wait a time equal to E[IAT], until a new sample arrives in the section. 

Thus E [idle] = E [IAT] III-T 



From Eqn. Ill-5 it follows that 

E[ousy]= 3[IAT]p/(l-p) III-8 

For a M/M/1 system where the samples are analyzed in the sequence of arrival 

at the system (First-in First-out (FIFO) rule), the mean waiting time equals 

[KLT5]: 

W = ÄTp/(l-p) IIT-9 

and the total delay or system time equals : 

Τ = W + AT = ΛΤ/(1-p) 

The asymptotical shape of the representation of Eqn. III-9 in Fig. III-1 is 

very characteristic for all kinds of queueing systems. For the M/M/1 system 

it is clear that the mean waiting time depends strongly on the value of p. 

Fig. III-J: The ratio between the average waiting time (Ы) and the average 
analysis time (AT) as a function of the utilization factor (p) for a system 
with exponentially distributed interarrivai times and analysis times (M/M/1 
system) · 
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For ρ>0.θ5 small variations in the laboratory organization may provide a 

serious change in waiting time. Therefore it is worthwile to investigate which 

sections in the laboratory are highly saturated. In contrast, channels with 

overcapacity (p<0.5) will Ъе relatively insensitive to alterations of the 

organization. When the FIFO rule is applied in the laboratory, samples with a 

small analysis time have the sane mean waiting time as samples with a large 

analysis time. The cumulative density functions of the waiting timo and system 

time are exponential for a FIFO M/M/1 system (Fig. III-2) [ KL76] . 

P(VKy) = 1 - рсхр[-(1-р)у/АТ] ш л о 

P(T<y) = 1 - exp[-(l-o)y/5T] 

The graphical representation of these equations in Fig. 111-2 is very similar 

to the shape of the cumulative density functions of the delay times observed 

in the laboratory (Fig. TI-8). This agrees with the general constatation of 

Ρ 

1. · 

я 

.6 

A • 

2 

О 2 4 6 8AT t 

Fig. III-2: Probability (P) that the waiting (W) and system (T) time of a 
sample are less or equal to p. (t is expressed in units of mean analysis 
time), for a M/M/1 system with p=0. 7. 

Kleinrock [ KL75] that the cumulative density function of the waiting time for 
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many kinds of queueing systems, has a c h a r a c t o r i s t i c a l l y exponential shape. 

The p r o b a b i l i t y of f inding k. samples in a M/M/1 syste-n equals [ KLT5] 

p(k) = p k ( l - p ) І І І - И 

It is interesting to note that the probability of finding zero samples in 

the system equals 1-p. The general functioral relationship p(k)=z'(l-z) 

is characteristic for all kinds of queueing systems, and is even derived 

for the general G/G/m system in a heavy traffic situation (p>0.9), where 

ζ is a function of p. However, the observed Gaussian distribution of the 

number of samples in the laboratory and in each section disagrees with 

mentioned theoretical expectation. Apparently, the backlog in tie laboratory 

is large and the sections become never idle. Mentioned discrepancy will be 

explained by simulation experiments presented in Ch. VI. The conditional 

probaoility ?(t<y|k) of a sample to have a system time less than or equal 

to y, when it finds к samples before it at its arrival in the M/M/1 system, 

is given as (Appendix A): 

P(Ky|k) = 1 - exp(-y/ÂT)E (у/ЛТ)к
"

Г
/(к-г)'. 

r=0 

III-1? 

Fig. III-Z: Condib-ional 0.9S probability limit that a Simple is analyzed 
within a delay (T ql-/AT) a s a function of the nuriber (N) of samples in a 
M/M/1 system. 

37 



In fig III-3 the maximal waiting time {95% probahility) of a sample is plotted 

against the number of samples at its arrival in the M/M/1 system. It is clear 

that for large values of k, the value dP(T<y|k)/dk equals the mean analysis 

time. Again, a major difference is found between the investigated laboratory 

system and a simple M/M/1 (FIFO) system, as no correlation was found between 

the number of samples in the laboratory at the arrival of a sample and its 

delay (Table 11-12). A possible explanation of this difference will be given 

in Ch. VI. 

2.1.? Interruptions of the analysis for other activities 

Two important features of queueing systems are the mean lengths of the busy 

and of the idle periods of the channel (or analyst). According to Eqn. III-T 

the mean idle time, defined as the mean time during which no samples are present 

in the channel, is independent of the utilization factor. The substitution 

of the value p=0.9 in Eqn. III-T indicates -chat the mean length of the busy 

time of a M/M/1 system equals 9xE[ IAT].Therefore an analyst which receives 

one sample per hour on the average remains 9 hrs busy. Obviously, in labora­

tory practice, it may happen that no analyses are done, although samples 

are waiting, i.e. the service is interrupted by other activities. The question 

arises how the mean interruption time (g) and the mean time between the in­

terruptions (a) affect the mean waiting time. Furthermore, one may desire to 

compare the case where the 'on' and 'off' times are exponentially distributed 

with that where they are constant or scheduled. The effect depends on how the 

interruptions are scheduled. Two situations can be distinguished: 

(i) As usual the analyst is busy as long as there are samples in the laboratory 

(section). However, as soon as the analyst becomes idle he starts the other 

activities. The duration of the other activities is a random variable with a 

known distribution function. 

Two models may be considered: 

a) The arrival of a sample during the period of other activities does not end 

these activities prematurely. After finishing the other activity, the analyst 

returns to the main queue and begins to analyze ~the samples, if any, that have 

arrived during his absence. If no samples are waiting, the analyst waits for 

the first arrival. When zhe durations of the other activities are exponentially 

distributed, the mean waiting time equals according to Levy [LET5]: 
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W = W„.„ + λβ
?
/[ ΐ/(ΐ+λβ) + ASI III-13 

rifo 

where λβ represents the ratio between the mean interruption time and mean idle 

time. 

Ъ) Contrary to this model, the analyst immediately starts a new period of 

other activities, when he finds the system empty at the end of a vacation pe­

riod . According to Levy [ LET5] the mean waiting time is increased by β for 

exponentially distributed interruptions and by β/? for constant interruptions: 

(ii) In the second situation, the analyst may also start the other activities 

during a busy period. The factor (R) with which the mean waiting time of the 

system is multiplied, when interruptions of the analyses are permitted, depends 

on the probability density functions of a and β. According to Fisher f FITTI . 

when α and β are exponentially distributed R equals: 

R = [ρ+(αβ)
2
/(Ατ(α+β)

3
)]ίΐ-ρ]/[ρ(α/(α+β)-ρ)] TU-il» 

and for α and β being constant (or scheduled] 

R = (1-ρ)/[α/(α+β)-ρ] ІІІ-Ъ 

These equations indicate that the mean waiting tine in a steady state would 

be larger for random breakdowns than for scheduled breakdowns,with 

a factor (F) 

F =1+(aß)2/[ÄT(a+ß)3p] ІІІ-іб 

Here condition for a steady state is that the sum of the utilization factor 

of the analyst and the relative time spent for other activities is less or 

equal unity. 

Thus β/(α+β]+ρζ1 

Other activities, permitted during a busy period have a very strong influence 

on the mean waiting time as is demonstrated by the plots of Eqns. TU-li* and 

III-15 in Fig. TII-U. In fact, they cause a system with a low utilization 

factor to behave as a system with a high utilization factor. This means that 

the waiting time becomes asymptotically dependent on p, even for low utiliza­

tion factors, when ο-»α/(α+β). The influence of these breakdowns in the 

investigated laboratory is clearly demonstrated for the i.r. section, which 

resembles a M/M/1 system. The observed waiting time is considerably higier 
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Fig. III-¿: The vatio (R) between the average system time for interrupted 
and not interrupted analyses as a function of the available lime [ a/Yct+ßJ] 
for analysis in a M/M/l system with various utilization factors (p=0.9... 
0.5) ( ) time betueen the interruptions (a) and interruption time Ci) are 
exponentially distributed. ( ) a and $ are constant. 

than forecasted by Eqn. III-9. However, inclusion of ?3^ of exponentially 

distributed other activities results in a calculated waiting Lime that agrees 

reasonably well with tne observed value. 

Table 111-2: 

The effeat of other activities on the mean delay. 

section flow mean analysis time ρ 

samples (including the transfer 

per day tines) 

Τ Τ Τ 
obs calf c-alc, 0 , r 

(days) M/M/1 tt=t^ f=\-
J exnonentia l 

I . r . 2.8 •хю.гыіг 0.7 3.9 0.6 3.9 

On the other hand, when these other activities in the i.r. section are 

scheduled (e.g. at the end of the day), the mean waiting time decreases to 

2.7 days. Permit Ling the other activities exclusively during the periods 

U0 

file://-/-0.2Shr


that no samples are present in that section, will cause a further decrease of 

the waiting time to 1.1 day. Here the relative time spent to other activities 

is not altered, but the mean time between the other activities is defined by 

the queueing process itself. 

2.1.3. Influence of the distribution function of the analysis time (M/G/И). 

For non exponentially distributed analysis times, the mean system time depends 

linearly on the coefficient of variation of the distribution, defined as 

T/ÄT = 1 + р(1+С^
т
)/[?(1-р)] Ili-IT 

Eqn. III-17 is the well known Pollaczeck-Khinchin mean value formula. Using 

this equation the effect of reducing the analysis time can be compared to the 

effect of decreasing the variance of the analysis time. Supposing that the 

alteration of the mean analysis time does not affect the shape of the distri-

? 
bution function, which means that С remains constant, then the reduction 

of the system time by decreasing the analysis time to χ times the original 

value, equals : 

Τ
χ
/Τ = [х(1-р)(2+хр(Сд

Т
-1))]/[ (1-хр)(2+р(С^ -1))] 0<x<1 III-18 

2 . 
When С is decreased to у times the original value, then 

T
y
/T = [2+р(уСд

Т
-1)]/[2+р(Сд

Т
 -1)] 0<y<1 III-19 

The comparison of the diagrams of both equations in Fig. III-5 demonstrates 

that in general, a reduction of the analysis tine will improve the system more 

than a decrease of the variance. Under certain conditions, however, (x>0.8 

and y<0.2) it will be beneficial to reduce the variance. 

The analysis time can be decreased in various ways: e.g. only a single result 

may be presented rather than duplicates. The coefficient of variation can be 

decreased by standardizing or automating parts of the analytical procedure. 

However, an alteration of the analytical procedure may influence the accuracy 

of the analytical result. Therefore cost-profit analyses should indicate 

whether the profit of obtaining the analytical result within a shorter time 

balances against the costs of the eventually introduced inaccuracy. In the 

particular case of structural analysis, measurements are not normally dupli­

cated, and standardization is difficult. Here the only way to influence the 
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Fig. III-S: Reduction (R) of the system time fov two M/M/T. systems with 
different variation coefficients of the analysis time (C2^), αβ_α function 
of the_ utilization favtov (p), when (il the mean analysis time (AT) is reduced 
to xAT (0 < χ < 1) and (ii) the variation coefficient (C2^™) of the analysis 
time is reduced to уСду (0 < у < 1 ) . 

parameters of the probability density function of the analysis time is to 

disrupt xhe interpretation of the spectra after a certain time (x) and to urge 

the analyst to transfer the problem to another spectroscopic method. Then 

the original exponential distribution of the analysis time takes the shape 

shown in Fig. II-6, with a mean equal to 

ÄT(1 - exp(-X/ÄT)) ITI-20 

and a coefficient of variation equal to: 

2[ехр(-Х/АТ)(Х-АТ) +ÄT]/[ÄT(1 - exp(-X/ÄT))2l-1 (Appendix В) III-P1 

When these terms are substituted in Eqn. 111-17» the reduction of the waiting 

time is found as a function of the ratio between the maximal and original 

mean analysis time, for various values of the utilization factor. As Fig. 

III-7 demonstrates, the truncation of the analysis time has the greatest 

effect at high ρ levels. However, in the laboratory for structural analysis, 

two types of analyses are truncated: analyses that should be successfully 

finished, if the analyst was allowed to study the spectrum for a longer time, 
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Fig. III-6: The truncated analysis time probability density funotion: 
b(t) - μ exp(-\it) for t < 2\i. b(t=2\i) - 1 - B(2\i) ^or t = 2u . with B(P.u) 
= ;,vve-vtdv 
0 

Fig. III-7: The reduation of the mean waiting time (wx/w) as a function of the 
maximal allowed analysis time (ATmax/Tü) for various utilization factors p. 
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and analyses which should not. Consequently, the truncation of analyses in 

one section -nay increase tne flow towards the other sections, and, therefore, 

increase the overall waiting time. It depends on the utilization factors of 

the other sections whether the performance of the total system is improved 

or not, when analyses are truncated, as the simulatiois will demonstrate 

in Chapter VI. 

2.1.1» Batch input systems 

An alternative for separate arrivals of the samples to the laboratory, is to 

collect the samples during a certain period, and sent them simultaneously 

to the laboratory. This transforms the original M/M/1 system with a mean 

interarrivai time EflA?! , and nean analysis time E [AT] to a M/G/1 or D/G/l 

system. In the latter system the batches of samples arrive at equispaced 

times in the laboratory. As mentioned before 'G' means that the analysis 

time has a general probability density function. The mean analysis time of 

a batch (AT, ) with a mean size r, equals г . AT. The variance of the analysis 

time equals var[AT](r + var(r)), and the mean interarrivai time of the batches 

is Г . TAT. 

In this model the delay seen by a sample now consists of two independent 

components: the delay of the first member of his batch to be analyzed, and 

that dae to the analysis tiires of zhe preceeding members of his batch [BUT5] · 

When a comparison is made between two models with the same total sample flow, 

one without batch and the other with ЪагсЬ input, then the ratios compiled in 

Table III-3, between the mean system times arc found (Appendix C). The 

equations in Table III-3 are derived with the assumption that the 'overhead' 

is not changed because of 'batch' analysis. This means that the fact that 

during the analysis of one sample, tne sample preparation of the next sample 

may be started, was not accounted for . 

Table III-3 
in 

Ratio between the delay (''bat^h/T) without batch input (T) and with batch 
input (Tbatah). 

p.d.f. of the 

batchsize 

Poisson 

constant 

exponential 

Gaussian 

p.d.f. interarri 

Constant 

0.5r(l-p)+1 

0.5?(I-P)+0.5 

0.^?(P-p)+0.5 

5rp 

val time of the batches 

Exponential 

1+0.5? 

0.5+0.5? 

0.5+r 

; ^ + j ? + 3 
r 

l»lt 
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At a first sight, one mignt expect tnat a batch input would result in a 

oettcr performance of the system. However, ТаЪІе ITI-3, indicates that the 

mean delay title will only ue improved when all batches have an equal size 

or are Gaussian distriouted, with the condition that the batches enter the 

laboratory at equidistant times. Furthermore, for Gaussian distributed batch 

sizes, improvement is only achieved under certain conditions of σ'/ΐ (Fig. 

Ill-S). 

Ft Fig. ITI-8: Upper bound (shaded glane) of the variation coefficient 
(ot/r ) and the mean batchsize (r>) of the sample input, as a function of the 
utilization factor (p) to obtain a reduction of the mean delay, by transforming 
a M/M/l system in a batch input system with Gaussian distributed batchsizes and 
equidistant arrivals 

As mentioned before (section II), the arrivals in a M/M/1 system have a 

Poisson distribution. When all the samples enter the laboratory simultareously, 

once a day, then, the batch sizes are also Poisson distributed. Here no 

improvement of the system is obtained, and the results become even worse when 
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the mean sample flow (λ) in the system is high (r = λ). 

"he equations of Table III-3 were verified for a M/M/1 system, with IAT=
 1
 , 

AT = 0.7 and r = 1, whic;h was transformed to a hatch inpat system with r = 8 

and TAT = 8. The results of
 J
he simulatiors agree reasonably yell with the 

theoretical forecast (Table ІІІ-Ц) 

Table III-4 

'bavoh single 

p.d.f. of 

batchsi 

Poisson 

Gaussian 

exponenti 
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In practice, a spectroscopic analysis consists of two parts: the measurement 

and interpretation of the spectrum. However, that M/M/1 model does not account 

for the fact that at first, the total batch of spectra is measured, whereafter, 

the interpretation is started. Simulation experiments, presented in Chapter VI 

account for this fact and for the mentioned reduction of overhead. 

2.2 Priority queueing 

The equations in above paragraphs are derived for first-in-first-out (FiFo) 

disciplines: i.e. all samples are analyzed in the sequence of arrival at the 

service channel. Of course, there may be many reasons to deviate from this 

FiFo rule, some samples being given priority. In an analytical laboratory, 

priority can be given to samples depending on their origins (different 

research groups), their analysis time ('easy' and 'difficult' samples), 

or their history in the laboratory (first, second analytical method which is 

tried). A particular priority difference can be obtained by attributing 

urgency numbers to the samples, which may be a function of the waiting time. 
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For example [ KLTö] 

qir)= (t - т) Г
Ъ

р
 III-22 

where t - τ is the waiting time of the sample at tine t and Ъ is the urgency 

parameter for priority class p. The samples are analyzed in the sequence of 

decreasing urgency nunbers (q). The advantage of this priority system is 

that analytical results are availahle in queueing theory. However, in the 

practice of an analytical laboratory, this priority rule is hard to operate. 

since each time the analysis of a new sample is to Ъе started, the 

priority value q_̂  should he calculated of each sample in queue, in order to 

find the sample with the highest priority. For large values of r, the sequence 

becomes FIFO, while for small values of r an absolute priority discipline is 

obtained, because all urgency numbers become equal to b . In a system of 

head-of-the line (H.O.L.) or absolute priority, samples queue according to 

priority groups and are strictly separated on the basis of the group to which 

they belong. Kleinrock tKL76,KF76] calculated the mean waiting time for a 

M/M/1 system with time dependent priorities (Eqn. III-23) 

W
n
 = [W

n
/(l-p) - Σ p.W.(l-(b./b )

1/r
)]/[l - Σ p.(l-(b /Ъ.)

1/Г
)] III-23 

Ρ 0
 i = 1

 ι ι ι ρ
 i = p + 1

i ρ ι 

with p=1, 2, Ρ and Ъ,<Ъ„< <Ъ 
ι 2 ρ 

Ρ _ _ 

where W = Σ λ.χ./2with x? equal to the second moment of the analysis tines 

of samples Ïrom group i. 

For an exponentially distributed analysis time x? equals 2(x.)2, consequently 

Ρ 
W

n
 = Σ p.x. 
0 . „ι ι 

1=1 

Substituting r=0 in Eqn. III-P3, the expression for the absolute priority 

discipline is obtained 

p-1 Ρ 

W^ = (W-/(l-p) - Σ p.W. )/(1-Е p.) 111-21+ 
P 0

 i=1
 1 1
 i-p+1

 1 

For a system with only two priority groups Eqn. III-2b becomes: 

2 _ 

W (low priority) = Σ p.x./t O-pKl-pJ] 111-25 

i = 1
 d 

1+7 



W
?
 (hign priority) = l р ^ / О - р ^ ) 

і = 1 

From tae graphical represenLation of Eqn. I1T-23 in Fig. III-9, it is easily 

seen that Ъу choosing appropriate values of r and Ъ, each ratio between the 

mean delay tiFes of tie various classes can be obtained, ranging fren equal 

priority to an absolute priority discipline. Moreover, from Eqn. III-23 it 

car. be calculated that for equal nean analysis tines of the various priority 

groups, the mean waiting time of the entire population of samples is not in­

fluenced by any priority discipline, and equals the delay of the M/M/1 system. 

Accordingly optimization of b and r is not achieved by minimizing the mean 

waiting time exclusively, but should include cost functions for waiting [ KL76] 

for the different priority groups of samples. 
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Fig. ІІІ-Э: Time dependent priorities, varying from absolute priority (v=0.1) 
to a First-in First-out (FIFO) discipline (r=100) for three priority groups 
with bj.-b-.-b - 1:5:25 

A very interesting property of priority queueing is tnat analytical results 

are obtainable for systems with utilization factors grealer than 1. For a 

system where group (p+1) should give absolute priority to group (p), Eqn. 

III-2U can be rewritten as: 

1*8 



Ρ _ ρ ρ 

W = Σ ρ.χ./[ 1-Σ ρ.)(Ί-Σ ρ.)] 
Ρ
 i = 1

 1 1 
i=1

 1
 i=1

 1 

ΙΙΙ-26 

This equation demonstrates that all priority groups (1...p) , for which Σ p.<1 

reach a steady state. All other groups (p+1,...P) are oversaturated ana have 

an infinite delay. This effect is demonstrated in Fig. III-10, where the groups 

get successively saturated with increasing input flow to the system, under the 

condition of unchanged flow ratio to the various groups. 

W 

40 

10 

Fig. 111-10: The mean delay (VI/M) of 4 priority groups in a M/M/l system as 
a function of the total utilization factor (p) of the system where (г) each 
priority group has the same utilization factor (p.) and (ii) the (i+li-th 
group has absolute priority on the i-lh group. 

