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CHAPTER 1: INTRODUCTION AND SURVEY

High Energy Physics 1s a lively field of research in which in the past
ten and odd years several mayor developments have taken place. Some of these
were rather sudden, triggered by an unexpected experimental result. They
decided on the direction of progress in a certain area of research and made
whole new fields accessible for the mayority of the physicists. Others were
rather slow. They involved ideas which were at first only clearly successful
1n one particular case, but gradually gained a wider acceptance as a general
principle through their ability to connect various phenomena to a common souice.

Examples of important experaiments, which opened up large new areas of
research are the deep 1nelastic scattering experiments, performed by the SLAC-
MIT group [B1 74, Ga 77], those at Brookhaven and Stanford, which produced the
first particles with (hidden) charm [Au 74], while the Stanford experiment also
produced a new heavy lepton [Pe 75], and the neutrino-experiment at CERN, which
revecaled the presence of neutral weak currents [Ha 74, Bl 76]. Of the theoretical
1deas one should mention the introduction of charm to account for the absence
of strangeness changing neutral currents [Bj 64, Gl 70], the unification of
weak and electromagnetic interactions, using the framework of spontaneously
broken nonabelian gauge theories [Gl 61, We 67, Sa 68] and the introduction of
color as source for the strong interactions [Na 66], involving the use of an
unbroken nonabelian gauge theory [Fr 72].

It 1s with strong interactions that we shall deal primarily in this thesis.
In this field no unambiguously established theory exists. There 1s however
a large collection of ideas, known as quantum chromodynamics (QCD) [Fr 78,
Ma 78], which are all related to the concept of color. The relation of the

various 1deas 1s often rather vague, as they range from abstract to phenomeno-



logical, and in need of clarification but the whole of i1t presents a frame-
work of increasing coherence, which 1s quite useful as reference.

One can be active 1n research e.g. by engaging in the field theoretic
attempts to derive the spectral properties of the theory. This approach has
proven particularly useful 1n situations, where perturbation theory is
applicable. However, strong interaction data seem to indicate a lot of quite
interesting nonperturbative aspects of the theory, an important one of which
we will be dealing with extensively: confinement [Dr 77]. In trying to account
for such a feature one has, due to lack of a fundamental solution, around
which one can perturb weakly, to work at a more phenomenological level, to
be able to work out the consequences. The usefulness of such an approach,
when 1t 1s able to account for the available data, consists in i1ts direct
1nteraction with experiment. One can extrapolate the data into areas not yet
covered, and thus provide guidelines for planning future experimental set ups,
and at the same time tests for the consistency of the chosen formulation of
the basic i1deas. This way one obtains information about the validity of the
initial assumptions and their importance for describing the phenomena. This
information can then be used for improving the model by elimnating some of the
arbitrariness, or for trying to find a more fundamental solution. In this thesis
we wlll take the second approach and use the bagmodel of the hadron, the strong-
ly interacting, "elementary" particle, as formulated by the MIT group [ch 74,
DeG 75]. We will show, how 1t 1s able to account for the static properties of
most of the light hadrons, and describe some attempts to go beyond the familiar
(from the standard point of view [Ko 69]) to more exotic ones, which are
receiving quite some experimental attention nowadays [HI 78].

Let us mention the concepts and their support from the data, which provide

the basic features of the MIT bagmodel. We stress again, the fact that the



final theory 1s still lacking, and that the present choice is, of course,
somewhat biased, but, taking all the diverse pieces of evidence, circumstantial
and unrelated through they may seem sometimes, together, the resulting picture
1s quite impressive 1n i1ts ability to relate the various approaches. However,
beyond bias, several distinct traits of the hadron are standing out quite

clearly and should be accounted for properly by any model.

Flavor SU(n,F). The hadrons, that are observed in the laboratories, can be
labeled by a set of internal or flavor quantum numbers, reflecting strong
1nteraction selection rules. Some flavors are harder to produce than others.
To account for hadrons with mass less than 1.8 GeV [Hem 77, La 77], one needs
three flavors: 1sospain (I,Iz) and strangeness (S) or equivalently hypercharge
(Y). To account for all states below approximately 4.5 GeV one needs a fourth
flavor [Aub 74, Aug 74]): charm (C) and the recently discovered narrow
resonances [Hom 76, He 77} around 10 GeV scem to point at a fifth flavor:
beauty (B). From the point of view of unification of weak and electromagnetic
interactions also a sixth flavor would be welcome [Ha 78]. Flavor symmetry 1is
only approximate (n < 3) and even badly broken for n > 4, as can be seen from
the above quoted mass regions. Using the fact that specific interactions are
only invariant under subgroups of SU(n,F), one 1s able to derive relations
within SU(n,F) multiplets, that are rather well satisfied. U-spin invariance
of the electromagnetic interactions relates the mass difference 1n i1sospan
multiplets, as well as the magnetic moments. Isospin invariance yields mass
relations between different i1sospin multiplets. Assuming SU(3,F) invariance
for the strong interactions one can derive the relative coupling strength
within the multiplets for the meson-baryon vertices.

Quarks. [Da 76] Hadrons, as far as definite assignments can be made, display a

conspicuous preference of some flavor multiplets above others [Gi 77]. Thas



can be rephrased by assuming that baryons (half odd integer spin) are three
quark- and mesons (i1nteger spin) are quark-antiquark bound states [Ge 64,

Zw 64]. The quarks then are spin 1/2 particles, that belong to the basic
n—-dimensional multiplet of SU(n,F). Taking also other degrees of freedom
(statistics) into account (see below) the lowest baryons can occur in an
octet (8), JP =1/2 +, and a decuplet (10), JP = 3/2 + and the mesons in
nonets (8+1) with JP = 0" and 17. These states have a mass M = 1 GeV and
therefore can be classified using exclusively SU(3,F). For the higher mass
hadrons more general quark configurations Qnﬁm seem to exist, but always
with (n-m) a multiple of three or zero triality. We will discuss some
examples of these extensively.

SU(6,FS). [Gu 64] Stimulated by the successful combination of spin and
1sospin 1n nuclear physics, one has also considered the mergence of SU(3,F)
and the SU(2,S) of spin 1nto the larger approximate symmetry group SU(6,FS)
of flavorspin. (Only 2n = 6 has been considered extensively until now.)

In the 'naive quark model (QM)' scheme this amounts to the combination of

an internal symmetry with a property, mechanical spin, which 1s only defined
well for a quark at rest. Explicit dynamical assumptions are needed, such as
the nonrelativistic motion of the quarks within the hadron and negligible
residual interactions: the quark contributions are simply added to give the
hadron contributions. In the naive QM these assumptions had to be interpreted
as rules of the game, for they are hard to reconcile with the notion of
heavy (because physical thus at some time producible, but not yet seen:

M > 3 GeV) quarks, bound strongly in a light hadron (® 0.5 GeV). Equally
strange 1s then also the invariance of spin S alone, witness the considerable
coupling with the orbital morentum L and the tight interplay between L and

S 1n the conservation of total spin J. Notwithstanding these dynamical

difficulties, hadrons can indeed be accomodated in representations of



Su(6,Fs) ® 0(3) [Gr 67], where 0(3) provides the representations for the
spatial part of the guark and antiquark wave function labeling the orbatal
and radial excitations [Ho 73). In this scheme most hadrons find their place:
mesons occuring in 35~ and 1- and baryons in 56- and 70-dimensional multiplets
of SU(6,FS) [Hem 77). In the absence of spatial excitations, only the baryon
56-plet 1s realized, implying that the baryon wave function i1s completely
symmetric under the permutation of the quarks. This means that the quarks
have either additional quantum numbers or have other than Fermi. Dirac
statistics (see below).

Also at the level of SU(6,FS) symmetry breaking one is rather successful
[G1 77]. All the magnetic moments of the lightest 56-plet can be calculated
(assuming the additivity of quark properties), up to one common constant with
good agreement. One can obtaln mass relations within the SU(6,FS) multiplets:
one can relate members of different SU(3,F) multiplets to one another [Be 64].
Applying SU(6,FS) invariance to the meson-baryon couplings one can determine
the relative strength with which entire SU(3,F) multiplets contribute.

Using a frame in which the quarks have infinite momentum [G1 74, He 75]
in one direction, one can formulate a relativistic type of flavor spin
symmetry: SU(6)W which describes the properties of the quarks that participate
1n interactions, socalled current quarks, to be distinguished from the above
mentioned constituent quarks. Both descriptions are related by a unitary
transformation: the 'Melosh transform' [Me 74]. This constituent-current
quark connection 1s particularly useful to study the transition amplitudes
for photo-induced reactions (YN > N*). Expressing a few matrix elements in
terms of known amplitudes, one can obtain the correct magnitudes and signs
of quite some other transitions. Making further assumptions (PCAC) one can
do the same thing with as much success for the axial current matrix elements

*
in the case of pion induced reactions (TN » N ).



Color. [Gr 77] The statistics problem for the baryons can be solved at the
cost of attributing three extra degrees of freedom: color [Gr 64] to the
quarks. The quarks transform as a triplet under color SU(3,C). The three
being dictated by the fact that the smallest all-quark state observed an
nature 1s a threequark state. It 1s the simplest possibility of providing
the baryon wave function (v 0QQ) with a part that 1s completely antisymmetric
under quark permutation. The baryons behave as color singlets and also the
Qé configuration can occur as a singlet. Combining this with the absence
from the spectrum of states like Q, Q2 and Q4, one can generalize thas
feature and postulate that all observable objects 1in nature must be color-
singlets. This allows only Qan configurations [Fr 72] with (m-n) an

integer multiple of three. In this formulation color is an exact symmetry.
The color degree of freedom i1s hidden or confined. This implies e.g. that
the quarks have fractional electric charge. Consider a state like A++ “ouuu,
build from three up—quarks (Table), up to color identical, which then must
have charge e, = 2/3 e. Simlarly AT % ddd and © v sss. Quarks with thas
quantum number assignment are called Gell-Mann-Zweig quarks. One alternative
1s provided by the Han-Nambu [Ha 65] model, 1n which the quarks have integral
charges. Since the color average over the charge of a particular flavor must
be the same as i1in the GMZ model, this yields an electromagnetically broken
variant of color. In the HN theory at some stage colored configurations like
Q and Q2 must be observed. It does not obey the confinement-postulate for
all energies and implies a different kind of dynamcs [Na 66].

Three other examples, in favor of color, are the two photon decay rate
of the pion, the ratio R for production of hadronic final states to that for
uu oin e+e_ annihilation and the branching ratio for the decay of the heavy
lepton T 1into leptons and hadrons. The matrix element J% for the process

0
T 2> YY can be calculated using PCAC and depends on the flavor-color content
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of the pion through the square of the electromagnetic charge

‘/14~<Z:QJ2->=l

5 where 1 runs over all flavors and colors. This relation
1s, due to the particular flavor wave function of no, satisfied by both HN
and colored GMZ gquarks, but not by colorless quarks. It can only be satisfied
if the number of colors 1is exactly three. In principle the two photon decay
of pseudoscalar and tensor mesons, in fact any process, which 1s quadratic

1n the electromagnetic current, 1s fit to discriminate between the various
color models through their charge assignment. However, one lacks both data,
and a reliable way of calculating the matrix elements for other states than
ﬂo [ch 77]. Recently, the photon-photon interaction has been observed at DESY
in Hamburg [Be 79] in the process e+e- -> e+e_e+e—. One was able to extract
from the data a new upperlimt on the two-photon decay width of the n'(958),
which, because of the large flavorsinglet content of the n', 1s rather
sensitive to the charge assignments of the quarks. In the context of pheno-

menological analyses the new bound Tn 11.5 keV favors GMZ quarks.

Yoyy
In e+e— annihilation the experimental value of R again favors colored GM2Z
quarks to the not-colored variety, and 1s compatible with HN quarks, provided
the states around 4.0 GeV are interpreted as colored hadrons, as an alternative
to the introduction of charm. Since the photon can carry away color, a
spectroscopy ensues, which 1s rather different from what 1s observed.
An elegant generalization of HN is provided by the Pati-Salam gauge
model [Pa 76], which includes charm and considers the lepton numbers as a
fourth color. Baryon and lepton number nonconservation allows the free quarks
to decay rapidly into leptons, thus escaping detection. Below the color
threshold this model has properties rather similar to the fractional charge

one, except for the above mentioned multiphoton features. However, there are

strong indications that at least one more flavor (the fifth) and a new heavy



lepton exist, 1n which case the PS model needs extension, which will delete
some of the nice symmetraies.

Finally, the heavy lepton T decays to i1ts own neutrino \)T and a negatively
charged weak boson W, which subsequently decays to an e—Ge, u-vu or d'u pair.
The weak current couples equally strong to the electron-, the muon- and the
quark-current [We 67, Sa 68]. However, since this result only depends on the
weak and electromagnetic interaction properties of the quarks, the quark
contribution to the 1 decay final states 1s as many times stronger as the
quark has additional (color) degrees of freedom. Allowing for small QCD and
phase space corrections, the number of colors turns out to be three.

For these reasons, the fractionally charged, colored quark model 1s at
present 1n much better but not yet perfect shape, and we will adopt 1its
assignments.

Deep inelastic scattering. [Cl 76, Mo 77, Ne 78] when the first spectroscopic

i1ndications of a new substructure have been established, the next step usually
1s to probe the constituent particles using high resolution equipment. The
structure of the baryon-, and especially the nucleon-target 1s examined 1n
deep i1nelastic scattering experiments, with charged lepton and neutrino beams.
Only the outcoming lepton 1s observed (energy E', angle Q'). The advantage of
using charged leptons 1is that one precisely knows the lepton-photon vertex
from QED. One can check that up to high values for the momentum transfer
2

q = - Q2 < 0 to the nucleon the relevant process 1s i1ndeed one photon exchange.

This means, that the response of the nucleon can cleanly be extracted from

dzo

Erag - It can be represented, using

the doubly differential cross-section
Lorentz-, gauge- and parity-invariance, by two socalled structure functions
Wl, which can also be related to the longitudinal and transverse virtual

photo-absorption cross sections OL and OT. From the experimental properties

of the structure functions, one can verify that deep inelastic lepton nucleon



scattering, which takes place for Qz, w2 > 3 GeV2 (W 1s the effective mass

of the hadronic final state), arises as the sum of incoherent elastic
scattering of the leptons from charged, spin 1/2 constituents of negligible
mass, originally called partons, which can consistently be interpreted as
quarks. Using v (2 energy loss of lepton 1in labframe), one finds experimentally,
that Wl = wl(v, Qz) behaves 1n first approximation as a function Fl(x) for
large, variable Q2 and x fixed, x = Q2/2Mv, a phenomenon known as scaling
[B3 69, We 75], which proves, that the parton-photon vertex, in fact up to
20 GeVz, has no strong Q2 dependence, no form factor 1.e. partons are structure-
less point particles. One can calculate the elastic quark-lepton scattering,
where the quark carries fraction x of the nucleon momentum (transverse
momenta are negligible to the lepton-proton C.M. momenta considered, thas 1s
the i1nfinite momentum frame approximation where quark fraction x and scaling
variable x can be 1dentified). The data then give the distribution functions
fQ(x) for x, the fraction of the total momentum carried by the quarks, for
each flavor, in terms of which sum rules and normalization conditions can be
checked. It emerges that the 1sospin and spin (on the basis of polarization
experiments) degrees of freedom of the nucleon can be accounted for success-
fully by the three 'valence' guarkdistributions.

Glue. The baryon contains more than just (three valence) quarks. In case of
quarks at rest inside the proton one would have a very sharp peak in the
doubly differential cross-section at x = 1/3, signaling the quasi elastic
scattering off three constituents with mass = momentum roughly a third of
the baryon mass = momentum. In practice one sees a broad peak in this area,
indicating the motion of quarks inside the restrictive nuclcon volume. This
means, that the quarks are subject to forces, which keep them inside. From

the fact that up to high Q2 one has not been able to produce a fractionally
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charged object, one concludes that these forces are of a type different from
hadron-hadron strong forces, mediated by massive mesons. One therefore assumes,
that the quarks interact through exchange of a special type of bosons, named
gluons. At short distances this interaction 1s observed to be rather weak.

The gluons appear to be electracally neutral, because the valence quarks can
saturate the nucleon charge and other nucleon quantum properties. Gluons can
couple 1ndirectly to the photon by means of internal conversion into a
quark-antiquark pair. This higher order process 1s clearly present in the data.
The quark momentum distribution functions fQ(x) should behave as xa, a >0

for x > 0, 1f the number of particles in the baryon i1s fixed to three quarks.
One observes that x fQ(x) -+ constant, x - 0. This means that for small x the
Q-Q pairs contribute according to i which can be interpreted as a bremsstrahlung-
like behavior of the gluons. The quark appears to be surrounded by a cloud of
soft gluons, which sometimes convert into Q§ pairs, much like the electron is
surrounded by photons. The presence of these neutral gluons 1is strongly
confirmed by the fact that the momentum contribution of the charged constituents
(Q and 6) only adds up to roughly half the total baryon momentum. The emission
and absorption of soft gluons (radiative gluon corrections) supplies the

quark with a fine structure, which destroys the naive scaling behavior. One

has observed these scaling violations [Ga 77], which are surprisingly small,

but has not yet determined the precise behavior. Theoretically one can calculate
these scaling violations, perturbatively, provided one makes assumptions
concerning the quark-gluon (1.e. strong) 1nteraction dynamcs (see below).

Just like quarks, also the gluons have not been observed in the laboratories.
From this one might conclude that also gluons carry nonzero color charge, and
therefore are confined to the inside of the hadron.

Deep 1nelastic scattering (cont'd). The charged lepton scattering data are

confirmed by the neutrino scattering results. In this case one assumes that
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the intermediate particle is the socalled weak boson, which couples to the
weak hadron current. At present energies one can neglect Q2 with respect to
M;, the predicted mass of the weak boson W and again extract full information
about the nucleon vertex. Since parity is not conserved in weak interactions,
the cross sections for transverse left- and righthanded virtual photo-
absorption are no longer identical: oi # 0; , which implies the existence of
a third structure function: w3 N ci - Ui . W3 has a different sign for
particles and antiparticles, and this allows one to separate the contribution
of the particles from that of the antiparticles. Indeed, for x > 0.4 one
measures only contributions of valence quarks which for x < 0.4 become
supplemented, and for x » 0 dominated by those of the isoscalar sea of Q0
pairs. One finds fﬁ(x) > fQ(x) for x > 0. Another property of the quarks,
their fractional charge assignment can, apart from the indirect tests via
sumrules, also be examined more directly. One shoots very fast electrons on

a nucleon target and measures the charge distribution of the fast pions, that
come out in the incident electron direction. The assumption is that these
pions contain the quark that is kicked out of the target by the electron. One
finds a positive to negative charge ratio of 5 : 1 for a proton target
(theoretically 8 : 1) and of 1.5 : 1 for a neutron (2 : 1), which is consistent
with GMZ assignments, allowing for sea quark dilution of the ratio [Ma 76,

Ma 77].

Electron-positron annihilation. [Fe 77] Closely related to the deep inelastic

lepton-nucleon scattering experiments, is the production of hadrons in electron
positron collisions. As can be verified by studying processes like e+e_ > pp,

the important mechanism is e+e_ annihilation into a virtual photon which

couples to the same hadronic current as participates in deep inelastic lepton
scattering: the electromagnetic quark current. A momentarily free quark-antiquark

pair is created, which later on evolves into hadrons. These quarks have a
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pointlike coupling to the photon, just like e.g. the muons, and the ratioc R
for hadron to muon production in e+e— should become constant for large enough
Q2 (q2 1s timelike 1in this process: q2 = Qz). Below the charm threshold
(~ 4 GeV) only u, d and s guarks contribute and the prediction is
sle*e” > 03 » hadrons) /o (ete” » yTu7) = 7§ ef = 3(4/9 + 1/9 + 1/9) = 2
(L =u, d, s + colors). Above the charm threshold we have R = 3 %—due to the
charm contribution. Experimentally R 1s approximately constant but systematically
high w.r.t. the theoretical values (30% for SPEAR, 10% for PLUTO data, which
both have sizeable systematic errors).

Another signal for the Qé pair creation, which 1s extensively studied at
present, comes from the fact, that for 5 Gev 5_/6§ﬁ§_10 GeV hadrons are
mainly produced within two opposite pointing cones (back to back jets) of
opening angle §, which becomes smaller for increasing energy [Fr 78, El 78].
The hadron dynamics appear to be such that the momentum components transverse
to the cone/jet axis are sharply restricted and that the distribution of
the longitudinal momenta depends on the fraction of the total momentum, and
only weakly on the C.M. energy /651 The jets have an angular distribution
w.r.t. the electron direction (angle 8) of the form (1 + cos2 8) which 1is
characteristic of the production of a pair of spin 1/2 particles. Jets are
also observed in hadron-hadron collisions, where they also appear on the
average back to back, at large angles, as well as 1n lepton-hadron scattering.
The origin of the former 1s speculated to be perhaps the elastic scattering
of two fast quarks 1inside the hadrons. The remnants of the hadron decay in the
beam direction. In the latter the lepton i1s supposed to kick out the quark. In
the case of e.g. vp scattering the w+ boson changes a d-quark into a u-quark
and measurements of the charge excess in the target (v 2 u-quarks) and the
W+ direction (v u-quark) show the former to be approximately twice as large

as the latter. The relation between the hadrons 1n a jet and the quark that
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originates them can be expressed in terms of socalled quark-parton fragmentation
functions. In the infinite momentum frame of the quark, which is kicked out by
a lepton or created by a photon these functions give the probability that the
quark ‘decays’ into some hadron h, which has a fraction z, 0 < z < 1 of the
quark momentum. In practice there will be also a weak dependence on Q2 and

the transverse momentum component kT. The fragqmentation functions can be
measured in socalled inclusive processes like £ + N > 2' + h + anything and
e+e_ > h + anything. Only in neutrino induced reactions they are directly
measureable. Comparison shows that these functions behave consistently for

the mentioned processes [Pe 78].

Confinement. The persistent negative results of the searches for fractionally
charged objects, such as quarks and other nonzero triality configurations have
inspired, apart from the integrally charged, liberated quark models, also the
opposlite notion: color-confinement [Dr 77]. It 1s the statement, that the
dynamics of colored objects 1s such, that 1t requires an infinite amount of
energy to split a not colored system into two colored fragments. The interaction
energy of the fragments increases with their separation. This results, of
course, 1n a highly unstable situation and at some point there will be
sufficirent energy in the system to make other processes possible, e.g. the
creation of Qé palrs (sparks) which will shield the initial interaction: the
system breaks up 1nto two smaller color singlet systems, thereby reducing

the effective color separation.

A nice 1llustration of this phenomenon [No 78] can be seen in the
charmonium spectrum, ascribed to the charmed quark and antiquark system. It
consists of a number of bound states (bindingenergies up to .9 GeV!) below
the production threshold for particles with bare charm at about 3.7 GeV and

a number of resonances above 1t, which can be accounted for by a Q-é interaction
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energy which i1s roughly linear in the -0 separation. Another i1llustration
[Ja 77] of the consequences of confinement 1s provided by the occurrence of
particles i1n families, sharing the same quantum numbers for flavor, whose

total spin J and mass M obey the rule: J =a' M2 + a The intercept a . 1s

0

characteristic of each family, but the slope o' of these linear 'Regge’

0

trajectories 1s universal for all Q3 and QQ systems. The trajectory joins the
orbital or L excitations of a specific multiquark system. One has J = J(L).
Since the data for charm trajectories are meagre we will restrict ourselves
to the light flavors u, d and s, where the trajectory already runs straight
for L = 2 or 3, Consider a meson consisting of a quark and an antiquark. To
acquire higher L values the meson has to rotate faster. Due to the increasing
centrifugal barrier the Q—Q separation will become larger. When the forces are
of the conventional strong type, originating from the exchange of massive
hadrons, which has a limited range, the quarks will very soon come apart,
after a maximum value for J 1s reached. No confinement! One finds J = 1 or 2
for O.B.E. type models. The Regge trajectory for the delta still continues

at J = 15/2 without an indication of impending changes. This behavior is
realized in e.g. the dual string model [Re 74] where the length I (v 0-0
separation) of the rotating string 1s proportional to the mass ([ ~ M). The
string ends have approximately the velocity of light, so that the configuration
has maximal angular momentum, whereas the relative momentum p will also be
proportional to M and L ~ pl ~ Mz. Increasing L then means, that the rotation
frequency w will go down: w v % v % and that the system will become heavier,
instead of flying apart at once. These high mass states are also, though less,
unstable through the 'spark' mechanism, indicated above. Emitting mainly
mesons, which lower L step by step the massive hadron cascades into stability.
The excited system, however, does exist long enough to allow detection. The

universality of the slope a' 1s also an indication of the fact that the quarks
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can only carry a small portion of the energy and angular momentum. First,
mesons and baryons contain a different number of quarks and secondly, flavor
breaking effects 1n a' would be clearly visible, 1f quark contributions are
i1mportant. These examples support the i1dea, that color acts as a source for
the strong interaction between groups of quarks. There 1is an increasing effort
to deraive confinement in 3+1 dimensions, including nonperturbative effects or
otherwise, but no convincing results have been obtained so far [ca 77, Th 78,
Le 78]. There exist, however, examples in 1+1 dimensions, where confinement
occurs and where the mass 1s proportional to the separation [Ko 74, Man 76].
These models may be of use when the effective number of dimensions of the

physical system 1s reduced by 2.

On the basis of these experimental data and theoretical ideas we can
compose the following picture of the baryon. It is an extended object,
deriving 1ts flavor and spin properties from three 'valence' gquarks. These
quarks are surrounded by a cloud of gluons (and Q§ pairs), which are electri-
cally neutral. Gluons and quarks have color degrees of freedom, which act as
a source for strong interactions. This 1nteraction is very weak for small
separations: quarks and gluons enjoy 'asymptotic freedom', and becomes very
strong for increasing distance between two colored objects: confinement.
This picture 1s readily transplanted to any colorsinglet system. One even
entertains speculations on systems containing only 'valence gluons' and no
quarks at all [Fr 75, Ja 76, Ro 77].

What at this point still 1s lacking is a framework for the dynamics
governing the strong interactions, within which one can settle questions
lake 1f quarks are seen to move freely for short times, what keeps them
from moving apart® and, what makes colorless states lighter than colored

ones?, or more detailed ones like: what makes the A heavier than the N? and,
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why don't we see lowlying flavor exotics? and interpret other experimental
findings.

The most simple, and at the same time most promising theory of strong
interactions 1s at present the nonabelian gauge field theory 1n colorspace
[Ma 78] : Quantum Chromodynamics, QCD for short. It follows from the assumption,
that color 1s not only globally conserved but also locally, completely
analogous to the way in which the very successful QED theory follows from the
local conservation of electric charge. The important difference 1s, that in
QED the electric charge 1s an additive quantity: QED 1s invariant under the
abelian symmetry group U(l), whereas in QCD the color-charge 1s non-additive:
QCD 1s i1nvariant under the nonabelian group SU(3,C). The quarks belong to
the basic triplet of SU(3,C) and the forces are therefore mediated by an
octet of massless, spin 1 gauge bosons, called gluons. The gluons also carry
color charge and can couple among themselves. This feature gives rise to two
peculiar phenomena, which are thought to be two aspects of the same thing
[Dr 77]. From QED one 1s familiar with the fact that the charge e, seen from
distances larger than twice the compton wave length of the electron, *e' 1is
smaller than the effective charge measured at smaller distances. This 1s due
to the presence of virtual electron-positron pairs originating from the zero-
point quantum fluctuations of the electromagnetic field strengths. The bare

+ -
electron, charge e 1s thus surrounded by e e pairs, from which it attracts

0’
the positrons and repels the electrons. The vacuum becomes polarized and the
electron charge 1s shielded. The coupling strength (e) grows when measured
at smaller distances. What happens at very short distances 1s, due to the
breakdown of perturbation theory and the experimental resolution, not known.

In QCD the bare color charge of a quark 1s not only surrounded by Q§ pairs

but also by gluons, which revert the screening of the Qé pairs 1nto a net
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antiscreening: the effective colorcharge of the quark decreases at shorter
distances and the quarks are asymptotically free: they only have a very 'weak’
interaction at short distances. One could say that the colorcharge of the
quark 1s spread into the field around 1t and the quarks, close together, only
see a small remnant. But one can also look upon this situation from another
angle: the effective charge grows, when measured at increasing distances.
About this limt not very much 1s known, since one cannot use perturbation
theory around the free quark solution here. One hopcs, however, that the
resulting, strong coupling will realize color confinement. There are some
hints, that confinement may indeed come about. One can show that, i1n the

case of two static oppositely colored sources the colorfluxlines tend to
become collimated, when the separation increases and eventually will be
concentrated 1n a thin flux tube connecting the two charges. This property
can then be translated in an interaction energy ~ r, the intersource distance,
or 1n a strang type description of the system. The color charges appear to

be acting as condensor plates [Ko 74].

At present calculations with QCD [El 78] are only possible in the
asymptotic free region. There, to lowest order in the coupling g, where only
the pointlike quarks contribute, the theory gives the exact scaling mentioned
above. Including the next orders in g, one obtains radiative corrections of
the form 1ln q2, which violate the naive scaling law, and which provide a more
quantitative and strict test for the theory. These violations are experimentally
established and consistent with QCD predictions. Perturbation calculations i.e.
calculations involving quarks and gluons, can also be extended to decay or
scattering processes i1n which quarks or gluons appear to be emitted from the
hadron, provided one replaces the quark or gluon with a quark or gluon jet in
the real world, cf. the QQ jets 1in e+e- annihilation. Especially the thus
expected production of gluon jets at higher energies 1s a firm test for the

theory.
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One has also made use of the relatively weak coupling of the gluons to
the quarks, when these are sufficiently close to each other inside the hadron
to investigate the spin dependence of the hadronmass [DeR 75, DeG 75]. Already
at the level of one gluon exchange one can account for the observed systematics,
1n terms of the signs and the order of magnitude of the splitting.

From this we conclude, that we have reasonable grounds to take QCD as a
descraiption of the dynamics of quarks and gluons 1nside the hadron. To study
this composite particle, we also need a well defined description of the hoped
for confinement properties of the theory, as long as these are not extracted
from the theory itself. Considering i1ts present status, 1t 1s best to put an
a confinement mechanism by hand. One can do this by taking advantage of the
fact that one also has to find a relativistically covariant description of an
extended system and associate an energy with the extension of the system. While
putting a cost on extension, and thereby limiting the size of the system, one
at the same time eliminates the long wave lengths avoiding the unsolved
1nfrared- and strong coupling problems. There are three simple measures of
such an extension [Jo 76]. They are all generalizations of the classical,
relativistically invariant action, describing the motion of a massive point
particle, given by

W=-mfa (-vy/?

where 3 1s the velocity and m the mass of the point particle. This action was
generalised by Nambu [Na 70], to describe an object with a one dimensional
spatial extension. It 1s the continuum limit of a linear chain of geometrical
points, the socalled string

- _22.1/2
W =-T fat [as (1 vi)

where ds 1s the length of the line clement at some point along the string and
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31 is the transverse velocity at that point. The constant T, which has
dimension energy (or mass)/length, is the proper tension of the string. The
quantization of this Nambu string yields the excitationspectrum of the dual
resonance model [Re 74]. The tension T satisfies T = 1/2ra', where a' is the
universal slope of the linear Regge trajectory in the dual resonance model.
WSt depends only on that part of the internal motion which is transverse to
the local spatial extension of the string. Classically, only these motions
contribute to the dynamics of the system. The longitudinal expansion of the
line element does not change the kinetic energy and is interpreted as potential
energy.

The generalization to a two dimensional geometrical aggregate of points:
had, prior to Nambu, already been proposed by Dirac [Di 62], who suggested

the following action for the surface (membrane, if open, or bag, if closed)

;2)1/2

2
Wy =-o [at [as (1-v] .

S
Here dzs is the area of the surface element and $l is its velocity in the
transverse direction. Now, 0 is a surface tension of dimension energy/area
and again only ;l contributes to the dynamics of the system. It is by adding
WS to the QCD lagrangian, that the Budapest group generates confinement [Gn 75].
The third and last step in this sequence is to consider the geometrical

action associated with a three dimensional set of points, a volume, also

called a bag:

_ 3
Ww,=-B[at [ax .

. : . 3_ .
Here B is for dimensional reasons a (vacuum) pressure. Because f dt f dr is
a Lorentz invariant, four dimensional volume element, no transverse velocity
factors occur. The volume action has no dynamics of its own. Nevertheless,

the addition of wv to a system, which already has dynamical degrees of freedom,
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can have important physical consequences, because 1t can be interpreted as
a generalized potential energy. The differences between the various
possibilities 1s best demonstrated with a 1 + 1 dimensional example. There

are two possible actions in this case; one for a masspoint or equivalently

ax

)2)1/2, and one for a
dt

a surface point with tension: W= - m f dt (1 -

volume: W = - B f dt f dx. The combined action:
dx1)2)1/2 dx2 24\1/2
W=—mfdt(1—(¥ —mfdt(—(g)) -B [ at [ ax

then describes a system of two massive particles (m1 =m, = m) , which enclose
a one-dimensional volume, or equivalently (m<> ) a one-dimensional bag with
surface tension, under vacuum pressure. The hamiltonian becomes

H = (pf + mz)l/2 + (pz + m2)1/2 + B x5 - xz!

and we find that the particles are bound together by the long range vacuum
pressure potential. We find, that one can take B *» 0 in both the action, and
the hamrltonian: it yields a system of two free particles in both cases.
Taking m to zero in the hamiltonian yields a system of two massless particles,
bound by the pressure. However, taking m = 0 1n the action just leaves the
volume term, with which no dynamics can be associated: 1t describes an empty
bag. We find that two completely different systems emerge. The MIT formulation
of the bagmodel adds wV to the QCD action, thereby avoiding the introduction
of new dynamical degrees of freedom to the theory. This procedure has the
drawback, that one obtains a constrained dynamical system, which severely
hampers quantization.

We will study the MIT bagmodel in Chapter 2, 1n a simple approximation
and apply 1t to the static properties of the light hadrons. In Chapter 3
we will study another approximation, which is better adapted to the study

of all-quark states with baryon number B = 2 to 6. Finally in Chapter 4 we
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w1ll 1nvestigate the spectroscopic properties of the QZQZ system. Especially
3B 2.2

multiquark systems like Q@ , B > 1, and Q°0" could not be treated in the old,

naive quark model and were called exotic. It i1s through the MIT bagmodel that

the study of these exotic systems has become feasible.

Quark Q B I 1, S c T B
u 2/3 1/3 1/2 1/2 0 0 0 0
d -1/3 1/3 1/2 - 1/2 0 0 0 0
s - 1/3 1/3 0] 0 -1 0 0 0
c 2/3 1/3 0 0 0 1 0 0
t 2/3 1/3 0 0 0 0 1 0
b - 1/3 1/3 0 0 0 0 0 -1

Table. Quark flavors and the associated gquantum numbers: electric charge
(Q) , baryon number (B), isospin (I), and 1ts z-component (Iz),
strangeness (S), charm (C), truth (T) and beauty (B). At present

only the t-flavor has not been found.
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CHAPTER 2: THE MIT BAGMODEL

In this chapter we will cast the underlying dynamcal assumptions of the
MIT bagmodel [Cho 74] i1n a Lagrangian form and examine some of the simplest

consequences [Chp 74, DeG 75].

I. The equations of motion and constraint [Jo 75, Jo 76]

In our description of the hadron, we will take the quark field (denoted
by a spin S = 1/2 Dirac field ¢ (x)) and the gluon field (denoted by an S = 1
vector field Au(x)) as fundamental fields. Since quarks and gluons are supposed
to occur only inside the physical hadron, their fields will also be defined
only there. In this respect the bag theory differs from conventional (space
time) field theories, such as QED where the electron and photon fields are
defined everywhere. Space 1ntegrations i1in the bag action only extend across
the bag volume. To elucidale this feature and to facilitate forthcoming
technical manipulations, we will introduce the auxailiary function GB(X)

which has the following properties:

OB(x)

]
—

inside the bag
(1)
=0 outside the bag

Function BB(x) only depends on the coordinates of the bag boundary, not on
1ts velocities. eB has no dynamics of i1ts own. Introducing 6B 1n the Lagrangian,
we can extend the integration volume over all space time 1n any Lorentz frame.

Another property of OB 1s the following-

au OB(x) =n, Gs(s) (2)

where nu 1s the unit, spacelike, 1inward drawn normal to the surface of the
bag. In the instantaneous restLframe of a point on the surface nm 1s the usual

unit space normal, while n, = 0. The surface §-function Gs(x) satisfies:
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[a'x s 0 £ = [ (@0 £ = [ at | a%s (1 - 3i)1/2

4

£(x)

The lefthandside expression i1s Lorentz covariant. In the righthandside cne
a noncovariant parametrization of the surface has been chosen, which 1s

2.1/2
VT) 4 , which depends on the transverse

compensated by the factor (1 -
velocity ;T of the surface element.
- Quarks -

We will introduce the bag action step by step. Let us start from the

action for a free, massive Dirac particle:

[€)

W= - f d4x i%—@ 3uYuW + m Jw% (3)
using a 3u b = a(aub) - (apa)b for the derivative operator. For the metric

and y matrix~definition see appendix A. From this action we obtain the Dirac

equation:
M 2, +my =0 .

Instead of Y“ au, equivalently y-3 and J will be used. The Dirac field here
can in principle be defined everywhere in the 3 + 1 dimensional space.
The second step 1s to generate confinement in a relativistically covariant

way. To achieve this a 'vacuum pressure' 1s included, which 1s a Lorentz scalar:

¥
W= f d4x o

4 1 - o - 1 -
0--[dx iiwa-yw+mw+3§83+3(w)és (4)

Requiring that the action be stationary against variations in @, we obtain the
following Euler-Lagrange (EL) equation:

[E} (z+m)¢+ls #+ 1y =0

B 2 'S
which 1mplies both the free quark equation of motion

(F+my =0 inside the bag (5)

and the constraint equation or boundary condition:

Ay =-19¢ on the surface (6)
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For the conjugate field we find similarly

]
(@]

v@ -m
VA

inside the bag, and (7)

on the surface . (8)

[}
<

Equations 5 to 8 correspond to the situation, in which confinement is realized
by a scalar potential [Bo 68]. The quarks are endowed with an effective mass m
inside a finite region R of space and with a mass M elsewhere. One takes M >> m.
Demanding continuity of the upper and lower components of the quark spinor wave
function then gives a set of equations, which reduce to egs (6) and (8) in

the limit M » », in which the quarks become confined to region R (cf. also

[Cho 74]1). Combining egs (5) and (7) we find that the quark current is locally
conserved inside the bag: Buju = Bu(i P Yu y) = 0. Eqs (6) and (8) state that

therc is no current across the boundary

T !
n 3 nu(le ¥)

i@ yen)y =40 (9)

19 (yny) =-iyp=0

Stability against small excursions of the surface i.e. against small changes

of the volume yields:

a“(np ) on the surface (10)

53-Yw+mu7w+3=%

N

To obtain the righthandside, one has to use the Gs-definition in terms of

eB: ($w)65 = n“(aw)(auea). With the aid of egs (5) to (8), eq (10) reduces to:
n, My = 2B on the surface . (11)

We note here, that what would have been an equation of motion for the surface
variables becomes an equation of constraint for the constituent fields due to
the absence of a surface kinetic energy term. The encrgy and momentum content

of the system can be summarized in the stress tensor

TAV 1 - ugv Ny _ 1= ugv by g _ MY o my
T = eB {2 v Y9y +g Jiof = eB {2 vYJdyY-g Bl = TQ g B (12)
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which satisfies

3 T =0 1nside the bag, and therefore (13)

f av TOV 1s a conserved, 1.e. constant quantity. (14)

L)
]

We find that all the momentum 1is carried by the quarks, while the energy:

E=[av {%$y030¢+3§ = E, + BV (15)

contains contributions from both the quark fields and the volume. One can

>
show, that i1n case the bag 1s boosted to a velocity v in the limt v > 1, also
all the energy will be carried by the quarks. The volume term vanishes due to

the Lorentz Fitzgerald contraction. The scalar potential confinement-mechanism

uv
Q

the bag 1s limted by the volume term in eq (15). On the surface eq (13)

only gives a T part and i1is not Lorentz covariant. For fixed E, the size of
develops into

n, o = % 3@y -n'B=0 . (16)

Because $¢ = 0 on the surface, 1ts derivative 1s proportional to the normal

1 v- v _ (Y
3 3 (y¢) = n PQ =n, TQ . (17)

Since, in the instantaneous restframe, this equals the momentum flow normal
to the surface, PQ 1s the pressure exerted by the guarks on that surface,

going with the concept of stress tensor. From eq (11), we conclude that PQ =B
which can be interpreted as the statement, that the quarks pressure, which is
directed outwards (quarks are fermions) is balanced by the vacuum pressure,
which keeps the volume from becoming too large. The origin of B 1s unclear.
Similar to B, also PQ 1s a Lorentz scalar.

