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ABSTRACT

The activity of a neuron subjected to an input of many small
excitatory and inhibitory pulses is analysed. The theoretical model
consists of a linear or nonlinear first order system followed by
a threshold. Diffusion equations for the transition probability
density of the somatic potential are derived.

Analytical results for the stationary activity include expres-
sions for the stationary distribution of the somatic potential and
for the moments of the distribution of intervals between action
potentials. Applications and numerical data are given for three
specific models: an integrator, an imperfect integrator and an
equivalent circuit for the membrane, each combined with a threshold.
Linear regions of the input-output characteristics are indicated.

The dynamical aspects are discussed in more general terms.

A relation between the stochastic switch-response and the

expectation density is derived. For small variations of the input

a dynamical description is given on the base of a region-dependent
stochastic transfer matrix. A general form of stationary and a
linearised version of dynamical interaction equations for an ensemble

of neurons are proposed.
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PROLOGUE

1.1 PROBLEM AND MOTIVATION.

Experimental studies of the neural cell have supplied a wealth of data
which continues to grow at an increasing rate. Admirable theoretical analyses
of the experimental results have been given. A large amount of knowledge
exists concerning different aspects of the neuron. Synaptic transmission,
decremental conduction in dendrites, the nonlinear properties of the membrane
generating the action potential and the propagation of this signal along
the axon have all been intensively studied and described. Up till now,
however, no theoretical description exists in which these data have been
integrated into a model of the signal transmission properties of the neuron
as a whole. The same situation exists with regard to neural networks. A large
amount of experimental data, but a lack of adequate theoretical concepts and
methods for analysis and comparison of these data. It is evident that these
two problems, though not identical, are related. If an acceptable formulation
of the properties of a single cell could be found, this might serve as a
starting point for the theory on networks.

Early theoretical work on neural activity was done by McCulloch and
Pitts (1943). They considered a neuron as a logical threshold device with an
input of positive or negative unit-impulses, synchronised by an external
clock. When the sum of simultaneously arriving excitatory pulses exceeded the
threshold and no inhibitory pulse was present, an output pulse was created.
An important result was the conclusion that any complete logical expression
could be implemented by a network of these elements.

An extension of this work was formed by the study of the possibility
of reliable computation using networks consisting of unreliable elements.
This problem, first treated by Von Neumann (1956), was extensively analysed
by Winograd and Cowan (1963). They were able to extend the coding theorem
of Shannon (1948), which treats the transmission of information through a
noisy channel, to the computation of information in an automaton with
unreliable elements and/or false interconnections. Under the assumption that
the probability of malfunction of an element is independent of its complexity
it is shown that an arbitrarily high reliability of the network may be
reached by a distribution of functions over the elements and a diversifica-

tion of the computational properties of each element.
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The resulting network is a logically distributed system of multiple inter-
connected and highly complicated elements.

A development towards the incorporation of more realistic properties of
the neurondso took place. McCulloch (1957) gave already a more flexible
formulation of his model: arbitrary values for excitatory and inhibitory pul-
ses, linear summation of these pulses, afferent inhibition and a variable
threshold. A number of different versions by other authors include complete
or partial persistence of the effect of pulses until an action potential
occurs, synaptic delays and different forms of refractoriness.

Caianiello (1961) formulated his neuronic equations within the frame-
work of this model. Analysis of these equations (Caianiello, De Luca and
Ricciardi, 1967, 1968) elucidated the nature of transients and the conditions
under which reverberations in these networks occur.

As a whole all these approaches are conceptually related with automata-
theory. Mathematically one of the main difficulties is the combination of a
continuous description for the somatic potential and the discontinuous
threshold condition for spike generation. Physiological shortcomings are
the discretisation of time and, usually, a lack of probabilistic descriptions
which play such an important role in electrophysiological data from the
central nervous system,

A rather different approach to the properties of neural networks is
based on a more 'thermodynamical' point of view. In the work of Beurle
(1956), Griffith (1963, 1965) and Ten Hoopen (1965) the assembly of cells
is regarded as a continuous medium and the active fraction of neuroms as a
function of space and time is the fundamental variable. An analysis is made
of steady states or oscillations of the total activity and the propagation
of waves of excitation. This theoretical work appears to be mostly related
to experimental data on evoked responses or oscillatory activity of groups
of cells as measured with mini-electrodes (tip diameter 0.1-1 mm). A draw-
back of this description is that up till now no rigorous conmection has
been made between the dynamics of a single neuron and the equations presen—

ing the activity of the mass of cells.
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The reader is referred to Harmon and Lewis (1966) or Reiss (1964) for
a general review on neural modeling, both with regard to single cells and
to networks, also covering the large amount of investigations by means of
sumulation on digital computer or in hardware.

The activity of a single cell in the central nervous system observed
with a microelectrode (tip diameter ~lim) usually contains a stochastic
aspect: it is not possible to predict precisely the occurrence of an action
potential. Therefore this activity is presented in probabilistic terms. For
the stationary activity use is made of the probability density of the
occurrence of a spike (average frequency) and of the probability density for
the first or an arbitrary spike as a function of time after the occurrence
of an earlier one (interval histogram or expectation density). In case of
evoked activity the behaviour of a cell is characterised through the
probability density of spikes as a function of time after the stimulus
(post stimulus time histogram).

A theoretical approach related to these types of data has been propesed
by Cowan (1967, 1968). The neural cells are considered as discrete elements;
their acitvity is characterised by a function continuous in time, assuming
a continuous range of values. This quantity is, essentially, the probability
density for the generation of an action potential (event density). A set of
nonlinear first order differential equations are postulated to describe the
interactions of the cells in the network. Under the condition that the
interaction coefficients are ant-symmetric there exists a 'constant of the
motion' and the equations can be written in a Hamiltonian form. On this base
it is possible to develop by standard methods a 'statistical mechanical'
description of the neural net. This theoretical approach appears attractive
both with regard to the description of the single-cell properties as for
the characterisation of an assembly of a large number of cells.

The aim of this dissertation is an analysis of stochastic input and
output signals of a neuron and their interrelation. Moreover, the work is
intended as a contribution to the derivation of a continuous type of
equation for the description of neural interaction.

After a condensed review of the most relevant biological data in § 1.2,
the theoretical viewpoint is presented in § 1.3. When many comnections exist

between cells, the input to each one is highly complex. This leads naturally



to a stochastic description of the input: average value (m) and power (s2)
emerge as the informationally significant quantities; the other aspects of
the signal are obscured by the summation. The behaviour of the somatic
potential is described by a first order nonlinear fluctuation equation;
diffusion equations result for the transition probability densities. § 1.4
gives some more detailed experimental evidence and a comparison of the model
with previous ones.

The stationary activity is analysed in Ch. 2 and Ch. 3. Expressions for
the distribution of the somatic potential and for the moments of the distri-
bution of intervals between action potentials are derived in Ch. 2. Applica-
tions on more specific models and mumerical data are presented in Ch. 3.

The results of this part are such that experimental verification appears
feasible. Intra-cellular masurements would supply evidence on the correct-
ness of the invoked assumptions and quantitative tests of the theoretical
predictions.

The dynamical input-output relations are much harder to analyse;

Ch. 4 is devoted to this subject. Again the detailed properties of the
signals are not taken onto account, but attention is focused on the relation
between the statistical characteristics: average value and power of the
input and event density of the output. Two cases are studied: a stepwise
change in the input signal and small variations around a fixed level; the
last case leads to the introduction of a region-dependent stochastic
transfer matrix. In § 4.4 an attempt is made at the derivation of
stochastic interaction equations on the base of the single cell charac-
teristics. Nonlinear stationary and linearised dynamical equations are
formulated.

This part of the theory is more of a qualitative nature, no quantita-
tive predictions of experimental results can be given. However, it is
possible to design experiments to investigate the applicability of the
theoretical description and to measure the properties of the stochastic
transfer matrix. A further theoretical and experimental elaboration of
this part may, to our view, result in stochastic neural interaction

equations of a continuous type.
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1.2 THE MORPHOLOGICAL AND PHYSIOLOGICAL BASE

A neuron is a biological cell; its properties are to a large extent
determined by the geometrical and functional characteristics of the sur-
rounding membrane. Though there exist several types of neurons, differing
both in size and form, a large number of cells in the central nervous system
are characterised by the following description.

Morphologically and physiologically the cell comsists of three different
parts. The soma or cell body contains the nucleus; the axon, an elongated
part of the cell, conducts signals away from the soma and may divide into a
number of branches; the dendrites form a complicated receptive network with
many branches, converging finally on the soma. Types of cells can be charac-
terised by different geometrical structures of these regions and their dis-
tribution over the nervous system studied (Ramon-Moliner, 1962; Braitenberg,
1963). In Fig.l.2.1 some types of neurons occurring in the central nervous

system are presented.
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Fig.1.2.1. Some types of newrons in the C.N.S.

Receptor cells and interneurons may be wmorphologically rather different from
cells in the central nervous system, but their functional properties are in

many respects analogous.
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The synapses are places where axon branches of a neuron seem to touch
the dendrites or soma of another neuron. The functional properties of both
membranes at the synaptic junctions have been shown to differ from their
properties at other places. The number of synapses on cells in the central
nervous system is usually more than ten and may be as high as 104 - 105.

A basic assumption for the theory, as developed in this paper, is that
the processes in which a neuron is involved can be separated in at least
two categories:

a. Reception, transformation and emission of signals. This is a relatively
fast process and most clearly manifested in electrical phenomena:
dendritic and somatic potential, action potential.

b. The relatively slow processes related with long lasting changes in
structure and function of the neuron: adaptation, habituation, learning.
This "adiabatic hypothesis'" (Caianiello, 1961), usually made implicitly

both in theoretical and in experimental work, seems reasonable from a biolo-

gical point of view; the construction of a mathematical description of
neural signal processing is greatly simplified by it. In the following only
these physiological aspects are considered which describe the processing of
signals by neurons not changing in structure or function.

In the neural cell exists an active metabolism, causing differences in
chemical concentrations as well as an electric potential across the membrane.
The experimental results for the local dynamical behaviour of the membrane
are well described through a set of four coupled monlinear differential
equations: the Hodgkin-Huxley equations. The variables appearing in these
equations are the membrane potential and the concentrations of potassium,
sodium and of other ions. (For references and review see Nobel (1966) and
Kats (1966) ). Quantititive analysis is only possible using a computer,
qualitative insight is difficult to acquire because of the four interacting
variables. However, if only the electrical aspect is considered, the process
is well described by one second order nonlinear differential equation: the
Bonhoeffer-van der Pol equation (Fitzhugh 1961, 1968). Since this equation
contains only two variables, pictures of the phase plane can be drawn and
the dynamical behaviour visualised.

A description of the electrical membrane properties is then as follows.
In the equilibrium state there exists a potential difference across the

membrane: ~ 70 mV, inside negative. The application of a small current
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forces the membrane potential away from its equilibrium value: positive out-
ward current induces depolarisation, negative current hyperpolarisation.
Termination of the current allows the membrane potential to return to its
original value with a rate of change dependent on, and roughly proportional
to, the deviation from the equilibrium value.

However, if the depolarizing current is larger and as a consequence the
membrane potential reduced further (v 55 mV) a completely different behaviour
develops. Changes in ionic permeability give rise to ionic currents which
cause the membrane potential to decrease and even to change sign, the maximal
value being ~ 30 mV, inside positive, then the potential returns to its
equilibrium value. This phenomenon, called the generation of an action
potential, has a duration of 0.8 - 1.0 msec.; the form of an action potential
is only weakly dependent on present or past influences.

Both the subthreshold behaviour during and after stimulation with a
constant current and the generation of an action potential are schematically

shown in Fig.l1.2.2.
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from Katz,1966),
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The value of the membrane potential at which an action potential is
initiated, the threshold potential, forms a separatrix in phase space: a
three dimensional hyperplane in the four dimensional H.H.-space or a curve
in the two dimensional B.v.d.P.-space. Theoretically partial action
potentials might occur; experimentally however, and even in computer simu-
lations, the presence of noise combined with the strongly nonlinear nature
of the equations make it an all or none phenomenon (Fitzhugh 1955, 1961).

The local threshold potential varies, depending on the geometrical and
functional properties of the membrane. Usually it has a relatively low
value at the junction of soma and axon: the axon hillock. At this point the
action potential is thought to be initiated. It propagates with a constant
velocity and without decrement along the axon. The speed of propagation
increases with the diameter of the axon and is larger when a myelin sheath
is present (10~100 m/sec). Probably also a backward propagation of the
action potential over the somatic membrane occurs and, dependent on the
geometry and the presence of synapses, partially into the dendritic tree
(Eccles, 1964, Ch. VII).