For a system with two priority groups with an equal mean analysis time, but 

with a different input flow to the system, it is interesting to investigate 

which of the two groups is the most sensitive to the applied priority rule 

(i.e. an absolute priority is attributed to groupl or to group 2). In Jig. 

III-11, the relative delays (T
1
/T and Τ /T) of two sample groups (l and 2) 

are plotted versus the ratio of the input flow of both groups of samples. 

Fig. III-12 shows the plots of the increase of Lhe delay for both groups 

when their priority is inverted. These graphs demonstrate that the delay of 

L9 



Fig. Ill-1 "I: The system time of two groups of samples with equal analysis 
times as a function of the ratio of their input density (αη/ο.9) in a system 
with a total utilization factor p=0.9. ( ) group 1 has absolute priority, 
( ) group 2 has absolute priority. 

the group with the largest (group l) input flow is the less sensitive to the 

priority rule. For example: suppose that the input flow of the first group 

is ten times that of the second group, and attribute the ahsolute priority, 

first assigned to the first group, now to the second group, then, tne delay 

of the latter group (smallest input flow) wi]l he reduced by a factor 10, 

while the delay of the former group is only doubled. 

Holtznan [HOTO] analyzed a dynamic priority discipline. Arriving samples at 

a queue are assigned urgency numbers, just as in a time dependent priority 

rule. However, the sample witn the smallest sum of urgency number (D ) and 

arrival time (t) is analyzed next ( q =t+b ). This service discipline has 

also the effect of considering some samples to have higher priority than others, 

but takes into account the undesirability of having low priority samples to 

wait too long. Identically ίο the time dependent priority discipline, tne 

dynamic priority discipline may be altered from a FIFO (b =0), to an absolute 

Ρ 
priority discipline (b is large). Unfortunately, no exact analytical results 

are known for this priority discipline. Only upper and lower bounds of the 
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Fig. III-12: A system with two groups of samples: The influence of the attri­
buted priority on the delay of both sanple groups as a function of the ratio 
of their input density. ( ) T1 п.р./Т^ a.p. : ratio between the delays of 
the first group having no priority (n.p.7 and absolute priority (a.p.) 
( ) ТрП.р./Т- a.p. : idem for the second group of samples. 

waiting time under equilibrium conditions can be given [HOTO]. However, the 

advantage of this priority rule is that the sample is immediately scheduled 

in the queue at a fixed position. 

When the mean analysis tines of the various priority groups are different, the 

lowest overall nean waiting time is found when the samples with the shortest 

analysis time get absolute priority (Eqn. TII-2U). In an analytical laboratory, 

this situation occurs when an analyst does two different analyses, or wnen 

samples can be subdivided into two groups: e.g. so called 'easy' and 'difficult' 

samples, with 'small' and 'large' analysis times respectively: i.e. the inter­

pretation of a spectrum may be easy or difficult. Particularly, Conway [ СОб'Г] 

indicated in many examples, that this separation into two groups provides a 

considerable reduction of the mean waiting time, as opposed to the FI^O system. 

The following example demonstrates the effect of subdividing the samples into 

two categories. Starting from an exponentially distributed analysis time, with 

51 



a mean AT, the samples are subdivided into two categories: the first one with 

analysis times in between 0 and χ and a second category with χ<Α"«η (Fig. Ill 

-13). 

Λ 

AT 
A 

2 Í T 3ÄT » 

|<ж 

Fig. III-13: Distribution of the samples over two groups:(1) 'easy' samples 
for which AT<x, with a mean AT<<c, (2) 'difficult' samples for which AT>x, 
with a mean AT>x. 

Fig. III-lU and 15 show the mean analysis times and the sample flows of both 

categories of samples as a function of χ for exponentially and k=i· Erlangian 

distributed analysis times. The plots of the calculated overall waiting time 

when the first category of samples has absolute priority (Fig. ІІІ-іб and 

17) clearly show that the total mean system time is approximately halved for 

high utilization factors (p=0.9). Tho effect is maximal when a small number 

of samples (10%) with high analysis times must give absolute priority to all 

other samples. A minor reduction is obtained for the k=U Erlangian system 

(30?) (see Appendix D for the derivation of the equations). Furthermore, the 

mean system times of both priority groups differ considerably:i.e. in a 

M/M/1 system with p=0.9, the mean waiting time of the samples witn a high 

priority {G0% of all samples) is only 1% of that of the samples with low 

priority. It should be stressed here that for these calculations, the correct 

class was assumed to be determined for each sample. The influence of inaccu­

rate estimations of the analysis time of the samples will be demonstrated by 

the simulations presented in Chapter VI. However, clearly, when the analysis 

time cannot be estimated at all, it has no sense to divide the samples into 
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Fig. III-15: Distribution of samples with k=4 Kvlangian distributed analysis times over two grouos. 
The mean analysis time (R=AT<x/AT) and fraction (R=a<x/a) of 'easy' samples as a function of x/AT. 



αϊ : 

Fig. ΙΓΓ-16: Ratio (R) of the mean delay of the 'diffiault' (T~ /T ) samples, the 'easy' (T, /f ) samples 
and of the overall delay, as a function of the fraction of 'easif'samples' (a<x/a) in a M/M/l_ sißtem, where the 
easy sammples have absolute priority. ( ) Reduction of the overall mean system time (T^T„.j. ) by 
discriminating easy and difficult samples. 

Fig. III-17: Idem for a M/E./l system. 



two categories on the basis of an estimated analysis time,as then, the samples 

are positioned at random in the queue. Tío parameters of the waiting time 

(mean and variance) are equal for a random and FIFO qjoue discipline (Durr 

[DUT1] ). Another way to obtain a discrimination in favour of short analyses, 

is to transfer the spectrum after a fixed interpretation tine q to a pile of 

unfinished spectra and to start the measurement of the next sample or the 

interpretation of the next spectrum. This is a common method of job handling 

in time shared computer systems, which is known as Round Robin (R.R.) schedu­

ling. Kleinrock [ КЬТб] demonstrated that R.R. scheduling has no effect on the 

mean waiting time of the total population of samples, but diminishes the mean 

waiting time of the easy samples at the expense of the difficult ones. For q 

approaching zero, the waiting time of a sample (W ) in a M/M/l system becomes 

linearly proportional to its analysis time(x). 

W = xp/(1-p) III-27 

However, subdividing the interpretation time of a spectrum in infinitessimally 

small steps is unrealistic. Therefore the effect of applying R.R. scheduling 

was simulated here only during the interpretation step, and for large values 

of q. Fig. III-l8a,b shows the results'of simulations of a laboratory system 

where the mean interpretation time for difficult samples is twice that for 

easy samples. For a negligibly small measurement time 'easy' samples wait for 

snorter times only when the interpretation is done in steps smaller than 0.1th 

of the mean interprexation time (q=0.l). Moreover, the effect is considerably 

decreased when the measurement and interpretation times are approximately 

equal, and only the interpretation step is partitioned (Fig. ІІІ-18Ъ). These 

simulations led to the conclusion that in spectroscopic analysis waiting time 

can be improved considerably only by giving priority to the 'easy' samples 

which have previously been recognized as such. 

One may imagine that in some cases one is not interested in a minimal delay 

time, bat prefers a uniform response time to users. In such situation, the 

variance performance measure is important and
 +
he question of minimizing the 

variance of delay time should be tackled. Merton and Muller [ ME72] have shown 

that the sequence that minimizes the variance of waiting time is antithetical 

to the sequence that minimizes the mean waiting time. They proposed some 

heuristic method to schedule the samples in a V-shaped sequence: i.e. the 

samples must be arranged in descending order of analysis time if they are 

placed before the shortest job, but in ascending order of analysis times if 
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placed after it. 
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Fig. TII-lSa:The effect of applying Round Robin (R.R.) scheduling in a system 
with two groups of samples, where (AT) ^=2CAT) -, on the waiting time of both 
groups, as a function of the length (q/AT) ojthe steps with which the samples 
are interpreted. 0 the variation coefficient of the analysis time (C?)=l; 
0 the variation coefficient of the analysis time (C?)=3. 

b:The effect of applying RR scheduling with q=0.1IT as a function 
of the ratio between the mean interpretation time (IT) and the mean measuring 
time (MT) of the samples. 

2.3. Dynamic aspects of M/M/l systems. 

In Chapter II a time series approach was used as a practical means to ottain 

a model of the queues in the laboratory. To date, very little has Ъесп done in 

applying time series techniques to analyze queueing systems, and the theoretical 

expressions (Eqn. III-?8) for the autocorrelation function of the number of 

samples are only derived for M/M/1 systems [M055]· 

φ (τ) = ехр(-т(1-р)
2
/рАТ ) ΙΙΙ-Ρθ 

χχ 

with a time constant Τ = ÄTp/(l-p)2 III-29 
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The time constant Τ represents the mean time for the queue to return from 

any deviation from the mean level (Ы)back to 0.368 of this deviation. Therefore, 

the time constant is a neasure of the rate of the queue size fluctuations. Fig. 

III-I9 demonstrates that the utilization factor of the system has a consideraole 

influence on the time constant of the system. 

Recalling the fact that the i.r. section resembles the most to a M/M/1 system 

with the parameters presented in Table III-2, a time constant of 1,9 days 

should be observed. The larger value of 5 days found is probably due to the 

other activities of the analyst, causing the system to behave as a system with 

a larger utilization factor. 

From the study of Bhat [BH72], who describes the transient behaviour of 

queueing systems, time constants for other systems could be calculated 

(Fig. III-I9)· Although these step responses were given in xerms of the 

number of departures needed for Lhe value p(1 - p) to reach 0.623 of its 

'steady' state value, a similar relationship between Τ and ρ is found as given 

by Eqn. Ill- 29· Comparing the lines calculated for E /M/1 and M/E /1 systems 

it seems that the strong dependence of Τ from ρ seems a general characteristic 

of all queueing systems. 

log η 

2. 

1 

о 

.i .2 .3 .4 .5 ¿ .7 І І ί Ρ 

Fig. III-19: ( ) the fvaational time constant Τ /AT of the number· of samples 
in a M/M/1 system as a function of the utilization factor (p) 

( ) the number of departures (n) needed for the mean number of 
waiting samples to reach 0.62 of its 'steady state' value as a function of Ρ 
for a M/M/l] M/E5/l, and Es/M/1 system. 

M/M/I 
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In a congested system the observations in a sample record are correlated. 

This complicates seriously the statistical analysis of simulated queueing 

data (Chapter V). 

Studies involving time series analysis in order to model queue data, have 

been executed by Steudel [ ST76 ] . He described the number of samples in a 

M/M/1 system with a discrete autoregressive model of order one, AR (l), 

in the form of n, = φ. η . + a . Our calculations in Chapter II proved that 

this AB (1) model is also valid for more complex systems that the M/M/1 

system. 

2.h Many server systems 

Considering m-server systems, it should be indicated that analytical results 

are often not available, and the derivation of the relationship between the 

mean waiting time and the utilization factor is very difficult. For example 

very few substantive results can be given for the M/G/m and G/G/m system 

[KL76]. Therefore, several upper and lower bounds were derived for these 

systems. Perhaps the most important of these is the lower bound for the 

G/G/m system,being [KL76] 

р
2
(сЛ-р(2-р) [(т-1)/т]ЛТг 

W > - — III-30 

2λ(ΐ-ρ) 2AT 

For m=1, approximations for heavy-traffic situations can be derived. These 

results are extremely robust and give the general behaviour of queues with 

long waiting times. 

The average waiting time is given by 

- K4> 
W = ^ ІІІ-ЗІ 

2(l-p)TAT 

with σ : variance of the interarrivai times 
a 

σί: variance of the analysis tines 

And the probability that W -g y equals 

P(W^y) = 1-exp("
2 I A T ( l

"
p )
 . y) = 1-exp(-y/W) III-32 

a b 

However, analytical results are available for M/M/m systems. 
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The average wait ing time equals 

W = ρ - ( m p ) m , . AT I I I - 3 3 
m'. ( 1-p)n 

where 

Ρ = [ Е1д£1 + 1жО_Ь]-1 хи.зь 
о k = 0 kl m! 1-p 

and 

λ. AT 
TII-35 

When t h e serv ice time i s k-Erlang d i s t r i b u t e d the approximation of 

Maalde [MATO] i s very useful 

W(p, m>1, k>l) = ρ ( m p ) m

2 . AT . - Ü i l M щ . З б 
0 m:(l-p)m 2 

The graphs of Eqn. III-33 in Fig. III-20 where the utilization factor of each 

analyst is independent of m, indicate that the asymptotical rise of the 

waiting time for large systems, with one queue served by several analysts 

starts at higher ρ values (p > 0.8 for m = 3). 

3. Conalusions 

The available queueir.g models, giving analytical results are generally 

too simple to fit problems, encountered in practical situations. For example, 

frequently analytical results or approximations can be obtained for models 

with only a minor deviation from the basic A/B/m systems: e.g. a M/M/1 with 

interruptions or with batch input; a M/M/1 system with absolute or time 

dependent priority for samples with short analysis tines. 

Serious problems arise when these systems are imbedded in a network of queues, 

where a part of the output of a node is the input of another one. Systems with 

batch input and interrupted analyses, where different priorities are attributed 

to various classes of samples, are considerably complex. Often, the solution 

of such models requires a high level of mathematics, having little sorse to 

the practician. Mentioned solutions will often be given in terms of transforms, 

excluding a practical application. 

59 



AT 
1Θ 

16 

14-

12 

10-

8 

6 

4 

2 

0. Q2 ОД Об 0.8 1.0 

Pm 

Fig. III-20: The mean waiting time (W/AT) of a multi sewer system (M/M/m) 
as a funation of the utilization faatov fp Ì of the analysts for various 
m-values. 

As H.J. Steuicl [STT6] states: "In many ways the subject of queueing appears 

to have gotted bagged down in a quagmire of intractable mathematics". 

However, in this section we did not aim to furnish analytical results for 

the laboratory under investigation, but to show the relevant parameters, with 

their influence, and eventually to formulate some generally valid statements. 

From the study of simple queueing systems conpleted with the observations of 

the real laboratory, one concludes: 

- the utilization factor (p) is a dominating factor, determining the waiting 

time 
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- a reduction of the analysis time is more important for the reduction of 

the waiting time than a reduction of the variation coefficient of the 

analysis time; 

- interruptions of the analysis, while sanples arc waiting cause the system 

with a low utilization factor to behave as a saturated system (large Τ , 

and asymptotical dependency οί
-
 Τ on p/. 

Allowing the start of other activilles only during the idle period has 

practically no influence on system performance; 

- modification of a M/M/1 system to a system with hatch input improves the 

system performance only in these situations where the hatches enler the 

system equidistantly and the distribution of Lhe hatch size is Gaussian 

or constant (supposing no change of the overhead); 

- system performance improves, when attributing absolute priority to the 

samples with the shortest analysis tine. The mean waiting time of all 

samples is not influenced by attributing different priority to groups of 

samples with the same mean analysis time. Optimization of such systems is 

only achieved by including cost functions; 

- the application of Round Robin scheduling in analytical laboratories is 

not feasible; 

- the cumulative density function of the waiting time has an exponential 

shape for many kinds of queueing systems; 

- a sampled queue has a stationary first order autoregressive behaviour. 
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Appendix Α. 

Calculation of P(T<y\k) for a FIFO, Μ/Μ/Ί system. 

According to Kleinrock [ KL7!)] , the Laplace transform of the pt-ohahility that 

the sample's total delay in the system is equal to y, when it finds к samples 

in system ahead of it, equals: 

S*(s|k) = [l/ÄT/(l/ÄT+s)]k+1 

The inversion of this equation gives: 

P(T=y|k) = (і/ІТ)к+
_^

к
ехр(-у/АТ) 

к: 
Integrating that equation, we have: 

к у 

РСТ^у|к) = ^l/ï?+1
z
kexp(-y/AT)dy =[-(l/ÄT)k+1exp(-y/ÄT)Z у ^ ^ Л к - г ) ; ] 

к! г=0 

= -(l/ÄT)k+1exp(-y/ÄT^ ук
~

І
АТ

Г
'

І
'

1
/(к-г)! +1 

r=0 

_ к 
= охр(-у/АТ)Е у

 І
М

; Г
 /(k-r) ! +1 

r=0 

—
 к
 — k-r 

Р(Т^у|к) = 1 - ехр(-у/АТ)Е (у/АТ)
К
 /(к-г) 

г=0 

AOpendix В 

Calaulation of the first and second moments of a tmnaaied exponential 
distribution. 

1. first moment : 

Let l/A" he equal to y. the p.d.f. of the truncated analysis time equals: 

b(^) = yexp(-yt) for t<x 

b(x) = 1-B(x) with 3(x)=/
0
 yexp(-ut)dt t=x 

From the definition of the first moment we have: 

χ 

AT = y/ texp(-yt)dt + x[ l-B(x)] 
X и 

X X 

= y/ texp(-yt)dt + x[ 1- ƒ yexp(-yt)dt] 

= y[exp(-yt).(-yt-l)/y
2
]Q + χ + x[exp(-yt)l^ 

= (l-exp(-yx))/y= AT(l-exp(-x/ÄT)) 
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2. second moment 

AT2" й f t 2 b ( t ) d t + x 2 ( l - B ( x ) ) 
χ 0 

X X 

= f t 2 u e x p ( - y t ) ( i t + x2[ 1-/ yexp(-ut)dt] 

= p [ e x p ( - u t ) ( - t 2 + 2t - 2 ) ] ^ + x2 + x 2 [ e x p ( - u t ) ] ^ 
- - 2 - 3 0 0 

μ μ μ 

= 2[exp(-px)(x-1/y) + 1 /μΐ = ?Щ exp(-x/ÄT) (X-ÄT)+ AT] 
μ 

The c o e f f i c i e n t of v a r i a t i o n equals : σ2 /(AT )* = AT^ - 1 = 
Α Τ
χ
 K

 (ΑΤ
χ
)

2 

2[ exp ( -x/AT ) ( x-AT ) +AT] 

AT(l-exp(-x/AT))
2 

-1 

Appendix С 

Calaulation of the delay of batch input systems. 

According to BurkefBU75] the average delay of a sample equals the sum of the 

delay of the first memher of the batch and the delay due to the analysis times 

of the members of his batch analyzed before him. 

Τ = Τ + AT E(r
2
) -1 

E(r) 

W + AT 

2 

E(r
2
) +1 

E(r) 

III-cl 

whore Τ is the delay of the first member of the batch, AT is the mean analysis 

time pro sample and E(r
2
) is the second moment of the p.d.f. of the batch size. 

The second tern, in Eqn. III-cl gives the average delay due to the analysis 

times of the members of the batch analyzed before the sample. Table ITT-cl 

gives the expressions for the two moments of the various considered p.d.f. 

of the batch size (r). 

Table III-cl 

The two first moments for several p.d.f. of the batch size (r) and mean delay. 

p.d.f. 

constant 

exponential 

Poisson 

Gaussian 

E(r) E(r
2
) 

r W +ÄT(r+l)/2 

?(г) 2 /^АтСгг+О/г 

r + r 2 W1+ÄT(r+?)/2 

a 2 + ( r ) 2 W +ÄT[a2/f+r+1] 
r 1 r 
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When the interarrival times of the batches are exponentially distributed, W 

can bo calculated using the PoVi-aczek-Khinciir i'orirmla [ КЬ75] 

W = AT (1+C| )p/(l-p) with AT the moan analysis time of a batch and 

Τ ъ 

c2 _ 
A" = var(AT. )/(AT ) 2 = var(Aï)[ r + v a r ( r ) l / [ r2(AT)2 l 

b o b 

For exponent ia l ly d i s t r i b u t e d ana lys i s times v a r ( A T ) = ( A T ; 2 

Thus C^T = -/? + var(r)/(r)
2 

Because Ъ
А Т = rAT we find that Í? = pr .Ä?( 1 + l/r+var(r )/(r) 2 )/[ 2( 1-p)] 

b 1 

When the interarrivai tidies of the batches are equidistant W can be calcula­

ted using the heavy-traffic approximation of Kingmant Кіб?] 

σ
2
 + σ

2
 where σ

2
 is the variance of the interarrivai times of 

W = b b b 2 · · · 

1 · the batches and σ is ~he variance of the analysis tames 
2IAT. (1-p) „ ., . . , b 

b of the batches. 

For the consiaered batch system cr
2
 =0, TAT =r.IAT and σ

2
 =var(AT) (r+var(r) ) 

Ъ
=(АТ)

2
(г+ аг(г)) 

T h ^ ^
 =
 (AT)

2
(r

+
 σ

2
)
 =
 ΑΤ(?

+
σ

2
) 

2r.TAT(l-p) 2r(l-p) 

The ratio between the delay of a M/M/1 systen modified to a batch input system 

(T ) and the original M/M/l system can now easily been calculated. 

1. the interarrivai time of the batches is exponentially distributed. 

