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CHAPTER I 

INTRODUCTION 

1 A Introduct ion 

T h i s t h e s i s d e a l s w i t h a n e l e c t r o n s p i n r e s o n a n c e (ESR) s t u d y of b i s ( N , N -

d i a l k y l d i s e l e n o c a r b a m a t o ) - c o p p e r ( I I ) c o m p l e x e s { C u ( R 9 d s c ) 9 , R=Tnethyl (met ) , 

e t h y l ( e t ) , η - b u t y l ( b u t ) } 

N-Cv ^ C u C-N R = a l k y l 

/ \ s ^ ^ S e ^ \ 

and the related compounds bis(N,N diethyldithiocarbamato)-copper(II) 

{Cu(et.dtc) } and bis(N,N-di n-butyldiselenocarbamato)-silver(II). 

This study is a continuation of the investigations which are carri PH 

out at this University on the dichiocarbamato-, maleonitriledithiolato-

(mnt), and other dithiolato-complexes of various metals [ 1-5 ] . A striking 

property of these ligands is their ability to stabilize metals with an 

unusually high oxidation number. Redox reactions of these complexes have 

been studied extensively in the Department of Inorganic Chemistry, 

resulting in the preparation of a large number of compounds with the metal 

ion in a high oxidation state Γ 6-9 ] . 

Some of these compounds have been studied already with the aid ot 

ESR spectroscopy. Of special interest for us are Ag(et dtc) , Au(et.dtc),, 

and Au(mnt) , which have been studied by van Rens in this department [ 5 ], 
1
 2-

and Cu(et dtc) [ 10-13 ] and Cu(mnt) [ 14-16 ] . We have extended these 

studies to the diselenocarbamato-complexes. Since the natural abundance of 

selenium atoms with a nuclear spin is ten times larger than for sulphur, 

the hyperfine splitting (hfs) of the former atoms can be measured more 

easily than of the latter. These hyperfine splittings yield additional 

information about the electronic and molecular structure of the complexes. 

A disadvantage is the very large spin-orbit coupling of selenium, which 

results in a large influence of these ligand atoms on the g values. One of 

the consequences is an unexpected orientation of the g tensor principal 

axes relative to the principal axes of the central metal hyperfine 

splitting tensor. A large part of this study is focussed on the explanation 

of this effect. 



I В Survey of the present study 

In section A of chapter II, expressions are derived for the resonance 

fields and the transition probabilities, using the formalism of the 

effective spin hamiltonian. These equations enable us to determine the 

spin hamiltonian parameters from the experimental spectra. In the sections 

II B, C, and D the parameters of the spin hamiltonian are expressed in the 

parameters occurring in the Molecular Orbital (MO) model. Special attention 

is paid to the influence of multicentre integrals and the problem of gauge 

invariance, because this is important if molecules are considered. 

In chapter III the preparation of the various compounds and single 

crystals is given. Furthermore we discuss the derivation of the spin 

hamiltonian parameters from the experimental spectra. 

The experimental results are presented in chapter IV. The main part is 

related to single crystal measurements in two different host lattices. 

Powder and glass spectra are elso discussed. 

The last chapter contains the results of extended HÜckel calculations. 

The orientation of the principal axes in the diselenocarbamato complexes 

is explained. 



CHAPTER II 

THEORY 

All systems considered in this thesis contain one unpaired electron and 

one or more nuclei with a magnetic moment. The hamiltonian of such a 

system can be divided into two parts: H and H . H is the Schrodinger 

o s o 

hamiltonian, containing the kinetic energy and all Coulomb interactions 

of electrons and nuclei. H describes the electric multipole interactions 

s
 r 

and the magnetic interactions. The only electric multipole interaction of 

importance in our systems, is the quadrupole interaction. The magnetic 

interactions are the coupling between the electron spin and the nuclear 

spins, the coupling of these spins with the orbital angular momentum of 

the electron and ( if present) with the external magnetic field. 

In the Hartree Fock method, the eigenfunctions of H are approximated 

with determinant functions, consisting of one-electron spinorbitals ψσ, 

where σ is the spinfunction. The spatial part ψ is a molecular orbital 

(MO), often approximated by a linear combination of atomic orbitale (LCAO). 

In chapter V we calculate these eigenfunctions in an approximate way. In 

the present chapter we assume an exact knowledge of these determinant 

functions and their energies. Moreover, in view of the low symmetry of the 

systems studied, we assume that the eigenvalues of Η have no orbital 

degeneracy. 

Expressions for the resonance fields and transition probabilities in 

the ESR spectrum are derived in section A, using the formalism of the 

effective spin hamiltonian. The physical background of some magnetic and 

electric interactions is discussed in sections B,C and D. 

II A The spin hamiltunian and the esr spectrum 

For the sake of simplicity, we restrict ourselves in this section to a 

paramagnetic molecule with only one nucleus with a magnetic moment. When 

such a system is placed in a homogeneous magnetic field, the spin 

hamiltonian of the system is given by 

Η - RB.g.S + S.A.I + I.P.I - g μ Β.I 
s b η η 

= Η
ΕΖ

 + H
HF

 + H
Q

 +
 V ' ί"·

1
' 

where u is the Bohr magneton, U the nuclear magneton, g the gyromagnetic 
b η η 

ratio of the nucleus and В the magnetic induction. 

3 



H is the electron Zeeman energy, representing the interaction of 

the electron spin S with the magnetic field. The generally anisotropic 

g tensor will be discussed in section II B. When a magnetic induction of 

0,32 Tesla is applied the magnitude of this interaction is of the order 

of 3000 lO^cm"1* 

H is the magnetic hyperfine interaction between the nuclear spin I 
Hr 

->-
and the field produced by the electron spin S. Generally the hyperfine 

coupling tensor Ä is anisotropic, its principal axes do not necessarily 

coincide with those of g. The nature of this tensor will be discussed in 

section II C. The magnitude of this interaction is for copper: up to 
- 4 - 1 . - 4 - 1 -4-1 

150 10 cm ; for silver: 10 10 cm ; for selenium: up to 40 10 cm 

H is the nuclear quadrupole interaction, representing the interaction 

of the nuclear electric quadrupole moment with the electric field gradient. 

The tensor Ρ will be discussed in section II D. The magnitude of this 

interaction for copper in Cu(II)(et-dtc)„ diluted in Ni(II)(et.dtc) Γ 17 ] 
—L — 1 

or in tetraethylthiuramdisulphide [ 18 ] does not exceed 2 10 cm . Silver 

and selenium do not posses a quadrupole moment. 

H^ is the nuclear Zeeman energy, the interaction of the nuclear 

spin with the magnetic field. We neglect the chemical shielding in this 

interaction, because it is not likely to exceed 1,000 ppm, while the 

energy itself is small. Some magnitudes are: when using an induction of 

-4 - 1 - 4 - 1 - 4 - 1 

1.2 Tesla: copper: 7 10 cm ; silver: 0.5 10 cm ; selenium: 2 10 cm 

II A 1 Transformation of spmcoordinates 

Bleany [ 19 I has derived expressions for the resonance magnetic field for 

the case of axially symmetric g and D (the zero field splitting tensor). 

Weger and Low [ 20 ] extended this calculation to the case of non-axially 

symmetric D. Golding and Tennant [ 18 ] handled the problem of axially 

symmetric g, Ä and P. This calculation was extended by Golding [21 ] 

to the problem of non-axially symmetric g, D, Ä and P, with the restriction, 

however, that the principal axes of all tensors coincide. The same 

restriction was made by McClung [ 22 ] who considered the case of non-axial 

g and Ä. Recently Lin [ 23 ] discussed the problem of non-axial g, D, and A 

without assuming that the tensors have the same set of principal axes. 

All formulas in this thesis will be in SI units. As is conventional in ESR 
-4 -1 

spectroscopy, energies will be given in units of 10 cm .A unit of 

lO^cm"1 is equal to 1.9862 10_ Joule. 

4 



Similarly Golding [ 24 ] did not make this assumption in deriving expressions 

for the resonance field in the case of rhombic g, Ä and D. In all these 

derivations the nuclear Zeeman energy was neglected, although it can be 

important for the transition probabilities. In this section no restrictions 

are made for the orientation of the principal axes of the tensors. The ESR 

spectrum is calculated for the general case where the interactions can be 

represented by the spin hamiltoman (Eq.II.l). The applied magnetic 

induction is taken in an arbitrary direction: 

В = В к к = sin θ cos φ 
χ 
к = sin θ sin φ 
У 
к = cos θ . (II.2) 

ζ 

θ and φ are the spherical angles in the laboratory coordinate system. 

Thus our goal is to calculate the eigenvalues and eigenvectors of 

the hamiltoman operator by means of a perturbation procedure. We start 

with a set of (2S + 1)(2I + I) states degenerate for Η . Since the 

perturbations differ in order of magnitude (H > Η > Η , Η ), it is a 

EZ Hr Q rJZ 

good approximation first to diagonalize the largest term (H ). This 

results into two sets of (21 + I) functions degenerate for Η + H__. Next 

ο EZ 

the second largest term (H ) is diagonalized within each of these sets of 
ПГ 

(21 + 1) degenerate functions. Thus we obtain the proper unperturbed 

functions which may be used in formulas for perturbation theory of non 

degenerate states [ 25 ] . 

The diagonalization of Η amounts to the choice of a new basis set 

of electron spin functions. These are chosen to be eigenfunctions of the 

S-component that is directed along the so-called "effective field" 

B
e f
 = B.I . (II.3) 

This S-component may be called the z-component of a spin vector S' that can 

be obtained from S by the transformation 

? = U
- 1
.S' , (II.A) 

where 0 is an orthogonal transformation matrix. Applying this transformation 

H,,., can be rewritten: 
EZ 

H
E Z
 = u

b
B к.І.и"'.?' . (II.5) 

A convenient expression for U is: 

5 



и = 

ν, 

- 1 . 

лгг 

з 
Г~г Г f—г 

/ 1, + 1, / 1, + 

AÑ 

- / ι , + ι 

( И . 6 ) 

where 1 i s the u n i t v e c t o r a long В 
ef 

k- g 

1 =
 / i' -

 = t
 ft k. g. g. к 

(II.7) 

Substitution of this expression for U in Eq.II.5 yields: 

H
EZ • ̂

B
 / 

k. g. ?. кс s ; E pbB g s ; . (II.θ) 

We may interpret g = /к. g. g. к as an "effective" g value in the 

direction of the applied field. 

The next step is to diagonalize the second largest perturbation, Η , 
ПГ 

within a manifold of (21 + 1) degenerate functions for H + 1L„ : 

o EZ 

<M
S
, м^ | Ндр | M

S
, м Ч = 0 if м ^ м^ (II.9) 

This means that off-diagonal matrix elements of H exist only between 

nr 

levels of different M . These elements are small because the energy 

separation between the two manifolds of different M is much larger than 

the separations within such a manifold. In order to fulfil the condition 

(II.9) we introduce a transformation of the nuclear spin I : 

.1' (11.10) 

where V is an orthogonal transformation matrix and I' is the nuclear spin 

vector in a new coordinate system. Substituting the transformations (II.4) 

and (II.10) in H^ results in: 

Obviously, a necessary condition for this expression is: 1 + 1 )ί 0. 
2 2 

I, + 1
2
 • 0 implies that 1

3 

1, or В is parallel to the laboratory ζ 

axis. In this case we have to take the unit matrix for U and the electron 

spin functions are eigenfunçtions of S . 

6 



H^F = S'.U.A.V
-1.!' =S,.T.Î' (11.11) 

where we defined the effective hyperfine coupling tensor T. The row vector 

S'.O m (11.11) is obtained by transposing the column vector 0 .S' in 

(II.4). Condition (II.9) is fulfilled if the matrix is taken for V that is 

obtained from 0 (Eq.II.6) by changing 1 to L , where L is the unit vector 

L = bJLA = l.A | (11.12) 

К = /к. g. A. AÍ g1, к^ (11.13) 

Since the remaining interactions (H and H ) are small, compared 

with H and H , they will not yield off-diagonal elements comparable m 
LZ rlf 

magnitude with the diagonal ones. Therefore we simply apply the 

transformation (11.10) of the nuclear spin, and obtain 

H = I.P.I = I'.V.P.V
-1
.1' : I'.Q.I' (11.14) 

H
NZ • -^ηΪΛ =

 -Vn
B г

·
r ,
· î , " - W i-V • ( Ι Ι

·
1 5 ) 

These equations define an effective quadrupole tensor Tf and a vector Z. 

The resulting spin hamiltonian for an arbitrary direction of the 

magnetic field is 

Η = g у В S^ + S'.T.Î' + I'.Q.I' - g У Β Ζ.I' . (11.16) 

II A 2 Resonance fields 

The energies, influenced by Η are calculated with second order perturbation 

theory. The eigenfunctions of S' and I' are written as |м , M >. The 

perturbed functions, originating from these, are denoted by |м , M > 

because they are not expected to deviate much from the functions ІМ , M >. 

, (О
 S I 

The resulting energy for |M_, M > is 

E ( M s > V • V ъъ + MsMiT33 + ^ 3 M i - l 2 - τ^33 - S n W Z3 

, F l { 1 ' e n U n B Zl - F 7 Q l 3 | 2 + [ ^ n V Z 2 - Γ 7 ^ 2 3 ] 2 } 

пВ Z3 - MST33 - 3 F 7 S 3 

Г 2 { [ Ч % В Z2 - ^ ^ 3 ] 2 + [ К % Ъ Z2 -Έ8^3]2] 

-
g n
y

n
B 7

3 +
 М

5
Тзз

 +
 3F

8
Q

3 3 

F
1
F

3
{

(
T

1 |
 -T22)\ (T

|2
 ^Т

2 1
)

г
} 

V
 +

 6η
μ
η

Β Z
3 -

 ( F
7

+ F
9

)T
33 -

 3F7^ 
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F 2 V ( T | 1 + T 2 2 ) 2 + ( T I 2 + T 2 I > 2 ) 

g P b B - gnWnB Z 3 + ( F 8 + F 1 0 ) T 3 3 + 3 F 8 Q 3 3 

F 2 F 3 { ( T M + T 2 2 ) 2 + ( T 1 2 - T 2 1 ) 2 } 

-g y b B - g n U n B Z 3 + ( F 9 - F 8 ) T 3 3 + 3 F 8 Q 3 3 

F | F 4 { ( T 1 1 + T 2 2 ) 2 + ( T 1 2 - T 2 1 ) 2 } 

S V + V n B Z3 + ( F 7 - F

1 0 ) T 3 3 - 3 F 7 Q 3 3 

F l F 5 { ( Q l l - Q 2 2 ) 2 + 4 Q 1 2 } 

(11.17) 

V n
B Z

3 -
 M
S

T
33 -

 3F
7Q33 

F
2

F
6

t (
4ll -^22)2+<2} 

- V n
B Z

3
 + M

S
T
33

 + 3F
8«33 

^S
M
I (

T
13

 + T
23

) 

g M
b
B
 +
 м^зз 

where F = (I + Mj + 1)(I - Mj.) 

F
2
 = (I - Mj. + 1)(I + M

I
) 

F3 = 1/16(3/2 + M
s
)(l/2 - M

s
) 

F
4
 = 1/16(3/2 - M

s
)(l/2 + M

s
) 

F
5
 = 1/32(1 + Mj. + 2)(I - Mj- 1) 

F
6
 = 1/32(1 - Mj + 2)(I + Mj- 1) 

F
7
 = Mj + 1/2 

F
8
 = M

I
 - 1/2 

F
g
 = M

s
 + 1/2 

F
1 0
= M

S
- 1/2 . 

From these energies one obtains the required field strength for the 

ΔΜ = ±1, ΔΜ = m(m = 0 , ±1, +2, +3) transition by demanding 

hv = E(i,M
I
) - Ei-J.Mj. +m). (11.18) 

In the case of copper (I = 3/2) this leads to 4 ΔΜ = 0 transitions, 

6 ΔΜ =+1,4 ΔΜ = ±2 and 2 ΔΜ = ±3 transitions. If the second order 

energy corrections are small compared with the first order contributions, 

the energy level scheme may be the one of Fig.lA and the ESR spectrum may 

show the pattern of Fig.IB. 

8 
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Fig.lA Energy level scheme and ESR transitions of a copper complex for an 

arbitrary orientation of the magnetic field. Distances are not to 

scale. 

В Stick spectrum in case the second order energy corrections are small 

compared with the first order energies. The height of a peak does 

not represent its intensity. 

II A 3 Transition probabilities 

To derive expressions for the transition probabilities, the perturbed 

eigenfunctions have to be calculated. Up to first order they are 

„(0 i |Μ
5
,Μ

Τ
>-'= |м

с(
м

т
> 

S' I S' I 

Г5Г _! g u BCZ. - iZ,) + F
7
(Q,, - iQ

9 1
) 

^ " n
 ч
 1 7

Ч Ч
13 

<23' 

W
 Z

3 -
 M
S
T
33 - ̂ 7^33 

F
2

[
-^nV

( Z
l
 + l Z

2
) + F

8
(
Q l 3

 +
 ̂23^ 

- W
 Z
3
 + M

S
T
33

 + 3 F
8

Q
33 

i 
2 6 M l • ¡ 2 2 4 2 

-gnWnB Z3 + Μ,,Τ^ + 3 ( F 8 - | ) Q 3 3 

| M S , M I + 1> 

iMg.Mj - i> 

| M S , M I - 2> 
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l i V s l ' l Q , , - Q 2 2 - 2 i Q , 2 

V n B Z 3 - M S T 33 - 3 ( F 7 + ' ) Q 

iMg.Mj. + 2> 

33 

l F l F 3 ] [ T 1 1 - T 22 - І Т І 2 _ І Т 2 1 ] , 
+ — — — — — |м. + і,м

т
 + i> 

-6 U
b
B
 +
 g

n
U

n
B Z3 - (F

7 +
 Р

9
)Тзз - 3F

7
Q

3 3 

' У з 1 [ T 1 1 + T 2 2 + ί Τ 1 2 - ί Τ 2 1 ] 

"g U
b
B - g

n
y

n
B Z3

 +
 (F

9
 - F

e
)T33

 +
 3F

8
Q

3 3 

¡F,F, )*[!,,+ T22 - ІТ 1 2
 * ІТ

21
 1 

g V
 +

 W
 Z

3
 + ( F

7 -
 F
10

)T
33 -

 3F
7«33 

t y ^ l ^ T , , - т
2 2
^ і т

1 2 +
 іт

21
 ] 

g y
b
B
 - W

 Z
3
 + ( F

8
 + F
.0

)T
33

 + 3F
8Q33 

'S ' I 

|M
S
 + I,M

I
 - 1> 

[M
S
 - l.Mj + Ρ 

|M
S
 - I.MJ - i> 

2FÌ Μ [Τ - ІТ ] 
3 I

 '
3 & ~ |м

 +
 I,M > 

-g u
b
B - м^зз 

2FÍ MllTl3 + ІТ23 ' 
|M

S
 - і.м^ , 

g μ В + M T 
b I 3 3

 (Tl.19) 

where N is a normalization constant and the F. have been defined in the 
1 

preceding paragraph. 

Transitions between the states described in Eq.II.19, are induced by 

a linearly polarized oscillatory field В coscút, normal to the static 
"•*· -• 

magnetic field. The direction of В is given by a unit vector к in the 

laboratory coordinate system. The probability of the transition between 

the states |J,M > and |-J,M > is proportional to [ 26 ] 

Pd.M's-J.Mj) (0 iHbMXvI.Î-g^.ÎH.M^I2 . 

Neglecting the nuclear Zeeman terra and omitting constant factors, this 

expression becomes 

(:) |(l)<J,M;|S.5'|-l.Mb>(0|2 , (11.20) 

where we substituted the transformation (II.A) and defined the vector 

.Г1 

The results of this section, as far as the resonance fields are 

0 = k^g.ü"1 . С"·
2 1
) 

10 
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concerned, are used Co determine the ESR parameters from single crystal 

spectra. To verify these results the transition probabilities are 

calculated and compared with the measured spectra. The method is outlined 

in section III E. 

II В The g tensor 

The theory of the g tensor, and especially the problem of gauge invariance, 

has been discussed extensively by Stone [ 27,28 ] and Slichter [ 29 ] . In 

this section we follow the derivation given by Stone. Consider a molecule, 

containing N nuclei and 2n-l electrons, one of which is unpaired in the 

ground state. The hamiltoman is : 

H = H + H (11.22) 

о pert 

where H is the hamiltoman of the unperturbed system, as defined in 

section A of this chapter. H is the perturbation describing the r
 pert

 y ь 

interaction between the electron spin and electric and magnetic field. The 

eigenfunctions In,m > of H are approximated with one or more Slater σ
 ' О о 

determinants. In this notation "n" denotes the spatial function and "m " 
•+

 σ 

is the z-component of the electron spin S. The ground state |o,m > is 

assumed to be orbitally non-degenerate, with a twofold spin degeneracy. 

The Slater determinants are composed of one-electron spin orbitals ψσ. The 

spatial part ψ of a spin orbital is a molecular orbital, consisting of a 
linear combination of atomic orbitals, (AO's), φ. Omitting a normalization 

_ ι 
factor N = {(2n-l)I)

 2
, the unperturbed functions of the ground and excited 

states are' 

a. Ground state, 

|o,m
a
> = |ψ

1
α(1)ψ

1
β(2) Ψ

η
_

1
α(2η-3)Ψ

η
_

1
β(2η-2)ψ

η
σ(2η-1)|. (II.23a) 

b. Excited states with one electron excited into the MO of the unpaired 

electron, 

|k,m
a
> = |ф

|
а(1)Ч'

]
В(2)...ф

к
а(2к-1)...ф

п
а(2п-2)ф

п
В(2п-1)|, 

k<n. (II.23b) 

c. Excited states with the unpaired electron excited into an initially 

empty MO, 

\h,ma> = |ψ
1
α(1)ψ

]
β(2)...ψ

η
_

|
α(2η-3)ψ

π
_

1
Β(2η-2)ψ

Η
σ(2η-1)|, 

h>n (II.23c) 

d. Excited states with one electron excited from a doubly occupied MO 

into an empty one. These excitations give rise to two doublets and one 

I 1 



quartet state. The doublet functions are: 

\а},та> = - ^ ( Ι ψ , α ζ η ψ Β ( 2 ) . . . ψ а (2к-І) . . .Ч> σ(2η-2)ψ о Ч г п - О І 
vi 

- | ф | а ( 1 ) К ; | 6 ( 2 ) . . . і ( ' к а , ( 2 к - 1 ) . . . Ф п а ( 2 п - 2 ) Ф 1 і О ( 2 п - І ) | } , 

k<n, h>n, σφα', ( I I . 2 3 d ) 

| d 2 , m a > = - - | ; { 2 | ф ] о ( 1 ) Ф 1 6 ( 2 ) . . . ф к а ( 2 к - 1 ) . . . ф п О , ( 2 п - 2 ) ф І і а ( 2 п - 1 ) | 
/6 

- | ф ) а ( 1 ) ф ] В ( 2 ) . . . ф к а ( 2 к - 0 . . . ф п а ( 2 п - 2 ) Ф ь а , ( 2 п - ] ) | 

- ΐΨ,αΟ )ψ ] ß ( 2 ) . . . ф к а ' ( 2 к - 1 ) . . .ф п а(2п-2)ф ь а(2п-1) | } , 

' k<n, h>n, афа'. ( І І . 2 3 е ) 

The spin components of the quartet states are: 

|q,m > = —{|ψ
1
α(1)ψ

1
6(2)...ψ о(2к-1)...ф σ'(2η-2)ψ, σ(2η-1)| 

+|ψ
]
α(1)ψ

1
β(2)...ф

к
с(2к-1)...ψ

n
σ(2n-2)ψ

h
σ
,
(2η-1)| 

+ |ф
1
а(Оф

1
в(2)...ф

к
а

,
(2к-1)...ф

п
а(2п-2)Ф

ь
а(2п-!)|}, 

k<n, h>n, σφσ', (II.23f) 

|q,3m
CT
> = |ф

|
а(І)ф

)
В(2)...ф

к
о(2к-1)...ф

п
а(2п-2)ф

ь
а(2п-))|, 

к<п, h>n. (II.23g) 

е. As will be shown, states with more than one electron excited do not 

contribute. 