Eq (11) 1s nonlinear in the quark fields and can be interpreted as a
definition of the surface coordinates in terms of the quark fields. It is a

local equation which preserves causality. The surface variables of the bag are

no new dynamical degrees of freedom. This can also be seen from eq (15), where
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no reference 1s made to time derivatives of these variables: they do not
contribute to the energy. We furthermore see, that the surface term
Wy = % ! atx (@w)ds = % f dt f a%s /1 - vé (y¥) does not contribute to

the extremized Lagrangian density, by virtue of €d (9). Its presence 1s

however needed to obtain a consistent set of EL equations. In case of omission,

we obtain, next to eqs (5) and (7) the boundary conditions

nyy =20

o on the surface

]
o

P8y v +miy+n
Combining eq (11a) with egs (5) and (7) yields: B = O. This implies that
confinement can only be maintained by introduction of additional (boson)
fields for which the quarks can act as a source. These fields will then
completely determine the motion of the boundary. One can verify, that egs
(6a) and (lla) also follow from eq (4), provided one lets Vo = 1 1n the
surface term. The boundary moves with the speed of light. In this case eqg
(6a) becomes Y = 0 on the surface: the slowly (w.r.t. v = 1) moving quark
will never reach the surface. The boson fields, dragged along by the quarks,
and also confined, will be reflected at the opague boundary and cause the
source-quark to turn around before 1t gets there. An equivalent result is
obtained, when one lets the quarks become very heavy: mQ -+ ., This picture

1s advocated by the Budapest group [HaK 78]. It does not seem to cover some
of the simplest cases, such as the spherical bag containing massless quarks,
treated 1n detail below. The boundary condition Y = 0 1s much too restraictive

for the linear Dirac equation.

= Gluons -

(6a)

(11a)

At this level still one quark bags can occur. To eliminate these, we have

to take a third step, which i1s to introduce the gluon fields. This can be done

1n the standard Yang-Mills-like way by noting, that the quarks have SU(3,C)
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color quantum numbers, which have been 1gnored in the above discussion, and
replace all ordinary derivatives 1in eq (4) by gauge covariant ones and adding
a kinetic term for the gluon gauge fields 1in order to make the total

Lagrangian locally gauge invariant:

] D =436
u+(u)ab

WSab -19 (E‘C)ab A (18)

cu

The covariant derivative (D )

1 ab acts on a field, which transforms according to

an n-dimensional irreducible representation (irrep) of SU(3,C) and 1is represented
by an (n x n) matrix in color space (a and b are color indices: a,b = 1,...,n).
The 1dentity matrix 1s denoted by Gab' and (FC)ab denotes the n-dimensional
representation of one of the eight (¢ = 1,...,8) generators of SU(3,C). The

Fc matrices have the following properties:

1
Tr FaF —56

[Fa’Fb] =1 fachc b ab a,b,c=1,...,8 .

Here the fabc are the structure constants of SU(3,C), completely antisymmetric

w.r.t. interchange of any pair of indices. (See also appendix B.) In the three-

dimensional irrep of the quark, we have Fa , where Aa 1s one of the eight

|
g?: Nlmy

Gell-Mann matrices. Furthermore, {Fa,Fb} = +d F_1n this case. The

3 abc

constants dabc are completely symmetric under the interchange of 1nd1c$s.
A

* a
In the 3 1irrep of the antiquark, we have the representation: Fa =- 5.

Finally, acting on the gluon octet irrep the matrix elements of the generator

become (F_) = -1 fa

2 be e The antisymmetric field tensor, corresponding to the

b
gluon vector field Ag is given by:

Hv TIRY v u TIRY)
= - +
Ga 3 Aa ] Aa g fabc AbAC
where the third term is a consequence of the nonabelian nature of the color
symmetry.

- Quarks and Gluons -

The action for the mixed (1.e. quarks and gluons) bag theory becomes
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- - ! 4 z 1 uv a
W d'x [4 Ga G

4 )

From this action the following set of equations is obtained:

for the quark fields: (y-9 - igy“FaAE + my

(y-n + 1)y
and PGy + igy'r A - m)

au
Ply.n - 1)
for the gluon fields: Du G:v
uv . = v uv

- = +

Bp Ga igvyy Fa V] g fabc Aub Gc
and n Guv
o a

and the nonlinear condition becomes:

- 1 uv _a
ap (Ypy) = 2 n, [B + % G, Guv]

1 - &
+ B+ ¥ DY +m

[w]l]

I

(y-D + my
0
Y(y-D - m)
0
-igj vy’
v
J
a
0

For the gluon fields one can also introduce the relations

Caij = ik Hax

- 5w s}

inside

on the

inside

on the

or

inside

on the

the bag
surface
the bag

surface

the bag

surface

surface

(19)

(20)
(©)
(21)
(8)
(22)
(23)

(24)

(25)

denoting the color-electric and color-magnetic fieldstrengths

respectively. An important difference with electrodynamics is that we now have

eight, instead of one, electric and as many magnetic fields, because SU(3,C)

> >
has eight charges. In terms of Ea and Ha we find:

>
n-E_ =0
a

on the surface

0> > >
nE_ +nxH =0
a a

These conditions assure, that also the gluon fields will be

confined.

On the surface the quark and gluon fields satisfy both a separate and a

common boundary condition. The former relates the various components of the

(24a)

(24b)

field among themselves. In case of a prescribed boundary eqs 6, 8 and 24, also

referred to as linear boundary conditions, determine the eigenvalues of the

energy-eigenmodes inside the bag. The bag theory offers the possibility of

hadrons consisting of just gluons, both gluons and quarks, or just quarks.

The common condition, dubbed nonlinear or quadratic boundary condition, defines
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the surface as the locus, where the fermion and boson pressure balance the

vacuum pressure. Also the boson term: % Gﬁv G;v 1s a Lorentz scalar. We can
rewrite eq (25) to
(n-3) (Ppy) + %ﬁz =B + %ﬁz (26)

which 1llustrates the inflatory activities of the electric fields, whereas

the magnetic fields contribute to the compression.

v
One again can define a stress tensor density T

WY wp v 1= wev v }
T (x)—eB{Ga o R ARG ML £L
_ up v 1= peav _ Wy 1 A o a }
—GB{Ga O R A M [a+4c’; 6y ] 27
One verifies that
¥ Tuv =0 inside the bag (28a)
uv
nU T =0 on the surface (28b)

which assure, that the energy and momentum are conserved quantities.
Similarly

3 J
u

n J
u

= 0 1nside the bag, by eq (23) (29a)

= 0 on the surface, by eqs (6), (8) and (24), (29b)

PN

state that the total color charge 1s a locally conserved quantity. We find
that
10

o = [ 3. =-[3 ¢ =-fd25f1 c°=-1as /1 -v

E =0 30)
1 a 1 oa 4 T MR T (

Hence only colorless bags can occur by virtue of Gauss' law and the boundary
condition, that Ea be tangential to the surface. No bag with the quantum
numbers of a quark can be observed. This result is obtained for any value of
the coupling strength g, which 1s not equal to zero. Eq (30) also forbids
colorless bags to fission 'nto two colored parts. Imagine a bag with the shape

of a sausage, 1n which the quarks are distributed over the ends. Suppose one
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group of quarks has a total charge Qa # 0, the other then has the opposite
charge. This means that inside the bag, at some point between these two groups,
a color electric field will exast of (average) strength Ea = Qa/A, where A 1s
the local cross section of the bag. The total field energy in a little volume

1 2 1 2L
V = L-A then amounts to U = 3-(Qa/A) L-A = E-Qa 2 When one tries to fission
the bag, one has to reduce A to zero, for which clearly an infinite amount of

energy 1s required. A colorsinglet bag therefore can only fission into other

smaller colorsinglet bags.

II. Spherical cavity approximation 1: Gross features [DeG 75]

The set of equations (6), (8), (20) to (25) is a complicated one, for which
no general, explicit solution exists. One has to make several approximations,
1n order to obtain a more manageable one. A first step 1s to i1gnore the coupling
between the quarks and the gluons. In this zeroth order approximation the
equations of motion become i1ndependent of color, and one has to solve the free
Dirac equation for a colored spinor field with mass m, and the homogeneous
Maxwell equations for a massless vectorfield of color a.

In setting g = 0, one assumes that in practice g will be small enough to
admit the application of perturbation theory in gz. The physical picture behind
this assumption 1s, that the size of the hadron will be kept sufficiently small
by the vacuum pressure for the theory to be already i1n the asymptotically free
region. Moreover [Ja 75, JaP 75], the surface, apart from the boundary condition,
1s expected to have little influence on the 1inside dynamics.

For this simplified set of equations of motion and boundary conditions
no general solutions 1n three space dimensions exist either. This 1s mainly
due to the presence of the nonlinear constraint equation, which impedes the
full quantization of the theory. However, the classical equations admt a

class of solutions in which the bag 1s a sphere (i1n 1ts restframe) of fixed
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radius R. This can be seen as follows. One expects the lowest energy eigen-
mode, that a quark can occupy, to be the one, in which the quark has the
least kinetic energy. The quark will therefore move in the most symmetrical
way through the bag. From this motion a pressure results, which is spherically
symmetric, a property shared by the poincaré invariant bag pressure B. The
surface, where these two pressures balance, will therefore be a sphere, which
is classically at rest. Within this static sphere one is able to obtain the
eigenmodes of the noninteracting, confined quarks and gluons. The nonlinear
boundary condition then fixes the radius of this bag, in terms of the energy
of the whole system. This procedure bears some resemblance to the Born-Oppen-
heimer approach in molecular physics. This adiabatic approximation works for
dynamical systems, in which one can single out a slowly moving part, whose
motion is instantaneously followed by the swiftly moving remainder of the system.

In molecular physics the nuclei are the slowly moving objects, whereas the
much lighter electrons (a mass ratio of about 2000) are usually much faster,
but still nonrelativistic. The electron orbits can then, to good accuracy, be
calculated in the approximation that the nuclei have fixed positions. This then
results in electron energy eigenvalues and eigenfunctions, which depend on the
nuclear coordinates. Provided stationary electron solutions can be found for
all nucleon configurations, also the motion of these slow ones can be solved.
The energy of the electrons, as a function of the nuclear positions, now
constitutes the potential in which the nuclei move. Apart from this potential
contribution, the Schrddinger equation for the nuclei decouples from that for
the electrons, provided the influence of the nuclear kinetic energy operator
on the electron motion can be neglected [Hak 78].

In the spherical cavity approximation one calculates the quark and gluon
energies, given a fixed radius R, using the equation of motion and the linear

boundary condition. However, the procedure is now exact, since, at least in
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the MIT formulation, there 1s no kinetic energy term for the bags surface.
Instead of a surface equation of motion, one has the quadratic boundary
condition, which determines the motion of the bag surface i1n terms of the
motion of the fields inside. In this static case 1t determines the radius R

of the bag as the one for which the bag-energy i1s a minimum. This exact
classical solution i1s unsatisfactory from the quantum mechanical standpoint
because of the sharply determined R-value. In the rigorous, quantum mechanical
treatment the fields, then operators, defining R, will have fluctuations around
their energy eigenstates, and then also R will fluctuate: the boundary is fuzzy.
Using the Budapest formulation of the bagmodel [Gn 78], which includes surface
dynamics and thereby avoids nonlinear boundary conditions one can study the
quantum mechanical aspects and show, that, in the BO approximation, the
distribution for the radius peaks rather sharply around the classical value,
and also that the surface excitations can be sufficiently heavy, depending on
the smallness of the surface tension, to allow a study of the particle
excitations 1in case the surface 1s i1n its groundstate. The zeropoint oscillations
do contribute a little in addition to the classical energy. Thais calculation
may serve as an indication, that fixing the bag radius 1s a reasonable
approximation.

There have been several attempts to develop the quantum mechanics in the
presence of boundary conditions, in the context of the MIT bagmodel. A complete
solution 1n one space-one time dimension exists [Cho 74, Sh 75]. In three
space and one time dimension no explicit solutions exist. One approach, by
Johnson [Jo 76], yields a well defined formulation, but 1s even in an approximate
form still too complicated to be readily applicable. Another attempt, by
Rebbi [Re 75], studies small oscillations around the classical solutions. In
this approximation he 1s able to cast the constraint egurations in a manageable

form. In this treatment the spherical cavity approximation i1s of central
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1mportance, and several limitations to 1ts validity have been uncovered. Let
us now obtain the cavity eirgenmodes for the quarks and gluons separately.

1. Valence quarks [Chp 74]

The problem of solvingeqgs (6), (8), (20), (21) and (25) 1s now reduced

to solving the following equation inside a static sphere of radius R.

(y-3 + m) wa =0 r <R (5)
Using the fact that for a static sphere we have ¥ = (0,-r) eq (6) becomes
TY W = = R (6b)
ry v, =¥, r=
-2 Gy vr=28 r=R {11b)
or a a

We have exhibited the internal quantum number dependence by a label a. This
dependence includes the flavor quantum numbers. Although flavor symmetry turns
out to be broken, we will continue our discussion for the flavor symmetric
case, and introduce the flavor breaking at a later stage. All quark flavors
are taken to have the same mass. The solutions of eq (5) listed below constitute
a complete set of four spinor eigenstates, with the boundary condition that
they are regular at r = 0. These states can be labeled with the eigenvalues of
total angular momentum j and 1ts z-component ]z = m. For each combaination of

7 and m the quark can occur 1n two states, having opposite parity, which are
elgenstates of the Dirac operator K, with the eigenvalues k = + (3 + 1/2) for
the j = (& + 1/2) solution, and k = - (3 + 1/2) for the j = (R' ~ 1/2) one.
This reflects the two possibilities of combining the orbital angular momentum
% and the spin s (neither are good quantum numbers in this j-j coupling scheme)
to a total spin j. We will use the label n defined by n = k/{(3 + 1/2). Due to
cqg (6b), which has to be satisfied at r = R for every combination of j and n
separately, the momentum of the quarks p will take on discrete values, which

will be labeled by n: pnnj' The general solution to our problem therefore is
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a superposition of the above mentioned solutions.

by vty = Np ) A, nm (et (31)
n,m,Jj,m
Using the spinor harmonics
+ L 1/2 £+1/2 & - 1/2
of = ¢ / /2 &3 X /
Jm m, m m m m
1 72 1 2
and .
- g. + 1/2 + L - 172
é ——(—r)¢ = V2 vz b 1
Jm r Jm mom, m m, m,
1/2 >,
where Xm 1s the conventional two component Pauli spinor, the o's are the
appropriate Pauli (2x2)-spin matrices, and Yi(f) 1s the usual spherical
harmonic, we can write down the solutions for j, m and n:
( )
+
Jl(pn+]r) ¢jm
N —192+Jt
¢n+3m(x,t) = e (32a)
-1 p
n+j -
0 Jﬂ,+1(pn+jr) ¢]m
p +
n+)
. =
JQ+1(pn—jr) ¢)jm
> —1pg_ t
¥ (x,8) = e J (32b)
n-jm
1p
n-j +
0 + Jl(pn- r) ¢jm
pn—] H

0
The pnn] are the energies corresponding to the momenta Pnnj' according to
o 2 2

14 - P

a9 nng = u2, with u for the particle mass. The ji(pr) are the usual

spherical Bessel functions. With this choice of wavefunction the normalization

constants become, suppressing the p and po labeling on the right hand side:

f +

{2pOR(p0R - (L + 1)n) + pR}

av y 1] = =N (p ) = R 3. (pPR) .
J
bag nnjm nnjm nnj nnj L (p°R + uR)(poR ~ nuR)
Let us introduce xnnj = pnan' Because eqgs (32) are up to an overall sign
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invariant under the transformation x » - x, we can take the x's to be positive.

For our simple system, the spinor harmonics drop from eq (6b), and it reads

b, S
j, (x_ .) = — X . 33
]l( nn]) npgnj 1 o 31+1( nnJ) (33)
For (j,n) = (1/2,n) this can be reshaped into a simple trancendental equation
of the form
tg x = —_— (34)

0
1 -np R - uR

which gives us the energies of the eigenmodes. We note that eq (33) allows

both positive and negative roots for npOR. This means, that for each combination
of positive enerqy E and parity n, we have another one with negative energy - E
and parity (- n). This verifies that the theory allows for both fermion- and

antifermion-eigenmodes. A few eigenfrequencies xnnj have been listed in Table I.

nn 1+ 1- 2+ 2~
J
1/2 2.043 3.812 5.396 7.002
3/2 3.204 5.123 6.758
Table I: Quark eigenfrequencies xnnj for mQ = 0.
. 0 1 2 2.2,1/2 0
We define: == .+ } = - =E .>0
ert Pnnj R xnn] " P-n,-n.j nnj

Eg (32) then gives a quark spinor, in case pO > 0, or an antiquark spiner, if

p0 < 0. From eq (33) we find that the roots x will depend on the mass of the

particle and radius of the bag R through the product uR. Combining egqgs (32)

and (34) we can derive a special property of our wavefunctions:

Nnnj 3 0

I
9 3L faa g -2y 1 7 - 2
r i4n ; ae lpnnjm ¢nnjm§ T or { 2j5+1 E 11)nnjm wnnjmi B 2TrR3 oR pnnj (35)

which will prove to be guite useful in handling the quadratic boundary condition.



- 3 -

At this point we have solved the problem of obtaining the normal modes
of a massive spin 1/2 particle, confined to a spherical bag of radius R (egs
(5) and (6)). We now proceed by applying canonical quantization to the normal
mode amplitudes a and a*, which are the dynamical variables of the problem.
The radius 1s treated as a parameter. We can write down the hamiltonian in

terms of the classical solutions

H= [ avd = [ av 21$y0‘50¢+3} (36)
2
bag bag
* 1.0 0
= [ Y Y ) =
) Mg Mnrnrge 3 nIm a (afnfy'mt) 5 pp o+ Poygege) -

a,n,n,J,m

nllnv’]l,ml

o oavyt ety , (%,t)

bag nnjm n'n'y'm
We observe the following features-
The bag integral vanishes, unless j = j' and m = m' by virtue of the ortho-
normality of the spinor harmonics. Furthermore: when alson = -n' and n=-n',
Pgnj + p:|n,3, = 0. Because of eq (13): Bu ™ = 0, one has H't=t = H}t=t ’

which i1mplies, that H 1s time independent. The temporal dependence of eq (36?

1s of the form exp 1(pO - P0

nn3 n'n'J')t' This only vanishes for n=n', n =n',

and J = J'. We therefore have to impose the following condition on the normal

mode amplitudes:

*
) a, (n,n,3,m a_(n',n',3',m') =0 (37)

unless n=-n', n=-n'orn=n', n=n', to satisfy eq (13). Eq (36) now
becomes 1n terms of the 1independent dynamical variables aa(nq]m) and the

*
conjugate aa(nnjm)

* 0
H = y 2, (n,n,3,m a (n,n,3,m) P+ 5 B R
u,n,n,],m

We now pass over to the quantum theory by letting the normal mode amplitudes

become operators, interpreted according to:
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aa(n,n,j,m) = ba(n,n,J,m) for n > 0 (38)

d;(-n,-n,j,m) for n < 0

The action of these operators is such that baI0> da|0> = 0 for the no-
fermion state |O>, which still may contain gluons, and therefore need not

be the physical vacuum. At this poant

4n 3 ' + + o
H=-BR + y §(ba(nnjm)ba(nn3m) - da(n,-n,J,m)da(n,—n,J,m% Ennj

annjm

where the prime indicates that n > 0 1s taken. This quantity 1s clearly not
bounded from below, a problem well known for Dirac particle systems, which
1s resolved, by introducing anticommutation, instead of commutation relations,

for the particle operators
+ +
{b, (@,n,3,m b (n,n,3,m} = {d (n,n,3,m,d (n,n,3,m} =1 (39)

with our normalization of the wave functions, and all other combinations zero.

One has
H = E' {N {(n,n,j,m) + N_(n,-n,3,m) }E + E.. + éﬂ—B R3
o ALY N (5 I3 ). nnj OQ 3
a,n,Nn,J,Mm

+
1ntroducing the number operators Na = b;ba and NE = dada' which have only
eirgenvalues n = 0 and 1, by virtue of eq (39), characteristic for fermions.

The expectation value of H 1n a state |a> 1s denoted by <a}H[a> = EQ + E + E_»

0Q v
'
where EQ stands for the quark kinetic energy term (2 term) and Ev for the
volume energy: EV = %;-B R3. The zeropoint energy EOQ 1s defined by
E..=- ) (23+1)E . (40)
0Q nnja nnj

Unlike 1n e.g. QED, where it 1s an infinite constant one has to include this
zeropoint energy term, because 1t depends, through the energy-eigenvalues, on
the geometry of the bag, and therefore changes e.g. 1n going from a bag with

radius R, to one with radius R,. The fermions contribute negatively to E

1 2 0°

We will return to this finite volume effect below. The eigenstates of H are
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obtained by letting any combination of creation operators b: and d;, in
accordance with colorsinglet and statistics conditions, act on |0>. Of these
states, those are admitted to the physical Hilbertspace, which next to eq
(13), also satisfy eq (16)

n, ™ = %—a“(aw) -n"B=0 at r = R (16)

which 1s taken to be a condition on the matrix elements. Its effect 1s to
select those states which have a spherically symmetric energy density. Between

eigenstates of H one has, using eq (35):

iy
e Jm jm T
2B + anz (DR Ennj) > (Wa(nnjm) 1) =0 (41)
njm 2TR

where wa(nnjm) gives the weight, with which a quark of the specified quantum

numbers occurs in the eigenstate: Z Wa(nnjm) = 71, the number of constituents.
annjm
Only those states in which no angular dependence remains, can satisfy this

condition and are admitted to the spherical cavity eigenstate space. This
happens quite naturally for states with j = 1/2, which have an angle independent
scalar density aawa' Another example 1s provided by those states for which
Wa(nnjm) = wu(nnj), causing the summation to become an averaging over m, for
each contribution of n, n, and j separately. For these allowed states one has:

1 ]
2B+ — = (E_+E, ) =0 B (42a)
21rR2 3R Q 0Q

or alternatively

1
_"Li'é% 2%} B R + Epg * Y n(any) E_ (un%- =0 (42p)
2mR nnj nJ

where 7 denotes the number of quarks with energy Ennj' This 1s nothing, but

the statement that <H> be stationary with respect to small changes of the, in

§
this case one parameter, volume- E§-<H> = 0 [DeT 78], precisely the type of

variations considered in deriving eqs (10) and (25). The energy eigenvalues
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Ennj = EnnJ(uR) are monotonously decreasing functions of R. In the absence

of the terms EOQ and especially EV this does not yield a stable system. By
introducing the vacuum pressure B, the bag theory supplies a balance for

the outward fermion pressure. Equilibrium in some eigenstate 1s reached

0 for which g%- <H> = 0. Thas

when <H(R)> assumes 1ts minimum value at R
probably also has the consequence, that the energy of a bag state will not

be affected too much by the fuzziness of 1ts surface, caused by the zeropoint
osclllations of the fields inside.

An alternative way [Chp 74] 1s to apply eq (11b): - g% (@w) = 2B
already at the classical level. Chodos et al consider only the 3 :_?/2
solutions, but obtain essentially the same results, Because of 1ts technical
advantages, we will calculate the energy of a spherical bag system by minimizing
the hamiltonian eigenvalues w.r.t. R. In this way one can also include
perturbations i1n a transparant way [DeG 75].

Concerning the internal symmetry and more specific the color part of the
wave function the following can be remarked. There are essentially two ways
to construct a colorsinglet wavefunction using quarks. Denote the color part
of the quark wavefunction by Ql, 1+ € (1,2,3) and represent the antiquark color
wave function by él. The first combination 1s the all quark colorsinglet:

3 %19k 13k
Q = _V%r_Q Q"0 , where Eljk 1s completely antisymmetric in 1ts indices:

8

- _ . o5 = 13 4133
€403 = 1. The second one 1s the quark-antiquark colorsinglet: QQ jz?-Q Q7 ,

where 513 =1 for 1 = 3 and O otherwise. Typically a colorsinglet has the
form Qan where n and m are integers and n-m 1s an integer multiple of three.

It may be useful to i1llustrate the above described approach by a simplified
application. We will neglect the zeropoint energy and restrict ourselves to
massless nonstrange quarks. Consider a colorsinglet n quark state, in whach
all quarks occupy the 1s1/2 mode. Its energy 1s given by
E(R) = il-1LB R3 + 2 Minimizing E: 3 =0 = 47B R2 - zflilig

3 R *1+1/2° 3R 2

R we
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"Xyy1/2\H/4
find: R(n) = ——Z;E—— , which is a nice function of the particle number
operator, as well as E(n) = %—(4nB)1/4(nx1+1/2)3/4. Interpreted as such
[H,R] = 0, consistent with expectations. We can estimate B from equating E
for n = 3 to the average N-A mass
4 +
E(n) = B(3 = LML M) _ 1y 4g0 ey
1/4
or B = .121 GeV. The average mass for a nonstrange meson
2\3/4 . . . .
M= E(2) = 3 1.18 = .87 GeV is then determined. Experimentally one finds
M= ﬂill_i_é_ﬂiﬂl_= .61 GeV. This result may be acceptable for the p-meson,

4

it surely is not for the pion. The thus obtained results are a clear indication,
that the n-dependence of the radius is not what it should be. This can also be
seen from the fact that the theory predicts for a bag with six quarks with the

/4

quantum numbers of the deuteron a mass E(6) = (2)3 E(3) . This corresponds to
a binding energy of .3 to .4 GeV, which certainly has not been observed yet.
The only known N-N bound state, the deuteron, has a binding energy of about

2 MeV, indicating that E ~ n. That we nevertheless are on a good track can be

seen from considering
R(n) = - —————— = ——= 1.4 fm for the nucleon: n = 3

The size of the bag is large w.r.t. the nucleon compton wavelength. The
uncertainties in the nucleon energy, arizing from localizing it in a volume of
this size, i.e. the zeropoint motion of the centre of mass can be neglected

in first approximation. We can treat the hadron as an extended object and
refer justly to the energy of an n quark system as mass.

2. valence gluons [Ja 76, Jac 75]

The second possible type of excitation is the gluonic one. In the limit
of negligible coupling constant, we now have to solve eq (22), (24) and (25)

for each color a separately, in the static spherical cavity approximation
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3 G, = r < R (43)
u oa
- >
r-Ea =0 (44a)
r =R
- >
rxH =0 (44b)
a
12 _ g, 132 r =R (45)
2 Ta 2 a

Since for g = 0 also the dual tensor field is divergenceless:

v 0o vp _ VP 0
€luvpa C, =9 fabc € vpo {Gb g fbde Ay Ae} A, 0

we obtain the 'homogeneous Maxwell' equations:

VE =0 (46a)
a
VxH =3 E (46b)
a t a
V-E_ =0 (46¢)
a
VxE =-9_ H (46d)
a t a
Both Ea and ﬁa are transverse fields. The solutions of eqs (46) can be
divided into two types (we suppress the trivial common time dependent factor
e-lmt and the color label a).
1. Magnetic (m) or transverse electric (TE) multipole modes
These solutions from the vector potential
(m) > _ . . 2
Alm (r) =1 Jﬁ(kr) le(9,¢) (47)

>

. . > _ L 2
cexpressed in terms of the vector harmonics le(9,¢) = 7 AD) Ym (0,9) where
> -> > >
L is the angular momentum operator L = -— i r x V, and the spherical Bessel
functions jl(kr), which are regular for kr -+ 0. The potential is labeled
with the eigenvalues £ and m of ZZ and Lz’ which coincide with the eigenvalues

5>
3 and u of the total spin operator J2 and its z component Jz. It has unnatural

parity P = (—)Q+1. The associated fields are:
>(m) > _ . . R -
Ezm (r) =1k Jl(kr) i xlm(r) (48a)
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> (m) > _ 2 > > -
B (r) =1V {jl(kr) le(r)} , satisfying (48b)
7 +("‘)G) = MY 3, (k1) yi(f)
E-E("" ) =0
2m

2. Electric (e) or transverse magnetic (TM) multipole modes
In this case the vector potential is:

%
>(e) » _ 1 > > -
A (x) =30 Vx{y (kr) le(r)] (49)

!

and again 1s labeled by the eigenvalues j = £ and ¢ = m, but now 1t has

natural parity P = (—)l. The fields become:

+(e) > _ 12 > -
(r) =17V x {Jl(kr) xlm(r)} (50a)
>(e) » _ 2 > -
Hlm (r) = -1k Jl(kr) 1 le(r) ' and satisfy (50b)
i-*(e)(¥) N A xy Fuy) 3, o) yi(f)
i‘_"’(e) (‘r’) =0

These two sets of multipole fields together forma complete set of trans-

verse vector solutions to eqs (46), which are regular at the origin. We have:

>(m) _ 2(e) _ 2(e)

Hm =2 KR = By D
e _ >(m) _ ->(m)

lm = 1 k Alm = lm , assumng the same k eigenvalue.

To these fields we can apply the boundary conditions of eqs (44). For the

magnetic multipole field we find:

;EM G <o
m - R
- >(m) > i ] 2> - r=
r (r) = - (r ™ + 1) jz(kr) 1 xlm(r) .

Therefore the energy eigenvalues are found to be independent of m from the

condition:

3 3
(r 3t 1) 3, kr) =0 % {p ]E(D)} for p = kr = kR . (52a)
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Equivalently: (2+1) jl—l(kR) (kR) .

=1 j£+1

For the electric multipoles one has:

2+1
-~ >{e) > _j_ i A
r-Elm (r) = - jR(kr) VL (2+1) Ylm(r) =0 B
-x—>(e)—>_ 'k'k)'1~x+ SR at ¥ = R
r Hlm (r) = -1 jl( r) i’ r le(r) =

This condition again has to be satisfied by the radial part of the wave-

function and the energy roots are given by
j (kR) =0 .

This implies that the magnetic field will vanish at the boundary. The
classical magnetic field does not exert any pressure on the bag surface,
cf. eq (25)%

excitation

We also note that Gauss' law is satisfied by each gluon

separately. This is a consequence of setting g = 0. Going to lowest order in

g resolves this problem. The valence gluons then will act as source, and the

resulting electric field ~ g no longer vanishes trivially at the boundary,

thereby restricting the allowed color irreps to only the singlet.
We list a number of roots in Table II. They are labeled by the radial

. We denote: x =X and

quantum number n, % and i € {e,m}: X 0 ot

nml

nf nel
a) n | 1 2 b) n 1 2
2 ! L PN
1 4.493 7.725 2.744 6.117
2 5.763 9.095 3.870 7.443
3 6.988 10.417 4.973 8.722
Table II: Gluon eigenfrequencies.
2
a) EBigenfrequencies Yo of the TM modes with J = £ and P = (-) .
b) Eigenfrequencies X 0 of the TE modes with J = 2 and P = (—)SL+1
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From the definition of the vector harmonics we conclude that no monopole
solution exists for the fields with w # 0. All other positive J values are
allowed. The only spherically symmetric static potential satisfying (44a)
is a constant one, which can be taken to be zero.

We can write:

. imast
A (f,t) = ) N(ig) K; (r) e *¥nti

a* (nim) (53)
a . a
niflm

m
where we have adhered an extra label n to the potential to make explicit its
energy dependence, as well as a label o to denote its color degree of freedom.

The vector potentials satisfy the following orthogonality relations:

! an K:éz). "r‘l‘,“;,m, = 8,,0 8, 3, (k) 3 0cn) (54a)
faa & @39 =6 s { ST 3y (D) 3, 000+

+ ;Z:ﬂ 3y k) jl_l(k'r)} (54b)
[ an K:éi)- Zé?i,m, =0 (54c)

The factors N(nif) are normalization constants chosen to be (x > 0):

-1/2

o2 2 .
N(ni2) = {R" x [J (x) (x) 3, (01} .

T Jon
We again find a simple relation between the energy and the wavefunction for

the electric and magnetic fields at the boundary:

1 >i¥  >j >i¥ >i* > >i* i
4w f a4 (Enlm'Enlm - Hnlm Hnlm) To20+1 E Enlm Enlm HnJlm nlm)
X .
= -Ei% N2 (nif) (55)
4R

Taking into account the fact, that by eq (52) we have both positive and

negative energy solutions, with the same modulus, and the fact that the
>

vector potential is a real function of r and t, we find, that

(m)

*
a (ngm) = - (-)m a(m)
a

(-n,2%,-m) n>0 (56)
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and a;e)*(nlm) = (—)m aée)(—n,l,—m) n>0 (56)

We therefore can take either the a(n)'s for all n, or both a(n) and a*(n),
with n > 0, as independqnt dynamical variables. Quantization of the gluonic
degrees of freedom again proceeds in a canonical way, starting from the
hamiltonian

#2) + 4 5 g3 (57)

1 2
==
H=5 [ av {E" + 3

bag
which becomes time independent if we impose
. .
z a(l) (nam) a(l )
G @ a

(n'2m) =0 unless n=n'andi=i" (58)

and reduces to the following simple form, due to our choice of normalization,

in terms of the normal mode amplitudes:

*nig _i* i 4 _ 3
H= ) —== a_ (nfm) a (nfm) + — B R . (59)
. 2R [+ o 3
nif{ma
If we now define:

i _ i

cu(nlm) = aa(nlm)
n>0 (60)

+1 i*
Cu (nim) = a, (nim)

and then interpret the c's as operators, satisfying the commutation relations:
i i+
[ca(nlm), cy (ntm)] =1 (61)

and all other combinations are zero, such that c|0'> = 0, where |0'> is a
no-gluon state, we obtain a hermitian vector gluonfield and the hamilton
operator reads

X
nif
I R

w?mM)imm)+§+5laﬁ ) (62)

H = 3

anfmi

The gluons contribute positively to the reropoint energy according to
' *nit
Eopg = 4 Z (20+1) —— . (63)
nif

From the eigenstates ii> of H we admit only those to the spherical cavity
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spectrum, between which we have (eq (28b))
Hv
<t[n T |1> =0 on the surface .
Substituting the energy momentum tensor this becomes
1
<1]§ 5 (EZ - ﬁz) + B }|1> =0 r =R .

2 2
This implies, that <(E -H )> should not contain any angle dependency and
then, again, now by virtue of eq (55), we find, that the energy of the
spherical cavity state |1> 1s found by miniruzing its hamltonian expectation

value w.r.t. R:

g%- <1|H|1> =0 .

Eq (64) can only be satisfied i1f the gluons, occupying some energy level,
yield a spherically symmetric distribution by themselves. This 1s a severe
restriction on the number of gluon states. It only allows J = 0 states.

There are basically three different ways, in which we can construct a
gluon colorsinglet. First we have a two-gluon system. If we denote the color
part of the gluon wave function by Ga, this singlet 1s described by

8
G2 = z 1%;- c? Gb , a,b € {1,...,8}. Next we have two three-gluon

a,b 3 fabc a b ¢
combinations: one with color wave function Gf = A G G G , which is

completely antisymmetric in all color indices, and one with color wave
3/3_‘ a b ¢
function Gd =% dabc G G G, the completely symmetric three color octet
P+
singlet. The lightest glueball has a G2 configuration, J = 0 . With the

(64)

baryon-meson value for B, this state has, again omitting the zeropoint energy,

a mass of M = 1.0 GeV, for a radius of R = 1.5 fm. This value 1s certainly
comparable with what we, in the same approximation, find for the mesons and
baryons and seems very promising.

Anticipating the results of section III, we can attempt a more precise

estimate and calculate the glueball masses, including the zeropoint energy.
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The bag energy for a state containing N noninteracting valence gluons is

given by

a

_dn
3

H

Z
3 0 i
- — 4 —
B R = zniR

where n, counts the number of gluons of type i present, 5 n,

1/4

B = 0.1455 GeV and Z

use 0

N. We
1

will

1.842. Taking the bose statistics of the

gluons i1nto account, we can construct Table III, where the lightest all-glue

states are listed. Only those with J = 0 have a spherically symmetric energy

density and satisfy the quadratic boundary condition. There turn out to be

quite an amount of lowlying vacuumlike states. The lightest photon-like state

only appears at M = 1.7 GeV. The lightest type II exotic meson-like state

already appears at 1.180 GeVv [Ro 77, Ja 76].

R(GeV 1)

Content color- JPc M(GeV)
configurations
+
e G2 o't 2t 0.960
TETE' G 17, 27, a7 1.180
—+ -+ -
TETM G o, 17, 27t 1.290
++_++ _+ + +
TE" 2 &? o, 1T, 2T, 3T, 4t 13m0
TE'TM 2 BN A M 1.490
+
™ G2 o*t, 2t 1.600
! + ++
3 ) Gg o', 2
TE ) 3 f— 4e 1.470
\ Gd 1 , 3
_+ - -
, ‘ Gg 17F, 27, 37
TE TE' < 3 o __ o 1.660
. Gd o ,t1 ,2 ,2 ,3 ,4
T T Re 4 L o
Notation: TE J =1 glue mode with eigenfrequency X, = 2.744
TE': JPC = 27 glue mode with eigenfrequency Xy = 3.870
™ JPC =1 glue mode with eigenfrequency Yy = 4.493
Table III: Glueball states

5.04

5.40

5.80

6.04
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We can also consider states containing both valence quarks and gluons.
They are obtained by taking the direct product of pure quark and pure gluon
states, which have opposite total color charge, in such a way that a color-
singlet results. Because the quarks and gluons have different energy eigen-—
values, saturation of the quadratic boundary condition can only be accomplished,
1f the energy density 1s angle independent for each occupied energy mode
separately. The simplest configuration, naively meeting these requirements,
1s a JP =0 QéG—state. The quark-antiquark pair 1s a color octet system,

P -
with J 1 (both fermions 1in a 1s1/2 state), and the color octet gluon

P +
occupies a J = 1 mode. Its mass 1s estimated to be 1.3 Gev [Ba 77, HoM 78].