•ÄT(1 + '/ 

2(l-p) 

pr.AT(l + '/r+var(r)/(r)2 + AT[E(r2) + l] 
2 E(r) 

T, /T = 
b 

AT + ATp/(1-p) 

=pr( ', + 1/r+var(r)/(r)2) + ( 1-p) 
2 2 .i:(r) 

2. the batches arrive at equidistant times. 

Τ /Τ =[ΑΤρ(ϊ+σ
2
) + AT(E(r

2
) +1)1 (l-pì/A1: 

ÏÏTÔ^) ? E(r) 

τ. Ζ"
1
 = £(ι+σ

2
/?) + (i-p)(E(r

2
)+i) 

b
 2

 r
 2 E(r) 
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Appendix D. 

СаЪаиЪаЬгоп of the effect of subdividing the samples into two categovies: 
small and large analysis times. 

1. M/M/1 s y s t e m 

Lot b e : 

l a r g e a n a l y s i s 
t i m e s 

s m a l l a n a l y s i s t o t a l 
t i m o s 

i n p u t d e n s i t y 

mean a n a l y s i s 
t i m e 

mean d e l a y 

AT AT. 

λ 

AT 

Τ 

Then: 

\f u e x p ( - y t ) d t 

ƒ u e x p ( - p t ) d t 

= X( l-exp(-x/AT) 

λ = Х-Х(1-ехр(-х/ЛТ)) = Xexp(-x/AT) 

AT2= 
μ/ t e x p ( - p t ) d t 1/μ - ( H-yx)exp(-yx) AT - (x+AT)c>xp(-x/AT) 

= t! = 

μ/ e x p ( - p t ) d t 1 - βχρ(-χμ) (1 - exp(-x/AT)) 

μ/ t e x p ( - p t ) d t exp(-x/AT)(AT+x) 
AT = x = = AT +x 

μ/ e x p ( - y t ) d t exp(-x/AT) 

AT 
u / r , t 2 e x p ( - p t ) d t (-χ 2+2χ.ΑΤ-2(ΑΤ) 2)6χρ(-μχ) + 2(AT)2 

Vl/ 0 texp(-pt)dt 1 - exp(-x/AT) 

μ/ t 2 e x p ( - y t ) d t 
Af?= X (x-AT)2 + (AT) 

μ/ t e x p ( - u t ) d t 
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AT (λ-λ^ΑΤ^-λ Α·ΐ2) + λ ^ Τ ^ / 2 + λ 2ΑΤ^/2 

(I-X ?ÄT 2)(I-\ 1AT 1-X 2ÄT 2) 

ΑΤ
0
(ΐ-λ

0
ΑΤ

0
) + λ

0
ΛΤ?/2 

(1 - λ
2
ΑΤ

2 

λ 

?. Μ/Ε,/1 system 

In all integrals of foregoing paragraph, the term pexp(-ut) should he replaced 

Ъу ( ,і)Ч
3
ехт)(-Ы) 

3 _ 
Thereafter all terms (A" ,...T) can he calculated straight forward. 
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CHAPTER 4 

THE SIMULATION MODEL 

Simulation is defined [HUTO] as a numerical technique for conducting 

experiinents with certain types of mathematical models, describing the 

behaviour of a complex system in a digital computer over extended periods 

nf time. 

rhe starting point of any computer experiment is a model of the system to be 

simulated, which is characterized by (1) a structure, (?.) many parameters and 

variables (deterministic and stochastic) (3) a response (or resDonses). This 

section is devoted to the description of the simulation model. 

2. Structure of the model· 

1.1 Fixed characteristics 

The flow chart in Fig. IV-1 may serve to clarify the structure of our model. 

It should be noted that this flow chart gives a crude picture of the decision 

processes inside the laboratory. The laboratory consists of 't sections, each 

one having an input flow of samples., originating from outside the system and 

from the departments within the system. The samples originate from two 

sources (F(I) and F(2)). For each source a stochastic variate TAT. . is 
1 »J 

defined, which is the time interval between the arrival in the laboratory 
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of the i-th sample and the (i-l)th sample from source j, with a known 

probability density function f(lAT.), expected value b[IAT.] and variance 

var [TAT·] . 

Exponential, Erlangian (of order k), and hyperexponential probability 

functions can be selected. The distribution of the newly arrived sanples 

at the laboratory over the four sections is realized using various decision 

rules, described in paragraph (l.?). The arrival processes in the model do 

not depend on the state of the system. The analysis process has three stages: 

the measurement of the spectrum, the interpretation of the SDectrum and 

the communication of the analytical result. In the model the interpretation 

and the measurement times of the sanples are generatod by taking random 

numbers from exponential or Erlangian density functions. 

As many operating characteristics in the described model are given by 

probability functions, the model is called stochastic. In practice, a sequence 

of random numbers is required to generate a sequence of e.g. analysis times 

or interarrivai times, having a given density function describing the actual 

statistic property of these variables. 

The analysis rate is state independent: a sample's analysis time at a section 

is not permitted to depend upon its analysis time at previously visited sections 

A batch input and/or batch analysis of the samples can be generated. The 

batch sizes and interarrivai times of these batches can be taken from various 

probability density functions (Gauss, Poisson, constant). For each section, 

a minimal and maximal batch size for the analysis can be selected. When the 

minimal and maximal batch sizes are different, then the analyst waits until 

the minimal batch size is present before starting the measurement of samples. 

For a minimal batch size equal to one, the analyst starts the measurements 

when there are any samples waiting. He starts the interpretation of a 

spectrum after the measurement of a complete batch. Tn the model, results 

are only communicated to the user, when the pile of results has reached a 

given value, or when results wait longer than a preset time before communication. 

However, when the state of the laboratory is such that the analyst remains 

idle, while results are still waiting, then, results are communicated as well. 

In the model an instantaneous transfer of samples, spectra or results between 

the départements in the laboratory is assumed. 

The analysis can be interrunted for other activities, coffee breaks, holidays, 

and machine breakdowns. For each of these four types of interruptions a mean 

interruption time and mean interval between the interruptions can be selected 
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from an exponential probability density function. The simulated laboratory 

has a maximum capacity of 20 analysts and 10 instruments. Each analyst has 

a given experience with the four procedures, denoted by a parameter between 

one (fully qualified) and zero (no experience at all). This factor in 

combination with a minimal required experience for a particular analytical 

procedure, ranges the organization of the laboratory from an open organization 

where all analysts can do all analysis, to a closed organization, where the 

analysts specialize in one analytical method only. Furthermore, there is a 

functional relationship in the model between the analysis time and the 

experience parameter (Exp) of the analyst (j) who executes the analysis (i). 

(AT.) . = (AT. )/„ , .« 
ι J ι E)cp(j) 

In the model a dynamic priority rule is applied as described in Chapter III. 

The F(l) and F(2) samples are positioned in the queue according to the 

value of the sum of arrival date and product of priority factor (p) and 

urgency number (A). The priority difference between samples of both sources 

is not necessarily the same in each section. The laboratory is empty at 

the start of each simulation run. The simulation period for each run is 

UOOO completed samples. This corresponds to about 1 year operation of the 

laboratory. 

In the model, measurement times and interpretation times were introduced 

which are higher than measured in the laboratory. 

This augmentation accounts for tranfer times and administration times 

of each sample (or spectrum) which were not included in the data presented 

in Table II-6 

Table IV-1 shows the statistical parameters which were used in the model. 

Table IV-1 

Statistical parameter's of the measurement time (MT) and interpretation time 
(IT) in the model 

s e c t i o n 

I . r . 

P.m.r. 

M.s. 
1 3 C-n.m.r. 

meas 

mean 

0.U 

0 . 7 

0 . 9 

1.0 

aromont time 

MT 

0.01 

о.ооб 

о.оз 

0.02 

( h . -s) 
ς 2 

Γ 2 _ S M T 
смт - ш2 

1.0 

0 . ? 

1.0 

ο.ί> 

i n t e r e 

mean 

1.2 

1.2 

1-5 

1.6 

r e t a t i o n 

S I T 

0.05 

0.02 

0.07 

0.08 

time (hrs) 

ЬІТ I T 2 

1.5 

1.0 

1.5 

2 . 0 
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Probability density functions with a variation coefficient (C ) smaller 

than one were generated by taking a r-stage Erlang distribution. Because 

? 1 2 

for a r-stage Erlangian distribution С equals —, only the values С = 1, 

0.5; 0.3; 0.25; 0.2 etc. can be selected. Values of C. > 1 are obtained by 

generating a hypergeometriс distribution, which is a combination of two 

exponential functions: i.e. exponentially distributed variâtes are Uiken 

with the probabilities ρ and 1-p fron distributions with the parameters 

2pa and (l-p)2a respectively. This process generates hypergeometric variâtes 

with mean /a and a density function f(χ): 

f (χ) = 2рЪехр(-?рах) + 2(l-p)
:
nexpt 2(1-р)ах] [ NA661 

1 1 
with a variance of χ equal to — [—τ- r|-1 

α 2pH-p) 
If the desired value of c£ is known f or a given value of /α, ρ can be 

calculated from: ρ = 0.5 - 0.5 (1-2/(C^ + 1))
г [ NA66] 

b 

1.2 Variable operating characteristics 

In the model strategies can be selected concerning the sample priorities, 

the route of the sample through the laboratory, the assignment of the analysts 

and the termination of the analysis. 

The strategies considered in the model are as follows: 

a. Strategies concerning sample priorities: 

(l). the sample in queue with the earliest-laboratory-arrival date is 

selected first for analysis (ELAD) 

(2). that sample in queue with the earliest arrival date at the analytical 

section is analyzed first (EDAD) 

(З). the samples in each section are subdivided into groups according to the 

number of analyses unseccessfully done before. Priority (varying from 

FiFo to absolute priority) is assigned either to samples which have 

visited the largest number of sections, or to samples which have visited 

the smallest number of sections. 

(k). samples receive priority according to the analysis time expected. 

There are two situations: 

- the shortest-expected-analyzing-time-first (SEAT)discipline. 

- the samples are grouped in two categories. All samples with an 

expected analysis time smaller than some defined value, have priority 

over the others. The discipline within a group is FiFo. The accuracy 
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of the 'a priori' estimation of the interpretation time of a sample can Ъе 

varied in the model. If the accuracy Ls low, and the SEAT discipline is 

applied, then the analysis is accomplished in random sequence. 

b. Strategies concerning the routing process: 

(l). the analytical method with the highest estimated probability of a 

successful elucidation of the requested structure is selected. The 

choice between methods with the same probability is made randomly. 

This is a fixed routing procedure in which a sample path is uniquely 

determined from the properties of the sample itself. This is assumed to 

be the policy of the real laboratory, which is taken as a base for the 

comparison of alternative strategies. 

(2). Kot only the probability of success but the expected waiting times for 

the various sections are considered at the time that the sample arrives 

at the laboratory. The relative importance of both criteria is given by 

weighting factors. Because this routing algorithm bases its decisions 

on the observed traffic flow, it is called a dynamic or adaptive routing 

procedure. 

c. Strategies for assignment of the analyst: 

The same decision rule for assigning analysts to a section is used for all 

analysts. There are two main possibilities: 

(l). complete centralization: when an analyst completes an analysis, he is 

available for reassignment to another analytical method. This assignment 

can be governed by the following work selection rules : 

- assign analysts to the method with which they have most experience and 

which has an unmanned instrument 

- assign the available analyst to that section with the oldest sample in 

its queue and for which the analyst has sufficient experience 

- the experience of the analyst and the waiting time of the oldest sample 

in each queue are weighted. 

(2). complete decentralization: the analyst is always assigned to the same 

analytical method, irrespective of the state of the laboratory, (that 

is the policy in the real laboratory). 

d. Strategies concerning the termination of the analysis: 

(l). there are no restrictions on the analysis time (existing policy) 

(2). a maximal measuring and interpretation time is assigned to each analytical 

section, regardless of the originally estimated probability of success. 

(З). the maximal measuring and interrrctation time is a function of the 
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probability of success and tbe чтлгЪег of ans ucees s full y applied netnods . 

(Ό. the maximal measuring and interpretation timo also denends on the state 

of the laboratory, i.e. the number of waiting samples in the analytical 

section. 

In each section the same strategy concerning the termination of the analysis 

is employed. 

Λ typical property of the considered spectroscopic laboratory is that some 

samples (20%) are sequentially analyzed in several sections. All arriving 

samples are accompanied with an application form with data about their 

origin and requested information. Sometimes the applicant of the analysis 

indicates the desired analytical method by himself. For 8l% of all samples 

sufficient information is obtaired by one method only. When the analysis 

failed, the problem along with the intermediate results is passed to a next 

method. The various sections operate relatively independent from each other, 

as only few samples (10%) fail after a combination of two methods. As a result 

the sections in the model are designed as independent nodes in the network. 

The mean measurement and interpretation times in the model account for 

the transfer times of samples between the sections. Because the data base of 

the registered measurement- and interpretation times was too small, no 

functional relationships could be determined between those times and the 

number of unsuccessful methods tried before. 

2. Generation of the flow through the laboratory 

As a dynamic or adaptive routing procedure will be used, based on as 

well the properties of the sample as the state of the laboratory (the number 

of samples in each section), a routing algorithm had to be developed, that 

based its decisions on the observed traffic flow and probabilities that the 

underlying analytical problem can be solved by the various analytical methods. 

It was assumed that these probabilities were independent from the source 

(PO) and F(2)) of the samples. In the actual situation a minor difference 

exists, but for reasons of simplicity, the number of parameters in the model 

was maintained as small as possible. 

The generation of sample flows, by talcing random numbers fron exponential 

or Erlangian probability distributions, was only executed, for the sample traffic 

from the outside to the inside of the laboratory, and not for the traffic 

between the departments. As a result, the probability density functions 
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of the arrivals at tne individual departments are defined by three factors : 

a) the probability functions of the arrivals of F(1) and F(2) samples at the 

laboratory 

b) the distribution process of these samples over the four departments 

c) the departure processes of samples which are not successfully analyzed. 

For each sample arriving at the laboratory, the probability of a successful 

analysis of the molecular structure of the sample is estinated on three 

levels : 

j = 0: the analytical procedure is estimated to be incapable to furnish the 

requested structure 

j = 0.5: the analytical procedure is estimated to give the structure with a 

probability of 0.5 

j = 1 : the estimated probability that an analytical method will furnish the 

structure = 1. 

The fractions of samples, having j = 0; 0.5; and 1, denoted by p(i,0); p(i, 

0.5) and p(i,l) are determined for each section (i), from the observed sample 

flow in the laboratory (Appendix І -Л), and are shown in Table IV-?. 

The flow to the sections can be simulated, assuming that all samples, for 

which the estimated probability that the analytical method will furnish the 

requested information, are indeed successfully analyzed by that method. 

Another possibility is that only a given fraction of these samplos are 

successfully analyzed: i.e. the probasility of elucidation of tne structure 

by a given method can be estimated less accurate. As a result, the effect 

of balancing this probability against the queue lengths in the model can be 

determined as a function of the accuracy of the estimated -orobability of 

success. The oncertainty that could be introduced in the 'a priori' forecast 

of the probability of success of a given method could be enhanced to a 

maximum of 16%: i.e. l6% of all sanóles, are unsuccessfully analyzed in a 

method, estimated before to give the requested information. 

Table IV-2 

The probability pd^j) to find for· a sample that the analytioal prOcedure (i) 
will give the requested analytical result with probability (j) 

. ^ ~ \ probabi l i sectiorNC^ 

I . r . 

P.m.r . 

M.s. 
13C-n.m.r. 

t y ( j ) 0 

0.62 

0.2k 

0.87 

0.8o 

A*' 

0 . 5 

o.?6 

0.23 

0.02 

0 

1 

0.12 

0.53 

o.n 
0.20 

0 

o.OT 

0.2!» 

o.i»6 

0.72 

B«> 

0 . 5 

0.78 

0 

0.!»1 

0 

1 

0.15 

0.76 

0.13 

o.?8 
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A assumption that all samples with j=1, directed to department (i) are 

successfully analyzed. 

assumption that b0% of all samples with л=0.Ь, direvted to deoartment 

(i) are successfully analyzed. 

assumption tiat no sanples with j=0, direc-ed to departnen- (i) are 

successfully analyzed . 

В assumption that only 8h% of all samples with j=1, directed to department 

(i) are successfully analyzed. 

assumption that only 16% of all samples with j=0, directed to decartment 

(i) are successially analyzed. 

Upper and lower bound for this assumption, to reproduce the flow :n the 

laboratory. 

3. Simulation of the model 

3.1 Time flow mechanisms 

Two general types of methods have emerged for moving a model of a system 

through time on a computer: a fixed time, and variable time increment method 

[M66]. 

With fixed time increment methods a clock is simulated Ъу the computer, which 

is updated in uniform discrete intervals of time. Every unit of clock time, 

the system is scanned to determine whether any event occurred during that 

time. Underlying simulation model ased the variable tï-ne increment method. 

This means that, when a particular event occurred in the laboratory, the 

clock time is advanced to the time at which the next event is to occur. The 

intervening time Ocriods where no changes occur in the system are skipped. 

At the occurrence of eacn event, a nunber of activities must be executed 

by the model, listed in the event description. In the model five different 

kinds of events can take place: 1. a sample enters the laboratory; ?. the 

measurement or interpretation of a samóle is completed; 3. an analyst finishes 

other activities; 1*. an analyst returns to the laboratory after the 

communication of the results; 5. the down time of an instrument is over. It 

was not necessary to include two additional events marking the moment that 

analysts start other activities and instruments go down. These moments are 

calculated during the occurrence of event 3 and 5. The event descriOtion, 

associated with the five events accounts for the availablility of the 

facilities. ІЪе event descriOtion generates the next events which shoald 

take place. In this way the model progresses in time automatically. 
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3.¿ The simulation language 

The task of writing simulation programs is simplified by the development 

of 'simulation languages'. Among the simulation languages that have Ъоеп 

developed are: GPSSIT fc?] , SIMSCRTPT [ MA6?] , GASP [ КТбЗ] , STMPAC [ Sl6?l , 

DYNAMO [?ибЗ] and STNrJLATi [ НОбч] . G~SSTI and GAS? are best suited to certain 

types of scheduling and waiting time problems. Because GASP is the only 

language which is written in Fortran IV, and can be recompiled with a Fortran 

IV compiler, we have written the simulation program in that language, 

consisting of several subroutine programs and function subDrograms. 

The used GAS? version was described oy Kerbosch [ KE73] . 

3.3 Generation of randoii variâtes 

Random variâtes drawn from a given probability distribution are generated 

by means of uniformly distributed random numbers (between 0 and 1) which were 

obtained from an IBM pseudo random number generator. 

Among otiers, random variâtes χ. from seme particular statistical population 

with a probability density function (f(x)) are generated by calculating Lhe 

cumulative distribution F(x). Since F(x) is defined over the range 0-1, 

the value of χ (say χ ) can be calculated from uniformly distributed random 

numbers (r), for which F(x ) = r (Fig. IV-?). From Fig. TV-2 it is easily 

seen that the probability of finding a value χ < χ is eqaal to the ргсЪаЪіІігу 

of finding a vai-ie r < r = Г(х ) Thus: ^ о о 

P(x < χ ) = P(r < F(x )) = Ρ ( Γ "
Ί
( Γ ) < F~

1
F(x )) = P(F~(r) < χ ) 

о о о о 

where
 v
 is the inverso function of F. 

By this method, exponentially distributed variâtes were generated in the 

model. K-order Erlangian distributed variâtes were generated by adding k 

exponentially distributed numbers. 

For the generation of Gaussian distributed numbers, a method based on the 

central limit theorema was used. Adding 12 independent,uniformly distributed 

random njmbers and substracting 6, gives Gaassian distributed variâtes (χ.) 

with a mean zero and standard deviation equal to one. A Gaussian distribution 

with a mean χ and с is simply obtained by applying the algorithm χ.«σ +x 
X I X 

on each variate (χ.). 
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P[x<X0] 

1 

ro 

O 

Fig. IV-2: The generation of vandom variâtes (χ) with a cumulative density 
function F(x) from uniformly distributed random numbers (r) 

ЗЛ Vali-iati on 

The validation of a simulation nodcl requires a corroan" son of actual versus 

simulated data. It is common practice to compare histograns of both data 

series,employing the standard χ^ t, and F statistics. 

However, in most cases the actual data as well as data from many simulations 

are serially correlated. This greatly complicates the application of ahove 

statistics. Moreover, serial correlation in tine itself is often an important 

characteristic of the simulated system. Hsu and Hunter [ HSTTl suggested the 

comparison of historical and simulated data Ъу identifying a time scries 

model and estimating the parameters of this model Ъу the techniques outlined 

by Box and Jenking [B070]. Hereafter, the models are tested for differences 

in their means, autoregressive parameters and residaal variances. This 

approach based on time series can very well be used for modelling the 

channel utilization [ HS77l and number of samples in the laboratory [ HS77 , 

ST77] . 