The signal transmission from one neuron to another takes place at the
synapses. The arrival of an action potential at the synaptic endings of the
axon causes a quantal release of transmitter substance into the synaptic
cleft. The transmitter diffuses across the cleft (0.02-0.05 mu) to the post-—
synaptic membrane, where it induces selective changes in ionic permeability.
This again causes local hyperpolarisation or depolarisation of the membrane
potential. The time course of the synaptic transmission involves a delay of
0.5-1.0 msec, a rise time of the dendritic potential of | msec and a decay
time depending on the functional and structural properties of the neuron.

Experiments on the neuro-muscular junction have shown that the trans-
mitter substance is transferred in a probabilistic way. The number of
molecules contained in a quant is Gaussian distributed, the moments of
ejection follow a Poisson process, the mean rate of which is modulated by
the value of the presynaptic potential. The quantal changes in muscle end-
plate potential have an average value of ~ 0.5 mV with a standard deviation
of ~ 0.1 mV; the rate of occurence may vary from 1/sec. to 100/sec. or more.
Fig.1.2.3 shows the results of Boyd and Martin (1956) for a mammalian end-
plate.
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Though evidence on neuro—-neuronal synapses is incomplete it seems likely
that a comparable mechanism of synaptic function exists (Martin, 1966, 1968;
Kuno and Miyahara, 1968).

Dependent on the polarity of the synapses the selective permeability of
the postsynaptic membrane may change in different ways, resulting in either
an increase (hyperpolarisation) or a decrease (depolarisation) of the post-
synaptic membrane potential, the amount of change of the dendritic potential
being dependent on its previous value. At the synapses the membrane seems
to be electrically inexcitable; in most of the dendritic tree the threshold
potential is usually so high as to exclude initiation of action potentials.
The decremental conduction of the changes in potential through dendrites and
soma is then described by partial differential equatioms with varying
coefficients. Theoretical analysis and numerical computations (Rall, 1964,
1967) show that the electrotonic distance between synapse and soma has a
considerable influence on amplitude and time course of the resulting somatic
potential. Moreover, since the equations are nonlinear (varying coefficients!)

interactions may occur between potentials generated at different synapses.
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To describe the repetitive generation of action potentials refractory
properties are important. During and directly after the occurrence of an
action potential no other action potential can be generated; this results
in an absolute refractory period of ~ 2 msec. The equations describing the
local properties of the membrane, the Hodgkin-Huxley as well as the
Bonhoeffer-van der Pol equation, show enhancing and depressing after-effects.
Moreover, it appears plausible that also the global properties of the neuron
contribute refractory effects. The action potential when initiated in the
initial segment, propagates back over the somatic membrane and into the
larger branches of the dendritic tree. The interaction would annihilate, or
at least diminish, the electrotonically conducted potential changes gene-
rated at synapses. Persistence of transmitter substance with its influence
on the permeability of the membrane and a dependence of equilibrium and thres-
hold potential on preceding action potentials may even more complicate the

foregoing description.
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1.3 THE THEORETICAL APPROACH: FLUCTUATION AND DIFFUSION.

In the preceding section a brief review was presented of the
physiology of a nmeural cell. In order to be able to comstruct a mathematical
description of the signal processing aspects of neural activity, a simple
and unequivocal formulation of the cell properties is required. The basis

for the mathematical approach is formulated in the form of five assumptions.

ASSUMPTION 1.

The subthreshold Atate of a newron is characterised by one variable only;
the somatic potential y(t). The influence of other neurons and/orn external
envinonment 48 given by the input signal i(t). The rate of change of y(t)
L8 dependent only on the present values of y(t) and i(t). This dependence
may be nonlinean; its general fonm is given by the equation

Lmt) + g i) 5 gy >0 (1.3.1)
whene £ and g should be differentiable functions.

A diagram of Ass. ] is given in Fig.1.3.1.

fiy)—y

Fig.1.3.1 0Diagham of subthrneshold behaviour of the somatic potential.

The input i(t) is the current originating from changes im symaptic
permeability caused by action potentials arriving from other neurons or
current generated through external stimulation. If the cells have many
interconnections or if the stimulus is complex, then the detailed structure
of the input is also highly complex. Moreover, i(t) may be different in
seemingly identical experiments. In this situation it is clearly undesirable

to aim at a complete description of the input. Instead of considering all
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the, partly irreproducible and unpredictionable, complexities of this
signal, we regard the input as a stochastic process, of which only the
most important properties are taken explicitly into account.

The simplest and usually the most prominent feature of the input

is its average value
m(t) = <i(t)> (1.3.2)
The second characteristic of the input is the correlation function
k(t,t) = <i(t).i(t-1)> - <i(t)>.<i(t-1)> (1.3.3)

representing the correlation between values of j at a time t and at time 1
earlier.

The average in the determination of m(t) and k(t,T) may be taken with
respect to time if the input i(t) is stationary, that is if m(t) = m and
k(t,t) = k(1) are time independent. If average value and correlation func-
tion are time dependent, then the averages should be taken over a suitable
ensemble, for instance a number of repetitions of the experiment.

Two important quantities are given by special values of the correlation
function. The variance of the input is represented by the value of the

correlation function for T = 0.
2
v2(t) = k(t,0) = <i(t)> — <i(t)>2 (1.3.4)

The incremental variance, or intensity (Stratonovich, 1963) of the input

is the integral of the correlation function

s2(t) = Jdt k(t,T) (1.3.5)

-
A normalised signal having zero mean and unit incremental variance

is now defined by

j(e) = % (1.3.6)

and the input is rewritten as

i(t) = m(t) + s(t).j(e) (1.3.7)
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The equation for the somatic potential, Eq.(1.3.1) reads then

L« a(y,t) + B(ya8).3(0) (1.3.8)

where
a(y,t) = £(y) + g(y).m(t) (1.3.8a)
B(yst) = g(y).s(t) (1.3.8b)

In this deecription £(y) and g(y) represent the properties of the system
and m(t) and s(t) the statistical characteristics of the input; the
quantity j(t) may, under certain conditions, be treated as a stochastic
carrier,

In order to be able to specify the assumption which allows us to
neglect he 'microscopic' properties of j(t), three time constants have to
be defined.

-~ The time constant of the 'microscopical’ coherence of the input: Tye
This correlation time will be defined as

JdT/T/k(t.T) (1.3.9)

1
s?(t)

T =
¢

The correlation between the value of j(t) and of j(t+t) can be neglected
for t several times larger than .-

- The time constant of the variation of the statistical characteristics
of the input: Tg- An acceptable estimation of this constant could be

B(e) 2 8(E) zli
+

ta !t (s ?

7T =
8

(1.3.10)

B

= The time constant for the relaxation of the system: Tpe The definition
of the relaxation time is

. -1
= =T - Ttart) + 8,0 (00} | > (1.3.11)

The definitions of Te in Eq.(1.3.9) and of T in Eq.(1.3.11) agree,

in the stationmary case, with those of Stratonovich (1963; p. 88 and p. 99).
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ASSUMPTION 2.

The cornelation tume of the statustecal gluctuations of the anput (rc) Iy
Amakl, both weth regand to the tume constant of the variation in the
statistical characternistees of the anput (rs) as with nespect to the
nebaxation tume of the sysitem (v ):

T << 1 and 1 << T_.
c s c r

An important conclusion follows from Ass. 2. The 'microscopical'
properties of j(t) are under these conditions irrelevant for the behaviour
of the system given by Eq.(1.3.8) for time differences At which are large
with respect to the correlation time Tge This implies that, as long as
At >> Teo the signal j(t) may be replaced by another quantity w(t) with the
identical statistical characteristics: m = 0, s = l. The best choice is
to take for w(t) a signal with a correlation function of the form of a
delta function.

To stress the stochastic nature of the variable y we write Y instead

of y. Eq.(1.3.8) is then replaced by the stochastic differential equation
dY = a(Y,t)dt + g(Y,t) dW(t) (1.3.12)
where

W(t) is the integrated process w(t)
<w(t)> = 0 (1.3.12a)
< wlt)w(e+t)> = §(1) (1.3.12b)

Eq.(1.3.12) is known as a fluctuation equation or Langevin equation.

The replacement of j(t) by w(t) amounts to the statement that for

At >> T, the physical process of Eq.(1.3.8) can be described through the
first order Markov process of Eq.(1.3.12). Some equivalent descriptions
of the process given by Eq.(1.3.12):

w(t) has a delta-type correlation function,

w(t) has a constant spectral demnsity,

w(t) is white noise,

W(t) has independent increments,

Y(t) is a first order Markov process.
References mainly used here were Stratonovich (1963; Ch. 4) and Cumming
(1967; Ch. 4)
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What has been accomplished up till here is an abstraction of the
statistical characteristics m(t) and s(t) from the input i(t) and a formali-
sation of the lack of knowledge with respect to the rest-signal j(t) through
a replacement of this quantity by the white noise w(t). An important advan-
tage of this procedure is that stochastic differential equatiomns of the form
of Eq.(1.3.12) occur frequently in physiecs and have been widely studied. In
the remainder of this paragraph the standard theory for analysis of the
fluctuation equation is briefly presented.

Since Eq.(1.3.12) contains now the stochastic function w(t), statisti-
cal concepts are needed for the analysis of this equation. The fundamental
one of these concepts is the transition probability demsity function:
f(y,t|x,s) = probability density that the stochastic variable Y has the

value y at time t given that it was equal to x at time s.
= transition probability demsity (x,s) =+ (y,t).

The infinitesimal short duration of the correlation of the white

noise implies that the transition probability demnsity is independent of the

past history. This feature is expressed in the Smoluchowski integral equation.
fly,t + At{x,s) = sz f(y,t + Atlz,t) f(z,t|x,s) (1.3.13)

from which also a differential form may be derived

2t = 1 SR @5m G g £ t|x,s)} (1.3.14)
3t Yy, s n=1 Py 3y n Y, Y > «3.
where
A _(y,t) = lim %ﬁ sz z2" £(y + z,t + Atly,t) (1.3.15)

At-o
(Middleton, 1960: p. 448-450; Stratonovich, 1963: Ch. 4).
The functions An(y,t), known as incremental moments or intensity
coefficients, characterise a stochastic process completely and are all experi-

mentally measurable. The first incremental moment or drift
a(y:t) = Al(y’t) (].3.158)

represents the rate of change of the average value of Y. The second

incremental moment or dispersion
b(y,t) = A, (y,t) (1.3.15b)

gives the rate of change of the variance of Y. The higher incremental moments

are less significant for the process.
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No attention has yet been given to the amplitude distribution of w(t).
There exists a relation between this distribution and the continuity of a
stochastic process as a function of time. It has been demonstrated that a
continuous delta-correlated process has a Gaussian amplitude distribution.
If the process is not continuous in time, then the amplitude distribution

may have a different form.

ASSUMPTION 3.
The atochastic process w(t) is continuous:

lim %1 sz f(y + z,t + At|y,t) = 0 for all € > O (1.3.16)
At-o
|z]>e

Ass. 2 and Ass. 3 may be combined in the statement: w(t) is a conti-
nuous delta-correlated process or, equivalently, Gaussian white noise.
A direct consequence of this property is

An(y,t) =0 for n > 3, (1.3.17)

which implies that a continuous first order Markov process is completely
determined by drift and dispersion. As a consequence Eq.(1.3.14) simplifies

into a second order partial differemtial equation

2
T EOutlxe) = - L(a(0) £Gutlx)) + GIUBYLY £ytlx,e)) (1.3.18)

This equation is known as a diffusion equation and the process described by

it as a diffusion process.
Stratonovich has demonstrated that the following relation exists between
the system and signal characteristics (a and B) appearing in the fluctuation

equation and dispersion and drift (a and b) in the diffusion equation:
2
a(y,t) = a(y,t) + igy (8(y,t)} (1.3.19)
2
b(y,t) = {8(y,t)} (1.3.20)

Eq.(1.3.18), also named the forward diffusion equation or Fokker-Planck
equation, describes the probability density or transitions from a given
'start-point' (x,s) to all possible 'points' (y,t). Its solution supplies

probabilistic knowledge of the future of the variable Y(t).
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We may equally well be interested in the probability density of
transitions from all 'start-points' (x,s) to a given 'final-point' (y,t):
for this we need a related equation describing the past of Y(t). In the
theory of stochastic processes it is well known that, under the conditions
which allow the derivation of the forward equation, it is possible to
derive the corresponding backward, or Chapman-Kolmogorov, equation (see

for instance Prabhu (1965))
? ] 3 2
- 5 f(nat|x,s) = alx,s) 5, £(y,t]x,8) + Ib(x,8)(5) £(y,t|x,s)  (1.3.21)

An important simplification of the diffusion equations occurs when the
statistical characteristics of the input do not depend on time:

m(t) - m , s2(t) -+ s2

As a direct consequence the incremental moments, including drift and disper-

sion, become time independent:
A(y,E) > A

The transition probability density is in the stationary case redefined as
f(y,t,x) = probability density of the transition x >+ y in a time interval
with duration t.

