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CHAPTER 1 : INTRODUCTION AND SURVEY 

High Energy Physics is a lively field of research m which in the past 

ten and odd years several mayor developments have taken place. Some of these 

were rather sudden, triggered by an unexpected experimental result. They 

decided on the direction of progress in a certain area of research and made 

whole new fields accessible for the mayority of the physicists. Others were 

rather slow. They involved ideas which were at first only clearly successful 

in one particular case, but gradually gained a wider acceptance as a general 

principle through their ability to connect various phenomena to a common source. 

Examples of important experiments, which opened up large new areas of 

research are the deep inelastic scattering experiments, performed by the SLAC-

MIT group [BI 74, Ga 77], those at Brookhaven and Stanford, which produced the 

first particles with (hidden) charm [Au 74], while the Stanford experiment also 

produced a new heavy lepton [Pe 75], and the neutrino-experiment at CERN, which 

revealed the presence of neutral weak current? [Ha 74, Bl 76]. Of the theoretical 

ideas one should mention the introduction of charm to account for the absence 

of strangeness changing neutral currents [Bj 64, Gl 70], the unification of 

weak and electromagnetic interactions, using the framework of spontaneously 

broken nonabelian gauge theories [Gl 61, We 67, Sa 68] and the introduction of 

color as source for the strong interactions [Na 66], involving the use of an 

unbroken nonabelian gauge theory [Fr 72]. 

It is with strong interactions that we shall deal primarily in this thesis. 

In this field no unambiguously established theory exists. There is however 

a large collection of ideas, known as quantum chromodynamics (QCD) [Fr 78, 

Ma 78], which are all related to the concept of color. The relation of the 

various ideas is often rather vague, as they range from abstract to phenomeno-
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logical, and in need of clarification but the whole of it presents a frame­

work of increasing coherence, which is quite useful as reference. 

One can be active in research e.g. by engaging in the field theoretic 

attempts to derive the spectral properties of the theory. This approach has 

proven particularly useful in situations, where perturbation theory is 

applicable. However, strong interaction data seem to indicate a lot of quite 

interesting nonperturbative aspects of the theory, an important one of which 

we will be dealing with extensively: confinement [Dr 77] . In trying to account 

for such a feature one has, due to lack of a fundamental solution, around 

which one can perturb weakly, to work at a more phenomenological level, to 

be able to work out the consequences. The usefulness of such an approach, 

when it is able to account for the available data, consists in its direct 

interaction with experiment. One can extrapolate the data into areas not yet 

covered, and thus provide guidelines for planning future experimental set ups, 

and at the same time tests for the consistency of the chosen formulation of 

the basic ideas. This way one obtains information about the validity of the 

initial assumptions and their importance for describing the phenomena. This 

information can then be used for improving the model by eliminating some of the 

arbitrariness, or for trying to find a more fundamental solution. In this thesis 

we will take the second approach and use the bagmodel of the hadron, the strong­

ly interacting, "elementary" particle, as formulated by the MIT group [Ch 74, 

DeG 75]. We will show, how it is able to account for the static properties of 

most of the light hadrons, and describe some attempts to go beyond the familiar 

(from the standard point of view [Ko 69]) to more exotic ones, which are 

receiving quite some experimental attention nowadays [HI 78] . 

Let us mention the concepts and their support from the data, which provide 

the basic features of the MIT bagmodel. We stress again, the fact that the 
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final theory is still lacking, and that the present choice is, of course, 

somewhat biased, but, taking all the diverse pieces of evidence, circumstantial 

and unrelated through they may seem sometimes, together, the resulting picture 

is quite impressive in its ability to relate the various approaches. However, 

beyond bias, several distinct traits of the hadron are standing out quite 

clearly and should be accounted for properly by any model. 

Flavor SU(n,F). The hadrons, that are observed in the laboratories, can be 

labeled by a set of internal or flavor quantum numbers, reflecting strong 

interaction selection rules. Some flavors are harder to produce than others. 

To account for hadrons with mass less than 1.8 GeV [Hem 77, La 77], one needs 

three flavors: isospin (1,1 ) and strangeness (S) or equivalently hypercharge 

(Y) . To account for all states below approximately 4.5 GeV one needs a fourth 

flavor [Aub 74, Aug 74]: charm (C) and the recently discovered narrow 

resonances [Horn 76, He 77] around 10 GeV seem to point at a fifth flavor: 

beauty (B). From the point of view of unification of weak and electromagnetic 

interactions also a sixth flavor would be welcome [Ha 78]. Flavor symmetry is 

only approximate (n <_ 3) and even badly broken for η >_ 4, as can be seen from 

the above quoted mass regions. Using the fact that specific interactions are 

only invariant under subgroups of SU(n,F) , one is able to derive relations 

within SU(n,F) multiplets, that are rather well satisfied. U-spin invariance 

of the electromagnetic interactions relates the mass difference in isospin 

multiplets, as well as the magnetic moments. Isospin invariance yields mass 

relations between different isospin multiplets. Assuming SU(3,F) invariance 

for the strong interactions one can derive the relative coupling strength 

within the multiplets for the meson-baryon vertices. 

Quarks. [Da 76] Hadrons, as far as definite assignments can be made, display a 

conspicuous preference of some flavor multiplets above others [Gi 77]. This 
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can be rephrased by assuming that baryons (half odd integer spin) are three 

quark- and mesons (integer spin) are quark-antiquark bound states [Ge 64, 

Zw 64]. The quarks then are spin 1/2 particles, that belong to the basic 

n-dimensional multiplet of SU(n,F) . Taking also other degrees of freedom 

(statistics) into account (see below) the lowest baryons can occur in an 

Ρ + Ρ + 

octet (θ) , J = 1/2 , and a decuplet (10), J = 3/2 and the mesons in 

Ρ -
nonets (8+1) with J = 0 and 1 . These states have a mass M = 1 GeV and 

therefore can be classified using exclusively SU(3,F). For the higher mass 

hadrons more general quark configurations Q Q seem to exist, but always 

with (η-m) a multiple of three or zero tnality. We will discuss some 

examples of these extensively. 

SU(6,FS). [Gu 64] Stimulated by the successful combination of spin and 

isospin in nuclear physics, one has also considered the mergence of SU(3,F) 

and the SU(2,S) of spin into the larger approximate symmetry group SU(6,FS) 

of flavorspin. (Only 2n = 6 has been considered extensively until now.) 

In the 'naive quark model (QM) ' scheme this amounts to the combination of 

an internal symmetry with a property, mechanical spin, which is only defined 

well for a quark at rest. Explicit dynamical assumptions are needed, such as 

the nonrelativistic motion of the quarks within the hadron and negligible 

residual interactions: the quark contributions are simply added to give the 

hadron contributions. In the naive QM these assumptions had to be interpreted 

as rules of the game, for they are hard to reconcile with the notion of 

heavy (because physical thus at some time producible, but not yet seen: 

M >̂  3 GeV) quarks, bound strongly in a light hadron (= 0.5 GeV) . Equally 

strange is then also the invariance of spin S alone, witness the considerable 

coupling with the orbital monentum L and the tight interplay between L and 

S in the conservation of total spin J. Notwithstanding these dynamical 

difficulties, hadrons can indeed be accomodated in representations of 
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SU(6,FS) β 0(3) [Gr 6 7 ] , where 0(3) provides the r e p r e s e n t a t i o n s for the 

s p a t i a l p a r t of the quark and antiquark wave function l a b e l i n g the o r b i t a l 

and r a d i a l e x c i t a t i o n s [Ho 7 3 ] . In t h i s scheme most hadrons find t h e i r p l a c e : 

mesons occunng in 35- and 1- and baryons i n 56- and 70-dliTiensional m u l t i p l e t s 

of SU(6,FS) [Hem 77] . In the absence of s p a t i a l e x c i t a t i o n s , only the baryon 

56-plet i s r e a l i z e d , implying t h a t the baryon wave function i s completely 

symmetric under the permutation of the quarks . This means t h a t the quarks 

have e i t h e r a d d i t i o n a l quantum numbers or have o ther than Fermi Dirac 

s t a t i s t i c s (see below). 

Also a t the l eve l of SU(6,FS) symmetry breaking one i s r a t h e r successful 

[Gi 77] . All the magnetic moments of the l i g h t e s t 56-plet can be c a l c u l a t e d 

(assuming the a d d i t i v i t y of quark p r o p e r t i e s ) , up t o one common cons tant with 

good agreement. One can o b t a i n mass r e l a t i o n s within the SU(6,FS) m u l t i p l e t s : 

one can r e l a t e members of d i f f e r e n t SU(3,F) m u l t i p l e t s t o one another [Be 6 4 ] . 

Applying SU(6,FS) invar iance t o the meson-baryon couplings one can determine 

the r e l a t i v e s t r e n g t h with which e n t i r e SU(3,F) m u l t i p l e t s c o n t r i b u t e . 

Using a frame in which the quarks have i n f i n i t e momentum [Gl 74, He 75] 

in one d i r e c t i o n , one can formulate a r e l a t i v i s t i c type of f lavor spin 

symmetry: SU(6) which descr ibes the p r o p e r t i e s of the quarks t h a t p a r t i c i p a t e 
w 

in i n t e r a c t i o n s , soca l led c u r r e n t quarks, t o be d i s t ingu i shed from the above 

mentioned c o n s t i t u e n t quarks . Both d e s c r i p t i o n s are r e l a t e d by a u n i t a r y 

t rans format ion: the 'Melosh transform' [Me 7 4 ] . This c o n s t i t u e n t - c u r r e n t 

quark connection i s p a r t i c u l a r l y useful t o study the t r a n s i t i o n amplitudes 
* 

for photo-induced r e a c t i o n s (γΝ -»• N ) . Expressing a few matr ix elements m 

terms of known amplitudes, one can obta in the c o r r e c t magnitudes and s igns 

of q u i t e some other t r a n s i t i o n s . Making fur ther assumptions (PCAC) one can 

do the same thing with as much success for the a x i a l c u r r e n t matr ix elements 

in the case of pion induced r e a c t i o n s (τΝ >• N ) . 
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Color. [Gr 77] The statistics problem for the baryons can be solved at the 

cost of attributing three extra degrees of freedom: color [Gr 64] to the 

quarks. The quarks transform as a triplet under color SU(3,C). The three 

being dictated by the fact that the smallest all-quark state observed in 

nature is a threequark state. It is the simplest possibility of providing 

the baryon wave function (̂  QQQ) with a part that is completely antisymmetric 

under quark permutation. The baryons behave as color singlets and also the 

QQ configuration can occur as a singlet. Combining this with the absence 

2 4 
from the spectrum of states like Q, Q and Q , one can generalize this 

feature and postulate that all observable objects in nature must be color-

singlets. This allows only Q Q configurations [Fr 72] with (m-n) an 

integer multiple of three. In this formulation color is an exact symmetry. 

The color degree of freedom is hidden or confined. This implies e.g. that 

the quarks have fractional electric charge. Consider a state like Δ ^ uuu, 

build from three up-quarks (Table), up to color identical, which then must 

have charge e = 2/3 e. Similarly Δ ^ ddd and Ω 'ь sss. Quarks with this 

quantum number assignment are called Gell-Mann-Zweig quarks. One alternative 

is provided by the Han-Nambu [Ha 65] model, in which the quarks have integral 

charges. Since the color average over the charge of a particular flavor must 

be the same as in the GMZ model, this yields an electromagnetically broken 

variant of color. In the HN theory at some stage colored configurations like 

2 
Q and Q must be observed. It does not obey the confinement-postulate for 

all energies and implies a different kind of dynamics [Na 66]. 

Three other examples, in favor of color, are the two photon decay rate 

of the pion, the ratio R for production of hadronic final states to that for 

+ - + -
μ V in e e annihilation and the branching ratio for the decay of the heavy 

lepton τ into leptons and hadrons. The matrix element ji/ for the process 

TI -»• γγ can be calculated using PCAC and depends on the flavor-color content 
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οί the pion through the square of the electromagnetic charge 

' ~
<
У ( 2

 > — ^ ι where ι runs over all flavors and colors. This relation 

is, due to the particular flavor wave function of π , satisfied by both UN 

and colored GMZ quarks, but not by colorless quarks. It can only be satisfied 

if the number of colors is exactly three. In principle the two photon decay 

of pseudoscalar and tensor mesons, in fact any process, which is quadratic 

in the electromagnetic current, is fit to discriminate between the various 

color models through their charge assignment. However, one lacks both data, 

and a reliable way of calculating the matrix elements for other states than 

π [Ch 77]. Recently, the photon-photon interaction has been observed at DESY 

in Hamburg [Be 79] in the process е е •+ e e e e . One was able to extract 

from the data a new upperlimit on the two-photon decay width of the η'(958), 

which, because of the large flavorsinglet content of the η', is rather 

sensitive to the charge assignments of the quarks. In the context of pheno-

menological analyses the new bound Γ , < 11.5 keV favors GMZ quarks. 

In e e annihilation the experimental value of R again favors colored GMZ 

quarks to the not-colored variety, and is compatible with HN quarks, provided 

the states around 4.0 GeV are interpreted as colored hadrons, as an alternative 

to the introduction of charm. Since the photon can carry away color, a 

spectroscopy ensues, which is rather different from what is observed. 

An elegant generalization of HN is provided by the Pati-Salam gauge 

model [Pa 76], which includes charm and considers the lepton numbers as a 

fourth color. Baryon and lepton number nonconservation allows the free quarks 

to decay rapidly into leptons, thus escaping detection. Below the color 

threshold this model has properties rather similar to the fractional charge 

one, except for the above mentioned multiphoton features. However, there are 

strong indications that at least one more flavor (the fifth) and a new heavy 
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lepton exist, in which case the PS model needs extension, which will delete 

some of the nice symmetries. 

Finally, the heavy lepton τ decays to its own neutrino ν and a negatively 

charged weak boson W , which subsequently decays to an e ν , μ ν or d'u pair. 

The weak current couples equally strong to the electron-, the muon- and the 

quark-current [We 67, Sa 68]. However, since this result only depends on the 

weak and electromagnetic interaction properties of the quarks, the quark 

contribution to the τ decay final states is as many times stronger as the 

quark has additional (color) degrees of freedom. Allowing for small QCD and 

phase space corrections, the number of colors turns out to be three. 

For these reasons, the fractionally charged, colored quark model is at 

present in much better but not yet perfect shape, and we will adopt its 

assignments. 

Deep inelastic scattering, [cl 76, Mo 77, Ne 78] when ^
6
 fitst spectroscopic 

indications of a new substructure have been established, the next step usually 

is to probe the constituent particles using high resolution equipment. The 

structure of the baryon-, and especially the nucleon-target is examined in 

deep inelastic scattering experiments, with charged lepton and neutrino beams. 

Only the outcoming lepton is observed (energy E', angle Ω'). The advantage of 

using charged leptons is that one precisely knows the lepton-photon vertex 

from QED. One can check that up to high values for the momentum transfer 

2 2 
q = - Q < 0 to the nucleón the relevant process is indeed one photon exchange. 

This means, that the response of the nucleón can cleanly be extracted from 

d2a 
the doubly differential cross-section ——, . It can be represented, using 

d B do¿ 

Lorentz- , gauge- and p a n t y - i n v a n a n c e , by two soca l led s t r u c t u r e functions 

W , which can a l s o be r e l a t e d to the longi tud ina l and t ransverse v i r t u a l 

photo-absorpt ion cross sec t ions σ and σ . From the experimental p r o p e r t i e s 

of the s t r u c t u r e funct ions, one can verify t h a t deep i n e l a s t i c lepton nucleón 
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s c a t t e r i n g , which takes place for Q , W >_ 3 GeV (W i s the e f fec t ive mass 

of the hadronic f i n a l s t a t e ) , a r i s e s as the sum of incoherent e l a s t i c 

s c a t t e r i n g of the leptons from charged, spin 1/2 c o n s t i t u e n t s of n e g l i g i b l e 

mass, o r i g i n a l l y c a l l e d p a r t o n s , which can c o n s i s t e n t l y be i n t e r p r e t e d as 

quarks . Using ν (Ξ energy loss of lepton in labframe) , one finds exper imenta l ly , 

2 
t h a t W = W (v, Q ) behaves in f i r s t approximation as a function F (χ) for 

2 2 
l a r g e , var iab le Q and χ fixed, χ = Q /2№J , a phenomenon known as s c a l i n g 

[B] 69, We 75] , which proves, t h a t the parton-photon ver tex , in fact up t o 

2 2 

20 GeV , has no strong Q dependence, no form fac tor i . e . par tons are s t r u c t u r e ­

l e s s p o i n t p a r t i c l e s . One can c a l c u l a t e the e l a s t i c quark-lepton s c a t t e r i n g , 

where the quark c a r r i e s f r a c t i o n χ of the nucleón momentum ( t ransverse 

momenta are neg l ig ib l e to the lepton-proton CM. momenta considered, t h i s i s 

the i n f i n i t e momentum frame approximation where quark f rac t ion χ and s c a l i n g 

var iab le χ can be i d e n t i f i e d ) . The data then give the d i s t r i b u t i o n functions 

f (x) for x, the f rac t ion of the t o t a l momentum c a r r i e d by the quarks, for 

each f lavor, in terms of which sum r u l e s and normalizat ion condi t ions can be 

checked. I t emerges t h a t the i s o s p i n and spin (on the b a s i s of p o l a r i z a t i o n 

experiments) degrees of freedom of the nucleón can be accounted for success ­

fu l ly by the three ' va lence ' q u a r k d i s t r i b u t i o n s . 

Glue. The baryon contains more than ]u s t ( three valence) quarks . In case of 

quarks a t r e s t ins ide the proton one would have a very sharp peak in the 

doubly d i f f e r e n t i a l c ros s - sec t ion a t χ = 1/3, s i g n a l i n g the quasi e l a s t i c 

s c a t t e r i n g off three c o n s t i t u e n t s with mass — momentum roughly a t h i r d of 

the baryon mass — momentum. In p r a c t i c e one sees a broad peak in t h i s a r e a , 

i n d i c a t i n g the motion of quarks ins ide the r e s t r i c t i v e nucleón volume. This 

means, t h a t the quarks are subject t o forces , which keep them i n s i d e . From 
2 

the fact t h a t up to high Q one has not been able t o produce a f r a c t i o n a l l y 
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charged object, one concludes that these forces are of a type different from 

hadron-hadron strong forces, mediated by massive mesons. One therefore assumes, 

that the quarks interact through exchange of a special type of bosons, named 

gluons. At short distances this interaction is observed to be rather weak. 

The gluons appear to be electrically neutral, because the valence quarks can 

saturate the nucléon charge and other nucleón quantum properties. Gluons can 

couple indirectly to the photon by means of internal conversion into a 

quark-antiquark pair. This higher order process is clearly present in the data. 

The quark momentum distribution functions fj-JO should behave as χ , α > 0 

for χ -»• 0, if the number of particles in the baryon is fixed to three quarks. 

One observes that χ f
n
(x) •* constant, χ •+ 0. This means that for small χ the 

Q-Q pairs contribute according to — which can be interpreted as a bremsstrahlung-

like behavior of the gluons. The quark appears to be surrounded by a cloud of 

soft gluons, which sometimes convert into QQ pairs, much like the electron is 

surrounded by photons. The presence of these neutral gluons is strongly 

confirmed by the fact that the momentum contribution of the charged constituents 

(Q and Q) only adds up to roughly half the total baryon momentum. The emission 

and absorption of soft gluons (radiative gluon corrections) supplies the 

quark with a fine structure, which destroys the naive scaling behavior. One 

has observed these scaling violations [Ga 77], which are surprisingly small, 

but has not yet determined the precise behavior. Theoretically one can calculate 

these scaling violations, perturbatively, provided one makes assumptions 

concerning the quark-gluon (i.e. strong) interaction dynamics (see below). 

Just like quarks, also the gluons have not been observed in the laboratories. 

From this one might conclude that also gluons carry nonzero color charge, and 

therefore are confined to the inside of the hadron. 

Deep inelastic scattering (cont'd). The charged lepton scattering data are 

confirmed by the neutrino scattering results. In this case one assumes that 
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the intermediate particle is the socalled weak boson, which couples to the 

2 
weak hadron current. At present energies one can neglect Q with respect to 

2 
VC, the predicted mass of the weak boson W and again extract full information 

about the nucleón vertex. Since parity is not conserved in weak interactions, 

the cross sections for transverse left- and righthanded virtual photo-

T Τ 
absorption are no longer identical: a ^ σ , which implies the existence of 

L R 
Τ Τ 

a t h i r d s t r u c t u r e funct ion: W, ^ σ„ - σ, . W., has a d i f f e r e n t s ign for 
3 R L 3

 3 

particles and antiparticles, and this allows one to separate the contribution 

of the particles from that of the antiparticles. Indeed, for χ > 0.4 one 

measures only contributions of valence quarks which for χ < 0.4 become 

supplemented, and for χ -»• 0 dominated by those of the isoscalar sea of QQ 

pairs. One finds f=(x) * f
n
(

x
) f

o r
 x "*" 0. Another property of the quarks, 

their fractional charge assignment can, apart from the indirect tests via 

sumrules, also be examined more directly. One shoots very fast electrons on 

a nucleón target and measures the charge distribution of the fast pions, that 

come out in the incident electron direction. The assumption is that these 

pions contain the quark that is kicked out of the target by the electron. One 

finds a positive to negative charge ratio of 5 : 1 for a proton target 

(theoretically 8 : 1) and of 1.5 : 1 for a neutron (2 : 1), which is consistent 

with GHZ assignments, allowing for sea quark dilution of the ratio [Ma 76, 

Ma 77] . 

Electron-positron annihilation. [Fe 77] Closely related to the deep inelastic 

lepton-nucleon scattering experiments, is the production of hadrons in electron 

positron collisions. As can be verified by studying processes like е е ->• pp, 

the important mechanism is e e annihilation into a virtual photon which 

couples to the same hadronic current as participates in deep inelastic lepton 

scattering: the electromagnetic quark current. A momentarily free quark-antiquark 

pair is created, which later on evolves into hadrons. These quarks have a 
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p o i n t l i k e coupling t o the photon, ] u s t l i k e e . g . the muons, and the r a t i o R 

for hadron t o muon production m e e should become cons tant for large enough 

2 2 2 2 

Q (q i s t imel ike in t h i s p r o c e s s : q = Q ) . Below the charm threshold 

(c- 4 GeV) only u, d and s quarks cont r ibute and the p r e d i c t i o n i s 

a ( e + e ~ •* QQ > hadrons) /a (e+e~ •+ v+V~) = l e = 3(4/9 + 1/9 + 1/9) = 2 
1 1 1 

(i = u, d, s + colors). Above the charm threshold we have R = 3 — due to the 

charm contribution. Experimentally R is approximately constant but systematically 

high w.r.t. the theoretical values (30% for SPEAR, 10% for PLUTO data, which 

both have sizeable systematic errors) . 

Another signal for the QQ pair creation, which is extensively studied at 

present, comes from the fact, that for 5 GeV <_ /<3 <_ 10 GeV hadrons are 

mainly produced within two opposite pointing cones (back to back jets) of 

opening angle 6, which becomes smaller for increasing energy [Fr 78, El 78]. 

The hadron dynamics appear to be such that the momentum components transverse 

to the cone/jet axis are sharply restricted and that the distribution of 

the longitudinal momenta depends on the fraction of the total momentum, and 
/T 

only weakly on the C M . energy vQ . The jets have an angular distribution 
2 

w.r.t. the electron direction (angle Θ) of the form (1 + cos Θ) which is 

characteristic of the production of a pair of spin 1/2 particles. Jets are 

also observed in hadron-hadron collisions, where they also appear on the 

average back to back, at large angles, as well as in lepton-hadron scattering. 

The origin of the forner is speculated to be perhaps the elastic scattering 

of two fast quarks inside the hadrons. The remnants of the hadron decay in the 

beam direction. In the latter the lepton is supposed to kick out the quark. In 

the case of e.g. vp scattering the W boson changes a d-quark into a u-quark 

and measurements of the charge excess in the target (̂  2 u-quarks) and the 

W direction (̂  u-quark) show the former to be approximately twice as large 

as the latter. The relation between the hadrons in a jet and the quark that 
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originates them can be expressed in terms of socalled quark-parton fragmentation 

functions. In the infinite momentum frame of the quark, which is kicked out by 

a lepton or created by a photon these functions give the probability that the 

quark 'decays' into some hadron h, which has a fraction z, 0 <_ ζ <_ 1 of the 

2 
quark momentum. In practice there will be also a weak dependence on Q and 

the transverse momentum component к . The fraquientation functions can be 

measured in socalled inclusive processes like I + N ->• Ä ' + h + anything and 

е е -У h + anything. Only in neutrino induced reactions they are directly 

measureable. Comparison shows that these functions behave consistently for 

the mentioned processes [Pe 78]. 

Confinement. The persistent negative results of the searches for fractionally 

charged objects, such as quarks and other nonzero triality configurations have 

inspired, apart from the integrally charged, liberated quark models, also the 

opposite notion: color-confinement [Dr 77]. It is the statement, that the 

dynamics of colored objects is such, that it requires an infinite amount of 

energy to split a not colored system into two colored fragments. The interaction 

energy of the fragments increases with their separation. This results, of 

course, in a highly unstable situation and at some point there will bo 

sufficient energy in the system to make other processes possible, e.g. the 

creation of QQ pairs (sparks) which will shield the initial interaction: the 

system breaks up into two smaller color singlet systems, thereby reducing 

the effective color separation. 

A nice illustration of this phenomenon [NO 78] can be seen in the 

charmomum spectrum, ascribed to the charmed quark and antiquark system. It 

consists of a number of bound states (bindingenergies up to .9 GeVi) below 

the production threshold for particles with bare charm at about 3.7 GeV and 

a number of resonances above it, which can be accounted for by a Q-Q interaction 
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energy which is roughly linear in the Q-Q separation. Another illustration 

[ja 77] of the consequences of confinement is provided by the occurrence of 

particles in families, sharing the sama quantum numbers for flavor, whose 

2 
total spin J and mass M obey the rule: J = α' M + a.. The intercept a is 

characteristic of each family, but the slope a' of these linear 'Regge' 

trajectories is universal for all Q and QQ systems. The trajectory 301ns the 

orbital or L excitations of a specific multiquark system. One has J = J(L). 

Since the data for charm trajectories are meagre we will restrict ourselves 

to the light flavors u, d and s, where the trajectory already runs straight 

for L = 2 or 3. Consider a meson consisting of a quark and an antiquark. To 

acquire higher L values the meson has to rotate faster. Due to the increasing 

centrifugal barrier the Q-Q separation will become larger. When the forces are 

of the conventional strong type, originating from the exchange of massive 

hadrons, which has a limited range, the quarks will very soon come apart, 

after a maximum value for J is reached. No confinement! One finds J = 1 or 2 

for O.B.E. type models. The Regge trajectory for the delta still continues 

at J = 15/2 without an indication of impending changes. This behavior is 

realized in e.g. the dual string model [Re 74] where the length Ъ (̂  Q-Q 

separation) of the rotating string is proportional to the mass (I ^ M) . The 

string ends have approximately the velocity of light, so that the configuration 

has maximal angular momentum, whereas the relative momentum ρ will also be 

2 
proportional to M and L л, -gl л, M . Increasing L then means, that the rotation 

frequency ω will go down: ω "ь -η- ̂  — and that the systen will become heavier, 

instead of flying apart at once. These high mass states are also, though less, 

unstable through the 'spark' mechanism, indicated above. Emitting mainly 

mesons, which lower L step by step the massive hadron cascades into stability. 

The excited system, however, does exist long enough to allow detection. The 

universality of the slope a' is also an indication of the fact that the quarks 
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can only carry a small portion of the energy and angular momentum. First, 

mesons and baryons contain a different number of quarks and secondly, flavor 

breaking effects in a' would be clearly visible, if quark contributions are 

important. These examples support the idea, that color acts as a source for 

the strong interaction between groups of quarks. There is an increasing effort 

to derive confinement in 3+1 dimensions, including nonperturbative effects or 

otherwise, but no convincing results have been obtained so far [Ca 77, Th 78, 

Le 78]. There exist, however, examples in 1+1 dimensions, where confinement 

occurs and where the mass is proportional to the separation [Ko 74, Man 76]. 

These models may be of use when the effective number of dimensions of the 

physical system is reduced by 2. 

On the basis of these experimental data and theoretical ideas we can 

compose the following picture of the baryon. It is an extended object, 

deriving its flavor and spin properties from three 'valence' quarks. These 

quarks are surrounded by a cloud of gluons (and QQ pairs) , which are electri­

cally neutral. Gluons and quarks have color degrees of freedom, which act as 

a source for strong interactions. This interaction is very weak for small 

separations: quarks and gluons enjoy 'asymptotic freedom', and becomes very 

strong for increasing distance between two colored objects: confinement. 

This picture is readily transplanted to any colorsinglet system. One even 

entertains speculations on systems containing only 'valence gluons' and no 

quarks at all [Fr 75, Ja 76, Ro 77]. 

What at this point still is lacking is a framework for the dynamics 

governing the strong interactions, within which one can settle questions 

like if quarks are seen to move freely for short times, what keeps them 

from moving aparf and, what makes colorless states lighter than colored 

ones7, or more detailed ones like: what makes the Δ heavier than the N' and, 
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why don't we see lowlying flavor exotics? and interpret other experimental 

findings. 

The most simple, and at the same time most promising theory of strong 

interactions is at present the nonabelian gauge field theory in colorspace 

[Ma 78]: Quantum Chromodynamics, QCD for short. It follows from the assumption, 

that color is not only globally conserved but also locally, completely 

analogous to the way m which the very successful QED theory follows from the 

local conservation of electric charge. The important difference is, that in 

QED the electric charge is an additive quantity: QED is invariant under the 

abelian symmetry group U(l), whereas in QCD the color-charge is non-additive : 

QCD is invariant under the nonabelian group SU(3,C). The quarks belong to 

the basic triplet of SU(3,C) and the forces are therefore mediated by an 

octet of massless, spin 1 gauge bosons, called gluons. The gluons also carry 

color charge and can couple among themselves. This feature gives rise to two 

peculiar phenomena, which are thought to be two aspects of the same thing 

[Dr 77]. From QED one is familiar with the fact that the charge e, seen from 

distances larger than twice the compton wave length of the electron, * , is 

smaller than the effective charge measured at smaller distances. This is due 

to the presence of virtual electron-positron pairs originating from the zero-

point quantum fluctuations of the electromagnetic field strengths. The bare 

electron, charge e , is thus surrounded by e e pairs, from which it attracts 

the positrons and repels the electrons. The vacuum becomes polarized and the 

electron charge is shielded. The coupling strength (e) grows when measured 

at smaller distances. What happens at very short distances is, due to the 

breakdown of perturbation theory and the experimental resolution, not known. 

In QCD the bare color charge of a quark is not only surrounded by QQ pairs 

but also by gluons, which revert the screening of the QQ pairs into a net 
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antiScreening: the effective colorcharge of the quark decreases at shorter 

distances and the quarks are asymptotically free: they only have a very 'weak' 

interaction at short distances. One could say that the colorcharge of the 

quark is spread into the field around it and the quarks, close together, only 

see a small remnant. But one can also look upon this situation from another 

angle: the effective charge grows, when measured at increasing distances. 

About this limit not very much is known, since one cannot use perturbation 

theory around the free quark solution here. One hopos, however, that the 

resulting, strong coupling will realize color confinement. There are some 

hints, that confinement may indeed come about. One can show that, in the 

case of two static oppositely colored sources the colorfluxlines tend to 

become collimated, when the separation increases and eventually will be 

concentrated in a thin flux tube connecting the two charges. This property 

can then be translated in an interaction energy "v» r, the intersource distance, 

or in a string type description of the system. The color charges appear to 

be acting as condensor plates [Ko 74]. 

At present calculations with QCD [El 78] are only possible in the 

asymptotic free region. There, to lowest order in the coupling g, where only 

the pointlike quarks contribute, the theory gives the exact scaling mentioned 

above. Including the next orders in g, one obtains radiative corrections of 

2 
the form In q , which violate the naive scaling law, and which provide a more 

quantitative and strict test for the theory. These violations are experimentally 

established and consistent with QCD predictions. Perturbation calculations i.e. 

calculations involving quarks and gluons, can also be extended to decay or 

scattering processes in which quarks or gluons appear to be emitted from the 

hadron, provided one replaces the quark or gluon with a quark or gluon ]et in 

the real world, cf. the QQ jets in e e~ annihilation. Especially the thus 

expected production of gluon jets at higher energies is a firm test for the 

theory. 
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One has also made use of the relatively weak coupling of the gluons to 

the quarks, when these are sufficiently close to each other inside the hadron 

to investigate the spin dependence of the hadronmass [DeR 75, DeG 75]. Already 

at the level of one gluon exchange one can account for the observed systematics, 

in terms of the signs and the order of magnitude of the splitting. 

From this we conclude, that we have reasonable grounds to take QCD as a 

description of the dynamics of quarks and gluons inside the hadron. To study 

this composite particle, we also need a well defined description of the hoped 

for confinement properties of the theory, as long as these are not extracted 

from the theory itself. Considering its present status, it is best to put in 

a confinement mechanism by hand. One can do this by taking advantage of the 

fact that one also has to find a relativistically covenant description of an 

extended system and associate an energy with the extension of the system. While 

putting a cost on extension, and thereby limiting the size of the system, one 

at the same time eliminates the long wave lengths avoiding the unsolved 

infrared- and strong coupling problems. There are three simple measures of 

such an extension [Jo 76]. They are all generalizations of the classical, 

relativistically invariant action, describing the motion of a massive point 

particle, given by 

W = - m ƒ dt (1 - ν
2
)

1 / 2 

- * • 

where ν is the velocity and m the mass of the point particle. This action was 

generalised by Nambu [Na 70], to describe an object with a one dimensional 

spatial extension. It is the continuum limit of a linear chain of geometrical 

points, the socalled string 

W = - Τ ƒ dt f ds (1 - ν
2
)

 1 / 2 

st 1 

where ds is the length of the line element at some point along the string and 
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ν is the transverse velocity at that point. The constant T, which has 

dimension energy (or mass)/length, is the proper tension of the string. The 

quantization of this Nambu string yields the excitationspectrum of the dual 

resonance model [Re 74]. The tension Τ satisfies Τ = Ι/^πα', where α' is the 

universal slope of the linear Regge trajectory in the dual resonance model. 

W depends only on that part of the internal motion which is transverse to 

the local spatial extension of the string. Classically, only these motions 

contribute to the dynamics of the system. The longitudinal expansion of the 

line element does not change the kinetic energy and is interpreted as potential 

energy. 

The generalization to a two dimensional geometrical aggregate of points • 

had, prior to Nambu, already been proposed by Dirac [Di 62], who suggested 

the following action for the surface (membrane, if open, or bag, if closed) 

H
 _ - , . , . , ,2. „ +2,1/2 

S 
σ ƒ dt ƒ d S (1 - О ' 

Here d S is the area of the surface element and ν is its velocity in the 

transverse direction. Now, σ is a surface tension of dimension energy/area 

and again only ν contributes to the dynamics of the system. It is by adding 

W to the QCD lagrangian, that the Budapest group generates confinement [Gn 75]. 

The third and last step in this sequence is to consider the geometrical 

action associated with a three dimensional set of points, a volume, also 

called a bag: 

W
v
 = - В ƒ dt ƒ d3r 

Here В is for dimensional reasons a (vacuum) pressure. Because ƒ dt ƒ d r is 

a Lorentz invariant, four dimensional volume element, no transverse velocity 

factors occur. The volume action has no dynamics of its own. Nevertheless, 

the addition of W to a system, which already has dynamical degrees of freedom, 
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can have important physical consequences, because it can be interpreted as 

a generalized potential energy. The differences between the various 

possibilities is best demonstrated with a 1 + 1 dimensional example. There 

are two possible actions in this case; one for a masspoint or equivalently 

a surface point with tension: VJ = - m ƒ dt 11 - l-r—) I , and one for a 

volume: W = - В ƒ dt ƒ dx. The combined action: 

(ax \ 2 \l/2 / /dx \ 2 \l/2 

W = - m / d t И Э V-»!*MS) )12-B/dt/dx 
then describes a system of two massive particles (m = m_ = m) , which enclose 

a one-dimensional volume, or equivalently (m-<->a) a one-dimensional bag with 

surface tension, under vacuum pressure. The hamiltonian becomes 

,2 2Л/2 ,2 2, 1/2 , , 
H = (p

l
 + m ) + (p

2
 + m ) + В \xl - x2\ 

and we find that the particles are bound together by the long range vacuum 

pressure potential. We find, that one can take В • 0 in both the action, and 

the hamiltonian: it yields a system of two free particles in both cases. 

Taking m to zero in the hamiltonian yields a system of two massless particles, 

bound by the pressure. However, taking m = 0 in the action ^ust leaves the 

volume term, with which no dynamics can be associated: it describes an empty 

bag. We find that two completely different systems emerge. The MIT formulation 

of the bagmodel adds W to the QCD action, thereby avoiding the introduction 

of new dynamical degrees of freedom to the theory. This procedure has the 

drawback, that one obtains a constrained dynamical system, which severely 

hampers quantization. 

We will study the MIT bagmodel in Chapter 2, in a simple approximation 

and apply it to the static properties of the light hadrons. In Chapter 3 

we will study another approximation, which is better adapted to the study 

of all-quark states with baryon number В = 2 to 6. Finally in Chapter 4 we 
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2-2 
w i l l i n v e s t i g a t e t h e s p e c t r o s c o p i c p r o p e r t i e s o f t h e Q Q s y s t e m . E s p e c i a l l y 

3B 2 2 

m u l t i q u a r k s y s t e m s l i k e Q , В > 1, and Q ζ c o u l d n o t be t r e a t e d i n t h e o l d , 

n a i v e q u a r k model and were c a l l e d e x o t i c . I t i s t h r o u g h t h e MIT bagmodel t h a t 

t h e s t u d y o f t h e s e e x o t i c s y s t e m s h a s become f e a s i b l e . 

Quark 

u 

d 

s 

с 

t 

b 

Q 

2/3 

- 1/3 

- 1/3 

2/3 

2/3 

- 1/3 

В 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

I 

1/2 

1/2 

0 

0 

0 

0 

I 
ζ 

1/2 

- 1/2 

0 

0 

0 

0 

S 

0 

0 

- 1 

0 

0 

0 

с 

0 

0 

0 

1 

0 

0 

τ 

0 

0 

0 

0 

1 

0 

в 

0 

0 

0 

0 

0 

- 1 

Table. Quark f lavors and the as soc ia ted quantum numbers: e l e c t r i c charge 

(Q), baryon number (B), i sosp in ( I ) , and i t s z-component (I ) , 

s t rangeness (S) , charm (C) , t r u t h (T) and beauty (B) . At p r e s e n t 

only the t - f l a v o r has not been found. 
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CHAPTER 2: THE MIT BAGMODEL 

In this chapter we will cast the underlying dynamical assumptions of the 

MIT bagmodel [Cho 74] in a Lagrangian form and examine some of the simplest 

consequences [Chp 74, DeG 75]. 

I. The equations of motion and constraint [jo 75, Jo 76] 

In our description of the hadron, we will take the quark field (denoted 

by a spin S = 1/2 Dirac field ψ (x) ) and the gluon field (denoted by an S = 1 

vector field A (x)) as fundamental fields. Since quarks and gluons are supposed 

to occur only inside the physical hadron, their fields will also be defined 

only there. In this respect the bag theory differs from conventional (space 

time) field theories, such as QED where the electron and photon fields are 

defined everywhere. Space integrations in the bag action only extend across 

the bag volume. To elucidate this feature and to facilitate forthcoming 

technical manipulations, we will introduce the auxiliary function θ (χ) 

which has the following properties: 

(1) 

t) (x) = 1 inside the bag 

В 

= 0 outside the bag 

Function θ (x) only depends on the coordinates of the bag boundary, not on 

its velocities, θ has no dynamics of its own. Introducing θ in the Lagrangian, 
В в 

we can extend the integration volume over all space time in any Lorentz frame. 

Another property of 0 is the following-
B 

\ V x ) • nu V s ) ( 2 ) 

where η is the unit, spacelike, inward drawn normal to the surface of the 

bag. in the instantaneous restframe of a point on the surface η is the usual 

m 
u n i t space normal, while n n = 0. The surface δ-function δ (χ) s a t i s f i e s : 
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ƒ d 4 x 6 s ( x ) f(x) Ξ ƒ ( d 3 x ) s f(x) = ƒ dt ƒ d 2S (1 - v 2 ) 1 / 2 f(x) 

The lefthandside expression i s Lorentz c o v a n a n t . In the n g h t h a n d s i d e one 

a noncovariant parametr iza t ion of the surface has been chosen, which i s 

2 1/2 
compensated by the factor (1 - ν ) , which depends on the t r a n s v e r s e 

->-
v e l o c i t y v , of the surface element. 

- Quarks -

We will introduce the bag action step by step. Let us start from the 

action for a free, massive Dirac particle: 

W = - ƒ d
4
x J j ψ V γ

μ
ν + m ψψ > (3) 

using а'Э b = a(3b) - (3a)b for the derivative operator. For the metric 
μ μ μ 

and γ m a t r i x - d e f i n i t i o n see appendix A. From t h i s ac t ion we obta in the Dirac 

equation : 

(γμ Э + m) ψ = О 

Instead of γ Э , equiva lent ly γ·9 and # w i l l be used. The Dirac f i e l d here 

can in p r i n c i p l e be defined everywhere in the 3 + 1 dimensional space. 

The second s t e p i s t o generate confinement in a r e l a t i v i s t i c a l l y c o v a n a n t 

way. To achieve t h i s a 'vacuum p r e s s u r e ' i s included, which i ß a Lorentz s c a l a r : 

ι 4 л 4 
W = J d x «-_ = - ! d χ 

j - | ψ 3·γ ψ + m ψψ + В̂  в + j (ψψ) 6£ 
(4) 

S 

Requiring t h a t the act ion be s t a t i o n a r y aga ins t v a r i a t i o n s in ψ, we obtain the 

following Euler-Lagrange (EL) equat ion: 

в (/Г + m)ψ + ì 6s(rf + 1)ψ = О 

which implies both the free quark equation of motion 

(? + ιη)ψ = 0 ins ide the bag (5) 

and the c o n s t r a i n t equation or boundary c o n d i t i o n : 

fi ψ = - ψ on the surface (6) 
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For the conjugate field we find similarly 

ψ (Jf - m) = 0 inside the bag, and (7) 

ψ fi = ψ on the surface . (Θ) 

Equations 5 to 8 correspond to the situation, in which confinement is realized 

by a scalar potential [Bo 68]. The quarks are endowed with an effective mass m 

inside a finite region R of space and with a mass M elsewhere. One takes M >> m. 

Demanding continuity of the upper and lower components of the quark spinor wave 

function then gives a set of equations, which reduce to eqs (6) and (8) in 

the limit M >· », in which the quarks become confined to region R (cf. also 

[Cho 74]). Combining eqs (5) and (7) we find that the quark current is locally 

conserved inside the bag: 3 j = Э (i ψ γ ψ) = 0. Eqs (6) and (8) state that 

there i s no current across the boundary 

η j = η (i ψ γ ψ) = i (ψ γ·η)ψ = i ψψ (9) 

= i ψ (γ·ηψ) = - ί ψ ψ = 0 

Stability against small excursions of the surface i.e. against small changes 

of the volume yields: 

j ψ 3·γψ + m ψψ + В = j Э
у
(η ψψ) on the surface (10) 

To obtain the righthandside, one has to use the & -definition in terms of 

θ„: (ψψ)δ
0
 = п

у
(^)(Э θ > . With the aid of eqs (5) to (8), eq (10) reduces to: 

о S у В 

η 3
μ
(ψψ) = 2Β on the surface . (11) 

μ 

We note here, that what would have been an equation of motion for the surface 

variables becomes an equation of constraint for the constituent fields due to 

the absence of a surface kinetic energy term. The energy and momentum content 

of the system can be summarized in the stress tensor 

Τ
μ υ
 =

 в
 ji ψ ГЧ\

 +
 ^ Z

0
j =

 в
 fi -ψ

 γ

μ
^ ψ - g ^ = ̂  - 9

UV
B (12) 
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which satisfies 

U ν 
3 Τ = 0 inside the bag, and therefore (13) 
μ 

Ρ = ƒ dV Τ is a conserved, i.e. constant quantity. (14) 

We find that all the momentum is carried by the quarks, while the energy: 

E = ƒ dV ] ~ ψ γ 0
 'э

0
 ψ + Bi = E + BV (15) 

contains c o n t r i b u t i o n s from both the quark f i e l d s and the volume. One can 

show, t h a t in case the bag i s boosted t o a v e l o c i t y ν in the l i m i t ν ->• 1, a l s o 

a l l the energy w i l l be c a r r i e d by the quarks . The volume term vanishes due t o 

the Lorentz F i t z g e r a l d c o n t r a c t i o n . The s c a l a r p o t e n t i a l confinement-mechanism 
μ ν 

only gives a Τ p a r t and i s not Lorentz c o v a n a n t . For fixed E, the s ize of 

the bag i s l i m i t e d by the volume term in eq (15) . On the surface eq (13) 

develops i n t o 

η ТР = 4 3ν(ψψ) - n V В = 0 . (16) 
μ 2 

Because ψψ = 0 on the sur face, i t s der iva t ive i s p r o p o r t i o n a l t o the normal 

і ^ ( й ) = n - P Q = n v T ^ . (17) 

Since, in the instantaneous restframe, this equals the momentum flow normal 

to the surface, Ρ is the pressure exerted by the quarks on that surface, 

going with the concept of stress tensor. From eq (11) , we conclude that Ρ = В 

which can be interpreted as the statement, that the quarks pressure, which is 

directed outwards (quarks are fermions) is balanced by the vacuum pressure, 

which keeps the volume from becoming too large. The origin of В is unclear. 

Similar to B, also Ρ is a Lorentz scalar. 

Eq (11) is nonlinear in the quark fields and can be interpreted as a 

definition of the surface coordinates in terms of the quark fields. It is a 

local equation which preserves causality. The surface variables of the bag are 

no new dynamical degrees of freedom. This can also be seen from eq (15) , where 
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no reference is made to time derivatives of these variables: they do not 

contribute to the energy. We furthermore see, that the surface term 

W = j ƒ d χ (ψψ)δ = — ƒ dt ƒ d S Λ - ν (ψψ) does not contribute to 

the extremized Lagrangian density, by virtue of eq (9). its presence is 

however needed to obtain a consistent set of EL equations. In case of omission, 

we obtain, next to eqs (5) and (7) the boundary conditions 

η-γ ψ = 0 ) (6a) 

on the surface 

у ψ Э-γ ψ + ι η ψ ψ + Β = 0 J (lia) 

Combining eq ( l i a ) with eqs (5) and (7) y i e l d s : В = 0. This implies t h a t 

confinement can only be maintained by i n t r o d u c t i o n of a d d i t i o n a l (boson) 

f i e l d s for which the quarks can a c t as a source . These f i e l d s w i l l then 

completely determine the motion of the boundary. One can ver i fy, t h a t eqs 

(6a) and (11a) a l s o follow from eq (4), provided one l e t s ν = 1 in the 

surface term. The boundary moves with the speed of l i g h t . In t h i s case eq 

(6a) becomes ψ = 0 on the sur face : the slowly ( w . r . t . ν = 1) moving quark 

w i l l never reach the s u r f a c e . The boson f i e l d s , dragged along by the quarks, 

and a l s o confined, w i l l be r e f l e c t e d a t the opaque boundary and cause the 

source-quark t o turn around before i t gets t h e r e . An equiva lent r e s u l t i s 

obtained, when one l e t s the quarks become very heavy: m -* =>. This p i c t u r e 

i s advocated by the Budapest group [HaK 7 8 ] . I t does not seem to cover some 

of the s implest cases , such as the s p h e r i c a l bag conta in ing massless quarks, 

t r e a t e d in d e t a i l below. The boundary condit ion ψ = 0 i s much too r e s t r i c t i v e 

for the l i n e a r Dirac equat ion. 

- Gluons -

At t h i s l eve l s t i l l one quark bags can occur. To e l i m i n a t e t h e s e , we have 

t o take a t h i r d s t e p , which i s to introduce the gluon f i e l d s . This can be done 

in the s tandard Yang-Mills-like way by not ing, t h a t the quarks have SU(3,C) 
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color quantum numbers, which have been ignored in the above discussion, and 

replace all ordinary derivatives in eq (4) by gauge covanant ones and adding 

a kinetic term for the gluon gauge fields in order to make the total 

Lagrangian locally gauge invariant: 

Э + ( D ) , = d 6 . - i g ( F ) , A (18) 
μ y a b y ab с а Ь с ц 

The c o v a n a n t d e r i v a t i v e (D ) , a c t s on a f i e l d , which transforms according t o 
μ ab 

an n-dimensional i r r e d u c i b l e r e p r e s e n t a t i o n ( i r rep) of SU(3,C) and i s represented 

by an (η χ n) matrix in color space (a and b are color i n d i c e s : a,b = Ι , . , . , η ) . 

The i d e n t i t y matrix i s denoted by 6 . , and (F ) . denotes the n-dimensional 
* * ab с ab 

r e p r e s e n t a t i o n of one of the e i g h t (c = 1, . . . ,8) generators of SU(3,C). The 

F matrices have the following p r o p e r t i e s : 

[ F a ' F b ] = 1 f a b c F c T r V b = Í 6 ab а ' Ь ' С = 1 8 ' 

Here the f are the s t r u c t u r e constants of SU(3,C), completely ant i symmstnc 

w . r . t . interchange of any p a i r of i n d i c e s . (See a l s o appendix B.) In the t h r e e -
λ 

dimensional i r r e p of the quark, we have F = ——• , where λ i s one of the e i g h t 

Gell-Mann m a t r i c e s . Furthermore, {F ,F, } = -ζ- δ , + d . F in t h i s case . The 

a b 3 ab abc с 

constants d , are completely symmetric under the interchange of i n d i c e s . 

