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CHAPTER 1

INTRODUCTION

1. General introduction

Analytical chemists should produce qualified and relevant infi..rmation
about products and processes in an optimal way [GO72, KATL] or at least
provide the strategies to do so [KAT9].

Basically, the main tool for the extraction of the requested information,
available to the analytical chemist, is the analytical procedure, which is

the way the determination of the identity and/or amount of the compounds is
effected.

The selection of the best analytical mcthod for solving a given problem is a
task, with which the analytical chemist is confronted daily. Although many
comparisons between various analytical methods are reported freduently, still
no systematical strategy exists to select the best method.

Vandeginste [ VA7TT] made an attempt to select between atomic absorption ard
u.v.-v.i.s. absorption spectrometry by pattern recognition. This research
clearly demonstrates that before trying to solve the method-selection problem,
the analytical chemist has to collect a large amount of data that relates the
analytical procedures to their analytical problems. To my knowledge, up to now
such collections have never been assembled to this purpose.

Apart from the creation of strategies for procedure selectiorn, the optimization
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of existing and development of new analytical procedures remains extremely
important. Moreover, nowadays,sopnisticated data nandling is more and more
required for the extraction of useful information from single or combined
analytical results [ VIT7, RET3, VS76]. Consequently the analytical chemist
mus* study these data handling methods and pay attention to their limitalions
[ VATS5] and applicability.

Clearly, the amount of informatlion of a single analysis or a serics of
analyses depends on the difference of the uncertainty about the product or
process, before and after the analytical result is obtained.

Miskens [MUT8] and others [GRT3, VJ7T] have shown that the sampling frequency,
the accuracy of the analysis and the dead time, or delay timc of the analysis
determine the possibility of controlling a process. Optimal control is achieved
when the sun of analysis and process costs is minimal. The analysis costs are
mainly determined by the analytical accuracy, sampling frequency and delay
iime. Therefore, it is important to minimize costs of analytical resvonse time
and accuracy. The delay time consistis of two paris: the real analysis time and
the walting time in the laboratory, which is the time lag between the moment
the sample is received at the laboratory and :he start of the analysis. The
delay of samples in an analytical laboratory normally exceeds the analysis
time greatly as most of the time is spent waiting. Therefore, the study of the
organization of analytical laboratories is important, especially the process
of queueing.

Delay times are directly related to the costs of the analysis, as there exists
a relation between the amount of facilities (analysts- and apparatus) and
delay time. This leads to the next level of optimization the analytical
chemist is concerned with, namely the optimization of combinations of
analytical procedures.

All these developments led to the inclusion of new mathematical techniques
such as information theory, pattern recognition, operations research and
control theory, in the scope of analytical canemistry [KO78]. This helps

the analytical chemist in producing better analytical information in an

optimal way.
2. Problem formulation

Clearly, the quantitative study of waiting line situations in analytical

leboratories should permit a better use of the capacity of laboratories and



a reduction of delays. However, up to now only a few studies have been
reported on laboratory activities [VATL, SCT6, SCTT].

Obviously, ar aralytical laboratory is a complex organization, which can be
defined as follows: "It is the rational coordination of the activities of a
number of people for the achievement of some common explicit analysis or
analytical goals, through division of labour and function and through a
hierarchy of authority and responsibility™, Cook [ COT6].

It is evident that the goal of a search for quantitative relations between
several variables in the laboratory should rever be a substitute for human
creativity or numan flexibility. However, it should be an aid for the
analytical chemist in decision-making. A complex organirzation such as an
analytical laboratory really is, can never be simplified to a model governed
by & set of strictly mathematical rules. Clearly human response under different
conditions is difficultly predictable. In contrast, it is impossible to study
the mentioned relations from experiments with the real laboratory itself.
Therefore, some allernative system snould be used, a so-called model, which
is similar to Lhe real system in the characteristics of interest. This
alternative system canrot be expected to exactly reproduce these
characteristics of interest. This is the price to be paid for simplicity and
accessibility of the alternative system.

In the work described here, a model is constructed and validated for an
existing laboratory for molecular spectroscopic analysis, dcaling with i.r.,
p.m.r., Bcon.m.r. and m.s. analyses. In this model the time lag between

the arrival of a sample and the production of the analytical result is studied.
In an analytical laboratory and especially a spectroscopic laboratory various
questions should be answered:

First of all the question about forecasting the delay time as a function of
the mean sample traffic, number of analysts and instruments. Thercafter,
strategies should be determined for the selection of the analytical method
taking into account the estimated probability the various analytical methods
might solve the requested structure, and the state (queue lengths, available
capacity) of the laboratory. Also decision rules must indicate the best mode
of action after an analytical mcthod fails to elucidate the structure.
Finally, the assignment of priorities involves priority between samples from
different research groups, priority between samples unsuccessfully analyzed,
and priority of ‘'easy' (short analysis times) over 'difficult' problems

(long analysis times).



There are various types of priority disciplines:

When an absolute priority rule is applied, all samples of a higher priority
are always analyzed before samples of a lower priority irrespective of their
waiting time. In contrast, Lhe application of a time dependent priority rule or
dynamic priority, has the effect of considering some samples to have a higher
priority than others, but takes into account the undesirability of having low
priority samples walt too long.

Another effect that should be clarified is the influence of other activities
of the analyst, who interrupts the analytical process, while still samples

are waiting.

Generally speaking, two types of models are suitable for this study.

In the first place, strictly mathematical models with theoretically deduced
solutions, developed in queueing theory. Secondly, simulation mcdels which
describe the operation of the real system in terms of individuaml events of
the individual elements or compounds of the system.

In complex systems of networks of queucs, such as analytical laboratories,
consisting of multiserver nodes and governed by state-dependent decision
rules, queueing theory cannot provide exact results. However, queueing theory
gives a good picture of the behaviour of queues in very simple single server
systems. Because an investigation which is not based upon a theory or a
formal hypothesis is just blind groping in the dark, the effect of various
variables and strategies for those simple singie server syslems were
calculated firstly by queueing theory, giving a hypothesis about the effects
to be expected from the simulation experiments. Furthermore, simulations of
those simple systems confirmed the validity of the simulation model.

Model building requires a knowledge of computer programming, statistics,
probability theory and experimental optimization techniques. Becausc in a
simulation model a great number of variables is involved, a good experimental
optimization method is very important in order to obtain the desired
information.

Computer simulation experiments and modelling in general, usually consists

of the following stages [ NA66]:

After the formulation of the problem (Chapier I), laboratory data should

be collected and processed (Chapter II), such as the interarrival times of
the samples, the mean down time of the instruments and the delay times of

the samples. Some of these observations, such as those concerning the arrival

of samples and the delivery of the analytical results can be obtained fron
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the book-keeping of the laboratory. Cther data can be obtained from
interviews with the analysts, e.g. to find out which priority policies are
used to select an analytical method in the laboratory.

The most difficult and time-consuming stage of computer simulation is the
formulation of the mathematical model. Because here all varisbles, parameters
and relationships must be specified (Chapter IV). The variables are selected
on the basis of an es%timate of their relative importance (Chapter III). If
one or more important variables are missed, the simulation results become
inaccurate., In contrast the inclusion of too many variables renders the
computer simulation ncedessly cormpiex.

The next stage is to estimate the parameters of the distributions of several
variables (Chapter II), including tests for autocorrelation. To do this,
various statistical <ests can be used.

The most important stage of the simulation is the validation of the computer
model (Chapter V). Some assurance of lhe validity of forecasts of future
behaviour of the modelled laboratory, can be provided by a demonstration that
for at least one alternative version of the simulated system and one set of
conditions, ilhe model produces results that are consistent with the known
performance of the investigated laboratory.

The ultimate test of a computer simulation model is the degree of accuracy
with which the model predicts the behaviour of the actual system in the
future (Chapter V).

Once the validity of the computer modcl is satisfactory, the model can be
used to conduct actual simulation experiments, which may be designed by

experimental design techriques (Chapter VI).
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CHAPTER 2

THE DESCRIPTION OF DELAY AND QUEUE BEHAVIOUR IN

A LABORATORY FOR STRUCTURAL ANALYSIS

A first step towards modelling reality is the collection and processing
of data from the system considered. During the period 1/6/1976 - 1/6/1978,
the arrival dates of all samples at the various analytical sections and the
dates of completion of the analysis were registered in the spectroscopic
laboratory for structural analysis at Philips-Duphar B.V. at Weesp,
the Netherlands.
Tne data from 1/6/1976 - 1/6/1977 were used to determine various parameters
of the system and to validate +he simulation model, described in Chapter IV.
The data from 1/6/1977 - 1/6/1978 were used to test the predicting power of
the simulation model.
The laboratory receives about 3000 samples per year. These sarples are
analyzed in four sections: infrared (i.r.), proton magnetic resonance (p.m.r.),
mass (m.s.), and carbon nuclear magnetic resonance ( ®C-n.m.».) spectrometry. The
analysis consists of two steps: the measurement and the interpretation of the
spectrum.
From the collected observations the statistical properties of the flow through

the network and the queue levels in each scction could be caiculated.

Published in part in:
B.G.M. Vandeginste, Analyt. Chim. Acta, CTO, accepted for publication.
B.G.M. Vandeginste, Communication presented at the IUPAC Congress, Helsinki

(1979)



1. The laboratory: a network of queues

The laboratory under investigation can be considered as an open network,
consisting of 4 nodes (the 4 sections) which receive samples from two
different origins. In an open network, samples arrive from exsernal sources
(the environment) and each sample eventually leaves the system. Tn contrast,
in a closed network, the samples circulate through the network without
exterral arrivals or departures [LE77]. An open network where the samples
visit a node only once is called an open acyclic network.

In Fig. TI-1, a sketch is given of the network of the analytical sections.
The arrows connecting each section indicate the direction of the sample flow.

The mean flow (samples per day) towards and from each section is also given,
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Fig. II-1: The sample flow (samples/day) through the laboratory network.
(numbers in parentheses are simulated data) T: mean delay time, \: sample flow

Although similar networks of servers are quite common, a relatively small
theoretical basis exists for analyzing networks of queues. An excellent review
and critique of the results available for modelling networks of queues with
random flows 1s given by Lemcine [LE77].

The total sample flow to and from each node (section) is tabulated in
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table II-1. Tnese observalions indicate that the total flow in the network
exceeds the number of received samples, as on tne average more than 1 analysis

(1.28) is done on a sample.

Table TI-1

Mean, and variance of input and output Flow (samples per day) at the
spectrosceopic laboratory of Philips-Duphar, period 1/6/1976 - 1/6/1977

Section input (samples/day) output (samples/day)
mean  variance mean variance
I.r. 2.8 13.2 2.8 7.5
P.m.r. 7.7 20.3 T.7 50.0
M.s. 2.1 b2 2.1 5.9
Be_nam.r. 2.5 L2 2.5 11.1
Total 15.1 15.1
Lab 11.8 Lk, 1 11.8 77.6

From the flow through the network, the conditional probability (pji) of
transfer of samples from one to another section could be established
(Table II-2). Moreover, the probability could be calcuiated that a method
will be selected in the first instance or afier one or more otlther methods

failed (Table IT-3).

Table II-2

Conditional probabilities (p.i) of transfer of samples from one to another
section, and the probabilityJ (q;) that a sample in node (1) leaves the
system

fro;\QS ouUT (qi) i.r. D.m.T. m.s. Beon.m.r,
ouUT - 0.17 0.57 0.10 0.16
I.r. 0.68 - 0.17 0.08 0.07
P.m.r. 0.83 0.06 - 0.07 0.03
M.s. 0.70 0.08 0.17 - 0.05
Beon.m.r. 0.83 0.07 0.05 0.06 -




Table II-3
Probabilities of the methods to be selecred

i.r. p.m.r. Tr.s. Beon.m.r. | % of samples
completed

first selection 0.17 C.57 0.10 0.16 9.6

% good 0.65 0.84 0.72 0.8L

second 0.27 C.29 0.29 0.15 9k.5

% good 0.76 0.76 0.6L4 0.78

third 0.21 0.29 0.28 0.22 98.3

% good 0.58 0.72 0.78 0.69

fourth 0.2 0.27 0.25 0.2

our 5 5 3 99.8

% good 0.92 0.85 0.83 0.91

Jackson [JAST] derived a balance or conservation equation [Eqn. II-1] for
open networks, describing the equilibrium rate of flow through node i, o
as the sum of the external input rate Aj, and the total rate of internal

N
transfers to node i, y P;j0s
Y

j=1"
G: = A + I p,.a. i=1, ... N TI-1
1 1 =1 JiJ

with Ps; the probability that a sample leaves node jtowards node i. For each
section (i), the external arrival rate (Ai) and total arrival rate (ai) were
determined (Table IT-4).

The departure flow rate from section (i) equals aiqi, where qa; represents the
probability that a sample in section (i) leaves the system.

These values are tabulated in TablesII-2 and TI-4. Substitution of the values
o Ai
valid for the laboratory. Moreover, as a{i) and A(i) are different from zero

and pji in Eqn. II-? demonstrates that the conservation equation is

for each section the network is open.

Table II-4

Verification of the balance equation

Section Acbserved oooserved o~calculated o.q, =Y
I.r. 2.01 2.8 2.81 1.90
P.m.r. 6.73 7.7 7.68 6.39
M.s. 1.18 2.1 2.09 1.07
Beon.m.r. 1.89 2.5 2.k2 2.08
Sum 11.81 11,8l
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At equilibrium the total external input flow rate to the network equals the
total external departure flow rate.
Thus

N N

LA, = X o.q. I1-2
. 1 . 14

1=1 1=1

The validity of Eqn. IT-2 in our system is shown in Table II-h.
2. Input and output of the laboratory

2.1 Probability dersity functions

When the aggregate effect of a large number of individuals or particles is

under observation in nature, often Poisson processes appear.

A Poisson process appears wnen the following conditions are fulfilled:

(i) the number of events (the number of arrivals) is a random variable which
is independent for non overlapping time intervals.

(ii) the probability of a definite number of events during a certain time
interval is only dependen® on the length of that interval. For all
intervals of constant length this probability is equal, and is
independent of the absolute time t.

(iii) the probability of a single event during a small interval is proportional
to the length of that interval. The probability of more than one event in
such an interval is negligible.

The Poisson process is widely used in queueing theory. Nurerous examples have

been shown that in many queueing problems (e.g. telepnore calis [KL7<],

airplane arrivals [AC48), patient arrivals in a hospital), the arrival

process (e.g. the number of arrivals per day) can be modelled by a Poisson

distribution.

When the external input to an open nctwork has a Poisson distritution, and the

external input sireams are assumed to be independent, and the analysis rate is

also irndeperdent of the sample arrivals, then [JAS7] each node in the network
behaves as an indevendent queue with Poisson input. This facilitates the study
of networks of queues considerably.

Therefore, the arrival processes of the samples at the laboratory and at each

individual section were compared to the *heoretical Poisson distribution.

Fig. II-2 shows the calculated histograms and best fitting Poisson distribution.

A goodness of fit test by means of a Chi-squarc test (a suitable test for

discrete distributions [XR70]) indicated tThat the arrival distribution

functions were significantly different from the Poisson distribution.
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In nmost cases, Jays wilh a smal number cf arrivals occurred -oo freqaeat'y.
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Consequensly, the possibility to get exact results from the application of
queueing theory becomes hampered. Fig. TI-3 indicates clearly that the
probability density function (p.d.f.) of the output rate is completely

different from the p.d.f. of the input rate, and is far from a Poisson process.
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2.2 Autocorrelation functions of input and output flow

An autocorrelation analysis is applied to investigate the fluctuations of a
process variable during a certain observation period. Since the autocorrelation
function of a stochastic stationary variable tends to zero, deterministic parts
of the signal are easily detected [MUT78].

Autocorrelograms of the input and output rate were calculated for two reasons:

(i) when the input and output streams meet certain conditions (such as the
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independency of the number of arrivals each day), aralytical results may be
easier obtained from queueing theory [LET7]. (ii) The statistical description
of a system variable is not complete, when only the probability density
function is known. Here, the correlation between the value of a system variable
at different times should be determined. This completes the deécription of

the input to the laboratory, necessary to crcate a similar input process in

the simulation model (Chapter IV).

2.2.1 Theory
When a stochastic process generates random variables (e.g. the number of

samples arriving per day) and there is a random variable x, for each time t,

t
a time serics is observed. A common property of time series is the

covariance of [x - y] and [xt - ul, where T is the time lag, i.e. the

t+T
number of time intervals between the respective values of the time series.
For stationary processes, the covariance function wxx(r) and autocorrelation
function ¢XX(T) for a time lag T are respectively defined as [GRT3]:

v (1) = E[(xt—u) < (x,, -u)] II-3

t+T

¢ (1) =

XX wxx

(T)/wxx(O) I1-L

The autocorrelation function of a first order stochastic stationary time series

has an exponential shape [MUT78]

- T/
0. (1) = e x I1-5
Tx is called the time constant of the time series. T;1 is a measure for the
frequency of the fluctuations of the time series. A large value of T,
indicates that the variations are slow. In contrast, a low value of Tx is
found when the variations are fast (Fig. IT-4). The autocorrelation function
of a discrete time series can be estimated from Egn. II-6
N-t
I =X .. -x)/s? -
=1(x1 x)(xl+T x)/sx I1-6

where s; is the estimated variance of x and N the number of observations.
When the time series is composed from a deterministic part and a stochastic
part, the stochastic part of the time series does not contribute to the

autocorrelation for sufficiently large values of T and the deterministic part

1L



can be detected., For example, Miskens [MUT8] calculated the autocorrelation
function of a time series composed from a stochastic pari (et) and a

deterministic part

f, = A_sirn (2mt/L+B_) II-
s = A (2t /LB 7
with Ele,] =90, and Elx ] = £(t)

The autocorrelation furction of x, approximately equals

t

(1) = [%A; cos{2mt/L) + 0: . ¢ee(r)]/(%A; + 0;) 11-8

Because the autocorrelation function has to be calculated from a finite time
series, the accuracy of the estimation of this function should be established.

Bartlett [BA4L6, BOTO] derived the variance of the estimated autocorrelation

e (T)

jereo
o?[p, (1)] = 3= j;z_mw;x(j) + 0 (5-1) .o (G+r) + 262 (1) . 92 (§) -
Mo (1) .o (5) .6 (5-T)] I1-9

Since the theoretical autocorrelation function has the exponential shape
(Eqn. II-S), the variance equals
( 2
(4 (1)) (192 (1))

o®[¢ ()] = ﬁ%; { (=6, 1) - 219, (1)] I1-10

Consequently, the estimation of the autocorrelation function equals

¢xx(r) + ulP) . 0[¢xx(r)l TI-11

with u(P) the excentricity of the normal distribution with a confidence of P%.

2.2.2 The observed autocorrelograms of sample input and output of the laboratory,
The autocorrelograms of the number of daily arrivals at and daily departures
from the individual sections and the total laboratory were calculated

according to Eqn. IT-6 and are stown in Fig. II-L and II-5. The auto-
correlograms of the input indicate that the input processes are 1ot
autocorrelated.

These observations indicate that the number of arrivals on one day cannct be

15



forecasted from the number of arrivals at the preceeding day. In contrast to
these observations tnc autocorrelograms of tne outpuw process (Fig. TT-5)
show a distinct deviation from tae expcnentizl shave.

The autocorrelogram of the output of the laberatory reveals a periodicity of
;

5 days, suspecting the laboratory to rclease the analytical results with a

periodicity of 5 days.
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3. The queue levels in the network

3.1 Autocorrelograms and histograms of the queue levels
Sirce data on gqueue sizes were not explicitely available of this nctwork of
analytical sections, the queue sizes were calculated from the differences

between input and output each day.
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The queue size here is defined as the total rumber cof samples, including
spectra and samples under investigation, which are preseni in the laboratory,
or in a node of the network. As an analytical scction {e.g. mass spectromelry)
is represented as a node of the network, no discrimination was made between
queues of samples waiting for an instrument or analyst, and the various piles
of spcctra belonging to each analyst.

Fig. TI-6 shows the fluctuations of the number of samples in qucue, with a
sample interval of 1 day, with their histograms.

Kolmogorov-Smirnov tests [K-S] [XR70] executed on the relative cumulative
density functions indicated that no signrificant difference could be detected
with the Gaussian relative cumulative density function having the same mean
and standard deviation.

Strictly the K-S test may only be applied on uncorrelated observations.

For correlated observations a greater probability that a given value will

be exceeded, should be taken into account

From the calculated autocorrelation functions of the queue sizes, shown in
¥ig, II-7 it is easily seen that the queue sizes are highly autocorrelated.
Because testing procedures for comparing historical data and data obtained
by digital simulation can be characterized by autoregressive models, and
because serial correlation in time 1s itself often an important characteristic
of the simulated system, the parameters of autoregressive models of queue
sizes were calculated.

The resuits of fitting an autoregressive model of order 1 (AR(1)) to these
time series are presented in Table II-5.

The algorithm of an AR model of order p equals

Ny = 0qNp g * 0N 5+ eee O+ a II-12

where Nt = nt-ﬁ is the difference in the queue level from the mean level
at time t and %;is a normal random variable with mean zero and variance 0;,
the so called residual variarce,d, ... ¢p are the parameters of a AR(p)

model.
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Table II-5

Summary of the AR(1) model parameters of the queue lengths (mumber of waiting
samples)

parametcrs I I.r. P.m.r. M.s. Beon.m.r. LA3

mean of ‘1.5 39.1 13.9 16.8 81.4
series

variance of 46.2 228.0 34.8 43.6 582.7
series

$, 0.83 0.81 0.85 0.8t ¢.83
95% +0.17 + 0,17 0,17 40,17 + 0.17

var [at] 14. 37 78.4 9.7 15.0 181.3

Wien the AR(1) model is adequatec, the dependence of N, cn <he past history

t
is completely accounted for by the term ¢1N in the model.

For a first order model, ¢1 is equal to the :u;ocorrelation function at
=1 (¢xx(1)) and all highcr order terms (¢2 - ¢n) are nol significantly
different from zero.

The parameters ¢1 and eventually ¢2 follow from the autocorrelation values

¢xx(1) and ¢xx(2) according to the Yule-Walker equatiows [B070]
o, = Lo (N0 - ¢ NI/ - P, (1D?) TI-13

o, =[o (2) - ¢, (D21 - ¢xx(1)2) TT-1%

For a first order AR model ¢xx(?) s ¢xx(1)2 (Egqn. TI-5) and tnereforec,
¢, =0 and ¢, = ¢ (1)

The residuals a, are independent variables, thus a
its own past history a

£ does not depend upon

a, eee, OF E[at, at_T]= 0 for T#0

t-17 Tg-2
From the equation a, = N - 6N, _, it follows that the residual variance
equaals
N N
2 2 2
ol =L (al) = L (N -¢.N_.) 1I-15
N P T

Straign® forward claboration of tae laticr equa*ion yields for AR(1) models
2 _ 2 _ a2 ~
g, = op(1 $7) IT-16
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where U§ .s the var.ance of the time series.

Verification of the relation ¢XX(2) = ¢xx(1)2 proved the validity of the AR(1)
model. A remarkable result from the model parameters listed in Table IZ-5 1s
that althoagh the number of facilities 1n the various analytical sections 1is
quite different, and also the queue levels are very differing, the time

constants of the time series of the queues are quite similar.
4. The analysis times at the departments

The measuring times and interpretatior times of every fourth sample
arriving at the laboratory were rccorded during approximately two monihs
by the analyst who does the analysais.
The sample preparation was included in the mreasuring time, but the transfer
times and admnistration times, directly coupled with the analysis of the
sample were excluded. Because the mears of thesec Times were calculated during
a relatively short period (in comparison tc the observation period of the
laboratory), and the small size of the sample, only rough estimations (Si =
10 - 15%) of these means could be obtained (Taple II-6). Because the low
accuracy of tne measured standard error (s;\ (F-test) only a rough estimate

of the variation coefficient was obtained (Table II-6).

Table II-6

Statistical parameters of the measuring and interpretation times

Section measurement time (hrs) interpretation time (hrs)
numoer mean 85 si ci mean S= 52 c;
of obs. x x

I.r. 18 0.42 0.04 0.029 0.2 +0.5 0.72 0.11 0.20 O.hj:1.2

P.m.r. 132 0.L8 0.01 0.020 0.1 +0.05 0.93 0.07 0.67 0.8+0.7

M.s. 3C 0.62 0.07 0.152 0.k +0.8 0.88 0.12 9.45 0.6+1.2

Beonamar.| 15 1.83  0.18 0.476 0.14+0.5 1.57 0.37 2.0k 0.8+3.2

5. The delays in the network

5.1 Statistical parameters of the delay times
Various delay times can be distinguished 1n the laboratory, depending on which

group or class of samples 1s considered.
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Firstly, the delay time of all samples wilh the same final analytical method,
or subjected to the same number of analyses can be distinguished. Secondly, the
delays in the sections, and the mean overall delay of all samples.
Considerirg the dclays in one section, samples which were or were not analyzed
before in another section can be distinguished. The means and variances of

mentioned delay times are prescnted in Table IT-T.