The stationary diffusion equations have the form

2
Tt E@® = - 3 @) £} + () UbG) £(,8,x) (1.3.22)

2
2 e = a §, a0 ¢ e @) £,6,0) (1.3.23)

These equations form the base of the mathematical derivations in Ch. 2 and
the numerical computations of Ch. 3.

Fluctuation and diffusion equations are fundamental tools for the
description of continuous stochastic processes. Their history is intimately
connected with the theory of Brownian motion; at present their applications
include problems of diffusion, heat conduction, noise in electrical circuits,
neural activity and population genetics. A famous reference is Wax (1954).
The Brownian motion language will sometimes be used for the explanation of
mathematical operations.

The diffusion equations as presented here are yet incomplete: boundary
conditions have to be added. For the forward equation they are formulated

in the following way.
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Since no changes occur in a zero time interval, the initial condition
is:
f(y,0,x) = 8(y - x) (1.3.24)
Since only finite distances are traversed in a finite time, the first spatial

condition reads simply:
f(-=,t,x) = 0 (1.3.25)

For the formulation of the second spatial condition, a further assumption

concerning the properties of a neuron is involved.

ASSUMPTION 4.
There exists a threshold value §or the potential: d. When the somatic
potential Y(t) heaches this value an acticn potential 4s genenated.

A consequence of Ass. 4 is that Y(t) does not assume values larger

than or equal to d. The boundary condition reads then:
f(d,t,x) = 0 (1.3.26)

Because of the boundary condition for y = d the function f(y,t,x) determined
by the forward diffusion equation takes now a somewhat different meaning:
f(y,t,x) = probability density of transition X > y in time interval t, under
the condition that Y has assumed no value larger than or equal to
d in this interval.
Though the backward equation is for our work of equal importance we
shall not need its boundary conditions. In order to describe the repetitive
activity the last assumption concerning the behaviour of a neuron is intro-

duced.

ASSUMPTION 5.
The acteon potential has an anfanctesamal shont duration. Darectly aften
Zhas event the somatic potential fumps to a reset potential X .

The last assumption excludes all refractory properties. Inclusion of
these effects in the traditional way would lead to difficult mathema-
tical problems. However, in § 2.4 a different way is proposed to treat

refractoriness.
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1.4 EVALUATION OF THE MODEL.

In this section the diffusion model, as formulated in the previous
paragraph, is situated among the theoretical approaches to stochastic
neural activity. Also some experimental and theoretical evidence is given
with regard to the plausibility of the assumptions.

It should be realised that a certain type of description of the
stochastic spike generation process is applicable only to certain types of
neurons. Moreover, these descriptions are not intended to supply a complete
picture of the electrical phenomena inside a cell, but only of these aspects
which have a direct influence on the generation of action potentials.

Though many papers on stochastic neural activity have been published,
only a few of these contained contributions to the mathematical analysis of
the problem. A systematic account of a number of the earlier models is given
in Moore, Perkel and Segundo (]1966). Also Harmon and Lewis (1966) give in
their review—-paper on neural modeling a short exposition of theories of the
stochastic activity of the single cell. Recent contributions, of a type
comparable to our approach, are given in the papers of Gerstein and Mandel-
brot (1964), Stein (1965, 1967), Ten Hoopen (1966), Molnar (1966) or
Molnar and Pfeiffer (1968) and Gluss (1967).

The assumptions of the diffusion model as given § 1.3 are summarised:
- below threshofd the newron is described as a Linear or nonlinean §inst

ondern gilten (Ass. 1);
- the input 4is a stochastic quantity which, when nowmalised, has a shont
conrelation time (Ass. 2) and a Gaussian amplitude distribtuion (Ass. 3);
- when the astate variable heaches the threshold an action potential 4is
generated (Ass. 4) and the system neturns immediately to its initial
state (Ass. 5).

Previous analyses were all characterised by the assumption of linear

subthreshold behaviour. In the work of Stein, Molmar and Gluss there is a

continuous proportional decay of the somatic potential:

D m - yir o+ i) (1.4.1)

In the random walk model of Gerstein and Mandelbrot no decay of the
potential occurs: t = =, Ten Hoopen assumes that the diminution of the
potential occurs in jumps, which have a probability of occurrence propor-

tional to the existing value of the potential.
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The input is described in either of two ways: a discrete or a conti-
nuous formulation. The discrete viewpoint is taken by Stein, Ten Hoopen

and Molnar. In this approach the input has the form

K
i(t) = T Le

5(1:-::k m) (1.4.2)
k=] @

k

Here {tk,m} ,m=1, 2, .ccveeees. is the sequence of arrival times of action
potentials at synaps k and N indicates modality and strength of the effect
of this action potential on the somatic potential. Further the assumption

is made that the combined sequence of arrival times for all synapses

{{tk,m}} , k=1, ..., K m=1, 2, ...; can be regarded as a Poisson-process.
Though this is perfectly true under the strong condition that each input
sequence {tk,m} is a Poisson process, it also serves as a good approximation
when a large number of independent but non-Poissonian point processes
contribute to the input (high convergence condition).

As a consequence a stationary input can be written

i(t) = m + s.w(t) (1.4.3)
where

m = ﬁ LA (1.4.4)

82 = i n cﬁ (1.4.5)

n, = event density (frequency) of arrivals of action
potentials at synaps k

w(t) = discrete white noise.

So Ass. 2 is shared by these authors, but they do not invoke Ass. 3.

The continuous approach is choosen by Gerstein and Mandelbrot, by Gluss
and in our work. The assumptions concerning the input are here of the
following form. The input is the sum of independent events, many of these
occurring within a time constant of the system, each having only a small
effect and a short duration. These properties are rather plausible on the
base of the high convergence condition, which was already used to justify
Ass. 2. Since the effects of the (normalised) input on the somatic potential
are in this case indiscernible from these caused by continuous white noise,
this description is equivalent to Ass. 2 and Ass. 3.

When the continuous white noise input is small, so that (nearly) no

action potentials are generated, a proportional decay of the somatic
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potential results in a Gaussian amplitude distribution and an exponential
autocorrelation function of the somatic potential.

Experimental support for this description is given by Calvin and
Stevens (1968), Fig.l.4.1 shows one of their measurements on spinal moto-
neurons in cats. The authors reach the conclusion that, for at least one
class of motoneurons, fluctuations in synaptic input (synaptic noise) are

the major source of variability in the interspike intervals.

probability R(T)
10 A 10+ e observed B
1 % © simulated

08 - 08 e

o
06 - o6

-
04+ 04 8 -
02+ “oe

0.2 .o

T T T 1 T T

3mV 2 4 6 8 10 12
amphitude meec

Fag. 1.4.1 Statustrcal structure of dynaptic notse from motonewron MIV-1,
A: ampletude disiribution histogram fon a 2-sec sample (10,000 sample
poants) of synaptec noase using a class 4nterval of 300 uwV, The superumposed
smooth curve 4 a nowmal destrcbution functeon weth a SD of 0,8 mv,

B: autocorrelation function for a 30-sec segment of Aynaptic nocse sampled
at 5 kHz {§+fled cencles). Open cincles nepresent the autocorrelation
functeon fon faltered Gaussran white noase used an the sumulation of thas
cell's behaveounr. (grom Calvin and Stevens, 1948)

With regard to the mechanism of spike generation the situation is as
follows. Ass. 4 is common to all approaches mentioned in this paragraph;
both because of its mathematical simplicity and since it is in good agreement
with experimental data. Though Ass. 5 is physiologically insufficient, it is
widely used as a first starting-point for a mathematical analysis.

A schematic representation of the behaviour of the proportional decay

model with a discrete input is given in Fig.1.4.2.
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Fig. 1.4.2 Examples of the time counse of the somatic potential gon the
model with discnete fnput and continuous proportional decay
a) excitation and inhibition
b} high excitation, no inhibition
c) nearly equal intensity of excitation and Linhibition.

For all models of somatic signal processing and types of inputs discus-
sed in this paragraph, the Smoluchowski differential equation, given in
Eq.(1.3.14), applies to the subthreshold behaviour. It reads for the

stationary case

3 T =D 5 .n
e fem = TS )

a 3y An(y) £(y,t,x) (1.4.6)
n=1 *

However, the incremental moments are different in different situationms.
Four descriptions and their results are compared.
1. Continuous input, no decay.

(Gerstein and Mandelbrot, 1964)

Drift a(y) = m
dispersion b(y) = s?
higher incremental moments Aj(y) =0, j>3

where m and s? are defined by Eq.(1.3.2) and Eq.(1.3.5).
Closed expressions exist for transient and stationary distribution of

somatic potential and distribution of intervals.
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2. Discrete input, continuous proportional decay.

(Stein, 1965, 1967; Molnar, 1966)

drift a(y) =m - y/1
dispersion b(y) = s2

. . = J :
higher incremental moments Aj(y) i moee 323

where m and s? are defined by Eq.(1.4.4) and Eq.(1.4.5).
Substitution of these relations in Eq.(1.4.6) leads to the differential-

difference equation
2 f(y,t,x) = 3 {-Z f(y,t,x)} + T n {f(y-c,,t,x) -~ £(y,t,x)} (1.4.7)
3t y,t, 2y "1 yEy by L 105 s ¢, .

An integrated version of this equation is given by Stein (1965, p. 182,
Eq.(13)) and by Molnar (1966, p. 50, Eq.(4.2)). However, under the boundary
conditions related to the threshold property no general solutions have been
found for the distribution of somatic potential or intervals.

Simulations of the model with propertional decay and a discrete input
by Lynn (1969) on a digital computer indicated that the amplitude of the
pulses has a neglible influence on the distribution of intervals between
action potentials, as long as this amplitude is less than or equal to 10%
of the difference between threshold and reset potential.

3. Discrete input, discrete proportional decay.
(Ten Hoopen, 1966).

Under the assumption that all excitatory and inhibitory pulses have the

same size (ck @ + ¢) the incremental moments are for y > 0

drift a(y) =m - y/t
dispersion b(y) = s2 + ey/t
higher incremental moments Aj(y) = necn + ni(—c)n-(-cT_ly/T

where m = (n_-n.)c and s2 = (n_ + n.)c?
e 1 e i

and n, is frequency of excitatory, n, of inhibitory pulses.
The Smoluchowski equation for the transition probability is for

y>0
3 £0L60 = 1 ((re) £(yre,t,0) -y £(7,6,0) (1.4.8)

+ ne f(}"c-t,x) - f(Y’tsx)} + ni{f(}""cnt.x) = f(y’t-x)}

For y = 0 and y > 0 slightly different equations apply.
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Since the distribution is zero everywhere except at y = mc, m integer,
the differential-difference equation Eq.(1.48) is equivalent with a set of
coupled first order differential equations. When an absorbing barrier (thres-
hold) is introduced atm = dand a reflecting barrier at m = ~r, then the
number of equations becomes finite.

Exact solutions can be found for both the distribution of the somatic
potential and the distribution of intervals. Ten Hoopen did not succeed
in the derivation of a closed expression for average value or variance of
the interval distribution.

4. Continuous input, continuous proportinnal decay.

(Gluss, 1967; Johannesma, 1968 and this paper)

drift a(y) =m - y/1
dispersion b(y) = s?
higher incremental moments Aj(y) =0, i>3

where the average value m is defined by Eq.(1.3.2) and incremental
variance s? by Eq.(1.3.5).

The Smoluchowski differential realtion, Eq.(1.4.6), takes now the form
2 f(y,t,x) = - 2 {(m-y/Tt) £(y,t,x)}+ &(2'§ {s2f(y,t,x)} (1.4.9)
Bt » » ay t] » 3y 1] ’ . .

This second order partial differential equation is a special form of the
forward diffusion equation, Eq.(1.3.22).

Gluss gives a mathematical analysis of Eq.(1.4.9) indicating a number
of relations between different functions resulting in directives for numer-
ical computationms.

The results presented in this paper and the previous one are expressions
for the stationary distribution of the somatic potential and for the moments
of the interval distribution. In Ch. 2 these equations are derived for
arbitrary drift and dispersion, in Ch. 3 applied on the system without decay
(5 3.2) on the system with proportional decay (5 3.3) and on the equivalent

circuit of the membrane (§ 3.4).
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THE STATIONARY SCENE:
MATHEMATICAL DERIVATIONS.