* Л а 

In the 3 i r r e p of the ant iquark, we have the r e p r e s e n t a t i o n : F = - -r- . 

F i n a l l y , a c t i n g on the gluon o c t e t i r r e p the matrix elements of the generator 

become (F ) = - ι f . The antisymmetric f i e l d t e n s o r , corresponding t o the 

gluon vector f i e l d A i s given by: 
UV „U V Л U U V 

GM = 3μΑ - Э Αμ + g f . ΑΓΑ 
a a a abc Ъ с 

where the t h i r d term i s a consequence of the nonabelian nature of the co lor 

symmetry. 

- Quarks and Gluons -

The action for the mixed (i.e. quarks and gluons) bag theory becomes 
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W = - ƒ d 4 x ^ [ | G^V G*v + В + ί ψ Ογψ + m ψψ] в - -j (ψψ) δ Β [ (19) 

From t h i s a c t i o n t h e f o l l o w i n g s e t of e q u a t i o n s i s o b t a i n e d : 

f o r t h e q u a r k f i e l d s : (γ - Э - igy F A + m) ψ = (γ · 0 + m) ψ = 0 i n s i d e t h e b a g (20) 

a μ 
(γ ·η + 1)ψ = 0 on t h e s u r f a c e (6) 

and ψ Ο · γ + і д у 'г A - m) = ψ ( γ · 0 - m) = 0 i n s i d e t h e b a g (21) 
a μ 

ψ ( γ · η - 1) = 0 on t h e s u r f a c e (Θ) 

f o r t h e g l u o n f i e l d s : D G U V = - i g ψ v V F ψ o r (22) 
p a a 

- Э G P V = i g ψ γ ν F ψ + g f 1 _ А ^ G , J V = J^ i n s i d e t h e b a g (23) 
y a з τ ι a ι al2C pb с D a 3 

and η G = 0 on t h e s u r f a c e (24) 
U a 

and the nonlinear condition becomes: 

Э (ψψ) = 2 η [В + χ GVV
 G

a
 ] on the surface (25) 

ρ ρ 4 a μν 

For the gluon fields one can also introduce the relations G = E and 

a a 
G . . = ε . ., Η d e n o t i n g t h e c o l o r - e l e c t r i c and c o l o r - m a g n e t i c f i e l d s t r e n g t h s 

a i j i j k ak 
r e s p e c t i v e l y . An i m p o r t a n t d i f f e r e n c e w i t h e l e c t r o d y n a m i c s i s t h a t we now have 

e i g h t , i n s t e a d o f o n e , e l e c t r i c and a s many m a g n e t i c f i e l d s , b e c a u s e SU(3,C) 

->- ->-
h a s e i g h t c h a r g e s . I n t e r m s o f E and Η we f i n d : 

a a 

"n-E = 0 (24a) 
a 

on t h e s u r f a c e 
0-»- •* -»• 

η E + ηχΗ = 0 (24b) 
а а 

These conditions assure, that also the gluon fields will be confined. 

On the surface the quark and gluon fields satisfy both a separate and a 

common boundary condition. The former relates the various components of the 

field among themselves. In case of a prescribed boundary eqs 6, 8 and 24, also 

referred to as linear boundary conditions, determine the eigenvalues of the 

energy-eigenmodes inside the bag. The bag theory offers the possibility of 

hadrons consisting of just gluons, both gluons and quarks, or just quarks. 

The common condition, dubbed nonlinear or quadratic boundary condition, defines 
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the surface as the locus, where the fermion and boson pressure balance the 

1 a uv 
vacuum pressure. Also the boson term: -r G G LS a Lorentz scalar. We can r

 4 μν a 

rewrite eq (25) to 

(η·3) (ψψ) + j Ε
2
 = В + j H 2 (26) 

which illustrates the inflatory activities of the electric fields, whereas 

the magnetic fields contribute to the compression. 

μν 
One again can define a stress tensor density Τ 

τ
μν
(χ) = θ

η
 ÍG U P э A + j ψ γ

μ Τ ψ
 + g

p v L \ 
ь с а ар ζ j 

HP ^ 
В a 

One v e r i f i e s t h a t 

a^ A
a p +
 i * / V • - g- [в

 +
 I G^ ; G

k

a

x
] i 

3
μ
 Τ = 0 inside the bag (28a) 

μν 

η Τ
μ υ
 = 0 on the surface (28b) 

μ 

which assure, that the energy and momentum are conserved quantities. 

Similarly 

Э JV
 = 0 inside the bag, by eq (23) (29a) 

μ a 

η JV
 = 0 on the surface, by eqs (6), (8) and (24) , (29b) 

μ a 

state that the total color charge is a locally conserved quantity. We find 

that 

g = ƒ j 0 = . f э G 1 0 = - ƒ d2S ñ G10 = - ƒ d2S / Γ - v ^ n - E = 0 (30) 

^а . •' a ^ ι a ' i a J Т а 

bag 

Hence only c o l o r l e s s bags can occur by v i r t u e of Gauss' law and the boundary 

condi t ion, t h a t E be t a n g e n t i a l t o the sur face . No bag with the quantum 

numbers of a quark can be observed. This r e s u l t i s obtained for any value of 

the coupling s t r e n g t h g, which i s not equal t o zero . Eq (30) a l s o forbids 

c o l o r l e s s bags to f i s s i o n i n t o two colored p a r t s . Imagine a bag with the shape 

of a sausage, in which the quarks are d i s t r i b u t e d over the ends. Suppose one 
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group of quarks has a total charge Q ^ 0 , the other then has the opposite 

charge. This means that inside the bag, at some point between these two groups, 

a color electric field will exist of (average) strength E = Q /A, where A is 

the local cross section of the bag. The total field energy in a little volume 

1 2 1 2 L 
V = L-A then amounts to U = •=• (Q /A) L-A = — Q — . When one tries to fission 

^ a ¿ a A 

the bag, one has to reduce A to zero, for which clearly an infinite amount of 

energy is required. A colorsinglet bag therefore can only fission into other 

smaller colorsinglet bags. 

II. Spherical cavity approximation l: Gross features [DeG 75] 

The set of equations (6), (8), (20) to (25) is a complicated one, for which 

no general, explicit solution exists. One has to make several approximations, 

in order to obtain a more manageable one. A first step is to ignore the coupling 

between the quarks and the gluons. In this zeroth order approximation the 

equations of motion become independent of color, and one has to solve the free 

Dirac equation for a colored spinor field with mass m, and the homogeneous 

Maxwell equations for a massless vectorfield of color a. 

In setting g = 0, one assumes that in practice g will be small enough to 

2 
admit the application of perturbation theory in g . The physical picture behind 

this assumption is, that the size of the hadron will be kept sufficiently small 

by the vacuum pressure for the theory to be already in the asymptotically free 

region. Moreover [Ja 75, JaP 75], the surface, apart from the boundary condition, 

is expected to have little influence on the inside dynamics. 

For this simplified set of equations of motion and boundary conditions 

no general solutions in three space dimensions exist either. This is mainly 

due to the presence of the nonlinear constraint equation, which impedes the 

full quantization of the theory. However, the classical equations admit a 

class of solutions in which the bag is a sphere (in its restframe) of fixed 
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radius R. This can be seen as follows. One expects the lowest energy eigen-

mode, that a quark can occupy, to be the one, in which the quark has the 

least kinetic energy. The quark will therefore move in the most symmetrical 

way through the bag. From this motion a pressure results, which is spherically 

symmetric, a property shared by the poincaré invariant bag pressure B. The 

surface, where these two pressures balance, will therefore be a sphere, which 

is classically at rest. Within this static sphere one is able to obtain the 

eigenmodes of the noninteracting, confined quarks and gluons. The nonlinear 

boundary condition then fixes the radius of this bag, in terms of the energy 

of the whole system. This procedure bears some resemblance to the Born-Oppen-

heimer approach in molecular physics. This adiabatic approximation works for 

dynamical systems, in which one can single out a slowly moving part, whose 

motion is instantaneously followed by the swiftly moving remainder of the system. 

In molecular physics the nuclei are the slowly moving objects, whereas the 

much lighter electrons (a mass ratio of about 2000) are usually much faster, 

but still nonrelativistic. The electron orbits can then, to good accuracy, be 

calculated in the approximation that the nuclei have fixed positions. This then 

results in electron energy eigenvalues and eigenfunctions, which depend on the 

nuclear coordinates. Provided stationary electron solutions can be found for 

all nucleón configurations, also the motion of these slow ones can be solved. 

The energy of the electrons, as a function of the nuclear positions, now 

constitutes the potential in which the nuclei move. Apart from this potential 

contribution, the Schrôdinger equation for the nuclei decouples from that for 

the electrons, provided the influence of the nuclear kinetic energy operator 

on the electron motion can be neglected [HaK 7Θ]. 

In the spherical cavity approximation one calculates the quark and gluon 

energies, given a fixed radius R, using the equation of motion and the linear 

boundary condition. However, the procedure is now exact, since, at least in 
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the MIT formulation, there is no kinetic energy term for the bags surface. 

Instead of a surface equation of motion, one has the quadratic boundary 

condition, which determines the motion of the bag surface in terms of the 

motion of the fields inside. In this static case it determines the radius R 

of the bag as the one for which the bag-energy is a minimum. This exact 

classical solution is unsatisfactory from the quantum mechanical standpoint 

because of the sharply determined R-value. In the rigorous, quantum mechanical 

treatment the fields, then operators, defining R, will have fluctuations around 

their energy eigenstates, and then also R will fluctuate: the boundary is fuzzy. 

Using the Budapest formulation of the bagmodel [Gn 78], which includes surface 

dynamics and thereby avoids nonlinear boundary conditions one can study the 

quantum mechanical aspects and show, that, in the BO approximation, the 

distribution for the radius peaks rather sharply around the classical value, 

and also that the surface excitations can be sufficiently heavy, depending on 

the smallness of the surface tension, to allow a study of the particle 

excitations in case the surface is in its groundstate. The zeropoint oscillations 

do contribute a little in addition to the classical energy. This calculation 

may serve as an indication, that fixing the bag radius is a reasonable 

approximation. 

There have been several attempts to develop the quantum mechanics in the 

presence of boundary conditions, in the context of the MIT bagmodel. A complete 

solution in one space-one time dimension exists [Cho 74, Sh 75]. In three 

space and one time dimension no explicit solutions exist. One approach, by 

Johnson [jo 76], yields a well defined formulation, but is even in an approximate 

form still too complicated to be readily applicable. Another attempt, by 

Rebbi [Re 75], studies small oscillations around the classical solutions. In 

this approximation he is able to cast the constraint equations in a manageable 

form. In this treatment the spherical cavity approximation is of central 
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importance, and several limitations to its validity have been uncovered. Let 

us now obtain the cavity eigenmodes for the quarks and gluons separately. 

1• Valence quarks [Chp 74] 

The problem of solvingeqs (6), (8), (20), (21) and (25) is now reduced 

to solving the following equation inside a static sphere of radius R. 

(γ-Э + m) ψ = 0 r < R (5) 

о 

Using the fact that for a static sphere we have η = (0,-r) eq (6) becomes 

r-Ύ ψ = ψ r = R (6b) 

α α 

- ^ - ( Σ ψ ψ ) = 2 Β r = R (Hb) 

Эг a η α 

We have e x h i b i t e d the i n t e r n a l quantum number dependence by a l a b e l a . This 

dependence includes the f lavor quantum numbers. Although flavor syimnetry t u r n s 

out t o be broken, we w i l l continue our d i scuss ion for the f lavor symmetric 

case, and introduce the flavor breaking a t a l a t e r s t a g e . All quark f lavors 

are taken t o have the same mass. The s o l u t i o n s of eq (5) l i s t e d below c o n s t i t u t e 

a complete s e t of four sp inor e i g e n s t a t e s , with the boundary condi t ion t h a t 

they are r e g u l a r a t r = 0. These s t a t e s can be labe led with the eigenvalues of 

t o t a l angular momentum j and i t s z-component ] = m. For each combination of 

j and ra the quark can occur in two s t a t e s , having opposite p a r i t y , which are 

e i g e n s t a t e s of the Dirac o p e r a t o r K, with the eigenvalues к = + (] + 1/2) for 

the j = (I + 1/2) s o l u t i o n , and к = - (j + 1/2) for the ] = (Я' - 1/2) one. 

This r e f l e c t s the two p o s s i b i l i t i e s of combining the o r b i t a l angular momentum 

I and the spin s (ne i ther are good quantum numbers i n t h i s j - j coupling scheme) 

t o a t o t a l spin ] . We w i l l use the labe l η defined by n = k/(] + 1/2) . Due t o 

cq (6b) , which has to be s a t i s f i e d a t r = R for every combination of j and η 

s e p a r a t e l y , the momentum of the quarks ρ w i l l take on d i s c r e t e va lues , which 

w i l l be labeled by n: ρ . The general s o l u t i o n t o our problem there fore i s 
η η ] 
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a superposition of the above mentioned solutions. 

ψ (x,t) = Y N(p ) а (пгщт) ψ (x,t) r
a

 L
 ηη] α ηη]η 

η,η ,] ,m 

(31) 

Using the spinor harmonics 

and 

^
 = c

^ 1/2 Я
 +
 1/2 γ ί Ст) 1/2 

jm π m m m m 

]m • - (У) •; 
C
I 1/2 1 • 1/2 /

 ( ί )
 1/2 

m m. m„ m m. m. 

1/2 
where χ i s the conventional two component Paul i sp inor , the a ' s are the 

appropr ia te Paul i (2x2)-spin m a t r i c e s , and Y (r) i s the usual spher ica l 

harmonic, we can wr i te down the s o l u t i o n s for j , m and n: 

ψ (x,t) = 
n+jm 

3 (p r) φ 
I n+] jm 

- i P. n+] 

ρ + μ п+з 

] г + 1 ( Р п + з Г ) Ф з т 

- ι ρ 0 t 
n+3 

(32a) 

ψ (x,t) 
п-зт 

] ) l + l ( P n - 3 r ) Ф з т 

1 P n ' ] 3 (p г) ф+ 

0 J j r p n - 3 ' ф з т 
P n - 3 + μ 

, п-з (32b) 

The ρ are the energ ies corresponding t o the momenta ρ , according t o 

ппз " г
 ^ппз 

0 2 2 2 
ρ - ρ = μ , with μ for the particle mass. The з„(рг) are the usual 
ппз птіз I 

spherical Bessel functions. With this choice of wave function the normalization 

constants become, suppressing the ρ and ρ labeling on the right hand side: 

ƒ dV ψ ψ = N~ = N~ (ρ ) 
ъ плзт пгізт ηη] ^ппз 

3 2, , 
R V P R ) 

{2p0R(p0R - (4 + 1)η) + μΗ} 

(p R + yR) (p R - nyR) 

Let us introduce χ = p R. Because eqs (32) are up t o an overa l l s ign 
ппз ппз 
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invariant under the transformation χ •* - χ, we can take the x's to be positive. 

For our simple system, the spinor harmonics drop from eq (6b), and it reads 

j„(x ·) 
ηη] 

ΠΡ„„, R + μΗ 
ηη] 

^+І^ппі» 
(33) 

For ( j , n ) = (1/2 ,η) t h i s can be r e s h a p e d i n t o a s i m p l e t r a n c e n d e n t a l e q u a t i o n 

of t h e form 

(34) t g χ = g 
1 - ηρ R - pR 

which g i v e s us t h e e n e r g i e s o f t h e e i g e n m o d e s . We n o t e t h a t eq (33) a l l o w s 

b o t h p o s i t i v e and n e g a t i v e r o o t s f o r ηρ R. T h i s means, t h a t f o r e a c h c o m b i n a t i o n 

o f p o s i t i v e e n e r g y E and p a r i t y η , we have a n o t h e r one w i t h n e g a t i v e e n e r g y - E 

and p a r i t y (- η) . T h i s v e r i f i e s t h a t t h e t h e o r y a l l o w s f o r b o t h f e r m i o n - and 

a n t i f e r m i o n - e i g e n m o d e s . A few e i g e n f r e q u e n c i e s χ . h a v e b e e n l i s t e d i n T a b l e I . 

nnu 

j 

1/2 

3/2 

ηη 

^ \ 
1+ 

2.043 

3.204 

1-

3.812 

5.123 

2+ 2 -

5.396 

6 . 7 5 8 

7.002 

T a b l e I : Quark e i g e n f r e q u e n c i e s χ , f o r m = 0 . 

We d e f i n e : p 0 . = - {χ 2 . + ц } 1 / 2 = - ρ 0 , = E . > 0 . 

*ηη] R плз -n,-n, j ηη] 

Eq (32) t h e n g i v e s a q u a r k s p i n o r , i n c a s e ρ > 0 , o r an a n t i q u a r k s p i n p r , i f 

ρ < 0 . From e q (33) we f i n d t h a t t h e r o o t s χ w i l l depend on t h e mass o f t h e 

p a r t i c l e and r a d i u s o f t h e bag R t h r o u g h t h e p r o d u c t uR. Combining e q s (32) 

and (34) we c a n d e r i v e a s p e c i a l p r o p e r t y o f o u r w a v e f u n c t i o n s : 

-2 Э \ 1 -2- \— Г dfi ψ ψ Ι = - І- I - L - y ψ ψ Ι = ̂ ü- 4- ρ 0 

Эг ) 4π J nrìjm nnjm\ Эг 2 j + l ^ nnjm nnjm\ 3 dR nnj 
(35) 

which will prove to be quite useful in handling the quadratic boundary condition. 
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At this point we have solved the problem of obtaining the normal modes 

of a massive spin 1/2 particle, confined to a spherical bag of radius R (eqs 

(5) and (6)). We now proceed by applying canonical quantization to the normal 

mode amplitudes a and a , which are the dynamical variables of the problem. 

The radius is treated as a parameter. We can write down the hamiltoman in 

terms of the classical solutions 

H = ƒ dV 3Í = ƒ dV Í j ψ γ 0
 3° ψ + BJ (36) 

bag bag С 

I N N , , , a (nrum) а (п'п'з'т') - (ρ + ρ , , ,) . 
'· ηητ n'n'-j' α α 2 ηη] 'η'η']' 

α»η,η,],m 

π',η',]',т' 

. ƒ dV ν
+
 (X/t) Ψ , . , , (x,t) 

b
ag ппат ^п'л'з'т' 

We observe the following features-

The bag integral vanishes, unless ] = j ' and m = m' by virtue of the ortho-

normality of the spinor harmonics. Furthermore: when also n = - n' and η = - η', 

0 0 uv ι 

Ρ + Ρ . • , = 0. Because of eq (13) : Э Τ = 0 , one has Η = Η , 
n n : i n η э μ l^tj t=t 

which implies, that Η is time independent. The temporal dependence of eq (36) 

is of the form exp ι (p - ρ . . ,)t. This only vanishes for n = n', η = n', 
nnj n'n'j' 

and ] = ;j ' . We therefore have to impose the following condition on the normal 

mode amplitudes: 

г * 

I a a ( n , n , 3 , m ) а a ( n , , η · , ] , , m , ) = 0 (37) 

α 

u n l e s s n = - n ' , η = - η ' o r n = n ' , η = η ' , t o s a t i s f y e q ( 1 3 ) . Eq (36) now 

becomes i n t e r m s o f t h e i n d e p e n d e n t d y n a m i c a l v a r i a b l e s a (nnjm) and t h e 
* 

c o n j u g a t e a (nrijm) 
ν * 0 4π 3 

H = I a a ( n , n , ] , m ) a a ( n , i o , m ) Ρ η η + — B R 

α , n, n , ] , m 

We now p a s s o v e r t o t h e quantum t h e o r y by l e t t i n g t h e n o r m a l mode a m p l i t u d e s 

become o p e r a t o r s , i n t e r p r e t e d a c c o r d i n g t o : 
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a (η,η,ι»
1
") = b (π,η,π,πι) for π > 0 (38) 

α α 

= d (-η,-η,π,πι) for n < О 

α 

The action of these operators is such that b 0> = d I0> = 0 for the no-

fermion state |0>
f
 which still nay contain gluons, and therefore need not 

be the physical vacuum. At this point 
Η = — В R + Y ](b (nn;jm)b (nnjm) - d (n,-η, э ,m) d (n,-n,D,m)( E 

3
 ь

а α α α Jnrn 
annerii 

where the prime indicates that n > 0 is taken. This quantity is clearly not 

bounded from below, a problem well known for Dirac particle systems, which 

is resolved, by introducing anticommutation, instead of commutation relations, 

for the particle operators 

{b (n,n,j,m),b (n,n,],m)} = {d (n,n,j,m),d (n,n,j,m)} = 1 (39) 

with our normalization of the wave functions, and all other combinations zero. 

One has 

H = У {Ν (η,η,;|,πι) + N_(n,-n,],m)}E + E
n o
 + ^- В R 3 

'- с а пгп UQ 3 
a,n,n,],m 

introducing the number operators N = b b and N_ = d d , which have only 
a a a. a a a 

eigenvalues n = 0 and 1, by v i r t u e of eq (39), c h a r a c t e r i s t i c for fermions. 

The expectat ion value of H in a s t a t e |a> i s denoted by <а|н|оі> = E + E + E , 

where E s tands for the quark k i n e t i c energy term (¿ term) and E for the 
4TI 3 

volume energy: E = — В R . The zeropoint energy E i s defined by 

E0Q = - Σ (23 + D E . (40) 
ппэа 

Unlike in e . g . QED, where i t i s an i n f i n i t e constant one has t o include t h i s 

zeropoint energy term, because i t depends, through the energy-eigenvalues, on 

the geometry of the bag, and therefore changes e .g . in going from a bag with 

radius R t o one with rad ius R 9 . The fermions c o n t r i b u t e negat ive ly t o E . 

We w i l l r e t u r n t o t h i s f i n i t e volume e f fec t below. The e i g e n s t a t e s of H are 
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+ + 
obtained by letting any combination of creation operators b and d , in 

accordance with colorsinglet and statistics conditions, act on |o>. Of these 

states, those are admitted to the physical Hilbertspace, which next to eq 

(13), also satisfy eq (16) 

η Τ
μ ν
 = -ί 3

ν
(ψψ) - n

V
 В = 0 at г = R (16) 

У ζ 

which is taken to be a condition on the matrix elements. Its effect is to 

select those states which have a spherically symmetric energy density. Between 

eigenstates of Η one has, using eq (35) : 

/ Φ
+Γ|
 Φ

η 

2B + l' ( A E
 3 m lm

 (W (плзш) - 1) = 0 (41) 

where W (nnjm) gives the weight, with which a quark of the specified quantum 

numbers occurs in the eigenstate: ¿ W (nrijm) = η, the number of constituents. 

annjm 

Only those states in which no angular dependence remains, can satisfy this 

condition and are admitted to the spherical cavity eigenstate space. This 

happens quite naturally for states with ] = 1/2, which have an angle independent 

scalar density ψ ψ . Another example is provided by those states for which 

W (nnjm) = W (ηη]), causing the summation to become an averaging over m, for 

each contribution of η, η, and j separately. For these allowed states one has: 

2B + -4 Ή (E

Q

 +
 V =

 0
 '

 (42a) 

2irR * ж 

or a l t e r n a t i v e l y 

тЧ-klfB R3 + % + f n^) Епп3Ц =0 (42b) 

2ïïR V η η ] ' 

where η denotes the number of quarks with energy E . This i s nothing, but 
nnj 

the statement that <H> be stationary with respect to small changes of the, in 

this case one parameter, volume· -r— <H> = 0 [DeT 78], precisely the type of 

variations considered in deriving eqs (10) and (25). The energy eigenvalues 
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E = E (uR) are monotonously decreasing functions of R. In the absence 
ηη] ηη] 

of the terms E and especially E this does not yield a stable system. By 

introducing the vacuum pressure B, the bag theory supplies a balance for 

the outward fermion pressure. Equilibrium in some eigenstate is reached 

3 
when <H(R)> assumes its minimum value at R , for which — <H> = 0. This 

probably also has the consequence, that the energy of a bag state will not 

be affected too much by the fuzziness of its surface, caused by the zeropoint 

oscillations of the fields inside. 

Э 
An alternative way [Chp 74] is to apply eq (lib): - τ — (ψψ) 

о Г 

= 2B 

r=R 

already at the classical level. Chodos et al consider only the j = 1/2 

solutions, but obtain essentially the same results. Because of its technical 

advantages, we will calculate the energy of a spherical bag system by minimizing 

the hamiltonian eigenvalues w.r.t. R. In this way one can also include 

perturbations in a transparant way [DeG 75]. 

Concerning the internal symmetry and more specific the color part of the 

wave function the following can be remarked. There are essentially two ways 

to construct a colorsinglet wavefunction using quarks. Denote the color part 

of the quark wavefunction by Q , ι € (1,2,3) and represent the antiquark color 

wavefunction by Q . The first combination is the all quark colorsinglet: 

Q = —jfr- Q Q Q , where ε . i s completely antisymmetric in its indices: 
vb 13K ^ 

ε.,, = 1. The second one is the quark-antiquark colorsinglet: QQ = 71 Q Q , 

where δ = 1 for 1 = ] and 0 otherwise. Typically a colorsinglet has the 

form Q 5 where n and m are integers and n-m is an integer multiple of three. 

It may be useful to illustrate the above described approach by a simplified 

application. We will neglect the zeropoint energy and restrict ourselves to 

massless nonstrange quarks. Consider a colorsinglet n quark state, in which 

all quarks occupy the Is 1/2 mode. Its energy is given by 

, ν 4π 3 n ЭЕ „ . 2
 nX

l+l/2 
E(R) = -5- В R + — χ . . Minimizing E: -rr = 0 = 4πΒ R - , we 

.5 R 1T1/Ä d£\ ¿ 
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^nx1 + 1 / 2 y/4 

V 4,B ) > find: R(n) = \—j-^—J , which is a nice function of the particle number 

4 1/4 3/4 

operator, as well as E(n) = — (4πΒ) (nx . ) . Interpreted as such 

[H,R] = 0 , consistent with expectations. We can estimate В from equating E 

for η = 3 to the average Ν-Δ mass 

E ( n ) = E ( 3 ) • 4 H " < > 2 ; 1 6 Μ ( Δ ) = 1.180 Gev 

1/4 
or В = .121 GeV. The average mass for a nonstrange meson 

M = E (2) = I—I 1.18 = .87 GeV is then determined. Experimentally one finds 

M = = .61 GeV. This result may be acceptable for the p-meson, 

i t surely is not for the pion. The thus obtained results are a clear indication, 

that the η-dependence of the radius is not what i t should be. This can also be 

seen from the fact that the theory predicts for a bag with six quarks with the 

3/4 
quantum numbers of the deuteron a mass E (6) = (2) E(3). This corresponds to 

a binding energy of .3 to .4 GeV, which certainly has not been observed yet. 

The only known N-N bound state, the deuteron, has a binding energy of about 

2 MeV, indicating that E ^ n. That we nevertheless are on a good track can be 

seen from considering 

4 1+1/2 8 2 

R(n) = — ;—: = —f— = 1.4 f m for the nucleón: η = 3 

3 E(n) M 

The size of the bag is large w.r.t. the nucleón compton wavelength. The 

uncertainties in the nucleón energy, arizing from localizing it in a volume of 

this size, i.e. the zeropoint motion of the centre of mass can be neglected 

in first approximation. We can treat the hadron as an extended object and 

refer justly to the energy of an η quark system as mass. 

2. Valence gluons [ja 76, Jac 75] 

The second possible type of excitation is the gluonic one. In the limit 

of negligible coupling constant, we now have to solve eq (22) , (24) and (25) 

for each color a separately, in the static spherical cavity approximation 
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э ο μ ν = 0 
μ а 

r-E = 0 
а 

r x Η = 0 

Ì E 2 - Β 
2 Е а - Β + 

1 

Τ Η 2 

2 a 

г < R (43) 

г = R 

(44а) 

(44b) 

г = R (45) 

S i n c e f o r g = 0 a l s o t h e d u a l t e n s o r f i e l d i s d i v e r g e n c e l e s s : 

3 V ε G p a = g f ь ε { < Ρ - g t , А^ АР} Α

σ = 0 

μνρσ a abc μνρσ b bde d e с 

we o b t a i n t h e 'homogeneous Maxwel l ' e q u a t i o n s : 

^ • È = 0 (46a) 

a 
V χ H = Э,. E (46b) 

a t a 
V-H = 0 (46c) 

a 
V x E = - Э^ H (46d) 

a t a 
- > - - > • 

Both E and H are transverse fields. The solutions of eqs (46) can be 
a a 

divided into two types (we suppress the trivial common time dependent factor 

e and the color label a). 

1. Magnetic (ra) or transverse electric (TE) multipole modes 

These solutions from the vector potential 

(m) ̂
 = i

«,
 k r )

 +
 ( ( 4 7 ) 

urn x. Jim 

- * • 

•y L A 
e x p r e s s e d i n t e r m s of t h e v e c t o r h a r m o n i c s X„ (θ,φ) = ι ——-\ Υ (Θ,φ) where 

Jem ν Je ( J c + 1 ) m 
->• - + -»- ->· 

L i s t h e a n g u l a r momentum o p e r a t o r L = - i r x V, and t h e s p h e r i c a l B e s s e l 

f u n c t i o n s j (kr) , which a r e r e g u l a r f o r k r •* 0 . The p o t e n t i a l i s l a b e l e d 

-»-2 
w i t h t h e e i g e n v a l u e s Я and m o f L and L , which c o i n c i d e w i t h t h e e i g e n v a l u e s 

-»•2 
i and μ o f t h e t o t a l s p i n o p e r a t o r J and i t s ζ component J . I t h a s u n n a t u r a l 

ζ 

Л+1 
p a r i t y Ρ = (-) . The a s s o c i a t e d f i e l d s a r e : 

E o

( m ) (?) = i к i (kr) І Я Χ. (£) (48а) 
£m £ ¡¿m 
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H„ ( m ) (г) = і г V {и. (kr) X. ( г ) } , s a t i s f y i n g (4 Ь) 
lm ί Jem 

; . H < m ) ( î ) = і г + 1 / T û T î ? D , ( k r ) Y * ( f ) 
ί,ιη Л m 

r.l
0

( m )
 (?) = О 

Am 

2. Electric (e) or transverse magnetic (TM) multipole modes 

In this case the vector potential is: 

l 

A ;
8
' (r) = V V x {j (kr) X. (Í)} (49) 

Jim ík Um 

and a g a i n i s l a b e l e d by t h e e i g e n v a l u e s ] = Я and μ = m, b u t now i t h a s 

Я 
n a t u r a l p a r i t y Ρ = (-) . The f i e l d s b e c o m e : 

E . ( e ) (?) = ι* V χ ( з Л к г ) X. ( Í ) } (50a) 
xm Jc x-m 

H„(e) (r) = - ι к ] „ ( k r ) i 1 X„ ( r ) , and s a t i s f y (50b) 
Um IL l í a 

r-E0
(e) (?) = ii+l A(l+l) ].(kr) Y^ti) 

lm l m 
- ->ie) ->• 

г . н ; е ' ( r) = о 

£m 

These two sets of multipole fields together form a complete set of trans­

verse vector solutions to eqs (46), which are regular at the origin. We have: 

S
( m )
 = ι к A

p

( e )
 = l'

e )
 (51) 

Um Лп lm 
"̂ (e) "Mm) "̂ (m) 
H„ = - ι к A. = - E „ , assuming the same к eigenvalue. 
Hm lm lm > ι ? 

To these fields we can apply the boundary conditions of eqs (44) . For the 

magnetic multipole field we find: 

-r.îlm) (?) = 0 lm 

i x Ht
(rn) (?) = - Ι (r f

 +
 1) .(kr) iÄ tjr) r = R . 

£.m r dr l lm 

Therefore the energy eigenvalues are found to be independent of m from the 

condition : 
( r j - + 1) D j t k r ) = 0 = -^ {p ] г ( р ) } f o r ρ = k r = kR . (52a) 
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Equivalently : U+l) J j ^ ^ R ) = *• 3j( + i
(kR)· 

For the electric multipoles one has: 

, , .£+1 
Г - Е ; 6 ' (Г) j . ( k r ) /Ш+ÏT Y (г) = 0 

r i im 
- И Р ) -*• i - -*• -

r x Н„ (г) = - i к j (кг) i r χ X (г) 

a t г = R 

This condit ion again has t o be s a t i s f i e d by the r a d i a l p a r t of the wave-

function and the energy r o o t s are given by 

j (kR) = 0 . (52b) 

This implies that the magnetic field will vanish at the boundary. The 

classical magnetic field does not exert any pressure on the bag surface, 

cf. eq (25) '. 

We also note that Gauss' law is satisfied by each gluon excitation 

separately. This is a consequence of setting g = 0. Going to lowest order in 

g resolves this problem. The valence gluons then will act as source, and the 

resulting electric field 'ь g no longer vanishes trivially at the boundary, 

thereby restricting the allowed color irreps to only the singlet. 

We list a number of roots in Table II. They are labeled by the radial 

quantum number n, Í, and i € {e,m}: χ .„. We denote: χ „ = χ „ and 

m l ni, nmí. 

'ni nei 

1 Ь) 

4.493 7.725 

5.763 9.095 

б.988 10.417 

1 

2 

2 

1 

2.744 

3.870 

4.973 

6.117 

7.443 

8.722 

Table I I : Gluon e igenfrequencies . 

a) Eigenfrequencies у „ of the TM modes with J = I and Ρ = (-) 
ni 

b) Eigenfrequencies χ „ of the TE modes with J = I and Ρ = (-) 

ni. 

l+l 
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From the definition of the vector harmonics we conclude that no monopole 

solution exists for the fields with ω ^ 0. All other positive J values are 

allowed. The only spherically symmetric static potential satisfying (44a) 

is a constant one, which can be taken to be zero. 

We can write : 

A ( Î . t ) = I N(nii) A 1 , U) e~ianiit a 1 ( n i m ) (53) 
α Д nUm a 

піЯт 

where we have adhered an e x t r a labe l η to the p o t e n t i a l t o make e x p l i c i t i t s 

energy dependence, as well as a labe l α t o denote i t s co lor degree of freedom. 

The vector p o t e n t i a l s s a t i s f y the following or thogona l i ty r e l a t i o n s : 

ƒ dfi Â * ( m ) . Α ( Τ ' , , = δ ο ο 1 δ , j (kr) j , ( k ' r ) 
' nS,m n ' d ' m ' li' mm' l i 

(54а) 

пЯт n'i.'m' li' mm' [ 21+1 J
4+l

 Jl+1 

+
 ^ T ^ - l

( k r ,
 ^-1

( к , г )
}
 (54b) 

ƒ dn£*,(e)- А (
^ , , = 0 (54c) 

' nüm п'И'т' 

The factors N(niX.) are normalization constants chosen to be (x > 0) : 

N(niJl) = {R
2
 χ [j

2
(x) - 3

)1+1
(

χ
)

 : 3
)l-l

( x ) 1 }
~

1 / 2 

We again find a simple relation between the energy and the wavefunction for 

the electric and magnetic fields at the boundary: 

1 / -*-i* ->-i ->ά* »-i I r -+1* -»-i -»-i* -*-i 
4π •' nJím nÄm пЯт nî-rn 21+1 L nlm пЯт пЯт пЯт 

m 
х
 • о τ 

= - ^
 N

"
 ( П І А ) ( 5 5 ) 

4TIR 

Taking into account the fact, that by eq (52) we have both positive and 

negative energy solutions, with the same modulus, and the fact that the 

vector potential is a real function of r and t, we find, that 

а
(т)
*(пЯт) = - (-)

ГП
 a

( m )
 (-п,Я,-т) η > 0 (56) 

α a 
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and а
( е )

*(пгт) = (-)
m
 a

( e ) (-n,í.,-m) n > 0 (56) 
α α 

* 
We therefore can take either the ainj's for all n

r
 or both a(n) and a (η) , 

with η > 0, as independent dynamical variables. Quantization of the gluonic 

degrees of freedom again proceeds in a canonical way, starting from the 

hamiltonian 

Η = Ì ƒ dV {Î2 + 52} + f В R
3 

bag 
(57) 

which becomes time independent if we impose 

У a'
1
' (n£m) a ( l ' (пЧт) = 0 unless η = n' and i = i' (58) 

α 
α 

and reduces to the following simple form, due to our choice of normalization, 

in terms of the normal mode amplitudes: 

ni Urna 

If we now define: 

H
= I -%r a

1
*(ni.m) a

i
(nim) + ̂ - В R

3
 . (59) 

с (пЛт) = a (ni.m) 

α α 

+i i* 
с (пЛт) = а (пЛт) 
α α 

η > 0 (60) 

and then interpret the с's as operators, satisfying the commutation relations: 

[с
І
(піт) , с

1+
(п)1т) ] = 1 (61) 

and all other combinations are zero, such that c[0'> = 0, where \θ'> is a 

no-gluon state, we obtain a hermitian vector gluonfield and the hamilton 

operator reads 

H =
 y' -üii (c1+(nlm) c1(ni.m) + h + ̂ - В R 3

 . (62) 
' R a a 2 3 

animi 

The gluons c o n t r i b u t e p o s i t i v e l y t o the r.eropoint energy according t o 

E 0 G " 4 Ι' {2ί+1) -ψ- • ( б 3 ) 

niÄ 
From the eigenstates ¡i> of Η we admit only those to the spherical cavity 
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spectrum, between which we have (eq (28b)) 

ι UV ι 

<i η Τ i> = 0 on the surface 
1
 μ ' 

Substituting the energy momentum tensor this becomes 

<ιΝ -ί (E
2
 - Η

2
) + Β Μ ι > = 0 г = R . (64) 

-s-2 -+7. 
This implies, that <(E - Η )> should not contain any angle dependency and 

then, again, now by virtue of eq (55) , we find, that the energy of the 

spherical cavity state |i> is found by minimzing i t s hamiltonian expectation 

value w.r.t . R: 

Â < * | H U > - O 

Eq (64) can only be satisfied if the gluons, occupying some energy level, 

yield a spherically symmetric distribution by themselves. This is a severe 

restriction on the number of gluon states. It only allows J = 0 states. 

There are basically three different ways, m which we can construct a 

gluon colorsinglet. First we have a two-gluon system. If we denote the color 

part of the gluon wave function by G , this singlet is described by 

2 г ab a b
 r

 -, 

G = 2, "JE* G
 s · а

'
ь
 ε 11,...,8}. Next we have two three-gluon 

a,b f , 
3 abc a b c 

combinations: one with color wave function G = ι - \ G G G , which is 

completely antisyrrmetric in al l color indices, and one with color wave 

function G, = /-r d , G G G , the completely symmetric three color octet 
d 40 abc r * 1 

2 Ρ + 

singlet. The lightest glueball has a G configuration, J = 0 . With the 

baryon-meson value for B, this state has, again omitting the zeropoint energy, 

a mass of M = 1.0 GeV, for a radius of R = 1.5 fm. This value is certainly 

comparable with what we, in the same approximation, find for the mesons and 

baryons and seems very promising. 

Anticipating the results of section i n , we can attempt a more precise 

estimate and calculate the glueball masses, including the zeropoint energy. 
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The bag energy for a s t a t e conta ining N n o n i n t e r a c t i n g valence gluons i s 

given by 

„ 4* » „3 Z0 ^ г a i 
H = — B R - — + ) n · — 

3 R ' 1 R 
1 

where n. counts the number of gluons of type ì p r e sen t , J n. = N. We w i l l 

1/4 i 

use В = 0.1455 GeV and Ζ = 1.842. Taking the bose s t a t i s t i c s of the 

gluons i n t o account, we can c o n s t r u c t Table I I I , where the l i g h t e s t a l l - g l u e 

s t a t e s are l i s t e d . Only those with J = 0 have a s p h e r i c a l l y symmetric energy 

dens i ty and s a t i s f y the q u a d r a t i c boundary c o n d i t i o n . There t u r n out t o be 

q u i t e an amount of lowlying vacuumlike s t a t e s . The l i g h t e s t photon-l ike s t a t e 

only appears a t M = 1.7 GeV. The l i g h t e s t type I I e x o t i c meson-like s t a t e 

a l ready appears a t 1.180 GeV [Ro 77, Ja 7 6 ] . 

Content 

TE 

TETE' 

TETM 

TE'
2 

TE'TM 

„..2 

color-

configurations 

G
2 

G
2 

G
2 

G
2 

G
2 

2 
TM 

,PC 

0 , 2 

Г + , 2- + , 3- + 

О"", Г + , 2- + 

0 + + , 1 + + , 2 + + , 3 + + , 4 + + 

1 + + , 2 + + , 3 + + 

0 + + , 2 + + 

M (GeV) R(GeV ) 

0, .960 

.180 

.290 

.380 

.490 

.600 

5.04 

5.40 

5.56 

5.67 

5.83 

5.97 

TE" 

2 , TE TE' 

N o t a t i o n : TE : 

TE" : 

TM : 

3 
f 
3 
d 
3 
f 
3 
d 

7 e = ι 
-PC 

0 + + , 2 + + 

i+-, з + -

Г+, 2 - + , з-+ 

0 , 1 , 2 , 2 , 3 , 4 

1.470 

1.660 

glue mode with eigenfrequency χ = 2.744 

-PC 

2 glue mode with eigenfrequency χ = 3.870 

1 glue mode with eigenfrequency y = 4.493 

5.80 

6.04 

Table I I I : Glueball S t a t e s 
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We can also consider states containing both valence quarks and gluons. 

They are obtained by taking the direct product of pure quark and pure gluon 

states, which have opposite total color charge, in such a way that a color-

singlet results. Because the quarks and gluons have different energy eigen­

values, saturation of the quadratic boundary condition can only be accomplished, 

if the energy density is angle independent for each occupied energy mode 

separately. The simplest configuration, naively meeting these requirements, 

Ρ - -
is a J = 0 QQG-state. The quark-antiquark pair is a color octet system, 

ρ 
with J = 1 (both fermions in a lsl/2 state), and the color octet gluon 

Ρ + 
occupies a J = 1 mode. Its mass is estimated to be 1.3 GeV [ва 77, HoM 78]. 

- Excited Bag Configurations -

A large amount of care is needed in studying configurations, containing 

e.g. a quark (or a gluon) which does not have a spherically symmetric 

energy distribution by itself. DeGrana and Jaffe [DeG 76] have studied mesons 

and baryons in which one quark is excited to a nî.j = lpl/2 state and the 

remainder is in the lsl/2 quark ground state. The resulting spectrum contains 

J = — and — baryons and 0 and 1 mesons. There are no free parameters. 

They find a mass spectrum, which, as a whole, is too light compared with what 

is observed. This statement is independent of the improvements, which will be 

discussed in section ITI. More specifically, in the baryon sector, they find 

that the states, in the usual SU(6,FS) β 0(3) terminology [Ko 69] (section IV), 

generally are mixtures of corresponding members of a [70] L = 1 and a there­

with degenerate [56] L = 1. In nonrelativistic potential models e.g. the 

harmonic oscillator model [Gr 64, Da 76], relying on twobody forces to 

generate the binding, this [56] L = 1 is an artefact of describing the two 

partirle dynamics by a nailed down potential, and represents a translation 
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mode of the whole system, not a true particle state [Ka 68]. The [56] L = 1 

multiplet does occur in the bagmodel, since it is a symmetric excitation of 

all quark relative to the bag, which here plays the role of 'external object'. 

It is a typical manybody feature of the model, not shared with nonrelativistic 

systems. Of course, next to these excitations, also translation modes will be 

present in the bagmodel, and interfere with the true bag states in the clearly 

not translationally invariant static cavity formulation. The light mass of 

the L = 1 multiplets can be understood as a signal of this phenomenon. Closer 

2 
consideration of the states corresponding to a (lsl/2) (lpl/2) configuration 

shows that these do not replenish the [56] L = 1 and the [70] L = 1 multiplets. 

Note that here we are comparing the content of a special j-j coupling scheme 

with that of a more familiar LS one (section IV) . The missing states are 

2 
precisely those, which can be supplied by a (lsl/2) (lp3/2) configuration. 

This lp3/2 mode has an excitation energy which is in between that of the 

lsl/2 and the lpl/2 one (2.0 < 3.2 < 3.8 for the nonstrange massless quark 

roots), and is cheaper to occupy than the lpl/2 one. However, a quark in a 

lp3/2 mode does not have a spherically symmetric pressure and therefore cannot 

locally satisfy the nonlinear boundary condition at the bag surface. A proper 

description of the L = 1 baryon spectrum should take also the lp3/2 modes 

2 
into account. However, putting a (lsl/2) (lp3/2) system in a static spherical 

bag, one compels the center of mass to move inside the bag. The state, 

obtained this way, also contains a translation mode part and is not a true 

bag excitation. Rebbi [Re 75] has studied the situation in which the bag 

surface is allowed to perform small oscillations around a spherical 

equilibrium shape. These oscillations can be described by an effective 

hamiltoman, the eigenstates of which are the correct excitations. This 

approach becomes exact if the system contains a mode, say the lsl/2 mode, 
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which is heavily populated. In practice η = 2 is taken to be large enough. 

This approach is sufficient to treat the translational degrees of freedom 

correctly. The different partial waves are found to decouple. Attention is 

focussed on the i = 1 sector. Rebbi then finds, that there is indeed a 

zerofrequency eigenmode which corresponds to a uniform translation. It 

2 
is shown to be a [56] L = 1 mode, built from (Is 1/2) (ni.̂ ) configurations, 

with the (nîj) almost, in the approximation in fact completely, exclusively 

lpl/2 and lp3/2. Some other, bag-, eigenfrequencies are found to be pushed 

up slightly. Thus one finds, that through the coupling with nonsphencal 

modes the eigenvalue of the lpl/2 mode is changed to a larger one. Application 

of these approximate results to the baryon spectrum shows, that there is 

quite some improvement. The [70] L = 1 becomes a little heavier, and the 

[56] L = 1, now orthogonal to the translation mode, has become quite a bit 

heavier, which is much more in accord with experiment, though still some 

discrepancies remain [DeG 76]. A similar treatment of the baryonic radial 

excitations yields, that coupling of the modes by allowing the bag-surface 

to undergo radial fluctuations [DoG 78], effectively lowers the mass for the 

lightest excitation, indicating that also the 2sl/2 eigenfrequency can not 

be reliably estimated in the static cavity approximation. Effectively only 

the (Is 1/2) quark modes seem to be treated properly. The situation looks 

worse for the QQ mesons [DeG 76]. There are never heavily populated eigenmodes 

in this system and thus even Rebbi's approach fails. However, considerations, 

similar to the ones given above, can be seen to apply. In SU(6,FS) β 0(3) 

terms, groundstate QQ mesons are members of a [36] L = 0 multiplet. Upon 

receiving one quantum of orbital angular momentum, they become members of 

a [36] L = 1 multiplet. Again one needs to excite particles to both lpl/2 

and lp3/2 modes, in the spherical cavity description, to be able to construct 
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ali the [36] L = 1 states. Because of the nonsphencal pressure of the particle 

in the lp3/2 mode also here the translation modes will have to be projected 

out of the meson wavefunction. This will result in a (different) shift for 

the eigenvalues of the lpl/2 and lp3/2 modes and again no reliable estimate 

of the mass is possible. A way to circumvent these problems is given in 

Chapter 4. Finally, considering the gluon modes, no solution exists which 

exerts a spherically symmetric pressure by itself. Therefore, one should 

beware of taking the glueball estimates too seriously. 

It appears, that the static cavity approximation is only reliable for 

those hadrons, in which all quarks are in the lowest, the lsl/2 eigenmode, 

which motivated it in the first place. But even here further restrictions 

have to be made, if the number of quarks present becomes large (n > 3, see 

Chapter 3). Still, qualitatively, it gives a clear indication of what kind 

of unusual states can be expected to exist and have low mass. 

III. Spherical cavity approximation 2 Further refinements 

In section II, we found that the zeroth order treatment of baryons and 

mesons, consisting of lsl/2 quarks, yielded a spectrum with large degeneracies 

(p - π, N - Δ), quite sizeable bags and a wrong dependence on the number of 

quarks for the radius R and the energy E. In this section we want to examine 

whether and what improvements can be realized, by considering the effects on 

the particle mass, including a.o. one gluon exchange and the zeropoint energy. 

In this section the fermions are restricted to occupy only the lowest energy 

eigenmode. 

1. Zeropoint energy [DeG 75, Jo 75, BH 76] 

1
 v 

From section II 1 we know, that the quarks contribute a term E = - — / E 

1 ν 
(eq (40)) and from section II 2, that the gluons contribute a term E

n
_ = — ) E' 

UG 2 

(eq (63)) t o the zeropoint energy. Both terms depend on the geometry of the 
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bag, through the energy eigenvalues, and therefore will change, when the bag 

volume changes (Casimir effect) . They therefore have to be calculated 

explicitly. Since E- is a divergent quantity, one can introduce a cut off, 

—E/0 
e.g. E -*• E (S¡) = £ E e and then try to isolate the divergent parts as 

a function of the cut off parameter Ω. The only shape cavity, that, until 

now, has allowed explicit analytical calculation, for massless particles, is 

the slab of thickness L. Using bag type boundary conditions, the energy here 

typically has the form E = ік~ + (-r-) "f for the vector fields and 

E Ч к +( 1 ( for the Dirac field. To evaluate the contributie 

of the transverse degrees of freedom (̂  к ), one introduces a transverse cut 

off (the twodimensional box, a square with area A ) , sums the now discrete 

transverse eigenfrequencies and subsequently lets A •* <=. One thus obtains the 

zeropoint energy per unit area. Just like m the three dimensional, field 

theoretic case without confinement, this part does not contain any reference 

to the geometry employed in its evaluation. The longitudinal contribution 

clearly does, because of the finite value of L involved. The resulting zero-

point energies are (SÌL >> 1) . 