Table [I-7

Summary of the parameters of the delays in the invesiigated laboratory

Section
parameler I.r. P.m.r. M.s. Beon.m.r. LAB
mean (days) b1 5.1 6.7 6.7 6.98
variance 2L, 7 21.2 7.4 37.0 55.25
best fitting F(x) 2-Fr 2-Er 2-Er 2-Er
: : !

dmax(%) 8.u3 4,27 .09 3.52

S )
d0.95(%) 5-98 )4-314 6-73 6-2*

samples with the same final method

I.r. P.m.r. M.s. Be_n.om.r.
mean (days) 6.2 5.9 9.8 8.3
variance 37.0 68.7 33.2 96.6

samples with the same number of analysis

1 2 3 I
mean (days) 5.1 11.1 19.7 26.8
variance 18.6 6e.8 165.6 356.0

The histograms of these delay times are presented in Fig. II-8 en IT-9.
Kolmogorov-Smirnov tests executed on the delay times in the sections
indicated that the two-stage Erlangian distribution was the best fitting
distribution.

The probability density function of the r-siage Erlang function equals [KL75]
-1e—rux

r(x) = EELEEX)r
(r=1)!

IT-17

2ux

for r=2 f(x) = hque- , with a mean &, and with a cumulative density
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Fanction equa. to

PHX

F(x) = 1=-{2ux + 1)e” I1I-18

0] 8 ~X L

[v]

5 10 15 20 T

5 10 15 20 T

[days]

Fig. II-8: (a) Histograms of the delays (T) (days) in the sections of the
laboratory. < Fiited two stage Frlingian distribution. (b) Histograms of
the delays (T) (Jaye) of the samples with the same final analytical method.
Shaded figures are the cumulative density functions of the histograms.
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In Chapter TITI, it will be demonstrated that
this exponential shape of the cumuiative
density function of the waiting time is
very characteristic for many waiting time
systems.

The histogram of the cverall delay in the
laboratory indicates that the 'a oriori'
probability to obtain the resuli within

21 days equals 95%. The delay time of an
individual analytical result may depend

on tne state of the laboratory, especcially
the number of waiting samples in front of
*the arriving sample. Fig. II-10 describes
the conditional probability function of
the delay, as a function of the total
number of samples in the system at the
moment of the arrival of the sample. It

is seen that no dependence of the delay

on the stale of the laboratory can be

detected.
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Fig. II-10: Conditional 0.95 probability Llimit
for a sample to be analyzed within a delay

) as a function of the rumber () of

(T,
samﬁ%%s in the laboratory. correlation
coeffictent: p = 0.23



Table II-8 also demonstrates thal the strategy on sample priorities, as appiled
1n the laboratory, resulis 1n longer delay times at the m.s. and C-n.m.r.
sections for samples which were submitted unsuccessfully to other araly*ical

nethods.

Table II-8

Comparison of the delay times at the analytical sections for samples which
were directly received from the ervirowment, and samples which were
unsuccessfully sabmitted to other analytical methods

Section delay (deys)
not submitted before submitied pefore Student's t

mean var\T) mean var(™) value
I.r. 3.9 0.07 b 0.25 0.L5
P.m.r. 5.1 0.02 5.3 0.20 1.46
M.s. 5.8 9.13 7.9 0.32 3.5 *
Ben.m.r. 6.1 0.10 8.9 0.43 3.6 *
AB 6.1 0.10 6.5 0.08 s ¥
*t

0.005 (200) = 2.6

The variance of tne estimation of T (var(T)) in Table II-T 1s corrected for
autocorrelation in the data. Assuming a first order AR process, the variance
of T (var(T)) can be caleculated according to [WATS5, MO6T],

var(T) = var(g) [1+

N
¢ -9
L 1

3, - N(1_¢1))] II-10

There are two principal rastomers of the facilities of the analytical
laboratory, denoted as F1 and F2. When the samples of both users have the
same priority, one should expcct treir delays to be equal.

The data compiled i1n Table IT-9, demonstrate that the F1 samples have a
smaller overall delay than the F2 samples.

However, the data base of both groups was to small to allow a conclusion

on which section(s) give different priority.
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Table II-9

Comparison of the delays of F1 and F2 samples

Section 1 F2 Student's t
T var(T) T var(T) value
I.r. 3.81 0.0k 4,92 0.35 1.76
P.m.r. 4,98 0.03 5.29 0.06 1.0
M.s. 6.68 0.1% 6.98 0.52 0.37
Beon.m.r. €.30 0.12 8.1 0.52 2.25
samples with the
sane exit node
I.r, 5.33 0.2h 8.88 101k 3.02
P.m.r. 5.79 0.0% 6.25 0.11 1.0
M.s. 9.k49 0.43 11.h2 1.65 1.3
Beon.m.r. 7.96 0.25 9.h7 1.16 1.3
samples with the
same number of :
visited sections
1 .82 0.0? 5.63 0.07k4 2.67
2 11.16 0.36 11.12 0.59 0.0L
3 19.41 1.5 20.67 7.08 0.43
b 8.0 14.8 24 .67 15.0 0.61
overall 6.63 0.03 7.50 0.10 2.k

t (1 side) = 2.33

0.01

6. Cross correlations in the network

A property of an oper network of queues is that the number of samples at

the various nodes at each time point is an independent random variable [LETT]

i.c.

department should not be correlated. Moreover, it is proven [LET7] that the

the fluctuations of the number of samples in each analytical

traffic flows on the various exit arcs of the network are independent

processes under equilibrium conditions. Both properties were verified by

calculating the cross correlograms of the sample flow from and to each

analytical section according to the algorithm:

¢yx(r)

} E[(yt—uy)(x

u_)]

L+T "X

/E[y-uy]zE[x-ux]Z

II-20
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The cross corrclogram of a finite discrete Lime series can be estimated

according to

W=t (y;-9) (x5, %)

¢ (1) = & ————— II-21
vX 521 (N—T—1)sx.sy
The cross correlation is significantly differing from zero when
{~+ -
0, (%) 2 ulPlol o, (1))
witlh
(1) (1)
2 1 XX Yy .
o*lp, (1)1 — . (MUT81] 11-27
yX N-t 1-¢Xx(1).¢w(1)

Tne results of this test are listed in Table IT-10. It shows that the number
of samples in each section are not mutually correlated. This implies that a
large number of waiting samples in one sectior does not necessarily mean

that the other sections are also saturated.

Table IT-10

Correlation at 1=0 between the number of samples in
each section (99% confidence interval)

I.r. P.m.r. M.s. 1BC-n.m.r.

I.r. 1 0.3 0.3 0.3
+0.39 +0.36 +0.38

®.m.r. 1 0.3 0.3
+0.39 +0.38

M.s. 1 0.2
+0.36

B n.m.r. 1

Cross correlations between the input flow and number of samples in the
system (table TI-11) show that the arrival processes do hardly depend on
the state of the system. The number of samples sent to a section does not
deperd on the saturation of that section. Thus samples are not preferably
moved to that section with the lowest saturation.

The corrclations between the number cf samples (x) in a section and the
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delay (y) of the samples arriving at a scction are significantly different
from zerc (Table IZ-12), but the correlations are too small to allow tae
conclusion tnat the fluctuations of the delay time arc corpletely explained
by the fluctuations in the number of waiting samples, whereas the residual

variance is more tnan 90% of th~ total variance.

Table IT-11
Correlation between the input flow (r) and nwber of samples in the system

I.r. P.n.r. M.s. BCon.m.r.
¢xy 0.301 0.405 0.263 0.303
+ 0,163 + 0,163 +0.'63  + 0.163
residual variance 0.91 0.84 0.93 0.91
Table TI-12

Correlation between the number of sarples (x) in a section and the delay (y)
of the samples, arrsiving at the Laboratory (99% confidence interval)

I.r. ®.m.r. M.s. Beon.m.r. LA3

by 0.247(5)* 0.19(-3) 0.19(-3)  0.28(-6) 0.22(11)
+ 0.18 +0.18 + 0.7 + 0.20 +0.21
residual variance 02.94 0.96 0.96 0.92 0.94

L I . - . . L. . .
time lag (T) for which maximal correclation is observeé is given in
parentheses.

6. Conclusions

In this section several statistical properties or the sample flow through
the spectroscopic laboratory for structural analysis of Philips Duphar have been
determined. Tt has been deronstrated that this laboratory can be reoresented
by a network of queucs, having properties which are generally valid for networks
in an equilibrium state: i.e. the conservation equation, and the independency
of the number of samples in the various sections.

The queue levels in the laboralory, which are Gaussian distributed, can

adequately been described by a first order Autoregressive model.
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CHAPTER 3

DETERMINATION OF THE EFFECT OF SOME DESCRIPTORS
OF DELAY IN AN ANALYTICAL LABORATORY

BY QUEUEING THEORY

Applications of queueing theory in analytical chemistry are restricted to

the rather general ones mentioned in the introduction by Adeberg and Doerffel
[ ADT5]. Most of all analytical results obtained with queueing theory, are
derived for systems in a 'steady state'. That means that the arriving strean
and service time are stochastic variables, which are described in terms of
time-independent probability distribution functions. Consequently, many
laboratories cannot be studied by queueing theory. For example, the sample
input of some clirical and industrial control laboratories is described by

a time dependent probability distribution. In the early morning the laboratory
is almost empty, and by the evening all semples have been processed. Jacxkson
[JA57] and Baskett[BATS] demonstratecd that for open networks of queues, where
the arrival processes do not depend on the state of the system, each node

can be considered individually. Ch.TT demonstrated that the arrival processes
to the sections of the laboratory are indeed independent of the number of
samples in the laboratory. However, here, no exact analytical results can be
obttained as no theoretical results are known for complex systems: i.e. systems
with batch input and output, where analyses are interrupted for other activi-
ties, and where eventually the expertise of the analysts is different. Ilowever
queueing theory recveals the important variables in queueing systems. From these
theoretical considerations, the relative importance of various variables can

be estimated.

Published in part in:

B.G.M. Vandeginste, Communication presented at the IUPAC Congress, Helsinki
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1. Ceneral results

1.1 Relatlion betwecen the mean number of samples in the system, the mean arrival

rate and the mean delay time.

A gencral relation exists between the mean number of samples in a queucing

system, the mean input flow and mean delay time. This relation is independent

of the distributions of the input flow and analysis time, and therefore is valid

for all kinds of queueing systems. Furthermore, the relation depends neither

on the number of analysls in the system, nor on Lhe particular queueing

discipline in the system.

Little [LT61] derived that:

§ = oT

IIT-1

where N is the mean number of samples in the laboratory (or scction), o is

the mean input flow and T, the mean delay time.

The validity of Eqn. II1-1 for the laboralory under investigation is

demonstrated

dual section

in Table III-1. This relationship applics also for each indivi-

and each priority class of semplcs.

Table III-1

Verification of Little's result

A1l samples| mean flow (a) T (days) N(observed) F!calculated) T(cale)
section

I.r 2.8 4.1 11.5 11.5

P.m.r. T.7 5.1 39.1 39.3

M.s. 2.1 6.7 13.9 1.1

Vcon.m.r. 2.5 6.7 16.8 16.7

Lab 11.8 6.88 81.3 81.2 6.9?
Zuiii= 81.6

F-1 samples

I.r. 2.07 3.81 7.9 7.9

P.m.r. 5.2 4,97 25.6 25.8

M.s. 1.68 6.7 11.2 11.3

3¢con.m.r. 1.93 6.3 12.1 12.2

Lab 8.60 6.63 56.8 57.0 6.6L
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Ya.T.= 57.1k4
1 1

F-2 samples

I.r. 0.76 L.9 3.7 3.7

P.m.r. 2.6 5.3 13.8 13.8

M.s. 0.1 7.0 2.9 2.9

3con.m.r. 0.62 8.1 4.9 4.9

Lab 3.38 7.5 25.3 25.3 7.4
Zai'Ti= 25.23

The mean delay time of all samples in an open network of g nodes can be cal-
culated from the rean number of samples in each node and the external input

flow to each node, according to
-9 _
T=ZIN./ I X\ ITI-2

where Ai is the external input to node i. Substituting Ni= ai?i in Eqn. ITI-2

we find that

_ a _ q q _
T =.Z aiTi /.X Ai =.Z aiTi/ A ITI-3
i=1 1i=1 1=1

where A is the total exterral flow to the laboratory.

The calculated value T=6.92, using Eqn. III-3, agrees reasonably well with the
observed mean delay in the laboratory. Furthermore from Table III-1, it is
clear that Eqn. III-3 applies also for each class of samples: i.e. the samples
originating from user F-1 and F-?. In this way the average delay in the
laboratory is decomposed into i%s single chanrel componerts. The analysis
problem therefore reduces simply to the calculation of the delay time (Ti)

in each section.

1.2 Tahe utilization factor

A basic parameter in queueing systems is the utilization Factor (p). It is the
ratio of the rate at which samples enter the system to the maximum rate at
which the system can perform the work, that the samples bring into the system.

For a single server system, the definition of p becomes:

e

p = average arrival rate of samples % average analysis time

e

ME[ AT] III-4
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Eqn. III-h applies only when the average analysis time is independent of the
system state. Obviously a single server system can only reach a steady state
when 0<p<1, because for p>1, more samples arrive in the laboratory than can

be analyzed, causing the number of waiting samples to grow in an ualimited
fashion. This factor can be intervretcd as the fraction of the time the server
(analyst) is busy: (1-p) is the fraction that the section is idle, waiting for
<he next sanple.

Tnerefore p = E[busy time] /{E[busy time] +E[idle time]} III-5

For a system with several analysts (m) in the scction, the utilization facter
is defined as:

p 8 e [AT] /m III-6

2. The basie model.

2.1 The behaviour of systems with Markovian input.

In a system with equally spaced interarrival times and constant analysis times,
no queues are formed when the utilization factor is less than or equal to one.
Here, the analysis is always finished before the next sample arrives. Other-
wise, for p>1, no steady stase is reached and the waiting time is infinite.

In all other systems queueing occurs as a consequence of the probabilily that

a sample arrives before the analysis of the preceeding sample is finished.

?2.1.1. Mean values and distribution function of waiting and system time for

a M/M/1 system.

Queues are described by a shorthand notation A/B/m, where A, B and m represent
the distributions for interarrival time (IAT) and service time, and the number
of channels. For example, in the M/M/1 system both the interarrival time and
service time are exponentially distributed, and there is only one service
channel. Thal is the system for which most mathematical results are available.
It can be easily demonstrated thal a system with exponentially distributed
interarrival times is a Poisson process [KL75], which has no memory. This
means that the probability for a particular interarrival time does not depend
on the last interarrival time. From this memoryless property of a Poisson
process, with E[ZIA7), it follows tkat an idle analyst has on the average %o

wait a time equal to E[IAT], until a new sample arrives in the section.

Thus E[idle] = E[IAT] III-7
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From Eqn. III-5 it fol.ows that
E[busyl = Z[IAT}0/(1-0) III-8

For a M/M/1 system where the samples are analyzed in the sequence of arrival

at the system (First-in First-out (FIFO) rule), the mean waiting time equals
[xL75) -

W = ATp/(1-p) I1T-9
and the total delay or system time equals:

T =%+ AT = AT/(1-p)
The asymptotical shape of the representation of Eqn. III-9 in Fig. III-1 is
very characteristic for all kinds of queueing systems. For the M/M/1 system

it is clear that the mean waiting time depends strorngly on the value of p.
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Fig. IIT-1: The_ratio between the average waiting time (W) and the average
analysis time (AT) as a function of the utilization factor (p) for a system
with exponentially distributed interarrival times and analysis times (M/M/1
system).
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For p>0.85 small variations in the laboratory organization may provide a
serious change in waiting time. Therefore it isworthwile to investigate which
sections in the laboratory are highly saturated. In contrast, channels with
overcapacity (p<0.5) will be relatively insensitive to aiterations of the
organization. Wnen the FIFO rule is applied in the laboratory, samples with a
small analysis time have the same mcan waiting time as samples with a large
analysis time. The cumulative density functions of the waiting time and system

time are exponential for a FIFO M/M/1 system (Fig. III[-2) [KLT6].

P(Wsy) = 1 - pexpl -(1-p)y/AT]

IT11-10
P(T<y)

1 - expl -(1-0)y/ET]

The graphical representation of these equasions ir Fig. III-2 is very similar
to the shape of the cumulative density functions of the delay times observed

in the laboratory (Fig. II-8). This agrees with the general constatation of

[ i |
P
- p=07 /P[wg] ~|
1 ~e[rst]
8 - i
|
6 -
|
A |
2 -
o 2 a4 6  BAT t

Fig. IIT-2: Probability (P) that the waiting (W) and system (T) time of a
sample are less or equal to t. (t is expressed in units of mean analysis
time), for a M/M/1 system with p=0.7.

leinrock [ KL75] that the cumulative density function of the waiting time for
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many kinds of queueing syslems, has a characteristically cxponential shape.
The probability of finding k samples in a M/M/1 system equals [ KL75]
p(k) = o*(1-p) ITI-11

It is intercsting to note that the probability of finding zero samples in
the system equals 1-p. The general functioral relationship p(k)=zk(1—z)

is characteristic for all kinds of queueing systems, and is even derived
for the general G/G/m system in a heavy traffic situation (p>0.9), where

7z is a function of p. However, the observed Gaussian distribution of the
number of samples in the laboratory and in each section disagrees with
mentioned theoretical expecctation. Apparently, the backlog in tae laboratory
is large and the sections become never idle. Mentioned discrepancy will be
explained by simulation experiments presented in Ch. VI. The conditional
probanility P(t<y[k) of a sample to have a system *ime less thar or egual
to y, when it finds k samples before it at its arrival in the M/M/1 system,

is given as (Appendix A):

k
P(Tsy|k)=1 - exp(-y/AT)Z (/T / (k1) III-12

r=0

Tos |

=
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Fig. ITI-3: Conditional 0.95 probability limit that a sample <is analyzed
within a delay (T 95/AT) as a funetion of the nwiber (N) of samples in a
M/M/1 system. ‘
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In fig III-3 the maximal waiting time (95% probability) of a sample is plotted
against the number of samples at its arrival in the M/M/1 system. It is clear
that for large values of k, the value dP(T<y|k)/dk equals the mean analysis
time. Again, a major difference is found betwecen the investigated laboratory
system and a simple M/M/1 (FIFO) system, as no correlation was found beiween
the number of samples in the laboratory at the arrival of a sample and its
delay (Table II-12). A possible explanation of this difference will be given
in Ch. VI,

2.1.?7 Interruptions of the analysis for other activities

Two importart features of queueing systems are “he mean lengths of the busy

and of the idle periods of the channel (or analyst). According to Eqn. III-T7
the mean idle time, defined as the mean time during which no samples are present
in the channel, is independent of the utilization factor. The substitution

of the value p=0.9 in Egn. III-7 indicales that the mean length of the busy
time of a M/M/1 system equals 9xE[ IAT].Therefore an analyst which receives

one sample per hour on the average remains 9 hrs busy. Obviously, in labora-
tory practice, it may happen that no analyses are done, although samples

are waiting, i.e. the service is irnterrupted by other activities. The question
arises how the mean interruption time (B) and the mean time between the in-
terruptions (o) affect the mean waiting time. Furthermore, one may desire to
compare the case where the 'on' and 'off' times are exponentially distributed
with that where they arc constant or scheduled. The erfect depends on hcw the
interruptions are scheduled. Two situalions can be distinguished:

(i) As usual the analyst is busy as long as there are samples in the labtoratory
(section). However, as soon as the analyst becomes idle he starts the other
activities. The duration of the other activities is a random variable with a
known distribution function.

Two models may be considered:

a) The arrival of a sample during the period of other activities does not end
these activities prematurely. After finishing the other activity, the aralyst
returns to the main queue and begins to analyze <he samples, if any, that have
arrived during his absence. If no samples are waiting, the analyst waits for
the first arrival. When the durations of the other activities are exponentially

distributed, the mean waiting time equals according to Levy [LETS]:
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- 1T 2 “
Wo=Woe t AB2/[ 1/(1+)8) + AB] III-13

where AB represents the ratio between the mean interruption time and mearn idle
time.

b) Contrary to this model, the analys* immediately starts a new period of
other activities, when he finds the system empty at the end of a vacation pe-
riod . According to Levy [LET75] the mean waiting time is increased by B for
exponentially distributed interruptions and by R/? for constant interruptions:
(1ii) In the second situation, the analyst may also start the other activities
during a busy period. The factor (R) with which “he mean waiting time of the
system is multiplied, when interruptions of the analyses are permitted, depends
on the probabtility dersity functions of a and B. According to Fisher [Fi77].

when a and B8 are exponentially distributed R equals:
R = [p+(aB)?/(AT(a+B) )11 1-p] /[ p(a/(0#B)-p)] TII-14

and for a and B being constant (or scheduled)

R = (1-p}/la/{a+B)-0] ITI-15

These equations indicate tha‘t the mean waiting time in a sicady state would
be larger for random breakdowns than for scheduled breakdowns,with

a factor (F)

F = 1+(a8) Y[ AT(a+8) *0] ITI-16

Here condition for a steady state is that the sum of the utilization faclor
of the analyst and the relative time spent for other activities is less or
equal unity.

Thus B/(a+B)+pg1

Other activities, permitted during a busy period have a very strong influence
on the mean waiting time as is demonstrated by the plots of Eqns. III-1k and
III-15 in Fig. TII-L4. In fact, they cause a system with a low utilization
factor to behave as a system with a high utilization factor. This means that
the waiting time becomes asymptotically dependent on p, even for low utiliza-
tion factors, when o+a/{a+B). The influence of these breakdowns in the
investigated laboratory is clearly demonstrated for the i.r. section, which

resembles a M/M/1 system. The observed waiting time is considerably higner
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Fig. III-4: The ratio (R) between the average system time for interrupted
and not interrupted analyses as a function of the available time [u/(o+B)]
for analysis in a M/M/1 system with various uttlization factors (p=0.9...
0.5) (——) time between the interruptions (o) and interruption time (3) are
exponentially distributed. (-—) o and B are constant.

than forecasted by Eqn. IIT-9. However, inclusion of 23% of exponentially
distributed other activities results in a calculated waiting Lime that agrees

reasonably well with tac observed value.

Table III-2:
The effect of other activities on the mean delay.
section flow mean aralysis time o T

T T
samples (including the transfer (dZPz) M/;7¥p qg?%?h B=L.5
per day | times) v exponential

IL.r. 2.8 0. 25hr 0.7 3.9 0.6 3.9

On the other hand, when these other activities in the i.r. section are
scheduled (e.g. al the cnd of the day), thc mean walzing time decreases to

2.7 days. Permitting the other activities exclusively during the periods

Lo


file://-/-0.2Shr

that no samples are present in that section, will cause a further decrease of
the waiting time to 1.1 day. Here the relative time spent to other activities
is not altered, but the mean time between the other activities is defined by

the queueing process itself.

2.1.3. Influence of the distribution funciion of the analysis time (M/G/m)
For non exponentially distributed analysis times, the mean system time depends
lirearly on the coefficient of variation of the distribution, defined as

2 p 2 e
Cap © OAT/(AT) .

T/RT = 1+ p(14Co ) /[2(1-p)] IT1-17

Eqn. IXI-17 is the well known Pollaczeck-Khinchin mean vaiue formula. Using
this equation the effect of reducirng the analysis iime can be compared to the
effect of decreasing the variance of the analysis time. Supposing that the
alteration of the mean analysis time does not affect the shape of the distri-

bution function, which means that C?T remains cons<ant, then the reduction

A
of the system time by decrcasing the analysis time to x times the original

value, equals:

T /T = [x(1-0) (2+x0(C5=1))] /L (1-xp) (24+p(Cor, ~1))] 0<x< I11-18
When CiT is decreased to y times the origiral value, then

T /T = [2+p(yC° ~1)1 /[ 2+p(c2,, -1)] 0<y<1 TII-19
y AT AT ¥

The comparison of the diagrams of both equations in Fig. TII-5 demonstrates
that in general, a reduction of the analysis time will improve the system more
than a decrease of the variance. Under certain conditions, however, (x>0.8
and y<0.2) it will be beneficial to reduce the variance.