However, application of a tiire series acproach is difficult when delay tines 

of the samples are involved because the sequences of departures and arrivals 

of samples are unequal. In general the delay times of samóles in a sanrale 

record are correlated. An alternative method for the estimation of some 
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parameters of correlated observations is the batch means method which is 

described by several workers [FI78,C063] . 

3.U.I. The batch means method. 

The basic idea behind the batch means method is to combine the sample sequence 

of η observations into к batches of m observations, and to compute a sample 

mean (v. ) of each batch (i). With these means an estimate of the variance 
i,n 

of the grand sample mean over all batches is calculated (Fig. IV-3). 

x
1 V

 x
m,1 ,̂, 

k:1 k=2 k.3 

ν y y 
M.m 2,ιη '3,m 

k-1 к 

У. У ν 
Μ,ιη k,m

 Jk,m 

ж т 

1 

k=1 

X 

2 

«m 

( ", 1 

? 

к к. 

1 -

1 

" i . I 

»π 

к 
(1) 

У Ι,πι 
y
C1)

 y
(2) 

к,m Ι,πι 
(2) _ 

'k.ni к,m 

Fig. IV-3: Variance reduction by using antithetio variâtes. 

The sample mean of a sample record of η observations gives an estimate (χ )of 

the mean μ of the population. 

η 

ϊ = 1/n Σ χ. IV-1 
η 

ι = 1 

Together with the es t imate var(x ) a confidence i n t e r v a l of χ can be 

obtained [WA75,M06T,MU78] . 

var(x ) = a In [ 1 + ?Σ (1 - к/п)ф(т)] 
n x k=1 

IV-? 

Of course, when the observations are independent, φ(τ)=0, and var(x ) = 
2 

σ /η with 
χ 
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? л •? 
а = ΐ / ( η - ΐ ) Σ (χ - χ ) IV-3 

Χ ι=1 1 η 

Considering t h e batch means method, the means of the batches are equal t o 

where к = n/m 

Averaging these batch moans, another estimate (y ) of the mean μ is obtained. 

к 
у. m = 1/κΣ y IV-5 

к,m j ,m 

Clearly, y
k ) m

 = \ . 

Ш е п the autocorrelation φ of χ is nonotonely decreasing, the hatch means 

are not correlated, provided the batch size (m) LS sufficiently large. 

The variance of y, can be estinated from 
k,m 

k
 2 

var(x ) = var(y, ) = 1/k(k-l)L (y - χ ) І -б 
η κ,m _ j,m η 

It remains to test the hypothesis that there is no correlation between 

neighbouring batch means. To this purpose, the mef-hod described by Fishman 

[ FIT3] was followed, ubing the statistic 

k—1 к 

С. = 1 - Σ (у
п т
 - у _ J2/?Z (у „ - х )

2
 І -Т 

к _ і,т 1+1,m ι,т ч 

For к> 8, the distribution of у
н
 ...у, is close to normal [ FITS] , and under 

" 1 ,m k,m
 0 

H_ that there is no correlation, C, has a mean zero and variance (k-2)/(k
f
-1 ). 

О к 
For С < u(P) / (k-2)/(k -1) the Η hypothesis ^ь accepted, where a(P) is the 

к и 

excenti-icity of a normal distribution with an accuracy of F%. 

When the Η hypothesis is rejected two procedures can be followed: first, 

larger batches can be taken (increase of m). ?Iowever, when the number of 

batches becomes less than Θ, one should increase the number of observations n. 

Because the ultimate goal of simulation experiments is to compare some resporse 

parameters for different operating policies, a minimal confidence interval of 

the estimate (x ) of μ is desired. Therefore, the batch size (m) should be as 

STiall as possible, in order to have the maximal number of degrees of freedom 

(k) for the calculation of the variance. Moreover, variance reduction techmqaes 

are developed to redace the sannle size in simulation experiments (Mitchel 

[MIT3], Waylor [NA66 ], Fishmah [Fifi]). Therefore, the simulation sequence 

80 



shown in ?ig. IV-3 is modified i n a sequence composed from two runs. In the 

first run n/2 delays are simulated, combined to к batches of m/2 samples. 

(k) 
These simulations are executed using the sequence {u. } of independent 

random variables that generate the sequences of interarrivai times and of 

analysis times. Thereafter a second simulation is run, tnat also combines 

(k) 
n/2 delays in к batches. Kowever, now the sequence {v. } of independent 

random variables generates the sequences of interarrivai times and of analysis 

times. When ιv. }={l - u. } the two runs are called antithetic. This 
ι ι 

condition implies that the delays found in the k-th baten of the second and 

of the first run are negatively correlated. Mitchell [КІ^З] demonstrated 

that when the simulations are executed with two antithetic runs of n/2 delays, 

the sLandarddeviation is reduced, compared to a single run of η delays. This 

reduction amounts about 20% for an M/M/
1
 system. 

З.'*.?. The replication technique. 

From Eqn. IV-6 the slowness of stochastic convergence appears. In order to 

halve the standarddeviation of a sample mean (σ-), one must quadruple the 

sample size. A demand for a small σ- can easily lead to an unreasonably 

η 

large sample size, associated with increased costs of computer time. Another 

way to diminish the variance of a performance characteristic in a simulation 

experiment is to include more controlMie factors in the model. However this 

requires sometimes a rigorous change of the model. Therefore, the effects of 

all uncontrollable factors are absorbed in the random character of the input 

variables. Indeed, a variable is treated stochastically, by a lack of 

knowledge about the source of its variations. In computer simulation 

experiments one is usually interested in measuring differences in average 

responses for various combinations of factor levels. The variance of these 

differences is reduced by taking stochastic variâtes, generated from the 

same sequence of random numbers. For example in Ch. V the influence of the 

priority between various classes of samples is discussed by using the same 

hOOO samples for each run with different priority disciplines. In that case 

the input sequence of the samples to the laboratory is treated as a controlled 

variable, yielding measurements of differences between the runs having a 

reduced random error. 'Ihis replication technique is based on a mathematical 

result that the standarddeviation of the difference between two sample 

averages χ and χ is reduced when χ and χ are positively correlated. 
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Е [ х г x 2 ] 2 = Ktx^l - 2Ξ[; 1 .Χ 2 1 + E[Xpl 

2 ? 2 
o r : σ,- - . = σ- + σ- - 2σ- -

Х и - Х р / Xq Χρ Χ ^ Χ ρ 

2 2 
= σ _ + σ 2 ψ — ( θ ) . σ - .σ-

χ ι χ 2 χ ι χ 2 χ ι χ 2 

Supposing t h a t σ- = σ- , we f ind t h a t 
Χ 1 Χ2 

a f - - . = 2σ- - 2 ψ — ( ο ) . σ -
( χ 1 - χ 2 ) χ 1 χ , Χ ρ χ 1 

For ψ = ι ; σ,- - , = 0 
Χ 1 Χ 2 ( Χ Γ Χ 2 ) 

The usefulness of "ohe results ohtained in this way depends on the planning 

horizon in the laboratory. At an infinite planning horizon the variance of 

a performance characteristic tends to zero (σ-->- θ), and each change of the 

output will be statistically significant. The optimal strategy found here, 

however,will also be the best one in a situation with a finite horizon. But, 

it becomes questionable whether a statistically significant better operation 

of the laboratory in reality will be observed, because in the real situation 

the system does not replicate, ψ- - (θ) is near zero, and therefore 

2 ? 2 . .
 X
1

X
2 

O,- - s = σ- + σ- , and it is more difficult to detect differences between 
vX-i^Xp' X-i Xp 

χ and χ . 

3.'t.3. The time series approach. 

As outlined in Cn. II, an autoregressive first order model (AR(l)) of a time 

series is described by 2 parameters: φ
1
 the autocorrelation at τ=1, and the 

о 
residual variance (σ ). According to Box and Tiao [ВОТЗІ the means of two 

time series can be compared by applying the Student's t test for correlated 

time series. Therefore, first of all, the original correlated AR(l) time 

series (N_) is transformed to independent normal variâtes (u ) with a mean 
— " 2 
u and variance s [KSTTI , hy applying Eqn. IV-8 

ut = (Nt - <t>^t_^/(-\ - ф^ IV-8 

2 
The variance (s ) of this transformed AB(l) time series equals [HS7T] 

(Appendix B) 

S
u
 = S

W
 (1 + Φ

1
) / ( Ί

 " 'V
 IV

"
9 
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and the nean (Appendix B) 

u = N IV-10 

Thereafter the student's t test between the historical (N ) and simulated 

data (Ν*), which were respectively transformed to the independent normal 

variâtes u,. and u*. with means u and u* , and standarddeviation s and s*. 
t t u u 

was executed according to Eqn. IV-11: 

t = (ü - u*)/{s^/(n-p) + s^*/(ni-p)H IV-11 

where η and m are t h e mmber of observations in both s e r i e s , and ρ the number 

of degrees of freedom. Eqn. IV-9 can a l so be derived from the expression of 

t h e s t a n d a r d e r r o r (σ^) of t h e es t imate (N) of t h e mean of a time s e r i e s [RE70] 

o p Ν 

σ | = σ^ίΐ +21 (1 - k/K)exp(-k/T )} IV-12 

Ñ k=1 

For a first order correlated time series, the Eqn. IV-12 becomes [M067] 

? ф і , . i -ô ï ï 

Ν ' н(1-<К) 

σ Ι - 2 ? 1 + ί ΐ ^ 1 - - ^ ) } ^ З 

Ν 1-ΦΝ 

for la rge values of η : φ. -»-0 and 1 •* 0 
ΝΟ-φ^ 

2 2 . 2 

Thus σ- = σ (1+φ )/(ΐ-φ ), which approximaltely equals s /(η-p) 

Ν 

t U 

2 
The algorithm for u and s can also be derived for higher order time series 

models [HST7] . 

2 . 

The estimated value of σ- is strongly dependent on the accuracy of φ and 

the exactitude of the order of the model. According to Bartlett [BAU6] for a 

first order model: 

σ
2
(Φ

χχ
(ι)) = (1 - Φ^

χ
(ι))/(Ν-ι) iv-iU 

p 

The estimated autoregressive parameter (φ..) and the residual variance (σ ) 

1 a 
of two time series can be compared simultaneously by using an inferential 

ρ ρ 
s t a t i s t i c ΟίΨ,γ), wtere Ч'=ф.-ф*, and γ = σ~*/σ . Therefore two time s e r i e s 

1 ' a a 

should be compared by establishing whether the inference Ψ=0, and γ=1 is 
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tenable or not. Hsu and Hunter [USTTl described a testing procedure for that 

purpose. This test is executed by the calculation of the value of G(0,l). If 

the value of G(0,l) is below a limiting value, Ψ and γ are not significantly-

different from respectively zero and one. On the other hand, if it is higher 

than this limit it should be further established whether this is due to 

either Ψ or γ or both. Therefore the value of θ(ψ,ΐ) and 2(θ,γ) are calculated 

and compared with some critical point of Ιχ . Details about the derivation 

of the joint posterior density function of γ and Ψ, denoted by Ρ(Ψ,γ|η ,n
p
) 

have been given by Hsu [HST7] . 
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Appendix A 

Calculation of the probability р(і,з) for a sample that the analytiaal 

procedure (i) will give the requested result with a probability (j). 

The probability p(i,j) is calculated for a fixed routing procedure whore a 

sample path is uniquely determined by the property of the sample itself. The 

choice between sections with the same probability for delivering the requested 

result is at random. Furthermore the assumption is made that j can take three 

values only: j=0; 0.5; and 1. Thus the probability (Pr(i)) that a sample, at 

its arrival in the laboratory, is routed to section(i) equals the sum of the 

probabilities that a sanple is directed to section(i), with j=0 (Pr(i,0)); 

j=0.5 (Pr(i,0.5)) and j=1 (Pr(i,l)). 

Thus: Pr(i) = Pr(i,0) + Pr(i,0.5) + Pr(i,1) IV-A1 

all 1 

Assuming that indeed 50$ of all samples with j=0.5, directed to the section 

no 0 

i, are completed in that section, we find rjhat the probability (Pc(i)) of 

completion in section i equals: 

Pc(i) = (Pr(i,l) + 0.5Pr(i,0.5))/Pr(i) IV-A2 

The probabilities Pr(i,0), Pr(i,0.5) and Pr(i,0) all are a function of the 

values of p(i,j). Having i=1,..U and j=0, 0.5 and 1 with ρίί,οΗρίΐ,Ο.5)
+ 

p(i,l)=1, Eqn. IV-A1 and Eqn. IV-A2 are two equations with two unknowns. 

Consideration of these equations for all sections, gives 8 equations with θ 

unknowns, which is solvable. The values Pr(i) and Pc(i) for each section i= 

1,..U in the actual laboratory are tabulated in the first two rows of 

Table II-3 . 

It remains to express ?r(i,j) as an explicit function of p(i,j). 

Namely: 

h k к U 
Pr(i,j)=p(i,j)n(l-p(k,j))+0.5Ep(i,j)p(k,j)n(l-p(l,j))+0.25np(k,j) + 

k=1 k=1 1=1 k=1 

k/i k^i 1/i 

ΙΑ 

(А) (В) (C) 
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0.333Ep(i,j)(1-р(к,1))Пр(1,j) І -АЗ 
к=1 1=1 

І/і 1/і 
1#к 

(D) 

As an example Eqn. IV-A3 is discussed for j = 1 : 

term (A): represents the probability to select method i, having a probability 

j=1 to give the roquosted information, while all other mothods have a 

lower probability (j
<
l). 

(В): is the probability to route the sample to section i, having a 

probability j=1 to give the requested information, while section к 

has the same probability j=1, and all other sections a lower one 

(¿•ίΐ). The factor 0.5 appears because a randern selection should be 

made between method i and k. 

(C): cfr(B) but here all sections have the same probability to give the 

requested information. Here a random selection is made and the 

probability to select method i equals 0.25. 

( D ) : cfr(3), however, here only one method has a probability j<1. A 

random selection should be made between three methods, having the 

same probability (j=l) to give the requested information. 

Releasing the assumed correctness of the estimated probability (j) that a 

sample will be completed in a section, the probabilities p(i,j) can be 

recalculated for the case that : 

e.g. only 90% of all samples with j=1 are completed 

and -10% j=0 

Then Eqn. IV-A2 becomes 

Pr(i) = (0.9Pr(i,l) + 0.5Pr(i,0.5) + 0.1Pr(i,0))/Pr(i) IV-A3 

The partition of the traffic of samples between the sections in the simulation 

model,is calculated from p(i,j) values fot the partition of the arriving 

samples in the laboratory. 
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Appendix В 

Consider a sequence of observations К , t=1...,n, described by a first order 

autoregressive model, transformed to a sequence u = (N - Φ-Ν ,)/(l - Ф
1
 ) 

then u
t
 = (N

t
- Ы) - φ.(Ν

ΐ
_

1
- К) + Ñ(1 - Φ^/ίΐ - φ

1
 ) 

(1 - Φ,) 

Sabstituting Ν - Ν= η t=1
s
...»n 

ti TJ 
then u = (n

t
 - ф

1
п _

1
)/(і - ф ^ + Ν 

For a first order autoregressive model η = φ,η + a , where a (t=1,...n) 

represents independent and identically distributed r.ornal random variables 

2 
with mean zero and variance σ . 

a 

Thus u = a /(l- φ ) + Ñ and ü = Й 

The variance of u, equals: 

»•,2 
s " = 1/(η-ΐ)Σ (а./Сі-ф.) + Ν - Ñ) = [ Σα

μ
 ( 1-φ. )] /[ ( 1-φ. ) (η-1 )] 

U
 ΰ=1 t=1

b
 '

 1 

-
e
a

/ ( l
 " Φ ι

5 

For a АВ(і) model, the residual variance equals: 

2 2 ,. ,2, 
s
 - > r 

a N 
О -4V 

Tnus: s^ = s^ (ΐ+φ^/ίΐ - ф ^ 
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CHAPTER S 

SIMULATION OF A LABORATORY FOR 

STRUCTURAL ANALYSIS 

In order to draw valid conclusions from experiments with the simulation model, 

the model should be a valid representation of the real system. According to 

Conway's [ C0i>9] opinion, some assurance of validity is provided when the 

model produces results that are not inconsistent with the known performance 

of the real system, for at least one alternative version of the simulated 

system and one set of conditions. This test is widely applied and is 

essentially a null test. A model which failed to pass is exceedingly suspect, 

but no strong statement can be made for a model which passed. The simulation 

of situations with known analytical results (e.g. M/M/n systems) can help to 

discover some programming defects. 

In this section a statistical comparison is made of the output of our computer 

model with two actual situations of the laboratory, namely the situation 

during the period 6/1976 - 6/1977, described in Ch. II, and the period 6/Y7 

- 6/78. The delays in the model were equalized to those of the period 76-77 

by adjusting (i) the parameters defining the schedule of the other activities 

of the analysts, (ii) the priority differences between F(1) and ?(2) samples, 

(iii) the priority difference between the samples which visited η and (n+1) 

sections, and (iv) the time spent to communicate the analytical result. 

Without changing the statistical parameters (means, variances, p.d.f.) of 

mentioned variables, and analysis times, and without a change of the kind 

Published in part in: B.G.M. Vandeginste, Analyt. Chim. Acta СТО, accepted for 

publication. 

B.G.M. Vandeginste, Communication presented at the IUPAC 

Congress, Helsinki (1979) 



of distribution functions of the interarrivai Limes, the output (mean delay's, 

mean number of waiting samples, correlations ptc.) of the situation in 77-78 

has been forecasted by substituting the observed traffic of F(1) and F(2) 

samples to the laboratory in the ncdel and by adjusting the parameters 

defining tho distribution of samples over the various sections. The statistics 

used are described in the preceeding chapter. 

1. Validation of the model over the period 6/Ί976 - 7/1977 

1. 1 Validation of t'-ie parameters of the inpxt and output density functions . 

The mean number of arrivals and departures per day of samples to respectively 

from the simulated laboratory are not significantly different from those in 

the actual laboratory (250 days of operation), as follows from the Student's 

t values listed in Table V-1 . ¡Íolmogorov-Smirnov (K-S) tests apnlied on the 

cumula-ive dersiuy functions of tne input and output of tne sinxlatod and 

actual laboratory could not detect any significant differences. Although 

Table V-1 
Validation of the input and output density 

Section 

I . r . 

P.m.r 

M.s. 
13C-n 

Lab 

I . r . 

P.m.r 

M.s. 
13C-n 

Lab 

m.r . 

m.r . 

mean 

2 . 7 

T.U 

1.8 

2 . 7 

11.2 

2 . 7 

T.U 

1.8U 

2.65 

11.13 

inpat ( samples/day) 

var iance ф ( і ) э 

5-5 

12.1 

1.7 

3.0 

21.2 

output 

7 . 5 

Ult.T 

5.1 

10.1 

6U.0 

_ 

-

-

-

O.iiO 

(sairples/day) 

_ 

-

-

-

-

s t a t i s t i c a l 
compiled 

Student 
t 

0.U6 

0.80 

1.7 

1.1 

1.2 

o.U 

0 . 5 

0 . 8 

o.u 
0 . 9 

i n 

' s 

t e s t 
Tabi 

t 1 

vs a c t u a l data 
о I I - 1 

K-S t e s t 2 

D 
max 

0.039 

0.07? 

0.081 

0.095 

0.097 

0.091 

0.099 

0.089 

0.090 

0.160 
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0.001 

"Ό. 05 

=2.6 

= 0. 119 

only values significantly different fron zero are tabulated 
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Fig. V-l: Histograms of the probability (%) of an input density a. (samples/ 
day) to the sections and laboratory (model). — simulated values, ' Fitted 
Poisson distribution (same mean) 
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Fig. 7-2: Histograms of the probability (%) of an output density у (samples/ 
day) from the sections and laboratory (model). simulated values, . Fitted 
Poisson distribution (same mean) 

these cumulative dor.sity functions dc not meet the condition of continuity 

for application of the K-S test, tiis test may be used (De Jonge [JO63] ). 

However the tabulated value will be exceeded with a larger probability. 

These observations indicate that by the generation of two Poisson sample streams 

to the laboratory with different parameters (F(l): IAT=0.93hrs and F(2): IAT= 

?.37hrs), which are distributed over the four sections, according to zho 
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estimated probabilities that the various sections may give the requested 

analytical information, an input flow is obtained with the sane statistical 

properties as observed in the actual situation. An important observation is 

that the cumulative density functions of the output flow of both, the 

simulated and actual situation, are not significantly different. That means 

that the mentioned effect in the laboratory, that the input and output rate 

density functions are completely different is also observed in the model 

(Fig. V-1 and V-2). A rather surprising result found in the model (as well as 

in the laboratory) is the memoryless property of the time scries of the 

number of departing samples per day. There is no correlation between the 

number of finished samples at any day and the day before (Table V-l). 