- Excited Bag Configurations -

A large amount of care 1s needed in studying configurations, containing
e.g. a quark (or a gluon) which does not have a spherically symmetric
energy distribution by i1tself. DeGrana and Jaffe [DeG 76] have studied mesons
and baryons in which one quark 1s excited to a n?j = 1pl1/2 state and the
remainder 1s 1n the 1s1/2 quark ground state. The resulting spectrum contains
JP = %-- and %-- baryons and O+ and 1+ mesons. There are no free parameters.
They find a mass spectrum, which, as a whole, 1s too light compared with what
1s observed. This statement is independent of the improvements, which will be
discussed i1n section ITI. More specifically, in the baryon sector, they find
that the states, in the usual SU(6,FS) ® 0(3) terminology [Ko 69] (section 1IV),
generally are mixtures of corresponding members of a [70] L = 1 and a there-
with degenerate [56] L = 1. In nonrelativistic potential models e.g. the
harmonic oscillator model [Gr 64, Da 76], relying on twobody forces to

generate the binding, this [56] L. = 1 1s an artefact of describing the two

particle dynamics by a nailed down potential, and represents a translation
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mode of the whole system, not a true particle state [Ka 68]. The [56] L =1
multiplet does occur in the bagmodel, since 1t is a symmetric excitation of
all quark relative to the bag, which here plays the role of 'external object'.
It 1s a typical manybody feature of the model, not shared with nonrelativistic
systems. Of course, next to these excitations, also translation modes will be
present in the bagmodel, and interfere with the true bag states in the clearly
not translationally invariant static cavity formulation. The light mass of

the L = 1 multiplets can be understood as a signal of this phenomenon. Closer
consideration of the states corresponding to a (151/2)2(191/2) configuration
shows that these do not replenish the [56)] L = 1 and the [70] L = 1 multiplets.
Note that here we are comparing the content of a special j-J] coupling scheme
with that of a more familiar LS one (section IV). The missing states are
precisely those, which can be supplied by a (151/2)2(1p3/2) configuration.
This 1p3/2 mode has an excitation energy which 1s in between that of the

1s1/2 and the 1p1/2 one (2.0 < 3.2 < 3.8 for the nonstrange massless quark
roots), and 1s cheaper to occupy than the 1pl/2 one. However, a quark 1n a
1p3/2 mode does not have a spherically symmetric pressure and therefore cannot
locally satisfy the nonlinear boundary condition at the bag surface. A proper
description of the L = 1 baryon spectrum should take also the 1p3/2 modes

i1nto account. However, putting a (151/2)2(1p3/2) system 1n a static spherical
bag, one compels the center of mass to move inside the bag. The state,
obtained this way, also contains a translation mode part and 1s not a true
bag excitation. Rebbi [Re 75] has studied the situation in which the bag
surface 1s allowed to perform small oscillations around a spherical
equilibrium shape. These oscillations can be described by an effective
hamiltonian, the eigenstates of which are the correct excitations. This

approach becomes exact 1f the system contains a mode, say the 1s1/2 mode,
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which 1s heavily populated. In practice n = 2 1s taken to be large enough.
This approach 1s sufficient to treat the translational degrees of freedom
correctly. The different partial waves are found to decouple. Attention is
focussed on the £ = 1 sector. Rebbi then finds, that there 1s indeed a
zerofrequency eigenmode which corresponds to a uniform translation. It

1s shown to be a [56] L = 1 mode, built from (151/2)2(n£]) configurations,
with the (nfj) almost, in the approximation in fact completely, exclusively
1p1/2 and 1p3/2. Some other, bag-, eigenfrequencies are found to be pushed
up slightly. Thus one finds, that through the coupling with nonspherical
modes the eigenvalue of the 1pl1/2 mode 1s changed to a larger one. Application
of these approximate results to the baryon spectrum shows, that there 1is
quite some i1mprovement. The [70] L = 1 becomes a little heavier, and the

[56] L = 1, now orthogonal to the translation mode, has become quite a bit
heavier, which is much more in accord with experiment, though still some
discrepancies remain [DeG 76]. A simlar treatment of the baryonic radial
excitations yields, that coupling of the modes by allowing the bag-surface
to undergo radial fluctuations [DeG 78], effectively lowers the mass for the
lightest excitation, rndicating that also the 2s1/2 eigenfrequency can not
be reliably estimated in the static cavity approximation. Effectively only
the (1s1/2) quark modes seem to be treated properly. The situation looks
worse for the Qé mesons [DeG 76]. There are never heavily populated eigenmodes
in this system and thus even Rebbi's approach fails. However, considerations,
similar to the ones given above, can be seen to apply. In SU(6,F5) ® 0O(3)
terms, groundstate QQ mesons are members of a [36] L = O muitiplet. Upon
receiving one quantum of orbital angular momentum, they become members of
a36]L=1 multiplet. Again one needs to excite particles to both 1pl1/2

and 1p3/2 modes, i1n the spherical cavity description, to be able to construct
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all the {36] L = 1 states. Because of the nonspherical pressure of the particle
1n the 1p3/2 mode also here the translation modes will have to be projected
out of the meson wavefunction. Thais will result in a (different) shift for

the eigenvalues of the 1pl1/2 and 1p3/2 modes and again no reliable estimate

of the mass 1s possible. A way to circumvent these problems is given in
Chapter 4. Finally, considering the gluon modes, no solution exists which
exerts a spherically symmetric pressure by i1tself. Therefore, one should

beware of taking the glueball estimates too seriously.

It appears, that the static cavity approximation 1is only reliable for
those hadrons, in which all quarks are in the lowest, the 1s1/2 eigenmode,
which motivated 1t i1n the first place. But even here further restrictions
have to be made, 1f the number of quarks present becomes large (n > 3, see
Chapter 3). Still, qualitatively, it gives a clear indication of what kind

of unusual states can be expected to exist and have low mass.

III. Spherical cavity approximation 2 Further refinements

In section II, we found that the zeroth order treatment of baryons and
mesons, consisting of 1s1/2 quarks, yielded a spectrum with large degeneracies
(p - m, N - A), quite sizeable bags and a wrong dependence on the number of
quarks for the radius R and the energy E. In this section we want to examine
whether and what i1mprovements can be realized, by considering the effects on
the particle mass, including a.o. one gluon exchange and the zeropoint energy.
In this section the fermions are restricted to occupy only the lowest energy
eigenmode.

1. Zeropoint energy [DeG 75, Jo 75, BH 76]

From sectionII 1 we know, that the quarks contribute a term EOQ = - %—5 E
(eq (40)) and fromsection II 2, that the gluons contribute a term Eyg = % ) E'

(eq (63)) to the zeropoint energy. Both terms depend on the geometry of the
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bag, through the energy eigenvalues, and therefore will change, when the bag

volume changes (Casimir effect). They therefore have to be calculated

explicitly. Since EO

_ ~E/Q
e.g. EO > EO(Q) = z Ee

a function of the cut off parameter Q. The only shape cavity, that, until
now, has allowed explicit analytical calculation, for massless particles, 1s

the slab of thickness L. Using bag type boundary conditions, the energy here

>2 nn
typically has the form E = {kT + (ET

T L

E =-{K2 +(i2illglﬁ>2g1/2 for the Dirac field. To evaluate the contribution
of the transverse degrees of freedom (v KT)' one introduces a transverse cut
off (the twodimensional box, a square with area A), sums the now discrete
transverse eigenfrequencies and subsequently lets A > =, One thus obtains the
zeropoint energy per unit area. Just like 1n the three dimensional,
theoretic case without confinement, this part does not contain any reference
to the geometry employed in 1ts evaluation. The longitudinal contribution

clearly does, because of the finite value of L involved. The resulting zero-

point energies are (QL >> 1).

E =sz4§z-"21
0 112 720 L4
4 6V 7 n2 \
EO =-Q 2 " 272 & for the spinor field,

where V = AL.
The only divergent term 1s 1in both cases the quartic one, which can be

absorbed as a renormalization in the vacuum pressure constant:

4

B =B + (B-3 - 3+6n) & , which we rename B again. This feature suggests,

ren 2
m

1s a davergent quantity, one can introduce a cut off,

and then try to isolate the divergent parts as

)2;1/2 for the vector fields and

for the vector faield

(65)

(66)

that B 1s an uncomputable parameter in the theory, which has to be fitted from

the data. Here n i1s the total number of flavors, the gluons come 1n eight

colors and the fermions in three. It can be shown quite general, that such
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a term arises, regardless of the shape of the volume considered and the
boundary condition imposed [Ba 70]. In conventional field theory one does

away with it by introducing a cut off dependent counterterm in the Lagrangian,
which cancels the divergence exactly. In the bag theory a finite renormalized
term remains. The second term is finite and cut off independent and contributes
to the physical hadron mass. From the slab we find:

2

3 0
- — . 67
R (67)

4n
EV+E0—‘3—BR

4 3 .
To estimate the order of magnitude of ZO, we set V = 7} R* and L = R in the

expressions for E. and find Z, = 0.05742 (8 + %wB-n) = 1.36 for n = 3. The

0 0
pressure of scalar fields would, apart from the above described terms also

have given a cubic term, gencrating a surface tension
Q = - = - 555 for the scalar field . (68)

The zeropoint energy of the scalar field can be shown to be equal to that

of the (TM) vectorfield. In the gluoncase, also the opposite parity TE modes
are present and cancel the surface term. A similar phenomenon occurs for the
guarkfields. As has been shown by Bender and Hays, these results are also
valid in the case of a static spherical cavity. A bag theory without surface
tension remains so, as far as the zeropoint energy is concerned. Apart from
these nice features, Bender and Hays also showed, that, next to the quartic
divergence a quadratic one v R 92 and possibly weaker ones occur. These terms
are rather sensitive to the nature of the boundary. They have no counterpart
in the original theory, they can be taken to renormalize and constitute a
severe problem. The method Bender and Hays used to obtain the divergencies,
does not make any reference to the eigenvalues of the energy. It only takes
the linear boundary condition into account, i.c. that of the static sphere.

Therefore, the quadratic divergence may be seen to disappear in the proper
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quantum mechanical treatment allowing for more general shapes, variable in
time and space although this by no means 1is certain.

We will parametrize the zeropoint energy as given in eq (67) and include
no more geometry dependent terms, introducing just as much free parameters.

In princaiple Z0 may be a function of the quark masses, Z_ = ZO(uR) and there-

0

fore also be R-dependent. Since Z, has not yet been calculated for the static

0
sphere, we will have to fit 1t and therefore take i1t to be a constant. This
way we will, at the same time, account for other contributions of the same
form, such as the correction, due to the motion of the centre of mass of the
quarks 1nside the static sphere, which also yields a similar negative term
[Wo 78], as represent the averaged effect of not yet included terms with a
different R-dependence. Its validity is therefore limted to the region where
1t 1s fitted. R~ 1 fm.

The i1mpact of 2. will be larger the smaller the systems are. Since 1t

0
has the dimension of a kinetic energy it will effectively reduce the
corresponding term. For nonstrange mesons this reduction amounts to almost

50 %, for nonstrange baryons it 1s less, =~ 30 %, Therefore EO w1ll contribute
to the separation of the meson from the baryon masses. The BV and ZO/R

terms are sometimes called geometracal.

2. One-gluon exchange [DeG 75]

To 1li1ft the spindegeneracies encountered an section II one can allow the
color coupling constant g to become nonzero and study the effect of the
resulting quark gluon coupling on the particle mass. This will add one more
parameter to the theory: g or equivalently ac = gz/4n. We assume that ac 1s
a constant, that does not depend on e.g. the mass of the particles. We will
restrict our attention to hadrons, consisting exclusively of 1s1/2 quarks.

The quarks generate a color current ]:, which acts as a source for the gluon
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field A:. The color interaction term in the hamilton density has the usual

form j{ = - Ja(x) Au(x). One can have, to lowest order in a two types
int n a ’ c’

of i1nteraction. A quark can exchange a gluon with another quark. This

possibility 1s depicted in diagram la. Secondly, a quark can interact with

1tself. This 1s shown 1n graph 1b. Solid lines represent the (anti)quarks,

wavy lines the gluons.

la 1b

Fi1g. 1: One gluon exchange graphs

The diagrams are enclosed 1n a circle to stress the fact that they have to

be evaluated for particles confined to the bag. This of course has 1ts effect
on the propagators involved. In prainciple, these can be constructed from the
quark and gluon solutions, obtained in section II. To proceed rigorously, one
should 1n the present case evaluate diagrams la and lb, putting the initial
and final state quarks in the 1s1/2 mode. This 1s readily done for the mutual
quark i1nteraction graph la. Here the current at the vertex is time i1ndependent
and one can calculate the color electric and magnetic fields using the static
Maxwell equations. The situation 1s rather more complicated for the selfenergy

graph 1b. In QED 1t 1s zero for a massless charged fermwon. A calculation of
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the electromagnetic self energy for a confined massless quark [ch 74) shows
that one obtains a finite value 6E = El—;ﬁ-(a 1s the fine structure constant)
where c for more than 80 % 1s given by that part of 1b in which the inter-
mediate quark 1s also in the 1s1/2 state. It 1s not known, what happens for
massive confined quarks. In QED the contribution of lb for a free massive
charged fermion 1s infinite and taken to renormalize the massparameter. When
the same fermion becomes bound, 1ts selfenergy undergoes a finite (Lamb)
shi1ft, depending on the orbit 1t occupies. For a fermon confined to a sphere
the energy eigenvalues will depend on the radius R, and differ from hadron
to hadron. Therefore also the selfenergy will vary in magnitude between the
hadrons. It 1s not clear, what changes, when the free photon 1s replaced by
an, in first approximation abelian, confined gluon.

The selfenergy term summed over all quarks 1 present, and over all

a

intermediate qguark states j, looks like §E = 75 z gJ (mlR,mJR) for both
chromo-electric and chromo-magnetic contrlbutlon::Jand has the same structure

as the quark energy term E.. The fact, that i1ts inclusion in the hamltonian,

Q

affects all parameters, instead of just mu, ms and 2 1ndicates that our

0’
set of parameters 1s more strongly correlated than naively i1s expected.
Compare fit C from Table IV with fits A and B.

The color electrostatic piece exactly cancels the corresponding part of
diagram la, provided the hadron consists of equal mass quarks (e.g. N, 2, w)
and within 4 MeV when both strange and nonstrange quarks are present (K*, L,
Z) . This 1s a consequence of the fact that the hadrons are colorsinglet states.
One 1s compelled to take either both, or neither of these two contributions
into account, since 1n both cases the emerging electrostatic fields do not

satisfy the linear boundary condition by themselves (see below). One may

speculate, that the colorelectrostatic part of the selfenergy which contains
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the low Aq part of this interaction, 1s already represented by the geometrical
terms, which provide a natural cut off for the long range phenomena. This
ralses the question, whether including other parts of 1b may not imply
recounting effects already represented. Instead of attempting a, through

the uncertainties in the energy eigenvalues, unreliable calculation of the
selfenergy, we will i1nclude only the color electrostatic term of graph 1b,

1n our hamltonian, which i1s almost equivalent to leaving out the corresponding
part of la, and omt the color magnetostatic contribution. Although not quite
consistent, this latter choice 1s motivated by the fact that taking the bag
to be a sphere, 1s a better approximation the lighter the quarks are. A
massless quark moves with the speed of light, and 1s not preceded by 1its
gluon field. The pressure on the boundary therefore i1s provided by the quarks
with only a relatively small contribution of the gluons. For a 1s1/2 mode
quark this pressure therefore will be mainly spherical! Small excursions of
one quark away from the others, disturb this spherical symmetry and the

local pressure balance. They therefore are opposed by the isotropic vacuum
pressure, which restores the original shape. Therefore the most favorable
geometry for a hadron containing such quarks 1s a sphere. When the quarks

are very heavy, their motion 1s non-relativistic and the gluon fields around
them rearrange themselves to the instantaneous position of the quarks. The
latter do not come near the boundary and the vacuum pressure 1s mainly
balanced by that of the gluon fields, which do not have a spherical symmetry
[GL 78, Hak 78, Jo 78]). Consider a hadron consisting of a Qé pair, which
1nitially has the shape of a sphere. The quark pressure 1s not very

important now for determining the shape of the bag and the quarks are even
stimulated to move away from one another (1.e. to occupy dislocalized

orbitals). The bag becomes ellipsoidal, a shape more favored by the glue.
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This will tend to concentrate in between the oppositely charged quarks,
where 1t becomes increasingly compressed. At one point a stable configuration
1s reached in which the gluons balance the vacuum pressure locally and keep
the quarks from moving further apart. Such a situation 1s better described
in a non-relativistic potential model. This way one can understand the
failure of the attempts to reproduce the spectrum of the charmed mesons,
and charmonium using the spherical cavity approximation. The strategy of the
MIT group has been to set mn = 0 from the beginning and adjust the other
parameters, 1n order to reproduce the light hadron mass spectrum. This
choice has been corrobated by subsequent applications of the model to
various areas of high energy physics.

We shall now calculate the one gluon exchange contribution. The inter-
action energy of the field A:(x), generated by quark 1, and the current JE(X),

E
generated by quark k, has the form Ji =~ d3x ]u(x) Al(x), which for
int b;g k H

the static quark currents can be rewritten as

“fst _ [ 3 >
S e = 4 dx {ElEk HlHk} ' (68)
bag

-
where, of course, 1 and k may label the same quark. The field Ea and ﬁa

have to satisfy the linear boundary conditions:

PE =0 (44a)

N for r = R, and all colors a .
rxH =0 (44b)

a
> -a a

For the color magnetic field we have to solve V x Hl =3, (69a)

<> >3 r < R
V-Hl =0 (69b)

for each quark 1, which has a current jf at the vertex, that in terms of

spin and color operators reads:

333 = 19p. DT F, = = (gF) £ x 0 e (70)
3= lgwl Y lwl T 4n (9 PR OL r3
Here u'(ml,r) 1s the derivative of the magnetic moment: u'(ml,r) = é% u(ml,Z)L
=r
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(eq (92)). This current 1s the source for a transverse vectorpotential

> >
v . (r x Gl) pm o) | uim ,R) fR u'(m ,r') }
gF - _

A (r) = + + dr' (71)
1 4w

4
r3 2 R3 r r,3

The corresponding color magnetic field is:

a
gF p(m ,x) u(m ,R) R uim ,r')
»a > 1 - > . > 1 > 1 . 1
H.‘L -7 ( 47 ) {[3):(01':) - lj:L] 3 * c:|. (—:{3_. + 2 j dr 3 )} (72)

r r r'

[0
I

- >a >
One has r x H:(r) = 0 at the boundary. The mutual magnetostatic interaction
energy associated with this field 1s

8

E=--7 1 [ & €®at®

1 J
a=1 1>3 bag

3a wim ,R) w(m_,R)
- — ) (—FU) (——Lpo) -1
R R 11 R 13 1)

a,1>)

(73)

This expression has the appearance of an interaction between two effective

color magnetic dipole moments, which for a colored quark could be defined as

->a a >
= 74
W u(ml,R) g Fl o, (74)

1n analogy with the electromagnetic case (see section IV 1). The overlap or

smearing integral 1s given by

2 2 3
Il] =1+ 2 zlzJ {— (xi sin xl)(xJ sin xJ) - Z—ylyJ +

X X

L2 [2x S1(2x ) + 2x_S1(2x ) - (X +x_)S1(2x +2x ) - (75)
4 1 1 J J 1 J 1 ]

(x. -%x_)S1(2x -2x )]2
1] 1 b )

rn terms of xl, the energy root for the 1s1/2 mode quark with mass ml, and

z2 =X sin x_ - 2-y r withy = X - sin x cos x . We denote the
1 1 1 2 71 x 1 1 1 1
sine integral by Si(x) = f dt Ei%_E . Thus, IlJ = I(mlR,mJR) st1ll depends
0
on the radius R, through the quark masses. One has I(0,0) = 1.442 and a slow

monotonous limited increase for mR + «, which is too small to compensate for

the decreasing behavior of the remaining R dependence. Writing
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a

[

E:___

M R Z
1>3,a

a> a>

(Fo ){(F_o_ ) M(m R,m_R) P (76)
11 3] 1 ]

one has M(0,0) > M(0O,mR) > M(mR,mR) (0.177 > 0.142 > 0.059 for mR = 1.4).

The chromomagnetic splitting tends to decrease with increasing values of mR.

EM 1s spindependent. It 1s the only term comxng from graphs 1la and 1b, which

has this property.

For the color electric field the Maxwell equations read

> »>a
Vv x El =0 (77a)
N ' r < R
a 1 .a
v . = n Fl (77b)
in terms of
2
=15 D A0 = TA1/2 2 rnenry 4 52 (or) (ERemR) ) (78)
pl 1 Y 1 (ER+mR) JO p J1 p
r
One has p(ml,r) = f dr’ r'2 p'(r') and p(ml,R) = 1. Thas yields:
0
>a > b4
E2r) = —*= (g FY) o(m ,1) , (79)
1 3 1 1
4nr

a chromo—electric field, which does not satisfy the linear boundary condition:
- 9
r-ﬁi(;) = ;
4nR
result does not depend on the flavor of the quark, but only on 1its color. For

# 0 at r = R as a consequence of Gauss' law. We note that thas

a color singlet hadron |a> one has
F3
1

£E |a> = 1. E: |a> = § la> =0 .
1

1 4mR

When we want to calculate the chromo-electric ainteraction energy we therefore
have to take the whole field into account, and cannot suffice with considering
only the mutual color electric interaction energy. For a hadron containing
only equal mass quarks, the total field energy 1s proportional to the total

color charge and therefore vanishes also locally. If quarks with different

masses are present, the i1nteraction energy no longer 1is zero:



- 61 -

8 a 8
Bp=g ) 1 [ wBEOHBEO-5751 [ f (80)
a=1 1,3 bag J a=1 1,3 1
R
We define J = J(m R,m R) = R f dr p (m,r)p (m_r). One has J(0,0) = 0.278,
1) 1 h] 0‘ r2 Y b

J(0,mR) = 0.325 and J(mR,mR) = 0.369 for mR = 1.4, 1ndicating a slow increase
as a function of mR. EE can be 1nterpreted as the 1nteraction between two
charge densities. It consists of the sum of the positive self interaction and
the negative, almost or fully equal mutual interactions, and is never larger
than 5 MeV for the below considered hadrons.

The one gluon exchange contributions are included as a perturbation
HG = EM + EE 1n the hamiltonian H = HO + HG.

Including all these refinements the hamiltonian now contains the

following terms:

= + + + + E 81
HEVEOEQEME ’ (81)

of which the numerically insignificant term EE w1ll be neglected. The mass
of a specific hadron again 1is given by the minimum, the expectation value
of the hamiltonian assumes 1n that hadron state, treating the bag radius as
the variational parameter. To calculate 1t, we need to know the flavor, spin
and color properties of the hadron wavefunction. In this section we will
restrict ourselves to Qé meson and Q3 baryon states. For these hadrons the
color and flavor spin parts of the wavefunction can be treated separately.
Giving nonstrange and strange quarks a different mass, the flavor

symmetry of H will be broken through the terms E , E . and E_. EO, by

Q' ™M E

assumption, does not. EQ 1s diagonal 1n the numbers of nonstrange and strange

quarks (Nn and Ns' resp.): EQ = NnEn(R) + NSES(R), and dominates the flavor

breaking. It causes e.g. the w and ¢ mesons to be "1deally mxed" combinations
of nonstrange and strange quarks respectively. The eigenstates of the

unperturbed hamiltonian are the eigenstates of E This result i1s reinforced

o
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by the E term, which, however, does not have the same simple linear

M
dependence on Ns and Nn' EE gives a small contribution when both Nn and Ns
are unequal to zero.

To determine the color dependence of HG' we make use of the colorsinglet

a a =
nature of our states: Q |1> =g E Fl |1> = 0. For a QQ colorsinglet one
1

has (FS + FS) |1,00> = 0 , and therefore also

a a a a = a 2 a_a a 2 —
(F. + FX) (F_ + Fx) 1 > = (F + 2 F F= + F. ") 1 > =0
I g+ rp) Ry + 7y 1,02 = T (R ofg * g ) IR
The term X FZ 2 acts only on the quark (colortriplet) part of the singlet.
a a

a—_
Qo 2

Z FZ 2 |Q> = fz(g) |Q> = %-|Q> . We denote the eigenvalues 1in the irrep n
a

of the quadratic Casimir operator for SuU(3,C) C2 - Z Fz , which 1s the
a

From the representation F (appendix B), we find

generalization of the SU(2,J) operator C2 E Z Jf , with f2(5). Simlarly
1

2 % 4
¢f (3 ) =3 . Combining these results we get

3

IR Lol = - § (1.0 (82)
a

One can proceed analogously for the Q3 baryon colorsinglet:
3
|1,Q3> = —%%5—Q1Q]Qk, which 1s completely antisymmetric w.r.t. permutation
of the quark color labels. One has (F, + F_ + Fg) |1,Q3> =0 (i, 2 and 3 label

a a
1 2
a a 3 a 3

different quarks), or equivalently (F1 + F2) |1,Q > = - F3 |1,Q > , Multi-

a

plying both sides with F3

and summing over the color indices we find:

4 3
z (F?Fg + F;Fz) |1,Q3> = - 3-|1,Q > . Two more such equations can be obtained
a

through cyclic permutation and one finds

y F:F? l1,0% = - % l1,0% (83)
a

for each 1 # j. We see, that the color interaction of the quark and the
antiquark 1n a meson 1s twice as large as the i1nteraction between two quarks

1n a baryon, but attractive 1n both configurations.
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The spindegeneracy of H

0

1s lifted by the 31'33 dependence of EM which

can be discussed without any reference to color. Again, one can proceed by
making use of the quadratic Casimir operators. For a meson with spin j we

have %—(SQ + 36)2 |j> = 3(3+1) |]> . Since the quark and the antiquark both
1

have spin j = 1/2, we find

> >

0 _-0= > = {27(3+1) - 3} > . (84)

0% 17 10 [
Due to the presence of EM' the pion (J = 0) will become lighter by an amount
of 6E0= -4 7% M(mnR,mnR), whereas the p-meson becomes heavier by
a
4

6E1 = 3-15 M(mnR,mnR). In case of the j = 3/2 decuplet baryons each pair

of guarks has to have a total spin j = 1, and consequently
31.33 |3=3/2> = [3=3/2> (85)

for each 1 # j, causing these baryons to become heavier. Taking the bag

radius the same for all baryons, we recover to good accuracy the SU(3,F)

* * * *
equal spacing rule. - I = -1 =% = A, wherc the particle names

stand for the particle masses. This result will even be improved by the
tendency of R to decrease with the increase of Ns (Table IV). A more
complicated situation 1s encountered considering the j = 1/2 octet baryons.
These particles have a wavefunction, which 1s completely symmetric w.r.t.
simultaneous permutation of the flavor and spin indices, but has a mixed
permutation symmetry for flavor and spin separately. This i1s reflected by
the fact that two quarks can 1n principle be part of time in a spin j =0,
and the remainder in a spin J = 1 state. Irrespective of the distribution

among the quarks, the total spinsplitting 1s given by

(3,-0, + 0,.0, + 0.-0.) |3=1/2> = = 3 |3=1/2> (86)
1792+ 94793+ 9%, .

Since the nucleon contains only nonstrange quarks, this i1s at the same time

the correct splitting for this baryon. The IT-baryon contains two strange



Hadron Mass (exp)

Nucleon (N) 0.939
Delta (A) 1.232
Lambda (#) 1.116
Sigma (I) 1.193
*
Sigma (7 ) 1.385
X1 (2) 1.318
*
X1 (2 ) 1.533
Omega (%) 1.672
Pion (m) 0.138
Kaon (K) 0.49%6
Omega (w) 0.783
*
Kaon (K ) 0.892
Phi (¢) 1.020
Fit A 31/4 = 0.1455 (0.03)
B 0.1285 (0.12)
C 0.2099 (0.25)
1/4

Table IV: Masses and B

1n the parameter ne

Bagmass A Radius A Bagmass B Radius B
0.936 4.97 0.939 5.51
1.233 5.48 1.233 6.21
1.107 4.92 1.109 5.41
1.146 4.93 1.151 5.43
1.388 5.43 1.386 6.14
1.290 4.88 1.292 5.33
1.534 5.39 1.533 6.06
1.673 5.35 1.673 5.99
0.275 3.29 0.205 2.39
0.494 3.18 0.416 2.18
0.783 4.71 0.782 5.34
0.932 4.65 0.929 5.23
1.067 4.61 1.063 5.13
2, = 1.842 (1.12) m_ = 0.279 (0.07) a_ =

1.954 (1.16) 0.345 (0.37)
0.255 (0.77)

1.055 (1.01)

2
cessary to raise the x

of the fit by one unxit.

Bagmass C Radius C

0.939 2.86

1.237 3.24

1.093 2.85

1.110 2.85

1.384 3.23

1.254 2.84

1.530 3.22

1.674 3.21

0.236 1.57

0.410 1.54

0.778 2.76

0.924 2.75

1.067 2.74
2.198 (0.97) m o= 0 (=)
2.860 (4.79) 0.095 (0.51)
1.358 (1.93) 0.064 (0.92)

1n GeV, radii ain Gev—l. The number 1in parentheses denote the percentage change

-bg_
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quarks, which have a symmetric flavor wavefunction, and therefore must
have exclusively ) = |, implying that

-
g

sl "s2

.3 l3=1/2> = |3=1/2> (87a)

and conseqguently: (g + g )'gu |j=1/2> = -4 |j=1/2> . (87b)

si s2
A similar phenomenon occurs for the A and I baryons. These contain two
nonstrange and one strange quark. The A has 1isospin I = 0, which i1mplies

that the two nonstrange quarks must occupy a ] = O state. It follows that

> >
0,04 [3=1/2> = ~ 3 |3=1/2> (88a)

> > >
and (o0 +4a.)-
u d

The £ has I = 1, implying

>
g -
u

o |3=1/2> = 0 . (88b)

Gd [3=1/2> = |3=1/2> (89a)

-> -> >
and (0, + 04 -0 [3=1/2> = - 4 |3=1/2> (89b)

for the 13 = 0 state. We find that EM not only lifts spin degeneracies
(p =m, N~ A), but also the i1sospindegeneracy for the baryon octet. Further-

more, we see that the entire octet 1s lowered 1n mass through E For a (more

M
complete) discussion of the flavor SU(3,F)-tensor structure and -mass formula,
see Chapter 3.

We have now all the necessary ingredients, to calculate the masses of

the light hadrons. To dctermine the parameters B, Z_, m_, m and a_ one can

0
proceed in various ways. The MIT strategy was to set m = 0 and adjust the
other parameters such that the nucleon, the A, 2 and w masses are reproduced.
Since N, A and w contain only nonstrange quarks B, Z0 and ac can be determined
through analytic calculation. To determine m_, such that the @ has the correct
mass, one needs the help of a computer (Table IV, fit A). Taking mn # 0,

analytical calculation no longer 1s possible and one has to resort to fitting

the mass spectrum. To obtain a comparable result one can do a least square
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fit in which one gives the N, A, 2 and w a much larger weight (factor 10)
than the remaining hadrons. In this case one has to restract m < 108 MeV,
since for larger values %%-no longer has a minimum for the pion. A typical
fit 1s given in column B. For comparison, also a fit (fit C) 1s given ain
which the static current color magnetic self interaction i1s included. We

note that the radii are becoming rather small, while the strengths of the
color magnetic splitting become less flavor broken, which we think bad
features. In all cases we find, that the N, A, © and w masses are reproduced
rather accurately, as well as the remaining decuplet masses. The agreement

1s not so good for the octet baryons, which tend to be rather light.
Especially the A-T splitting, although present, 1s too small. Also the vector
mesons are reproduced reasonably well, the ¢ and K* being a little bat too
heavy. The model does not lift the p-w degeneracy. The masses of the pseudo-
scalar mesons m and K are rather sensitive to the precize values of the
parameters. They invariably turn out to have much smaller roots for the
radius than the other, above mentioned hadrons, which all have about the

same sizc. At one point %%-even ceases to have a solution for the pion radius
at all. One expects that the various approximations made above (neglect
center of mass motion, constant ZO and ac) w1ll break down when large
differences 1n the radius start to occur. In this respect fit A 1s preferable
to fit B, although the latter reproduces the hadrons around 1 GeV much
better than the former. The failure of our approximations here 1s signalled
by the fact that the perturbation term EM (1n fit A; 1s already of the same
order of magnitude as the complete mass: EM = = 0.415 versus 0.495 GeV for
the kaon and EM = ~ 0.465 versus 0.280 GeV for the pion, which 1s almost a

factor of two larger than the bagmass! These ratios become worse for fit B:

EM = - 2.81 versus 0.37 GeV for the kaon and EM = - 1.82 versus 0.18 GeV for



M {GeV) M (GeV)

Exp Th Exp Th
1.4 F 17|, 2u672) (1672)
=(1318)
- ~——m) I
=(1533)
(1534)
12 b % 15 F
A(1116 (1146)
i _(_)\_(1107) | 3 (1385) (1368)
10 v (339) 13
% (939) » A0232) (1232)
Q b
M (GeV) M (GeV)
10 kb Exp __““T-h“" 12 B Exp Th
. (958)
- 7m'(958)
08 | -
0.6 | B
0!.: i W(gaz)
0.2} 8 | o783 (783)
- p(776)
C d

+
Fi1g. 2: The mass spectrum, corresponding to fit A, of the baryon JP = 1/2 octet (a)
+ - -
and 3/2 decuplet (b), and the 0 (c¢) and 1 (d) meson nonets. States with

an * arc input. The n and n' have been refitted to account for remixing effects.
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the pion. For the other states 1t 1s typically 10 to 15 % of the bag mass
value. We note, there 1s something wrong with the strength of EM, witness
the anomalously large values for the strong coupling constant ac, as compared
to more frequently used values a, = 0.3. This may be seen as an indication
that the span dependency may already have roughly the right structure, but
that sti1ll some comparable contributions are being overlooked. Other indications
emerge when considering e.g. the n and n' pseudoscalar mesons. The Y = 0
Qé meson eigenstates of H consist of either purely nonstrange or strange
quarks, 1mplying that the n is degenerate with the pion, as is the w with
the p 1n case of the vector mesons. The n' contains only strange quarks and
has (fit A) a mass m = 0.690 GeV. This bad agreement points at the neglect
of other effects such as the annihilation of a uu or dd pair into an ss pair
and vice versa, via a two or more gluon intermediate state. Taking this
effect 1nto account results in slightly better values (Fig. 2). The model
as formulated above does not take Qé pair creation into account, which makes
e.g. A and p stable w.r.t. strong decay.

On the whole, the spherical cavity approximation proves to be rather
satisfactory as a spectroscopic model and can be used as a starting point
to 1nvestigate more exotic quark configurations, consisting of nonstrange
and strange gqguarks. Especially in the formulation, where the former is
chosen massless, one has a guite instructive realization of a confined
relativistic quark model. Further properties of this special case will be

treated 1n section IV.

IV. The spherical cavily and SU(6,FJ) [Ko 69, DeG 75, Ba 75, Go 75]

We will conclude the discussion of the spherical cavity approximation
by studying some other static properties of the hadron, namely the magnetic

moment, the mean square charge radius and the axial vector coupling constant.
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These properties have also been studied 1n the context of the nonrelativistic
quark (NRQ) model and a comparison between the two models will be made. Since
the above mentioned properties depend on the detailed structure of the space
spin flavor part of the wavefunction, they provide a more severe test for
this aspect of the hadron description than masses do.

Su(e). The color properties of the quark system under consideration only
affect these results indirectly. The hadron must be a colorsinglet. An all
(anti)quark configuration has a unique color wavefunction with a well

defined permutation symmetry. There 1s only one possible permutation

symmetry for the remainder of the wavefunction which combined with that of
the color part yields a completely antisymmetric overall permutation symmetry.
For e.g. the Q3 baryons, 1t 1s the completely symmetric one, since the color
wavefunction 1s completely antisymmetric under permutations. For systems
containing both quarks and antiguarks these considerations apply to both the
fermion and the antifermion subsystem separately. The color wavefunction for
the quarks no longer needs to be a colorsinglet one, provided the overall
wavefunction 1s, and the various possibilities may occur withHin one wave
function. The attention will be restricted to quarks occupying the 1s1/2
ground state mode. Furthermore, we will consider only three flavors: u, 4,
and s, all of which are associated with small quark mass parameters (see

Table IV). In the limt that mo=m

q = Ty the flavorpart of the wavefunction

can be classified using the irreps of flavor SU(3,F), denoted by n. The
quark transforms as a traiplet (n = 3) under SU(3,F).

The lowest energy eigenmode in the NRQ model 1s that of a quark with
spin s = 1/2, moving nonrelativistically through space with orbital angular
momentum £ = 0. In this case & and s are good quantum numbers. We can define

> >
a total orbaital angular momentum L = z El and a total intrinsic spin
1
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E = F gl, where the sum runs over all quarks present, which combine to a

1 > > >
total angular momentum J = L + S, the spin of the hadron. An LS coupling
scheme results in which all states are classified according to 0(3) for
the spatial, and according to SU(2,S) for the spin part of the wavefunction.
The space spain classification of systems, in which all quarks occupy
2 = 0 orbits, effectively reduces to an SU(2,S) one. The spin wavefunction
determines the permutation symmetry, since the spatial part 1s completely
symmetric throughout. The flavor and spin contents of a colorsinglet hadronic
ground state can most economically be summarizced in terms of flavor spin
irreps. One introduces flavor spin SU(6,FS). A quark transforming as a
triplet, n = 3, under SU(3,F) and as a doublet, s = 1/2, under SU(2,S)
transforms as a sextet, [p] = [6], under SU(6,FS). Because
SuU(6,FS) o SU(3,F) ® SU(2,S) we have the decomposition
[ul =[6] =7 (n,s) = (3,1/2). The product e.g. of three quark wavefunctions

(]
can be reduced according to

[6] ® [6] ® [6] = [56] ® [70] @ [70] @ [20] .

The 56-dimensional 1rrep i1s completely symmetric under permutations whereas
the 20-dimensional one 1s completely antisymmetric. The two 70-dimensional
irreps have a mixed permutation symmetry. Therefore the [56]-irrep has the
correct behavior and from [56] = (8,1/2) ® (10,3/2) the allowed flavor and
spin combinations for the baryonic ground states in this model are found,
which 1s seen to be correct.

In the bagmodel a different classification scheme 1s encountered. In
1ts ground state, the 1s1/2 mode, the total angular momentum of the quark 1s
given by j = 1/2. This j value 1s the result of coupling the quark spin
8§ = 1/2 to the orbital angular momentum £, which differs between the upper

and lower spinor components. The two upper components of the quark four
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spinor have £ = 0, the two lower ones £ = 1. The space and spin wavefunctions
of the quark are tightly interwoven to yield a good description of the total
spin of the relativistically moving quark. A system of such quarks can be
classified with the i1rreps of SU(2,J). The total hadronic angular momentum
1s found by combining the total spins j of the quarks. This situation 1is
referred to as a j-jJ coupling scheme. The NRQ- and the bagmodel then have an
equlvalent classification for the space-spin part of the wavefunction of
hadrons containing only groundstate quarks. This implies for the bagmodel
that one can also carry through the unification of the flavor and (space-)
spin symmetries just as in the NRQ-model. States will now be classified

according to the irreps of flavor span SU(6,FJ):
Su(6,FJ) D SU(3,F) ® SU(2,J) .

The NRQ LS- and the bagmodel jj type ground state description are
(trivially) related by a unitary basis transformation. Also hadrons,
containing excited quarks, are equivalently described in these two ways
[DeG 76]. Consider in the NRQ-model a Q3 baryon in which one quark 1is
excited to an £ = 1 orbit. Next to the completely symmetric one, also a
space wavefunction with mixed symmetry can be constructed whith can be
combined with a 70-dimensional irrep. One obtains the [70] L = 1 and [56]
L = 1 multiplets. As stated 1in section II, these states are in the bagmodel,
described by linear combinations of the configurations (151/2)2(1p1/2) and
(151/2)2(1p3/2). In this case one constructs the wavefunctions with the
desired total j-value and determines the combinations with definite spain
space permutation symmetry for each configuration separately. Space and spin
no longer have a separate permutation symmetry due to the compositeness of

J, viz. the (1p3/2) mode.
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To excite a 20-dimensional irrep one nceds three inequivalent
excitations. Of course, the fact that a certain space spin flavor combination
1s allowed on the basis of permutation symmetry arguments, does not imply
that 1t represents a state of the physical spectrum, witness the discussion
1n section IIon the spurious translation modes, the [56] L = 1 states,
occuring 1n the nonrelativistic potential models.

The equivalence of the NRQ- and bagmodel classification of the hadron
ground states entails, that those NRQ-model SU(6,FS) results, for which no
further assumptions are needed, immediately apply to the bagmodel, e.qg.
the results for the magneti¢ moments and charge radii. The axial vector
to vector coupling constant ratio, measured in e.g. Bf-decay processes of
the octet baryons needs some additional treatment.

The parameters taken in this discussion are those of the MIT fit (fit A)
[DeG 75]. This implies that the SU(6,FJ) symmetry will be broken in two
ways. To account for e.g. the NQ mass difference the strange quark 1s
given a mass m_ = 0.279 GeV. The inclusion of spin dependent terms in the
hamiltonian lifts the degeneracy of multiplets with identical quark content,
but different spin or isospin quantum numbers. This results in different
values of the bag radius for which E(R) 1s minimal.