Assuming a complete knowledge of the unperturbed states and their 

energies, the goal is to calculate the perturbed energy levels, using 

second order perturbation theory. Since the ground state of the unperturbed 

system is twofold degenerate it is necessary to solve a two dimensional 

secular equation. It was shown that up to second order the energy levels 

are the eigenvalues of the following hamiltonian [ 30 ] 

Й - E + P H Ρ +
 F
°

H
pert

P
n

H
pert

P
o 

0 о pert о E - E 
ο η 

E and E are the unperturbed energies of the ground state |o> and the 

excited states |n> ; Ρ and Ρ are projection operators for the states |o> 
1
 ο η

 r J r
 ' 

and | n> 

Ρ = Σ lo,m ><m ,o| Ρ = Σ Ц.т ><m ,n| . (11.25) 
о т ' а σ ' η m ' a σ ' 

σ σ 
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II В 1 The hamiltonian of the system 

For a one electron system, an expression for H can be derived from i r
 pert 

Dirac's relativistic wave equation [27,28,31,32 ] 

"pert =
 H
SZ

 + H
S0

 + H
0Z

 + H
DIA

 ( Ι Ι
·

2 6 ) 

where Η is the spin Zeeman energy 

H
SZ " 8 e V S'

1
 ' ^

1 1
·

2 7
) 

Η is the spin-orbit coupling energy 
SO л 2 

a It 

H
so - -UT ъг Л x (

P
 + el)

 ' ·
 ( Ι Ι

·
2 8 ) 

Η is the orbital Zeeman energy 

H o z = ^ î . ; , (11.29) 

and H^T, is the diamagnetic energy 

" D I A - f s " ^ · ( Ι Ι
·

3 0 ) 

(As Η does not play a role in this derivation, it will be omitted in the 

rest of this section.) 

In these interactions ρ is the electron momentum and -e is the electron 
- » • - > • 

charge. E is the electric field and A is the magnetic vector potential 

[33 ] describing the magnetic field, g is the free electron g value, being 

2.00229. The function к is 

к = 2mc
2
(W + eA + ггас

2
)"' , (11.31) 

о 
where A is the scalar potential [ 33 ] . The energy W + mc of the system 

о 

usually lies close to the rest energy mc , hence W is a small number. In 

lowest order approximation к = I. 

In a free atom the electric field É is exactly parallel to the 
- * • 

radius vector r of the electron relative to the nucleus 

•* 2m2 с
2
 -+ 

E
 = ELS- ζ(

Γ
)
 r
 , (11.32) 

eh
2 

where the spin-orbit coupling operator C(r) is a function of the distance 

from the nucleus. Substituting 11.32 and the electron spin S, the 

perturbations become 

H
SZ • V e

 ί Λ ' ( I I
-

3 3 a ) 
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H
S0

 =
 Ж

 ξ ( Γ ) З Л Γ Χ ( Ρ + е А ) ]
 ' (Π.33b) 

H
O Z

= S A . ; . (II.33c) 

Since our system contains Η atoms and 2n-l electrons, we have to generalize 

equations 11.33. This can be done by 

a. assuming the electric field to be a sum of central fields 

2 2 N 

E = — — kl, e k

( r > r · ( Ι Ι · 3 4 ) 

eh 

b. summing the perturbations of 11.33 for each electron. The resulting 

perturbations are 

» S Z - ^ e f ^ ·
1
· (11.35a) 

H so - Ж kfi C k ( r k Ì ) 2 І - [ ? к І * & + e î i ) > - ( I I - 3 5 b ) 

Hoz • I f ^ · i " · 3 5 ^ 

In these equations i runs over all electrons and к over all nuclei. A is 
-Ht i 

the vector potential at the position of the electron ι and r is the 

position vector of electron i relative to the nucleus k. 

The vector potential A has the value 

A
1
 = JB χ (r

1
 - R) , (11.36) 

"•*• "*"i 

where R is an arbitrary constant vector and r the position vector of 

electron i relative to an arbitrarily chosen origin. In the Coulomb gauge 

[ 34 ] the requirements for A are: 

curl A = $ χ A = В (II.37a) 

div A = $ . A = 0 (II.37b) 

and it is clear that A of Eq.II.36 fulfils the conditions 11.37, 

independent of the choice of R. 
->• .•í'ki ~*"ki -^i 

Substituting A and defining nL = r χ ρ to be the angular momentum of 

electron i about the nucleus k, the perturbations become 

H
SZ

 = Р
Ь

е
е
 ?
 ^

1
^ ' (11.38a) 

Hso = Ж k^i C k ( r k Í ) S Í - | h Í k Í + f ? к І x a χ ( ? ί - | ) } ' . Π Ι . 3 8 b ) 

H o z = u b Z B . L · 1 . (ІІ.ЗЗс) 
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In Eq.II.38c fiL' is the angular momentum of the electron i about the 

origin of the vector potential. 

II B. 2 Calculation of the g tensor 

To calculate the g tensor we collect those terms of Eq.II.24 which are 

linear in the magnetic field and the electron spin and define them as H . 

Defining H as the term of Ц involving the magnetic field and H as 

the term that does not, H becomes 

g 

ft . Ρ H P + Ρ H P + Σ P ° H S0»V0Z F o + WnWo . ^ , , 
в о S7, о о SOB о „ ¿ η E - E 
6 n ? 0 ο η 

Since Ρ is the projection operator for the ground state, we may take 

matrix elements of Η diagonal in the orbital ground state 

<ο,σ|ΐί |ο,σ'> - <ο,σ|Η |ο,σ·> + <ο,σ\\\ |ο,σ·> 
SOB

1 

<ο,σ|Η
50Ν
|η,σ" ><η,σ"[Η

0Ζ
|ο,σ'> + <ο,σ|Η

οζ
|η,σ"><η,σ"|Η

30Ν
|ο,σ'> 

η^ο α" Ε - Ε 
0
 " (11.40) 

Substituting the functions II.23a-II.23g, the various contributions become: 

a. First order contributions, 

<ο,σ|Η
5ζ
|ο,σ

,
> = p

b
g

e
B . <σ|5|σ'> , (11.41a) 

<ο,σ|Η
50Β
|ο,σ·> = 8

β
-|-Σ <а|5|а'>-<Ф

п
|С

к
(г

к
)?

к
 χ {в χ(ΐ - κ)}|Ψ

η
> = 

= g
e
-|r

 Σ <
а|5|а

,
>-<Ф

п
и

к
(г

к
){?

к
.(Т-ЮВ - в.(?-Ю?

к
}|ф

п
>. 

(II.41b) 

b. Second order contributions. 

Approximating the energies as a sum of one-electron MO energies, the 

total contribution of the states |k,CJ> and |h,0> becomes 

g <ψ Ι ς. (r
k
)L

k
U ><ψ II'|ψ

 >
-в + 

e
 ν

 ν ̂  ι̂ ι ι̂  / n
ls
k.

v |T
m ^m' '

r
n 

— y 1 Σ <σ|5|σ'>·{ 
ζ 0

 mfn к 
+ <ψ | ς, (г

к
)і

к
|Ф ><ψ Ι L'I Ψ > · Β 

Ï-JS 2 2 2 } , (11.42) 
ε - ε ' 
η m 

where ε is the one-electron energy of the η MO. As the functions ψ are 
η 

taken real and because the angular momentum operators are Hermitian and 

purely imaginary, this results in 
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<ψ |ξ (г
к
)г

к
|ф ><ψ |Ϊ·|Ψ >-в 

g
e
P

h
 ? f <σ S σ^· _ . (II.A3) 

η m 

It can be proven that the states Id,,m > and |d_,m > give no contribution. 
1
 1 σ ' 2 σ

 β 

The quartet states |q,m > and |q,3m > do not contribute at all because Η 

does not depend on spin. Excited states with two or more excited electrons 

do not contribute because only one-electron operators are involved. 

c. Third order contributions. 

Tippins [ 35 ] published a formula for the third order corrections, 

using the same perturbation procedure. These terms are significant 

only when spin-orbit coupling is important and the energy separations 
e - ε are small. Therefore, it seems justified to neglect these 
η m 

contributions for the first row transition metal complexes. This formula 

is not gauge invariant (see section II B.3), as was shown by Atkins and 

Jamieson [ 36 ] . These authors derived a third order gauge invariant formula. 

Compared with the formula of Tippens, this involved some additional terms 

which are much smaller than those obtained by Tippens. 

The following formula for the g tensor can be derived from the 

expressions 11.41 and 11.43: 

g m 

Saß • 8e6aß + * l^T «ΚΚ^Κ
 <?-*) I V6aß " ^ А ^ а ^ Л М 

<ψ Ιξ, (rV^UxiijL'lij, > 
+ g Σ —S-l 2L_!Î m g " ] . (11.44) 

e »Λ.
 e

n -
 e
m 

II В 3 Gauge invariance 

The bracketed first order terms in Eq.II.44 depend on the choice of R so 

that their values are not uniquely defined. Since the total expression for 

the g shift in 11.44 has to be gauge invariant, the second order terms must 

compensate the gauge dependence in the first order terms. In fact, it was 

shown by Stone [27,28 ] that each term in the sum over к, (k refers to one 

particular nucleus), is gauge invariant. Hence it is allowed to take 

R = R , so that г - R = r and L' = L . This choice of origin for R 

been named the "natural" gauge. Expression 11.44 becomes: 
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<ψ J ζ ( r k ) ьЧф ><ψ J L ^ I D I > 
+ g Σ — 2 — h 2 _ Ξ ш В п ] . (11.45) 

m^n η m 

11 В 4 Approximations 

a. The advantage of using the natural gauge is that the first order terms 

become negligible. In a Coulomb potential we have [ 37 ] 

— ζ(ϊ) = - Ê — Ζ i , (11.46) 

h
2
 2mc

2
 г 

where Ζ is the effective nuclear charge. The integral <ψ |—|ψ > is of the 

order — (a is the Bohr radius — , ), thus the first order contribution 
a
o
 0

 e" -5
 m e

 . 
is of the order 10 and is negligible for transition metal 

h e , _1 

complexes where g shifts are of the order 10 

к 
b. Expanding ψ in a linear combination of atomic orbitals, ψ = Σ χ , the ι к ι 

matrix elements <ψ L_ ψ > can be written: 
m' β' η 

к
 n 

where χ is that part of the n-th MO that is centred on the atom k'. If 

"•kk'
 n 

R is the vector from the atom к to the atom к , the linear transformation 
к к' 

between L„ and L
0
 is given by 

в P 

L^ = · £ ' * - (R
kk
' x ρ \ . (11.48) 

β β f, ß 

Substituting this into 11.45, the second order contribution becomes 

e mjtn к , к ' ε - ε 
η m 

g <ψ Ις, ( r k ) L k k ><ψ |p^¡xk ,> α χ , , , 
Б е ν ν ν ν η ' k v a | y m r m ' ν ύ ' Λ η βγή kk ' 
h rnjín к к ' ¿ к γ , 6 e

n - e

m Y 
(11.49) 

in which € ' is the alternating tensor, which is defined as 

0 if any two of β,Υ,δ are equal. 

И if βγί is an even permutatior 

-I if βγ6 is an odd permutation of xyz. 

e { +1 if βγί is an even permutation of xyz. 
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If h is the one-electron hamiltonian of which the MO's ψ are eigenfunctions, 

ρ is given by 

ρ = ^¡- (rh - h?) . (11.50) 

The matrix element <ψ Ιρ.Ιψ > can therefore be rewritten as 
m

lr
6 η 

If the zero differential overlap approximation (ZDO) [ 38 1 is applied, 

11.51 becomes 

2L. (e - ε ) <ψ |г^|х
к
'> . (il.52) 

in η m m ο'
 Λ
η 

S u b s t i t u t i o n ' o f 11.52 in the second term of 11.49 gives 

È Σ Σ Σ <ψ |Ç ( г к ) Ь к г ^ | х к , > с 6 у 6 R k k ' . (11.53) 
ih* к k'îik γ , б η ' к « ê η Y 

Use was made of the fact that L is Hermitian and purely imaginary, and the 

closure relation, Σΐψ ><ψ 1 = 1 , was applied. After some tedious 
m' m m' 

calculations, Eq.II.53 can be transformed into: 

m g
e
 v v v

 ^, |
r
 , k.r+k *kk' „kk' k-, . k' ,

T T c /
. 

Σ Σ Σ <ψ ζ (r ){r .R < 5
α
- Κ r

0
] χ >. (11.54) 

2
h
2 к k'?ik γ,δ

 n l k
 αβ α β

 Ι Λ
η 

Since this term is of the same order of magnitude as the first order 

contribution, it is negligibly small. Therefore only the first term of 

Eq.11.49 will be retained. 

Now the question arises whether the ZDO approximation is justified 

for these matrix elements. Smith calculated the g values of some tetragonal 

copper(II) compounds with inclusion of both charge transfer (CT) and d-d 

transitions [ 39 ] . His results show that the contributions to the matrix 
ι к ι k' 

elements <ψ |Ρι|χ > of the CT states are larger than those of the d-d 

transitions. This is in accordance with 11.52, because for these compounds 

the transition energies of the CT states are larger than the d-d transition 

energies. Furthermore, it appears that a partial cancellation of terms 

occurs, rendering 11.54 rather small. Hence, the g shift is mainly 

determined by the first term in 11.49. 

It should be noted that the contributions of the excited states to 

the second term of 11.49 are independent of the transition energies (see 

11.49 and 11.52). Therefore, all excited states must be included in the 

calculation of the second term of 11.49. If the low lying excited states 
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are taken into account only, large errors may result [40,41 ] . 
-3 

c. Since £(r) behaves as r for large r, all multicentre terms m the 

spm-orbit matrix elements may be neglected, so that 

<ФпІ?к(г Х > = ^ ( г ^ІхЧ . (11.55) 

The radial parts of these integrals have not been calculated, but are 

approximated by the empirical spm-orbit coupling constants. (Table V.l) 

Moores and McWeeny showed that this approximation, and the use of 

one-centre integrals only, gives considerably better results then an ab 

initio calculation [ 42 ] . 

We are thus left with the formula. 

.
 Σ

 , ^ Х ^ ^ Х ^ . Х ' ' * "
4
 (11.56) 

gaß 8e aß + 8e m,!n k f k.
 ε

η "
 e
m 

For one of the systems studied (i.e. Cu/Ni(et
2
dtc_) we have taken into 

account the two-centre contributions in <ψ LJS |y >. The values obtained 

were less than 10% higher than the Ag values calculated with one-centre 

integrals only. Therefore, these integrals have been neglected and in all 

calculations the following approximate, gauge invariant formula has been 

used: 

, ki
r
 . к.

т
к| k^, k'^k'i k' 

л • ТУ < X
n

| g
k

( r
 ^ У Ч п l

L
B
 | χ

η
 >

 г т т
 „, 

8
α6 • 8e6aß + h J n k=k. Г ^ · ^

1 1
·

5 7
) 

II С The hyperfine coupling tensor 

Again we consider the system of the preceding section but include 

interactions with the nuclear spin I of one nucleus K. Because of the 

unpaired electron the total spin degeneracy is 2(21 + l)-fold in the 

unperturbed system. The eigenfunctions are represented by |n,m >|ΐ,π>, 

where |ΐ,'Π
>
 is the nuclear function, π is the expectation value of I . 

The perturbed energy levels are the eigenvalues of the hamiltonian 

II 24. The projection operators Ρ and Ρ of the states Io> and In> are 

o n ' ' 
Ρ = Σ Σ lo,m > | ΐ , π > <Ι,πΙ <o,m Ι 

ο m π ' ' σ ' ' ' ' σ' 
σ 

Ρ = Σ Σ |n,m > | ΐ , π > < Ι , π Ι <n,m Ι . (11.58) 
η m π ' ' σ ' ' ' σ1 

σ 
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II С 1 The hamüloman of the system 

The influence of the nuclear spin I can be taken into account in the same 

way as was done for the external magnetic field in section II B. The 

hamiltoman for this interaction contains the terms corresponding with 

those of Eq.II.35a-35c, where В and A are now caused by the nuclear spin. 

In the absence of an external field, the vector potential is [ 43 ] 

? -HCl 
ti

 и
о
 6
ΙΤη 

and, 

4π Кіз 

г 

consequently, 

íi У
о , ί 3Ϊ.ΐ

Κι 

Β =
 ^ ^ n f -

r K l
3

+

 r K l
s Κι 

(II 59) 

(11.60) 

where y is the magnetic permeability of free space and g the g value of 
о К 

the nucleus K. 

In this magnetic field the various terms of the hamiltoman become 

Hsz = Ή Vn«A 1{-^J + ^ i ] 

• Ь ( ^ ^{vi^x«v - z

z

2 ) 1 + ; (-л гх2-у2 - z

z

2 ) i 

+ I S1(2Z г ) 1 + (I S 1 + I S 1 )(/?Z ) 1 

ζ ζ ζ у х х у ху 

+ (I s 1 + I s 1 ) ( ^ z ) 1 + (I s 1 + I s^d/^z ) 1 } 
z x x z xz z y y z yz 

Ξ ^ з i , ß = x , y . z в Faß · ( І І - 6 І а ) 

where each Ζ function is a normalized real combination of spherical 
Vo 

harmonics Y_ centred on the nucleus Κ. Ρ has been defined as -,—u.u g β,,; 
2,m 4ïïKbKn6ebK 

F „ are the components of a symmetrical, traceless tensor operator. 

»SOB - Й7 kïi M ' ){ ^ }
(Ib61c) 

I 2P I LKl 

H' - ̂- ς -^Ц- (Il.eid) 
6 1

 г
кі

э 
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II С 2 The hyperfine coupling of non s electrons 

The terms of the hamiltoman II.6la-d are substituted in Eq.II.24. Only 

those terms which are linear in the electron spin and the nuclear spin are 

retained and form the hamiltoman H, . Matrix elements of H. are calculated 

A A 

which are diagonal in the ground state orbital: 

<Ι,π|<ο
(
σ|Α

Α
|ο,σ'>|ΐ

)
π
,
> = <1,π|<ο,σ|Η

δ0Β
+Η

3ζ
|ο,σ

,
>|Ι,π·> 

<Ι,π|<ο,σ|Η
0Ζ
Ρ

η
Η

80Ν
|ο

)
σ'>|ΐ,π->

 +
 ρ.ο.ι. 

+ Σ 

η^ο Ε - Ε 
ο η 

<Ι,π|<ο,σ|Η Ρ Η |ο,σ'>|ΐ,π·> + ρ.ο.ι. 

+ Σ b ¿ " Ь Ш
 ' (11.62) 

η̂ ο Ε - Ε 
ο η 

where ρ.ο.ι. means the similar product with the operators interchanged. 

The various contributions can be calculated through substitution of the 

functions II.23a -II.23g. 

a. First order contributions. 

The interactions H
c
_ and Η give a first order contribution to the 
b¿ _ SOB 

hyperfine coupling tensor Ä of the spin hamiltoman. A traceless, 

symmetrical tensor is obtained from Η , with elements 

F
K 

As discussed by several authors [ 44 ] , the term Η is of the order of 

ьов 

—i, and behaves on an atomic scale almost like a delta function. Therefore, 

its contribution to the hyperfine coupling of non s electrons is small 

compared to the contribution of H and can be neglected. 

b. Second order contributions. 
In Eq.II.62 all terms have been neglected which explicitly contain 

-3 
<r > twice. The energies of the states are calculated by summing 

one-electron MO energies. 

It can be deduced that second order contributions from terms in 11.62 

containing the operator H P H
(
.

0N
 yield a non traceless tensor 

<ψ ΐε (r k ' ) L k u > <ιΐι ι — ^ І Ф > 
^п'Ч^ a | 4 m ^m1 К з ; ч п 

A | \ = 2P Σ Σ E . (11.64) 
m n̂ k ε - ε 

η m 
This contribution is due to excited states Ik,m > and Ih,m >; other 

excited states do not contribute. 
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Similarly, the terms in 11.62 containing the operator Η Ρ Η give a 

contribution which is due only to the excited states |k,o> and |h,a>: 

F
K 

ί*Ύδα<ψ |СЛгк) ьк |ф ><ψ |4ІІФ > 
Α - Ρ Σ Σ Σ Ε .

 ( Ι Ι
.

6 5 ) 

m^n к γ,δ e - ε 
η m 

The summations γ and δ run over the Cartesian coordinates x, y, and z. The 

excited states |d.,m > do not give a contribution, while the contributions 

from the states |d ,m >, |q,m >, and |q,3m > cancel each other. Summing up, 

the expression for a general tensor element is: 

L

K 

u-^rfiv l l{ — E — 
r mfn к ε - e 

η m 

F
K 

Σ ι Λ 6 α <ψ |ς. (Г

к) ьк |ф ><ψ | 4 | | Ψ > 
χ

 r n l к γ " m ^ш1 Κ3 1 η 

+ ы _ ! E π . 
ε - ε 
η m 

(11.66) 

Since all operators depend on — , it is expected that more-centre integrals 

can be neglected. 

II С 3 The hyperfme coupling of s elections 

Whereas for non s electrons the contribution of H dominates the one of 

Η_-
Ό
, the situation is reversed for s electrons: H__ vanishes because of 

bUH sz 

the spherical symmetry and only H is left [ 43 ] . The resulting 
=K 

contribution to the A tensor is isotropic, and in a good approximation is 

equal to 

This term in the hyperfine coupling is often called the contact term, since 

it arises from the density of the electron at the nucleus: |ψ (ο)| 

H D The nuclear quadrupolc coupling tensor 

The nuclear quadrupole interaction is an electrical interaction between the 

quadrupole moment of the nucleus and the electric field gradient. The 

hamiltoman for this interaction can be written as [ 45 ] 
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 = τ Σ
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 VL· Q

™R ' (11.68) 

=
K
 =

K 
where V and Q are symmetrie traceless tensors of second rank 

ναβ = £k:& ^1·^ 
α β 

V 

Qaß = / Κ ( 3 χ
α

χ
8 "

 δ
αβ

Γ 2 ) ρ ( ? ) α τ
 ' (II.69b) 

- > , - > • 

p(r) is the nuclear charge density in a scalar potential V(r) and χ is 

the α-component of r. V is the nuclear volume. As in section II C, the 
К 

ground state wave function can be represented by |o,m >|l,ir>, where |l,
,
n'> 

is a nuclear function and |o,m > describes the electronic charges outside 

the nucleus. To derive an expression for the elements of the Ρ tensor 

(section II A) we calculate the energy of Η in first order 

<o
1
m |<І,7т|н I I,TT'>|o,m > = 1 Σ <o,m |v

K

D
|o,m ><Ι,π I q

K

0
 Ι Ι,π'> . 

(11.70) 
:=Κ 

Using t h e Wigner-Eckardt theorem, the m a t r i x elements of Q can be 

r e w r i t t e n 

_ Д У а 
^ β 1 " ' " ' 1 ( 2 1 - 1 ) ~ i , " i J 2 " α β " 

< Ι , π | < Λ | ΐ , π · > = - f S — < ι , π | 3 α \ Β α - δ „ η Ι 2 | ΐ . π ' > . ( I I . 7 . ) 

where Q is the nuclear quadrupole moment defined as <I,I|Q |l,I>. 

Comparison of 11.70 and II.7) with the spin hamiltonian (II.1) yields for 

the elements of the Ρ tensor 

p
K
 = —£2 v

K
 . ill 72) 

*αβ 21(21-1) αβ Ui.//; 

К 
Here and in the following V is the expectation value of the element αβ 

of the electric field gradient (EFG) tensor at nucleus К and has the 

form [ 46 ] : 

aß ^ e 0 AÎÉK R5 

AK 

" 0 , ш
а ' к-1 ' ' Ι '"п ' ' (11.73) 

r
Kk 

where R is the radius vector connecting the nuclei A and K, (X ) is 
AK Ot AK 

its component along the molecular α axis, r is the radius vector 

23 



> 

connecting the nucleus К and the electron k, and (x ),„ is its α 
α Kk 

component. The nuclear charge of the atom A is given by eZ . Substitution 

of |o,m > (Eq.II.23a) and writing the MO's as linear combinations of AO's 

φι the electronic part of 11.73 can be split up in terms, involving a 

different number of centres 

К F R К А /„о, 
VK ( e l ) = - - Λ - Σ Ν [ Σ C, C, , <φ1 Ι — Κ ,> + 2Σ 1 S c С, < Ф І — Φ. ν α 6 ^ ' ^ e 0 u и ' k ^ · ku k ' u T k ' 3 ' k ' k AîiK a a u k u aV k 

К К 

F
K
 F

K 

AfK a,a r A^K B^K a b τ' 
K
 № 

(11.74) 
V 

The operator F
 R
 is defined in section С of this chapter* 

ар г 

N is the occupation number of the u-th МО. С is the LCAO coefficient of 
u au 
the АО φ in the u-th MO. 

a 

White and Drago [47 J have pointed out, for nuclei of the third row 

and higher, that the sum of the two-centre nuclear and electronic 
у 

contributions (being opposite in sign) to V is small compared to the 

one-centre contribution. For the EFG on the nitrogen atom in HCN and NH. 3 

O'Konski and Ha | 48 ] have shown that the last term, which is a three-

centre contribution, is negligibly small. Thus for practical purposes we 

can use the relationship: 

Κ ^ ι kk К kk ' 
V \ = -ΣΝ Σ Cf V ^ - 2Σ Ν Σ с, С, , V „ , (11.76) 
αβ

 u
 u k ku αβ

 u
 u k<k' ku k'u αβ 

where 

F
K 

αβ 4πε
0
 k

1
 3 k 
г
к 

The effect of neglecting the sum of the multicentre contributions has been 

discussed by de Vries et.al [ 3,46 ]. It was found that for Fe(dtc) CI 
Fe 

these terms increased V by 10%. 
zz ·' 

Utilizing the atomic orbital net populations according to Mulliken [49 1 

n(a) = Σ N С
2
 (11.78) 

„ u au 
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and defining 

nCa.a') = Σ N С С , (11.79) 

,, u au a'u 

К К 
Р

К
 = Ё^ f У. η/Ί,ΊΛΓ1

^ J- ο γ „ei, b ' w ^ k 1 

Eq.II.72 can be rewritten: 

ραβ = - jmhñ { l п ( к ) С в

 + 2

k ^ ( k ' k , ) v ^ ) · ( Ι Ι · 8 0 ) 

Formula 11.80 is used for the calculation of the quadrupole coupling 

tensor in chapter V. 
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CHAPTER I I I 

EXPERIMENTAL 

HI A. Preparation of the compounds 

Ш A I Diselenocarbamate complexes 

The complexes have been synthesized according to the method of Barnard and 

Woodbridge [50 ] .In this method a solution of CSe in dioxane is added to a 

vigorously stirred alkaline solution of a secondary amine in water: 

CSe + NaOH + R NH -»• Na(R NCSe
2
) + H

2
0. 