2 
4 3V π V 

E = ίϊ — - -TTT- — for the vector field (65) 

π L 

2 

E
0
 = - Ω —- - — γ^ — for the spinor field, (66) 

π L 

where V = AL. 

The only divergent term is in both cases the quartic one, which can be 

absorbed as a renormalization in the vacuum pressure constant: 

Ω
4 

В = В + (8-3 - 3·6η) — , which we rename В again. This feature suggests, 
π 

that В is an uncomputable parameter in the theory, which has to be fitted from 

the data. Here η is the total number of flavors, the gluons come in eight 

colors and the fermions in three. It can be shown quite general, that such 
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a term arises, regardless of the shape of the volume considered and the 

boundary condition imposed [Ba 70]. In conventional field theory one does 

away with it by introducing a cut off dependent counterterm in the Lagrangian, 

which cancels the divergence exactly. In the bag theory a finite renormalized 

term remains. The second term is finite and cut off independent and contributes 

to the physical hadron mass. From the slab we find: 

E
V

+ E
O = T

B R 3
- T 

4π 3 
To es t imate the order of magnitude of Ζ , we s e t V = — R and L = R in the 

7 
express ions for E and find Z. = 0.05742 (8 + —·3·η) = 1.36 for η = 3. The 

pressure of s c a l a r f i e l d s would, apar t from the above descr ibed terms a l so 

have given a cubic term, generat ing a surface tens ion 

3 2 

1 „4 3V Ω A 1 π V ^
 =

. , . ,,.„. E
0
 =
 2 « Τ " IT - 2 720 Τ

 f0r the S C a l a r fleld
 ·

 (68) 

π L 

The zeropoint energy of the scalar field can be shown to be equal to that 

of the (TM) vectorfield. In the gluoncase, also the opposite parity ТЕ modes 

are present and cancel the surface term. A similar phenomenon occurs for the 

quarkfields. As has been shown by Bender and Hays, these results are also 

valid in the case of a static spherical cavity. A bag theory without surface 

tension remains so, as far as the zeropoint energy is concerned. Apart from 

these nice features, Bender and Hays also showed, that, next to the quartic 

2 
divergence a quadratic one ̂  R Ω and possibly weaker ones occur. These terms 

are rather sensitive to the nature of the boundary. They have no counterpart 

in the original theory, they can be taken to renormalize and constitute a 

severe problem. The method Bender and Hays used to obtain the divergencies, 

does not make any reference to the eigenvalues of the energy. It only takes 

the linear boundary condition into account, i.e. that of the static sphere. 

Therefore, the quadratic divergence may be seen to disappear in the proper 
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quantum mechanical t reatment allowing for more general shapes, var iab le in 

time and space although t h i s by no means i s c e r t a i n . 

We w i l l parametr ize the zeropoint energy as given in eq (67) and include 

no more geometry dependent terms, introducing j u s t as much free parameters . 

In p r i n c i p l e Ζ may be a function of the quark masses, Ζ = Ζ (pR) and t h e r e ­

fore a l so be R-dependent. Since Z. has not yet been c a l c u l a t e d for the s t a t i c 

sphere, we w i l l have t o f i t i t and therefore take i t t o be a c o n s t a n t . This 

way we w i l l , a t the same t ime, account for o ther c o n t r i b u t i o n s of the same 

form, such as the c o r r e c t i o n , due to the motion of the c e n t r e of mass of the 

quarks i n s i d e the s t a t i c sphere, which a l so y i e l d s a s i m i l a r negative term 

[Wo 78] , as r e p r e s e n t the averaged e f fec t of not y e t included terms with a 

d i f f e r e n t R-dependence. I t s v a l i d i t y i s there fore l i m i t e d t o the region where 

i t i s f i t t e d . R ö l fm. 

The impact of Z- w i l l be l a rger the smaller the systems a r e . Since i t 

has the dimension of a k i n e t i c energy i t w i l l e f f e c t i v e l y reduce the 

corresponding term. For nonstrange mesons t h i s reduction amounts to almost 

50 %, for nonstrange baryons i t i s l e s s , и 30 %. Therefore E w i l l cont r ibute 

t o the separa t ion of the meson from the baryon masses. The BV and Ζ /R 

terms are sometimes c a l l e d geometr ica l . 

2. One-gluon exchange [DeG 75] 

To l i f t the spindegeneracies encountered i n s e c t i o n I I one can allow the 

color coupling cons tant g t o become nonzero and study the e f f e c t of the 

r e s u l t i n g quark gluon coupling on the p a r t i c l e mass. This w i l l add one more 

2 
parameter t o the theory : g or equiva lent ly α = g /4π. We assume t h a t a i s 

a c o n s t a n t , t h a t does not depend on e .g . the mass of the p a r t i c l e s . We w i l l 

r e s t r i c t our a t t e n t i o n t o hadrons, c o n s i s t i n g exc lus ive ly of l s l /2 quarks . 

The quarks generate a co lor c u r r e n t j , which a c t s as a source for the gluon 
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field A . The color interaction term in the hamilton density has the usual 

form i] . = - ι (x) A (x) . One can have, to lowest order in α , two types 
i n t p a с 

of i n t e r a c t i o n . A quark can exchange a gluon with another quark. This 

p o s s i b i l i t y i s depicted in diagram l a . Secondly, a quark can i n t e r a c t with 

i t s e l f . This i s shown in graph l b . Solid l i n e s r e p r e s e n t the ( a n t i ) q u a r k s , 

wavy l i n e s the gluons. 

la lb 

Fig . 1: One gluon exchange graphs 

The diagrams are enclosed in a c i r c l e t o s t r e s s the fact t h a t they have t o 

be evaluated for p a r t i c l e s confined to the bag. This of course has i t s e f f e c t 

on the propagators involved. In p r i n c i p l e , these can be constructed from the 

quark and gluon s o l u t i o n s , obtained in s e c t i o n I I . To proceed r i g o r o u s l y , one 

should in the p r e s e n t case evaluate diagrams la and lb , p u t t i n g the i n i t i a l 

and f ina l s t a t e quarks in the Is 1/2 mode. This i s r e a d i l y done for the mutual 

quark i n t e r a c t i o n graph l a . Here the c u r r e n t a t the ver tex i s time independent 

and one can c a l c u l a t e the color e l e c t r i c and magnetic f i e l d s using the s t a t i c 

Maxwell e q u a t i o n s . The s i t u a t i o n i s r a t h e r more complicated for the sel fenergy 

graph lb. In QED i t i s zero for a massless charged fermion. A c a l c u l a t i o n of 
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the electromagnetic self energy for a confined massless quark [Ch 74] shows 

с ·ο. 
that one obtains a finite value δE = — — (α is the fine structure constant) 

where с for more than 80 % is given by that part of lb in which the inter­

mediate quark is also in the lsl/2 state. It is not known, what happens for 

massive confined quarks. In QED the contribution of lb for a free massive 

charged fermion is infinite and taken to renormalize the massparameter. When 

the same fermion becomes bound, its selfenergy undergoes a finite (Lamb) 

shift, depending on the orbit it occupies. For a fermion confined to a sphere 

the energy eigenvalues will depend on the radius R, and differ from hadron 

to hadron. Therefore also the selfenergy will vary in magnitude between the 

hadrons. It is not clear, what changes, when the free photon is replaced by 

an, in first approximation abelian, confined gluon. 

The selfenergy term summed over all quarks ι present, and over all 

α 
in termediate quark s t a t e s η, looks l ike 6E = — У g (m R,m R) for both 

-α •" R L ^] 1 η 
I O 

chromo-electric and chromo-magnetic contributions, and has the same structure 

as the quark energy term E . The fact, that its inclusion in the hamiltoman, 

affects all parameters, instead of ]ust m , m and Ζ , indicates that our 

set of parameters is more strongly correlated than naively is expected. 

Compare fit С from Table IV with fits A and B. 

The color electrostatic piece exactly cancels the corresponding part of 

diagram la, provided the hadron consists of equal mass quarks (e.g. Ν, Ω, ω) 

* 
and within 4 MeV when both strange and nonstrange quarks are present (Κ , Σ, 

Ξ). This is a consequence of the fact that the hadrons are colorslnglet states. 

One is compelled to take either both, or neither of these two contributions 

into account, since in both cases the emerging electrostatic fields do not 

satisfy the linear boundary condition by themselves (see below). One may 

speculate, that the colorelectrostatic part of the selfenergy which contains 
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the low Aq part of this interaction, is already represented by the geometrical 

terms, which provide a natural cut off for the long range phenomena. This 

raises the question, whether including other parts of lb may not imply 

recounting effects already represented. Instead of attempting a, through 

the uncertainties in the energy eigenvalues, unreliable calculation of the 

selfenergy, we will include only the color electrostatic term of graph lb, 

in our hamiltonian, which is almost equivalent to leaving out the corresponding 

part of la, and omit the color magnetostatic contribution. Although not quite 

consistent, this latter choice is motivated by the fact that taking the bag 

to be a sphere, is a better approximation the lighter the quarks are. A 

massless quark moves with the speed of light, and is not preceded by its 

gluon field. The pressure on the boundary therefore is provided by the quarks 

with only a relatively small contribution of the gluons. For a lsl/2 mode 

quark this pressure therefore will be mainly spherical 1 Small excursions of 

one quark away from the others, disturb this spherical symmetry and the 

local pressure balance. They therefore are opposed by the isotropic vacuum 

pressure, which restores the original shape. Therefore the most favorable 

geometry for a hadron containing such quarks is a sphere. When the quarks 

are very heavy, their motion is non-relativistic and the gluon fields around 

them rearrange themselves to the instantaneous position of the quarks. The 

latter do not come near the boundary and the vacuum pressure is mainly 

balanced by that of the gluon fields, which do not have a spherical symmetry 

[Gl 78, HaK 78, Jo 78]. Consider a hadron consisting of a QQ pair, which 

initially has the shape of a sphere. The quark pressure is not very 

important now for determining the shape of the bag and the quarks are even 

stimulated to move away from one another (i.e. to occupy dislocalized 

Orbitals). The bag becomes ellipsoidal, a shape more favored by the glue. 
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This will tend to concentrate in between the oppositely charged quarks, 

where it becomes increasingly compressed. At one point a stable configuration 

is reached in which the gluons balance the vacuum pressure locally and keep 

the quarks from moving further apart. Such a situation is better described 

in a non-relativistic potential model. This way one can understand the 

failure of the attempts to reproduce the spectrum of the charmed mesons, 

and charmomum using the spherical cavity approximation. The strategy of the 

MIT group has been to set m = 0 from the beginning and adjust the other 

parameters, in order to reproduce the light hadron mass spectrum. This 

choice has been corrobated by subsequent applications of the model to 

various areas of high energy physics. 

We shall now calculate the one gluon exchange contribution. The inter­

action energy of the field A (x) , generated by quark i, and the current ], (χ) , 

generated by quark k, has the form II ^ = - f d χ η, (χ) Α (χ) , which for 

i n t , •' к μ 
bag 

the s t a t i c quark c u r r e n t s can be r e w r i t t e n as 

7 S \ = ƒ d3x i t t - 3 3 1 , (68) 
' i n t , J ι к ι к 

bag 

-*• -у 

where, of course, ι and к may label the same quark. The f i e l d E and Η 
a a 

have to satisfy the linear boundary conditions: 

r-E = 0 (44a) 

for r = R, and all colors a 

r χ Η = 0 (44b) 
a 

For the color magnetic field we have to solve V χ Η = ] (69a) 
r < R 

V.H
a
 = 0 (69b) 

ι 

for each quark i , which has a c u r r e n t j a t the ver tex , t h a t in terms of 

spin and color opera tors reads : 

^ ^ U ' t m . r ) 
3 a (?) = igip (r)Y F % = -p- (gFa) ? χ a — \ (70) J i ι ι i i 4π ι ι 3 

r 

Here μ' (m ,r) is the derivative of the magnetic moment: μ' (m ,r) = -r̂· μ (m ,Ζ) 
1 1 ÔZ 1 u. 

fe=r 
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(eq (92)). This current is the source for a transverse vectorpotential 

/r χ σ \ fp(m ,r) , μ (m ,R) R u'(m .r') ) 

( г R r r' J 

The corresponding color magnetic field is: 

/9F \ С __ μ (m ,r) /u(m ,R) R μ (m , Γ Μ Ν ) 

К* - -Ы)^К-* -5J - І ^ + М-^-+ 2 J dr' -7*-)\ 
-»•a -*• 

One has r χ H (r) = 0 at the boundary. The mutual magnetostatic interaction 

(72) 

energy associated with this field i s 

θ 
E„ = - У I ƒ d J x H (r) -H (r) 

a= l i > ] bag 

^ ( ш ,R) ν ( Ы t R) ν 

( 7 3 ) 

This expression has the appearance of an interaction between two effective 

color magnetic dipole moments, which for a colored quark could be defined as 

->-a a ">• 

μ = μ (m , R) g F σ (74) 

ι 1 1 1 

in analogy with the electromagnetic case (see section IV 1). The overlap or 

smearing integral is given by 
[ 2 2 3 

I = l + 2 z z < - (xJ sin χ ) (x sin χ ) - — y y + 
i j i ] [ i i ] } 4 -Ί"1] 

χ χ 
-̂ Τ-3- [2χ Si(2x ) + 2χ Si(2x ) - (χ +χ )Ξι(2χ +2χ ) - (75) 

4 ι ι 3 3 i ] ΐ ] 

(χ -χ )Si(2x -2χ ) ] Ι 
1 3 ι 3 j 

m terms of χ , the energy root for the Is 1/2 mode quark with mass m , and 

2 3 
ζ = χ sin χ - — y , with y = χ - sin χ cos χ . We denote the 

1 1 1 2 -Ί -"ι ι 1 1 
x 

sine integral by Si(x) = ƒ dt — . Thus, I = I(m R,m R) still depends 

0 ID 1 3 

on t h e r a d i u s R, t h r o u g h t h e q u a r k m a s s e s . One h a s 1 ( 0 , 0 ) = 1.442 and a s low 

monotonous l i m i t e d i n c r e a s e f o r mR •+ " , which i s t o o s m a l l t o c o m p e n s a t e f o r 

t h e d e c r e a s i n g b e h a v i o r o f t h e r e m a i n i n g R d e p e n d e n c e . W r i t i n g 
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α 
E = У ( F a a ) ( F a a ) M (m R,m R) , (76) 

M R ^ j t a , x 3 3 д. 3 

one h a s M(0,0) > M(0,mR) > M(mR,mR) (0 .177 > 0 .142 > 0 .059 f o r mR = 1.4) . 

The chromomagnet ic s p l i t t i n g t e n d s t o d e c r e a s e w i t h i n c r e a s i n g v a l u e s o f mR. 

E i s s p i n d e p e n d e n t . I t i s t h e o n l y te r ra coming from g r a p h s l a and l b , which 
M 

h a s t h i s p r o p e r t y . 

For t h e c o l o r e l e c t r i c f i e l d t h e Maxwell e q u a t i o n s r e a d 

V ж E a = 0 (77a) 
ι 

ρ ' r < R 
У . | а = - i F a (77b) 

1 4π ι 

i n t e r m s o f 

N

2 

ρ ' = ι ψ (r) γ 0 ψ (?) = .¿¿У* { ^ ( p r ) (ER+mR) + j 2 . (pr) (ER-mR) } (78) 

r 2 

One h a s ρ (m , r ) = ƒ d r ' r ' p'(r') and ρ (m ,R) = 1. T h i s y i e l d s : 
1 0 1 

E a ( î ) = - ^ Ц - (g F a ) ρ (m , r ) , (79) 

4тгг 1 

a c h r o m o - e l e c t r i c f i e l d , which d o e s n o t s a t i s f y t h e l i n e a r b o u n d a r y c o n d i t i o n : 

r-E (r) = fi 0 a t r = R a s a c o n s e q u e n c e o f G a u s s ' l a w . We n o t e t h a t t h i s 
1 4-nR 

r e s u l t does n o t d e p e n d on t h e f l a v o r of t h e q u a r k , b u t o n l y on i t s c o l o r . For 

a c o l o r s i n g l e t h a d r o n |a> one h a s 

g F a 

r - E a |a> = r · j E a |a> = [ j |a> = 0 
ι ι 4wR 

When we want t o c a l c u l a t e t h e c h r o m o - e l e c t r i c i n t e r a c t i o n e n e r g y we t h e r e f o r e 

have t o t a k e t h e whole f i e l d i n t o a c c o u n t , and c a n n o t s u f f i c e w i t h c o n s i d e r i n g 

o n l y t h e m u t u a l c o l o r e l e c t r i c i n t e r a c t i o n e n e r g y . For a h a d r o n c o n t a i n i n g 

o n l y e q u a l mass q u a r k s , t h e t o t a l f i e l d e n e r g y i s p r o p o r t i o n a l t o t h e t o t a l 

c o l o r c h a r g e and t h e r e f o r e v a n i s h e s a l s o l o c a l l y . I f q u a r k s w i t h d i f f e r e n t 

masses a r e p r e s e n t , t h e i n t e r a c t i o n e n e r g y no l o n g e r i s z e r o : 



- 61 -

a=l 1,3 bag a=l 1,3 
R d r 

We d e f i n e J = J (m R,m R) = R ƒ —r- p ( m , r ) p ( m r ) . One h a s J ( 0 , 0 ) = 0 . 2 7 8 , 
13 1 3 0 ' r2 1 У 

J(0,mR) = 0.325 and J(mR,mR) = 0.369 for mR = 1.4, indicating a slow increase 

as a function of mR. E can be interpreted as the interaction between two 

charge densities. I t consists of the sum of the positive self interaction and 

the negative, almost or fully equal mutual interactions, and is never larger 

than 5 MeV for the below considered hadrons. 

The one gluon exchange contributions are included as a perturbation 

Η = E + E in the hamiltonian Η = Η + Η . 

Including al l these refinements the hamiltonian now contains the 

following terms: 

H = E V + E 0 + EQ + EM + E E ' ( 

of which the numerically insignificant term E will be neglected. The mass 

of a specific hadron again is given by the minimum, the expectation value 

of the hamiltonian assumes in that hadron state, treating the bag radius as 

the variational parameter. To calculate i t , we need to know the flavor, spin 

and color properties of the hadron wavefunction. In this section we will 

restrict ourselves to QQ meson and Q baryon states. For these hadrons the 

color and flavor spin parts of the wavefunction can be treated separately. 

Giving nonstrange and strange quarks a different mass, the flavor 

symmetry of Η will be broken through the terms E , E and E . E , by 

assumption, does not. E is diagonal in the numbers of nonstrange and strange 

quarks (N and N , resp.) : E„ = Ν E (R) + Ν E (R) , and dominates the flavor 
η s Q n n s s 

breaking. I t causes e.g. the ω and φ mesons to be "ideally mixed" combinations 

of nonstrange and strange quarks respectively. The eigenstates of the 

unperturbed hamiltonian are the eigenstates of E . This result is reinforced 
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by the E term, which, however, does not have the same simple linear 

dependence on N and N . E gives a small contribution when both N and N r
 s η Ε η Ξ 

are unequal to zero. 

To determine the color dependence of H_, we make use of the colorsinglet 
G 

nature of our s tates : Q |1> = g J F | l > = 0 . For a QQ colorsinglet one 
ι 

has (F* + Fg) |l,QQ> = 0 , and therefore also 

I ( F e + Φ (FQ + *$ IbQQ* = У (Pj 2 + 2 F*F* + F J 2 ) |1,QQ> = 0 . 
a 2 a 
The term ¿ F acts only on the quark (colortnplet) part of the singlet. 

a Xa 

From the representation F = — (appendix Β) , we find 

L Fn ÌQ* = £ (3) \Q> = τ I δ* · W e denote the eigenvalues in the irrep n_ 

ν 2 of the quadratic Casimir operator for SU(3,C) C_ - ¿ F , which is the 

г 2 a a 2 
generalization of the SU(2,J) operator С = ¿ J , with f (η). Similarly 

2 * 4 1 

• f (3_ ) = -r- . Combining these results we get 

I F a E J |l,QQ> = - f |l,QQ> (82) 
a 

One can proceed analogously for the Q baryon colorsinglet: 

| l 'Q > = A} Q Q Q / which is completely antisymmetric w.r . t . permutation 

of the quark color labels. One has (F^ + F^ + Fa) |l,Q > = 0 (1, 2 and 3 label 

different quarks), or equivalently (F + Γ ) |l,Q > = - F | 1 ,Q > . Multi­

plying both sides with F and summing over the color indices we find: 

I ( F I F T + F ? F - i ' U ' Ö > = " T I 1 ' 2 > · Τ"0 m o r e such equations can be obtained 
a 
through cyclic permutation and one finds 

I F V | l ,Q 3 > = -\ ! l ,Q 3 > (83) 
a 

for each ι И ]. We see, that the color interaction of the quark and the 

antiquark in a meson is twice as large as the interaction between two quarks 

in a baryon, but attractive in both configurations. 
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The spindegeneracy of H is lifted by the σ ·σ dependence of E which 

can be discussed without any reference to color. Again, one can proceed by 

making use of the quadratic Casimir operators. For a meson with spin j we 

have — (σ + σ-) |]> = ](] + !) \з> . Since the quark and the antiquark both 

have spin ] = 1/2, we find 

σ ·σ- |]> = {2](
D
 + 1) - 3} |

D
> . (84) 

Due to the presence of E , the pion (j = 0) will become lighter by an amount 

о 
Q 

of 6E.= - 4 — M(m R,m R), whereas the p-meson becomes heavier by 
0 R n n 

4 с 
<5Е = — — M(m R,m R) . In case of the ] = 3/2 decuplet baryons each p a i r 

of quarks has t o have a t o t a l spin j = 1, and consequently 

σ -? | D = 3 / 2 > = |з=3/2> (85) 

for each ι ft ] , causing these baryons t o become h e a v i e r . Taking the bag 

r a d i u s the same for a l l baryons, we recover t o good accuracy the SU(3,F) 

* * * * 

equal spacing r u l e . Я - ζ = Ξ - 1 = Σ - Δ , where the p a r t i c l e names 

stand for the p a r t i c l e masses. This r e s u l t w i l l even be improved by the 

tendency of R t o decrease with the increase of N (Table IV) . A more 

complicated s i t u a t i o n i s encountered consider ing the j = 1/2 o c t e t baryons. 

These p a r t i c l e s have a wave function, which i s completely symmetric w . r . t . 

simultaneous permutation of the flavor and spin i n d i c e s , but has a mixed 

permutation symmetry for f lavor and spin s e p a r a t e l y . This i s r e f l e c t e d by 

the fact t h a t two quarks can in p r i n c i p l e be p a r t of time in a sp in 3 = 0 , 

and the remainder in a spin 3 = 1 s t a t e . I r r e s p e c t i v e of the d i s t r i b u t i o n 

among the quarks, the t o t a l s p i n s p l i t t i n g i s given by 

( σ ^ ^ + αί.σ3 + σ 2 ·σ 3 ) Ь = 1/?> = - 3 Ь=1/2> . (86) 

Since the nucleón conta ins only nonstrange quarks , t h i s i s a t the same time 

the co r rec t s p l i t t i n g for t h i s baryon. The Z-baryon contains two s t range 



Hadron 

Nucleón (Ν) 

D e l t a (Λ) 

Lambda ( /λ ) 

Sigma (Σ) 

* 
Sigma {Τ ) 

Χι ( i ) 

Χι (Ξ ) 

Omega (ί?) 

P i o n (ττ) 

Kaon (К) 

Omega (ω) 

* 
Kaon (К ) 

P h i (φ) 

F i t A B 1 / 4 = 

В 

С 

Mass (exp) 

0 . 9 3 9 

1.232 

1.116 

1.193 

1.385 

1.318 

1.533 

1.672 

0 .138 

0 . 4 9 6 

0 . 7 8 3 

0 .892 

1.020 

0 .1455 

0 .1285 

0 .2099 

( 0 . 

( 0 , 

(0 

.03) 

.12) 

.25) 

Bagmass A R a d i u s A 

0 . 9 3 6 

1.233 

1.107 

1.146 

1.388 

1.290 

1.534 

1.673 

0 . 2 7 5 

0 . 4 9 4 

0 . 7 8 3 

0 .932 

1.06 7 

S o ' 1 

1 

1 

.842 

.954 

.055 

4 . 9 7 

5 . 4 8 

4 . 9 2 

4 . 9 3 

5 . 4 3 

4 . 8 8 

5 .39 

5 .35 

3.29 

3.18 

4 . 7 1 

4 . 6 5 

4 . 6 1 

(1 .12) 

(1-16) 

(1 .01) 

Bagmass 

0 .939 

1.233 

1.109 

1.151 

1.386 

1.292 

1.533 

1.673 

0 . 2 0 5 

0 . 4 1 6 

0 . 7 8 2 

0 .929 

1.063 

m = 0 . 2 7 9 

0 .345 

0 . 2 5 5 

В 

(0 

(0 

(0 

R a d i u s В 

5 . 5 1 

6 . 2 1 

5 . 4 1 

5 . 4 3 

6 . 1 4 

5 . 3 3 

6 . 0 6 

5 .99 

2 .39 

2 . 1 8 

5 .34 

5 . 2 3 

5 . 1 3 

.07) α = 
с 

.37) 

.77) 

2 . 

2 . 

1. 

Bagmass С 

0 .939 

1.237 

1.093 

1.110 

1.384 

1.254 

1.530 

1.674 

0 .236 

0 . 4 1 0 

0 . 7 7 8 

0 .924 

1.067 

.198 (0 .97) 

.860 (4.79) 

.358 (1 .93) 

R a d i u s С 

2 .86 

3.24 

2 . 8 5 

2 .85 

3 .23 

2 .84 

3.22 

3 .21 

1.57 

1.54 

2.76 

2 .75 

2 .74 

шп = 0 (-) 

0.095 (0 .51) 

0 . 0 6 4 (0 .92) 

1/4 -1 

Table IV: Masses and В in GeV, radii in GeV . The number in parentheses denote the percentage change 

2 
in the parameter necessary to raise the χ of the fit by one unit. 
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quarks, which have a symmetric flavor wavefunction, and therefore must 

have exclusively j = 1, implying that 

°sl'%2
 l:l = 1 / 2 > =

 b = l/2> <
87a
> 

and consequently: (σ , + σ _) ·σ h = l/2> = - 4 h = l/2> . ( 7Ь) 

si s2 u 

A similar phenomenon occurs for the Λ and Σ baryons. These contain two 

nonstrange and one strange quark. The Λ has isospin 1 = 0 , which implies 

that the two nonstrange quarks must occupy a j = 0 state. It follows that 

σ ·σ. h = l/2> = - 3 h = l/2> (88a) 

u d ' ' 

and (σ + σ J ·σ h=l/2> = 0 - (88b) 

u d s ' 

The Σ has 1 = 1 , implying 

"u'^d Ι
;ι = 1/2> =

 Ь
= 1
/

2 > (89a) 

and (σ + σ.) -σ h = l/2> = - 4 h = l/2> (89b) 

u d s ' ' 

for the 1^ = 0 state. We find that E not only lifts spin degeneracies 
3 M 

(ρ - π, Ν - Δ), but also the isospindegeneracy for the baryon octet. Further­

more, we see that the entire octet is lowered in mass through E... For a (more 

M 

complete) discussion of the flavor SU(3,F)-tensor structure and -mass formula, 

see Chapter 3. 

We have now all the necessary ingredients, to calculate the masses of 

the light hadrons. To dotermine the parameters Β, Ζ , m , m and α one can 

proceed in various ways. The MIT strategy was to set m = 0 and adjust the 

other parameters such that the nucleón, the Δ, Ώ and ω masses are reproduced. 

Since Ν, Δ and ω contain only nonstrange quarks Β, Ζ and α can be determined 

through analytic calculation. To determine m , such that the Ω has the correct 

mass, one needs the help of a computer (Table IV, fit A) . Taking m ^ 0, 

analytical calculation no longer is possible and one has to resort to fitting 

the mass spectrum. To obtain a comparable result one can do a least square 
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fit in which one gives the Ν, Δ, Ω and ω a much larger weight (factor 10) 

than the remaining hadrons. In this case one has to restrict m < 108 MeV, 
η 

ЭН 
since for larger values -r— no longer has a minimum for the pion. A typical 

fit is given in column B. For comparison, also a fit (fit C) is given in 

which the static current color magnetic self interaction is included. We 

note that the radii are becoming rather small, while the strengths of the 

color magnetic splitting become less flavor broken, which we think bad 

features. In all cases we find, that the Ν, Δ, Ω and ω masses are reproduced 

rather accurately, as well as the remaining decuplet masses. The agreement 

is not so good for the octet baryons, which tend to be rather light. 

Especially the Λ-Γ splitting, although present, is too small. Also the vector 

* 
mesons are reproduced reasonably well, the φ and К being a little bit too 

heavy. The model does not lift the ρ-ω degeneracy. The masses of the pseudo-

scalar mesons π and К are rather sensitive to the precize values of the 

parameters. They invariably turn out to have much smaller roots for the 

radius than the other, above mentioned hadrons, which all have about the 

3H 
same size. At one point —• even ceases to have a solution for the pion radius 

dR 

at all. One expects that the various approximations made above (neglect 

center of mass motion, constant Z„ and α ) will break down when large 

O c 

d i f ferences in the radius s t a r t t o occur. In t h i s re spect f i t A i s p r e f e r a b l e 

t o f i t B, although the l a t t e r reproduces the hadrons around 1 GeV much 

b e t t e r than the former. The f a i l u r e of our approximations here i s s i g n a l l e d 

by the fact t h a t the p e r t u r b a t i o n term E (in f i t A) i s a l ready of the same 

M 
order of magnitude as the complete mass: E = - 0.415 versus 0.495 GeV for 

M 
the kaon and E., = - 0.465 versus 0.280 GeV for the pion, which i s almost a 

M 

fac tor of two l a r g e r than the bagmass! These r a t i o s become worse for f i t B: 

E„ = - 2.81 versus 0.37 GeV Cor the kaon and E = - 1.82 versus 0.18 GeV for 
M M 



M (GeV) 

U 

1.2 

1.0 

Exp 

Ξ (131В) 

Th 

Σ(1193) 

Λ(1116) 

* 
N(939) 

M (GeVl 

1.7 

(1290) 

(1H6) 
(1107) 

( 9 3 9 ) 

1.5 

1.3 

Exp 

- . . Ω(Ί672) 

Ξ(1533) 

_ Σ(1385) 

* 
Δ (1232) 

Th 

(1672) 

(1530 

(13ΘΘ) 

(1232) 

M (GeV) 

1.0 

0.8 h 

0.6 

U 

0.2 

Exp 

- η ι ( 9 5 Β ) Ν 

η(549) 

KU96) 

- τι(138) 

Th 
M (GeV) 

(958) 

(693) 

[m) 

(463) 

(275) 

1.2 
Exp 

1.0 

0.8 

Th 

Φ ( 1 0 2 0 ) / ^ 

K * ( B 9 2 ) ^ 

_ ω(783) 
* — 

ρ(776) 

(1067) 

(932) 

(783) 

Ρ + 
Fig. 2: The mass spectrum, corresponding to fit A, of the baryon J = 1/2 octet (a) 

and 3/2 decuplet (b) , and the 0 (с) and 1 (d) meson nonets. States with 

an * are input. The η and η' have been refitted to account for remixing effects. 
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the pion. For the other states it is typically 10 to 15 % of the bag mass 

value. We note, there is something wrong with the strength of E . witness 

M 

the anomalously large values for the strong coupling constant α , as compared 

to more frequently used values α =¿0.3. This may be seen as an indication 

that the span dependency may already have roughly the right structure, but 

that still some comparable contributions are being overlooked. Other indications 

emerge when considering e.g. the η and η' pseudoscalar mesons. The Y = 0 

QQ meson eigenstates of H consist of either purely nonstrange or strange 

quarks, implying that the η is degenerate with the pion, as is the ω with 

the ρ in case of the vector mesons. The η' contains only strange quarks and 

has (fit A) a mass m = 0.690 GeV. This bad agreement points at the neglect 

of other effects such as the annihilation of a uu or dd pair into an ss pair 

and vice versa, via a two or more gluon intermediate state. Taking this 

effect into account results in slightly better values (Fig. 2). The model 

as formulated above does not take QQ pair creation into account, which makes 

e.g. Δ and ρ stable w.r.t. strong decay. 

On the whole, the spherical cavity approximation proves to be rather 

satisfactory as a spectroscopic model and can be used as a starting point 

to investigate more exotic quark configurations, consisting of nonstrange 

and strange quarks. Especially in the formulation, where the former is 

chosen massless, one has a quite instructive realization of a confined 

relativistic quark model. Further properties of this special case will be 

treated in section IV. 

IV. The spherical caviLy and SU(6,FJ) [Ko 69, DeG 75, Ba 75, Go 75] 

We will conclude the discussion of the spherical cavity approximation 

by studying some other static properties of the hadron, namely the magnetic 

moment, the moan square charge radius and the axial vector coupling constant. 
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These properties have also been studied in the context of the nonrelativistic 

quark (NRQ) model and a comparison between the two models will be made. Since 

the above mentioned properties depend on the detailed structure of the space 

spin flavor part of the wavefunction, they provide a more severe test for 

this aspect of the hadron description than masses do. 

SU(6). The color properties of the quark system under consideration only 

affect these results indirectly. The hadron must be a colorsinglet. An all 

(anti)quark configuration has a unique color wavefunction with a well 

defined permutation symmetry. There is only one possible permutation 

symmetry for the remainder of the wavefunction which combined with that of 

the color part yields a completely antisymmetric overall permutation symmetry. 

For e.g. the Q baryons, it is the completely symmetric one, since the color 

wavefunction is completely antisymmetric under permutations. For systems 

containing both quarks and antiquarks these considerations apply to both the 

fermion and the antifermion subsystem separately. The color wavefunction for 

the quarks no longer needs to be a colorsinglet one, provided the overall 

wavefunction is, and the various possibilities may occur within one wave 

function. The attention will be restricted to quarks occupying the lsl/2 

ground state mode. Furthermore, we will consider only three flavors: u, d, 

and s, all of which are associated with small quark mass parameters (see 

Table IV). In the limit that m = m, = m the flavorpart of the wavefunction 

u d s 

can be classified using the irreps of flavor SU(3,F) , denoted by n. The 

quark transforms as a triplet (n = 3J under SU(3,F) . 

The lowest energy eigenmode in the NRQ model is that of a quark with 

spin s = 1/2, moving nonrelativistically through space with orbital angular 

momentum 1=0. In this case Л and s are good quantum numbers. We can define 

a total orbital angular momentum L = ¿ I and a total intrinsic spin 
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S = ) s , where the sum runs over all quarks present, which combine to a 

1 1 - -• + 

total angular momentum J = L + S, the spin of the hadron. An LS coupling 

scheme results in which all states are classified according to 0(3) for 

the spatial, and according to SU(2,S) for the spin part of the wavefunction. 

The space spin classification of systems, in which all quarks occupy 

Л = 0 orbits, effectively reduces to an SU(2,S) one. The spin wavefunction 

determines the permutation symmetry, since the spatial part is completely 

symmetric throughout. The flavor and spin contents of a colorsinglet hadromc 

ground state can most economically be summarized in terms of flavor spin 

irreps. One introduces flavor spin SU(6,FS). A quark transforming as a 

triplet, ri = Зу under SU(3,F) and as a doublet, s = 1/2, under SU(2,S) 

transforms as a sextet, [\i] = [6], under SU(6,FS). Because 

SU(6,FS) э SU(3,F) β SU(2,S) we have the decomposition 

[μ] = [6] = £ (ii,s) = (3^1/2). The product e.g. of three quark wavefunctions 

β 

can be reduced according to 

[6] β [6] β [6] = [56] Θ [70] © [70] S [20] 

The 56-diniensional irrep is completely symmetric under permutations whereas 

the 20-dimensional one is completely antisymmetric. The two 70-dimensional 

irreps have a mixed permutation symmetry. Therefore the [56]-irrep has the 

correct behavior and from [56] = (8^1/2) © (10_,3/2) the allowed flavor and 

spin combinations for the baryonic ground states in this model are found, 

which is seen to be correct. 

In the bagmodel a different classification scheme is encountered. In 

its ground state, the Is 1/2 mode, the total angular momentum of the quark is 

given by ] = 1/2. This ] value is the result of coupling the quark spin 

s = 1/2 to the orbital angular momentum I, which differs between the upper 

and lower spinor components. The two upper components of the quark four 
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spinor have 1=0, the two lower ones Í = 1. The space and spin wavefunctions 

of the quark are tightly interwoven to yield a good description of the total 

spin of the relativistically moving quark. A system of such quarks can be 

classified with the irreps of SU(2,J). The total hadronic angular momentum 

is found by combining the total spins 3 of the quarks. This situation is 

referred to as a j-j coupling scheme. The NRQ- and the bagmodel then have an 

equivalent classification for the space-spin part of the wavefunction of 

hadrons containing only groundstate quarks. This implies for the bagmodel 

that one can also carry through the unification of the flavor and (space-) 

spin symmetries ]ust as in the NRQ-model. States will now be classified 

according to the irreps of flavor spin SU(6,FJ) : 

SU(6,FJ) => SU(3,F) β SU(2,J) 

The NRQ LS- and the bagmodel 33 type ground state description are 

(trivially) related by a unitary basis transformation. Also hadrons, 

containing excited quarks, are equivalently described in these two ways 

3 
[DeG 76]. Consider in the NRQ-model a Q baryon in which one quark is 

excited to an Л = 1 orbit. Next to the completely symmetric one, also a 

space wavefunction with mixed symmetry can be constructed whiòh can be 

combined with a 70-diinensional irrep. One obtains the [70] L = 1 and [56] 

L = 1 multiplets. As stated in section II» these states are in the bagmodel, 

2 
described by linear combinations of the configurations (Is 1/2) (lpl/2) and 

2 
(lsl/2) (lp3/2). In this case one constructs the wavefunctions with the 

desired total j-value and determines the combinations with definite spin 

space permutation symmetry for each configuration separately. Space and spin 

no longer have a separate permutation symmetry due to the compositeness of 

3, viz. the (lp3/2) mode. 
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To excite a 20-dimensional xrrep one needs three inequivalent 

excitations. Of course, the fact that a certain space spin flavor combination 

is allowed on the basis of permutation symmetry arguments, does not imply 

that it represents a state of the physical spectrum, witness the discussion 

in section II on the spurious translation modes, the [56] L = 1 states, 

occunng in the nonrelativistic potential models. 

The equivalence of the NRQ- and bagmodel classification of the hadron 

ground states entails, that those NRQ-model SU(6,FS) results, for which no 

further assumptions are needed, immediately apply to the bagmodel, e.g. 

the results for the magnetic moments and charge radii. The axial vector 

to vector coupling constant ratio, measured in e.g. 8-decay processes of 

the octet baryons needs some additional treatment. 

The parameters taken in this discussion are those of the MIT fit (fit A) 

[DeG 75]. This implies that the SU(6,FJ) symmetry will be broken in two 

ways. To account for e.g. the Ν Ω mass difference the strange quark is 

given a mass m = 0.279 GeV. The inclusion of spin dependent terms in the 

hamiltoman lifts the degeneracy of multiplets with identical quark content, 

but different spin or isospin quantum numbers. This results in different 

values of the bag radius for which E(R) is minimal. 

1. Magnetic moment 

The response of the quarks inside the hadron to the electromagnetic 

field is determined by the properties of the quark current operator 

μ - μ 
] = ι ψ γ Q ψ, where Q is the electromagnetic charge operator. Applying 

"*• - ι 

a weak magnetic field В = Bz the resulting energy shift for a state |ot> is 

<OC|H |a> = - <α|μ |α> В. The magnetic moment operator is given by 

Ρ = J ƒ dV r x D = y ƒ dV Γ χ ψ + α ς ψ (90) 
bag bag 
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and can therefore be calculated, absolute size and all. Evaluating this 

expression for the quark groundstate we find: 

<α|μ |α> = £ <α | σ Qn(m',f)|ci> μ (m ,R) (91) 
Z . Ζ г 

m' ,f 

Here η (m', f) gives the number of quarks with flavor f, mass m, and spin 

orientation m', and 

R Г 2 ) R 

p(m,R) = ƒ druMm.r) = | i | ^ r ƒ dr r ]0(pr) 31 (pr) (92) 

_ _1_ (mR) ( 4 ER + 2 mR - 3 ? _ g(mR) 
2m 3 Í 2 ER(ER-l) + mR ) 2m 

We see that μ really is the expectation value of the radius, evaluated between 

0 
a 'big' and a 'small' spinor component. We use ER = ρ .»(mR)-R and 

-»-
N = N(1+1/2) for brevity. For very heavy quarks μ reduces to the non-

relativistic quark magnetic moment: g (mR) •»• 1 and μ •+ —— . For m = 0, 

2m 

ER = χ . and one finds : 

μ = π [ ^ Μ = 0 · 2 0 2 κ (93) 

The function -f is a monotonously decreasing function of mR with a 

maximum value of 0.202 for mR = 0. This value is very sensitive to the 

ratio of the upper and lower spinor component space wavefunctions and any 

change herein is directly reflected in the size of μ. The proton magnetic 

moment is given by μ = μ (m R) for degenerate up and down quark masses. From 

this we can extract a lower bound on the bag radius to fit this value: 

2 79 
0.202 R = —-??. or R ш 1.45 fm. 

¿fi 
Ρ 

For m ^ 0 we need an even larger proton. Therefore, to keep the size 

of the proton down, we need the up and down quarks to be as light as 

possible. Apart from the factor μ(πι,Η), which is explicitly calculated in 

this model, we retain the SU(6,FS) ratios through the remaining part of 
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the matrix elements: <o|a Qntm'jf) |a>. A consequence of taking m = m,, 

is that the magnetic moment of the neutron is (- 2/3) times that of the 

proton: the exact SU(6,FS) result. In Table V, the ratios of the magnetic 

moments of the octet baryons to that of the proton are listed: the SU(6,FS), 

the calculated and the experimental values [PDG 78]. Agreement is good. 

For the physical proton R « 1.0 fm and we find g = 1.90 instead of 

σ =2.79. Gluonic vertex corrections tend to decrease this value even 
Ρ 

more [Ha 77]. This can be interpreted as a hint that in this crude model 

the wavefunctions may be realistic, whereas the hadron parameters are not 

quite satisfactory. To conclude we note that the choice of Q to be the 

electric charge is not exclusive. One can also take it to be Q = g F : 

the color charge. 

Baryon 

Ρ (938) 

Ν (940) 

Λ (1116) 

Σ
+
(1189) 

Σ
0
(1193) 

¡:"(1198) 

Ξ
0
(1314) 

="(1321) 

(μ/V ) SU(6) 

1 

- 2/3 

- 1/3 

1 

1/3 

- 1/3 

- 2/3 

- 1/3 

(μ/μ ) exp 

1 

- 0.685 

- 0.217 + 0.012 

1.01 ± 0.09 

- 0.53 + 0.13 

- 0.66 + 0.27 

(μ/μ ) cale 

1 

- 0.67 

- 0.26 

0.97 

0.31 

- 0.35 

- 0.56 

- 0.23 

Table V: The magnetic moments of the flavor octet baryons, in units μ . 

calculation gives Experimentally one has μ = 2.793 1„„ 1 , 

Ρ \
2 M
p ' 

μ ot 1.90 
Ρ 
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2. Mean square charge radius 

For the experimentally more frequently used hadrons an accurate 

parametrization of the Dirac form factor as a function of the momentum 

2 2 
transfer squared, F (q ) , q = t, is known. When we expand it, for low 

2 
q , the second term gives a measure for the extension of the hadron: 

fdFjtq
2
)/*!

2 

Г = - 6 J 

Fjtq
2
) q

2
 = 0 

called the mean square charge radius. Calculated in the bagmodel it has the 

form: 

with 

2 2 2 

-2 R 2ER{2x (ER-1) + 2mR + 4ER - 3} - 3mR{4ER + 2mR - 2x - 3} 
r = 1 2 

X {2ER(ER-1) + mR} 
-2 , R

2
 2x

3
 - 2x

2
 + 4x - 3 „ ,., „2 

r | = — = 0.531 R 

m=0 χ (x-1) 

2 2 
-21 R 2x - 3 „ „„, 2 
r | = - — = 0.283 R 

m=<» χ 

The charge radius depends on the quark mass r (m, ) < r (m.) , for m„ > m, . 

sc 1 sc 2 2 1 

2 
Taking m = m, the calculated r value for the neutron vanishes. From the 

u d sc 

fact that in practice it turns out to be positive, one might conclude, that 

the down quark is heavier than the up quark, in agreement with explaining 

the P-N mass difference, similar to the Ρ-Ώ mass difference, i.e. by 

giving m and m different values. Because the strange quark does have 

m ^ m = m,, r is also positive, for the Л, У and Ξ , of course 
s u d sc * 

violating SU(3,F) symiretric relations. 

Comparison of the theory with data gives Table VI. The charge radius 

N 
for the neutron is obtained indirectly (F (0) = 0) , using the proton- and 

S 2 Ρ 2 Ν 2 
isoscalar Dirac form factors: 2 F (q ) = F (q ) + F (q ) . 

(94) 

r = < o | ƒ dV | r | ψ+ς>ψ|α> = 1 < a | n ( m , , f ) Q | o > r (95) 
bag m ' , f 

(95a) 
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Hadron 

Theory (bag) 

Exp 

Re f 

1 

Hadron 

0.72 

0.76 ± 0.02 

[Ho 76] 

N 

0.0 

0.10 ± 0.01 

[Ho 76] 

Λ 

Theory (bag) 

Exp 

Re f 

0.16 0.73 0.16 

0.48 

0.695 ± 0.005 

[Ge 77] 

К К 

0.44 0.14 

0.28 ± 0.09 

[Dy 76] 

-0.69 0.22 -0.67 

2 2 
Table VI: Mean square charge radius r . We l i s t the s ign of r tiroes 

/ ¡г I' i n f m · 

3. The axial vector coupling constant 

A third application of SU(6,FJ) symmetry emerges from the study of 

the semileptonic decay of baryons. We will restrict our attention to the 

octet members of the [56] irrep. The relevant hadronic part of the weak 

interaction current density is given by 

J^ix) = u(x) γ
μ
 (1+γ

Γ
) (d(x) cos θ + s(x) sin θ ) +h.c. 

η 5 с с 
(96) 

where u(x) , d(x) and s (χ) denote the quark f i e l d s of the spec i f i ed f lavor 

and 0_ i s the Cabibbo angle, giving the c o r r e c t observed r e l a t i v e s t rength 

t o the u and s c o n t r i b u t i o n . Let us consider the 3-decay of the neutron i n t o 

the p r o t o n , as an i l l u s t r a t i o n . The expectat ion value of the weak i n t e r a c t i o n 

hamiltonian i s then given by 

G cos 
<Pe ν H N> = 

e ' w ' 
"72 

τ — - ƒ dV <Pe ν |ΰ(χ)γ ( l+γ )d (x)ë~(x) γ μ
 ( 1+γ ) ν (χ) |Ν> (97) 

μ 

where the exchange of a r a t h e r heavy weak boson i s seen t o have r e s u l t e d 
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in an effectively local interaction. The small momentum transfer of the 

leptons to the outgoing baryon has two consequences. The wavefunction of 

the leptons which are not confined to the bag, is approximately independent 

of x, as far as the interaction region is concerned. This approximation is 

reasonable for Iq + q-lc < .2 GeV. The matrix element of H then factonzes 1 n
e Λ> ' w 

into a leptonic and a hadronic part, and we can study the latter separately. 

Secondly, both nucléons can be taken at rest. Furthermore, we shall take 

the bags to have both the same radius, for which we choose the equal weight 

value. This latter approximation is exact for the proton-neutron case, since 

these states have a degenerate bagmodel configuration. The space integration 

reduces to a bag integration. Consider 

<P|JJ'|N> = cos θ ƒ dV <p|u(x)Y
y
(l+Y

5
)d(x) |N> . (98) 

bag 

This matrix element contains a vector- (v) and an axial vector (a) part. 

The former only contributes for w = 0, the latter for μ = j, j € (1,2,3). 

We find: 

<ρ|α^|Ν> = g (m,,m ) У <plu
+
d cos θ Ι N> . (99) 

1
 h

1
 ^ d u ' ' i l c

1 

ι 

We d e f i n e : γ = c o s θ ¿ < p | u d |N> f o r t h e n e u t r o n ß -decay t o t h e p r o t o n . 
ι 

One has γ = cos θ . The index ι denotes that the transition operator, in 'v с r » 

this case the quark isospin raising operator I = u d , which replaces, if 

available, a d with a u quark, acts on the ι quark in the neutron. This 

transition conserves strangeness: AS = 0. The overlap factor g (m,m') 

depends on the quarkmasses: 

, , . 2xx' (m'R - mR) 1 / m m 
g (m,m') = — - — ^ • ι - (100) 

V χ ' -χ / Σ Ε ' Κ ί Ε Ή - Ι ) + m'R*/2ER(ER-1) + mR* 

Here χ = χ . (mR) and x ' = x . . .-(m'R) . We have g (m,m) = 1 and 
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g (m ,0) a: 0.985 for the r e l e v a n t range of R. The vector coupling constant 

G i s then r e l a t e d t o the weak coupling constant G by: 
ν ^ 

G = g γ - è , . (101) 

ν ν ν /2 

To evaluate the axial vector part we can take s = 1/2 for both the proton 

and the neutron, and consequently 3 = 3 : 

<P,s =1/2|J^|N,S =l/2> = g (m,,m ) γ . (102) 

ζ ' h ' ζ a α и а 

Here 

γ = У <P,s =1/2ІІ + а ΐΝ,β =1/2> cos θ = - c o s θ (102a) 
a ' z ' i i z ' z с 3 с 

ι 

g (m,m1) =\ [2 (ER - E'R) + A 
a 3 \ mR - m'R J 3 v 

1 /2ERER + mR (4ER - 3) \ 
' for m = m' 3 \ 2ER(ER - 1) + mR 

Numerically we have g (0,0) = 0.653 and g (m ,0) = 0.72 g . The a x i a l J ^а ^a s ν 

vector coupling constant i s r e l a t e d t o G by: 

G a = Ya9a 7 ? ' ( 1 0 4 ) 

For mjüi' ->• ">, we recover the SU(6,FS) r e s u l t : G = — G for the neutron 
a J ν 

ß-decay. In the bagmodel version (m = m = 0) t h i s value i s reduced to 

G = 0.653 · —G = 1.09 G , c lose r to the experimental value of 1.24 ± 0 . 0 3 . a 3 ν ν 

This reduct ion i s a consequence of the fact t h a t one, contrary t o the non-

r e l a t i v i s t i c SU(6,FS) model, now a l s o gets c o n t r i b u t i o n s from the lower 

spinor components, which have opposite spin o r i e n t a t i o n , and i s another 

argument i n favor of l i g h t quarks . 