1. Magnetic moment

The response of the quarks inside the hadron to the electromagnetic
field 1s determined by the properties of the quark current operator
Ju =1 E Yu Q ¥, where Q 1s the electromagnetic charge operator. Applying

=d -
a wecak magnetic field B = Bz the resulting energy shift for a state |[a> 1s

<a]Hl|a> = - <u|uz|a> B. The magnetic moment operator 1s given by
ﬁ:% [ av 'r)x-f:%j' av rxytaou (90)

bag bag
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and can therefore be calculated, absolute size and all. Evaluating this

expression for the quark groundstate we find:

<au_la> = ¥ <a]o_on(m',£)|e> u(m.,R) (91)
z k z £
m',f
Here n(m',f) gives the number of quarks with flavor £, mass me and spain
orientation m', and
R N2x R 3
= [ * = r
p(m,R) oJ dr p'(m,r) ERTmR ol dr r jo(pr) Jl(pr) (92)

1 (mR) { 4 ER + 2 mR - 3 g _ g(mR)

2m 3 2 ER(ER-1) + mR 2m

We see that y really 1s the expectation value of the radius, evaluated between

a 'big' and a 'small’' spinor component., We use ER = (mR) ‘R and

0
Pie1/2
N = N(1+1/2) for brevity. For very heavy gquarks ; reduces to the non-

relativistic quark magnetic moment: g(mR) > 1 and u + ﬁ . For m =0,
ER = x1+1/2 and one finds:
R 4%-3
=13 { x(x—l)% = 0.202 R (93)
. u(m,R)
The function R 1s a monotonously decreasing function of mR with a

maximum value of 0.202 for mR = 0., Thas value 1s very sensitive to the
ratio of the upper and lower spinor component space wavefunctions and any
change herein 1s directly reflected in the size of u, The proton magnetic
moment 1S given by p = u(muR) for degenerate up and down quark masses. From

this we can extract a lower bound on the bag radius to fit thas value:

2.79

2M
p

For mu # 0 we need an even larger proton. Therefore, to keep the size

0.202 R = or R =~ 1.45 fm.
of the proton down, we need the up and down quarks to be as light as
possible. Apart from the factor u(m,R), which 1s explicitly calculated in

this model, we retain the SU(6,FS) ratios through the remaining part of
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the matrix elements: <a|onn(m',f)|a>. A consequence of taking m,= Mg,
is that the magnetic moment of the neutron is (- 2/3) times that of the
proton: the exact SU(6,FS) result. In Table V, the ratios of the magnetic
moments of the octet baryons to that of the proton are listed: the SU(6,FS),
the calculated and the experimental values [PDG 78). Agreement is good.
For the physical proton R =~ 1.0 fm and we find gp = 1.90 instead of
gP = 2.79. Gluonic vertex corrections tend to decrease this value even
more [Ha 77]. This can be interpreted as a hint that in this crude model
the wavefunctions may be realistic, whereas the hadron parameters are not
quite satisfactory. To conclude we note that the choice of Q to be the

a

electric charge is not exclusive. One can also take it to be Qa =g F:

the color charge.

Baryon (u/up) Su(6) (u/up) exp (u/up) calc
P (938) 1 1 1

N (940) - 2/3 - 0.685 -0.67

A (1116) - 1/3 - 0.217 + 0.012 - 0.2
£t (1189) 1 1.01 + 0.09 0.97
t%(1193) 1/3 0.31

£ (1198) - 1/3 - 0.53 + 0.13 - 0.35

£0 (1314) - 2/3 - 0.56
27(1321) - 1/3 - 0.66 + 0.27 - 0.23

Table V: The magnetic moments of the flavor octet baryons, in units p_.
Experimentally one has up = 2.793 (53—) . calculation gives
e
uo=1.90 (————) .
2M
P P

p
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2. Mean square charge radius

For the experimentally more frequently used hadrons an accurate
parametrization of the Dirac form factor as a function of the momentum
transfer squared, Fl(qz), q2 = t, 1s known. When we expand 1t, for low
q2, the second term gives a measure for the extension of the hadron:
dFl(qz)/dq2

2
Fl(q) qa =0

called the mean square charge radius. Calculated in the bagmodel 1t has the

form:
2 =<a| [ av 2|2 v*oule> = T <a|ntm’,DQla> T2
sC
bag m',f
with
2 2 2
72 _ BT 2ER{2x” (ER-1) + 2mR + 4ER - 3} - 3mR{4ER + 2mR - 2x° - 3}
6 x2{2ER(ER—1) + mR}
2.3 2
;2| _ %r 2x° - ix + 4x - 3 _ 0.531 RZ
m=0 x (x-1)
2
=2 R™ 2x -3 2
r =% 3 = 0.283 R
m= X

The charge radius depends on the quark mass rsc(ml) < rsc(mZ) ¢ form, > m..

2 1

Taking m, = my the calculated rzc value for the neutron vanishes. From the

fact that in practice 1t turns out to be positive, one might conclude, that

the down quark 1s heavier than the up quark, in agreement with explaining
the P-N mass difference, similar to the P-Q mass difference, 1.e. by

grving m, and m. different values. Because the strange quark does have

d
m #Fm =m r2 1s also positive, for the A FO and Eo of course
s u d' “sc ' ’ ’
violating SU(3,F) symmetric relations.
Comparison of the theory with data gives Table VI. The charge radius

for the neutron 1s obtained indirectly (FT(O) = 0), using the proton- and

1soscalar Dirac form factors: 2 Ff(qz) = Ff(qz) + FT(qz).

(94)

(95)

(95a)
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Hadron P N n K K
—_—— — - - -
Theory (bag) 0.72 0.0 0.48 0.44 0.14
Exp 0.76 * 0.02 0.10 + 0.01 0.695 t 0.005 . 0.28 + 0.09

|
Ref | [Ho 76) [Ho 76] (Ge 77] cen [py 761
Hadron A gt 0 r” =0 ="

——— o e -
Theory (bag) | 0.16 0.73 0.16 -0.69 0.22 -0.67

I

1

Table VI: Mean square charge radius ric. We list the sign of rzc times

Vlrz [, in fm.

scC

3. The axial vector coupling constant

A third application of SU(6,FJ) symmetry emerges from the study of
the semileptonic decay of baryons. We will restrict our attention to the
octet members of the [56] irrep. The relevant hadronic part of the weak

interaction current density is given by
) (x) = B ¥"(1+y,) (d(x) cos 6 + s(x) sin B) + h.c. (96)

where u(x), d(x) and s(x) denote the quark fields of the specified flavor
and Oc is the Cabibbo angle, giving the correct observed relative strength
to the u and s contribution. Let us consider the B-decay of the neutron into
the proton, as an illustration. The expectation value of the weak interaction
hami ltonian is then given by

G cos 6

<pev_|H [N = ———7Er—5»f av <pe'Ge|G(x)yu(1+Y5)d(x)6'(x)y“(1+ys)u(x)|N> (97)

where the exchange of a rather heavy weak boson is seen to have resulted
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1n an effectively local interaction. The small momentum transfer of the
leptons to the outgoing baryon has twoc consequences. The wavefunction of

the leptons which are not confined to the bag, 1s approximately independent
of x, as far as the interaction region 1s concerned. This approximation 1s
reasonable for [ae + aglc < .2 GeV. The matrix element of H_ then factorizes
into a leptonic and a hadronic part, and we can study the latter separately.
Secondly, both nucleons can be taken at rest. Furthermore, we shall take

the bags to have both the same radius, for which we choose the equal weight
value. This latter approximation 1s exact for the proton-neutron case, since
these states have a degenerate bagmodel configuration. The space i1ntegration

reduces to a bag integration. Consider

<Plap|n> = cos 6, [ av <pluy" 1ty )am [w> . (98)

)

bag
This matrix element contains a vector- (v) and an axial vector (a) part.
The former only contributes for w = 0, the latter for u = 3, j € (1,2,3).
We find:

0 +
<P|Jh|N> = gv(md,mu) { <P|u1dl cos ec|N> . (99)

We define: Y, = cos Bc z <P|uId1|N> for the neutron B-decay to the proton.
1

One has Y, = cos ec. The i1ndex 1 denotes that the transition operator, 1in

this case the quark 1sospin raising operator II = uIdl, which replaces, 1f

available, a 4 with a u quark, acts on the 1th quark in the neutron. Thas

transition conserves strangeness: AS = 0. The overlap factor gv(m,m')

depends on the quarkmasses:

) . -
g, (mm') = 2’2“ 5 (m’R - oR) — 1_ - (100)
x'“-x“ V2E'R(E'R-1) + m'R V2ER(ER-1) + mR
= ' = 1 =
Here x x1+1/2(mR) and x x1+1/2(m R) . We have gv(m,m) 1 and
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gv(ms'O) =~ 0.985 for thc relevant range of R. The vector coupling constant

GV 1s then related to the weak coupling constant G by:

G

Gv =% Y V2 ) (101

To evaluate the axial vector part we can take Sz = 1/2 for both the proton

and the neutron, and consequently j = 3:

3
<P,s,=1/2|3 [N,s =1/2> = g_(m,m) ¥, . (102)
Here
y. =71 <p,s_=1/2]T'0__|N,s_=1/2> cos 6_ = 2 cos 8 (102a)
a | "z 112772 c 3 c
1 [2(ER - E'R)
' = -— ————e e L]
ga(m,m ) 3 ( e — + 1) gv(m,m ) (103)
_1 (2ERER + mR_(4ER - 3) for m = m'
3 2ER(ER - 1) + mR

Numerically we have ga(0,0) = 0.653 and ga(ms,O) = 0.72 gv. The axial
vector coupling constant i1s related to G by:

G

Ga =Y, 9, 7 . (104)
For m,m' + », we recover the SU(6,FS) result: Ga = %—Gv for the neutron
B-decay. In the bagmodel version (mu =my = 0) thas value 1s reduced to
Ga = 0.653 - %—GV = 1.09 Gv’ closer to the experimental value of 1.24 * 0.03.

This reduction 1s a consequence of the fact that one, contrary to the non-
relativistic SU(6,FS) model, now also gets contributions from the lower
spinor components, which have opposite spin orientation, and is another
argument i1n favor of light quarks.

The factors Ya and Y, contain the SU(6,FJ) symmetric part of the matrix

elements [Sw 66]. Considering B' -+ Be Ge, instead of N > Pe Ge we have

Y. =) <Bl(cos 8_ I +sin6 K)|B'> and (105a)
v 1 C 1 c 1
+
and Y. = 1—5 <Bl(cos 8 I  +sin 6 K) S _|B'> (105b)
a 2 c 1 c 1 12z

1
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The V-spin raising operator, which changes an s-quark into a u-quark 1is
denoted by KI. It raises the strangeness by one unit: AS = 1. By using the
explicit form of the flavor-spin part of the wavefunction, Yy and Ya can

be calculated exactly. One subsequently assumes that Ga and GV still are
related to G as defined, substituting the proper mass and radius parameters.
One then obtains the calculated values for Ga/Gv as listed in Table VII.
Since the wavefunctions are SU(3,F) symmetric one can also express Ga and
Gv in terms of the Cabibbo parameters Fa, Da and Gc. We have the following
relations:

G
v

)

G 1
72 <B|(F1 10 cos Bc + F1/2 1/2 1 sin Bc)|B > (106a)

-G 3
G, = 73 <BI3F,(Fy | g oos 8, + Py ) 510 8

+ D (D cos 8_ + sin 0 )g IB'> (106b)
a 1 o] c

10 Pis2 172 1
The currents are denoted by their SU(3,F) octet transformation properties

according to O The currents can couple to the two octet baryons in two

I IZ Y

independent ways, a completely antisymmetric f type and a completely symmetric
d type coupling. For qz = 0 the conserved vector current i1s assumed to have
only f type, the partially conserved axial vector current can have both

f- and d-type couplings. This property 1s reflected in the notation of the
matrix elements. Comparison with the specific bagmodel case allows us to
explicitly calculate Fa and Da' We find, that Fa = f ga/gv = % ga/gv and

Da =d ga/gv = ga/gv. This implies, that the F/D ratio, due to the SU(6,FS)
symmetry of the bagmodel flavor spin wavefunctions is ¥F/D = % , the SU(6,FS)
result. This ratio 1s not changed by the breaking of SU(6,FJ) from section

III since this only affects the overall factor ga/gv. The absolute SU(6,FJ)

symmetric values for Fa and Da are, 1n the MIT bagmodel, reduced by a factor

0.65 for the AS = 0 transition (d > u) and by a factor of about 0.71 for



L]
Process B > B ¥ Y 9,79, (exp)[ppG 78] 9,79, (calc)

0

o

>

T

v a
1 f+4 - 1.253 + 0.007 1.09
/2! 2 e 0.44
2 -
0 /5a g, = 0.24 + 0.23 g, = 0.53
1 £ -4 - 0.22
/3 1
7 76 (3£+4) ~ 0.62 * 0.05 0.72
1 £-4 + (0.385 = 0.070) - 0.24
1 1 5
72 72 (£-4) - 0.24 .
v 3 ! 3f-4 0.24 8
2 Ve BE-9 . '
1 £+ d 1.2

Table VII: Ratio of the axial vector to vector coupling constant Ga/Gv for the octet baryon

B-decay process B > B' e Ve in terms of the Cabibbo parameters ec, Fa and Da’

£ =g F_ /g and d = g D_/g

. The columns y_ and y_ contain the SU(3,F) symmetric
v a ’a v a “a v a

results. The bagmodel gives f = %—, d = 1, consistent with SU(6,FJ).
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the AS = 1 transition (s + u), which accounts for the SU(3,F) breaking.

One obtains

AS =0 F_ = 0.44 D_ = 0.65
a a
As =1 F_ = 0.47 D_ = 0.71
a a
and experimentally F, = 0.41 £ 0.02 D, =0.83 % 0.02 .

One finds improvement to the nonrelativistic values, but not absolute
agreement. Shifting the mass parameters will not improve things substantially

since Fa and Da change in proportion.
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CHAPTER 3: Q6 DIBARYON STATES

I. Introduction

In the naive quark model {Ko 69] one was able to explain many features of
the hadrons. Relations between mass differences within SU(3) multiplets could
be derived. However, 1t was impossible to say anything sensible about the
masses of the individual hadrons. In particular any indication about the
masses of the exotic mesons (Q2§2), the exotic baryons (Q4§) and the dibaryons
(Q6) was lacking. One of the reasons was our i1gnorance about the i1nteractions
between the gquarks.

This situation has changed i1in the last few years, with the recognition that
quarks have additional degrees of freedom, socalled color. With these color
quantum numbers a different kind of interaction can be associated, which 1is
thought to be governed by the equations of Quantum Chromodynamics.

A particular realization of QCD, which incorporates many of 1ts established
and expected properties, 1s the MIT bagmodel [Cho 74, DeG 75]. In chapter 2 we
found that this model allows solutions, which are particularly suited for the
description of hadronic states. The colored quarks are confined to a definite
region of space, which 1n the simplest case is taken to be a sphere, and
allowed to interact weakly with each other through the exchange of colored
vector bosons, the gluons [DeR 75, Fr 71]. This way one can rather well
reproduce the masses of the colorless S-wave Qé and Q3 baryons. The model contains
1n case of 3 flavors only 5, physically interpretable, parameters. Without
1introducing new parameters one can calculate in this bagmodel also the masses
of exotic states like the S-wave QZQZ mesons [Jb 77] and the S—wave Q6 dibaryons
[dc 77). The discussion of the former 1s postponed to chapter 4, the latter
shall be dealt with here.

The results of the dibaryon calculations were quite 1interesting. It
was shown that onec must expect some 6 quark states with relatively low mass.

These states must show up as resonances in NN, AN and IN scattering, and in the



- 83 -

AA, EN, A, and II channels. Especially significant are the predictions of a
AA bound state with a binding energy of about 50 MeV and of possible NN
resonances.

Experimental verification of these predictions 1s quite important,
because the existence or non-existence of these states will be quite an
important test of the applicability of the present form of the MIT bagmodel
to exotic states.

Although these six quark states and in general the colorless N quark
states (N =3, 6, 9, ...) also manifest themselves 1n scattering processes

4

3
like pd, p"H, or Ad, they are different from nuclear states like 3He, He,

3 .
H, because they are stngle hadron states. They

or hypernuclear states like A

are unaccounted for by the spectrum of resonances and bound states arising 1n

standard potential model [sw 71] or shell model [Ho 73] calculations.

In this chapter we will consider all colorless N quark states, where the
quarks are i1n the 1s1/2 states of a spherical bag. These hadrons have thus all
positive parity. Since all particles should be color singlets and since the
color symmetry 1s unbroken, the old mass formulas [Ok 62, Gu 64, Be 64] obtained
from specific assumptions about the breaking of flavor-spin symmetry are not
affected. The difficulty in applying these mass formulas was that one had to
determine the coefficients for each flavor-spin multiplet separately from the
experimentally known masses of the hadrons. The MIT bagmodel offers a way to
calculate these coefficients for the colorless N quark states, which will belong
for fixed N to only one flavor-spin SU(6) i1rreducible representation. Because
the allowed states must be totally antisymmetric with respect to flavor, spin
and color, the color-spin tensor operators occurring in the spherical bag mass
operator can be expressed in simple flavor-spin tensor operators. We then can
1dentify the contributions of the different SU(6) breaking tensor operators, the

coefficients being known functions of the bag radius.
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In order to satisfy one of the boundary conditions in the bagmodel the
mass of a particular state 1s found by minimizing the expectation value of the
mass operator with respect to the bag radius R. As this radius does not vary
too much between different members of the same SU(6) multiplet, 1t 1s possible
to choose only one R value for an entire multiplet without aintroducing
significant numerical inaccuracies. This way we obtain for fixed N mass
formulas, which suffice to obtain the masses of all the S-wave N = 6, 9, 12, 15
and 18 quark states, without introducing any new parameters.

At this point we would like to stress the importance of the prediction
of several six quark states in the NN channel, because these predictions could
at present be checked experimentally, 1f their width (about which we cannot say
anything sensible) 1s not too large. We expect Q6—states 1n the 351 channel at

1 el
Tlab =~ 0,61 Gev, ain the So channel at Tlab =~ 0.79 GeV and two (almost?)

degenerate states in the 1D2 and 3D3 channels at Tlab =~ 1,04 GeV.

In the hyperon-nucleon (AN and IN) channel many 6 quark states are expected.
In the experimental data {(only available for the lower energies) several
enhancements can be seen next to the resonance H, seen [Br 77] at 2127 Mev.

The resonance H 1s certainly not a six-quarks-in-one-bag state, because 1t can
quite naturally be explained in the ordinary potential picture [Sw 62].

In the Y = 0 channels (AA, N, AL and LI) we expect an I =0 1S0 bound
state about 30 MeV below the AA threshold. One predicts bagstates in the I =0
and I =1 S1 channels at M =~ 2.35 GeV and M =~ 2.39 GeV. The Pauli principle
forbids the I = 0 state at M =~ 2.35 GeV to decay in the AA channel, 1t can

only decay in =N.

II. Classification of the N quark states
In the MIT bagmodel [Cho 74, DeG 75] we will consider multibaryon states
with baryon number B, described by a wave function of N = 3B quarks, all in

1s1/2 states of the bag. These states have an SU(2,J) classification for the
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space-spin part, an SU(3,F) classification for the flavor part (assuming only
three flavors), and an SU(3,C) classification for the color part. Because of
generalized Fermi statistics the N quark states must be totally antisymmetric.
We therefore can place up to 18 colored quarks i1n these states of the bag.
There 1s a one-to-one correspondence between the irreducible representations
(1rreps) of SU(n) and those of the symmetric group S(n), the permutation
group of n objects. The objects are in this case the n values the SU(n) gquark

degree of freedom can assume. Because
S(18) o S(3,F) ® S(2,J) ®& S(3,C)

a classification of the states with the help of the group S(18) 1s quite
useful. We will represent the permutation symmetry of the states by means
of Young diagrams [L1 50, It 66]. If the states contain N quarks, the
corresponding Young diagrams contain N boxes. Because of Fermi statistics
the N quark states must belong to the totally antisymmetric irrep of S(18),
described by a Young diagram of only 1 column and N rows.

To get some of the important quantum numbers of these states we consider
the classification according to the oldfashioned (flavor-spin) SU(6,FJ) and

SU(3,0),
Su(6,FJ) D> SU(2,J) ® SU(3,F) .

The physical states must be SU(3,C) singlets. The corresponding Young diagram
for the SU(3,C) part of the state therefore 1s rectangular and contains 3 rows
and B = N/3 columns. Because the state must be totally antisymmetric, the
permutation symmetry of the SU(6,FJ) part of the state 1is described by the
associate diagram of the diagram describing the permutation symmetry of the
color part of the state. This associate diagram thus has 3 columns and B rows.
This uniquely determines the SU(6,FJ) irrep [u] to which the colorless states
belong. They are given in Table I. At this point we should note that in SU{n)

the 1rrep described by the rectangular Young diagram with x columns and y rows
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N = 3 6 9 12 15 18

(561 [490] [980] [490*] [56*] [1]

Table I: The SU(6,FJ) irreps [u] of the colorless N quark states

(u]

is the complex conjugate irrep of the irrep described by the Young diagram
with x columns and (n-y) rows. We see this property clearly reflected in

Table I. Next we consider the decomposition
sSu(6,FJ) D SU(3,F) ® su(2,J)
For the relevant SU(6,FJ) irreps [p] the decomposition

Wl =% (o3
2]

in the different SU(3,F) irreps n together with their spins J is given in

Table II. For the content of SU(3,F) irreps we refer to reference [Sw 63].

B =1 [s6] = (8,1/2) @ (10,3/2)
B=2 [490] = (1,0) ® (8,1) ® (8,2) @ (10,1) ® (Q*,l) ® (27,0)
® (27,2) @ (Lq*,a) @ (35,1) @ (28,0)
B =3 [980] = (1,3/2) ® (1,5/2) ® (8,1/2) ® (8,3/2) & (8,5/2) & (10,3/2)
® (10°,3/2) @ (27,1/2) @ (8,7/2) ® (1,9/2) ® (27,3/2)
® (27,5/2) ® (35,1/2) ® (3_5*,1/2) ® (64,3/2)
B=4 [490] = (1,0) ® (8,1) @ (8,2) ® (10,1) @ (Q*,n @ (27,0)
® (27,2) @ (10,3) ® (E*rl) ] (§*,0)
B=5 [s6] = (8,1/2) ® (1_0*,3/2)

Table II: The decomposition of SU(6,FJ) irreps in flavor and spin. The
states are ordered according to increasing mass. It will turn
4
out that the states (27,2) and (10 ,3) in [490], (27,1/2), (8,7/2)
*
and (1,9/2) in [980], and (27,2) and (10,3) in [490 ] are degenerate

as long as there is no mixing (see section VI).
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Another useful decomposition [Be 64] is determined by
Su(6,FJ) D U(1,Y) @ SU(4,IJn) (] SU(2,JS)

where I (Js) is the total spin of the nonstrange (strange) quarks, I is the

isospin and Y the hypercharge. The decomposition

wl =} o, 0,3
®

is given in Table III. Here (v) denotes the SU(4,IJn) irreps. They are given
by their dimension and if necessary an extra index. This decomposition 1is
necessary, because when we calculate the SU(6,FJ) breaking we shall consider

the nonstrange and strange quarks contained in a state separately.

(56] = (1,(205),0) ® (0,(10),1/2) ® (-1,(4),1) ® (-2,(1),3/2)

[490] = (2,(50),0) @ (1,(60),1/2) ® (O0,(45),1) ® (0,(202),0)
@ (-1,(205),3/2) ® (-1,(201),1/2) ® (-2,(10),1) & (-2,(6),0)
® (-3,4),1/2) @ (-4,(1),0)

[980] = (3,(205),0) ® (2,(45),1/2) & (1,(60),1) & (1,(36),0)

® (0,(64),1/2) ® (0,(50),3/2) ® (-1,(60),1) @ (-1,(36),0)

® (-2,(45),1/2) ® (-3,(205),0)

Table III: The hypercharge, SU(4,IJn), and strange spin content of the
* *
SU(6,FJ) irreps. For [490 ] and [56 ] the decompositions are

the same as for [490] and [56], except that the Y eigenvalue

*
changes sign and (v) becomes (v ).

The decomposition of the group SU(4,IJn) in isospin SU(2,I) and non-strange

spin SU(2,3 )
SU(4,IJn) D SU(2,I) ® su(2,Jn)

1s the non-strange analog of the flavor-spin decomposition in flavor and spin.
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We get

v =) (1,3)
® n

These decompositions are given in Table IV.

(1) = (0,0)

(4) = (1/2,1/2)

(6) = (1,0) @ (0,1)

(100 = (1,1) & (0,0)

(20) = (3/2,3/2) @ (1/2,1/2)

(201) = (3/2,1/2) ® (1/2,3/2) ® (1/2,1/2)

(202) = (2,0) & (1,1) @ (0,2) ® (0,0)

(36) = (3/2,3/2) ® (3/2,1/2) @ (1/2,3/2) @ (1/2,1/2)

(45) = (2,1) & (1,2) & (1,1) ® (1,0) ® (O,1)

(50) = (3,0) & (2,1) & (1,2) @ (1,0) ® (0,3) ® (0,1)

(60) = (5/2,1/2) @ (3/2,3/2) @& (3/2,1/2) ® (1/2,5/2) & (1/2,3/2)
® (1/2,1/2)

(64) = (2,1) & (2,0) & (1,2) ® 2(1,1) ® (1,0) @ (0,2) & (O,1)

Table IV: The isospin and non-strange spin content of the SU(4,IJn) irreps (v).
*
In this specific decomposition the contents of (v ) are identical

to the contents of (v).

III. An approximation to the phenomenological bag Hamiltonian_[DeG 75]

The MIT bagmodel provides us with a method to calculate the masses of
the various N quark states. The bag is taken to be a sphere of radius R and
the quarks are placed in 1s1/2 states. Inside this bag the quarks can move
freely, except for a weak static interaction between the color charges

(v g Fa) and between the color currents (v g Fack). The B generators of
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C
SU(3,C) 1in the irrep 3 we denote by Fa = Aa/Z with o = 1 to 8, They are
normalized such that Tr Aj = 2. The three generators of SU(2,J) in the J = 1/2
1rrep are ok/2 with k = 1 to 3 and Tr ci = 2. The mass operator of an N quark

system 1s given by

M=EB+EQ+EM+EE (1)

The energy EB associated with the bag geometry is

4 3 _ Eg
R

Ep =3 BR (2)
where B 1s the bag pressure and Z0 1s among other things associated with the
zeropoint energy. The rest energy and kinetic energy EQ of the quarks in the
bag 1is

al(R) an(R) as(R)
= N ——=N + N . 3

EQ z 1 R n R s R 3
We use 1 and j for the particle indices of the quarks. The indices n and s
more specifically refer to the non-strange and strange quarks. Nl 1s the
number operator for the quarks 1. The energy eigenvalue of a quark in a
spherical bag 1s (see Table V)

R =
al( )/R a(mlR)/R
th
where m, 1s the mass of the 1 quark. The energy EM due to the colormagnetic
interaction between the quarks is
%c
= - = 4
Ey = ) MlJ(R) (FO)l(FU)] (4)
1>)
The energy EE due to the colorelectric interaction between the quarks 1s
ac 2
= —— _— + .
E,=% 150 E,® ¥ E, (R) F .Fy } (5)
1 1>j

Here F,.F = Z (F,),(F,)  and 0 .0, =Z (o) (o)) -
The gluon coupling constant g appears 1in ac = g2/4ﬂ. Furthermore:

M (R) = M(m R,m R) and E _(R) = E(m R,m_R) are functions of the products
13 1 J 1] 1 ]

of R and the quark masses m, and mJ (see Table V).



B 1 2 3 4 5 6
<(Fa) %> 0 3 6 15 24 36
Rav[Gev'll 5.22 6.70 7.57 8.39 9.02 9.60
a 2.043 2.043 2.043 2.043 2.043 2.043
ag 2.9149 3.2113 3.3935 3.5700 3.7085 3.8381
Moo 0.177 0.177 0.177 0.177 0.177 0.177
Mg 0.1127 0.0981 0.0905 0.0839 0.0791 0.0751
Mo 0.1406 0.1310 0.1256 0.1208 0.1173 0.1141
E., 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784
s 0.4091 0.4415 0.4592 0.4748 0.4863 0.4963
s 0.3348 0.3466 0.3528 0.3582 0.3620 0.3653
M 0.00843 0.01318 0.01625 0.01927 0.02166 0.02388
E 0.01799 0.02669 0.0319 0.03694 0.04073 0.04417

Table V: Average radii for multibaryon multiplets and values of functions

6« ,M ,E ., M=M +M -2M andE=E_+E -2E .
s ij ij nn ss ns nn ss ns

The bag radius R is determined according to one of the boundary conditions
in the model by minimizing M with respect to R. This should be done for each
hadron separately. In order to have a useful mass formula expressed in flavor-
spin tensor operators we take an average Rav for each entire SU(6,FJ) multiplet.
For a particular state we have:

a; (R)
i + f(R)

R R

z
M(R) =f‘31 BR3-'?O+;NJ._
i

where f(R) contains the R-dependence of EM and EE coming from the functions

M. . and Ei]' Minimalization gives:

i3
- 3, 1/4
_ -1/4 i _ of
Rpin = 478) [} Ny Gi R aﬁ) Zo v {F-R ag)] .
i R R
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As long as the functions a Mij and Eij are about linear we may approximate:
ai(R) -R—=——=>=a,(0) =a(0)

21 the bagmodel the non-strange quark mass m is chosen to be zero. So we have
a(0) = a(mnR) = an(R) =0o. The same we have for f(R). So a reasonable average
value for the radius of a whole multiplet is found by minimizing the bag mass
for a system of non-strange quarks, taking an average value for the color-
magnetic interaction term:

= -1/4 B 2.11/4
R, = (47B) [chn Zg ta M < (Fg) “>]

where <(Fo)2> is an average value of z (Fo)i.(Fo)j in an SU(6,FJ) multiplet.
i>j
In this case the color-electric part does not contribute. Since we work in

the neighborhood of a minimum the R-dependence of M(R) is not too strong. It

appears that the values thus found for Rav can be parametrized according to:

where N is the number of quarks, and ry = 0.72 fm = 3.63 GeV-l. The masses of

the hadrons obtained with Rav are only slightly larger than the masses obtained
with the radius coming from the minimalization procedure. The differences can
easily be estimated and are < 20 MeV. Of the five parameters, m_ is fixed to be

zero and B, ZO’ o and m_ are made to fit the light hadron mass spectrum, under

the condition that we have one radius for the baryons involved. The parameters

are: Bl/4

= 0.146 Gev, 2, = 1.89, uc = 2.12, mn = 0 and o = 0.285 Gev. As was

0
already noted above an(R), Mnn(R) and Enn(R) are independent of R since m. = 0.
The values of R and the values of the functions a., M.., E.. at R =R are
av i ij ij av
given in Table V.
Using the total quark number operator N = Nn + Ns and the hypercharge

operator Y = (Nn - 2Ns)/3 we can rewrite (3) as

20+ a (o =-o0)
s

n S n
= - Y 7
EQ N R R (7)
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It also 1s useful to separate the summations in (4) and (5) into three parts:
a summation over all guarks, a summation over only the non-strange quarks and

a summation over only the strange quarks. Then we may write:

a
(o4
Ey =~ & inns ) (Fo) . (Fo)
1>)
M- M) ] Zn (Fo) . (Fo) (8)
1772
M- M) . Zs (Fo) . (Fo) i
and 12
a
c 2
Ep = & iEns (3 N+ ¥ Fl.F;
1>3
+(E_-~E ) [Zn + Y F,.F (9)
nn ns 3 'n S 1772
S )
+ (E__ - E_) (3 N + ) F F) g
ss ns 3 s 2
51>52

IV. Evaluation of the color-magnetic and color-electric terms

We will make use of the permutation symmetry of the states to replace
the sums of the color and color-spin tensor operators in {8) and (9) by more
useful sums of flavor, spin and flavor-spin tensor operators. For convenience
we 1introduce the 35 SU(6) generators A_ with a = 1 to 35. For the irrep [6]
these can be found as the direct product of the generators and the unity
operators in the irrep g_of SU(3) and the irrep J = 1/2 of SU(2). These 35
generators, normalized to Tr Ai =1, are: %—(Aa e 1), :%\(1 ® ck) and
%-(Au ® ok) with a = 1 to 8 and k = 1 to 3. The quadratic Casimr operator

Cg for SU(6) has 1in the irrep [u] the eagenvalue C6(u) and 1s given by

C6 = 2 Al.AJ where Al.AJ = Z (Aa)l(Aa)J .
1,) a
This implies that
35
2 3 A B = Cq - NCi6) =Co- N .

1>]
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We introduce the following permutation operators

for suU(2): P =l(1+o .0_)
13 2 b |
1,2
for SU(3): PlJ = 5—(3 + Al.AJ)
1 1
for SU(6): Pl] = 3 (5 + 2 Al.AJ) .

The three summation ranges in (8) and (9) we will consider separately.
1. The sum over all quarks

The states can be labeled by quantum numbers belonging to the groups

Su(3,F) ® su(6,CcJ) > SU(3,F) @ SU(2,J) ® sSU(3,C)

The wave function 1s antisymmetric with respect to flavor, spin and color.

F PJ PC = - 1, but then also PFJ = - PC and PCJ = - PF .
13 13 13 13 1] 1] i3
Equivalently:
o+ 229 =2 7 OFLF (10)
1] 1]
1>3 1>]

Using the explicit expression for ACJ we faind:

+2%0C 4+ 20 FOF j (11)
17"y 1

c c., _ r.2
- E (A o)l.(x 0)J = y 12 +30,..0 ]

1>) 1>) ]

The two particle operators on the righthandside can be related to the quadratic

Casimir operators for the whole system:

y cl.c =2 32 - % N
1>3 J
8
) MAy=2C3-2NCy(3) =2Cy - 3N {(12)
1>3
where C3 = F2 = Z Fl.FJ = %- z AL.AJ 15 the quadratic Casimir operator
1,3 1,]

[sw 63) in SU(3), which has the value [Sw 66]:

2
C3(n) = f2 = %—(p2 +pg+q) +p+g

4
3 -

Eq. (10) 1s also valid, when applied to the flavor-spin and color, and we find

in the irrep n = D(p,q). C3(1) =0, C3(3) =

1n terms of quadratic Casimir operators:

N (18 - N) (10")

1
C6(FJ) + 2 C3(C) =3
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where C3(C) 1s the quadratic SU(3,C) Casimir operator.

Eg. (11) can be recasted too, using quadratic Casimir operators:

o] o] 4 »>2
-7 o .o, =-4 ] (Fo) .(Fu)_ = N(N-10) + = J° + 4C,(F) + 2C_(C) (13)
1 3 . 1 J 3 3 3
1>) 1>J
2. The sum ranges over all non-strange quarks
The states can be labeled by quantum numbers belonging to the groups
u(i,Y) ® SU(4,IJn) ® SU(2,JS) ® Su(3,C)
We introduce the 15 SU(4,IJn) generators Bb with b = 1 to 15. For the irrep
(4) of SU(4) they are normalized such that Tr BE = 1 and are gaven by:
1 1 1 . _ 1 .
5 (Tk e, 5 1@ 01) and 5 (rk ® UE) with k,2 = 1,2,3. Here 2 Tk with
k = 1 to 3, normalized such that Tr Ti = 2, are the three SU(2,I) generators
in the SU(2,I) irrep with I = 1/2. The quadratic CasimyY operatorforSU(4,IJn)
has i1n the irrep (v) the eigenvalue C4(v) and is given by
¢, = 1 B,.B, .
n .n,
Therefore
_ 15
2ngn B,.B, =C, -NC/(4) =C, - N .
172 11
For SU(4) one has: P, =< (++ 2B,.B_).
i] 2 2 i 3
The wave function for the Nn non-strange quarks is antisymmetric with respect
to non-strange spin and isospin and color, therefore
Jn I C _ _ JnI _ _ C
P12 P12 P12 = 1 and also P12 P12
This gives:
Cc .C 7 7 .2 13
. = - — . = - — - - 14
nzn AL nzn (z+2B.B) SN 3N -C, (14)
12 1 72
and the relation (using eq. (12)):
C, +2C(Cn) = =N (12 - N ) (14"
4 3 12 'n n
cI, I
Also P P = - 1, from which follows that (compare eqg. (13)):

12 12
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c C _4 _ 22 432
- 1 ) 0T, =3 N (N -6) +4 1%+ 3T +2Ci(C,n)
n.>n
)
3.2 4 +2 2
=ZN -N -C 43I +41 (15)

3. The sum ranges over all strange quarks
The states again can be labeled by the quantum numbers belonging to the
groups

u(l,Y) @ SU(4,IJn) ® SU(2,JS) ® SU(3,0) .

The wave function of the Ns strange quarks 1s antisymmetric with respect to
strange spin and color. Therefore

JS C -
PSP, =1 .

This gives:

c ,C 5
XI.AZ =-3-0,.9,
C C 1
- (A 0)1.(A 0)2 =3 - 3940,
Therefore we get
c .C 5 2 7 »*2
SZS A{-dg = =g N_+ 3N =27 (16)
1 72
r using e (12): 2 Cc,(C,s) + 2 32 =32 N (6 - N)
o sing eq. H 3(Css s 6 Vs s
c c, _3 .2 o _ 222
and - 1 o .o, =g N - N - S (17)
$17%;

For a general multiquark system the quadratic SU(3,C) Casimirs C3(C,n) and
C3(C,s) for the non-strange and strange quarks do not vanish, but the color
1rreps of the non-strange and strange quarks must be the complex conjugate of
each other, so C3(C,n) = C3(C,s). Using egs. (14) and (16), Nn = % N + Y and

N - Y, we then find:

1
Ns T3

2 1 2
Y -1—2N(N—18)+3(N—9)Y (18)

This equation and eqgs. (10') and (14') result from the fact that we consider

decompositions of totally antisymmetric states. They enable us to calculate the
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quadratic Casimir eigenvalues for su(6,FJ) irreps and SU(4,IJn) irreps through
the related eigenvalues of c3(c), provided the (sub)system has a unique color-

assignment.

V. The mass operator and SU(6,FJ) tensor operators

Because of conservation of spin, isospin and hypercharge the mass operator
M must transform as a spin and i1sospin singlet with Y = 0. It therefore can
be expressed in irreducible SU(6,FJ) tensor operators M(u,n) transforming as
the I =Y = 0 member of the flavor multiplet n with J = O contained in the

flavor-spin multiplet [p]. Thus

M= Y Mu,n) .
koD

In this version of the bag model these operators M(u,n) are gquadratic
operators constructed from the SU(6,FJ) tensor operators Aa which transform
as members of the SU(6,FJ) irrep [35]. The mass operator therefore has parts

transforming according to
*
[35] ® [35] = [1] ® [35]S ® [35]‘_:l ® [189] ® [405] ® [280] ® [280 ] ,

where s and a mean the symmetric and antisymmetric combinations. From the
tensor operators Aa we can make quadratic combinations {(u,n) transforming
as the I = Y = 0 member of the flavor multiplet n with J = 0 contained in the

flavor-spin multiplet [u]. They are [Be 64]:

Q(L,1) =1 9(189,1)=[C3-J - 10 %
Q(405,1) = [c, + 321 - 2> ¢
' 3 14 6
»>2 1 1,2 1
2(35,,8) =¥ 0(35_,8) =J. -5C,+g ¥ +2C,
2 1 .2 =2 =2 »2 3 .22 1 1.2 1
2(189,8) = 3([1 -7y —Jn+Js]-[c3—J]-Z[Js—5c4+§y +6c6]
22 1 2 22 2 »2 21,22 1 1.2 1
£(405,8) = 3[1 -7 Y +Jn-J]—[C3+J]+B[Js—2C4+8Y +6C6]
_ 422 1 .2 22 2 *2 4 22 1 1.2 1
Q(189,27)—3[I -7 Y Jn+Js] [c3 J]+3[Js 5Ca*+g¥ +6c6]
20 +»2 1 .2 1
-5l -g¥lrgg
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4,22 1 .2  »2 2 >2 4 +2 1 1.2 1
sz(4os,27)—3[1 -7Y +Jn-JS]—[C3+J]-§[JS—EC4+§Y "ECe]
20 22 3 .2 5
t3 g+ 7Yl - 15 ¢
*
2(280,8) =Q(280 ,8) =0

The mass operator for the N quark states in the bagmodel therefore can be

rewritten as:

M= Y mu,n2W,n
H,n

where m(u,n) are constants calculable in the model. Using for convenience the

specific operator combinations, occurring in the Q's, we can write

>2 +2 +2 1 1 .2
M=my o+ ml[c3 -J°] + mz[c3 + 371 + mY + m4[JS -5C+tg¥ ]
22 1,2 +2 +2 >2 2
+ mS[I - Z—Y ] + mG[Jn - Js] + m7Js + mBY .

Different from the mass operator containing only the contributions M(u,1)
and M(u,8) [Be 64] are the contributions ~ Jz and v Yz. These tensors come
in with the M(u,27).

To see which tensors contribute in a particular SU(6,FJ) irrep, we

have to consider the Clebsch-Gordan series

[56] @ [56°]1 = [1] ® [35] @ [405] @ [2695]

[490] @ [490"]

[1] @ [35] @ [189] & [405) & [2695] & ...

[960] ® [980] [1] ® [35] ® [175] ® [189] @ [405]) @ ...