The proces takes place in a nitrogen atmosphere at a temperature of about 

-10 C. A solution of a metal salt in water is added to the solution of the 

sodium compound: 

2 Na(R
2
NCSe

2
) + M(II)X¿ •+ M(II) (R2NCSe2)2 + 2NaX, (X = CI,Br) 

after which the normal purifications are carried out. 

The CSe» has been prepared according to the method of Gattow and Drager 

[51 ] . By means of a constant nitrogen flow, CH.Cl is led over molten 

selenium, at a temperature of 580-600 C: 

CH CI + 2 Se -*• CSe + 2 HCl. 

Because of the very poisonous products, formed during this reaction, some 

special precautions have to be taken. An apparatus has been used, equipped 

with a temperature control unit and a pressure slot and suited for 

continuous processing. After filtration, the CSe has been used without 

further purification. 

In this way the Zn(II) complexes with methyl, ethyl and η-butyl groups 

have been prepared. The Cu(II), Ag(I) and Ni(II) complexes have been 

prepared by replacement of Zn by Cu, Ag or Ni respectively. Although 

special precautions have been taken, contamination with copper of the 

latter two complexes could not be prevented. 

I l l A 2 Dilhiocarbamate complexes 

The Zn(et.dtc). complex has been prepared according to the literature [ 1 ] , 

using ZnCl and Na(et dtc). 

HI B. Preparation of the single crystals and powders 

The systems will be denoted Mp/Md(R
2
lig)

2
, where Md(R

2
lig)

2
 is the 
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diamagnetic host compound and Mp the guest paramagnetic metal ion. R.lig is 

the ligand, either R dtc or R dsc, R is the alkyl group. 

Ill В 1 Crystab nnd powders doped with Си(П) 

Single crystals and powders of the Ni(II) or Zn(II) complexes, doped with 

Cu(II), have been prepared by mixing a chloroform solution of the 

diamagnetic host with a DMF solution of CuBr , followed by slow evaporation 

of the solvent. The concentration ratios Zn or N1 : Cu are about 100 : 1. 

Ill В 2 Crystals doped with Ag(Il) 

For the preparation of Ag/Ni(but dsc) a 1 : 1 mixture of 

selenurammonoselenide (SMS) and selenuramtriselenide (STS) is used as an 

oxidizing reagent: 

R Se R R Se — Se—Se R 

/ * / \ / \ / \ 
R Se Se R R ' Se Se R 

SMS STS 

Ihis mixture has been prepared according to the literature [ 50 ] : 

A suspension of Zn(but dsc) in H O is oxidized by adding very slowly equal 

amounts of H O (307.) and sulfuric acid (23%). 

The crystals have been prepared by adding 0.0025 mmol SMS/STS(1:1) to 

a chloroform solution of 0.1 mmol Ni(II)(but dsc) and 0.005 mmol 

Ag(I)(but
2
dsc): 

4 Ag(I)(but
2
dsc) + 1 SMS + 1 STS •+ 4 Ag(Il) (but

2
dsc)

2
. 

By slow evaporation at room temperature, the unstable Ag(ll) complex is 

built in in the Ni(ll) lattice. 

Ill С Appjrattis 

The ESR liquid solution spectra have been taken at the X-band frequency 

(9 GHz), using a Vanan 4502 or an AEG spectrometer. 

Single crystal, powder and frozen glass spectra have been recorded at 

the Q-band frequency (35 GHz) with a Vanan 4503 spectrometer, equipped 

with a variable temperature control. 

The magnetic field has been measured with an AEG gaussmeter and the 

X-band microwave frequency was monitored with a HP 5245L frequency counter. 

Because of the lack of a suitable counter, the Q-band microwave frequency 

has been calculated from the ESR signal of a polycrystalline DPPH sample 

(g = 2.0036). 
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Except for the frozen glass samples, all measurements have been 

carried out at room temperature. 

The computer calculations have been carried out on the IBM computers 

360/50 and 370/155, at the University Computing Centre. 

HI D Single crystal measurements 

For single crystal measurements, the crystals were embedded in paraffine 

wax and mounted on a glass rod. Measurements in one plane have been 

carried out by rotating the magnet around the cylindrical Q-band cavity. 

The axis of rotation could be changed with the aid of a specially designed 

apparatus. Although the computer programs "SPINHAM" and "GAPLSD" 

(section III E.) make it unnecessary to have angles of 90 between the 

axes of rotation, it has been tried to reach this value as close as 

possible. 

Ill E. Calculation of the spin hamiltoinan parameters from the spectra 

III E I Determina lion of the full spin hamillonian 

A FORTRAN IV computerprogram called "SPINHAM" has been written to calculate 

spectra according to the theory presented in section II A. 

The required inputdata are: 

a. For the calculation of the resonance fields: 

1. g-, Ä-, and P-tensor, (see II.1) 

2. klystron frequency for every spectrum, 

3. vector к (Eq. II.2) for every spectrum, 

4. resonance field of every line. 

b. For the transition probabilities: 

1. vector к for every spectrum. 

The output for each spectrum is: 

1. g(Eq. II.8), Τ (Eq. 11.11), Q (Eq. 11.14) and Ζ (Eq. 11.15), 

2. 0 (Eq. 11.21), 

3. resonance fields, calculated by rewriting Eq. 11.18: 

В = - (-hv + M T + first and second order terms), 

b 

4. transition probabilities, calculated according to Eq. 11.20. 

Since the second order terms depend on B, the program is, properly speaking, 

a fitting program. It has been linked to the minimization program "MINUITS", 

[ 52 ] that minimizes the function 
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N і=1 observed calculated^ ' 

where N is tne number of resonance lines including ΔΜ >o transitions. The 

minimization takes place by varying the elements of g, Ä and P. In this way 

this procedure enables us to find accurate values for these tensors, even 

if no good guess of the tensorelements is available. Since the experimental 

error in the measured intensities is rather large, the transition 

probabilities have been used only to check the calculated spin hamiltonian 

parameters. 

Ill E 2 Calculation of the spin hamiltonian in the strong field approximation 

To save computertime, it is recommendable to start the program "SPINHAM" 

with initial values for g, Ä and Ρ being as close as possible to the final 

ones. In addition, this program has been written for just one nuclear spin, 

thus ligand hyperfine splittings can not be handled. Therefore, another, if 

less accurate, method has been developed to calculate tentative values for 

the elements of the g and Ä tensors, which can be used as starting values 

for the program "SPINHAM". In this method, the nuclear Zeeman and 

quadrupole interactions are neglected, because both are (in our systems) 

small compared with the hyperfine interactions. Furthermore, all non-

diagonal elements in the hamilton matrix, caused by the hyperfine 

interaction term, are neglected, which means that the so called "strong 

field approximation" is made. The resulting hamiltonian is: 

H = g ,U, BS' + a „S'I', (III.l) 
s ef b ζ ef ζ ζ 

where g (θ,φ) = / к. g. в
г
. kt (III.2) 

a Л .ф) - τ =
 / k

· g'
 Α
· ^ - б"'

 k t
 (іц.з) 

8
е£( ,Ф) 

The procedure is as follows: 

a. Spectra are measured in three planes, not necessarily perpendicular to 

each other. Depending on the complexity, the spectra are measured every 5 

or 15 . The position of the magnetic field is given by an angle α relative 

to an arbitrary chosen axis in the plane. For every orientation g and a 

is measured according to Eq. III.l and where possible corrected for second 

order shifts. To recognize errors in the measurements, the data measured in 

one plane are fitted to the theoretical expressions III.2 and III.3. To 
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this end a program "PLANE" has been written, making use of a least squares 

procedure. 

b. After enough reliable measuring points have been obtained in this way, 

the next step is to determine the positions of the intersecting lines of 

one plane with the two other planes. These positions are determined with 

the aid of a program "SNIJLIJN", which seeks identical values of g and 

a , in different planes. 
ef 

c. The measured values of g , and a ,, the angle α of every spectrum, and 

°ef ef 

the positions of the three intersecting lines, are the input for the 

program "GAPLSD". In this program, a coordinate system is chosen, as is 

shown in Figure 2. The measured plane I is chosen to be the xy plane, the 

intersecting line with plane II is taken as the x-axis. Next the spherical 

angles θ and φ of the magnetic field of every measured spectrum are 

calculated. These angles can be determined from the angle α and the 

dihedral angles η and ω (see Figure 2). The dihedral angles are calculated 

from the equations 

cosy. - cosy cosy, 

sinYj sinY
3 

(III.4) 

cosy, 

cosn = (III.5) 

where the angles γ are denoted in the figure and are known from the 

positions of the intersecting lines. 

Fig. 2 Chosen coordinate system in case 

the angles γ between the 

intersecting lines of the 

measuring planes are not equal 

to 90°. 

PLANE Ж 

-V 

PLANE I 
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Thereafter, the tensor g^ = g. g' is calculated and diagonalized using 

formula III.2 and a least squares method. This yields the directions of 

the principal axes in the chosen coordinate system and the eigenvalues of 

the g2 tensor, which are '•he squares of the principal values of the g 

tensor. The signs of the principal values of the g tensor can not be 

determined, they have been assumed to be positive. Moreover, g is assumed 

to be symmetrical. With the aid of the principal values of g and its 

eigenvectors, which are the same as those for §2, the g tensor in the 

coordinate system of Fig. 2 can be constructed. 

In an analogous way, the tensor g.Ä.Ät.gt is calculated. Multiplying 

from left and right with g_' yields Ä = Ä.Ät. The principal axes and the 

squares of the principal values of Ä are obtained by diagonalization of Ä2. 

As for the g tensor, the sign of the hyperfine splittings can not be 

determined. In all cases comparison of the average hyperfine splitting with 

the isotropic splitting (measured m liquid solution) led to the conclusion 

that all three principal values had the same sign. All principal values of 

copper have been taken negative and those of selenium positive, in 

agreement with a) the negative sign of the isotropic hyperfine splitting of 

copper, as given in the literature [ 53 ] and b) with the signs of the 

anisotropic splittings of copper and selenium as calculated by the extended 

Huckel Molecular Orbital method (Chapter V). The negative hyperfine 

interaction of copper is caused by a negative spin density and a positive 

magnetic moment, therefore the hyperfine interaction of silver has been 

taken positive, because of the negative sign of its magnetic moment. The Â 

tensors of copper and silver and the g tensors, as calculated by "GAPLSD", 

were used as the initial values for the program "SPINHAM". The Ä tensors 

of selenium have not been refined further. 

HI E 3 Ambiguity in the determination 

As is well known [ 54 ] , an ambiguity arises in the calculation of the 

tensors, because in general the relative directions of the rotations in the 

planes is not known, when more than one crystal is used to obtain a 

complete set of measurements. This leads to two distinct possibilities, 

because the direction of rotation of two planes can be chosen arbitrarily, 

leaving two different choices for the third plane. In practice this gave no 

problems, because m all systems studied one of these possibilities yielded 

imaginary hyperfine splittings. 
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HI E 4 Angles between the principal axes and the b-axis 

To situate the principal axes in the molecular frames, we have used the 

fact that all host crystals are monoclinic (space group Ρτ. ), wich two 

magnetically non-equivalent sites in a unit cell. Since the 

crystallographic b-axis is a twofold (screw-) axis, it bisects the angle 

between two corresponding principal axes of the two sites. As the latter 

angle can be determined, comparison of this angle with crystallographic 

data may help to locate the direction in the molecule, along which the 

principal axis is situated. 

Ill E S Experimental errors 

It turned out that the g tensors could be determined very accurately with 

the program "GAPLSD"; the minimization in "SPINHAM" resulted in a 

negligible change of these tensors. By comparing the values obtained for 

the two different sites, the accuracy is estimated to be of the order of 

0.0002. The accuracy of the Ä tensors of copper and silver was improved by 

the use of "SPINHAM". The error in the largest splittings is of the order 
-4 -I 

of 0.2 10 cm , the errors in the smaller ones are somewhat larger, even 

in absolute sense. Through comparison of the values obtained for the two 

sites, the errors in Che "axial" selenium splittings are estimated to be 
- i f - i 

- 0.5 10 cm , the errors in the "equatorial" splittings are much larger 
-4 -1 

and can be 2 10 cm 

The principal values of the quadrupole tensors as determined with 

"SPINHAM" turned out to be very small, they do not exceed 3 10 cm . Since 
- 4 - 1 

the absolute error is of the order of 0.2 10 cm , the relative error is 

large. 

The errors in the directions of the principal axes are strongly 

correlated with the errors in the principal values belonging to them. For 

the g tensors and the Ä tensors of copper and silver, and the "axial" 

hyperfine values of selenium, the errors are estimated to be less than 2 . 

For the "equatorial" selenium hyperfine axes and the axes of the Ρ tensors, 

the errors are much larger and may be 10 or more. 
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CHAPTER IV 

RESULTS OF ESR MEASUREMENTS 

In this chapter the experimentally obtained results are presented, divided 

into single crystal, powder and liquid solution measurements. We list m 

Table IV.1 the characteristics of those nuclei of which the hfs has been 

measured. The hyperfine couplings of
 65
Cu will not be given. The splitting 

due to the silver isotopes
 lc
'
7
Ag and

 1 0 9
Ag has not been detected. 

Table IV.1 Characteristics of nuclei 

isotope natural abundance 

(in %) [ 55 ] 

3 3
S 0.76 

63
Cu 69.09 

6S
Cu 30.9 1 

77
Se 7.58 

1()7
Ag 51.82 

1 0 9
Ag 48.18 

I 

3/2 

3/2 

3/2 

1/2 

1/2 

1/2 

magnetic moment [ 55 ] 

(in units of μ ) 

+0.6A33 

+2.226 

+2.385 

+0.534 

-0.1135 

-0.1305 

quadrupole moment 

(in 10-
24
cm

2
) [ 55,56 ] 

-0.055 

-0.211 

-0.195 

-

-

-

IV A Measurement!, on Cu(dsc)2 and Ag(dsc)2 diluted in single crystals of Ni(dsc)2 

The diselenocarbamate complexes of copper have been studied in single 

crystals of the diamagnetic nickel complexes: After examining the system 

Cu/Niibut.dsc) | 57 ] , we continued our study by investigating the systems 

Cu/Ni(met dsc). and Cu/Ni(et dsc) . Silver diselenocarbamate was studied, 

diluted in Ni(but dsc) . Attempts to grow single crystals of Ni(met dsc) 

failed, because of insolubility of this complex. 

IV A 1 Crystal structures 

The crystallographic structure of Ni(et dsc) has been determined by 

Bonamico et al. [ 58 ]. The structure of the Nitbut.dsc) complex was 

determined by Noordik at the Crystallography Laboratory of our university 

( 59 ). This latter determination was done because striking differences were 

found in the results of the ESR measurements on the systems Cu/Ni(et dsc) 

and Cu/Ni(but dsc) . Both crystals belong to the space group P2 , and 

contain two molecules in a unit cell. In each molecule the N1 atom occupies 

an inversion centre, which means that the central part of the molecules 
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Fig.3 Projection of the structure of Ni(et
9
dsc) along the a axis [ 58 1 . 

(consisting of N1 and four Se atoms) forms a plane. The structure of the 

ethyl compound is illustrated in Fig. 3. Table IV.2 gives a number of 

distances and angles of importance for the interpretation of the ESR 

spectra. In Ni(et_dsc)„ the central part of the molecule has nearly D» 

symmetry. The deviation from this synmetry is larger in the η-butyl complex 

and also in the thio compound. This accounts for the above mentioned 

differences in the ESR results, as will be discussed later. The Se atoms of 

Table IV.2 Bonding distances (in A) and angles of Ni(et2dsc)2 I 58 ] , 
Ni(but2dsc)2 [ 59 ] and Ni(et2dtc)2 [ 60 ] . α is the angle 
between the crystallographic b axis and the bonding directions 
Ni - S(e)*. 

Ni-S(e)
1 

Ni-S(e)
2 

angles 

S(e)
1
-Ni-S(e)

2 

Ni(et2dsc)2 

distance a 

2.316 28.5° 

2.318 76.3° 

81.8° 

Ni(but2dsc)2 

distance α 

2.317 61.5° 

2.307 49.4° 

81.3° 

Ni(et2dtc)2 

distance α 

2.195 28.7° 

2.207 76.1° 

79.2° 

r
S(e) means S or Se 
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the neighbouring molecules are at such large distances that mtermolecular 

effects on the ESR parameters can be neglected, provided the guest 

molecules accept the structure of the host crystal. The latter cannot be 

taken for granted, because the pure copper complex has a totally different 

structure [ 58 ] . In Fig. h and Table IV.6 the structure, bonding distances 

and bonding angles are given of the Cu(et dsc). compound. 

Fig. h Bimolecular unit of Cu(et dsc) [ 58 ]. 

This crystal too belongs to the space group P2! , but consists of dimenc 
/c 

units with Cu atoms surrounded by five Se atoms m an approximately 

tetragonal pyramidal structure. Because the Cu complex is monomeric in 

liquid solution it is not unlikely that it occurs as a monomer in the Ni 

crystal. The fact that the highest possible concentration that yields single 

crystals is about 2%, indicates that the doping of the crystal is 

accompanied with considerable lattice tension. 

Since the pure Ag(II) compound cannot be isolated, its structure is 

unknown. Van Rens [ 5 ] concluded for the structures of the Ag and Cu 

dithiocarbamate compounds that they have similar structures. The structures 

of the diselenocarbamato complexes of Cu, Ni and Zn resemble very much the 

structures of the dithio complexes [ 60-62 ], hence one may expect that the 

Ag(dsc) and Cu(dsc) compounds have also similar structures. 
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IV A 2 Single crystal spectra 

Generally the ESR spectra show the signals of two magnetically 

nonequivalent molecules. The two signals coincide when the magnetic field 

is parallel to the crystallographic monoclinic b-axis or when the field 

lies in the ac plane. The presence of the 77Se isotope in general gave rise 

to two pairs of satellites having an intensity of 8% of the major peaks. 

These satellites are due to molecules with only one Se atom. Using higher 

amplification, satellites due to molecules with two Se atoms could be 

easely observed. As these do not yield additional information, they have 

been ignored. Because only two different satellites could be detected, we 

conclude that the inversion centre has been retained in the guest iiolecules. 

Three representative spectra are reproduced in Fig. 5, 6 and 7. In 

Fig. 5 the magnetic field is located in the ac plane, so that the two 

molecules in the unit cell are magnetically equivalent. The hyperfine 

lines in this spectrum show a Imewidth dependence on the Cu nuclear 

quantum number. Such a large linewidth variation is found only for some 

orientations in Cu/Ni(but dsc). but is absent in ESR spectra recorded at 

k .2 K. An explanation could be the occurrence of lattice distortions giving 

rise to a distribution of Cu(but dsc) molecules over a small range of 

orientations. This explanation is supported by the X-ray results of Noordik 

who found a wide mosaic spread in Ni(but„dsc)- [ 63 ]. 

Fig. 6 shows clearly the amsotropy in the copper hyperfine 

interactions. In this spectrum both magnetically nonequivalent sites have 

approximately the same g value, but the hfs of copper reaches a minimum for 

one site and almost a maximum for the other. 

In Fig. 7 a spectrum of Ag/Ni(but dsc) is shown. Apart from the silver 

ESR spectrum, lines are discernable which are due to Cu(but9dsc) , 

present in the crystal as a small impurity. This impurity enabled us to 

compare very accurately the directions of the principal axes of the g and Ä 

tensors of the two complexes, because in this way they could be determined 

in the same coordinate system. Another spectrum which can be observed, is 

probably due to an unknown Ag(II) impurity: The g value variation of the 

impurity followed closely the variation in g value of the Ag(II) compound 

and never more than two lines originating from one site were observed. The 

most striking fact in Fig. 7 is the linewidth difference between the two 

sets of silver hyperfine lines. This is also observed in the Cu/Ni system 

but to a much smaller extent, so it can not be attributed to the above 

mentioned lattice distortions. An explanation could be the occurrence of 

unresolved hyperfine couplings. As van Rens pointed out [ 5 ], delocalization 
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Fig,5 First derivative Q-band ESR spectrum of Cu(but2dsc)2 m a 

Ni(but2dsc)2 single crystal at room temperature. Not indicated 
lines are Se satellites. 

Cu[but]dsc] 7 m Ni(but]dsc)2 

Magnetic field direction 

along minimum 6 ]Cu hypertme 

splitting of site 1 

, JCu site 1 

'3Cu site Ζ 

"Cu site 1 

" t u site ! 

Fig.6 First derivative Q-band ESR spectrum of Cu(but2dsc)2 in a 

Ni(but2dsc)2 single crystal at room temperature. Not indicated 
lines are

 77
Se satellites. 

Ägibuf^sc); and Cultiuf;dsc); 
m Ni (butjdsc); 

Ag site 1 

: Ag site 2 

• "Cu site 1 

lbCu site 1 

" С и site 2 

m C u site 2 

S e ^ S e ; of site 1 

Se, of site 2 

DPPH 
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Fig. 7 First derivative Q-band ESR spectrum of AgCbut^dsc^ and 
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)2 single crystal at room temperature. 
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of Che unpaired electron is more complete in the silver complex than in the 

Cu complex. This will cause a larger dipolar contribution to the '""N 

hyperfine interaction in the case of the silver compound. Furthermore the 

second order hyperfine contribution will be larger due to the higher spin 

orbit coupling of silver. Therefore the '"'N couplings may be larger than in 

the Cu complex, but still not large enough to be resolved. 

The principal axes and the principal values of the tensors were 

obtained by recording spectra in three different planes, according to the 

method described in chapter III. For Cu/Ni(et dsc), and Ag/Ni(but dsc) 

these planes were chosen arbitrarily, whereas in the case of 

Cu/Ni(but dsc)„ the crystal was rotated approximately around the principal 

axes of the g tensor of one site. 
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F i g . 8 Angular v a r i a t i o n of g va lue and Cu hfs ( i n 10 cm ) in 

Cu/Ni(but2dsc)2, upon r o t a t i o n about the d i r e c t i o n of maximum 
g va lue 
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"Cu and "Se hyperlme splitting (ID 'cm g value 

90 110 130 150 170 
Crystal Rotation Angle (degrees) 

Fig . 9 Angular v a r i a t i o n of g v a l u e , 63Cu and 7 7Se h f s ' s ( in 10 _^cm - ' ) in 
Cu/Ni(but2dsc)2 ) upon r o t a t i o n about the d i r e c t i o n of maximum 
63Cu h f s . 

IVA 2a The system Cu/Nifbut-dsc), 

Analysis of the spectra showed that none of the g value axes coincides with 

a principal axis of the Cu hfs tensor. This is clearly illustrated in 

Fig. 8 and Q. Fig. 8 gives the angular variation of the g value and Cu hfs 

upon rotation about the direction of maximum g value (g.). Two principal 

axes of the Cu hfs tenser lie almost in the plane perpendicular to g. 

(AÇU and A^ u); their orientation is rotated by about 45 with respect to 

the directions of extreme g values. Fig. 9 depicts the angular variation 

upon rotation about the direction of maximum Cu hfs (AÇ U). Apart from two 

principal axes of the Ä^u tensor, this plane contains also a principal axis 

of the g tensor (g ). The angle between g and A^u is about 10 . The hfs 
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it is assumed that A^u is perpendicular to the molecular plane and that the 

components of both sets of magnetically equivalent Se atoms could also be 

determined quite accurately, although for certain ranges of orientations 

the positions of the Se satellites are obscured by other peaks. 