2.1 INTRODUCTION

In the previous chapter a theoretical approach, the diffusion model,
has been formulated and evaluated with regard to physiological evidence.
In this chapter a mathematical analysis is made of the diffusion equations
for the stationary situation. The main results are analytical expressions
for the distribution of the somatic potential and for the moments of the
distribution of intervals between action potentials.

The basic equations for a diffusion process, derived in § 1.3, are

%t f()’.t.x) - P(%y»)') f(y,t,x) (2.1.1)
2 £ = ad) £(7,8,% (2.1.2)

Here we introduced the forward diffusion operator
P,y =-2awm + &) by (2.1.3)
ay’ ay 3y y ol
and the backward diffusion operator
3 3 3 2
Qx,3) a(x) 5+ b)) (2.1.4)

Four functions of fundamental importance will occur frequently in the
analysis.

1. The first function is already introduced in § 1.3; its definition is

here repeated in more neurophysiological terms.

f(y,t,x) = probability density of the somatic potential at the value y
a time t after the occurrence of a value x, under the condition
that no action potential has been generated in this interval.

This probability density obeys Eq.(2.1.1) and Eq.(2.1.2).

2, The second function defines the distribution of the pulse initiation

time.

g(t,x) = probability density for the first action potential to be initi-
ated a time t after the occurrence of a value x of the somatic
potential.

Thie probability density is identical with the distribution of the first

passage time.



34

From the definitions follow

lim f(y,t,x) = 0 and lim g(t,x) = 0

tre toro

Conservation of probability leads to the relation

d t
de f(y,t,x) + Jdu glu,x) = 1 (2.1.5)
e °

3. The third function to define is the probability density of the somatic

potential under repetitive activity.

h(y,t,x) = probability density of somatic potential at the value y a time t
after the occurrence of a value x.

4, The last function is the probability density for the initiation of an

action potential under repetitive activity.

n(t,x) = probability density for an action potential to be initiated a
time t after the occurrence of a value x of the somatic potential.

After the occurrence of an action potential the somatic potential
assumes the value xo(§ 1.3; Ass. 5). As a consequence g(t,xo) is identical
to the probability density of intervals between action potentials. For the
same reason n(t,xo) is the event density of action potentials a time t
after the occurrence of an action potential. This conditional event density
has the nature of an autocorrelation function; in neurophysiology it has
been awarded the slightly confusing name of expectation density. (Perkel,
Gerstein and Moore, 1967).

Since there may have occurred an arbitrary number k > 0 of action
potentials in the interval (0,t), the function h(y,t,xo)is the convolution
of £ and the k-fold convolution of g summated over all values of k > 0.
Laplace transformation allows a simple presentation of this relation

Rrpix) = T E(r,pux) . (8(pyx )1 = 2P %0) (2.1.6)
k=o l—g(p,xo)

An action potential occurring at t may have been preceded by an
arbitrary number k': 0 of action potentials in the interval (0,t). In the

Laplace domain this is expressed by

8px) = I B(pax) (E(p,x )1 = —BBaX) (2.1.7)
k=0 o ]'B(Ptxo)

The last equation is a well known relation for all types of renewal

processes.
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In the next paragraph the forward equation will be shown to yield the

equilibrium distribution of the somatic potential; that is the function

h(y) = 1lim h(y,t,x) (2.1.8)

tore
In § 2.3 the backward equation is used to derive the moments of the inter-

val distribution

©

de " B(t,x ) (2.1.9)

—_—

Tn(xo) =
°
The last paragraph of this chapter indicates a way to take account of

refractory influences.
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2.2. THE DISTRIBUTION OF THE SOMATIC POTENTIAL.

The forward diffusion equation forms the base for the mathematical

operations of this paragraph. Therefore it is repeated
] 3
3¢ £ 6% = Pi3,y) £(y,t,%) (2.1.1)
The initial condition is taken at the end of an action potential, then
£(y,0,x ) = §(y=x ) (1.3.24)
Laplace transforamtion of Eq.(2.1.1) incorporating at the same time the
initial condition, gives
- 3 -
P £(y,pax) = 8(y-x ) = P(3,y) £(y,p.%) (2.2.1)

Division of Eq.(2.2.1) by 1 - ﬁ(p,xo) and interchange of the order of

operations leads for x = x, to
8 (y-x%4)

1-8(p,x)
The rest of the procedure is as follows:

P ;(y.p,xo) - = P(%y.y) ﬂ(y.p.xo) (2.2.2)

- multiply Eq.(2.2.2) with p,
- take the limit p » O,
- use the relation

lim p h(y,p,x) = lim h(y,t,x) = h(y)
p*o tore

-~ make use of
lim p?h(y,p,x) = lim p h(y) =0
p?o po
This results in the equation
9 .
P(3,5¥) h(y) = = 8(y-x ) lim —B—— (2.2.3)
y p>o I_Pg(P'xo)
The Laplace transform of the first passage time density may be expanded
as a power series of p with the moments as coefficients

T, (0

gpox ) = I 5— p° (2.2.4)

n=o
where

T (x)
2. = (- 2 )" &(p,x) (2.2.5)
: /

9p
p=o
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Under the condition that
To(x) - fdt g(t,x) = 1
0

this expansion leads to
lim
p>o
Combination of Eq.(2.2.3) and Eq.(2.2.6) gives

P -1
l—_m = Tl (x) (2.2.6)

PG,¥) b = -1} (x) 8(yx,) (2.2.7)

Because of the form of the forward diffusion operator, given in Eq.(2.1.3),
the second order ordinary differential equation, Eq.(2.2.7) may be integrated

directly. Using the boundary condition
h(-=)= 0
the result is a first order differential equation
3 -1
a(y) h(y) 3y {b(y) h(Y} =T "(x ) elyx) (2.2.8)

in which ¢ is the unit step function.

After insertion of the boundary condition
h(d) =0

the solution of Eq.(2.2.8) yields an expression for the stationary distri-

bution of the somatic potential

d
c(y)
=1 e _ -C(z)

h(y) = T‘ (xo) YO sz ez xo) e (2.2.9)

y
where
y
=3P L W - 4 e (2.2.10)

and a(y) and b(y) are the drift and dispersion.
A more direct relation with the fluctuation equation is given in the

equivalent expression

- Jo ¢ T
h(y) = TI (xo) 2 W sz e(z-xo) ——ET;)— (2-2.1])
Yy
where
y
v(y) = 22 1y - Idzy(z) (2.2.12)

182 (y)
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Since

dy h(y) =1

—

8

The average interval duration is given by

d d

el (y) e ()
T](xo) = Zde _B—(_)'L) '[dz e(z-xo) -B—(Z).
— y

Partial integration transforms this equation in

T () T J(@
r4

_ e
Tl(xo) - Zjdy B(y) B(z)

x -
(¢}

(2.2.13)

(2.2.14)

This relation forms a special case of the results of the next paragraph.
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2.3 THE DISTRIBUTION OF IMPULSE INITIATION.

The backward equation is fundamental for the derivations of this

paragraph
] ]
'st f(}’yt-x) = Q(xygx) f()',t,x) (2.].2)
The conservation of probability, given in Eq.(2.1.5), reads in the
differential form d
9
glt,x) = - = de £(y,t,x) (2.3.1)

-
Since the backward diffusion operator does not contain the forward
variables y and t, it is allowed to integrate Eq.(2.1.2) with respect to y,
to differentiate with respect to t and interchange the order of operationms.

The following equation results
3 ]
¢ B(E:X) = Qlx,7.) 8(t,x) (2.3.2)

This equation for the distribution of first passage times has the same
form as the bakcward equation.

The initial condition for this equation is
g(o,x) = 0 (2.3.3)

and the boundary conditions are

g(t,d) = &(t), lim %x g(t,x) = 0 (2.3.4)
x—)—m

A solution in closed form of Eq.(2.3.2) has been found only in the
case that drift and dispersion are independent of the value of x:
a(x) = a, b(x) = b. This case, known as the Wiener-Einstein model of
diffusion is treated in detail in § 3.2.

For a more general analysis we start again with Laplace transformation.

Eq.(2.3.2) with its inital condition leads to
~ 3y a
P B(p,x) = Qlx,3,) E(p,%) (2.3.5)
with transformed boundary donditions

~ . 9 A
g(P’d) =1, lim Ix g(P»x) =0 (2.3.6)

X+
Substitution of the explicit form of Q(x,%i) as given in Eq.(2.1.4) and of

the function c(x) as defined in Eq.(2.2.10) gives Eq.(2.3.5) the form

PGy B = e + £ % 200 (2.3.7)
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Multiplication of both sides with exp {C(x)} 1leads to

c(x)
- ] (o} 9 A
P fg?;y g(pyx) = 35, fe () % B(PX)} (2.3.8)
The rest of the operations are:
- integrate the equation over x,

~ use the boundary conditon for x = -=,

multiply both sides with exp {-C(x)},

- integrate the equation over x,

- use the boundary condition for x = d.

The result is an integral equation

. i e (L @

g(p,x) = 1 - dey e sz Y] g(p,2) (2.3.))
x —=

or alternatively

TTO Y T@
g(Prx) =-1- ZPJdY B(y) [dz ﬂ(z) E(sz) (2.3.]0)

X =
A simplification of the formulas is caused by the definition of the

integral operator

N JCO R AR IO
= 2|d d .3.
L ZJ MATE)) Jz 8(2) (2.3.11)
x —o
which gives Eq.(2.3.10) the seemingly simple form
g(pox) = 1 - p L {E(p,2)} (2.3.12)

To our knowledge no general solution of this equation in closed form exists.
However, it is possible to derive a recurrence relation, involving the
operator L, for the moments of the distribution of intervals between the
presence of a value x for the somatic potential and the occurrence of the

aext action potential. The nth moment defined by Eq.(2.1.9), obeys

TSPT RN | NP
Tn(x)/n. (Bp) g(p,x) (2.2.5)
p=o

Combination of this relation with Eq.(2.3.12) gives the results

To(x) = 1
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as should be expected; and

@
7,00 = L1} = 2fay & Jaz

3e)) B0 (2.2.14)
x -—
which was already derived in the previous paragraph;
Tz(x) = 2L {T (z)}
Tt Y e
L] 4de 5(y) sz ) T](z) (2.3.13)
for the second moment; and finally
- L] ' n
Tn(x) nl {Tn_l(z)} n! L7(1} (2.3.14)

as the general equation. The numerical values of the moments can be computed
from these expressions. For the distribution of intervals between action
potentials X should be substituted for x.

Experimental results are usually not expressed in the moments, but
either through the interval distribution or using the lower cumulants of the

distribution. The cumulants are defined through

3 \n -
Kn(xo) =- (- -a-P) in g(p.xo)/ ] (2.3.15)

They are in a simple way related to the moments:
1" T1 = | = mean.

K, = TZ—Tf =g2 = variance,

K%/Kl =Y, = coefficient of variation,

K3 - T3 - 3T|T2 + ZT? = third central moment,
K3/u3 v, = skewness,
2 2 4
K4 - T4 - 3T2 - 4T1T3 + ZTIT2 - 6T1,

Kalc“ = y, = excess.

Digital computer simulations of Lynn (1969) showed that variatiom
of parameters of a neuron gave marked and systematic changes in u, o, Y,
and Yz.

The event density (frequency) of action potentials is simply related

to the average interval through

n = Tl(xo)-l (2.3.16)
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The first order conditional event density (expectation density)

follows from the distribution of intervals (compare Eq.(2.1.7))

_ g(p,x.)
n(P,xo) = ]Térmo) (2.3.17)
This relation can also be expressed directly in the moments of the interval
distribution
2 Tn(xo) n - Tn(xo) n
ﬁ(Psxo) = -1 — (-p) I =0 (-p) (2.3.18)

n=o n=1

As a consequence of the reset-condition (§ 1.3; Ass. 5) the higher
order conditional event densities do not contain new information; frequency
and expectation density give then a complete description of the statiomary
output sequence of action potentials.

An approximating function for the interval distribution based on the
knowledge of the first four cumulants may be found in the following way.
For distributions with a single mode Pearson devised a family of functionms,
defined by

df(z) _ z - a
dz b + b,z + b,z
) 1 2

f(z), a = mode (2.3.19)

A number of well known distributions belong to this family: normal, beta,
gamma distribution. The parameters a, bo’ b] and b2 are in a rather simple
way related to the first four cumulants. The type of distribution depends
on the value of
2 2
Yi(yy + 6)
K = 3 7 (2.3.20)
4(3v) = 12 = 4y, )(3v) - 2vy)

If
Kam<—>Y2=-23-ry$<——>b2-0

then the distribution is a generalized gamma distribution (Pearson type III)

& = e GO e- £55) (232D

which is completely specified by its first three cumulants. The parameters

are limited to
a<t<w, -@<qg<e@, Q< <o 0 <B <=

and related to the first three cumulants by

a=u-20/y,, 8=}y, w-= (Z"Yl)z (2.3.22)
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When a gamma distribution supplies an acceptable approximation, then

Bpox)) = e P @p+ )7 (2.3.23)
and
ﬁ(p,xo) ={P (Bp + " -l}_l (2.3.24)
Three special cases of gamma distributions of the intervals are
- no dead time: a= 0, B , T
- exponential with dead time: a , B , T =1

- exponential without dead time: a = 0, 8 = Tl' 7 =1

Because of the reset condition (§ 1.3; Ass. 5) the last process is a Poisson
process. In this case the expectation density is constant and the frequency
n= TIl gives a complete description of the sequence of events.