The irrep [35] appears only once in all these products. Therefore the matrix

elements of the operators Q(35a,8) and Q(BSS,B) must be proportional as can
be seen 1in eq. (18). In principle we then are left with a mass operator with

8 nonzero coefficients. However, there 1s some symmetry left, due to the simple

22 22

2>2
form of the bag hamiltonian., The operators C J°, I and Jn coming only

3!
from EM appear in the bag mass operator i1n the specific combinations

1 »2 22 1 22
C3 + S-J and I~ + §-Jn (see egs. (13) and (15)). The resulting mass operator

then has the following structure:

1 2
M= ag + al[C3 + S-J ] +a

_L
4

Y + a [(T? vy + 2 3231+ a3+ axr (19
2 3 n s s 5

3 4
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*
Moreover in the product [56) ® [56 ] the irrep [189]) does not occur. Therefore
the matrix elements of Q2(189,n) disappear between states belonging to the

3
irreps [56] @ [56 ] for n

1, 8, 27. This gives:

2 9
<s6lcy - J7|56> = =

<5£.|3r21 - 3§|56> = <s6|1? —%Yz +y - %|56>

<56]3z]56> <56|:11-Y2 - Y+ %|56>

X
In the relations for the irrep [56 ] Y has to be replaced by - Y. The mass
operator for the B = 1 and B = 5 states therefore can be simplified to

_ 22 22 1.2 2
M—bo+b1J +b2Y+b3[I 4Y]+b4Y (20)

Up to the term ~ Y2 coming from the M(405,27) contribution in this specific
case, this is the familiar SU(6) mass operator [Gi 64].

Having performed the summations for the color-magnetic and color-electric
interaction terms in section IV we may collect all terms to yield the following

mass operator:

Z 200+ a o - a
_ 4nm 3 0 n S s n
M= 3 BR R + N R R Y
[s ]
c 1 »2..
+ 1 Mos {N(N - 10) + 4[c3 +39 1;
%c 3.2 22 1 22
+ 4R (Mnn - Mns) {Z-Nn - Nn - C4 + 401"+ S'Jn]}
a
c 3 2 2 »2
* 4R (Mss - Mns) {2 Ns - Ns -3 J5}
O"c 7
* 4R (Enn - Ens) {TE Nn(12 - Nn) - C4)
a
c 5 >2
* 77 Eee = Epd {6 N_(6 - N) -2 Js}

M can be rewritten in combinations occurring in (19). The coefficients are:

20+ o a
n

Z
_ 4rw 3 0 S c 2 1
a =~ 3 BR RPN T3t NN - 10 EM M)
1 - 5 =
+N(18-N)(6M+§E>}
uC
a1 = ?;-Mns
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0Ls - 0ln ac 5 2 = 5 =
a2=— R +E{(§N_7)(MDH_MSS)+(N-9)(§M+.§E)}
%c
a3 = Eﬁ-(Mnn - Mns)
a
c ,2 = =
a4-—-ﬁ(§M+2E)
o
- < 35-3%3
3, = zg GM-gHE
where M = +M =-2M andE=E +E - 2E_ . Using the values of
nn ss ns nn ss ns

the functions a,, M,
i ij

and Eij 1n Table V, we are able to calculate the

coefficients a, to ag in eq. (19) for B = 1 to 6 and b0 to b4 in eq. (20)
for B = 1 and 5. They are listed in Table VI and VII.
B 2 2 2 23 3y as
1 0.9337 0.0571 -0.1896 0.0148 -0.00422 -0.00024
2 2.2091 0.0414 -0.1613 0.0146 -0.00492 -0.00019
3 3.4789 0.0352 -0.1297 0.0144 -0.00523 -0.00016
4 4.8003 0.0305 -0.0992 0.0142 -0.00548 -0.00012
5 6.1666 0.0276 -0.0680 0.0140 -0.00564 ~-0.00009
6 7.5766 - - - - -
Table VI: The coefficients for the general mass formula (see eq. (19)).
B bo b1 b2 b3 b4
1 1.054 0.0762 -0.1805 0.0197 -0.0013
5 6.221 0.0368 -0.0783 0.0187 -0.0015

Table VII: The coefficients for the mass formula for B

eq. (20)).

1 and 5 (see
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VI. Numerical analysis and discussion

The bag parameters B, ZO, ac and ms were determined to give the best
overall reproduction of the light (B = 1) baryon masses, using one R value
for the entire multiplet, as well as reasonable values for the K, K*, w,
and ¢ meson masses. The model proves to be sensitive to variation in B,
whereas the other dependencies do not seem to be very critical. Comparison
with the values obtained by the MIT-group [DeG 75] shows that o, has become
a little smaller and ZO a little larger. The second parameter shift causes the
masses to be somewhat smaller correcting for the fact that, since we do not
minimize for each state separately, our masses tend to be slightly above
minimum values. The mass spectrum of the B = 2 to B = 6 baryons does not exhibit
significant shifts, when changing from one set of parameters to the other.

In Table VIII the coefficients bo to b4, following from our parameters,
are listed (A), together with the values, which we found by treating these

coefficients as independent parameters and determining them directly from

the baryon spectrum (B). The resulting masses for both sets of coefficients

A B MA MB MEXP

[ - S - -

b, ' 1.054  1.062 N ! 0.939  0.939 0.939
|
b, 0.762  0.717 A 1.111 1116 1.116
b, E -0.181 -0.192 % } 1.150 1.186  1.193
b, 0.020  0.035 = ' 1.300 1.323 1.318
b, | -0.0013 -0.0020 5, 1227 1.260 1232
o ; 1.379  1.401 1.385
= 1.529 1.538 1.533
|
Q| 1.676 1.672 1.672

Table VIII: Numerical results for B = 1 (sce text). All values in GeV.
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are given together with the experimental values. Comparison gives an 1indication
about the applicability of the mass formula and its MIT bag analog. The
calculations were carried out under the assumption that the spherical cavity
approximation remains reasonable for higher B-systems.

The computation of coefficient b4, occurring in the term b Yz, which for

4
1nstance breaks the equal spacing in the decuplet, gives the correct sign and
order of magnitude as compared with the result in column B of Table VIII. The
value of b3 determining the I-A splitting, 1s too small, which seems to be
i1nherent to the bagmodel. The agreement with the experimental spectrum is
fairly satisfactory.

For B = 2,3,4-states the mass operator 1s diagonal with respect to J, Y
and I. Mixing occurs between different flavor multiplets with the same J, Y and
I, when a particular flavor state 1s a linear combination of some (Jn, Js)
states. Since the contribution of the SU(3,F) quadratic Casimir C3 in the

mass formula is much larger than the contribution of Jn, Js (a1 > a3, a4),

the mass operator 1s almost diagonal in flavor. In Figs. 1, 2, 3 the masses

of the multi-baryon states with B = 2, 3 and 4 and S = 0, ~1, -2, have been
plotted together with the important thresholds. The states are denoted by their
guantum numbers S, I, J, and the flavor multiplet they (mostly) belong to.

In Tables IX to XII a complete list of the multi-baryon masses has been given.
The states that participate i1n mixing are supplied by an alphabetic that
1ndicates the uncertainty, induced by this mixing. Apart from these uncertain-
ties, there are of course the ones due to the bagmodel. The almost complete lack
of data keeps us from saying anything about the absolute mass scales. Thas

1s mainly due to the fact, that the hadron mass rather strongly depends on

the volume-term 1n EB, which may be too simple a picture to maintain for higher

mass states. The relative positions seem to be more reliable, as they depend

on the color interaction [DeR 75],
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Fig. 1: The masses of the B

Fig. 3).

= 2 baryons,

for S = 0, -1 and -2 (see



- 103 -

Y I J F  Mass(GeV) Y I J F  Mass(GeV)
2 3 0 28 2.79
2 1 35 2.49 0 27 2.56
1 2 27 2.34 0 2 27 2.63 b
0 27 2.24 8 2.43 b
0 3 10" 2.34 1 8 2.35
1 10" 2.16 0 27 2.54 a
1 5/2 1 35 2.69 ! 2.20 a
0 28 2.91 -1 3/2 3 10" 2.82
3/2 2 27 2.52 2 27 2.82
1 35 2.63 a 1 35 2.94 a
10 2.38 a 10* 2.69 a
0 27 2.42 o 28 3.16 a
1/2 3 10" 2.51 27 2.74 a
2 27 2.49 a 1/2 2 27 2.78 b
8 2.29 a 8 2.57 b
1 10" 2.34 a 1 35 2.89 b
8 2.21 a 10 2.64 b
0 27 2.38 8 2.52 b
0 2 2 27 2.70 0 27 2.71
1 35 2.81 -2 1 2 27 2.95
0 28 3.04 a 1 35, 3.06
27 2.62 a 0 28 3.29 a
1 3 10" 2.66 27 2.87 a
2 27 2.65 a 0 1 35 3.04 b
8 2.45 a 10 2.79 b
! 35 2.76 b -3 1/2 1 35 3.19
10* 2.51 b 0 ’8 3.41
10 2.51 b
L g 2.39 b -4 0 0 28 3.54

Table IX: Masses of the B = 2 baryons in GeV. The uncertainties, induced
by the mixang, are a < 10, 10 <b < 20, and 20 < ¢ < 30,

a, b and ¢ in Mev.
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F1g. 2: The masses of the B = 3 baryons for S = 0, -1 and -2 (see

Fig. 3).
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Y I J F Mass (GeV) Y I J F Mass (GeV)
3 3/2 3/2 64 3.70 0 3 32 64 4.19
/2 12 35 3.50 2 5/2 27 3.92
2 2 /2 64 3.87 32 64 4.12 b
/2 35 3.72 27 3.87 b
1 5/2 27 3.64 /235 3.980p
32 64 3.82 a 3 3.98 b
27 3.57 a 27 3.84 b
12 3 3.66 a ! /2 8 3.79
” is2a | s/2 27 3.90 b
0 32 100 3.46 ! 8 3.72 b
I 3/2 64 4.07 ¢
27 3.83 ¢
1 5/2  3/2 64 4.03 10 176 o
172 35 3.89 0" 376 c
32 s/2 27 3.78 o 365 o
3/2 64 3.79 b 1/2 15 3.94 a
27 3.73 b ¥ 3044
10 3.66 b 07 180 a
V2 3% 3.82a o 362 a
3 3.82 a 0 9/2 1 3.79
27 3.68 a 1/2 8 3.79
172 172 8 3.67 ;2 27 386
5/2 27 3.75 a o 368 o
8 3.57 a 1 3.58 ¢
3/2 64 3.93 b 2 ea 405 o
27 3.68b ’ 180 <
10 3.61 b o 163 o
8 3.51b . 152 o
172 35 3.78 a - 376 b
27 3.64 a . y 58 b
8 3.46 a

Table X: Masses of the B = 3 baryons.
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Y I J F  Mass(GeV)
-1 5/2 3/2 64 4.29
1/2 35* 4.15
3/2 5/2 27 4.04
3/2 64 4.23 b
27 3.99 b
*
10 3.92 b
1/2 35 4.08 a
35* 4.08 a
27 3.94 a
1/2 7/2 8 3.93
5/2 27 4.01 a
8 3.83 a
3/2 64 4.19 b
27 3.94 b
10 3.87 b
8 3.77 b
1/2 35 4.04 a
27 3.90 a
8 3.72 a
=2 2 3/2 64 4.38
1/2 35* 4.24
1 5/2 27 4.16
3/2 64 4.34 a
27 4.09 a
1/2 35 4.18 a
27 4.04 a
0 3/2 10 3.98
1/2 35 4.15
-3 3/2 3/2 64 4.48
1/2 1/2 35 4.28

Table X continued
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Fig. 3: The masses of the B = 4 baryons for S = 0, -1 and -2. The
states are characterized by the flavor representation, they
dominantly belong to, and their spin. Nearby thresholds are
represented by dashed lines, labeled with the name of the

corresponding channel.
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Y I J F Mass (GeV)
T T x
4 0 0 28 4.89
*
3 1/2 1 35 4.86
*
0 28 5.03
2 1 2 27 4.91
*
1 35 4.99
*
0 28 5.16
27 4.85
*
0 1 35 4.97
*
10 4.79
1 3/2 3 10 5.04
2 27 5.04
*
1 35 5.13
10 4.94
x
0 28 5.29
27 4.98
1/2 2 27 5.00
8 4.85
*
1 35 5.08
*
10 4.90
8 4.81
0 27 4.95
0 2 2 27 5.18
*
1 35 5.26
*
0 28 5.43
27 5.12
1 3 10 5.14
2 27 5.13
8 4.98
Table XI: Masses of the B =

1}

o o o p

a

a

4 baryons.

5/2

3/2

1/2

J

- N QO

= W O N = O

F

Mass (GeV)

*
35

*
10
10
8
27
27
8
8
27

1

35
*
28
27
*
35
%
10
27
10
27
8
10
8

27

28
35
27
27
10
10

5.21
5.03
5.03
4.94
5.06
5.11 b
4.96 b
4.90

5.04 a
4.80 a

o v v o

5.40
5.57
5.26
5.34 a
5.15 a
5.19
5.25
5.23 a
5.08 a
5.11 a
5.02 a
5.15

5.70
5.47
5.35
5.27
5.35
5.20
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Y I J F Mass (GeV)
1 3/2 3/2 10 1.227
1/2 1/2 8 0.939
0 1 3/2 10 1.379
1/2 8 1.150
0 1/2 1.111
-1 1/2 3/2 10 1.529
1/2 8 1.300
=2 0 3/2 10 1.676
B =1
Y I J F  Mass(GeV)
*
2 0 3/2 10 6.18
*
1 1/2 3/2 10 6.29
1/2 8 6.18
*
0 1 3/2 10 6.40
1/2 6.29
0 1/2 6.25
*
-1 3/2 3/2 10 6.50
1/2 1/2 8 6.34
B=25
Table XII: Masses of the B = 1 and

B = 5 baryons.
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Next we will discuss some of the the predictions.

NN system:
_ 3 3
We find one resonance at ECM = 2.16 GeV (Tlab = 610 MeV) 1in the S1 - D1
wave, one 1n the 150 wave at ECM = 2.24 GeV (Tlab = 790 MeV) and two (almost?)
degenerate resonances: one in the 1D2 and one in the 3D3 - 3G3 waves at
ECM = 2.34 Gev (Tlab = 1040 MeV). At present we are not able to extract

information about the widths from the bagmodel.

The experimental evidence comes mainly from two experiments, the below
guoted resonance parameters are assignments emerging from the subsequent
analyses. The first source 1s a transmssion experiment, performed at Argonne,
using polarized proton targets and beams [Yo 78, Ho 78). One finds support for
a 1D2 pp resonancelike structure with M = 2.14 - 2.17 GeV and T = 50 - 100 MeV,

which, however, by its position 1s suspected of being a AN threshold effect

(cusp), and possibly a 1S (or 1G4) resonance at M = 2.43 - 2.50 MeV, T = 150 MeV.

0

P
If these J assignments prove to be correct the uncovered level ordering is
the inverse of what 1s expected on the basis of the MIT bagmodel extrapolation,
and the thereby made approximations need to be reexamined. In the second
experiment [Ka 77, Na 78, Ho 78] the reaction vYd + np i1s studied. Here one
finds i1ndications for resonant behavior at M = 2.38 GeV (I = 200 MeV), for

P + +

which the assignments I > 0 and J =1 and 3 are favored. This effect could
be due to the degenerate 1D2 or 3D3 states.

Both experiments agree on the existence of an I = 1, 3F3 resonance around
3.26 GeV, T =2 100 MeV, which may be interpreted as an L = 1 dibaryon state and

therefore lies outside the scope of this treatment [Ae 78].

YN system:
+
In the AN channel we predict a.o. an (g, 1) resonance at 2.21 GeV, an

¥+
(8, 2+) resonance at 2.29 GeV and a (10 , 1) resonance at 2.34 GeV. Established
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[Br 77, sh 73, Ka 71, Ta 69] 1s the Ap resonance at the Z+n threshold
(M = 2.13 GeV). Because this state can very well be explained in potential
theory [Sw 62] being the YN equivalent of the deuteron, 1t certainly 1s not
one of the states mentioned above.

No structures are found i1n direct Ap scattering experiments [Al 68,
HaK 77] nor in pp reactions [Ca 78]. The main positive experimental evidence
comes from interactions with deuterium and heavier nuclei as targets. Four
mass regions show to be of interest. A region around 2.1 GeV, where a An
resonance with M = 2098 MeV, [ = 20 MeV has been proposed [Co 64]. Secondly
a region around M = 2.14 GeV just above the IN threshold where there is weak
evidence for another resonance [Br 77, Sh 73, Ka 71, Ta 69]). This could be
the above mentioned (§J 1+) resonance. Another region around 2.24 GeV, where
a resonance 1s found by Shahbazian [Sh 73] at 2.25 Gev, I' = 20 MeV. The
Berkeley data also show a peak at 2.24 GeV [ka 71], which however, has not
been confirmed later, by the same group [HakK 77). Furthermore, an enhancement
at 2.22 GeV, ' = 20 MeV has been reported by Buran [Bu 66]. This structure
probably 1s the (8, 2+) resonance. A fourth region is around 2.34 GeV where
the Berkeley [Ka 71), Dubna [Sh 73] and Princeton Penn accelerator [P1 64]
data show peaks (statistically not significant). We would like to assign this
effect to the (lgf, 1+) state. Of course additional information about JP 1s

needed to decide these questions.

YY and EN system:

The most remarkable prediction is that of a bound (l! 0+) state at
2.20 GeV. Furthermore there are the I = 0 states at M = 2.35 GeV (8, 1+) and
at 2.43 Gev (8, 2+) and the I = 1 states at 2.39 GeV (8, 1+) and 2.45 GeV

8, 2%.
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For AA this means a bound state about 30 MeV below threshold in the
1so wave. The (8, 1+) resonance should appear in the 351 - 3D1 waves of :N
and possible LY. Due to the Pauli principle the isoscalar JP = 1+ state can
not decay in the AA channel.

A possible candidate for the (8, 2+) I = 0 state is the AA resonance
at 2.37 GeV, T = 50 MeV, reported by Shahbazian [Sh 73] and Beilliére [Be 72].
None of these structures have been confirmed by later, more sensitive
experiments [Wi 75].

If the above arguments are correct, we see that our lowest states are

consistently 40 - 60 MeV high. This would mean that the AA bound state may

even be 90 MeV below threshold at 2.14 - 2.16 GeV.

Next to the standard resonance interpretation, an alternative is proposed
by DeTar [DeT 78]. He observes, that the lowest Y = 2 dibaryon state has the
quantum numbers of the deuteron, but a much higher mass. It is a colorsinglet
six-guark bag, which part of the time consists of two threequark colorsinglets
(a proton and a neutron) and therefore is unstable. To study the expected
fission process he distributes the quarks evenly over 'left' and 'right'
orbitals, which to good approximation are mixtures of the static spherical

cavity 1s1/2 (S) and 1p3/2 (P) modes of the form:

q /G and the plus sign for the right orbital.

tm ~ Ism ~ qum !
By letting p go from 0 to 1 the two groups of three quarks become completely
separated. In the course of this variation the shape of the bag changes from
sphere through peanut to two spheres. Calculating the semiclassical energy

of the deformed system, he finds that it is minimal at a partial 'two nucleon'
separation, for some finite value of u between O and 1. This result suggests
that we may interpret the deuteron like state at 2.16 GeV as manifestation

of the repulsive, finite height, core in the two nucleon interaction. Between

this very short range and the free two nucleon limit (1 fm) is an intermediate
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region of attraction between the two nucleons due to the fact that (with
decreasing separation) the fusion of the two bags into a single larger one
initially lowers the quark energy eigen values, because of the larger space
available. Further refinements and extension to all available channels allow
DeTar to extract the various two nucleon potential terms (central, tensor, etc.).
His results are in, mainly qualitative, agreement with some of the exaisting
potentials, but the model 1s still too crude to expect quantitative agreement.

We think this example 1llustrative of the fact, that the different nature of

the 1nstability of systems containing color singlet subsystems as compared to
unstable systems, which decay through e.qg. Q§ parr creation (A,¢,p), may

require a different interpretation for the parameters characterizing these
systems. The interpretation, that the singlet baryon pair component 1s at

the root of the problem, 1s also supported by independent analyses of another
hadron system with an exotic quark content, the Q2Q2 system [Ja 78]. Thas
configuration displays the first kind of instability at one (low) level of
excitation, whereas 1ts behavior shows the standard resonance properties at
another higher one. In the latter case the hadron 1s successfully described

as two (quark) concentrations of opposite color, separated by an angular momentum
barrier. No singlet components are present and decay 1s supposed to proceed

-~ 2
via QQ palr creation. The Q2Q system 1s the subject of chapter 4.
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2.2
CHAPTER 4: THE Q“0° SYSTEM

Next to the QQ mesons and Q3 baryons the most simple all quark color-
singlet states have a QZQZ (dimeson or baryonium) configuration. The study
of these mesons, which quantitatively has become feasible only rather
recently [Ja 76], 1s interesting because of several reasons. First of all,
1t 1s the smallest system, in which the color degrees of freedom are not
frozen out completely, and as such may provide a way for verifying the
validity of the concept of color, and add support to the theory of strong
interactions based on 1t: QCD.

Until now, every new degree of freedom but one has manifested itself
spectroscopically through the increase of the number of physical states. A
nice example of this i1is the discovery of the flavor degree of freedom: charm,
which has opened up an entirely new field of spectroscopy. One has been able
to produce charm in both 1ts hidden (1n hadrons containing equal amounts of
charmed quarks and antiquarks and therefore without net charm) and overt
form [Fe 77]. One has identified a threshold, above which strong decay into
charmed particles 1s possible. Similarly, the existence of the color degree
of freedom may be demonstrated by the discovery of colored particles (quarks?),
making tnemselves known by characteristic decay patterns. However, no such
thing as a color threshold has been found, within the present range of
energies. This 1s formulated in the color confinement hypothesis which states
that only color singlet hadrons are physical. This implies, that overt color
will only be demonstrable at a subhadronic level, e.g. through the scaling
violations predicted by QCD. However, the hidden form can be detected
through e.g. multiquark systems like Q2§2 [chH 77, Jc 78].

There 1s only one way in which a 00 meson can exist as a color singlet.

Because the quarks transform as a color triplet (3) and the antiquarks as a
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color antatriplet (3%), the Qé system can in principle occur in a color
singlet (1) or color octet (8) configuration- 3 @ 3% = 1 @ B, of which the
octet has to be excluded here. Considering for the moment only S-wave hadrons,
1n which the quarks all occupy their lowest energy eigenmode, and only three

P -
quarkflavors: u, d and s, one finds two flavor multiplets: a J =0 and a

Jp = 1~ nonet.

Also the Q3 baryon has no color freedom left. The Q2 (diquark)
configuration has either a symmetric, color sextet (6) or an antisymmetric,
color antitriplet (3¥) wave function: 3 @ 3 = 3* ® 6. Only the 3* state can
combine with the remaining quark to form a color singlet. One has:

6 ® 3 =86 10, 1.e. no singlet for the other state. Again one finds two
flavor multiplets, the JP =1/2 + octet and the JP = 3/2 + decuplet.

The Q2§2 meson consists of a diquark-antidiquark combination. The QZ
occurs 1n 3* ® 3* = 3 ® 6%, Now there are two ways to obtain a color singlet.
First, there is the 3* - 3 singlet. Secondly, also the sextets can be matched
1nto a singlet: 6 ® 6¥ = 27 ® 8 ® 1. For each flavor multiplet expected from
the direct product of two Q0 color singlets (1 @ 1 = 1), one obtains an
additional one which 1s unambiguously confirming the extra color freedom:
since 8 8 8 =186 81 ® 82 ® ..., also with QQ color octets a singlet can be
constructed. We find, that already at the level of QZQZ S-wave hadrons the
number of predicted states 1s beginning to explode. A large amount of
heavily mixed, generally rather broad hadrons emerges. This 1llustrates a
little the nature of complications associated with the extra color freedom.
To study systems with still more color freedom therefore 1s not attractive,
since 1t also entails an of necessity larger number of quarks, accompagnied

3
by an even larger number of flavor spin multiplets, cf. Q3§ . The next simplest

system probably 1s the Q4§ baryonic one [Fu 78].
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Secondly, several of the Q2Q2 states possess remarkable features, which
may allow detection i1n a large background. In the mass region of the S-wave
Q2Q2 states (M =~ 1 to 2 GeV) also many orbitally and radially excited Qé
mesons are expected. These are the states known from the nonrelativistic quark
(NRQ) model, which classification scheme provided until lately the sole
candidates for the hadron states, reported by the experimentalists. Besides
QZQZ systems, QCD also predicts the existence of hadrons, containing only
glue (glueballs) [Ro 77] and both glue and quarks (e.g. QOG) [HoM 78]. One
does not expect such configurations to be prominent, because the gluon content
must be converted into colored Qé pairs in order to allow decay into ordinary
Qé mesons. Even the configurations with exotac JPC quantum numbers (0" and
O+_, 1_+, 2+_, etc.) do not seem to be easily detectable, both through their
weak coupling, and through the experimentally rather inaccessible decay and
production channels. Some of the dimesons, on the other hand, contain a large
fraction of color singlet meson pairs and decay by simply falling apart into
S-wave meson-meson channels. Since several of these are even lighter than the
corresponding Q0 excitations, they may be quite prominent. Also because of
the excess flavor combinations of the four quark system over the two quark
system, some dimesons have exotic (1.e. not available for ordinary NRQ-model
mesons) flavor quantum numbers, which yield clear and uncontested decay patterns.
Further distinct signals are expected to come from orbitally excited Q2§2
systems. Here one has to make several additional assumptions concerning the
color dynamics. In the emerging model the hadron is thought, for sufficient
large orbital angular momentum % (% > 3), to consist of two quark clusters
of opposite color charge, which are spatially separated by an angular momentum
barrier. In our case a possible cluster 1s a diquark in a pure color antitriplet

or sextet or a Qé pairr 1n a color octet configuration. The color-triplet type
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of these hadrons is supposed to couple strongly to baryon-antibaryon- and
only weakly to meson-meson-channels [Ro 68). It presumably has a usual
hadronic width (' ~ 100 MeV). The second and third variety are expected to
couple weakly to both these channels, preferring to cascade via meson
emission to lighter hadrons with the same color configuration [chH 77]. They
therefore must be much more narrow, despite their high mass. Identification
of such states will mean an important support for the concept of color.

In section I we will set the notation and discuss the S-wave Q2Q2 states.
In section II we focus our attention on orbitally excited Q§ mesons, and try
to read off some dynamical properties. In section III the observations of the
previous section will be brought to bear upon the orbitally excited 9262 system.

In section IV a comparison with the available data is attempted.

Section I. S-wave QZQZ states [Jc 77]

We will calculate the masses of the unexcited or S-wave Q2§2 mesons and
obtain the corresponding wavefunctions, using the spherical cavity approximation
to the MIT bagmodel. To this end, only quarks, that occupy the lowest energy
eigenstate, will be considered. We will also make the restriction, that only
those quark flavors are taken into account, that correspond to the smallest

quark mass parameters: u, d and s.

1. Basisstates

To study two quarks and two antiquarks in one bag it is most convenient,
in view of the FD statistics, to take those basis states in which the total
. . . X 2 =2 . 2=2
(anti) quark permutationsymmetry is evident: the Q —-Q basis. The Q Q states
2

_2
are then given by the direct product of the Q" and Q basis states. The quark

wavefunction consists of three parts:
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1. Flavor
The quark transforms as a triplet (n = 3) under the flavor group SU(3,F).

The states with the correct SU(3,F) transformation behavior are denoted by

¢:, where the labels stand for dimensionality (p) and quantum numbers (v):
(u;v) = (gji,iz,y), indicating the total and z-component of isospin and

hypercharge eigenvalues. We will use the shorthand notation

us= (3; 1/2, 1/2, 1/3)
d=(3; 1/2, -1/2, 1/3)
s = (3; 0, 0, -2/3) .

The antiquark transforms as an antitriplet (n = gf, where the asterisk is
used to distinguish it from the three~dimensional quark irrep). The triplet

*
and antitriplet are related according to: ¢£3 ) - (¢3)*n, with

+
(=v) = (il' —iz, -y). The phasefactor is taken to be real: n = (_)Q(v) 1/3,
with eQ(v) = (iz + y/2)e, the quark charge. The factor 1/3 can be generalized
to

1/3 > 1/3 . [ (number of quarks - number of antiquarks) modulo 3].

One finds the shorthand

u

= - (i*? 1/21 _1/21 "1/3)
d= (3* 1/2, 1/2, -1/3)
s = (3*5 0,0, 2/3) .

This convention coincides with de Swart's [Sw 63] for states with integer
baryon number. Note that I4d = u, but I u = - d for the isospin raising

operator I,. The Q0 octet then has the following flavor wave functions

+ _ = 0 _ .- + _ = 0 _ uu+ dd
K = us H K~ = ds ; T = ud - : o= - —T
- - -0 - - - 1 - - -
K = - su ; K = sd ; m =~ du ; nB = -7 (uu + dd - 2 ss)
and n, = - a? (uu + &d + ss) 1s the singlet wavefunction.

One can define the special combinations no = ;? (uu + dd) and ns = ss.
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When we are referring only to the flavor aspect, the pseudoscalar meson
symbols will be used without any assumptions for the spin.
2. Color

The quark is classified according to the three dimensional defining
irreducible representation (irrep) c = 3 of color SU(3,C). The conventions
for flavor are also taken for color. For shorthand one may now use (r,b,y)
instead of (u,d,s).

3. Relativistic spin

The bagmodel gives a relativistic covariant description of the quark

dynamics. The space and spin properties are represented by means of a Dirac
> > >

spinor, which is characterized by the total spin j (j = £ + s), its z-component
m, its parity and the radial quantum number n. The lowest energy quark eigen-—
mode has n = 1, j = 1/2 and positive parity and is referred to as the 1s1/2
mode, a name also used for the corresponding antiquark groundstate. This
quark therefore transforms according to the j = 1/2 irrep of the relativistic

spingroup SU(2,J). We adopt the Condon and Shortley phase conventions.

With the quark wavefunctions, we can construct the diquark states. We
have listed the diquark-irreps with the permutation symmetry,\for color, spin
and flavor separately in Table I. The anti-diquark always belongs to the

conjugate representation.

Symmetry color (c) flavor (n) spin (3)
Antisymmetric (-) 3% 3* 0
Symmetric (+) 6 6 1

Table I: Permutation symmetry of the diquark configurations.
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With the help of this table we can pick out the (anti) diquark product
wavefunctions, which meet the FD statistics requirements. We denote the

allowed combinations by (c,n,j) and list them in column 1 (2) of Table II.

Digquark ® Anti-diquark > Dimeson (cngz =1)

(Co2r DBoae jQz) (c§2, N2 jQ2) 05252 I9252 label
(3%, 3%, 0) 3,3,0 861 0 9,
(3, 6%, 1) 10* & 8 1 9,

(3*, 6 , 1) 3 ,3,0) 10 &8 1 ¢3
(3, 6% 1) 27 @801 0 ¢4

1 ¢

2 ¢6

6,6, 0) (6%, 6%, 0) 27 #8601 0 ¢,
(6*, 3, 1) 10 &8 1 g

6 , 3%, 1) (6%, 6%, 0) 10* ® 8 1 99
(6*, 3, 1) 881 0 ¢10

! ¢11

2 4512

Table II: Flavor and spin content of the Q2§2 color singlet states

The Q2Q2 representations are obtained by taking the direct product of the

Q2 and Q2 irreps in each sector. We are only interested in the color singlets
contained in this product. Other color configurations are not included in
Table II. We use the convention of listing the diquark properties each time
before the anti-diquark ones. The isospin (i) and hypercharge (y) content of

the occurring flavor multiplets is given in Table III. Next to the repre-

- sentations with non exotic flavor quantum numbers 8 and 1, we also encounter
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n T i,y
®
1 (0, 0)

(1/2, 1/3) @ (0, =2/3)
3* (0, 2/3) ® (1/2, -1/3)
6 (1, 2/3) & (1/2, -1/3) & (0, -4/3)
6* 0, 4/3) @ (1/2, 1/3) ® (1, -2/3)
8 (1/2, 1) ® (1 + 0, 0) & (1/2, -1)
10 (3/2, n @& (1, 0) ® (1/2, -1) ® (0, -2)
10% (0, 2) ® (1/2, 1) ® (1, 0) ® (3/2, -1)

27 (1, 2) ® (3/2+1/2, ) ® (2 + 1+ 0, 0) ® (3/2 + 1/2, -1) ® (1, -2)

Table III: Reduction of flavor multiplets n in terms of isospin (i) and

hypercharge (y): n = E (i,y).

cxotic ones, from the point of view of the non relativistic quarkmodel in
the irreps 10, 10* and 27. The QzQz states with singlet or octet flavor-q-
numbers will be called crypto-exotics (C states), the others are true
exotic (E) states. We will return to flavor matters after treatment of the
bag hamiltonian and concentrate on the color and spin properties of the
wavefunction first.

The QZ—QZ basis is very useful for taking stock of the allowed states.
To find out, which Q2§2 states couple to a particular meson-meson channel, one
has to decompose them in terms of Qé—Qﬁ basis states. The Qé system can
occur in, color or flavor, octet or singlet configurations with spin J = 0
or 1. In this basis the quark permutation symmetry no longer is obvious, but
as a consequence, only definite linear combinations can occur. These are

found by a recoupling of the QZ—QZ wavefunctions. One writes down explicitly
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the wavefunction of a suitable Q2—§2 representative in terms of the quark
degrees of freedom and determines the overlap with QQ-QQ wave functions, with
the same quantum numbers, also written in terms of quarks. This can be done
for color and spin separately. The results are listed in Table IV. Because
the color and flavor part of the wavefunction both have SU(3) as a symmetry

group, we have gathered all occurring SU(3) combinations in one table.

J=0 (1,1;0) (0,0;0) J =2 (1,1;2)
1 3
(1,1;0) -7 2 (1,1;2) 1
3 1
(0,0;0) n 7
J =1 (1,1:1) (1,0; 1) (0,1;1)
1 1
(1,1; 1) 0 5 5
1 1 1
(1,0;1) 7 vy -7
1 1 1
(0,1;1) 5 -2 T
Table IVa: Recoupling matrices for spin J: (J_,, J=o; J) > (J -, J'=; J)
n=1 (1,1;1) (8,8:1)
1 2
* . - = - £
(3%,3 ;1) 3 3
2 1
* —_ - —
(E I_ '_) 3 3
n=2_8 (g,g;gd) (g,g,gf) (1,8:8) (8,1:8)
5 1 1
* = - —— _———
(3.3 38 6 0 12 12
1 5 5
*, = 2 =
© /649 : 0 5 7
1 1 1
* ok = = - =
(3*,6%:8) 0 5 2 i
1 1 1
(6 ,3 :8) 0 5 -7 7
n =10 (8,8;10) n = 10* (8,8;10%) n =27 (8,8;27)
(6 ,3 ;10) 1 (3 ,6 ;10%) 1 (6 ,6%;27) 1

n) < (n_-,

g2 og’ opt 2
3

A vV 1s to be understood over every coefficient, e.g. for % read v g

Table IVb. Recoupling matrices for SU(3): (r_le,
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2. The hamiltonian (see Chapter 2, II and III)

To estimate the masses of the Q2Q2 meson states, we make use of the MIT
bagmodel. In this relativistic quark model there is no essential difference
in the description of the Q§, Q3, Q2Q2 or other multiquark states. The masses
of the particles are the eigenvalues M of the spherical bag hamiltonian [DeG 75]

(cf. Chapter 2, eq. (81)):

= + + +
H EV E EM E

G E

EV =3 B R - R : the energy associated with the bag geometry.
a(miR)
EQ = 2 ni a— : the rest + kinetic energy of the n, quarks and anti-
i
quarks with mass m, .
%c
EM = ? y M(miR,ij) (l-‘c;)i(F‘o):.l :  the mutual color magnetostatic interaction
i>3
energy of the (anti)quarks.
o
E_ = = z E(m ,R,m R)l=‘2 + z E(m,R,m.R)F F : the total color
E R i i i i i i 3j i3

electrostatic interaction energy of the (anti)quarks.

In case of only weak residual interactions between the quarks, one would
expect the average masses of the multiquark states to be roughly proportional
to the number of quarks: Qé ~ 2M ~ 700 MevV, Q3 ~ 3M ~ 1050 MeV, in case of just
nonstrange quarks. One finds: QzQz ~ 4M ~ 1400 MeV. This suggests that the
lightest four quark states will lie amid of the heavier two and three quark
ones. It may then constitute a good first order approximation to take the

parameters obtained by fitting the QQ and Q3 mass spectrum. One has

874 = 0.146 Gev or B = 56.8 MeV fm >
ZO = 1.84 or Zo = 368 MeV fm
m =0 GeVv m = 0.279 GeVv a = 2,20 .
n S C

Of these B, which is thought to be a property of the vacuum, and m (= 0)
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are expected to be real constants. The parameters m_ and a . may, on the
basis of asymptotic freedom arguments, have a weak dependence on the total

mass- The behavior of Z0 1s rather uncertain. One should not expect the

estimates to be very accurate (+ 50 MeV or so). However, taking these
2.2
parameters will be justified for most Q ¥ states by the mass eigenvalues.

The bagradius R 1s determined by the condition, that M = M(R) be

M
minimal: R - 0. In this mass operator u(mlR), M(mlR,mJR) and E(mLR,mJR)

are functions of the products of the mass m, of the quark and the bagradius
R. One has a(0) = 2.043 and M(0,0) = 0.177. For systems in which all quarks

and antiquarks have the same mass EE = 0. It 1s positive and negligible

otherwise, due to our choice of m, - m.- For simplicity we therefore shall
omt EE from our calculations. Finally we have: Fl, which 1s one of the eight
generators of SU(3,C) and takes the form (see appendix B):

Fi =5 the irrep 3, in case 1 1s a quark label (a =1,...,8) and
a%x

A
- Tf-ln the 1rrep 3%, 1n case 1 1s an antiquark label, (Tr X2) =2,

and o which 1s one of the three generators of SU(2,J). Acting on the quarks
they are represented by the Pauli spin matrices: Tr 02 = 2.
We can divide the study of the eigenstates of H in two parts:

1) Vanishing quark gluon coupling: e, = 0 (flavor basis states)

The hamiltonian now consists of the terms Ev and EQ. For a particular
multiquarksystem (here the Q?QZ one) 1ts eigenvalues only depend on the
number of strange quarks n_. This 1s a direct consequence of givang the
strange and nonstrange quarks different mass parameters. Thas situation,

P —_
called 1deal mixing, i1s familiar from the J 1 vector mesons, where 1t

can be observed in a rather pure form. The I = 0 states of the octet and

singlet: n8 and n1 1in our flavor notation, are mixed to such extent that the
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resulting physical states appear to contain almost exclusively nonstrange,
no, or strange, Ngr quarks. One refers to this heavily mixed octet and

singlet multiplet as a nonet. Also in case of the dimesons it is not proper

anymore to refer to SU(3,F) irrep dimensions. Rather

Fe3 =9 ©3 =18

|

éf ® éf = lgf §_ ® éf = 36

The ideally mixed states will be taken as basis states for the flavor
part of the wavefunction. Following Jaffe [Jb 77] we adopt the following
nomenclature for Q2§2 states with nonet quantum numbers will be denoted by
a capital C, the other states by a capital E. When a crypto-exotic state
contains one or two ss pairs the C will be furnished with a superscript
s or ss respectively. It carries as a subscript the name of the (pseudo-
scalar) meson with the identical quantum numbers. The I = 0 = Y states only
have a superscript, which may now also be a zero, indicating an exclusively
nonstrange quark content. The true exotics are labeled by the flavor of the
meson-meson channel they recouple to. Again pscudoscalar meson names will
be used.

The QZQZ flavor basis states, in terms of quarks, their names, their
decomposition into proper SU(3,F) multiplets and their recoupling into
QQ-QQ flavor basis states are given in Table V. The phases of the quark
wavefunctions are chosen such that the coefficients, occurring in the proper
flavor multiplet decomposition, are precisely the isoscalar factors, arising
in the SU(3,F) Clebsch Gordan series Q2 ® 52 = z QZQZ. These extra phases
arise from our using short hand. All states hav: positive parity P = +.
Combining the results of Tables V, II and IVa, we can now also determine the
C and G parity properties of our states. This is done by simply looking at the

expressions for the dimeson representatives in the meson-meson (Qé-Qé) basis.