The principal values and the angles between the principal axes and the 

the b axis are listed m Table IV.3. The orientation of the principal axes 

of the g and the Se hyperfine tensors with respect to the principal axes of 

the Ä C u tensor is listed in Table IV.4. The largest Cu hfs (AÇU) is 

perpendicular to Α ι and A 2 and the angle between А~
и
 and the b axis 

(¿18.7 , Table IV. 3) is in excellent agreement with the angle of 49.0 

between the b axis and the normal to the molecular plane [ 59 ] . Therefore 

3SU 

largest Se hfs's point in the direction of the copper atom. In agreement 
Se Se 

with this assumption the angle between the directions of A 1 and A 2 iS 

80.6 (see Fig. 9) close to the crystallographic angle Se -Ni-Se which is 

81.3 . Similarly the angles of 60.4 and 50.3 between the b axis and A 1 
Se 

and A 2 respectively, agree very well with the crystallographic angles of 

61.5 and 49.4 between the Ni-Se and Ni-Se directions and the b axis. It 

is interesting to note that both the average and the purely anisotropic 

hfs (A -A ) of Se are larger ¡.nan those of Se., whereas Se has a larger 

distance to copper. 

The orientations of the principal axes of the tensors in the molecular 

frame are sketched in Fig. 10. The maximum g value (g ) bisects 

approximately the angle Se -Cu-Se , whereas the Cu hfs tensor is rotated 

around A^u: the angles of A^" with A 1 and A 2 are 36 and 63 

respectively. The smallest selenium hyperfine splittings are found in 

directions making an angle of about 35 with A^u. 

Table IV.3 A. Experimentally obtained principal values of g tensor, 
quadrupole coupling and hyperfine coupling tensors 
(in 10_4cm-1) of Cu/Ni(met2dsc)2, Cu/Ni(et2dsc)^ 
Cu/Ni(but2dsc)2, Ag/Ni(but2dsc)2 and Ag/Pd(but2dsc)2a' . 

B. Angles between principal axes and crystallographic b axis. 

40 



p r i n c i p a l 
a x e s 

g l 

g 2 

b . g 3 

6 a v 

C ' g i s o 
Cu.Ag 

A . 
A 2 

av 
C -A 

I S O 

S e ! 

*! 
A 2 

, A 3 
b - A 

av 
C-A 

I S O 
S e 2 

A . 
A 2 

% 3 

av 
C-A 

I S O 
Cu 

P l 

P 2 

P 3 

CSI 

υ 
и и 

ζ -σ 
'-^ (Ν 

Э 4-) 

Ε, 

2 . 0 4 9 

2 . 0 0 5 

1.998 

2 . 0 1 7 

2 . 0 2 1 0 

- 1 4 0 

- 48 

- 43 

- 77 

- 7 5 . 6 

η . m . 

η . m . 

η . m . 

η . m . 

+ 4 3 . 3 

η . m . 

η . m . 

η . m . 

η . m . 

+ 4 3 . 3 

η . m . 

η . m . 

η . m . 

Α. p r i n c i p a l 

r4 U 
•Ζ. ui 
3 οι 

U -и 

2 . 0 5 1 1 

2 . 0 0 2 1 

1.9941 

2 . 0 1 5 7 

2 . 0 2 1 9 

- 1 4 4 . 2 

- 5 0 . 6 

- 4 4 . 0 

- 7 9 . 6 

- 7 6 . 3 

+ 1 0 5 . 4 

+ 22 

+ 17 

+ 48 

+ 4 4 . 0 

+ 1 0 3 . 4 

+ 20 

+ 13 

+ 45 

+ 4 4 . 0 

+ 0 . 3 

0 . 0 

- 0 . 3 

CN 

О 
Η СЛ 

2 -а 
\ СМ 
Ρ -и 

и 3 

2 . 0 5 1 7 

2 . 0 0 8 4 

1.9889 

2 . 0 1 6 3 

2 . 0 2 3 1 

- 1 4 2 . 5 

- 4 8 . 8 

- 3 9 . 6 

- 7 7 . 0 

- 7 6 . 5 

+ 1 0 9 . 3 

+ 21 

+ 17 

+ 49 

+ 4 4 . 9 

+ 1 0 1 . 0 

+ 21 

+ 15 

+ 46 

+ 4 4 . 9 

+ 0 . 6 

0 . 0 

- 0 . 6 

v a l u e s 

и 
н m 

Ζ -о 
\ CN 
Û0 4-> 

<! 3 
Sì 

2 . 0 8 2 0 

1 .9965 

1 .9280 

2 . 0 0 2 2 

2 . 0 0 6 5 

+ 3 4 . 0 

+ 2 5 . 5 

+ 2 3 . 7 

+ 2 7 . 8 

+ 2 6 . 6 

+ 1 2 1 . 3 

+ 17 

+ 10 

+ 49 

+ 4 4 . 3 

+ 1 1 0 . 0 

+ 16 

+ 5 

+ 44 

+ 4 4 . 3 

ΓΝ| 

'и 
ТЗ со 
си -а 

~ · — CN 
00 ^ 

< 3 

2 . 0 8 6 

1.995 

1.928 

2 . 0 0 3 

2 . 0 0 6 

+ 3 4 . 8 

+ 2 7 . 3 

+ 2 4 . 0 

+ 2 8 . 7 

+ 2 7 . 6 

+ 1 1 9 . 7 

+ 1 1 

+ 9 

+ 47 

+ 4 5 . 9 

+ 1 1 3 . 0 

+ 16 

+ 9 

+ 46 

+ 4 5 . 9 

В. a n g l e w i t h Ь a x i s 

OJ 

н и 
Ζ сл 
- ^ ТЗ 

3 CSI 
а и 

ω 

5 9 . 2 

6 7 . 0 

4 0 . 2 

6 3 . 2 

6 1 . 2 

4 1 . 3 

2 6 . 6 

83 

64 

7 6 . 4 

32 

62 

43 

88 

46 

CN 

О 
гЧ СЛ 
ζ -а 
\ CN 
3 и 

а з 

8 2 . 6 

8 . 0 

8 7 . 2 

4 8 . 7 

9 3 . 3 

4 1 . 5 

6 0 . 4 

32 

79 

5 0 . 3 

47 

70 

72 

19 

90 

Cs] 

и 
И И 
Ζ "О 
-•s. CN 
00 А-> 

< 3 
XI 

8 3 . 2 

3 1 . 8 

5 9 . 0 

4 9 . 4 

8 8 . 9 

4 0 . 6 

5 9 . 1 

27 

50 

4 9 . 7 

65 

47 

a. values from Ref. [ 64 ] . 
η.τη. = not measured. 
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Table IV.4 Angles between principal axes of A and principal axes of g, 

Α
Α
β, A

S e
 and P

Cu
. 

Cu/Ni 

(met
2
dsc)

2 

Cu Cu Cu 
A
l
 A

2
 A

3 

«1 
g

2 

g
3 

Se, 

Α
Α
· 

4 

A
3 

Ag 

А з 
Cu 

I 

90 0 90 
58 90 148 
32 90 58 

η.m. п>ш· η.m. 
η.τη. η.m. η.m. 

η.m. η.m. η.m. 

η.m. п.ш. η.m. 
η.m. η.τη. η.m. 

η.τη. η.m. η.τη. 

n.m. п.ш. η.m. 
п.m, n.m. n.m. 
n.m. n.m. n.m. 

Cu/Ni 
(et

2
dsc)

2 

Cu Cu Cu 
A
l
 A

2
 A
3 

90 3 87 
57 92 33 
33 88 123 

91 52 38 
87 39 128 
3 92 87 

91 49 41 
89 42 131 

5 91 88 

79 82 14 
63 30 103 
30 119 96 

Cu/Ni 
(but

2
dsc)

2 

Cu Cu Cu 
A
l
 A

2
 A
3 

89 10 109 
46 97 135 
44 84 47 

90 36 54 
53 62 130 
37 111 61 

90 63 27 
57 42 112 
33 119 76 

23 93 67 
67 89 157 
88 3 88 

Ag/Ni 

(but
2
dsc)

2 

Cu Cu Ci 
A
l
 A

2
 A
3 

90 14 104 
80 76 17 
10 93 100 

90 36 54 
79 55 143 
11 96 81 

89 62 28 
74 32 117 
16 104 82 

2 90 91 
90 6 96 
90 84 6 

n.m. = not measured. 

IVA 2Ь The system Ag/Ni(but2dsc)2 

The study of this system was started to verify the findings of Kirmse et 

al. [ 64 ) , who studied the system Ag/Pd(but
9
dsc) and concluded that the 

principal axes of g and Ä B coincide within the accuracy of their 

measurements. Compared with our results for the system Cu/Ni(but dsc)_, 

this conclusion was very unexpected, even bearing in mind the different 

host lattices used. The structure of Pd(but dsc) is not known bat, from 

the ESR measurements, some conclusions may be drawn: 1. Kirmse et al. 

observed just two magnetically non equivalent sites, which means that the 

structure certainly is not the one of Pd(et dtc) I 62 ] where four 
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(magnetically ron equivalent) molecules in a unit cell are present. 

2. The largest hfs's of the two non equivalent Se atoms differ by 
-U - 1 

6 10 cm , whereas the two Pd-S distances in Pd(et dtc).(of which the 

structure is known [ 65 ]) are equal. Hence the structure of the 

Pd(but dsc). molecule must have some characteristics of the structure of 

Ni(but dsc) : two molecules in a unit cell and two significantly different 

metal-Se distances. Therefore it did not seem very likely that the 

principal axes of g and A would coincide. This conclusion is supported 

by the ESR powder spectrum of Cu/Pd(but dsc) [ 66 ], also measured by 

Kirmse et a]. He found the same rotation of principal axes as is observed 

in Cu/Ni(but dsc) , also indicating that the symmetry of the Ni and the Pd 

complexes is the same. 

The principal values and the angles with the b axis measured by us are 

listed in Table IV.3, together with the principal values measured by Kirmse 

et al. The orientation of the principal axes in the molecular frame is 

sketched in Fig. II, the angles with the principal axes of À are listed 

in Table IV.5. 
=AE 

The results show that the axes cf A nearly coincide with those of 

Ä . Especially the angle of just 2 between A and A shows that the 

molecule is built in in the same way as the Cu containing molecules. The 

Ag hyperfine axes certainly do not coincide with those of the g tensor of 

the Ag-molecule: the largest angle between two axes is 10 . 

Cu(but2dsc), in Nifbut^dscjj 

А, С 
\ Se, 

**a'j 

'Cu Se, 

Se. , > ^ < Г А 2 \ А і Аз д з / 

1 ρ Си / ^gP л 9 

Se, 

Fig. 10 Proposed orientations of the principal axes in Cu/Ni(but dscî . 
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„о < ̂ * ^ ί ί
0 

Fig. II Proposed orientations of the principal axes xn Ag/Ni(but dsc) , 

together with the principal axes of the
 63
Cu hfs in the same 

crystal. 

IVA 2c The system Cu/Ni(et,dsc), 

The principal values ana the uirections of the principal axes are listed in 

Table IV.3 and IV.k and sketched in Fig. 12. The most important differences 

with the results of Cu/Ni(but dsc)„ are: 

i. g coincides with A (within 3 ), bisecting the angle Se -Cu-Se . 

ii. the angle between g, and A is decreased from kk to 33 . 

in. The difference between A ' and A
 2
 has been decreased from 8.3 to 

- 4 - 1 
2.0 10 cm , which is in agreement with the decreased difference in 

the bonding distances Ni-Se and Ni-Se . It is, of course, improbable 

that the built in Cu containing molecules have exactly the metal-

selenium distances of the host molecules. However, the packing forces, 

which are responsible for the inequality of the Ni-Se distances, act 

also on the guest molecules. Although their effect on the Cu 

containing molecules is not known, it may be expected that the trend, 

on going from Ni(et dsc) to Ni(but dsc) will be followed. 

iv. Similarly in agreement with the higher symmetry, the smallest Se hfs's 

are now parallel with A , perpendicular to the molecular plane. 

- 4 - 1 
v. the average Cu hfs has been increased by 2.3 10 cm , whereas the 

anisotropic part did not change. This difference can also be explained 

on the basis of the higher symmetry as follows: 

The magnitude of the average hfs is determined by 
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Fig.12 Proposed orientations of the principal axes in Cu/Ni(et.dsc)-. 

a. the electron spin density on the nucleus (Eq.II.67), which may 

arise from 

al. direct participation of s-orbitals in the wave function 

describing the unoaired electron, resulting in a positive 

contribution | 53 ] , and 

a2. spinpolanzation of core s-orbitals by the unpaired electron, 

yielding a negative contribution | 53 ] . 

b. the second order contributions to the anisotropic hfs tensor 

(Eq. 11.64 and 11.65). These yield a pseudo contact interaction 
-4 -1 

which in our systems was calculated to be about +5 10 cm 

Since the resulting average Cu hfs is negative, the contribution a2. 

dominates over al. plus b. 

Anticipating the results of the next chapter, the metal part of the MO of 

the unpaired electron consists mainly of one 3d АО pointing towards the 

ligand Se atoms, with some admixture of the other 3d АО's and the 4s 

orbital. The amount of admixture depends on the symmetry of the system: 

m case of exact D symmetry it is zero and consequently the contribution 

al. to the spin density at the nucleus vanishes, m cases of lower 

symmetry the coefficient of the 4s orbital will increase, resulting in a 

larger positive contribution to the average hfs, and thus in a smaller 

absolute value of the average hfs. Since the deviation from D . symmetry 

in Ni(but dsc)
9
 is clearly much larger than in Ni(et dsc) , this effect 

explains the difference in the average Cu hfs 
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As will be pointed out in section В of this chapter, in a liquid solution 

the symmetry of Cu(but dsc) is raised. From the near equality of the 

isotropic hfs's it may be concluded that the same holds for Cu(et dsc) . 

IV A 3 Comparison with dithiocarbamates and conclusions 

The measurements, described in this section, show that CuCR.dsc) 

(R = et,but) and Ag(but.dsc) are built in in the corresponding N1 complexes 

as monomers, accepting the symmetry of the host crystal. In these monomers 

the highest g value is situated in the molecular plane, along the bisector 

Se -Metal-Se . The (in absolute value) largest central metal hyperfine 

splitting is perpendicular to the molecular plane and the largest selenium 

hyperfine splittings point from selenium to the central metal atom. 

In all systems the f tensor is rotated in the plane m which g is 

almost isotropic, the axis of rotation being g
t
. The rotation angle depends 

on the central metal atom and on the extent to which the symmetry deviates 

from D . Analogously the Ä tensor of the metal atom is rotated in the plane 

of smallest amsotropy, which for this tensor is the molecular plane. Also 

this rotation depends on the central metal atom and the molecular symmetry. 

When these results are compared with single crystal measurements of 

Cu/Ni(et dtc) [ 12 ] and Ag/Ni(et dtc) [ 5 ] , the following differences are 

striking: 

1. In the dithiocarbamates the highest g value is perpendicular to the 

molecular plane. In the molecular plane the amsotropy is much smaller 

than in the diselenocarbamate complexes. (Table IV.5) 

2. Although the symmetry of Ni(et.dtc) deviates more from D2h than the 

symmetry of Ni(et dsc) , the principal axes of the g and Ä tensor 

coincide. Therefore, the rotations of the principal axes of g and Â in 

in the dsc complexes have to be ascribed to the presence of the heavy 

selenium atoms. The mam reason might be a change of electron 

delocalization on going from a dtc to a dsc compound, or the large spin 

orbit coupling of Se. The calculations in the next chapter prove that the 

latter is the case. 

Table IV.5 Experimentally obtained 

principal values of g tensor and 
-4 

hyperfine coupling tensor (in 10 

cm"1) of Cu/Ni(et2dtc)2 [ 12 ] and 

Ag/Ni(et2dtc)2 [ 5 ]. 

Bl 
g2 

8, 

Ai 

A3 

Cu/Ni(et2dtc)2 

2.084 
2.025 
2.020 

-159.0 
- 42.0 
- 36.0 

Ag/Ni(et2dtc)2 

2.0355 
2 0129 
2.0052 

+38.0 
+ 26.9 
+23.0 
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IV В Single crystal measurements of Cu(dsc)2 diluted m Zn(dsc) and Cu(dtc)2 in Zn(dtc) 

The second diamagnetic host in which Cu(dsc)
9
 was studied is the Zn(II) 

complex. Because of the results of the MO calculations (which are 

discussed in the next chapter) also the system Cu/Zn(et dtc) was measured, 

although other authors had done this before [ 12 J . 

IV В 1 Crysldl structures 

The structures of Cu(et.dsc)- and Cu(et dtc). are isomorphic, just as those 

of Zn(et dsc) and ¿n(et dtc) . The structures of the seleno compounds are 

given in the Figures h and 13. 

Fig. 13. Dimeric unit of Zn(et dsc) [ 58 ] . 

Relevant bonding distances and angles of all complexes are tabulated in 

Table IV.6. All crystals belong to the space group Ίχ. , , with two dimeric 
' с 

units in a unit cell. Because every dimer has inversion symmetry, it does 

not make a difference which Zn atom within one dimer is replaced by Cu. 

The nearest neighbour environment of the Cu atom is about tetragonal 

pyramidal. The axial Cu - S(e),, distance is about 0.5 A longer than the 

four equatorial Cu - S(e) distances. In the Zn compounds the distance 

Zn - S(e)
;
, is smaller than the distance Zn - S(e),, in contrast to the 

situation in the Cu compounds, (see Table IV.6) Due to this difference, the 
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Table IV.6 Bonding distances (in A) and angles of Cu(et2dsc)2 [ 58 ], 

Cu(eC2dtc)2 [61 ], Zn(et dsc) [58 1 and Zn(et2dtc)2 I 62 | . 

d i s t a n c e s 

M-SCe), 

M-S(e) 2 

M-S(e) 3 

M-S(e) 4 

M-S(e) 4 , 

angles 

S ( e ) 1 - M - S ( e ) 2 

S ( e ) 1 - M - S ( e ) 3 

S ( e ) 1 - M - S ( e ) 4 

S ( e ) 1 - M - S ( e ) 4 , 

S ( e ) 2 - M - S ( e ) 3 

S(e) 2 -M-S(e) / 4 

S ( e ) 2 - M - S ( e ) 4 l 

S ( e ) 3 - M - S ( e ) 4 

S ( e ) 3 - M - S ( e ) 4 , 

S ( e ) 4 - M - S ( e ) 4 , 

C u ( e t 2 d s c ) 2 

2.438 

2.423 

2.421 

2.439 

2.905 

79.4° 

99.1° 

172.3° 

94.0° 

159.3° 

99.6° 

99.9° 

79.1° 

100.8° 

93.8° 

C u ( e t 2 d t c ) 2 

2.317 

2.297 

2.301 

2.339 

2.851 

77.3° 

101.5° 

172.3° 

94.6° 

161.8° 

102.3° 

97.8° 

76.5° 

100.4° 

93.1° 

Z n ( e t 2 d s c ) 2 

2.568 

2.446 

2.435 

3.033 

2.492 

79.1° 

106.4° 

160.3° 

104.7° 

134.3° 

89.3° 

114.5° 

70.7° 

107.9° 

94.5° 

Z n ( e t 2 d t c ) 2 

2.443 

2.355 

2.331 

2.815 

2.383 

75.8° 

106.9° 

160.0° 

105.2° 

137.7° 

93.6° 

112.1° 

69.6° 

107.8° 

94.4° 

nearest neighbour environment of the Zn atom i;, no longer tetragonal 

pyramidal but can be described as nearly tetrahedal ( S(e) , S(e) , S(e). 

and S(e),i) or distorted trigonal pyramidal (through five S(e) atoms with 

S(e) and S(e). lying on the axial axes). In all four complexes the five 

S(e) atoms surrounding the metal atom are clearly all mequivalent. 

IV В 2 Single crystal spectra 

Except when the magnetic field is located either in the ac plane or along 

the b axis, the spectra consist of two different signals, belonging to the 

two magnetically non-equivalent dimers in the unit cell. No electron spin-

electron spin interactions were observed, because not more than about 1% 

of the Zn atoms was replaced by Cu. 

In Cu/Zn(et
9
dsc)» there are five selenium atoms which have a distance 

from the Cu atom short enough to have a fairly high spin density. 

Experimentally it turned out that the hfs of only four of them could be 

measured accurately enough. The splittings caused by the fifth one are 

mostly hidden under the main peaks. Because the natural abundance of Se 
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Í II, 

i 

Fig.lA First derivative Q-band ESR spectrum of Cu(et dsc) in a Zn(et dsc) 
single crystal at room temperature. Ψ are Se satellites of 
63
Cu; t are

 77
Se satellites of

 65
Cu. 

is 7.5% and I = J, each satellite has a relative intensity of 4% of a peak 

which is due to a molecule with no Se hyperfine splittings. One spectrum, 

showing the satellites, is given in Fig. 14. Due to the very low natural 

abundancy of
 3 3
S (0.74%, 1=3/2) no

 3 3
S hfs's could be measured in 

Cu/Zn(et dtc) . 

In both systems so called "forbidden" transitions (i.e. ΔΜ = ±1 and 

+2 transitions, mentioned in section II A) are observed. Their relative 

intensity runs from zero up to more than 100% of some of the ΔΜ = 0 

transitions in the spectrum. This high intensity is caused by a 

co-operative effect of the nuclear Zeeman and the quadrupole interaction, 

as may be seen from Eq.II.I9. This equation shows that the admixture of, 

for instance, the |M M + 1> state in |м M > is at a maximum when 

g y Ζ - MT,, - 3(M ± ä)Q:n ls small. This explains also why these 

transitions were not observed m the systems Cu/Ni(R dsc) . In the latter 

systems the minimum Cu hfs is much larger than in the systems we are 

discussing now, and furthermore the quadrupole interactions are smaller. 

In Fig.15 a spectrum of Cu/Zn(et dtc)_ is given, showing these "forbidden" 

lines; they can also be discerned in the spectrum of Cu/Zn(et,dsc) . in 

Fig.14. 

IV В 2a The system Cu/Zn(et2dsc)2 

The measured ESR data are listed in Table IV.7 and IV.8. Because of the 

selenium satellites the "forbidden" transitions could not be measured 

accurately enough. Therefore they were not used for the determination of 

the tensors. Since a dimer with one Cu and one Zn atom has no symmetry at 
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Fig.15 First derivative Q-band ESR spectrum of Cu(et_dtc). in a Zn(et.dtc). 

single crystal at room temperature. 

Table IV.7 Experimentally obtained principal values of the g tensor, the 

hyperfine coupling tensors and the copper quadrupole tensor 

(in 10~ cm ) of Cu/Zn(et dsc).. 

g
l 

g 2 

I 3 

Б
а 

2.0559 

2.02 1 3 

2.0068 

2.0280 

Se
. 

A
i 

118.3 

22 
12 
51 

Cu 
A
l 

> 
av 

-127.6 

- 40.4 

- 26.6 

- 64.9 

Se
2 

A
l 

av 

97.3 

19 
15 
44 

Cu 

Ρ, 

ϊί 
+ 1.8 

-0.3 

-1.5 

Se3 

A
l 

av 

91.6 

19 

17 
43 

Se, 

A
l 

1 
av 

101.5 

23 

19 

48 

all, it is not surprising that the principal axes of g and of the Ä tensor 

of Cu do not coincide. 

An interesting question in this study is whether or not the copper 

containing dimer accepts the structure of the host crystal. Table IV.9 

lists the experimentally obtained angles between the crystallographic b 

axis and the principal axes A 
Sei 
, '• together wi ith the angles between the b 

axis and the metal-selenium bonds in Cu(et„dsc)7 and Zn(et.dsc)7. In the 

table the experimental results are arranged in such a way that the best 

agreement is obtained between both types of measurements. It is clear that 

(except for Se.) the experimental values agree best with the angles in 

Se * 
Cu(et-dsc)-. In Table IV.10 the mutual angles between the A 1 axes are 

compared with the bonding angles in the pure compounds. Also these 
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Table IV.8 Experimentally obtained angles between the principal axes of 

A
C U 

and the principal axes of g, Ρ and A
 1

 in Cu/Zn(et ds c ) . . 

Cu 
A
i 

І 
Se

2 

Cu 

A. 

І 

g
l 

85 
24 
112 

*! 

106 
27 
69 

g
2 

7 
96 
92 

A
2 

90 
112 
22 

Ь 

86 
67 
23 

A
3 

16 
75 
84 

Cu 

S'. 

P
. 

2 
91 
91 

A
. 

103 
153 
1 13 

P
2 

89 
7 

84 

A
2 

95 
65 
154 

Рз 

89 
96 
7 

A
3 

14 
99 
100 

Se, 

Se, 

Α
ι 

93 
104 
15 

A
. 

93 
76 
165 

A
2 

100 
17 
76 

A
2 

95 
165 
104 

A
3 

10 
81 
85 

A
3 

6 
94 
95 

Se 
Table IV.9 a.Experimentally obtained angles between А

 1
 principal axes 

and the crystallographic b axis in Cu/Zn(et2dsc)2. 

b.Angles between M-Se bonding directions and b axis (M = Cu.Zn) 

in Cu(et2dsc)2 and Zn(et
2
dsc)2 [ 58 ] . 

a 

Se, 
Se, 
Se, 

Se,, 

Se,, 

35.8 

91.0 

108.2 

150.4 

b 
Cu(et

2
dsc) 

34.8 

83.0 

107.7 

152.9 

59.4 

2 
Zn( e t

2
d s c )

2 

40.8 

91.8 

122.4 

157.0 

64.2 

.Se, 
Table IV.10 a.Angles between principal axes A ^ in Cu/Zn(et2dsc)2. 

b.Bonding angles m Cu(et2dsc)2 and Zn(et2dsc)2 [ 58 ] . 

a 
exp. 

