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A B S T R A C T 

The activity of a neuron subjected to an input of many small 

excitatory and inhibitory pulses is analysed. The theoretical model 

consists of a linear or nonlinear first order system followed by 

a threshold. Diffusion equations for the transition probability 

density of the somatic potential are derived. 

Analytical results for the stationary activity include expres­

sions for the stationary distribution of the somatic potential and 

for the moments of the distribution of intervals between action 

potentials. Applications and numerical data are given for three 

specific models: an integrator, an imperfect integrator and an 

equivalent circuit for the membrane, each combined with a threshold. 

Linear regions of the input-output characteristics are indicated. 

The dynamical aspects are discussed in more general terms. 

A relation between the stochastic switch-response and the 

expectation density is derived. For small variations of the input 

a dynamical description is given on the base of a region-dependent 

stochastic transfer matrix. A general form of stationary and a 

linearised version of dynamical interaction equations for an ensemble 

of neurons are proposed. 
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P R O L O G U E 

I.1 PROBLEM AND MOTIVATION. 

Experimental studies of the neural cell have supplied a wealth of data 

which continues to grow at an increasing rate. Admirable theoretical analyses 

of the experimental results have been given. A large amount of knowledge 

exists concerning different aspects of the neuron. Synaptic transmission, 

décrémentai conduction in dendrites, the nonlinear properties of the membrane 

generating the action potential and the propagation of this signal along 

the axon have all been intensively studied and described. Up till now, 

however, no theoretical description exists in which these data have been 

integrated into a model of the signal transmission properties of the neuron 

as a whole. The same situation exists with regard to neural networks. A large 

amount of experimental data, but a lack of adequate theoretical concepts and 

methods for analysis and comparison of these data. It is evident that these 

two problems, though not identical, are related. If an acceptable formulation 

of the properties of a single cell could be found, this might serve as a 

starting point for the theory on networks. 

Early theoretical work on neural activity was done by McCulloch and 

Pitts (1943). They considered a neuron as a logical threshold device with an 

input of positive or negative unit-impulses, synchronised by an external 

clock. When the sum of simultaneously arriving excitatory pulses exceeded the 

threshold and no inhibitory pulse was present, an output pulse was created. 

An important result was the conclusion that any complete logical expression 

could be implemented by a network of these elements. 

An extension of this work was formed by the study of the possibility 

of reliable computation using networks consisting of unreliable elements. 

This problem, first treated by Von Neumann (1956), was extensively analysed 

by Winograd and Cowan (1963). They were able to extend the coding theorem 

of Shannon (1948), which treats the transmission of information through a 

noisy channel, to the computation of information in an automaton with 

unreliable elements and/or false interconnections. Under the assumption that 

the probability of malfunction of an element is independent of its complexity 

it is shown that an arbitrarily high reliability of the network may be 

reached by a distribution of functions over the elements and a diversifica­

tion of the computational properties of each element. 



10 

The resulting network is a logically distributed system of multiple inter­

connected and highly complicated elements. 

A development towards the incorporation of more realistic properties of 

the neuronaLso took place. McCulloch (1957) gave already a more flexible 

formulation of his model: arbitrary values for excitatory and inhibitory pul­

ses, linear summation of these pulses, afferent inhibition and a variable 

threshold. A number of different versions by other authors include complete 

or partial persistence of the effect of pulses until an action potential 

occurs, synaptic delays and different forms of refractoriness. 

Caianiello (1961) formulated his neuronic equations within the frame­

work of this model. Analysis of these equations (Caianiello, De Luca and 

Ricciardi, 1967, 1968) elucidated the nature of transients and the conditions 

under which reverberations in these networks occur. 

As a whole all these approaches are conceptually related with automata-

theory. Mathematically one of the main difficulties is the combination of a 

continuous description for the somatic potential and the discontinuous 

threshold condition for spike generation. Physiological shortcomings are 

the discretisation of time and, usually, a lack of probabilistic descriptions 

which play such an important role in electrophysiological data from the 

central nervous system. 

A rather different approach to the properties of neural networks is 

based on a more 'thermodynamical' point of view. In the work of Beurle 

(1956), Griffith (1963, 1965)' and Ten Hoopen (1965) the assembly of cells 

is regarded as a continuous medium and the active fraction of neurons as a 

function of space and time is the fundamental variable. An analysis is made 

of steady states or oscillations of the total activity and the propagation 

of waves of excitation. This theoretical work appears to be mostly related 

to experimental data on evoked responses or oscillatory activity of groups 

of cells as measured with mini-electrodes (tip diameter 0.1-1 mm). A draw­

back of this description is that up till now no rigorous connection has 

been made between the dynamics of a single neuron and the equations presen­

ting the activity of the mass of cells. 
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The reader is referred to Harmon and Lewis (1966) or Reiss (1964) for 

a general review on neural modeling, both with regard to single cells and 

to networks, also covering the large amount of investigations by means of 

sumulation on digital computer or in hardware. 

The activity of a single cell in the central nervous system observed 

with a microelectrode (tip diameter ^l^m) usually contains a stochastic 

aspect: it is not possible to predict precisely the occurrence of an action 

potential. Therefore this activity is presented in probabilistic terms. For 

the stationary activity use is made of the probability density of the 

occurrence of a spike (average frequency) and of the probability density for 

the first or an arbitrary spike as a function of time after the occurrence 

of an earlier one (interval histogram or expectation density). In case of 

evoked activity the behaviour of a cell is characterised through the 

probability density of spikes as a function of time after the stimulus 

(post stimulus time histogram). 

A theoretical approach related to these types of data has been propesed 

by Cowan (1967, 1968). The neural cells are considered as discrete elements; 

their acitvity is characterised by a function continuous in time, assuming 

a continuous range of values. This quantity is, essentially, the probability 

density for the generation of an action potential (event density). A set of 

nonlinear first order differential equations are postulated to describe the 

interactions of the cells in the network. Under the condition that the 

interaction coefficients are ant-symmetric there exists a 'constant of the 

motion' and the equations can be written in a Hamiltonian form. On this base 

it is possible to develop by standard methods a 'statistical mechanical' 

description of the neural net. This theoretical approach appears attractive 

both with regard to the description of the single-cell properties as for 

the characterisation of an assembly of a large number of cells. 

The aim of this dissertation is an analysis of stochastic input and 

output signals of a neuron and their interrelation. Moreover, the work is 

intended as a contribution to the derivation of a continuous type of 

equation for the description of neural interaction. 

After a condensed review of the most relevant biological data in 5 1.2, 

the theoretical viewpoint is presented in 5 1.3. When many connections exist 

between cells, the input to each one is highly complex. This leads naturally 



12 

to a stochastic description of the input: average value (m) and power (s2) 

emerge as the informationally significant quantities; the other aspects of 

the signal are obscured by the summation. The behaviour of the somatic 

potential is described by a first order nonlinear fluctuation equation; 

diffusion equations result for the transition probability densities. § 1.4 

gives some more detailed experimental evidence and a comparison of the model 

with previous ones. 

The stationary activity is analysed in Ch. 2 and Ch. 3. Expressions for 

the distribution of the somatic potential and for the moments of the distri­

bution of intervals between action potentials are derived in Ch. 2. Applica­

tions on more specific models and mumerical data are presented in Ch. 3. 

The results of this part are such that experimental verification appears 

feasible. Intra-cellular masurements would supply evidence on the correct­

ness of the invoked assumptions and quantitative tests of the theoretical 

predictions. 

The dynamical input-output relations are much harder to analyse; 

Ch. 4 is devoted to this subject. Again the detailed properties of the 

signals are not taken onto account, but attention is focused on the relation 

between the statistical characteristics: average value and power of the 

input and event density of the output. Two cases are studied: a stepwise 

change in the input signal and small variations around a fixed level; the 

last case leads to the introduction of a region-dependent stochastic 

transfer matrix. In S 4.4 an attempt is made at tne derivation of 

stochastic interaction equations on the base of the single cell charac­

teristics. Nonlinear stationary and linearised dynamical equations are 

formulated. 

This part of the theory is more of a qualitative nature, no quantita­

tive predictions of experimental results can be given. However, it is 

possible to design experiments to investigate the applicability of the 

theoretical description and to measure the properties of the stochastic 

transfer matrix. A further theoretical and experimental elaboration of 

this part may, to our view, result in stochastic neural interaction 

equations of a continuous type. 
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1.2 THE MORPHOLOGICAL AND PHYSIOLOGICAL BASE 

A neuron is a biological cell; its properties are to a large extent 

determined by the geometrical and functional characteristics of the sur­

rounding membrane. Though there exist several types of neurons, differing 

both in size and form, a large number of cells in the central nervous system 

are characterised by the following description. 

Morphologically and physiologically the cell consists of three different 

parts. The soma or cell body contains the nucleus; the axon, an elongated 

part of the cell, conducts signals away from the soma and may divide into a 

number of branches; the dendrites form a complicated receptive network with 

many branches, converging finally on the soma. Types of cells can be charac­

terised by different geometrical structures of these regions and their dis­

tribution over the nervous system studied (Ramon-Moliner, 1962; Braitenberg, 

1963). In Fig.1.2.1 some types of neurons occurring in the central nervous 

system are presented. 

pyramidal cell cell oF Martinothi 

11 CORTEX CEREBRI 

Purkinje cell 1 granule cell 

CORTEX CEREBELLI 

F-C9J.2.J. Some typeA oi пемлопі -οι thz C.N.S. 

Receptor cells and intemeurons may be morphologically rather different from 

cells in the central nervous system, but their functional properties are in 

many respects analogous. 
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The synapses are places where axon branches of a neuron seem to touch 

the dendrites or soma of another neuron. The functional properties of both 

membranes at the synaptic junctions have been shown to differ from their 

properties at other places. The number of synapses on cells in the central 
¿ι 5 

nervous system is usually more than ten and may be as high as 10 - 10 . 

A basic assumption for the theory, as developed in this paper, is that 

the processes in which a neuron is involved can be separated in at least 

two categories: 

a. Reception, transformation and emission of signals. This is a relatively 

fast process and most clearly manifested in electrical phenomena: 

dendritic and somatic potential, action potential. 

b. The relatively slow processes related with long lasting changes in 

structure and function of the neuron: adaptation, habituation, learning. 

This "adiabatic hypothesis" (Caianiello, 1961), usually made implicitly 

both in theoretical and in experimental work, seems reasonable from a biolo­

gical point of view; the construction of a mathematical description of 

neural signal processing is greatly simplified by it. In the following only 

these physiological aspects are considered which describe the processing of 

signals by neurons not changing in structure or function. 

In the neural cell exists an active metabolism, causing differences in 

chemical concentrations as well as an electric potential across the membrane. 

The experimental results for the local dynamical behaviour of the membrane 

are well described through a set of four coupled nonlinear differential 

equations: the Hodgkin-Huxley equations. The variables appearing in these 

equations are the membrane potential and the concentrations of potassium, 

sodium and of other ions. (For references and review see Nobel (1966) and 

Kats (1966) ). Quantititive analysis is only possible using a computer, 

qualitative insight is difficult to acquire because of the four interacting 

variables. However, if only the electrical aspect is considered, the process 

is well described by one second order nonlinear differential equation: the 

Bonhoeffer-van der Pol equation (Fitzhugh ІЗбІ, 1968). Since this equation 

contains only two variables, pictures of the phase plane can be drawn and 

the dynamical behaviour visualised. 