The f a c t o r s γ and γ contain the SU(6,FJ) symmetric p a r t of the matr ix 

elements [Sw 6 6 ] . Considering B' •+ Be ν , i n s t e a d of N » Pe ν we have 

e e 

γ = У <в| (соч θ І
+
 + sin θ Κ

+
) ІВ^ and (105a) 

ν
 L

 ' c i c i ' 
ι 

and γ = i У <B|(COS θ І
+
 + sin θ K

+
) S ІВ^ (105b) 
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The V-spin raising operator, which changes an s-quark into a u-quark is 

denoted by К . I t raises the strangeness by one unit: AS = 1. By using the 

explicit form of the flavor-spin part of the wave function, γ and γ can 

be calculated exactly. One subsequently assumes that G and G s t i l l are 

related to G as defined, substituting the proper mass and radius parameters. 

One then obtains the calculated values for G /G as listed in Table VII. 

a ν 
Since the wavefunctions are SU(3,F) symnetric one can also express G and 

G in terms of the Cabibbo parameters F , D and θ . We have the following 
ν * а а с 

relations : 

G
v * 7 ? < B

I
( F
1 1 0

 C O S e
c
 + F

l/2 1/2 1
 S l n

 V l
B , > ( 1 0 6 a ) 

G G 

a 7 ? < B l { F a ( F l 1 0 C O S 9c + Fl/2 1/2 1 ^ V 

+ D a ( D l 1 0 C O S с + Dl/2 1/2 1 5 1 П V \ ^ " ( 1 0 6 Ь ) 

The currents are denoted by their SU(3,F) octet transformation properties 

according to О . The currents can couple to the two octet baryons in two 

ζ 

independent ways, a completely antisymmetric f type and a completely symmetric 
2 

d type coupling. For q = 0 the conserved vector current i s assumed to have 

only f type, the partially conserved axial vector current can have both 

f- and d-type couplings. This property is reflected in the notation of the 

matrix elements. Comparison with the specific bagmodel case allows us to 

2 
explicitly calculate F and D . We find, that F = f g /g = ^ r g / g and 

a a a a v J a v 

D = d g /g = g /g . This implies, that the F/D ratio, due to the SU(6,FS) 

2 
symmetry of the bagmodel flavor spin wavefunctions is F/D = — , the SU(6,FS) 

result. This ratio is not changed by the breaking of SU(6,FJ) from section 

III since this only affects the overall factor g /g . The absolute SU(6,FJ) 
^ a ν 

symmetric values for F and D are, in the MIT bagmodel, reduced by a factor 
a a 

0.65 for the AS = 0 transition (d -+ u) and by a factor of about 0.71 for 



Process В •* Β' γ γ vJv,, (exp) [PDG 78] 9=/9„ (cale) 
ν α α ν α ν 

Ν •+ Ρ 

ϊ - + ζ 0 

ς " -»• Λ 

„ 0 

Λ ->- Ρ 

Σ" •+ Ν 

Σ 0 . Ρ 

= " -f Λ 

Ξ - * Σ 0 

. 0 . Σ + 

1 

/Γ 

0 

1 

41 

1 

1 

7? 

/F 
/Γ 

1 

f + d 

/Γ f 

/г. 
f - d 

^ (3f + d) 

f - d 

^ (f-d) 

•h ( 3 f - d ) 

•^ (f+d) 

f + d 

- 1.253 ± 0 .007 

g = 0 . 2 4 ± 0 . 2 3 

- 0 . 6 2 ± 0 . 0 5 

± (0.385 ± 0 .070) 

1.09 

0 . 4 4 

g a = 0 . 5 3 

- 0 . 2 2 

0 . 7 2 

- 0 . 2 4 

- 0 . 2 4 

0 . 2 4 

1 . 2 

1 . 2 

Table VII: Ratio of the a x i a l vector t o vector coupling constant G /G for the o c t e t baryon 

8-decay process В -»· В' e ν in terms of the Cabibbo parameters θ , F and D , 
e с a a 

f = g F /g and d = g D /g . The columns γ and γ contain the SU(3,F) symmetric 
v a a v a a ν a 

2 
r e s u l t s . The bagmodel gives f = -5- , d = 1, c o n s i s t e n t with SU(6,FJ) . 

00 о 
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the AS = 1 transition (s -»- u) , which accounts for the SU(3,F) breaking. 

One obtains 

AS = 0 F = 0.44 D = 0.65 

a a 
AS = 1 F = 0.47 D = 0.71 

a a 
and experinentally F = 0.41 ± 0.02 D = 0.83 ± 0.02 

a a 

One finds improvement to the nonrelativistic values, but not absolute 

agreement. Shifting the mass parameters will not improve things substantially 

since F and D change in proportion. 
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С. 

CHAPTER 3: Q DIBARYON STATES 

I. Introduction 

In the naive quark model [Ko 69] one was able to explain many features of 

the hadrons. Relations between mass differences within SU(3) multiplets could 

be derived. However, it was impossible to say anything sensible about the 

masses of the individual hadrons. In particular any indication about the 

2-2 4-

masses of the exotic mesons (Q Q ), the exotic baryons (Q Q) and the dibaryons 

(Q ) was lacking. One of the reasons was our ignorance about the interactions 

between the quarks. 

This situation has changed in the last few years, with the recognition that 

quarks have additional degrees of freedom, socalled color. With these color 

quantum numbers a different kind of interaction can be associated, which is 

thought to be governed by the equations of Quantum Chromodynamics. 

A particular realization of QCD, which incorporates many of its established 

and expected properties, is the MIT bagmodel [Cho 74, DeG 75]. In chapter 2 we 

found that this model allows solutions, which are particularly suited for the 

description of hadronic states. The colored quarks are confined to a definite 

region of space, which in the simplest case is taken to be a sphere, and 

allowed to interact weakly with each other through the exchange of colored 

vector bosons, the gluons [DeR 75, Fr 71]. This way one can rather well 

reproduce the masses of the colorless S-wave QQ and Q baryons. The model contains 

in case of 3 flavors only 5, physically interpretable, parameters. Without 

introducing new parameters one can calculate in this bagmodel also the masses 

2-2 6 

of exotic states like the S-wave Q Q mesons [jb 77] and the S-wave Q dibaryons 

[Jc 77]. The discussion of the former is postponed to chapter 4, the latter 

shall be dealt with here. 

The results of the dibaryon calculations were quite interesting. It 

was shown that one must expect some 6 quark states with relatively low mass. 

These states must show up as resonances m NN, ΛΝ and ΣΝ scattering, and in the 
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ΛΛ» ΞΝ, £Л, and ΣΣ channels. Especially significant are the predictions of a 

ΛΛ bound state with a binding energy of about 50 MeV and of possible NN 

resonances. 

Experimental verification of these predictions is quite important, 

because the existence or non-existence of these states will be quite an 

important test of the applicability of the present form of the MIT bagmodel 

to exotic states. 

Although these six quark states and in general the colorless N quark 

states (N = 3, 6, 9, ...) also manifest themselves in scattering processes 

3 3 4 

like pd, ρ Η, or Ad, they are different from nuclear states like He, He, 

or hypernuclear states like H, because they are single hadron states. They 

are unaccounted for by the spectrum of resonances and bound states arising in 

standard potential model [sw 71] or shell model [но 73] calculations. 

In this chapter we will consider all colorless N quark states, where the 

quarks are in the Is 1/2 states of a spherical bag. These hadrons have thus all 

positive parity. Since all particles should be color singlets and since the 

color symmetry is unbroken, the old mass formulas [Ok 62, Gu 64, Be 64] obtained 

from specific assumptions about the breaking of flavor-spin symmetry are not 

affected. The difficulty in applying these mass formulas was that one had to 

determine the coefficients for each flavor-spin multiplet separately from the 

experimentally known masses of the hadrons. The MIT bagmodel offers a way to 

calculate these coefficients for the colorless N quark states, which will belong 

for fixed N to only one flavor-spin SU(6) irreducible representation. Because 

the allowed states must be totally antisymmetric with respect to flavor, spin 

and color, the color-spin tensor operators occurring in the spherical bag mass 

operator can be expressed m simple flavor-spin tensor operators. We then can 

identify the contributions of the different SU(6) breaking tensor operators, the 

coefficients being known functions of the bag radius. 
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In order to satisfy one of the boundary conditions in the bagmodel the 

mass of a particular state is found by minimizing the expectation value of the 

mass operator with respect to the bag radius R. As this radius does not vary 

too much between different members of the same SU(6) multiplet, it is possible 

to choose only one R value for an entire multiplet without introducing 

significant numerical inaccuracies. This way we obtain for fixed N mass 

formulas, which suffice to obtain the masses of all the S-wave N = 6, 9, 12, 15 

and 18 quark states, without introducing any new parameters. 

At this point we would like to stress the importance of the prediction 

of several six quark states m the NN channel, because these predictions could 

at present be checked experimentally, if their width (about which we cannot say 

fi Τ 

anything sensible) is not too large. We expect Q -states in the S. channel at 

Τ
Ί
 . = 0.61 GeV, in the S„ channel at Τ, , =* 0.79 GeV and two (almost?) 
lab 0 lab 

degenerate states in the D. and D., channels at T, . =* 1.04 GeV. 

2 3 lab 

In the hyperon-nucleon (ΛΝ and Ш ) channel many 6 quark states are expected. 

In the experimental data (only available for the lower energies) several 

enhancements can be seen next to the resonance H, seen [Br 77] at 2127 MeV. 

The resonance Η is certainly not a six-quarks-in-one-bag state, because it can 

quite naturally be explained m the ordinary potential picture [Sw 62]. 

In the Y = 0 channels (ΛΛ, ΞΝ, ΛΣ and ΣΣ) we expect an I = 0 S bound 

state about 30 MeV below the ΛΛ threshold. One predicts bagstates in the 1 = 0 

and 1 = 1 S channels at M с* 2.35 GeV and M =a 2.39 GeV. The Pauli principle 

forbids the 1 = 0 state at M ^ 2.35 GeV to decay in the ЛЛ channel, it can 

only decay in -N. 

II. Classification of the N quark states 

In the MIT bagmodel [Cho 74, DeG 75] we will consider multibaryon states 

with baryon number B, described by a wave function of N = 3B quarks, all in 

lsl/2 states of the bag. These states have an SU(2,J) classification for the 
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space-spin part, an SU(3,F) classification for the flavor part (assuming only 

three flavors), and an SU(3,C) classification for the color part. Because of 

generalized Fermi statistics the N quark states must be totally antisymmetric. 

We therefore can place up to 18 colored quarks in these states of the bag. 

There is a one-to-one correspondence between the irreducible representations 

(irreps) of SU(n) and those of the symmetric group S(n), the permutation 

group of η objects. The objects are in this case the η values the SU(n) quark 

degree of freedom can assume. Because 

S(18) z> S(3,F) β S(2,J) β S(3,C) 

a classification of the states with the help of the group S(18) is quite 

useful. We will represent the permutation symmetry of the states by means 

of Young diagrams [Li 50, It 66]. If the states contain N quarks, the 

corresponding Young diagrams contain N boxes. Because of Fermi statistics 

the N quark states must belong to the totally antisymmetric irrep of S(18), 

described by a Young diagram of only 1 column and N rows. 

To get some of the important quantum numbers of these states we consider 

the classification according to the oldfashioned (flavor-spin) SU(6,FJ) and 

50(3,0, 

SU(6,FJ) 3 SU(2,J) β SU(3,F) 

The physical states must be SU(3,C) singlets. The corresponding Young diagram 

for the S0(3,C) part of the state therefore is rectangular and contains 3 rows 

and В = N/3 columns. Because the state must be totally antisymmetric, the 

permutation symmetry of the SU(6,FJ) part of the state is described by the 

associate diagram of the diagram describing the permutation symmetry of the 

color part of the state. This associate diagram thus has 3 columns and В rows. 

This uniquely determines the SU(6,FJ) irrep [μ] to which the colorless states 

belong. They are given m Table I. At this point we should note that in SU(n) 

the irrep described by the rectangular Young diagram with χ columns and y rows 
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Ν = 3 б 9 12 15 18 

Ы = [56] [490] [980] [490 ] [56 ] [l] 

Table I: The SU(6,FJ) irreps [μ] of the colorless N quark states 

is the complex conjugate irrep of the irrep described by the Young diagram 

with χ columns and (n-y) rows. We see this property clearly reflected in 

Table I. Next we consider the decomposition 

SU(6,FJ) 3 SU(3,F) ® SU(2,J) 

For the relevant SU(6,FJ) irreps [μ] the decomposition 

[μ] = I (n,J) 
θ 

in the different SU(3,F) irreps η together with their spins J is given in 

Table II. For the content of SU(3,F) irreps we refer to reference [Sw 63]. 

[56] = (8,1/2) 9 (10,3/2) 

[490] = α,Ο) φ (£,1) ffl (8_,2) θ ( H M ) 9 (10 ,1) θ (27,0) 

® (27,2) ffl (10 ,3) Θ (35,1) 9 (28,0) 

[980] = α,3/2) θ α,5/2) 9 (8,1/2) 9 (8,3/2) 9 (8,5/2) φ (_10_,3/2) 

9 (_1£ ,3/2) Φ (27,1/2) Φ (8,7/2) Φ (J_,9/2) Φ (27,3/2) 

θ (27,5/2) Φ (35,1/2) © (35*,1/2) © (64,3/2) 

[490 ] = (J_,0) φ (8,1) Φ (8,2) Φ (¿0,1) φ (JO ,1) Φ (27,0) 

Φ (27,2) © (10,3) Φ (35. ,1) Φ (28 ,0) 

[56 ] = (8,1/2) Φ (10 ,3/2) 

Table II: The decomposition of SU(6,FJ) irreps in flavor and spin. The 

states are ordered according to increasing mass. It will turn 

out that the states (27,2) and (_1£ ,3) in [490], (27,1/2), (8,7/2) 

and (J_,9/2) in [980], and (27,2) and (10_,3) in [490 ] are degenerate 

as long as there is no mixing (see section VI). 

В = 1 

В = 2 

В = 3 

В = 4 

В = 5 
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Another useful decomposition [Be 64] is determined by 

SU(6,FJ) 3 U(1,Y) β SU(4,IJ ) « SU(2,J ) 

η s 

where J (J ) is the total spin of the nonstrange (strange) quarks, I is the 

isospin and Y the hypercharge. The decomposition 

[μ] = I (Y,(v),J ) 
Φ 

is given in Table III. Here (v) denotes the SU(4,IJ ) irreps. They are given 

by their dimension and if necessary an extra index. This decomposition is 

necessary, because when we calculate the SU(6,FJ) breaking we shall consider 

the nonstrange and strange quarks contained in a state separately. 

[56] = (l,<20
s
),0) 8 (0,(10),1/2) θ (-1,(4),1) 9 (-2,(1),3/2) 

[490] = (2,(50),0) θ (1,(60),1/2) Θ (0,(45),1) θ (0, (20
2
) ,0) 

9 (-1,(20 ) ,3/2) e (-1, (20.),1/2) θ (-2,(10),!) 9 (-2,(6),0) 
s 1 

θ (-3,(4) ,1/2) φ (-4,(1),0) 

[980] = (3,(20
s
),0) ffi (2, (45),1/2) Φ (1,(60),1) Φ (1,(36),0) 

© (0,(64),1/2) φ (0,(50),3/2) Φ (-1,(60),!) Φ (-1,(36),0) 

Φ (-2, (45),1/2) φ (-3,(20 ),0) 

s 

Table III: The hypercharge, SU(4,IJ ), and strange spin content of the 

* * 

SU(6,FJ) irreps. For [490 ] and [56 ] the decompositions are 

the same as for [490] and [56], except that the Y eigenvalue 

changes sign and (v) becomes (v ). 

The decomposition of the group SU(4,IJ ) in isospin SU(2,I) and non-strange 
η 

spin SU(2,J ) 

SU(4,IJ ) => SU(2,I) β SU(2,J ) 
η η 

is the non-strange analog of the flavor-spin decomposition in flavor and spin. 
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We get 

(ν) = У (I,J ) 

θ 

These decompositions are given in Table IV. 

(1) = (0,0) 

(4) = (1/2,1/2) 

(6) = (1,0) θ (0,1) 

(10) = (1,1) Θ (0,0) 

(20
s
) = (3/2,3/2) Φ (1/2,1/2) 

(20J) = (3/2,1/2) φ (1/2,3/2) φ (1/2,1/2) 

(20
2
) = (2,0) Φ (1,1) ® (0,2) φ (0,0) 

(36) = (3/2,3/2) Φ (3/2,1/2) φ (1/2,3/2) φ (1/2,1/2) 

(45) = (2,1) φ (1,2) φ (1,1) Φ (1,0) Φ (0,1) 

(50) = (3,0) φ (2,1) Φ (1,2) φ (1,0) Φ (0,3) Φ (0,1) 

(60) = (5/2,1/2) φ (3/2,3/2) φ (3/2,1/2) Φ (1/2,5/2) Φ (1/2,3/2) 

Φ (1/2,1/2) 

(64) = (2,1) φ (2,0) Φ (1,2) © 2(1,1) Θ (1,0) Φ (0,2) © (0,1) 

Table IV: The isospin and non-strange spin content of the SU(4,IJ ) irreps (ν) 

In this specific decomposition the contents of (v ) are identical 

to the contents of (v). 

III. Дп approximation to the phenomenological· bac^ Hamiltonian [PeG 75] 

The MIT bagmodel provides us with a method to calculate the masses of 

the various N quark states. The bag is taken to be a sphere of radius R and 

the quarks are placed in lsl/2 states. Inside this bag the quarks can move 

freely, except for a weak static interaction between the color charges 

(̂  g F ) and between the color currents ("v- g F σ, ) . The 8 generators of 

α α к 
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С 
SUO, С) in the irrep 3 we denote by F = λ /2 with α = 1 to 8. They are 

— α α 
2 

normalized such that Tr λ = 2 . The three generators of SU(2,J) m the J = 1/2 

2 
irrep are σ /2 with к = 1 to 3 and Tr σ = 2. The mass operator of an N quark 

system is given by 

M
 *

 E
B
 + E

Q
 + E

M

 + E
E
 ( 1 ) 

The energy E associated with the bag geometry is 
В 

E
 ÛL B R3 _

 ZJL (2, 

В 3 R 

where В is the bag pressure and Ζ is among other things associated with the 

zeropoint energy. The rest energy and kinetic energy E of the quarks in the 
bag is 

a (R) α (R) α (R) 

E„ = ) N -±- N -^-— + N
 S

p
 . (3) 

Q ' ι R η R s R 

We use ι and ] for the particle indices of the quarks. The indices η and s 

more specifically refer to the non-strange and strange quarks. N is the 

number operator for the quarks i. The energy eigenvalue of a quark in a 

spherical bag is (see Table V) 

α (R)/R = atra R)/R 

where m, is the mass of the ι quark. The energy E
w
 due to the colormagnetic 

1 M 

interaction between the quarks is 

α 
E

M
 = - -# I M (R) (FO) (FO) (4) 
M R ¿ in ι τ 

i>3 

The energy E due to the colorelectnc interaction between the quarks is 

E 

-§- I f l E (R) + l E (R) F .F. I R I 3 I " ι>1 ч 1 4 
E E = R j f I E 1 1 ( R ) + ¿ E . _ ( R ) F . . F ^ V (5) 

Here F .F = У (F ) (F ) and σ .σ = У (σ, ) (σ, ) . 
i ] £ α ι α 3 i J k k i k j 

The gluon coupling constant g appears in α = g /4іг. Furthermore: 

M (R) = M(m R.m R) and E (R) = E(m R,m R) are functions of the products 
ID ι 3 ID I D 

of R and the quark masses m and m (see Table V) . 
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В 

<(Fo)
2
> 

R^GCV-
1
] 

Ol 

η 

α 
Ξ 

Μ 
ηη 

Μ 
ss 

Μ 
ns 

Ε
η η 

Ε 
ss 

Ε 
ns 

Μ 

Ι 

1 

0 

5.22 

2.043 

2.9149 

0.177 

0.1127 

0.1406 

0.2784 

0.4091 

0.334Θ 

0.00Θ43 

0.01799 

2 

3 

6.70 

2.043 

3.2113 

0.177 

0.0981 

0.1310 

0.2784 

0.4415 

0.3466 

0.01318 

0.02669 

3 

6 

7.57 

2.043 

3.3935 

0.177 

0.0905 

0.1256 

0.2784 

0.4592 

0.3528 

0.01625 

0.03196 

4 

15 

8.39 

2.043 

3.5700 

0.177 

0.0839 

0.1208 

0.2784 

0.4748 

0.3582 

0.01927 

0.03694 

5 

24 

9.02 

2.043 

3.7085 

0.177 

0.0791 

0.1173 

0.2784 

0.4863 

0.3620 

0.02166 

0.04073 

6 

36 

9.60 

2.043 

3.8381 

0.177 

0.0751 

0.1141 

0.2784 

0.4963 

0.3653 

0.02388 

0.04417 

Table V: Average radii for multibaryon multiplets and values of functions 

α , M. , E.., M = M + M - 2 M and І = Е + E - 2 E . 
s i] ij nn ss ns nn ss ns 

The bag radius R is determined according to one of the boundary conditions 

in the model by minimizing M with respect to R. This should be done for each 

hadron separately. In order to have a useful mass formula expressed in flavor-

spin tensor operators we take an average R for each entire SU(6,FJ) multiplet. 

For a particular state we have : 

, , 4π 3
 Z

0
 v

 „
 a

i
( R )

 f(R) 
M(R) BR

 - -
+
 IN. _ _

+
_ 

1 

where f(R) contains the R-dependence of E and E coming from the functions 

M. . and E. . Minimalization gives: 
ID ID 

-1/4 
R . = ΐ4πΒ) 'H 

min \ \ (
a
i -

R
^ ) 

z
o

+ f
-

R
I 

R = R . 

min 
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As long as the functions a., M.. and E.. are about linear we may approximate: 

Эа. 

CLAR) - R -jj- ^ai(0) = o(0) 

li the bagmodel the non-strange quark mass m is chosen to be zero. So we have 

а (0) = α (m R) = α (R) = а . The same we have for f(R). So a reasonable average 
η η η 

value for the radius of a whole multiplet is found by minimizing the bag mass 

for a system of non-strange quarks, taking an average value for the color-

magnetic interaction term: 

R = (4πΒ)"
1 / 4
 [Να - Z„ + a M <(Fa)

2
>]

1 / 4 

av η 0 с nn 

2 г. 

where <(Fo) > is an average value of ¿ (Fa) . . (Fo) . in an SIUG.FJ) multiplet. 
i>j 1 ^ 

In this case the color-electric part does not contribute. Since we work in 

the neighborhood of a minimum the R-dependence of M(R) is not too strong. It 

appears that the values thus found for R can be parametrized according to: 

R - r n N
1 / 3 

av 0 

where N is the number of quarks, and r = 0.72 fm = 3.63 GeV . The masses of 

the hadrons obtained with R are only slightly larger than the masses obtained 

with the radius coming from the minimalization procedure. The differences can 

easily be estimated and are < 20 MeV. Of the five parameters, m is fixed to be 
4- η 

zero and Β, Ζ , α and m are made to fit the light hadron mass spectrum, under 

the condition that we have one radius for the baryons involved. The parameters 

1/4 
are: В ' = 0.146 GeV, Z„ = 1.Θ9, а = 2.12, m = 0 and m = 0.285 GeV. As was 

0 с η s 

already noted above о (R), M (R) and E (R) are independent of R since m = 0 . 
η nn nn η 

The values of R and the values of the functions а., M.., E.. at R = R are 
av ι i] іэ av 

given in Table V. 

Using the total quark number operator Ν = Ν + Ν and the hypercharge 

operator Y = (Ν - 2N )/3 we can rewrite (3) as 
η s 

2α + а (а - а ) 
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It also is useful to separate the sumnations in (4) and (5) into three parts: 

a summation over all quarks, a summation over only the non-strange quarks and 

a summation over only the strange quarks. Then we may write: 

α , 
E,. = - -£• \н

 У l
Fo
> •№) 

M R I ns ' ι τ 

+ (M - M ) У (Fa) . (Ρσ)„ (θ) 

ηη ns
 L

 1 2 
n
l

> n
2 

+ (Μ - Μ ) Ι (Fa) ..(Fa) ( 
ss ns

 L
 1 2 \ 

S
1

> S
2 ' 

-'T Ks (t-J/^) 
(f

N
n

+
 ^ F Pj 

\ п^Пз / 

S
1

> S
2 /

 ) 

and 

E
E 

+ (E - E ) — N + > F, .Fj (9) 

nn ns '
 э
 - ^ I T 

+ (E - E ) (f N 

ss ns \ 3 s 

IV. Evaluation of the color-magnetic and color-electric terms 

We will make use of the permutation symmetry of the states to replace 

the sums of the color and color-spin tensor operators in (Э) and (9) by more 

useful sums of flavor, spin and flavor-spin tensor operators. For convenience 

we introduce the 35 SU(6) generators A with a = 1 to 35. For the irrep [6] 

these can be found as the direct product of the generators and the unity 

operators in the irrep 3̂  of SUO) and the irrep J = 1/2 of SU(2) . These 35 

2 1 1 
generators, normalized to Tr A = 1, are: — (λ β ϊ) , -тг> (1 β σ, ) and 

a 2 α /6 к 

тг (λ β σ, ) with α = 1 to 8 and к = 1 to 3. The quadratic Casimir operator 
2 α к 

С^ for SU(6) has in the irrep [μ] the eigenvalue С̂ . (y) and is given by 

С, = У A .A where A .A = У (A ) (A ) 
б ' - i n i i ^ a i a n 

i ,D a 
This implies that 

35 
A .A = U^ - N (Ĵ lbJ = (J. -
1 1 6 6 б 

1>3 

2 У A .A = Cr - N C^ (6) = C,. - ̂ 1
 N 

' ι ] 6 6 6 6 
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We introduce the following permutation operators 

for SU(2) : Ρ = - (1 + a .a ) 
i] 2 ι j 

for SU(3) : Ρ = -i- (|· + λ .λ ) 

i] 2 3 ι ] 

for SU (6) : Ρ = 4 (Τ + 2 A .A ) 

13 2 3 1 3 

The three summation ranges in (8) and (9) we will consider separately. 

1. The sum over all quarks 

The states can be labeled by quantum numbers belonging to the groups 

SU(3,F) β SU(6,CJ) => SU(3,F) β SU(2,J) β SU(3,C) 

The wave function is antisymmetric with respect to flavor, spin and color. 

F J С FJ С CJ F 

Ρ Ρ Ρ = - 1, but then also Ρ = - Ρ and Ρ = - P
J
 . 

i] i] i] 13 i] iJ ІЗ 

Equivalently: 

CJ CJ, r , F , F 
I (1 + 2 A L J A C J ) = - Ι λ* .λ* 
'' 1 1 k 1 1 

i>3 J i>3 J 

CJ 
he e x p l i c i t e x p r e s s i o n f o r A we f i n d : 

- У (XCa) . ( X C a ) = У І2 + 4 σ .σ + \С.\С + 2 XF .XF V 
ι π ' / 3 ι ι i l і З І 

ι>ι J і > т (- J J J J 

(10) 

( Ш 

>: ' i>3 

The two particle operators on the nghthandside can be related to the quadratic 

Casimir operators for the whole system: 

г- -»-2 3 

) σ.σ = 2 J - - N 
' ι 3 2 

i>3 
У λ.λ = 2 С, - 2 N С,(3) = 2 С., - f Ν (12) 
' • i n 3 3 3 3 

ι>] 
2 г I r 

where C , = F = ) F.F = — } λ.λ is the quadratic Casimir operator 
3 ' · ΐ ] 4

ί
' ΐ ι 

ігЗ 1,3 
[Sw 63] in SU(3), which has the value [Sw 66]: 

2 1 2 2 
С (n) = f = j ( p + p q + q ) + p + q 

4 
in the irrep η = D(p,q) . C-(l) = 0, С-ЛЗ) = -г- . 

Eq. (10) is also valid, when applied to the flavor-spin and color, and we find 

in terms of quadratic Casimir operators: 

C, (FJ) + 2 C,(C) = 4 N (18 - N) (10') 

6 3 2 
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where С (С) is the quadratic SU(3,C) Casimir operator. 

Eq. (11) can be recasted too, using quadratic Casimir operators: 

- У (XCa) .(X
C
a) = - 4 У (Pf) . (RJ) = N(N-IO) + ~ J2

 + 4C,(F) + 2C, (C) (13) 
' i n ' • . i l 3 3 3 

i>3 i>D 

2. The sum ranges over all non-strange quarks 

The states can be labeled by quantum numbers belonging to the groups 

U(1,Y) β SU(4,IJ ) β SU(2,J ) β SU(3,C) 

We introduce the 15 SU(4,IJ ) generators B, with b = 1 to 15. For the irrep 

η b 
2 

(4) of SU(4) they are normalized such that Tr B, = 1 and are given by: 
b 

j (т
к
 · 1) , y (I · σ ) and y (τ β a^ with кД = 1,2,3. Here - τ^ with 

2 
к = 1 to 3, normalized such that Tr τ = 2, are the three SU(2,I) generators 

in the SU(2,I) irrep with I = 1/2. The quadratic Casimir operator for SU(4,IJ ) 

has in the irrep (v) the eigenvalue C. (v) and is given by 

C
4 = У V

B
2 

n
l'

n
2 

Therefore 

2 ! B
1
.B

2
 = C

4
 - N C

4
(4) = C

4
 - ̂ -N 

n^n, 

For SU(4) one has: P. = — (- + 2 В..B ). 
i] 2 2 ι ] 

The wave function for the N non-strange quarks is antisymmetric with respect 
η 

to non-strange spin and isospin and color, therefore 

p Ï 2 p ; 2
p ï 2 = - 1 andaiso ^ в 1 - - ^ 

This g ives : 

У x ^ - - I ( ^ г в ^ ) = - X N 2 + ^ N n _ c 4 (14) 
n l > n 2 n l > n 2 

and t h e r e l a t i o n ( u s i n g e q . (12)) : 

C. + 2 С Л С п ) = -pr N (12 - N ) ( 1 4 · : 
4 J IZ η η 

CJ I 
A l so P . p 1 1 P 1 7 = - 1, from which f o l l o w s t h a t (compare e q . ( 1 3 ) ) : 
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У (λ0σ) . . ( Х С а ) 0 = 4 Ν (Ν - 6) + 4 I 2 + ^ - J 2 + 2 С, (С,η) L 1 2 3 n n 3 n 3 

V n 2 
3 N 2 _ N _ c + i 5 2 + 4 Î 2 
4 η η 4 3 η 

3. The sum ranges over all strange quarks 

The states again can be labeled by the quantum numbers belonging to the 

groups 

U(1,Y) β SU(4,IJ ) β SU(2,J ) β SU(3,C) 

η Ξ 

The wave function of the N strange quarks is antisymmetric with respect to 

strange spin and color. Therefore 

P
J s
 P

C
 = - 1 

12 12 

This gives : 

,C .C 5 
λ
Γ

λ
2 " - 3 -

σ
ΐ ·

σ
2 

C C 1 

(λ σ) . (λ σ )
2
 = 3 - - cTj-Oj 

Therefore we get 

S
1

> S
2 

б s 3 s s Ι λ
ΐ·

λ
?
 =
 " ̂  Ν' + "Γ Ν_ - 2 j" (16) 

or using en. (12) : 2 С, (С,s) + 2 J = - N (б - Ν ) 

3 S 6 Ξ S 

г- С С 3 2 2 -»-2 
and - [ (XSJ^.U σ)

2
 = j Ν̂  - N

s
 - y Ĵ  (17) 

S
1

> S
2 

For a general multiquark system the quadratic SU(3,C) Casimirs С-(С,п) and 

С (С,s) for the non-strange and strange quarks do not vanish, but the color 

irreps of the non-strange and strange quarks must be the complex conjugate of 

2 
each other, so C,(C,n) = C-(C,s). Using eqs. (14) and (16), N = y N + Y and 

N = — N - Y, we then find: 
s J 

J
2
 - \ C. + i Y 2

 = -γτ N(N - 18) + f (Ν - 9) Y (18) 

s 2 4 8 12 3 

This equation and eqs. (10') and (14') result from the fact that we consider 

decompositions of totally antisymmetric states. They enable us to calculate the 
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quadratic Casimir eigenvalues for su(6,FJ) irreps and SU(4,IJ ) irreps through 

the related eigenvalues of C,(C), provided the (sub)system has a unique color-

assignment. 

V. The mass operator and SU(6,FJ) tensor operators 

Because of conservation of spin, isospin and hypercharge the mass operator 

M must transform as a spin and isospin singlet with Y = 0. It therefore can 

be expressed in irreducible SU(6,FJ) tensor operators M(y,n) transforming as 

the I = Y = 0 member of the flavor multiplet г̂  with J = 0 contained in the 

flavor-spin multiplet [y]. Thus 

M = Ι Μ(μ,η) 

y,η 

In this version of the bag model these operators Μ(μ,η) are quadratic 

operators constructed from the SU(6,FJ) tensor operators A which transform 

as members of the SU(6,FJ) irrep [35]. The mass operator therefore has parts 

transforming according to 

[35] β [35] = [1] θ [35] φ [35] Θ [189] e [405] θ [280] θ [280 ] , 

s a 

where s and a mean the symmetric and antisymmetric combinations. From the 

tensor operators A we can make quadratic combinations Ώ(μ,η) transforming 

as the I = Y = 0 member of the flavor multiplet ri with J = 0 contained in the 

flavor-spin multiplet [μ]. They are [Be 64]: 

Ω(1,1) = 1 Ω (189,1) = [C
3
 - J

2
] - y^ C

6 

«(405,1) = [C
3
 + J

2
] - j¿ C6 

Я(35
а
,8) = Y S!(35

s
,8) = J

2
 - j Cj + ¿- Y2 + | Cg 

0(189,8, = 3[î2 - I Y 2 - 32
 + a

2] - [сз - h - J [a
2
 - Ì c4 + i γ

2

 +
 Ì с,] 

Ω
«405,8, -

 3 [
ΐ

2
 - i Y

2

 +
 ? - ^ - [Сз

 +
 ^

 +
 f a\ - 1 С,

 +
 i Y

2

 +
 i C

6
] 

0
(1β9,27, = i[î2 - Ì Y2 - î 2

 + î
2] - [Сз - î2] + i [î

2 - i С,
 +
 i Y

2

 +
 i C

6
] 
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Ω (405,27) = i [ i 2 - I v 2
+ î 2 - J 2 ] - [ S + J2] . Ì [ 5 2 - Ì C 4 + Ì Y 2

+ Ì C 6 ] 
3 4 n s 3 3 s z 4 o 6 o 
+ 20 r - 2 3 2, _ 5_ 
+ 3 L J s + 4 Y J 18 C 6 

Si (280,8) = β (280 ,8) = 0 

The mass operator for the N quark states in the bagmodel therefore can be 

rewritten as : 

Μ = Υ ιη(μ,η)Ω (μ ,η) 

μ,η 

where πι(μ,η) are constants calculable in the model. Using for convenience the 

specific operator combinations, occurring in the Si's, we can write 

M = m
0
 + mJC-j - J

2
] + m

2
[C

3
 + J

2
] + m

3
Y + m

4
[ j

2
 - |· С^ + ^ Y 2

] 

r^2 1 2,
 r

->-2 -i-2, У2 2 

+
 m

5
[l - - Y ]

 +
m

6
[ J

n
- J

s
]
 +
m

7
J

s +
 m

e
Y 

Different from the mass operator containing only the contributions Μ(μ,1) 

2 2 
and Μ(μ,8) [Be 64] are the contributions ̂  J and ̂  Y . These tensors come 

Ξ 

in with the Μ (μ, 27) . 

To see which tensors contribute in a particular SU(6,FJ) irrep, we 

have to consider the Clebsch-Gordan series 

[56] β [56*] = [1] θ [35] Θ [405] Θ [2695] 

[490] β [490 ] = [1] θ [35] θ [189] © [405] Θ [2695] <Β ... 

[9 0] β [980] = [1] Θ [35] Θ [175] θ [189] Θ [405] Θ ... 

The irrep [35] appears only once in all these products. Therefore the matrix 

elenents of the operators Ω (35 ,8) and fi (35 ,8) must be proportional as can 

be seen in eq. (18). In principle we then are left with a mass operator with 

8 nonzero coefficients. However, there is some symmetry left, due to the simple 

•*2 •*2 "*2 
form of the bag hamiltonian. The operators С , J , I and J coming only 

from E appear in the bag mass operator in the specific combinations 

1 >2 -+2 1 ->-2 
C, + — J and I + — J (see eqs. (13) and (15)) . The resulting mass operator 
J J S η 

then has the following structure: 

M = a n + а Л с , + | J 2 ] + a.Y + а Л ( I 2 - χ Y2) + \ ( J 2 - J 2 ) ] + a . J 2 + a.Y2 (19) 
0 1 3 3 2 3 4 3 n s 4 s 5 
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Moreover in the product [56] ® [56 ] the irrep [189] does not occur. Therefore 

the matrix elements of Ω(189,η) disappear between states belonging to the 

irreps [56] 9 [56 ] for η = l_, 8_, 2J_. This gives: 

ι -»-2, 9 
<56 C_, - J 56> = v 1

 3 ' 4 

<56| J
2
 - J

2
|56> = <56|l

2
 - -ί Y

2
 + Y - т|56> ι

 n s
i ι 4 41 

<56|j
2
|56> = <5б| У

2
 - Y + т!56> 

I gl I4 4I 

In the relations for the irrep [56 ] Y has to be replaced by - Y. The mass 

operator for the В = 1 and В = 5 states therefore can be simplified to 

M = b
0
 + bjJ

2
 + b

2
Y + b

3
[l

2
 - i- Y

2
] + b

4
Y

2
 (20) 

2 
Цр to the term τ» Y coming from the M(405,27) contribution in this specific 

case, this is the familiar SU(6) mass operator [GO 64]. 

Having performed the summations for the color-magnetic and color-electrxc 

interaction terms in section IV we may collect all terms to yield the following 

mass operator: 

. - , Z „ 2a + a a - a 411
 „„3 0 , ., η s s η .. 

M = —-BR - — + N — Y 
3 R 3R R 

"с 1 ̂ 2 
+ -^ M {N(N - 10) + 4[C, +

 T
 J ]} 

4R ns J J 

+ T | (M - M ) Д Ν
2
 - Ν - С. + 4[î2 + \ J2]} 

4R nn ns 4 η η 4 3 η 

+ 7І i« « -
 м
 » {^N

2
 - Ν - f J

2
} 

4R ss ns 2 s s 3 s 

"с 7 
+ —• (E - E ) { — Ν (12 - Ν ) - С.) 

4R nn ns 12 η η 4 

"с 5 +2 
+ -~ (E - E ) {- Ν (6 - Ν ) - 2 J } 

4R ss ns 6 s s s 

M сап be rewritten in combinations occurring in (19). The coefficients are: 

Ζ 2a + α α 

а. = Ц- BR3
 - -£ + Ν "

 S
 + -rf {Ν(Ν - 10) (f M + \ M ) 

0 3 R 3R 4R 3 nn 3 ss 

+ N(18 - Ν) (Ì M + ^- I)} 

a 
с 

1 R ns 
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a
2
 = - ^ ^ I l

+
^

{
( |

N
- 7 ) (

M n n
-

M s s
)
 + ( N

_
9 ) (

2
S +
 |i,} 

α 
а
т = ̂  ÍM - M ) 3 2R nn ns 

a4 - - ïf <! Й + 2 Е) 

where M = M + М - 2 М and І = Е + Е - 2 Е . Using the values of 
nn ss ns nn ss ns 

the functions a., M. and E.. in Table V, we are able to calculate the 
ι i: 13 

coefficients a to a in eq. (19) for В = 1 to 6 and b to b in eq. (20) 

for В = 1 and 5. They are listed in Table VI and VII. 

В 

1 

2 

3 

4 

5 

6 

a
o 

0.9337 

2.2091 

3.4789 

4.8003 

6.1666 

7.5766 

a
i 

0.0571 

0.0414 

0.0352 

0.0305 

0.0276 

-

a
2 

-0.1896 

-0.1613 

-0.1297 

-0.0992 

-0.0680 

-

а
з 

0.0148 

0.0146 

0.0144 

0.0142 

0.0140 

-

a
4 

-0.00422 

-0.00492 

-0.00523 

-0.00548 

-0.00564 

-

a
5 

-0.00024 

-0.00019 

-0.00016 

-0.00012 

-0.00009 

-

Table VI: The coefficients for the general mass formula (see eq. (19)) 

В 

1 

5 

b
o 

1.054 

6.221 

b
i 

0.0762 

0.0368 

b
2 

-0.1805 

-0.0783 

b
3 

0.0197 

0.0187 

b
4 

-0.0013 

-0.0015 

Table VII: The coefficients for the mass formula for В = 1 and 5 (see 

eq. (20)). 
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VI. Numerical analysis and discussion 

The bag parameters B, Z„, α and m were determined to give the best 

O c s 
o v e r a l l reproduct ion of the l i g h t (B = 1) baryon masses, using one R value 

* 
for the e n t i r e m u l t i p l e t , as well as reasonable values for the Κ, Κ , ω, 

and φ meson masses. The model proves t o be s e n s i t i v e t o v a r i a t i o n in B, 

whereas the other dependencies do not seem t o be very c r i t i c a l . Comparison 

with the values obtained by the MIT-group [DeG 75] shows t h a t α has become 

a l i t t l e smaller and Ζ a l i t t l e l a r g e r . The second parameter s h i f t causes the 

masses t o be somewhat smaller c o r r e c t i n g for the fact t h a t , s ince we do not 

minimize for each s t a t e s e p a r a t e l y , our masses tend t o be s l i g h t l y above 

minimum va lues . The mass spectrum of the В = 2 t o В = 6 baryons does not e x h i b i t 

s i g n i f i c a n t s h i f t s , when changing from one s e t of parameters to the o t h e r . 

In Table VIII the c o e f f i c i e n t s b t o b , following from our parameters, 

are l i s t e d (A), toge ther with the va lues , which we found by t r e a t i n g these 

c o e f f i c i e n t s as independent parameters and determining them d i r e c t l y from 

the baryon spectrum (B). The r e s u l t i n g masses for both s e t s of c o e f f i c i e n t s 

В M. 
Л % "E XP 

< 1.054 

0.762 

! -0.181 

0.020 

1.062 

0.717 

-0.192 

0.035 

-0.0013 -0.0020 

0.939 0.939 0.939 

1.111 1.116 1.116 

1.150 1.186 1.193 

1.300 1.323 1.318 

1.227 1.260 1.232 

1.379 1.401 1.385 

1.529 1.538 1.533 

1.676 1.672 1.672 

Table V i l i : Numerical r e s u l t s for В = 1 (see tex t ) . All values in GeV. 
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are given together with the experimental values. Comparison gives an indication 

about the applicability of the mass formula and its MIT bag analog. The 

calculations were carried out under the assumption that the spherical cavity 

approximation remains reasonable for higher B-systems. 

2 
The confutation of coefficient b , occurring in the term b Υ , which for 

instance breaks the equal spacing in the decuplet, gives the correct sign and 

order of magnitude as compared with the result in column В of Table VIII. The 

value of b, determining the Σ-Λ splitting, is too small, which seems to be 

inherent to the bagmodel. The agreement with the experimental spectrum is 

fairly satisfactory. 

For В = 2,3,4-states the mass operator is diagonal with respect to J, Y 

and I. Mixing occurs between different flavor multiplets with the same J, Y and 

I, when a particular flavor state is a linear combination of some (J , J ) 

states. Since the contribution of the SU(3,F) quadratic Casimir С^ in the 

mass formula is much larger than the contribution of J , J (a, > a,, a.), 

η s 1 J 4 

the mass operator is almost diagonal in flavor. In Figs. 1, 2, 3 the masses 

of the multi-baryon states with В = 2, 3 and 4 and S = 0, -1, -2, have been 

plotted together with the important thresholds. The states are denoted by their 

quantum numbers Ξ, I, J, and the flavor multiplet they (mostly) belong to. 

In Tables IX to XII a complete list of the multi-baryon masses has been given. 

The states that participate in mixing are supplied by an alphabetic that 

indicates the uncertainty, induced by this mixing. Apart from these uncertain­

ties, there are of course the ones due to the bagmodel. The almost complete lack 

of data keeps us from saying anything about the absolute mass scales. This 

is mainly due to the fact, that the hadron mass rather strongly depends on 

the volume-term in E , which may be too simple a picture to maintain for higher 
о 

mass states. The relative positions seem to be more reliable, as they depend 

on the color interaction [DeR 75]. 
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2Θ 

35 

27 

27 
* 

10 
* 

10 

35 

28 

27 

35 

10 

27 
* 

10 

27 

8 
* 

10 

8 

27 

27 

35 

28 

27 
* 

10 

27 

8 

35 

10 

10 

8 

Mass (GeV) 

2.79 

2.49 

2.34 

2.24 

2.34 

2.16 

2.69 

2.91 

2.52 

2.63 a 
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2.34 a 

2.21 a 
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Mass (GeV) 
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2.63 b 

2.43 b 

2.35 

2.54 a 

2.20 a 

2.82 

2.82 

2.94 a 

2.69 a 

3.16 a 

2.74 a 

2.78 b 

2.57 b 

2.89 b 

2.64 b 

2.52 b 

2.71 

2.95 

3.06 

3.29 a 

2.87 a 

3.04 b 

2.79 b 

3.19 

3.41 

3.54 

Table IX: Masses of the В = 2 baryons in GeV. The u n c e r t a i n t i e s , induced 

by the mixing, are a < 10, 10 < b < 20, and 20 < с < 30, 

a, b and с in MeV. 
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3.52 a 
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3.63 
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3.79 b 
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3.66 b 

3.82 a 

3.82 a 

3.68 a 

3.67 

3.75 a 

3.57 a 

3.93 b 

3.68 b 

3.61 b 

3.51 Ь 

3.78 a 

3.64 a 

3.46 a 

Y I J 

0 3 3/2 
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3/2 

1/2 

1 7/2 

5/2 

3/2 

1/2 

0 9/2 

7/2 

5/2 

3/2 
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F 

64 

27 

64 

27 

35 
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27 
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Mass (GeV) 
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3.92 

4.12 b 

3.87 b 

3.98 b 

3.98 b 

3.84 b 

3.79 

3.90 b 

3.72 b 

4.07 с 

3.83 с 

3.76 с 

3.76 с 

3.65 с 

3.94 а 

3.94 а 

3.80 а 

3.62 а 

3.79 

3.79 

3.86 с 

3.68 с 

3.58 с 

4.05 с 

3.80 с 

3.63 с 

3.52 с 

3.76 b 

3.58 b 

T a b l e X: Masses of t h e В = 3 b a r y o n s . 
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3.98 
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Table X continued 



В = 4 

• 

' 28*0 ' 

• 

0 

S = 0 

28*0 

-

35*1 

1/2 

S = -1 

35*, 1 

— 10*1 

0 

28*0 

35,1 

27,2 

27,0 

1 

. . - , I 
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corresponding channel. 
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5.04 a 

4.80 a 

5.40 
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5.34 a 

5.15 a 
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Table XI: Masses of the В = 4 baryons. 
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Table XII: Masses of the В = 1 and 

В = 5 baryons. 
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Next we will discuss some of the the predictions. 

NN system: 

We find one resonance at E , = 2.16 GeV (T, . = 610 MeV) in the S, - D. 

CM lab 1 1 
wave, one in the S„ wave at E =2.24 GeV (T, , = 790 MeV) and two (almost?) 

0 CM lab 

degenerate resonances: one in the D„ and one in the D, - G, waves at 

E =2.34 GeV (T, , = 1040 MeV) . At present we are not able to extract 
CM lab 

information about the widths from the bagmodel. 

The experimental evidence comes mainly from two experiments, the below 

quoted resonance parameters are assignments emerging from the subsequent 

analyses. The first source is a transmission experiment, performed at Argonne, 

using polarized proton targets and beams [Yo 78, Ho 78]. One finds support for 

a D pp resonancelike structure with И = 2.14 - 2.17 GeV and Г = 50 - 100 MeV, 

which, however, by its position is suspected of being a ΔΝ threshold effect 

(cusp), and possibly a S (or G ) resonance at M = 2.43 - 2.50 MeV, Г = 150 MeV. 