Sej-M-Sej 

Se^M-Sej 

Sei-M-Se, 

Se^K-Se^, 
Se

2
-M-Se3 

Se
2
-M-Se^ 

Se
2
-M-Se

u
, 

Sej-M-Se, 

Зез-М-Зе,, 

Зе
ц
-М-Зе

ц
, 

81 .6 

98.7 

173.8 

151.1 

96.8 

79.8 

b 
Cu(et

2
dsc)

2 

79.4 

99.1 

172.3 

94.0 

159.3 

99.6 

99.9 

79.1 

100.8 

93.8 

Zn(et
2
dsc)

2 

79.1 

106.4 

160.3 

104.7 

134.3 

89.3 

114.5 

70.7 

107.9 

95.5 

experimental values agree best with the bonding angles in Cu(et dsc) ; the 

strongest deviations occur for angles involving Se . 

From the foregoing we conclude: 1. the copper containing dimer does 
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not have the structure of the host crystal, but has a structure which 

Se · 
resembles very much that of the pure Cu(et dsc). compound, 2. the A

 1 

vectors point in the direction Se-Ou, 3. the four measured A
 1

 tensors 

belong to the four selenium atoms which lie nearly in a plane, so that the 

Se atom of which the hfs was not measured is Se,, (see Fig.4). This result 

is not surprising since the Cu-Se,, distance is the largest distance in the 

Cu complex considered. 

With the aid of these results, the principal axes of the tensors can 

be situated in the molecule, as is done in Fig. 16. As opposed to the 

monomeric systems, discussed in section A of this chapter, A and g
9 

nearly coincide. However, the largest rotation has taken place in the plane 

of one molecule: g. and g., approximately bisect the angles Se-Cu-Se, but 

A and A are rotated from these directions. 

The principal values of Ρ and the directions of its principal axes 

have been obtained in two sites independently. Therefore it can be 

concluded that these data are meaningfull in spite of their small values. 

The tensor turns out to be far from axially symmetric. The principal axes 

almost coincide with those of Ä , the axis along which the highest Ρ value 

has been measured is perpendicular to the molecular plane, similar to the 

orientation of the Â tensor. 

CX" 

Fig.16 Proposed orientations of the principal axes in Cu/Zn(et2dsc)2· 
Note that the Cu atom and the Se atoms do not lie in a plane. 
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IV В 2b The system Cu/Zn(et2dtc)2 

ESR spectra of single crystals of this system have been measured by Reddy 

and Srimvasan [ 11 ] and by Weeks and Fackler [ 12 ] ; their results are 

listed in Table IV.ll. Reddy and Srimvasan concluded to axial symmetry 

around the Cu atom and calculated the parameters of the spin hamiltoman on 

this basis. Apart from the principal values of the g tensor and the copper 

hfs tensor, the nuclear quadrupole coupling tensor of copper was also 

determined. Because no detailed crystal structures were available at that 

time, they could not relate the principal magnetic axes to the geometry of 

the molecule in the crystal. When Weeks and Fackler carried out their study, 

the crystal structures of both guest and host molecule had been published 

[61,62 ] . Thus the angles between the principal axes of g and Ä and the 

crystallographic a, b and с axis could be determined. The angles with the 

b axis are given in Table IV.ll. Weeks and Fackler found (within 

experimental error) the g and Ä tensor non axial, with coinciding principal 

axes. The maximum g value and Cu hfs is approximately normal to the least-

squares plane through the four sulphur atoms of the formula unit. Of the 

two principal axes that lie in the plane of the sulphur atoms, g lies 

along the S(4)-M-S(l) direction. Weeks and Fackler measured a very small 

A component. Compared with our result in the diselenocarbamato system 

(preceding section) this value seemed to be rather unlikely. Because an MO 

calculation (chapter V) also yielded a much higher value for A. , we 

decided to remeasure this system. After the last refinements with the 

program "SPINHAM" (section III E) the function 
] Ν ,

 1
 τ ι 

( Ζ Σ
ι (Β ι. j -

 B
 ι ι * j) J

2 w a s
 reduced to 0.85 gauss. The N i=l observed calculated ° 

summation ran over 168 ДМ =0, 110 ΔΜ =±1 and 20 ΔΜ =±2 transitions. Neither 

Reddy and Srimvasan nor Weeks and Fackler reported ΔΜ >0 transitions, 

probably because they measured at X-band frequency. Our results (Tables 

IV.ll and 12) confirm the non axiallity of the tensors, but differ from 

those of Weeks and Fackler in the smallest Cu hfs. Furthermore a small 

angle is found between the directions of g and A . The values found for 

Ρ agree very well with those of Reddy and Srimvasan, except for the 

axial symmetry supposed by them. 

Inspection of Table IV.ll shows that good agreement exists between 

the angles of the principal axes and the b axis, measured by Weeks and 

Fackler and us. The direction of the principal axes in the molecule is 

drawn in Fig.17. trom the observation that g, lies along the S(4)-M-S(l) 

direction, which direction contains the pair of bonds that are 
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Table IV.11 Experimentally obtained principal values of g, Â and Ρ 
-4 -1 

(in 10 cm ) of Cu/Zn(et dtc)., and angles between the 

principal axes and the crystallographic b axis. 

principal axes 

a 

g. 2.1076 

g, 2.0308 

g, 2.0230 
g 2.0538 6
av 

Cu 

A -142.4 

A* - 29.9 

A^ - 20.4 
A - 64.2 
av 

Cu 

Ρ + 2.1 

Ρ, - 0.5 

p
3 -

 1
·

6 

b 

2.107 

2.033 

2.025 

2.055 

-143 

- 27 

- 7 

- 59 

с 

2.1085 
2.023 
2.023 
2.0515 

-142.4 

- 22.4 

- 22.4 
- 62.4 

+ 2 

- 1 

- 1 

angles with b axis 

a 

56.9 
88.1 
33.1 

57.3 
88.2 
32.8 

55.1 
22.1 
43.3 

b 

56.4 

88.6 

33.3 

57.3 
88.1 
32.7 

a. this thesis. 
b. results from Ref. 12 
c. results from Ref.11 

Table IV.12 Experimentally obtained angles between the principal axes of 

Ä and the principal axes of g and Ρ in Cu/Zn(et dtc).. 

Cu 

A. 

І 

6. 

0 

90 
90 

g
2 

90 

4 
86 

g
3 

90 
94 

4 

pçu 

6 
85 
93 

'? 
94 
22 
68 

^ 

86 
11 1 
22 

considerably elongated in the zinc complex, Weeks and Fackler concluded 

that the copper ion environment in the doped ZnCet.dtc)« is similar to that 

in pure Cu(et„dtc)„. 

IV В 3 Conclusions 

The measurements on Cu/ZnCet.dsc). prove that Cuiet.dsc), does not accept 

the structure of the host crystal, but retains the structure of the pure 

Cu(et dsc)
9
. This was also found by Weeks and Fackler for the correspondin 

dithio system. A relevant correspondence between the dimenc system 

Cu/Zn(et.dsc) and the monomeric systems Cu/Ni(R dsc)„ is that the maximuir 

g value has been measured in the molecular plane. In the dithio systems, 
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»Cu ρ Cu 

Fig.17 Proposed orientations of the principal axes in Cu/Zn(et
?
dtc)

9
. 

however, the maximum g value is perpendicular to this plane, for both dimer 

and monomers. A difference between the monomenc and dimenc diseleno 

systems is that, in the dimenc system, the principal axes of the g tensor 

and the Â tensor in the xz plane almost coincide. On the other hand, a 

rotation of the Ä principal axes relative to those of g in the molecular 

plane seems to be typical for the dimers. for the diseleno compounds as 

well as tor the dithio compounds. Another difference between the monomers 

and dimers is the magnitude of the copper nuclear quadrupole coupling 

tensor. In the dimers Ρ is - 2 10 cm , whereas its value in the 

- ¿ i - l 
monomenc systems is ~ 0.5 10 cm 

IV С Powder and glass measurements 

IV С 1 Powder spectrum of Cu/Ni(met
2
dsc)

2 

When no single crystals are available, the anisotropic interaction 

parameters can be determined from a diluted powder spectrum. In powder and 

glass samples the molecules are distributed over all possible orientations. 

Consequently the absorption ESR spectrum is a summation of spectra 

corresponding with the various orientations. In the "strong field" 

approximation and neglecting the nuclear Zeeman and quadrupole interactions, 

the resonance condition for a molecule in an arbitrary orientation, v.here 

the magnetic field has spherical angles θ and φ relative to a chosen 
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molecular coordinate system, is: 

ВС .ф.т^ =
 Β ( θ |

'φ
) μ
 (hv - т^С .ф)) , (IV.1) 

where §(θ,φ) and а( ,ф) are defined by the expressions (III.2) and (III.3). 

In the first derivative ESR spectrum peaks occur for those values of the 

magnetic field for which applies 

6В( ,ф,т ) «В( ,ф,т ) 

Гв δφ
 0

 · (
Ιν
·

2
) 

Schaafsma [ 67 ] has discussed a system with such a high symmetry that all 

principal axes of the g tensor and hyperfine splitting tensor coincide. 

Then В( ,ф,т ) is a function of cos 0 and соз
2
ф, so that the peakpositions, 

derived from the conditions (IV.2), are 

a. θ = 0, φ indefinite. 

b. θ = JTT, φ = 0. 

c. θ = ^π, φ = 2^· 

For each of these orientations 21 + 1 equidistant peaks are obtained, from 

which the principal values of g and Ä can be determined in a straight­

forward way. 

In the case that none of the principal axes of g and Ä coincides, 

(which situation occurs in most of the systems discussed in this thesis) 

В( ,ф,т ) is neither a function of cos
2
8 nor a function of cos φ. The 

conditions (IV.2) are not fulfilled by θ = O.JTT; φ = Ο,^π. One obtains 

three sets of 21 + 1 not equidistant peaks, from which the principal values 

can not be obtained. 

If one pair of principal axes coincides, В( ,ф,т ) is still a function 

of cos θ (θ being measured relative to the unique axis) but not of со8
2
ф. 

This case has been discussed by van Rens [ 5 ] . From the conditions (IV.2) 

it follows: 

a. θ = 0, φ indefinite. A set of 21 + 1 equidistant lines, corresponding 

with the principal values of the coinciding axes. 

b.c. θ = 4π, 'Ф>
ш
іу _ д. Two sets of 21 + 1 not equidistant lines, 

δφ / θ=|π 

from which the remaining principal values cannot be determined. If, 

however, the principal values and the relative position of the principal 

axes are known (from a single crystal study), the peakpositions in the 

first derivative powder spectrum can be calculated under the assumptions 

for which equation IV.1 has been derived. Of course the same can be done 

by taking trial values for the principal values and the angle between the 

principal axes. By varying the trial values, optimum agreement between the 
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measured and calculated peakpositions can be obtained. 

In this way the principal values of Cu/Ni(met9dsc) have been 

determined from the powder spectrum (Fig.18), with the assumption that the 

axes of g and A coincide. In Table IV.13 the measured and calculated 

fieldpositions are listed. The calculated principal values have been 

reported in Table IV.3. The angle between the axes of g and A, appeared 

to be 58 , almost as large as the angle in the ethyl compound. 

Fig.18 First derivative Q-band ESR spectrum of a powder of CuCmet^dsc)^ in 

Ni(met2dsc)2 at room temperature. 

Table IV.13 Measured and calculated peakpositions in the Q-band powder 

spectrum of Cu/Ni(met2dsc)2. 

Microwave frequency is 34.61 gHz, the angle between $2 a n d A l U 

is 58°. Principal values of g and Ä C u are listed in Table IV.3. 

mi 

-3/2 

-1/2 

+ 1/2 

+3/2 

В 
measured 

12139.9 

12280.8 

12280.8 

12333.0 

12370.2 

12450.1 

12415.7 

12596.6 

D 

calculated 

12136.0 

12279.8 

12278.9 

12328.7 

12368.3 

12445.8 

12416.1 

12593.1 
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IV С 2 Glass spectrum of Cu(biH2dsc)2 

The fact that the axes of the g and Ä tensor do not coincide in the 

systems Cu/Ni(R9dsc) was initially attributed to influences of 

neighbouring diselenocarbamate molecules. Therefore it was decided to check 

this in a liquid solution, because there the complexes are monomeric. Since 

it is not possible to obtain this information from the liquid solution 

spectrum itself, the spectrum of Cu(but dsc). in a frozen solution of 

chloroform-toluene (40-60%) was recorded. Here the phenomenon occured that 

a reasonable intensity was measured only between -100 and -140 C. 

Crystallization of the solvent below -140 С can be an explanation of this 

effect, but then it is not clear why this does not happen in the 

corresponding dithiocarbamate system where, down to -190 C, a good 

intensity is measured. 

The linewidth in the glass spectrum (Fig.l9A) is much larger than in 

the powder spectrum (Fig.18). Therefore the glass spectrum could be 

interpreted only by using a simulation computerprogram. Only simulations 

based on coinciding principal axes and Lorentzian lineshapes of the 

resonance lines of each molecule were carried out. In Fig.l9B the optimum 

spectrum is shown. The linewidth used is 12 gauss, the principal values are 

tabulated in Table IV.14. 

Table IV.14 Experimentally obtained principal values of Cu(but2dsc)2 in 
frozen solution of chloroform-toluene (40-60%) at -125

0
C. 

(Hyperfine splittings in 10
_
^cm

-
'.) 

g 

8 

g
y 

6
z 
6av 

2.0020 
2.0513 
2.0021 

2.0185 

A 
A

X 

A
y 

A
z 

av 

- 40.2 
- 56.2 

-145.8 

- 80.7 

The good agreement between the experimental spectrum and the simulated 

one makes it likely that the principal axes of g and Â do coincide, 

although no simulations have been made with non coinciding axes. This 

should imply that the symmetry of the Cu(but9dsc)9 molecule in liquid 

solution is higher than in the doped single crystal of the nickel complex. 

The data in Table IV.14 show that the g value is almost isotropic in the 

xz plane, which means that, in fact, it is meaningless to speak about a 

rotation of the g tensor relative to the A tensor in the xz plane. 
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temperature = UB °K 

® 

Fig.l9A First derivative Q-band ESR spectrum of Cu(but dsc) in a frozen 

solution of chloroform-toluene (40-60%) at a temperature of 148 К. 

В Simulated spectrum assuming coinciding principal axes of g and A 
fCu 

using Lorentzian lineshapes. 

into account. 

Se satellites have not been taken 
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IV D. Liquid solution spectra 

The room temperature liquid solution spectra of the diselenocarbamate 

complexes of copper (the spectrum of the ethyl complex is shown in Fig.20A) 

show the four major peaks of which the first and the last are partly split 

due to the presence of the Cu isotope. The spectrum of Ag(but.dsc)
9 

(Fig.22) shows two major peaks which are not split by the presence of the 

two silver isotopes. Each peak is symmetrically flanked by a satellite 

pair with an intensity of about 16% of the major peaks. These satellites 

are due to the isotope
 7 7

Se. 

The isotropic g values (g. ) and hyperfine splittings (A. ) of 

Cu(met dsc) , Cu(et dsc) , Cu(but dsc) and Ag(but dsc) are listed in 

Table IV.15, together with g. and A. of the diethyldithiocarbamate 
ISO ISO 

complexes of copper [ 10 ] and silver [5 ] . In Table IV.3 they were listed 

already to facilitate comparison with the average values of the single 

crystal measurements. Recently Belford and Pilbrow pointed out that the 

average of the measured principal hyperfine splittings does not have to 

be equal to the isotropic hfs, if the hfs tensor is not symmetrical [ 68 ] . 

However, according to our MO calculations (chapter V) the asymmetry in the 

hfs tensor is never so large that these effects have to be taken into 

account. 

Table IV.15 Experimentally obtained isotropic g values and hyperfine 
splittings (in 10

-
^спГ') of some diselenocarbamate and 

dithiocarbamate complexes of copper and silver. 

complex 

Cu(met
2
dsc)

2 

Cu(et
2
dsc)

2 

Cu(but
2
dsc)

2 

Ag(but
2
dsc)

2 

Cu(et
2
dtc)

2

 a
· 

Ag(et
2
dtc)

2

 b
· 

solvent 

chloroform 

chloroform 

chloroform 

chloroform 

benzene 

benzene 

6
iso 

2.0210 

2.0219 

2.0231 

2.0065 

2.0453 

2.021 

A
Cu(Ag) 

iso 

-75.6 

-76.3 

-76.5 

+26.6 

-74 

+28.6 

A
S e 

ISO 

+43.3 

+44.0 

+44.9 

+44.3 

a. Ref.10 

b. Ref.5 

A liquid solution spectrum does not provide information about the 

location of the principal axes. On the other hand, a spectrum measured 

in a glassy solution can yield this information. In section IV С the 
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experimental spectrum 

simulated spectrum 

Fig.20A First derivative X-band ESR spectrum of a solution of Cu(et dsc) 
in chloroform at room temperature. 

В Simulated spectrum using Lorentzian line shapes and calculated 
line positions. Se satellites have not been taken into account. 

С Composing lines of the simulated spectrum. 

61 



simulaled spectrum 

e«perimental spectrum 

simulated spectrum 

Fig.21A First derivative X-band ESR spectrum of a solution of Cu(et„dtc) 
in benzene at room temperature. 

В Simulated spectrum using Lorentzian line shapes and calculated 

line positions. 
С Composing lines of the simulated spectrum. 
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Ag (buljdsc), in 

chloroform 

* - C u ( b u t , d s c ) i 

Fig.22 First derivative X-band ESR spectrum of a solution of Ag(but„dsc). 
in chloroform at room temperature. 

spectrum of Cu(but dsc) in a glassy solution of chloroform-toluene has 

been discussed. It turned out that the principal axes of g and A 

coincide. It is likely that the same is true for the other diseleno-

carbamate complexes in solution, which means that in solution these 

complexes are planar with equal metal-selenium distances. This is in 

agreement with the observation of only one selenium hyperfme splitting. 

IV D 1 Lmewidth variation m spectra of copper complexes 

The observed lmewidth variation in the liquid solution spectra of the 

diselenocarbamates is very unusual for spectra of planar copper 

complexes. A typical example of a "normal" liquid solution ESR spectrum 

is the spectrum of the copper diethyldithiocarbamate complex, given in 

Fig,21A, which shows a gradual decrease in lmewidth from low to high 

field. The "abnormal" lmewidth variation in the spectra of the 

diselenocarbamate complexes is probably caused by the change in g 

values, which occurs in going from dtc to dsc: In all the planar copper 

complexes, studied up till now, the maximum g value and copper hfs 

coincide and are normal to the molecular plane. In the diselenocarbamates, 

however, the maximum Cu hfs is still perpendicular to the molecular plane, 

but the maximum g value lies in this plane. (See section A of this 

chapter). Using the relaxation theory of Kivelson [ 69 ] we will show 
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that this change in the relative orientation of the maximum g value and 

the maximum Cu his does result in a different linewidth variation. 

Kivelson derived for the relaxation time Τ of a room temperature 

spectrum in a diluted liquid solution: 

--1 ^ p - ["{[31(1+1) + 5M^ lTr(A.A
T
) 

I 

+ 8 [Tr(g.g
T
) - i (Tr ¡) 2 

+ 16 [Tr(g.A) I M ^ B } 

2„ 2 

1 
1+4π

2
ν

2
τ

2 {[71(1+1) |Tr(A.A ) 

+ 6 [TrCÏ.g1) - j (Tr I) 2 Iy2B2 

+ 12 [Tr(g.A) [M ι
μ
ο

Β }
 ] ' (IV.3) 

here A is the traceless hyperfine coupling tensor and the g tensor is 

diagonal. As has been mentioned earlier, no information is available 

about the principal values of the tensors in solution, but from the 

frozen glass spectrum it was deduced that the principal axes of g and 

Ä coincide. Instead of using the principal values derived from the 

frozen glass spectrum, which were measured at low temperature (148 Κ), we 

decided to use values measured in Cu/Ni(et dsc)
0
, which are measured at 

room temperature. The principal values used are given in Table IV.16. 

Table IV.16 Principal values of the g tensor and central metal hyperfine 

splitting tensor (in 10
_
^cm

_
l), used for the calculation of 

Imewidths m liquid solution. 

Cu(et
2
dsc)

2 

K
M 

К 

s
y 

8
av 

A -
А

Л
 -

A> -
A¿ 

A 
А ^ 
А ^ 

1.9981 
2.0511 

1.9981 

2.0157 

+ 35.6 
+ 29.0 
-64.6 
-7 9.6 

Cu(et
2
dtc)

2 

2.020 
2.025 
2.084 

2.043 

+ 43.0 
+ 37.0 
-80.0 
-79.0 

Ag(but
2
dsc)

2 

1 .9280 
2.0820 

1.9965 
2.0022 

- 4.0 
- 2.2 
+ 6.2 
+ 27.8 

The values tabulated for Cu(et dtc) are those published by Weeks and 

Fackler [ 12 ] for Cu/Ni(et dtc) . For Cu(et dsc) the values for A , A , 
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A and g are caken from the system Cu/Ni(et_dsc). (section IV A ) . The 
ζ y 2 2 

values for g and g are the mean of g and g from the same system, 

because in the glassy spectrum it was found that the g value is isotropic 

in the xz plane. 

The klystron frequency V was taken to be 9.2 gHz. The correlation 

time τ was initially estimated using the relation 

с 
νη/kl , (IV.4) 

-3 
where η is the viscosity of the liquid (η = 0.585 10 kg/m.sec = 0.585 

10 poises for chloroform at 20 C) and V is the molecular volume. 

Assuming the volume of the Cu complex in solution to be the same as the 

volume of the Ni complex in a single crystal (both being monomenc and 

-30 3 
planar), the volume is estimated to be 441 10 m , being half the 

volume of a unit cell in Ni(et dsc) [ 58 ] . Substitution of these values 

of V and η yields for t : 6.4 10
-
'

1
 sec. Since it is well known that 

с 
Eq.IV.4 overestimates the correlation time [ 70 ] , the values of τ were 

с 

subsequently changed until the observed and calculated linewidth of the 

first Cu line were the same. The values of τ , obtained in this way, 

for Cu(et dsc) and Cu(et dtc) are 1.2 10~ and 0.75 io"' s e c , 

respectively. 

The experimental relaxation times were determined by simulation 

of the experimental spectra, using Lorentzian line shapes and calculated 

line positions (Fig.20B,C and 21B,C). They are listed in Table IV.17, 

together with the calculated ones. 

Table IV. 17 Measured and calculated relaxation times ( m 10 sec.) in 

X-band liquid solution spectra. 

isotope 

M
I 

-3/2 

-1/2 

+ 1/2 

+ 3/2 

с 

63 

666 
732 
746 
666 

Cu(et
2
dsc) 

bs. 

65 

653 
712 
612 
653 

2 

cale. 

63 

666 
660 
516 
361 

65 

582 
588 
464 
325 

Cu(et 

ob s . 

63 

296 
459 
674 
779 

65 

269 
429 
612 
720 

2
d c c )

2 

ca 

63 

296 
450 
7 26 

1181 

le. 

65 

268 
405 
639 
981 

Ag(but 

ob s. 

107 109 

274 274 

253 253 

2
d s c )

2 

cale. 

107 109 

263 263 

253 251 

The increase in Τ observed on Cu(et dtc) , is reproduced in the 

calculated values, but the variation is too large, probably because of 
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overestimation of the M -dependent terms. The linewidth variation 

calculated for Cu(et dsc) is indeed different. However, the experimentally 

2 
observed M dependence is not reproduced theoretically, probably because 

here too the M -dependent terms dominate. A calculation using the relative 

position of the principal axes of the system Cu/Ni(et dsc) (section IV A) 

did not improve these results. 

The linewidth calculations on Cu(et dtc). have been performed earlier 

by Gibson [71 ]. He found a much better correspondence between the 

experimental and theoretical Imewidths. This is due, however, to an error 

he made in the dimension of the hyperfine splitting. Moreover, his 

experimental linewidths refer to the total linewidths of the measured 

peaks. For a comparison with theoretical values these total linewidths 

should be decomposed into the widths of the two lines of the copper 

isotopes, as has been done in Fig.20C and Fig.21C. 

IV D 2 Linewidths in the spectrum of Ag(but2dsc). 

For the calculation of the liquid solution linewidths, the single crystal 

principal values of Ag/Ni(but dsc) were used (section IV A). It was 
= = Ag 

assumed that the principal axes or g and A coincide. A calculation 

with the relative position of the axes of the system Ag/Ni(bat dsc) 

yielded almost the same values. The correlation time τ , which gives the 

experimental linewidth of the low field Ag line, was 2.3 10 sec. 