The analysis time can be decreased in various weys: e.g. only a single resuit
may be presented rather than duplicates. The coefficient of wvariation can be
decreased by standardizing or automating parts of the analytical procedure.
However, an altcration of the analytical procedure may influence the accuracy
of the analytical result. Therefore cost-profit analyses should indicate
whether the profit of obtairing the aralytical result within a shorter time
balances against the costs of the eventually introduced iraccuracy. In the
particular case of siructural analysis, measurements are not normally dupli-

cated, and standardization is difficult. llere the only way “o influence the
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Fig. IIT-5: Reduction (R) of the system time for two M/M/1 systems with
different variation coefficients of the analysis time (C?y7), as_a function
of the utilizatton factor (o), when (i) the mean analysis time (AT) is reduced
to AT (0 < x < 1) and (1) the variation coefficient (C?ypyp) of the analysis
time is reduced to yChp (0 <y < I).

parameters of the probability density function of the analysis time is to
disrupt the interpretation of the specira after a certain time (X) and to urge
the analyst to transfer the problem to another spectroscopic method. Then
the original exponential distribution of the analysis time takes the shape

shown in Fig. II-6, with a mean equal to
AT(1 - exp(-X/AT)) ITI-20
and a coefficient of variation equal to:
2 lexp(-%/ET) (X-AT) + ATl /[AT(1 - exp(-X/AT))?1-1 (Appendix B) III-21

When these terms are substituted in Eqn. III-17, the reduction of the waiting
time is found as a function of the ratio between the maximal and original
mean analysis time, for various values of the utilization factor. As Fig.
ITI-T7 demonstrales, the truncation of the analysis time has the greatest
effect at high p levels. However, in the laboratory for structural analysis,
two types of analyses are trurcated: analyses that should be successfully

finished, if the analyst was allowed to study the spectrum for a longer time,
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Fig. III-6: The truncated analysis time probability density function:
b(t) = u exp(-nut) for t < 2u. b(t=2y) = 1 - B(2u) Ffor t = 2u , with B(2u)
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Fig. III-7: The reduction of the mean_wiiting time (0,/w) as a function of the

maximal allowed analysis time (ATma:c/‘T[') for various utilization factors p.
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ard analyses which should not. Consequently, the truncation of analyses in
ornec section may increase tne flow towards the other sections, and, therefore,
increase the overall waiting time. It depends on the utilization factors of
the other sections whether the performance of the total system is improved
or not, when analyscs are truncated, as the simulations will derwnstrate

in Chapter VI,

2.1.4 Batch input systems

An alternative for scparate arrivals of the samples to the laboratory, is Lo
collect the samples during a certain period, and sent them simultaneously

to the laboratory. This transforms the original M/M/1 system with a mean
interarrival time Z{IA7], and mean analysis time E[AT]to a M/G/1 or D/G/1
system. In the latter system the batches of samples arrive at equispaced
times in the laboratory. As mentioned before 'G' means that the analysis

time has a general provability density function. The mean analysis time of

a batch (KTb) with a mean size r, equals T . AT. The variance of the analysis
time equals var [AT] (¥ + var(r)), and the mean interarrival time of the batches
is ¥ . TAT.

In this model the dclay seen by a sample now consists of two independent
components: the delay of the first member of his batch to be aralyzed, and
Lkat dae to the analysis tires of the preceeding members of his batch [BUT5S].
When a comparison is made between two models with the same total sample flow,
one without batch ard the other with bazch input, then the ratios compiled in
Table III-3, between the mean system times arc found (Appendix C). The
equations in Table III-3 are derived with the assumption that the 'overhead'
is not changed because of 'batch' analysis. This neans that the fact that
Juring the analysis of one sample, tne sample preparation of the next sample

may be started, was not accounted for.

Table ITI-3

Ratio between the delay (‘batsh/T) without batch imput (T) and with batch
input (Thateh).

p.d.f. of the p.d.f. interarrival time of the batches
batchsize

Cons*tant Exponential
Poisson 0.5r{1-p)+1 1+0.57
constant 0.57(1-p)+0.5 0.5+0.5T
exponen=ial O.g?(?—p)+0.5 0.5+r

2

Gaussian E—f‘n+ T+ 1 -0.57p l%r-+ v+ 3
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At a first sight, one mignt expect Lnat a batch input would result in a
vetter performance of Lhe system. However, Table ITI-3, inaicales that the
mean delay time will only bve improved when all batches have an equal size

or are Gaussian distriouted, with the condition that the batches enter the
laboratory at equ.distant times. Furtherriore, for Gaussian distributed batch
sizes, improvement is only achieved under certain conditions of U;/f (Fig.

I1I-8).

0 —r T T T T

1 5 10 —

~

7
p

Pig. ITI-8: Upper bound (shaded plane) of the variation coeflicient

(6Z/r ) and the mean batchsize (r) of the sample ivput, as a function of the
utilization factor (p) to obtain a reduction of the mean delay, by transforming
a M/M/1 system in a batch input system with Gaussian distributed batchsizes and
equidigtant arrivals

As mentioned before (section II), the arrivals in a M/M/1 system have a
Poisson distribution. When all the samples enter the laboratory simultareously,
once a day, then, the batch sizes are also Poisson dis‘ribtuted. Here no

improvement of thc system is obtained, and the results become even worse when

h'j



the mean sample flow (A) in the system is high (r = A).

The equations of Tabie III-3 were verified for a M/M/1 system, with TAT=1,
AT = 0.7 and © = 1, which was transformed %o a batch inpat system with ¥ = 8
and TAT = 8. The results of *he simulatiors agree rcasonably well with the

theoretical forecast (Table III-L)

Table III-4
T /T,
batvel’ “gingle
p-d.f. of the p.d.f. of tte interarrival times of tne batches
batchsize
exponential constant

o, theoretical simulated  theoretical simulated
Poisson 2.8 5 8.5 2.1 2.8
Causslan 1 .5 L.9 1.7 1.7

2.8 5.0 .7 2.2 2.0

b 5.5 5.2 2.7 2.1
exponential 8 8.9 5.6 4.6 3.8
Gaussian (F=2; IaT=2)| 0 0.8 0.8

In practice, a speclroscopic analysis consists of two parts: the measurement

and interpretation of the spectrum. However, that M/M/1 model does not account
for the fact that at first, the total batch of spectra is measured, whereafter,
the interpretation is started. Simulation experiments, presented in Chapter VI

account for this fact and for the mentioned reduction of overhead.

2.2 Priority queueing

The equations in above paragraphs are derived for first-in-first-out (FiFo)
disciplines: i.e. all samples are analyzed in the sequence of arrival at the
service channel. Of course, there may be many reasons to deviate from this
FiFo rule, some samples being given priority. In ananalytical laboratory,
priority can be given to samples depending on their origins (different
research groups), their analysis time ('easy' and 'difficult' samples),

or their history in the laboratory (first, second analytical method which is
tried). A particular priority difference can be obtained by attributing

urgency numbers to the samples, which may be a function of the waiting time.
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For example [KLTE]

- 1) I1I-22
P

qér)= (t
where 1 - T is the waiting time of the sample at. time t and bp is the urgency
parameter for priority class p. The samples are analyzcd in the sequence of
decreasing urgency numbers {q). The advantage of this priority system is

that analytical results are available in queueing theory., However, in the
practice of an analytical laboratory, this priority rule is hard to operate.
since each time the analysis of a new sample is to be started, the
priority value qp should be calculated of each sample in queue, in order to
find the sample with the highest priority. For large values cf r, the sequence
becomes FIFO, while for small values of r an absolute priority discipline is
obtained, because all urgency numbers become equal to bp. In a system of
head-of-the line (H.0.L.) or absolute priority, samples queue according to
priority groups and are strictly sepaerated on the basis of the group to which
they belong. Kleinrock [KL76,KFT76] calculated the mean waiting time for a
M/M/1 system with time dependent priorities (Eqn. III-23)

= _ p-1 = 1/r P 1/r
Wo=[wy/(1-p) = T p W (1=(b. /b ) TI/[1 - 2 p.(1=(b_/b.) "7)] III-23
P S R i""p . i p i
1=1 i=p+1
with p=1, 2, ....P and b1<b2< .....<bp
P — —
where WO =3z Aix;/2with xi equal to the sccond moment of the analysis times
i= .
of samples  from group 1.
For an exponentially distributed analysis time ;; equals 2(}1)2, consequertly
P
o =2 Pi%y
1=1
Substituting r=0 in Eqn. III-?3, the expression for the absolute priority

discipline is obtained

- p-1 P
W= (w /(1-p) - L o, W.)/(1-L p.) TTI-2k
p ° j=1 17t i=p+1

For a system with only two priority groups Kqn. ITI-2%: becomes:

2
W, (low priority) = I p,X,/[ (1-p)(1-p,)] TII-25
i=t 21
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2
W? (hign priorizy) = I p.x./(1-p.)

From tne graphical representation of Egn. I1T-23 in Fig. ITI-9, it is easily
seen that by choosing appropriate values of r and b, each ratio between the
mean delay tires of tne various classes can be obtained, raaging from equal
priority to an absolute priority discipline. Moreover, from Eqn. III-23 it
car. be calculated that Zor equal mean analysis times of the various priority
groups, the mean waiting time of the entire population of samples is not in-
fluenced by any priority discipline, and equals the delay of “he M/M/1 syssem.
Accordingly optimization of b and r is not achieved by minimizing the mean
waizing time exclusvely, but should includc cost functions for waiting [ KL76]

for the different priority groups of samples.

P100.

10.

aanal]

Fig. ITI-3: Time dependent priorities, varying from absolute priority (r=0.1)
to a First—in First-out (FIFO) discipline (r=100) for three priority groups
with bl:bz:bd = 1:5:25

A very interesting property of priority queueing is tnat analytical results
are obtainable for systems with utilization factors greater than 1., For a

system where group (p+1) should give absolute priority to group (p), Eqn.

III-24 can be rewritten as:

L8



P P
W= p.x./[1-Z p.)(1-% p.)] III-26

This equation demonstrates that all priority groups (1...p), for which E p0.<1
reack a steady state. All other grours (p+1,...P) are oversaturated ana=4have
an infinite delay. This effect is demonstrated in Fig. III-10, where the groups
get successively saturated with increasing input flow to the system, under the

condition of unchanged flow ratio to the various groups.
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Pig. ITI-10: The mean delay (W/AT) of 4 priority groups in a M/M/1 system as
a function of the total utilization factor (p) of the system where (i) each
priority group has the same utilization factor (p.) and (i1) the (i+1)-th
group has absolute priority on the i-ih group. v

For a system with *two rriority groups with an equal mean analysis time, but
with a different input flow to the system, it is interesting “o investigate
which of the two groups is the most sensitive to the applied priority rule
(i.e. an absolute priority is attributed to grouv?! or to group 2). In Fig.
III-11, the relative delays (Tq/T and T2/§) of two sample groups (1 and 2)
are plotted versus the ratio of the input flow of both groups of samples.
Fig. ITII-12 shows the plots of the increase of Lhe delay for both groups

when their priority is inverted. These graphs demonstrate that the delay of
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Fig. ITI-11: The system time of two groups of samples with equal analysis
times as a function of the ratio of their input density (a,/,) in a system
with a total utilization factor p=0.9. (——) group 1 has absolute priority,
(———) group 2 has absolute priority.

the group with the larges> (group 1) input flow is the less sensitive to the
priority rule. For example: suppose that the input flow of the first group
is ten times that of the second group, and aztribute the absolute priority,
first assigned to the first group, now to the second group, then, tne delay
of the latter group (smallest input flow) will be reduced by a factor 10,
while the delay of the former group is only doubled.

Holtzmar [ HOTO] analyzed a dynamic priority discipline. Arriving samples al

a queue arec assigned urgency numbers, just as in a time dependent priority
rule. HJdowever, the sample witn the smallest sum cf urgency number (bn) and
arrival time (t) is analyzed next ( qp=t+bp). This service discipliné has

also the effect of considering some samples to have higher priority than others,
but takes into account the undesirability of having low priority samples to
walt too long. Identically Lo the time dependent priority discipline, tne
dynamic priority discipline may be altered from a FIFO (bp=0), to an absolute
priority disciplire (bp is large). Unfortunately, no exact analytical results

are known for this priority discipline. Only upper and lower bounds of the
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Fig. IIT-12: A system with two groups of samples: The influence of the attri-
buted priovity on the deLay of both sarple groups as a function of the ratio

of their input density. ( ) T n.p. /T : ratio between the delays of

the first group having ro Driorm y (n.p. } and absolute priority (a.p.)

(-—-) Tyn.p. /T a.p. : idem for the second group of samples.

waiting time under equilibrium conditions can be given [HO7D]. However, the
advantage of this priority rule is that the sample is immediately scheduled

in the queue at a fixed position.

When the mean analysis times of the various priority groups are different, the
lowest overall nean waitirg time is found when the samples with the shortest
analysis time get absolute priority (Cqn. TII-24). In an analytical laboratory,
this situation occurs when an analyst does two different analyses, or wnen
samples can be subdivided into two groups: e.g. so called 'easy' and 'difficult’
samples, with 'small' and 'large' analysis times respectively: i.e. the intcr-
pretation of a spectrum may be easy or difficult. Particularly, Conway [€067]
indicated in many examples, that this separation into two groups provides a
considerable reduction of the mean waiting time, as opposed to the FIFO system.
The following example demonstrates the effect of subdividing the samples into

two categories. Starting from an exponentially distributed analysis time, with
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a mean AT, the samples are subdivided into two categories: the first one with
analysis times in between O and x and a second category with x<AT<eo (Fig. IIT

-13).

]
=

P

prt

Fig. IIT-13: Distribution of the samples over two groups: (1) 'easy' samples
for which AT<z, with a mean AT<x, (2) 'difficult' samples for which AT>z,
with a mean AT>z.

Fig. III-14 and 15 show the mean analysis times and the sample flows of both
categories of samples as a function of x for exponertially and k=L Frlangian
distributed analysis times. The plois of the calculated overall waiting time
when the first category of samples has absolute priority (Fig. ITI-16 and
17) clearly show that the total mean system time is approximately halved for
high utilization factors (p=0.9). The effect is maximal when a small number
of samples (10%) with high analysis times must give absolute priority to all
other samples. A minor reduction is obtained for the k=4 Erlangian system
(30%) (see Appendix D for the derivation of the equations). Furthermore, the
mean system times of both priority groups differ considerably:i.e. in a
M/M/1 system with p=0.9, the mean waiting time of ihe samples witn a high
priority (60% of all samples) is only 7% of that of the samples with low
priority. It should be stressed here that for these calculations, the correct
class was assumed to be determined for cach sample. The influence of inaccu-
rate estimations of the analysis time of the samples will be demonstrated by
the simulations presented in Chapter VI. However, clearly, when the analysis

time cannot be estimated at all, it has no sense to divide the samples into
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Fig. I1II-14: Distribution of samplés with expomentially distributed amalysis times over two groups.
Fig. IIT-15: Distribution of samples with k=4 Erlangian distributed analysis times over two yroups.
The mean analysis time (R=AT<x/AT) and fraction (R=a<x/a) of 'easy' samples as a function of x/AT.




Fig. IIT~16: Ratio (R) of the mean delay of the 'difficult’ (E’Z /T,) samples, the 'easy' (Th /1_’t) samples
and of the overall delay, as a function of the fraction of 'easypéarrples' (a<z/a) in a M/M/1 diBtem! where the
easy sammples have absolute priority. (——-) Reduction of the overall mean system time (Tt/Tf‘ifo) by
discriminating easy and difficult samples.

Fig. III-17: Idem for a M/E4/1 system.



two categories on the basis of an estimated analysis time,as then, the samples
are positioned at rardom in the queue. Tne parameters of the waiting time
(mean and variancc) are equal for a random and FIFQ gucue discipline (Durr
[DUT1] ). Another way to obtain a discrimination in favour of short analyses,
is to transfer the spectrum after a fixed interpretation time g to a pile of
unfinished spectra and Lo slart the measurement of the nex%t sample or the
interpretation of the next spectrum. This is a common method of job handling
in time shared computer systems, which is knowr as Rcund Robin (R.R.) schedu-
ling. Kleinrock [KL76] demonstrated that R.R. scheduling has no effect on the
mean waiting time of the total population of samples, but diminishes the mean
waiting time of the easy samples at the expense of the difficult ones. For g
approaching zero, the waiting time of a sample (Wx) in a M/M/1 system becomes

lirearly proportional to its analysis time(x).

W= xp/(1-p) III-27

However, subdividing the interpretation time of a spectrum in infinitessimally
small steps is unrealistic. Therefore the effect of applying R.R. scheduling
was simulated here only during the interpretation step, and for large values
of q. Fig. III-18a,b shows the results'of simulations of a laboratory system
where the mean interpretation time for difficult samples is twice that for
easy samples. For a negligibly small measurement time 'easy' samples wait for
snorter times only when the interpretation is done in steps smaller than 0.1th
of the mean interpretation time (q=0.1). Moreover, the effec: is considerably
decreased when the measurement and interpretation times are approximately
equal, and only the interpretation step is partitioned (Fig. III-18b). These
simulations led to the conclusion that in spectroscopic analysis waliting time
can be improved considerably only by giving priority to the 'easy' samples
which have previously been recognized as such.

One may imagine that in some cases one is not interested in a minimal delay
time, bat prefers a uniform response time to uscrs. In such situation, the
variance performance measure 1s important ard +he ques:tion of ninimizing the
variance of dclay time should be tackled. Mertcn and Muller | MET2] have shown
that the sequence that minimizes the variance of waiting time is antithetical
to the sequence that minimizes the mean waiting time. They proposed some
heuristic method to schedule the samples in a V-shaped sequence: i.e. the
samples must be arranged in descending order of analysis time if they are

placed before the shortest job, but in ascending order of analysis times if
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placed after it.

2_
° cb-‘
o C%:a

__________________ ® FIFO
©

-l 1 i " 1
-2 ] _ o 1 2 —log /AT
%y B /
wzz _____________ — — — .
9:04117 °

-2 -1 1] 1 2 —slog(iTAT)

Fig. TII-18a:The effect of applying Round Robin (R.R.) scheduling in a system
with two groups of samples, where (AT),=2(AT),, on the waiting iime of both
groups, as a function of the length (q/AT) of'zthe steps with which the samples
are interpreted. 0 the variation coefficient of the analysis time (Cf)):l;

¢ the variation coefficient of the analysis time (02)23.

b:The effect of applying RR scheduling with q=0.7IT as a funciion
of the _ratio between the mean interprelation time (IT) and the mean measuring
time (MT) of the samples.

2.3. Dynamic aspects of M/M/1 systems.

In Chapter II a time series approach was used as a practical means to obtain

a model of the queues in the laboratory. To date, very liitle has becn done in
applying time series technigues to aralyze queueing systems, and the theoretical
expressions (Eqn. ITI-28) for the autocorrelation funelion of the number of

samples arec only derived for M/M/1 systems [MO55].

b (T) = exp(-1(1-p)2/pAT ) III-78

with a time constant Tx= ATp/(1-p)2 III-29



The time constant T, represents the mean time for the queue to return from

ary deviation from the mean level {N)tack “o 0.368 of this deviation. Therefore,
the time constant is a measure of the rate of the queue size fluctuations, Fig.
III-19 demonstrates that the utilization factor of the system has a considerable
influence on the time constant of the system.

Recalling the fact that the i.r. section resembles the most to a M/M/1 system
with the parameters presented in Table IIT-2, a time constant of 1,9 days

should be observed. The larger value of 5 days Zound Is probably due to the
other activities of the analyst, causing the system to behave as a system with
a larger utilization factor.

From the study of Bhat [ BHT72], who describes the transient bchaviour of

queueing systems, time constants for other systems could be calculated

(Fig. IIT-19). Although *hese step responses were given in terms of the

number of departures needed for the value p(1 - p)_1 to reach 0.623 of its
'steady’ state value, a similar relationship between T, and p is found as given
by Eqn. III- 29. Comparing the lines calculated for E5/M/1 and M/E10/1 systems

it seems that the strong dependence of T&:from p seems a gencral characteristic

of all qucueing systems.

log Es-

-1

Fig., IIT-19: (—) the fractional time constant T /AT of the number of samples
in a M/M/1 system as a function of the utilization factor (p)

(-—=) the number of departures (n) needed for the mean number of
watting samples to reach 0.62 of its 'steady stale' value as a Ffunction of 0
for a M/M/1, M/ES/E, and ES/M/J system.

5T



In a congested system the observations in a sample record are correlated.
This complicates seriously the statistical analysis of simulated queueing
deta {Chapter V).

Studies involving time series analysis in order to model queue data, have
been executed by Steudel [ST7¢] . He described the number of samples in a
M/M/1 system with a discrete autoregressive model of order one, AR (1),

in the form of n + a,. Our calculations in Chapter II proved that

t = 901 t
this AR (1) model is also valid for more complex systems that the M/M/1

system.

2.4 Many server systens

Considering m-server systems, it should be indicated that analytical results
are often not available, and the derivation of the relationship between the
mean waiting time and the utilization factor is very difficult. For example
very few substantive results can be given for the M/G/m and G/G/m system
[KL76]. Therefore, several upper and lower bournds were derived for these
systems. Perhaps the most impcrtant of these is the lower bound for the

G/G/m system,being [KL76]

p*(c)=p(2-p)  [(m-1)/m]ATZ

W > III-30

2x(1-p) 2AT
For m=1, approximations for heavy-traffic situations can be derived. These
results are extremely robust and give the general benaviour of queues with
long waiting times.

The average waiting time is given by

2,2
_ loi+op)
W ————— III-31
2(1-p)TAT
with G;: variance of the interarrival times
Oé: variance of the analysis tirmes

And the probability that W £ y equals

P(ugy) = 1-exp(ZZAZU=0) oy o 4 ayp(-y /W) III-32

2,2
g°+0
a b

However, analytical resul:is are available for M/M/m systens.
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The average waiting time equals

m

W= O-L“R)——z . AT III-33
m!(1-p)m

where
m-1 Kk m

p o=[ pimel, (mo) 1,1 ITI-34

o) k=0 k m: 1-p

ard

p = A.AT TII-35
m

When the service *ime is k-Erlang distributed  the approximation of

Maalde [MATO] is very useful

m
W(p, m>1, k>1) = poﬂ—)—z- . AT . (+1/k) ITI-36
m!(1-p)m 2

The graphs of Equn. III-23 in Fig. III-20 where the utilization factor of each
analyst is independent of m, indicate that the asymptotical rise of the
waiting time for large systems, with one queue served by several analysts

starts at higher p values (p > 0.8 for m = 3).

3. Conclustions

The available queueirng models, giving analytical results are generally
%00 simple to fit problems, encountered in practical situations. For example,
frequently analytical results or approximations can be obtained for models
with only a minor deviation from the basic A/B/m systems: e.g. a M/M/1 with
interruptions or with batch inout; a M/M/1 system with absolute or time
dependent priority for samples with short analysis tires.
Serious problems arise when these systems are imbedded in a network of quecues,
where a parl of the output of a node is the input of another one. Systems with
batch input and intcrrupted analyses, where different priorities are attributed
to various classes of samples, are considerably complex. Often, the solution
of such models requires a high level of mathematics, having little serse to
the practician. Mentioned solutions will often be given in terms of transforms,

excluding a practical application.
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Fig. ITI-20: The mean waiting time (W/AT) of a multi server system (M/M/m)
as a function of the utilization facior (pm) of the analysts for various
m-values. ’

As H.J. Steudcl [STT76] stales: "In many ways the subject of queueing appears
1o have gotted bagged down in a quagr.rc of intractable mathematics".
However, in {his scctlon we did not aim to furnish analytical results for
the laboratory under investigation, but to show the relevant parameters, with
their influence, and eventually to formulate some generally valid statements.
From the study of simple queueing systems corpleted with the observations of
the real laboratory, one concludes:

— the utilization factor (p) is a dominating factor, determining the waiting

time
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- a reduction of the analysis time is more important for the reduction of
the waiting time than a reduction of the variation coefficient of the
analysis time}

- interruptions of the analysis, while samples are walting causc the system
with a low utilization factor to behave as a saturated system {large TX,
and asymptotical dependency ©oF T on py.