Contrary to the actual laboratory (Fig. II-5) no significant periodicity 

could be detected in the autocorrelograir.s of the number of samples leaving 

the laboratory each day. 

The conditional probabilities (p..) of transfer of samples between the 

sections (Table V-2) and the probabilities of each method to be selected 

first, secondly etc. (Table V-3), are in close agreement with the real 

situation (Tables TI-3 and II-2), taking into account that the parameters 

regulating the sample flows through the network were calculated under the 

Table V-2 

Conditional probabilities (p..) for transfer of samples from one section to 
another in the model, and thje probability (q.) that a sample in node (i) 
leaves the system. 

from 

OUT 

I . r . 

P . m . r 

M.s . 
1 3 C - n 

t o 

m . r . 

OUT ( q . ) 

-

0 .59 

O.85 

0.6H 

0 . 7 8 

i . r . 

0 . 1 7 

-
0 . 0 6 

0 . 1 0 

0 . 0 7 

p . m . r . 

0 .57 

0 .18 

-

O.I5 

0 .09 

m. s . 

0 .10 

0 .10 

O.Olt 

-

0 .06 

1 3 C - n . m . r . 

O. I6 

0 . 1 3 

0 . 0 5 

0 .11 

-

assumption that the partition process over the sections was equal for samples 

arriving from outside and inside the laboratory. The percentage (% good) of 

samples that are successfully analyzed are indicated in Table V-3 for each 

section. 
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Table V-S 

Pi>obabbliti.es for the seleatíon of the methods in the model. 

f i r s t s e l e c t i o n 

% good 

second 

% good 

t h i r d 

% good 

f o u r t h 

% good 

i . r . 

o. IT 

э.бз 

0 . 2 2 

Ο.Ιιβ 

0 . ? 8 

о.зб 

0 . 2 0 

1.00 

p . m . г . 

0.5T 

0.86 

0 .39 

0 . 8 3 

0 . 1 9 

0 . 6 5 

0 . 0 1 

1.00 

m . s . 

0 .10 

0 . 7 2 

0 . 1 7 

0 Л 9 

О.26 

О.25 

0 .35 

1.00 

1 3 C - n . m . r . 

о.-б 

0 . 8 3 

0 . 2 1 

о.бз 

0 . 2 7 

0.1*3 

O.UU 

1.00 

% o f samples 
c o m p l e t e d 

8 0 . 2 

9 3 . 0 

9 5 . 7 

100.0 

1.2 Validation of the queue lengths. 

In the proposed model, the queue length in an analytical section is defined as 

the sum of all waiting and unfinished samples. Student's t tests (Eqn. IV-11) 

did not detect significant differences between the mean queue lengths in the 

various analytical sections or in the total mean queue length in model and 

laboratory (Table V-U). 

Table V-4 

Validation of the queue lengths. 

s e c t i o n 

I . r 

P . m . r . 

M.s . 

" C - n . m . r . 

Lab 

mean 

13.1 

30 .1 

9 .0 

19. ' . 

7 1 . 6 

(¡I) v a r ( N ) 

9 2 . 1 

2 1 9 . 9 

32 .8 

7 3 . 1 

5iU.l1 

* ( 1 ) 

0 . 9 З 

0 . 8 7 

0 .90 

O.9O 

O.9O 

v a r ( l O 

9 . З 

12.U 

2 . 5 

5 . З 

T.h 

s t a t i s t i c a l t e s t s vs 
T a b l e I I - 5 . 

Stud-t 1 

(Eqn. 

0 Л 8 

1.9 

2.1* 

О.98 

1.5 

(Χο,ι )2 

IV-11) 

3.6 

1.9 

19.9 

' . 2 

6.8 

GOM? 

0 . 8 

1.7 

17.2 

0 .002 

б.1* 

a c t u a l 

cfavr 

2 . 8 

0 . 2 

2 . 6 

1.2 

O.ltl* 

d a t a i n 

K-S5 .<-S6 

0.16 0 .11 

0 . 2 3 0 . 0 9 

0 .21 0 .09 

0 . 1 2 0 .05 

0 . 2 2 O.O6 

оГ
2
·

58
 "х'о.о/

2
^·

6 

2?X2
0í01(3)=5.7

 5test vs actual data: С
0-01

=0.1І»5 
3
5X

2
 (1)=3.3

 6
test vs Gaussian function: D =0.096 

The fit of an exponential function througn the autocorrelation functions of 

the queue lengths and a subsequently executed Bartlett test [ВДЦб.МитЗ] 

9U 
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demonstrated that the time series of the queue lengths can be described with 

a first order autoregressive model. ІЧіе comparison of the autoregressive 
о 

parameter ф(і) and the residual variances (s ) of the number of samples in the 

queues at the end of each day, in model and laboratory, by means of the G-

statistics (Ch. IV) (Table V-h) demonstrated that the dynamic structure of the 

simulated queue lengths in all sections (except n.s.) is '.indistinguishable 

from that of the observed queues. Both time series are adequately described 

by an АВ(1) model with equal parameters. This means that there are no signifi­

cant differences in magnitude and velocity of queue fluctuations between 

model and laboratory. However, the autoregressive parameter ф(і) found in the 

m.s. section and total laboratory is somewhat too high. The Kolmogorov-Smirnov 

(K-S) test shows that the maximal difference (D) between the cumulative 

density functions of the number of waiting samples in the laboratory and model 

exceeds ^he value D =0.1 Ό . With such a result no strong statement can be 

made about the 11 hypothesis that the two populations have the same distribu­

tion, since the data are not independent (high φ(ΐ)), causing a probability 

> 1% that D>0.1Ì45. Otherwise the calculated maximal differences (Table Y-h) 

between the observed and Gaussian cumulative function demonstrate that the 

Hn hypothesis that the number of samples in the model has a Gaussian shape 

cannot be rejected. Surprisingly, the from a theoretical point of view un­

expected (Ch. Ill) Gaussian shape of the number of samples in the sections, 

observed in the laboratory (Ch. II) has been found again in all зесьіопз of 

the model. This Gaussian shape instead of the expected exponential shape 

will be explained by the simulation experiments presented in Ch. VI. 

1.3 Validation of the delays. 

Two problems were encountered validating the delays in the network. Firstly the 

same ratio between the delays of the samples which visited 1,?,3, and k sections 

should be obtained for the model and for the laboraLory. This can be accom­

plished by adjusting the dynamic priority rule (Ch. Ill) between the samples 

which visited a different number of sections. Secondly, a good estimation of 

the variance of the mean delay is necessary. 

(i) With the introduction of an urgency number that is dependent on the number 

of visited sections (b = -nb ) Eqn. III-26 becomes q = t - nb . A variation 
ρ η η η η 

of b between -100 and +100, varies the priority rule in the model from 

attributing absolute priority to samples which visited η sections over samples 

which visited already (n+1) sections, to the reversed situation. The effect 
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Fig. V-3: The average system time (Τ) for samples that visited a varying number 
of sections as a function of the urgency number (b ) , defining the priority 
difference betueen samples that visited η and n+1 sections. 

of the priority vas investigatoli Ъу means of the replication technique, des-

crihed in Ch. TV. Fig. V-3 pictures the mean delays for samples subjected to 

1, ?, 3, and L procedures as a function of the urgency number (b ). These 
η 

runs confirn the former statement based on Eqr. ΪΙΙ-26 that the overall mean 

waiting time of all sanples is not influenced by any priority role, provided 

that the mean analysis tines of all priority groups are equal. Fig. V-3 

demonstrates clearly that the ratio of the delays of samples subjected to 1, 

2, 3, and k methods, is strongly dependent on the priority difference attribu­

ted to these groups of samples. The cross sections of Fig. V-3 at different 

priority differences, presented in Fig. V-4, give a good indication of the 

relationship between delay and number of visited sections. Furthermore Fig. 

V-lt shows that in the laboratory, samples which visited the smallest number 

of sections have a lower priority over the other samples (b =-10). This implies 

that a small priority is given to samples wnich arrive from outside the 
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τ 
[days] 
SO 

Fig. V-4: Simulated mean system time as a funation of the пьтЪет of visited 
~eotions and priority difference (b ) between samples that visited η and n+1 
sections. :actual laboratory 

laboratory over those samples arriving from inside. This effect is very well 

demonstrated from the comparison of the delays of both kinds of samples, 

shown in Table V-5. The delay of the samples arriving from outside is 

significantly lower than the others. This is in agreement with the observa­

tions tabulated in Table TI-8. From Fig. V-3 more general conclusions can 

be drawn. For b = -100, the differences between the mean delay times of the 
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Table V-S 

Comparison of the delay tines in the sections 3 of samples arriving from 
inside and outside the laboratory. 

sect ie 

I . г 

P.m.г 

M.s. 
1 3 C-n 

Lab 

ЗП 

m.r. 

out s ide 

It. 12 

3.81 

it.56 

6.30 

it. 33 

do lay 
var(T) 

0.10 

0.02 

0.?3 

0.07 

0.005 

ins ide 

6.55 

5.69 

5.5lt 

9.1.6 

6.83 

var(T) 

0.36 

С. Об 

0.U2 

0 . 1 7 

0 . 0 3 

ra t io 

I.I19 

I.50 

1.58 

S t u d e n t ' s t 

2 . 1 

6.6 

1.2 

6.1t 

І З Л 

Voi =
2
·

5 8 

Fig. V-S: The maximal system time (T ) and standarddeviation (S-/E(T)) as 
a function of the urgency number (b f aefining the priority difference between 
samples that visited η and n+ì sections. 

four types of samples are much greater than for Ъ =+100, whereas the overall 

mean delay time remains unaffected. As a consequence, the variation coeffi­

cient of the delay and the longest delay in the laboratory will Ъе a function 
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of Ъ , as de-nonstrates Fig. V-5. Here a minimal value for both performance 
η 

variables is found for b =+100, under the assumption that there is no correla­

tion betwoon the analysis time and the number of visited sections. 

(ii) The estimation of the standard error of the mean delay obtained by employing 

the batch means method and tine series analysis method (Ch. 1V) were tested 

against the estimation obtained by 12 replicated runs of the model. Therefore, 

the model was run under various conditions that should not introduce any effect, 

apart from producing fluctuating delays, caused by the statistic nature of the 

model. For example, the timing of the other activities is controlled by a 

random number generator, specifically dedicated to each analyst. By the 

exchange of analysts over the sections, a different delay should be found, 

from whicn an estimation of the standarderror can be obtained. 

As a rule, the batch means method wit τ 500 samples per batch gave an overesti-

mation of the standarderror of the simulated mean delays (Table V-6). The 

estimated standarderror using the time series analysis approach, are close 

to the values obtained by the twelve replicated runs of the model (Table V-6). 

Table V-6 

Compavison of the standarderror of the mean delays (4000 samples-Z50 days), 
estimated aaaording to the batah means method, and time series analysis method, 
with the standarderror obtained with 12 replica's of 4000 samples. 

batch means
1 

lime series 

replica's 

section 

i.r. p.m.r. m.s.
 13
C-n.m.r. 

0.73 0-81 0.9? 0.31* 

0.31 о.г'· 0.61 0.15 

0.73 0.30 O.6I4 0.28 

samples with the same final method 

i.r. p.m.r. m.s. C-n.m.r. 

1.0'+ O.89 1.2І O.62 

0.)i8 0.20 0.68 0.35 

ЭЛІ* 0.30 O.76 0.33 

samples with the same number of visited sections overall 

1 ? ? U 

batch means
1 

time series 

replica's 

0.66 

0.15 

0.19 

1.18 

0.H8 

0.1+5 

2.00 

1.1+0 

1.20 

?.8o 

1.60 

1.20 

0.I6 

0.23 

8 batches of 500 samples 

However, the standard errors of the delays in the sections were underestimated. 

This is probably due to the assumed first order autoregressive model that does 

not fit adequately the actual series of the delay. An indication tnat the 
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autoregressive model of the delay in the sections should not Ъе of the first 

order is obtained by tne discrepancies found between the value of the auto­

correlation function at τ=1, and the value exp(-1/T ) calculated from a fit 

of an exponential function through the autocorrelograms (Table V-7). Apparently, 

the autocorrelation at τ=1 of the delays in the sections is an underestima­

tion of the correlation, resulting in an underestimated variance (Eqn. IV-13). 

Table V-7 

Comparison of the autocorrélation at Ί-1 (φ(1)) and the estimated value of 
φ(1) from a fit of an exponential function through the autooorrelogram. 

Φ ( ι ) 

exp(- l/T x ) 

Φ(1) 

exp(- l/T x ) 

s e c t i o n 

i . r . p . m . r . n . s . 1 3 C - n . m . r . 

O.6O 0.55 0.33 0.35 

0.90 О.98 О.85 <0.37 

samples with t h e same f i n a l method 

i . r . p . m . r . m.s. 1 3 C - n . n . r . 

0.28 o.in 0.32 0.19 

<0.37 <0.37 <0.37 <0.37 

samples with the same number of v i s i t e d sec t ions o v e r a l l 

1 2 3 1* 

0.55 0.33 0.20 0.22 0.30 

<0.37 <0.37 <0.37 <0.37 <Э.37 

For the statistical comparisons, described in the next paragraphs, and the 

experimental design schemes described in Ch. VI, the standarderror was calcu­

lated by the time series approach (Eqn. IV-13). An exception is made for the 

delays in the sections where the values of the batch means method were used. 

The student's t tests executed on the mean delays of various categories of 

samples show that no significant differences could be found between the 

actual and simulated laboratory for 10 of the 13 calculated delays (Table 

V-8). Kolmogorov-Smirnov tests executed on the cumulative distribution functions 

show that the k=2 Erlang distribution provides a good fitting function (Fig. 

V-6). One should remark that this fit with a discrete function is allowed 

because, according to the real data, discrete delays (full days) can be 

obtained with the model. 
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Table V-8 

Validation of the delays. 

moan (days) 

variance 

var(T) 

student's t vs 

data in Table 11--7 

mean (days) 

variance 

var(T) 

student's t vs 

data in ТаЪІе II--7 

Section 

i .г. 

1.8 

іб.8 

0.?5 

l.li 

s ampi 

i .г. 

T.I 

51.8 

0.16 

1.35 

τηп. г. 

'1.1 

6.3 

0.1»2 

1.5 

es with 

p.п.г. 

à.7 

13.7 

0.03 

U.8 

п.s.
 I3

C-r.m.r. 

5.0 Ί.Ι 

27.1 20. li 

2.1 0.15 

1.2 1.3 

the same final method 

m.s.
 13

C-n.m.r. 

8.1- 10.0 

71.6 73.1 

0.6H 0.12 

1.1* 3.1 

mean (days) 

variance 

var(Τ) 

student's t VE 

data in Table 

s am] 

II-7 

síes wi 

1 

k.5 

9.1* 

0.02 

2.9 

th the 

? 

9.6 

?6.5 

0.28 

1.9 

same number of 

3 

19.1 

69.9 

1.5 

0.2 

1* 

25.0 

107.7 

3.2 

0.5 

analysis 

overall 

6.4 

52.8 

оГ 2 · 5 8 
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Fig. V-6: Histograms of the probability (%) of a delay (T) in the sections. 
simulated data, . Fitted tuo stage Erlangian distribution. 

1.U ValidaÏion of the cross correlations in the system. 

There is no "nutual correlation between the nunher of sajnples in each soction 

of the model, as shows the Table V-9· This agrees with the observations in 

the actual laboratory (Table II-IO) and is a property of an open network 

[ LET?] . 

For the simulation of the basic situation, the input flow of the laboratory 

and the sections was independent of the number of samples in the system. 

Cross correlation calculations, however, detected a small correlation between 

both variables (Table V-ll). However, the calculated residual variances {%) 

are very high, which indicates that the major part of the fluctuations of 
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Table V-9 

Maximal correlation between the number of samples in each section 
(99% confidence interval) 

I . r . 

P.m.r . 

M.s. 

1 3 C - n . n . r . 

I . r . 

1 

P.m.r . M.s. 

+0.1 ( 0 ) 1 +0.2 (+20) 
+ 0 . 5 1 2 +0.56 

1 +0.2 (-15) 
+O.48 

1 

1 3 С - п . л . г . 

-0.1* (-25) 
+0.56 

+0.5 (+2?) 
+0Л9 

+0.3 (+20) 
+0.51 

1 

'the time lag (τ) for maximal correlation 

2Э9% confidence interval 

the fluctuations of both variables are mutually independent. As approximate­

ly similar crosscorrelation values were calculated for the actual laboratory, 

the conclusion in Ch. II, that the samples are not preferably moved to the 

section with the lowest saturation degree, is supported. The correlations 

in the model between the number of samples in the sections and the delay 

of the samples arriving at the section (Table V-IO) is higher than in the 

actual laboratory (Table 11-12). 

Table V-10 

Maximal correlation between the number of samples (x) in the section and the 
delay (y) of the samples arriving at the laboratory (model) 

99% conf. 

interval 

residual 

variance 

I.r. P.m.r. M.s. C-n.m.r. 

0.62 (-5)
1
 0.70 (-4) 0.63 (-5) 0.1+3 (-5) 

+0.30 

0.62 

+0.3? 

0.50 

+0.28 

0.60 

+0.21 

O.8I 

the time lag (τ) for maximal correlation 

The maximal correlation at τ=-5 (Fig. V-7) can be explained by the departure 

of the samples jb 5 days after their arrival at a section. Thus, the delay of 
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Table V-ll 

Maximal oorrelation between the input flow (x) and the nwnber of samples in 

the system (y) 

Φ 

9 9 ^ c o n f . 
i n t e r v a l 
r e s i d u a l 
v a r i a n c e 

I 

+0 

± 0 

0 

r . 

23 

19 

9^ 

P . n . r . 

( + 1 ) 1 + С . И ( 0 ) 

+ 0 . P 0 

0 . 8 3 

M.s. 

+ 0 . 1 0 

+ 0 . 1 7 

0 .99 

1 3 C - n . m . r . ЬаЪ 

( 0 ) + 0 . 2 8 ( ? ) + 0 . 4 9 ( 1 ) 

+ 0 . 1 7 + 0 . 1 7 

0 .92 0 .76 

the timo lag (τ) for maximal correlation 

...4 
-20 -10 

1 

1 

-20 -10 

1 
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Fig. V-7: Crosscorrelograms (φ ) between vhe number of samples (χ) in a 
section and the delay (y) of tne samples. 99% level for significanay from 0. 
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the samples, leaving a section at a time t has the greatest correlation vrita 

the number of samples in the system at the moment of their arrival, namely 

τ
=-5. 

By tne application of dyiaiic priorities, different priorities can he 

attributed to the F(l) or F(2) samples. This priority can he varied from 

FIFO (equal priority) to absolute priority. The effects on the delays for 

samples leaving the system through the samo exit node are shown in Fig. V-8. 

Fig. V-8: Simulated mean delay (T„JT and 2'„„/TV о ƒ a system with two groups 
of samples (Ь\ and F J, analyzed by the sarre final method, as a function of the 
priority difference fb -b „J between both groups of samples. 

final method is plm.rl; -.-.-
 13C-n.m.r.; i.r.j .... m.s. 

Although in the actual laboratory, significant differences could be detected 

between overall delays of both groups of samples only, and also between the 

delays of samples leaving the system through the i.r. section (Table II-9), 

it can be concluded that in the laboratory a snail priority is attributed to 

the F(l) samples. Fig. V-8 indicates moreover that the urgency number (b ) 
ρ 

for the F(l) samples in the p.m.г.,
 13
C-n.n.r. and m.s. sections does exceed 

the urgency number of the F(2) samples with less than 10 to 20 time units. 

This means that a F(1) sample arriving at the laboratory has priority over 

all F(2) samples having a smaller delay than 10 to i'O hours ( 1 to ? days) 

(the i.r. section: 30-'jO hrs). Typically although the various sections have a 
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different (i) number of facilities, (ii) utilization factor, (iii) variation-

coefficient of the analysis times and (iv) amount of other activities, a very 

similar effect is оЪЕег еа on the delays of the samples leaving the system 

through the various sections. According to the -heoretical outline given in 

Ch. Ill, the priority difference has the greatest effect on the F(?) samples, 

with the smallosT; input flow to the lahoratory (Fig. V-8). 

2. Forecast for period 77-78 

2.1 Adjustment of the flow. 

The flows through the real laooratory during the period 77-78 and the period 

76-77 are compared in Table V-12. 

Table V-12 

Comparison of the input flows (a) of the period 77-78 and 76-77 (Table IT-Ì) 

section 

I.r. 

P.n.r. 

M.s. 

13C-n.m.r. 

total intern 
flow 

Lab 

mean (a) 

1.6 

7.57 

1.93 

1Л2 

11. οθ 

10.28 

var(a) 

0.02 

0.17 

0.03 

0.0? 