The obtained relaxation times are listed in Table IV.17. Because of the 

very small anisotropy (see Table IV. 16) there is practically no M 

dependence, experimentally as well as theoretically. 
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CHAPTER V 

MOLECULAR ORBITAL CALCULATIONS 

The purpose of the ESR experiments is to obtain information about the 

bonding properties of the transition metal complexes. To this end one 

often attempts to estimate the contribution of the metal and the ligand 

orbitale to the MO's from the measured g tensor and hyperfine splitting 

tensors. This procedure can be employed in systems of a high symmetry 

where, in addition, only d-type antibondmg MO's (i.e. the "d-orbitals") 

are important for the spin hamiltonian parameters, because otherwise too 

many unknowns are to be determined. In this way Maki and McGarvey [40 ] 

and Kivelson and Neiman [Al ] derived expressions for the spin hamiltonian 

parameters of a tetragonal copper(II) system and deduced numerical values 

for the LCAO coefficients in the antibonding d-type MO's. Since the 

symmetry m our systems is С at the most, and since ligand orbitals can 

be important for the ESR parameters as well, we compare directly the 

measured ESR quantities with those, calculated by means of the iterative 

extended Huckel MO method [ 72 ] . The advantage of this procedure is that 

all metal and ligand orbitals can be included, and that the system may 

have any symmetry. 

V A The Icao mo extended huckel method 

The computerprogram used [ 73 ] was based on the self-consistent charge 

method. In this method a set of secular equations 

Σ (Η - E S ) С = О (V.1) 
j IJ ij J 

is constructed m a semi-empirical way. In these equations H and S are 
ij ij 

elements of the hamiltonian and overlap matrix, respectively 

H = <ф Ih „Ιφ > (V.2) 
ij ι' eff

1
 j 

s = <Φ ΙΦ > , (V.3) 
ij ι J 

where φ are atomic orbitals and h .,. is an effective one-electron 

ι eff 

hamiltonian. By solving these secular equations, the orbital energies ε 
and LCAO coefficients С , are obtained. After occupying the lowest MO's in 

jk 

agreement with the spin multiplicity of the ground state, the Mulliken 

charges for all atoms are calculated [ 49 ] . The hamiltonian matrix, which 

is chosen to be charge dependent, is recalculated with these charges. This 
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procedure is repeated until self-consistency is reached, i.e. until the 

differences between the atomic charges m two successive cycles are less 

than 0.001 charge unit. 

V A 1 Input data 

The required input data for the MO calculations are the structure, the 

atomic wave functions and the hamiltoman matrix. 

VA la Structure 

Because the ESR results have been obtained from single crystal studies in 

a diamagnetic host complex, the crystal structure of the host complex is 

used, unless stated otherwise. For copper in the nickel complexes (which 

are monomeric with С symmetry) the cartesian coordinates of the atoms 

were computed in a coordinate system with the χ and у axes along the 

bisectors of the angles S(e) - Cu - S(e) {S(e) means S or Se} and the 

ζ axis perpendicular to the plane of the copper and the four sulphur 

(or selenium) atoms. 

Я , . ' 

S(e)2 siel, », 

> С,' \u(-** C, N, fbalkyl ( V . 4 ) 

\М1^ i Sie)/' ЧЯ2 
У 

In the cases where the structure of the copper or the zinc complex has 

been used (both are dimenc and have no symmetry at all when they contain 

one Cu and one Zn atom) the coordinate system has been chosen such that 

it resembles as good as possible the above described one. 

VA lb Atomic wave functions 

To limit the number of atomic wave functions, we have replaced the ethyl 

groups by hydrogen atoms and taken the N-H distance to be 1.01 A. This 

substitution was justified by one sample calculation, carried out with 

the full ethyl groups, which showed that the effect of these groups on the 

calculated spin hamiltoman parameters is small. Moreover a 40% decrease 

of the N-H distance did not appreciably affect the calculated charge 

distributions except those on nitrogen and hydrogen. We have taken into 

account all valence orbitals, i.e. 45 for a monomer and 90 for a dimer 

calculation. 
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For the radial part of the atomic wave functions, we used Slater-type 

orbitale. 

R , = Σ с r
k
i

- 1
 ε"

ζ ι Γ
, 1+1 < к « η. (V.5) 

ni ĵ  1 1 

Because these functions are used only to calculate the overlap matrix 

elements, it is sufficient to retain only the term with the highest power 

of r (k =n) and restrict the sum of exponentials for s and ρ functions to 

one term, 

R . = er""
1

 6
"

ζ Γ
 (V.6) 

ni 

and for d functions to two terms, 

R = г (eie ^
1
 + c

2
e

 ь
2 ). (V.7) 

The values of с and ζ were obtained from the literature [ 74-76 ] and 
ι ι 

are listed in Table V.l. 
-3 

To calculate the expectation values of r , required for the ESR 

parameters, the complete multiple-exponent Slater-type orbitals were used 

as published by Clementi [ 77 ] . 

V A 1c Hamütonian matrix 

Diagonal elements, Η . Η , which is the energy of an electron in the 

atomic orbital φ , is approximated by: 

H
ii • -

α
ι -\Ч -\І ' (V

-
8) 

where a is the valence state ionization energy (VSIE) of orbital φ , q 

is the Mulliken charge of the atom A on which the orbital φ is centred, 

2
 1 

and β q + γ q describes the charge dependence of the VSIE. The values 

of α, β and γ were taken from Ref.78 or calculated from the data in 

Ref.79, and are listed in Table V.l. 

The influence of surrounding atoms on Η is generally to lower the 

charge dependency. This effect can be taken into account by introducing 

a parameter к 

Η = -α - kß q, - k2Y q? (0 < к < 1). (V.9) 

il ι i A i А 

Alternatively a point charge approximation can be used 

H = -α - ßq - γ q̂  - Σ -US- (V.IO) 

il ι i
M
A î A B M

 R

A B 
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in which q_ is the Mulliken charge of the atom В and R „ is the distance 
ь AB 

between the atoms A and B, 

Off-diagonal elements, H... The off-diagonal elements are 

approximated by the Wolfsberg-Helmholz relation [ 80 I 

H.. = JKS..(H.. + H..) (V.ll) 
lj 1J 11 jj 

where К is an empirical constant, which is usually taken between 1.5 and 

3.0. Cusachs [81 ] and Jug [82 ) proposed overlap-dependent formulas for 

К: К = 2-|S..| and К = 2/(1 + S..), respectively. These formulas proved 

to be not very satisfactory for the calculation of the ESR parameters. 

Therefore, we have used the original relation and searched for the best 

value of K. 

V B. Calculation of esr parameters 

The elements of the g, Â and Ρ tensors were calculated according to the 

formulas 11.57, 11.66 and 11.80. In the calculation of the Ä tensors 

multiple-centre contributions were neglected, because all operators 
-3 

depend on r . Lupei and McMillan [ 83 ] have studied the effect of this 

neglect on the central metal hfs in some Cu(II) square-planar complexes. 

As expected, they found from their numerical evaluations that the first 

order two-centre contributions depend strongly on the copper-ligand 

distance. Above 2.38 A these contributions are negligible but, in a 

configuration with four nitrogen atoms at 1.86 A, this correction 

represents about 7% of the one-centre contribution. Since in our systems 

the metal-ligand distances are 2.2 A at least, the neglect of the 

multiple-centre contributions to the central metal hfs seems to be 

justified. The effect of the multiple-centre contributions on the 

hfs of the ligand atoms has been discussed by van Kemenade [ 84 ] for the 
2-

octahedral ions M(V)0X , with M being Cr, Mo, W and X = F, CI, Br. For 

the oxyfluorides (the M-F distance varies from 1.70 to 1.85 A) these 

contributions are almost as large as the one-centre first order 

contribution. For the oxychlorides and bromides (in which the M-X 

distances are more in agreement with the metal-ligand distances in our 

systems, namely 2.12 and 2.30 A respectively) they are of less 

importance: in the order of 10% of the one-centre contribution. Since 

the surroundings of the central metal atoms in these ions are octahedral, 

it is questionable whether these results apply to our systems. 

The radial parts of the integrals containing the spin-orbit 
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operator were not calculated, but approximated by the atomic spin-orbit 

coupling constants. They were obtained from the references 85, 86 and 87 

or were calculated from the data in Ref.79. The values are listed in 

Table V.1. 

Table V.l Constants of atomic orbitals 

atom 

Cu 

Zn 

S 

Se 

С 

Ν 

Η 

orbital 

4s 

3d 

4P 
4s 

3d 

4ρ 
3s 
Зр 
4s 
4p 
2s 
2p 
2s 
2p 
1s 

VSIE (eV) 

α б γ 

7.72 8.16 1.49 

10.64 14.74 1.22 

3.91 5.30 1.38 

9.40 8.60 

17.35 10.65 

5.00 6.90 

20.67 15.37 1.52 

11.58 12.21 1.63 

21.77 12.10 0.18 

9.75 12.38 -0.63 

21.20 17.51 3.47 

10.77 13.88 3.48 

28.02 20.25 3.48 

16.04 14.13 3.72 

13.60 27.18 13.62 

radial function 

coefficient 

1.0 
0.593322 

0.574421 

1.0 
1.0 

0.602937 

0.561873 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 
1.0 

exponent 

1.55 

5.95 

2.30 

1 .73 

1.60 

6.15 

2.40 

1.43 

2.1223 

1.8273 

2.4394 

2.0718 

1.6083 

1.5679 

1.9237 

1.9170 

1.0 

spin orbit coupling 

constant (cm
-
') 

828 

925 

1088 

583 

382 

1690 

28 

76 

After the calculation of the tensors, they were multiplied with their 

transposed and the resulting symmetric squared tensor was diagonalized. 

The principal values were obtained by taking the square root of the eigen" 

values. The eigenvectors are the principal axes of the tensor itself. 

V C Choice of empirical parameters 

To obtain the best choice of the empirical parameters in the elements of 

the Η matrix, the g values and hfs's of Cu/Ni(et dtc) were calculated 

for varying parameter values. This system has been measured by Weeks and 

Fackler [ 12 ] and is a rather simple one, compared with the diseleno-

carbamate systems: the principal axes of the g tensor and A tensor 

coincide and point along the coordinate axes as defined m V.4. The 

experimentally determined principal values are listed in Table V.2. The 

largest g value and (in absolute value) largest hfs point perpendicular 

to the molecular plane along the ζ axis. The smallest g value and hf·* 

point along the χ axis towards the ligands. 
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Table V.2 Experimentally determined principal values of g, A and Ρ 

(in lO^cm"
1
) of Cu/Ni(et dtc) [ 12,17 ] . 

A 
XX 

A 
УУ 

A 
zz 

A 
av 

- A 
av 

- A 

av 

- A 

av 

43.0 

37.0 

-80.0 

-79.0 

+ 

+ 

+ 

+ 

.9 

.9 

Λ 

.4 

e
xx 

g
yy 

g

Z
z 

2 

2 

2 

0200 + 

0250 + 

0840 + 

0 

0 

0 

0010 

0010 

0005 

Ρ 
XX 
Ρ 
УУ 
Ρ 
zz 

-0 

-0 

+0 

25 

25 

5 

Although it is likely that the Cu-S distances in the guest 

Cu(et dtc) molecules are larger than the Ni-b distances (listed in 

Table IV.2), the structure of the Ni complex [60 J has been used in the 

computations, because the calculated ESR parameters appeared to be rather 

insensitive to small changes in these distances. 

V С 1 Molecular Orbitals 

Table V.3 lists the MO energies, the occupation numbers, and the atomic 

orbitale of copper, sulphur, and carbon which have a coefficient larger 

than 0.3, as computed with К = 2.5 (Eq.V.ll) and к = 0.0 (Eq.V.9). It is 

striking that the MO's which are mainly composed of the metal d orbitals 

(and which correspond with the antibonding 3d orbitals in a crystal field 

model) are not in sequence: one of the MO's which are built up from 

ligand ρ orbitals is situated between them. This result is not due to the 

approximations of the extended Huckel method because Demuynck and Veillard 

[ 88 ] and also van der Lugt [ 89 ] found the same sort of ordening of the 
2-

energy levels in CuCl , by using much more sophisticated computation 

methods. 

For all calculations it turned out that the MO of the unpaired 

electron has at most 60% 3d character. For lower values of the 

xy 

Wolfsberg-Helmholz constant K, the difference between the results of 

various charge-dependent Η (Fq.V.9 and V.10) is considerable, but for 

increasing К this difference is reduced. This is clearly demonstrated in 

FiE.23 where the LCA0 coefficient С
 Х
У is shown as a function of K. 

о 

The computed Mulliken charges on the copper atom are shown in Fig.24. 

It appears that the lonicity decreases with increasing values for К and k. 

For the values of К above 2.1, calculations with the point charge 

correction yield a still higher lonicity. A calculation of the overlap 

population between the copper and sulphur atoms (O ) indicates that the 

covalent bonding (for which the overlap population is a measure) between 
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Table У.3 Cu(H2dtc)2 with the structure of Ni(et2dtc)2. 

Energies, occupation numbers, and symmetries of MO's, computed 

with К = 2.5 and к = 0.0, and the most important coefficients of 

copper, sulphur, and carbon atomic orbitals. 

MO 

no. 

1 

2 

3 

A 

5 

6 

7 

S 

9 

10 

M 

12 

13 

U 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

ЗА 

35 

ΊΟ 

Al 

No. of 

electrons 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Energy 

91.2 

90.5 

61.7 

57.3 

39.0 

37.5 

35.9 

35.0 

28.5 

23.6 

22. 1 

20.3 

17.2 

0.A 

- 2.A 

- A.2 

- 5.0 

- 9.7 

-10.2 

-10.3 

-10.A 

-10.5 

-10.9 

-11.6 

-1 1.8 

-1 1.9 

-13.3 

-13.4 

-13.A 

-13.5 

-IA.6 

-15.0 

-18.2 

-18.2 

-23.9 

-2A.2 

Sym­

metry 

u 

g 

u 

& 
g 

u 

u 

g 

u 

g 

g 

u 

u 

u 

g 

υ 

g 

g 

g 

g 

u 

g 

υ 

g 

u 

g 

g 

g 

u 

g 

u 

u 

g 

u 

g 

u 

Orbitals 

of Cu 

0.89X 

0.82s 

0.80s 

0 . 6 5 K 

O.A9y 

0.97y 

0.90s 

0.30s 

1.05X 

0.81y 

0.85z 

0.60z 

0.73xy 

0.81yz 

0.9AXZ 

0.97x
2
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0.96z
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0.59yz 

0.31XZ 
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-0.5As - 0.A5y 

+0.37S 

+0.33S 

+0.A5X 

+0.47X 

-0.42x 

-0.36x 

•0.33z 

-0.37x 

+0.32Z 

•0.A5y 

+0.50Z 

-0.41y 

•0.39X 

-0.38z 

+0.36Z 

+0.37Z 

+0.АІХ 

+0.32X 

+0.36y 

+0.30S 

••0.31s 

Orbitals 

of S(2) 

-0.A9S + 0.48y 

-0.51s + 0.43y 

-0.41s 

-0.36s 

+0.35X - О.ЗАу 
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+0.73S + 0.55X 
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+0.57X 
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-0.57z 

+0.30Z 
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moo 19 20 22 2t 26 2Θ К 

Fig.23 The LCAO coefficient С
 Х

У of the 3d atomic orbital in the MO 

о xy 

of the unpaired electron in Cu(et dtc) vs. the Wolfsberg-Helmholz 

parameter K. Solid lines refer to calculations with different 

values of the charge dependency parameter k. The dashed line 

represents calculations with a point charge approximation for 

the charge dependency of the hamiltonian matrix. 

the copper and sulphur atoms increases when the ionicity decreases. An 

example of a rather ionic bonding is the calculation with К = 1.8 and 

к = 0.0 (ч
Си
 = 0.96;

 q s ( ] )
 - -0.51; ч

8 ( 2 )
 - -0.54; 0

C u
_

s ( | )
 - 0.11; 

0_ „,.,, =0.11 electron unit); an example of a nearly complete covalent 

-0.24; 
Cu-S(2) 

bonding is the calculation with К = 2.8 and к = 0.0 (q 
Cu 

"SO)
 =
 -

0
·

2 2 : q
S(2) " -

0
·

2 4 : 0
Cu-S(l) =

 0 · 2 5 · 0
Cu-S(2) •

 0
· "

 e l e C t r 0 n 

unit). The calculation with к = 0.0 and К = 2.5 (for which the M0 scheme 

has been given in Table V.3) yields a relatively strong covalent bonding 

with
 Ч с и

 = 0.01,
 q s ( 1 )

 = -0.27, q
s ( 2 )

 = -0.30, 0
C u
_

s ( 1 )
 - 0.23. and 

0„ г./-.ч
 =
 0.22 electron unit. 

Cu-S(2) 
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Fig.24 Mulliken charges ( i n e l e c t r o n u n i t s ) on the copper atom in 

Cu(et d t c ) v s . the Wolfsberg-Helmholz parameter K. D e t a i l s 

are given in the c a p t i o n of F igure 23. 

V С 2 g Tensor 

The computed g values are plotted in Figure 25A,B,C as a function of K. 

The plots show that в increases as к is lowered from 1.0 to 0.0. Further 
r
 11 

it is clear that this dependency on к decreases when К increases and 

almost vanishes for К = 2.5. 

A comparison with the observed values indicates that the best 

results for в are obtained for К = 2.5 and к = 0.0. The MO scheme, that 
11 

was given in ІаЫе V.3, was also calculated with these values. The value 

к = 0.0 means that the charge dependency of H (Eq.V.9) is cancelled by 

the surrounding atoms. It means also that it suffices to use the non-

iterative extended Huckel method, which saves much computer time. 
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Fig.25 

Calculated g values of Cu(et2dtc)2 

vs. the Wolfsberg-Helmholz 

parameter K. The solid bars refer 

to the experimentally measured 

values of gji. Ihe horizontal lines 

denote the experimental error. 

Further details are given in the 

(ap tion of Fig.23. 
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Since the part of the MO of the unpaired electron that is centred 

on the copper atom consists mainly of the 3d orbital, it follows from 

xy 

Eq.II.57 and Table V.4 that the main contributions to ΔΕ and ΔΕ 
XX

 β
ζ ζ 

(àg being g - 2.00229) arise from excitations to the MO of the 

unpaired electron from MO's 19 and 20, respectively. This is due to the 

fact that these MO ' s have mainly 3d or 3d 2 2 character. The main 
xz χ -y 

contributions to ΔΕ arise from excitations from MO's 18 and 26 which 
УУ 

have mainly 3d character. The largest contribution is due to MO 26 
yz ° 

(0.0204 relative to 0.0016), although the 3d coefficient in this MO 

yz 

is smaller and the excitation energy is higher than the corresponding 

values in M0 18. This is caused by the fact that the metal and sulphur 

contributions to Ag partly cancel for the excitation arising from 

M0 18, whereas they reinforce each other for the excitation from MO 26. 

This effect may lead to large errors if only excitations from 

"antibonding d levels" are taken into account. 

As may be expected for a nearly D^
L
 symmetry, the directions of the 

¿h 

principal axes are calculated to be along (within 1.25°) the x, y, and 

ζ axes (see V.4), which is in agreement with the experimentally observed 

directions [12]. Table V.4 Functions obtained from s, p, and d orbitais using the 

operators L , L , and L . 
χ y ζ 

orbital 

s 

P
z 

P
x 

p
y 

d 
xz 

V-
d 
yz 
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xy 

y
2 

L 
X 

0 

-
i p
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V С 3 Isotropic hyperfine coupling of copper 

Зтт g,..M_(cíS)2Ko(0)|
2 

According to Eq.II.67, а ^ - _ g ^ „ ^ 

where С is the coefficient of the 4s atomic orbital in the MO of the 
'4s

4 

4s 2 

1131 (c
4S
) , 
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As 
unpaired eleccron. Because С апеь between 0.00J8 and U.0050 for 

0 -i, 
different values of К and k, a varies between O.OIh 10 and 0.025 

_, _. iso _¡i _| 

10 cm . A comparison with the observed value of (-7У.0 +_ I. A) 10 cm 

shows that this contribution is negligibly small and has the wrong sign. 

A second contribution to a originates from the second order terms in 
ISO 

Eq.11.66, which yield a non-traceless tensor. This contribution has been 
-ή -ή -I 

calculated to vary between 2.A 10 and 19.3 10 cm and has also the 

wrone sien. Therefore the main contribution to a must be the spin 
0 " ISO 

polarization of the inner-core s Orbitals, which is indeed negative [53 ] 

but cannot be calculated with the extended Huckel metnod. 
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Fig.26 Absolute values of the anisotropic parts of the
 6:,

Cu hyperfine 

couplings (in Ю'^спГ
1
) of Cu(et9dtc)

7
 vs. the Wolfsberg-Helmholz 

parameter K. The solid bars refer to the experimentally measured 
values of ( A

1 1
- A

a v
) . The horizontal lines denote the experimental 

error. Further details are given in the caption of Fig.23. 
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V С 4 Aiiistropic hyperf ine coupling of copper 

The figures 26A,B,C show che principal values of the traceless hyperfine 

coupling censor ol copper as a function of K. The measured amsotropy in 

the xy plane is not reflected in the calculated results: the maximum 

calculated difference between (A - Л ) and (A - A ) is 2.1 

xx av yy av 

-¿ι -i -4 -| 

10 cm , whereas the measured difference is 6 10 cm . The calculated 

amsotropy can be influenced slightly by changing the copper-ligand 

distanLes. 

trom the figures it can be seen that good agreement between 

experimental and theoretical values is again obtained for К = 2.5 and 

к = 0.0. The calculated couplings for these parameter values are: 

-4 -4 
A - A = +40.0 10 , A - A = +39.0 10 , and A - A = -79.0 
xx, av yy av ζζ av 
10 cm

-
'. The main contribution to these values is due to Che dipole-

dipole inceraction. which yields in first order A = A = +47.9 

-4 -1 -4 -1
 X X У У 

10 cm and A = -95.8 10 cm . The contributions due Co the second 
z z
 -4 -4 

order terms in Eq.11.66 are: A = -7.9 10 , A = -8.9 10 , and 

-4 -,
 x x

 УУ 
A = +16.8 10 cm , where we have subtracted the isotropic part. The 
zz 
second order contribution originates mainly from an excitation from M0 

20, which consists almost entirely of the copper 3d 2 2 orbital. 
χ -y 

V С S Hyperfine coupling of sulphur 

Although no results have been published about the hfs of sulphur in this 

system (probably because the only isotope with a magnetic moment, viz. S, 

has a natural abundance of 0.74%) it is interesting to examine what these 
3 i calculations predict for the S hfs. The calculation with К = 2.5 and 

к = 0.0 yields, for both S(l) and S(2), a dipole-dipole interaction of 
С / С / Q —/1 »» 1 

A = +10.1 10~ , A = -5.0 IO" , and A = -5.1 10 cm , and a second order 

contribution which is practically zero. 

The calculated isotropic
 3 3
S hfs's for S(l) and S(2) are 11.2 10 

-4 -, 
and 11.6 10 cm respectively. These isotropic hfs's are brought about by 

the density of the unpaired electron in the sulphur 3s orbitals and are 

not influenced by the second order contributions to the hfs. Since it 

is not expected that core polarization is important, these values may be 
- 4 - 1 3i 

compared directly with the value of 10.7 10 cm for the S hfs of 

Cu((iso-propyl) dtc) in benzene, measured by Pettersson and Vanngard 

[ 10 J . The agreement is satisfactory. 
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V С. 6 Quadrupole coupling of copper 

The quadrupole coupling of copper in this system has been measured by 

So and Belford [ 17 ] . Assuming an axial symmetry for all tensors, they 
-4 -1 

have found Ρ = 0.5 10 cm .It turns out that the extended Huckel 
zz 

method cannot reproduce these small numbers, probably because spin-orbit 

coupling effects and thermal mixing of states are neglected. The 

calculation yields a nearly axially symmetric 'tensor with principal value 

Ρ =2.7 ю'^спТ'. 
zz 

V С 7 Conclusions 

The calculations, discussed in this section, show that it is possible to 

calculate spin hamiltonian parameters for Cu(et dtc) with the aid of the 

extended Hückel MO method, in agreement with the experimental values, 

employing reasonable values for the empirical parameters. These parameter 

values (viz. К = 2.5 and к = 0.0) were used in all other calculations in 

the rest of this chapter. 

On the other hand, one may conclude that the MO's, calculated with 

these parameter values, give a fair description for the ground state of 

this complex. The bonding is largely covalent, with overlap populations 

between the copper and sulphur atoms of 0.22 electron unit. The Mulliken 

charges on the atoms are rather low: for instance, 0.008 on the copper 

atom and -0.27 and -0.30 on the sulphur atoms. 

The unpaired electron is strongly delocalized; the density on the 

copper atom (obtained by summing squares of LCAO coefficients) is only 

0.53, while the density on each sulphur atom is 0.15 electron units. 