Allowing the start of other activilies only during the idle pecriod has
practically no influence on system performance;

- modification of a M/M/1 sys*em to a system with batch input improves the
system performance only in these situations where the batches enter the
system equidistantly and the distribution of the batch size is Gaussian
or constant (supposing no change of the overhead);

- system performance improves, when actributing absolute priority to the
samples with the shortest analysis time. The mean waiting time of all
samples 1s not influenced by attributing different priority to groups of
samples with the same mean analysis time. Optimization of such systems is
only achieved by Zncluding cost functions;

- the application of Round Robin scheduling in aralytical laboratories is
not feasible;

- the cumulative density function of the waiting time has an exponential
shape for many kinds of queueing systems;

- a sampled queue has a stationary first order autoregressive benaviour.
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Appendixz A.

Caleulation of P(T<ylk) for a FIFO, M/M/1 system.

According to Kleinrock [KL75], the Laplace transform of the probability that
the sample's total delay in the system is equal to y, when it finds k samples

in system ahead of it, cquals:
s¥(s|k) = [ 1/ET/(1/AT+s)] &
The inversion of this equation gives:

P(T=ylk) = (1/aT)¥ _x exp( y/A7)

k!
Integraling that equation, we have:
P(Tsy[x) = ryw/_z*‘” “exp(-y/AT)dy (1 FE) axp TV, YR (e M
r;O
= (/B exp(-y /DT YR (ker) 1 41
r=0

—_k Kk-r—r-k
xp(=y/AT)T v AT /(k-r)! +1
r=0

1 - exp(-y/AT)E (y/AT)* 7 /(k-r)!
r=0

7

=
=
1]

Lppendiz B

s

Caleulation of the Ffirst and second moments of a truncated expomential
distribution.

1. first moment:

Let 1/36 be equal to |. the p.d.f. of the truncated analysis time equals:

b(<) = upexp(-ut) . for t<x
b(x) = 1-B(x) with B(x)=f0 vexp(-ut)at t=x
From the definition of ihe first moment we have:
x
AT = “fo texp(-pt)dt + x[ 1-B(x)]
x X
= “’ro texp(-pt)at + x[ 1- fouexp(—ut)dt]
x
= u[eXp(—ut).(—ut—1)/u2]O + x + XIexp(—lrt)]z)C

(1-exp(-ux)) /u= KE(1—OXP(—X/KE))
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2. second moment

X
AT 8 £ 820(8)at + x2(1-B(x))
X X
= IO t2pexp(-pt)dt + x2[1—fouexp(—ut)dt]

ulexp(-ut) (=t%+ 2t = 2 )17 + x2 +x%[exp(-ut)]>
TR TN ©

g[exp(—ux)(x—1/u) + 1/u] = 287 exp{-x/AT) (x-AT)+ AT]
u

The coefficient of variation equals: OzT /(KTX)? = AEZ - 1=
x

2l exp{-x/AT) {x-AT)+AT] -1
AT(1-exp(-x/AT))?2

Appendix C.

Caleulation of the delay of batch input systems.

According to Burke[ BUTS] the average delay of a sample equals the sum of the
delay of the first member of the batch and the delay due to the aralysis times

of the members of his batch analyzed before him.

E(r?) +1] TII-c1
| E(r)

E(r?) -1] = § + AT
2

where T1 is the delay of the first member of the batch, AT is the mean analysis
time pro samcle and E(r2?) is the second moment of the p.d.f. of the batch size.
The second term in Egn. III-c1 gives the average delay due to the analys’s
times of the members of the bailch analyzed before the sample. Table ITT-c1
gives the expressiors for the Lwo momenis of the various considered p.d.f.

o *he batch size (r).

Table III-cl

The two first moments for sgeveral p.d.f. of the batch size (r) and mean delay.

p.d.f. E(r) E(r?) T
constant T T W1+Kf(f+1)/2
exponential| r 2(7)2 W1+KE(2;+1)/2
Polisson r T+r? W1¥Kﬁ(§+9)/2
Gaussian T c§+(;)2 W1+—A—f'[ Oi/§+§+1]
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When the interarrival times of the batches are exponentially distributed, W1

can be calculated using the Poliaczek-Khinecair “ormula [ KL7S]

W1= AT (1+C )p/(1 p) with ATb the mean analysis time of a batch and
- b
2

CZTb = var(ATb)/(K—T_b)2 = var(AT) T+var(r)] /[ 72 (AT)?]

For exponentially disiributed analysis times var(AT)=(AT;

2 _ .y NIRYIIY
Thus CAT = /r + var(r)/(r)

Because bATb= TAT we find that W1= o7 AP 1+1/T+var(r)/(F)2) /[ 2(1-0)]

2

When the interarrival times of the batches are equidistans W1 can be calcula-

ted using the heavy-traffic approximation of Kingman|[ K162]

2 + 52 . . L. . i
T - OIATb OAT where GIAT 1s the variance of the interarrival times of
1 T ——=———— the batche$ and o? is the variance of the analysis times
2IAT (1-p) AT,
b of the batches.
Tor the considered batch system o2, =0, IAT =r.IAT and o2 =var(AT)(r+var{r))
IATb b AT

P_ (A7) 2 (r+var(r))

2 TS
Thus T = (AT)? (7+ Gr) _ AT(r+cr)

27 . TAT(1-p) 27 (1-p)

The ratio between the delay of a M/M/1 system modified to a batch input system
(Tb) and the original M/M/1 system can now easily been calculated.
1. the interarrival time of the batches is exponentially distributed.
0T AT(1+* /T+var(r)/(¥)? + EEIE(r2)+1]
2 Elr
2(1-p) (+)

AT + ATp/(1-p)

=
~
=[]

pr( +1/r+var(r)/(r)?) + (1-p
2 2

) [B(r?) +1]
r)

u—‘—)t_,

2. the batches arrive at equidistant times.

/T =[ ATp(r+02) _( r2) +1)] (1-p) /A7
)

b s r )

2 T(1-p) (r
T /0= p(1+02/7) + (1-p)(E(x2)+1)
b > T 2 E(r)
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Appendix D.

Calculation of the effect of subdividing the samples into two categories:
small and large analysis times.

1. M/M/1 system

Let be:
large analysis small analysis  total
times times
input density X1 X? A
mean analysis T T T
iime 1 2
mean delay T1 5 T
Then:
x
)\fouexp(-ut )at _
Ay = = A(1-exp(-x/AT)
f;uexp(—ut)dt
X1 = A-A(1-exp(-x/AT)) = Xexp(-x/AT)
x — — —
. ufOLexp(-ut)dt 1/u = (1#+px)exp(-ux) AT - (x+AT)exp(-x/AT)
AT = = M =
2
x —
ufoexp(-ut)dt 1 - exp(-xu) (1 - exp(-x/A7))
_ u/S_texp(-ut)dt exp(-x/AT) (AT+x)
AT = * = = AT +x
ufxexp(-ut)dt exp(-x/KE)
x — — —
. ufotzexp(-ut)dt (-x242x AT-2(AT)?)exp(-ux) + 2(AT)?
AT = =
2
X —
ufotexp(—ut)dt 1 - exp(-x/AT)
oo
., Wy t2exp(-pt)dt _ _
ATZ= = (x-AT)? + (AT)?

™

ufxtexp(—ut)dt
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Am e am 2 2
) AT1(1->\1AI‘1—)\?AP2) + )\1AT1/2 + )\2AT2/2

Rl (1-3,8T,) (1-3 KT -3 AT
o AT, (1-X,AT,) + AZA_‘I‘;/2

> (1 - )\2ﬁ2
MR v T,

2. M/Eh/1 system
In a>l integrals of foregoing paragraph, the term pexp(-ut) should be replaced
by (bu)*t3exn(-but)

3 —
Thereafter all terms (AT?,...T) can be calculated straight forward.
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CHAPTER 4

THE SIMULATION MODEL

Simulation is defined [HUT0] as a numerical technique for conducting
experiments with certaln types of mathematical models, describing the
behaviour of a complex syssem in a digital computer over extended periods

nf time.

The starting point of any computer cxperiment is a model of the system to be
simulated, which is characterized by (1) a structure, (2) many parameters and
varisbles (deterministic and stochastic) (3) a response {or resvonses). This

section 1is devoted to the description of the simulatior model.
1. Structure of the model

1.1 Fixed characteristies

The flow chart ir Fig. IV-1 may serve to clarify the structure of our model.
It should be noted that this flow chart gives a crude picture of the decision
processes inside the laboratory. The laboratory consists of b sections, each
one having an input flow of samples, originating from outside the system and
from the departments within the system. The samples originate “rom two
sources (F(1) and F(2)). For each source a stochastic variate TATi . is

L]
defined, which is the time interval between the arrival in the laboratory
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of the i-th sample and the (i-1)th sample from sourcc j, with a known
probability density function f(IATj), expected value h[IATj] and variance
var[TATj].

Exponential, Crlangian (of order k), and hyperexponential protability
functions can be sclected. The dislribution of the newly arrived sarples

at the laboratory over the four sections is realized using various decision
rules, described in paragraph (1.2). The arrival processes in the model do
not depend on the state of the system. The analysis process has three stages:
the measurement of the spectrum, the interpretation of the spectrum and

the commurica*ion of the ana’ytical result. In the mode’ the interprectation
and the measurerent times of the samples are generazed by taking random
numbers from exponential or Erlangian density functions.

As many operating characteristics 1n the described model are given by
probability functions, the model 1s called stochastic. In practice, a sequence
of random numbers is required to generae a sequence of e.g. analysis times
or interarrival times, having a given density function describing the actual
statistic prorerty of these variables.

The analysis rate is state independent: a sample's analysis time at a section
is not permitted to depend upon its analysis time at previously visited sections

A batch input and/or batch analysis of the samples can be generated. The
batch sizes and interarrival times of these baiches can be taken frcm various
probability density functions (Gauss, Poisson, constant). For each section,

a minimal and maximal batch size for the analysis can be selected. When the
minimal and maximal batch sizes are different, then the analyst waits until
the minimal batch size is present belfore starting the measurement of samples.
For a minimal batch size equal to one, the analyst starts the measurements
when there are any samples waiting. He starts the interpretation of a
spectrum after the measurement of a complete batch. Tn the model, results

are only communicated to the user, when the pile of results has reached a
given value, or when results wait longer than a preset time before communication.
However, when the state of the laboratory is such that the analyst remains
idle, while results are s*ill waiting, then, results arc communicated as well.
In the model an instantaneous transfer of samples, spectra or results between
the departements in the laboratory is assumed.

The analysis can be interrupnted for other activities, coffee breaks, holidays,
and machine breakdowns. For each of these four types of interruptions a mean

interruption time and mean interval beiween the interruptions can be sclected
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from an exponential probability density function. The simulated laboratory

has a maximum capacity of 20 analysts and 10 instruments. Each analyst has

a given cxperience with the four procedures, denoted by a parameter beiween
one {fully qualified) and zero (no experience at all). This factor in
combination with a minimal required experience for a particular analytical
procedure, ranges the organization of the laboratory from an open organization
where all analysts can do all analysis, to a closed organization, where thec
analysts specialize in one analytical method only. Furthermore, there is a
functional relationship in the model between the analysis time and the

experience parameter ([xp) of the analyst (j) who execuses the analysis (i).

Wy = ) g5

In the model a dynamic priority rule is applied as described in Chapter IIT.
The F(1) and F(2) samples are positioned in the queue according to the
value of the sum of arrival date and product of priority factor (p) and
urgency number (A). The priority difference between samples of both sources
is not necessarily thc same in each section. The laboratory is empty at

the start of each simulation run. The simulation period for each run is
L1000 completed samples. This correspornds to about 1 year operation of the
laboratory.

In the model, measurcment times and interpretation times were introduced
which are higher than measured in the ladoratory.

This augmentation accounts for tranfer times and adminisiration times

of each sample (or spectrum) which were not included in the data presented
in Table I1I-6

Table IV-1 shows the statistical parameters which were used in the nodel.

Table IV-1

Statistical parameters of the measurement time (MT) and interpretation time
(IT) in the model

section measurement time (hrs) \ interpretation time (hrs)
S s2
__ 2 _ _MT . __ 2 _ _IT
mean SMT CMT T mean SIT CIT = 752
I.r. 0.k 0.01 1.0 1.2 0.05 1.5
P.m.r. 0.7 0.006 0.7 1.2 0.02 1.0
M.s. 0.9 0.03 1.0 1.5 0.07 1.5
Beon.m.r. 1.0 0.02 0.5 1.6 0.08 2.0
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Probability density functions with a variation coefficient (C;) smaller
than one were generated by taking a r-stage Erlang distribution. Because

for a r-stage Frlangian distribution Cé equals %, only the values C; =1,
0.5; 0.3; 0.25; 0.2 etc, can be selected. Values cf C;> 1 are obtained by
generating a hypergeometric distribution, which is a combination of two
exponential functions: i.e. exponentially distributed variates are taken
with the probabilities p and 1-p from distributions with the parameters

2pa ard (i-p)2a respectively. This prccess generates hypergeometric variates

with mean 1/OL and a density function f(x):

f(x) = 2p% exp(-2pox) + 2(1-p)mwexp[ 2(1-plax] [ NAGG]

with a variance of x equal to j—hrvl———]—1

4 Lp\‘l"‘P) ]

If the desired value of C; is known for a given value of /o, p can be
1

calculated from: p = 0.5 - 0.5 (1-2/(ct2)+1))2 [ NAGB]

1.2 Variable operating characteristics

In the model strategies can be selected concerning the sample priorities,

the route of the sample through the laboratory, the assignment of the analysts

and the termination of the analysis.

The strategies considered in the model are as follows:

a. Strategies concerning sample priorities:

(1). the sample 1in queue with the earliest-laboratory-arrival date is
selected first for analysis (ELAD)

(2). that sample in queue with the earlies® arrival date at the analytical
section is analyzed first (E3AD)

(3). the samples in each section are subdivided into groups according to the
number of analyses unseccessfully done before. Priority (varying from
FiFo to absolute priority) is assigned either to samples whick have
visited the largest number of sections, or to samples which have visited
the smallest number of sections.

(4). samples receive priority according to the analysis time expected.

There are two situations:

- the shortest-expected-analyzing-time-Zirst (SEAT)discipline.

- the samples are grcuped 1n two categories. All samples with an
expected analysis time smaller than some defined value, have priority

over the others., The discipline within a group is FiFo. The accuracy
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of the 'a priori' estimation of the interpretation time o7 a sample can be

varied in the model. If the accuracy is low, and the SEAT discipline is

applied, then the analysis is accomplished in random sequence,

b. Strategies concerning the routing process:

(1).

the analytical method with the highest estimated probability of a
successful elucidation of the requested structurc is selected. The
choice between methods with thc same probability is made randorly.

This is a fixed routing proccdure irn which a sample path is uniquely
determined from the properties of the sample itself. This is assumed to
be the policy of the real laboratory, which is taken as a base for the
comparison of alternative strategies.

Not only the probability of success but *he expected waizing times for
the various sections are considered at *he time that the sample arrives
at the laboratory. The relative importance of both criteria is given by
weighting factors. Because this routing algorithm bases its decisions
on the observed traffic flow, it is called a dynamic or adaptive routing

procedure.

c. Strategies for assignment of the analyst:

The same decision rule for assigning analysts to asection is used for all

analysts. There are two main possibilities:

{1).

(2).

complete centralization: when an analyst completes an analysis, he is

avalilable for reassignment to arother analytical method. This assignment

can be governed by the following work selection rules:

- assign analysts to the method with which they have most experience and
which has an unmanned instrument

— assign the available analyst to that section with the oldest sample in
its queue and for which the analys® has sufficient experience

- the experience of the analyst and the waiting time of the oldest sample
in each queue are weighted.

complete decentralization: the analyst is always assigned to the same

analytical method, irrespective of the state of the laboratory, (that

is the policy in the real laboratory).

d. Strategies concerning the termirnalion of the aralysis:

(1).
(2).

(3).

there are no restrictions on the analysis time (existing poliey)
a maximal measuring and interpretation time is assigned to cach analytical
section, regardless of the originally estimated probability of success.

the maximal measuring and interprctation time is a function of the
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probabillty of success and the nurber of unsuccessfully applied rietnods.
(4). the maximal measuring and interpretation time also devends on the state

of the laboratory, i.e. the number of waiting samples in the analytical

section.
In each section the same strategy concerning the termination of the analysis
is employed.
A typical property of the considercd spectroscopic laboratory is that some
samples (20%) are sequentially analyzed in several sections. All arriving
samples are accompanied with an application form with data about their
origin and requested information. Sometimes the applicant of the analysis
indicates the desired analytical method by himself. For 87% of all samvles
sufficient information is obtaired by ore method only. When the analysis
failed, the problem along with the intermediate resalts is passed to a next
method. The various sections operate relatively independent from each other,
as only few samples (10%) fail after a combination of two methods. As a result
the secticns in the model are designed as indeperndent nodes in the network.
The mean measurement and interpretation times in the model account for
the *transfer times of samples between the sections. Because the data base of
the registered measurement- and interpretation tiires was too small, no
functional relationships could be determined between those times and the

number of unsuccessful methods tried before.

2. Generation of the flow through the laboratory

As a dynamic or adaptive routing procedure will be used, based on as
well the properties of the sample as the state of the laboratory (the number
of samples in each section), a routing algorithm had to be developed, that
based its decisions on the observed traffic “low and probabilities that the
underlying analytical problem can be solved by the wvarious analytical methods.
It was assumed that these probabilities were independent from the source
(F(1) and F(2)) of the samples. In the actual situation a minor difference
exists, but for reasons of simplicity, the number of parameters in the model
was maintained as small as possible.

The gereration of sample flows, by taking random rumbers from exponcntial
or Erlangian probabtility distributions, was only executed, for the sample traffic
from the outside to the inside of the laboratory, and not for the traffic

between the departments., As a result, the probability density functions
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of the arrivals at tne individual departments are defined by three factors:
a) the probability functions of the arrivals of F(1) and F(2) samples at the
laboratory

b) +the distribution process of these samples over the fcur departnents

¢) the departure processes of samples which are not successfully analyzed.

For each sample arriving at the laboratory, the probability of a successful

analysis of the molecular structure of the sample is estimated on three

levels:

j = 0: the analytical procedure is cstimated to be incapable to furnish the
requesled structure

j = 0.5: the analytical procedure is estimated to give the structure with a
probability of 0.5

j = 1: the estimated probability that an analytical method will furnish the
structure = 1.

The fractions of samples, having j = 0; 0.5; and 1, denoted by p{i,0); p(i,

0.5) and p(i,1) are determined for cach section (i), from the observed sample

flow in the laboratory (Appendix IV-A), and arec shown in Table IV-2.

The flow to the sections can be simulated, assuming tha® all samples, for

which the estimated probability that the analytical method will furnish the

requested information, are indeed successfully analyzed by that mdthod.

Another possibility is that only a given fraction of these samples are

successfully analyzed: i.e. the probasility of elucidation of tae structure

by a given method can be estimated less accurate, As a result, the effect

of balancing this probability against the queue lengths in the model can be

determined as a function of the accuracy of the estimated orobability of

success. The ancertainty that could be introduced in the 'a priori' forecast

of the probability of success of a given method could be enhanced to a

maximum of 16%: i.e. 16% of all samples, are unsuccessfully analyzed in a

method, estimated before to give the requested information.

Table IV-2

The probability p(i,J) to find for a sample that the analytical procedure (i)
will give the requested analytical resull with probability (F)

~ vas . A*) B*)
sectionprobability (j) 0 0.5 1 0 0.5 1
I.r. 0.62 0.26 0.12 0.07 0.78 0.15
P.m.r. 0.2k 0.23 0.53 0.24 0 0.76
M.s. 0.87 0.02 0.11 0.46 0.kh1 0.13
Beon.m.r. 0.80 o 0.20 0.72 0 0.28
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assumption that all samples with j=1, directed to department (i) are
successfully analyzed.

assumption that 50% of all samples with j=0.5, dirccted to devartment

(1) are successfully analyzed.

assumption tnat no samples with j=0, directed to departmenz (i) are
successfully analyzed .

assumption that only 8h%** of all samples with j=1, directed to department
(i) are successfully analyzed.

assumption that only 165** of a11 samples with =0, dirccted to dervartment
(i) are successfally analyzed.

**Upper and lower bound for this assumption, to reproduce the flow in the

laboratory.

3. Stmulation of the model

3.1 Time flow mechanisms

Two general types of methods have emerged for moving a model of a system
through time on a computer: a fixed time, and variable time increment method
[NAG6].

With fixed time iIncrement methods a clock is simulated by the computer, which
is updated in uniform discrete intervals of time. Every unit of clock time,
the system is scanned to determine whether any event occurred during that
time. Underlying simulation model ased the variable time increment method.
This means that, when a particular event occurred in the laboratory, the
clock time is advanced to the time at which the next event is to occur. The
intervening time periods where no changes occur in the system are skipped.
At the occurrence of eacn evert, a number of activities must be execuled

by the model, listed in the event description. In the model five different
kinds of events can take placc: 1. a sample enters the laboratory; ?. the
measurement or interpretation of a sample is completed; 3. an analyst finishes
other activities; 4. an analyst returns to the laboratory after the
comrminication of the results; 5. *he down time of an instrument is over. It
was not recessary to include two additional events marking the moment that
analysts start other activities and instruments go down. These moments are
calculated during the occurrence of event 3 and 5. The event descrioption,
associated with the Tive events accounts for the availabliiity of the
facilities. The evernt descriotion generates the next events which shouald

take place. In this way the model progresses in time automatically.
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3.2 The simulation _anguage

The task of writing simulation programs is simplified by the development

of 'simulallon languages'. Among the simulation languages that have been
developed are: GPSSIT [gp], SIMSCRIPT [MAG”], GASP [KI63], STMPAC [SI6?],
DYNAMC [2U63] and STMULAT: [1I064] . G™SSTI and GAS? are best suited to certain
types of scheduling and waiting time problems. Because GASP is the only
language which i1s written in Fortran IV, and can be recompiled with a Fortran
IV compiler, we have written the simulation program in that language,
consisting of several subroutine programs and function suborograms.

The used GAS? version was described oy Kerbosch {XET3].

3.3 Gereration of random variates

Random variates drawn from a given probability distribution are generated

by means of uniformly distributed random numbers (between 0 and 1) which were
obtained from an IBM pseudo random number generator.

Arong otners, random variates X from scme particular statistical population
with a probability density function (f{x)) are generated by calculating the
cumulative distribution F(x). Since F(x) is defined over the range 0-1,

the value of x (say xo) can be calculated from uniformly distributed random

numbers (r), for which F(xo) =r (Fig. IV-2). From Fig. TV-2 it is easily

o
seen that the probability of firnding a value x < X, is egquaal to the prcbabiliy

of firding a valie r < T, = F(xo) Thus :

P(x < x.) = P(r < F(x_)) = P(F () < F'F(x)) = P(F(r) < x)

where ¥ is the inversc function of ¥.

By this method, exponentially distributed variates were generated in the
model. K-order Erlangian distributeé variates were generated by addirng k
exponentially distributed numbers.

For the generation of Gaussian distributed numbers, a method based on the
central 1imit theorema was used. Adding 12 independent,uniformly distributed
random numbers and subsracting 6, gives Gaissian distr buted variates (Xi)
with a mean zero and standard deviation equal to one. A Gaussian distribut’on
with a mean x and ¢, is simply obtained by apolying the algorithm xi*0x+§

on each variate (xi).
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Fig. IV-2: The generation of random variates (x) with a cumulative density
funcetion F(z) from uniformly distributed random wnumbers (r)

3.4 validatiorn

The validation of a simulation model requires a cormarison of actual versus
simulated data. It is common practice to compare histograms of both data
series,employing the standard y2 t, and F statistics.

However, in most cases the actual data as well as dala from many simulations
are serially correlaled. Tais greatly complicates the application of above
statistics. Moreover, serial correlation in time itself is often an important
characteristic of the simulated system. Hsu and Hunter [HST7] suzgested the
comparison of historical and simulaled data by identifying a time series
model and estimating Lhe parameters of this model by the techniques outlined
by Box and Jenking [BOT70]. Hereafter, the models arec tested for differences
in their means, autoregressive parameters and residaal variances. This
approach based on time series can very well be used for riodelling the
channel utilization [HS77] and number of samples in the laboratory [HSTT ,
STT7].

However, application of a time series avproach is dif“icult when delay times
0f the samples are involved because the sequences of departures and arrivals
of samples are unequal. In general the delay times of samples in a samole

record are correlated. An alternative method for the estimation of some
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parameters of correlated observations is the batch means method which is

described by several workers [FIT8,C063] .