(I,Y) Name Quark wavefunction Isoscalar factors Recoupling to meson-meson basis
(1,2) E:KK uuss 0 0 1 KK
(3/2,1) E « uu(ds) 0 0 1 (TK)
2 — 1 —— 3 2 3 1
(1/2,1) Cy - v/iuu(us) - /3 (ud) (ds) 0 /-5~ '/E - ‘/Z (ngK) = /Z[nx]
s . 2 3
(1/2,1) Cy (us) ss 0 -V 3 4 3 (n _K)
(2,0) E uudd 0 0 1 "
mn
{(1,0) c -viw@d - v wayaa 0 - v i - (n.m)
’ T 2 2 "5 5 0
s -— 1 4 1 1, =
(1,0) c, (us) (ds) 0 - /g 4 T v 5 (T + v 5 (KK)
0 1 - 1 - 1 == 1 2 1 3 1
(0,0) C /Euuuu + /3 (ud) (ud) + /gdddd /5 v/g‘ V/E /znono - /'Z'n'ﬂ
s 1 - 1 - 1 1 3 1 1 . - '
(0,0) c -7/ 5 (us)(us) - ¥ 5 (ds) (ds) -/3 /1—5 - "/E‘”o"s)"'/i[“‘] =
ss - 1 8 3 N
(0,0) C SSSS v g -7 15 v E0) nsns .
(3/2,-1) E,g (us)ad 0 0 1 (TK)
2 — 1 — 3 2 3 - 1. =
(1/2,-1) Cg -7 3 (@s)dd - ./5 (us) (ud) 0 /; '/g -V 7 K+ /;1- [nK]
s - 2 3 =
(1/2,-1) Cg (us)ss 0 -V T " 3 (n_K)
(1,-2) Egg ssdd 0 0 1 KK
Table V: Flavor baslis states a) 6 ® 6* = 36 = 1 @ 8 @ 7




(I,Y) Name Quark wavefunction Isoscalar factors Recoupling to meson-meson basis
(3/2,1) E . uu[ds] (nk]
(1/2,1) e /2 wl@s) + /1 a(as) /3 gkl + /5 ()
(1,0) c, uu[ ad) /3 z [ngr] + / 5
(1,0) c? (us) [ds] = -V 3 In) -/ 3 xK]
(0,0) c® /% (us)[us] + /zl (as)[as] /% [ngn ] + /% (KK)
(1/2,-1) g (us) [ad] = /g &+ /3
(1/2,-1) ¢ ss[ds] /i - [n K]
(0,-2) Egy ss[ud] KK
Table V: Flavor basis states b) 6 @ 3 = 18 ' .
(3/2,-1) E g [das]uu [rx] '
(1/2,-1) Cg v/ % [us]uu + /% [ds] (ud) - /% [noi] + /7‘1-‘- (1K)
(1,0) c, - [ud)ua /3 /5 Ingrl + Y S
(1,0) c: - [as] (us) /% - % [ngnl + v/ % (kK]
(0,0) c® -V % [us](us) - ¥ % {ds] (as) - /% (ngn 1 + /% (KK)
(1/2,1) Cy [ud] (us) vz /3 gkl =V 2 (1)
(1/2,1) cf( [as]ss /% - [n K]
(0,2) Eyg - [udlss - KK

Table V: Flavor basis states c) I* ® 6* = 18*

-




(I,Y) Name Quark wavefunction Isoscalar factors Recoupling to meson-meson basis

(1/2,1) C, - (ud] (&S] 0 1 /5 gk - V2 (k]
(1,0) cs lus](3s] 0 ! /3 - VL)
(0,0) & - [ud][ud] = /% - /%”o“o -/ 3
0,0) s /3 lus](38] + / 1 (as]las] -vZ vi /3 gn) Y 3 kK]

(1/2,-1) o [us)[ud) 0 1 /3 (R + /3 [ak)

Table V: Flavor basis states d) 3*®3=9 = 1 & 8

=2
Table V: Flavor basis states for Q2—Q systems. The quark wave function represents the member with

(I,Iz) = (i,1) 1in tables a, b and d, and with (1,-1) 1n table c. The isoscalar factors give
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the weights for i1ts decomposition into the proper SU(3,F) states with the same quantum numbers.

In the last column MM' denotes the linear combination of M and M' charge states with the

I I I I I
M M' ' 1
correct total isospin I: MM' = o om' 1 MmM M'm? . (aB) =V 5—{AB + Ba} , [aB] = V % {AB - BA}.
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The mesons are in an S-wave with respect to one another. For the 36 and

9 ¥ = 0 states one obtains the usual C = (—)S and G = (—)S+I formulas.

One can also combine the Y = 0 members of the 18 and lgf to obtain G

parity eigenstates. One obtains the linear combinations {CM(18) + CM(18*)}//2.
The (+) states have the abovementioned parities, the other ones get an
additional (-) sign.

Simlar to the pseudoscalar and vector nonet cases, also here deviations
from 1deal mixing are expected. Vector mesons appear to be almost i1deal, the
pseudoscalar ones not quite. This 1s qualitatively [ap 75] understood by
attributing this remxing to conversion of one i1soscalar color singlet state
(say no) into another one (ns) via a multigluon intermediate state. Pseudo-
scalar quantum numbers requirc at least two gluons, which allows thais process
at order ai, vectormesons need three gluons and for these states the mixang
1s of order az. Apparently, the pseudoscalar remixing i1s less depressed: the
octet-singlet mixing angle 1s far from the 1deal value. This has been
attributed, using asymptotic freedom arguments, to the fact that, the JP =0
1soscalars being lighter than their JP = 1~ brothers, the energy dependent
coupling constant satisfies ac(mp) > ac(mv). Therefore, ai(mp) >> az(mv)
may be possible. Our value a, = 2.2 1s an average for states in the 1 GeV
mass region. In the dimeson system, QQ 1soscalar subsystems with R LA
occur 1n color octet configurations, and remixing arises already at the
O(ac) level. The lightest dimeson system (M = .64 GeV) has an octet configuration
about 40 % of the time (see eg (3)). Although ac 1s expected to be smaller than

1n the pseudoscalar case (higher masses) considerable effects may be present.

11) Nonvanishing quark-gluon coupling: o #0

We now let the quark-gluon coupling constant become nonzero. Gluons are

flavorless. Their action will therefore not affect the flavorpart of wave-
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function, but mix the color and spin parts. For systems like Q2§2, which still
have very simple color and spin wavefunctions, 1t 1s convenient to retain the
two particle interaction character of the colormagnetic term EM of H. Thas
method avoids the introduction of coleor-spin SU(6,CJ) > Su(3,C) & su(2,J),
which allows more general conclusions about Qan S-wave systems, but 1s not
readily extendible to excited Q2§2 systems. We then have three types of two
particle operators: 0(Q,Q'), 0(6,6') and O(Q,Q'): the operators acting on

two quarks, two antiquarks, and a quark and an antiquark respectively. We

let the prime (') distinguish between different (anti)quarks. Due to the
permutation symmetry of the quark and the antiquark wavefunctions, there a1s

only one antiquark-quark interaction: O(Ql,QJ) = 0(Q,Q) V1, .

We have: F .F, =) FOF2 = = {(F. + F)° -F> -7} =1 ¢% -3
1) ;a3 2 1 J 1 b 2 13 3
> » »2
G «g_ = (28 - 3)
1] 13
> > 1 2 4 22
(FU)l-(FU)J = ( 5 Flj -3 ) (2 SlJ ~ 3) .

Here Ffj 1s the quadratic Casimir operator for SU(3,C) for the two particle
subsystem formed by the fermions i and j, which may be 1, 3, 6 or 8 dimensional,
and SlJ 1s the total spin of thas subsystem (0 or 1), where 1 and ) may be

both quark and antiquark labels, provided 1 # j.

We introduce the following notation (Q # Q'):

(FO) (F3)~ = A
Q g
(FO) (F9) ., =B
o' % gr
- (FO) A (FO) -, = C
0 Q' ‘

From the definitions we can see that B and C will be diagonal in the diquark-
antidiquark basis. Furthermore, they will be i1dentical, when the diquark and
the antidiquark have conjugate color and spin configurations. This happens in

combinations which have flavor n = 36 or 9. From Table IV 1t follows that
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A cannot always be purely diagonal, since Qzﬁz basis states recouple to
linear combinations of Qé-Qé basis states. In cases, where more than one
possability exists to construct a QZQZ state with the same spin (J) and
flavor (u,v) quantum numbers, off diagonal matrix elements will emerge.
A can be calculated usaing the recoupling coefficients from Table III. In
the QQ—QQ basis A, B nor C, except for the trivial one dimensional cases,
will be diagonal, as a consequence of the imposed FD statistics. We have
listed the thus obtained matrices in Table VI.
One can rewrite the i1nteraction part of the ham ltonian:

Q

E, = ;C (A {M(Q,Q) + M(Q',D) + M(Q',3")} + B M(Q,Q") + C M(g,Q")] (1)

denotaing M(Q,Q) = M(mQR,mQR). For systems 1n which all quarks have the same

mass m, EM becomes simply

a

)
Ey = & M(mR,mR) {42 + B + C} . (2)

In the first instance, this makes only sense for m = mn = 0, for all flavor-
multiplets, and m = m, for n = 36 (see also below). With our choice of

flavor basis, only EM' which acts 1n the color and spin space, has nondiagonal
matrix elements left. It ™will determine the precise color-spin mixtures to

go with the flavor part of the wavefunction. The eigenstates found this way

are the eigenstates of the full hamiltonian. The splitting between the states
a

1s then given by the eigenvalues EMl = ?? M(mR,mR) Al. Similar to the p-w,

m-n cases, EM again does not lift the isospin degeneracies of systems containing
1dentical quark flavors. This 1s a consequence of the fact that both quarks

and antiquarks are present. Their combination to the total quantum numbers of
the system 1s not restraicted by any statistics requirement, 1n contradistinction

to the baryon case. We have listed the eigenvalues Al of the matrix {4An + B + C}

and the corresponding color spin eigenfunctions in Table VI. For systems



A B (o} basis n eirgenvectors A M(GeV) AM(GeV)
r r a
0 - /% [- 2 0 1 -2 0 -i 9, 9_0 " .582 “ .813 -10.84 0.64 .24
3 s | Y ) 0 ' J _
/3 3] L 0 3L 0 3 J %0 9 813 ] |-.582 0.49 1.43 .17
17 r 1 ra ] "t ©,2 “\ 1 10
0 /35 .2 0 '3 o o, 18 /3 Ir- /3 -3 1.23 .19
1 1 1 1 2 8
1 0 - = * v = L/— = . .
Y3 L 0 7L 0 1 % 18 3 J 3 J 3 1.63 15
I F o 2 1 T2 " 1 ] 10
0 /5 3 o} (-2 0 o, 18 /3 ] -7 3 -3 1.23 .19
1 J _ 1 1 1 2 8
/3 0 &o 1 Lo 34 og 18 3 L5 3 1.63 .17
-2y 3 2 0 2 0 36° f 813 r- 582 - 4.84 1.12 20
3 2 3 3 | by 2 . : : : :
3 O 1
-/5 o 0 1] Lo 1 4, 36 L-582 | .813 5.51  1.82 .13
1 2 2 1
-3 3 3 o 36 1 0 1.46 .17 .
1 2 2 2 8 -
3 3 3 ¢6 36 1 3 1.63 .15 s
3 1 21 1 - I
-z 3 3 )y 9 1 4 1.18 .20
5 1 1 2 8
3 -3 -3 ¢12 _9_ 1 3 1.63 .15
- - = _—b - ed . =d - N )_ 4—_
Table VI. Matrix representations of the two particle operators A = (FO)Q(FO)Q » B = (FO)4(F3)g, and C = (FO)Q(FU)Q' .

The basis states are corresponding members of the representations, denoted by the labels ¢k' defined 1n

Table II, together with the associated flavor n and sp'n J, notation Eﬁ' The eigenvectors of the matrix

{4A + B + C} are listed in column 6 and 7, the eigenvalue i1n column 8; the top one corresponds to the elgen-
vector in column 6, the bottom one to column 7, 1f occurring in pairs. The 8th column lists the eigenvalue

of the total ham ltonian, in GeV, corresponding to the A i1n the preceding column, for a Q2§2 system consisting
exclusively of nonstrange gquarks. AM gives the i1ncrease in mass when a nonstrange quark 1s replaced by a strange

one .
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containing both nonstrange and strange quarks the eigenvectors will depend
on ns, but the variations are very small. This 1s mainly due to the fact
that M(O,mSR) and M(mSR,mSR) are practically linear in msR 1n the relevant
range of R, and the fact that the influence, which the presence of an extra
s (instead of n) quark or ss (i1nstead of nn) pair exerts on the splittang,
1s distributed evenly among the two particle operators. This can be simulated
to good approximation by representing eq (1) by eq (2), provided M 1s replaced
by a suitable average M, or m by an appropriate m. The largest deviations are
encountered 1n systems with a quark content of the form nnss. Even here the
deviation from the mQ = 0 - eigenvectors in the final result will be only 2
or 3 tenths of a percent for the dominant modes, in the final, recoupled result.
We find that the ordering of the lewvels is the same for all values of n. The
deviations are of the order of 10 MeV, whereas the spacings are 50 MeV or more.
Examining the resulting mass spectrum we find, that the lightest, most
strongly bound dimeson multiplet 1s a nonexotic JPC = O++ nonet! This 1s
consistent with the general rule for finding the lightest Qan multiplet [Jc 7773,
which can be read off from the expression for EM 1n terms of SU{6,CJ) invariants.
It consists out of taking two steps. The first 1s to put the quarks and anti-
quarks separately in the most antisymmetric, 1.e. smallest, flavor representation,
here the gf and 3. This step implies small total flavor irreps. The second step
1s to accomodate the Q2 and Qz in the smallest SU(6,CJ) QZQZ 1rrep. This 1is
the one 1n which all allowed color and spin orientations occur with egual
weight. This favors small total spin values, here J = 0.
To obtain the wavefunctions, in the meson-meson basis, one proceeds by
diagonalizing EM for a specific member of the multiplet, which yields a linear
combination of the color and spin wavefunctions: e.g. V = .813 ¢7 - .582 ¢4

for C0(1.82). With the help of Tables IV and V these then are recoupled to
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the meson-meson basis. We find e.g.

C0(1.82) = %-{0.743 w-w + 0.041 n.n_ - 0.169 w-w - 0.646 }

o"o PR

- % {0.743 p+p + 0.041 m-m - 0.169 p-p - 0.646 7.7} (3)
Here the particle symbols stand for the corresponding particles and contain
the flavor and spin information. The color octet states are underlined to
distinguish them from the singlets: m 1s a JP = 0 isotriplet color octet
meson, built from nonstrange guarks.

Considering the wavefunction of Co one finds, that the four quark state,
whose radius (and mass) was determined by the balance of the quark pressure
and the vacuum pressure, turns out to be in a two color singlet meson state
for about 55 % of the time. These mesons form (smaller) bags of their own,
and there 1s no boundary condition which keeps them inside the larger bag,
nor 1s there any reason, why they should contribute to the quark pressure 1in
the big bag. This latter phenomenon generates large uncertainties for the
radius- and mass-value of the bag state, on top of the calculational ones.
The former implies, that C0 1s unstable, in an approximation in which states
like the p meson and the A baryon still are stable. Its largest component 1s
a free two meson system. Such properties make a conventional (resonance)
interpretation for states far above the threshold somewhat dubious.

A similar situation in the Q6 system: the deuteronlike state at 2.16
GeV consists for 80 % out of colored and for 20 % out of colorless baryon
pairs, the latter of which are NN (11 %) or AA (9 %), led DeTar [DeT 78] to
calculate the energy of a deformed bag and deduce the form of the NN
potential from i1t. The 2.16 GeV deuteron state shows up as a soft repulsive
core. Fox the QZQZ system a different approach has been taken by Jaffe and
Low [Ja 78]. They studied the phaseshift in a (multichannel) meson-meson

scattering process. It turns out that only a resonant phase shift is
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obtained, when the Q2§2 bag state is below or at the dominant decay (see
below) threshold. When just above it a broad non resonant enhancement in the
cross section will be seen. Finally a bag state far above its dominant
threshold gives rise to a slowly falling negative phase shift. This last
case is consistent with DeTars soft core interpretation.

The connection with the decay channels can be made by assuming, that
the color spin recoupling coefficients give the decay amplitudes, up to a
universal coupling constant 9" The dimesons are able to dissociate into two
mesons, which are in a relative S-wave, without any effort or inhibition. Any
other decay mode, because it will need additional (gluon) interactions, is
expected to be suppressed and is consequently neglected.

In terms of vector (V) and pseudoscalar (P) mesons the wavefunction of

a member of the lowest 0++ flavor nonet reads:
Y~ -0.041 V-V + 0.743 P-P + 0.646 V-V - 0.169 P-P .

These light states only couple to the S-wave pseudoscalar colorsinglet meson-
meson channels. Their decay then is governed by a reduced cqupling constant:
50 = 0.743 go, and the relative strengths can be read off from Table Vd. In
Table VII we list the nonet members, their mass and dominant decay modes, as

well as a tentative assignment.

Name (I,Y) Mass (GeV) Flavor content Decay Assignment
0 T 3 -
c (0,0) 0.64 - 7% - Y I T € (650)
1 3
Cp (1/2,1) 0.89 v 7 K - v 7 [) K x (850)
1 - 3. = - -
_ - =5 = (
Cg (1/2,-1) 0.89 Y 7 (oK) + /4 [7K] 7K K (850)
cs (1,0 1.12 Jian -vixg nm, KK & (980)
T 2 s 2
c® 0,0 1.12 /L na) o+ v Lkk) KK S* (980)
2 0's 2

+
Table VII: Properties of the JPC =0 +,

=)

= 9 dimesons.
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In comparison with a QQ nonet, say the JPC = 17 nonet, the 1dentification
of SU(3,F) states with the particles 1s inverted., In the Q§ nonet the p and
w contain no and the ¢ two strange quarks, approximately, and the K* one.
Consequently: m(p) = m{w) < m(K*) < m(¢). In the QZQZ nonet the p- (C:) and
w- (Cs) like states are heavier than the K*- (CK) like states, since they
contain an ss pair. CK only contains one strange quark, and is, in turn,
heavier than the ¢-like (Co) state, which contains none. One has
M(Ci) ~ M(Cc®) > M(CK) > M(Co)l This 1s a very peculiar consequence of the
1deal mixing. The predictions seem to be confirmed by experiment. Both
S-wave nm and 7K (nK) phase shifts are non resonant, yet slowly varying and
nonzero in the correct mass region, suggestive of the presence of particles
with a mass of about 650 and 850 MeV respectively. S*(980) lies at the
KK threshold, and manifests 1iself as a narrow peak 1n this channel. The
observation of also a wn decay signal indicates an e-admxture to the S*. The
branching ratios into KK and nn, which are not known at present may provide a
clue w.r.t. the strength of the deviation from i1deal mixing for the i1soscalars.
The §(980) 1s seen to decay 1in KK and nm, but 1s suppressed in the latter
channel because of the limited n content of the n-

There are strong indications for another complete 0++ nonet, around
1300 MeV, which may provide the candidates for an orbitally excited Qé
system, which i1indeed 1s expected in that area (see Table VIII).

~ ++
The next Q2Q2 multiplet to be expected 1s the JPC =0 ,n=36

multiplet. Its lightest members are predicted at 1.120 GeV, among which an
exotic I = 2 71 state. The exotic I = 3/2 KT state 1s expected at 1.320 GeV.
Also for these states phase shift indications seem to exist at a slightly

2.2
lower mass. From the above stated considerations i1t may be clear that Q Q

spectroscopy has entered a hope-inspiring stadium, and that the effort to
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create new approaches to this subject these last few years, 1s beginning
to bear fruits. We will see, that more support for these states can be
drawn from the study of orbital excitations for these systems, to which
we shall now proceed.

»

Section II. Mesons and angular momentum [Jp 76]

Next to the spherical bag, which appears to be a good approximation for
a system of light (or even massless) quarks in their lowest energy eigenstate,
also the stringlike bag has yielded several interesting results. It 1s a
descraption for hadrons, which have a high orbital excitation, and whose
orbital angular momentum i1s such, that 1t 1s the largest one compatible with
their mass, i1.e. for hadrons which lie high on the leading Regge trajectories.

Following Johnson and Thorn [Jp 76], one tries to give the bag such a
shape that, classically and nonrelativistically, 1t has the largest moment
of inertia for rotating around a well chosen axis. For this purpose the
following configuration seems to be the most suitable one to start with. One
takes the bag to be a static cylinder of length ! and places a set of quarks
(and antiquarks) at each end. Their number need not be the same. The gquarks
at one end combine their color charges to a total charge Qa = z Qi =g z Fi,
which transforms according to the SU(3,C) irrep c¢. The total s;stem must be
1n a color singlet state, therefore the quarks at the other end will form the
opposite charge. The simplest set possible consists of a single quark, a
color traiplet. An obvious match then 1s the single antiquark set, and one has
a model for an excited or Q—é meson. Another common antitriplet 1s formed by
a diquark. This yields a model for the excited or Q—Q2 baryon. One color
charge acts as a source (obviously ¢ # 1) for a chromo-electric field Ea,
which 1s taken to be homogeneous over the whole cylinder, and the other as

sink. The flux lines of this field run parallel to the cylinder axis, in
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u

av = 0, which for

order to satisfy the linear bag boundary condition: nu G

a

0~ 0. Here ; 1s the ordinary

the static case (subscript 0) reduces to ;-E
space normal of the cylinder surface. When the surface moves, 1t develops a
fourth component n0 # 0.

It 1s assumed, that the influence of the qu?rks 1s only felt at the
ends of the elongated bag. Their function 1s to generate and end the flux-
lines, and smooth out any discontinuity which may arise in this tube

approximation at the top and the basis of the cylinder. Thas implies, that

the vacuum pressure at the sides of the cylinder will be balanced exclusively

by the gluon field. One has (eq 2 (25)) B = - %-G:v Giv, which reduces to
_ 1y za2 ' a _ a a _ .a
B = 3 Z EO . Using Gauss' law we find EOAO =0 or EO =0Q /AO, where AO 1s

the cross section of the cylinder, which has 1ts normal parallel to the

1s a function of the color charge and the bag

1/2

cylinder axis. The size of AO

parameters according to: A, = {2ma fZ/B} , where fi 1s the eigenvalue of

0 c
2 2 2
the operator Z Fa in the irrep c: fc = <c[y Fa|c>. Its scale derives from
a a
the bagpressure B. One has (fg = %—) RO = VAO/H = 1.59 fm (cf. the proton has

a radius of | fm 1n this model).

The pressure at the top and bottom plane will be balanced by quarks and
glue together. This will determine the remaining parameter 7. The situation
described above 1s clearly unstable for light quarks. Nothing opposes the
color electric field, which will pull the two sets of quarks towards each
other. The cylinder collapses: M = M(l) will only be mnimal for I = 0.
Stability will be realized by letting the cylinder rotate. One chooses an
axis through the center of mass, perpendicular to the symmetry axis, with
respect to which the inertial moment 1s maximal. To obtain the largest
possible angular momentum for fixed bag length 1, we let the tube rotate

with a uniform frequency w, such that the endpoints move at the speed of
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light. Since we did not put any restriction on the distribution of the quarks
over the ends of the bag to obtain a color charge Qa, this implies that the
quark energy has to be negligible w.r.t. that of the glue. The centre of mass
should (in first approximation) be equidistant to both ends.

To an observer, somewhere on the rotation axis, at rest w.r.t. its
centre of mass, the bag now no longer looks like a cylinder (Fig. 1). Consider
a point inside the bag or on its surface. It has a distance x from the rotation
axis, and therefore moves with a speed B = wx. When x = %—, the point is at
one of the bags' ends, B = 1 and we find w = %—. In order to determine the
important properties of the rotating bag one starts from the observation, that
the points on the rotation axis are at rest. In their rest frame, the cross

section of the bag is a circle with radius R,, rotating with frequency w. The

0
a
0

to this surface. There is no magnetic field. For every x there is a set of

electric field going through the bag, has a constant strength E , perpendicular

Fig. 1: Tubularbag with length %, rotating with frequency w = % , around an

axis through the bag's centre of mass, perpendicular to the symmetry

axis, as seen by an observer at rest w.r.t. the rotation axis.
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Fig. 2: Cross section of the rotating bag of Fig. 1, taken perpendicular to the

rotation axis.

points which have identical properties in their instantaneous rest (ir) frame.
Boosting these socalled central points back to their original velocity é they
constitute the mayor axis of an ellips, which has its minor axis, length

2RO //1 - 82 , parallel to E (Fig. 2). The area of the cross section now has

become A = AO v 1- 82 . The transformed electric field strength is

> >,
B =¥ ES and remains perpendicular to the surface A. One has EaA = Qa.

>a
E™( 0

An additional effect of the boost is the presence of a magnetic field

ﬁa = E x Ea R Ha =8 Ea. We will use these expressions for ﬁa, Ea and A in
our calculations. Other choices are also possible and, of course, related
by boosts and rotations., The fields éa and ﬁa, obtained by special Lorentz
transformations from Eg naturally satisfy the bagboundary conditions, which
are Lorentz invariant statements and thus also determine the shape of the

rotating bag. Note that the top and bottom surfaces of the bag have shrunk

into lines, reducing the role of the quarks still further.
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We have now determined the necessary quantities to be able to calculate
the mass and angular momentum of the rotating bag. There are three contri-
butions to the mass

= + 4
M EG+EQ EV (4)

and two to the orbital angular momentum, which can simply be added for the
leading trajectory

L = LG + LQ . (5)

The labels G, Q and V refer to glue, quarks and volume respectively. In case
of the rotating bag g% M(Z) = 0, expressing the balance of the field pressure
against that of the vacuum, at the bag's ends, will have a root for non-
vanishing I, provided we keep 1ts angular momentum L fixed. This root 1is
equal to the one we get, when we maximze L for fixed M.

We will now calculate each contribution separately. Instead of the

distance to the rotation axis x 1t 1s in this approximation more convenient

to use the speed 8 as coordinate: x = %—8. The volume energy is:

L/2 1 -
E =B [dav=2 | dx A(x) =B 1 [ ciBAO»/l—B2
0 0

m
ZBAOZ

BV' .

L

It 1s reduced by a factor 0

w.r.t. the cylinder volume, due to Lorentz

contraction. The energy stored in the fields 1s

1 2
=iy 22 .89 = ( A+ B8 3 - .
EG—ZJdVZ(Ea+Ha)—BAOZOJ ds .7 4 BAa,Ll=3BYV .

Two thirds of this contribution come from the color-electric field. It
1 »2 2
follows that formally: f dv B = 5—2 f dav (Ea - Ha). The energy of the quarks
a
1s represented by (cf. also [Jo 79]):
E.= 2
0 P

where the p indicates that the momentum and energy of a set of quarks at the
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for both ends, i1n view of the position of the centre of mass. E. does not

Q

depend on l. The relevant dimensional parameter 1s RO' representing the size of

the volume to which the quarks are confined. We include 1t, to verify, that

1ts contribution

H

1s 1ndeed negligible w.r.t. the other terms. Summing up:

=2p+7rBZA0 .

The angular momentum carried by the fields is:

Using the centre

Ls

> > >
r x (E_ x H)) .
a a

V]

> >
values for Ea and Ha we find

2 1 82 s 2
=BA 1L de————=—BZA .
0 0 /& _ 82 4 0

The orbital momentum of the quarks ais:

The total orbital angular momentum then 1s given by:

L

We can solve: p

and elimnate 1t

b 2
pZ+4BZ A, .

m
ZBZAO

L_
2

from the bag mass expression. The bag length . can now be

determined as a function of L, which 1is kept fixed:

3 =38 (2L, = - _2L, T -
ﬁM(Z)l —BZ<Z+ZBAOZ>_ >+ 3BA;=0 .
L l
Thus 7 = Z(L) and:
M=1TBZAO=4BV'
2
L=nB1 Ao/4 .

The final result

L

1s an asymptotically linear trajectory in the L—M2 plane

= a'(c) M2 '

(7

(8)

(9)
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with a'(e) = (2r a_ fi p)~1/? ) (10)

Taking ¢ = 3, we obtain a'(3) = 0.88 Gev_z. Experimentally one finds that

a' ~ 0.9 GeV_2 for Q—Q2 baryons and a' =~ 0.8 GeV_2 for Q—é mesons. Eqs (9)

and (10) are a result of treating the bag as a fat string. From this treatment
follows another result shared with the string. In the dual string model

(see chapter 1, pg 19) the slope of the trajectory 1s related to the proper
tension T of the string by

T=(2nant . (11)

The tension T 1s defined in the instantanecus restframe of some central point
as the amount of energy required to stretch the string by a unit length. For
the bag this becomes T = %’Z Eg 2 Ao + B Ao =2B AO, consistent with eq (11).
Of course T/Ao = 2B 1s notathe average energy density of the rotating bag.
This density 1s: U= M/V' = 4 B (eq (7)), 1n agreement with the general result
for bags containing only massless constituents [Cho 74]. The apparent
discrepancy 1s accounted for by the rotation energy.

After substitution of ., we find that p = 0, which means that the quark
contribution to both mass and angular momentum can be neglected, and quarantees
the continuity of the glue determined boundary over the bag ends. All
sufficiently high-excited bags have the same form. Omitting p from the
beginning we find that L and M are homogeneous in . and again satisfy eq (9).
The bag 1s all 'sides'. There is no end surface, where pressures have to be
balanced. Its shape 1s fixed and only the owverall scale 1s still free, to be
determined by L or M.

One can try to specify somewhat better which value of L 1s already

asymptotic. The relevant condition, to be expressed in terms of L 1s:

1/2

>> yd or L> 1

m|<|
a

M>> p o or {4L-2ra f2}
cc

0
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where we have used a boosted value (Lorentz factor Y) of the static sphere

(radius RO) result (see chapter 2, Table I): EQ = ﬁl-for p. This result 1s
0

not very conclusive. Because larger color charges (larger fi) also require

a larger number of quarks (larger d) the color charge does not appear to

be very helpful in bringing asymptotia closer. The Q—é meson data suggest
that the trajectories may already run straight from L = 3 for ¢ = 3 trajecto-
ries. This implies, that eq (9) gives a good estimate of the bag mass
differences for L > 3.

The premature onset of asymptotic behavior 1s also encountered i1n another
si1tuation by Giles [GL 78]. Solving the problem of two opposite static electric
charges confined to an MIT bag in two space dimensions, he obtained both the
shape and the electrostatic potential for arbitrary charge separation 1. For
large [ the bag has a cigar shape and the potential 1s linear in 1. The
second property, however, which dominates the mass spectrum, 1s present well
before the first.

To be able to use eq (9) to obtain the bagmass, 1ts position in the
L-M2 plane needs to be fixed. The stringlike bag-picture does not provide
any clues for calculating trajectory intercepts. It 1s an asymptotic
description for fast-spinning particles. One can try to extrapolate the
trajectory by assuming that 1t 1s linear for all L. The derrvation of eq (9)

1s 1nsensitive to the replacement L -+ L' = L - LO, where L. 1s a (negative)

0

constant. We can write:

2 u.'(M2 - Mé) or M2 = Mg + L/a! (12)

Here LO (Mg) 1s the intersection of the trajectory with the M2 =0 (L = 0)
-axis 1n the L-M2 plane. In general MO 1s not the mass of a physical S-wave

hadron. These masses should be calculated using the spherical cavity

approximation and involve quark spin effects, which have been omitted from
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the discussion so far. For example, vector (triplet) - and pseudoscalar
(si1nglet) - Qé-mesons are treated as simlar systems, since for high L
the two quark sets (apart from the color charge) are expected to be complete-
ly i1gnorant of each others properties, due to the large angular momentum
barrier in between them. Asymptotically the p and T trajectory become
degenerate. For low L there 1s no such degeneracy. This 1s especially clear
for L = 0, where, 1n the bagmodel interpretation, color magnetic interactions
split the singlet (J = 0) from the triplet (J = 1) states (Vv spin-spin
interaction). For L = 1, 1f we correct for the spin orbit and tensor type
splitting, other aspects of the same interaction, 1t 1s already much less
1mportant, whereas for L = 2 1t appears to be almost absent.

This observation suggests the following prescription for calculating
M0 for Qé mesons: 1t 1s the mass of a spherical bag, in which no color
magnetic i1nteractions are taking place between the quark and antiquark. From

this recipe, 1t 1s clear that M  1s a kind of average of physical state

0

masses and L, should be negative. M

o sti1ll depends on the number of strange

0
quarks. For Qﬁ mesons we expect three asymptotic trajectories in the L—M2
plane: one for nﬁ, one for ns and sﬁ, and one for ss states. The resulting
'central' masses, using a tentative slope of a'(3) = 0.83 GcV_z, and those
mesons, which may be considered for classification as orbitally excited 00
states are listed in Table VIII. This table includes all PDG 78 mesons,
PC ++

containing u, d and s quarks, except the J =0 mesons discussed in
section I, and the S, T and U NN resonances. The observation, that all
listed states (with possible exception of the p'(1600)) can be classified

as leading trajectory states, seems to provide us ample justification to

restrict our attention to this particular configuration.



L J I=1 () I=0 (nn) I=0 (s5) I=1/2 (ns/sn)
o™" n; 138 n; 549 n'; 958 K; 496
° 1 p; 776 * 3 w; 783 é; 1020 K*; 892
M_(0) 670 670 990 840
1t B; 1231 £ 10 Qi v 1340
ot s A 1270 S*; & 1300 €; ~ 1300 k; 1400 ~ 1450
1 ++
1 Ar v 1100 D; 1276 * 3 E; 1431 £ 3 Qyi v 1355
( 2™ Ay 1312:5 £ 1271+ 5 £'; 1516 + 10  K**; 1434 * 5
M_ (1) 1285 1285 1475 1380
27" Ay v 1640 L; 1765 * 102
% 1 p'; N 1600?
2 -
2
L 37 g; 1688 * 20 w; 1668 t 10 K**; 1784 * 10
M_(2) 1685 1685 1840 1765
(f 3+—
Q 2++
3 ! 3++
( att 1982 + 92 h; 2040 * 20
M_(3) 2010 2010 2140 2080

Table VIII: Qt;_g meson states. The particles are denoted as a function of their
quantum numbers L, J, P, C and I. The particle names are
separated from their masses (in MeV) by a semi-colon. The mass
is followed by an error, when known, and by a question mark, when
some of its quantum numbers are uncertain. When preceded by a
tilde, the mass, and possibly also some g-numbers are not (well)

established. MC(L) is the linearized trajectory mass.
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The states with L = 2 and 3 already are gquite close to the trajectory,
which seems to indicate the vanishing of LS, tensor and singlet-triplet
splitting. Unfortunately, for these L values only the peripherally produced
J = (L + 1) states are well known. For L = 1 both spin effects are present
and one can try to estimate their strength. The spin orbit and tensor
splittings together are several tens of MeV large. This crude estimate
requires some optimism about the classification of not too well established
states. E.g. the A1(1100) seems to be a case on 1ts own, which until now
can hardly be forced into any regular spin orbit scheme and 1s left out of
consideration. Also the 1soscalars appear to be rather sensitive to the
inclusion of LS and tensor forces: M(D) > M(f) [MaR 78]! One then finds that
the residual color magnetic singlet-triplet splitting 1s reduced to about
20 % of the L = 0 strength. For L = 2 a good guess seems to be 5 %. We will
add these small residual interactions as perturbations to the mass obtained
from eq (12), notwithstanding i1ts obvious L dependence, by want of a more
accurate procedure. This approach appears to work reasonably well.

The actual trajectories thus prove to be bent for low L, when plotted
in the L—M2 plane, but very rapidly converge to a highly degenerate straight

line. There 1s a smooth connection between L

0 and high L. To translate

> > > >
this picture to the J—M2 plane, one replaces L by L' = J-S. Only the two

J L trajectories will remain degenerate for sufficiently high mass. The
J =L t 1 trajectories become parallel to these. Also in the J-M2 plane

the trajectories will exhibit curvature.

2.2
Section III: 9O mesons and orbital excitations

In the last decade many resonances, with widths varying from 3 to

280 MeV, have been observed to couple to the baryon-antibaryon system [Mon 78].
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state.

Among these are several, now well established states, which have been detected
first in elastic nucleon-antinucleon scattering. This process, which to lowest
order, proceeds through one meson (Qé) exchange, 1s depicted in the Harari-
Rosner [Ha 69] (quark-line) diagram of Fig. 3. From this diagram 1t may be
clear that meson exchange 1s closely related ("dual") to the formation of
a resonant QZQZ intermediate state. It was on the basis of this duality in
BB scattering [Ro 68] that QZQZ states and their properties were first
predicted. Conform to expectation [Ro 70] many resonances were discovered
(first) in the BB channels. Surprisingly, several of these also appear to
couple almost exclusively to them. This phenomenon has started the interest
in orbitally excited Q2§2 systems of which the present model allows a
systematic examination. The L = 0 states have been treated 1in section I.
The orbital excitations will be studied here. We will first enumerate the
possible trajectory configurations and proceed with a classification of the
corresponding states and an estimate of their mass spectrum.

The Qé system, considered 1n the previous section, 1s a minimal one as

far as color and quark spin are concerned. Asymptotically only one leading
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trajectory survives in the L—M2 plane. The Q2Q2 system shows more variation,
even 1f we restrict our attention to leading trajectory configurations. Of
course, severely deformed bags, with three or four lobes, each of which has

at least one quark in 1t, are thinkable. Such starlike formations are,
however, not likely to maximize the orbital angular momentum and thus will

be buried under the higher spin states. Large 2 - QZQZ spectroscopy, Just

as 1ts Qé—companlon, 1s expected to be dominated by stringlike bags. We assume,
that quarks i1in the same cluster move i1n s-waves relative to each other,
whereas the clusters themselves move in a relative f%-wave. This notation will
from now on be used for the interquark orbital momentum 1n ordinary Q—é mesons
too.

- Tra,ectory configurations -

The number of independent ways, in which the quarks can be distributed
over two colored clusters, 1ncreases from one to four, when another Qé—palr
1s added. Again, one has the single quark cluster, this time in combination
with a three quark one. The corresponding so-called 3-3*-trajectory is
assumed to have an asymptotic slope a'(3) = 0.83 Gev_2 (eq (10)) and states
on 1t, 1n view of their inclination to multi-meson decay, will be called
three-mesonia. Next, a cluster may contain a Q2 or a 00 pair. The Q2 set
can couple to either a ¢ = 3* or a ¢ = 6 color charge. The former yields
a 3*¥ - 3 or 3-baryonium trajectory [Jb 78] with the usual slope a'(3), the
latter a 6 - 6* or 6-baryonium one [ChH 77] with an anomalous slope of
a'(e) = 0.53 GeV_2 (fg = 10/3) . The name baryonium was proposed by Chew
[Che 76] for meson states which couple dominantly to baryon-antibaryon
channels. Although thais ordinarily only applies to the color 3 variety,
1t 1s often, and also here, used i1in a more generalized sense to refer to

~2
orbitally excited Q2Q states with (anti)diquark clusters. The quark-anti-
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quark cluster can occur 1n a c = 1 or a ¢ = 8 1rrep. The neutral singlet 1is

not interesting from the point of view of orbital excitations. The 8-8-

trajectory has an anomalous slope too, a'(8) = 0.56 Gev_2 (fg = 3). These

systems will be called 8-mesonia.

1. Asymptotia (Large orbital angular momentum region)

For sufficiently large £ (1.e. f > 3) the above mentioned clusters form
the natural building blocks in terms of which the Q2Q2 orbital excitations
w1ll be classified. These clusters, sitting at the ends of the fast rotating
stringlike bag, can not change color or spin, because the large angular
momentum barrier virtually forbids the exchange of quarks and gluons between
them. Color flip moreover 1s impeded by the wide enerqgy gaps, which will
arise as a result of the different slopes. The cluster basis states are
obtained by reducing the direct product of the color, spin and flavor wave-
functions of the (anti) quarks contributing, and diagonalize their total
color charge and spin. We list the total quantum numbers of the relevant
irreps 1n Tables IX and XIc. The two and three quark clusters each have their
own particular complications and will be treated more or less separately. The
basis states for the whole system arc given by the reduction of the direct
product of two 2-, or a 3- and a l-quark cluster basis irreps. Only those
color singlets are allowed, which satisfy the generalized Pauli-principle.