A description of the electrical membrane properties is then as follows. 

In the equilibrium state there exists a potential difference across the 

membrane: ̂  70 mV, inside negative. The application of a small current 
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forces the membrane potential away from its equilibrium value: positive out­

ward current induces depolarisation, negative current hyperpolarisation. 

Termination of the current allows the membrane potential to return to its 

original value with a rate of change dependent on, and roughly proportional 

to, the deviation from the equilibrium value. 

However, if the depolarizing current is larger and as a consequence the 

membrane potential reduced further (̂  55 mV) a completely different behaviour 

develops. Changes in ionic permeability give rise to ionic currents which 

cause the membrane potential to decrease and even to change sign, the maximal 

value being ^ 30 mV, inside positive, then the potential returns to its 

equilibrium value. This phenomenon, called the generation of an action 

potential, has a duration of 0.8 - 1.0 msec; the form of an action potential 

is only weakly dependent on present or past influences. 

Both the subthreshold behaviour during and after stimulation with a 

constant current and the generation of an action potential are schematically 

shown in Fig.I.2.2. 

membrane 
potential 

F-Îg.1.2.2. SubthsitihoM bahavlouA and gznunaXlon oi action potzrvtiat 
by силлгпі pu&iz 0({ ¿¿xe.d divuLtcon bat vivU&bte. amp&iyude. (.OzcUaum 
¿лот Kcutz,1966). 
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The value of the membrane potential at which an action potential is 

initiated, the threshold potential, forms a separatrix in phase space: a 

three dimensional hyperplane in the four dimensional H.H.-space or a curve 

in the two dimensional B.v.d.P.-space. Theoretically partial action 

potentials might occur; experimentally however, and even in computer simu­

lations, the presence of noise combined with the strongly nonlinear nature 

of the equations make it an all or none phenomenon (Fitzhugh 1955, 1961). 

The local threshold potential varies, depending on the geometrical and 

functional properties of the membrane. Usually it has a relatively low 

value at the junction of soma and axon: the axon hillock. At this point the 

action potential is thought to be initiated. It propagates with a constant 

velocity and without decrement along the axon. The speed of propagation 

increases with the diameter of the axon and is larger when a myelin sheath 

is present (10-100 m/sec). Probably also a backward propagation of the 

action potential over the somatic membrane occurs and, dependent on the 

geometry and the presence of synapses, partially into the dendritic tree 

(Eccles, 1964, Ch. VII). 

The signal transmission from one neuron to another takes place at the 

synapses. The arrival of an action potential at the synaptic endings of the 

axon causes a quantal release of transmitter substance into the synaptic 

cleft. The transmitter diffuses across the cleft (0.02-0.05 my) to the post­

synaptic membrane, where it induces selective changes in ionic permeability. 

This again causes local hyperpolarisation or depolarisation of the membrane 

potential. The time course of the synaptic transmission involves a delay of 

0.5-1.0 msec, a rise time of the dendritic potential of 1 msec and a decay 

time depending on the functional and structural properties of the neuron. 

Experiments on the neuro-muscular junction have shown that the trans­

mitter substance is transferred in a probabilistic way. The number of 

molecules contained in a quant is Gaussian distributed, the moments of 

ejection follow a Poisson process, the mean rate of which is modulated by 

the value of the presynaptic potential. The quantal changes in muscle end-

plate potential have an average value of ^ 0.5 mV with a standard deviation 

of ^ 0.1 mV; the rate of occurence may vary from 1/sec. to 100/sec. or more. 

Fig.1.2.3 shows the results of Boyd and Martin (1956) for a mammalian end-

plate. 
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Though evidence on neuro-neuronal synapses is incomplete it seems likely 

that a comparable mechanism of synaptic function exists (Martin,1966, 1968; 

Kuno and Miyahara, 1968). 

Dependent on the polarity of the synapses the selective permeability of 

the postsynaptic membrane may change in different ways, resulting in either 

an increase (hyperpolarisation) or a decrease (depolarisation) of the post­

synaptic membrane potential, the amount of change of the dendritic potential 

being dependent on its previous value. At the synapses the membrane seems 

to be electrically inexcitable; in most of the dendritic tree the threshold 

potential is usually so high as to exclude initiation of action potentials. 

The décrémentai conduction of the changes in potential through dendrites and 

soma is then described by partial differential equations with varying 

coefficients. Theoretical analysis and numerical computations (Rali, 196A, 

1967) show that the electrotonic distance between synapse and soma has a 

considerable influence on amplitude and time course of the resulting somatic 

potential. Moreover, since the equations are nonlinear (varying coefficients!) 

interactions may occur between potentials generated at different synapses. 

http://th.eoKetA.cal
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To describe the repetitive generation of action potentials refractory 

properties are important. During and directly after the occurrence of an 

action potential no other action potential can be generated; this results 

in an absolute refractory period of ^ 2 msec. The equations describing the 

local properties of the membrane, the Hodgkin-Huxley as well as the 

Bonhoeffer-van der Pol equation, show enhancing and depressing after-effects. 

Moreover, it appears plausible that also the global properties of the neuron 

contribute refractory effects. The action potential when initiated in the 

initial segment, propagates back over the somatic membrane and into the 

larger branches of the dendritic tree. The interaction would annihilate, or 

at least diminish, the electrotonically conducted potential changes gene­

rated at synapses. Persistence of transmitter substance with its influence 

on the permeability of the membrane and a dependence of equilibrium and thres­

hold potential on preceding action potentials may even more complicate the 

foregoing description. 
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1.3 THE THEORETICAL APPROACH: FLUCTUATION AND DIFFUSION. 

In the preceding section a brief review was presented of the 

physiology of a neural cell. In order to be able to construct a mathematical 

description of the signal processing aspects of neural activity, a simple 

and unequivocal formulation of the cell properties is required. The basis 

for the mathematical approach is formulated in the form of five assumptions. 

ASSUMPTION ; . 

Th& iubthAíihoíd ¿іаХг ofi а пгилоп ¿A choAActeSilizd by one varUabte. only; 

the. iomajtic pottntial y ( t ) . The ¿п^Ыгпсг o¿ оікгл пгил.оп& andloi zxte/inal 

zn\iÁAome.nt ¿& g¿v&n by tiiz -cnpot i-ignaJL i ( t ) . The іаХг o^ change, o^ y ( t ) 

•Li dependent only on the. ptieAent vaJtueA o^ y ( t ) and i ( t ) . Thli dependence 

may be попіллеал; -ÜU делел&І {¡опт Ju, given by the equation 

f(y) + g(y) i ( t ) ; g(y) > 0 (1.3.1) 

whe/ie f and g ¿howíd be аіЦелепСсаЫе iu.nc¿¿oni. 

EL 
d t 

A diagram of Ass . ] i s g iven i n F i g . 1 . 3 . 1 . 

i (0 -

f(Y)—y * 

•(χ) " C v * inbegralion 

g(y)-

— y ( t ) 

fig. 1.3.1 іадкат oí iabthxuhotd behaviouA oí the iomatic potentiai. 

The input i(t) is the current originating from changes in synaptic 

permeability caused by action potentials arriving from other neurons or 

current generated through external stimulation. If the cells have many 

interconnections or if the stimulus is complex, then the detailed structure 

of the input is also highly complex. Moreover, i(t) may be different in 

seemingly identical experiments. In this situation it is clearly undesirable 

to aim at a complete description of the input. Instead of considering all 

http://exX.en.naZ
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the, partly irreproducible and unpredictionable, complexities of this 

signal, we regard the input as a stochastic process, of which only the 

most important properties are taken explicitly into account. 

The simplest and usually the most prominent feature of the input 

is its average value 

m(t) - <i(t)> (1.3.2) 

The second characteristic of the input is the correlation function 

k(t,T) - <i(t).i(t-r)> - <i(t)>.<i(t-0> (1.3.3) 

representing the correlation between values of j at a time t and at time τ 

earlier. 

The average in the determination of m(t) and k(t,T) may be taken with 

respect to time if the input i(t) is stationary, that is if m(t) • m and 

k(t,T) - к(т) are time independent. If average value and correlation func­

tion are time dependent, then the averages should be taken over a suitable 

ensemble, for instance a number of repetitions of the experiment. 

Two important quantities are given by special values of the correlation 

function. The variance of the input is represented by the value of the 

correlation function for τ « 0. 

v
2
(t) Ξ k(t

f
0) - <i(t)> - <i(t)>

2
 (1.3.4) 

The incremental variance, or intensity (Stratonovich, 1963) of the input 

is the integral of the correlation function 

OD 

s
2
(t) Ξ L k(t,T) (1.3.5) 

—OD 

A normalised signal having zero mean and unit incremental variance 

is now defined by 

j(t) -
 i ( t )

s
- J

( t )
 (1.3.6) 

and the input is rewritten as 

i(t) - m(t) + s(t).j(t) (1.3.7) 
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The equation for the somatic potential, Eq.(1.3.1) reads then 

ÈL 

where 

d t - ot(y,t) + 6(y.t).j(t) (1.3.8) 

a(y,t) - f(y) + g(y).m(t) (1.3.8a) 

e(y,t) - g(y).s(t) (1.3.8b) 

In this deecription f(y) and g(y) represent the properties of the system 

and m(t) and s(t) the statistical characteristics of the input; the 

quantity j(t) may, under certain conditions, be treated as a stochastic 

carrier. 

In order to be able to specify the assumption which allows us to 

neglect he 'microscopic' properties of j(t), three time constants have to 

be defined. 

- The time constant of the 'microscopical' coherence of the input: τ . 

This correlation time will be defined as 

— l· 

2
 |dT/T/k(t,T) (1.3.9) 

s ' 

The correlation between the value of j(t) and of j(t+T) can be neglected 

for τ several times larger than τ . 

- The time constant of the variation of the statistical characteristics 

of the input: τ . An acceptable estimation of this constant could be 

- The time constant for the relaxation of the system: τ . The definition 

of the relaxation time is 

-«g ̂  f-yMy.t) + B(y,t) j(t)} 
-1 

(1.3.11) 

The definitions of τ in Eq.(1.3.9) and of τ in Eq.(1.3.11) agree, 

in the stationary case, with those of Stratonovich (1963; p. 88 and p. 99). 
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ASSUMPTION 2 . 