-

0.3 

Student's t test
1 

vs actual data in Table XI-1 

U.I 

C.3 

0.6 

5.6 

2.1 

Ч.оі •
 2
·

5 8 

This comparison indicates that the traffic to the i.r. and
 13
C-n.m.r. sections 

did significantly decrease, while the total sample flow to the laboratory 

remained unchanged. This means that the mean number of visited nodes decreased 

also (total internal flow (Σα.) decreased from I5.I to 11.1 samples per day), 

which can only be caused by a change of the estimated probabilities (p..) 

that the various sections will solve the submitted analytical problem. The 

conditional probabilities of transfer of samples from one to another section 

and the probabilities (q.) that a sample leaves the system through node (i) 

are shown in Table -ІЗ. The probabili-oies that a method will be selected 

are shown in Table V-lU. 
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Table V-13 

Conditional probabilities p.. of transfer of samples from one to another 
section, and the probability a. that a sample in node i leaves the sysvem. 

from 

Out 

I.r. 

P.m.r 

M.s. 

1 3
C-n 

to 

m.r. 

Out (q.) 

-

0.53 

0.90 

0.75 

0.82 

I.r. 

Э. 11 

-

0.03 

0.08 

0.06 

P.m.r. 

O.67 

0.25 

-

0.13 

0.05 

M.s. 

0.1? 

O.16 

0.05 

-

0.06 

13
C-n.n.r. 

0.11 

O.O6 

0.02 

0.0Ì, 

-

Table V-14 

Probabilities that the methods will be selected. 

Suction 

I.r 

P.m.r. 

M.s. 

13C-m n.r. 

first 

0.11 

O.67 

0.1? 

0. 11 

^correct 

O.I16 

O.9O 

0.73 

0.83 

sec. % 

0.2k 

0.33 

0.31 

0.11 

correct 

O.67 

0.81* 

0.80 

О.7З 

third 

0.15 

0.28 

О.36 

0.21 

% correct 

0.73 

O.96 

0.77 

0.80 

fourth 

o.?i* 

0.2¡* 

0.1? 

0.1*1 

% correct 

1 

1 

1 

1 

2.2 Comparison between the forecasted, and actual delays in the laboratory: 

period 77-78. 

Tables У-15 and V-I6 show that the mean number of waiting samples in 77 is 

decreased compared to the 76-77 period (except for the
 13
C-n.m.r. section). 

As a consequence, a significant decrease of the delays is observed (except 

the i.r. and n.s. sections). Tne simulation of this situation reveals that, 

effectively, the observed decrease is also forecasted by the model. Anyhow, 

only significant differences between model and laboratory are found for some 

delays in the sections, and for the samples that visited two sections. The 

mean queue lengths and the dynamic behaviour (G(0,l) test) of the queues are 

not significantly different. However, the forecasted decay of the delay is 

too high for the i.r. and m.s. section. An argument for this discrepancy 

is that some modifications were introduced in these sections. 

In the i.r. section some investigators (not member of the analytical staff) 

are permitted to measure their own spectra. If the spectrum is too complex, 
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Table V-IS 

Comparison of foveaasted and aatual mean queue sizes, and comparison of the 
parameters of the fitted AR(1) models. 

sec-ion 

I.r. 

P.m.r. 

M.s. 

13
C-n.m.r. 

ЬаЪ 

I.r. 

P.m.r. 

M.s. 

13
C-n.m.r. 

Lab 

actual 

ne an 

6.6 

27.3 

8.3 

11.U 

53.7 

(Ñ) var(N) 

22.5 

209.5 

2!*. 8 

W*. 1* 

539.6 

var(r7) 

1.1 

8.1-

1.2 

1*.0 

33.6 

Φ(ι) 

0.85 

0.82 

0.86 

0.92 

0.88 

Stud. 

vs 76-

2.8 

2.9 

3.3 

2.2 

3.6 

t 

77 
a 

6.21* 

63.6 

6.5 

6.8 

121.7 

forecasted 

nean 

3.8 

28.8 

5.0 

12.1* 

50.0 

(Ñ) var(N) 

7.81* 

137.7 

11.1* 

19.3 

?82.2 

var (II) 

0.1І* 

9.1 

0.31 

0.6 

16.1 

Ф(1) 

о.бз 

0.85 

0.75 

0.77 

0.87 

Stud. 

vs 77-

2.5 

о.)* 

2.7 

0.5 

0.5 

t 

78 
a 

1*.7 

52.1 

5.0 

7.9 

63.6 

G(0,1)
2 

9.1* 

2.8 

U.5 

5.1* 

10.7 

4.oi
= ?
·

5 8 

2
ix

2

0
_

0 1
(3)=5.7 

the analyst helps solving the structure. However these samples were not inclu­

ded in the computed data, but irfluence certainly the waiting time of the other 

ones. The model did not account for this additional workload. In accordance 

with the real laboratory, the availability of the m.s. instrument is increased 

in the model. Apparently, the sensitivity of the model for this fact is too 

high, since the delay at the n.s. section decreases too much. 

The cross correlograms and cross correlations in model and laboratory did 

retain the sane behaviour as pictured in Tables V-9 and V-11. 
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Table V-16 

Conparison of foreaasted and actual delays in the laboratory: period 77-78. 

section 

I.r. 

P.n.r. 

M.s. 

13
C-n.m.r. 

Lab 

nean 

(days) 

it.2 

3.6 

U.3 

S.I 

5.2 

actual 

var(-) 

0.05 

0.01 

о.об 

0.19 

0.Э2 

1 

Stud, t 
vs 76-77 

0.3 

10.0 

5.9 

2.6 

7-9 

noan 
(days 

2.3 

3-9 

2.8 

6.6 

5.1 

forecasted 

var ('i) 

) 

o.ooi* 

0.^9 

о.об 

о.об 

0.01 

Stud, t 

vs ̂ r-78 

6.9 

0.U 

h Л 

2.3 

0.7 

samples with the samo final method 

I.r. 

P.m.г. 

M.s. 

1 3
C-n m.г. 

5.9 

U.O 

6.7 

9-8 

0. 14 

0.02 

O.lit 

0.35 

0.5 

8.3 

к.З 
2.0 

5Л 

h.h 

5-7 

8.1 

0.23 

0.01 

0.13 

0.12 

0.9 

2.0 

1.9 

2.5 

samples with the same number of analysis 

1 

? 

3 

It 

u.o 

9.1 

16.3 

25.3 

0.0
1 

0.13 

1.05 

9.5 

6.5 

3.5 

2.2 

0.3S 

3.8 

7.7 

12.9 

17.8 

0.005 

о.об 

0.79 

0.51 

1. 1 

3.5 

2.6 

0.6 

V o f
 2

·
5 8 

3. Conclusions 

In this section the possibility is demonstrated to model an analytical labora­

tory on the basis of data collected daring one year operation of the labora­

tory. With this model, the output of the laboratory during that year has been 

simulated. The sample input to the laboratory and the various sections has 

been adequately described by the goner-vtior of two Poisson sample streams to 

the laboratory, which are distributed over the four sections, according to 

the estimated probabilities that the various sections will give the requested 
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information. An even more important conclusion is,that the model correctly 

forecasts the effect of changes which occurred in a later period of the real 

laDoratory. The model was applied successfally and can quantify some unmeasured 

parameters, such as the attributed priorities to the various groups of samples. 

As a result, the effect of the variation of those parameters can be calculated, 

or the value of these parameters can be calculated in order to obtain a desi­

red behaviour of the laboratory. Some experiments with the model, in order to 

quantify those unmeasured parameters,have demonstrated that the variation 

coefficient of the delay and the longest delay in the laboratory is minimal 

when in the sections absolute priority is attributed to the samples that 

visited already the most sections, under the assomption that there is no 

correlation between the analysis time and the number of visited sections. 

In accordance with the theoretical calculations on priority queueing in M/M/1 

systems, the model proves that the attribution of a priority difference between 

the F(1) and F(?) samples, has the greatest effect on ohe F(?) samples, having 

the smallest input stream to the laboratory. 
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CHAPTER 6 

FORECAST OF THE EFFECT OF MODIFICATIONS OF THE 

LABORATORY ORGANISATION ON THE DELAY 

BY DIGITAL SIMULATION 

The principal objective of the design of a simulation model is to conduct 

simulation experiments in order to learn more about the system under investi­

gation. The effects of some variations of parameters, variables or operating 

characteristics can be estimated. For example, the sensitivity of the system 

for the value of the mean interarrivai time can be estimated. The aim of a 

simulation experiment may be twofold: the exploration and description of the 

response surface of the system over some region of interest in the factor 

space, or the optimization of this response in the presence of a large arncunt 

of variables and parameters. Very often, the influence of some variables is 

dependent on the level of the other variables. As a result an interaction 

car. be found between the variables. For example, the effect of a decrease 

of the interarrivai time will be dependent on the priority of the considered 

group of samples. In order to minimize the number of requested experiments, 

exploratory experiments should be conducted by means of experimental designs 

[D475] and optimization experiments by means of experimental optimization 

tecnniques, such as the steepest ascent method [ B4;>9l and Simplex method 

[DE73]. In this section, the results of some experimental designs and studies 

on functional relationships between some independent variables are presented. 

An extensive discussion of factorial designs, along with methods for constru­

cting and analyzing the designs is given by Davies [DATI]. 

B.G.M. Vandeginste, submitted for publication. 
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1. Stratégies сопаегпгпд priorities. 

1.1. Analysis dependent priority. 

In Chapter III, it was demonstrated that the 'shortest analysis time first'(SAT) 

priority gives the smallest delays in queueing systems. The effect of the 

application of this priority rule, along with the introduction of estimated 

analysis timos and a 'shortest expected analysis timo first (SEA")' discipline 

was investigated starting from Lho actual situation in the laboratory. Applying 

the SEAT discipline in the model, the samples are scheduled acccording to an 

estimated interpretation time, according to Sqn. VI-1 

(IT) . , = (IT) . + 3-
r
„*r VI-1 

expected real xl 

where s is the standard error of the estimation of the analysis time, and 

r is a Gaussian distributed random number with zero mean and a standard error 

equal to one. The graph (Fig. VI-1) of the overall delay as a function of the 

precision of the estimation of the interpretation time confirms the expecta-

tion that ï S A T<T S E A T<? R a n d o m. 

2 _ 

day! 

θ-15 

s.aJ. 

L 

s.e.aj. 

10 15 

^ Τ 

random 

- τ — 
20 s M 

IT 

Fig. VI-1: The 'shortest expeated analysis_bime first' (SEAT) priority rule. 
Simulated effect on the mean system time (T)and variation coefficient of the 
delay (C^) as a function of the standard error of the estimation of the 
analysis' tine. 
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The relative superiority of the shcrteSu analysis time first operation rule 

is consistent with previous research from Conway et al. [СОб
7
]. When the 

interpretation time is exactly estimated, the reduction of the overall delay 

is about ?0%, while the variation coefficient (c£) of the delay is not affected 

by the application of this priority rule. The accuracy of the estimation of 

the interpretation time, necessary to obtain mentioned reduction is very low 

(s =2.5 nrs). An alternative procedure is the separation of the samples into 

two groups: the so called 'easy' and 'difficult' samples with respectively 

'small' and 'large' analysis tines. The validity of the results obtained in 

Ch. Ill 2.2 was checked against simulations with the model. The strategy 

applied in the model, concerning the 'easy' samples was as follows: 

(i) 'easy' samples visit one section of the laboratory only, and are selected 

on the basis of their interpretation time. i.e. there should be no doubt that 

the section will give the requested information. 

(ii) the measurements of 'easy' samples are started, even when the minimal 

batchsize required for the measurements is not present. The results of 'easy' 

samples are immediately communicated to the client. The presence of 'easy' 

samples does not affect the other activities. 

R 

10. 

0.1 

V5Îl00%easy 
' "" samples 

Ih.p. 

Fig. VI- 2 : Simulated mean system time of the difficult (T-, /T ) and easy 
(T, /T ) as a function of the fraction of easy samples. Absolute priority 
is àsèigned to the easy samples. ( ) final method is p.m.г.. С-.-.) 1 ъС-п.т.г. 
( /i.r.j, (....)m.s. 
$ Reduction of the overall maen delay (Τ,/Τ^..-. ) 

l i l t 



The comparison of Figures III-I6 and VI-2 demonstrateä that the separation of 

the samples into two categories has the same effect on the difficult sanples 

as forecasted by theoretical calculations presented in Ch. III.?.?. When r70% 

of the samples belongs to the category of 'easy' sanples, the delay of the 

'difficult' samples is increased by a factor 2 to 2.5, while the delay of the 

other samples is approximately reduced with a factor 2.5 to 5. As a result, 

the overall delay is reduced with ?0*. A 'Hxlt'xS1 factorial experiment demon­

strated that the accuracy of the estimation of the interpretation time 

(standard error between 0 and h0%) did not influence significantly zhc delay 

of the samples grouped in the category 'easy' and 'difficult' sanples. 

Table VT-1 

Effect of the acouracy of the estimated interpretation time on the delay of 
'easy' and 'difficult' samples, when 'easy' samples have absolute priority. 
Analysis of variance of a 21x41x41 design. 

factor levels: 
(A) sections (i.r.,....m.s.) 
(B) standard error {% of interpretation time): 0, 10, 20, lO 
(C) % easy samples: 35, 56 

s o u r c e o f 
v a r i a t i o n 

A 
В 
С 

r e s i d u 
t o t a l 

A 
С 

r e s i d u 
t o t a l 

e¡ 

sum of 
s q u a r e s 

T.8U 
O.058 
O.OIU 

0 . ? 0 8 
8 .12 

Ι­

Ο.10 

1.3 

0 . 0 5 
1.U5 

Eisy s a m p l e s 

d e g r e e s o f 
f reedom 

3 
3 
1 

2Ц 
31 

- p r o c e d u r e 

1 
3 

3 
7 

mean 
s q u a r e 

? . 6 l 
0 . 0 1 9 
O.Ollt 

O.OO87 

s a m p l e s 

0 .10 
0.1,3 

0 . 0 1 

v a r 
r a t i o 

3 . 0 t 
? . 1 8 
1.61 

1*0. 

sum of 
s q u a r e s 

3 ? 6 . 0 
1*.1*2 

І З . 9 

31 .10 
375.1*1 

d i f f i c u l t s 

d e g r e e s of 
f reedom 

3 
3 
1 

21* 
31 

amples 

mean 
s q u a r e 

108.7 
1.1*7 

І З . 9 

v a r 
r a t i o 

8 3 . 8 t 
1.1 

10.7 

t highly significant 

When the goal of attributing priority to 'easy' samples is to minimize "Che 

overall delay of all samples, a small fraction (~10%) of the samples with long 

interpretation times should be designated as 'difficult' samples and give 

absolute priority to all other samples. 
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1.2. Priority" based on the number of visited sections. 

In Chapter V, it was demonstrated that the functional relationship between 

the delay and the number of visited sections is highly dependent on the prio­

rity difference between the samples that visited a different number of sections 

in the laboratory (Fig. V-X). 

Fig. VI-3: Flow (a) (samples per day) dependenoy of the mean delay (T) of 
samples as a function of the number of visited sections. 
(a) samples which visited the less sections have absolute priority. 
(b) reversed situation. 

When samples, originating from outside the laboratory have absolute priority 

on the samples arriving from inside the laboratory, a strong dependence is 

found between the delay and the number of visited sections 
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By inversion of this priority rule an appreciable loss of this dependency is 

observed (Fig. V-ii). An investigation on the sensitivity of these groups of 

samples for an increase of sample flow to the laboratory resulted in the 

following conclusions (Fig. VI-3). The sensitivity of the delay of the four 

groups of samples for an augmentation of the flow to the laboratory is highly 

dependent on their attributed priority. If samples arriving from outside the 

laboratory have priority, the delay of the other samples is appreciably sen­

sitive for the total flow. In the opposite situation, where the priority of 

the samples increases with the number of visited sections, the dependency of 

the delay on the flow becomes quite similar for all groups. Furthermore, it 

can bo remarked that, apparently, the delays of the smallest groups of samples 

(group 2 to 1«) are very dependent on Lhe attributed priority. Evidently, the 

relationship between the overall delay and input flow is independent of the 

applied priority rule (Fig. VI-ltb ) between sarrples that visited a different 

number of sections. Similarly, the variation coefficient of the overall delay 

is not dependent on the input flow (Fig. VT-Ua). 

Fig. VI-4: Flow (a.) (samples per day) dependenay of the overall mean system 
time(T)and variation ooeffiaient (ci,) of the delay, simulated for two priority 
rules: (+} samples that visited the most sections have absolute priority, 
(o) reversed situation. 
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1.2. Priority dependency on sample source. 

In Chapter III, it was demonstrated that the sample group with the smallest 

input flow to the laboratory nas the highest sensitivity for its priority 

compared to the other group of samples. Furthermore, from theorotical cal­

culations on a M/M/1 system (Ch. Ill), it is expected that the level of the 

input flow to the laboratory will influence mostly the group of samples with 

lowest priority. This sensitivity was simulated for two extreme situations 

where one of the groups get absolute priority over the other one. The ratio 

between tío sensitivities of low priority samples and higi priority samples 

for the two extromo situations arr tabulated in Table VI-2 (R., and R_). 
1 2 

Table VI-2 

Sensitivity (s) of the delay for a variation of the input flow (ha/a)=0.20) 
of high and low priority samples (s=t\T/ha./a.); flow ratio α /a =2.6 

Group with 
absolute priority 

final metnod S
F1 

F-1 (a
1 

S
F2 

,=8.6) 

V
S
F?

/ s
F1 

S
F1 

F-2 (τι
?
=3Λ) 

S
F2 

R
1

=S
F1

/s
F2 

I.r. 0.2 0.4 2.0 0.28 О.Об U.T 

P.m.r. 0.11 0.2U 2.2 0.l6 0.05 3.2 

M.s. 0.13 0.16 1.2 O.lU 0.05 2.8 
13
C-n.m.r. 0.17 0.21 1.2 0.2І+ 0.08 3.0 

The values of R and R are all greater than one. This indicaOes that the high 

priority samples are less sensitive to a variation of the flow, than the low 

priority samples, irrespective of the magnitude of this sample group. More­

over, a comparison of the R and R values in that table, indicates that for 

each section R >R : i.e. the ratio between the sensitivities of low priority 

and high priority samples is the greatest when the largest sample group F(l) 

has absolute priority. The preceeding Chapter indicated that the mean delay 

of this greatest group of samples (Fl) in the laboratory is hardly dependent 

on the priority difference with the other group. Now from the comparison of 

the effect of the flow on the delay of the greatest group of samples, when 

having absolute priority and not (columns 1 and U in Table VI-?), it appears 

that this effect is hardly dependent on the attributed priority also. 
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2. Dispatching décisions. 

The effect of the introduction of an adaptive routing procedure in the model 

has been investigated. The routing algorithm takes into account the probaoi-

lity (j(i)) that a section (i) will give the requested information, and the 

queue length in each section, normalized on the total workload of the labora­

tory (Eqn. VI-2) 
L 

R(i) = f(l-j(i)) + (l-f)lf./E N. with 0<f<1 VI-? 
1i = 1 * 

The sample is firstly routed to the section with the smallest R value. 

Following example demonstrates the consequence of the application of Eqn. VI-2: 

For f=0.U a sample is routed to a section with j=0.5 instead of j=1, provided 

the number of waiting samples in the former section is 10 units smaller, having 

totally 30 samples waiting in the laboratory. The effect of the algorithm was 

calculated considering two starting points: i.e. assuming that all (respectively 

no) samples are successfully analyzed in a section with j=1 (respectively: 

j=0), and secondly: assuming that '\6% of the samples which are directed to a 

section with j = 1 are not successfully analyzed, and consequently are routed to another 

section; in addition, '6% of samples submitted to a section with j=0 are completed 

in that section (Table IV-2).i.e. the probability of finding the structure 

with a given method is estimated less accurately. The model demonstrates that 

balancing the probability of obtaining the requested information, against the 

number of samples in the sections decreases the delay. However, the observed 

effect is relatively small (-12$) (Fig VI-5). In terms of variation coefficients 

of the overall delay the model is insensitive to that strategy. By attributing 

a too large importance to the number of waiting samples (f<0.?), the mean 

number of visited sections increases from 1.26 to 1.1*0, resulting in an 

increase of the delay, which is very sensitive to that number. The more in­

accurate the estimated probability is that some section will give the reques­

ted analytical information, the more useful it is to balance this probability 

against the number of samples in each section. Even, when the state of the 

laboratory is considered exclusively, no increase of the mean number of visited 

departments is observed, and the mean delay has diminished.Obviously, an 

augmentation of the input flow to the laboratory has the same effect as an 

increase of the mean number of visited sections per sample (Fig. VI-6) 
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Fig. VI-5: Simulated mean system time (ТУТ(._1) of all 
samples as a function of the weighting fnothv (f) balancing 
the queue sizes in the sections versus the probability for 
a section to give the requested information. 
f=0: sample routing based on the queue sizes exclusively. 
f=l: sample routing based on the probabilities exclusively. 
о the estimated probability that a section will give the 
requested information is exactly known. 
+ this probability is incorrectly estimated for 16% of the 
samples, ρ is the mean number of visited sections. 