3.4.1. The batch means method.

The basic idea behind the batch means method is to combine the sample sequence
of n observations into k batches of m observations, and to compute a sample
mean (yi,m) of each ba:ch (i). With these means an estimate of the variance

of the grand sample mean over all batches is calculated (Fig. IV-3).

‘1 Mxm,i 5“ ¢ o e 80 v &2 Xn Xn

k=1 k=2  ked k-1 k

y1,m y2,m Y3,m yk—1 ,m yk,rn Yk,m

{ul {r-u}
xl 1,!m
2 essenese sessssncer i

k=1 ikt k

W W @ @ o
Yi,m Yk,m "1m Yik,m YI(,m

Fig. IV-3: Variance reduction by using antitheilic variates.

The sample mean of a sample record of n observations gives an estimate (;cn)of

the mean U of the population.

n
X = 1/a I x IV-1
n . 1

1=1

Together with the estimate var(En) a confidence interval of -iq can be

obtained [WATS,MO6T,MUT8) .

n
var(x ) = 02/n[ 1+ 22 (1 - k/n)e(t) Iv-2
n X k=1

Of course, when the observations are independent, $(T)=0, and var(;cn) =

02/n with
x
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5 n
Ox=1/m—UZ(x - %) IV-3

Considering the batch means method, the means of the batches are equal to
n

¥ =1/m I x

1im I (1) J = T.auk Iv-h

where k = n/m

Averaging these batch means, another estimate (ik m) of the mean U 1s obtalned.
3

k

Vem = 1/&§ Yim V-5
J=1

Clearly, yk,m = xn.

When the autocorrelation ¢xx of x 1s monotonely decreasing, the batch means
are not correlated, provided the batch size (m) 1s sufficicenlly large.
The variance of ik m can be estimated from
>
k

) = 1/k(k—13i1(yJ’m— )-(n

var(in) = var(y V-6

k,m
It remains i test the hypothesis that there 1s no correlation between
neighbouring batch means, To this purpose, the method described by Fishman
[ FIT3] was followed, usiang the statistic

k-1

G =1~ E (yl,m -y
1=1

k
2/or (y. - %) V-7

1+1,m 1,m he!
b 1=1 2

For k> 8, the distribution of Yim o Viom S close to normal [ FI78] , and under
) s 2

Hy that there 1s no correlation, Ck has a mean zero and variance (k-2)/(k"=1).

For C < u(P)\f(k—E)/(k2-1) the H_ hypothesis .s accepted, where a(P) 1s the

excen§*1c1ty of a normal dlstr¢buglon with an accuracy of P%.

When the HO hypothesis 1s rejected Lwo procedures can be followed: first,

larger batches can be taken (1ncrease of m), However, when the number of
batches becomes less than 8, one stould increase “he number of observations n,
Because the ultimate goal of simulation experiments 1s to compare some resporse
parameters for different operating policies, a minimal confidence 1nterval of
the estimate (in) of u 1s desired. Therefore, the batch size (m) should be as
small as possible, 1n order to have the maximal number of degrces of freedom

(k) for the calculation of the variance. Moveover, variance reduction technigaes
are developed to redace ire sarmple si7ze 1n simulation experiments (Mitchel

[MI73], Naylor [NA66], Fishmah [FI{3]). Therefore, the simulation sequence
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shown in Fig. IV-3 is modified in a scquence composed from two runs., In the
first run n/2 delays are simulated, combined to k batches of m/2 samples.
These simulations are executed using Lhe sequence {uik)} of indeperndent
random variables that generate the sequences of interarrival times and of
analysis times. Thereafter a second simulation is run, tnat also combines

n/2 delays in k batches. Eowever, now the sequence {vﬁk)} of independent
random variables generates the sequences of interarrival times and of analysis
times. When {vfk)}={1 - uik)} the two runs are called antithetic. This
condition implzes that the delays fourd in “he k-th batea of the second and

of the first run are ncgatively correlated., Mitchell [MI73] demonstrated

that when the simulations are executed with two antithetic runs of n/2 delays,
the slandarddeviation is reduced, compared to a single run of n delays. This

reduction amounts aboat 20% for an M/M/? system.

3.4.2. The replication technique.

From Eqn. IV-6 the slowness of stochastic convergence appears. In order to
halve the standarddeviation of a sample mean (GE), one must quadruple the
sample size. A demand for a small OE can easily lead to an unreasonably
large sample size, associated with increased costs of computer time. Another
way to diminish the variance of a performance characteristic in a simulation
experiment is to include more controllale factors in the model. However this
requires sometimes & rigorous change of the model. Therefore, the effects of
all uncontrollable factors are absorbed irn the random character of the input
variables. Indeed, a variable is treated stochastically, by a lack of
knowledge about the source of its variations. In computer simulation
experiments one is usually interested in measuring differences in average
responses for various combinations of factor levels, The variance of these
differences is reduced by taking stochastic variates, generated from the
same sequence of random numbers, TFor example ir Ch. V the influence of the
priority between various classes of samples is discussed by using the same
4000 samples for each run with different priority disciplines. Tn that case
the input sequence of the samples to the laboratory is treated as a controlled
variable, yielding measurements of differences between the runs having a
reduced random error. This replication technique is based on a mathematical
result that the standarddeviation of the difference between two sample

averages 21 and ip is reduced when 21 and §2 are positively correlated.
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= = 2 =P s = -2
L[x1— x2] = E[x1] - 2_[x1.x2] + E[x?]

2 ) 2
or: O,= —)_C ) = 0; + 0)—( - 20)—( ;{
AR 1 2 1%

= cg + og - 2y~ E(O)'Ui .O0=

e T S R 1

Supposing that Oz =0; ,we fird that

1 2
c?— e 202 - 2y- = (0).0§
7% X, 1% 1
For {- = 13 O?E ) =0
*q%o 1%

The usefulness of the results obtained iIn this way depends on the plarning
horizon in *the laboratory. At an infinite planning horizon the variance of
a performance characteristic tends to zero (0;+ 0), and each change of the
output will be statistically significant. The optimal strategy found here,
however,yill also be the best one in a situation with a finite horizon. But,
it becomes questionable whether a statistica’ly significarnt better operation
of the laboratory in reality will be observed, because in the real si-=uation

the system does not replicate. wE b (0) is near zero, and “herefore
2

-
e

2
g,= = ) = o= + Oi , and 1t is more difficult to detect differences between
=1 = 1 2

3.4.3., The time series approach,

As outlined in Cn. TI, an autoregressive first order model (AR(1)) of a time
series is described by 2 paramcters: ¢, the autocorrelation at T=1, and the
residual variance (02). According to Box and Tiao [B073] the means of two
time series can be compared by applying the Student's t test for correlated
time series, Therefore, first of all, the original correlated AR(1) time
series (Nz) is transformed to irdependent rormal variates (ut) with a mean
u and variance si [Es77] , by applying Eqn. IV-8

uo= (0 - o.M, /(1 -6)) Iv-8

The variance (si) of this transformed AR(1) time series equals [HSTT]
(Appendix B)

2 2
soo= sy (1 +0.0/(1 - ¢,) V-9
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and the mean (Appendix B)

u=73 Iv-10

Thereafter the student's t test betwecen the historical (Nt) and simulated
data (N:), which were respectively transformed to the independent normal
variates u, and u:, with means u and u* , and standarddeviation s, and s:,

t
was executed according to Fqn. IV-11:

1=

- - 2 2
t = (u- /s /(n-p) + s *(m-p)} IV-11
where n and m are the number of observations in both series, and p the number
of degrees of freedom. EZqn. IV-9 can also be derived from the expression of
the standarderror (0%) of the estimate (¥) of the mean of a time series [RETO]

02 = oo {1 + 2}: (1 - %/N)exp(-k/T_)} IV-12
N -N b
k=1
N

For a first order corrclated time series, the Eqn. IV-12 becomes [MO57T]

N
2 1-¢
UN—U{1+(1 )(1— 1
N n(1-¢.)

)} IV-13

for large values of n: ¢ >0 and "1 1- ¢1 -0
N(1-$.)

Thus 0% = g§(1+¢1)/(1—¢1), which approximaltely equals si/(n—p)

N
The algorithm for u and si can also be derived Zor higher order time series
models [HSTT] .
The estimated value of O% is strongly dependent on the accuracy of ¢1 and
the exactitude of the order of the model. According to Bartlett [BAMG) for a

first order model:

%0 (1)) = (1 = 42 (1)/(x=1) TV-1h

The estimated autoregressive paramecter (¢1) and the residual variance (Gi)
of two time series can be compared simultaneously by using an inferen<tial

. s 2 . .
statistic G(Y,y), where W=¢1-¢f, and vy = o;*/ci . Therefore two time series

should be compared by establishing whether the inference ¥=0, and y=1 is
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tenable or not. Hsu and Hunter [HST7] described a testing procedure for that
purpose. This test is executed by the calculation of the value of G(0,1). If
the value of G(0,1) is below a limiting value, ¥ and y are not significantly
different from respectively zero and one. On the other hand, if it is higher
than this limit it should be further established whesher this is due to

either ¥ or Y or both. Therefcre the value of G(Y¥,1) and G(C,y) are calculated
and compared with some critical point of %xz. Details about the derivation

of the joint posterior density funclion of y and ¥, denoted by P(W,Y|n1,n2)
have been given by lsu [HSTT].
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Appendix A

Caleulation of the probability p(i,j) for a sample that the analytical

procedure (1) will give the requested result with a probability (j).

The probability p(i,j) Is calculated for a fixed routing procedure where a
sample path i1s uniquely determined by the property of the sample itself. The
choice between sections with the same probability for delivering the requested
result is at random. Furthermore the assumption is made that J can take three
values only: j=0; 0.5; and 1. Thus the probabiliity (Pr(i)) <that a sample, at
its arrival ir the laboratory, is rouited to scction(i) equals the sum of the
probabilities that a sample is directed to section{i), with j=0 (Pr(i,0));
j=0.5 (Pr(i,0.5)) and j=1 (Pr(i,1)).

Thus: Pr(i) = Pr(i,0) + Pr(i,0.5) + Pr(i,1) IV-A1
all 1

Assuming that indeed 50% of all samples with j=0.5, directed to the section
no 0

i, are completed in that section, we find that %the probability (Pe(i)) of

completion in section 1 equals:

Pe(i) = (Pr(i,1) + 0.5Pr(i,0.5))/Pr(i) IV-A2

The probabilities Pr{i,0), Pr(i,0.5) and Pr(i,0) all are a function of the
values of p(i,j). Having i=1,..4 and j=0, 0.5 ard 1 with p(i,0)+p(i,0.5)+
p(i,1)=1, Eqn. IV-A1 and Eqn. IV-A2 are two equations witk two unknowns.
Consideration of these equations for all sections, gives 8 equations with 8
unknowns, which is solvable. The values Pr(i) and Pc(i) for each section i=
1,..4 in the actual laboratory are tabulated in the first two rows of
Table II-3 .

It remains to express Pr(i,j) as an explicit function of p(i,j).

Namely:
N L I Y
Pr(i,j)=p(1i,3)M(1-p(k,j))+0.5%p(1,j)p(k, )M 1-p(1,j))+0.25Tp(k,j) +
k=1 k=1 1=1 k=1
k#i k#i 1#1
1#k
(a) (B) (c)
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L L
0.333Zp(i,J) (1-p(k,1))Mp(1,j) IV-A3
k=1 1=1
1#1 1#1
1#k

(D)

As an example Eqn. IV-A3 is discussed for j=1:

term (A):

(C):

(D):

represents the probability Lo select method i, having e probability
J=1 to give the requested information, while all other methods have a
lower probability (j<1).

is the probability to route the sample to section i, having a
protability j=1 to give the requested information, while section k
has the same probability j=1, and all other sections a lower one
(j<1). The factor 0.5 appears because a random selection should be
made between method i and k.

cfr(B) but here all sections have the same probability to give the
requested information. Here a random selection is made and the
probability to select method i equals J.25.

cfr{B), however, here only one method Las a provebility j<1. A
random selection should be made between three methods, having the

same probability (j=1) to give the requested information.

Releasing the assumed correctness of the estimated probability (j) that a

sample will be completed in a section, the probabilities p(i,j) can be

recalculated for the case that :

e.g. only 90% of all samples with j=1 are completed

and

Then Egn.

Pr(i) =

10% j=0

IV-A2 becomes

(0.9Pr(i,1) + 0.5Pr(i,0.5) + 0.1Pr(i,0))/Pr(i) IV-A3

The partition of the traffic of samples between the sections in the simulation

model,is calculated from p(i,j) values for the partition of the arriving

samples in the laboratory.
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Appendix B

Consider a sequence of observations Nt, t=1...,n, described by a first order

= (n-0,N,_ /(1 - 6))

autoregressive model, iransformed to a sequence u

t t-1

then u_ = (Nt- F) - ¢‘(Nt—1_ E) + ®(1 - ¢1)/(1 - ¢1)

(1 -6

Sabstituting Nt— N= n t=1,....n

= _ e V4T
then ug (nt ¢1nt_1)/(1 $,) + N

For a first order autorcgressive model nt= ¢1n + a,, where a (t=1,...n)

t-1 t t
represents independent ard identically distributed normal random variables

. . 2
with mean zero and variance ca.

Thus u, = at/(1— ¢1) +N andu=0N

Tke variance of u, equals:

2 n - .2 n
s, = 1/(n—13£1(at/(1-¢1) + N -T) Lz?t (1-6, 01/l (1—¢1)(n—1)]

2
s /(1 -¢,)
For a AR(1) model, the residual variance equals:
2_ 2 2

s,= sy (1= 07)

2 ?
Tnus: s, = Sy (1+¢1)/(1 - ¢1)
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CHAPTER 5

SIMULATION OF A LABORATORY FOR

STRUCTURAL ANALYSIS

In order to draw valid conclusions from experiments with the simulation model,
the model should be a valid representatiocn of the real system. According ‘o
Conway's [C059] opinion, some assurarce of validity is provided when the
model produces results that are not inconsistent with the known performance
of’ the real system, for at least one alternative version of the simulated
system and ore set of conditions. This test is widely aprlied and is
essentially a null test. A model which failed to pass is exceedingly suspect,
but no strong statement can be made for a model which passed. The simulation
of situations with known analylical results (e.g. M/M/n systems) can help to
discover some programming defects.

In this section a s*atistical comparison is made of the output of our computer
model with two actual situations of the laboratory, namely ithe situation
during the period 6/1976 - 6/1977, described in Ch. II, and the period 6/77

- 6/78. The delays in ihe model were equalized to those of the period T6-T7
by adjusting (i) the parameters defining the schedule of the other activities
of the analysts, (ii) the priority differences beiween F(1) and 7(2) samples,
(iii) the priority difference between the samvles which visited n and (n+1)
sections, and (iv) the time spent to communicate the analytical result.
Without changing the statistical parameters (means, variances, p.d.f.) of

mentioned variables, and analysis times, and without a change of the kind

Published in part in: B.G.M. Vandeginste, Analyt. Chim. Acta CTO, accepted for
puhlication.
B.G.M. Vandeginste, Communication presented at the TUPAC

Congress, Helsinki (1979) 89



of distribution functions of the interarrival times, the output (mean delay's,
rnean number of waiting samples, correlations etc.) of the situation in 77-78
kas been forecasted by substituting the observed trafic of F(1) and F(2)
samples to the laboratory in the ncdel and by adjusting the parameters
defining the distribution of samples cver the various sections. The statisties

used are described in the preceeding chapter.

1. Validation of the model over the period 6/1976 — 7/1977

1.1 Validation of *the parameters of the inpat arnd output density functions.
The mean number of arrivals and decartures pcr day of samples %o respectively
from the simulated laboratory are 7ot significantly different from those in
the actual laboratory (250 days of operation), as follows from the Student's
t values listed in Table V-1. Lolmogorov-Smirrov (K-S) tests apolied on the
cumula-ive dersisty functions of tne input and output of tae simalated and

actual laboratory could not detect any significant differences. Althcugh

Table V-1
Validation of the input and output density

Section inpat (samples/day) statistical tes: vs actual daza
compiled in Table II-1

mean variance ¢(1)°? Student's t! K-S test?
t D

max
I.r. 2.7 5.5 - 0.46 0.039
P.m.r T.4 12.1 - 0.80 c.07?
M.s. 1.8 1.7 - 1.7 0.081
3¢con.m.r. 2.7 3.0 - 1.1 0.095
Lab 11.2 21.2 0.k0 1.2 0.097

output (samrples/day)

I.r. 2.7 7.5 - 0.4 0.091
P.m.r. 7.4 L. T - 0.5 0.099
M.s. 1.8k 5.1 - 0.8 0.089
Yeon.m,r, 2.65 10.1 - 0.4 0.090
Lab 11.13 64.0 - 2.9 0.160
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Fig. V=1: Histograms of the probability (%) of an inmput density a (samples/
day) to the sections and laboratory (model). — simulated values, * Fitted
Poisson distribution (same mean)
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Fig. V-2: Histograms of the probability (%) of an output density vy (samples/
day) from the sections and laboratory (model). — simulated values, . Fitted
Poisson distribution (same mean)

these cumulative dersi:zy functions dc rot meet the condition of continuity

for application of the K-S test, tnis test may be used (De Jonge [J063] ).
However the tabulated@ value will be exceeded with a larger probability.

These cbservatiors indicate that bty the generation of :wo Poisson samdle streams
to the laboratory with differcns parameters (F(1): TAT=0.93hrs and F(2): TAT=

2.3Thrs), which are distribuled over the four sections, according to the
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estimated probabilities *hat the various sections may give the requested
analytical information, an input flow is obtained with the same statistical
properties as observed in the actual situalion. An important observation is
that the cumulative dernsity functions of thae output flow of both, the
simulated ard actual situation, are not significartly different. Tha* mears
that the mentioned effect in the lZaboratory, that the input and output rate
density functions are completcly diffcrent is also observed in the model
(Fig. V-1 and V-2). A rather surprising result found in the model (as wcll as
in the laboratory) is thke memoryless property of the time scries of the
number of departing samples per day. There is no correlation between the
number of finished samples at any day and the day before (Table V-1).
Conirary to the actual laboratory (Fig. II-5) no significant periodicity
couid be detected in the autocorrelograms of the number of samples leaving
the laboratory cach day.

The conditional probabilities (pij) of transfer of samples between the
sections (Table V-2) and the probabilities of each method to be selected
first, secondly etc. (Table V-3), are in close agreement with the real
situation (Tables TI-3 and II-2), taking irto account that Lhe parameters

regulating the sample fZows through the network were calcuiated under the

Table V-2

Conditional probabilities (p.i) for transfer of samples from one section to
another in the model, and th®“probability (q.) that a sample in node (%)
leaves the system. B

f'rom to ouT (qi) i.r. p.m.,r. m.S. e n.m.r.
ouT - 0.17 0.57 0.10 0.16
I.r, 0.59 - 0.18 0.10 0.13
P.m.r. 0.85 0.06 - 0.0h 0.05
M.s. 0.6k 0.10 0.15 - 0.11

3¢ n.m.r. 0.78 0.07 0.09 0.06 -

agsumption that the partition process over the sections was equal for samples
arriving from outside and inside the laboratory. The percentage (% good) of
samples that are successfully analyzed are indicated in Table V-3 for each

section.
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Table V-3

Probabilities for the selection of the methods in the model.

first selection

% good
second
% good
third
% good
fourth
% good

i.r. p.m.r. m.s. Y3con.m.r.| % of samples
completed

0.17 0.57 0.10 0.6 80.2
2.63 2.86 0.72 0.83

9.22 0.39 0.17 0.21 93.0
0.48 0.83 0.49 0.63

0.28 0.19 0.26 0.27 95.7
0.36 0.65 0.25 0.43

0.70 0.01 0.35 0.Lk 100.0
1.00 1.00 1.00 1.00

1.2 Validation of the queue lengths.

In the proposed model, the gqueue length in an analytical section is defined as

the sum of all waiting and unfinished samples. Student's t tests (Eqn. IV-11)

did not detect significant differences between the mean queue lengths in the

various analytical sections or in the total mean guaeue length in model and

laboratory (Table V-b).

Table V-4

Validation of the queue lengths.

statistical tests vs actual data in

section Table II-5.

mean (N) var(N) ¢(1) var(K)[Studt® 01)* d¥,1P ooyl xws® «sb

(Egn. IV-11)

I.r 13.1 92.1 0.93 9.3 0.L8 3.6 0.8 2.8 0.16 0.1
P.m.r. 30.1 219.9  0.87 12.h 1.9 1.9 1.7 0.2 0.23 0.09
M.s. 9.0 32.8 0.90 2.5 2.4 19.9  17.2 2.6 0.21 0.09
Bon.m.r. [19.4 73.1  0.90 5.3 0.98 T2 0.002 1.2 0.12 0.05
Lab T1.6 Sih.b 0.90 37.4 1.5 6.8 6.4 0.44 0.22 0.06
1%, 0972+58 "X, 01(2)7h6
3x%5.01(3)=5.7  test vs actual data: D ,.=0.145
3%x20.01(1)=3.3 Stcst vs Gaussian function: DO.O1=O'096

The fit of an exponential function througn the autocorrelation functions of

the queue lengths and a subsequently cxecuted Bartlett test [ BA46,MUTS]
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demonstrated that the time series of the queue lengths can be described with

a firss order autorcgressive model. The comparison of the autoregressive
parameter ¢(1) and the residual variances (si) of the number of samples in the
queues at the end of each day, in model and laboratory, by means of the G-
statistics (Ch. IV) (Table V-4) demonstrated that the dynamic stricture of the
simuiated gueue lengths in all sections (except m.s.) is undistinguishable
from that of the observed queues. Both time series are adequately described
by an AR(1) model with equal parameters. This means that there are no signifi-
cant differences in magnitude and velocity of queue fluctuations between
mcdel and laboratory. However, the autoregressive parameter ¢{(1) found in the
m.s. section and total laboratory is somewhat too high. The Kolmogorov-Smirnov
(K-38) test shows that the maximal difference (D) between the cumulative
density functions of the number of walting samples in the laboratory and model
exceeds the value D =0.145. With such a result no strong statement can be

0.01
made about the H. hypothesis that the two populations have the same distribu-

tion, since the gata are not independent (high ¢(1)), causing a probability
> 1% that D>0.1L5. Otherwise the calculated maximal differences (Table V-4)
between the observed and Gaussian cumulative function demonsirate that the

HO hypothesis that the number of samples in the model has a Gaussian shape

cannot be rejected. Surprisingly, the from a theoretical point of view un-
expected (Ch. III) Gaussian shape of the number of samples in the sections,
observed in the laboratory (Ch. II) has been found again in a’l sections of

the model. This Gaussian shape instead of the expecled exponential shape

will be explained by the simulation experiments presented in Ch. VI.

1.3 Validation of the delays.

Two problems were encountered validating the delays in ihe network. Firstly the
same ratio between the delays of the samples which visited 1,2,3, and L sections
should be obtained for the model and for the laboraleory. This car be accom-
plished by adjusting the dynamic priority rule (Ch. III) between the samples
which visited a different number of secclions. Secondly, a good estimation of
the variance of the mean delay is necessary.