The coKKzloitLon tone, of, the. ¿tatcòttccLÌ 6£и.сЛиа£сопі o¿ the. Α,ηρυΧ (τ ) -LÌ 

irnaJUL, both лик п.е.дала to the torn canotant oí the \іаллліл.оп -en the 

itatxitxcaZ choAacXeAA^txci o^ the -utpoi (τ ) ai vi-ctk іелресХ to the 

leLaxatcon tune о{> the ¿yitem (τ ) : 

τ << τ and τ « τ . с s с г 

An important conclusion follows from Ass. 2. The 'microscopical' 

properties of j(t) are under these conditions irrelevant for the behaviour 

of the system given by Eq.(I.3.8) for time differences At which are large 

with respect to the correlation time τ . This implies that, as long as 

At » τ , the signal j(t) may be replaced by another quantity w(t) with the 

identical statistical characteristics: m = 0, s = 1. The best choice is 

to take for w(t) a signal with a correlation function of the form of a 

delta function. 

To stress the stochastic nature of the variable y we write Y instead 

of y. Eq.(1.3.8) is then replaced by the stochastic differential equation 

dY - a(Y,t)dt + e(Y,t) dW(t) (1.3.12) 

where 

W(t) is the integrated process w(t) 

<w(t)> = 0 (1.3.12a) 

< w(t)w(t+T)> = 6(τ) (I.3.12b) 

Eq.(1.3.12) is known as a fluctuation equation or Langevin equation. 

The replacement of j(t) by w(t) amounts to the statement that for 

At >> τ the physical process of Eq.(1.3.8) can be described through the 

first order Markov process of Eq.(1.3.12). Some equivalent descriptions 

of the process given by Eq.(I.3.l2): 

w(t) has a delta-type correlation function, 

w(t) has a constant spectral density, 

w(t) is white noise, 

W(t) has independent increments, 

Y(t) is a first order Markov process. 

References mainly used here were Stratonovich (1963; Ch. 4) and Cumming 

(1967; Ch. 4) 

http://coM.eZajU.on
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What has been accomplished up till here is an abstraction of the 

statistical characteristics m(t) and s(t) from the input i(t) and a formali­

sation of the lack of knowledge with respect to the rest-signal j(t) through 

a replacement of this quantity by the white noise w(t). An important advan­

tage of this procedure is that stochastic differential equations of the form 

of Eq.(l.3.12) occur frequently in physics and have been widely studied. In 

the remainder of this paragraph the standard theory for analysis of the 

fluctuation equation is briefly presented. 

Since Eq.(1.3.12) contains now the stochastic function w(t), statisti­

cal concepts are needed for the analysis of this equation. The fundamental 

one of these concepts is the transition probability density function: 

f(y,t|x,s) = probability density that the stochastic variable Y has the 

value y at time t given that it was equal to χ at time s. 

= transition probability density (x,s) -*· (y,t). 

The infinitesimal short duration of the correlation of the white 

noise implies that the transition probability density is independent of the 

past history. This feature is expressed in the Smoluchowski integral equation. 

f(y,t + At¡x,s) =» dz f(y,t + it|z,t) f(z,t|x,s) (1.3.13) 

from which also a differential form may be derived 

I fCy.t'x.s) = Σ -^-î- (Ij" {A (y,t) f(y,t|x,s)} (1.3.14) 

dt n=l П. dy Π 

where 

A (y,t) - lim j t dz z
n
 f(y + z,t + At|y,t) (1.3.15) 

n àt-ю ' 

(Middleton, 1960: p. 448-450; Stratonovich, 1963: Ch. 4). 

The functions A (y
f
t), known as incremental moments or intensity 

η 

coefficients, characterise a stochastic process completely and are all experi­

mentally measurable. The first incremental moment or drift 

a(y,t) = A^y.t) (1.3.15a) 

represents the rate of change of the average value of Y. The second 

incremental moment or dispersion 

b(y,t) = A
2
(y,t) (1.3.15b) 

gives the rate of change of the variance of Y. The higher incremental moments 

are less significant for the process. 
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No attention has yet been given to the amplitude distribution of w(t). 

There exists a relation between this distribution and the continuity of a 

stochastic process as a function of time. It has been demonstrated that a 

continuous delta-correlated process has a Gaussian amplitude distribution. 

If the process is not continuous in time, then the amplitude distribution 

may have a different form. 

ASSUMfTIOW 3. 

The òtochoAtAc ргосеіл w(t) -tò covUinuoaò : 

lim j dz f(y + z.t + ut|y,t) - 0 ¿OK all e > 0 (1.3.16) 
At-4> ' 

M>e 
Ass. 2 and Ass. 3 may be combined in the statement: w(t) is a conti­

nuous delta-correlated process or, equivalenti/, Gaussian white noise. 

A direct consequence of this property is 

A (y,t) - 0 for η > 3, (1.3.17) 

η — 

which implies that a continuous first order Markov process is completely 

determined by drift and dispersion. As a consequence Eq.(1.3.14) simplifies 

into a second order partial differential equation 

•|
t
 f(y,t|x,e) - - f-

y
{a(y,t) f(y,t|x,s)} + (f-

y
)Ub(y,t) f(y,t|x,s)} (1.3.18) 

This equation is known as a diffusion equation and the process described by 

it as a diffusion process. 

Stratonovich has demonstrated that the following relation exists between 

the system and signal characteristics (a and 0) appearing in the fluctuation 

equation and dispersion and drift (a and b) in the diffusion equation: 

a(y.t) - o^y.t) + l|
y
 {6(y.t)} (1.3.19) 

b(y,t) - {e(y,t)} (1.3.20) 

Eq.(1.3.18), also named the forward diffusion equation or Fokker-Planck 

equation, describes the probability density or transitions from a given 

'start-point' (x,s) to all possible 'points' (y,t). Its solution supplies 

probabilistic knowledge of the future of the variable Y(t). 
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We may equally well be interested in the probability density of 

transitions from all 'start-points' (x,s) to a given 'final-point' (y,t): 

for this we need a related equation describing the past of Y(t). In the 

theory of stochastic processes it is well known that, under the conditions 

which allow the derivation of the forward equation, it is possible to 

derive the corresponding backward, or Chapman-Kolmogorov, equation (see 

for instance Prabhu (1965)) 

- }
s
 f(y,t|x,s) - a(x,s) }

χ
 f(y,t|x,s) + ib(x,s)(|

x
) f(y,t|x,s) (1.3.21) 

An important simplification of the diffusion equations occurs when the 

statistical characteristics of the input do not depend on time: 

m(t) •+ m , s
2
(t) •+ s

2 

As a direct consequence the incremental moments, including drift and disper­

sion, become time independent: 

A
n
(y,t) ·> A

n
(y) 

The transition probability density is in the stationary case redefined as 

f(y,t,x) = probability density of the transition χ •* y in a time interval 

with duration t. 

The stationary diffusion equations have the form 

}
t
 f(y,t,x) - - ly {a(y) f(y,t,x)} + (}

y
) {JMy) f(y,t,x)} (1.3.22) 

|-
t
 f(y,t,x) - a(x) }

χ
 f(y,t,x) + ib(x) (|J f(y,t,x) (1.3.23) 

These equations form the base of the mathematical derivations in Ch. 2 and 

the numerical computations of Ch. 3. 

Fluctuation and diffusion equations are fundamental tools for the 

description of continuous stochastic processes. Their history is intimately 

connected with the theory of Brownian motion; at present their applications 

include problems of diffusion, heat conduction, noise in electrical circuits, 

neural activity and population genetics. A famous reference is Wax (1954). 

The Brownian motion language will sometimes be used for the explanation of 

mathematical operations. 

The diffusion equations as presented here are yet incomplete: boundary 

conditions have to be added. For the forward equation they are formulated 

in the following way. 
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Since no changes occur in a zero time interval, the initial condition 

is: 

f(y,o,x) = &(y - x) (1.3.2A) 

Since only finite distances are traversed in a finite time, the first spatial 

condition reads simply: 

f(—,t,x) = 0 (1.3.25) 

For the formulation of the second spatial condition, a further assumption 

concerning the properties of a neuron is involved. 

ASSUMPTION 4. 

Ткелг гхлліл a tfoiuhotd value, ion. the. potznUaZ: d. When the. oomcutcc. 

putgjvU.<xi Y(t) fieachu tkoi value, an aatton poteyvU.a¿ 4-4 де.пелаіЫ. 

A consequence of Ass. 4 is that Y(t) does not assume values larger 

than or equal to d. The boundary condition reads then: 

f(d,t,x) = 0 (1.3.26) 

Because of the boundary condition for у = d the function f(y,t,x) determined 

by the forward diffusion equation takes now a somewhat different meaning: 

f(y,t,x) = probability density of transition χ ->- у in time interval t, under 

the condition that Y has assumed no value larger than or equal to 

d in this interval. 

Though the backward equation is for our work of equal importance we 

shall not need its boundary conditions. In order to describe the repetitive 

activity the last assumption concerning the behaviour of a neuron is intro­

duced. 

ASSUMPTION 5. 

The acJxon potentioZ hai an А-п^уиХеллши. ¿holt da/iaX¿on. OOieeXZy а^іел 

tlruÁ event the ¿omatLc potential jumpi to а лелеХ potential χ . 

The last assumption excludes all refractory properties. Inclusion of 

these effects in the traditional way would lead to difficult mathema­

tical problems. However, in § 2.A a different way is proposed to treat 

refractoriness. 

http://pote.yvU.al
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1.4 EVALUATION OF THE MODEL. 

In this section the diffusion model, as formulated in the previous 

paragraph, is situated among the theoretical approaches to stochastic 

neural activity. Also some experimental and theoretical evidence is given 

with regard to the plausibility of the assumptions. 

It should be realised that a certain type of description of the 

stochastic spike generation process is applicable only to certain types of 

neurons. Moreover, these descriptions are not intended to supply a complete 

picture of the electrical phenomena inside a cell, but only of these aspects 

which have a direct influence on the generation of action potentials. 

Though many papers on stochastic neural activity have been published, 

only a few of these contained contributions to the mathematical analysis of 

the problem. A systematic account of a number of the earlier models is given 

in Moore, Ferkel and Segundo (1966). Also Harmon and Lewis (1966) give in 

their review-paper on neural modeling a short exposition of theories of the 

stochastic activity of the single cell. Recent contributions, of a type 

comparable to our approach, are given in the papers of Gerstein and Mandel­

brot (1964), Stein (1965, 1967), Ten Hoopen (1966), Molnar (1966) or 

Molnar and Pfeiffer (1968) and Gluss (1967). 

The assumptions of the diffusion model as given § 1.3 are summarised: 

- beZoitì иликоЫ tkz пгшіоп ¿i dzicilbed <u> а. ¿¿педл o*. nontÍnzcui {¡jjibt 
ondiA i-Ubtvi (Алл. /); 

- -t/ie ¿ημιΖ ¿4 α itoch&LtiXL quantity uìhich, uihtn noimaLibdd, hai a. iinont 
соллеЛаСсоп time. {k&i. 2) and a Оаиллілп ampLütudz cLufUbtulon (Алл. 3); 

- when the itati. vaxia.b¿e. лелскел the. thxeihotd an action potentLat ¿6 
QiineAaXed (Алл. 4) and the. ¿y&tem леХилил ¿rmuLcUateZy to -iti tntttaJL 
¿tate (Алл. 5). 