- Classification -

When both (anti)quarks are placed in the same cluster, their color
spin flavor wavefunction has to be totally antisymmetric. This allows only
specific combinations, which 1s most cleaxly reflected in the resulting

flavor irreps (see Table Xa and Xb). There are less restrictions on the
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color spin flavor part of the wavefunctions, when one of the (anti)quarks
1s lodged 1n a different cluster. Their space wavefunctions are clearly
distinguishable now and have no overlap. The clusters will couple to
flavor-quark spin combinations, which were excluded for the L = 0 dimesons
(see Table XIc). Since there 1s no energy associated with the coupling
to overall quark spin and flavor representations, all levels, with the same
quark content (ns), w1ll be degenerate. Finally, one can have an aggregate
of two color octet clusters. The quark and antiquark are close together,
1n an s-wave with respect to each other. This assumption excludes the
existence of simple relations between operations such as quark permutations,
exchanging the quarks between the bag ends, and space reflections, whach
exist for some excited Q3 baryons. The combination behaves as a colored
boson. The spectrum of allowed states 1s now restricted by the BE statistics,
which has to be satisfied by this two colored meson system. When the mesons
have the same i1sospin, hypercharge and spin quantum numbers, one has to
distinguish odd and even L (see Table Xc).
- Colormagnetic splittings -

The presence of more than one quark i1n a cluster has yet another
consequence. Unlike the quark and antiquark in the Q§ meson, quarks in the
same cluster will unhamperedly continue to exchange gluons. It is useful

to split the colormagnetic interaction term into two parts:

_ ac > >
Ey = 1 Z M(mlR,ij) (Fo) - (FU)J
1) (13)
E_ =E_ +E

M MR MP

The residual part EMR 1s the interaction between quarks in different clusters,

fam liar from the Q§ mesons, and has the form:

E_= ) 7). - (Fo (14
MR~ m(ll’JZ) (FU)l ( O)J )
11,]2 1 2
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Content c s n A Name
0? 3* 0 3* -2 X,

6 1 3* -1/3 Xy

3% 1 6 2/3 X3

6 0 6 1 X4

00 8 1 9 - 1/6 Xs

8 0 9 1/2 Xg

Table IX: Basic irreps for two particle clusters, as a function of the
_m
quark content QnQ , color ¢, spin s and flavor n. Also the
> -
eigenvalues A of the two particle operator O = - (Fo)l-(FO)2

are given (1 (2): first (second) particle).

The subscript n € {1,2} of the summation label indicates its restriction
to cluster n. One has m(i,j) » O, for & »+ «, rather fast, as suggested by
the Qé—trajectory data. EMR is therefore not expected to contribute for
large 1£.

The persistent part of the colormagnetic interaction EMP is composed

of two contributions, one for each cluster: n € {1,2}.

2 = 7 MG, (F), -(FO) (15)
MP o, L n'In i 3j
i >j n n
n °n
The summation is restricted to the quarks in the n-th cluster., It is trivial
for the two particle clusters. The cluster basis states |a> are eigen states
> >
of EMP: - (Fo)l-(Fc)2 |a> = A |a> . The eigenvalues A are also listed on
Table IX.
- 3-Mesonium states -

A little morc effort is necded for the three quark cluster. For each

permutation symmetry of the flavor wavefunction of the diquark, one has two
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Trajectory Representation 8 n Cn L A
%
a)  3*-3 (1,1) 0 9 =) e&o -4
(1,3) 1 18*
18 3
n(-) +1 e &o - 4/3
(3,1) 1 18
(3,3) 0,1,2 36 - ewo 4/3
b)  6-6* (2,2) 0,1,2 9 ¥ ero  -2/3
(2,4) 1 18*
n(_)g+1 e & O 2/3
(4,2) 1 18
3
(4,4) 0 36 -) eso 2
c)  8-8 (5,5) 0,2 936 + e
1 18 © 18* -n e
- 1/3
0,2 18 @ 18* -n o
1 9 @ 36 + o
(5,6) 28 36 " e w0 }
1 1/3
(6,5) 1Bo18* n0" w0
9@ 36 + e
6,6) 0 \ % 1
18 @ 18* -n o

Table X: Properties of the color singlet two quark cluster product states.
(i,j) denotes X3 ® xg , where the X; are defined in Table IX. One
has P = (—)l under space inversion. & is the orbital angular momentum,
which can be even (e) or odd (o). The isotopic parity (G} of the
hypercharge Y = 0 members of the flavor multiplets is given by
G = (—)I Cn, where Cn is the charge parity of the neutral member, and
I its isotopic spin. The restriction on £ for the color octet states
applies only to clusters, which have identical I and Y values. Other
combinations occur for all 2 values and an extra (-) sign should be
added to the Cn listed above, when appropriate. A gives the size of

the colormagnetic splitting.



- 154 -

ways of constructing a (c,s8) = (3,1/2) color spin wavefunction. For example,
the diquark c-s-irreps (6,1) and (3*,0) are both symmetric under simultaneous
color spin permutation and both can combine with the (3%,1/2) i1rrep of the
antiquark to yield an overall (3,1/2) irrep. As basic i1rreps we take those
that also diagonalize EMP' Calculation of the appropriate two particle
operators proceeds along the lines, specified in section I for the L = 0O
dimesons. Taking all quark masses the same, we have to diagonalize the
matrix {M} = {2A + B}. The recoupling matrices for color and spin, the
composition of the basis 1rreps, and the necessary two particle operators
are listed in Table XI. We have restricted ourselves to list only

Qzé-é configurations. One, of course, has also the conjugate system

Q—QQZ, which yields a degenerate mass spectrum. The physical states are
those linear combinations, which diagonalize G-parity, when they have Y = 0.
Considering the recoupling matrices and {M}, 1t 1s not surprising, that

the eigenvalues turn out to be precisely half as large as those listed in
Table VI for the J = 0 and J = 2 L = 0 dimeson 1rreps. Although these
clusters yield the largest negative eigenvalue for A, 1t also may be clear
from the color recoupling QZQ hd (Qé) 0, that orbatally excited states with
this cluster buildup will be just, 1f not even more so, elusive as thear

L = 0 brothers, because of the large color singlet content. They have a
predilection for falling apart into MM* channels (M* 1s the orbital Q-Q
excitation with angular momentum &' = £ and decays 1into two or

more meson states), which means final states with three or more mesons.
Because there always appears to be sufficient phase spacec available for at
least one of the larger decay components of the wavefunction, these states
are expected to be broad and non resonant and therefore hard to detect. We

will from now on concentrate mainly on the trajectories with diquark clusters.
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a) (8,3:3) (1,3:3) b) (1,1/2;1/2) (0,1/2;1/2)
1 2 1 3
*. -y = < . -/ = 2
(6 ,3*%:3) Y3 Y3 (1,1/2;1/2) '3 Y3
2 1 3 1
H ok, < = . = -
(3%,3*:3) Y3 Y3 (0,1/2;1/2) /3 /3
a) Recoupl:hg matrices for SU(3): (292 ' EQ ; gégé) e (EQQ B EQ } 5Q2§3._
b) Recoupling matrices for SU(2): (jQ2 , jQ : JQZQ) > (jQQ r g jQ2§)’
C j ) 9= - - -
Q2 Jgz Jozp 925 Bg2  Doop Doz Name
3% 0 1/2 0,1 ¢1
6 1 1/2 0,1 3* 3e6* 9e18* o,
3/2 1,2 ¢3
6 0 1/2 0,1 ¢4
3* 1 1/2 0,1 6 3015 18@36 ¢
3/2 1,2 ¢6

c) Quantum numbers of the color singlet three ® one quark cluster product

representations.

A B Basis Eigenvector A
7 r r
[_ 0 - /g (-2 0 ¢ 582 | .8131 - 5.42
2 5 1 ' |
L' vV 5 - 3J _o -3 ¢, _.813—] —.582J - 0.25
1 2 4
3 3 b3 ! 3
o - /%1 (1 ol ¢, (813 [-.582] - 2.42
|
2 _2, 2 i
L- v 3 3 | L0 3 o -582] [ .813] 2.75%
5 1 4
6 3 b ! 3

d) Matrix representations of the two particle operators A and B. The eigen

vectors and eigen values A of the matrix M = 2A + B (see Table VI).

Table XI.
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To arrive at the masses of asymptotic Q2§2—trajectory states we still
have to fix the intercepts MO' the strength of EMP and the way 1t has to be
included.

- Intercept -

Buirlding on the success of the M, prescription for Q§ trajectories, we

0
will take MO(Q2Q2) to be the mass of a spherical bag in which the quark-gluon
coupling has been turned off. Because of the fair amount of color singlet
Q0-subsystems, there probably 1s a non spherical bag shape, which provides a
lower minimum for the bag mass. The actual intercept then may be somewhat
smaller. Compare for instance also MO(QZQZ) = 1.46 GeV for nonstrange quarks,
with 2M0(Q§) = 1.35 GeV, a difference, which 1s mainly due to the (to Q3
and QQ ground states) fitted, geometry dependent parameter ZO. MO (by
assumption) will not depend on the color of the trajectory passing through it.
This 1s only natural, because most £ = 0 dimeson states, from which the
orbital excitations originate, contain equal (up to factors 2 or 3) amounts
of color three and six or eight and one clusters, depending on the basis
one uses. Mo does depend on the number of strange quarks n_, and this time as
much as five different trajectories (for n = 36) may emerge.
- Color magnetic interaction strength -

The effective volume for a colored quark cluster, for some large value
of £, will Aaffer from that of the same cluster at £ = 0. First, there 1s the
reduction of the number of quarks and the Dirac-pressure going with 1t. Second-
ly, the net color charge of the cluster gcnerates a color electric field, which
adds a color dependent pressure. Because the confinement volume of the quarks
will not go on growing or shrinking indefinitely, a new stable configuration

1s expected asymptotically, which 1s independent of £. We approximate this

volume by a sphere of radius Ra' This enables us to give the color magnetic
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interaction strength the R-dependence of the % = 0 bag functions, and
i1ncorporate the flavor-breaking parameter-free. Because only one length

scale 1n the stringlike bag 1s independent of #: R the size of the cluster

OI
volume will be proportional to 1t. One has (see section II):

R (c) v (£9) /% (16)
0 c

and finds

Ra(3) : Ra(B) : Ra(6) =1: (9/4)1/4 : (5/2)1/4 =1:1.22 : 1.26

The effective volume 1s larger, when the color charge is, and the quarks
consequently are, on the average, farther apart: the color magnetic splitting
1s smaller. It remains to determine one of the Ra(c). We will take c = 3,

the weakest charge, which will influence the cluster volume the least.
Interpreting the mass of the intercept M, = (16/3) ™ B Rf (massless quarks) as

0
1/3
the sum of the masses of two clusters, we find Ra(3) = (1/2) - R.. For

1
color singlet N-—quark bags one has R = T, N1/3, a relation, satisfied by Rl,

and consequently by Ra(3). The error we make in taking the radius of a color
singlet two quark bag for the cluster, 1.e. 1n neglecting the color electric
energy, we compensate to a large extent by continuing to include the volume
energy, which for large 2 has already been accounted for in the trajectory
slope. The inflation of the cluster volume with growing color charge 1in an
asymptotic phenomenon, which 1s not encountered for small 2. We assume these
relations to be valid for % > 3. For £ = 2 and 1 we take them, for definiteness,
to be color independent: R(L) = R(2) = Rl~(1/2)1/3 and R(1) = Rl-(3/4)1/3 as
transition values. We denote the persistent color magnetic interaction strength,
calculated for R = Ra(c) by ﬁ. Furthermore, R 1s taken to be independent of
flavor.

Extrapolating eq (10) back to £ = 0, one could have taken the 1intercepts

to be also color dependent, proportional to Ri(c). From M0(3) = 1.46 GeV one
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deduces: MO(B) = 2.68 GeV and MO (6) = 2.90 GeV. This implies, under the
assumption that the trajectory 1s a continuous function of %, that contrary

to the 3* - 3 one, the 6 - 6* and 8 - 8 trajectories will be highly bent

for small £ values. A similar curvature arises for a classical relativistic
string with massive ends, there the low 2 states lie farther away from the
linearized trajectory as they are more massive [Jo 79]. The stringlike bag,
however, contains the same (almost) massless quarks for all three trajectories,
and we expect these therefore to be linear, up to coloxr magnetic splittings,
for all R&.

- Large % mass formula -

Just as for the Q—é trajectories, we will treat the color magnetic energy

M (GeV)
B 012
1
i 0
30 012
B 0
~ 012
1
B 0
- 1
5 g
012
|
0
B 1
| 012
B 0 Fi1g. 4: Stylized mass spectrum
20y 0‘!'2 for the 3* - 3
B trajectory states
i I s around & = 4.
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/2 .
contributions as perturbation w.r.t. MOE = MO + R/a'(c) . From Table IX it

follows that this simply amounts to adding the color magnetic interaction

energies for both clusters, evaluated at Ra' to MOE:

Mo=M +M oA+ M
. 04 MP "1 MP "2

(17
This prescription renders the trajectory linear in the Mz—l plane up to small
corrections of orderyi. Studying Table X, we see that eqg (17) predicts equal
mass splittings AM for states, with the same value of n,. ¢ and &. When

moreover, - M02| o~ AM a highly degenerate spectrum results. For the

IMoge1
3*¥ - 3 trajectory this happens around £ = 4. Such a situation has, for massless
" -
quarks, been plotted in Fig. 4 for our values of M = 85, a'(3) = 0.83 GeV 2
and M0(3) = 1.46 GeV. This type of degeneracy also occurs for the sextet and

octet trajectories, but at a larger value of £. It is accidental and will

happen again, when 2|M

oe1 MOll =~ AM. It is encouraging to know, that this

clustering is also observed experimentally. The numerical values for the

intercepts and asymptotic color magnetic strengths have been given in Table XII.

S~ 0 1 2 3 4
~.8
™~
My (n) 1.458 1.634 1.802 1.965 2.121
c 3 8 6
M(n,n) 85 69 67
A
M(n,s) 70 57 56
N
M(s,s) 58 47 46

Table XII: Intercepts MO (in GeV) of the linearized trajectories as a

n
function of n_. The color magnetic interaction strength M
(in MeV) between nonstrange (n) and/or strange (s) quarks as

a function of the color c.




- 160 -

2. Small orbital angular momentum (0 < & ~ 3)

For £ = 1 and 2 the quark clusters will not be as widely separated from
each other as they presumably are for 2 > 3 and the particles in the different
clusters will be able to interact with one another. We will try and show that
this will hardly affect the composition of the clusters. The mgration of
quarks between the bag ends - by means of tunneling - 1s argued to be
relatively unimportant, although the angular momentum barrier i1s only
moderately high. Consequently the clusters are again the natural basic units
for the description of the system. The dominant interaction, in our rather
crude approximation, i1s found to be that between the static multipole moments
of the clusters. This situation 1s very simlar to that encountered in the
Q-é system with little orbital excitation.

- The Q—Q system with small & -
Consider the 2 =1 Q—Q states. Next to the color electric monopole

> »
1nteraction the color magnetic dipole one " (FO)Q'(FO) appears to be most

Q
important. These dipole forces are seen to loose their strength with increasing
£ or bag length 7 = 7(2). One does not expect to have an inverse cube law 1n
the effective cluster separation for the interaction energy, as 1in the
electromagnetic case, because of the confinement of the color fields to the
bag. Its strength for & = 1 (2) was estimated to be 20 (5) % of that for

2 = 0 (section II, page 147). There may be also a color electric dipole
contribution v FQ-FQ because the quark distribution in the rotating bag will
not be spherical any longer (cf. Fig. 1). This interaction has the same color
dependence as the mutual part of the monopole term and cannot be i1solated from
1t for the QD mesons. There will be no tunneling in the QQ system. Each quark

w1ll stick to 1ts own end of the bag. When these particles would be able to

come close together, the color electric field, which supports the dominant
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>
part of the angular momentum £, would disappear, thereby violating an
1mportant conservation law. In this situation the quarks can only interact
by means of the multipole moments of their color charge distribution,

described above.

Consider next the Q2Q2 states with £ = 1. This time there 1s no conser-
vation law which forbids one of the particles to tunnel from bag end 1 to
bag end 2, provided at Xeast one colored particle stays behind in end 1. This
phenomenon in principle éQlows mLx1ng between Qzé-é or Q-QQ2 and QZ—QZ or
QQ—QQ configurations. We will now demonstrate, that the probability for this
to take place 1s rather smajll.

- The Q2-Q basis states and tunneling -

The argument rests on what 1s observed in an £ = 1 (or 2) Q2-Q baryon
system. To avoid inessential complications we will take the A-like configura-
tion as example. We denote the situation, that quarks 1 and 2 reside in bag
end 1, and that quark 3 sits in bag end 2, by |¢> = lQ,Q' -Q''> = |1,2-3>.
When particle 2 tunnels to the other end, this situation 1s changed to
|¢'> = |1-2,3>. The final state again 1s a QZ—Q baryon with £ = 1 (or 2). The
nonzero energy associated with this process 1is given by the matrix element of

the tunneling hamiltonian HT between these states, denoted by m = <¢'|HT|¢>.

o'
This operator conserves the overall quantum numbers of the system. It has
J=I=Y =0 and ¢ = 1. It annihilates a quark in one bag end and recreates
i1t 1n the other end of the same bag. Because the initial baryon 1is transformed
to a srmlar one, HT can be expressed in terms of symmetry operators of the

)

baryon system- 1n this case the permutation operator of quark 1 and 3 (P13

and the space i1inversion operator P. We find: HT = m(l)-Pla-P , and


file:///east
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Moy = <¢'|HT|¢> = <1-2,3|m(ﬂ,)-P13-P 1,2-3> = m(2) . (18)
For Q3 baryon systems, the color wave function is unique [Mu 79]. This

1mplies that the permutation symmetries of the space and flavor spin parts of

the wavefunction are complementary. The tunneling ham.ltonian primarily affects

the spatial configuration of the system. In as much as 1t has a different

effect on systems with different space or equivalently flavor spin properties,

its contribution to the hamiltonian can be expressed i1n terms of flavor spin

projection operators. One has:

_ oy A1 . -
Hp = (-) m(L) - (2 P56 P70) . (19)

PN 1s the projection operator on the N-dimensional flavor spin irrep. In the
quark-diquark (cluster) basis this operator has off diagonal matrix elements.
A fit to the baryon mass spectrum yields m(1) = 100 MeV, m(2) = 45 MeV. The
effect of tunneling 1s not large enough to ensure a pure permutation symmetry
for the flavor span part of the wavefunctions. One finds, where possible,
mixtures of both the 56 and 70 dimensional flavor spin irreps. Compared to

L =1, most £ = 2 states are appreciably purer in the asymptotic cluster basis,
which then provides the more econormic description.

- The Q2§2 basis states and tunneling -

When we apply the simple baryonic tunneling model to the Q2Q2 excirtations,
we find that some of the consequences are different. This 1s caused by the
fact, that we now have an even number of - partly distinguishable - fermons:
two quarks and two antiguarks. Take as a starting point an & = 1 three-baryonium
state. The quarks (labels 1,2) sit in bag end 1, the antiquarks (3,32) 1in bag
end 2, a situation denoted by |¢> = |Q,Q' - §,§'> = |1,2—§,Z>. When antiquark

2
3 tunnels through the angular momentum barrier, the Q2-Q configuration goes

2~ =
over i1n a Q 0-Q one. Since this 1s an alltogether different systcem, there
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i
exist no symmetric operators, which can convert this Q Q-0 final state back

=2
to a QZ-Q initial one. The tunneling hamiltonian H_ then can not be expressed

T
1n terms of symmetry operators either.

Since the color and angular momentum conditions have not changed w.r.t.
the baryon example, the tunneling hamiltonian 1s expected to have about the
same strength in both cases. The action of HT on the three-baryonium initial
state 1s approximated by: HT|1,2-§,3> = m(£)|¢'>, where |¢'> = |1,2,§-Z>
denotes the three-baryonium state in which particles 1, 2 and 4 have the same
wavefunctions as they had 1n the state |¢> , and 3 has a three-baryonium
antiquark wavefunction, but now also concentrated in bag end 1. The dissimi-

larity of the transformed baryonium state |1,2,§—3> and the physical mesonium

final state |x> manifests i1tself in a reduced overlap: <x|¢'> < 1. One finds

m = <xligle = mw ol < nw : (20)

This reduction of the matrix element, due to the space part, may even be
quite severe. The centre of mass 1n the baryonium state lies approximately in
between the two bag ends. For £ = 1 the quark energy dominates the field
energy and the centre of mass of a three-mesonium state lies much closer to
the QZQ end than to the 6 one. This type of state has a rather asymmetric space
distribution, quite different from the symmetric baryonium one. Moreover, the
initial and final state very often have different energies, and the
transition may only be possible thanks to the wideness of the mesonium final
state.

Although all three-baryonium color spin and flavor configurations are
present i1n the three-mesonium spectrum, also here further suppression of
tunneling activities may arise. In a QZQ cluster the diquark wavefunction for
a given flavor state often 1s a mixture of c = 3* and 6 configurations, which

distributes the transition probability over two non degenerate final states (cf.
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Table Xa and XIc). This effect 1s to some extent of course already accounted
for 1n the space part of the matrix element. Clearly, tunneling transitions
from three-mesonium to baryonium states are even more suppressed. For about
half these states 1t i1s even completely forbidden.

Comparing with the baryon results we expect m' () = <x|HT|¢> to be of
the order of 10 MeV for & = 1 and negligible for & = 2, where the angular
momentum barrier is higher. For the three-baryonium states, the clusters
therefore may yield an even more surveyable picture than for the baryons.
Already for & = 1 the quarks will submerge in the, from the point of view
of tunneling rather stable, clusters, which will be the active, subhadronic
constituents.

The generalization to 6-baryonia and 8-mesonia, for which tunneling
also involves a color flip, does not add any qualitative changes. Since these
states are usually heavier (especially for £ = 2) the arguments are expected
to hold even better. For many QQ—QQ states transition to a QZQ-Q or conjugate
configuration 1s even completely forbidden. Mixing between 3 and 6-baryonium
or baryonium and 8-mesonium states via tunneling involves this process at
two stages and thus can be neglected. This kind of mxing will be even more
suppressed, because the 3-mesonium intermediate states are highly unstable and
a multi-meson decay 1s much more probable than a tunneling transition. Since
the communication with 3-mesonium states will connect any other QZQZ state
to the multi-meson decay channels, establishment of the branching ratios of
such states into these decay modes will provide more quantitative information
(upper limts) about the importance of tunneling. The fact that for some state
these modes are not observed (yet) 1s interpreted as support for the above

described picture.
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- The residual interaction -

The clusters, being quite cleanly separated, will interact via their
static color multipole moments. The residual colormagnetic interaction in the
3-baryonia 1s quite simlar to that of the mesons. The main difference 1is,
that for 2 = 1 the quark contribution to the mass 1s twice as large, 1implying
that the clusters will be closer together. We will simulate this effect by
taking the strength of the residual part to be 20 (5) % of the 2 =1 (2), 1.e.
enhanced (see section III 1, page 157), persistent part. These numbers were
only crude estimates, and the changes brought about by this prescription still
are within the estimated uncertainties. For this reason we will apply the same
value also for the sextet and octet strengths, since these clusters have &
separation, which 1s in between that of the Q—é and 3-baryonium ones.

For £ = 1 and 2 the residual part will be included i1in the mass at the
same point as the persistent one. Its inclusion will, because 1t contains
operators, which are not diagonal i1n the asymptotic basis states, mix states
on different color trajectories. For example, in the J = 0 baryonium sector,
color spin flip transitions between (c,8) = (3*%,0) and (6,1) clusters are
allowed and mixing analogous to, only much less strong than, that in the same
sector for £ = 0, occurs. Because the color triplet and sextet states lie on
different trajectories and have a reduced strength, the total effect 1s at the
percent level.

More important 1s the mixing among the color octet and singlet states,
for the QQ—QQ trajectory. This color spin flip interaction couples the rather
stable octet configuration to highly unstable dimeson molecule states and
permits the first to decay into the two meson channels.

The interaction of the color electric dipoles on the orbitally excited

=2
Q2Q states 1s only noticeable for the 8-mesonia. It causes color flip
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transitions, which again enlarge the color singlet component, adding to the
1nstability of these states. In favorable cases, an £ = 1 strength of 40 Mev
w1ll induce an increase of the color singlet content of 10 %. This number
decreases for heavier systems, for £ = 2 1t 1s only 2 %. We have no example
from which we can obtain a scale for the strength of this interaction. Compared
to the color magnetic interaction 40 MeV 1s to be considered a large value.

To conclude this prescription to calculate the QZQZ masses, we note that
in this cluster approximation the £ = 1 and 2 color octet masses are calculated
without any Fermi-Dirac statistics restristions on the quark wavefunctions.
This tends to enlarge the splitting somewhat. Another consequence 1is that now
no longer the mutual interaction of a Q@ parr 1n one bag end equals that of
a quark and antiquark located in different bag ends (A(Qé) # A(Qé')!).

The present approach i1s not sophisticated enough to comprise spin orbit
and tensor type i1nteractions, which can not be treated separately [MaR 78].
Although the corresponding mass contributions will not be large (a few tens
of MeV) the combination of the two 1s sufficiently powerful to destroy simple
level ordering schemes, e.g. larger spin has not always a higher mass. We
w1ll present these levels therefore as degenerate.

This mass description leads to a spectrum of which the ¥ = O members are
listed 1n Table XIII for ¢ = 3 (a), c = 8 (b) and ¢ = 6 (¢). We have included
only the £ = 1 and 2 multiplets. A calculational uncertainty of at least
50 MeV should be kept in mind. Higher multiplet masses can easily be calculated

using Tables X and XII.
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Mass (GeV) ns I s J,Cn

o 1.50 0 0 0 1-

1.72 0 1 1 0+,1%,2¢

1.83 2 0,1 © 1-

1.86 o 0,1,2 0 1-

1.90 o 0,1,2 1 O+, 1+,2+

1.94 o  0,1,2 2 1-,2-,3-

2.02 2 0,1 1 0%,1%,2¢

2.14 2 0,1 0 1-

2.17 2 0,1 1 0+, 14,2+

2.21 2 0,1 2 1-,2-,3-

2.42 4 0 0 1-

2.44 4 0 1 04,1+, 2+

2.47 4 0 2 1-,2-,3-
fF = ot 1.76 0 0 0 2+

2.01 0 1 1 1:,2¢,3¢

2.07 2 0,1 0 2+

2.23 o o0,1,2 0 2+

2.23 o o0,1,2 1 1-,2-,3-

2.24 0 0,1,2 2 O+,1+,2+,3+,4+

2.28 2 0,1 1 1%,24,3%

2.46 2 0,1 0 2+

2.47 2 0,1 1 1-,2-,3-

2.48 2 0,1 2 O+,1+,2+,3+,4+

2.70 4 0 0 2+

2.70 4 0 1 1-,2-,3-

2.71 4 0 2 0+,1+,2+,3+,4+

Table XIIIa: Masses, quantum numbers (I,l,s,J,P,Cn) and strange guark content

. 1
(ns) of the Y = 0 color 3-baryonia. One has G = Cn (=) ".
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Mass (GeV) ng I
oF =17 1.94 0 1
1.96 0 0,0,1,2
1.98 0 1
1.99 0 1
2.00 0 0,0,1,2
2.01 0 1
2.16 2 0,1
2.18 2 0,0,1,1
2.24 2 0,0,1,1
2.25 2 0,1
2.27 2 0,1
2.29 2 0,1
2.45 4 0
2.55 4 0
F = 2" 2.38 0o 0,0,1,2
2.38 0 1
2.39 0 0,0,1,2
2.40 0 0,0,1,2
2.40 0 1
2.42 0 0,0,1,2
2.58 2 0,0,1,1
2.58 2 0,1
2.60 2 0,0,1,1
2.61 2 0,1
2.64 2 0,0,1,1
2.66 2 0,0,1,1
2.80 4 0
2.83 4 0
2.87 4 0
2.91 4 0

1 J,cC
n

0 1t

—_

O+,1+,2+
0t,1+,24

1+,24

—_ N =

0+,1+,2+

= N - = O O
o
+
—
+
N
+

_ = O
o
pr
—
+
N
+

0+, 14,2+, 3+
1-,2-,3-
1+,24, 34

2+

0+, 1+,2+,3+
1+,2+ 3+
1-,2-,3-

2+

2+
O+, 1+,2+,3+
1-,2-,3-

2+

O » N O O = = N += O O = = N = O

,4+

P4+

4+

Table XIIIb: Same as Table XIIIa for color B8-mesonia.
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=1

Table XIIIc: Same as Table XIIIa, for color 6-baryonia.

Mass (GeV) n_

1.87
1.91
2.01
2.06
2.15
2.17
2.18
2.27
2.31
2.40
2.64

2.35
2.36
2.39
2.49
2.58
2.59
2.60
2.62
2.70
2.79
3.00

0

NN DN O v O O O

BN N N O DM NNV O O O O

QO O = N » O O = N - O

© O » N O = O = N = O

0+,1+,2+
1-,2-
O+,1+,2+
1-
1-
2+
1-,2-,3-

0+,1+,2+,3+

1-,2-,3-

2+

0+,1+,2+,3+,4+

1+,2+,3%
2+

2+
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Section IV: Results and discussion

Several general comments can be made at once. With exception of one
PC ++
isoscalar J = 2 state at 1.76 GeV, all states below 2.0 GeV are expected
P -
to be 27 =1 states. Below 2.2 GeV the highest spin value is J = 3. This
means that in this region (see e.g. Table VIII) nonstrange mesons with a
higher spin value are likely to be orbital Qﬁ excitations. The first J =5
(6) system is expected around 2.5 (2.75) GeV. The heaviest J = 1 (JPC =1)
state has a mass of 2.93 GeV, still below the charmonium region. The heaviest
PC ++ . . :
J=2(J = 2 ') state lies at 3.25 GeV. The lowest exotic states lie at
PC -- -+ .
1.72 GeV. They have J =0 and 1 . Another type of exotic state occurs
at 1.86 GeV. It has I = 2.
- Formation -
2.2 . . . : .
The Q@ Q meson states, on the basis of diagrams as depicted in Fig. 3,
are expected to occur as resonances in elastic BB scattering [Ro 68, Ro 74].
They consequently are looked for in antinucleon formation experiments [Ei 76].
This method is quite suitable for the detection of high mass (> 2 MN), narrow
meson states. A disadvantage is that the resolution of broad states is quite
cumbersome. Moreover, the experiments, using on-shell nucleon (i.e. hydrogen)
targets, are difficult for very low beam momenta. Improvement is attained by
using "off-shell" targets (i.e. nucleons, bound in e.g. deuterium). Only non
PC
exotic I, J states can be excited directly this way. Information on the
quantum numbers of such states can be obtained by looking at final states like
+ - 00 0 + - . . . . -
mm, mw , ™nor KK which, although their branching ratios (<< 1 % of the
total cross section to be compared with 7 to 8 % for the elastic T and U
bumps) are small, have a very simple amplitude structure. Also mesons with

mass M < 2 MN can be studied through NN annihilation processes and show up

in the multimeson invariant mass plots (e.g. D(1281) and F1(1540)).
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An important variant of this method for on-shell meson formation is
electron positron annihilation. This electromagnetic process allows exclusively
JPC = 17 states. Present searches scan the region between 1 and 3 GeV in
which also the photon-like QZQZ states are supposed to lie. We have plotted
these photon-like states separately in Fig. 5.
~ Production -

A distinct kind of experimental method 1s to produce heavy mesons "off-
shell” by letting a boson or lepton beam fall on a nucleon target. One has
a variety of options for the final state. One can trigger on a BB pair,
coming out 1n the forward direction e.qg.: n-p - (pE)F n. Drawing the
Harari-Rosner diagram for thas process one finds 1t is already possible via
meson exchange. Resonances may be extracted by making a partial wave analysis
of the process ﬂ-n+ > pﬁ. Just as in the antiproton formation process broad
resonances emerge (Table XIVa). One can select a baryon exchange production
mechanism by triggering on a single forward proton: © p + pPp * X (Fig. 6) and
analyse the invariant mass plot of the final states containing BB pairs e.g.

X = (pﬁ"-). This way narrow resonances have been detected (Table XIVb). Also

> ;u% Qﬁ: > »- gq]r
:ﬁl ﬁj "A ) \ad
:; ) / o :; :‘A .
> ‘—’j ; C Aﬁ.ﬂﬂ

i \ 030 \
¢ -
a { 0

Fig. 6 Harari-Rosner diagrams for the production of a 3-baryonium (a) or 8-

o

mesonium (b) state. The production of a 6-baryonium state proceeds as

1n diagram (a), only this time a multimeson final state 1s more probable.



- 173 -

Mass (GeV) Width(MeV) Source Quantum numbers
(1.92 190 Ev 78; 1 p + (pﬁ)F n, PWA g€ =17, 182t
1.94 55 De 76; pp + powo, pp, nn IG =1 ,J=1or2
Mon 78; §n >t JP = 2+, IG =1
1.95 240 Ev 78; 1 p = (pf))F n, PWA JPC =1, 1© - 1t
2.01 100 De 76; pp > 57, nn J<2,G=-

- +
De 76; pp > KOK_ w+

- - ++ +

(2.02 160 Ev 78; mp > (pp)_ n, PWA JF€ = 2™, 1 -0t

- ~ - -— - +
2.15 200 car 77, DeM 76; pp > n'm, K'K 5% =37, 07 &1
2.185 130 Ab 70, Co 77; Oqe Ogp, in PP I=1

- - +
2.31 210 car 76, 77, Delt 76; pp > n 1, €16 = 4t of
nono, K+K-

2.350 190 Ab 70, Co 77; gy, 0. in PP I=1
2.385 80 ab 70, Co 77; o, o, in pPp I=0

- - - - - +
2.48 280 Car 77, DeM 76; pp > 171, K'K 3% =577, 07 a1

Table XIV: Possible candidates for baryonium and mesonium states (a) broad
states. The two entries between parentheses are an alternative to

the M = 1.95-entry.

in photo- and electro (or virtual photo-) production experiments, viz.

YP > p + X and ep > ep + X respectively, this method of analysis may be
applied. These kinds of experiments, in the energy region of interest, have
begun only recently and from this source only preliminary results are
available [0z 78, Ri 78]. One can also trigger on more complicated forward
systems. A reaction like K+p + (Kp1r+)F n, which requires the exchange of an

2-2 .
exotic Q O meson, has uncovered a narrow exotic forward final state.
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Mass (GeV) Width(MeV) Source Quantum numbers
1.395 < 34 Pa 78; y from atomic Ep
+ - = s . PC -=
1.470 10 Bem 77; e e , pp annihilation J =1
1.646 <21 Pa 78; y from atomic pp
1.684 < 19 Pa 78; y from atomic pp
1.795 < 8 Gr 71; Ed annihilation at rest
+ - - s . PC --
1.820 n 25 Bem 77; e e , pp annihilation J =1
1.875 < 10 Gr 73; pd annihilation at rest -1t
1.897 25 Ka 76; pd annihilation at rest Complex, I =1
1.936 3 Ca 74, Ch 76, Br 77; o, 0,, 0_ in )
; in p = 2
Cu 78, Sa 78; OCE in pp I 0
+ + -
1.954 <10 Wp 78; mp > T p (pp)g
1.975 <2 Su 76, Ca 75; np ~ N pions, dip in o, S S
1.986 "B Su 76; np + (KKm) = I=1
2.020 24 £ 12 Be 77; 7 p ~ p_(ppT ) I1=07?
Oz 78; ep ~ ep (pp)
2.130 30 Bem 77; e+e— annihilation JPc =1
2.204 16 ¥ fg Be 77; n'p - Pp pprt 1=02
- + -+ -
2.207 Gr 78; pp > Te (T KX ) I =1
+ -+
2.461 < 10 Ar 78; K p > (fApm )F n S=+1,0=2
2.85 < 40 Br 76; pn » 1 X° 1=02
3.43 < 45 Ba 76; T p ~ (AK)F n

Table XIV: Possible candidates for baryonium and mesonium states (b) narrow

states.
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It 1s from these sources that the evidence for f-excited QZQZ states
may be drawn. We will mainly restrict our considerations to the strong
1nteraction aspects. Some of the more pronounced signals in the above cited
processes have been listed in Table XIV. This table 1s not complete. Many
more candidates have been proposed. Of some of these the existence has been
contested by later experiments. Other still await confirmation or rejection.
The available data also suggest many additional structures, corresponding to
effects which have not yet been properly investigated. Especially in the
JPC =1 sector many states below 2 GeV have been reported. Some of these
are wide, havaing multipion decay modes, while others are rather narrow (e.qg.
M = 1.47, 1.82 and 2.13 GeV) and have been seen to decay into kaons, which may
favor an interpretation as radial recurrences of the p and w, and ¢ respect-
ively. Table XIVb contains a doubly charged, strange meson with a mass of
2.461 GeV which may be the first unambiguously exotic state observed. Its
establishment will be the strongest evidence in favor of hadrons containing
more than two or three quarks.

1. Broad states

Table XIVa contains several states whose quantum numbers have been
determined completely by making use ot their mnm and KK decay modes [car 77].
It was found, that these resonances couple dominantly to the NNJ=0L-1
amplitude and rather accurately satisfy the peripherality relation L = kR
[Da 64], waith L the angular momentum, k the center of mass momentum and

R = (mﬁ)“1 = 1.4 fm the range of the forces in the NN channel. Also the

P -
J =1 state at 1.95 GeV from the Ev 78 partial wave analysis of the process

- 4+ -
m w - pp lies rather close to this curve. When this state turns out to
prefer the J = L - 1 wave too, one 1s 1inclined to expect another one - with

P +
J = 2 - near 2.05 GeV. The Ev 78 analysis requires considerable model
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dependent 1nput. It also allows a (better) fit for resonances at M = 1.92

P

- + 222
and 2.02 GeV with JP =1 and 2+ respectively. A J =2 Q0O state 1is

expected at M = 2.01 GeV, but 1t has I = 1 and couples to KR, not to 7w,
The I = 0 mr state then probably has a 0-0 origin. No 0+ Q2Q2 {or leading
0-Q) resonance near 1.90 GeV 1s expected in the 3PO NN wave.

One observes, that the broad resonances, discovered otherwise also tend
to lie near the peripherality curve L = kR. This suggests that one can get a
first indication of the relative prominence of the orbital Qzﬁz excitations
by comparing the proxamty of the masses in Table XIII of states with the
correct NN quantum numbers to those, on the peripherality curve. Because
the range R of the NN interaction 1s rather long (mTr < MN), one finds that
for J < 10 the peripheral NN states are light 1n comparison with Q2Q2 states
with the same spin. This implies, that only those QZQZ states will be close
to 1t that are comparatively light or, when heavy, align a high quark spin
with £ to obtain the highest possible J.

One finds, that for J > 3 and M > 2.25 GeV (or £ > 1) the 6-baryonium
and 8-mesonium states as well as all states with n_ > 2 are too heavy and
decouple, and that one can identify the following prominent 3-baryonium
trajectories in the NN channels:

1. NN triplet, J =L - 1: the 8 =1 =0, J = & trajectory lies practically on
top of the curve L = kR. The s =1 =1, J = & trajectory i1s close to 1t.

The s =1, I =0and 1, J = £ - 2 trajectory virtually decouples.

2. NN triplet, J L: only the 8 =TI =1, J =2 + 1 trajectory lies pretty

close.

3. NN triplet, J L + 1: here the s I=0,J3=22and the 8 =2, I =0and 1,

J = & + 2 states are the most peripheral ones. They are almost degenerate.
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4. NN singlet, J = L: this channel will be dominated by the s = I =1,
J = 2 + 1 trajectory.

We find that the NN channel with the most peripheral states has J =L - 1
and will show both through an I = 0 and an I = 1 trajectory. In our model this
isospin doublet is not degenerate, the I = 0 states being lighter and more
prominent. The splitting between the I = 0 and 1 states will be a measure for
the color magnetic splitting which is predicted to be about 200 MeV for £ > 3.
Because the J = 3, 4 and 5 states on the peripherality curve, when considered
by themselves, appear to lie on a trajectory with a steeper (in the J—M2
plane) slope, they can not belong to a single QZQZ trajectory like e.g. that
with I=0and 1, J =2 and 8 = 0 or 2 [ChH 77). One would like to see a
better resolution of the I = 0 and 1 components (if present) of the reported
states. The J = L + 1 channel is dominated by an I = 0 and an I = 0 and 1
trajectory. The J = L channels favor I =1 = §.

When the intercept of the trajectories is shifted by 50 MeV, these
observations will still be valid. Only when it is taken to lie more than
100 MeV lower, the I = O states in the NN triplet J =L - 1 and the I =1
states in the NN singlet channel may become too light to be peripheral. The
at present lower lying trajectories: the I = 1 =8 and I =0 and 1, J = &,
8=0and 2, and I =0 and 1, J =2 + 1 and s = 1, respectively will become
more important.