(i) With the introduction of ar urgency number tha* is devendens on “he number
of visited sections (bp= —nbn) Eqn. III-26 becomes 9= t,- nb . A variation

of bn between -100 and +100, varies the priority rule in the model from
attributing absolutec priority to samples which visited n sections over samples

which visited already {n+1) sections, to the reversed situation. The effect
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URGENCY NUMBER

Fig. V-3: The average system time (T) for samples that visited a varying number
of sections as a functron of the urgency rumber (b_), defining the priority
difference between samples that visited m and n+l Sections.

of the priority was investigatced by means of the replication technique, des-
cribed in Ch. IV. Fig. V-3 pictures the mean delays for samples subjected to
1, 2, 3, and L procedures as a function of the urgency number (b ). These

rurs confirm the Former statement based on Egr. III-26 that the gverall mean
waiting time of all samples is not Influenced by any priorily rule, provided
that the mean analysis times of all priority groups are equal. Fig. V-3
demonstrates clearly that the ratio of the delays of samples subjected to 1,
2, 3, and L methods, is strongly dependent on the priority difference attribu-
ted to these groups of samples. The cross sections o Fig. V-3 at different
priority differences, presented in Fig. V-i4, give a good indication of tke
relationship between delay and number of visited sections. Furthermore Fig.
V-4 shows that in the laboratory, samples which visited the smallest number

of sections have a lower priority over the other samples (bn:-10). This implies

that a small priority is given tc samples which arrive from outside the
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Fig. V-4: Simulated mean system time as a function of the number of vistted
sections and priority difference (b_) between samples that visited n and n+l
sections. ———— :actual laboratory.

laboratory over “hose samples arriving from inside. This effect is very well
demonstrated from the comparison of the delays of both kinds of samples,
shown in Table V-5. The delay of the samples arriving from outside is
significantly lower than the others. This is in agreement with the observa-
tions tabulated in Table TI-8. From Fig. V-3 more general conclusions can

be drawn. For bn= -100, the differences between the mean delay times of the
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Table V-5

Comparison of the delay times in the sections , of samples arriving from
inside and outside the laboratory.

section delay (T
outside  var(T) inside var(T) ratio |Student's t

I.r L,12 0.10 6.55 0.36 2.1
P.m.r. 3.81 0.02 5.69 C.06 1.49 6.6

M.s. 4,56 0.23 5.5h 0.h2 1.2
con.m.r. 6.30 0.07 9.46 0.17 1.50 6.4

Lab 4.33 0.005 6.83 0.03 1.58 13.4

ty.01 =258

-100 -50 o} 50 100
——» URGENCY NUMBER

Fig. V-5: The maximal system time (T a ) and standarddeviation (ST/E( T)) as
a function of the urgency number (b ¥ ﬁefining the priority difference between
sanples that visited n and n+i1 sections.

four types of samples are much greater than for bn=+100, whereas the overall
mean delay time remains unaffected. As a conseguence, the variation coeffi-

cient of the delay and the longest delay in the laboratory will be a function

98


http://13.it

of bn, as demonsirates Fig. V-5. Here a minimal value for both rerformance
variables is found Tor b1=+100, under the assumption *hat there is no correla-

tion betwecen the analysis time and the number of visited sections.

(ii) The estimation of the standard error of the mean delay obtained bty employing
Lthe batch means rethod and time series analysis method (Ch. IV) were tested
against the estimation obtained by 12 replicated runs of the model. Therefore,
the model was run under various conditions thal should not introduce any effect,
apart from producing fluctuating delays, caused by the statistic nature of the
model. For example, the timing of Lhe other activities is controlled by a
random number generator, specifically dedicated to each analyst. By Lhe
exchange of analysts over the sections, a different delay should be found,

from whica an estimation of +the standarderrnr can be obtained.

As a rule, the batch means method witn 500 samples per batch gave an overesti-
mation of the standarderror of the simulated mean delays (Table V-6). The
estimated standarderror using the time series analysis approach, are close

to the values obtained by the twelve replicated runs of the model (Table V-6).

Table V-8

Comparison of the standarderror of the mean delays (4000 samples—350 days),
estimated according to the batech means method, and time series analysis method,
with the standarderror obtained witlh 12 replica's of 4000 samples.

section samples with the same final method

i.r. p.m.r. m.s. '3Con.m.r.|i.r. p.m.r. m.s. '3C-n.m.r.
batch means' | 0.73 0.81 0.97 0.3L 1.0%  0.89 1.2k 0.62
time series | 0.31 0.17 0.61 0.15 0.h8& 0.20 C.68 0.35
replica's 0.73 0.30 0.6h 0.28 ).7h 0.30 0.76 0.33

samples wilh the same number of visited scctions overall

1 2 3 Y

batch means' [ 0.66  1.18 2.00 2.80
time series | 0.15 0.48 1.L0 1.60 0.16
replica's 0.19 0.45 1.20 1.20 0.°3

! 8 batches of 500 samples

However, the standarderrorsof the delays in the sections were undercstimated.
This is probably due to the assumed first order autoregressive model that does

not fit adequately the actual series of the delay. An indica*ion “nat %he
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autoregressive model of ithc delay in the sections should not be of the first
order is obtained by tne discrepancies fournd beiwecn the value of the auto-
correlation function at T=1, and the value exp(-1/Tx) calculated from a fit
of an exponential function through the autocorrelograms (Table V-7). Apparently,
the autocorrelation at 7=1 of the delays in the sections is an undercstima-

tion of the correlation, resulting in an underestimated variance (Egqn. IV-13).

Table V-7

Comparison of the autocorrelation at 1=1 ($(1)) and the estimated value of
$(1) from a fit of an exponeniial function through the autocorrelogram.

section samples with the same final method

i.r. p.m.r. n.s. !'°C-n.m.r. i.r. p.m.r. m.s. '3C-n.m.r.
¢(1) 0.60 0.55 0.33 0.35 0.28 0.k1 0.32 0.19
exp(-1/T )| 0.90 0.98 0.85 <0.37 <0.37 <0.37 <0.37 <0.37

samples with the same number of visited sections overall

1 2 3 L
¢(1) 0.55 0.33 0.20 0.22 0.30
exp(-1/T )|<0.37 <0.37 <0.37 <0.37 <3.37

For the statistical comparisons, described in the ncxt paragraphs, and the
experimental design schemes described in Ch. VI, the standarderror was calcu-
lated by the time series approach (Eqn. IV-13). An exception is made for the
delays in the sections where the values of the batch means method were used.
The studeni's t tests executcd on the mean delays of various categories of
samples show that no significant differences could be fourd betwecn the
actual and simulated laboratory for 10 of the 13 calculated delays (Table
V-8). Kolmogorov-Smirnov tests executed on the cumulative distribulion functions
show that the k=2 Erlang distribution provides a good fitting function (Fig.
V-6). One should remark that this fit with a discrete function is aliowed
because, according to the real data, discreze delays (full days) can be

obtained with the model.
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Table V-8

Validation of the delays.

Section

mean (days)
variance
var(T)

student's t vs
data in Table I1=T

i.r. p.n.r. n.s. ’C-p.m.r.

L.8 ] 5.0 7.L
16.8 6.3 27.1 20.b
0.75 0.2 2.1 0.15
1.k 1.5 1.2 1.3

samples with the same final method

mean (days)
variance
var(T)

student's t vs
data in Table II-T

i.r. p.n.r. m.s. 3C-n.m.r.

7.1 u.7 8.L 10.0
51.8 13.7 71.6 73.1
0.16 0.03 0.6h 0.12

1.35 4.8 1.h 3.1

sam

mean (days)
variance
var(T)

student's t vs
data in Table II-T

les with the same number of analysis
1 P2 3 L4 overall
L5 9.8 19.1 25.0 6.4
9.L 26,5 69.9 107.7 52.8
0.02 0.28 1.5 3.2
2.9 1.9 0.2 0.5

ty 01" 2.58
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Fig. V-6: Histograms of the probability (%) of a delay (T) in the sections.
—— simulated data, . Fitted two stage Erlangian distribution.

1.4 Validation of the cross correlations in the system.

There is no mnutual correlation between the number of samples in each section
of the model, as shows the Table V-9. This agrees with the observations in
the actual laboratory (Table II-10) and is a property of an open network
[LETT].

For the simuiation of the basic situation, the input flow of the laboratory
and the sections was independent of the number of samples in the system.
Cross correlation calculations, however, detected a small correlation between
both variables (Table V-11). However, the calculated residual variances (%)

are very high, which indicates that the major part of the fluctuations of
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Table V-9

Mazimal correlation between the number of samples in each section
(99% confidence interval)

I.r. P.m.r. M.s. 3con.m.r.

I.r. 1 +0.1 (0)! +0.2 (+20) -0.4 (-25)
+0.512 +0.56 +0.56

P.n.r. 1 +0.2 (-15) 4+0.5 (+27)
+0.48 +0.k9

M.s. 1 +0.3 (+20)
+0.51

13C—n.n.r. 1

lthe time leg (T) for maximal correlation

299% confidence interval

the fluctuatiors of both variables are mutually independert. As approximate-
ly similar crosscorrelation values were calculated for the actual laboratory,
the conclusion in Ch. II, that the samples are not prefcrably moved to the
section with the lowest saturation degree, is supported. The correlations

in the model between the number of samples in the sections and the delay

of the sanmples arriving at the section (Table V-10) is higher than in the

actual laboratory (Table II-12).

Table V-10

Maximal correlation between the number of samples (x) in the section and the
delay (y) of the samples arriving at the laboratory (model)

I.r. P.m.r. M.s. 13C—n.m.r.
¢xy 0.62 (~5)! o0.70 (-k) 0.63 (-3) 0.43 (-5)
99% conf.
interval +0.30 +0.37 +0.28 +0.21
residual 0.62 0.50 0.60 0.81
variance

lthe time lag (T) for maximal correlation

The maximal correlation at 1=-5 (Fig. V-T) can be explained by the departure

of the samples + 5 days after their arrival at a section. Thus, the delay of
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Table V-11
Maximal correlation between the inmput flow (x) and the number of samples in

the system (y)

I.r. P.n.r. M.s. 13c_n.m.r. Lab
¢xy +0.23 {+1)'+¢.L1(0) +0.10 (0) +0.28 (2) +0.49 (1)
99% conf. .
intorval +0.19 +0.20 +0.17 + 0.17 +0.17
residual 0.9k 0.83 0.99 0.92 0.76
variance

lthe time lag (1) for maximal correlation

$., PMR

Fig. V=7: Crosscorrelograms (¢ Z) between the number of samples (x) in a
section and the delay (y) of thd samples, -—= 99% level for significancy from 0.

104



the samples, leaving a section at a time t has the greatest correlation wi<n
the number of samples in the system al the moment of their arrival, namely
T=-5,

By tne application of dynamic pvrioritles, different priorities can be
attributed to the F{1) or F(2) samples. This priori%y can be varied “rom
FIFO (equal priority) to absolute priority. The cffects on the delays for

samples leaving the syslem through the samc exit node are shown in Fig. V-8.

I,
T

T,

Fia. v-8: Simulated mean delay (T /T and W /T) of a system with two groups

¢ samples (F analyzed gé the sar’final method, as a function of the
przority i f%rence ?b ? ) between both groups of samples.
final method is pf —== Vnomer.; — Z.p0; ... mas.

Although in the actual laboratory, significant differences could be detected
between overall delays of both groups of samples only, and also between the
delays of samples leaving the system through the i.r. section (Table II-9),
it can be concluded that in the laboratory a small priority is attributed to
the F(1) samples. Fig. V-8 indicates moreover that the urgency number (bp)
for the F(1) samples in the p.m.r., '’C-n.m.r. and m.s. sections does exceed
the argency number of the F(2) samples with less than 10 to 20 time units.
This means that a F{1) sample arriving at the laboratory has priority over
all F(2) samples having a smaller delay than 10 to 20 hours (1 to 2 days)

(the i.r. section: 30-50 hrs). Typically although the various scctions have a
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different (i) rumber of facilities, (ii) utilization factor, (iii) variation-
coefficient of the analysis times and (iv) amount of other activitics, a very
similar effect iIs observed on the delays of the samples leaving the system
through the various sections. According to the stheoretical outline given in
Ch. III, the priority difference has the greatest effect on Lhe F(2) samples,

with the smallest input flow <o the laboratory (Fig. V-8).

2. Forecast for period 77-78

2.1 Adjustment of the flow.
The flows through the real laboralory during the period 77-78 and the period
76-T77 are compared in Table V-12.

Table V-12
Comparison of the input flows (o) of the period 77-78 and 76-77 (Table II-1)

section mean (a) var(a) Student's t test!
vs actual data in Table II-1
I.r. 1.6 0.02 I
P.n.r. T.57 0.17 C.3
M.s. 1.93 0.03 0.6
Veon.m.r. 1.L2 0.0? 5.6
total intern 11.08 -
flow
Lab 10.28 0.3 2.1
g0 = 2:58

This comparison indicates that the traffic to the i.r. and !3C-n.m.r. sections
did significantly decrease, while the total sample flow to the laboratory
remained unchanged. This means that the mean number of visiled nodes decreased
also (total interrnal flow (Xdi) decreased from 15.1 to 11.1 samples per day),
which can only be caused by a change of the estimated probabilities (pij)
that the various sections will solve the submitted analytical problem. The
conditional probabilities of transfer of samples from one to another section
and the probabilities (qi) that a sample leaves the system through node (i)
are shown in Table V-13. The probabilizies that a method will be scleected

are shown in Table V-1bL,

106



Table V-13

Conditional probabilities ps: of transfer of samples from one to another
section, and the probability a; thal a sample in node i leaves the sysvem.

from to Out (qi) I.r. P.m.r. M.s. Ve mon.r.
Out - .11 0.67 0.12 0.11
I.r. 0.53 - 0.25 0.16 0.06
P.m.r. 0.90 0.03 - 0.05 0.02
M.s. 0.75 0.08 0.13 - 0.0h
V3icn.m.r. 0.82 0.06 9.05 0.06 -
Table V-14

Probabilities that the methods will be selected.

section first %correct sec. % correct third % correct fourth % correct
I.r 0.11 0.46 0.2k  0.67 0.15 0.73 0.2L 1
P.m.r. 0.67 0.90 0.33 0.8k 0.28 0.96 0.24 1
M.s. 0.12 0.73 0.31 0.80 0.36 0.77 0.12 1
YVcom.n.r.| 0.11 0.83 0.11 0.78 9.21 0.89 0.41 1

2.2 Comparison between the forecasted and actual delays in the laboratory:
period T7-78.
Tables V-15 ard V-16 show that the mean number of waiting samples in 77 is
decreascd compared to the 76-77 period (except for the !3C-n.m.r. scction).
As a consequence, a significant decrease of the delays is obscrved (except
the i.r. and m.s. sections). Tae simulation of tkis situation reveals that,
effectively, the observed decrease is also forecasted by Lhe model. Anyhow,
only significant differences between model and laboratory are found for some
delays in the sections, and for the samples that visited two sections. The
mean queue lengths and the dyramiec behaviour (G(0,1) tes:) of the queues are
not significantly different. However, the forecasted decay of the delay is
too high for the i.r. and m.s. section. An argument for this discreparcy
is that some modificatzions were in-roduced in thesc sections.
In the i.r. section some investigators (not member of the analytical staff)

are permitted to mcasure their own spectra. If the spectrum is too complex,
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Table V=18

Comparison of forecasted and actual mean queue sizes, and comparison of the
parameters of the fitted AR(1) models.

secsion actua’
mean (N) var(¥) var{¥) ¢(1) Stud. t! si
ve T6-TT
I.r. 6.6 22.5 1.1 0.85 2.8 6.24
P.m.r. 27.3 209.5 8.L 0.82 2.9 68.6
M.s. 8.3 24.8 1.2 0.86 3.3 6.5
V3con.m.r. [11.4 Ll h 4.0 0.92 2.2 6.8
Lab 53.7 539.6  33.6 0.88 3.6 121.7
forecasted
nean (T) var(N) var(7) (1) Stud. t! s°  G(0,1)2
vs T7-T8
I.r. 3.8 7.84 0.1 0.63 2.5 b7 9.4
S.m.r. 28.8 187.7 9.1 0.85 0.k 52.1 2.8
M.s. 5.0 11,4 2.31  0.75 2.7 5.0 4.5
3c_n.m.r. [12.4 19.3 0.6 0.77 0.5 7.9 5.k
Lab 50.0 282.2  16.1 0.87 0.5 68.6  10.7

1. -
zuoéo,I—P- 58

1 =
X O.01(3) 5.7

the analyst helps solving the siructure. However these samples were not inclu-
ded in the computed data, but irfluence certainly the waiting time of the other
ones. The model did rot account for this additional workload. Ir accordance
with the real laboratory, the availability of the m.s. instrument is increased
in the model. Apparently, the sensitivity of the model for ihis fact is too
high, since the delay at the n.s. scction decreases too much.

The cross correlograms and cross correlations in model ard laboratory did

retain the sane behaviour as pictured in Tables V-9 and V-11.
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Table V=16

Comparison of forecasted and actual delays in the laboratory: period 77-78.

sectlon aclual forecasted
- 1 - 1
mean var{T) Stud. % rnean  var(®) Stud. t
(days) vs T6-77 (days) vs 7(-78
I.r. L,2 0.c5 0.3 2.3 0.00k 6.9
P.n.r. 3.6 0.01 10.0 3.9 0.49 0.4
M.s. 4,3 0.06 5.9 2.8 0.06 I
Lic_n.m.r. 8.1 0.19 2.6 6.6 0.06 2.3
Lab 5.2 0.02 7.9 5.1 0.01 0.7

samples with the same final method

I.r. 5.9  0.14 0.5 5.4 0.23

P.m.r. L.o 0.02 8.3 A 0.01 2.0
M.s. 6.7 0.14 4.3 5.7 0.13 1.9
13con.m.r. 9.8 0.35 2.0 8.1 0.12 2.5

samples with the same rumber of analysis

i 4.0 0.0 6.5 3.8 0.005 1.1
2 9.1 0.13 3.5 7.7 0.06 3.5
3 16.3  1.05 2.2 12.9 0.79 2.6
Y 25.3 9.5 0.35 17.8 0.51 0.6
1 -

*0.01 2.58

3. Conclusions

In this section the possibility is demonstrated to model an analytical labora-
tory on the basis of data collected daring one year operation of the labora-
tory. With this model, the output of the laboratory during that year has been
simulated. The sample input to the laboratory and the various sections has
been adequately described by the generatior of two Po’sson sample streams to
the laboratory, which are distributed over the four sections, according to

the estimated probabilities that the various sections will give the requested
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information. An even more important conclusion is,that the model correctly
forecasts the effect of changes which occurred in a later period of the real
laporatory. The model was applied successfually and can quantify some unmeasured
parameters, such as the attributed priorities to the various groups of samples.
As a result, the effect cf the variation of those paramcters cen be calculated,
or the value of these parameters can be calculated in order to obtain a desi-
red behaviour of the laboratory. Some experiments with the model, in order to
quantify those urmeasured paranmeters,have demonstrated that the variation
coefficient of the delay and the longest delay in the laboratory is minimal
when in the seclions absolute priority is attributed to the samples that
visited already the most sections, under the assumption Lhat there is no
correlation belwecen the analysis time and the number of visited sections.

In accordance with the theoretical calculations on pricrity queueing in M/M/1
systems, the model proves that the attribution of a priority difference between
the F(1) and F(?) samples, has the greatest effect on the F(?) samples, having
the smallest input stream to the laboratory.
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CHAPTER 6

FORECAST OF THE EFFECT OF MODIFICATIONS OF THE
LABORATORY ORGANISATION ON THE DELAY

BY DIGITAL SIMULATION

The principal objective of the design of a simulation model is to conduct
simulation experiments in order to learn more about the system under investi-
gation. The effects of some variations of parameters, variables or operating
characteristics can be estimated. For example, *he sensitivity of the system
for the value of the mean interarrival time can be estimated. The aim of a
simulation experiment may be twofold: the exploration and description of the
response surface of the system over some region of interest in the factor
space, or the optimization of this response in the vresence of a large amcunt
of variables and parameters. Very often, the influence of some variables is
dependent on the level of the other variables. As a result an interaction
car be found between the variables. For example, tte effect of a decrease
of the interarrival time will be dependent on the priority of the considered
group of samples. In order to minimize the number of requested experiments,
exploratory experiments should be conducted by means of experimental designs
[DATS] and optimization experiments by means of experimental optimization
tecnniques, such as the siecpest ascent method [B3%9] and Simplex method
[DE73] . In this section, the results of some experimental designs and studies
on functional relationships between some independent variables are presented.
An extensive discussion of factorial designs, along with methods for constru-

cting and analyzing the designs is given by Davies [DAT1].

B.G.M. Vandeginste, submitted for publication.
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1. Sirategies concerning priorities.

1.1. Analysis dependert priority.

In Chapter III, it was demonstrated that Lhe 'shortest analysis time first'(SAT)
priority gives the smallesl delays in queueing systems. The effect of the
application of this priority rule, along with the introduction of estimated
analysis times and a 'shortest expected aralysis time first (SEAT)' diseipline
was investigated starting from Lhe actual situation in the laboratory. Applying
the SEAT discipline in the model, the samples are scheduled acccording to an

estimated interpretation time, according to Egn. VI-1

(1IT) = (IT)

where s . is the standard error of the estimation of the analysis time, and

r is a Gaussian distributed random number with zero mean and a standard error

+ s_ M VI-1
T

expected real

equal to ore. The graph (Fig. VI-1) of the overall delay as a function of the
precision of the estimation of the interprectation time confirms the expecta-

i T, m<T a .
tion that To i Tgpar““Random

2

(:1_ T

dayg

15 84
1. L
. ® L ¥

L
10 15 20 s [h]
IT

° 5

Pig. VI-1: The ‘'shortest expected analysis_time first' (SEAT) priority rule.
uzmulated effect on the mean system time (T)and variation coefficient of the
delay (Cﬂ) as a funetion of Lhe standard error of the estimation of bhe
analysis time.
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The relative superiority of the shcrtest analysis time first operation rule
is consistent with previous rescarch from Conway el al. [ CO67] . When the
interpretation time is exactly estimated, the reduction of the overall dclay
is about 20%, while the variation coefficient (Cé) of the delay is not affected
by the application of this priority rule. The accuracy of the estimation of
the irterpretation time, necessary to obtain mentioned reduction 1is very low
(sIT=2.5 ars). An alternative procedure is the separation of the samples into
two greups: the so called 'easy' and 'difficult' samples with respeciively
'small' and 'large' analysis times. The validity of the results obtained in
Ch. III 2.2 was checked against simulations with the model. The strategy
applied in the model, concerning the 'easy' samples was as follows:

(i) 'easy' samples visit one scction of the laboratory only, and are sclected
on the basis of their interpretation time. i.e. there should be no doubt that
the section will give the requested information.

(ii) the measurements of 'easy' samples are started, cven when the minimal
batchsize required for the measurements is not present. The results of 'ecasy'
samples are immediately communicated to the client. The presence of 'easy'

samples does not affect the other activities.

R
10.4
] T
E // _I.p.
. . - T
Z
p el
14 e
3 20 WOy *6Qw——80—%5r100%easy
h t_7 - samples
] = =y
..
0.1 T
T

Fig. VI=2:Simulated mean system time of the difficult (T /T.) and easy

(Th /Tt) as a function of the fraction of easy samples.”tAbsclute priority

8 &géigned to the easy samples. ( ) final method is p.m.r., (-.~.)'3C-n.m.r.
(——)i.r., (....)m.s.

ction of t? , 7 T /T,
# Reduction of the overall maen delay (Tt/szfb
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The comparison of Figures III-16 and VI-2 demonstrated that the separation of
the samples into two categorics has the same effect on the difficult sarmples
as forecasled by theoretical calculations rresented in Ch. IZI.2.2. When 70%
of the samples belongs to the category of 'easy' samples, the delay of the
'difficult' samples is increcased by a Factor 2 to 2.5, while the delay of the
other samples is approximately reduced with a factor 2.5 to 5. As a result,
the overall delay is reduced with 20%. A 4lxh'x2! factorial experiment demon-
strated thal the accuracy of the estimation of the iInterpretation time
(standard error beiween O and 40%) did not influence significantly <he delay

of the samples grouped in ‘he category 'easy' and 'difficult' samples.

Table VI-1

Effect of the accuracy of the estimated interpretation time on the delay of
'easy' and 'difficult' samples, when 'easy' samples have absolute priority.
hinalysis of variance of a 2'x4'x4! design.

factor levels:

(A) sections (i.r.,....m.s.)

(B) standard error (% of interpretation time): 0, 10, 20, LO
(C) % easy samples: 35, 56

easy samples difficult samples
source of sunm of degrees of mean var sun of degrees of mean var
variation squares freedom square ratio sguares freeéom square ratio
A 7.84 3 2.61 3.0t 326.0 3 108.7 83.8%
B 0.058 3 0.019 ~.18 L, 42 3 1.7 11
c 0.01k 1 0.014 1.61 13.9 1 13.9 10.7
residu 0.708 2k 0.0087 31.10 2L
total 8.12 31 375.L1 31
1- procedure samples
A 0.10 1 0.10  Lo.
c 3 0.k3  L3.+
residu 0.05 3 0.01
total 1.45 7

+ highly significant (99%)

When the goal of attributing priority to 'easy' samples 1s to mininmize the
overall delay of all samples, a small fraction (~10%) of the samples with long
interpretation times should be designated as 'difficult' samples and give

absolute priority to all other samples.
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1.2. Priority based on the number of visited sections.

In Chapter V, it was demonstrated that the functional relationship between

the delay and the number of visited sections is highly dependent on the prio-
rity difference betwcern the samples that visited a different number of sectiorns

in the laboratory (Fig. V).