ρ 
If these J assignments prove to be correct the uncovered level ordering is 

the inverse of what is expected on the basis of the MIT bagmodel extrapolation, 

and the thereby made approximations need to be reexamined. In the second 

experiment [Ka 77, Na 78, Но 78] the reaction Yd •*• np is studied. Here one 

finds indications for resonant behavior at M = 2.38 GeV (Г <* 200 MeV) , for 

Ρ + + 
which the assignments I > 0 and J = 1 and 3 are favored. This effect could 

be due to the degenerate D or D, states. 

Both experiments agree on the existence of an I = 1, F resonance around 

3.26 GeV, Γ — 100 MeV, which may be interpreted as an L = 1 dibaryon state and 

therefore lies outside the scope of this treatment [Ae 78]. 

YN system: 

In the ΛΝ channel we predict a.o. an (£, 1 ) resonance at 2.21 GeV, an 

+ * + 

(.8_, 2 ) resonance at 2.29 GeV and a (JO , 1 ) resonance at 2.34 GeV. Established 
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[Br 77, Sh 73, Ka 71, Ta 69] is the Лр resonance at the Σ η threshold 

(M = 2.13 GeV) . Because this state can very well be explained in potential 

theory [Sw 62] being the YN equivalent of the deuteron, it certainly is not 

one of the states mentioned above. 

No structures are found in direct Лр scattering experiments [Al 68, 

HaK 77] nor in pp reactions [Ca 78]. The main positive experimental evidence 

comes from interactions with deuterium and heavier nuclei as targets. Four 

mass regions show to be of interest. A region around 2.1 GeV, where a An 

resonance with M = 2098 MeV, Г = 20 MeV has been proposed [Co 64]. Secondly 

a region around M = 2.14 GeV just above the EN threshold where there is weak 

evidence for another resonance [Br 77, Sh 73, Ka 71, Ta 69]. This could be 

the above mentioned (8̂ , 1 ) resonance. Another region around 2.24 GeV, where 

a resonance is found by Shahbazian [sh 73] at 2.25 GeV, Г = 20 MeV. The 

Berkeley data also show a peak at 2.24 GeV [Ka 71], which however, has not 

been confirmed later, by the same group [HaK 77]. Furthermore, an enhancement 

at 2.22 GeV, Г = 20 MeV has been reported by Buran [Bu 66]. This structure 

probably is the (8̂ , 2 ) resonance. A fourth region is around 2.34 GeV where 

the Berkeley [Ka 71], Dubna [Sh 73] and Princeton Penn accelerator [Pi 64] 

data show peaks (statistically not significant) . We would like to assign this 

* + Ρ 

effect to the (_10_ , 1 ) state. Of course additional information about J is 

needed to decide these questions. 

YY and ΞΝ system: 

The most remarkable prediction is that of a bound (\_, 0 ) state at 

2.20 GeV. Furthermore there are the 1 = 0 states at M = 2.35 GeV (8, 1 ) and 

at 2.43 GeV (8, 2
+
) and the I = 1 states at 2.39 GeV (8̂ , 1

+
) and 2.45 GeV 

(8, 2
+
) . 
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For ΛΛ this means a bound state about 30 MeV below threshold in the 

S- wave. The (8̂  1 ) resonance should appear in the S. - D. waves of ΞΝ 

Ρ + 
and possible ΣΣ. Due to the Pauli principle the isoscalar J = 1 state can 

not decay in the ΛΛ channel. 

A possible candidate for the ( £ , 2 ) 1 = 0 state is the ΛΛ resonance 

at 2.37 GeV, Γ = 50 MeV, reported by Shahbazian [Sh 73] and Beillière [Be 72]. 

None of these structures have been confirmed by later, more sensitive 

experiments [Wi 75] . 

If the above arguments are correct, we see that our lowest states are 

consistently 40 - 60 MeV high. This would mean that the ЛЛ bound state may 

even be 90 MeV below threshold at 2.14 - 2.16 GeV. 

Next to the standard resonance interpretation, an alternative is proposed 

by DeTar [DeT 78]. He observes, that the lowest Y = 2 dibaryon state has the 

quantum numbers of the deuteron, but a much higher mass. It is a colorsinglet 

six-quark bag, which part of the time consists of two threequark colorsinglets 

(a proton and a neutron) and therefore is unstable. To study the expected 

fission process he distributes the quarks evenly over 'left' and 'right' 

orbitals, which to good approximation are mixtures of the static spherical 

cavity Is 1/2 (S) and 1рЗ/2 (P) modes of the form: 

q = q - /μ'q , and the plus sign for the right orbital. 
Lm Sm Pm 

By letting μ go from 0 to 1 the two groups of three quarks become completely 

separated. In the course of this variation the shape of the bag changes from 

sphere through peanut to two spheres. Calculating the semiclassical energy 

of the deformed system, he finds that it is minimal at a partial 'two nucleón' 

separation, for some finite value of μ between 0 and 1. This result suggests 

that we may interpret the deuteron like state at 2.16 GeV as manifestation 

of the repulsive, finite height, core in the two nucleón interaction. Between 

this very short range and the free two nucleón limit (1 fm) is an intermediate 
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region of attraction between the two nucléons due to the fact that (with 

decreasing separation) the fusion of the two bags into a single larger one 

initially lowers the quark energy eigen values, because of the larger space 

available. Further refinements and extension to all available channels allow 

DeTar to extract the various two nucleón potential terms (central, tensor, etc.) . 

His results are in, mainly qualitative, agreenent with some of the existing 

potentials, but the model is still too crude to expect quantitative agreement. 

We think this example illustrative of the fact, that the different nature of 

the instability of systems containing color singlet subsystems as compared to 

unstable systems, which decay through e.g. QQ pair creation (Δ,φ,ρ) , may 

require a different interpretation for the parameters characterizing these 

systems. The interpretation, that the singlet baryon pair component is at 

the root of the problem, is also supported by independent analyses of another 

2-2 
hadron system with an exotic quark content, the Q Q system [Ja 78]. This 

configuration displays the first kind of instability at one (low) level of 

excitation, whereas its behavior shows the standard resonance properties at 

another higher one. In the latter case the hadron is successfully described 

as two (quark) concentrations of opposite color, separated by an angular momentum 

barrier. No singlet components are present and decay is supposed to proceed 

2 2 
via QQ pair creation. The Q Q system is the subject of chapter 4. 
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CHAPTER 4: THE Q Q SYSTEM 

Next to the QQ mesons and Q baryons the most simple all quark color-

2-2 
singlet states have a Q 2 (dxmeson or baryonium) configuration. The study 

of these mesons, which quantitatively has become feasible only rather 

recently [Ja 76], is interesting because of several reasons. First of all, 

it is the smallest system, in which the color degrees of freedom are not 

frozen out completely, and as such may provide a way for verifying the 

validity of the concept of color, and add support to the theory of strong 

interactions based on it: QCD. 

Until now, every new degree of freedom but one has manifested itself 

spectroscopically through the increase of the number of physical states. A 

nice example of this is the discovery of the flavor degree of freedom: charm, 

which has opened up an entirely new field of spectroscopy. One has been able 

to produce charm in both its hidden (in hadrons containing equal amounts of 

charmed quarks and antiquarks and therefore without net charm) and overt 

form [Fe 77]. One has identified a threshold, above which strong decay into 

charmed particles is possible. Similarly, the existence of the color degree 

of freedom may be demonstrated by the discovery of colored particles (quarks?) , 

making tnomselves known by characteristic decay patterns. However, no such 

thing as a color threshold has been found, within the present range of 

energies. This is formulated in the color confinement hypothesis which states 

that only color singlet hadrons are physical. This implies, that overt color 

will only be demonstrable at a subhadronic level, e.g. through the scaling 

violations predicted by QCD. However, the hidden form can be detected 

2—2 
through e.g. multiquark systems like Q Q [chH 77, Jc 78]. 

There is only one way in which a QQ meson can exist as a color singlet. 

Because the quarks transform as a color triplet (3) and the antiquarks as a 
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color a n t i t r i p l e t (3*) , the QQ system can i n p r i n c i p l e occur in a color 

s i n g l e t (1) or color o c t e t (8) conf igurat ion · 3 β 3* = 1 ® θ, of which the 

o c t e t has t o be excluded h e r e . Considering for the moment only S-wave hadrons, 

i n which the quarks a l l occupy t h e i r lowest energy eigenmode, and only three 

ρ 
quarkf lavors : u, d and s , one finds two f lavor m u l t i p l e t s : a J = 0 and a 

ρ 
J = 1 nonet . 

3 2 

Also the Q baryon has no color freedom left. The Q (diquark) 

configuration has either a symmetric, color sextet (6) or an antisymmetric, 

color antitnplet (3*) wave function: 3 β 3 = 3* Θ 6. Only the 3* state can 

combine with the remaining quark to form a color singlet. One has: 

6 9 3 = 8 θ 10, i.e. no singlet for the other state. Again one finds two 

Ρ + Ρ + 

flavor multiplets, the J =1/2 octet and the J = 3/2 decuplet. 

2-2 -2 

The Q Q meson consists of a diquark-antidiquark combination. The Q 

occurs in 3* β 3* = 3 © 6*. Now there are two ways to obtain a color singlet. 

First, there is the 3* - 3 singlet. Secondly, also the sextets can be matched 

into a singlet: 6 e 6 * = 2 7 f f l 8 ® l . For each flavor multiplet expected from 

the direct product of two QQ color singlets (1 β 1 = 1), one obtains an 

additional one which is unambiguously confirming the extra color freedom: 

since 8 ® 8 = 1 Θ 8 © 8 _ © . . . , also with QQ color octets a singlet can be 
2-2 

constructed. We find, that already at the level of Q Q S-wave hadrons the 

number of predicted states is beginning to explode. A large amount of 

heavily mixed, generally rather broad hadrons emerges. This illustrates a 

little the nature of complications associated with the extra color freedom. 

To study systems with still more color freedom therefore is not attractive, 

since it also entails an of necessity larger number of quarks, accompagnied 

by an even larger number of flavor spin multiplets, cf. Q δ - The next simplest 

system probably is the Q Q baryonic one [Fu 78]. 
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Secondly, severa l of the Q Q s t a t e s possess remarkable f e a t u r e s , which 

may allow d e t e c t i o n in a large background. In the mass region of the S-wave 

2 2 
Q Q s t a t e s (M ^ 1 t o 2 GeV) a l so many o r b i t a l l y and r a d i a l l y exc i ted QQ 

mesons are expected. These are the s t a t e s known from the n o n r e l a t i v i s t i c quark 

(NRQ) model, which c l a s s i f i c a t i o n scheme provided u n t i l l a t e l y the sole 

candidates for the hadron s t a t e s , reported by the e x p e r i m e n t a l i s t s . Besides 

2-2 
Q Q systems, QCD a l s o p r e d i c t s the exis tence of hadrons, containing only 

glue (g luebal l s) [Ro 77] and both glue and quarks (e .g . QQG) [НоМ 78] . One 

does not expect such conf igurat ions t o be prominent, because the gluon content 

must be converted i n t o colored QQ p a i r s in order t o allow decay i n t o ordinary 

- PC 

QQ mesons. Even the conf igurat ions with e x o t i c J quantum numbers (0 and 

0 , 1 , 2 , e t c . ) do not seem t o be e a s i l y d e t e c t a b l e , both through t h e i r 

weak coupling, and through the experimental ly r a t h e r i n a c c e s s i b l e decay and 

production channels . Some of the dimesons, on the other hand, contain a large 

f r a c t i o n of co lor s i n g l e t meson p a i r s and decay by simply f a l l i n g a p a r t i n t o 

S-wave meson-meson channels . Since severa l of these are even l i g h t e r than the 

corresponding QQ e x c i t a t i o n s , they may be q u i t e prominent. Also because of 

the excess flavor combinations of the four quark system over the two quark 

system, some dimesons have e x o t i c ( i . e . not a v a i l a b l e for ordinary NRQ-model 

mesons) f lavor quantum numbers, which y i e l d c l e a r and uncontested decay p a t t e r n s . 
2-2 

Further d i s t i n c t s i g n a l s are expected t o come from o r b i t a l l y exci ted Q Q 

systems. Here one has t o make severa l a d d i t i o n a l assumptions concerning the 

color dynamics. In the emerging model the hadron i s thought, for s u f f i c i e n t 

large o r b i t a l angular momentum i (SL > 3) , t o c o n s i s t of two quark c l u s t e r s 

of opposi te co lor charge, which are s p a t i a l l y separated by an angular momentum 

b a r r i e r . In our case a poss ib le c l u s t e r i s a diquark in a pure color a n t i t n p l e t 

or s e x t e t or a QQ p a i r in a color o c t e t conf igura t ion . The c o l o r - t r i p l e t type 
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of these hadrons i s supposed t o couple s t rong ly t o baryon-antibaryon- and 

only weakly t o meson-meson-channels [RO 6 8 ] . I t presumably has a usual 

hadronic width (Γ ~ 100 MeV) . The second and t h i r d v a r i e t y are expected t o 

couple weakly t o both these channels, p r e f e r r i n g t o cascade via meson 

emission t o l i g h t e r hadrons with the same c o l o r conf igurat ion [ChH 77] . They 

therefore must be much more narrow, despi te t h e i r high mass. I d e n t i f i c a t i o n 

of such s t a t e s w i l l mean an important support for the concept of c o l o r . 

2 2 
In s e c t i o n I we w i l l s e t the n o t a t i o n and discuss the S-wave Q Q s t a t e s . 

In s e c t i o n I I we focus our a t t e n t i o n on o r b i t a l l y exc i ted QQ mesons, and t r y 

t o read off some dynamical p r o p e r t i e s . In sec t ion I I I the observat ions of the 

2-2 
previous s e c t i o n w i l l be brought t o bear upon the o r b i t a l l y exc i ted Q Q system. 

In s e c t i o n IV a comparison with the a v a i l a b l e data i s at tempted. 

2 2 
Section I . S-wave Q Q s t a t e s [jc 77] 

2-2 
We w i l l c a l c u l a t e the masses of the unexcited or S-wave Q Q mesons and 

obtain the corresponding wavefunctions, using the s p h e r i c a l cavi ty approximation 

t o the MIT bagmodel. To t h i s end, only quarks , t h a t occupy the lowest energy 

e i g e n s t a t e , w i l l be considered. We w i l l a l s o make the r e s t r i c t i o n , t h a t only 

those quark f lavors are taken i n t o account, t h a t correspond t o the smal le s t 

quark mass parameters : u, d and s . 

1. B a s i s s t a t e s 

To study two quarks and two ant iquarks in one bag i t i s most convenient, 

i n view of the FD s t a t i s t i c s , t o take those b a s i s s t a t e s in which the t o t a l 

2 -2 2-2 
(ant i ) quark permutationsymmetry i s e v i d e n t : the Q -Q b a s i s . The Q Q s t a t e s 

2 -2 
are then given by the d i r e c t product of the Q and Q b a s i s s t a t e s . The quark 

wavefunction c o n s i s t s of three p a r t s : 



- 118 -

1. Flavor 

The quark transforms as a triplet (r̂  = 2.) under the flavor group SU(3,F) . 

The states with the correct SU(3,F) transformation behavior are denoted by 

φ , where the labels stand for dimensionality (μ) and quantum numbers (v ) : 
ν 

(υ;ν) = (n;i,i ,y), indicating the total and z-component of isospin and 

hypercharge eigenvalues. We will use the shorthand notation 

u = (3; 1/2, 1/2, 1/3) 

d = (¿; 1/2, -1/2, 1/3) 

s = (_3; 0, 0, -2/3) 

The antiquark transforms as an antitriplet (ri = 3*, where the asterisk is 

used to distinguish it from the three-dimensional quark irrep) . The triplet 

(3*) 3 
and antitriplet are related according to: φ_ = (φ )*η, with 

Q(v) + 1/3 
(-ν) = (i. f -i / -y)· The phasefactor is taken to be real: η = (-) , 

with eQ(v) = (i + y/2)e, the quark charge. The factor 1/3 can be generalized 

to 

1/3 ->• 1/3 · [ (number of quarks - number of antiquarks) modulo 3] . 

One finds the shorthand 

ü = - (3*; 1/2, -1/2, -1/3) 

d = (3*; 1/2, 1/2, -1/3) 

s = Π*; 0, 0, 2/3) 

This convention coincides with de Swart's [Sw 63] for states with integer 

baryon number. Note that I+d = u, but I+u = - d for the isospin raising 

operator I + . The QQ octet then has the following flavor wave functions 

+ „0 + - 0 uu + da 
К = us ; К = ds ; τ = ud ; π = - у—«— 

К = - s u ; К = sd ; π = - du ; η_ = - -τρ (uu + dd - 2 s s ) 

and η = - -Tj (uu + dd + ss) i s the singlet wavefunction. 

One can define the soecial combinations n„ = -r? (uu + dd) and η = ss. 

0 / 2 s 
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When we are referring only to the flavor aspect, the pseudoscalar meson 

symbols will be used without any assumptions for the spin. 

2. Color 

The quark is classified according to the three dimensional defining 

irreducible representation (irrep) с = 3 of color SU(3,C). The conventions 

for flavor are also taken for color. For shorthand one may now use (r,b,y) 

instead of (u,d,s). 

3. Relativistic spin 

The bagmodel gives a r e l a t i v i s t i c covar iant d e s c r i p t i o n of the quark 

dynamics. The space and spin p r o p e r t i e s are represented by means of a Dirac 

- » • - * • - » • 

sp inor , which i s c h a r a c t e r i z e d by the t o t a l spin j (j = i + s ) , i t s z-component 

m, i t s p a r i t y and the r a d i a l quantum number n. The lowest energy quark e igen-

mode has η = 1, j = 1/2 and p o s i t i v e p a r i t y and i s r e f e r r e d t o as the l s l /2 

mode, a name a l so used for the corresponding antiquark g rounds ta te . This 

quark therefore transforms according t o the j = 1/2 i r r e p of the r e l a t i v i s t i c 

spingroup S U ( 2 f J ) . We adopt the Condon and Short ley phase conventions. 

With the quark wavefunctions, we can c o n s t r u c t the diquark s t a t e s . We 

have l i s t e d the d i q u a r k - i r r e p s with the permutation symmetry, 'for c o l o r , spin 

and flavor s e p a r a t e l y in Table I . The ant i-diquark always belongs t o the 

conjugate r e p r e s e n t a t i o n . 

Symmetry c o l o r (c) f lavor (n) spin (j) 

Antisymmetric (-) 3* 3* 0 

Symmetric (+) 6 6 1 

Table I : Permutation symmetry of the diquark c o n f i g u r a t i o n s . 
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With t h e h e l p of t h i s t a b l e we c a n p i c k o u t t h e ( a n t i ) d i q u a r k p r o d u c t 

wave f u n c t i o n s , which meet t h e FD s t a t i s t i c s r e q u i r e m e n t s . We d e n o t e t h e 

a l l o w e d c o m b i n a t i o n s by (c,n^, j ) and l i s t them i n column 1 (2) of Tab le I I . 

Diquark β A n t i - d i q u a r k => Dimeson (c
r ,2ñ2 = ^ 

( C Q 2 ' ^Q2 ' j Q 2 ) ( C Q 2 ' Ч2' J Q 2 ) 

( 3 * , 3 * , 0) ( 3 , 2 - 0 ) 

(3 , 6 * , 1) 

( 3 * , 6 , 1 ) ( 3 , 3 , 0 ) 

(3 , 6 * , 1) 

( 6 , 6 , 0 ) ( 6 * , 6 * , 0) 

( 6 * , 3_ , 1) 

(6 , 3 * , 1) ( 6 * , 6 * , 0) 

( 6 * , 3 , 1) 

№ 
8 Ш 

10* Θ 8 

JO ® 8 

27 Θ 8 Θ 

27 ® 8 θ 

10 Θ 8 

10* Θ 8 

Q_ ffi 

1 

1 

1 

J_ 

J Q 2 Q 2 

0 

1 

1 

0 

1 

2 

0 

1 

1 

0 

1 

2 

l a b e l 

Φ 1 

*2 

фз 

\ 

*5 

φ 6 

Φ 7 

*8 

*9 

•io 

•ll 

•l2 

2-2 
Table II: Flavor and spin content of the Q Q color singlet states 

2 2 
The Q 5 representations are obtained by taking the direct product of the 

2 2 
Q and 5 irreps in each sector. We are only interested in the color singlets 

contained in this product. Other color configurations are not included in 

Table II. We use the convention of listing the diquark properties each time 

before the anti-diquark ones. The isospin (i) and hypercharge (y) content of 

the occurring flavor multiplets is given in Table III. Next to the repre­

sentations with non exotic flavor quantum numbers 8 and 1, we also encounter 
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η I (i,y) 
e 

i (О, 0) 

3_ (1/2, 1/3) ® (0, -2/3) 

3* (0, 2/3) Θ (1/2, -1/3) 

6 (1, 2/3) θ (1/2, -1/3) φ (0, -4/3) 

б* (0, 4/3) β (1/2, 1/3) φ (1, -2/3) 

8 (1/2, 1) © (1 + 0, 0) Φ (1/2, -1) 

10 (3/2, 1) φ (1, 0) θ (1/2, -1) θ (0, -2) 

10* (0, 2) φ (1/2, 1) φ (1, 0) © (3/2, -1) 

27_ (1, 2) Φ (3/2 + 1/2, 1) Φ (2 + 1 + 0, 0) © (3/2 + 1/2, -1) φ (1, -2) 

Table III: Reduction of flavor multiplets г̂  in terms of isospin (i) and 

hypercharge (y) : n_ = J (i,y) . 

Φ 

exotic ones, from the point of view of the non relativistic quarkmodel in 

2 2 
the irreps j_0, 10* and 27. The Q 5 states with singlet or octet flavor-q-

numbers will be called crypto-exotics (C states), the others are true 

exotic (E) states. We will return to flavor matters after treatment of the 

bag hamiltonian and concentrate on the color and spin properties of the 

wavefunction first. 

2 _2 
The Q -Q basis is very useful for taking stock of the allowed states. 

2-2 
To find out, which Q Q states couple to a particular meson-neson channel, one 

has to decompose them in terms of QQ-QQ basis states. The QQ system can 

occur in, color or flavor, octet or singlet configurations with spin J = 0 

or 1. In this basis the quark permutation symmetry no longer is obvious, but 

as a consequence, only definite linear combinations can occur. These are 

2 -2 
found by a recoupling of the Q -Q wave functions. One writes down explicitly 
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2 -2 
the wave function of a suitable Q -Q representative in terms of the quark 

degrees of freedom and determines the overlap with QQ-QQ wave functions, with 

the same quantum numbers, also written in terms of quarks. This can be done 

for color and spin separately. The results are listed in Table IV. Because 

the color and flavor part of the wavefunction both have SU(3) as a symmetry 

group, we have gathered all occurring SU(3) combinations in one table. 

J = 0 

( 1 , 1 ; 0 ) 

( 0 , 0 ; 0 ) 

J = 1 

( 1 , 1 ; 1 ) 

( 1 , 0 ; 1 ) 

( 0 , 1 ; 1 ) 

T a b l e IVa: 

n=i_ 

(3_*-I ;I) 

(6 , 6 * ; 1) 

η = 8 

(Ι* Ι ;£) 

(6 , 6 * ; 8) 

(2*, 6* ,-8) 

(6 , 3 ;8) 

η = Í0_ 

(6 ,3_ -,ΙΟ) 

( 1 , 1 

1 
4 
3 
4 

( 1 , 1 , 

0 

1 
2 
1 
2 

0) 

1) 

( 0 , 0 ; 0 ) 

3 
4 
1 
4 

( 1 , 0 ; 1 ) 

1 
2 
1 
4 
1 
4 

R e c o u p l i n g m a t r i c e s f o r 

а. U 
1 
3 
2 
3 

(i-i-
5 
6 
1 
6 

0 

0 

( 8 , 8 , 

1 

η 

V 

10) 

( 8 , 8 ; I) 

2 
3 
1 
3 

( 8 , 8 ; 8 f ) 

0 

0 

1 
2 
1 
2 

sp 

η = W_* 

(3 ,6 W 

( 0 , 1 ; 1 ) 

2 
1 
4 
1 
4 

i n J : ( 

<i< £'"£> 
1 

12 
5 
12 

4 
1 
4 

(£ 

.*) 

J 

( 1 , 

V 

'£<· 

1 

= 2 

1;2) 

' J Q 2 ' · J ) 

<£'!'·£' 
1 

12 
5 
12 

1 
4 
1 
4 

20*) 

( 1 , 1 ; 2 ) 

1 

~ ( J Q Q ' JQQ> J ) 

η = 2? (£,£;22) 

(6 ,6*;2Z.) 1 

Table IVb. Recoupling matrices for SU(3): (n ->, η-τ ; η) -«-»• (η -, η' ; η) 
^ * -Q¿ --Q¿ — -^3Q ^ 5 — 

Ä / is to be understood over every coefficient, e.g. for — read / 
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2. The hami1tonian (see Chapter 2, II and III) 

2 2 
To estimate the masses of the Q Q meson states, we make use of the MIT 

bagmodel. In this relativistic quark model there is no essential difference 

3 2 2 
in the description of the QQ, Q , Q (3 or other multiquark states. The masses 

of the particles are the eigenvalues M of the spherical bag hamiltonian [DeG 75] 

(cf. Chapter 2, eq. (01)): 

H
 =

 E
V
 + E

G
 + E

M
 + E

E 

4π _
 R
3 ^0 

α (m. R) 

E = — В R - —- : the energy associated with the bag geometry. 

E_ = J n. : the rest + kinetic energy of the n. quarks and anti-
2 i 

quarks with mass m . 

α 
с Г" 

Е„ = —- ) M(m.R,m.R) (Fo). (Fa) . : the mutual c o l o r magnetostat ic i n t e r a c t i o n 
M R . ' i n I T

 э 

i > j J J 

energy of the ( a n t i ) q u a r k s . 
a c г 2 г 

. η /_ r, _ „, „ r, t h e t o t a ] _ c oior 
E„ = — У E m.R.ii iR F. + У E (m. R,m.R) F. F . 

E R ^ l i i . ' - j 1 1 1 Ί 

e l e c t r o s t a t i c i n t e r a c t i o n energy of t h e (ant i) quarks . 

In case of only weak r e s i d u a l i n t e r a c t i o n s between the quarks, one would 

expect the average masses of the multiquark s t a t e s t o be roughly p r o p o r t i o n a l 

t o the number of quarks : QQ ~ 2M ~ 700 MeV, Q ~ 3M ~ 1050 MeV, in case of j u s t 

2 2 
nonstrange quarks . One f inds : Q Q ~ 4M ~ 1400 MeV. This suggests t h a t the 

l i g h t e s t four quark s t a t e s w i l l l i e amid of the h e a v i e r two and t h r e e quark 

ones . I t may then c o n s t i t u t e a good f i r s t order approximation t o take the 

parameters obtained by f i t t i n g the QQ and Q mass spectrum. One has 

В = 56.8 MeV fm~ 

Zn = 368 MeV fm 

B 1 / 4 = 0.146 

Z 0 = 1.84 

m = 0 GeV 
η 

GeV or В 

z0 

m = 0.279 GeV 
s 

α = 2 . 2 0 
с 

Of these В, which is thought to be a property of the vacuum, and m (= 0) 



- 124 -

a r e e x p e c t e d t o be r e a l c o n s t a n t s . The p a r a m e t e r s m and α may, on t h e 

b a s i s of a s y m p t o t i c f reedom a r g u m e n t s , have a weak d e p e n d e n c e on t h e t o t a l · 

m a s s . The b e h a v i o r o f Ζ i s r a t h e r u n c e r t a i n . One s h o u l d n o t e x p e c t t h e 

e s t i m a t e s t o be v e r y a c c u r a t e (+ 50 MeV o r s o ) . However, t a k i n g t h e s e 

2 2 
p a r a m e t e r s w i l l be j u s t i f i e d f o r most Q Q s t a t e s by t h e mass e i g e n v a l u e s . 

The b a g r a d i u s R i s d e t e r m i n e d by t h e c o n d i t i o n , t h a t M = M(R) be 

m i n i m a l : — = 0 . I n t h i s mass o p e r a t o r α (m R) , M(m R,m R) and E (m R,m R) 
oR ι 1 3 ^ - 3 

a r e f u n c t i o n s o f t h e p r o d u c t s o f t h e mass m of t h e q u a r k and t h e b a g r a d i u s 

R. One h a s a ( 0 ) = 2 . 0 4 3 and M(0,0) = 0 . 1 7 7 . For s y s t e m s i n which a l l q u a r k s 

and a n t i q u a r k s h a v e t h e s a n e mass E = 0 . I t i s p o s i t i v e and n e g l i g i b l e 

o t h e r w i s e , due t o o u r c h o i c e o f m - m . For s i m p l i c i t y we t h e r e f o r e s h a l l 

s η 
omit E from our c a l c u l a t i o n s . Final ly we have: F , which i s one of the e i g h t 

Ej 1 

generators of SU(3,C) and takes the form (see appendix B): 

F = — in the i r r e p 3, in case 1 i s a quark labe l (a = 1,. . . ,8) and 

λ Γ 2 
= - — i n t h e i r r e p 3 * , i n c a s e 1 i s an a n t i q u a r k l a b e l , (Tr λ ) = ?, 

and σ , which i s one o f t h e t h r e e g e n e r a t o r s o f S U ( ? , J ) . A c t i n g on t h e q u a r k s 

2 
t h e y a r e r e p r e s e n t e d by t h e P a u l i s p i n m a t r i c e s : T r σ = 2 . 

We can d i v i d e t h e s t u d y o f t h e e i g e n s t a t e s o f Η i n two p a r t s : 

1) V a n i s h i n g q u a r k g l u o n c o u p l i n g : α = 0 ( f l a v o r b a s i s s t a t e s ) 

The h a m i l t o m a n now c o n s i s t s of t h e t e r m s E and E . For a p a r t i c u l a r 

2-2 
m u l t i q u a r k s y s t e m ( h e r e t h e Q Q one) i t s e i g e n v a l u e s o n l y depend on t h e 

number o f s t r a n g e q u a r k s η . T h i s i s a d i r e c t c o n s e q u e n c e o f g i v i n g t h e 

s t r a n g e and n o n s t r a n g e q u a r k s d i f f e r e n t mass p a r a m e t e r s . T h i s s i t u a t i o n , 

ρ 
c a l l e d i d e a l m i x i n g , i s f a m i l i a r from t h e J = 1 v e c t o r mesons, where i t 

c a n be o b s e r v e d m a r a t h e r p u r e form. The 1 = 0 s t a t e s o f t h e o c t e t and 

s i n g l e t : η and η , i n o u r f l a v o r n o t a t i o n , a r e mixed t o s u c h e x t e n t t h a t t h e 
ti 1 
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resulting physical states appear to contain almost exclusively nonstrange, 

η , or strange, η , quarks. One refers to this heavily mixed octet and 

singlet multiplet as a nonet. Also in case of the dimesons it is not proper 

anymore to refer to SU(3,F) irrep dimensions. Rather 

3_* β 3_ = 2. §.
β
2

=
Α§. 

2* β 6 * = 18* §_ β 6* = 36_ 

The ideally mixed states will be taken as basis states for the flavor 

part of the wavefunction. Following Jaffe [Jb 77] we adopt the following 

2-2 
nomenclature for Q Q states with nonet quantum numbers will be denoted by 

a capital C, the other states by a capital E. When a crypto-exotic state 

contains one or two ss pairs the С will be furnished with a superscript 

s or ss respectively. It carries as a subscript the name of the (pseudo-

scalar) meson with the identical quantum numbers. The I = 0 = Y states only 

have a superscript, which may now also be a zero, indicating an exclusively 

nonstrange quark content. The true exotics are labeled by the flavor of the 

meson-meson channel they recouple to. Again pseudoscalar meson names will 

be used. 

2-2 
The Q Q flavor basis states, in terms of quarks, their names, their 

decomposition into proper SU(3,F) multiplets and their recoupling into 

QQ-QQ flavor basis states are given in Table V. The phases of the quark 

wavefunctions are chosen such that the coefficients, occurring in the proper 

flavor multiplet decomposition, are precisely the isoscalar factors, arising 

in the SU(3,F) Clebsch Gordan series Q 9 Q = ¿ Q Q . These extra phases 
θ 

arise from our using short hand. All states have positive parity Ρ = +. 

Combining the results of Tables V, II and IVa, we can now also determine the 

С and G parity properties of our states. This is done by simply looking at the 

expressions for the dimeson representatives in the meson-meson (QQ-QQ) basis. 



(I,Y) Name Quark w a v e f u n c t i o n 

( 1 ' 2 ) 

(1 ,0) 

(3/2,1) E v u u ( d s ) 
ТТЛ 

( 1 / 2 , 1 ) C K - /yuu(us) - / -j (ud) (di) 

(1/2,1) C° (us) s s 

(2,0) E uudd 
πττ 

С - / тг u u ( u d ) - / тг ( u d ) d d 
π 2 2 

(1,0) crj (us) (ds) 

( 0 , 0 ) C 0 / -j uuüü + / - j (ud) (üd) + / j dddd 

(0 ,0 ) CS - / j (us) (üs) - / j (ds) (d i ) 

(0 ,0) C S S s s i i 

( 3 / 2 , - 1 ) Z - ( u s ) d d 
Tilt 

( 1 / 2 , - 1 ) CR - / 1 (ds)dd - / -j (us) (üd) 

( 1 / 2 , - 1 ) C? ( u s ) i i 

( 1 , - 2 ) E ~ s s d d 

Tab le V: F l a v o r b a s i s s t a t e s a) 6 β 6* = 36 

I s o s c a l a r f a c t o r s R e c o u p l i n g t o meson-meson b a s i s 

0 

0 

0 

0 

0 

0 

0 

' * 

- Ί 
'έ 

0 

0 

0 

0 

0 

0 

'i 
-<\ 

0 

'f 
- 4 
'ï 
'è 
- 'è 

0 

' Í 
-'г 

0 

1 

1 

' í 
^ 

1 

' ï 
'f 
'ά 
'f 
'Ä 

1 

'f 
' ! 

1 

κκ 

(πΚ) 

- / f tn0K) - / Ι [πκ] 

( n s K ) 

ππ 

- 'ν1 

/ |· (η3π) + / J (ΚΚ) 

/ 3 / 1 
/ 4 η 0 η 0 - / 4 ^ 

• "Ί 'Vs'+ /i[K¿] 

η η 
s s 

(ПК) 

- ^ f (n0K) + / \ [ « ] 

( n s K ) 

icic 

θ ffi 27 



(I,Y) Name Quark w a v e f u n c t i o n I s o s c a l a r f a c t o r s R e c o u p l i n g t o meson-meson b a s i s 

( 3 / 2 , 1 ) E i i K u u f d i ] 0 1 [πΚ] 

( 1 / 2 , 1 ) C K / | u u [ u s ] + / -j ( u d ) [ d i ] 1 0 / | · [ η 0 Κ ] + / | (πΚ) 

(1 ,0) С^ uu[Ud] / j / y / i [ n i r ] + / I ï ï l T 

( Ь 0 ) С"; (us) [ d i ] - / | / | _ / Ι [ η π ] _ / ì [ K K ] 
π • - — . ' 3 ' 3 ' 2 l " s " J ' 2 

( 0 , 0 ) C S / | (us) [ u s ] + / | ( d s ) [ d s ] 1 0 / 4 [η η ] + / ^- (КІС) 

( 1 / 2 , - 1 ) C R ( u s ) [ u d ] / i / | / I [ n o K ] + / I (πΚ) 

( 1 / 2 , - 1 ) C% s s [ d i ] - / 4 / i - [η К] 

К. J 3 s 
( 0 , - 2 ) E- s s t û d ] 0 1 КІС 

0 

1 

'I 
-'i 

1 

'i 
- ' * 

1 

0 

'h 
' \ 

0 

' I 
' i 

T a b l e V: F l a v o r b a s i s s t a t e s b) 6 β 3 = 18 = θ 9 10 

( 0 , 0 ) C S - / i [ u s ] ( u i ) - / | [ d s ] ( d i ) 1 0 - / | [ η η ] + / | (KK) 
2 2 • 2 0 s 2 

(1/2,1) С [ud](^i) - / i - / 4 / Ì [η K] _ / 2 ( 1 Г К ) 

Is. J J 4 U 4 

(1/2,1) С^ [ d s ] i i / ^ / i - [η К] 
К 3 3 s 

(0,2) E,,,, - [ud]ss 0 1 - KK 

0 

1 

' f 
^ 

1 

•'i 
' ï 

0 

1 

0 

' I 
' ! 

0 

' ! 

^ 

1 

( 3 / 2 , - 1 ) Ε π - [ d s ] u u 0 1 [ π κ ] 

(1/2,-1) С- / f [us]uü + / 4 [ds] (üd) 1 0 - / 4 [n„K] + / τ (πΚ) 
К J J 4 0 4 

(1,0) С̂  - [udlüü - / 4 / 4 ^ 4 [n π] + • у ππ 

(1,0) C= - [ds](Gi) / i / f - / 4 tn π] + / 4 tKK] 
Tl J J ¿ S Ζ 

Table V: Flavor basis states c) 3* β 6* = 18* = 8 Φ 10* 



(I,Y) Name Quark w a v e f u n c t i o n I s o s c a l a r f a c t o r s R e c o u p l i n g t o meson-meson b a s i s 

(1/2,1) 

(1 ,0) 

( 0 , 0 ) 

( 0 , 0 ) 

( 1 / 2 , - 1 ) 

CK 

c s 

c u 

c s 

с к 

- [ud][di] 0 1 / ~ (n0K) - / Ι [πκ] 

[ u s ] [ d i ] 0 1 / i (η π) - / ì (ΚΚ) 
2 s 2 

- [ud][ud] /Ì /| _ / і п
о
л

о
- / | „ 

/ ì [us] [UI] + / | [ds] [di] -/f /i- /Ì (η η ) + /i [K¿] 

[us][ud] 0 1 / i (n ÏC) + / 4 [πκ] 
4 Ό 4 

Table V: Flavor b a s i s s t a t e s d) 3 * 8 3 = 9 = 1 © 8 

2 -2 
Table V: Flavor b a s i s s t a t e s for Q -Q systems. The quark wave function r e p r e s e n t s the member with 

ι 

(1,1 ) = (i,i) in tables a, b and d, and with (1,-1) in table c. The isoscalar factors give £ 

œ 

the weights for its decomposition into the proper SU(3,F) states with the same quantum numbers. ' 

In the last column MM' denotes the linear combination of M and M' charge states with the 

correct total isospm I: MM' = С , M
 M
 M' " . (AB) = / •= {AB + ΒΑ} , [AB] = / — {AB - ΒΑ}. 

m m ι m m 2 2 
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The mesons a r e i n an S-wave w i t h r e s p e c t t o one a n o t h e r . For t h e 36_ and 

S S+I 

9_ Y = 0 s t a t e s one o b t a i n s t h e u s u a l С = (-) and G = (-) f o r m u l a s . 

One c a n a l s o combine t h e Y = 0 members o f t h e ^8 and 18* t o o b t a i n G 

p a r i t y e i g e n s t a t e s . One o b t a i n s t h e l i n e a r c o m b i n a t i o n s {Cw(18) i C..( 18*) }//2. 

M M 

The (+) s t a t e s have t h e a b o v e m e n t i o n e d p a r i t i e s , t h e o t h e r o n e s g e t an 

a d d i t i o n a l (-) s i g n . 

S i m i l a r t o t h e p s e u d o s c a l a r and v e c t o r n o n e t c a s e s , a l s o h e r e d e v i a t i o n s 

from i d e a l m i x i n g a r e e x p e c t e d . V e c t o r mesons a p p e a r t o b e a l m o s t i d e a l , t h e 

p s e u d o s c a l a r o n e s n o t q u i t e . T h i s i s q u a l i t a t i v e l y [Ap 75] u n d e r s t o o d by 

a t t r i b u t i n g t h i s r e m i x i n g t o c o n v e r s i o n o f one i s o s c a l a r c o l o r s i n g l e t s t a t e 

(say η . ) i n t o a n o t h e r one (η ) v i a a m u l t i g l u o n i n t e r m e d i a t e s t a t e . P s e u d o -

s c a l a r quantum numbers r e q u i r e a t l e a s t two g l u o n s , which a l l o w s t h i s p r o c e s s 
2 

a t o r d e r α , v e c t o r m e s o n s need t h r e e g l u o n s and f o r t h e s e s t a t e s t h e m i x i n g 
i s o f o r d e r α . A p p a r e n t l y , t h e p s e u d o s c a l a r r e m i x i n g i s l e s s d e p r e s s e d : t h e 

o c t e t - s i n g l e t m i x i n g a n g l e i s f a r from t h e i d e a l v a l u e . T h i s h a s b e e n 

Ρ 
a t t r i b u t e d , u s i n g a s y m p t o t i c freedom a r g u m e n t s , t o t h e f a c t t h a t , t h e J = 0 

ρ 
i s o s c a l a r s b e i n g l i g h t e r t h a n t h e i r J = 1 b r o t h e r s , t h e e n e r g y d e p e n d e n t 

2 3 
c o u p l i n g c o n s t a n t s a t i s f i e s α ( m l > α ( m l . T h e r e f o r e , α ( m l >> α (in ) 

may be p o s s i b l e . Our v a l u e α = 2.2 i s an a v e r a g e f o r s t a t e s i n t h e 1 GeV 

- PC — 

mass r e g i o n . I n t h e dimeson s y s t e m , QQ i s o s c a l a r s u b s y s t e m s w i t h J = 1 

o c c u r i n c o l o r o c t e t c o n f i g u r a t i o n s , and r e m i x i n g a r i s e s a l r e a d y a t t h e 

0(oi ) l e v e l . The l i g h t e s t d imeson s y s t e m (M = .64 GeV) h a s an o c t e t c o n f i g u r a t i o n 

a b o u t 40 % o f t h e t i m e (see e q (3)) . Al though α i s e x p e c t e d t o b e s m a l l e r t h a n 

i n t h e p s e u d o s c a l a r c a s e ( h i g h e r masses) c o n s i d e r a b l e e f f e c t s may b e p r e s e n t . 

11) N o n v a n i s h i n g q u a r k - g l u o n c o u p l i n g : α ^ 0 

We now l e t t h e q u a r k - g l u o n c o u p l i n g c o n s t a n t become n o n z e r o . Gluons a r e 

f l a v o r l e s s . T h e i r a c t i o n w i l l t h e r e f o r e n o t a f f e c t t h e f l a v o r p a r t o f wave-
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2-2 
function, but mix the color and spin parts. For systems like Q Q , which still 

have very simple color and spin wavefunctions, it is convenient to retain the 

two particle interaction character of the colormagnetic term E of H. This 

M 
method avoids the introduction of color-spin SU(6,CJ) => SU(3,C) β SU(2,J), 

which allows more general conclusions about Q ζ S-wave systems, but i s not 

2-2 
readily extendible to excited Q Q systems. We then have three types of two 

part ic le operators: 0 ( 0 , 0 ' ) , 0(Q,Q') and 0(0,(2'): the operators acting on 

two quarks, two antiquarks, and a quark and an antiquark respectively. We 

le t the prime (') distinguish between different (anti)quarks. Due to the 

permutation symmetry of the quark and the antiquark wavefunctions, there i s 

only one antiquark-quark interact ion: 0(Q ,Q ) = 0(Q,Q) V i , j . 

We have : F .F. - I F a F a = 1 {(F + F ) 2 - F 2 - F 2 } = i F 2 - ± 
i j ^ i j 2 ι j ι J 2 i j 3 

-»· > >2 
σ ·σ = (2 S - 3) 

i D 13 

-*• •* 1 2 4 -*2 
(Fa) -(Fa) = ( ~ F z - i ) (2 S - 3) 

ι ] 2 i ] 3 i ] 

2 
Here F is the quadratic Casimir operator for SU(3,C) for the two particle 

subsystem formed by the fermions i and ], which may be 1, 3, 6 or 8 dimensional, 

and S is the total spin of this subsystem (0 or 1), where ι and j may be 

both quark and antiquark labels, provided ι У j. 

We introduce the following notation (Q ̂  Q'): 

- (FO) (Fa)- = A 

- (F?)
Q
(F?)

QI
 = В 

- (TOJjjdí)-, = С 

From the definitions we can see that В and С will be diagonal in the diquark-

antidiquark basis. Furthermore, they will be identical, when the diquark and 

the antidiquark have conjugate color and spin configurations. This happens in 

combinations which have flavor η = 36 or 9. From Table IV it follows that 
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A cannot always be pure ly d iagonal , s ince Q Q b a s i s s t a t e s recouple t o 

l i n e a r combinations of QQ-QQ b a s i s s t a t e s . In c a s e s , where more than one 

2 2 
p o s s i b i l i t y e x i s t s t o c o n s t r u c t a Q 5 s t a t e with the same spin (J) and 

f lavor (μ,ν) quantum numbers, off diagonal matrix elements w i l l emerge. 

A can be c a l c u l a t e d using the recoupling c o e f f i c i e n t s from Table I I I . In 

the QQ-QQ b a s i s А, В nor C, except for the t r i v i a l one dimensional c a s e s , 

w i l l be diagonal, as a consequence of the imposed FD s t a t i s t i c s . We have 

l i s t e d the thus obtained matr ices in Table VI. 

One can rewr i te the i n t e r a c t i o n p a r t of the hami l tonian: 

α 
E„ = - £ [A{M(Q,Q) + MtQVQ) + fKQ'.Q1)} + В MtQ.Q') + С M ^ Q ' ) ] (1) 

denoting M(Q,Qï = M(m R,m-R). For systems in which all quarks have the same 

mass m, E becomes simply 

α 

E = -~- M(mR,mR) {4Α + В + C} . (2) 

In the f i r s t i n s t a n c e , t h i s makes only sense for m = m = 0 , for a l l f lavor-

m u l t i p l e t s , and m = m for г̂  = 36̂  (see a l s o below) . With our choice of 

flavor b a s i s , only Ε , which a c t s in the color and spin space, has nondiagonal 

matrix elements l e f t . I t " V i l l determine the p r e c i s e co lor-sp in mixtures t o 

go with the f lavor p a r t of the wavefunction. The e i g e n s t a t e s found t h i s way 

are the e i g e n s t a t e s of the f u l l hamil tonian. The s p l i t t i n g between the s t a t e s 
a. 

i s then given by the eigenvalues E = —- M(mR,mR) Δ . Similar t o the ρ-ω, 
Ml R 1 

π-η cases, E again does not lift the isospin degeneracies of systems containing 
M 

identical quark flavors. This is a consequence of the fact that both quarks 

and antiquarks are present. Their combination to the total quantum numbers of 

the system is not restricted by any statistics requirement, in contradistinction 

to the baryon case. We have listed the eigenvalues Δ of the matrix {4A + в + C} 

and the corresponding color spin eigenfunctions in Table VI. For systems 



з J L 
i " Г. 

' 7 

\-2 

О 

L 0 

Г 2 
ι 3 

' 3 

, 0 
L 

- 2 

L 0 

Γ 2 
3 

0 

1 

0 

-

0 

1_ 
3 j 

18* 

r 9 — 
1 8 

1 
18 

ie 

36 
4 

7 

5 

6 

11 

12 

36° 

i i 1 

l i 2 

9 1 

9 2 

e i g e n v e c t o r s 

г " i r ι 
1 .582 .813 ι 

M(GeV) AM(GeV) 

.813 

' / 2 

/i 

.813 

- . 5 8 2 

/ 1 

-'i 

-.582 

.582 

1 

1 

1 

1 

.813 

- 1 0 . 8 4 

- 0 .49 

10 
3 

8 
3 
10 
3 

8 
3 

- 4 . 8 4 

5 .51 

0 

8 
3 

- 4 

8 

0 . 6 4 

1.43 

1.23 

1.63 

1.23 

1.63 

1.12 

1.82 

1.46 

1.63 

1.18 

1.63 

.24 

.17 

.19 

.15 

.19 

.17 

.20 

.13 

.17 

.15 

.20 

.15 

Matrix representations of the two particle operators A = (Γσ)
0
(Ρσ)_ , В = (Γσ)

(
-
)
(Ρσ)

(
-
)ι
 and С = (Fo)-(Fa)- . 

The basis states are corresponding members of the representations, denoted by the labels φ , defined in 

Table II, together with the associated flavor η and sp
1
 η J, notation η . The eigenvectors of the matrix 

{4A + В + С} are listed in column 6 and 7, the eigenvalue in column 8; the top one corresponds to the eigen­

vector in column 6, the bottom one to column 7, if occurring in pairs. The Oth column lists the eigenvalue 

2-2 
of the total hamiltonian, m GeV, corresponding to the Л in the preceding column, for a Q Q system consisting 

exclusively of nonstrange quarks. ЛМ gives the increase in mass when a nonstrange quark is replaced by a strange 
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containing both nonstrange and strange quarks the e igenvectors w i l l depend 

on η , but the v a r i a t i o n s are very smal l . This i s mainly due t o the fact 

t h a t M(0,m R) and M(m R,m R) are p r a c t i c a l l y l i n e a r i n m R in the r e l e v a n t 
s s s ε 

range of R, and the fact t h a t the in f luence, which the presence of an e x t r a 

s ( instead of n) quark or ss ( instead of nn) p a i r e x e r t s on the s p l i t t i n g , 

i s d i s t r i b u t e d evenly among the two p a r t i c l e o p e r a t o r s . This can be s imulated 

t o good approximation by r e p r e s e n t i n g eq (1) by eq {2), provided M i s replaced 

by a s u i t a b l e average M, or m by an appropr ia te m. The l a r g e s t dev ia t ions are 

encountered in systems with a quark content of the form nnss . Even here the 

deviat ion from the m = 0 - e igenvectors in the f i n a l r e s u l t w i l l be only 2 

or 3 t e n t h s of a p e r c e n t for the dominant modes, m the f i n a l , recoupled r e s u l t . 