Previous analyses were all characterised by the assumption of linear 

subthreshold behaviour. In the work of Stein, Molnar and Gluss there is a 

continuous proportional decay of the somatic potential: 

&- - y/τ + i(t) (1.4.1) 

In the random walk model of Gerstein and Mandelbrot no decay of the 

potential occurs: τ - ">. Ten Hoopen assumes that the diminution of the 

potential occurs in jumps, which have a probability of occurrence propor­

tional to the existing value of the potential. 
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The input is described in either of two ways: a discrete or a conti­

nuous formulation. The discrete viewpoint is taken by Stein, Ten Hoopen 

and Molnar. In this approach the input has the form 

К 
i(t) = Σ Σ с. 6(t-t. J (1.4.2) 

Here {t, } , m = 1, 2, is the sequence of arrival times of action 
K,m 

potentials at synaps к and c, indicates modality and strength of the effect 

of this action potential on the somatic potential. Further the assumption 

is made that the combined sequence of arrival times for all synapses 

{{t. }} , k - 1, ..., K; m « 1, 2, ...; can be regarded as a Poisson-process. 

Though this is perfectly true under the strong condition that each input 
sequence {t, } is a Poisson process, it also serves as a good approximation 

K.tm 

when a large number of independent but non-Poissonian point processes 

contribute to the input (high convergence condition). 

As a consequence a stationary input can be written 

i(t) = m + s.w(t) (1.4.3) 

where 

m 'lW (1-4.4) 

s2 - Z ^ c g (1.4.5) 

n, • event density (frequency) of arrivals of action 

potentials at synaps к 

w(t) - discrete white noise-

So Ass. 2 is shared by these authors, but they do not invoke Ass. 3. 

The continuous approach is choosen by Gerstein and Mandelbrot, by Gluss 

and in our work. The assumptions concerning the input are here of the 

following form. The input is the sum of independent events, many of these 

occurring within a time constant of the system, each having only a small 

effect and a short duration. These properties are rather plausible on the 

base of the high convergence condition, which was already used to justify 

Ass. 2. Since the effects of the (normalised) input on the somatic potential 

are in this case indiscernible from these caused by continuous white noise, 

this description is equivalent to Ass. 2 and Ass. 3. 

When the continuous white noise input is small, so that (nearly) no 

action potentials are generated, a proportional decay of the somatic 
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potent ia l r e s u l t s in a Gaussian amplitude d i s t r i b u t i o n and an exponential 

autocorrelat ion function of the somatic p o t e n t i a l . 

Experimental support for t h i s descript ion i s given by Calvin and 

Stevens (1968). Fig.1.4.1 shows one of thei r measuiements on spinal moto­

neurons in c a t s . The authors reach the conclusion t h a t , for at leas t one 

class of motoneurons, f luctuations in synaptic input (synaptic noise) are 

the major source of v a r i a b i l i t y in the interspike in terva l s . 

probability 

io-i 

3mV 

K U 

10-j 

0 8 -

0 6 -

0 4 -

0 2 -

) -

• 
• observed В 
0 s imulated 

• 
о . 

8 

Ό . 

—ι 1 1 1 1 r-1 

amplitude 
θ 10 12 

msec 

F-cg. 1.4.1 StatuttjiaZ i&uictwiz oí ¿ynaptm no-tae (¡Ίοπι тоіопемлоп ШІ/-І. 
A: cunpLUude. duVu.buJU.on Іиліодлат ¿on. a Z-¿zc òamptz [10.000 iOjnpZz 
po-Lnii) oí ¿ynaptíc по-иг ил-спд a. СІЛІІ ¿піел аХ. oí 300 и . The. ¿ирелипродга 
¿mooth аил г Ό) a notrnaZ dcifu-butcon íandtLon uuMi a SD oí 0,S mV. 
8: autocowieùitLOn function ίο*, a 50-ігс izgmzrvt oí ¿ynapjUc по-сьг. iampZed 
at 5 kHz li-UZed <илсігл). open CAMLÍZÍ tizptziznt the. au ioawie to t ton 
iuncZion ίοκ i+ltefizd Ооилилп uìiute. no-tie ui&d ч.п the umuuuUon oí tiu¿ 
с.еЛ£.'б behav^LOWi. (({дот CaJÍ\)¿n and Steveru, 196S) 

With regard to the mechanism of spike generation the s i tua t ion i s as 

follows. Ass. 4 i s common to a l l approaches mentioned in th is paragraph; 

both because of i t s mathematical simplicity and since i t i s in good agreement 

with experimental data. Though Ass. 5 i s physiologically insuff ic ient , i t i s 

widely used as a f i r s t s ta r t ing-point for a mathematical analys is . 

A schematic representation of the behaviour of the proportional decay 

model with a d i sc re te input i s given in F ig .1 .4 .2 . 
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YCt) 
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^ 

F-cg. 1.4.2 ExampZeA о^ tkz time, cootie 0|í tkz iomtvtic. potzntlaZ ^од the. 
modeZ шШі dibcAttz ¿nput and ccntivtaotii piopofcLLonaJL dzcay 
a) íxcÁtatíon and bikib-Ltion 
b) high excitation, no ¿nhibjXion 
c) n&oAÍy equAÍ -intenòity oí ixeJJjtxtion and i.nhibÂXion. 

For all models of somatic signal processing and types of inputs discus­

sed in this paragraph, the Smoluchowski differential equation, given in 

Eq.(l.3.14),applies to the subthreshold behaviour. It reads for the 

stationary case 

It £ ( у
^

х )
 = \ 

n=i 

(-D
1 

(
Ту

)П
 V

y ) f(y,t,x) (1.4.6) 

However, the incremental moments are different in different situations. 

Four descriptions and their results are compared. 

1. Continuous input, no decay. 

(Gerstein and Mandelbrot, 1964) 

Drift 

dispersion 

higher incremental moments 

a(y) 

b(y) 

J 1 3 AjCy) = 0, 

where m and s
2
 are defined by Eq.(1.3.2) and Eq.(1.3.5). 

Closed expressions exist for transient and stationary distribution of 

somatic potential and distribution of intervals. 
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2. Discrete input, continuous proportional decay. 

(Stein, 1965, 1967; Molnar, 1966) 

drift a(y) = m - y/τ 

dispersion b(y) = s
2 

higher incremental moments A.(y) = Σ IL er, j > 3 

J к
 k k 

where m and s
2
 are defined by Eq.(1.4.4) and Eq.(1.4.5). 

Substitution of these relations in Eq.(1.4.6) leads to the differential-

difference equation 

І f(y,t,x) - }
v
 {^ f(y,t,x)} + Σ η {f(y-c, ,t,x) - f(y,t,x)} (1.4.7) 

dC dy Τ k К
 K 

An integrated version of this equation is given by Stein (1965, p. 182, 

Eq.(13)) and by Molnar (1966, p. 50, Eq.(4.2)). However, under the boundary 

conditions related to the threshold property no general solutions have been 

found for the distribution of somatic potential or intervals. 

Simulations of the model with propertional decay and a discrete input 

by Lynn (1969) on a digital computer indicated that the amplitude of the 

pulses has a neglible influence on the distribution of intervals between 

action potentials, as long as this amplitude is less than or equal to 10% 

of the difference between threshold and reset potential. 

3. Discrete input, discrete proportional decay. 

(Ten Hoopen, 1966). 

Under the assumption that all excitatory and inhibitory pulses have the 

same size (c • +_ c) the incremental moments are for у > 0 

drift a(y) = m - y/τ 

dispersion b(y) = s
2
 + су/т 

higher incremental moments A.(y) • η с + п.(-с) ~(-с7 y/τ 

where m = (η -n . )c and s 2 = (η + n . ) c 2 

e i e i 

and η is frequency of excitatory, η. of inhibitory pulses. 

The Smoluchowski equation for the transition probability is for 

y > 0 

j t f(y,t,x) - і
т
 {(y+c) f(y+c,t,x) - y f(y,t,x)} (1.4.8) 

+ n
e
 f(y-c,t,x) - f(y,t,x)} + n^fiy+c.t.x) - f(y,t,x)} 

For y = 0 and y > 0 slightly different equations apply. 
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Since the distribution is zero everywhere except at y » me, m integer, 

the differential-difference equation Eq.(1.48) is equivalent with a set of 

coupled first order differential equations. When an absorbing barrier (thres­

hold) is introduced at m = dand a reflecting barrier at m • -r, then the 

number of equations becomes finite. 

Exact solutions can be found for both the distribution of the somatic 

potential and the distribution of intervals. Ten Hoopen did not succeed 

in the derivation of a closed expression for average value or variance of 

the interval distribution. 

4. Continuous input, continuous proportinnal decay. 

(Gluss, 1967; Johannesma, 1968 and this paper) 

drift a(y) = m - y/τ 

dispersion b(y) = s
2 

higher incremental moments A.(y) " 0 , j >̂  3 

where the average value m is defined by Eq.(1.3.2) and incremental 

variance s
2
 by Eq.(1.3.5). 

The Smoluchowski differential realtion, Eq.(1.4.6), takes now the form 

f
t
 f(y,t,x) = - fy {(m-y/τ) f(y,t,x)}+ J (}

y
) {s

2
f(y,t,x)} (1.4.9) 

This second order partial differential equation is a special form of the 

forward diffusion equation, Eq.(1.3.22). 

Gluss gives a mathematical analysis of Eq.(1.4.9) indicating a number 

of relations between different functions resulting in directives for numer­

ical computations. 

The results presented in this paper and the previous one are expressions 

for the stationary distribution of the somatic potential and for the moments 

of the interval distribution. In Ch. 2 these equations are derived for 

arbitrary drift and dispersion, in Ch. 3 applied on the system without decay 

(S 3.2) on the system with proportional decay (§ 3.3) and on the equivalent 

circuit of the membrane (S 3.4). 
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T H E S T A T I O N A R Y S C E N E : 

M A T H E M A T I C A L D E R I V A T I O N S . 

2.1 INTRODUCTION 

In the previous chapter a theoretical approach! the diffusion model, 

has been formulated and evaluated with regard to physiological evidence. 

In this chapter a mathematical analysis is made of the diffusion equations 

for the stationary situation. The main results are analytical expressions 

for the distribution of the somatic potential and for the moments of the 

distribution of intervals between action potentials. 

The basic equations for a diffusion process, derived in S 1.3, are 

} t f(y,t,x) - P<4y.y) f(y.t,x) (2.1.1) 

} t f(y,t,x) - Q(x.|x) £(y,t,x) (2.1.2) 

Here we introduced the forward diffusion operator 

P(ly'y) - -}у а (
У>

 +
 (іу)

2
ІЬ(у) (2.1.3) 

and the backward diffusion operator 

Q<*4> - ·<*> } x + IbWOf-J (2.1.4) 

Four functions of fundamental importance will occur frequently in the 

analysis. 

1. The first function is already introduced in S 1.3; its definition is 

here repeated in more neurophysiological terms. 

f(y,t,x) - probability density of the somatic potential at the value y 

a time t after the occurrence of a value x, under the condition 

that no action potential has been generated in this interval. 

This probability density obeys Eq.(2.1.1) and Eq.(2.1.2). 