If a gamma function does not fit the interval distribution satis-
factorily and values of more moments are available, refinements of the
approximation may be produced by adding terms of the associated Lagurerre
expansion.

An advantage of this method of curve fitting is that type and parameters
of the distribution result from simple algebraical mainpulations of the
lower moments. The best approximating curve is in this procedure not defined
by a least square deviation, but through an identification of the lower
moments of both functions (Kendall Stuart, 1963; Johannesma, 1968).

To what extent this approach is useful depends strongly on the purpose
of the investigation. When the interest is concentrated on the intracellular
processes causing the action potentials the neglect of fine details of the
interval distribution in this approximation is a serious drawback, if
however the signal characteristics of the sequence of action potentials
are considered this type of description may be satisfactory. An advantage
of moments and cumulants is that much is known about their sampling
characteristics; moreover, they allow the presentation of comparable

results of a large number of experiments in a single graph.
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2.4 THE INFLUENCE OF REFRACTORINESS.

A proper treatment of refractory effects should take into account at
least all the four variables of the Hodgkin-Huxley equations as well as
geometrical properties of the membrane. Mathematically this is too difficult.
A widely used procedure is to consider the threshold to be dependent on the

time passed since the last action potential.
d(t) = d + dr (t ~s) (2.4.1)

Here s is the moment at which the last action potential occurred and dr(u)
is a function which decreases from infinity at u = 0 to zero at u = =,
This model implies, in our approach, a time-dependent boundary condition
and is not analytically tractable.

An alternative approach is now presented. The function A(y) is defined

8

by

A{u) > 0 for all u > 0 ; du 2(u) = = (2.4.2)

O —_—

Usually A(u) will be a function which goes smoothly and monotonic from
0 to 1; for instance
A(u) = 1 - exp(-t/t,) (2.4.3)
(Fuortes and Mantegazzini, 1962).
Refractory properties are described by multiplying the 'spatial'

1

coordinate with a factor (A(t-s)} = for t > s. As a result the threshold

potential becomes

d
d(t) = Tt'?) (2.4.4)
and the reset potential
x
o
XQ(t)‘ YD) (2.4.5)

Some reflection leads to the conclusion that this 'space-transformation'
is equivalent with a multiplication of drift a with A(t-s) and dispersion b
with {A(t-s)}z. This means that refractory influences are manifest mainly
in a reduction of the amplitude of the input with a factor A(t-s).

This description appears, in the whole of the theoretical approach,
an acceptable simplification of the physiological situation. However, also

here again we come across complicated mathematical problems.
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A more succesful way, not too different from the previous one, to
treat refractoriness, is a multiplication of both drift and dispersion
with A(t-s)
a(x,t) = A(t=s).a(x) (2.4.6)
b(x,t) = A(t-s).b(x) (2.4.7)

This amounts to the assumption that at a time u after the last action
potential all processes are slowed down with a factor A(u). Roughly, this
is equivalent with the assumption that the probability for an incoming pulse
to reach the central somatic structure is reduced with a factor A(u).

The mathematical analysis relies on the introdudion of a transformed

time variable

t-s
A(t-s) = ] du A(u) (2.4.8)
°

in terms of which the diffusion equations can be reformulated as time
independent equations. The rest of the mathematical operations for the
determinations of (the moments of) the interval distribution is then
formally identical with that given in § 2.3. The main result of this proce-
dure is the assertion:

1§ drigt a(x) and dispersion b(x) result in a cumulative distribution of
intervals G(t) and a probabllity density function g(t) then drift
A(t).a(x) and dispersion A(t).b(x) result 4in a cumulative distribution o4
Aintervals G (t) = G(A(t))and a probability density g . (t) = A(t) g(a(r)).
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THE STATIONARY SCENE:

APPLICATIONS AND RESULTS.

3.1 INTRODUCTION

In the first chapter a mathematical framework was constructed which
incorporated some of the basic physiological properties of a neuron. The
second chapter contained mathematical procedures which derived from the
diffusion equations a number of more specific expressions. The main results
were formulas for the stationary distribution of the somatic potential and
the moments of the interval distribution. In this chapter these formulas
are applied on three detailed models.

These three models consist all of first order systems followed by a
threshold-reset mechanism. The sections in front of the threshold are in
the three cases: an integrator, an imperfect integrator and an equivalent
circuit for the membrane. For the first two models analytical expressions
and numerical results are presented, for the third only the mathematical

formulas.
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3.2 THE SIPIT-MODEL

In this model for a neural cell a Stochastic Input enters a Perfect
Integrator followed by a Threshold-reset mechanism: this description of a
neuron will be named the SIPIT-model. The stationary characteristics are
not so much treated here for their own importance, a large amount is already
well known, as for the development of a dynamical description in the next
chapter.

Following the approach of § 1.3 the subthreshold behaviour is described
by the fluctuation equation

F=i(®) =nm+su (3.2.1)

where
m = <i(e)>,

@
sz dt { <d(e).1(t+1)> - <i(t)%>,
w(t) = Gaussian white noise,
(compare Eq.(1.3.2) - (1.3.5)).
The important quantities drift and dispersion of the Eqs,.(1.3.8),
(1.3.19) and (1.3,20) are given by

a=a=m, b=8" =3s (3.2.2)

For this model all functions of interest are known (Bailey, § 14.4).
The transient distribution of the somatic potential ( § 2.1, Def, 1) has the

form
y=x y=x=2d my-%mzt
£(,t,x) = {p(Z=) = p(==—)1} exP(—z) (3.2.3)
sv't sVt s

where the abbreviation for the normal distribution is used

- “uy2
o (Zh = exp { - 3D (3.2.4)
9 ov2r
The first passage time or interval distribution (§ 2.1,Def. 2) is
given by d-xo d-xo-mt
g(t,x ) = —=2 p(—>—) (3.2.5)
sVt

In Fig, 3.2,1 = 3.2.4 a number of interval distributions are presented for

2
x = 0, d = 1; average value m and incremental variance s~ are the parameters.
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Without loss of generality the reset potential can be normalised

to zero and the threshold potential to ome

x =0, d=1

The following relations are then valid:

the mean interval is equal to

U= T1 =m , (3-2-6)

=T -=- T1 = 3s“/m (3,2.7)

and the coefficient of variation, defined as the standard deviation of the

intervals divided by the mean interval,

Y, = o/u = {%sz/m}% (3.2.8)
Since drift and dispersion are equal to average value and incremental
variance of the input
a=m, b=s
their ratio, as defined in Eq.(2.2.10), is simply
c = .?b = 1;‘15 (3.2.9)
2 28
Substitution of this expression in Eq.(2.2.Y) gives the equation for the

stationary distribution of the somatic potential

L (0T L 0D e ) 1 - f0TEI (3.2.10)
[e]

h(y) =

The distribution h(y) is a continuous function of y but has a discontinuity
in its derivative at the reset value X .

For the normalised values X =0, d =1 Eq.(3.2.10) becomes

-1
hy) = e - 0D 4y (1 - &) (3.2.11)
A collection of graphs, with sz/m = 2/c as parameter, is presented in

Fig. 3.2.5.
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0 %
PROBABILITY DENSITY

0w

Fig. 3.2.5 The stationany distrnibution of the somatic potential fon the
SIPIT-model; at both sides sz/m decreases grom the Left to the naught,

A conclusion with important implications for the dynamical properties
(Ch. 4) follows from Eq,.(3.2,10) :
the stationany distrubution of the somatic potential depends only on the
hatio of average value and inchemental variance of the input and not on
one of them separately.
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3.3 THE SILIT-MODEL,

In this description of a neuron a Stochastic Input impinges upon a
Leaky Integrator followed by a Threshold-reset mechanism, This model,
usually described as the proportional decay model, has been widely studied,
mainly with respect to the distribution of intervals between action potenti-=
als (for discussion and references see § 1.4).

The fluctuation equation, describing the subthreshold behaviour, is

%:-y/r+ i(t) =m - ¥/1+ s w(t) (3.3.1)
where
m = <i(t)>,
o
2 . 2
s= Jdi'{ A(t).i(t+D) > = <i(B) >,
-
w(t) = Gaussian white noise.
Drift and dispersion are given by
a(z) = ¢(2) = m - z/1, b = 52 = 52 (3.3.2)

From the definitions, given by Eq.(2.,2.10) and Eq.(2.2.12), follows

2
c(@) = v =53, c(z) = r(2) = - (2F—) (3.3.3)
34

where we used the notations
m=m , Az = 521 (3.3.4)
Closed solutions for the transient distribution of the somatic potential
f(y,t,x) and the interval distribution g(t,x) are unknown. The moments of the
distribution of intervals between action potentials follow from the sub-
stitution of Eq.(3.3.2) and Eq.(3.3.3) in Eq.(2.3.14),

The result is
y

T (x) . T (2)
-2 de exp ((EM% J az exp (- DY ol (3.3.5)
‘ A X -—cs

A simplification of this equation 1is caused by the introduction of the

dimensionless variables

D=0——m pu_== — (3.3.6)
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The result is the recurrence relation

X (-]
2 .2
M (X,D) = 2 de e’ Idz e ® u_ (z,0) (3.3.7)
D y

A general conclusion follows from Eq.(3.3.7):

if time is measwred in units of the time constant 1, then all moments of the
interval distrnibution, and as a consequence interval disiribution and expec-
tation density, depend only on the two combinations of system and input
parameierns X and D.

The important equation for the average interval can be given in several

equivalent forms.

T,(X,D) = t{u(x) - u(d)} (3.3.8)
where
x o
2 L2
wx) = 2 Idy ey sz e ? (3.3.9a)
ol 1 e-2xu
= Jdu et = (3.3.9b)
0 u
= Lyt I e (3.3.9¢)

Small values of x allow the use of the serles representations of
Eq.(3.3.9c) for numerical computations, For all positive values of y the
integrand of Eq.(3.3,9a) is bounded by

2

(y + /y2 + 2)-1<ey -z

dze? <(y+ N2+ a/mTy o0 (3.3.10)

= g8

(Abramowitz and Stegun, 1965; p. 298). For large values of y this gives

27 -22 -1
2¢¥ J dz e 2=y '3 y >> 1 (3.3.11)
y »

When both X and D are large this results in the approximation

ma
T,(X,D) = tla(X/D) = tln mfg; X > 1, D >> 1 (3.3.12)
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Eq.(3.3.12) applies exactly in the limit s -+ 0, that is an input approach-
ing a constant current. In this case this equation can also be derived
directly. For x = 0, d = 1 the average interval for a constant current input
is
T @m0 = - da(l - 1) (3.3.13)
Numerical results are presented in terms of dimensionless variables,

The dependent variable, the output, is gilven by
N = r/'l‘1

= time constant divided by average interval

= average number of pulses within a time constant.

The two independent variables characterising the input are

_m_om
M3t
= product of average value of input current and time constant divided
by the threshold potential
= equilibrium value of the somatic potential in the abeence of a threshold
expressed in units of the threshold potential
2 2
SZ 4 _8"T
dz d2

= product of incremental variance of the input and time constant divided
by the square of the threshold potential,
The reset potential x  was for all numerical computations choosen
to be equal to the resting potential

x =0
[¢]

In Fig. 3.3.1 N is plotted against M with S as parameter,

Remarkable is the strong dependence of N on S for values of M near
the threshold. The rearly discontinuous change in N at M = 1 was already
dicussed by Stein (1967). For small values of M the dependence of N on M
is approximately exponential while for large M the relation between N and
M becomes linear, These” features are well brought out by an approximative
relation
N = exp(aM + b = cN) (3.3.14a)
or alternatively
In N+ cN ~aM + b (3.3.14b)

This relation forms a good approximation for § > 0,2, The constants a, b and

c depend on S.
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Fig. 3.3.1 Frequency-cuvtent relations for the SILIT-model fon different
amounts of variability of the input,

It 1s rather unlikely that average value of the input (M) and its
incremental variance (Sz) vary independently. Therefore two different presen-
tations of the frequency-current relations, both essentially equivalent
to Fig. 3.3.1, are given. In Fig, 3.3.2 S is varied proportionally to M
with S/M as an additional parameter, In Fig, 3.3.3 the proportion of S2 and
M is constant for each curve, In both cases large regions occur over which
these input~output relations are approximately linear,

In Fig. 3.3.4 attention is concentrated on the functional relation
between N and 82 while M is constant for each curve, A rather different
presentation of the relation between N, M and S2 is given in Fig. 3.3.5.
Here M 1is the horizontal, 52 the vertical ordinate and the curves are the
collection of (M,SZ) values which result in the same output frequency.