We find t h a t the order ing of the l e v e l s i s the same for a l l values of η . The 
s 

deviations are of the order of 10 MeV, whereas the spacings are 50 MeV or more. 

Examining the resulting mass spectrum we find, that the lightest, most 

PC ++ 
strongly bound dimeson multiplet is a nonexotic J = 0 nonet! This is 

consistent with the general rule for finding the lightest Q Q multiplet [Je 77], 

which can be read off from the expression for E in terms of SU<6,CJ) invariants. 

It consists out of taXing two steps. The first is to put the quarks and anti-

quarks separately in the most antisymmetric, i.e. smallest, flavor representation, 

here the 3* and 3̂. This step implies small total flavor irreps. The second step 

2 2 2—2 

is to accomodate the Q and ζ in the smallest SU(6,GJ) Q Q irrep. This is 

the one in which all allowed color and spin orientations occur with equal 

weight. This favors small total spin values, here J = 0. 

To obtain the wave functions, in the meson-meson basis, one proceeds by 

diagonalizing E for a specific member of the multiplet, which yields a linear 

combination of the color and spin wave functions : e.g. ψ = .813 φ - .582 φ 

for С (1.82). With the help of Tables IV and V these then are recoupled to 
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the meson-meson b a s i s . We find e . g . 

C 0 (1.82) = / j {0.743 ω-ω + 0.041 η ^ - 0.169 ω-ω - 0.646 lU-n^J 

- j {0.743 p-p + 0.041 π·π - 0.169 £_•£_ - 0.646 π_·τι_} (3) 

Here the p a r t i c l e symbols s tand for the corresponding p a r t i c l e s and conta in 

the f lavor and spin informat ion. The color o c t e t s t a t e s a re underlined t o 

ρ 
d i s t i n g u i s h them from the s i n g l e t s : π_ i s a J = 0 i s o t n p l e t color o c t e t 

meson, b u i l t from nonstrange quarks . 

0 
Considering the wavefunction of С one f inds , t h a t the four quark s t a t e , 

whose radius (and mass) was determined by the balance of the quark pressure 

and the vacuum p r e s s u r e , turns out to be in a two color s i n g l e t meson s t a t e 

for about 55 % of the t ime. These mesons form (smaller) bags of t h e i r own, 

and there i s no boundary condi t ion which keeps them i n s i d e the l a r g e r bag, 

nor i s there any reason, why they should c o n t r i b u t e t o the quark pressure in 

the big bag. This l a t t e r phenomenon generates large u n c e r t a i n t i e s for the 

r a d i u s - and mass-value of the bag s t a t e , on top of the c a l c u l a t i o n a l ones . 

The former impl ie s , t h a t С i s unstab le , i n an approximation in which s t a t e s 

l i k e the ρ meson and the Δ baryon s t i l l are s t a b l e . I t s l a r g e s t component i s 

a free two meson system. Such p r o p e r t i e s make a conventional (resonance) 

i n t e r p r e t a t i o n for s t a t e s far above the threshold somewhat dubious. 

A s i m i l a r s i t u a t i o n in the Q system: the deuteronl ike s t a t e a t 2.16 

GeV c o n s i s t s for 80 % out of colored and for 20 % out of c o l o r l e s s baryon 

p a i r s , the l a t t e r of which are NN (11 %) or ΛΛ (9 %) , led DeTar [DeT 78] t o 

c a l c u l a t e the energy of a deformed bag and deduce the form of the NN 

p o t e n t i a l from i t . The 2.16 GeV deuteron s t a t e shows up as a sof t repuls ive 

2-2 
c o r e . For the Q Q system a d i f f e r e n t approach has been taken by Jaffe and 

Low [Ja 78] . They s tudied the phaseshi f t in a (multichannel) meson-meson 

s c a t t e r i n g p r o c e s s . I t tu rns out t h a t only a resonant phase s h i f t i s 
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o b t a i n e d , when t h e Q Q b a g s t a t e i s be low o r a t t h e dominant d e c a y ( see 

below) t h r e s h o l d . When j u s t above i t a b r o a d non r e s o n a n t e n h a n c e m e n t i n t h e 

c r o s s s e c t i o n w i l l be s e e n . F i n a l l y a b a g s t a t e f a r above i t s d o m i n a n t 

t h r e s h o l d g i v e s r i s e t o a s l o w l y f a l l i n g n e g a t i v e p h a s e s h i f t . T h i s l a s t 

c a s e i s c o n s i s t e n t w i t h DeTars s o f t c o r e i n t e r p r e t a t i o n . 

The c o n n e c t i o n w i t h t h e decay c h a n n e l s can b e made by a s s u m i n g , t h a t 

t h e c o l o r s p i n r e c o u p l i n g c o e f f i c i e n t s g i v e t h e d e c a y a m p l i t u d e s , up t o a 

u n i v e r s a l c o u p l i n g c o n s t a n t g . The d imesons a r e a b l e t o d i s s o c i a t e i n t o two 

m e s o n s , which a r e i n a r e l a t i v e S-wave, w i t h o u t any e f f o r t o r i n h i b i t i o n . Any 

o t h e r decay mode, b e c a u s e i t w i l l need a d d i t i o n a l (g luon) i n t e r a c t i o n s , i s 

e x p e c t e d t o be s u p p r e s s e d and i s c o n s e q u e n t l y n e g l e c t e d . 

I n t e r m s o f v e c t o r (V) and p s e u d o s c a l a r (P) mesons t h e wave f u n c t i o n o f 

a member of t h e l o w e s t 0 f l a v o r n o n e t r e a d s : 

ψ ~ - 0 . 0 4 1 V-V + 0 . 7 4 3 Ρ·Ρ + 0 .646 V-V - 0 .169 P . P 

These l i g h t s t a t e s o n l y c o u p l e t o t h e S-wave p s e u d o s c a l a r c o l o r s i n g l e t meson-

meson c h a n n e l s . T h e i r d e c a y t h e n i s g o v e r n e d by a r e d u c e d c o u p l i n g c o n s t a n t : 

g = 0 . 7 4 3 g , and t h e r e l a t i v e s t r e n g t h s can b e r e a d o f f from T a b l e Vd. I n 

T a b l e VII we l i s t t h e n o n e t members, t h e i r mass and d o m i n a n t decay modes, a s 

w e l l a s a t e n t a t i v e a s s i g n m e n t . 

Name 

c 0 

с к 

с к 

c s 

IT 

c s 

(I,Y) 

(0,0) 

(1/2,1) 

( 1 / 2 , - 1 ) 

(1 ,0) 

(0,0) 

Mass (GeV) 

0 .64 

0 . 8 9 

0 .89 

1.12 

1.12 

F l a v o r ( 

- / τ Vo 
/ i %K) 

/ i < V> 
/ ì <V) 

^ ' V s ' 

-

-

+ 

-

+ 

content 

/ 3 
/ - Τ Π Τ 

/ f [irK] 

/ f UK] 

/ J (KK) 

/ | [KK] 

Decay 

ππ 

тгк 

πκ 

ηττ, КІС 

KK 

Ass ignment 

e (650) 

к ( 8 5 0 ) 

<(850) 

δ(980) 

S* (980) 

PC ++ 
Table VII: P r o p e r t i e s of the J = 0 , n = 9 dimesons. 
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I n c o m p a r i s o n w i t h a QQ n o n e t , s a y t h e J = 1 n o n e t , t h e i d e n t i f i c a t i o n 

of SU(3,F) s t a t e s w i t h t h e p a r t i c l e s i s i n v e r t e d . I n t h e QQ n o n e t t h e ρ and 

ω c o n t a i n no and t h e φ two s t r a n g e q u a r k s , a p p r o x i m a t e l y , and t h e K* o n e . 

2-2 s 
C o n s e q u e n t l y : m(p) =; πι(ω) < m(K*) < т ( ф ) . I n t h e Q Q n o n e t t h e p - (C ) and 
ω- (С ) l i k e s t a t e s a r e h e a v i e r t h a n t h e К*- (C ) l i k e s t a t e s , s i n c e t h e y 

c o n t a i n an s s p a i r , с o n l y c o n t a i n s one s t r a n g e q u a r k , and i s , i n t u r n , 
1С 

h e a v i e r t h a n t h e ф - 1 і к е (С ) s t a t e , which c o n t a i n s n o n e . One h a s 

s s 0 

M(C ) =i M(C ) > M(C ) > M(C ) '. T h i s i s a v e r y p e c u l i a r c o n s e q u e n c e of t h e 

i d e a l m i x i n g . The p r e d i c t i o n s seem t o be c o n f i r m e d by e x p e r i m e n t . Both 

S-wave ττπ and πΚ (πΚ) p h a s e s h i f t s a r e non r e s o n a n t , y e t s l o w l y v a r y i n g and 

n o n z e r o i n t h e c o r r e c t mass r e g i o n , s u g g e s t i v e o f t h e p r e s e n c e o f p a r t i c l e s 

w i t h a mass o f a b o u t 650 and 850 MeV r e s p e c t i v e l y . Ξ* (980) l i e s a t t h e 

KK t h r e s h o l d , and m a n i f e s t s i t s e l f a s a n a r r o w peak i n t h i s c h a n n e l . The 

o b s e r v a t i o n of a l s o a ττπ d e c a y s i g n a l i n d i c a t e s an E - a d m i x t u r e t o t h e S * . The 

b r a n c h i n g r a t i o s i n t o KK and ιτττ, which a r e n o t known a t p r e s e n t may p r o v i d e a 

c l u e w . r . t . t h e s t r e n g t h o f t h e d e v i a t i o n from i d e a l m i x i n g f o r t h e i s o s c a l a r s . 

The 5(980) i s s e e n t o decay i n KK and η π , b u t i s s u p p r e s s e d i n t h e l a t t e r 

c h a n n e l b e c a u s e of t h e l i m i t e d η c o n t e n t o f t h e η . 

s 

T h e r e a r e s t r o n g i n d i c a t i o n s f o r a n o t h e r c o m p l e t e 0 n o n e t , a r o u n d 

1300 MeV, which may p r o v i d e t h e c a n d i d a t e s f o r an o r b i t a l l y e x c i t e d QQ 

s y s t e m , which i n d e e d i s e x p e c t e d m t h a t a r e a (see T a b l e V I I I ) . 

2-2 PC ++ 

The n e x t Q Q m u l t i p l e t t o be e x p e c t e d i s t h e J = 0 , n = 36^ 

m u l t i p l e t . I t s l i g h t e s t members a r e p r e d i c t e d a t 1.120 GeV, among which an 

e x o t i c I = 2 ττπ s t a t e . The e x o t i c I = 3/2 Κτ s t a t e i s e x p e c t e d a t 1.320 GeV. 

Al so f o r t h e s e s t a t e s p h a s e s h i f t i n d i c a t i o n s seem t o e x i s t a t a s l i g h t l y 
2-2 

l o w e r m a s s . From t h e above s t a t e d c o n s i d e r a t i o n s i t may be c l e a r t h a t Q Q 
s p e c t r o s c o p y h a s e n t e r e d a h o p e - i n s p i r i n g s t a d i u m , and t h a t t h e e f f o r t t o 
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crea te new approaches t o thxs subject these l a s t few y e a r s , i s beginning 

t o bear f r u i t s . We w i l l see, t h a t more support for these s t a t e s can be 

drawn from the study of o r b i t a l e x c i t a t i o n s for these systems, t o which 

we s h a l l now proceed. 

Section I I . Mesons and angular momentum [jp 76] 

Next t o the s p h e r i c a l bag, which appears to be a good approximation for 

a system of l i g h t (or even massless) quarks i n t h e i r lowest energy e i g e n s t a t e , 

a l s o the s t r m g l i k e bag has y ie lded severa l i n t e r e s t i n g r e s u l t s . I t i s a 

d e s c r i p t i o n for hadrons, which have a high o r b i t a l e x c i t a t i o n , and whose 

o r b i t a l angular momentum i s such, t h a t i t i s the l a r g e s t one compatible with 

t h e i r mass, i . e . for hadrons which l i e high on the leading Regge t r a j e c t o r i e s . 

Following Johnson and Thorn [ jp 76] , one t r i e s t o give the bag such a 

shape t h a t , c l a s s i c a l l y and n o n r e l a t i v i s t i c a l l y , i t has the l a r g e s t moment 

of i n e r t i a for r o t a t i n g around a well chosen a x i s . For t h i s purpose the 

following conf igurat ion seems t o be the most s u i t a b l e one t o s t a r t wi th . One 

takes the bag t o be a s t a t i c cy l inder of length Ь and p l a c e s a s e t of quarks 

(and antiquarks) a t each end. Their number need not be the same. The quarks 

a г a г а 
a t one end combine t h e i r c o l o r charges t o a t o t a l charge Q = ¿ Q = g ¿ F » 

ι ι 
which transforms according to the SU(3,C) irrep с The total system must be 

in a color singlet state, therefore the quarks at the other end will form the 

opposite charge. The simplest set possible consists of a single quark, a 

color triplet. An obvious match then is the single antiquark set, and one has 

a model for an excited or Q-Q meson. Another common antitriplet is formed by 

2 
a diquark. This yields a model for the excited or Q-Q baryon. One color 

charge acts as a source (obviously с ̂  1) for a chromo-electric field Ε , 

which is taken to be homogeneous over the whole cylinder, and the other as 

sink. The flux lines of this field run parallel to the cylinder axis, in 
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uv 
order t o s a t i s f y the l i n e a r bag boundary c o n d i t i o n : η G = 0 , which for 

μ a 
•+• -»-a •+• 

the s t a t i c case ( subscr ip t 0) reduces t o η·Ε = 0. Here η i s the ordinary 

space normal of the cy l inder s u r f a c e . When the surface moves, i t develops a 

fourth component η ^ 0. 

I t i s assumed, t h a t the influence of the quarks i s only f e l t a t the 

ends of the e longated bag. Their function i s t o generate and end the flux-

l i n e s , and smooth out any d i s c o n t i n u i t y which may a r i s e in t h i s tube 

approximation a t the top and the b a s i s of the c y l i n d e r . This impl ies , t h a t 

the vacuum pressure a t the s ides of the cy l inder w i l l be balanced exc lus ive ly 
by the gluon f i e l d . One has (eq 2 (25)) В = - — G G , which reduces t o 1 4 a μν 

В = — J E . Using Gauss' law we find E A = Q or E = Q /A , where A. i s 
a 

the cross s e c t i o n of the c y l i n d e r , which has i t s normal p a r a l l e l t o the 

c y l i n d e r a x i s . The s ize of A- i s a function of the color charge and the bag 

2 1/2 2 
parameters according t o : A„ = {2πα f /в} , where f i s the eigenvalue of 

D e c с 

the opera tor \ F in the i r r e p c : f = <с|У F | c > . I t s sca le derives from 
a 2 4° V-l^ 

the bagpressure B. One has (f = — ) R- = /Α /π = 1.59 fm (cf. the proton has 

a rad ius of 1 fm in t h i s model) . 

The p r e s s u r e a t the top and bottom plane w i l l be balanced by quarks and 

glue t o g e t h e r . This w i l l determine the remaining parameter Z. The s i t u a t i o n 

descr ibed above i s c l e a r l y unstable for l i g h t quarks . Nothing opposes the 

color e l e c t r i c f i e l d , which w i l l p u l l the two s e t s of quarks towards each 

o t h e r . The cy l inder c o l l a p s e s : M = M(l) w i l l only be minimal for I = 0 . 

S t a b i l i t y w i l l be r e a l i z e d by l e t t i n g the cy l inder r o t a t e . One chooses an 

a x i s through the c e n t e r of mass, perpendicular t o the symmetry a x i s , with 

r e s p e c t t o which the i n e r t i a l moment i s maximal. To obta in the l a r g e s t 

poss ib le angular momentum for fixed bag length I, we l e t the tube r o t a t e 

with a uniform frequency ω, such t h a t the endpoints move a t the speed of 
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light. Since we did not put any restriction on the distribution of the quarks 

over the ends of the bag to obtain a color charge Q , this implies that the 

quark energy has to be negligible w.r.t. that of the glue. The centre of mass 

should (in first approximation) be equidistant to both ends. 

To an observer, somowhere on the rotation axis, at rest w.r.t. its 

centre of mass, the bag now no longer looks like a cylinder (Fig. 1). Consider 

a point inside the bag or on its surface. It has a distance χ from the rotation 

axis, and therefore moves with a speed β = ωχ. When χ = — , the point is at 

2 
one of the bags' ends, 6 = 1 and we find ω = y . In order to determine the 

important properties of the rotating bag one starts from the observation, that 

the points on the rotation axis are at rest. In their rest frame, the cross 

section of the bag is a circle with radius R , rotating with frequency ω. The 

-*-a 
electric field going through the bag, has a constant strength Ε , perpendicular 

to this surface. There is no magnetic field. For every χ there is a set of 

Fig. 1: Tubularbag with length Î., rotating with frequency ω = — , around an 

axis through the bag's centre of mass, perpendicular to the symmetry 

axis, as seen by an observer at rest w.r.t. the rotation axis. 
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Fig. 2: Cross section of the rotating bag of Fig. 1, taken perpendicular to the 

rotation axis. 

points which have identical properties in their instantaneous rest (ir) frame. 

Boosting these socalled central points back to their original velocity в they 

constitute the mayor axis of an ellips, which has its minor axis, length 

2R / 1 - Β , parallel to 3 (Fig. 2). The area of the cross section now has 

Ι Ί 
become A = A- ν 1 - β . The transformed electric field strength is 

->a "*• "*"a a a 

Ε (β) = γ E and remains perpendicular to the surface A. One has E A = Q . 

An additional effect of the boost is the presence of a magnetic field 

-•a •*• -̂ a a a "̂ а "*"а 

Η = 3
χ
Ε , H = 6 E . W e will use these expressions for Η , E and A in 

our calculations. Other choices are also possible and, of course, related 

>a -•a 
by boosts and rotations. The fields E and Η , obtained by special Lorentz 

transformations from E naturally satisfy the bagboundary conditions, which 

are Lorentz invariant statements and thus also determine the shape of the 

rotating bag. Note that the top and bottom surfaces of the bag have shrunk 

into lines, reducing the role of the quarks still further. 
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We have now determined the necessary quantities to be able to calculate 

the mass and angular momentum of the rotating bag. There are three contri­

butions to the mass 

M
 =

 E
G

 + E
Q

 + E
V

 ( 4 ) 

and two to the orbital angular momentum, which can simply be added for the 

leading tra3ectory 

L = L
G +
 L

Q
 . (5) 

The l a b e l s G, Q and V r e f e r t o g lue, quarks and volume r e s p e c t i v e l y . In case 

of the r o t a t i n g bag —r- Mil) = 0, expressing the balance of the f i e l d pressure 

aga ins t t h a t of the vacuum, a t the b a g ' s ends, w i l l have a root for non-

vamshing I, provided we keep i t s angular momentum L f ixed. This root i s 

equal t o the one we get , when we maxiiaize L for fixed M. 

We w i l l now c a l c u l a t e each c o n t r i b u t i o n s e p a r a t e l y . Ins tead of the 

d i s t a n c e t o the r o t a t i o n a x i s χ i t i s i n t h i s approximation more convenient 

1 
t o use the speed S as c o o r d i n a t e : χ = — β. The volume energy i s : 

L/2 1 , ^ 
E v = В ƒ dV = 2B ƒ dx A(x) = В I J dB A0 / 1 - g = - Β A0 Ζ 

0 0 

= Й ' 
D 

I t i s reduced by a fac tor — w . r . t . the cy l inder volume, due t o Lorentz 

c o n t r a c t i o n . The energy s t o r e d in the f i e l d s i s 

E r = | ƒ dV J iE2
 + Î2) = В A0 I / dB ,1 + &2,y = ^ В An I = 3 BV 

a 0 

Two t h i r d s of t h i s c o n t r i b u t i o n come from the c o l o r - e l e c t r i c f i e l d . I t 

t \ ν r >2 *2 
follows t h a t formally: J dV В = -τ ) ¡ dV (E - Η ) . The energy of the quarks 

2 a a 
a 

is represented by (cf. also [Jo 79]): 

E
Q
 = 2p 

where the ρ indicates that the momentum and energy of a set of quarks at the 
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end of the bag are approximately equal. The contributions are taken the same, 

for both ends, in view of the position of the centre of mass. E does not 

depend on 1. The relevant dimensional parameter is R , representing the size of 

the volume to which the quarks are confined. We include it, to verify, that 

its contribution is indeed negligible w.r.t. the other terms. Summing up: 

H = 2p + π В I A 

The a n g u l a r momentum c a r r i e d by t h e f i e l d s i s : 

L„ = ƒ dV ) r χ (E x Η ) 
G ' L a a 

a 
->• -• 

Using the centre values for E and H we find 
a a 

L

G = B A o ^ 2 / d e 7 7 = 7 = ï B j 2 A o 

The orbital momentum of the quarks is: 

Lß = p г 

The total orbital angular momentum then is given by: 

L = P Z + X B £ A -
4 0 

L π -
We c a n s o l v e : p = ^ - - — B Z - A . 

¿ 4 0 

and eliminate it from the bag mass expression. The bag length Ъ can now be 

determined as a function of L, which is kept fixed: 

Ä M a ) 9 / 2 L π _ . , \ 2 L . ï ï 

L
 = ñ \T+2BA0l) = - ¡ 2 + 2 B A 0 = 0 

Thus I = 1(b) and: 

M = π В I А = 4 BV' (7) 

L = π Β I2 А /4 . (8) 

2 
The final result is an asymptotically linear trajectory in the L-M plane 

L = a' (c) Μ
2
 , (9) 
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2 -1/2 
with α'(с) = (2іг α f В) ' . (10) 

с с 

-2 

Taking с = 3, we obtain α'(3) = 0.88 GeV . Experimentally one finds that 

-2 2 -2 -

а' с 0.9 GeV for Q-Q baryons and a.' at 0.8 GeV for Q-Q mesons. Eqs (9) 

and (10) are a result of treating the bag as a fat string. From this treatment 

follows another result shared with the string. In the dual string model 

(see chapter 1, pg 19) the slope of the trajectory is related to the proper 

tension Τ of the string by 

Τ = (2 π α' ) "
1
 . (H) 

The tension Τ i s defined in the ins tantaneous rest frame of some c e n t r a l p o i n t 

as the amount of energy requi red t o s t r e t c h the s t r i n g by a u n i t l e n g t h . For 

the bag t h i s becomes Τ = — £ E A + В A = 2 В A , c o n s i s t e n t with eq (11) . 
a 

Of course T/A- = 2 В i s not the average energy d e n s i t y of the r o t a t i n g bag. 

This densi ty i s : U = M/V' = 4 В (eq (7)) , in agreement with the general r e s u l t 

for bags containing only massless c o n s t i t u e n t s [Cho 74] . The apparent 

discrepancy i s accounted for by the r o t a t i o n energy. 

After s u b s t i t u t i o n of I, we find t h a t ρ = 0, which means t h a t the quark 

c o n t r i b u t i o n t o both mass and angular momentum can be neglected, and quarantees 

the cont inui ty of the glue determined boundary over the bag ends. All 

s u f f i c i e n t l y h igh-exci ted bags have the same form. Omitting ρ from the 

beginning we find t h a t L and M are homogeneous i n Ζ and again s a t i s f y eq (9) . 

The bag i s a l l ' s i d e s ' . There i s no end sur face, where pressures have t o be 

balanced. I t s shape i s fixed and only the o v e r a l l s c a l e i s s t i l l f ree , t o be 

determined by L or M. 

One can t r y t o specify somewhat b e t t e r which value of L i s a lready 

asymptotic. The re levant condi t ion, t o be expressed i n terms of L i s : 

M >> ρ =* — or {4L-2Fa f } ' >> yd or L >> 1 
R0 
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where we have used a boosted value (Lorentz fac tor γ) of the s t a t i c sphere 

(radius R») r e s u l t (see chapter 2, Table I) : E = for p . This r e s u l t i s 

U 0 2 

not very conclus ive . Because l a r g e r co lor charges ( larger f ) a l so require 

a l a r g e r number of quarks ( larger d) the color charge does not appear t o 

be very helpful in br ing ing asymptotia c l o s e r . The Q-Q meson data suggest 

t h a t the t r a j e c t o r i e s may already run s t r a i g h t from L = 3 for с = 3 t r a j e c t o ­

r i e s . This impl ies , t h a t eq (9) gives a good es t imate of the bag mass 

d i f ferences for L >_ 3. 

The premature onset of asymptotic behavior i s a l so encountered in another 

s i t u a t i o n by Giles [Gl 7 8 ] . Solving the problem of two opposite s t a t i c e l e c t r i c 

charges confined t o an MIT bag in two space dimensions, he obtained both the 

shape and the e l e c t r o s t a t i c p o t e n t i a l for a r b i t r a r y charge separat ion Z·. For 

large Ъ the bag has a c i g a r shape and the p o t e n t i a l i s l i n e a r in 1. The 

second proper ty , however, which dominates the mass spectrum, i s p r e s e n t well 

before the f i r s t . 

To be able t o use eq (9) t o obta in the bagmass, i t s p o s i t i o n in the 
2 

L-M plane needs t o be f ixed. The s t r m g l i k e bag-pic ture does not provide 

any c lues for c a l c u l a t i n g t r a j e c t o r y i n t e r c e p t s . I t i s an asymptotic 

d e s c r i p t i o n for fas t- sp inning p a r t i c l e s . One can t r y t o e x t r a p o l a t e the 

t r a j e c t o r y by assuming t h a t i t i s l i n e a r for a l l L. The d e r i v a t i o n of eq (9) 

i s i n s e n s i t i v e t o the replacement L -»- L' = L - L , where L. i s a (negative) 

c o n s t a n t . We can w r i t e : 

L = a'M 2 + L = a ' (M 2 - MQ) or M2 = M2 + L/a· (12) 

2 2 
Here L (M ) is the intersection of the trajectory with the M = 0 (L = 0) 

2 
-axis in the L-M plane. In general Μ

η
 is not the mass of a physical S-wave 

hadron. These masses should be calculated using the spherical cavity 

approximation and involve quark spin effects, which have been omitted from 
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the discussion so far. For example, vector (triplet) - and pseudoscalar 

(singlet) - QQ-mesons are treated as similar systems, since for high L 

the two quark sets (apart from the color charge) are expected to be complete­

ly ignorant of each others properties, due to the large angular momentum 

barrier in between them. Asymptotically the ρ and π trajectory become 

degenerate. For low L there is no such degeneracy. This is especially clear 

for L = 0, where, in the bagmodel interpretation, color magnetic interactions 

split the singlet (J = 0) from the triplet (J = 1) states (̂  spin-spin 

interaction). For L = 1, if we correct for the spin orbit and tensor type 

splitting, other aspects of the same interaction, it is already much less 

important, whereas for L = 2 it appears to be almost absent. 

This observation suggests the following prescription for calculating 

M- for QQ mesons: it is the mass of a spherical bag, in which no color 

magnetic interactions are taking place between the quark and antiquark. From 

this recipe, it is clear that M is a kind of average of physical state 

masses and L should be negative. M still depends on the number of strange 

2 
quarks. For QQ mesons we expect three asymptotic trajectories in the L-M 

plane: one for nn, one for ns and sn, and one for ss states. The resulting 

-2 
'central' masses, using a tentative slope of a'(3) = 0.83 GeV , and those 

mssons, which may be considered for classification as orbitally excited QQ 

states are listed in Table VIII. This table includes all PDG 78 mesons, 

PC ++ 
containing u, d and s quarks, except the J = 0 mesons discussed in 

section I, and the S, Τ and U NÑ resonances. The observation, that all 

listed states (with possible exception of the p' (1600)) can be classified 

as leading trajectory states, seems to provide us ample justification to 

restrict our attention to this particular configuration. 
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L 
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3 
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М
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I 1
+ + 
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м
с
(і) 

Г 2-
+ 

I 

J 1 

2 

. з " 

М
с
(2) 

Г 3 + " 
2

+ + 

м
с
(3) 

I = 1 (пп) 

π; 138 

ρ; 776 ± 3 

670 

В; 1231 ± 10 

δ'; л, 1270 

А ; -ь 1100 

А
2
; 1312 ± 5 

12Θ5 

А
3
; л- 1640 

ρ'; ̂  1600? 

g; 1688 ± 20 

1685 

1982 ± 9? 

2010 

1 = 0 (пп) 

η,- 549 

ω; 783 

670 

S*; ^ 1300 

D; 1276 ± 3 

f; 1271 ± 5 

1285 

ω; 1668 ± 10 

1685 

h; 2040 ± 20 

2010 

1 = 0 (si) 

η'; 958 

φ; 1020 

990 

ε; -ν 1300 

Ε; 1431 + 3 

f'; 1516 ± 10 

1475 

1840 

2140 

Ι = 1/2 

Κ; 496 

Κ*; 892 

840 

Q ; 4, 1340 

κ; 1400 "ν-

Q
B
,· -ъ 1355 

К**; 1434 ± 

1380 

L; 1765 ± 

К**; 1784 ± 

1765 

2080 

(ns/sn) 

1450 

5 

10? 

10 

Table V i l i : QQ meson s t a t e s . The p a r t i c l e s are denoted as a function of t h e i r 

quantum numbers L, J , P, С and I . The p a r t i c l e names are 

separated from t h e i r masses (in MeV) by a semi-colon. The mass 

i s follower! by an e r r o r , when known, and by a quest ion mark, when 

some of i t s quantum numbers are u n c e r t a i n . When preceded by a 

t i l d e , the mass, and poss ibly a l so some q-numbers are not (well) 

e s t a b l i s h e d . M (L) i s the l i n e a r i z e d t r a j e c t o r y mass. 
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The states with L = 2 and 3 already are quite close to the trajectory, 

which seems to indicate the vanishing of LS, tensor and singlet-triplet 

splitting. Unfortunately, for these L values only the peripherally produced 

J = (L + 1) states are well known. For L = 1 both spin effects are present 

and one can try to estimate their strength. The spin orbit and tensor 

splittings together are several tens of MeV large. This crude estimate 

requires some optimism about the classification of not too well established 

states. E.g. the A.(1100) seems to be a case on its own, which until now 

can hardly be forced into any regular spin orbit scheme and is left out of 

consideration. Also the isoscalars appear to be rather sensitive to the 

inclusion of LS and tensor forces: M(D) > M(f) [MaR 78]; Onp then finds that 

the residual color magnetic singlet-triplet splitting is reduced to about 

20 % of the L = 0 strength. For L = 2 a good guess seems to be 5 %. We will 

add these small residual interactions as perturbations to the mass obtained 

from eq (12), notwithstanding its obvious L dependence, by want of a more 

accurate procedure. This approach appears to work reasonably well. 

The actual trajectories thus prove to be bent for low L, when plotted 

2 
in the L-M plane, but very rapidly converge to a highly degenerate straight 

line. There is a smooth connection between L = 0 and high L. To translate 

this picture to the J-M plane, one replaces L by L1 = J-S. Only the two 

J = L trajectories will remain degenerate for sufficiently high mass. The 

2 
J = L ± 1 trajectories become parallel to these. Also in the J-M plane 

the trajectories will exhibit curvature. 

2-2 
Section III: Q Q mesons and orbital excitations 

In the last decade many resonances, with widths varying from 3 to 

280 MeV, have been observed to couple to the baryon-antibaryon system [Mon 78]. 
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Fig. 3: Quarkline diagram 

for antibaryon-baryon 

e l a s t i c s c a t t e r i n g 

via meson exchange, 

2-2 
or a Q Q intermediate 

s t a t e . 

Among these are several, now well established states, which have been detected 

first in elastic nucleon-antinucleon scattering. This process, which to lowest 

order, proceeds through one meson (QQ) exchange, is depicted in the Haran-

Rosner [Ha 69] (quark-line) diagram of Fig. 3. From this diagram it may be 

clear that meson exchange is closely related ("dual") to the formation of 

2-2 
a resonant Q Q intermediate state. It was on the basis of this duality in 

_ 2 2 

BB scattering [Ro 68] that Q Q states and their properties were first 

predicted. Conform to expectation [Ro 70] many resonances were discovered 

(first) in the BB channels. Surprisingly, several of these also appear to 

couple almost exclusively to them. This phenomenon has started the interest 
2-2 

in orbitally excited Q Q systems of which the present model allows a 

systematic examination. The L = 0 states have been treated in section I. 

The orbital excitations will be studied here. We will first enumerate the 

possible trajectory configurations and proceed with a classification of the 

corresponding states and an estimate of their mass spectrum. 

The QQ system, considered in the previous section, is a minimal one as 

far as color and quark spin are concerned. Asymptotically only one leading 
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t r a j ec to ry survives in the L-M p lane . The Q Q system shows more v a r i a t i o n , 

even i f we r e s t r i c t our a t t e n t i o n to Leading t r a j e c t o r y conf igura t ions . Of 

course , severely deformed bags , with three or four lobes , each of which has 

a t l e a s t one quark in i t , are th inkab le . Such s t a r l i k e formations a r e , 

however, not l i k e l y to maximize the o r b i t a l angular momentum and thus w i l l 

2-2 
be buried under the higher spin s t a t e s . Large I - Q Q spectroscopy, j u s t 

as i t s QQ-companion, i s expected to be dominated by s t r i n g l i k e bags . We assume, 

t h a t quarks in the same c l u s t e r move in s-waves r e l a t i v e to each o the r , 

whereas the c l u s t e r s themselves move in a r e l a t i v e £-wave - This nota t ion w i l l 

fron now on be used for the in terquark o r b i t a l momentum i n ordinary Q-Q mesons 

too . 

- Tra_,ectory conf igura t ions -

The number of independent ways, in which the quarks can be d i s t r i b u t e d 

over two colored c l u s t e r s , increases from one to four, when another QQ-pair 

i s added. Again, one has the s ing le quark c l u s t e r , t h i s time in combination 

with a three quark one. The corresponding so -ca l l ed 3-3*- t ra jec tory i s 

-2 
assumed to have an asymptotic slope a ' (3) = 0.83 GeV (eq (10)) and s t a t e s 

on i t , i n view of t h e i r i n c l i n a t i o n to multi-meson decay, w i l l be ca l l ed 

2 - 2 

three-mesonia. Next, a c l u s t e r may contain a Q or a QQ p a i r . The Q s e t 

can couple t o e i t h e r a c = 3 * o r a c = 6 color charge. The former y i e ld s 

a 3* - 3 or 3-baryonium t r a j e c t o r y [Jb 78] with the usual slope a' (3) , the 

l a t t e r a 6 - 6* or 6-baryonium one [chH 77] with an anomalous slope of 
-2 2 a ' (6) = 0.53 GeV (f, = 10/3) . The name baryonium was proposed by Chew 

[Che 76] for meson s t a t e s which couple dominantly to baryon-antibaryon 

channels . Although t h i s o r d i n a r i l y only app l ies t o the color 3 v a r i e t y , 

i t i s of ten, and a l so h e r e , used in a more general ized sense to re fe r to 
2-2 

o r b i t a l l y exc i t ed Q Q s t a t e s with (ant i )diquark c l u s t e r s . The q u a r k - a n t i -
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quark c l u s t e r can occur i n a c = l o r a c = 8 i r r e p . The neu t ra l s i n g l e t i s 

not i n t e r e s t i n g from the po in t of view of o r b i t a l e x c i t a t i o n s . The 8-8-

-2 2 t r a j e c t o r y has an anomalous slope too , a1 (8) = 0.56 GeV (f = 3) . These 
8 

systems w i l l be c a l l e d 8-mesonia. 

1. Asymptotia (Large o r b i t a l angular momentum region) 

For s u f f i c i e n t l y large I ( i . e . Í >_ 3) the above mentioned c l u s t e r s form 

2-2 
the na tu r a l bu i ld ing blocks in terms of which the Q Q o r b i t a l e x c i t a t i o n s 

w i l l be c l a s s i f i e d . These c l u s t e r s , s i t t i n g a t the ends of the fas t r o t a t i n g 

s t r i n g l i k e bag, can not change color or sp in , because the large angular 

momentum b a r r i e r v i r t u a l l y forbids the exchange of quarks and gluons between 

them. Color f l i p moreover i s impeded by the wide energy gaps, which w i l l 

a r i s e as a r e s u l t of the d i f fe ren t s l opes . The c l u s t e r ba s i s s t a t e s are 

obtained by reducing the d i r e c t product of the co lo r , spin and flavor wave-

funct ions of the (ant i ) quarks con t r ibu t ing , and diagonal ize t h e i r t o t a l 

co lor charge and s p i n . We l i s t the t o t a l quantum numbers of the re levan t 

i r r e p s in Tables IX and XIc. The two and three quark c l u s t e r s each have t h e i r 

own p a r t i c u l a r complications and w i l l be t r e a t e d more or l e s s s epa ra t e ly . The 

ba s i s s t a t e s for the whole system are given by the reduction of the d i r e c t 

product of two 2 - , or a J- and a 1-quark c l u s t e r ba s i s i r r e p s . Only those 

color s i n g l e t s are allowed, which s a t i s f y the general ized P a u l i - p r i n c l p l e . 

- C l a s s i f i c a t i o n -

When both (ant i )quarks are placed in the same c l u s t e r , t h e i r color 

spin f lavor wave function has to be t o t a l l y ant isymmetric . This allows only 

spec i f i c combinations, which i s most c leac ly r e f l e c t e d in the r e s u l t i n g 

flavor i r r e p s (see Table Xa and Xb). There are l e s s r e s t r i c t i o n s on the 
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color spin f lavor p a r t of the wavefunctions, when one of the (ant i)quarks 

i s lodged in a d i f f e r e n t c l u s t e r . Their space wavefunctions are c l e a r l y 

d i s t i n g u i s h a b l e now and have no over lap. The c l u s t e r s w i l l couple t o 

f lavor-quark sp in combinations, which were excluded for the L = 0 dimesons 

(see Table XIc) . Since there i s no energy a s s o c i a t e d with the coupling 

t o o v e r a l l quark spin and f lavor r e p r e s e n t a t i o n s , a l l l e v e l s , with the same 

quark content (n ) , w i l l be degenerate . F i n a l l y , one can have an aggregate 

of two color o c t e t c l u s t e r s . The quark and ant iquark are close t o g e t h e r , 

i n an s-wave with r e s p e c t t o each o t h e r . This assumption excludes the 

e x i s t e n c e of simple r e l a t i o n s between operat ions such as quark permutat ions , 

exchanging the quarks between the bag ends, and space r e f l e c t i o n s , which 

e x i s t for some exc i ted Q baryons. The combination behaves as a colored 

boson. The spectrum of allowed s t a t e s i s now r e s t r i c t e d by the BE s t a t i s t i c s , 

which has t o be s a t i s f i e d by t h i s two colored meson system. When the mesons 

have the same i s o s p i n , hypercharge and spin quantum numbers, one has t o 

d i s t i n g u i s h odd and even L (see Table Xc) . 

- Colormagnetic s p l i t t i n g s -

The presence of more than one quark in a c l u s t e r has y e t another 

consequence. Unlike the quark and antiquark in the QQ meson, quarks i n the 

same c l u s t e r w i l l unhamperedly continue t o exchange gluons. I t i s useful 

t o s p l i t the colormagnetic i n t e r a c t i o n term i n t o two p a r t s : 

α 
E » = ~ r I M ( m R»ni4R) (Fa) · (Fa) 

M R ' ' 1 j 1 Ί 
1 > 3 (13) 

E = E + E „ 
M MR MP 

The r e s i d u a l p a r t E i s t h e i n t e r a c t i o n b e t w e e n q u a r k s i n d i f f e r e n t c l u s t e r s , 
MR 

f a m i l i a r from t h e QQ mesons, and h a s t h e form: 

EMR = ^ m U . / D J (F?)_ · (F<J)_ (14) I m( i , ] ) (Fa) - ( F a ) 
1 1 "'< 
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Content с S η Д Name 

Q
2
 3* О 

6 1 

η 

3* 

3* 

6 

6 

9 

9 

Δ 

- 2 

- 1/3 

2/3 

1 

- 1/6 

1/2 

3* 1 

6 ο 

QQ θ 1 9 - 1/6 χ
5 

8 0 

Table IX: Basic i r r e p s for two p a r t i c l e c l u s t e r s , as a function of the 

quark content Q Q , color c, spin s and flavor n. Also the 

eigenvalues Δ of the two p a r t i c l e o p e r a t o r О = - (Fa) . · (Fa) 

are given (1 (2) : f i r s t (second) p a r t i c l e ) . 

The s u b s c r i p t η € {1,2} of the summation l abe l i n d i c a t e s i t s r e s t r i c t i o n 

to c l u s t e r n. One has m( i , j ) >• 0, for I -*• ·*>, r a the r f a s t , as suggested by 

the QQ-trajectory d a t a . E i s therefore not expected to cont r ibu te for 

large Î.. 

The p e r s i s t e n t p a r t of the colormagnetic i n t e r a c t i o n F. i s composed 

of two c o n t r i b u t i o n s , one for each c l u s t e r : η £ {1,2}. 

E L = J M(i , j ) ( F a ) . - ( F a ) . (15) 
MP . . η η i τ 

ι >D η η 
η η 

The summation i s r e s t r i c t e d t o the quarks in the n-th c l u s t e r . I t i s t r i v i a l 

for the two p a r t i c l e c l u s t e r s . The c l u s t e r b a s i s s t a t e s |a> are eigen s t a t e s 

of E : - (Fa) -(Fa) |a> = Δ |a> . The eigenvalues Δ are a l s o l i s t e d on 

Table IX. 

- 3-Mesonium s t a t e s -

Ä l i t t l e more e f f o r t i s needed for the three quark c l u s t e r . For each 

permutation symmetry of the flavor wavefunction of the diquark, one has two 
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Trajectory Representation 

a) 3*-3 

b) 6-6* 

c) 8-8 

(1,1) 

(1,3) 

(3,1) 

(3,3) 

(2,2) 

(2,4) 

(4,2) 

(4,4) 

(5,5) 

(5,6) 

(6,5) 

(6,6) 

0 

1 

1 

0 , 1 , 2 

0 , 1 , 2 

1 

1 

0 

0 , 2 

1 

0 , 2 

1 

1 

0 

£ 

li* 1 

l i 3 
¿i 

9 

li*] 

l i i 
36 

9̂  Φ 36 

18 Φ 18* 

18 Φ 18* 

І ® 36 

9 Φ 36^ 

_18 Φ 18* 

9 Φ 36 

18 φ 18* 

Π 

Π 

Π 

-Γ 

- ) Ä + 1 

( - ) Ä + S 

l+S 

- ) ί + 1 

( - ) я 

+ 

- η 

- η 

+ 

( - ) * + 1 

( - ) £ + 1 

+ 

- η 

e & о 

e & о 

e а о 

e & о 

e & о 

e & о 

e 

e 

о 

о 

e & о 

e & о 

e 

о 

4/3 

4/3 

2/3 

2/3 

1/3 

1/3 

Table X: Properties of the color singlet two quark cluster product states. 

(i,j) denotes χ. β χ. , where the χ. are defined in Table IX. One 

I 
has Ρ = (-) under space inversion. Í. is the orbital angular momentum, 

which can be even (e) or odd (o) . The isotopie parity (G) of the 

hypercharge Y = 0 members of the flavor multiplets is given by 

G = (-) С , where С is the charge parity of the neutral member, and 
n n 

I its isotopie spin. The restriction on i for the color octet states 

applies only to clusters, which have identical I and Y values. Other 

combinations occur for all I values and an extra (-) sign should be 

added to the С listed above, when appropriate. Δ gives the size of 

the colormagnetic splitting. 
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ways of constructing a (c,s) = (3,1/2) color spin wavefunction. For example, 

the diquark c-s-irreps (6,1) and (3*,0) are both symmetric under simultaneous 

color spin permutation and both can combine with the (3*,l/2) irrep of the 

antiquark to yield an overall (3,1/2) irrep. As basic irreps we take those 

that also diagonalize E . Calculation of the appropriate two particle 

operators proceeds along the lines, specified in section I for the L = 0 

dimesons. Taking all quark masses the same, we have to diagonalize the 

matrix {M} = {2A + B}. The recoupling matrices for color and spin, the 

composition of the basis irreps, and the necessary two particle operators 

are listed in Table XI. We have restricted ourselves to list only 

2- -
Q Q-Q configurations. One, of course, has also the conjugate system 

_2 
Q-QQ , which yields a degenerate mass spectrum. The physical states are 

those linear combinations, which diagonalize G-parity, when they have Y = 0. 

Considering the recoupling matrices and {Μ}, it is not surprising, that 

the eigenvalues turn out to be precisely half as large as those listed in 

Table VI for the J = 0 and J = 2 L = 0 dimeson irreps. Although these 

clusters yield the largest negative eigenvalue for Δ, it also may be clear 

2 
from the color recoupling Q Q ->- (Q2) Qt that orbitally excited states with 

this cluster buildup will be ]ust, if not even more so, elusive as their 

L = 0 brothers, because of the large color singlet content. They have a 

predilection for falling apart into MM* channels (M* is the orbital Q-Q 

excitation with angular momentum I' a I and decays into two or 

more meson states), which means final states with three or more mesons. 

Because there always appears to be sufficient phase space available for at 

least one of the larger decay components of the wavefunction, these states 

are expected to be broad and non resonant and therefore hard to detect. We 

will from now on concentrate mainly on the trajectories with diquark clusters. 
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a) 

(6 , 3 * ; 3 ) 

( 3 * , 3 * ; 3 ) 

a) R e c o u p l i n g 

b) R e c o u p l i n g 

( 8 , 3 ; 3 ) 

-'i 
' ! 

m a t r i c e s 

m a t r i c e s 

U , 3 ; 3 ) 

' ! 

'i 
f o r SU(3) : 

f o r SU(2) : 

b) 

( l , l / 2 ; l / 2 ) 

( 0 , 1 / 2 ; 1 / 2 ) 

l V ' 2Q
 ; VS' 

( j Q 2 ' ^ ' 3 Q 2 Q ' 

« - • 

-*—V 

( l , l / 2 ; l / 2 ) 

-̂ i 
^ 

^ ' » C 

( J QQ ' J Q 

( 0 , 1 / 2 ; 1 / 2 ) 

' * 

'i 
VS1' 

w • 

bQ2 

3* 

6 

6 

3* 

DQ2 DQ2Q 

1/2 

1/2 

3/2 

1/2 

1/2 

3/2 

:
Q

2
Q V ^ 2 Q ^252 

3* 3 β б* 9 © 18* 

15 18 9 36 

Name 

Ф
1 

*2 

Ф
3 

U 
Ф
5 

Ф
6 

с) Quantum numbers of the color singlet three β one quark cluster product 

representations. 

Γ 0 

Г о 

- / i 
1 

5_ 
3 

В 

2 0 

Basis Eigenvector 

- / 11 
3 J 

Γι 
о 

L 

ο Ί 

1 

2 

3 

4 

5 

6 

.582 

I 
.8131 

1 

. 8 1 3 

.582 

1 

.813 

- . 5 8 2 I 
L J 

- . 5 8 2 І 

.813J 

5.42 

0.25 

4 

3 

2.42 

2.75 

4 

3 

d) Matrix representations of the two particle operators A and B. The eigen 

vectors and eigen values Δ of the matrix M = 2A + В (see Table VI) . 

Table XI. 
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2-2 
To arrive at the masses of asymptotic Q Q -trajectory states we still 

have to fix the intercepts M , the strength of E and the way it has to be 

inc luded. 

- I n t e r c e p t -

Building on the success of the M. p r e s c r i p t i o n for QQ t r a j e c t o r i e s , we 

2 2 
w i l l take M_(Q S ) t o be the mass of a s p h e r i c a l bag in which the quark-gluon 

coupling has been turned off. Because of the f a i r amount of co lor s i n g l e t 

QQ-subsystems, there probably i s a non s p h e r i c a l bag shape, which provides a 

lower minimum for the bag mass. The a c t u a l i n t e r c e p t then may be somewhat 

2-2 
s m a l l e r . Compare for i n s t a n c e a l s o M.(Q Q ) = 1.46 GeV for nonstrange quarks, 

3 
with 2M (QQ) = 1.35 GeV, a d i f ference, which i s mainly due t o the (to Q 

and QQ ground s t a t e s ) f i t t e d , geometry dependent parameter Ζ . M. (by 

assumption) w i l l not depend on the color of the t r a j e c t o r y passing through i t . 

This i s only n a t u r a l , because most Í. = 0 dimeson s t a t e s , from which the 

o r b i t a l e x c i t a t i o n s o r i g i n a t e , contain equal (up to f ac to r s 2 or 3) amounts 

of color three and s i x or e igh t and one c l u s t e r s , depending on the ba s i s 

one uses . Mn does depend on the number of s t range quarks η , and t h i s time as 

much as five d i f f e r e n t t r a j e c t o r i e s (for ii = 36) may emerge. 

- Color magnetic i n t e r a c t i o n s t rength -

The e f fec t ive volume for a colored quark c l u s t e r , for some large value 

of Í, w i l l d i f f e r from tha t of the same c l u s t e r a t 11 = 0. F i r s t , there i s the 

reduct ion of the number of quarks and the Dirac-pressure going with i t . Second­

l y , the ne t color charge of the c l u s t e r generates a co lor e l e c t r i c f i e l d , which 

adds a color dependent p r e s s u r e . Because the confinement volums of the quarks 

w i l l not go on growing or shr inking i n d e f i n i t e l y , a new s t a b l e configurat ion 

i s expected asympto t ica l ly , which i s independent of S.. We approximate t h i s 

volume by a sphere of radius R . This enables us to give the color magnetic 
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interaction strength the R-dependence of the Я = 0 bag functions, and 

incorporate the flavor-breaking parameter-free. Because only one length 

scale in the stnnglike bag is independent of Л: Rn, the size of the cluster 

volume will be proportional to i t . One has (see section I I ) : 

2 1/4 
Rn(c) я, (fz) / ч (16) 

О с 

and f i n d s 

R (3) : R (Θ) : R (6) = 1 : (9/4) 1 / 4 : (b/¿)1/ '4 = t : 1.22 : 1.26 
a a a 

The effective volume is larger, when the color charge i s , and the quarks 

consequently are, on the average, farther apart: the color magnetic spli t t ing 

is smaller. I t remains to determine one of the R (c) . We will take с = 3, 

the weakest charge, which will influence the cluster volume the least. 