2. The second function defines the distribution of the pulse initiation 

time. 

g(t,x) • probability density for the first action potential to be initi­

ated a time t after the occurrence of a value χ of the somatic 

potential. 

This probability density is identical with the distribution of the first 

passage time. 
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From the definitions follow 

lim f(y,t,x) = 0 and lim g(t,x) = 0 

Conservation of probability leads to the relation 

d t 

jdy fCy.t.x) + jdu g(u
(
x) - 1 (2.1.5) 

—со О 

3. The third function to define is the probability density of the somatic 

potential under repetitive activity. 

hCy.tjX) " probability density of somatic potential at the value у a time t 

after the occurrence of a value x. 

4. The last function is the probability density for the initiation of an 

action potential under repetitive activity. 

n(t,x) = probability density for an action potential to be initiated a 

time t after the occurrence of a value χ of the somatic potential. 

After the occurrence of an action potential the somatic potential 

assumes the value χ (§ 1.3; Ass. 5). As a consequence g(t,x ) is identical 
о о 

to the probability density of intervals between action potentials. For the 

same reason n(t,x ) is the event density of action potentials a time t 

after the occurrence of an action potential. This conditional event density 

has the nature of an autocorrelation function; in neurophysiology it has 

been awarded the slightly confusing name of expectation density. (Ferkel, 

Gerstein and Moore, 1967). 

Since there may have occurred an arbitrary number к > 0 of action 

potentials in the interval (0,t), the function h(y,t,x ) is the convolution 

of f and the k-fold convolution of g ¿ummated over all values of к > 0. 

Laplace transformation allows a simple presentation of this relation 

h(y,P.x ) - Σ f(v.n.x )Л£Г
Р
.х n

k
 -

 f
(y»P'

x
o> (2.1.6) 

О . О О .
 A / N 

k-o l-g(p,x
o
) 

An action potential occurring at t may have been preceded by an 

arbitrary number к >̂  0 of action potentials in the interval (0,t). In the 

Laplace domain this is expressed by 

fi(p,x) - Σ g(p,x) {g(p,
x
 )}

k
 = _ Í í b * I (2.1.7) 

k=o
 0 l-ß(P.Xo) 

The last equation is a well known relation for all types of renewal 

processes. 
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In the next paragraph the forward equation will be shown to yield the 

equilibrium distribution of the somatic potential; that is the function 

h(y) = lim h(y,t,x) (2.1.8) 

t-*» 

In § 2.3 the backward equation is used to derive the moments of the inter­

val distribution 

T
n
(x

o
) = jdt t

n
 g(t,x

o
) (2.1.9) 

о 

The last paragraph of this chapter indicates a way to take account of 

refractory influences. 
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2.2. THE DISTRIBUTION OF THE SOMATIC POTENTIAL. 

The forward diffusion equation forms the base for the mathematical 

operations of this paragraph. Therefore it is repeated 

|
t
 f(y,t,x) • P(}

y
,y) f(y,t,x) (2.1.1) 

The initial condition is taken at the end of an action potential, then 

f(y,o,
X o
) - i(y-x

o
) (1.3.24) 

Laplace transforamtion of Eq.(2.1.1) incorporating at the same time the 

initial condition, gives 

ρ f(y,p.x) - 6(y-x
o
) = P(|

y
.y) f(y,P.x) (2.2.1) 

Division of Eq.(2.2.1) by 1 - g(p,x ) and interchange of the order of 

operations leads for χ = χ to 

ρ h(y,p,x
o
) -

 І ( У
"

Х о )
 = Р(} .У) h(

y
,p,x

o
) (2.2.2) 

l-g(P,x
0
) 

The rest of the procedure is as follows: 

- multiply Eq.(2.2.2) with p, 

- take the limit ρ •* 0, 

- use the relation 

lim ρ h(y,p,x) » lim h(y,t,x) - h(y) 
p-*-o t-*«» 

- make use of 

lim p
2
h(y,p,x) " lim ρ h(y) • 0 

p->o ρ-»Ό 

This results in the equation 

P(f
v
.y) h(y) - - 5(y-x ) l i m — E — - (2.2.3) 

d
y

 0
 р-ю l-pg(p,x

0
) 

The Laplace transform of the first passage time density may be expanded 

as a power series of ρ with the moments as coefficients 

-, , " Ί (χ) 
8 р , Х о ' n»o -ττ- (-р ) П ( 2 · 2 · 4 > 

where 

T_(x) 

(- ^
D
)

n
 І(р,х) (2.2.5) 

ЭР / 

p-o 
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Under the condition that 

T
o
(x) - |dt g(t,x) - 1 

о 
this expansion leads to 

J j T f e i y -
Τ
ι

, ( χ ) ( 2
·

2
·

6 ) 

Combination of Eq. (2.2.3) and Eq.(2.2.6) gives 

Р(}
у
.У) h(y) = -Τ]1

 (x
o
) 6(y-x

o
) (2.2.7) 

Because of the form of the forward diffusion operator, given in Eq.(2.l.3), 

the second order ordinary differential equation, Eq.(2.2.7) may be integrated 

directly. Using the boundary condition 

h(—)= 0 

the result is a first order differential equation 

a(y) h(y) - ! {}b(y) h(y)} - T'[
,
(x

0
) с(

У
-х

о
) (2.2.8) 

in which ε is the unit step function. 

After insertion of the boundary condition 

h(d) - 0 

the solution of Eq.(2.2.8) yields an expression for the stationary distri­

bution of the somatic potential 

d 
.C(y) 

У 

h ( y ) " T ! , ( x o ) TRTT i d z ε < Β - χ ο ) e " C ( z ) ( 2 · 2 · 9 ) 

where 

У 

dz c(z) (2.2.10) c ( y ) " τέω • C(Y) 

and a(y) and b(y) are the drift and dispersion. 

A more direct relation with the fluctuation equation is given in the 

equivalent expression 

-1 e 1 " ^ Í e - r ( z ) 

h(y) = T.4> 2huT ]d2^-V ^τω ( 2 · 2 · π ) 

У 
where 

У. 

Y (y) . ΞίΖΐ , r(y) - dzY(z) (2.2.12) 
І62(У) J 
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Since d 
Г 
jdy M y ) = 1 

The average interval duration is given by 

d d
 -"(z) 

w • 2 i d y 4 w ld z e(z-xo> S ¿ r <2·2·ΐ3> 
Partial integration transforms this equation in 

t e"
1
"^ f e

r ( z ) 

Ti(xo> = 2 J d y - T w J d z TUT ( 2 · 2 · , 4 ) 

This relation forms a special case of the results of the next paragraph. 
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2.3 THE DISTRIBUTION OF IMPULSE INITIATION. 

The backward equation is fundamental for the derivations of this 

paragraph 

|
t
 f(

y
,t,x) - Q(x,f

x
) f(y,t,x) (2.1.2) 

The conservation of probability, given in Eq.(2.1.5), reads in the 

differential form , 
α 

g(t,x) = - j t jdy f(y,t,x) (2.3.1) 

Since the backward diffusion operator does not contain the forward 

variables y and t, it is allowed to integrate Eq.(2.1.2) with respect to y, 

to differentiate with respect to t and interchange the order of operations. 

The following equation results 

ft g(t,x) - QCx.fx
5
 g(t.x) (2.3.2) 

This equation for the distribution of first passage times has the same 

form as the bakcward equation. 

The initial condition for this equation is 

8(o,x) - 0 (2.3.3) 

and the boundary conditions are 

g(t,d) - 6(t), lim |
χ
 g(t,x) - 0 (2.3.4) 

χ-»— m 

A solution in closed form of Eq.(2.3.2) has been found only in the 

case that drift and dispersion are independent of the value of x: 

a(x) « a, b(x) • b. This case, known as the Wiener-Einstein model of 

diffusion is treated in detail in S 3.2. 

For a more general analysis we start again with Laplace transformation. 

Eq.(2.3.2) with its inital condition leads to 

Ρ g(p,x) - QCx.-j·^ ê(P,x) (2.3.5) 

with transformed boundary donditions 

g(p,d) - 1, lim }
χ
 g(p,x) - 0 (2.3.6) 

•V-i QD 

Э 
Substitution of the explicit form of Q(X.-T ) as given in Eq.(2.1.4) and of 

the function c(x) as defined in Eq.(2.2.10) gives Eq.(2.3.5) the form 

p тьЬт g ( p ' x ) • { c ( x ) + i } i § ( ρ · χ ) ( 2 · 3 · 7 ) 
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Multiplication of both sides with exp {C(x)} leads to 

Р - ё т
е ( р > х )

- І
{ е С < Х )

І х е ( Р . х ) } (2.3.6) 

The rest of the operations are: 

- integrate the equation over x, 

- use the boundary conditon for χ • -«, 

- multiply both sides with exp {-(¡(x)}, 

- integrate the equation over x, 

- use the boundary condition for χ • d. 

The result is an integral equation 

g(p,x) - 1 - ρ 

or alternatively 

d- -CM li
 e

C
<

z ) 

dy e W jdz 1 ^ Ì(p,z) (2.3.)) 

f
 е

-
Г ( у )

 f e
r ( z
> 

g(p,x) - 1 - 2pjdy
 e

 B ( y )
 jd

Z
^yg(p,z) (2.3.10) 

χ -•» 

A simplification of the formulas is caused by the definition of the 

integral operator 

4
 -Г(У)

 yr Γ(ζ) f e "
l w
 f e^1 

ь'2Г-т г-Ш) ( 2 · 3 · η > χ -«· 

which gives Eq.(2.3.10) the seemingly simple form 

i(p,x) - 1 - ρ L {§(p,z)} (2.3.12) 

To our knowledge no general solution of this equation in closed form exists. 

However, it is possible to derive a recurrence relation, involving the 

operator L, for the moments of the distribution of intervals between the 

presence of a value χ for the somatic potential and the occurrence of the 

.text action potential. The η moment defined by Eq.(2.1.9), obeys 

Τ (χ)/nî - -(|J" g(p,x) (2.2.5) 
η Эр , 

p-o 

Combination of this relation with Eq.(2.3.12) gives the results 

T
o
(x) - 1 
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as should be expected; and 

Í
 е
-
Г(у)
 f e

 Γ(ζ) 

T.Í^-LÍD-^dyí-g^ ] d z ^ ) (2.2.14) 
χ -« 

which was already derived in the previous paragraph; 

T
2
(x) - 2 L {1,(2)} 

d 

ifdy 
*•

 e
-r(y) I 

X 

е
Г(з) 

d z lë^T Ti ( z ) ( 2
-

з л з ) 

for the second moment; and finally 

Τ (χ) - η L {Τ .(ζ)} - ni L
n
{l} (2.3.14) 

η η
-
1 

as the general equation. The numerical values of the moments can be computed 

from these expressions. For the distribution of intervals between action 

potentials χ should be substituted for x. 

Experimental results are usually not expressed in the moments, but 

either through the interval distribution or using the lower cumulants of the 

distribution. The cumulants are defined through 
K
„

(x
„> "

 (
- Τη)"

 l n
 eip.O/ (2.3.15) 

η о Эр о /
р
_

о 

They are in a simple way related to the moments: 

Κ. - Τ. " μ » mean. 