For S2 > 0.2 the isofrequency curves are rather linear and can be

described to a good approximation by

_ 2
N =N M + g5%) (3.3.15)



56

NE
~
]
- VALUES OF S/M1t 00
90
60
8
- 7
60
30
4 ‘0
20
20
4 0
05
02
B8 o1
- 00
[}
a
3
s
)
°
[}
o
a.
b ) o W O] o) e T oC) C) C) 7m

M
Fig. 3.3.2 Frequency-cwirent relations forn the SILIT-model fon different
values of the proportion S/M.

NB

~

9 vALTES OF S/ 1 00

= 90
80

3 70

- 0
50

s w0

e 0
20
10

® o
02
ol

8 00

[}

=

8

°

1

a

R

y
8| 7
Yw O] (] [ [C] im O] ) C) iC] 2m

mM
Fig. 3.3.3 Frequency-cwuient nefations for the SILIT-model forn different
values 04 the proportion SZ/M.


http://dA.Hzn.znt
http://dA.uzn.znt

57

10 L@ K]
>
o

8
R D 0w O] o ] -] A OC) A 2w
52

Fig. 3.3.4 Frequency-varwability relations fon the SILIT-model for different
vafues of the avernage anput cwurent.

§?8

e wm LC ) ) 1@

Fig. 3.3.5 1a0-frequency curves for the SILIT-model.


http://fizqu.znc.y

58

In several of the previous graphs large regions of quasi-linearity were
present. In order to investigate this phenomenon more precisely we proceed
as follows., In an arbitrary point (M S ) of the (M, S Y-plane (with the

exception of M = 1, 52 = 0) an expan51on of the function N(M,S ) is possible,

3 2

NM,8%) = N(Mo,Si) + M) —% N(M,So)/M=M + (s%-s ) 2, N, 52 )/ +
3§

2 2
a(M,8%5M_,S0) \3.3.16)

where A represents the rest term of this expansion,
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The (stationary) E-reg1on of linearity around (M »S ) is then defined—
as the collection of (M,S ) for which

2

AQM, S ;MO,S°)< B (3.3.17)

This implies that within this region a linear approximation holds with an
error less than €.

A number of these regions for € = 0,01 are presented in Fig, 3.3.6 and
Fig. 3.3.7. Remarkable is that the regions are not necessarily closed and
that form and size depend on the location of the centre, The significance of
these regions for a linearised dynamical description based on stochastic

transfer functions 1s pointed out in Ch, 4,
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The stationary distribution of the somatic potential follows from the
substitution of Eq.(3.3.2), (3.3.3) and (3.3.4) in the general expression
given by Eq.(2.2.11). The result is

d
h(y) = %_:‘E exp (- 7 ) J dz e(zx ) exp { (517 (3.3.18)
y

For the case x = 0, d = 1 this expression becomes
1

2
L e (- ) [0 e et ED (3.3.19)
is

y

A number of these distributions are presented in Fig, 3.3.8.
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The moments of the stationary distribution of the somatic potential are
defined as d

f k
Yk =J dy vy h(y) (3.3.20)

A recurrence relation between these moments can be derived:

Y =1
o

_ Cv1a2 1
Y, =MY o+ (eD)IST Y, - e N (3.3.21)

It follows directly that the average value of the somatic potential is

Y1 =M-=-N (3.3.22)

and the variance
2 _
YZ Y1 = 38
In Fig. 3.3.9 - 3,3,11 the average value and in Fig, 3.3.12 - 3,3.14

2 +M-N-bN (3.3.23)

the standard deviation of the somatic potential are given as functions of

the normalised average input M.
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In the case where the incremental variance (82) is proportional to the
average value (M) of the input both average value (Fig. 3.3.11) and standard
deviation (Fig. 3.3.14) of the somatic potentlal vary only weakly for
M > 0.50.

If the SILIT-model does apply, which has to be decided on the base of
intracellular measurements, the results of this paragraph should correlate
with the experimental data. However, all numerical results presented here
are based on the assumption that the reset value of the somatic potential
(xo) is equal to its equilibrium value (0), If this is not the case the
numerical computations have to be done for the correct value of X, before
a quantitative comparison between experimental and theoretical results can

be made,
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3.4 APPLICATION OF THE DIFFUSION MODEL ON THE EQUIVALENT CIRCUIT
OF THE MEMBRANE

This section is mainly intended as a demonstration of the wide range
of possible applications of the diffusion approach and as a first step
toward a more accurate description of the stochastic behaviour of the
somatic potential and the generation of action potentials.

As long as no action potential occurs a small uniform patch of membrane
is represented by the circuit of Fig. 3.4.1. (Rall, 1962).

inside Vv,

|
-
| G Gg (N
VM cM
- + -
E Eg E,
:l' ﬂ_
I

n M
a1

outaide V,

™M

Fig. 3.4.1 The equivalent etrcurt of the membrane

The equivalent equation reads

dv

- M - - -

Ty = O —ac * SuMu = B * Gy - Bp) + 61Ny - Ep (3.4.1)
or

oL vaT R +(E -Ve+ (E -V (3.4.2)

dt MRM e i ’ e
where

T = CM/GM = RMCM = membrane time constant

V=V, - E, E, = E; - E e = G/Gy,

VyE Vo - Vo E, = E - Ey 1= G /G

and the membrane current IM is an arbitrary function of the membrane poten=
tial V,

We assume the input signal to consist of unpredictable changes in the
relative excitatory and inhibitory conductances GE/GM and GI/G“, of which

only average values and incremental variances are known,
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<e(t)>, sz = | dv {<e(t).e(t+1)> - <e(t)?>)

=]
n

dt {<i(t) i(t+1)> - <i(t)2>}

=]
n

<i(t)>, si =

!
I

Eq.(3.4.2) can be written as

= e + s (V) 0 (0) + 5, (V) n(6) (3.6.3)
with
a) = IR + o E +mE} -t a_ +m + 1}V,
se(V) = se{Ee = v} si(V) = Si{Ei - v},
- e(t) = Te _ () - my
ne(t) = T l'li(t) = —-Tl—

If both excitation and inhibition consist of many small independent
contributions, each with a short duration, then Eq.(3.4.3) may be considered

as a fluctuation equation. It can be written as

&= oW + BV (3.4.4)
with
w(t) = Gaussian white noise with zero mean and unit variance,

BV) = s (V) +cs, (W), =1 <eccH,

if ne(t) and ni(t) are completely correlated;
2 2 2
(V) = se(V) + si(V),

if ne(t) and ni(t) are totally independent.

Substitution of these quantities in the appropriate equations will
supply the expressions for the stationary distribution of the somatic
potential and the moments of the interval distribution.

The description of this section takes more proporties of the membrane
into account than the proportional decay model of the preceding paragraph;
as a consequence it contains also more parameters, It appears that this
more precise description will only make sense quantitively, if the values
of all parameters and variables can be measured and proper regard is paid

to the geometrical properties of the neuron.
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SOME ASPECTS OF THE DYNAMICS

4,1, INTRODUCTION

The subject of this chapter is the dynamical behaviour of neurons.
While a large amount of theoretical work has been done on the analysis of
stationary stochastic activity of neurons, much less insight exists concer-
ning the dynamical aspects.

Consider a situation given by

o(t) = T {i(t)} (4.1.1)
where T is a linear or nonlinear integro-differential operator representing
the system. The output o(t) is completely measurable. For the input 1(t)
two situations are considered: i(t) 1is completely or 1(t) is incompletely
measurable. In both cases i(t) is supposed to be controllable to the same
extent as it is measurable. An auditory stimulus is usually assumed to be
completely measurable, while a visual stimulus should, at least for low
intensities, be regarded as incompletely measurable,

For a completely measurable input a first order estimation of the
dynamics of the system T is acquired from the correlation between input and
output. A number of signals may be used as input: impuls, step, ramp,
sinewaves, noise. For a linear system these different signals all lead to
the same characterisation: the impulse response or its Laplace transform,
the transfer function. For nonlinear systems different classes of input
signals usually lead to different descriptions,

In engineering it 1s well known that in many situations it has advan-
tages to use white noise for the analysis of nonlinear systems. The input
is choosen as

1(t) = w(t)
where w(t) = stationary Gaussian white noise
Values of input and output with a delay 71 are multiplied and averaged
with respect to time., The resulting quantity is the crosscorrelation

function p(1) = <i(t = 7). o(t)> (4.1.2)
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If the system T is not too strongly nonlinear an approximation by a
linear system is useful. The optimal approximation resulting in the least
square deviation for this input is the linear system with impulse response
p(t) or transfer function f(p). A clear exposition of these methods is
given in Graham and McRuer, (1961),

It is important to realise that this method makes use of complete know-
ledge of input and output signal., Only after delay and multiplication the
averaging operation is performed. The noise w(t) as used here is unpredic-
table but measurable; a priori it 1s unknown but not a posteriori.

A completely different situation arises if the input 1(t) is a stochas-
tic quantity which 1is only partly measurable, Already mentioned is the
example of the visual system where the statistical parameters of the stimuli
are easily measured and controlled, but the precise times of occurrence of
the light quanta cannot be measured without destruction of the signal,

As in § 1.3 we assume that the input may be described as

1(t) = a(t) + s(t).w(t) (4.1.3)
The average value of m(t) and incremental variance sz(t) of the input,
defined by Eq.(1.3.2)=-(1.3.5), are measurable but the white noise w(t),
described by Eq.(1.3.12a)-(1.3.12b), is not measurable,

A rather different approach has to be developed for the analysis of
this situation. The input signal is defined as the pair {m(t), sz(c)}; it is
the {m(t), sz(t)} modulation of a carrier consisting of white noise. This
modulation can be additive (m), multiplicative (sz) or a combination of these.
Since the carrier contains equally all frequenties from zero to infinity,
there are no limitations on the frequency content of the modulation.

In some situations s(t) may be dependent on m(t). For instance if the
input i1s a frequency modulated Poisson process, or a sum of independent
identically modulated Poisson processes, then sz(t) is proportional to m(t).
On the other hand, in the neurophysiolegically unlikely situation that the
amplitude of the pulses is modulated, s(t) is proportional to m(t). If only
additive noise 1s present sz(t) is independent of m(t). In the case that
s(t) = O for all t, this description and the previous one for completely
known signal are identical,

A general property of these signals 1s that the sum of two signals
(m1(t), s?(t)} and {mz(t), sg(t)} with uncorrelated white noise carriers
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w1(t) and wz(t) is a signal {m(t), sz(t)} with
m(t) = m, (£) + mz(t)

(0 = 5o + sh(o)

Because of the stochastic nature of the input, the output is also
stochastic, The output signal is therefore defined as
n(t) = <o(t)> (4.1.4)
For neurons the output is a sequence of action potentials, The traditional
assumption is that this signal is determined only by the times at which
the action potentials occur. As a consequence it may be written
o(t) = § &(t-t)) (4.1.5)

The output signal n(t) is then the event density of action potentials, A
proper definition of this function 1is given by the equation,
t+dt
n(t) dt = <J du E 6(u-ti)> (4,1,6)
t

The analysis starts now from the relations between input signal
{m(t), sz(t)} and output signal n(t). This type of analysis will be needed
if seemingly identical repetitions of an experiment produce different
results,

Since n(t)dt represents the probability that an action potential occurs
in (t,t+dt), the event density n(t) is the theoretical counterpart of the
experimental quantity called the post stimulus time histogram. The input
signal {m(t), sz(t)} is then usually an impulse, step,ramp or sinewave,

In contrast to the first method described in this paragraph, here the
averaging operation is performed before relations between input and output
are analysed. Moreover this averaging operation cannot be taken anymore
over time, but has to be over a number of repetitions of the experiment.