For states with J < 3 and 1.88 < M < 2.25 GeV the situation is slightly
different. Only one state around 2.05 GeV exists with n, = 0 and JPC = 2++.
It is a 3-baryonium state with I = 1. Another 2++ state nearby has n_ = 2
and I = 0 and 1. Because of the strange quark content this state is not
expected to be very broad. Candidates for the peripheral state near 1.95 GeV

should be recruited from the lP =1 multiplets. Here n_ = 0 3-baryonium and
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8-mesonium states are available. As we shall argue below we do not expect

the mesonium state to have a strong coupling to the D-wave BB system. From
the 3-baryonium configurations (at 1.94 GeV) both I = 0 and 1 are expected.
The mixang of thas NN 3D1 with the 351 wave may explain 1ts large width so
close to the NN threshold. Since we have no reason to think, that the £ =1
and 2 masses are more accurate than those for ¢ > 3, also in this mass region
uncertainties of 50 MeV should be reckoned with.

None of the states with J > 3 1s close to the mmn-peripherality curve
J=L-= kR", R" < 0.5 fm, which favors heavy low spin state production. Only
J = 2, around 2.0 GeV, and possibly J = 1 states, around 1.9 GeV, in the NN
J =L * 1 channels may be more pronounced and consequently easier detectable
in the atnT > PP type processes.

One could also attempt a classification of the states i1n Table XIVa
in terms of orbital QQ excitations. Comparing the masses for states with
the same quantum numbers one finds that the observed value lies each time
1n between the L = J - 1 and the L. = J + 1 candidate, about 200 MeV away
from both (see Table VIII). Furthermore Q—Q resonances can by means of Qé
pair creation easily decay into two (or more) meson final states, whereas
decay into BB requires an additional 00 pair and i1s expected to be more
suppressed, and certainly not as domnant as observed for J > 3. We think
the comparison here unfavorable for the Q0 excitations. However, just above

- ++  _++
the NN threshold, they (1.e. members of the £ = 3 multiplet: JPc =2 , 3,

++ 4=
4 ', 3 ) may certainly manifest themselves. In this region indications exast

for broad positive parity states with sizable, 1f not dominant multimeson

decay modes M = 1.94 and, somewhat higher M = 2.02 GeV.
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- Narrow states: M = 2,020 and 2.204 GeV -

A surprising feature of the states which have been found to couple
to NN imitial or final states 1s that next to the broad (peripheral) states
also - sometimes very - narrow ones are found (collected in Table XIVb},
not only below the NN threshold, but also quirte far above 1t. A strikaing

example i1s formed by the states at M = 2.020 and 2.204 GeV. They were first

++

F MO, where the forward baryon B

detected [Be 77] 1in the process n+p + B -
1s a A++(1232), decaying into pn+, and M0 + pp (cf. Fig. 6a). The assumption
of a simple 1sospin structure yields a large branching ratio for Mo into

NN, but no significant mm or KK decay rates have been found. One has
searched for, but not (yet) found. charged partners (M). The 2.02 GeV
state has also been produced by a virtual photon: Y2 ppp) [0z 78], but
has not been seen 1n formation experiments. At a mass of 2.207 GeV a

narrov state has been observed [Gr 78] in the process pp —+ n; «x"nTy,
suggesting an 1sovector character.

When the signals at 2.207 and 2.204 GeV are due to a single state, one
may assume that, because of the large p§ branching ratio, the two narrow
states - interpreted as Q2QZ states - both have a nonstrange quark content.
The KK pair then results from a decay via an ss parr creation and requires,
since the creation of an nn pair usually 1s a little easier, the presence
of a ninTnT decay mode. When the states at 2.207 and 2.204 GeV are
different, one of them probably has n, = 0 and 1s not seen 1n formation
experiments, whereas the other state may have ns = 2., In any case, since
no JPC assignment 1s known, the number of theoretical candidates exceeds
the number of experimental ones by far (see Table XIIIa, b and c). We note
that the model predicte the state near 2.2 GeV to have a composite 1sospin
structure, whereas the peak at 2.02 GeV may also be due to a single isospin

level. We will use the above described data 1n conjunction with a model for
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the formation and decay in an attempt to reduce the number of candidates.

2. The QPC or 3PO model

A particularly simple model which may be extended to describe the
2.2 -
coupling of Q' Q states to the BB system, has been proposed ten years ago
by Micu [M1 69] to account for the decay rates of meson resonances to two

meson final states. It 1s called the Q(uark) P{air) C(reation) or 3P model.

o

One 1magines a process of the type Q = Q » Q(0Q)Q + (0Q) + (90). A QD
+

++
color singlet pair 1s created with vacuum quantum numbers IG JPc =0 0 ,

+
25 1L = 3P configuration. It 1s assumed, that the

which corresponds to a 5 0

original (anti)quarks do not change their spin, color or flavor state
during the creation process, but recombine only later with the new quarks
to form color singlet final state mesons. The model turns out to give a
rather adequate description of the decay rates of meson resonances. It
also appears to describe the decay of baryonic resonances to meson baryon
final states well [Co 71, Mu 79].

Recently Jaffe [Jb 78] applied the QPC model to try and select the
3-baryonium states, which are most prominent in the BB, and 1in particular
in the NN, channels. The decay of a QZ-QZ to a BB state again proceeds via
the creation of a color singlet Qé pair in a 3P0 state. One has:

Q0 :t'éé > QQ(QQ)@Q - Q3 + Qj. The original (anti)diquarks behave as
spectators and are recovered in the final state (anti)baryon in their
original quantum state. The BB parr content of the final state follows
from a recoupling of the quark and diquark wavefunction to a baryonic
one. Of course, the same model can be used to describe the formation of a
3-baryonium state by considering the annihilation of a QQ pair ain a BB
1nitial state.

In this approximation the transition matrix element (see Fig. 7) 1s
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(1,8,

i (iy,5)
5,L,11 s,,I1
t“psﬂ

(1,,57) >\

=2
Fig. 7: The vertex for the decay of a QZQ resonance to a baryon-antibaryon

final state.

given by:

\ = 3 2 . 2 .
<fla|i> = <B,1_,S ;B,IZ,SZ;I,S,L,JIH( Po)iQ i,080:07,1,,8,:1,8,8,3> (21)

171

Clk,2,L) *g; +9+9;°9,,

The recoupling of (iso)spins is given by the factors g:

L] r [, 1
S1 5 51 | 8 1 SW ] i, 5 I1
1 . 1
%= | % 37 S5 9y Lot L i %n- | 2 7 I (22)
s 1 s J 0 J| I 0 I
L J . J
The recoupling coefficients are related to a 9j symbol [Br 71] by:
[ s, T, U ] s, T, u )
1 1 1] 1 1 1
_ 1/2 (23)
§, T, U,.= ((253+1)(2T3+1)(2U1+1)(2U2+1)) 5 S, T2 u,
] 1
| I !
L 53 T3 U3 83 T3 U3

From eq. (22) it immediately follows that one has ]s—ll <s §_|s+1| and that

L = llill, because of parity conservation.
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- ck,2,L) -

The coefficient C(k,R,L) represents the space part of the matrix element.
It contains the unknown dynamics of the decay and accounts for the transition
of one elongated bag into two spherical ones. C(k,%,L) depends on the angular
momentum L of the BB final state and the angular momentum £ of the resonant
state. It furthermore depends on the CM momentum k of the two particle state.
In principle, also a dependence on the symmetry of the space wavefunction is
possible. For example, in the QZ—Q orbital excitation spectrum, for the
lower values of the orbital momentum £ (1,2) between the quark and the diquark
evidence for two flavor spin multiplets 1s found: a 56- and 70-plet. For
this all quark system the flavor spin symmetry reflects the spatial one, and
1t 1s found [Mu 79], that C(k,%,L,56) # C(k,%,L,70). However, with our
restriction to s-wave diguarks this freedom 1s not present in the Q2-Q2
orbital excitation spectrum. In this model only processes with the same ¢
and L values can be compared. As a simple approximation one may take the
k dependence to be a phase space factor. We will also use C to absorb common
factors, such as the coupling constants.
A

The i1nitial state of a formation experiment consists of an NN pair. We
therefore consider only one 1so singlet configuration: that containing
nonstrange quarks. Taking also creation of ss pairs into account we have

to replace 90 > 9in +c'g , where 96 = 8 8 and c' represents

1S 11T 17In

possible dynamical differences of ss with nn pair creation. In the SU(3,F)-
symmetric case one has ¢' = 1/¥2. The flavor normalization factor /757;
then can be absorbed in C(k,2%,L).

- Colorless baryons in the final state -

Since the baryons in the initial and elastic final states all have
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ground state configurations, the quark must be created in a relative s-wave
with respect to the diquark, at least part of the time. The baryons emerging
after recombination are expressed an terms of diguark—-quark basis states and
st1ll need to be expressed in terms of the Q3 basis states of the initial or
final state baryons. This requires another coupling. For our purposes 1t 1s
enough to know that the nucleonic diquark spends half 1ts time in an
1 =1, 8 = 1 and the other half in an 1 = 0, 8§ = 0 configuration. Next to
nucleons also A's will be created. We will find, that also NN7 and NNuw
final states are present. The diquark in a final state A 1s always 1n an
1 =1, 8 =1 state, A nucleon 1n the final state thus gets an extra factor
of Vv 1/2] A considerable part of the time the 00 pairr will be created near
one of the bag ends and then also excited baryons will be formed. This is
another source for mesons 1n addition to a BB pairr in the final state.
~ To flip or not to flip -

The statement, that the color configuration of the original quarks
does not change, 1s a travial one for the Qé and the Q3 decays: the quark
and diquark can only occur i1n a color triplet configuration. The same
statement involves an extra assumption for the Q2§2 states [Jc 78]. It is
possible that, when the elongatecd Qz—Qz bag splits into two spherical
baryonic ones under the influence of a 00 paixr creation, the diquarks
exchange (color octet) gluons, which flip the color from 3* to 6 or vice
versa. Such a flip by 1tself 1s forbidden, because of the Pauli Principle,
and thus must be accompagnied by e.g. a spin flip or a spatial (de)excitation
of the diquark. One expects the interactions, needed to realize these flaps,
to be simlar to the color magnetic dipole - dipole ones, and thus to fall
off rapidly with the intercluster distance. Their ainfluence then perhaps will

only be noticeable for small £ (1s 1 or 2).
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One assumes as a rule of thumb, that only 3-baryonium states will
couple strongly to the BB system. This assumption seems reasonable in case
of a peripheral formation process. The baryon behaves as a diquark quark
system, of which the quark annihilates the corresponding antiquark in the
antibaryon, and an orbitally excited 3-baryonium intermediate state 1s
formed. The spectator diquarks are kept apart by the angular momentum
barrier and do not come close enough to flip color (and spin). No 6-baryonium
will easily be formed in, or decay to a BB channel. Their width 1s thus
expected to be appreciably smaller than that of their color 3 nephews. Of
course, also B-mesonium states will not couple to BB decay channels.

- Colored baryons in the final state -

When a diquark and quark couple to a Q3 baryon, next to the color singlet
flavor spin multiplet [56] also a color octet [70] may be formed. The 3-
baryonium state thus may also couple to (virtual) Q3—Q3 8-8 trajectory states.
Estimating the mass of such bag states one finds (ns = 0) an intercept of
M = 2.125 GeV and the following central masses M(L): M(1) = 2.48, M(2) = 2.80,
and M(3) = 3.08. The persistent color magnetic splitting has a strength of
75 MeV. The most lowlying configuration consists of a BB pair, with both
1=8=+:A=-1and Er = - 75 MeV. Assuming that for L = 1 one has

1

EM = ~ 200 MeV, the lightest L =1 Q3—QJ st1ll lies above the heaviest

2 22
L =20 -0 (ns =0, ¢ = 3) state! Only the L = O may lie amd of the £ = 1

Q2Q2 states.

=3
The 8 - 8 Q3-Q trajectories are not expected to have a large influence
on the NN final states. For example, a 3-baryonium state with £ = 1 may
couple to L = 0 and L = 2 Q3Q3 states. The latter 1s much too heavy:

2.7 < M < 3.3 GeV. The former simply falls apart, analogous to the 2 = 0
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QZ—QZ bag state, 1n three mesons i1n relative s-waves. No (anti)baryons will
be seen in this case. The L = 1 Q3-Q3 states are expected at masses
2.3 < M < 3.0 GeV. They may decay by means of emission of a meson (pion)
to an L = 0 bag, yielding multimeson final states. Decay may also proceed
through color singlet admixtures, arising from color magnetic and electric
dipole interactions just as for the & = 1 B-mesonium states. Such adm xtures
are not possible for all members of the 70-plet, because the lim ted
overlap of the flavor quantum numbers with the 56-plet. Nevertheless, there
may be color singlet BB decay modes, which are sufficiently strong to blurr
the branching ratios for decay into BB channels, which are calculated using
exclusively the direct produced color singlet baryons [k1 78].
- g, -

In view of these decay modes, the L = 1 states are not expected to
have an exceedingly large width, and due to their high mass are not easily
formed as intermediate state in an ¢ = 1 Q2—§2 decay. For L. = 2 and larger
the coupling 1s ever weaker. This situation is therefore quite simlar to
that for Q—Q and Q2—Q resonance decays, where the color singlet MM and BM
final states to good accuracy are also entirely due to direct decay. To
first order only 3-baryonia will produce BB final states. One has
g, (QZQ2 > Blﬁl) = 1/3. Thas factor 1s usually absorbed in the unknown
function C(k,%,L). Comparing 1t with the recoupling coefficient to color
B-baryon final states- gc (Q2Q2 hd Beﬁe) = VF§751 one 1s inclined to expect
a considerable branching ratio to three or more meson final states for
2 = 1 baryonium states. For the color sextet variety 1t probably 1s a main
decay mode.

- The 3P model and peripherality -

0
The couplings of the 3-baryonia to NN (as well to NA, AN and AA) have
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Table XV: Isospin-spin couplings of QZQZ to BB states after creation of a Qé
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gi-gs-(;%ON, where N is the number of nucleons in the BB state. The
linear combinations correspond to C-parity eigenstates (see Tables

IX and X for diquark definition).
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been given by Jaffe [Jb 78]. They are listed in Tables XV and XVI. Combining
these two tables we see, that the strongest coupling is that of the I = 0 NN
triplet to those s = 0 Q2Q2 states which contain isoscalar diquarks. For
large £ the two degenerate s = I = 1 and the 8 =2, J =2 * 2 with I =0 and
1 states couple considerably weaker to the NN S =0 and 1, and S = 1 channels
respectively, but have a more favorable phase space. The I = 0 and 1 states
with 8 = 0 and 2 and J = £ virtually decouple. These statements have only
meaning when a comparison is made between states with the same values of
£ and L, and about the same k. Combining the results with those obtained from
peripherality, we find that precisely those states are preferred, which couple
moderately to strongly, and which have g /7 E.

The hierarchy of couplings is a little different for £ = 1 and 2. For
these small & values the relative strengths still change quite a bit 1n going
from one L to the next. We have listed explicitly in Table XVII the couplings

of the n_ = 0 3-baryonium candidates for the narrow M = 1.90, 1.94, 2.02 and
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2.20 GeV states. We find that for the M = 1,90 and 1.94 GeV states assignments
can be made, which have some attractive features. For the heavier states, the
situation really does not look very nice. In both cases too many aspects rely
on the benevolence of the observer., We will sketch these assignments and use
the opportunity to discuss some i1nteresting related features.

3. Narrow states

When we assume the calculated mass values to be accurate, the obvious
3-baryonium candidate for the lower state 1is the ns =0, I =1 level at 2.01
GeV. This exclusive 1sospin assignment 1s 1n experimental difficulty as long
as no charged partners of the MO(2020) are found. For a state with a simple
1sospin structure the branching ratio to NN 1s larger than 30 %, implying
FNﬁ > 4 MeV (see Table XIV). The lP = 2+ Q2—Q2 level also couples to NN:
the NN P and F-waves and lies at the NNm threshold. Until now no structure
has been observed to go with the narrow resonances in the mnm or KK final

- ++
states. No member coupling to NN can decay into mt and only the JPC = 2

one can decay into KK. This JPC = 2++ state however, may be peripherally
produced 1n the NN P-wave. It thus may be broad, but does, just like the broad
M = 1.95 GeV and possibly the 2.020 GeV state, not give rise to a bump in the
elastic or total cross section. It can not be identified with the latter broad
state, which has I = 0. The KK decay signal of such a broad state may also
have a smeared out structure and thus at present still escape observation.
Comparing the couplings for fixed L one finds that these are almost
equally large. At order g4 (1t.e. 1n the elastic cross section) they only
differ by factors 2 or 3. The J = 2 state couples to both the NN P and F-
waves and probably 1s broader than i1ts colleagues anyway. Up to peripherality
effects its partial width for decay into the NN F-wave system will be simlar

to that of the J = 3 states. Its partial width to P-waves will be about the

same as that for the J = 1 states.
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In view of the closeness to the NNm threshold, this final state is
rather improbable. Multimeson final states are accessible though. The £ = 2
states can emit a meson (probably a pion) and cascade to an & = 0 Q2§2 bag
state, which then falls apart into two mesons, which in turn may decay into
two or more mesons themselves (the massive dimeson states usually have a
large two wvector particle component, see section I). Here the broad state,
decaying to 51 and nn, becomes interesting. The small NN branching ratio of
this state does not favor a peripheral interpretation. Creation of an ss pair
near one of the bag ends may yield the KK signals. An alternative source for
this final state is provided by the ng = 2, lp = 17 state at M = 2.02 GeV,
for which however, the formation in Ep and §d is rather problematic. No
firm conclusion can be drawn.

An n, = 0 candidate for the M0(2204) state is provided by the EP = 2+
levels at 2.23 and 2.24 GeV, with both I = 0 and 1. Another bad feature of
this assignment becomes clear. All members, which couple to NN, can decay to
Mo(2020) + 7, e.g. in an L = 1 wave, for which only negative evidence has
been found.

Also in this region a KK7 signal has been observed in a formation
experiment (at 2.20 GeV). The above mentioned levels display a large variety
of coupling strengths and none of their members can be produced peripherally.
When some of these states, for some reason, are broad in NN, presumably enough
narrowones will remain. Again, not much can be said about the other partial
widths.

We find that this assignment of the M0(202O) and MO(2204) states to
3-baryonium levels gives rise to quite some problems, but at present it is
still possible that one of them or both have this quark and color configuration.

This may require another mass spectrum. At this point it still is very

attractive though to consider some alternatives.
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- Narrow states: MO(2020) and MO(2204): 6-baryonium candidates -

The fact, that the narrow M = 2.020 and 2.204 GeV states have not been
seen in formation experiments, could be due to a combination of weak coupling
and experimental resolution rather than true absence (cf. M(1950)). After all,
they seem to have, under certain reasonable assumptions, a large branching
ratio to NN. It could also 1mply that these states are essentially different
from the (broad) NN resonances, which in the previous subsection have been
1dentified with 3-baryonium states.

- Coupling to NN via pair creation -

This observation can be interpreted in favor of 6-baryonium states
[ChH 77]. In the 1dealized context of the 3PO model, which seems to be a
reasonable description for peripheral states with £ > 2, the ¢ = 6 diquark
recombines with the ¢ = 3 quark to form a ¢ = 8 or 10 triquark. No color
singlets are formed and - for £ > 2 - no coupling to NN initial or final
states 1s possible. For sufficiently large £ the baryonium states will only
couple to the lighter ¢ = 8 Q3—§3 configurations. These can shake off their
angular momentum by emission of mesons (pions) and cascade to a final state
containing many mesons and possibly an NN pairr. In a more probable alternative,
the ¢ = 8 flux 1s sealed off by (valence) gluons:
0® £ 5% 0%’ » @70 + 0. swsequently (00 » %0 » o + 05 .
Again no pure NN final state will emerge. Using the result of Chapter 2 we
fand M(Q3G) X 1.4 Gev, which requires % > 2 for the Q3—Q3 to occur.

An 1mportant alternative 1s the recombination of the ¢ = 6 diquark with
the ¢ = 3* antiquark. Such a mechanism 1s suppressed as a 3-baryonium decay
mode, since 1t yields a QZQ cluster with either a ¢ = 3 color charge: the
color electric flux has to be reversed, or a ¢ = 6 one, requlring more energy
in the color fields. For c¢ = 3%, recombination with a quark yields a.o. a

color singlet configuration and a lot of energy 1s released by sealing off the



- 192 -

Fi1g 8: rhree meson decay mode of baryonium (a) and 8-mesonium (b) states.

color flux. The ¢ = 6 diquark and the antiquark together may formac =3
color charge. Here, the flux 1s not sealed off completely, but 1s reduced
quite a bit. The newly formed clusters are highly unstable and a raprd
decay into 3-meson final states ensues (see fig. 8).

Because the transition (Q2)C - (QZQ)c -3 1s much more favorable

=6

than the (Q2)c - -+ (Q3)c -8 one, the former 1s expected to dominate. Since

6

W

the energy released in a c 6 to ¢ = 3 transition is not as much as that in
ac=1 from c = 3* one, the three meson decay mode may yield a partial width
which 1s smaller than the partial width for decay to NN of a comparable
3-baryonium state. It similarly 1is larger than the 3-meson decay width of the
same 3-baryonium state. It presumably 1s at most several tens of MeV. Another
alternative for 6-baryonium states is the cascade decay, which will not yield
very wide states eirther. Far above the NN threshold a small width may be a
signal for the presence of a 6-baryonium state. For £ > 2 no pure NN final
states will be produced.

- Coupling to NN via shortrange interactions -

For 2 = 1 and 2 (see page 183) some 6-baryonium states (¢6) will have
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small triplet (¢3) admixtures, which are generated by the residual color
magnetic interaction. The mxing pattern 1s simlar to that for the £ =0
states found in Table VI. For a state ¢ = a¢6 + B¢3 ' Ialz + |B|2 = 1, the
average amount of mixing 1s given by 8 = B(2,8):

(£,8) ‘ (1,0) (1,1) (2,0) 2,1)

B ! 0.25 0.13 0.05 0.03

and all other B's zero.

Via this interaction a partial width for decay to the NN channels can be
obtained of FNﬁ(G) < 0.06 I‘Nﬁ(3) < 10 MeV for 2 = 1 and much smaller for

2 = 2. Although 10 MeV 1s not large, the decay to NN st1ll may be a mayor
decay mode. This may be another signal for spotting 6-baryonium states. The
color magnetic interaction between the clusters thus 1s important only for
2 =1.

The strength of the 1nteraction between the color electric dipole moments
of the quarks i1n the deformed bag ends 1s hard to estimate, since 1n the best
known systems (Q-Q and Q2-Q) only ¢ = 3 configurations occur. In view of
1ts dipole character 1t probably also will only be noticeable in the small
¢ region, where moreover the deformations are not yet large.

Neither color magnetic nor color electric dipole interactions will change
an s-wave (c,8) = (6,1) diquark into an s-wave (3%,1) one. This 1implies that
the 8 = 1 and 2 6-baryonium states which are dominantly composed of such
diguarks will not be reached in elastic processes. They may occur as decay
product after the formation of a 6-baryonium state, with one or two excited
(p-wave) clusters, which decay via emission of a pion or other meson (space-
flavor flip!). From these considerations 1t follows that some 6-baryonium
states will be formed only scantily, whereas others (e.g. those with % > 3)

will not be formed at all.
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- Production -
The above mentioned arguments do not i1mply that most 6-baryonia will
never be seen. One can arrange the experimental conditions 1n such a way that

a diquark and an antidiquark are brought so close together that the dipole
forces, 1in spite of the high angular momentum barrier, are able to change the
color state. Examples of these socalled production processes have been given
at the beginning of this section. In Fi1g. 6 (page 172) two situations are
depicted 1n which an energetic Qé meson beam falls on a baryon target. By
triggering on a suirtable fast forward baryon the short ranged anti-baryon
exchange mechanism 1s selected. This mechanism requires the creation of a
diquark-antidiquark (" 1S0 model") of which the antidiquark recombines with
the diquark of the target baryon to form a backward baryonium or mesonium
system and the diquark submerges with the quark of the meson 1n a forward
baryon. The higher the spin of the forward baryon 1is, the higher that of the
backward system may be. One can also produce forward Q2§2 resonances. The
simplest exchange 1s a QQ one which results in a forward QQ system, 1n which
a QQ palr creation can lead to a baryonium or mesonium state. This way also
the ¢ = 2 and the missing § = 1 states will be produced. When one triggers
on a final state p§ pair only 3-baryonia and possibly £ = 1 6-baryonia
[Ev 78] w1ll be seen. The other Q2§2 states require 00 annihilation followed
by the creation of a Q2§2 pair to generate this trigger, which - on mass
shell - does not stimulate their prominence.
The next simplest exchange 1s a Q2§2 one!
- Candidates -

Consulting Table XIIIc the nS =0, I =0M=2.01 GeV state seems to
ol

be a good candidate for M (2020), and the ns =2, I=0and 1l and M = 2.18

state may be the M0(2204). The lower state 1s not in trouble when M0(2020)
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turns out to have I = 0 - on the contrary - and does not form a part of the
final state in the pioncascade decay of MO(2204). Both states, because of

their diquark composition, will probably suffer the drawback of a weak coupling
to pﬁ.

- Narrow states: M = 1.897 and 1.936 GeV -

Since both states are prominent peaks in formation experiments, we will
take them to be 3-baryonia. Table XIIIa contains only two & =1, n, = 0 levels
above the NN threshold: one at M = 1.90 and one at 1.94 GeV. We have listed
also these states and their couplings to NN in Table XVII. Again taking the
calculated masses at face value, we identify the bump at 1.897 GeV with the
level at 1.90 GeV and the S(1936) state with the one at 1.94 GeV. In view of
its proximity to the NN threshold the former presumably is a pseudoscalar
isodoublet of which the I = | member has been found. An additional I = 0
state is required. Of course JP = 27 is not excluded.

The level at 1.94 GeV contains a JP = 17 state, which couples to the
I = 1 nm system and thus provides a natural candidate for the peripheral
NN 3D1 state. The S(1936) then has J = 2 or 3. Taking into account, that this
state has only been seen in elastic and total cross sections and that no 7n
decays have been reported, J = 2 is favored. This assignment has a quite
surprising consequence: denoting g = g(J) we have g(1) : g(2) : g(3) =1 : 3 : 6
for the D-wave couplings, which is largely due to the angular momentum
recoupling (Table XVI). These large ratios however, only play a role in the
formation of the states (order gz). In principle all three states may be formed
peripherally, coupling to the J =L - 1, L and L + 1 wave respectively. Until
now only a J = 1 state has been reported (M = 1.95 GeV). When this turns out to
be the final situation, the effective couplings to NN D-waves may be comparable

at this level. Once the J = 1 state has been formed in a D-wave, it will very
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easily fall apart into the BS1 NN channel. The J = 2 and 3 states will be
strongly hampered in their NN decay by the centrifugal barrier. Moreover,

the recoupling coefficients for the J = 1 S-wave and J = 2 and 3 D-wave decays
have become comparable: g(1) : g(2) : g(3) = 3 : 2 : 4. Consequently, the

J = 1 state may acquire a considerable width in the elastic NN channels, while
the J = 2 and 3 states not necessarily need to become broad. The photonlike
state furthermore has the additional feature, that i1t also may posses a
sizable multimeson decay width via its coupling to L = 0 colored Q3—Q3 states.
Combining these remarks we expect the J = 1 state to be much broader than its
J = 2 and 3 partners. This assignment has another attractive feature. It
predicts the presence of degenerate I = 0 and 1 multiplets. This property may
explain, why the charge exchange process: pE > nn 1s not seen, whereas the
elastic process pp + pp 1S quite clearly visible [K1 78]}. Both pp and nn are
mixtures of 1sospin eigen states: pp ~ ((1,0) + (0,0)) and nn v ((1,0) - (0,0))
in the notation (I,IZ). The coupling of NN to the I = 0 Q2§2 state 1s stronger
than that to the I = 1 one: g(I=1) : g(I=0) = V2 . /3, Assuming charge
1ndependence one finds constructive interference in the elastic process, where-
as the charge exchange process displays destructive interference. This results

[ Oce = 25 : 1 for the cross sections. Of course the coupling

in the ratio 00
to NN 1s not the only possibility. The coupling to mesons will not be the
same for the two 1sospin multiplets (G-parity) and the ratio may not be as
large. Still the effect may be considerable. In case only one isomultiplet 1is
present one has Oel : Oce =1 : 1, 1n disagreement with observation. One
expects that for the 1.90 GeV state, which 1s alsc regarded as a complex
structure, oel >> Oce 1s valid too. An alternative explanation [Ex 76] of the

smallness of the oce/oel rat10o requires only one narrow resonance, which inter-

feres strongly with the background, a feature neglected in the abowe presented
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explanation. Since this phenomenon recurs at the T and U masses, and since
S, T and U all appear to have a composite isospin structure, we think the
first explanation more appealing. One should add though that in the T and
U region the I = 0 and 1 levels are not degenerate, which will reduce the
effect, as observed.
- Narrow states below the NN threshold -

Including also 6-baryonium states, we find, in the present version of
the QZQZ mass spectrum, one lp = 2+ and five EP = 1~ levels below the NN
threshold. The main decay mode of these states presumably is the three meson
one, depicted in Fig. 8, yielding multimeson final states. The levels at
M= 1.76 and 1.83 GeV - the first has £ = 2, the second n_ = 2 - probably
are more narrow than the other ones, because of the heavier mesons, occurring'
in their dominant final states. One does not expect any of these states to
have widths as large as 100 MevV.

All LP = 17 levels contain a photonlike member: JPC =1 (see also
Fig. 5), which suggests that their position can be checked in e+e_ annihilation.
Since it is not to be expected that the creation of the heavier diquark-anti-
diguark pair will be as procbable as that of a quark-antiquark pair, their
coupling to the photon will be less strong, and a better resolution than the
present one may be needed to detect them [To 78]. Still among the many broad
e+e_ resonances also several narrow ones have been reported (Table XIV). In
this region the Q2Q2 states lie amid of the orbitally and radially excited
Q0 systems, from which they have to be distinguished. At present this is not
quite feasible due to the scarcity of the theoretical and experimental data
on the decay modes. The presence of photonlike £ = 0 Q3Q3 states here presumably
does not cause much trouble, since their coupling to e+e— is expected to be

still weaker than that of the baryonium states.
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Important information on the baryonium states below the NN threshold may
be obtained from the y ray spectrum of atomic pﬁ systems. When the emtted
photon results from the annihilation of a 00 pair one may find baryonium
final states. In this process also the other JPC members of the M = 1,72 and
1.76 GeV levels can be reached. In view of the large variety of quantum numbers
decay to these levels may be gquite attractive and the two higher y ray states
may be assigned to them. In this case our mass values are about 100 MeV off.
The Yy ray may also result from the coalescence of two three quark bags into a
single £ = 0 Q3§3 one. Although these states usually simply fall apart to a
3-meson final state, some of the high spin or low mass states may have a
sufficiently restrictive final state, to render them narrow, and this
possibility then seriously must be taken into account.

We note that the spectrum of narrow e+e_ resonances does not coincide
with the atomc pﬁ Y ray one. This might indicate that none of the e+e_
resonances found until now (as a result of a weak coupling?) are baryonium
ones, when we take the y ray states assignment serious, and vice versa. This
situation thus also requires additional research.

- Narrow states: The S = + 1, Q = 2 state at M = 2.461 GeV [Ar 78, Ro 70] -

The most unambiguous candidate for QZQZ states 1s the narrow resonance
found 1n the process K+p > (Kpn+)F n at 2.461 GeV. It shows up as a peak in
both the Aa**(1232) and pE’(1385) invariant mass plots. From the Harari-Rasner
diragram follows that this exotic final state (v uuds) also requires the
exchange of an exotic state (v uuud). One finds with the same method [Ja 79]
that this forward system can also be produced using a KL beam, but then instead
of a neutron a A~ (from the KO) or a £ (from the Eo) 1s produced backwardly.
A K beam may produce the Q = 1 i1somultiplet member, accompagnied by a backward
. In our model such a state might be ascribed to an & = 3 3-baryonium n = 18

level.
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- Conclusion -

This treatment of the orbitally excited QZQ2 system is by no means
exhaustive. We have only discussed the nature of a few prominent states
and did not touch upon the status of the remaining ones. At present a detailed
assignment of all reported states is not yet a feasible undertaking. The
theoretical candidates still outnumber the reported ones by far, although the
number of the latter is steadily increasing and even a state with an unambiguous
92§2 content seems to have been found. Quite a lot of reported states still
require confirmations.

Of the orbitally excited Q2§2 states the baryonium states have been
discussed in some detail. The 8-mesonium states have, as a consequence of
our attention for states coupling to the NN system, only been mentioned
casually, in the discussion of production and decay mechanisms. Next to
all-quark clusters interesting configurations, containing also valence
gluons, which screen the quark charge, may exist. An example is the c = 3¥
Q2G cluster, built from a ¢ = 6 diquark and a ¢ = 8 gluon. Two of such
clusters can combine to a 3* - 3 trajectory which has a larger intercept
than, but for sufficiently large £ is more prominent than the corrﬁsponding
6 - 6* trajectory. Consequently, it may at some point turn out to be more
favorable to screen a large color charge (c > 6) and trajectories with an
anomalously steep slope may not be seen any longer [Ho 79].

We have devoted much attention to the study of states with small orbital
angular momentum, because the number of experimental candidates in this region
is relatively large and more exotic configurations probably do not play an
important role here. No firm conclusions could be drawn about our prescription
for the calculation of the masses of these states. Since a great many aspects
of the couplings to decay channels remain unexploited, severe criteria to

elect or reject candidates, are absent.
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In such a situation it is nevertheless quite useful to have a reference
frame in which one can qualitatively discuss the reported candidates.
Although no definite predictions can be made, one may be able to select

prominent specimina, which may be relatively easily looked for.
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Appendix A: Conventions for metric and y-matrices

Metric tensor: guv; u,v € {0,1,2,3}
00 kk

- =g =1 x € {1,2,3}
guv =0, when p # v.
Y-matrices: {Yu,yv} = 2 EN .

In terms of the 2 x 2 matrices:

0 o /1 o\ ) <o 1
(o o);l—\o T 10)'02

5= ()

we have:

=
]

Standard representation:

/i1 g < ]
Y, = ip, = Yo = 1
0 3 K ’ 1 0 1 .

g -io, 2
Y T P2% T\ Yo T 7P% T
io [} ~-io
k
/1 g g
Y, =p = Y, =p =
S T U 4 1 1
/[ ad -1 \ /-1
Ye = -p, = Ye = -0 =
5 5 3
! \ 18 ) \ o
Relations: — Y = - Y
oM T Y Yu Yo T4 Yy Vg
using Yg 5 i Yo

Yo T 1 Y5 Yy Yy Y3 7Yy Yy Y30y,

Massive Free Fermion Lagrangian:
Le==0 (o3 +my

with  $=v" vy, ;  yoa=3y =iply

Weyl representation:

i1
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Appendix B. Representations and properties of the SU(3) generators

The eight generators Fa satisfy:

[Fa,Fb] =FF -FF =1f, F a,b,c € {1,...,8} (i)

The (n x n)-matrix representations are normalized to

n
1
Tr FF = ) (F) 11 Fp) gy = 2 8. , (11)
1,3=1
where Gab = 1, when a = b, and zero otherwise.

The SU(3) structure constants f are completely antisymmetric under

abc
permutation of any two indices. Denoting (abc) = fabc one has:
(123) = 1 (458) = (678) = V3/2
(147) = - (156) = (246) = (257) = (345) = - (367) = 1/2 .

A (3 x 3) matrix representation satisfying (1) and (11) 1s given by

A
Fa = (-§1> in terms of the Gell-Mann matrices Aa' For completeness we also

1ntroduce AO:

/1 0 o0 0 1 o /o -1 0
2

AO—/; 0o 1 o0 Ay =1 0 o A,=l2 0 o0
o 0 1 0 0 o 0 0 ©
1 0 o0 0 0 1 0 o0 -1\
ay= |0 -1 o A\y={ 0 0 o0 ‘\g=|0 0 0
0o 0o o 1 0 o 1 0 o
0 0 o0 /o 0 o /1 0 0

= = - -1
Ag 0o 0 1 A, ‘\o 0 2 \g=73,0 1t O
0o 1 0 \o 1 o/ o o -2/

This 3-dimensional representation further defines the constants dabc’ which

are completely symmetric under permutation of any two indices by:

8
{xa,xb} = AN F AN S /3 S0 * 29,0 A .
Denoting (abc) = dabc:
1 _ 1
(118) = (228) = (338) = - (888) = 73 (448) = (558) = (668) = (778) = 73
(146) = (157) = - (247) = (256) = (344) = (355) = - (366) = - (377) = 1/2 .
2 40 2
T =22 -
he constants satisfy I (dabc) 3 and z (fabc) 24,
a,b,c a,b,c
An 8 X 8 matrix representation i1s given by (F_) = -1 f
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SAMENVATTING

Het proefschrift bestaat uit vier delen:

Hoofdstuk 1. Hierain wordt getracht het beeld te schetsen van hadronen,
zoals dat momenteel 1n de hoge energie fysika in brede kringen bestaat.

Tevens wordt geprobeerd een overzicht van de experimentele feiten te geven,
waarop dit beeld gebaseerd is. Hadronen zijn deeltjes, die onderhevig zijn

aan sterke wisselwerkingen (kernkrachten). Zij worden gewoonli)k verondersteld
te z1jn opgebouwd wt quarks: deeltjes met 'spain' j = 1/2 en een 'color' (kleur)
lading. De krachten tussen deze kleurladingen, die overgebracht worden door
zelf ook weer kleur dragende gluonen, zorgen ervoor, dat in het hadron alleen
zeer bepaalde - kleurloze - quark combinaties kunnen voorkomen. De meest
eenvoudige hadronen zi)n baryonen (3 quarks: Q3) of mesonen (quark-antiquark:
QQ) toestanden. Naast kleur en spin hebben de quarks ook 'flavor' (smaak), een
kwaliteit die tezamen met de quarkspin veel van de hadron eigenschappen bepaalt.
Tot nu toe 1s het bestaan van vijf smeken aangetoond, waarvan we in dit proef-
schrift alleen die drie gebruiken, die het langst bekend zijn.

Hoofdstuk 2. Een specifiek hadron model - het MIT bagmodel - wordt
geformuleerd. Het verenigt de meeste i1n hoofdstuk 1 opgesomde eigenschappen in
zich. Er wordt in detail i1ngegaan op een speciale klasse expliciete oplossingen,
behorende bij de statische bolvormige 'bag'. Behalve quark oplossingen laat
deze benadering ook gluon oplossingen toe. Dit betekent dat naast hadronen,
bestaande uit quarks, ook - nog steeds kleurloze - hadronen kunnen voorkomen,
die bestaan uit quarks en gluonen, of alleen maar gluonen. Voor een systeen
dat alleen quarks bevat, wordt een uitdrukking voor de energie afgeleid, die
urtgebreid wordt met enige fenomenologische termen. Het massa spektrum van de

lichte hadronen wordtL met deze massaformule gereproduceerd, waarna ultspraken
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gedaan kunnen worden over enkele andere, statische eigenschappen van deze
deeltjes.

Hoofdstuk 3. De groepentheoretische structuur van de massaformule,
afgeleid in hoofdstuk 2, wordt geanalyseerd en een gegeneraliseerde flavor-
spin SU(6) massaformule wordt gegeven, waarvan de coéfficiénten funkties
z13n die m.b.v. het MIT bagmodel kunnen worden berekend. Met deze massa-
formule wordt het massaspektrum van het dibaryon (zes-quark: Q6) systeem
voorspeld en mogelijke kandidaten besproken.

Hoofdstuk 4. De statische bolvormige 'bag' benadering wordt ook toegepast
op dimeson (QZQZ) toestanden, Uitgaande van de klecur-krachten kan een voorschrift
gegeven worden voor het berekenen van de massa's van (zeer) snel draaiende
(en dan sigaarvormige) 'bags'. Hiermee wordt het massa spektrum van snel
draaiende Q2§2 (de zgn. baryonium en mesonium) toestanden bepaald. De aldus
verkregen spektra worden vervolgens geanalyseerd en vergeleken met het

experimenteel gevonden spektrum.
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tude maakt het in principe mogelijk de trends van de hogere partiéle golven
betrouwbaar uit het gedrag van de lagere te voorspellen. Echter, uit de
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VI
De geringe aandacht, die in stripverhalen aan vrouwenvraagstukken wordt
besteed, kan erop wijzen, dat deze problematiek te weinig vermakelijks of

actueels heeft voor het strips-lezende publiek.

VII
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