К - Τ,
-1
] "

σ 2 - v a r
i

a n c e
t 

KÎ/K. - γ - coefficient of variation, 

К- - Τ, - ЗТ.Т, + 2T, - third central moment, 

Κ,/σ
3
 » γ » skevness, 

κ
4
 - τ

4
 - зт^ - 41,13 + 2τ2

ιΊ2 - 6τ\, 

Κ,/σ
1
* - у2 • excess. 

Digital computer simulations of Lynn (1969) showed that variation 

of parameters of a neuron gave marked and systematic changes in μ, σ, γ 

and γ . 
2 
The event density (frequency) of action potentials is simply related 

to the average interval through 

η - T,(x
o
)"

1
 (2.3.16) 
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The first order conditional event density (expectation density) 

follows from the distribution of intervals (compare Eq.(2.1.7)) 

g(p.x
o
) 

Й(р- " т = 1 ^ 0 ) ( 2 · 3 · 1 7 ) 

This relation can also be expressed directly in the moments of the interval 

distribution 
» Τ (x ) » Τ (x ) 

8(p,*
n
) - - Σ -IUÜ- (-P)

n Σ » £ - ( - p )
n
 (2.3.18) 

0
 n=o

 n
· n-1

 n
· 

As a consequence of the reset-condition (§ 1.3; Ass. 5) the higher 

order conditional event densities do not contain new information; frequency 

and expectation density give then a complete description of the stationary 

output sequence of action potentials. 

An approximating function for the interval distribution based on the 

knowledge of the first four cumulants may be found in the following way. 

For distributions with a single mode Pearson devised a family of functions, 

defined by 

^ - b Л У + ь ^ fCz)> a = m o d e < 2 · 3 · 1 9 > 
ο 1 2 

A number of well known distributions belong to this family: normal, beta, 

gamma distribution. The parameters a, b , b. and b„ are in a rather simple 

way related to the first four cumulants. The type of distribution depends 

on the value of _ 

γΐίΎ, * 6Γ 
— (2.3.20) 

If 

4(3γ^ - 12 - 4γ
2
)(3γ

2
 - 2γ

2
) 

γ
2 • bh b

2 "
 0 

then the distribution is a generalized gamma distribution (Pearson type III) 

, t -ou. 1 .t- α ..π-1 . t - a , . . 

V—Γ* m ßföö (
~Г"

) eXp(
" —Г-)

 (2.3.21) 

which is completely specified by its first three cumulants. The parameters 

are limited to 
a < t <

,
» , - =

,
< a <

a >
, 0 < 1 t < ' ! D

t 0 < ß < « , 

and related to the first three cumulants by 

α - u - 2σ/γ , S - W , , "-(tfr,)
2
 (2.3.22) 
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When a gamma distribution supplies an acceptable approximation, then 

g(
P
,

X o
) - e"

01
· (S ρ + О " " (2.3.23) 

and 

ñ(p,xo) -{e
a p (3p + if -l}"1 (2.3.24) 

Three special cases of gamma distributions of the intervals are 

- no dead time: α » 0, 0 , тг 

- exponential with dead time: α ,β , тт = 1 

- exponential without dead time: α = 0, 3 = Т., ir = 1 

Because of the reset condition (S 1.3; Ass. 5) the last process is a Poisson 

process. In this case the expectation density is constant and the frequency 

η = 1. gives a complete description of the sequence of events. 

If a gamma function does not fit the interval distribution satis­

factorily and values of more moments are available, refinements of the 

approximation may be produced by adding terms of the associated Lagurerre 

expansion. 

An advantage of this method of curve fitting is that type and parameters 

of the distribution result from simple algebraical mainpulations of the 

lower moments. The best approximating curve is in this procedure not defined 

by a least square deviation, but through an identification of the lower 

moments of both functions (Kendall Stuart, 1963; Johannesma, 1968). 

To what extent this approach is useful depends strongly on the purpose 

of the investigation. When the interest is concentrated on the intracellular 

processes causing the action potentials the neglect of fine details of the 

interval distribution in this approximation is a serious drawback, if 

however the signal characteristics of the sequence of action potentials 

are considered this type of description may be satisfactory. An advantage 

of moments and cumulants is that much is known about their sampling 

characteristics; moreover, they allow the presentation of comparable 

results of a large number of experiments in a single graph. 
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2.4 THE INFLUENCE OF REFRACTORINESS. 

A proper treatment of refractory effects should take into account at 

least all the four variables of the Hodgkin-Huxley equations as well as 

geometrical properties of the membrane. Mathematically this is too difficult. 

A widely used procedure is to consider the threshold to be dependent on the 

time passed since the last action potential. 

d(t) - d + d (t - s ) (2.4.1) 

Here s is the moment at which the last action potential occurred and d (u) 

is a function which decreases from infinity at u = 0 to zero at u = «·. 

This model implies, in our approach, a time-dependent boundary condition 

and is not analytically tractable. 

An alternative approach is now presented. The function X(y) is defined 

by » 

A(u) >_ 0 for all u >̂  0 ; du >(u) = » (2.4.2) 

Usually X(u) will be a function which goes smoothly and monotonie from 

0 to 1 ; for instance 

X(u) = 1 - exp(-t/t
0
) (2.4.3) 

(Fuortes and Mantegazzini, 1962). 

Refractory properties are described by multiplying the 'spatial' 

iinate with a 

potential becomes 

coordinate with a factor {X(t-s)} for t > s. As a result the threshold 

d^ - т&ъ ( 2 · 4 · 4 ) 

and the reset potential 

X
o

( t )
--lTb)

 ( 2
·

4
·

5 ) 

Some reflection leads to the conclusion that this 'space-transformation' 

is equivalent with a multiplication of drift a with X(t-s) and dispersion b 
2 

with {A(t-s)} . This means that refractory influences are manifest mainly 

in a reduction of the amplitude of the input with a factor X(t-s). 

This description appears, in the whole of the theoretical approach, 

an acceptable simplification of the physiological situation. However, also 

here again we come across complicated mathematical problems. 
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A more succesful way, not too different from the previous one, to 

treat refractoriness, is a multiplication of both drift and dispersion 

with A(t-s) 

a(x,t) = X(t-s).a(x) (2.4.6) 

b(x,t) - X(t-s).b(x) (2.4.7) 

This amounts to the assumption that at a time u after the last action 

potential all processes are slowed down with a factor X(u). Roughly, this 

is equivalent with the assumption that the probability for an incoming pulse 

to reach the central somatic structure is reduced with a factor A(u). 

The mathematical analysis relies on the introdudion of a transformed 

time variable 

t-s 

A(t-s) - du X(u) (2.4.8) 

о 

in terms of which the diffusion equations can be reformulated as time 

independent equations. The res t of the mathematical operations for the 

determinations of (the moments of) the interval d i s t r i b u t i o n is then 

formally ident ica l with that given in 5 2.3. The main r e s u l t of th i s proce­

dure is the asser t ion: 

Ti dnÁ-it a(x) and d¿ipexi>¿on b(x) leAutt in a. cumulcLtLve. dLLb&U.bu£Lovi otf 

•LnteAvaJLb G(t) and a. ptiobabiLuty d&nilty ¿и.псЛА.оп g( t ) thzn d/Uit 

X(t).a(x) and di&pWÁlon A(t).b(x) іичЫ -in а сшпиЛаХАмг d¿it>i¿buX¿on o¿ 

¿піел аіі G r ( t ) - G(A(t))an£Í a pnobabiJLLty d&mity g r ( t ) = λ( ί ) g(A(t)) . 

http://dnA.it
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T H E S T A T I O N A R Y S C E N E : 

A P P L I C A T I O N S A N D R E S U L T S . 

3.1 INTRODUCTION 

In the first chapter a mathematical framework was constructed which 

incorporated some of the basic physiological properties of a neuron. The 

second chapter contained mathematical procedures which derived from the 

diffusion equations a number of more specific expressions. The main results 

were formulas for the stationary distribution of the somatic potential and 

the moments of the interval distribution. In this chapter these formulas 

are applied on three detailed models. 

These three models consist all of first order systems followed by a 

threshold-reset mechanism. The sections in front of the threshold are in 

the three cases: an integrator, an imperfect integrator and an equivalent 

circuit for the membrane. For the first two models analytical expressions 

and numerical results are presented, for the third only the mathematical 

formulas. 
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3.2 THE SIPIT-MODEL 

In this model for a neural cell a Stochastic Input enters a Perfect 

Integrator followed by a Threshold-reset mechanism: this description of a 

neuron will be named the SIPIT-model. The stationary characteristics are 

not so much treated here for their own importance, a large amount is already 

well known, as for the development of a dynamical description in the next 

chapter. 

Following the approach of § 1.3 the subthreshold behaviour is described 

by the fluctuation equation 

ί| = i(t) = m + s w(t) (3.2.1) 

ас 

where 

m = <i(t)>
f 

s
2
= dx { <i(t).i(t+-r)> - <i(t)

2
>, 

—CD 

w(t) = Gaussian white noise. 

(compare Eq.(1.3.2) - (1.3.5)). 

The important quantities drift and dispersion of the Eqs.(1.3.8), 

(1.3.19) and (1.3.20) are given by 

a = а = m, b = В
2
 = s

2
 (3.2.2) 

For this model all functions of interest are known (Bailey, S 14.4). 

The transient distribution of the somatic potential ( § 2.1, Def. t) has the 

form 

a ~ \ г /УХч /•yx'Zd,. , .my-Jm t
N
 ,, , ,

s 

f(y,t,x) = {^(i—) - ̂ (i )} expM g—) (3.2.3) 

s /t s /t s 

where the abbreviation for the normal distribution is used 

vfOL) = J — exp { - J ( ^ )
2
} (3.2.4) 

σ
 σ/Ζ*

 σ 

The first passage time or interval distribution (§ 2.1,Def. 2) is 

given by
 d

.
x d

.
x
 .

]nt 

g(t,x ) = — 2 ¥>( ) (3.2.5) 
0 t

 s/t 
In Fig. 3.2.1 - 3.2.4 a number of interval distributions are presented for 

2 
χ = 0, d = 1 ; average value m and Incremental variance s are the parameters. 
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Flg. 3.2.1. IntuKMoZ cLu,t>u.bu£<.on& ion. thz SlPÌT-modeZ ¿οι s = .20 

F-cg. 3.2.2. InteAvat aLb&ubwUonb {¡on the. STPlT-md&l іол. s = .40 
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DURATION OF t ITER VAL 

Fig. 3 .2 .3 . InteAvaZ cLLét/Ubutiom {¡on. ífie SIPIT-mode£ ^оі s = .60 

DURATION OF INTLRVAL 

ÏIQ. 3.2.4. Іпіел аі d¿iVUbutLon& ion. thz SIPIT-modeí ¿οκ s = 1.00 
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Without loss of generality the reset potential can be normalised 

to zero and the threshold potential to one 

χ = 0, d = 1 
о 

The following relations are then valid: 

the mean interval is equal to 

μ
= T

1
 = m"

1
, (3.2.6) 

the average frequency 

η = Τ = m, 

the variance of the interval distribution 

^ = T
2 " A =

 =
s 2 / m 3

 (3.2.7) 

and the coefficient of variation, defined as the standard deviation of the 

intervals divided by the mean interval, 

2
 1 

γ
ο
 = σ/μ = Us /m)

2
 (3.2.8) 

Since drift and dispersion are equal to average value and incremental 

variance of the input 
9 

a = m, b = s
-

their ratio, as defined in Eq.(2.2.10), is simply 

с - i - Λ (3.2.9) 
ІЪ is2 

Substitution of this expression in Eq.(2.2.y) gives the equation for the 

stationary distribution of the somatic potential 

h ( y )
 = _!_ { e

C ( y
-

X
o

)
 - e

c ( y
-

d )

 + E
(

y
.