In this chapter attention is given to the dynamical relations between
{m(t), sz(t)} and n(t). Two situations will be analysed. In § 4.2 the
response to a stepwise change in the input signal from a level {m . s )
to another level (m1, s } is considered: the switch-response. This name is
choosen to indicate that this response is, in contrast to the step-response
in linear systems, dependent both om initial and final level of the input

signal., An important special case is the switch -on response, which occurs
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when {m »S, } = {0,0}, The second case analysed in § 4.3 is that of small
arbitrary variations of the input signal {m(t), s (t)} around a fixed level
{mo,so}. Linearisation leads here to the concept of a stochastic transfer
matrix, which supplies an approximative characterisation of the dynamical
behaviour in a region around {mo,si}. Combination of a number of the stochas-
tic transfer matrices, gulded by the stationary characteristics might finally
result in a general dymamical representation of the input-output relations.
The last paragraph of this chapter is devoted to the formulation of inter~

action equations,
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4,2, THE STOCHASTIC SWITCH-RESPONSE

On the base of the derivations in Ch, 2 it is assumed that two
functions are known,

h(y)
g(t,x) = first passage time distribution for a start at x at time t = O.

stationary distribution of the somatic potential,

In order to be able to make use of these functions for a nonstationary

situation, a single stepwise change in the input signal is choosen for
2

analysis. m(t) = L sz(t) = s for t < 0

sz(t) = sf fort >0

(4.2,1)
m(t) = n,
For negative t the output signal, the event density, is independent of
time

n(t;mo,S§) = n(mo,sz) = {T1(m0,52)}-1, t <0
For positive t this event density is explicitly dependent on time. The
following line of thought supplies an expression for n(t).

The probability density for the somatic potential at t = 0 is stationary
and give by h(x;mo,sZ). The probability density that the first pulse occurs
at t > 0 when the potential has a value x at t = 0 is the function
g(t,x;m1,sf) averaged over all initial values x, each with its probability
density., Symbolically this may be written as

d
g(t;m1,sf|m°,s§) = f dx h(x;mo,si) g(t,x;m1,s$) (4.2.2)
The event density n(t) that an arbitrary pulse occurs at some time
t > 0 obeys in the Laplace domain the equation
- 2 Bpsm 5] Imgys2)
a(p;my,s]lm ,s) = —— (4.2.3)
1- g(p;m1.s1)
where g(t;ml,sf) is the stationary distribution of intervals for am input
signal {m1,s%}.

Since h(x;mo,s:) was given in Eq.(2.2.9) and §(p,x;m1,s$)forms a power
series in p for which the coefficients were derived in § 2,3, the function
ﬁ(p;m1,s$[mo,s§) is, at least in principle, fully known,

Two special cases of Eq.(4.2.3) are treated.
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In most models, with the exception of the SIPIT-model which contains
a perfect integrator, an equilibrium value of the potential exists: X e

It is evident that in these models for m =0, sz 0 the distribution of

the somatic potential at t = 0 is concentrated at x = x

e
h(x;0,0) = G(X'xe). (4.2.4)
This simplifies Eq.(4.2.2) to
2 2
g(t;m;,57]0,0) = gt,x ;m ,s]) (4.2.5)

and Eq.(4.2,3) becomes )
E(P’xe;m1 ’51)

A(psm,,02]0,0) = —= 11 (4.2.6)
1-g(psmy,sy)
If reset and equilibrium potential would be identical, X, =X,
Eq.(4.2,6) becomes
ﬁ(p;m1.5$|0.0) = fi(p,x_;m,s,) (4.2.7)

Conclusion?

£§ equilibrium potential x  and reset potential x  are Ldentical

then the dynamical aswitch-on hesponse of the event density is identical
to the stationary conditional event density (on expectation density)
for anbitrany values of average value and incremental variance of the
Anput signal,

The second case is the application of the switch-response on the
SIPIT-model, The statiomary distribution of the somatic potential depends,
as shown in § 3.2 for this model only on the ratio of average value and
incremental variance of the input

h(y;m,sz) = h(y;m/sz). (4.2.8)
For the input signal {m,sz} the assumption is made that, though average
value and incremental variance change, their ratio is constant
mllsf = mo/sz (4.2.9)
Using Eqs.(4.2.2), (4.2.3) and (4,2.8) it can be shown that the condition
of Eq.(4.2.9) leads to the relation
n(t;m1,s$|mo,s§) = n(t;m1,s$|m1,s$) (4.2.10)
The right hand side of this equation is the event density in case no change

in the input signal occurred; this however, is the stationary event density.
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As a consequence
2 2, _ 2
n(t,m1,s1|m1,s1) = n(m1,s1) (4.2.11)
Eq.(4.2.11) states that the event demsity is in this situation independent

of previous values of input or output signal, Since an arbitrary function

of time may be approximation by a sequence of steps, this leads to

ae; m(e), s2(t)) = n@(t)) (4.2.12)
From the results of § 3.2 follows
n(m) = A.m (4.2.13)

=1
A=(d - xo) ,m>0

which gives finally for the SIPIT-model

n(t; m(t), s2(t)) = A.m(t) (4.2.14)
Conclusion?
4if the SIPIT-model is subjected to an input signal {m(t),sz(t) = c.m(t)},
c>0

then the output signal n(t) L8, apart from the scaling factor A, identical
Lo the input signal m(c)

n(t) = A.m(t) (4.2.15)
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4,3 LINEAR REGION AND STOCHASTIC TRANSFER MATRIX

The purpose of this paragraph is to develop a generalisation of the
transfer function, This function, defined- as the Laplace transform of
the impulse response, has proven extremely useful in linear system theory.

The relation between the input current i(t) and the output sequence
of action potentials o(t) is strongly nonlinear., Traditional methods of
linearisation will be unsuccesful in this case, However, the redefined
input signal {m(t), sz(t)} and output signal n(t) are much more linearly
related. This is well illustrated by the stationary N versus {M,Sz} graphs
in § 3.3,

A linear description, expressed by means of a stochastic transfer
function, will serve as a first order approximation of the dynamical
properties, The usefulness of this approximation depends on the size of
the region‘in which the linear description applies with a precision €.

The point of departure is again a stepwisse change in the input signal
at t = 0, but now limited to small amplitudes

{mo,sz} - {mo + Am,sz + AsZ}
The stationary event density for t < 0 is equal to n(mo,sz). The stochastic
step response is

u(t;Am,Asz;mo,sz) = n(t,mo + Am,si + Aszlmo,s:) - n(mo,si) (4.3.1)

If the event density and its derivatives are differentiable, which

2
appears in general to be the case for s° > § > 0, then it may be approximated

by a power series in both Am and A4s
2 2 2
n(t;mo + Am,so + As |m°,s°)

9 29 ,k 2 2
=~ + - s
{6m m bs 352} n(t;m,s lmo’so)/m=m (4.3.2)
s=s
o
For Am and As2 small enough the terms with k > 2 give a contribution less
than a given e; neglecting then terms with k > 2 gives the linear approxi-
mation to the step response. The values of {Am,AsZ} around {mo,si} for which
the linear approximation to the stepresponse differs less than e¢ from the

fexact response is defined as the e-region of {mo,si}.
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The linear approximation of the stochastic stepresponse is

2 2 3 2 B
u(t;Am,As ;mo.so) = {Am 3n + As 2} n(t;m,s |m 5 )/m = (4.3.3)
s=s
o
or in matrix notation
u =[um,u 2]. Am (4.3.3)
s As2
with
2, _ 9 . 2
um(t,mo,so) = = n(t,m,so|mo,s )/m—m Gt

u 2(t;mo,scz)) = %Sz n(t;mo,szlmo,sg) ~
s /s-so

An arbitrary function of time can be approximated by a sequence of
steps, If € << 1 then all steps w1thin the e-region of {m »S } have the
form of the step response of {m S } as described by [u ,u2] of Eq.(4.3.4)
with an error of the order of e. A linear description of the input=output
relations applies then in the whole e-region of {mo,sz} with precision €
and methods analogous to linear system theory may be used.

As in linear system theory a transfer matrix is defined;
however, here this is a region-dependent stochastic transfer matrix, Its
elements are equal to the Laplace transforms of the corresponding elements

of the stochastic unit stepresponse matrix multiplied with p

- 20 e 20 _ 3

ho(psm ,s) = p 8 (pim ,s) = p 5 Blpim,s Im yS )/m_m (4.3.5)
- 2 ~ 2 3 A 2

h o, (psm,s ) =p 8 ,(pim_,5.) =p 5, Alpim_,s |m°.s°) _ (4.3.6)
s s /s—so

The region dependent stochastic transfer matrix is

H-[h h ] (4.3.7)
S

The relation between an arbitrary input signal {m(t),sz(t)} within the
e-region of {mo,si} and the output signal n(t) is then, in the Laplace

domain, given by

~

RB) - 8,00 = Ligsh 5] [m(w - ao(m]
() - 82(p)
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or

A() = n /p=h (&) - m /p} +h, (8°(p) - sX/p) (4.3.8)
s
where

n, = n(mo,sz)
1s the stationary event density for the centre of this domain and ;mand
2 are as defined in Eq.(4 3.5) and Eq.(4.3.6). Eq.(4.3.8) is valid for
arbitrary but fixed {m ’S, 2,

There are reasons to expect that the dependency of h (p, ,52) on 52
may, in a number of situations, be quite strong and that in many cases the
dependency of h z(p LI ) on p will be weak,

Form and size of dynamical e-reglons are usually difficult to determine,
however, these regions are always contained within the corresponding statio-
nary e-reglon., A reasonable estimation of the dynamical e-region would be
the stationary e/2-region.

For the SIPIT-model, treated in § 3.2, the stationary relation between
the input and the output signal is

n = A.m, r=@-x)T, om0 (4.2.13)

The stationary e-region of linearity 1s then for arbitrarily small ¢
m >0 (4.3.9)

Eq.(4.2.15) leads to the conclusion that the dynamical e-regions of linearity
are
{m(t) > 0, s2(t) = c.m(t)}, c > 0 (4.3.10)
Because of the character of the region defined by Eq.(4.3.10), it is
permitted to take n_,o and si in Eq.(4.3.8) all equal to zero. This results
in the equation
A(p) = h_&(p) + h ) 52 () (4.3.11)

m

under the constraint
) = c i , c >0 (4.3.12)

Laplace transformation of Eq.(4.2.15) gives

fi(p) = r.f(p) (4,3.13)
Combination of the last three equations leads to a relation between the two
elements of ths stochasticﬁtransfer matrix of the SIPIT-model

hm(p;c) + c.hsz(p;c) = A (4,3.14)
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Conclusion:
4§ zhe SIPIT-model receives an anput Aignal
{m(t), sz(t) = c.m(t)}, ¢ >0
then a stochastic thansfer functeon can be defaned as
h(pse) = ;m(p;c) + ¢ h_(p;c) (4.3.15)
whech 14 valed for all m(t) > 0;
the form of thes transfen function 44
ﬁ(p:c) =2

The stationary e-regions of linearity for the SILIT-model were presen-
ted in § 3.3 for ¢ = 0.01, The dynamical characteristics of this model are
hard to analyse; no general properties could be derived, Intuitively it seems
clear that for large values of the input signal the leakage of the somatic
potential is relatively unimportant and the behaviour resembels strongly
that of the SIPIT-model. For small values of the input such that firing
frequency is low, a relation between the transfer function of the linear
part of the neuron in front of the threshold and the correlation between a
white nolse input and the output spike sequence has been established by
De Boer (1967, 1968), It appears that this correlation function is tightly
related with the transfer function ;m(p;0,0). Values of the input comparable
to the threshold may lead to much more complex characteristics,

From the stochastic transfer matrix a deterministic transfer function
can be derived, In the deterministic situation the input signal does not
contain an unknown part, this implies

{m,sz} -+ {m,0}
. The stochastic transfer matrix [ﬂm,ﬁ 2] becomes a transfer function
h defined as ) s

~ 2
hm(p.mo) = lim hm(p,mo,so) (4.3.16)
S°+O

and the inpute-output relation takes the form

fp) - A () = h_(psm) (@(p) - B () (4.3.17)

For o = 0 this deterministic transfer function resembles strongly the
Laplace transform of the correlation function 3(p) given in § 4.1,
For linear systems stochastic transfer matrix, deterministic transfer

function and traditional transfer function are all identical.
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4.4, INTERACTION EQUATIONS

The results presented in this paper do not allow a complete specifi-
cation of general interaction equations. However, it is possible to propose
nonlinear equations describing the stationary interaction for a large region
of the input and output variables. Moreover, linearised dynamical interaction
equations can be formulated which are valid for small variations of the
variables within an arbitrary region,

The numerical data for the stationary input-output relations of the
SILIT-model are given in graphical form in § 3,3, These results can b
described through

N = exp {aM + BS2 - YN - § + c(M,Sz)} (4.46.1)

where c(M,SZ) is a correction function which is small for large regions of

the (M,Sz)~p1ane. The neglection of this function gives the approximation

N = exp {aM + 552 - YN = &} (4.4.2)
Since for constant S2
1im —g =1
M-

it follows that
Y=a (4.4.3)