10 11 12 13 14 

Fig Г-6: о Simulated effect of the input flow (a) 
to the laboratory (samples per day) on the overall 
system time (T) 

+ Simulated effect of the mean number (p) 
of visited sections on the mean system time (T) 



¿. Analyst assigrment deaísionr,. 

A completely decentralized organization was assumed for the simulation of the 

actual laboratory. The analyst is always assigned to the same analytical sec­

tion, irrespective ^he state of the ot.ier sections. The effect of the work 

selection rules, described in section IV, in a centralized laboratory organi­

zation was investigated. In the centralized organization the experience of 

the analyst for the different analyses is balanced agairst the state (queue 

lengths) in the sections. In the model a relationship was assumed between the 

experience of the analyst (j) and his mean analysis time in section (i) (Eqn. 

VT-3) 

AT. = ÄT/oxp(j,i) VI-3 
J 

The results of the simulations with a centralized organization where all 

analysts have experience with all methods, and where the selection of the 

sample is independent from the state of the laboratory, are shown in Fig. VI-

7. In these runs the analyst selects the sample of his greatest experience, 

for which an unnannea instrument is available, without regarding whether 

eventually a more experienced analyst is idle (rule l). Fig VI-7 demonstrates 

the disastrous effect of allowing analysts to analyze samples without suf­

ficient experience (<C.8). A redaction of the overall delay is only achieved 

when all analysts are fully qualified for all methods. The very small effect 

of the extension of the number of analysts in a completely centralized orga­

nization (all analysts are fully qaalified) indicates that the instruments 

are the bottleneck of the system and not the number of analysts. As a result, 

a temporarily admission of analysts will not influence the delay significantly. 

When an analyst is authorized to do ar analysis for which he is not fully 

qualified, provided no fully qualified collegue is idle (rule 2), a somewhat 

smaller effect on the delay is observed (Fig. VI-7). However, the conclusion 

remains valid that under the condiiiors of ^he laboratory, the introduction of 

a decentralized organization has only sense if the analysts are allnost fully 

qualified for the other methods (mean analysis time exceeding the mean analysis 

time of a specialist with less than 10%). Clearly, the inclusion of the lengths 

of the various queues in the decision, which section the analyst will select 

next, will not influence the effect of centralizing the organization, when all 

analysts are fully qualified for all analytical procedures (Fig. VI-8). 

On the contrary, when the experience of Lhe analyst for methods beyond his 
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Ггд. 71-7: S-Lmulated effect of the analyst assignment décisions on the mean 
system time , employing priority rule 1 and 2 (see text). _ 
exp. factor=0 : completely decentralized organization (mean system time^ Τ J 

-І : completely centralized organization (mean system time: Τ ) 
( ) the system is extended with 4 analysts (from 9 to 13) and assignment 
rule 1 is used. 

own specialism is small (exp<0.6), the consideration of the queue lengths 

according to algorithm VI-!*, amplifies the bad influence of centralization 

(Fig. VI-8) 

Max[exp(i,j) + ^
f i r

.
s t
(i)] 

where Τ (χ) is the total delay of the sample in front of queue(i) 

VI-1+ 
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u v e r αβ 

Fig. VI-8: Simulated effect on the mean system time (T) of weighting the 
experience of the analyst against the delays of the samples in front of the 
queues in a centralized laboratory organisation. The experience with the other 
methods than the own specialism (e.o.s. varies from 0.6 to 1.0) 
logf=-5: no state dependency. 

4. Strategies on the termination of the analysis. 

In the model a maximal allowed analysis time could be selected according to 

3qn. VI-5: 

AT vi-5 
max ' AT 

where the value of f depends on the simulated strategy: 

(a) the maximal analysis time is independent of the properties of the sample 

or state of the laboratory (f=l) 

(b) the maximal analysis tirre increases with the number (N) of visited sections 

(f=1+N) 

(c) the maximal analysis time decreases with the queue length in section (i) 

(f= \ N./N.) 
iil

 1 1 

(d) the maximal analysis tine decreases with decreasing probability that the 

method will solve the analytical problem (f=1+j(i)/0.5) 

The effects of these strategies were compared to the actual situation where 
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no limitations on the interpretation time are imposed on the analyst. In 

contrast to the expectation Ъазеа on the study of a K/M/1 system, which is 

not imbedded in a network, no innroveinent of the delay could Ъе found. Stra­

tegies (a) and (b) cause an augmentation of the delay, even with 50%. This 

is caused by the increase of the mean number of visited departments from 

1.27 to I.U7, respectively to 1.5?. Apparently, the effect of an augmentation 

of the mean number of visited sections (20% for strategy (a)) surpasses the 

effect of a smaller mean analysis time (13.5% for strategy (a)). It causes 

an augmentation of the utilization factors and consequently, the delay. The 

application of strategies (c) and (d) gave no improvement of the system per­

formance as compared to the actual situation. 

5. Batch analysis of samples. 

5.1 Effect on the mean delay. 

By means of a 21x32
 factorial design (Table VI-3), the effects on the mean 

delay and the interactions between the minimal and maximal batchsize, and 

overhead factor were determined. The analysts start the measurements of the 

samples when the minimal batch size is present in the section. The overhead 

factor is a reduction factor of the measurement time, taking into account that 

the treatment of samples can be executed sinull.aneously. No overhead was 

attributed to the interpretation ̂ ine. 

The factor levels used in the factorial design were as follows: 

factor A: minimal batch size: 1 (loose rule), maximal batch size (tight rule) 

B: overhead: 1.0, 0.9, 0.8 

C: maximal batchsize: 0.5λ, λ, 1.5λ (λ: input density to the section) 

From the results tabulated in Table VI-3, it is seen that the overhead and 

minimal batch size have a pronounced effect on the mean delay, along with a 

small interaction between the overhead and the maximal batch size. The loose 

rule, that the analyst should not wait until a sufficiently large batch of 

samples is present, performs better than the tight rule, where the analyst 

should wait.An interesting observation from Fig. VI-9, showing the response 

plane -=f(overhead,min. batch size), is that even for large overhead factors 

(20%) it is advantageous to start the measurement of a sample without delay. 

However, it should be stressed that the schedule of the other activities of 

the analysts in the model is independent of the state of the laboratory. This 

means that the schedule of these activities is not altered when the maximal 

batch size is not present. In the opposite situation a smaller effect of the 
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minimal batch size can Ъе expected, because here other activities are prefe­

rably executed during the time thaL the batch size is not reached. 

Table VIS 

Effeat of the minimal batch size (A), overhead (B) and maximal batohsize (C). 
Analysis of variance of a 2lx32 design. 

s o u r c e o f 
v a r i a t i o n 

main e f f e c t s 

A 
В 
С 

two f a c t o r 
i n t e r a c t i o n s 

ЛхВ 
AxC 
BxC 

t h r e e f a c t o r 
i n t e r a c t i o n s 

AxBxC 

v a r ( Τ ) 

s u n of 
s q u a r e s 

2 . 6 
5.2)t 
0 . 3 2 

0 . 0 7 
0 . 2 5 
1.1)3 

0 . 0 1 

d e g r e e s of 
freedom 

1 
2 
2 

ρ 
2 
i* 

It 

mean 
s q u a r e 

2 .6 
2 . 6 
0 .16 

0 . 0 3 Ί 
0 . 1 2 5 
0 . 3 6 

0 .0025 
0.0>t8 

v a r i a n c e 
r a t i o 

5h.i^ 
5l1.lt 

3.3 

0.7 
2.6 
7.5* 

e f fect 

+ 0.8 
- 1.3 

t significant 1$<P<5# 

* significant P<15 

• overhead 

Fig. VI-9: Simulated effect on the 
system time (T) of the minimal 
batch size (samples/batch) for 
analysis, as a function of the 
overhead time. 

min batch 
size 
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5.2. Effect on the distribution of the number of samples in the system. 

In the preceedir
e
- Chapter, the unexpected Gaussian shape of the probability 

density function of the njmber of samples in the sections in model and 

laboratory was noticed. An investigation on the possible sources for the 

discrepancy between the observations and general queueing theory, revealed 

that with the introduction of batches, the Gaassian shape of the distribution 

function of the nuriber of samples in the system is obtained. In Fig. VI-10 

the histograms are presented of the number of samples in a M/M/1 system, where 

the analyst waits, respectively does not wait for starting the measurements 

until a minimal batch size has been reached. 7ig. Vl-lOa demonstrates that 

the probability function of к samples in the system p(k)=7, (l-z) fits the 

simulateci histogram of a pure M/M/1 system well. Likewise that function fits 

well the histograms of the number of waiting samples in the laboratory model, 

run without restrictions for starting the measurements (Fig. VI-10c,d). The 

differences between these histograms and those obtained for the actual 

laboratory, with restrictions for starting tnoasurements (fig. VT-10 c,d 

and Fig. II-6) are apparent. The results indicate that the minimal batch size 

affects the variation coefficients of the number of waiting samples considera­

bly (Table І-І+). Tne tight rule perform bettor than the loose rule in terms 

of the variance of the number of waiting samples. 

Table VI-4 

Effect of the minimal batah size on the variation aoeffiaient of the delay 
and of the number of waiting samples. 

variation coefficient 

s e c t i o n 

m i n . b a t c h 
s i z e 

1 

п а х . c a t c h 

i . r . 

0 . 7 1 

O.S1* 

number of wai 

p . m . r . m . s . 

0 . 6 3 0 . 7 2 

0.2!» o.!»0 

t i n g s a m p l e s 

1 3 C - n . m . r . bab 

0 . 5 2 0 . 1 8 

0 .19 0 .10 

M/M/1 

0 . 7 9 

O.itl 

ov •̂ гаЛ 1 d e l a y 

l a b 

i . ? U 

1.05 
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Fig VI-10: Simulated effect of batah analysis on the probability (%) of η 
samples in the system. 
(a) M/M/l system wil-hout batoh analysis 
0 best fitting exponential function f(z)=s (1-z) with z=0.82 (D -0.066) 
(b) M/M/l system with batch analysis 
0 best fitting exponential function f(z)=zl(l-3) with z=0.81 (D =0.148) 
shaded figure: Gaussian distribution with the same parameters as vfie 
histogram (m=8.0S, s=S.16) (D =0.060) 
(c) model: simulation of the i.r. section wiLhout batch analysis 
0 best fitting exponential function f(z)=z (1-z) with z=0.81 (D =0.062) 
(d) model: simulation of the p.m.r. section without batch analysis 
0 best fitting exponential function f(z)=z (1-z) with z=0.92 (D =0.074) 
shaded figure: Gaussian function with the same parameters as the 
hisLogram (m=20.1, s=16.0) (Ό =0.100) 

max 

6. Strategies concerning vhe arrival of samples 

In Chapter II it was demonstrated that the collection of samples into hatches 

effects the delay of a M/M/1 system considerahly, except when the batches 

arrive equidistantly at the laboaratory (e.g. once or twice per day) and the 

batches are Gaussian distributed with a relatively small variation coefficient 

[C
?
=a

2
/r<1-r(1-p)]. For example, the equations presented in Table III-3 fore­

cast an increase of the delay with a factor 3.1, resp. ?.6 and ') .h for resp. 
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Poisson, constant and exponentially distritmted iDatches of sÌ7e r=7 in a 

M/M/1 system with an utilization factor p=0.6 and batches arriviig at constant 

intervals. 'Che resul! s of the experimental design presented in Table VI-5 

indicate that the observed effects in the laboratory model are consideraoly 

smaller than calculated for a single M/M/1 system. Moreover the observed 

effect of the batchsizes of :;he input is much smaller than t'ic effect of the 

minimal batchsize required for starting the measurements. Furthermore tie 

probability density function of the batchsize of the input doos not affect the 

mean delay significantly. This discrepancy between the behaviour of a single 

Table VIS 

Effeat of the mean batehsize (v)3 probability density function of the batch-
sizes, and the mininal required batchsize before starting the measurements. 
Analysis of variance of a 2x32 design. 

factor levels : 

(A) minimal batchsize: 1, maximal batchsize 

(B) p.d.f. of the batchsize: constant. Poisson, exponential 

(C) batchsize: 1, 2 batches/day, 1 batch/day 

p.d.f. of the interarrivai timos of the batches: constant 

source of 
variation 

main effects 

A 
В 
С 

two factor 

interactions 

AxB 
AxC 
BxC 

residual 

sum of 

squares 

7.16 

0.55 
1.08 

0.2U 

'.25 
2.30 

0.21 

degr 

fr 
зон of 
aedom 

1 
ρ 
2 

2 
2 
It 

k 

mean 

square 

7. lot 

0.27 

0.5lt* 

0.1? 

0.6?
+ 

0.57
+ 

0.05 

effect 

(days) 

+ 1.26 

+0.58 

+
significant 1^<P<5^ 

tsignificant P<1^ 

M/M/1 system and that of such a system imbedded in the described network, is 

probably due to the fact tiat ?5% of the traffic generated in the model is 

originating from inside the network (samples analyzed by several methods). 
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Зесаизе in the model no transfer time between the nodes is included, these 

samples arrive separately at the sections. Another aspect explaining this 

discrepancy is the fact that the samples of the batch arriving at the labora­

tory are divided over the sections according to the described decision rules. 

Consequently the nean batch sizes to the sections are relatively small (Table 

VI-6) and the probability density function of the batch size is disturbed. 

Table VI-6 

Mean batoh size bo the seotions in the model (except inner transfers) 

section 1 batch/day 2 batches/day 

I.r. 2. 1. 

P.m.r. 6.7 3.3 

M.s. 1.1 0.6 

1.9 0.9 

Arrivals of batches of constant size to the network do not lead to constant 

batches arriving at the sections. Other measures for laboratory performance, 

such as variance of flow time and longest flow time are practically not 

affected by the introduction of batch input. In addition, the findings that 

the tight rule, obliging an analyst to wait until a minimal batchsize is 

present in the laboratory, performs best in terms of the variation coefficLent 

of the number of waiting samples are confirmed in terms of the variation coef­

ficient of the delay (Table VI-U). 

7. The effect of the means and variation coefficients of the measurement-

and interpretation time on the delay 

From theoretical considerations on a M/M/1 system and on а ЕгЦ/М/1 system in 

Chapter III, it was concluded that the effect of the means of the measurement 

and interpretation times should be much greater than the effect of their 

variation coefficients. An analysis of variance on a 2'* design (four factors 

on two levels), executed on the i.r. section of the model confirmed this 

conclusion for more complex sytems. As the moan interpretation time of the i.r. 

spectra exceeds their measurement time by a factor 3 (Table ІУ-]), a greater 

effect is found for the mean interpretation time. A variation of the measu­

rement time from 1.2MT to 0.8MT, reduces the total analysis time with 10$ 

while the same variation of the interpretation time reduces the total analysis 

time with 30$. 
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Table VT-7 
Effect of the means and variation ooefficients of the measurement (MT) and 
interprétation time (IT) on the delay in the i.r. section. 
Analysis of variance of a S4 design. 

(УС and IT are the values tabulated in Table IV-1) 

source of 

variation 

A 
В 
С 
D 

two factor 

interactions 

AxB 
BxC 
CxD 
AxD 
BxD 

residual 

mean 

square 

19 
239 
16 
0 

6 

9 
5 
0 
0 

h 

variance 

ratio 

6.7* 

85.3+ 

5.7* 
— 

2.1 
3.2 

1.7 
-

-

2.8 

effect 

+2.2 

+7.7 
-2.0 

+highly significant P<1$ 

* significant λ%<Ρ<5% 

The variance ratios tabulated in Table VI-7 show clearly that a considerable 

variation of the variaLion coefficionL i.e. a reduction to 25$ of the origi­

nal value, affects the mean delay to the same extend as a reduction of the 

analysis time with 10$ only. This demonstrates the greater sensitivity of the 

delay for the mean analysis time than for the variation coefficient of the 

analysis time. Since no interaction is found between the measurement time 

and interpetation time, the effect of both parameters in all sections can 

be studied separately. With this experiment the bottleneck of the system 

can be determined (Table VI-8). Obviously, the measurement time of the p.m.r. 

spectra is the greatest source of variation of the overall delay. This 

indicates that the availability of the p.m.r. instrument forms the bottle­

neck of the system. Although the dependencies of the delays on the sample 

flow to the laboratory are allmost equal in all sections (except m.s. section) 
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(C) C ¿ T : 0 . 5 , 2 

(D) C2 : 0 . 5 , 2 



(Fig. VI-11), the delay in the p.m.r. section exhibits the strongest effect 

on the overall delay, because 80% of the samples passes through that section. 

Table VT-8 

The effxt of the measurement time (MT) and interpretation time (IT) in the 
sections on the overall delay . 
Analysis of variance of a 2x2 design 

factor levels 
(A) i.r,: 0.94T(ir), I.IMT(ir) 
(B) p.n.r.: 0.9MT(pinr), bJWTÍ 
(C) m.s. : 0.9MT¿ms), I.IMTJms) 
(О) С.m.Г.: 0.9MT(cmr), І.ІМГ(стг) 

Л. J. / 

_MT(pmr) 

source of 

variation 

A 
В 
С 
D 

two factor 

interactions 

AxB 
BxC 
CxD 
AxC 
AxD 

variance 

mean 

square 

0.11 

5.11 
0 
1.03 

0 
0.07 

0.01 

0.01 

0 

0.059 

variance 

ratio 

1.9 
86.6t 
-

T.hf 

1.2 
0.17 
0.17 

-

effect 

1.13 

0.51 

source of 

variation 

E 
F 
G 
H 

two factor 

interactions 

ExK 

FxG 
GxH 
ExG 
ExH 

variance 

mean 

square 

1.?2 

1.93 
0.1*7 

1.05 

0.31 
0 
0 
0.12 

0.03 

0.051* 

variance 

ratio 

22.6+ 
35.7+ 
8.7* 
19.5+ 

5.7 
-
-
2.? 
0.5 

effect 

0.55 
0.70 

0.1*7 

0.51 

t highly significant ?<1% 

significant 1#<Ρ<5# 

8. Sensitivity for other activities 

As expected from the theoretical considerations outlined in Chapter II, the 

'overnead' of the analysts and failures of the instruments influence tne over­

all nean delay considerably. In the model other activities are started and 

executed also when samples or spectra are present in the laboratory. The delay 

in the laboratory without other activities and without failures of the in­

struments was 3.9 days, with a maximum delay of 21* days. Evidently, the 

utilization factors of the analysts in the laboratory model remained unchanged. 

A subsequent introduction of a minimal batchsize of one sample per analysis 

enhances the delay further with 0.9 day, with a maximal delay of 10 days. 

This result confirms the conclusion from queueing theory (Table III-?) 
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Fig'. VI-11: Mean delay IT) as a function of the input density to the labora­
tory (a) (samples/day) for the various sections. 
J 55% confidence interval. 

i.e. the delay in the laboratory under investigation cannot be explained by 

the statistical parameters of the measurement- ana interpretation tine. 

Clearly, the delay is strongly influenced by the schedule of the other 

activities and the minimal batch size per analysis. One should conclude 

that the control of the other activities would be the key to reduce the 

delay. As mentioned before, three categories of other activities are distin­

guished in the model: absence of the analysts (5$), coffee breaks {6%) and 

non-analyzing activities, such as administration, research etc.. However, 

permitting the non-analyzing activities only when less than 10 samples wait 

for analysis in the laboratory, the overall delay is reduced wit]. 20% only. 
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9. Sample sequence within a group of samples with the same prioriby. 

In Ch. V, a higher correlation was mcntiorea Ъе!лгееп the number of samples in 

the section at the arrival of a sample and its delay in the model as compared 

to the actual situation. This discrepancy seems an indication for an invalid 

model assumption that the samples of the various priority groups are analyzed 

in a FIFO sequence. Therefore a simulation experiment was executed with a 

random analysis sequence within the various priority groups. Comparison of 

Tables V-10 and VI-9 reveals that with the introduction of a random sequence, 

the correlation between the delay and number of waiting samples has decreased, 

whereas in the p.m.r. section (receiving 80% of all samples), the correlation 

is not significantly different from zero. The effect of randomization of the 

sequence is visualized in Fig VI-1?. The longest delay before a sample will 

be analyzed (95% probability) is hardly correlated (p=0.?3) with the number 

of waiting samples in the system at its arrival (Fig IT-10). Similarly, the 

model run with a random sequence within the groups shows no correlation 

(Fig. VI-'?a). In contrast, a FIFO sequence in the model increases the corre­

lation considerably (p=0.T3) allowing a reasonable forecast of the maximal 

delay at the moment of arrival of the sample at the laboratory (Fig. VI-12b). 

The fact that the laboratory uses a random sequence instead of the presumed 

FIFO sequence has no consequences for the validated results of the model, as 

both sequences yield the sane delay [ KI,T5] . 