X o
) U - e ^ - V n (3.2.10) 

о 

The distribution h(y) is a continuous function of y but has a discontinuity 

in its derivative at the reset value χ . 

о 

For t h e normal i sed v a l u e s χ = 0, d = 1 E q . ( 3 . 2 . 1 0 ) becomes 

cy c(y-1) . . , . cy, 
= e - e + e (y) 11 - e J) h(y) = e " ' - e " " J + e ( y ) Í 1 - e ^ } (3.2.11) 

2 
A collection of graphs, with s /m - 2/c as parameter, is presented in 

Fig. 3.2.5. 
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Eúj. 3.2.5 The. AtcutLonany cLLotAibvution o¿ the. ¿omatic potential íoi the 
SïPIT-mdet; at both &¿deA в /m аеслелбел {¡lorn the. le^t to the >u.ght. 

A conclusion with important implications for the dynamical propert ies 
(Ch. 4) follows from Eq.(3.2.10) : 

the ¿taZionaAy tUitfixbution o{ the iomaXLc potential depend!, only on the 
natio oi а ешде value and incxwental аліапс.е ofa the input and not on 
one o¿ them iepanateZy* 
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3.3 THE SILIT-MODEL. 

In this description of a neuron a Stochastic Input impinges upon a 

Leaky Integrator followed by a Threshold-reset mechanism. This model, 

usually described as the proportional decay model, has been widely studied, 

mainly with respect to the distribution of intervals between action potenti­

als (for discussion and references see S 1.4). 

The fluctuation equation, describing the subthreshold behaviour, is 

ijî = - Υ/τ + i(t) = m - Υ/τ + s w(t) (3.3.1) 

dt 

where 

m = <i(t) >, 

2 

s = 
idT { <i(t).i(t+T)> - <i(t)

2
>, 

w(t) — Gaussian white noise. 

Drift and dispersion are given by 
2 2 

a(z) = a(z) = m - ζ/τ, b = β = s (3.3.2) 

From the definitions, given by Eq.(2.2.10) and Eq.(2.2.12), follows 

2 
c(z) = γ(ζ) = ! Ц , C(z) = r(z) = - {^—) (3.3.3) 

5-4 

where we used the notations 
2 2 

m = пи , -4 = s τ (3.3.4) 

Closed solutions for the transient distribution of the somatic potential 

f(y,t,x) and the interval distribution g(t,x) are unknown. The moments of the 

distribution of intervals between action potentials follow from the sub­

stitution of Eq.(3.3.2) and Eq.(3.3.3) in Eq.(2.3.14). 

The result is 

d У 

η
 2

 . г <-y*
m
\

2
i j г /

z
"

m
\

2
· , n-1 /, -,

 с ч 

— i — • τ-2 J d y e x p { ( — ) ) J d z e x p { " ( — > > -J^TYT
 ( 3 · 3 · 5 ) 

¿ X —oo 

A simplification of this equation is caused by the introduction of the 
dimensionless variables 

Τ 
m-x „ m-d _ 1 η ,, - ,. 

x =
 " Α

-
·

 Ό = IT' ^п î Τ (3.3.6) 

o ¿ η ni - η 
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The result is the recurrence relation 

X 

μ^(Χ,Ο) = 2 Jdy е
У
 J dz e"

Z
 μ^, (z,D) (3.3.7) 

2 

D У 

A general conclusion follows from Eq.(3.3.7) : 

•id turn -Lb ттзлилгА ¿η имЛл о $ thz time, conòtant τ, then aZZ. momenti о (J thz 

•ovtvwaZ dlittAbtutLon, and ai a comzquznce. ¿ &елмаі dÀAtfiihuJbion and expec-

tation deni-Lty, depend onty on thz two comb¿nivLÍon& o i Аул-tem and ¿приХ 

ралатеХелл Χ and D. 

The important equation for the average interval can be given in several 

equivalent forms. 

T^X.D) = τ{μ(Χ) - μ(η) } (3.3.8) 

where 

Idy e y 
2 

dz e" Z (3.3.9a) μ(χ) = 2 J 
0 

= jdu e " u — (3.3.9b) 

У 
2 , -2xu 

= Σ (-2) n " 1 Т<:пП} x n (3 3 9c) 
n = r ' Γ(η+1) X U.J.sc; 

Small values of χ allow the use of the ser ies representations of 

Eq.(3.3.9c) for numerical computations. For a l l posit ive values of у the 

integrand of Eq.(3.3.9a) i s bounded by 
GO 

(y + /y 2 + 2 ) " 1 < е У dz e" Z <(y + /y 2 + A/it)" 1 ; у > 0 (3.3.10) 

У 

(Abramowitz and Stegun, 1965; p. 298). For large values of у this gives 

2 f 2 . 
2e

y
 J dz e"

Z
 = у" ; у » 1 (3.3.11) 

У > 

When both X and D are large this results in the approximation 

T^X.D) = Tln(X/D) = τΐη ¡^; X » 1, D » 1 (3.3.12) 
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Eq. (3.3.12) applies exactly in the limit s •* 0, that is an input approach­

ing a constant current. In this case this equation can also be derived 

directly. For χ = 0, d = 1 the average interval for a constant current input 

is 

ТЛт,
 τ
) = - τ1η(1 - — ) (3.3.13) 

1 тт 

Numerical results are presented in terms of dimensionless variables. 

The dependent variable, the output, is given by 

Ν = τ/Τ
1 

= time constant divided by average interval 

= average number of pulses within a time constant. 

The two independent variables characterising the input are 

M
 _ m _ тт 

= product of average value of input current and time constant divided 

by the threshold potential 

= equilibrium value of the somatic potential in the absence of a threshold 

expressed in units of the threshold potential 

s
2 ,

2
_ S

2
T 

7"7 
= product of incremental variance of the input and time constant divided 

by the square of the threshold potential. 

The reset potential χ was for all numerical computations choosen 

to be equal to the resting potential 

χ = 0 
о 

In Fig. 3.3.1 N is plotted against M with S as parameter. 

Remarkable is the strong dependence of N on S for values of M near 

the threshold. The nearly discontinuous change in N at M = 1 was already 

dicussed by Stein (1967). For small values of M the dependence of N on M 

is approximately exponential while for large M the relation between N and 

M becomes linear. These"
1
 features are well brought out by an approximative 

relation 

N = exp(aM + b - cN) (3.3.Ha) 

or alternatively 

in N + cN = aM + b (3.3.14b) 

This relation forms a good approximation for S > 0.2. The constants a, b and 

с depend on S. 
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N 8 

ЛиЛБ OF S I 00 

90 

F-tg. 3.3.1 F'izque.ne.y-CMM.e.wt KzZatiom ^оп. the. SI LU-то dit ion. ¿сделен* 

tmounti o i vanAab-LLüty o i thz ¿npai. 

It is rather unlikely that average value of the input (M) and its 
2 

incremental variance (S ) vary independently. Therefore two different presen­
tations of the frequency-currtnt relations, both essentially equivalent 

to Fig. 3.3.1, are given. In Fig. 3.3.2 S is varied proportionally to M 
2 

with S/M as an additional parameter. In Fig. 3.3.3 the proportion of S and 

M is constant for each curve. In both cases large regions occur over which 

these input-output relations are approximately linear. 

In Fig. 3.3.4 attention is concentrated on the functional relation 
2 

between N and S while M is constant for each curve. A rather different 
2 

presentation of the relation between Ν, M and S is given in Fig. 3.3.5. 
2 

Here M Is the horizontal, S the vertical ordinate and the curves are the 
2 

collection of (M,S ) values which result in the same output frequency. 
2 

For S > 0.2 the isofrequency curves are rather linear and can be 

described to a good approximation by 

N = N (M + qS
2
) (3.3.15) 
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F-tg. 3.3.Ζ ttizquzncy-civuiznt KnJLajtiovu, (¡on the. SÍLJT-modeZ ¡̂ ол. ал-ЦелгуЛ 
va£ue¿ о^ thz pwpo>vUxjn s/M. 

•^ Ш О Л О « ΟΙΟ о 

F¿g. 3.3.3 F^e(}iie«ct/-caviení ^.eíctttoiti ίοΛ thz SILIT-modzÍ ¿οκ cLíiieAznt 
vaZuu 0)5 thz pfwpontA.on s /M. 

http://dA.Hzn.znt
http://dA.uzn.znt
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'Ь.ав в π α.« 

Fig. 3.3.4 fKzqu.zncy-va/uM.b¿í¿ty itlatLoní ion. thz SÍLÍT-modeZ ion. dLLHeAznt 

valute o i thz а еладе. -ufiput cunAznt. 

от · 

Etg. 3.3.5 lio-imqazncy сил ел ion. thz SILIT-modeí. 

http://fizqu.znc.y
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In several of the previous graphs large regions of quasi-linearity were 

present. In order to investigate this phenomenon more precisely we proceed 

2 2 

as follows. In an arbitrary point (M ,S ) of the (M,S )-plane (with the 

2
 0 0

 2 

exception of M = 1, S = 0) an expansion of the function N(M,S ) is possible. 

N(M,S
2
) = N(M

o
,s2)

 +
 (M-M

o
) Λ. N ( M ,

S
2 )

/ M = M O +
 (S

2
-sJ) ̂  » ( ^ . S

2
) , ^ + 

о 

u(M,S
2
;M

o
,S

2
) 4З.З.І6) 

where Δ represents the re s t term of t h i s expansion. 

Fig. 3.3.6 LiniOA e.-n.zg^oni ion. the. STLlT-model ¿ол. e = 0.01 

h.o>u.zontaU.y : S2 = OJO; 0.20; 0.40 

елисМу : M = 0.50; 7.00; 1.50 
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2 
The (stationary) ^-region of linearity around (M ,S ) is then defined— 

2 о о 
as the collection of (M,S ) for which 

Δ(Μ,8
2
;Μ ,S

2
)< ε (3.3.17) 

о о 

This implies that within this region a linear approximation holds with an 

error less than ε. 

A number of these regions for e = 0.01 are presented in Fig. 3.3.6 and 

Fig. 3.3.7. Remarkable is that the regions are not necessarily closed and 

that form and size depend on the location of the centre. The significance of 

these regions for a linearised dynamical description based on stochastic 

transfer functions is pointed out in Ch. 4. 