T
p=4 [d a ys]
+35

[a] ib]

Fig. VI-3: Flow (o) (samples per day) dependency of the mean delay (T) of
samples as a fumetion of the number of visited sections.

(a) samples which visited the less sections have absolute priorily.

(b) reversed situation.

When samples, originating from outside the laboratory have absolute priority
on the samples arriving from inside the laboratory, a strong dependence is

found between the delay and the number of visited sections
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By inversion of this priority rule an aporeciable loss of this dependency is
observed (Fig. V-L). An investigation on the sensitivity of these groups of
samples for an increasc of sample flow to the laboratory resulted in the
following conclusions (Fig. VI-3). The scnsitivity of the delay of the four
groups of samples for ar augmentation of the flow to the laboratory is highly
dependent on their attr’buted priority. If samples arriving from outside the
laboralory have priority, the delay of the other samples is appreciably sen-
sitive for the total flow. In the opposite situation, where the priority of
the samples increases with the number of visited sections, the dependency of
the delay on the flow becomes quite similar for all groups. Furthermore, it
car be remarked that, apparently, the delays of the smallest groups of samples
(group 2 to L) are very dcpendent on the attributed priority. Zvidently, the
relationship between the overall delay and input flow is indcpendent of the
applicd priority rule (Fig. VI-Ub) between samrples that visited a different
number of sections. Similarly, the varialion coefficient of the overall delay

is not dependent on the input flow (Fig. VI-ka).

Fig. VI-4: Flow(a) (samples per day) dependency of the overall mean system
time(T)and variation coefficient (C%) of the delay, simulated for two priority
rules: (+) samples that visited the most sections have absolute priority,

(o) reversed situation.
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1.2. Priority dependency on sample scurce.

In Chapter III, it was demonstrated that the sample group with the smallest
input flow to the laboratory nas *the highest sensitivity for its priority
compared to the other group of samples. Furthermore, from theoretical cal-
culations on a M/M/1 system (Ch. III), it is expected that the level of the
input flow to the laboratory will influence mostly the group of samples with
lowest priority. This sensitivity was simulated for two extreme situations
where one of the groups get absolute priority over the other one. The ratio
between tnce sensitivities of low priority samples and hign prioriiy samples

for the two exireme situations are tabulated in Table VI-2 (R, and R2).

1

Table VI-2

Sensiiivity (s) of the delay for a variation of the input flow (Aa/a)=0.20)
of high and low priority samples (s=AT/Aa/a); flow ratio a1/a? =2.6

Group with

absolute priority F-1 (a1=8.6) F-2 (u?=3.h)

final metnod Sk Spo R2=SF?/SF1 Spq Spo R1=SF1/SF2
I.r. 0.2 0.4 2.0 0.28 0.06 L.7
P.m.r. 0.11  0.2h 2.2 0.16 0.05 3.2

M.s. 0.13 0.16 1.2 0.14 0.05 2.8
Beon.m.r. 0.17 0.21 1.2 0.24 0.08 3.0

The values of R1 and R2 are all greater than one. This indicates that the high
priority samples are less sensitive to a variation of the flow, than the low
priority samples, irrespective of the magnitude of this sample group. More-

over, a comparison of the R1 and R_ values in that table, indicales that for

2
each section R1>R : 1.e. the ratio between the sensitivities of low priority

and high priority?samples is the greatest when the largest sample group F(1)
has absolute priority. The preceeding Chapter indicated that the mean delay
of this greatest group of samples (F1) in the laboratory is hardly dependent
on the priority difference with the other group. Now from the comparison of
the effect of the flow on the delay of the greatest group of samples, when

having absolute priority and not (columns 1 and 4 in Table VI-?), it appears

that this effect is hardly dependent on the attributed priority also.
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2. Dispatehing decisions.

The effect of the introduction of an adaptive routing procedure in the model
has been investigated. The routing algorithm takes into account the probabi-
lity (j(i)) that a section (i) will give the requested information, and the

queue length in each section, normalized on the total workload of the labora-

tory (Eqn. VI-2)
L

R(i) = £(1-j(i))+(1-2)N. /X N, with 0<f<1 VI-?
ti=1

The sample is firstly routed to the section with Lhe smallest R value.

Following example demonstrates the consequence of the application of Eqn., VI-2:
Por £=0.4 a sample is routed to a section with j=0.5 instead of j=1, provided
the number of waiiling samples in the former seclion is 10 units smaller, having
totally 30 samples waitirg in the laboratory. The effect of the algorithm was
calculated considering two starling points: i.e. assuming that all (respectively
no) samples are successfully analyzed in a section with j=1 (respcetively:

j=0), and secondly: assuming that 16% of the samples which are directed to a
section with j=1 are not successfully analyzed, and consequently are routed to arother
section; ir addiiion, "6% of samples subnisted toa section with j=0 are completed
in that section (Table IV-2).i.c. the probability of finding the structure

with a given method is estimated less accurately. The model demonstrates that
balancing the probability of obtaining the requested information, against the
number of samples in the sections decreases the delay. However, the cbserved
effect is relatively small (=12%) (Fig VI-5). In terms of variatior coefficients
of the overall delay the model is insensitive to that strategy. By attributing

a too large imporlance to the number of waiting samples (£<0.2), the mean
number of visited sections increases from 1.26 to 1.40, resulting in an

increase of the delay, which is very seasitive to that number. The more in-
accurate the estimated probability is that some section will give Lhe reques-
ted analytical information, the more useful it is to balance this probadility
against the number of samples in each section. Even, when the state of the
laboratory is considered exclusively, no increase of the mean number of visited
departments is observed, and the mean delay has diminished.Obviously, an
augrentation of the input flow o the laboratory has the same effect as an

increase of the mean number of visited sections ter sample (Fig. VI-6)
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f=0: sample routing based on the queue sizes exclusively.
f=1: sample routing based on the probabilities exclusively.
0 the estimated probability that a section will give the
requested information is exactly known.

+ this probability is incorrectly estimaled for 16% of the
samples. p ts the mean number of visited sections.

Fig VI-6: o Simulated effect of the input [low (o)
to the laboratory (samples per day) on the overall
system time (T) _

+ Simulated effect of the mean number (p)
of visited sections on the mean system time (T)



3. Analyst assignment decisions.

A completely decentralized organization was assumed for the simulation of the
actual laboratory. The analyst is always assigned to the same analylical sec-
tion, irrespective the state of the otaer sections. The effect of the work
selection rules, described in section IV, in a centralized laboratory organi-
zation was investigated. In the centralized organization the experience of
the analyst for the different analyses is balanced agairst the state {queue
lengths) in the sections. In “he model a relationship was assumed between the
experience of the analyst (j) and his mean analysis time in section (i) (Eqn.
V1-3)

KTJ = AT/exp(j,i) VI-3

The results of the simulations with a centralized organization where ali
analysts have expericnce with all methods, and where the selection of the
sample is independent from the state of the laboratory, are shown in Fig. VI-
7. In these runs the analyst selects the sample of his greatest experience,

for which an unmannec instrumecnt is available, without regarding whether
eventually a more cxperienced analyst is idle (rule 1). Fig VI-7 demonstrates
the disastrous effect of allowing analysts to analyze samples without suf-
ficient experience (<C.8). A reduction of %he overall delay is only achieved
when all analysts arc fully qualified for all methods. The very small effect
of the extension of the number of analysts in a completely centralized orga-
nization (all analysts are fully qaalified) indicates that the instruments

are the botileneck of the system and not the number of analysts. As a result,

a temporarily admission of analysts will not influence the delay significantly.
When an analyst is authorized to do ar analysis for which he is not fully
qualified, provided no fully qualified collegue is idle (rule 2), a somewhat
smaller effect on the delay is observed (Fig. VI-T7). However, the conclusion
remains va’id that urnder the conditiors of the laboratory, the introduction of
a decentralized organization has only sense if the analysts are alirost fully
qualified for the other methods (mean analysis time excecding the mean analysis
time of a specialist with less +than 10%). Clearly, the inclusion of the lengths
of the various queues in the decision, which section the analyst will select
next, will not influence the effect of centiralizing the organization, when all
analysts are fully qualified for all analytical procedures (Fig. VI-8).

On the contrary, when the experience of Lhe analyst for methods beyond his
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Fig. VI-7: Stmulated effect of the analyst assignment decisions on the mean
system time , employing priority rule 1 and 2 (see text). _
exp. factor=0 : completely decentralized organization (mean system time: Td)

=1 : completely centralized organization (mean system time: Zb)
(—-) the system is extended with 4 analysts (from 9 to 13) and assigrment
rule 1 is used.

own specialism is small (exp<0.6), the consideration of the queue lengths
according to algorithm VI-L, amplifies the bad influence of centralization
(Fig. VI-8)

Max[ exp(i,j) + 2T (iN VI-L

first

where Tfirst(i) is the total delay of the sample in front of queue(i)
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Fig. VI-8: Sirulated effect on the mean system time (T) of wetghting the
experience of the analyst against the delays of the samples in front of the
queues in a centralized laboratory organization. The experience with the other
methods than the own specialism (e.o.s. varies from 0.6 to 1.0)

logf=—=5: no state dependency.

4, Strategies on the termination of the analysts.

In the model a maximal allowed analysis time could be selected according to

Zgn. VI-5:

e 2
= +
AT AT(14C T

)t VI-5
where the value of f depends on the simulated strategy:

(a) the maximal analysis time is independent of the proverties of the sample
or state of the laboratory (f=1)

(b) the maximal analysis time increases with the number (Y} of visited sections
(f=1+N)

(c) the maximal analysis time decreases with the queue length 1in scction (i)

b
(f‘-‘g Ni/Ni)
1=1

(d) the maximal analysis time decreases with decreasing protability that the
method will solve the analytical problem (f=1+j(i)/0.5)

The effects of these strategies were compared to the actual situation where

123



no Iimitations on the interpretation “ime are imposed on the analyst. In
contrast <o the expectation based on the study of a ¥/M/1 system, wnich is
not imbedded in a neiwork, no imorovement of the delay could be found. Stra-
tegies (a) and (b) cause an augmentation of the delay, even with 50%. This

is caused by the increase of the mean number of visited departments from

1.27 to 1.47, respectively to 1.52. Apparently, the cffect of an augmentation
of the mean number of visited sections (207 for strategy (a)) surpasses the
effect of a smaller mean analysis time (13.5% for strategy {a)). It causes

an augmentation of the utilizatior factors and conscquently, the delay. The
application of strategies (c) and (d) gave no improvement of the system per-

formance as comparcd to the actual situation.

5. Batch analysts of samples.

5.1 Effect on the mean delay.
By means of a 2'x3? factorial des’gn (Table VI-3), the effects or the mean
delay and the interactions between the minimal and maximal batchsize, and
overhead factor were determined. The analysts start the measurements of the
samples when the minimal batch size is present in the section. The overhead
factor is a reduction factor of the measurement time, taking into account that
the treatment of samples can bte executed simullancously. No overhead was
attributed to the interpretation <ime.
The factor levels used in the factorial design were as follows:
factor A: minimal batch size: 1 (loose rule), maximal batch size (tight rule)

B: overhead: 1.0, 0.9, 0.8

C: maximal batchsize: 0.5X, A, 1.5A (A: input density to the secction)
From the results tabulated in Table VI-3, it is scen that the overhcad and
minimal balch size have a pronounced effect on the mean delay, along with a
small interaction between the overhead and the maximal batch size. The loose
rule, that the analyst should not wait until a sufficiently large batch of
samples is present, performs better than the tight rule, where the analyst
should wait.An interestirg observation from Fig. VI-9, showing the response
plane “=f(overhead,min. batch size), is that even for large overhead factors
(20%) it is advantageous to start the measurement of a sample without delay.
However, it should be stressed thal the schedulc of the other activities of
the analysts in the model is independent of the state of the laboratory. This
means that the schedule of these activities is not altered when the maximal

batch size is not present. In the opposite situation a smaller effect of the
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minimal batch size can be expected, because here other activities are prefe-
rably executed during the time that the batch size is not reached.
Table VI-3

Effect of the minimal batch size (A), overhead (B) and maximal batchsize (C).
Analysis of variance of a 2'x3% design.

source of sun of degrees of mean variance effect
variation squares freedom squarc ratio
main effects
A 2.6 1 2.6 Sk, 1™ + 0.8
B 5.24 2 2.6 54,1+ - 1.3
C 0.32 2 0.16 3.3
two facter
intcractions
AxB 0.07 2 0.03k 0.7
AxC 0.25 2 0.125 2.6
BxC 1.43 b 0.36 7.5
three factor
interactions
AxBxC 0.01 L 0.0025 -
— ]
var (T) 0.0h8

1 significant 1%<P<5%
* significant P<1%

N\
b

———» overhead

Fig. VI-9: Simulated effect on the
system time (T) of the minimal
batch size (samples/bateh) for
analysis, as a function of the
overhead time.

min batch
size
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5.2. Effect on the distribution of the number of samples in the system.

In tre preceedirg Chapter, the unexpected Gaussian shape of the probability
density functior of the namber of samples in the sections in model and
laboratory was noticed. An investigalion on the possiblc sources for the
discrepancy betwcen the observations and general queueing theory, revealed
that with the introduction of batches, the Gaussian shape of the distribution
function of the nurber of samples in the system is obtained. In Fig. VI-10

the histograms are presented of the number of samples in a M/M/1 system, where
the analyst waits, respectively does rot wait for stariing the measurements
until a minimal batch size has been reached. Fig. VI-10a demonstrates that

the probability function of k samples in the system p(k)=zk(1—z) fits the
simulatea histogram of a pure M/M/1 system well. Likewise that function fits
well the histograms of the number of waitirg samples in ine laboratory model,
run without restrictions for starting the measurements (Fig. VI-10c,d). The
differences between these histograms and those obtained for the actual
laboratory, with restric:ions for starling mecasurements {(Fig. VI-10 c,d

and Fig. II-6) are apparent. The results indicate that the minimal batch size
affects the variation coefficients of the number of waiting samples considera-—
bly (Table VI-4). Tne tight rule perform better than the loose rule in terms

of the variance of the number cf wailing samples.

Table VI-4

Effect of the minimal batch sizme on the variation coefficient of the delay
and of the number of waiting samples.

variation cocfficient

number of wailing samples overall delay
section i.r. p.m.r. ms. '*C-n.m.r. Lab M/M/1 lab
min. batch
size
1 0.71 0.63 0.72 0.52 0.18 0.79 1.2L
max. patch 0.54 0.24% 0.4 Q.19 0.10 0.1 1.05
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Fig VI-10: Simulated effect of batch analysis on the probability (%) of n
samples in the system.

(a) M/M/1 system without batch analysis

0 best fitting exponential function f(z)—z (1-2) with 2=0.82 (D ___=0.066)
(b) M/M/1 system wilh batch analysis max

0 best fitting exponential function f(z)=z "(1-2) with 2=0.81 (D__=0.148)
shaded figure: Gaussian distribution with the same parameters as the
histogram (m=8.05, $=5.16) (D =0.060)
(¢) model: simulation of the i.r. section wilhout bateh analystis z

0 best fitting exponeniial function f(z):zn(l—z) with 2=0.81 (D__=0.062)
(d) model: simulation of the p.m.r. section without batch analyst

0 best fitting exponential function f(z):zn(Y—z) with 3=0.92 (D __=0.074)
shaded figure: Gaussian function with the same parameters as the
histogram (m=20.1, s=16.0) (D =0 100)

6. Strategies cowcerning the arrival of sarples

In Chapter II it was demonstrated that the collection of samples into batches
effects the delay of a M/M/1 system considerably, except when the batches
arrive equidistantly at the laboaratory (e.g. once or twice ver day) and the
batches are Gaussian distributed with a relatively small variation coefficient
[C;=O;/?%1-f(1-p)]. For example, the equations presented in Table IIT-3 fore-

cast an increase of Lhe delay with a factor 3.1, resp. 2.6 and 5.4 for resp.
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Poisson, constant and exponentially distributed batches of size r=7 in a

M/M/1 system with an utilization factor p=0.6 and batches arriving at constant
intervals. The resulils of the experimental design presensed in Table VI-5
indicate that the observed effects in the laboratory model are consideraoly
smaller than calculated for a single M/M/1 system. Moreover the observed
effect of the batchsizes of The input is much smaller than tne effect of Lhe
minimal batchsize required for starting the measurements. Furthermore tne
probability density function of the batchsize of the input does not affect the

mean delay significantly. This discrepancy between Lhe behaviour of a single

Table VI-§

Effect of the mean batchsize (r), probability density function of the batch-
stzes, and the miniral required batchsize before starting the measurements.
Analysis of variance of a 2232 desim.

factor levels:

(A) minimal batchsize: 1, maximal ba*chsirze

(B) p.d.f. of the batchsize: constant, Poisson, exponertial

(C) batchsize: 1, 2 batches/day, 1 batch/day

p.d.f. of the interarrival times of the batches: constant

source of sum of degrees of mean effect
variation squares freedom  square (days)

main effects

A 7.16 1 7.16% +1.26
B 0.55 2 0.27

C 1.08 2 0.54 +0.58
two factor

interactions

AxB 0.24 2 0.12

AxC “.25 2 2.607

BxC 2,39 4 0.57"

residual 0.21 b 0.05

*significant 1%4<P<5%

tsignificant P<1%

M/M/1 system and that of such a system imbedded in the described network, is
probably due to the fact tnat 25% of the traffic generated in the model is

originating from inside ihe network (samples analyzed by several methods).
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3ecausce in the model no transfer Lime between the nodes is irncluded, *hese
samples arrive separately at the sections. Anclher aspect explaining this
discrepancy is the fact that thc samples of the batch arriving at the labora-
tory are divided over the sections according to the described decision rules.
Consequently the mean batch sizes to the sections are relatively small (Table

VI-6) and the probability density function of ihe batch size is disiurbed.

Table VI-6

Mean batch size Lo the sections in the model (except inner transfers)

sectiorn 1 batch/day 2 batches/day
I.r. 2. 1.

P.m.r. 6.7 3.3

M.s. 1.1 0.6
13¢-n.m.r. 1.9 0.9

Arrivals of batches of constant size to the network do not lead to constant
batches arriving at the sections. Other measures for laboratory performance,
such as variance of flow time and lorgest flow time are practically rot
affected by the iriroduction of batch input. In eddition, the findings that
the tight rule, obliging an analyst to wait until a minimal batchsize is
present in the laboratory, performs best in terms of the variation coefficient
of the number of waiting samples are confirmed in terms of the variation coef-

ficient of the delsy (Table VI-L).

7. The effect of the means and variation coefficients of the measurement-

and interpretation time on the delay

From theoretical considerations on a M/M/1 system and on a Erl/M/1 system in
Chapter III, it was concluded that the effect of the means of the measurement
and interpretation times should be much greater than the effect of their
variation coefficients. An analysis of variance on a 2" design (four factors
on two levels), exccuted on the i.r. section of the model confirmed this
conclusion for more complex sytems. As the mean interpretation time of the i.r.
spectra excecds their measurement time by a factor 3 (Tablie IV-1), a greater
effect is found for the mean interpretation time. A variation of the measu-
rement time from 1.7MT to O.BEE, reduces the tolal analysis time with 10%
while the same variation of the interpretation time reduces the total analysis

time with 30%.
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Table VI-7?

Effect of the means and variation coefficients of the measurement (MT) and
interpretation time (IT) on the delay in the i.r. section.
Analysis of variance of a 2" design.
factor levels
(A) M7: C.BMT, 1.2M7 (M7 and IT are the values “abulated in Table IV-1)
(B) IT: 0.8IT, 1.2IT
2 .
(c) Cyp? 0455 2
2,
(D) CIps 0.5, 2

source of mean variance eflfect
variation square ratio

A 19 6.7" +2.2
B 239 85.3t +T7.7
C 16 5.7 -2.0
D 0 -

two factor '

interactions

AxB 6 2.1

BxC 9 3.2

CxD 5 1.7

AxD 0 -

BxD 6] -

residual I 2.8

+highly significant P<1%

*significant 1%<P<5%

The variance ratios tabulated in Table VI-7 show clearly that a considerable
variation of the variation coefficient i.e. a reduction to 25% of the origi-
nal value, affects the mean delay to the same extend as a reduction of the
analysis time with 10% only. This demonstrates the greater sensitivity of the
delay for the mean analysis time *han for the variation coefficient of the
analysis time. Since no interaction is found betwcen the measurement time
and interpetation time, the effect of botk parameters in all sections can

be studied separately. With this experiment the bottleneck of the system

can be determined (Table VI-8). Obviously, the measurcment time of the p.m.r.
spectra 1s the greatest source of variation of the overall delay. This
indicates that the availability of the p.m.r. insirument Torms the bottle-
neck of the system. Although the dependencies of the delays on the sample

flow to the laboratory are allmost equal in all sections (except m.s. section)

130



(Fig. VI-11), the delay in the p.m.r. section exhibits the strongest elfect

on the overall delay, because 80% of the samples passes through that section.

Table VI-8

The effzct of the measurement time (MT) and interpretation time (IT) in the
sections on the overall delay
Analysis of variance of a 2 x 2° design

factor levels

(A) i.r.: 0.9MI(ir), 1.1M2(ir) (E) 0.9IT(ir), 1.1IT(ir)
(B) p.n.r.: 0.9MT(pmr), 1.1MT(pmr) (F) 0.911{pmr), 1.1IT(pmr)
(¢) m.s. : 0.9MT(ms), 1.1MT(ms) () 0.911(ms), 1.1IT(ms)
(D) c.om.r.: 0.9MI(cmr), 1.1MT(cmr) (H) 0.9IT(cmr), 1.1IT7(cmr)
scarce of mean variance effect [source of mear. variance effect
variation square ratio variation square ratio

A 0.11 1.9 L 1.02 22.6* 0.55
B 5.11 86.61 1.13 F 1.93 35.7F 0.70
c 0 - G 0.4t 8.7 0.4t
D 1.03 T4+ 0.51 if 1.05 19.5% 0.51
two factor two factor

interactions interactions

AxB 0 - ExF 0.31 5.7

BxC 0.07 1.2 FxG 0 -

CxD 0.01 0.17 GxH 0 -

AxC 0.01 0.17 ExG 0.12 2.2

AxD 0 - ExH 0.03 0.5

variance 0.059 variance 0.05h

1+ nighly significant P<1%
+
significant 1%<P<5%

8. Sensitivity for other activities

As expected from the theoretical consideratiors outlined in Chapter II, the
'overnead' of the analys*s and fallures of the instruments influence tne over-
all mean delay considerably. In the model other activities are started and
executed also when samples or spectra are present in the laboratory. The delay
in the laboratory without other activities and without failures of the in-
struments was 3.9 days, with a maximum delay of 24 days. Evidently, the
utiZization factors of the analysts in the laboratory model remained unchanged.
A subsequent introduction of a minimal batchsize of one sample per analysis
enhances the delay further with 0.9 day, with a maximal delay of 10 days.

This result confirms the conclusion from queueing theory (Table III-?)
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Pig. VI-11: Mean delay (7) as a function of the input density to the labora-
tory (o) (samples/day) for the various sections.
[ 95% confidence interval.

i.e. the delay in the laboratory under investigation cannot bte explained by
the stlatistical parameters of the measurement- and interpretation tirme.
Clearly, the delay is strongly influenced by the schedule of the other
activities and the minimal batch size per analysis. One should conclude

that the control of the other activities would be the key to reduce the
delay. As mentioned before, three categories of other activities are distin-
guished in the model: absence of the aralysts {5%), coffee breaks (6%) and
non-analyzing activities, such as administration, research etc.. However,
permitting the non-analyzing activities only when less than 10 samples wait

for analysis in the laboratory, the overall delay is reduced witl, 20% only.



9. Sample sequence within a group of samples with the same priority.

In Ch. V, a higher correlation was menliored belween the number of samrles in
the section at the arrival of a sample and its delay in the model as compared
to the actual situation. This discrepancy seems an indication for an invalid
model assumption that the samples of the various priority groups are analyzed
in a FIFO sequence. Therefore a simulation experiment was executed with a
random analysis sequence withirn the various priority groups. Comparison of
Tables V-10 and VI-9 reveals that with the introduction of a random sequence,
the correlation between the delay and number of waiting samples has decreased,
whereas in the p.m.r. section (receiving 80% o2 all samples), the correlation
is not significantly different from zero. The effect of randomization of the
sequence is visualized in Fig VI-12. The longest delay before a sample will
be analyzed (95% probability) is hardly correlated (p=0.73) witk the number
of waiting samples in the system at its arrival (Fig IT-10). Similarly, the
model run with a random sequence within the groups shows no correlation

(Fig. VI--Pa). In contras%, a FIFO sequence in the model increascs the corre-
lation considerably (p=0.73) allowing a reasonable forecast of the maximal
delay at the moment of arrival of the sample at the laboratory (Fig. VI-12b).
The fact that the laboratory uses a random sejuence instead of the presamed
FIFO sequence has no consequences for the validated results of the model, as

both seguences yield the same delay [KITS).