Interpreting the mass of the intercept M- = (16/3) π В R (massless quarks) as 

the sum of the masses of two clusters, we find R (3) = (1/2) · R . For 

color singlet N-quark bags one has R = r. N , a relation, satisfied by R , 

and consequently by R (3) . The error we make in taking the radius of a color 

singlet two quark bag for the cluster, i . e . in neglecting the color electric 

energy, we compensate to a large extent by continuing to include the volume 

energy, which for large Î. has already been accounted for in the trajectory 

slope. The inflation of the cluster volume with growing color charge in an 

asymptotic phenomenon, which is not encountered for small I. We assume these 

relations to be valid for Î. >̂  3. For 1=2 and 1 we take them, for definiteness, 

to be color independent: R(S.) = R(2) = R - ( І / г ) ^ 3 and R(l) = R · (3/4) 1 ' 3 as 

transition values. We denote the persistent color magnetic interaction strength, 

calculated for R = R (c) by M. Furthermore, R is taken to be independent of 

flavor. 

Extrapolating eq (10) back to i = 0, one could have taken the intercepts 

to be also color dependent, proportional to R (c) . From M
n
(3) = 1.46 GeV one 
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deduces: M0 (8) = 2.68 GeV and MQÍO) = 2.90 GeV. This implies, under the 

assumption that the trajectory is a continuous function of Í, that contrary 

to the 3* - 3 one, the 6 - 6 * and 8 - 8 trajectories will be highly bent 

for small I values. A similar curvature arises for a classical relativistic 

string with massive ends, there the low ί states lie farther away from the 

linearized trajectory as they are more massive [jo 79]. The stringlike bag, 

however, contains the same (almost) massless quarks for all three trajectories, 

and we expect these therefore to be linear, up to color magnetic splittings, 

for all Í. 

- Large I mass formula -

Just as for the Q-Q trajectories, we will treat the color magnetic energy 

3.0 -

2.5 -

20 -
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Fig. 4: Stylized mass spectrum 

for the 3* - 3 

trajectory states 

around {. = 4. 
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contributions as perturbation w.r.t. M 
01 ./£T i /a · (c) . From Table IX it 

follows that this simply amounts to adding the color magnetic interaction 

energies for both clusters, evaluated at R , to M : 
a (J Jc 

\ = "(H + Κ? Δ1 +
 KP

 Δ2 ( 1 7 ) 

2 
This p r e s c r i p t i o n renders the t r a j e c t o r y l i n e a r i n the M -£ plane up t o small 

c o r r e c t i o n s of o r d e r e . Studying Table X, we see t h a t eq (17) p r e d i c t s equal 

mass s p l i t t i n g s ΔΜ for s t a t e s , with the same value of η , с and I. When 

moreover, |м - Μ I и ΔΜ a highly degenerate spectrum r e s u l t s . For the 

3* - 3 t r a j e c t o r y t h i s happens around SL = 4. Such a s i t u a t i o n has , for mass l e s s 

τ, -2 

quarks, been p l o t t e d i n Fig. 4 for our values of M = 85, α ' (3) = 0.83 GeV 

and Mn(3) = 1.46 GeV. This type of degeneracy a l s o occurs for the s e x t e t and 

o c t e t t r a j e c t o r i e s , but a t a la rger value of i. I t i s a c c i d e n t a l and w i l l 

happen again, when 2 | м п с . - M . | =* ΔΜ. I t i s encouraging t o know, t h a t t h i s 

c l u s t e r i n g i s a l so observed exper imental ly . The numerical values for the 

i n t e r c e p t s and asymptotic color magnetic s t r e n g t h s have been given in Table XII. 

^ ^ ^ ^ η 

vv 1 
с 

Μ ( η , η ) 

M(n,s) 

M(s,s) 

0 

1.458 

3 

85 

70 

58 

1 

1.634 

8 

69 

57 

47 

2 

1.8 

6 

67 

56 

46 

Table XII: I n t e r c e p t s M. (in GeV) of the l i n e a r i z e d t r a j e c t o r i e s as a 

function of η . The c o l o r magnetic i n t e r a c t i o n s t r e n g t h M 

(in MeV) between nonstrange (n) and/or s t range (s) quarks as 

a function of the color c . 
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2. Small orbital angular momentum (0 < Ζ •- 3) 

For Я = 1 and 2 the quark clusters will not be as widely separated from 

each other as they presumably are for I >_ 3 and the particles in the different 

clusters will be able to interact with one another. We will try and show that 

this will hardly affect the composition of the clusters. The migration of 

quarks between the bag ends - by means of tunneling - is argued to be 

relatively unimportant, although the angular momentum barrier is only 

moderately high. Consequently the clusters are again the natural basic units 

for the description of the system. The dominant interaction, in our rather 

crude approximation, is found to be that between the static multipole moments 

of the clusters. This situation is very similar to that encountered in the 

Q-Q system with little orbital excitation. 

- The Q-Q system with small Я -

Consider the Í. = 1 Q-Q states. Next to the color electric monopole 

interaction the color magnetic dipole one ^ (Fa) •(Fa)_ appears to be most 

important. These dipole forces are seen to loose their strength with increasing 

I or bag length I = Id) . One does not expect to have an inverse cube law in 

the effective cluster separation for the interaction energy, as in the 

electromagnetic case, because of the confinement of the color fields to the 

bag. Its strength for 1=1 (2) was estimated to be 20 (5) % of that for 

i = 0 (section II, page 147). There may be also a color electric dipole 

contribution ъ F -F- because the quark distribution in the rotating bag will 

not be spherical any longer (cf. Fig. 1) . This interaction has the same color 

dependence as the mutual part of the monopole term and cannot be isolated from 

it for the QQ mesons. There will be no tunneling in the QQ system. Each quark 

will stick to its own end of the bag. When these particles would be able to 

come close together, the color electric field, which supports the dominant 
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p a r t of the angular momentum i, would disappear, thereby v i o l a t i n g an 

important conservation law. In t h i s s i t u a t i o n the quarks can only i n t e r a c t 

by means of the multipole moments of t h e i r co lor charge d i s t r i b u t i o n , 

described above. 

2-2 

Consider next the Q Q s t a t e s with I = 1. This time there i s no conser­

vat ion law which forbids one of the p a r t i c l e s t o tunnel from bag end 1 t o 

bag end 2, provided a t ^east one colored p a r t i c l e s t a y s behind in end 1. This 

2— — 2 2 2 

phenomenon in p r i n c i p l e allows mixing between Q Q-Q or Q-Q2 and Q -5 o r 

QQ-QQ c o n f i g u r a t i o n s . We w t l l now demonstrate, t h a t the p r o b a b i l i t y for t h i s 

t o take place i s r a t h e r sma\Ll. 
2 

- The Q -Q b a s i s s t a t e s and tunnel ing -
2 

The argument r e s t s on what i s observed i n an I = 1 (or 2) Q -Q baryon 

system. To avoid i n e s s e n t i a l complications we w i l l take the Δ-like configura­

t i o n as example. We denote the s i t u a t i o n , t h a t quarks 1 and 2 res ide m bag 

end 1, and t h a t quark 3 s i t s in bag end 2, by |φ> = ¡Q,Q' - Q ' ^ = ] l , 2 -3> . 

When p a r t i c l e 2 tunnels to the o ther end, t h i s s i t u a t i o n la changed to 

І Ф ^ = | l - 2 , 3 > . The f i n a l s t a t e again i s a Q -Q baryon with 1=1 (or 2) . The 

nonzero energy a s s o c i a t e d with t h i s process i s given by the matrix element of 

the tunnel ing hamil tonian Η between these s t a t e s , denoted by m, , , = ^ ' |н |ф>. 

This operator conserves the o v e r a l l quantum nimbers of the system. I t has 

J = I = Y = 0 and с = 1. I t a n n i h i l a t e s a quark in one bag end and r e c r e a t e s 

i t in the o t h e r end of the same bag. Because the i n i t i a l baryon i s transformed 

t o a s imi la r one, H can be expressed in terms of symmetry o p e r a t o r s of the 

baryon system- in t h i s case the permutation opera tor of quark 1 and 3 (P.-J 

and the space invers ion o p e r a t o r P. We f ind: H = т Ш -Ρ ,·Ρ , and 

file:///east
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m = <ф , |Н т |ф> = <l-2 ,3 |mU) · Ρ 1 3 · Ρ | l f 2-3> = m(î.) . (IB) 

For Q baryon systems, the color wave function i s unique [Mu 79] . This 

impl ies t h a t the permutation symmetries of the space and flavor spin p a r t s of 

the wavefunction are complenentary. The tunnel ing hamil tonian p r imar i ly a f f ec t s 

the s p a t i a l configurat ion of the system. In as much as i t has a d i f f e r en t 

e f f e c t on systems with d i f f e r en t space o r equ iva len t ly f lavor spin p r o p e r t i e s , 

i t s con t r ibu t ion to the hamil tonian can be expressed in terms of f lavor spin 

p ro j ec t ion ope ra to r s . One ha s : 

HT = ( - ) £ + 1 mU)-<2 P 5 6 - P70) . (19) 

Ρ i s the p r o j e c t i o n o p e r a t o r on the N-dimensional f lavor spin i r r e p . In the 

quark-diquark ( c l u s t e r ) b a s i s t h i s o p e r a t o r has off diagonal matrix e lements . 

A f i t t o the baryon mass spectrum y i e l d s m(l) = 100 MeV, m(2) = 45 MeV. The 

e f f e c t of tunnel ing i s not large enough t o ensure a pure permutation symmetry 

for the flavor spin p a r t of the wavefunctions. One f inds, where p o s s i b l e , 

mixtures of both the 56 and 70 d inens ional f lavor spin i r r e p s . Conpared t o 

Я = 1, most 1=2 s t a t e s are appreciably purer in the asymptotic c l u s t e r b a s i s , 

which then provides the more econome d e s c r i p t i o n . 

2_2 
- The Q Q bas i s s t a t e s and tunnel ing -

2 2 
When we apply the simple baryonic tunne l ing model t o the Q ζ e x c i t a t i o n s , 

we find t h a t some of the consequences are d i f f e r e n t . This i s caused by the 

f a c t , t h a t we now have an even number of - p a r t l y d i s t i n g u i s h a b l e - fermions: 

two quarks and two a n t i q u a r k s . Take as a s t a r t i n g p o i n t an I = 1 three-baryomum 

s t a t e . The quarks ( labels 1,2) s i t i n bag end 1, the ant iquarks (3,4) in bag 

end 2, a s i t u a t i o n denoted by |φ> = \Q,Q' - Q,Q'> = | l , 2 - 3 , 4 > . When ant iquark 

2 2 
3 tunnel s through the angular momentum b a r r i e r , the Q - ζ configurat ion goes 

2- -
over in a Q Q-Q one. Since t h i s i s an a l l t o g e t h e r d i f f e r e n t system, there 
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2- -
e x i s t no symmetric o p e r a t o r s , which can convert t h i s Q Q-Q f i n a l s t a t e back 

2 -2 
t o a β -Q i n i t i a l one. The tunnel ing hamiltonian H then can not be expressed 

in terms of symmetry opera tors e i t h e r . 

Since the co lor and angular momentum condi t ions have not changed w . r . t . 

the baryon example, the tunnel ing hamiltonian i s expected t o have about the 

same s t r e n g t h in both c a s e s . The act ion of H on the three-baryomum i n i t i a l 

s t a t e i s approximated by: H | l ,2-3,4> = т Ш І ф ^ , where ( ф ^ = ]l,2,3-4> 

denotes the three-baryomum s t a t e in which p a r t i c l e s 1, 2 and 4 have the same 

wavef unctions as they had i n the s t a t e | ф> , and 3 has a three-baryomum 

antiquark wave function, b u t now a lso concentrated in bag end 1. The d i s s i m i ­

l a r i t y of the transformed baryomum s t a t e | l ,2 ,3-4> and the phys ica l mesonium 

f i n a l s t a t e | χ> manifests i t s e l f in a reduced o v e r l a p : <χ |φ'> < 1. One finds 

m' = <х |н т |ф> = mW) <χ |φ'> < га(Я) . (20) 

This reduct ion of the matr ix element, due t o the space p a r t , may even be 

q u i t e severe . The centre of mass in the baryomum s t a t e l i e s approximately in 

between the two bag ends. For £, = 1 the quark energy dominates the f i e l d 

energy and the centre of mass of a three-mesomum s t a t e l i e s much c lose r t o 

2_ 
the Q Q end than to the Q one. This type of s t a t e has a r a t h e r asymmetric space 

d i s t r i b u t i o n , qu i t e d i f f e r e n t from the symmetric baryomum one. Moreover, the 

i n i t i a l and f i na l s t a t e very often have d i f f e r e n t e n e r g i e s , and the 

t r a n s i t i o n may only be poss ib le thanks to the wideness of the mesonium f ina l 

s t a t e . 

Although a l l three-baryomum color spin and f lavor conf igura t ions are 

p resen t in the three-mesomum spectrum, a l so here fu r ther suppression of 

2 
tunnel ing a c t i v i t i e s may a r i s e . In a Q 5 c l u s t e r the diquark wavefunction for 

a given flavor s t a t e often i s a mixture of с = 3* and б c o n f i g u r a t i o n s , which 

d i s t r i b u t e s the t r a n s i t i o n p r o b a b i l i t y over two non degenerate f i n a l s t a t e s (cf. 
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Table Xa and XIc) . This e f f ec t i s to some ex ten t of course already accounted 

for in the space p a r t of the matrix element. Clear ly , tunnel ing t r a n s i t i o n s 

from three-mesonium to baryomum s t a t e s are even more suppressed. For about 

ha l f these s t a t e s i t i s even completely forbidden. 

Comparing with the baryon r e s u l t s we expect m' (Ä) = <х|н |ф > t o be of 

the order of 10 MeV for i = 1 and n e g l i g i b l e for Ζ = 2, where the angular 

momentum b a r r i e r i s h i g h e r . For the three-baryonium s t a t e s , the c l u s t e r s 

there fore may y i e l d an even more surveyable p i c t u r e than for the baryons. 

Already for 1=1 the quarks w i l l submerge in t h e , from the p o i n t of view 

of tunnel ing r a t h e r s t a b l e , c l u s t e r s , which w i l l be the a c t i v e , subhadronic 

c o n s t i t u e n t s . 

The g e n e r a l i z a t i o n t o 6-baryonia and 8-mesonia, for which tunnel ing 

a l s o involves a c o l o r f l i p , does not add any q u a l i t a t i v e changes. Since these 

s t a t e s are usual ly heavier (especia l ly for Я = 2) the arguments are expected 

- - 2- _ 

t o hold even b e t t e r . For many QQ-QQ s t a t e s t r a n s i t i o n t o a Q Q-Q or conjugate 

conf igurat ion i s even completely forbidden. Mixing between 3 and 6-baryonium 

or baryomum and 8-mesonium s t a t e s via tunnel ing involves t h i s process a t 

two s tages and thus can be neglected. This kind of mixing w i l l be even more 

suppressed, because the 3-mesonium intermsdia te s t a t e s are highly unstable and 

a multi-meson decay i s much more probable than a tunnel ing t r a n s i t i o n . Since 
2-2 

the communication with 3-mesonium s t a t e s w i l l connect any o t h e r Q Q s t a t e 

t o the multi-meson decay channels , es tabl i shment of the branching r a t i o s of 

such s t a t e s i n t o these decay modes w i l l provide more q u a n t i t a t i v e information 

(upper l i m i t s ) about the importance of t u n n e l i n g . The fact t h a t for some s t a t e 

these modes are not observed (yet) i s i n t e r p r e t e d as support for the above 

described p i r t u r e . 
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- The res idua l i n t e r a c t i o n -

The c l u s t e r s , being qu i t e c leanly separa ted , w i l l i n t e r a c t via t h e i r 

s t a t i c color mult ipole momsnts. The r e s idua l colormagnetic i n t e r a c t i o n in the 

3-baryonia i s qu i t e s imi l a r t o t h a t of the mesons. The main dif ference i s , 

t h a t for l = 1 the quark con t r ibu t ion to the mass i s twice as l a r g e , implying 

t h a t the c l u s t e r s w i l l be c loser t oge the r . We w i l l s imulate t h i s e f f e c t by 

taking the s t rength of the r e s idua l p a r t to be 20 (5) % of the 4 = 1 (2) , i . e . 

enhanced (see sec t ion I I I 1, page 157), p e r s i s t e n t p a r t . These numbers were 

only crude e s t ima t e s , and the changes brought about by t h i s p r e s c r i p t i o n s t i l l 

are within the es t imated u n c e r t a i n t i e s . For t h i s reason we w i l l apply the same 

value a lso for the s e x t e t and o c t e t s t r e n g t h s , s ince these c l u s t e r s have e 

separa t ion , which i s in between t h a t of the Q-Q and 3-baryonium ones . 

For 1=1 and 2 the res idua l p a r t w i l l be included in the mass a t the 

same point as the p e r s i s t e n t one. I t s inc lus ion w i l l , because i t conta ins 

ope ra to r s , which are not diagonal in the asymptotic bas i s s t a t e s , mix s t a t e s 

on d i f f e r en t color t r a j e c t o r i e s . For example, in the J = 0 baryonium s e c t o r , 

color spin f l i p t r a n s i t i o n s between (c,s) = (3*,0) and (6,1) c l u s t e r s are 

allowed and mixing analogous t o , only much l e s s s t rong than, t h a t in the same 

sec to r for 1=0, occurs . Because the color t r i p l e t and s e x t e t s t a t e s l i e on 

d i f f e ren t t r a j e c t o r i e s and have a reduced s t r eng th , the t o t a l e f f ec t i s a t the 

percent l e v e l . 

More important i s the mixing among the color o c t e t and s i n g l e t s t a t e s , 

for the QQ-QQ t r a j e c t o r y . This color spin f l i p i n t e r a c t i o n couples the r a the r 

s t a b l e oc t e t configurat ion to highly unstable dimeson molecule s t a t e s and 

permits the f i r s t to decay i n t o the two meson channels . 

The i n t e r a c t i o n of the color e l e c t r i c d ipoles on the o r b i t a l l y exc i ted 

2-2 
Q Q s t a t e s i s only no t iceab le for the 8-mesonia. I t causes color f l i p 



- 166 -

transitions, which again enlarge the color singlet component, adding to the 

instability of these states. In favorable cases, an I = 1 strength of 40 MeV 

will induce an increase of the color singlet content of 10 %. This number 

decreases for heavier systems, for i. = 2 it is only 2 %. We have no example 

from which we can obtain a scale for the strength of this interaction. Conpared 

to the color magnetic interaction 40 MeV is to be considered a large value. 

2-2 
To conclude this prescription to calculate the Q Q masses, we note that 

in this cluster approximation the Î. = 1 and 2 color octet masses are calculated 

without any Fermi-Dirac statistics restristions on the quark wavefunctions. 

This tends to enlarge the splitting somewhat. Another consequence is that now 

no longer the mutual interaction of a QQ pair in one bag end equals that of 

a quark and antiquark located in different bag ends (A(QQ) ^ AtQQ') I ) . 

The present approach is not sophisticated enough to comprise spin orbit 

and tensor type interactions, which can not be treated separately [MaR 78]. 

Although the corresponding mass contributions will not be large (a few tens 

of MeV) the combination of the two is sufficiently powerful to destroy simple 

level ordering schemes, e.g. larger spin has not always a higher mass. We 

will present these levels therefore as degenerate. 

This mass description leads to a spectrum of which the Y = 0 members are 

listed in Table XIII for с = 3 (a) , с = 8 (b) and с = 6 (с) . We have included 

only the I = 1 and 2 multiplets. A calculational uncertainty of at least 

50 MeV should be kept in mind. Higher multiplet masses can easily be calculated 

using Tables X and XII. 



- 167 -

Mass(GeV) η I S J .C 
s η 

1.50 

1.72 

1.83 

1.86 

1.90 

1.94 

2.02 

2.14 

2.17 

2.21 

2.42 

2.44 

2.47 

1.76 

2.01 

2.07 

2.23 

2.23 

2.24 

2.28 

2.46 

2.47 

2.48 

2.70 

2.70 

2.71 

0 

0 

2 

0 

0 

0 

2 

2 

2 

2 

4 

4 

4 

0 

0 

2 

0 

0 

0 

2 

2 

2 

2 

4 

4 

4 

0 

0 , 1 

0,1,2 

0,1,2 

0,1,2 

0 , 1 

0 , 1 

0 , 1 

0 , 1 

0 

0 

0 

0 

ο,ι 
0,1,2 

0,1,2 

0,1,2 

0 , 1 

0 , 1 

0 , 1 

ο,ι 
0 

0 

0 

0 

1 

0 

0 

1 

2 

1 

0 

1 

2 

0 

1 

2 

0 

1 

0 

0 

1 

2 

1 

0 

1 

2 

0 

1 

2 

0+ 

0+ 

0+ 

1-

0±,1±,2± 

1-

1-

0+,1+,2+ 

1-,2-,3-

0±,1±,2± 

1-

0+,1+,2+ 

1-,2-,3-

1-

0+,1+,2+ 

1-,2-,3-

2+ 

1±,2±,3± 

2+ 

2+ 

1-,2-,3-

,1+,2+,3+,4+ 

1±,2±,3± 

2+ 

1-,2-,3-

,1+,2+,3+,4+ 

2+ 

1-,2-,3-

,1+,2+,3+,4+ 

Table X l l l a : Masses, quantum numbers ( Ι , Α.,s, J , Ρ , с ) and s t range quark content 

(n ) of the Y = 0 color 3-baryonia. One has G = С (-) . 
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Mass ( Ge V) 

г
Р
 = Г 1.94 

1.96 

1.9Θ 

1.99 

2.00 

2.01 

2.16 

2.18 

2.24 

2.25 

2.27 

2.29 

2.45 

2.55 

ρ + 
1 = 2 2.38 

2.38 

2.39 

2.40 

2.40 

2.42 

2.53 

2.58 

2.60 

2.61 

2.64 

2.66 

2.80 

2.83 

2.87 

2.91 

"s 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

4 

4 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

4 

4 

4 

4 

I 

1 

0,0,1,2 

1 

1 

0,0,1,2 

1 

ο,ι 

ο,ο,ι,ι 

0,0,1,1 

ο,ι 

ο,ι 

ο,ι 

0 

0 

0,0,1,2 

1 

0,0,1,2 

0,0,1,2 

1 

0,0,1,2 

0,0,1,1 

0,1 

ο,ο,ι,ι 

ο,ι 

0,0,1,1 

0,0,1,1 

0 

0 

0 

0 

s 

0 

1 

1 

2 

1 

0 

0 

1 

1 

2 

1 

0 

1 

1 

0 

1 

2 

1 

1 

0 

0 

1 

2 

1 

1 

0 

0 

2 

1 

0 

0+ 

0+ 

0+ 

J
'

C
n 

1± 

0+,l+,2+ 

0±,1±,2± 

1±,2±,3± 

0+,l+,2+ 

1± 

1± 

0+,l+,2+ 

0+,l+,2+ 

1±,2±,3± 

0±,l+,2+ 

1± 

Ο+,Ι+^Η-

0+,l+,2+ 

2+ 

1±,2±,3± 

,l+,2+,3+,4+ 

l-,2-,3-

1±,2±,3± 

2+ 

2+ 

1±,2±,3± 

,l+,2+,3+
f
4+ 

1±,2±,3± 

l-,2-,3-

2+ 

2+ 

, l+,2+,3+,4+ 

l-,2-,3-

2+ 

Table XHIb: Same as Table XHIa for co lor B-mesonia. 
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Mass (GeV) 

1.87 

1.91 

2 . 0 1 

2.06 

2 .15 

2 . 1 7 

2 . 1 8 

2 .27 

2 . 3 1 

2 .40 

2 . 6 4 

2 .35 

2.36 

2 .39 

2 .49 

2 . 5 8 

2 .59 

2 .60 

2.62 

2 .70 

2 . 7 9 

3.00 

π 
s 

0 

0 

0 

0 

2 

0 

2 

2 

2 

2 

4 

0 

0 

0 

0 

2 

2 

0 

2 

2 

2 

4 

I 

0 

0 

0 

1 

0 , 1 

0 , 1 , 2 

0 , 1 

0 , 1 

0 , 1 

ο,ι 
0 

0 

0 

0 

1 

ο,ι 
0 , 1 

0 , 1 , 2 

0 , 1 

0 , 1 

0 , 1 

0 

s 

0 

1 

2 

1 

0 

0 

1 

2 

1 

0 

0 

0 

1 

2 

1 

0 

1 

0 

2 

1 

0 

0 

j , c n 

1-

0 + , l + , 2 + 

l - , 2 - , 3 -

0 ± , 1 ± , 2 ± 

1-

1-

0 + , l + , 2 + 

l - , 2 - , 3 -

0 ± , 1 ± , 2 ± 

1-

1-

2+ 

l - , 2 - , 3 -

0 + , l + , 2 + , 3 + , 4 + 

1 ± , 2 ± , 3 ± 

2+ 

l - , 2 - , 3 -

2+ 

0 + , l + , 2 + , 3 + , 4 + 

1 ± , 2 ± , 3 ± 

2+ 

2+ 

T a b l e X I I I c : Same a s T a b l e X l l l a , f o r c o l o r 6 - b a r y o n i a . 
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S e c t i o n IV: R e s u l t s and d i s c u s s i o n 

S e v e r a l g e n e r a l comments c a n be made a t o n c e . With e x c e p t i o n of one 

PC ++ 
i s o s c a l a r J = 2 s t a t e a t 1.76 GeV, a l l s t a t e s be low 2 .0 GeV a r e e x p e c t e d 

ρ -

t o be Л = 1 s t a t e s . Below 2 . 2 GeV t h e h i g h e s t s p i n v a l u e i s J = 3 . T h i s 

means t h a t i n t h i s r e g i o n ( see e . g . T a b l e V I I I ) n o n s t r a n g e mesons w i t h a 

h i g h e r s p i n v a l u e a r e l i k e l y t o be o r b i t a l QQ e x c i t a t i o n s . The f i r s t J = 5 

PC — 
(6) s y s t e m i s e x p e c t e d a r o u n d 2 . 5 (2 .75) GeV. The h e a v i e s t J = 1 (J = 1 ) 

s t a t e h a s a mass of 2 . 9 3 GeV, s t i l l be low t h e charmonium r e g i o n . The h e a v i e s t 

PC ++ 
J = 2 (J = 2 ) s t a t e l i e s a t 3.25 GeV. The l o w e s t e x o t i c s t a t e s l i e a t 

PC — -+ 

1.72 GeV. They have J = 0 and 1 . A n o t h e r t y p e o f e x o t i c s t a t e o c c u r s 

a t 1.86 GeV. I t h a s 1 = 2 . 

- F o r m a t i o n -
2-2 

The Q Q meson s t a t e s , on t h e b a s i s o f d i a g r a m s a s d e p i c t e d i n F i g . 3, 

a r e e x p e c t e d t o o c c u r a s r e s o n a n c e s i n e l a s t i c BB s c a t t e r i n g [RO 6 8 , Ro 7 4 ] . 

They c o n s e q u e n t l y a r e l o o k e d f o r i n a n t i n u c l e o n f o r m a t i o n e x p e r i m e n t s [Ei 76] . 

T h i s method i s q u i t e s u i t a b l e f o r t h e d e t e c t i o n o f h i g h mass (> 2 M ) , narrow 

meson s t a t e s . A d i s a d v a n t a g e i s t h a t t h e r e s o l u t i o n o f b r o a d s t a t e s i s q u i t e 

cumbersome. M o r e o v e r , t h e e x p e r i m e n t s , u s i n g o n - s h e l l n u c l e ó n ( i . e . hydrogen) 

t a r g e t s , a r e d i f f i c u l t f o r v e r y low beam momenta. Improvement i s a t t a i n e d by 

u s i n g " o f f - s h e l l " t a r g e t s ( i . e . n u c l é o n s , bound i n e . g . d e u t e r i u m ) . Only non 

PC 
e x o t i c I , J s t a t e s can be e x c i t e d d i r e c t l y t h i s way. I n f o r m a t i o n on t h e 

quan tum numbers o f such s t a t e s can be o b t a i n e d by l o o k i n g a t f i n a l s t a t e s l i k e 

π π , π τ τ , π η ο Γ Κ Κ w h i c h , a l t h o u g h t h e i r b r a n c h i n g r a t i o s (<< 1 % o f t h e 

t o t a l c r o s s s e c t i o n t o be compared w i t h 7 t o 8 % f o r t h e e l a s t i c Τ and U 

bumps) a r e s m a l l , have a very s i m p l e a m p l i t u d e s t r u c t u r e . A l so mesons w i t h 

mass M < 2 M c a n be s t u d i e d t h r o u g h NN a n n i h i l a t i o n p r o c e s s e s and show up 

i n t h e m u l t i m e s o n i n v a r i a n t mass p l o t s ( e . g . D(1281) and F ( 1 5 4 0 ) ) . 
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Fig. 5: Leading trajectory states with photonlike quantum numbers: J = 1 and Y = 0, as a function 

of the orbital angular momentum I and the number of strange quarks η . 
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An important var iant of t h i s method for on-she l l meson formation i s 

e l ec t ron posi t ron ann ih i l a t i on . This electromagnetic process allows exclusively 

PC 
J = 1 s t a t e s . Present searches scan the region between 1 and 3 GeV in 

2-2 
which a lso the photon-l ike Q Q s t a t e s are supposed to l i e . We have p lo t ted 

these photon-l ike s t a t e s separate ly in Fig. 5 . 

- Production -

A d i s t i n c t kind of experimental method i s to produce heavy mesons "off-

s h e l l " by l e t t i n g a boson or lepton beam fa l l on a nucleón t a r g e t . One has 

a va r ie ty of options for the f inal s t a t e . One can t r igger on a BB pa i r , 

coming out in the forward d i rec t ion e . g . : π ρ -*• (pp)« η . Drawing the 

Harari-Rosner diagram f^r t h i s process one finds i t i s already possible via 

meson exchange. Resonances may be extracted by making a p a r t i a l wave analys is 

of the process ττ π > pp. J u s t as in the ant iproton formation process broad 

resonances emerge (Table XlVa). One can s e l e c t a baryon exchange production 

mechanism by t r i g g e r i n g on a s ingle forward proton: π ρ -*• ρ + X (Fig. 6) and 

analyse the i n v a r i a n t mass p l o t of the f inal s t a t e s containing BB pa i r s e .g . 

X = (pp^ ) . This way narrow resonances have been detected (Table XlVbi. Also 

Fig. 6 Haran-Rosner diagrams for the production of a 3-baryonium (a) or 8-

mesomum (b) s t a t e . The production of a 6-baryonium s t a t e proceeds as 

in diagram (a) , only t h i s time a raultimeson f ina l s t a t e i s more probable. 
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Mass(GeV) Width (MeV) S o u r c e Quantum numbers 

(1 .92 190 Ev 7 8 ; π ρ -• (pp) η , PWA J = 1 , 1 = 1 ) 
F 

1.94 55 De 76; pp •*• ρ ω , ρ ρ , ηη Ι = 1 , J = 1 o r 2 

Mon 7 8 ; ρ η - > - π ι τ π 3 = 2 , 1 = 1 

1.95 240 Εν 7 8 ; τι " ρ -* (ρρ) η , PWA J P C = Γ " , I G = 1 + 

2 . 0 1 100 De 76; ρρ ν 5 π , ηη J <_ 2, G = -
0 + + 

De 7 6 ; pp •+ К К π 

- - PC ++ G + 

(2 .02 160 Εν 78; π ρ ->• (ρρ) η , PWA J = 2 , 1 = 0 ) 

2 . 1 5 200 Car 77, DeM 7 6 ; pp ->- ·π+ττ~, K+K~ J P C I G = 3 ~ , 0~ & 1 + 

2.185 130 Ab 70, Co 77; σ , σ i n p p 1 = 1 

Τ EL 
— + — PC G ++ + 

2 . 3 1 210 Car 7Ó, 7 7 , DeM 76; ρρ -s- π π , J Ι = 4 , 0 
0 0 + -

π π , Κ Κ 
2 .350 190 Ab 7 0 , Co 77; σ , σ i n ρρ 1 = 1 

Τ EL 

2 .385 80 Ab 70, Co 77; σ , σ i n ρρ 1 = 0 
Τ EL 

- + - + - PC G — - + 
2 . 4 8 280 Car 77, DeM 76 ; pp -> π ττ , К К J I = 5 , 0 & 1 

T a b l e XIV: P o s s i b l e c a n d i d a t e s f o r b a r y o n i u m and mesonium s t a t e s (a) b r o a d 

s t a t e s . The two e n t r i e s b e t w e e n p a r e n t h e s e s a r e an a l t e r n a t i v e t o 

t h e M = 1 . 9 5 - e n t r y . 

i n p h o t o - and e l e c t r o (or v i r t u a l p h o t o - ) p r o d u c t i o n e x p e r i m e n t s , v i z . 

γ ρ -»• ρ + X and е р -*- е р + X r e s p e c t i v e l y , t h i s method o f a n a l y s i s may b e 

a p p l i e d . These k i n d s of e x p e r i m e n t s , i n t h e e n e r g y r e g i o n o f i n t e r e s t , have 

begun o n l y r e c e n t l y and from t h i s s o u r c e o n l y p r e l i m i n a r y r e s u l t s a r e 

a v a i l a b l e [Oz 7 8 , Ri 7 8 ] . One can a l s o t r i g g e r on more c o m p l i c a t e d forward 

s y s t e m s . A r e a c t i o n l i k e Κ ρ •+ (Λρπ ) η , which r e q u i r e s t h e e x c h a n g e o f an 

2-2 
e x o t i c Q Q meson, h a s u n c o v e r e d a narrow e x o t i c forward f i n a l s t a t e . 
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Mass(GeV) Width (MeV) S o u r c e Quantum numbers 

1.395 

1.470 

1.646 

1.684 

1.795 

1.Θ20 

1.875 

1.897 

1.936 

i 3 4 

10 

1 21 

1 19 

< 8 

^ 25 

< 10 

25 

3 

1.954 

1.975 

1.986 

2 .020 

1 1 0 

< 2 

^ 8 

24 ± 12 

2 .130 

2.204 

2 .207 

2 .461 

2 .85 

3 .43 

T a b l e XIV: 

30 

i6 : 

< 10 

< 40 

< 45 

P o s s i ! 

Pa 78; γ from a t o m i c pp 

Bern 77; е е , p p a n n i h i l a t i o n 

Pa 7 8 ; γ from a t o m i c p p 

Pa 7 8 ; γ from a t o m i c pp 

Gr 7 1 ; pd a n n i h i l a t i o n a t r e s t 

Bern 77; e e , pp a n n i h i l a t i o n 

Gr 7 3 ; p d a n n i h i l a t i o n a t r e s t 

Ka 76 ; p d a n n i h i l a t i o n a t r e s t 

Ca 7 4 , Ch 76, Br 77; σ , σ , σ i n pp 

Cu 7 8 , Sa 78; σ i n p p 

Wp 78; π ρ •+ π ρ ( ρ ρ ) _ 

Su 76, Ca 75; ηρ •+ Ν p i o n s , d i p i n σ 

Su 76; ñp •* (КІСтг) π 

Be 77; π ρ -+ ρ (ρρττ ) 

Οζ 7 8 ; е р -»• ер (pp) 

Bern 77; e e a n n i h i l a t i o n 

Be 77; тг ρ -»· ρ ρρπ 
F 

Gr 7 8 ; pp •+ тг* (тг~К+К~) 

Ar 7 8 ; К + р -»· (Λρπ ) η 

Br 76 ; pn -* тг Χ 

Ba 7 6 ; ττ ρ ->· (ΛΛ) η 
F 

а р с = 1" 

j p c = Г 

ι = ι 

Complex, 1 = 1 

1 = 0 ? 

i G = Г 

I = 1 

1 = 0 ? 

PC 
= 1 

0 ? 

1 

S = + 1, Q 

1 = 0 ? 

P o s s i b l e c a n d i d a t e s f o r b a r y o n i u m and mesonium s t a t e s (b) n a r r o w 

s t a t e s . 
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It is from these sources that the evidence for ί,-excited Q Q states 

may be drawn. We will mainly restrict our considerations to the strong 

interaction aspects. Some of the more pronounced signals in the above cited 

processes have been listed in Table XIV. This table is not complete. Many 

more candidates have been proposed. Of some of these the existence has been 

contested by later experiments. Other still await confirmation or rejection. 

The available data also suggest many additional structures, corresponding to 

effects which have not yet been properly investigated. Especially in the 

PC — 
J = 1 sector many states below 2 GeV have been reported. Some of these 

are wide, having multipion decay modes, while others are rather narrow (e.g. 

M = 1.47, 1.82 and 2.13 GeV) and have been seen to decay into kaons, which may 

favor an interpretation as radial recurrences of the ρ and ω, and φ respect­

ively. Table XlVb contains a doubly charged, strange meson with a mass of 

2.461 GeV which may be the first unambiguously exotic state observed. Its 

establishment will be the strongest evidence in favor of hadrons containing 

more than two or three quarks. 

1. Broad states 

Table XlVa contains several states whose quantum numbers have been 

determined completely by making use of their ππ and KK decay modes [Car 77]. 

It was found, that these resonances couple dominantly to the NN J = L - 1 

amplitude and rather accurately satisfy the peripherality relation L = kR 

[Da 64], with L the angular momentum, к the center of mass momentum and 

R = (m ) = 1.4 fm the range of the forces in the NN channel. Also the 

ρ 
J = 1 state at 1.95 GeV from the Ev 78 partial wave analysis of the process 

π π •+ pp lies rather close to this curve. When this state turns out to 

prefer the J = L - 1 wave too, one is inclined to expect another one - with 

Ρ + 
J = 2 - near 2.05 GeV. The Ev 78 analysis requires considerable model 
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dependent i n p u t . I t a l so allows a (bet ter) f i t for resonances a t M = 1.92 

Ρ - + Ρ + 2-2 
and 2.02 GeV with J = 1 and 2 r e s p e c t i v e l y . A J = 2 Q Q s t a t e i s 

expected a t M = 2.01 GeV, but i t has 1 = 1 and couples t o KK, not to ττπ. 

+ 2 2 
The I = 0 ππ s t a t e then probably has a Q-Q o r i g i n . No 0 Q 5 (or leading 

Q-Q) resonance near 1.90 GeV i s expected in the Ρ NN wave. 

One observes, t h a t the broad resonances, discovered otherwise a l so tend 

t o l i e near the p e n p h e r a l i t y curve L = JcR. This suggests t h a t one can get a 

2-2 
f i r s t i n d i c a t i o n of the r e l a t i v e prominence of the o r b i t a l Q Q e x c i t a t i o n s 

by comparing the proximity of the masses i n Table XIII of s t a t e s with the 

c o r r e c t NN quantum numbers t o uhose, on the p e n p h e r a l i t y curve. Because 

the range R of the NN i n t e r a c t i o n i s r a t h e r long (m < R J , one finds t h a t 

2-2 
for J <̂  10 the p e r i p h e r a l NN s t a t e s are l i g h t in comparison with Q Q s t a t e s 

2-2 
with the same s p i n . This impl ie s , t h a t only those Q Q s t a t e s w i l l be close 

t o i t t h a t are comparatively l i g h t o r , when heavy, a l i gn a high quark spin 

with Я t o obta in the h ighes t poss ib le J . 

One f inds, t h a t for J >_ 3 and M >_ 2.25 GeV (or I > 1) the 6-baryonium 

and S-mesomum s t a t e s as well as a l l s t a t e s with η >_ 2 are too heavy and 

decouple, and t h a t one can i d e n t i f y the following prominent 3-baryonium 

t r a j e c t o r i e s in the NN channels : 

1. NÑ t r i p l e t , J = L - 1: the s = I = 0 , J = £ t r a j e c t o r y l i e s p r a c t i c a l l y on 

top of the curve L = kR. The s = I = l f J = i t r a j e c t o r y i s close to i t . 

The s = 1, 1 = 0 and 1, J = i - 2 t r a j e c t o r y v i r t u a l l y decouples. 

2. NÑ t r i p l e t , J = L: only the s = I = l , J = i . + l t r a j e c t o r y l i e s p r e t t y 

c l o s e . 

3 . NÑ t r i p l e t , J = L + 1: here the 3 = 1 = 0 , J = Ä and the s = 2, 1 = 0 and 1, 

J = í + 2 s t a t e s are the most pe r iphera l ones . They are almost degenerate . 
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4. NN singlet, J = L: this channel will be dominated by the s = I = 1, 

J = I + 1 trajectory. 

We find that the NN channel with the most peripheral states has J = L - 1 

and will show both through an I = 0 and an I = 1 trajectory. In our model this 

isospin doublet is not degenerate, the 1 = 0 states being lighter and more 

prominent. The splitting between the 1 = 0 and 1 states will be a measure for 

the color magnetic splitting which is predicted to be about 200 MeV for I >_ 3. 

Because the J = 3, 4 and 5 states on the peripherality curve, when considered 

2 
by themselves, appear to lie on a trajectory with a steeper (in the J-M 

2-2 
plane) slope, they can not belong to a single Q Q trajectory like e.g. that 

with 1 = 0 and 1, J = Л and s = 0 or 2 [chH 77]. One would like to see a 

better resolution of the 1 = 0 and 1 components (if present) of the reported 

states. The J = L + 1 channel is dominated by an I = 0 and an I = 0 and 1 

trajectory. The J = L channels favor I = 1 = s. 

When the intercept of the trajectories is shifted by 50 MeV, these 

observations will still be valid. Only when it is taken to lie more than 

100 MeV lower, the 1 = 0 states in the NÑ triplet J = L - 1 and the 1 = 1 

states in the NN singlet channel may become too light to be peripheral. The 

at present lower lying trajectories: the I = 1 = S and 1 = 0 and 1, J = I, 

s = 0 and 2, and 1 = 0 and 1, J = І + 1 and s = 1, respectively will become 

more important. 

For states with J <_ 3 and 1.88 <̂  M ^_ 2.25 GeV the situation is slightly 

PC ++ 
different. Only one state around 2.05 GeV exists with η = 0 and J = 2 . 

It is a 3-baryonium state with 1 = 1 . Another 2 state nearby has η = 2 

and 1 = 0 and 1. Because of the strange quark content this state is not 

expected to be very broad. Candidates for the peripheral state near 1.95 GeV 

Ρ 
should be r e c r u i t e d from the S. = 1 m u l t i p l e t s . Here η = 0 3-baryonium and 
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B-mesoniuin s t a t e s are a v a i l a b l e . As we s h a l l argue below we do not expect 

the mesonium s t a t e to have a s t rong coupling to the D-wave BB system. From 

the 3-baryonium conf igurat ions (at 1.94 GeV) both 1 = 0 and 1 are expected. 

The mixing of t h i s NN D with the S. wave may explain i t s large width so 

c lose to the NN th resho ld . Since we have no reason to th ink , t ha t the Î. = 1 

and 2 masses are more accurate than those for I >_ 3, a l so in t h i s mass region 

u n c e r t a i n t i e s of 50 MeV should be reckoned wi th . 

None of the s t a t e s with J >_ 3 i s close to the π π - p e r i p h e r a l i t y curve 

J = L = kR , R <_ 0.5 fm, which favors heavy low spin s t a t e product ion. Only 

J = 2, around 2.0 GeV, and poss ib ly J = 1 s t a t e s , around 1.9 GeV, in the NÑ 

J = L ± 1 channels may be more pronounced and consequently e a s i e r de tec tab le 

in the π TT •+ pp type p r o c e s s e s . 

One could a l so attempt a c l a s s i f i c a t i o n of the s t a t e s in Table XlVa 

in terms of o r b i t a l QQ e x c i t a t i o n s . Comparing the masses for s t a t e s with 

the same quantum numbers one finds t h a t the observed value l i e s each time 

i n between the L = J - 1 and the L = J + 1 candidate , about 200 MeV away 

from both (see Table V I I I ) . Furthermore Q-Q resonances can by means of QQ 

p a i r c r e a t i o n e a s i l y decay i n t o two (or more) meson f i n a l s t a t e s , whereas 

decay i n t o BB requi res an a d d i t i o n a l QQ p a i r and i s expected t o be more 

suppressed, and c e r t a i n l y not as dominant as observed for J >_ 3. We think 

the comparison here unfavorable for the QQ e x c i t a t i o n s . However, ] u s t above 

the NN threshold , they ( i . e . members of the Í. = 3 m u l t i p l e t : J = 2 , 3 , 

4 , 3 ) may c e r t a i n l y manifest themselves. In t h i s region ind ica t ions e x i s t 

for broad p o s i t i v e p a r i t y s t a t e s with s i z a b l e , i f not dominant multimeson 

decay modes M = 1.94 and, somewhat higher M = 2.02 GeV. 
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- Narrow s t a t e s : M = 2.020 and 2.204 GeV -

A su rp r i s ing feature of the s t a t e s which have been found to couple 

t o NÑ i n i t i a l or f i na l s t a t e s i s t h a t next t o the broad (peripheral) s t a t e s 

a l so - sometimes very - narrow ones are found (co l lec ted in Table XlVb), 

not only below the NÑ thresho ld , bu t a l so qu i t e far above i t . A s t r i k i n g 

example i s formed by the s t a t e s a t M = 2.020 and 2.204 GeV. They were f i r s t 

detected [Be 77] m the process π ρ -»• Β M , where the forward baryon В 

i s a Δ (1232), decaying i n t o ρπ , and M •+ pp (cf. F i g . ба) . The assumption 

of a simple i s o s p i n s t r u c t u r e y i e l d s a large branching r a t i o for M i n t o 

NN, but no s i g n i f i c a n t τιπ or KK decay r a t e s have been found. One has 

searched for, but not (yet) found, charged p a r t n e r s (M ) . The 2.02 GeV 

s t a t e has a l s o been produced by a v i r t u a l photon: γ ρ -> p(pp) [Oz 78] , but 

has not been seen in formation experiments. At a mass of 2.207 GeV a 

narroi ' s t a t e has been observed [Gr 78] in the process pp -*- π (Κ Κ π ) , 

suggest ing an i s o v e c t o r c h a r a c t e r . 

When the s i g n a l s a t 2.207 and 2.204 GeV are due t o a s i n g l e s t a t e , one 

may assume t h a t , because of the large pp branching r a t i o , the two narrow 

2-2 
s t a t e s - i n t e r p r e t e d as Q Q s t a t e s - both have a nonstrange quark c o n t e n t . 

The KK p a i r then r e s u l t s from a decay via an ss p a i r c r e a t i o n and r e q u i r e s , 

s ince the c r e a t i o n of an nn p a i r usual ly i s a l i t t l e e a s i e r , the presence 

of a π π π decay mode. When the s t a t e s a t 2.207 and 2.204 GeV are 

d i f f e r e n t , one of them probably has η = 0 and i s not seen in formation 

experiments, whereas the other s t a t e may have η = 2. In any case, s ince 

PC 

no J assignment is known, the number of theoretical candidates exceeds 

the number of experimental ones by far (see Table XHIa, b and c) . We note 

that the model predicts the state near 2.2 GeV to have a composite isospin 

structure, whereas the peak at 2.02 GeV may also be due to a single isospin 

level. We will use the above described data in conjunction with a model for 
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the formation and decay in an attempt t o reduce the number of c a n d i d a t e s . 

2. The QPC or Ρ model 

A p a r t i c u l a r l y simple model which may be extended t o descr ibe the 

2-2 
c o u p l i n g o f Q Q s t a t e s t o t h e BB s y s t e m , h a s b e e n p r o p o s e d t e n y e a r s ago 

by Micu [Mi 69] t o a c c o u n t f o r t h e d e c a y r a t e s of meson r e s o n a n c e s t o two 

meson f i n a l s t a t e s . I t i s c a l l e d t h e Q(uark) P ( a i r ) C ( r e a t i o n ) o r P- m o d e l . 

One i m a g i n e s a p r o c e s s o f t h e t y p e Q — Q •+ Q(QQ)Q -»· (Qö) + (QQ) . A QQ 

G PC + ++ 
c o l o r s i n g l e t p a i r i s c r e a t e d w i t h vacuum quantum numbers I J = 0 0 , 

2S+1 3 
which c o r r e s p o n d s t o a L = Ρ c o n f i g u r a t i o n . I t i s assumed, t h a t t h e 

J 0 

o r i g i n a l ( a n t i ) q u a r k s do n o t change t h e i r s p i n , c o l o r o r f l a v o r s t a t e 

d u r i n g t h e c r e a t i o n p r o c e s s , b u t recombine o n l y l a t e r w i t h t h e new q u a r k s 

t o form c o l o r s i n g l e t f i n a l s t a t e m e s o n s . The model t u r n s o u t t o g i v e a 

r a t h e r a d e q u a t e d e s c r i p t i o n o f t h e decay r a t e s o f meson r e s o n a n c e s . I t 

a l s o a p p e a r s t o d e s c r i b e t h e decay o f b a r y o n i c r e s o n a n c e s t o meson b a r y o n 

f i n a l s t a t e s w e l l [Co 7 1 , Mu 7 9 ] . 