Table VI-9 
Maximal aorretation between the number of samples (x) in a section and the 
delay (y) of the samples arriving at the laboratory (model): Random sequence 

Φ 

95? conf. 
interval 

resi dual 

variance 

i .r. 

о.ьз ί-

Ο. 37 

0.81 

p.m.r. 

1) о 

-

1 

m.s. 

0.1*9 (-6) 

0.25 

0.7б 

13
C-n.m.r. 

0.1*8 (-30) 

0.2б 

0.77 

When the maximal delay of a sample can be forecasted with 95? certainity from 

the number of samples present in the system at the moment of its arrival, then, 

the delay can be kept within certain limits with a given probability, by 

applying a threshold control of the number of samples in the system. Müskens 

[ MU78] described a threshold control system, where the time lag is calculated 
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in dependence on tho observed value of the time series(e.g. the number of 

samples in the system), after which the system should be measured again, in 

order to obtain a certainty of P% that a given threshold value will not be 

exceeded. This statistical forecast is based on the probability density furction 

of the queue size, ard on an AB(l) model, describing the underlying structure 

of the queue size. At any time t, the queue level at a time τ later can be 

forecasted by applying Eqn. VI-6. 

N
f
(t+T) = Ν(ΐ)φ^ VI-6 

where, N (t+τ) is the forecasted queue level from the mean level at a time τ 

later, N(t) is the queue level from the mean level at time t and φ is the 

autocorrelation at τ=1 of the number of waiting samples. According to Müskens 

[KU78]j the prediction error, usirg the autocorrelation function as predictor 

equals: а(Ь+т)=0 Λ'- φ?). The probability (a) at a tine t that a threshold 

value (N ) will be exceeded at a time τ later equals: 

u(a) = [ N., - Ν(ί)φ A /[ σ,.ν/Χ 1-φ . )] with u(a ) the excentricity of the normal 
th T U 1 

distribution, giving the requested probability (a). Fig VI-13 depicts the 

time interval after which the number of samples should be evaluated again in 

the p.m.r. section, in dependence of the threbhold value, the accepted risk 

(a) to exceed that value, and the actually observed number of samples. From 

the simulated relationship between the number of samples in the p.m.r. section 

and the maximal delay (95% probability), plotted in Fig. VI-lH, it is clear 

that when a maximal delay of 15 days in that section is desired, the number of 

samples in that section should not exceed 50 (units ). From Fig. VI-13 it 

follows that an accepted risk of 5$ for the threshold value N
1
=50 to bo 

exceeded, the state of the p.m.r. section should be evaluated within 1 to 2 

weeks, when 25 to 10 samples are waiting. When over 30 samples are waiting 

the state of the section should be surveyed every day. 
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Conclusions. 

The relative impact of the decision rules was found zo be dependenL on the 

measure of performance considered: i.e. mean delay or variation coefficient 

of the delay. One may generally conclude that the simulated effects with the 

laboratory model are less pronoionced than predicted for single queueing sys­

tems. For example, the effect of batch input is considerably smaller than 

expected from calculations on M/M/l systems. As exoected, other activities, 

executed while samples are waiting, determine largely the observed delays in 

the laboratory. Likely, the minimal batch size of samples, which are measured 

simultaneously, is a relatively important factor for the variance of the 

delay, and had pronounced effects on the mean delay and probability density 

function of the number of waiting samples in the system. The Gaussian shape 

of that number, as observed in the laboratory can be explained by the intro­

duction of batch analysis in the model. Operation without batches performs 

better, even when the measurement times can be reduced with 20% by batch 

analysis. Evidently, the workload of the laboratory, which is the product 

of the mean number of visited sections and the number of arrivals per day, 

affects the delay considerably. All decision rules that increase the number 

of visited sections affect the delay negatively. An illustrative example is 

zhe effect of the reduction of the mean analysis time by the introduction 

of a maximal analysis time which is completely surpassed by the increased 

number of visited sections. The effect of an increase of the workload is 

different for the various groups of samples with different flow and priority. 

The total delay is reduced when absolute priority is attributed to easy 

samples. This reduction is relatively insensitive for the limiting analysis 

time of 'easy samples'. Likely, this reduction is insensitive for the esti­

mation error of the analysis tino of the samples. The performance of the 

laboratory model is enhanced if the probabilities that the various sections 

will give the requested information are considered along with the state of the 

laboratory in order to route the sample to some section. The effect is more 

pronounced when these probabilities can be estimated less accurate. As expec­

ted from the theoretical outline of M/M/1 systems, the system is more sensi­

tive for the mean analysis time than for the variation coefficient of the 

analysis time. The transition from a centralized to a decentralized organiza­

tion is only advantageous when all analysts are fully qualified for all methods. 
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The ultimate delay for an analytical result to be available, is hardly 

correlated with the number of samples present in the actual laboratory. This 

is probably due to a random sequence dispach of the samples with the sane 

priority. By the change of the random sequence to a FIFO sequence, however, 

a reasonable correlation is obtained, which agrees with the conditional 

probability density function of a M/M/1 system. Conbinir.g the AP.( 1 ) model 

of the number of samples in the system, with the conditional urobability 

function of the delay, a threshold control system can be created. 
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GENERAL REMARKS AND CONCLUSIONS 

Apart from the technical description of the model, some general considerations 

are given on mathematical modelling and decision making in analytical chonistry. 

For the planning of the simulation experiments a very time-consuming process of 

formulation of the problem up to the design of the simulation experiments and 

analysis of the simulation data is always necessary. One may reasorably doubt 

whether tne efforts for building the model are worthvile in view of beneficial 

results which are expected. 

Biswas [BITS ] gave an excellent view on this topic. The primary role of a 

decision-maker is to make right decisions, which may be defined as decisions 

made on the basis of perfect knowledge (Churchman I96I, Biswas 1971). Since 

knowledge is always imperfect, the best decision should be aimed at, based on 

the available information. However, in order to know which information is 

needed for decision-making, some insight in the (]aboratory)system should be 

available. Therefore, the process of information gathering is imbedded in a 

vicious circle with the outcome of past decisions. With a better understanding 

of the system, nore relevant data can be collected. As a result, frequently, 

(also in presented research) the modelling and data collection process 

proceeds in parallel. During this modelling-cycle, the output of the crude 

model is checked against observations in the laboratory. As long as the output 

of tie model does not match the observations, the model is refined. During 

that refinement process, new observations may be necessary, but in the mean 
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time partial results Ъесопе already availaole. 

In our particular case, the laboratory under investigation was informed 

during that period, on their applied priority rule between the two principal 

sources of sáneles that was not in accordance with their ains. Moreover, their 

attention was turned to the fact that an augmen-ation of priority of the 

samples that visited more sections, should avoid the very long delays and 

decrease the variation coefficient of the delay. 

Itie ultime question whether the efforts to build the model are useful, depends 

on the profit obtained by avoiding wrong decisions. A necessary condition, 

however, for a useful model is that it has enough credibility wiôh the policy 

makers. A major reason for a lack of credibility can be the lack of user 

involvement in the model development process [ BI75 ]. 

Therefore, during the modelling period, intermediate results were conmunicated 

and discussed in several plenary meetings with all laboratory personnel and 

staff. Such interactions proved to be mutually beneficial. 

One of the features of the decision-making process is, that only a limited 

number of policy alternatives are considered for any decision. These 

alternatives generally differ incrementally from existing policies [3175] which 

means that the advances are made in small steps. Therefore, only strategies and 

policies were simulated which did not need a drastic change or reorganization 

of the current policies of the laboratory. As a result, solutions of the model 

remain acceptable to policy makers. 

The follow up of the research presented here, is a half-yearly updating of the 

model with the most recent observations, combined with a control of the main 

characteristics of the laboratory. Voluntarily, the model can be used Lo 

forecast the effect of alternatives, proposed by the decision-maker(s). This 

updating process is necessary as understanding of the process being modelled 

improves, and otherwise the model tends to become out-of-date. 

The flexibility of the model, presented here, is such that the number of 

facilities (instruments and personnel) are very easily adapted. Likewise, 

the fixed characteristics defining the statistical properties of the sample 

flow, the analytical procedures and of the non-analyzing activities may easily 

be varied. 

In general, it is worthwhile not to build generalized all-purpose models. 

These models are expensive to develop, difficult to control, and have large 

data requirements [BI75]. 
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Based on this point, of view, for every laboratory with another structure than 

the laboratory model presented here, a new model should be built. 

Finally, as a general conclusion, Τ subscribe the statement of Biswas [ BIT5 1 

that: 

"The issue is very definitely on the side of having a model, even a emde one, 

against having no model at all". 
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SUMMARY 

In Analytical Chenistry a research topic is the development of optimal 

strategies for obxaining analytical information. 

These optimal strategies can be derived Ъу the application of mathematical 

models, a commonly accepted method in operations research, a branch of 

applied mathematics. 

This thesis describes the results of an investigation of the delay of 

samples in a laboratory for structural analysis. These results have been 

obtained by the application of queueing theory and digital simulation. Until 

now little attention was paid to the quantification of the effects of various 

factors on the delay in an analytical laboratory. The introductory chapter 

illustrates the importance of the study of delays with a discussion of the 

interactions between the analytical laboratory and the processes the samples 

originate from. 

In Chapter II, it is demonstrated that a laboratory for structural analysis 

(Philips Duphar B.V., Weesp) can be represented by a network of queues of 

samples, spectra and results. The h sections (i.r., p.m.г., m.s. and C13
-n.m.r.) 

are represented as the h nodes of that network. 

Many properties of the laboratory under investigation are characteristic for 

'open' networks, i.e. networks where (i) no correlation exists between the 

number of samples in the various nodes (ii) the sample stream towards a node 

is independent of the state in the node and (iii) the input- and output sample 
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flows are mutually independent and not autocorrelated. The histograms of the 

number of arrivals and departures per day are completely different. The 

histograms of Lhe delays in the sections were fitted Lo а К = ? Erlangian 

probability density function; the histograms of the number of arrivals to 

a Poisson distribution. The parameters of the distributions describing the 

analysis time are determined. The results of calculations on various 

theoretical models based upon queueing theory are presented in Chapter III. 

Although these models are too simple to provide exact results for the complex 

laboratory under investigation, a reasonably good forecast of the effect of 

some variables can be obtained. Clearly, the utilization factors of personnel 

and instruments have a strong effect on the delay. The delay tends to 

infinity when the utilisation factor approaches unity. 

The 'overhead' of the personnel has the same effect. When the sum of overhead 

and utilization factor approaches to unity, the delay becomes infinite, even 

for low utilization factors. 

Various groups of samples, with a different priority have a different delay. 

The inclusion of a cost factor attributed to waiting periods, enables to 

optimize the system. 

A digital simulation model of the investigated laboratory is presented in 

Chapter IV. With this model the forecasted effects, presented In Chapter TIT, 

are verified and quantified. Moreover, laboratory systems can be processed 

for which no simple theoretical models exist e.g. systems with state 

dependent decisions. 

Different strategies for sample priorities, sample routing, allocation of 

personnel and termination of the analysis are described. The usefulness of 

various statistical methods for model validation is examined. 

The simulation of the actual situation in the Philips Duphar laboratory is 

presented in Chapter V. The actual number of arrivals per day to the 

laboratory and to the individual sections could be adequately described by 

generating a Poisson distributed sample stream for each sample origin. 

The model not only describes the actual situation, but forecasts correctly 

the effect of modifications in the operation and organization which were 

implemented in a later period of the real laboratory. 

No significant differences were observed between the model and the actual 

laboratory as far as correlations between various variables, the mean delays 

and the mean number of samples in the various section are concerned. The time 

series of the number of waiting samples in the model can be described by a 
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first order autoregressive model. Tie frequency and magnitude of the 

fluctuations of the numoer of samples in model and reality are not significantly 

different. 

The variation coefficient of the delay could be minimized by assigning absolute 

priority to the samples that visited the most sections in the laboratory. 

The application of 'experimental design' techniques, described in Chapter VT, 

indicated that the delay of the samples is more sensitive to the mean value of 

the analysis timo than to its variation coefficient. Consequently, it is 

better to modify an analytical procedure in such a way that the mean analysis 

time is reduced, rather than the variation coefficient of the analysis time. 

A transformation of a decentralized organization (in which the personnel has 

experience with one analytical method only) to a centralized organization, 

where each analyst can operate all methods is only of advantage when the 

instrumentation is not a bottleneck, and the analysts have enough expertise 

to do the analysis beyond their own specialism. The mean delay of the laboratory 

can be decreased with 20% by assigning absolute priority to the samples with 

an estimated high interpretation tine (> 3 times the mean interpretation time). 

Furthermore, a ?h hour service can be established for some groups of samples 

(e.g. samples with very short interpretation times). The delay is very 

sensitive for variations in the density of the sample stream when no appropriate 

organizational measures are taken. Especially the p.m.r. section has a high 

saturation degree. Balancing the probabilities that the various sections can 

furnish the requested structure against the workload reduces the mean delay 

with approximately 15$. 

A batch sample imput to the system and a batch measurement of the samples 

influence the delay adversely (factor 1,b to 2), when no overhead reduction 

is obtained. 

When the non-analyzing activities of the personnel are limited to the non-

busy periods of the laboratory (N < 20), only a slight reduction (< 10$) of 

the delay will be obtained. 

An extension of the personnel without an extension of the instruments will 

have no effect. 

The priority between samples of various origins affects mainly the smallest 

group of samples. Therefore, a periodic control of the delays of the various 

groups of sanples is advocated. 
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SAMENVATTING 

Naast de ontwikkeling on verfijning van analysemethoden, is het tevens van 

belang strategieën te ontwerpen om analytische informatie op een optimale 

wijze te verkrijgen. Hiertoe zijn door enkele onderzoekers modellen gebruikt 

uit het vakgebied der Operations Research. Dit proefschrift omvat het onder­

zoek van de doorlooptijd van monsters in een laboratorium voor struktuur-

analyse met behulp van wachttijdentheorie en digitale simulatie. Binnen het 

vakgebied der analytische chemie hebben de faktoren die deze wachttijd 

beïnvloeden tot nog toe weinig aandacht gekregen. 

In het inleidende hoofdstuk wordt het belang van de studie van doorloop­

tijden van monsters aangetoond, door in te gaan op het systeem opdrachtgever-

analytisch laboratorium. Daarnaast wordt verduidelijkt waarom modelvorming 

de enige mogelijkheid is om laboratoriumsystemen te onderzoeken. 

Hoofdstuk II toont aan dat een laboratorium voor struktuuranalyse (Philips 

Duphar B.V., Weesp), voorgesteld kan worden als een netwerk van wachtrijen 

van monsters, spoktra en analyseresultaten. De k afdelingen (IR, PMR, M3 en 

CMR-spektrometrie) vormen de k knooppunten van dit netwerk. In vele opzichten 

komen de eigenschappen van het onderzochte netwerk overeen met deze van een 

'open' netwerk. Er is namelijk geen correlatie gevonden tussen het aantal aan­

wezige monsters in de verschillende knooppunten van het netwerk. Het aanbod naar 

de knooppunten is onafhankelijk van de toestand in het knooppunt zelf. 

Daarnaast zijn de uitgang en ingang van het netwerk onafhankelijk van elkaar 
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en niet geautocorrelecrd. De histogrammen van het aantal binnenkomende en 

vertrekkende monsters per dag zijn totaal verschillend gebleken. De histo­

grammen van de doorlooptijden in de knooppunten worden het best benaderd door 

een к = 2 Erlang kansdichtheidsverdeling. De histogrammen van het aantal 

binnenkomende monsters door een Poiss'.on verdeling. De parameters van de ver-

delin
b
c:n van aanbod en analysetijden worden bepaald. 

Hoofdstuk ITI geeft, de resultaten weer van een literatuuronderzoek naar enkele 

theoretische modellen uit de wachttijdentheorie. Niettegenstaande deze modellen 

tè eenvoudig zijn om een complex systeem als een laboratorium exact te kunnen 

beschrijven, kan toch een redelijke schatting verkregen worden van de gevoelig­

heid van het laboratorium voor een aantal faktoren. De belangrijkste faktoren 

zijn ondermeer: de bezettingsgraad van het personeel en instrumentarium. De 

doorlooptijd wordt oneindig groot bij een bezettingsgraad naderend tot 1. Van 

even grote invloed is de grootte van de 'overhead' van het personeel. Indiër. 

de som van Overhead' en bezettingsgraad tot 1 nadert, wordt de doorlooptijd 

eveneens oneindig groot, zelfs bij lage bezettingsgraden. Door het aanleggen 

van prioriteitsregels tussen verschillende groepen monsters, kunnen deze 

monsters sterk verschillende doorlooptijden verkrijgen. 

Hoofdstuk IV beschrijft een digitaal simulatiemodel van een laboratorium 

voor structuuranalyse. Met dit model kunnen de in hoofdstuk III voorspelde 

effecten geverifieerd en gekwantificeerd worden. Daarenboven wordt het mogelijk 

om situaties door te rekenen waarvoor geen vereenvoudigde theoretische modellen 

beschikbaar zijn zoals b.v. het invoeren var. toestar.dsafhankelijke beslissingen. 

Mogelijke strategieën voor mensterprioriteit, mor.sterrouting, personeelsalloca­

tie en afbreken van analyses zijn beschreven. Statistische methoden cm het mo­

del te valideren zijn op hun bruikbaarheid getoetst. 

In hoofdstuk V wordt de simulatie van de actuele situatie bij Fhilips-Duphar 

besproken. Ket monsteraanbod naar het laboratorium en de verschillende afde­

lingen kon beschreven worden door eer. Poisson verdeelde monsterstroom per 

opdrachtgever. Het model beschreef niet alleen in voldoende mate de situatie 

die gebruikt werd om het model op te stellen, maar voorspelde tevens het ge­

drag van het laboratorium een jaar vooruit. Dit betekent dat zowel de gevonden 

correlaties tussen de verschillende variabelen, als de gemiddelde doorloop­

tijden en het aantal wachtenden in de verschillende afdelingen in model en 

reële situatie, niet significant verschillend zijn. Een autoregressief model 

van de eerste orde beschrijft het gedrag van het aantal wachtende monsters 

over de tijd in het simulatiemodel. De snelheid en grootte van de fluctuaties 
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van het aantal wachtende monsters in model en realiteit zijn dus niet 

significant verschillend. 

Gebleken is dat de variatiecoëfficient van de doorlooptijd van de monsters 

minimaal wordt indien in de afdelingen absolute prioriteit wordt verleend 

aan de monsters dio intern zijn doorgestuurd. 

Experimenten met het model, ondermeer via 'experimental design' technieken 

opgezet (hfst. V I ) , tonen aan dat de doorlooptijd van de monsterb 

gevoeliger is voor de gemiddelde analysetijd. Dit hetoker.t dat, bij standaar­

disatie van analysemethoden eerder gezocht moet worden naar een verlaging van 

de gemiddelde waarde dan van de spreiding van de analysetijd. De omschakeling 

van een gedecentraliseerde organisatie (waar het personeel slechts ervaring 

heeft met 1 analysemethode) naar een gecentraliseerde organisatie heeft 

slechts zin indien de apparatuur geen knelpunt vormt en het personeel vol­

doende ervaring heeft in de methoden buiten hun specialiteit. Prioriteit op 

basis van een geschatte interpretatietijd, waarbij monsters met een hoge 

geschatte waarde (> 3x gemiddelde waarde) absolute voorrang moeten geven aan 

alle andere monsters, kan de gemiddelde doorlooptijd met ?0% doen afnemen. 

Het is verder mogelijk een 2k uurs service in te voeren voor een bepaalde 

groep monsters (vereisen nauwelijks enige interpretatietijd). Bij gelijkblij­

vende laboratorium organisatie is de doorlooptijd sterk afhankelijk van verho­

ging van het aanbod (b0% toename van de doorlooptijd bij 15% toename van het 

aanbod). Vooral de PMR afdeling v o m t hierbij het knelpunt. Ken afweging van 

de waarschijnlijkheid dat de verschillende afdelingen het analyseprobleem 

kunnen oplossen on hun bezettingsgraad reduceert de doorlooptijd ongeveer met 

15$. Het batchgewijs aanbieden van de monsters heeft over het algemeen een 

verhogende invloed op de doorlooptijd (faktor 1,5 tot 2 ) , indien geen bespa­

ring op de overhead verkregen wordt door een batchgewijze analyse. Het beperken 

van de overige werkzaamheden (b.v. eigen onderzoek) van het personeel tot deze 

periodes waarop slechts weinig monsters in het laboratorium aanwezig zijn 

(N < 20) heeft slechts een beperkte invloed op de doorlooptijd (< 10$). Uit­

breiding van het personeel zonder uitbreiding van het instrumentarium zal 

slechts geringe invloed hebben. De gehanteerde prioriteitsregels tussen mon­

sters van verschillende opdrachtgevers zullen vooral de monsters met een 

relatief laag aanbod sterk beïnvloeden. Geregelde controle van de doorloop­

tijden van de verschillende groepen monsters is dus noodzakelijk. 
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