The relatively high position of the M0 of this single electron 

corresponds well with the experimentally observed redox behaviour of 

Cu(R dtc) : oxidation to Cu(R dtc)
9
 is easy (half-wave potential 0.47 

Volt with respect to a saturated calomel electrode in CH CI ), whereas 

reduction to Cu(R dtc) appeared to be impossible [ 90 1 . 

V D. The monomeric systems Cu(R
2
dsc)

2
 and Ag(R

2
dsc)

2
 diluled in Ni(R

2
dsc)

2 

The study of the diselenocarbamate systems has been started because the 

hyperfine splitting of the ligand selenium atoms can be measured more 

easily than the hyperfine splitting of sulphur in the corresponding 

dithiocarbamate systems. These ligand hyperfine splittings should yield 

extra information about the electronic and the molecular structure of 

these complexes. A disadvantage of these systems is the large spin-orbit 
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coupling of selenium which results in large ligand contributions to the 

g values. Furthermore, an extra complication is found in the relative 

orientation of the principal axes of the g tensor and the central metal 

hfs tensor, as has been discussed in chapter IV. In this section an 

explanation is given for the non-coincidence of the principal axes of 

these tensors. The results of the MO calculations give some insight in 

the bonding in these complexes. 

V D 1 The systems Cu/Nl(R2dsc)2 

As has been discussed in section IV A, the study of these monomeric 

systems was started, supposing that the structure of the guest copper 

complex resembles very much the structure of the host compound, the 

nickel complex. This supposition was justified by the observation of 

just two different selenium hfs's, which implies that the inversion 

centre is retained and hence that the central part of the molecule 

(consisting of copper and the four selenium atoms) has to be planar 

Se Se 
as in the host molecule. Also the angles between Α ι and A

 2
 agree 

very well with the crystallographic angle Se -Ni-Se . Other structural 

data, as the lengths of the distances Cu-Se, are hard to obtain from 

ESR results. 

To study the effect of a deviation from the structure of the 

host, we have calculated the MO's and their energies with the extended 

Hiickel method for a number of different structures. 

V D la Molecular orbitals 

In Table V.5 the most important coefficients and energies are listed 

assuming the structure of Ni(et dsc) . Compared with the dithio system 

(Table V.3), more ligand orbitals are found between the "antibonding 

d" levels. This is because the Se 4p orbital is much higher in energy 

than the S 3p orbital. Moreover, the delocalization of the copper 

d-electrons is more complete in the diselenocarbamate system. This is 

not true, however, for the MO's which contain 3d 2 2 and 3d 2; these 
χ -y ζ 

MO's are almost non-bonding in both systems. 

Ihe energy difference between the two highest occupied MO's in the 

dsc compound is smaller than in the dtc complex. This is in accordance 

with the observations of Furlani es. | 91 ] who found that the first 

d-d absorption in diselenocarbamates is always at a lower frequency. 

Van der Linden and Geurts ( 92 ] concluded from voltametric measurements 
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Table V.5 Cu^dsc)« with the structure of Ni(et2dsc)2. 

Energies, occupation numbers, and symratries of MO's, computed 

with К = 2.5 and к = 0.0, and the most important coefficients of 

copper, selenium, and carbon atomic orbitals. 

Mo 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I 1 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

34 

35 

40 

41 

No. of 

electrons 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Energy 

(eV) 

98.5 

98.1 

55.5 

53.4 

39.4 

37.8 

33.8 

33.2 

28.6 

19.0 

16.8 

15.2 

12.7 

- 0.2 

- 2.9 

- 4.4 

- 4.4 

- 8.9 

- 9.0 

- 9.2 

-10.0 

-10.3 

-10.3 

-10.5 

-10.5 

-11.1 

-11.7 

-11.8 

-11.9 

-12.4 

-13.2 

-14.2 

-18.1 

-18.1 

-24.3 

-24.6 

Sym­

metry 

u 

ε 
u 

e 

& 
u 

u 

g 

u 

e 

g 

u 

u 

u 

g 

u 

g 

g 

u 

u 

g 

u 

g 

g 

g 

g 

u 

β 

g 

g 

u 

u 

g 

u 

g 

u 
1 

Orbitals 

of Cu 

1.04X 

1.12s 

0.61s 

0.58x 

0.50y 

1. I4y 

0.79s 

0.92x 

0.6ly 

0.872 

0.57z 

0.64xy 

O.SIyz 

0.82XZ 

0.47z
2 

-0.в3х
2
-у

2 

0.80z
2 

Ю.53х
2
-у

2 

0.42ху 

0.86yz 

0.55XZ 

0.31z
2 

О.ббху 

Orbitals 

of Sed) 

-0.50s - 0.52y 

-0.53s - 0.44y 

+0.30S 

+0.36S - 0.29X 

+0.48X 

+0.49X 

-0.40x 

-0.35z 

+0.33Z 

-0.40x 

••0.44z 

•0.41y 

+0.46Z 

+0.37X 

-О.Зву 

•0.38z 

+0.31z 

+0.3ІХ 

+0.32y 

•0.33s 

+0.34S 

Orbitals 

of Se(2) 

-0.48s • 0.50y 

-0.51s + 0.43y 

-0.31s 

-0.38s + О.ЗОх 

+0.36X 

+0.36X - 0.38y 

+0.36X 

+0.5ІХ 

-0.35z 

+0.32Z 

+0.40X 

-0.45z 

+0.40y 

-0.46z 

+0.38X 

-0.38y 

+0.37z 

+0.30z 

-О.ЗОх 

-О.ЗІу 

-0.34s 

-0.35s 

Orbitals 

of C(l) 

+0.74S + 0.62X 

+0.71S + 0.64x 

+0.55S - 0.34X 

+0.52S - 0.28x 

-0.39s - 0.3ІХ 

-0.31s - 0.42x 

•0.42y 

+0.38y 

-0.33s + 0.59x 

-0.69y 

-0.32s + 0.5ІХ 

-0.67y 

+0.33Z 

-0.63z 

-0.56z 

+0.30Z 

t0.30z 
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that copper diselenocarbamate complexes are more easily oxidized than the 

sulphur analogb This observation too is in accordance with the results of 

the extended Huckel method: the calculated energy of the MO of the 

unpaired electron in dsc is higher than in dtc. 

V D 1 b Hvperfme coupling of copper 

The larger de localization of the unpaired electron in the dsc compounds is 

reflected in the calculated dipole-dipole contribution of the copper hfs: 

-4 -4 -1 

A = -73.0 10 and A = A = +36.5 10 cm , while in the dithiocarbamate 

system the values are -95.8 10 and +47.9 10 cm , respectively. By 

adding the second order contributions, the values are obtained which are 

listed in Table V.6. The data in this table show that the agreement 

between the calculated and the experimentally obtained (purely anisotropic) 

hfs's of copper is very good. Furthermore it appears that the calculated 

amsotropy in the xy plane is much better than in the dithiocarbamate 

system. 

The calculated rotation of the Cu hfs in the xy plane is too small: 

about 1 whereas the experimental rotation angle in the ethyl system is 

3 and in the butyl system 10 (see Table IV.4 and Figures 10 and 12). 

The larger angle in the butyl complex can be attributed to the large 

difference between the Cu-Se and Cu-Se distances: the calculated angle 

between g and A increases when the difference between the Cu-Se and 

Cu-be„ distances is enlarged. In that case mixing occurs of the 3d 

2 xy 
orbital with 3d 2 and 3d 2 2· This brings about a first order 

ζ χ -y 
contribution to A . A second order contribution arises from mixing of 

xy 
the 3d and 3d orbitals. 

xz yz 

V D 1c Hyperfine coupling of selenium 

Like the Cu hfs, the calculated selenium hfs's agree very well with the 

experimental ones (Table V.6). The agreement of the isotropic splittings 

suggests that contributions of inner-shell s electrons can be neglected, 

as has been done in these calculations. Since the isotropic part due to 

the second order terms in Fq.I1.66 is small, (it does not exceed 2% of 

4s 
the total calculated value) the coefficient С of the Se 4s orbital in 

о 

tht MO of the unpaired electron can be obtained rather accurately from 

the experiment: 

A
5
" = ^- g μ, g, U Ι Φ. (О)!

2
 ( C

4 b
)

2
 , (V.12) 

а 3 с b ÍJL η 4ь о 
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where |φ, (0)| is the 4s electron density at the nucleus. The coefficients, 

obtained in this way, are 0.103 and 0.100 for Se and Se , respectively. 

The theoretically obtained coefficients are 0.101 and 0.100. 

The second order contribution to the anisotropic traceless Se hfs 

tensor is larger than in the dithiocarbamate system. For the axial 

Se 
component A , however, this contribution is only 3% of the calculated 

value. This means that it is possible to determine the coefficients of 

the Se 4p orbitals in the M0 of the unpaired electron from the observed 

Se 
anisotropic hyperfine values. The experiment shows that A points from 

Se towards Cu and hence the Se 4p orbital points in this direction. In 

the coordinate system of Eq.V.4 the normalized Se 4p orbital which 

Table V.6 Experimentally obtained and calculated principal values of 

g, A , Ρ , and Ä in the system Cu/Ni(et dsc) . 

С 

A

1 -
A
2 -

А
з-

A 
av 

e
i 

g, 

g
3 

u 

A 
av 

A 
av 

A 
av 

ob s. 

-64.6 

+29.0 

+35.6 

-79.6 

2.0511 

2.0021 

1.9941 

cale. 

-62.3 

+ 28.8 

+33.5 

2.0591 

2.0533 

1.9912 

Se 

A
i -

A
2 -

A
3 -

A 
av 

Cu 
P
, 

P
. 

P
3 

A 
av 

A 
av 

A 
av 

obs. 

+ 57.2 

-26.1 

-31.1 

+48 

+0.3 

0.0 

-0.3 

cale. 

+ 55.7 

-27.0 

-28.7 

+45.5 

+ 1.7 

-0.8 

-0.9 

Se
2 

A, - A 
1 av 

A
0
 - A 
2 av 

A, - A 
3 av 

A 
av 

obs. 

+58.0 

-25.5 

-32.5 

+45 

cale. 

+55.4 

-26.7 

-28.7 

+ 46.5 

points in the direction from Se to Cu can be written: 

, Se , Se , Se 
4ρ = cos α 4ρ + sin α 4ρ 

Χ y 
(V.13) 

where α is the angle between the χ axis and the Cu-Se bond. This 

expression holds if the molecule is perfectly planar, otherwise the 4p 
ζ 

function must be taken into account. For the nearly planar monomenc 

systems under investigation, V.13 is therefore a good approximation. For 

ρ orbitals the first order contribution in Eq.II.66 can be rewritten: 

«
S e
 4 ^ - 3

V
 ,„4p.2 

A
. • 5 <%Л he\ < Г > ( C

o > 
(V.I4) 

4p 
Here С is the coefficient of the 4p orbital (defined in Eq.V.13) in 

о 
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-3 -3 

che MO of the unpaired electron and <r > is the expectation value of r 

of a Se 4p atomic orbital. No information can be obtained on the Cu-Se 
4p 

distance from С because of its complicated dependence on this distance 

and because Eq.V.13 is onlv dependent on the angle between the Cu-Se 

direction and the x-axis. The experimentally obtained coefficients of the 

4p and 4p orbitals are 0.351 and 0.312 for Se, and 0.363 and 0.314 for 
χ y 1 

Se . Ihe theoretically calculated coefficients are 0,397 and 0.262 for Se 

and 0.398 and 0.262 for Se . 

As discussed in section IV A, in Cu/Ni(but dsc)„ the largest Se hfs 

(both the averaged value and the axial component A ) belongs to the Se 
Sei 

atom with the largest distance to Cu. Since the angles between A and 

A
 2

 in Cu/Ni(but dsc) and Cu/Ni(et dsc) are the same, it can be 

expected that in the latter system the largest Se hfs similarly belongs 

to the atom with the largest distance to Cu. From the measurements on this 

system it appeared that Se (the atom with the largest distance if the Cu 

containing molecule has the structure of the host crystal) has indeed the 

largest axial component of the traceless tensor but, on the other hand, 

the smallest isotropic hfs (Table V.6). Therefore, it is not possible to 

decide from these experimental values which Se atom m the system 

Cu/Ni(et dsc) has the largest distance to Cu. From the extended Hückel 

calculation on the ethyl system it appears that the atom with the smallest 

distance (Se ) has the largest axial component and the smallest averaged 

hfs. In view of these results we conclude that the order of the actual 

Cu-Se distances in Cu/Ni(et dsc)„ is reversed compared with the Ni-Se 

distances in the host crystal. To check the reliability of this conclusion, 

a calculation with an enlarged difference between the distances Cu-Se and 

Cu-Se (as is the case in the butyl system, see Table V.2) has been carried 

out. This calculation confirmed the experimental result of the 

Cu/Ni(but dsc) system: the Se atom with the largest distance to Cu has 
Se Se 

the largest value of both. A, and A 
I av 

V D Id g Tensor 

As has been discussed in chapter IV, in all the monomenc diselenocarbamate 

complexes studied, the largest g value is found in the y direction (see 

Eq.V.4 for the coordinate system) whereas in the xz plane the g value is 

much smaller and almost isotropic. In the dithiocarbamates, however, the 

largest g value points along the z-axis and the anisotropy in the molecular 

plane is much smaller than in the diselenocarbamates. 
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The extended Huckel calculations reproduce the g values in the 

molecular plane very well. As was shown in section С of this chapter, the 

empirical parameters could be chosen such that the calculated g values of 

Cu/Ni(et dtc). agree very well with the measured values. The difference 

in g anisotropy in the xy plane between dsc and dtc can be understood on 

the basis of our MO calculations. If the spin-orbit coupling of the 

ligand is small, as in dtc (Table V.l), the contributions to Ag arise 

mainly from the MO's which contain the central metal Jd orbital (see 
' xz 

Table V.4), since the MO of the unpaired electron (MO 17) contains mainly 

3d (see Table V.5). If the ligand spin-orbit coupling is large, as is 
xy 

the case in the diselenocarbamates, contributions to ΔΕ arise also from 
XX 

the ligand ρ orbitale since the ligand part in the MO 17 consists mainly 

of the ρ and ρ Orbitals. In this way a large negative contribution to 

Ag (viz. -0.0314) arises from the MO 15 (which mainly consists of 
ligand ρ orbitals), whereas in Cu/Ni(et„dtc) the contribution due to 

ζ L ¿ 

MO 15 (also consisting of ligand ρ orbitals) іь -0.0018 and can be 

neglected. The same effect applies to the g values. In both systems the 

main contributions to ñg are due to excitations from the MO's 18 and 26, 
УУ 

which contain the metal 3d and the ligand ρ orbitals. Because of the 

yz
 r

z 

large spin-orbit coupling of selenium, in dsc these contributions are 

0.0204 and 0.0363 for the MO's 18 and 26, respectively, whereas in dtc 

they are 0.0016 and 0.0204 (see section V C.2). Hence the difference in 

the g values in the xy plane can be ascribed to the spin-orbit interactions 

of the ligands and, to a less extent, to the enlarged delocalization of 

the unpaired electron in the dsc compounds compared to the dtc compounds. 

This conclusion is sustained by a calculation for dtc, in which the spin-

orbit coupling constant of S 3p was taken equal to that of Se 4p. Ihe 
values g and g calculated for dsc were reproduced. 

xx yy 

Another difference between the dtc and dsc systems is the rotation of 

the principal axes of the g tensor relative to those of Ä in the xz 

plane, which occurs only in the dsc systems. This property is not 

reflected in the results of the MO calculations: the calculated g„ and g 

principal axes point along the ζ and x-axis, respectively. A condition 

for obtaining a rotation in the xz plane is that the two principal values 

in this plane are nearly equal. In that case a small off-diagonal element 

g or g will result in a rotation. Comparing the experimental with the 

calculated values of g and g., in Table V.6, it is evident that the 

calculated value of g (which points in the ζ direction) іь far too large, 
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winch prevents a rotation of the calculated tensor. From Table V.4 follows 

that the contributions to Δε come from MO's which contain the metal 

zz 
3d 2 2 orbital and/or the Se ήρ and 4p orbitale. This is the case for 
χ -y χ y 

MO 23, 24 and 33. The latter MO contributes 0.0175 and the first two MO's 

contribute 0.0370. In order to find an explanation for the rotation in the 

xz plane it is necessary to find a mechanism that lowers these 

contributions to g , or that yitlds an extra, negative, contribution. 

Since the structure of the ligand in the Cu containing guest molecules is 

not known, M0 calculations have been carried out using various structures. 

Since the metal and the ligand hfs's show that the central part of the 

molecule is planar with С symmetry, and since enlarging of the difference 

between the Cu-Se distances results only in a rotation of the A tensor 

in the xy plane (section V D.lb), only those structures were considered in 

which the ligands are rotated m the same direction about the axes Se -Se« 

and Se ,-Ββ.,. These structures retain the С symmetry. It turned out that 

unrealistically large rotation angles of 30 or more are needed to obtain 

a rotation of ] of the g tensor in the xz plane. The rotation of the 

ligands has practically no effect on the g value itself, so that this 

zz 

structure deformation alone is not capable of explaining the effect. 

Thereupon the effect of Se 4d functions was investigated. Taking into 

account these atomic orbitals results in a number of MO's which contain 

mainly the Se 4p and 4d orbitals and which lie in energy above the MO of 

the unpaired electron. It appears that excitations to these MO's affect 
the g value more than the two other g values. The amount in which the 

zz 

g values are changed depends strongly on the exponent in the radial 

function of the 4d orbital and, to a smaller extent, on the spin-orbit 

coupling of tins orbital. As both parameters are unknown, several values 

were used. The VSIE of this orbital has been calculated from the data in 

Kef.79 (1.89) The best g values are obtained for an exponent of about 1.5 

in tht radial function and a Se 4d spin-orbit coupling constant of 800 

cm The value for the radial exponent is not unrealistic, as other 

authors have used an exponent of 1.878 [ 93 ] . Table V.7 lists the g values 

calculated with these parameters and with the structure of the host 

crystal. It is clear that inclusion of the be 4d orbitals yields the 

desired tffect, the difference between g and g is lowered from 0.06 to 

0.02 and the g tensor is rotated around g by an angle of 7 . If the 

ligands are rotated by an angle of 30 in the way described above, the 

calculated angle between A and g„ is 29 . 
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Table V.7 Experimentally obtained and calculated g values and angles χ 

between A| and g„ in Cu/Ni(et dsc) . "cale a" are the calculated 

values without inclusion of the Se 4d orbi tais, "cale b" and 

"cale с" the values obtained with these orbitals. In "cale с" the 

ligands have been rotated by 30 . 

obs. 

6
1 

g
2 

g
3 

X 

2.0511 
2.0021 
1.9941 

57° 

cale a 

2.0591 
2.0533 
1.9912 

0° 

cale b 

2.0582 
1.9Θ55 

1.9646 

7° 

cale с 

2.0432 

1 .9910 

1.9296 

29° 

Finally it was checked whether the sulphur 3d orbitals could effect 

the same result in the dithiocarbamate systems. It appeared that this was 

not the case due to the relatively small spin-orbit coupling of the sulphur 

orbitals. 

In a recent article Buluggiu and Vera [ 94 ] investigated also the 

intriguing problem of the g tensor orientation in the system Cu/Ni(et dsc)
9 

These authors considered only metal d orbitals. As shown above, ligand 

orbitals play a very important role and should be included in the 

calculation of the g tensor components. As happens often, a more complete 

calculation does not lead always to better agreement with experiment. Such 

a situation occurred here, inclusion of charge-transfer states does 

increase the g tensor anisotropy in the xz plane, rendering more difficult 

a rotation of the g tensor. Only by including Se 4d functions the g 

anisotropy decreased again. As shown above, good agreement is then obtained 

with the experimental data. 

V D 2 The system Ag/Ni(bul2dsc)2 

We have not carried out extended Huckel calculations for this system, 

because of the disappointing results obtained with this method for the 

system Ag/Ni(et
9
dtc)

9
 [5 ]. From the ligand hfs's conclusions can be drawn 

about the LCAO coefficients in the MO of the unpaired electron, as has been 

pointed out m section V D.lc. The average Se couplings are about equal to 

the average couplings in the corresponding copper systems (Table V.8), 

Therefore we conclude that the coefficient of the Se 4s orbital in the MO 

of the unpaired electron in the Ag system is the same as in the Cu system. 

From the difference between the purely anisotropic hfs's of the two 

inequivalent Se atoms in the two systems (Table V.8) we conclude that the 
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Table V.8 Experimentally obtained principal values of the A tensors in 

the systems Cu/Ni(but dsc) and Ag/Ni(but dsc). (in ІСГ^спГ
1
). 

Cu/Ni(but dsc) 

Se, 

А Г А а + 6 Ü 

A ' - A - 2 8 

S e 2 

A a v + 4 6 

Ag/Ni (bu t 2 dsc ) 2 

+72 
-32 
-39 
+49 

+66 
-28 
-39 
+44 

difference between the metal-selenium distances in the silver and copper 

systems is equal. The fact that the axial splittings in the silver system 

are ~ 20% larger than in the corresponding copper system means that the 

coefficients of the Se 4p and 4p orbitals in the MO of the unpaired 
χ y

 r 

electron are ~ 10% larger than in the copper system. From these coefficients 

of the selenium orbitals and with the help of the normalization condition, 

the density of the unpaired electron on the silver atom can be calculated if 

it is assumed that the other ligand atoms have a negligible spin density 

and if the required overlap integrals are taken to be equal to those of the 

copper system. In this way, a density is calculated of 0.20 which is 

approximately half the calculated density on the metal atom in the 

corresponding copper system (see Table V.4). This result is in very good 

agreement with the values obtained for the corresponding dithiocarbamates. 

van Rens (5 ] found for Ag/Ni(et dtc). a spin density of 0.26 at the silver 

atom, which is also about half the calculated density on the copper atom 

in the corresponding Cu/Nitet.dtc). system (section V C). 

V D 3 Conclusion!» 

The results of the extended Huckel calculations show that neither the 

principal g values nor the hyperfine couplings of the central metal atom 

can be used to calculate the LCAO coefficients in the MO's with a 

reasonable accuracy directly from experimental data. The reason is that, 

besides the metal orbitals, also ligand orbitals contribute, so that the 

number of unknown coefficients and MO energies is too large. This dilemma 

can be circumvented by calculating the LCAO coefficients and M0 energies 

by means of a theoretical method, assuming a realistic structure for the 
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complex studied. The obtained LCAO coefficients and MO energies can then be 

used to calculate the parameters occurring in the spin hamiltoman. If 

reasonable agreement is found with the experimental values, some confidence 

can be given to the calculated MO's and the energy scheme. 

Without the 4d functions of Se, all calculated hyperfine couplings 

(those of copper as well as those of selenium, hence 9 principal values) and 

two of the principal g values are found in very good agreement with the 

experimental ones. The third principal g value can be brought into agreement 

with the experimental value if the 4d functions of selenium are taken into 

account. In doing this, also the rotation of the principal axes of g 

relative to those of A in the xz plane can be understood. The measured 

differences between the magnitudes and the directions of the principal g 

values of copper dithiocarbamate and copper diselenocarbamate are caused by 

the spin-orbit coupling of selenium, which is much larger than that of 

sulphur. The change in delocalization plays only a minor role in this 

respect. 

The results of the extended HÜckel calculations show that the hyperfine 

couplings of the ligand atoms are determined almost completely by the MO of 

the unpaired electron. This enabled us to calculate the selenium part of 

this MO with a reasonable accuracy, directly from the experiment. If it is 

assumed that other ligand atoms have a negligible spin density and if the 

required overlap integrals are known, the density of the unpaired electron 

on the central metal atom can be calculated with the help of the 

normalization condition. When this procedure is applied to the system 

Ag/Ni(but dsc) , it appears that the delocalization of the unpaired electron 

to the selenium atoms is much larger than m the corresponding copper 

system. The spin density on the silver atom is only 0.2, compared to 0.4 on 

the copper atom. 

V E The dimcric systems Cu(et2dsc)2 and Cu(et2dtc)2 diluted in the Zn complexes 

In section IV В we concluded from the experimental data that the copper 

containing dimer does not accept the structure of the host crystal, but has 

a structure which resembles very much that of the pure copper complex. With 

the help of MO calculations we will try to verify this conclusion. 
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VE 1 The system Cu/Zn(et,die), 

V E la The molecular structure 

We have carried out MO calculations for a dithiocarbamate dimer with one 

copper and one zinc atom, using both the structure of the pure Zn dimer and 

that of the pure Cu dimer. In Table V.9 the calculated spin hamiltoman 

parameters are listed, together with the experimentally determined values. 

For practically all the listed parameters the calculation based on the 

structure of the pure copper complex yields the best values. This confirms 

the conclusion drawn by Weeks and Fackler [ 12 ] . However, the reasoning 

they used is open to discussion. These authors based their conclusion on 

the expectation that for the Zn structure the largest g value should fall 

along the direction S(l)-M-S(4) because this direction contains the two 

bonds which are considerably elongated . This expectation, however, is not 

supported by our results where, for the Zn as well for the Cu structure, 

the largest g value is directed approximately along the Cu-S^1) direction 

(deviation in the Cu structure 1 , in the 7n structure 10 ). 