R e c e n t l y J a f f e [ J b 7Θ] a p p l i e d t h e QPC model t o t r y and s e l e c t t h e 

3-baryonium s t a t e s , which a r e most p r o m i n p n t i n t h e BB, and i n p a r t i c u l a r 

2 2 -
i n t h e NN, c h a n n e l s . The decay o f a Q -¡3 t o a BB s t a t e a g a i n p r o c e e d s v i a 

t h e c r e a t i o n o f a c o l o r s i n g l e t QQ p a i r i n a Ρ s t a t e . One h a s : 

* — 3 3 

QQ — QQ ->• QQ(QQ)QQ •* Q + 2 · The o r i g i n a l ( a n t i ) d i q u a r k s behave a s 

s p e c t a t o r s and a r e r e c o v e r e d i n t h e f i n a l s t a t e ( a n t i ) b a r y o n i n t h e i r 

o r i g i n a l quantum s t a t e . The BB p a i r c o n t e n t of t h e f i n a l s t a t e f o l l o w s 

from a r e c o u p l i n g of t h e q u a r k and d i q u a r k w a v e f u n c t i o n t o a b a r y o n i c 

o n e . Of c o u r s e , t h e s a n e model can be u s e d t o d e s c r i b e t h e f o r m a t i o n o f a 

3-baryonium s t a t e by c o n s i d e r i n g t h e a n n i h i l a t i o n o f a QQ p a i r i n a BB 

i n i t i a l s t a t e . 

I n t h i s a p p r o x i m a t i o n t h e t r a n s i t i o n m a t r i x e l e m e n t ( s e e F i g . 7) i s 
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2-2 
Fig . 7: The vertex for the decay of a Q Q resonance t o a baryon-antibaryon 

f i n a l s t a t e . 

given by: 

<f |H | i> = < B , I 1 , S 1 ; B , I 2 , S 2 ; I , S , L , J ¡ H ( P ^ I Q , 1 ^ 3 ^ - 5 , i-2,B2 ; I ,S , A, J> 

= С ( к , £ г Ь ) . д . п . д з . д а . д с 

(21) 

The recoupling of ( i s o ) s p i n s i s given by the fac tors g: 

! s l 
1 1 · , 

k ; 

г 
! s 

1 

0 J j 

The recoupl ing c o e f f i c i e n t s are r e l a t e d t o a 9j symbol [Br 71] by: 

\ s i T i u i 

U2 , = ((2S3+1) (2T3+1) (2UJ+1) (2U2+1) 
1/2 

1 1 и 

и̂  

S 3 т з υ 3 J 

(22) 

S S 2 Ί 

, ¡ / s τ 

From eq. (22) i t immediately follows t h a t one has | s - l | <^ S <_ | s + l | and t h a t 

(23) 

L = S,±l , because of p a r i t y conservat ion. 



- 182 -

- C(k,£,L) -

The coefficient C(k,JÍ.,L) represents the space part of the matrix element. 

It contains the unknown dynamics of the decay and accounts for the transition 

of one elongated bag into two spherical ones. C(k,i.,L) depends on the angular 

momentum L of the BB final state and the angular momentum Л of the resonant 

state. It furthermore depends on the CM momentum к of the two particle state. 

In principle, also a dependence on the symmetry of the space wave function is 

2 
possible. For example, in the Q -Q orbital excitation spectrum, for the 

lower values of the orbital momentum SL (1,2) between the quark and the diquark 

evidence for two flavor spin multiplets is found: a 56- and 70-plet. For 

this all quark system the flavor spin symmetry reflects the spatial one, and 

it is found [Mu 79], that C(k,í.,L,56) ¿ С (к, Я,Ь, 70) . However, with our 

2 2 
restriction to s-wave diquarks this freedom is not present in the Q -ζ 

orbital excitation spectrum. In this model only processes with the same Í 

and L values can be compared. As a simple approximation one may take the 

к dependence to be a phase space factor. We will also use С to absorb common 

factors, such as the coupling constants. 

-
 g
in -

The initial state of a formation experiment consists of an NN pair. We 

therefore consider only one iso singlet configuration: that containing 

nonstrange quarks. Taking also creation of ss pairs into account we have 

to replace g -»• g + с' σ , where g = δ ,. 6 and с' represents 
^
 4

in
 4

in ^is
 4

is ijlj 12I2 

possible dynamiCdl differences of ss with nn pair creation. In the SU(3,F)-

symmetric case one has c' = Ι/ΖΣ! The flavor normalization factor /2/3 

then can be absorbed in C(k,ll,L) . 

- Colorless baryons in the final state -

Since the baryons in the initial and elastic final states all have 
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ground s t a t e conf igura t ions , the quark must be c r e a t e d in a r e l a t i v e s-wave 

with respect to the diquark, a t l e a s t p a r t of the t ime. The baryons energing 

a f t e r recombination are expressed in terms of diquark-quark b a s i s s t a t e s and 

s t i l l need t o be expressed in terms of the Q b a s i s s t a t e s of the i n i t i a l or 

f i n a l s t a t e baryons. This r e q u i r e s another coupl ing. For our purposes i t i s 

enough t o know t h a t the nucleonic diquark spends ha]f i t s time i n an 

i = l , s = l and the o t h e r ha l f in an ι = 0, s = 0 conf igura t ion . Next t o 

nucléons a l so A's w i l l be c rea ted . We wi l l f ind, t h a t a lso ΝΝπ and ΝΝππ 

f i n a l s t a t e s are p r e s e n t . The diquark in a f i n a l s t a t e Д i s always i n an 

ι = 1, S = 1 s t a t e . A nucleón in the f ina l s t a t e thus gets an ex t r a fac tor 

of / 1/2.' A considerable p a r t of the t i ne the QQ p a i r w i l l be c rea ted near 

one of the bag ends and then a l s o exc i ted baryons w i l l be formed. This i s 

another source for mesons in addi t ion to a BB p a i r i n the f ina l s t a t e . 

- To f l i p or not to f l i p -

The s ta tement , t h a t the color configurat ion of the o r i g i n a l quarks 

does not change, i s a t r i v i a l one for the QQ and the Q decays: the quark 

and diquark can only occur in a color t r i p l e t conf igura t ion . The same 

2-2 
statement involves an ex t r a assumption for the Q Q s t a t e s [ Jc 78] . I t i s 

2 -2 poss ib le t h a t , when the elongated Q -Q bag s p l i t s i n t o two sphe r i ca l 

baryonic ones under the inf luence of a QQ p a i r c r ea t i on , the diquarks 

exchange (color oc te t ) gluons, which f l i p the color from 3* to б or vice 

versa . Such a f l i p by i t s e l f i s forbidden, because of the Paul i P r i n c i p l e , 

and thus must be accompagmed by e . g . a spin f l i p or a s p a t i a l ( d e ) e x c i t a t i o n 

of the diquark. One expects the i n t e r a c t i o n s , needed t o r e a l i z e these f l i p s , 

t o be s i m i l a r t o the co lor magnetic dipole - dipole ones, and thus t o f a l l 

off rapidly with the i n t e r c l u s t e r d i s t a n c e . Their inf luence then perhaps w i l l 

only be not iceable for small I ( i s 1 or 2 ) . 
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One assumes as a ru le of thumb, t h a t only 3-baryonium s t a t e s w i l l 

couple s t rong ly t o the BB system. This assumption seems reasonable in case 

of a p e r i p h e r a l formation p r o c e s s . The baryon behaves as a diquark quark 

system, of which the quark a n n i h i l a t e s the corresponding antiquark in the 

ant ibaryon, and an o r b i t a l l y exc i ted 3-baryonium intermediate s t a t e i s 

formed. The s p e c t a t o r diquarks are kept a p a r t by the angular momentum 

b a r r i e r and do not come close enough t o f l i p co lor (and spin) . No 6-baryonium 

w i l l e a s i l y be formed I n , or decay to a BB channel . Their width i s thus 

expected t o be appreciably smaller than t h a t of t h e i r co lor 3 nephews. Of 

course, a l s o 8-mesonium s t a t e s w i l l not couple t o BB decay channels . 

- Colored baryons i n the f i n a l s t a t e -

When a diquark and quark couple t o a Q baryon, next t o the color s i n g l e t 

f lavor spin m u l t i p l e t [56] a l so a color o c t e t [70] may be formed. The 3-

3 3 
baryomum s t a t e thus may a l s o couple t o ( v i r t u a l ) Q -5 8-8 t r a j e c t o r y s t a t e s . 

Est imating the mass of such bag s t a t e s one f inds (n = 0) an i n t e r c e p t of 

M = 2.125 GeV and the following c e n t r a l masses M(L) : M(l) = 2.48, M(2) = 2.80, 

and M(3) = 3.08. The p e r s i s t e n t color magnetic s p l i t t i n g has a s t r e n g t h of 

75 MeV. The most lowlying conf igurat ion c o n s i s t s of a BB p a i r , with both 

ι = s = -г· : Δ = - 1 and Ε , = - 75 MeV. Assuming t h a t for L = 1 one has 
2 M 

3 3 
E = - 200 MeV, the l i g h t e s t L = 1 Q -Q s t i l l l i e s above the heav ies t 

2 -2 
I = 2 Q -Q (n = О, с = 3) s t a t e ! Only the L = 0 may l i e amid of the I = 1 

2 2 
Q Q s t a t e s . 

The 8 - 8 Q -Q trajectories are not expected to have a large influence 

on the NÑ final states. For example, a 3-baryonium state with Л = 1 may 

couple to L = 0 and L = 2 Q Q states. The latter is much too heavy: 

2.7 < M < 3.3 GeV. The former simply falls apart, analogous to the Я = 0 
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2 -2 
Q -Q bag s t a t e , in three mesons in r e l a t i v e s-waves. No (ant i)baryons w i l l 

be seen in t h i s case . The L = 1 Q -5 s t a t e s are expected a t masses 

2.3 < M < 3.0 GeV. They may decay by means of emission of a meson (pion) 

t o an L = 0 bag, y i e l d i n g multimeson f ina l s t a t e s . Decay may a l s o proceed 

through color s i n g l e t admixtures, a r i s i n g from color magnetic and e l e c t r i c 

dipole i n t e r a c t i o n s j u s t as for the I = 1 8-mesonium s t a t e s . Such admixtures 

are not poss ib le for a l l members of the 70-ple t , because the l imited 

overlap of the f lavor quantum numbers with the 5 6 - p l e t . Never the less , there 

may be color s i n g l e t BB decay modes, which are s u f f i c i e n t l y s t rong t o b l u r r 

the branching r a t i o s for decay i n t o BB channels, which are c a l c u l a t e d using 

exc lus ive ly the d i r e c t produced color s i n g l e t baryons [Kl 78] . 

- g c -

In view of these decay modes, the L = 1 s t a t e s a re not expected t o 

have an exceedingly large width, and due t o t h e i r high mass are not e a s i l y 

2 -2 formed as intermediate s t a t e in an I = 1 Q -Q decay. For L = 2 and l a r g e r 

the coupling i s ever weaker. This s i t u a t i o n i s there fore q u i t e s i m i l a r t o 

2 
t h a t for Q-Q and Q -Q resonance decays, where the c o l o r s i n g l e t MM and BM 

f i n a l s t a t e s t o good accuracy are a l s o e n t i r e l y due t o d i r e d t decay. To 

f i r s t order only 3-baryonia w i l l produce BB f i n a l s t a t e s . One has 

2-2 
g (Q Q ->• В В ) = 1/3. This factor i s usual ly absorbed in the unknown 

function C(k,i.,L) . Comparing i t with the recoupl ing c o e f f i c i e n t t o co lor 

2 2 - / ^ 
8-baryon f i n a l s t a t e s · g (Q 2 ->• В BQ) = / 8/9, one i s i n c l i n e d t o expect 

с σ ο 

a considerable branching r a t i o t o three or more meson f i n a l s t a t e s for 

A = 1 baryomum s t a t e s . For the color s e x t e t v a r i e t y i t probably i s a main 

decay mode. 

- The P. model and p e n p h e r a l i t y -

The couplings of the 3-baryonia t o NÑ (as well t o ΝΔ, ΛΝ and ΔΔ) have 
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T a b l e XV: I s o s p i n - s p i n c o u p l i n g s of Q Q t o BB s l - a t e s a f t e r c r e a t i o n o f a QQ 

p a i r w i t h I = 0 = η and S = 1. The c o e f f i c i e n t s g i v e n c o r r e s p o n d t o 

I N 
g . - g •(77) , where N i s t h e number of n u c l é o n s i n t he BB s t a t e . The 

l i n e a r c o m b i n a t i o n s c o r r e s p o n d t o C - p a r i t y e i g e n s t a t e s (see T a b l e s 

IX and X f o r d i q u a r k d e f L n i t i o n ) . 
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Taijle XVI: The angular momentum recoupling factor g for coupling Q Q states 

J 

to NN. The couplings with an asterisk are zero for Я = 1. 

been given by Jaffe [Jb 78]. They are listed in Tables XV and XVI. Combining 

these two tables we see, that the strongest coupling is that of the I = 0 NN 

2 2 
triplet to those s = 0 Q 5 states which contain isoscalar diquarks. For 

large Я the two degenerate s = I = 1 and the 3 = 2, J = Я + 2 with 1 = 0 and 

1 states couple considerably weaker to the NÑ S = 0 and 1, and S = 1 channels 

respectively, but have a more favorable phase space. The 1 = 0 and 1 states 

with s = 0 and 2 and J = Я virtually decouple. These statements have only 

meaning when a comparison is made between states with the same values of 

Я and L, and about the same k. Combining the results with those obtained from 

penpherality, we find that precisely those states are preferred, which couple 

moderately to strongly, and which have s // Я. 

The hierarchy of couplings is a little different for Я = 1 and 2. For 

these small Я values the relative strengths still change quite a bit in going 

from one Я to the next. We have listed explicitly in Table XVII the couplings 

of the η = 0 ЗЧэагуопішп candidates for the narrow M = 1.90, 1.94, 2.02 and 
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Table XVII: Couplings of selected η = 0 Q Q states to NN. In case of 

isodoublets only the coupling of the 1 = 0 member has been 

given. One has g(I = 0) = g(I = 1) •/3/2*. 
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2 .20 GeV s t a t e s . We f i n d t h a t f o r t h e M = 1.90 and 1.94 GeV s t a t e s a s s i g n m e n t s 

c a n be made, which have some a t t r a c t i v e f e a t u r e s . For t h e h e a v i e r s t a t e s , t h e 

s i t u a t i o n r e a l l y d o e s n o t look very n i c e . I n b o t h c a s e s t o o many a s p e c t s r e l y 

on t h e b e n e v o l e n c e of t h e o b s e r v e r . We w i l l s k e t c h t h e s e a s s i g n m e n t s and u s e 

t h e o p p o r t u n i t y t o d i s c u s s some i n t e r e s t i n g r e l a t e d f e a t u r e s . 

3 . Narrow s t a t e s 

When we assume t h e c a l c u l a t e d mass v a l u e s t o be a c c u r a t e , t h e o b v i o u s 

3-baryonium c a n d i d a t e f o r t h e lower s t a t e i s t h e η = 0 , 1 = 1 l e v e l a t 2 . 0 1 

GeV. T h i s e x c l u s i v e i s o s p i n a s s i g n m e n t i s i n e x p e r i m e n t a l d i f f i c u l t y as l o n g 

a s no c h a r g e d p a r t n e r s of t h e M (2020) a r e f o u n d . For a s t a t e w i t h a s i m p l e 

i s o s p i n s t r u c t u r e t h e b r a n c h i n g r a t i o t o NN i s l a r g e r t h a n 30 %, i m p l y i n g 

Ρ + 2 2 
Г ііЗ — 4 M e V ( s e e T a b 1 6 X I V ) · T h 6 1 = 2 Q S l e v e l a l s o c o u p l e s t o NN: 

t h e NN p and F-waves and l i e s a t t h e NÑii t h r e s h o l d . U n t i l now no s t r u c t u r e 

h a s been o b s e r v e d t o go w i t h t h e nar row r e s o n a n c e s i n t h e ππ o r KK f i n a l 

_ PC ++ 
s t a t e s . No member c o u p l i n g t o NN can decay i n t o ππ and o n l y t h e J = 2 

- PC ++ 

one can d e c a y i n t o KK. T h i s J = 2 s t a t e however , may be p e r i p h e r a l l y 

p r o d u c e d i n t h e NN F-wave. I t t h u s may be b r o a d , b u t d o e s , j u e t l i k e t h e b r o a d 

M = 1.95 GeV and p o s s i b l y t h e 2.020 GeV s t a t e , n o t g i v e r i s e t o a bump i n t h e 

e l a s t i c o r t o t a l c r o s s s e c t i o n . I t c a n n o t be i d e n t i f i e d w i t h t h e l a t t e r b r o a d 

s t a t e , which h a s 1 = 0 . The KK decay s i g n a l of s u c h a b r o a d s t a t e may a l s o 

have a s m e a r e d o u t s t r u c t u r e and t h u s a t p r e s e n t s t i l l e s c a p e o b s e r v a t i o n . 

Comparing t h e c o u p l i n g s f o r f i x e d L one f i n d s t h a t t h e s e a r e a l m o s t 
4 

e q u a l l y l a r g e . At o r d e r g ( i . e . i n t h e e l a s t i c c r o s s s e c t i o n ) t h e y o n l y 

d i f f e r by f a c t o r s 2 o r 3 . The J = 2 s t a t e c o u p l e s t o b o t h t h e NÑ Ρ and F -

waves and p r o b a b l y i s b r o a d e r t h a n i t s c o l l e a g u e s anyway. Up t o p e n p h e r a l i t y 

e f f e c t s i t s p a r t i a l w i d t h f o r decay i n t o t h e NN F-wave s y s t e m w i l l be s i m i l a r 

t o t h a t of t h e J = 3 s t a t e s . I t s p a r t i a l w i d t h t o P-waves w i l l b e a b o u t t h e 

same as t h a t f o r t h e J = 1 s t a t e s . 
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In view of the closeness to the ΝΝπ threshold, this final state is 

rather improbable. Multimeson final states are accessible though. The I = 2 

2-2 
states can emit a meson (probably a pion) and cascade to an I = 0 Q Q bag 

state, which then falls apart into two mesons, which in turn may decay into 

two or more mesons themselves (the massive dimeson states usually have a 

large two vector particle component, see section I). Here the broad state, 

decaying to 5π and nn, becomes interesting. The small NÑ branching ratio of 

this state does not favor a peripheral interpretation. Creation of an ss pair 

near one of the bag ends may yield the ΚΚπ signals. An alternative source for 

Ρ 
this final state is provided by the η = 2, Î. = 1 state at M = 2.02 GeV, 

for which hov.Tever, the formation in pp and pd is rather problematic. No 

firm conclusion can be drawn. 

0 Ρ + 

An η = 0 candidate for the M (2204) state is provided by the i = 2 

levels at 2.23 and 2.24 GeV, with both 1 = 0 and 1. Another bad feature of 

this assignment becomes clear. All members, which couple to NN, can decay to 

M (2020) + π, e.g. in an L = 1 wave, for which only negative evidence has 

been found. 

Also in this region a ΚΚπ signal has been observed in a formation 

experiment (at 2.20 GeV) . The above mentioned levels display a large variety 

of coupling strengths and none of their members can be produced peripherally. 

When some of these states, for some reason, are broad in NN, presumably enough 

narrow ones will remain. Again, not much can be said about the other partial 

widths. 

We find that this assignment of the M (2020) and M (2204) states to 

3-baryonium levels gives rise to quite some problems, but at present it is 

still possible that one of them or both have this quark and color configuration. 

This may require another mass spectrum. At this point it still is very 

attractive though to consider some alternatives. 
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- Narrow s t a t e s : M (2020) and M (2204): 6-baryonium candidates -

The f a c t , t h a t the narrow M = 2.020 and 2.204 GeV s t a t e s have not been 

seen m formation experiments, could be due t o a combination of weak coupling 

and experimental r e s o l u t i o n r a t h e r than t r u e absence (cf. M(1950)). After a l l , 

they seem t o have, under c e r t a i n reasonable assumptions, a large branching 

r a t i o t o NN. I t could a l s o imply t h a t these s t a t e s are e s s e n t i a l l y d i f f e r e n t 

from the (broad) NN resonances, which in the previous subsection have been 

i d e n t i f i e d with 3-baryonium s t a t e s . 

- Coupling t o NN via p a i r c r e a t i o n -

This observat ion can be i n t e r p r e t e d in favor of 6-baryonium s t a t e s 

[chH 7 7 ] . In the i d e a l i z e d context of the P. model, which seems t o be a 

reasonable d e s c r i p t i o n for p e r i p h e r a l s t a t e s with I > 2, the с = 6 diquark 

recombines with the с = 3 quark t o form а с = θ or 10 t r i q u a r k . No color 

s i n g l e t s are formed and - for Í > 2 - no coupling to NÑ i n i t i a l or f i na l 

s t a t e s i s p o s s i b l e . For s u f f i c i e n t l y large Í the baryonium s t a t e s w i l l only 

3 -3 
couple t o the l i g h t e r с = 8 Q -Q conf igura t ions . These can shake off t h e i r 

angular momentum by emission of mesons (pions) and cascade t o a f i n a l s t a t e 

conta in ing many mesons and poss ib ly an NÑ p a i r . In a more probable a l t e r n a t i v e , 

the с = 8 flux i s sealed off by (valence) gluons: 

Q3 -*- Q •* Q3(GG)Q -+ (Q G) + (Q G) . Subsequently (Q G) •+ (Q QQ) -> Q + QQ . 

Again no pure NN f i n a l s t a t e w i l l emerge. Using the r e s u l t of Chapter 2 we 

3 3 3 

f ind M(Q G) u 1.4 GeV, which requires I >_ 2 for the Q -Q t o occur. 

An important a l t e r n a t i v e i s the recombination of the с = 6 diquark with 

the с = 3* a n t i q u a r k . Such a mechanism i s suppressed as a 3-baryonium decay 
2 

mode, s ince i t y i e l d s a Q Q c l u s t e r with e i t h e r а с = 3 co lor charge: the 

color e l e c t r i c flux has t o be reversed, or а с = б one, requi r ing more energy 

in the color f i e l d s . For с = 3*, recontoination with a quark y i e l d s a . o . a 

color s i n g l e t conf igurat ion and a l o t of energy i s re leased by s e a l i n g off the 
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F i g 8 : Thrt-t meson decay іюае of baryonium (a) and -mesonLum (b) s t a t e s . 

c o l o r f l u x . The с = 6 d i q u a r k and t h e a n t i q u a r k t o g e t h e r may form а с = 3 

c o l o r c h a r g e . H e r e , t h e f l u x i s n o t s e a l e d o f f c o m p l e t e l y , b u t i s r e d u c e d 

q u i t e a b i t . The newly formed c l u s t e r s a r e h i g h l y u n s t a b l e and a r a p i d 

decay i n t o 3-meson f i n a l s t a t e s e n s u e s ( see f i g . 8) . 

Because t h e t r a n s i t i o n ( Q 2 ) c = 6 + (Q2£) c = 3 i s much more f a v o r a b l e 

t h a n t h e (Q2) •+ (Q3) o o n e - t h e former i s e x p e c t e d t o d o m i n a t e . S ince 
с — S с = θ 

t h e e n e r g y r e l e a s e d i n a c = 6 t o c = 3 t r a n s i t i o n i s n o t a s much a s t h a t i n 

а с = 1 from с = 3* o n e , t h e t h r e e meson d e c a y mode may y i e l d a p a r t i a l w i d t h 

which i s s m a l l e r t h a n t h e p a r t i a l w i d t h f o r decay t o NÑ of a comparab le 

3 -baryonium s t a t e . I t s i m i l a r l y i s l a r g e r t h a n t h e 3-meson decay w i d t h of t h e 

same 3-baryonium s t a t e . I t p r e sumab ly i s a t most s e v e r a l t e n s o f MeV. Another 

a l t e r n a t i v e f o r 6 - b a r y o n i u m s t a t e s i s t h e c a s c a d e d e c a y , which w i l l n o t y i e l d 

v e r y wide s t a t e s e i t h e r . Fa r above t h e NÑ t h r e s h o l d a s m a l l w i d t h may be a 

s i g n a l f o r t h e p r e s e n c e of a 6 -ba ryon ium s t a t e . For 4 > 2 no p u r e NÑ f i n a l 

s t a t e s w i l l be p r o d u c e d . 

- C o u p l i n g t o NÑ v i a s h o r t r a n g e i n t e r a c t i o n s -

For г = 1 and 2 (see page 183) some 6 - b a r y o n i u m s t a t e s (Ф6) w i l l have 
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small t r i p l e t (φ,) admixtures, which are generated by the r e s i d u a l co lor 

magnetic i n t e r a c t i o n . The mixing p a t t e r n i s s i m i l a r t o t h a t for the £. = 0 

s t a t e s found m Table VI. For a s t a t e φ = αφ^ + β φ , | α | + | ß | = 1 , the 

average amount of mixing i s given by 3 = β (£,8) : 

(ί.,3) (1,0) (1,1) (2,0) (2,1) 

β 0.25 0.13 0.05 0.03 

and a l l o t h e r ß ' s zero . 

Via t h i s i n t e r a c t i o n a p a r t i a l width for decay t o the NN channels can be 

obtained of Γ -(6) < 0.06 Γ -(3) < 10 MeV for ί = 1 and much smal ler for 
NN — NN — 

1=2. Although 10 MeV i s not l a r g e , the decay t o NN s t i l l may be a mayor 

decay mode. This may be another s i g n a l for s p o t t i n g 6-baryonium s t a t e s . The 

c o l o r magnetic i n t e r a c t i o n between the c l u s t e r s thus i s important only for 

I = 1. 

The s t r e n g t h of the i n t e r a c t i o n between the color e l e c t r i c d ipole moments 

of the quarks in the deformed bag ends i s hard t o e s t i m a t e , s ince in the b e s t 

2 known systems (Q-Q and Q -Q) only с = 3 conf igurat ions occur. In view of 

i t s dipole c h a r a c t e r i t probably a l s o w i l l only be not iceable in the small 

I region, where moreover the deformations are not y e t Large. 

Neither color magnetic nor color e l e c t r i c dipole i n t e r a c t i o n s w i l l change 

an s^wave (c,S) = (6,1) diquark i n t o an s-wave (3*,1) one. This impl ies t h a t 

the e = 1 and 2 6-baryonium s t a t e s which are dominantly composed of such 

diquarks w i l l not be reached in e l a s t i c p r o c e s s e s . They may occur as decay 

product a f t e r the formation of a 6-baryonium s t a t e , with one or two exc i ted 

(p-wave) c l u s t e r s , which decay via emission of a pion or other meson (space-

flavor f l i p ! ) . From these cons idera t ions i t follows t h a t some 6-baryonium 

s t a t e s w i l l be formed only s c a n t i l y , whereas o t h e r s (e .g . those with I >_ 3) 

w i l l not be formed a t a l l . 
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- Production -

The above mentioned arguments do not imply t h a t most 6-baryonia w i l l 

never be seen. One can arrange the experimental condi t ions in such a way t h a t 

a diquark and an ant id iquark are brought so c lose t o g e t h e r t h a t the dipole 

forces , in s p i t e of the high angular momentum b a r r i e r , are able to change the 

c o l o r s t a t e . Examples of these soca l led product ion processes have been given 

a t the beginning of t h i s s e c t i o n . In Fig . 6 (page 172) two s i t u a t i o n s are 

depicted in which an e n e r g e t i c QQ meson beam f a l l s on a baryon t a r g e t . By 

t r i g g e r i n g on a s u i t a b l e fa s t forward baryon the s h o r t ranged a n t i -baryon 

exchange mechanism i s s e l e c t e d . This mechanism requi res the c r e a t i o n of a 

d iquark-ant idiquark (" S model") of which the ant id iquark recombines with 

the diquark of the t a r g e t baryon t o form a backward baryonium or mesonium 

system and the diquark submerges with the quark of the meson in a forward 

baryon. The higher the spin of the forward baryon i s , the higher t h a t of the 

2-2 
backward system may be . One can a l so produce forward Q Q resonances. The 

s imples t exchange i s a QQ one which r e s u l t s in a forward QQ system, m which 

a QQ p a i r c r e a t i o n can lead t o a baryonium or mesonium s t a t e . This way a l s o 

the s = 2 and the missing s = 1 s t a t e s w i l l be produced. When one t r i g g e r s 

on a f i n a l s t a t e pp p a i r only 3-baryonia and poss ib ly I = 1 б-Ьагуопіа 

2-2 
[Εν 78] w i l l be seen. The other Q Q s t a t e s requi re QQ a n n i h i l a t i o n followed 

2-2 
by the c r e a t i o n of a Q Q p a i r t o generate t h i s t r i g g e r , which - on mass 

s h e l l - does not s t i m u l a t e t h e i r prominence. 

2-2 
The next s implest exchange i s a Q Q one.' 

- Candidates -

Consulting Table XIIIc the η = 0 , I = 0 M = 2 . 0 1 GeV state seems to 

be a good candidate for M (2020), and the η = 2, I = 0 and 1 and M = 2.18 

state may be the M (2204) . The lower state is not in trouble when M (2020) 
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tu rns out t o have I = 0 - on the contrary - and does not form a pa r t of the 

f ina l s t a t e in the pioncascade decay of M (2204). Both s t a t e s , because of 

t h e i r diquark composition, w i l l probably suffer the drawback of a weak coupling 

to pp. 

- Narrow s t a t e s : M = 1.897 and 1.936 GeV -

Since both s t a t e s are prominent peaks in formation experiments , we w i l l 

take them to be 3-baryonia. Table XHIa conta ins only two Ä = 1, η = 0 l e v e l s 

above the NN t h r e s h o l d : one a t M = 1.90 and one a t 1.94 GeV. We have l i s t e d 

a l s o these s t a t e s and t h e i r couplings t o NÑ in Table XVII. Again taking the 

ca lcu la ted masses a t face va lue , we iden t i fy the bump a t 1.Θ97 GeV with the 

l e v e l a t 1.90 GeV and the S (1936) s t a t e with the one a t 1.94 GeV. In view of 

i t s proximity t o the NN threshold the former presumably i s a pseudoscalar 

i sodoublet of which the 1 = 1 member has been found. An a d d i t i o n a l 1 = 0 

ρ 
s t a t e i s r e q u i r e d . Of course J = 2 i s not excluded. 

ρ 
The leve l a t 1.94 GeV contains a J = 1 s t a t e , which couples t o the 

I = 1 ππ system and thus provides a n a t u r a l candidate for the p e r i p h e r a l 

NÑ D s t a t e . The S(1936) then has J = 2 or 3 . Taking i n t o account, t h a t t h i s 

s t a t e has only been seen in e l a s t i c and t o t a l cross sec t ions and t ha t no ππ 

decays have been r e p o r t e d , J = 2 i s favored. This assignment has a q u i t e 

s u r p r i s i n g consequence: denoting g = g (J) we have g(l) : g (2) : g (3) = 1 : 3 : 6 

for the D-wave coupl ings , which i s l a rge ly due t o the angular momentum 

recoupling (Table XVI) . These large r a t i o s however, only play a ro le in the 

2 
formation of the s t a t e s (order g ) . In p r i n c i p l e a l l three s t a t e s may be formed 

p e r i p h e r a l l y , coupling t o the J = L - 1, L and L + 1 wave r e s p e c t i v e l y . Unt i l 

now only a J = 1 s t a t e has been reported (M = 1.95 GeV). When t h i s turns out t o 

be the f i n a l s i t u a t i o n , the e f fec t ive couplings t o NN D-waves may be comparable 

a t t h i s l e v e l . Once the J = 1 s t a t e has been formed in a D-wave, i t w i l l very 
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easily fall apart into the S. NÑ channel. The J = 2 and 3 states will be 

strongly hampered in their NN decay by the centrifugal barrier. Moreover, 

the recoupling coefficients for the J = 1 S-wave and J = 2 and 3 D-wave decays 

have become comparable: g(l) : g(2) : g(3) = 3 : 2 : 4 . Consequently, the 

J = 1 state may acquire a considerable width in the elastic NN channels, while 

the J = 2 and 3 states not necessarily need to become broad. The photonlike 

state furthermore has the additional feature, that it also may posses a 

sizable multimeson decay width via its coupling to L = 0 colored Q -ζ states. 

Combining these remarks we expect the J = 1 state to be much broader than its 

J = 2 and 3 partners. This assignment has another attractive feature. It 

predicts the presence of degenerate 1 = 0 and 1 multiplets. This property may 

explain, why the charge exchange process: pp ->- nn is not seen, whereas the 

elastic process pp ->• pp is quite clearly visible [Kl 78] . Both pp and nn are 

mixtures of isospin eigen states: pp ъ ((1,0) + (0,0)) and nn ^ ((1,0) - (0,0)) 

2-2 
in the notation (1,1 ). The coupling of NN to the I = 0 Q Q state is stronger 

than that to the 1 = 1 one: g(I=l) : g(I=0) = /2 : /З. Assuming charge 

independence one finds constructive interference in the elastic process, where­

as the charge exchange process displays destructive interference. This results 

in the ratio σ , : σ = 25 : 1 for the cross sections. Of course the coupling 
el ce 

to NN is not the only possibility. The coupling to mesons will not be the 

same for the two isospin multiplets (G-panty) and the ratio may not be as 

large. Still the effect may be considerable. In case only one isomultiplet is 

present one has σ , : σ = 1 : 1, in disagreement with observation. One 
el ce 

expects that for the 1.90 GeV state, which is also regarded as a complex 

structure, σ , >> σ is valid too. An alternative explanation [Ei 76] of the 
el ce 

smallness of the σ /α , ratio requires only one narrow resonance, which inter-
ce el 

feres strongly with the background, a feature neglected in the above presented 
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e x p l a n a t i o n . S i n c e t h i s phenomenon r e c u r s a t t h e Τ and U m a s s e s , and s i n c e 

S, Τ and U a l l a p p e a r t o have a c o n p o s i t e i s o s p i n s t r u c t u r e , we t h i n k t h e 

f i r s t e x p l a n a t i o n more a p p e a l i n g . One s h o u l d add t h o u g h t h a t i n t h e Τ and 

U r e g i o n t h e 1 = 0 and 1 l e v e l s a r e n o t d e g e n e r a t e , which w i l l r e d u c e t h e 

e f f e c t , a s o b s e r v e d . 

- Narrow s t a t e s be low t h e NÑ t h r e s h o l d -

I n c l u d i n g a l s o G-baryonium s t a t e s , we f i n d , i n t h e p r e s e n t v e r s i o n o f 

2-2 Ρ + Ρ -

t h e Q Q mass s p e c t r u m , one SL =2 and f i v e 1 = 1 l e v e l s be low t h e NN 

t h r e s h o l d . The main d e c a y mode of t h e s e s t a t e s p r e s u m a b l y i s t h e t h r e e meson 

o n e , d e p i c t e d i n F i g . 8 , y i e l d i n g m u l t i m e s o n f i n a l s t a t e s . The l e v e l s a t 

M = 1.76 and 1.83 GeV - t h e f i r s t h a s t, = 2, t h e s e c o n d η = 2 - p r o b a b l y 

a r e more n a r r o w t h a n t h e o t h e r o n e s , b e c a u s e o f t h e h e a v i e r m e s o n s , o c c u r r i n g ' 

i n t h e i r d o m i n a n t f i n a l s t a t e s . One does n o t e x p e c t any of t h e s e s t a t e s t o 

have w i d t h s a s l a r g e a s 100 MeV. 

Ρ - PC — 

A l l Л = 1 l e v e l s c o n t a i n a p h o t o n l i k e member: J = 1 (see a l s o 

F i g . 5 ) , which s u g g e s t s t h a t t h e i r p o s i t i o n can be c h e c k e d i n e e a n n i h i l a t i o n . 

S i n c e i t i s n o t t o be e x p e c t e d t h a t t h e c r e a t i o n o f t h e h e a v i e r d i q u a r k - a n t i -

d i q u a r k p a i r w i l l be a s p r o b a b l e a s t h a t of a q u a r k - a n t i q u a r k p a i r , t h e i r 

c o u p l i n g t o t h e p h o t o n w i l l be l e s s s t r o n g , and a b e t t e r r e s o l u t i o n t h a n t h e 

p r e s e n t one may be n e e d e d t o d e t e c t them [To 78] . S t i l l among t h e many b r o a d 

e e r e s o n a n c e s a l s o s e v e r a l nar row o n e s have b e e n r e p o r t e d (Table XIV) . I n 
2 2 

t h i s r e g i o n t h e Q Q s t a t e s l i e amid of t h e o r b i t a l l y and r a d i a l l y e x c i t e d 

QQ s y s t e m s , from which t h e y have t o be d i s t i n g u i s h e d . At p r e s e n t t h i s i s n o t 

q u i t e f e a s i b l e due t o t h e s c a r c i t y of t h e t h e o r e t i c a l and e x p e r i m e n t a l d a t a 

on t h e decay modes. The p r e s e n c e of p h o t o n l i k e i = 0 Q 5 s t a t e s h e r e p r e s u m a b l y 

d o e s n o t c a u s e much t r o u b l e , s i n c e t h e i r c o u p l i n g t o e e i s e x p e c t e d t o be 

s t i l l weaker t h a n t h a t of t h e b a r y o n i u m s t a t e s . 
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Important information on the baryonium s t a t e s below the NN threshold may 

be obtained from the γ ray spectrum of atomic pp systems. When the emit ted 

photon r e s u l t s from the a n n i h i l a t i o n of a QQ p a i r one may find baryonium 

PC 
f i n a l s t a t e s . In t h i s process a l s o the o ther J members of the M = 1.72 and 

1.76 GeV l e v e l s can be reached. In view of the large v a r i e t y of quantum numbers 

decay t o these l e v e l s may be q u i t e a t t r a c t i v e and the two higher γ ray s t a t e s 

may be assigned t o them. In t h i s case our mass values are about 100 MeV off. 

The γ ray may a l so r e s u l t from the coalescence of two three quark bags i n t o a 

3-3 
s i n g l e ί = 0 Q Q one. Although these s t a t e s usual ly simply f a l l a p a r t t o a 

3-ineson f ina l s t a t e , some of the high spin or low mass s t a t e s may have a 

s u f f i c i e n t l y r e s t r i c t i v e f i n a l s t a t e , t o render them narrow, and t h i s 

p o s s i b i l i t y then s e r i o u s l y must be taken i n t o account. 

We note t h a t the spectrum of narrow e e resonances does not coincide 

with the atomic pp γ ray one. This might i n d i c a t e t h a t none of the e e 

resonances found u n t i l now (as a r e s u l t of a weak coupling?) are baryonium 

ones, when we take the γ ray s t a t e s assignment s e r i o u s , and vice ver sa . This 

s i t u a t i o n thus a l s o requi res a d d i t i o n a l r e s e a r c h . 

- Narrow s t a t e s : The S = + 1, Q = 2 s t a t e a t M = 2.461 GeV [Ar 78, Ro 70] -

2-2 
The most unambiguous candidate for Q Q s t a t e s i s the narrow resonance 

found in the process Κ ρ •+ (Λρπ ) η a t 2.461 GeV. I t shows up as a peak in 

both the ΛΔ (1232) and ρΣ (1335) i n v a r i a n t mass p l o t s . From the H a r á n -Rosne r 

diagram follows t h a t t h i s exo t i c f ina l s t a t e (^ uuds) a l s o requi res the 

exchange of an e x o t i c s t a t e (^ uuud) . One f inds with the same method [Ja 79] 

t h a t t h i s forward system can a l s o be produced using a К beam, but then i n s t e a d 

of a neutron а Д (from the К ) or a Ξ (from the К ) i s produced backwardly. 

А К beam may produce the Q = 1 i s o m u l t i p l e t member, accompagnied by a backward 

Ξ . In our model such a s t a t e might be a scr ibed t o an Л = 3 3-baryonium η = 18 

l e v e l . 
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- Conclusion -

2-2 
This t rea tment of the o r b i t a l l y exc i ted Q Q system i s by no means 

exhaus t ive . We have only discussed the nature of a few prominent s t a t e s 

and did not touch upon the s t a t u s of the remaining ones . At p r e s e n t a d e t a i l e d 

assignment of a l l reported s t a t e s i s not yet a feas ib le undertaking. The 

t h e o r e t i c a l candidates s t i l l outnumber the repor ted ones by fa r , although the 

number of the l a t t e r i s s t e a d i l y increas ing and even a s t a t e with an unambiguous 

2-2 
Q Q content seems t o have been found. Quite a l o t of repor ted s t a t e s s t i l l 

requi re conf i rmat ions . 

2-2 
Of the o r b i t a l l y exc i ted Q Q s t a t e s the baryonium s t a t e s have been 

discussed in some d e t a i l . The 8-mesonium s t a t e s have, as a consequence of 

our a t t e n t i o n for s t a t e s coupling t o the NN system, only been mentioned 

c a s u a l l y , in the discuss ion of production and decay mechanisms. Next t o 

a l l -quark c l u s t e r s i n t e r e s t i n g c o n f i g u r a t i o n s , containing a l s o valence 

gluons, which screen the quark charge, may e x i s t . An example i s the с = 3* 

2 
Q G c l u s t e r , b u i l t from а с = 6 diquark and а с = 8 gluon. Two of such 

c l u s t e r s can combine t o a 3* - 3 t r a j e c t o r y which has a l a r g e r i n t e r c e p t 

than, b u t for s u f f i c i e n t l y large Î. i s more prominent than the corresponding 

6 - 6 * t r a j e c t o r y . Consequently, i t may a t some po in t turn out t o be more 

favorable t o screen a large co lor charge (c >_ 6) and t r a j e c t o r i e s with an 

anomalously s teep slope may not be seen any longer [Ho 79] . 

We have devoted much a t t e n t i o n to the study of s t a t e s with small o r b i t a l 

angular moraentum, because the number of experimental candidates i n t h i s region 

i s r e l a t i v e l y large and more exot ic conf igurat ions probably do not play an 

important ro le he r e . No firm conclusions could be drawn about our p r e s c r i p t i o n 

for the ca l cu la t ion of the masses of these s t a t e s . Since a g rea t many aspec ts 

of the couplings to decay channels remain unexploi ted, severe c r i t e r i a to 

e l e c t or r e j e c t cand ida tes , are absent . 
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In such a s i t u a t i o n i t i s never the less qu i t e useful t o have a reference 

frame in which one can q u a l i t a t i v e l y discuss the repor ted candida tes . 

Although no d e f i n i t e p r e d i c t i o n s can be made, one may be able to s e l e c t 

prominent specimina, which may be r e l a t i v e l y e a s i l y looked for . 
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Appendix A: Conventions for metric and γ-matrices 

Metric tensor: g ; μ, ν € {0,1,2,3} 

- g0 0 = gkk = 1 к € {1,2,3} 

g = 0 , when μ ψ ν. 

Y-matrices: {γ ,γ } = 2 g 

μ ν μν 
In terms of the 2 x 2 matrices: 

0 0 \ / 1 0 \ / 0 1 \ / 0 - 1 
0 = 1 I .- 1 = I ; σ = I , σ = 

,0 0 / \ 0 1/ \ 1 0/ \ i 0 

• с ^ 

we have : 

Standard representation: Weyl representat ion: 

/ i l 0 \ / Q 11 

Ύ0 = 1 P 3 = Ύ 0 = 1 р і 
U J V 0 -ill/ U \i l 0 

0 -iak\ / 0 iak \ 

Yk = ρ 2\ = . я ; Yk = - p 2 a k = I . я 

/ « 
у*= Рз = Ч ., У Y4 = Pl • ν . 

/ 0 -1 \ / - 1 0 

) У5 = -Р3 = 
1 0 / 0 1 

Y 5 _ " Р 1 " \ . „ ! '5 " "3 

Relations: γ+ = Υ
0
 γ

μ
 γ

0
 = - γ

4
 yu Y 4 

using Y
4
 = - i Υ

0 

γ 5 = i Ύ0 γ 1 Ύ2 Ύ3 = У1 У2 У3 Ï 4 

Massive Free Fermion Lagrangian: 

oCf = - Ψ (Ύ· J + т)ф 

with ψ = ψ Y4 ; γ-a = 3μ γ^ = i ρ μ γ^ 
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Appendix В. Representations and properties of the SU(3) generators 

The eight generators F satisfy: 

[F ,F ] = F F - F F = ι f F a ^ c € {1 , . . . ,8} (i) 

a b a b b a abc с 

The (η χ η)-matrix representations are normalized to 

η 
(F ) . . . . 

ij Ъ j 

Tr F F = l (F ) (F. ) = ì δ , (il) 
a b ' · . a i l b πι 2 a b 

i , ] = l 

where 6 = 1 , when a = b, and zero otherwise. 
ab 

The SU(3) structure constants f are completely antisymmetric under 

permutation of any two indices. Denoting (abc) = f one has: 

(123) = 1 (45Θ) = (678) = /T/2 

(147) = - (156) = (246) = (257) = (345) = - (367) = 1/2 

A (3 χ 3) matrix representation satisfying (i) and ( n ) i s given by 
'λ 

' in terms of the Gell-Mann matrices λ . For completeness we also 

0 0 \ / 0 1 0 \ / O - i 

1 0 x1 = 1 0 0 x2 = ι 0 

0 1 / \o о о / \ о о 

0 0 \ / 0 0 1 \ / 0 0 -ι \ 

-1 0 λ 4 = 0 0 0 λ 5 = 0 0 0 ' 

0 0 / y i o o / \ ι ο ο/ 

0 0 \ / 0 0 0 \ / 1 ο ο\ 

ο ι λ7 = Ι 0 0 -ι j λ8 = ^ 0 1 ο ) 

1 0 / \ 0 ι 0/ \ O 0 - 2 / 

This 3-dimensional representation further defines the constants d , which 

are completely symmetric under permutation of any two indices by: 

-/І {λ ,λ, } = λ λ̂  + λ λ = / ^ & \ η + 2 d ^ λ 
a b a b b a З а Ь О abc с 

Denoting (abc) = d . : 
abc 

(118) = (228) = (338) = - (888) = y j (448) = (558) = (668) = (778) = - jjrf 

(146) = (157) = - (247) = (256) = (344) = (355) = - (366) = - (377) = 1/2 . 

ν 2 40 г 2 
The constants satisfy ) (d ,_ ) = — and ) (f ,_ ) =24. 

¿ abc 3 t abc 
a,b,с a,b, с 

An 8 x 8 matrix representation is given by (F ). = - ι f , r a bc abc 

file:///O0-2/
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SAMENVATTING 

Het proefschrift bestaat uit vier delen: 

Hoofdstuk 1. Hierin wordt getracht het beeld te schetsen van hadronen, 

zoals dat momenteel in de hoge energie fysika in brede kringen bestaat. 

Tevens wordt geprobeerd een overzicht van de experimentele feiten te geven, 

waarop dit beeld gebaseerd is. Hadronen zijn deeltjes, die onderhevig zijn 

aan sterke wisselwerkingen (kernkrachten) . Zij worden gewoonlijk verondersteld 

te zijn opgebouwd uit quarks: deeltjes met 'spin' j = 1/2 en een 'color' (kleur) 

lading. De krachten tussen deze kleurladingen, die overgebracht worden door 

zelf ook weer kleur dragende gluonen, zorgen ervoor, dat in het hadron alleen 

zeer bepaalde - kleurloze - quark combinaties kunnen voorkomen. De meest 

eenvoudige hadronen zijn baryonen (3 quarks: Q ) of mesonen (quark-antiquark: 

QQ) toestanden. Naast kleur en spin hebben de quarks ook 'flavor' (smaak) , een 

kwaliteit die tezamen met de quarkspin veel van de hadron eigenschappen bepaalt. 

Tot nu toe is het bestaan van vijf smaken aangetoond, waarvan we in dit proef­

schrift alleen die drie gebruiken, die het langst bekend zijn. 

Hoofdstuk 2. Een specifiek hadron model - het MIT bagmodel - wordt 

geformuleerd. Het verenigt de meeste in hoofdstuk 1 opgesomde eigenschappen in 

zich. Er wordt in detail ingegaan op een speciale klasse expliciete oplossingen, 

behorende bij de statische bolvormige 'bag' . Behalve quark oplossingen laat 

deze benadering ook gluon oplossingen toe. Dit betekent dat naast hadronen, 

bestaande uit quarks, ook - nog steeds kleurloze - hadronen kunnen voorkomen, 

die bestaan uit quarks en gluonen, of alleen maar gluonen. Voor een systeen 

dat alleen quarks bevat, wordt een uitdrukking voor de energie afgeleid, die 

uitgebreid wordt met enige fenomenologische termen. Het massa spektrum van de 

lichte hadronen wordt met deze massaformule gereproduceerd, waarna uitspraken 
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gedaan kunnen worden over enkele andere, s t a t i s c h e eigenschappen van deze 

d e e l t j e s . 

Hoofdstuk 3. De groepentheoret ische s t r u c t u u r van de massaformule, 

a fge le id in hoofdstuk 2, wordt geanalyseerd en een gegeneral iseerde f lavor -

spin SU(6) massaformule wordt gegeven, waarvan de coëf f ic iën ten funkties 

z i jn die m.b.v. he t MIT bagmodel kunnen worden berekend. Met deze massa­

formule wordt he t massaspektrum van he t dibaryon (zes-quark: Q ) systeem 

voorspeld en mogelijke kandidaten besproken. 

Hoofdstuk 4. De s t a t i s c h e bolvormige 'bag ' benadering wordt ook toegepast 

2-2 
op dimeson (Q Q ) toes tanden. Uitgaande van de k leur -krach ten kan een voorschr i f t 

gegeven worden voor he t berekenen van de massa 's van (zeer) sne l draaiende 

(en dan sigaarvormige) ' b a g s ' . Hiermee wordt he t massa spektrum van snel 

2-2 
draaiende Q Q (de zgn. baryonium en mesonium) toestanden bepaald. De aldus 

verkregen spektra worden vervolgens geanalyseerd en vergeleken met he t 

experimenteel gevonden spektrum. 
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