Table VI-9
Maximal correlation between the number of samples (x) in a section and the
delay (y) o the samples arriving at the laboratory (model): Random sequence

i.r. p.mr. n.s. 3con.m.r,
d)xy 0.43 (-1) 0 0.49 (-6) 0.48 (-30)
95% conf,
interval 0.31 - 0.25 0.26
residual
variance 0.81 1 0.76 0.77

When the maximal delay of a sample can be forecasted with 95% certainity from
the number of samples present in the system at the moment of its arrival, then,
the delay can be kept within certain limits with a given probability, by
applying a threshold control of the number of samples in the system. Miskens

[MUT8] described a threshold control system, where the time lag is calculated
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in dependence on the observed value of the time series (e.g. the number of
samples in the syslem), after which the system should be measured again, in
order to obtain a certainty of P% that a given threshold value will not be
excecded. This statisiical forecast is based on the probability density furction
of the queue size, ard on an AR(1) model, describing the underlying s*ructure

of the queue size. At any time t, the queuec level at a time T later can be

forecasted by applying Eqn. VI-6.

N (t+1) = N(t)¢-: VI-6
where, Nf(t+r) is the forecasted gucue level from the mean level at a time T
later, N(t) is the queue level from the mean level at time t and ¢1 is the
autocorrelation at T=1 of the number of waiting samples. According to Miiskens
[MUT8], the prediction error, usirg the autocorrelation function as predictor
equals: 0(t+T)=ON.4‘— ¢§). The orobability (@) at a time t that a threshold
value (Nth) will be exceeded at a time T later cquals:

u(e) = [Nth - N(t)¢:]/[0NJ(1—¢?T)] with u(a) the excentricity of the normal
distribulion, giving the requested probability (g). Fig VI-13 depicts the
time inlerval after which the number of samples should be evaluated again in
the p.m.r. section, in dependcnce of the threshold value, the accepted risk
(@) to exceed that value, and the actually observed number of samples. From
the simulated relationship between the number of samples in the p.m.r. section
and the maximal delay (95% probability), plotted in Fig. VI-1L, it is clear
that when a maximal delay of 15 days in that section is desired, the number of
samples in that section should not exceed 50 (units). From Fig. VI-13 it
follows that an accepted risk of 5% for the threshold value N1=50 to be
exceeded, the state of the p.m.r. section should be evaluated withirn 1 to 2
weeks, when 25 to 10 samples are walting. When over 30 samples are waiting

the state of the section should be surveyed cvery day.
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Conclustions.

The rclative impact of the decision rules was found to be dependenl on the
measure of performance considered: i.e. mecan delay or variailion coefficient
of the delay. One may generally conclude that the simulated effects with the
laboratory model are less pronounced than predicted for single queueing sys-
tems. For example, the effect of batch inpul is considerably smaller than
expected from calculations on M/M/1 sysiems. As expected, olher activities,
executed while samples are waiting, determine largely the observed delays in
the laboratory. Likely, the minimal batch size of samples, which arc measured
simultaneously, is a relatively important factor for the variance of the
delay, and had proncunced effects on the mean delay and probapility density
function of the number of waiting samples in the system. The Gaussian shape
of that number, as observed in the laboratory can be explained by the intro-
duction of batch analysis in the model. Operation without batches terforms
better, even when the measurement times can be reduced with 20% by batch
analysis. Evidenily, the workload of the laboratory, which is the product

of the mean number of visited sections and the rumber of arrivals per day,
affects the delay considerably. All decision rules that increase the number
of visited sections affcet the declay negatively. An illustrative example is
the effect of the reduction of the mean analysis time by the irtroduction

of a maximal analysis time which is completely surpassed by the increased
number of visited sections. The effect of an increase of the workload is
different for the various groups of samples with different flow and priority.
The total delay is reduced when absolute priorily is attributed to easy
samples. This reduction is relatively insensitive for the limiting analysis
time of 'easy samples'. Likely, this reduction is ingsensitive for the esti-
mation error of the analysis time of the samples. The performance of the
laboratory model is enhanced if the probabilities that the various sections
will give the rcquested information are corsidered along with the state of the
laboratory in order to route the sample to some section. The effect is more
pronounced when these probabilities can be estimated less accurate. As expec-
ted from the theoretical outline of M/M/1 systems, the system is more sensi-
tive for the mean analysis time than for the variation coefficient of the
analysis time. The transition from a centralized to a decentralized organiza-

tion is only advantageous wher all analysts are fully qualified for all methods.
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The ultimate delay for an analytical result to be available, is hardly
correlated with “he number of samples present in the actual laboratory. This
is probably due Lo a random sequence dispach of the samples with the sane
priority. By the change of the random sequence to a FIFO scquence, however,
a rcasonable correlation is obtaired, which agrees with the conditional
probability densily function of a M/M/1 system. Combinirg the AR{1) model

of the number of samples in the system, with the conditional probability

function of the delay, a threshold control system can be created.
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GENERAL REMARKS AND CONCLUSIONS

Apart from the technical description of the model, some general considerations
are given on mathematical modelling and decision making in analytical chemistry.
For the planning of the simulation experiments a very time-consuming process of
formulation of the problem up to the design of the simulation experiments and
analysis of the simulation data is always necessary. One may reasorably doubt
whether tae efforts for building the model are worthwile in view of beneficial
resulls which are expected.

Biswas [BI75] gave an excellent view on this topic. The primary role of a
decision-maker is to make right decisions, which may be defined as decisions
made on the basis of perfect knowledge (Churchman 1961, Biswas 1971). Since
knowledge is always imperfect, the best decision should be aimed at, based on
the available information, However, in order to know which information is
necded Zor decision-making, some insight in the (laboratory)system should be
available. Therefore, the process of information gathering is imbedded in a
vicious eircle with the outcome of past decisions. With a better understanding
of the system, nmore relevant data can be collected. As a result, frequertly,
(also in presented research) the modelling and data collection process

procceds in parallel. During this modelling-cycle, the output of the crude
model is checked against observaticns in the lsboratory. As long as Llhe outrut
of tne model docs not match the obscrvations, thc nodel is refined. During

that refinement process, new observations may be necessary, but in thce mean
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time partial rcsults become already availabdle.

In our particular case, the laboratory under investigation was informed

during that period, on their applied priority rule between the two principal
sources of sarmcles that was not in accordance with their aims. Morecver, *heir
attention was turned to the fact that an augmensation of priority of the
samples that visited more sections, should avoid the very long delays and
decrease the variation coefficient of the delay.

The ultime questicn whether the efforts to build the model are useful, depends
cn the profit obtained by avoiding wrong decisions. A necessary condition,
however, for a useful model is that it has enough credibility with the policy
makers., A major reason for a lack of credibility can be Lhe lack of user
involvement in the model development process [ BITS].

Therefore, during the modeliing period, intermediate results were cormunicated
and discussed in several plenary meetings with all laboratory personnel and
stalff. Such interactions proved to be mutually beneficial.

One of the features of the decision-making process is, Lhat only a limited
number of policy alternatives are considered for any decision. These
alternatives generally differ incrementally from existing policies [BI75] which
means *hat the advances are madec in small steps. Therefore, orly strategies and
policies were simulated which did not need a drastic change or reorganization
of the current policies of the laboratory. As a result, solutions of the model
remain acceptable to policy makers.

The follow up of the research presented here, is a half-yearly updating of the
model with the most recent obscrvations, combined with a control of the main
characteristics of the laboratory. Voluniarily, the model can be used Lo
foreccast the effect of alternatives, proposed by the decision-maker(s). This
updating process 1s necessary as understanding of the process being modelled
improves, and otherwise the model tends to beccme out-cf-date.

The flexibility of the model, presented here, is such that the rnumber of
facilities (instruments and personnel) are very easily adapted. Likewise,

the fixed characteristics defining the statistical properties of the sample
flow, the analytical procedurcs and of the non-analyzing activities may casily
be varied.

In general, it is worthwhile not to build gereralized all-purpose models.
These models are expensive to develop, difficult to control, and have large

data requirements [ BIT75].
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Based on this point of view, for every laboratory with ancther stiructure than
the lsborazory model presented here, a new model should be built.

Finally, as a general conclusion, T subscribe the statemernt of Biswas [BI75]
that:

"fhe issue is very definitely on the side of having a model, even a crude one,

against having no model at all’.
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SUMMARY

In Anelytical Chemistry a research topic is the development of optimal
strategies for obtainirg enalytical informetion.

These optimal strategies can be derived by the application of mathematical
models, a commonly accepted method in operations research, a branch of
applied mathematics.

This thesis describes the results of an investigation of the delay of

samples in a laboratory for structural analysis. These results have been
obtained by the application of queueing theory and digital simulation. Until
now little attention was paid to the quantification of the effects of various
factors on the delay in an analytical laboratory. The introductory chapter
iliustrates the importance of the study of delays with a discussion of the
interactions belween the analytical laboratory and the processes the samples
originate from.

In Chapter II, it is demonstrated that a laboratory for stractural analysis
(Philips Duphar B.V., Weesp) can be represented by a network of queues of
samples, spectra and results. The 4 sections (i.r., p.m.r., m.s. and C¥-n.m.r.)
are represented as the L nodes of that network.

Many properties of the laboratory under investigation are characteristic for
'open' networks, i.e. networks where (i) no correlation exists between the
number of samples in the various nodes (ii) the sample stream towards a rode

is independert of the state in the node and (iii) the input- and output sample
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flows are mutually independent and not autocorrelated. The histograms of the
number of arrivals and departures per day are completely different. The
histograms of the delays in the sections were fitted Lo a K = ? Erlangian
probability density function; the histograms of the number of arrivals to

a Poisson distribution. Tae parameters of the distributions describing the
analysis time are determined. The results of calculations on various
theoretical models based upon queueing theory are presented in Chapter III.
Although these models are too simple to provide exact resulss for the complex
laboratory under investigation, a reasonably good forecast of the effect of
some variables can be obtained. Clearly, the utilization faclors of personnel
and instruments have a strong effect on the delay. The delay tends to
infinity when the utilization factor approaches unity.

The 'overhead' of the personnel has the same effect. When the sum of overhead
and utilization factor approaches to unity, the delay becomes infinite, even
for low utilization Ffactors.

Various groups of samples, with a different priority have a different delay.
The inclusion of a cost factor attributed to waiting periods, erables to
optimize the system.

A digital simulation model of the investigated laboratory is presented in
Chapter IV. With this model the forecasted effects, presented 'n Chapter TIT,
are verified and quantificd. Moreover, laboratory systems can be processed
for which no simple theoretical models exist e.g. systems with state
dependent decisions.

Different stratcgies for sample priorities, sample routing, allocation of
personnel and termination of the analysis are described. The usefulness of
various statistical methods for model validation is examined.

The simulation of the actual situation in the Philips Duphar laboratory is
presented in Chapler V. The actual number of arrivals per day to the
laboratory and to the individual sections could be adequately described by
generating a Poisson distributed sample stream for each sample origin.

The model not only describes the actual situation, but forecasts correctly
the effect of modifications in the overation and organization which were
implemented in a later period of the real laboratory.

No significant differences were observed between the model and the actual
laboratory as far as correlations between various variables, the mecan delays
and the mean rumber of samples in the various section are concerned. The time

series of the numper of waiting samples in the model can be described by a
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first order autoregressive modcl. Tte frequency ard magnitude of the
fluctuations of the number of samples in model and reality are not significantly
different.

The variation coefficient of the delay could be minimized by assigning absolute
priority to the samples that visited the most sections in the laboratory.

The application of 'experimental design' techniques, described in Chapter VT,
indicated that the delay of the samples is more sensitive Lo the mean value of
the analysis time than to its variation coefficient. Consequently, it is
better to modify an analytical proccdure irn such a way thal the mean analysis
time is reduced, rather than the variation coefficient of the analysis time.

A transformation of a decentralized organization (in which the personnel has
experience with one analytical method only) to a centralized organization,
where each analyst can operate all methods is only of advantage when the
instrumentation is not a bottleneck, and the analysts have enough expertise

to do the analysis beyond their own specialism. The mean delay of the laboratory
can be decreased with 20% by assigning absolute priority to the samples with

an estimated high interpretation time (> 3 times the mean interpretation time).
Furthermore, a 24 hour service can be established for some groups of samples
(e.g. samples with very short interpretaiion times). The delay is very
sensitive for variations in the density of the sample stream when no appropriate
organizational measures are taken. Especially the p.m.r. section has a high
saturation degree. Balancing the probabilities that the various sections can
furnish the requested structure against the workload reduces the mean delay
with approximately 15%.

A batch sample imput to the system and a balch measurement of Lhe samples
influence the delay adversely (factor 1,5 to 2), when no overhead reduction

is obtained.

When “he non-analyzing activities of the personnel are limited to the non-
busy periods of the laboratory (N < 20), only a slight reduction (< 10%) of
the delay will be obtained.

An extension of the personnel without an extension of the instruments will
have no effect.

The priority between samples of various origins affects mainly the smallest
group of samples. Therefore, a periodic control of the delays of the various

groups of samples is advocated.
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SAMENVATTING

Naast de ontwikkeling cn verfijning van analysemethoden, is het tevens van
belang strategiedr te ontwerpen om analytische informatie op een optimale
wijze te verxrijgen. Hiertoe zijn door enkele onderzoekers modellen gebruikt
uit het vakgebied der Operations Research. Dit proefschrift omvat het onder-
zoek van de doorlooptijd van monsters irn een laboratorium voor struktuur-
analyse met behulp van wachttijdentheorie en digitalc simulatie. Binnen het
vakgebied der analytische chemie hebben de faktoren die deze wachttijd
beInvloeden Lot nog toe weinig aandacht gekregen.

In het inleidende hoofdstuk wordt het belang van de studie van doorloop-
tijden van monsters aangetoond, door in te gaan op hct systeem opdrachtgever-
analytisch laboratorium. Daarnaast wordt verduidelijkt waarom modelvorming

de enige mogelijkheid is om laboratoriumsystemen te onderzoeken.

Eoofdstuk ITI “oont aan dat een laboratorium voor strukiuuranalyse (Philips
Duphar B.V., Weesp), voorgesteld kan worder. als een ne“werk van wachtrijen
van monsters, spckira en analyseresultaten. De 4 afdelingen (IR, PMR, MS en
CMR-spektromeirie) vormen de 4 knooppunten varn dit netwerk. In vele ovpzichten
komen de eigenschappen van het onderzochte netwerk overeen met deze van cen
‘open' netwerk. Er is namelijk geen correlatie gevonden tussen het 2antal aan~
wezige monsters in de verschillende knooppunten van het netwerk. Het aanbod naar
de knooppunten is onefhankelijk van de toestand in het knooppunt zelf.

Daarnaast zijn de uitgang en ingang van het netwerk onafhankelijk van elkaar

146



en niet geautocorrelcerd. De histogrammen van het aantal binnenkomende en
vertrekkende monsters per dag zijn totaal verschillend gebleken. De histo-
grammen van de doorlooptijden in de knooppunten worden het best benaderd door
een k = 2 Frlang kansdichtheidsverdeling. De histogrammen van het aantal
binnenkomende monsters door een Polsson verdeling. De parameters van de ver-
delingen van aanbod en analysetijden werden bepaald.

Hoofdstuk ITI geeft de resultaten weer van een literatuuronderzoek naar enkele
theoretische modellen uit de wachttijdentheorie. Niettegenstaande deze modellen
té eenvoudig zijn om cen complex systeem als een laboratorium exact te kunnen
beschrijven, kan toch een redelijke schatting verkregen worden van de gevoelig-
heid van het laboralorium voor een aantal faxtoren. De belangrijkste faktoren
zijn ondermeer: de bezettingsgraad van het personcel ern instrumentarium. De
doorlooptijd wordi oneindig groot bij een bezettingsgraad naderend tot 1. Van
even grote invloed is de grootte van de 'overhead' van het personeel. Tndiern

de som van 'overhecad' en bezettingsgraad tot 1 nadert, wordt de doorlooptijd
cvencens oneindig groot, zelfs bij lage bezetiingsgraden. Door het aanleggen
van prioriieltsregels tussen verschillende groepen morsters, Kurnern deze
monsters sterk verscaillende doorlooptijden verkrijgen.

Hoofdstuk IV beschrijft een digitaal simulatiemodel van een laboratorium

voor structuuranaiysc. Met dit model kunnen de in hoofdstuk III voorspe’de
effecten geverifiecerd en gekwantificeerd worden. Daarentoven wordt het rogelijk
om situaties cocr te rekenen waarvoor geen vereenvcoudigde theoretische modellen
beschixbaar zijn zoals b.v. het invoeren var toestandsafhankelijke beslissingen.
Mogelijke strategieén voor monsterprioriteit, morsterrouting, personeelsalloca-
tie en afbreken van analyses ziJrn beschreven. Statistische methoden cm he: mo-
del te valideren zijn op hun bruikbaarheid getoectst.

In hooZdstuk V wordt de simulatie van de actuele situatie bij Philips-Duphar
besproken. Het monstleraanbod naar het laboratorium en de verschillende afde-
lingen kon beschreven worden door &ér Poisson verdeelde monsterstroom per
opdrachtgever. Het model beschreef niet alleen in voldoende mate de situatie
die gebruikt werd om het model op te stellen, maar voorspelde tevens het ge-
drag van het laboratorium eccn jaar vooruit. Dit betekent dat zowel de gevonden
correlaties tussen de verschillende variabelen, als de gemiddelde doorloop-
tijden en het aantal wachtenden in de verschillende afdelingen in model en
reéle situatie, niet significant verschillend zijn. Een autoregressief model
van de eersle orde beschrijft het gedrag van het aantal wachtende monsters

over de tijd in het simulatiemodel. De snelheid en grootte van de fluctuaties
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van het aantal wachtende monsters in model en realiteit zijn dus niet
significant verschillend.

Gebleken is dat de variatiecoé€fficient van de doorlooptijd van de monsters
minimaal wordt indien in de afdelingen absolute prioriteit wordt verleend

aan de monsters dic intern zijn doorgestuurd.

Experimenten met het model, ondermeer via 'experimental design' technieken
opgezet (hfsl. VI), tonen aan dat de doorlcoptijd van de monsiers

gevoeliger is voor de gemiddelde analysetijd. Dit betekent dal bij standaar-
disatie van analysemethodcrn eerder gezocht moet worden naar een verlaging van
de gemiddelde waarde dan van de spreiding van de analysetijd. De omschakeling
van een gedecentraliseerde organisatie (waar het personeel slechts ervaring
heeft met 1 analysemethode) naar een gecentraliseerde organisatie hecft
slechts 2zin indien de apparatuur geen knelpunt vormt en het personeel vol-
doende ervaring heeft in de methoden buiten hun specialiteit. Prioriteit op
basis van een geschatte interpretatietijd, waarbij monsters met een hoge
geschatte waarde (> 3x gemiddelde waarde) absolute voorrang moeten geven aan
alle andere monstcrs, kan de gemiddelde doorlooptijd met 20% doen afremen.
Het is verder mogelijk een 24 uurs service in te voeren voor een bepaalde
groep monsters {(vereisen nauwelijks enige Iinterpretatictijd). Bij gelijkblij-
vende laboratorium organisatie is de doorlooptijd sterk afhankelijk van verho-
ging van het aanbod (50% toename van de doorloovtijd bij 15% toename van het
aanbod). Vooral de PMR afdeling vormt hierbij het knelpunt. Fen afweging van
de waarschijnlijkheld dat de verschillende afdelingen het analyseprobleem
kunnen oplossen en hun bezettirngsgraad reduceert de doorlooptijd ongeveer met
15%. Het batchgewijs aanbieden van de monsters heeft over het algemeen een
verhogende invlioed op de doorlooptijd (faktor 1,5 tot 2), indien geen bespa-
ring op de overhead verkregen wordt door een batchgewijze analyse. Het beperken
van de overige werkzaamheden (b.v. eigen onderzoek) van het personeel tot deze
periodes waarop slechts weinig monsters in het laboratorium aanwezig zijn

(N < 20) heeft slechts een beperkte invloed op de doorlooptijd (< 10%). Uit-
breiding van het personeel zonder uitbreiding van het instrumentarium zal
slechts geringe invloed hebben. De gehanteerde prioritcitsregels tussen mon-
sters van verschillende opdrachtgevers zullen vooral de monsters met een
relatief laag manbod sterk beInvloeden. Gerege’de controle van de doorloop-

tijden van de verschillende groepen monsters is dus noodzakelijk.
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STELLINGEN



De door Eckschlager voorgestelde werkwljze voor de berekening van de kosten
per bit geleverde informatie en voor de optimalisatie van de geleverde infor-
matie per tijdseenheid, houdt ten onrechte geen rekening met de organisatie
var. het laboratorium,

K. Zckschlager, Anal. Chem., %9 (1977) 1265.

I1

De bewering van Liteanu en Panovici dat analytische systemen met een
significant van nul verschillende waarde voor de autocorrelatiefunctie bij
T=1, onstabiel zijn, is onjuist.

C. Ziteanu, I.I. Panovici, Talarta 24 (1977) 196.

C. Liteanu, E. Hopirtean, Z. Anal. Chem. 288 (1977) 59.

IIT

De kwalitatieve resultaten van Allen en McMecking omtrent de detectiegrens
van twee overlappende Geausse banden m.b.v. de tweede afgeleide waren reeds
cerder kwantitatief afgeleid.

G.C. Allen, R.F. McMecking, Anal. Chim. Acta., CTO 103 (1978} T3.

B.G.M. Vandeginste, L. de Galan, Anal. Chem., 47 (1975) 2124,

Iv

Tattershall vermeldt niet aan welke eisen i.r. spectra moeten voldoen om,
door digitaal aftrekken van spectra, afzonderlijke componenten in een mengsel
te kunnen idenctificeren.

B.W. Taltershall, Anal. Chem., L9 (1977) 772.

v

Het feit dat identieke waarneming=n van de KaCl interferentie op het Cu
signaal verkregen door middel van vlamloze atomaire absorptie, tot tegengestel-
de interpretaties kunren leiden {occlusie en verdamping), duidt erop dat de
resultaten van de studie van het interferertie mechanisme nog steeds een

hypothetisch karakter dragen.



D.J. Churella, T.R. Copeland, Anal. Chem., 53 (1978) 309.
E.J. Crobih, D.P. Matousek, Aral. Cacm., 50 (1978) 2.

VI

Daar Fujiwara et al. bij hun studie van de ruis in analytische vlammen,
alleen het amplitude van de ruis hebben onderzocht, 1s hun evaluatie van
spektrale ruis zeer onvclledig.

K. Fujiwara, A.H. Ullman, J.D. Bradshaw, B.D. Polland, J.D. Winefordner,
Spectrochim. acta. 34B (1979) 137.

VII

Het wereldmodel van Jérgensen voorspelt een verviervoudiging van de wereld-
bevolking en een verzevenvoudiging ven de totale wereldproductie (bruto
nationaal product BNP), voor het jaar 2030. Daar deze voorspelling slechts
gebaseerd is op een extrapolatie van het BNP en de gevonden correlatie
tussen bevolkingsgroel en BNP, is zijn conclusie dat een te ver doorgevoerde
onlwikkeling van de geIndustrialiseerde wereld hiervan de oorzaak is, onge-
grond.

S.E. Jérgensen, Ecol. Modelling 1 (1975) 199.

VIII

De ontwikkeling van de analytische scheikunde in Nederland zou ermee gebaat
zijn indien men goede nota nam van de uitspraak van het Department of Energy
(U.S.A.), dat een eerste prioriteit dient gegeven te worden o.a. aan de studie
van de analytische chemie als systeen.

H.C. Laitinen, Anal. Chenm., 51 (1979) 785.

IX

Het gelijkstellen van de interne spanningen tussen Vlamingen en Walen met deze
tussen katholieken en protestanten in Noord-Ierland in een veel gebruikte
Nederlandse schoolatlas, komt een juiste beeldvorming in Nederland van de
Belgische politieke situatie niet ten goede.

De grote bosatlas, Wolters-Noordhoff, Groningen (1976), pag. 93.

B.G.M. Vandeginste Nijmegen, 11/1/1980