Table V.9 Experimentally obtained and calculated principal values of g, Â 

and Ρ (in units of 10 cm ) in Cu/Zn(et2dtc)2. 

Cu(et2dtc)2 or Zn(et2dtc)2 means· calculated using the structure 

of this complex. 

obs. 

g. 2.1076 

g
2
 2.0308 

g, 2.0230 

ва ¿ · 0 5 3 8 

Cu 
A,-A -78.2 
A -A- +43.7 
A3-Aav + 3 4 · 3 

-64.2 

Cu 
P. +2.1 
Ρ* - 0.5 
р з 

cale. 

Cu(et
2
dtc)

2 

2.1010 
2.0321 
2.0251 
2.0527 

-70.8 
+40.5 
+30.3 

+ 3.4 

- 1 .5 
- 1 .9 

7n(et2dtc)2 

2.1664 
2.0619 
2.0359 
2.0881 

-51.7 
+38.2 
+ 13.5 

+ 3.9 
- 1.4 
- 2.5 
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V E 1 b Molecular Orbitals 

No complete table will be given of the calculated MO's and their energies, 

but some remarks will be made about differences and similarities with the 

MO scheme of the monomenc system (section V C). 

For the Cu dimer structure the MO of the unpaired electron consists of 

the copper 3d orbital and the sulphur 3p and 3p orbitals. The LCAO r K
 xy χ

 r
y 

coefficients are almost equal to the coefficients in the monomer. The 

largest coefficient of an orbital that belongs to the Zn containing part of 

the dimer is only 0.07, which means that the unpaired electron is fully 

localized on the copper containing part of the dimer. The energy of this MO 

is 1.4 eV lower than the corresponding one in the monomer. 

The following, doubly occupied, MO is centred on the zinc part of the 

dimer and contains the Zn 3d orbital and the sulphur 3p and 3p orbitals. 

xy χ y 

The density on the Zn atom is only about 0.2. 

The following five MO's consist mainly of the Cu 3d orbitals. The 

order is the same as in the monomenc system and their energies are not 

changed, with the exception of the energy of the MO which contains 3d 2. 

This energy has been raised by 0,6 eV so that it follows second after the 

MO of the unpaired electron. The delocalization in these MO's is, in 

general, somewhat larger than in the monomenc system. 

The remaining "d-orbitals" of zinc are very low in energy and lie 

about 10 eV below the orbital of the unpaired electron. 

VE 1c Spin hamlltonmn parameters 

Inspection of Table V.9 learns that the absolute values of all the 

calculated hyperfine couplings are not large enough. This is possibly due 

to a too large delocalization of the unpaired electron, resulting in a small 

dipolar contribution. It is more likely that the too small couplings are 

caused by the second order contributions. This contribution is nearly zero 

-4 -1 
for A and A , but +30 10 cm for A . This large value is due to the 

relatively small energy gap between the MO of the unpaired electron and the 

MO's which contain mainly the 3d 2 2 orbitals. 
χ -y 

The calculated principal values of the quadrupole coupling tensor agree 

very well with the experimental values, bearing m mind the approximations 

made in deriving the expressions for the tensor elements (see section II D). 

It is important that the calculated signs of the principal values agree with 

the experimentally determined ones. The signs of the experimental values 

depend on the choice of the signs of the copper hyperfine couplings and if 

the latter are chosen in the opposite sense, the signs of the quadrupole 
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Table V.10 Experimentally obtained and calculated angles between the 

principal axes of 

in Cu/Zn(et2dtc)2 

principal axes of Ä and the principal axes of g and Ρ 

g
l 

A , 
A , 
А
з 

obs. 

0 

90 

90 

cale. 

1 

90 

89 

8
2 

obs. cale. 

90 90 

4 15 

86 75 

е
з 

obs. cale. 

90 91 

94 105 

4 15 

p
i 

obs 

6 

85 

93 

cale. 

1 

90 

91 

P
2 

obs. cale. 

94 90 

22 17 

68 73 

P
3 

obs. cale. 

86 90 

111 107 

22 17 

principal values also reverse. The good agreement between the experimentally 

and theoretically obtained values confirms the choice made. 

The principal axes numbered 2 and 3 of all three tensors have been 

rotated from the χ and y axis (see Eq.V.4). The rotation of the g tensor is 

caused by the mixing of the 3d and 3d orbital, which results in a non-

xz yz
 = C u 

zero value of the off-diagonal element g . The rotation of the A tensor 

xy 

is a first order effect of the mixing of the 3d and the 3d 2 and 3d 2 2 
xy ζ χ -y 

Orbitals, so that the matrix element <ψ IF /г
э
|ф > (Eq.II.66) is non-zero. 

n' xy '
T
n 

In Table V.10 the calculated angles between the principal axes of A 

and the principal axes of g and Ρ are compared with the experimentally 

determined values. The agreement is rather good, although the calculated 

1 . .Cu . .Cu , , „Cu , „Cu 

angles between A and A on one side and g , g , Р̂  and Ρ on the other 

side are too large. This could mean that the distance between the copper 

atom and the plane of the four surrounding sulphur atoms is smaller than in 

the structure of the pure copper compound. 
VE 2 The system Cu/Zn(el2dsc) 

For this system too MO calculations were carried out based on the structure 

of the pure guest or of the pure host crystal. No Se 4d orbitals were taken 

into account in these calculations. It may be expected that this affects 

mainly the g values and to a smaller extent the other spin hamiltoman 

parameters. The calculated spin hamiltoman parameters are listed in Table 

V.I I, together with the experimentally observed ones. 

V E 2a The moletuljr structure 

Although the results, obtained with the structure of Cu(et dsc)„, are not 

very good, they are much better than those obtained with the structure of 

the host crystal. Hence, here too the conclusion can be drawn that the 
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Table V.1 I Experimentally obtained and calculated principal values of g, 

S , Â and Ρ (in units of 10 cm ) in Cu/Zn(et2dsc)2· 

Cu(et2dsc)2 or Zn(et2dsc)2 means: calculated using the structure 

of this complex. 

o b s . 

g. 2 . 0 5 5 9 

g ' 2 . 0 2 1 3 

%{ 2 . 0 0 6 8 

8 a V 2 . 0 2 80 

Cu 

A,-A - 6 2 . 7 

A - A a V + 3 8 . 3 

A ^ A a V + 2 4 . 5 

Cu 

Ρ + 1 . 8 

p' -о.з 

S e i 

A l - A a v + 6 8 

A ' - A a V -29 

A2-A a V - 3 9 

A a v a V + 5 1 

S e 2 
A -A +54 
A - A a V - 2 5 

^ -29 
A J a V +44 

av 

S e 3 

A,-A +4 9 
A - A a V - 2 3 . 5 
K 1 - ^ - 2 5 . 5 A L a v ^ 

S e 4 
A -A +54 
A - A a V - 2 5 
A2-A a V -29 
A 3 a v +48 

av 

A,-A 
A - A a V 

A 3 a V 

av 

c a l e . 

C u ( e t 2 d s c ) 2 

2 . 0 6 3 4 
2 . 0 5 9 1 
2 . 0 0 7 9 
2 . 0 4 3 5 

- 5 0 . 3 
+ 3 1 . 4 
+ 1 8 . 9 

+ 2 . 3 
- 0 . 9 
- 1 . 3 

+ 4 9 . 3 
- 2 2 . 8 
- 2 6 . 5 
+ 2 5 . 2 

+ 4 3 . 8 
- 2 0 . 2 
- 2 3 . 6 
+ 2 0 . 6 

+ 4 8 . 5 
- 2 3 . 5 
- 2 5 . 0 
+ 2 1 . 8 

+ 5 6 . 6 
- 2 6 . 9 
- 2 9 . 5 
+ 1 5 . 0 

+ 1.0 

- 0 . 5 
- 0 . 5 
+ 4 . 7 

Z n ( e t 2 d s c ) 2 

2 . 1 0 3 6 
2 . 0 7 2 1 
2 . 0 1 9 5 
2 . 0 6 5 1 

- 2 4 . 1 
- 3 . 7 
+ 2 7 . 8 

+ 1.6 
- 0 . 5 
-1 .1 

+41 .1 
- 1 8 . 1 
- 2 3 . 0 
+ 5 . 4 

+ 2 6 . 5 
-1 1.5 
- 1 5 . 0 
+ 2 . 7 

+ 2 3 . 2 
- 9 . 8 
- 1 3 . 4 
+ 4 . 0 

+ 6 3 . 1 
- 2 8 . 6 
- 3 4 . 5 
+ 6 . 2 

+ 1 6 . 5 
+ 7 . 2 
+ 9 . 3 
+ 1.3 
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structure of the copper containing dimer resembles the structure of the 

pure copper complex. 

V E 2b Molecular Orbitals 

The MO scheme is roughly the same as in the corresponding dithiocarbamate 

system, the energy of the MO of the unpaired electron is lowered, compared 

to the monomer, and the next occupied MO is centred on the Zn part of the 

dimer. The MO's which contain the copper 3d orbitals are, however, more 

delocalized than in the dithiocarbamate system and also more than in the 

monomer. Another difference with the dithiocarbamate system is, that a 

number of ligand orbitals lies between the MO of the unpaired electron and 

the other "3d" MO's. 

V E 2c Spin hamillonian parameters 

Since no Se 4d orbitale have been taken into account, the calculated value 

of g (in the Cu structure) is too large. The other g values agree rather 

well. 

As in the calculation on the corresponding thio system (section V E.I) 

the calculated hfs's of copper are not large enough. In the present system 

this can be due to a too large calculated delocalization of the unpaired 

electron. While in the dimeric thio system the calculated density of the 

unpaired electron at the copper nucleus was nearly equal to the calculated 

density in the monomer, in the seleno system it is much smaller than in 

Cu/Ni(et dsc) . 0.35 relative to 0.41. However, the alternative explanation, 

too large calculated second order contributions, cannot be excluded. 

It is striking that all the calculated isotropic Se hfs's are too 

small. This could mean that the copper atom lies in the plane of the four 

nearest by lying Se atoms, and not above it as is the case in the copper 

compound. 

The anisotropic parts of the Se hfs's agree better with the 

experimental values, especially for Se and Se the agreement is very good. 

The fact that the agreement is rather bad for Se is not surprising since 

the experiments showed that this atom does not have the position which it 

occupies in the pure copper complex (section IV B.2a). The large hfs of Se , 

however, cannot be understood from this calculation. 

The calculated hfs's of Se , (the atom which has a large distance from 

Cu) are so small that only in the direction of A one might hope to resolve 

this splitting. 
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V E. 3 Conclusions 

The extended Hückel calculations confirm the conclusions which were drawn 

from the experimental data: the dimeric units with one zinc and one copper 

atom do not accept the structure of the host crystals but have a structure 

which resembles very much the structure of the pure copper complexes. 

The MO schemes are about the same as in the monomeric systems 

Cu/Ni(dsc)„ and Cu/Ni(dtc) , with some exceptions: 

a. The energy of the unpaired electron MO has been lowered. 

b. The energy of the MO which contains mainly the copper 3d 2 orbital has 

been raised. 

c. Delocalization of the "copper d-electrons" is more complete (especially 

in the diselenocarbamate system). 

d. Mixing of atomic orbitals is stronger, which results in rotations of 

the various principal axes relative to each other in the xy plane. 
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SUMMARY 

In this thesis the results are discussed of an ESR study of the N,N-dialkyl-

diselenocarbamate complexes of copper and silver {Cu(R_dsc) and Ag(R dsc) } 

and the Ν,Ν-dialkyldithiocarbaraate complexes of copper {Cu(R dtc) }. Since 

the interaction parameters, which have to be determined, are anisotropic, 

these paramagnetic molecules were built in diamagnetic host lattices. To 

this end the corresponding nickel and zinc compounds were used. Measurements 

were also carried out in liquid and in frozen solutions. The interaction 

parameters were determined from single crystal measurements with the help 

of a minimization program that uses the expressions derived in chapter II 

for the peakpositions of the ESR transitions and their transition 

probabilities. These expressions were obtained without making assumptions 

about the relative direction of the principal axes of the tensors. 

In all diselenocarbamate systems studied, it was found that the 

principal axes of the hyperfine splitting tensor of the central metal atom 

do not coincide with those of the g tensor. Other authors found that in the 

corresponding dithiocarbamate systems these principal axes do coincide. This 

difference can not be ascribed to differences between the molecular 

structures, because in the diselenocarbamates the deviations from D-, 

¿n 

ssymmetry are smaller than m the dithiocarbamates. This means that an 

explanation has to be found in the large spin-orbit coupling of selenium 

and/or in a different covalency in the diselenocarbamate compounds. 

The complexes of copper and zinc have a dimenc structure. When copper 

is built in the zinc crystal in a low concentration, dimers are formed 

which contain one copper and one zinc atom. The similarity of the angles 

between the axes of highest principal values of the selenium hyperfine 

splitting tensors and the corresponding bonding angles Se-Cu-Se in the pure 

copper compound indicates that the structure of such a paramagnetic dimer 

resembles very much the structure of the dimers in the pure copper 

diselenocarbamate complex and not the structure of the dimers in the host 

crystal. 

The complexes of nickel consist of monomers. When copper 

diselenocarbamate is built in the corresponding nickel lattice, it appears 

from the measured hyperfine splittings that indeed the structure of the 

host crystal is adopted. 

With the aid of the iterative extended Huckel MO method it was tried 

to verify the conclusions about the molecular structure which were drawn 

from the experimental data. To this end the parameters of the spin 
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hamiltonian were expressed in the parameters of the molecular orbital 

method. Special attention was paid to the influence of multicentre 

integrals and the problem of gauge invariance. The experimentally 

determined interaction parameters of Cu/Ni(et dtc) could be reproduced 

very well with reasonable values for the empirical constants occurring in 

the extended Huckel method. Using the same empirical constants, the 

hyperfine splittings of copper as well as the hyperfine splittings of the 

selenium atoms in the system Cu/Ni(et dsc) could be calculated in 

agreement with the experimentally determined values. The principal values 

of g and also the rotation of the principal axes of this tensor relative 

to those of A could be reproduced only when the id orbitals of selenium 

were taken into account. The differences with the dithiocarbamate system 

are caused mainly by the large spin-orbit coupling of selenium. 

The calculations on the dimenc systems Cu/Zn(et dsc) and 

Cu/Zn(et.dtc) show that the results which are obtained if the structure 

of the pure copper complex is used, are better than those obtained assuming 

the structure of the pure host compound. This is in accordance with the 

conclusion drawn from the experimental data. 

From the MO calculations it appears that neither the hyperfine 

splittings of the central metal atom nor the g values are suitable to 

obtain information about the LCAO coefficients in the MO's, directly from 

the experiment. This is due to the fact that the ligand orbitals contribute 

considerably to the interaction parameters. As a consequence the number of 

unknowns in the expressions for these parameters exceeds the number of 

quantities which can be measured. The hyperfine splittings of the ligands, 

on the contrary, are determined mainly by the MO of the unpaired electron. 

This means that these experimental data yield direct information about the 

extent of the delocalization of the unpaired electron. When this method is 

applied to the monomenc systems Cu/Ni(dsc). and Ag/Ni(dsc)„ it appears 

that delocalization of the unpaired electron is more complete in the 

silver molecule than in the copper molecule. 

The MO calculations show that the bonding in the molecules studied is 

highly covalent with a large delocalization of the metal "d-electrons". 

This delocalization is larger in the dimenc than in the monomenc systems. 

In the dimenc systems the unpaired electron is fully localized on the 

molecule that contains the paramagnetic centre. 
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SAMENVATTING 

In dit proefschrift worden de resultaten besproken van een ESR onderzoek 

aan de Ν,Ν-dialkyldiselenocarbamaat kompleksen van koper en zilver 

{Cu(R dsc) en Ag(R dsc) } en aan het Ν,Ν-dialkyldithiocarbamaat kompleks 

van koper [Cu(R dtc) }. Aangezien de te bepalen mteraktieparameters aniso-

troop zijn, werden deze paramagnetische molekulen ingebouwd in diamagneti-

sche gastheerroosters. Hiervoor werden de overeenkomstige nikkel- en zink-

verbindingen gebruikt. Daarnaast werden ook metingen uitgevoerd aan 

vloeibare en bevroren oplossingen. De mteraktieparameters werden bepaald 

uit metingen aan éénkristallen m.b.v. een minimalisatie programma dat 

gebruik maakt van de in hoofdstuk II afgeleide uitdrukkingen voor de 

piekposities van de ESR overgangen en hun overgangswaarschijnlijkheden. 

Deze uitdrukkingen zijn afgeleid zonder aannamen te maken over de 

relatieve ligging van de hoofdassen der tensoren. 

In alle bestudeerde diselenocarbamaat systemen is gevonden dat de 

hoofdassen van de hyperfijnsplitsings tensor van het centrale metaal 

atoom niet samenvallen met die van de g tensor. Andere auteurs vonden dat 

in de overeenkomstige dithiocarbamaat systemen deze hoofdassen wel 

samenvallen. Dit verschil kan niet toegeschreven worden aan verschillen 

tussen de molekulaire strukturen omdat afwijkingen van D symmetrie in 
zh 

de diselenocarbamaten kleiner zijn dan in de dithiocarbamaten. Dit houdt 

in dat een verklaring gezocht moet worden in de grote spm-baankoppeling 

van seleen en/of in een verschillende kovalentie in de diseleno­

carbamaat verbindingen. 

De kompleksen van koper en zink hebben een dimere struktuur. Wanneer 

koper in lage concentratie wordt ingebouwd in het zink kristal, worden 

dimeren gevormd die een koper en een zink atoom bevatten. Uit de overeen­

komst van de hoeken die de assen van de grootste seleen hyperfijnsplitsing 

met elkaar maken en de overeenkomstige bindmgshoeken Se-Cu-Se in de 

zuivere koper verbinding blijkt dat de struktuur van zo'n paramagnetisch 

dimeer veel lijkt op die van de dimeren in het zuivere koper diseleno­

carbamaat kompleks en niet op de struktuur van de dimeren in het gastheer­

kristal. 

De kompleksen van nikkel bestaan uit monomeren. Wanneer koper 

diselenocarbamaat wordt ingebouwd in het overeenkomstige nikkel rooster, 

dan blijkt uit de gemeten hyperfijnsplitsingen dat wel de struktuur van 

het gastheerkristal wordt overgenomen. 

Met behulp van de iteratieve extended Huckel MO methode werd gepro-
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beerd de konklusies over de molekulaire strukcuur te verifiëren die getrok­

ken zijn uit de eksperimentele gegevens. Daartoe werden eerst de parameters 

van de spin hamiltoniaan uitgedrukt in de parameters van het "molecular 

orbital" model, waarbij speciaal aandacht werd besteed aan de invloed van 

meer-centrum integralen en aan het probleem van "gauge" invariantie. De 

rekenmethode werd geijkt aan het systeem Cu/Ni(et.dtc)„ waarbij bleek dat 

het goed mogelijk is om de eksperimenteel bepaalde interaktieparameters te 

reproduceren met redelijke waarden voor enige empirisch te bepalen 

konstanten uit de extended Huckel methode. Met gebruik making van dezelfde 

empirische konstanten konden de hyperfijnsplitsingen van koper zowel als 

van de seleen atomen in het systeem Cu/Ni(et dsc) berekend worden m over­

eenstemming met de eksperimenteel gevonden waarden. De hoofdwaarden van de 

g tensor en ook de draaiing van de hoofdassen van deze tensor t.о.v. die van 

A bleken echter alleen dan goed berekend te kunnen worden wanneer de 4d 

orbitale van seleen in rekening gebracht werden. De verschillen met de 

dithiocarbamaat systemen worden voornamelijk veroorzaakt door de grote 

spin-baan koppeling van seleen. 

De berekeningen aan de dimere systemen Cu/Zn(et dsc) en Cu/Zn(et dtc) 

laten zien dat uitgaande van de struktuur van het zuivere koper kompleks 

veel betere resultaten verkregen worden dan met de struktuur van de zuivere 

gastheer verbinding. Dit is in overeenstemming met de konklusie die getrok­

ken was uit de eksperimentele gegevens. 

Uit de MO berekeningen blijkt dat noch de hyperfijnsplitsmgen van het 

centrale metaal atoom noch de g waarden geschikt zijn om, direkt uit het 

eksperiment, gegevens te verkrijgen over de LCAO koefficienten in de MO's. 

Dit vindt zijn oorzaak in het feit dat ligand orbitals belangrijke bijdragen 

leveren aan de interaktieparameters waardoor het aantal onbekenden in de 

uitdrukkingen voor deze parameters groter wordt dan het aantal grootheden 

dat gemeten kan worden. De liganden hyperfijnsplitsingen, daarentegen, worden 

voornamelijk bepaald door de MO van het ongepaarde elektron. Dit betekent 

dat deze eksperimentele grootheden direkte informatie verschaffen over de 

mate van delokalisatie van het ongepaarde elektron. Wanneer deze methode 

wordt toegepast op de monomere systemen Cu/Ni(dsc) en Ag/Ni(dsc) blijkt 

dat de delokalisatie van het ongepaarde elektron in het zilver molekuul 

veel groter is dan in het koper molekuul. 

De MO berekeningen wijzen op een vrij sterk kovalente binding in de 

bestudeerde molekulen met grote delokalisatie van de metaal "d-elektronen". 

Deze delokalisatie is in de dimere systemen groter dan in de monomeren. In 

de dimere systemen is het ongepaarde elektron volledig gelokaliseerd op het 

molekuul dat het paramagnetische centrum bevat. 
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LEVENSLOOP 

üe auteur van dit proefschrift werd geboren op 13 oktober 1945 te OBS. 

Nadat in 1964 het eindexamen 4BS-B was afgelegd aan het Titus Brandsma 

Lyceum te Oss, werd in datzelfde jaar begonnen met de studie in de 

scheikunde aan de Katholieke Universiteit te Nijmegen. 

Het kandidaatsexamen (S3) werd afgelegd op 20 november 1967. De doctoraal­

studie omvatte als hoofdrichting Fysische Chemie en als bijvakken 

Theoretische Chemie en Natuurkunde. Op 6 juli 1970 werd het doctoraal­

examen cum laude behaald. Sindsdien heeft hij als SON medewerker, verbon­

den aan de afdeling Molecuulspectroscopie, een promotie-onderzoek verricht. 
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STELLINGEN 

I 

De door Schlupp en Maki voorgestelde baansymmetrie voor de grondtoestand 
van bis(maleonitrileditliiolato) goud(II) is, gezien de resultaten van Mossbauer 
experimenten en "molecular orbital" berekeningen, hoogst twijfelachtig 

II 

Bij de experimentele bepaling van de nulveldsphtsings-tensor in bis(dicthyl-
dithiocarbamato) koper(ll) gaan Kumari Cowsik en Srimvasan uit van niet 
geverifieerde aannamen omtrent de ligging van de hoofdassen van deze tensor 

R Kumari Cowsik and R Srimvasan, Pramand^, 177( 197 3) 

111 

Het door Lesk gegeven bewijs dat de restricted Hartree Fock methode met 
in staat is de lange afstands van der Waals attractie van twee edelgas atomen 
te verklaren, berust op de niet bewezen veronderstelling dat bij toenemende 
afstand de elektrostatische potentiële energie minder snel afneemt dan de 
exchange interaktie 

AM Lesk, J Chem Phys 59,44(1973) 

IV 

De door Christoffersen en Baker voorgestelde definitie van "gross lading" 
voldoet niet aan de door deze auteurs gestelde eis dat deze lading niet groter 
mag zijn dan twee, zoals blijkt uit de door hen zelf uitgevoerde berekeningen 

R E Christoffersen and К A Baker, Chem Phys Letters 8, 4(1971) 





ν 

De door Manoussakis en Tsipis uitgevoerde NMR studie aan de interaktie 

van benzeen met enige tris(dithiocarbamato) kompleksen toont slechts aan 

dat per dithiocarbamaat ligand een benzeen molekuul addeert maar kan geen 

uitspraak doen over de stoichiometrie van het kompleks als geheel 

G b Manoussakis and С A Tsipis, Ζ anorg allg Chem 398, 88(1973) 

VI 

Het verdient aanbeveling om aan een verkiezingsprogramma een verslag toe 

te voegen van de aktiviteiten uit de voorbije bestuurspenode 

VII 

De uitspraak van Burgemeester en Wethouders van de Gemeente Nijmegen 

" de gerichte inzaai van onkruiden is geen succes geworden bepaalde 

soorten ontwikkelen zich welig en verstikken de andere soorten" doet 

vermoeden dat de betrokken gemeentelijke instanties met of niet voldoende 

kennis hebben genomen van de ideeën over dynamisch natuurbeheer zoals 
die o a door Louis G Le Roy zijn ontwikkeld 

Nota van Aanbieding bij de begroting 1974 van 
de Gemeente Nijmegen, afdeling 3, pagina 15 

VIII 

Het begrip "schertsstelling" dreigt een pleonasme te worden 
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