Moreover there exists the relation

ot 1-x°/mr -1 ad+x°
§=1im { —— = (In — ) 1= — (4.4.4)
man {3a X, T-d/mt d xo

When reset and equilibrium potential are equal, as choosen for the compu-~
tations of § 3.3, then § = 1, The results, especially Fig. 3.3.5, indicate
that B8/a 1s not really a constant but decreases with N; for N 2 0.1 holds
that 0 < B/a < 1. In spite of this deficlency we shall accept Eq.(4.4.2)
as an approximation to the stationary input=-output relation,

For a neuron in interaction with other neurons subscripts should be

added to all variables. Eq.(4.4.2) reads then

2
N1 exp {u.iM1 + 8151 - uiNi § (4.4.5)

The analysis of § 1.3 and § 1.4 showed that, in the absence of external

11}

influences and under the condition of high convergence, the input is to a
large extent characterised by average value and incremental variance of

this signal,
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The relation between M and 82 and the contributing spike sequences is
given by Eq.(1.4.2)-(1.4.5)

m,T c., T
W, o= =2 = p -4 T—i“j (4.4.6)
21 ] iy
S<1 c T
s2 = 112 = p (25?2t N, (6.4.7)
i h| i 3
It is desirable to define the dimensionless quantities
c c T
- (o, 4 13,2y 4
Yij {Gi 3 + Bi(_d_) Y. E) 143 (4.4.8)
i i j
c c
N £ it

The equations describing the stationary activity of an ensemble of inter-
acting neurons take then the form

N = exp {§ Yij Nj - Si] (4.4.10)

or
1n Ni = § Yij Nj - 61 (4.4.11)
A reasonable way to incorporate refractoriness in the stationary

equations is the multiplication of the right hand side of Eq.(4.4.10) with

1 - rini = 1 - piNi
where ri is the duration of the refractory period and pi = rilri. The
resulting stationary equations are
Ni = (1 - piNi) exp {g Yiij - 61} (4.4.13)
or Ni
In ¥—F = -
1 piNi § Yiij 61 (4.4,14)

Eq.(4.4.14) is formally equivalent to the stationary form of
interaction equations used by Cowan (1967, 1968); however, the inter-

pretation of the interaction coefficients is different.
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Dynamical interaction equations can only be derived in a linearised
form, These equations are based on Eqs.(4.3.5), (4.3,6) and (4.3.8).

In order to avoid double indices we define

ﬁ(p:m.sz)

hm(p:m.sz) (4.4.15)
h ,(psm,s’) (4.4.16)
s

- 2
k(p;m,s”)

The linearised dynamical input=output equation for neuron 1 reads then
a,(p) = n,/p= ; (p;m 52){ﬁ (p) = m, /p} + ; (p;m 52){§2(p) - sz/p}
i i iy i 1 1272747 i i (4.,4.,17)

where

- - 2 _ 2
n, = <n, (£)>, m, = <m (t)>, s; = <s;(e)>

are the time-averaged levels of these quantities,
A simplification of Eq.(4.4,17) is caused by the introduction of
_ . - . 2 _ 2 2
vi(t) = ni(t) n; ui(t) mi(t) m; 61 () = si(t) sy (4.4.18)

Substitution in Eq,(4.4,17) gives
9.(p) = h,(pim,,s2) B,(p) + k,(psm_,s2) &, 2(p) (4.4.19)
i 1\ PimaSy) Ky § \P3MyeSy) O AP e

Synaptic delay and transmission time in axon and dendrites result
in a delay between the generation of an action potential in neuron j
and the arrival of the resulting excitation or inhibition at the central
structure of neuron i; this delay is designed as Tij' The analyses
given in § 1,3 and § 1.4 indicate that for a neuron in interaction
with many other neurons in the absence of an external stimulus the

following relation holds

ui(t) = 3 Cij vj(t - Tij) (4.4.20)
ci(t) - c1§ vyE = 1) (4,4.21)

Here the assumption is made that the signaltransmission from the soma
of one neuron to the soma of another neuron can be described as an
attennation (cij) and a pure delay (Tij).
Combination of the last three equations results in the
linearised form of the interaction equations
“PT..
P ?ij(p;mi,si) o, (4.4.22)

vwhere

. 2 a2 22, 2
Kij(P’mi'si) = Cij hi(P’mi'si) + cij ki(P,mi,Si) (4.4.23)
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In Eq.(4.4.22) the factor exp (-ptij) represents the dynamical aspects
of the signal transmission from neuron j to neuron i, where Eij
describes the transformation of this signal within neuron i,

The theory presented in this shapter 1s a first order description.
The central quantity is n(t), the ensemble-averaged event density of
action potentials. Because of the high convergence assumption, made in
§ 1,3 and § 1,4, higher order conditional event densities are irrelevant.
As a consequence the applicability of the equations is limited to networks
in which each cell synapees with many other cells,

The theoretical results of this chapter are essentially incomplete,
However, a combination of the nonlinear stationary equation (Eq. (4.4.10))
with the linearised dynamical equations (Eq.4.4.22) might lead to more

general interaction equations,
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EPILOGUE

5.1. DISCUSSION AND SUMMARY

The subject of this study is a theoretical analysis of the
stochastic activity fo certain types of neural cells, The neurons
considered are characterised by a large number of comnections with
other cells. The input signal to a single neuron is described through
its average value and incremental variance; the detailed structure
of the input 1s shown to be of less importance and considered as a
white noise carrier, The neuron itself is represented by a, linear
or nonlinear, first order filter followed by a threshold-reset
mechanism,

The time course of the somatic potential turns out to be
describable through a transition probability density which obeys
a second order partial differential equation (diffusion equation).
The threshold acts as an absorbing barrier, while the distribution
of output spikes is equivalent to the distribution of first passage
times of the somatic potential. An expression for the transition
probability density of the somatic potential would supply a complete
description of the activity., In general this sort of expression does
apparently not exist in closed form. In the stationary case, however,
it has been possible to derive the unconditional distribution of the
somatic potential (h(¥Y) given by Eq.(2.2.11)) and a recurrence relation
between the moments of the interval distribution ( given by Eq.(2.3.14) ).

Though a way has been indicated to take account of relative
refractory effects, this treatment cannot be considered as satisfactory.
However, it is expected that insight in the dynamical activity will
allow an acceptable description of these effects, The inclusion of
absolute refractory properties does not present any mathematical
problems,

Specific applications have been presented for three cases:

a linear filter without decay (SIPIT-model), a linear filter with
proportional decay of the potential (SILIT-model) and the equivalent
circuit of the membrane; each of these followed by a threshold-reset

mechanism,
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The SIPIT-model which is well known and completely solvable,
has been treated mainly because of its properties in a nonstationary
situation, The most interesting result under stationary conditions
is that the unconditional distribution of the somatic potential does
not depend on both average value and variance of the input, but is
determined only by their ratio,

The SILIT-model is accepted widely as a more realistic description
of a neuron, The mathematical analysis showed that its interval
distribution does not depend on all its five parameters but only on
two combinations of these quantities, The numerical results include
graphs for the mean rate of firing as a function of input variables,
quasilinear input-output regions and distributions of the potential
and its mean and variance.

The large size of the quasi-linear region when the average value
and variance vary proportionally is remarkable, It should be realised
that frequency modulated pulse trains possess this characteristic.

The hypothesis of Mountcastle (1967) that the central nervous system
operates in a linear manner on its input, is understandable from a
theoretical point of view under of the assumption that the ratio of
excitation and inhibition is constant. Another noteworthy feature of
the SILIT-model in this situation is the weak dependence of average
value and standard deviation of the somatic potential on the value of
the input (Fig. 3.3.11 and 3.3.14). This suggests that the contribution
of the somatic potential to an evoked potential may be quite small.

The equivalent circuit of the membrane is only treated as an
example of a nonlinear system to which the theoretical frame=
work does apply. Because of the large number of parameters of this
model a quantitative evaluation should await precise experimental data.

The results of the analysis of the stationary situation are
experimentally completely testable. Intracellular measurements,
comparable to those of Calvin and Stevens (1968), will supply evidence
concerning the applicability of the model and values of relevant
parameters., Insertion of these values in the theoretical expressions
should produce quantitative predictions of the stationary activity of
such a cell.

The investigation into the dynamical aspects of the signal processing
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properties is of a more preliminary nature; only a number of qualitative
results have been obtained. The input signal is defined as the pair

( m(t), sz(t) ), the modulation of average value and incremental
variance of a white noise carrier. The output signal is n(t), the
event density of action potentials. This approach takes the partial
observability of the input explicitly into account, Both input and
output are averaged over a sultable ensemble until statistically
reproducible results are acquired, then dynamical relations are
analysed. Though the procedure is used in many electrophysiological
and in a number of psychological experiments, the presence of sz(t)
is not usually recognised. The theoretical analysis is limited to two
cases: the response to a stepwise change and to small arbitrary
variations of the input signal,

The stochastic switch-response 1s expressed in terms of the
stationary distribution of somatic potential and first passage time,
For the SIPIT-model this leads to the conclusion that, for constant
ratio of 52 and m, input and nutput signal are identical in form.

For the SILIT-model this results in a relation between switch-on
response and stationary conditional event density (expectation density).
This again leads to a prediction of nonlinear oscillations in the post-
stimulus-time histogram of a square wave stimulus, The period of these
oscillations is strongly dependent on the amplitude of the imput, but
will in general be of the order of the time constant of the neuron,
Experimental evidence of this type of microstructure in the P,S.T.H.

of a square wave light modulation with a period of 100 - 1000 msec.

has been found by Coenen (1968) in the lateral geniculate body of the
cat and by Allen (1968) in ganglion cells of the rabbit; the period

of the nonlinear oscillations being 1 = 10 m sec.

The input-output relations for small variations of the input
signal ( m(t), sz(t) ) are described in a linear approximation.

This allows the definition of a stochastic transfer matrix, which
forms a generalisation of the (stochastic) transfer function,

For the SIPIT-model an important property of this matrix has been
established. Conceptually the stochastic transfer matrix is considered
to be of great importance; one reason for this is that its use allows

a comparison of P,S.T.H.,'s for different type of stimuli.
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Moreover 1t suggests precilse ways for the embedding of a simple signal
1n a complex environment, This technique, which generally results 1n
an enlargement of the quasi-linear region, has been successfully ap-
plied 1n engineering and 1in the analysis of e.e.g. responses 1in man
evoked by sine wave modulated light (Spekreyse, 1966).

A knowledge of the input-output relations for a single neuron
allows the formulation of interaction equations for a network of a
given structure, Since the stationary single cell relations are
known over the complete region, 1nteraction equations for a stationary
network could be formulated in a general way, The more interesting
equations for a nonstationary network could only be given 1in a
linearised approximation. Theoretical work will be continued and
experimental work 1initiated along these lines with an emphasis upon

the investigation of the stochastic transfer matrax,
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STELLINGEN

De “momentane frequentie’”” van een pulsreeks gedefinieerd op basis van de
intervallen tussen opeenvolgende pulsen leidt tot theoretische en experimentele
problemen Een acceptabele continue representatie van een pulsreeks wordt
gegeven door een linearre functionaal van deze reeks,

In een neuronaal net gekenmerkt door hoge convergentie zijn de hogere orde
eigenschappen van de pulsreeksen {biv. intervaiverdeling) irrelevant.

11
De correiatie functie tussen extern sangeboden ruis en de pulsactiviteit in de
gehoorzenuw zoals bepaald door de Boer, vormt een speciaal geval van de
stochastische overdrachtsfunctie, beschreven in § 4.3 van dit proefschrift.
(E. de Boer. J. of Auditory Research, 7, 209-217 (1867)).
v

Het 1s geen2ins vanzelfsprekend dat de spontane activiteit van het centraal
zenuwstelsel een stationair proces is. Inductie van de stationariteit door gunstig
gekozen stimulering lijkt mogeligk.

\

Een stochastische beschrijving van een verschijnsel dient te worden opgevat als
een relatie tussen waarnemer en verschiynsel. Ditis in het bijzonder relevant voor
de controverse random versus deterministische verbindingen tussen
zenuwcellen.

Vi

De veel gebruikte analogie tussen hersenen en computer draagt vrijwel niet bij
tot het begrip van de eigenschappen van hersenen.

v

In Nederland bestaat een behoefte aan een postdoctorale opleiding In de
biofysica, zowel voor fysici en ingenieurs als voor biologen.

Vil
Een streven naar een grotere zelfstandigheid van een groep of organisatie binnen
een democratische samenleving dient gepaard te gaan met een bevordering van

de interne democratie.

31 oktober 1969.