F-tg. 3.3.7 LLMJOA e-A.íg¿onA £on. the. SILlT-modzZ ¿ол ε = 0.07 

ho/UzovtfaHy: s
2
 = 0.50; Í.00; /.50 

WitixuntXil : M = 0.50; Г.00; /.50 
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The stationary distribution of the somatic potential follows from the 

substitution of Eq.(3.3.2), (3.3.3) and (3.3.4) in the general expression 

given by Eq.(2.2.11). The result is 

d 

My) = —~ exp {- ( ̂ )
2
>ί dz ε(ζ-χ ) exp { (·Ξ—) } 

О О 
(3.3.18) 

For the case χ = 0, d = 1 this expression becomes 

„ 1 

h(y) = J L exp
 {
 - (Z^î) } 

Is2 s 
dz ε(ζ) exp{(^îi)2} 

A number of these distributions are presented in Fig. 3.3.8. 

(3.3.19) 

-ο.-* -β η 
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1» -Ί m 
VALUE ЧТ ЗШАТІС POTÏKTlAt 

F-tg. 3.3,8 V-c6&u.bívUon& 0(J tht òomitce. potzntaiL ion. the. SJLIT-modzZ 

¿oi і с ^ е л г л і аіиед o{ м and S; Ичлслголел ¿лот ¿z^t to 

>U-Qht. 
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The moments of the stationary distribution of the somatic potential are 

defined as d 

Y
k
 = ι dy y

k
 h(y) (3.3.20) 

— CO 

A recurrence relation between these moments can be derived: 

Y = 1 
о 

\ = M Y ^ + (k-l)JS
2
 Y

k
_

2
 - 1 N (3.3.21) 

It follows directly that the average value of the somatic potential is 

Υ = M - N (3.3.22) 

and the variance 

Y
2
 - Y^ = ÌS2 +(M - N - ä)N (3.3.23) 

In Fig. 3.3.9 - 3.3.11 the average value and in " ig . 3.3.12 - 3 .3 .H 

the standard deviation of the somatic potent ia l are given as functions of 

the normalised average input M. 

F-tg. 3.3.9 Ачелдде vatuz o{¡ the. ¿omaZie. potzntiaZ ел&ид noHmaJLLbeA сыеладе. 

•LnpiU (M) ¿о* аА-ЦелемС amounti o^ vaAÁAbiLLty о(, the. input ( s ) . 
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F-tg. 3.3.10 А еладе. υαΖαζ 0(¡ the. ¿отаХл.с potzwtLat меллил nonmoJLLbzd 

а еладе. input (м) ^оп. dU^nAznt &іиел о^ thz pxopontÁMn S/м. 

F^g. 3.3.П А еладе. vcdbxi o{¡ the. ¿orncuUc pot&ntuil иеллоі полтаЛОіЫ 
2 

а еладе -input (м) io*. dU^zAznt valu&ò о^ thz pfiopoAXcon S /M. 



64 

F-ú). 3.3./2 Standand deviatLon o¿ the. iomatic poteyvUaZ еліа& nowedLL&eÁ 

а еладг input (M) (¡on ¿(.¿¿елелС атошг&ь ofa vtVuAblLüty о^ thz 

¿ημιΧ. ( S ). 

ο Τ 9/M · I 00 
ΐ 90 

F¿3. 3.3.13 Standand de.v¿at¿on o£ the. iomatLc potentÄMt ел&ид nonmatiatd 

а еладг ¿npwt (M) ^ок (LLí¿eAent аЫел o¿ thz pfwpo/vtLan S/tí. 
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S2/H - 1.00 

Rig. 3.3.14 Standand ázvÁjvtLon. о^ the. Aomatic. pot&ntLaZ гліил nonmaJLLbzd 
2 

аиеладе ¿приХ. (M) ^оп. dildeAzvit аЫел о^ the. pfwpoi&Lon S /м. 

2 
In the case where the incremental variance (S ) is proportional to the 

average value (M) of the input both average value (Fig. 3.3.11) and standard 

deviation (Fig. 3.3.14) of the somatic potential vary only weakly for 

M > 0.50. 

If the SILIT-model does apply, which has to be decided on the base of 

intracellular measurements, the results of this paragraph should correlate 

with the experimental data. However, all numerical results presented here 

are based on the assumption that the reset value of the somatic potential 

(x ) is equal to its equilibrium value (0). If this is not the case the 
о 

numerical computations have to be done for the correct value of χ before 

a quantitative comparison between experimental and theoretical results can 

be made. 
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3.4 APPLICATION OF THE DIFFUSION MODEL ON THE EQUIVALENT CIRCUIT 

OF THE MEMBRANE 

This section is mainly intended as a demonstration of the wide range 

of possible applications of the diffusion approach and as a first step 

toward a more accurate description of the stochastic behaviour of the 

somatic potential and the generation of action potentials. 

As long as no action potential occurs a small uniform patch of membrane 

is represented by the circuit of Fig. 3.4.1. (Rail, 1962). 

inside V U. 

к h h 
^ E „ T b E c _±_E 

outside V0 | I M 

Euj. 3.4.1 The equ/U/atent сллаиЛ oí the. mumbnane. 

The e q u i v a l e n t equa t ion r eads 

dV., 

Si - CM Τ ? + GM(VM • V + GE(VM * E E ) + G I ( V M - V 
(3.4.1) 

dV 
3È - - V * м

 + ( E
e •

 V ) e + (E
i -

 V ) 1
· 

where 

τ = С. J G,. - RwCu = membrane time constant 
M M M M 

v
 - м - V E

e -
 E
E "

 E
M· 

e
 =

 G
E

/ G
M· 

(3.4.2) 

V
 v
i -

 ν
ο· E

i -
 E
i -

 Е
м' 

1
 =

 G
I

/ G
M · 

and the membrane current L. is an arbitrary function of the membrane poten-

M 

tial V. 

We assume the input signal to consist of unpredictable changes in the 

relative excitatory and inhibitory conductances G /G and G /G , of which 

only average values and incremental variances are known. 



67 

2 I 2 
m = < e ( c ) > , s = ατ { < e ( t ) . е ( с + т ) > - < e ( t ) >} 

e e 

< i ( t ) > , s ' = U T { < i ( t ) i ( t + T ) > - < i ( t ) 2 > } •M' 
Eq,(3.A.2) can be written as 

with 

dV 
£- = a(V) + sJV) η (t) + s (V) η, (t) (3.4.3) 
at е е i l 

a(V) = т"1{і„( )ІС, + m E + m.E.} - т ' ^ т + m, + 1} V, 
M M e e i i e i 

Se(V) 

n e ( t ) 

= 

= 

S e { E e 

e ( t ) -
s e 

- V 

me 

s l(V) = s i { E i - V}, 

tri Ì ( t ) - Ш І 
n i ( t ) 77-

ι 

If both excitation and inhibition consist of many small independent 

contributions, each with a short duration, then Eq.(3.4.3) may be considered 

as a fluctuation equation. It can be written as 

dV 
§1 = a(V) + ß(V)w(t) (3.4.4) 

a t 

with 

w(t) = Gaussian white noise with zero mean and unit variance, 
ß(V) = s (V) + cs.(V), - 1 < с < 1, 

e i — — 

if η (t) and η (t) are completely correlated; 

B
2
(V) = s

2
(V) + s

2
(V), 

if η (t) and η (t) are totally independent. 

Substitution of these quantities in the appropriate equations will 

supply the expressions for the stationary distribution of the somatic 

potential and the moments of the interval distribution. 

The description of this section takes more proporties of the membrane 

into account than the proportional decay model of the preceding paragraph; 

as a consequence it contains also more parameters. It appears that this 

more precise description will only make sense quantitively, if the values 

of all parameters and variables can be measured and proper regard is paid 

to the geometrical properties of the neuron. 
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S O M E A S P E C T S O F T H E D Y N A M I C S 

4 . 1 . INTRODUCTION 

The subject of this chapter is the dynamical behaviour of neurons. 

While a large amount of theoretical work has been done on the analysis of 

stationary stochastic activity of neurons, much less Insight exists concer­

ning the dynamical aspects. 

Consider a situation given by 

o(t) = Τ {i(t)} (4.1.1) 

where Τ is a linear or nonlinear integro-differential operator representing 

the system. The output o(t) is completely measurable. For the input i(t) 

two situations are considered: i(t) is completely or i(t) is incompletely 

measurable. In both cases i(t) is supposed to be controllable to the same 

extent as it is measurable. An auditory stimulus is usually assumed to be 

completely measurable, while a visual stimulus should, at least for low 

intensities, be regarded as incompletely measurable. 

For a completely measurable input a first order estimation of the 

dynamics of the system Τ is acquired from the correlation between input and 

output. A number of signals may be used as input: impuls, step, ramp, 

sinewaves, noise. For a linear system these different signals all lead to 

the same characterisation: the impulse response or its Laplace transform, 

the transfer function. For nonlinear systems different classes of input 

signals usually lead to different descriptions. 

In engineering it is well known that in many situations it has advan­

tages to use white noise for the analysis of nonlinear systems. The input 

is choosen as 

i(t) = w(t) 

where w(t) = stationary Gaussian white noise 

Values of input and output with a delay τ are multiplied and averaged 

with respect to time. The resulting quantity is the crosscorrelation 

f u n c t i o n / \ ^ - /^ \ / \ ϊ ι л гъ\ 
ρ(τ) = < i ( t - τ ) . o ( t ) > ( 4 . 1 . 2 ) 
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If the system Τ is not too strongly nonlinear an approximation by a 

linear system is useful. The optimal approximation resulting in the least 

square deviation for this input is the linear system with impulse response 

ρ(τ) or transfer function p(p). A clear exposition of these methods is 

given in Graham and McRuer, (1961). 

It is important to realise that this method makes use of complete know­

ledge of input and output signal. Only after delay and multiplication the 

averaging operation is performed. The noise w(t) as used here is unpredic­

table but measurable; a priori it is unknown but not a posteriori. 

A completely different situation arises if the input i(t) is a stochas­

tic quantity which is only partly measurable. Already mentioned is the 

example of the visual system where the statistical parameters of the stimuli 

are easily measured and controlled, but the precise times of occurrence of 

the light quanta cannot be measured without destruction of the signal. 

As in § 1.3 we assume that the input may be described as 

i(t) = m(t) + s(t).w(t) (4.1.3) 
2 

The average value of m(t) and incremental variance s (t) of the input, 

defined by Eq.(1.3.2)-(1.3.5), are measurable but the white noise w(t), 

described by Eq.(1.3.12a)-(1.3.12b), is not measurable. 

A rather different approach has to be developed for the analysis of 
2 

this situation. The input signal is defined as the pair {m(t), s (t)); it is 
2 

the {m(t), s (t)} modulation of a carrier consisting of white noise. This 
2 

modulation can be additive (m), multiplicative (s ) or a combination of these. 

Since the carrier contains equally all frequenties from zero to infinity, 

there are no limitations on the frequency content of the modulation. 

In some situations s(t) may be dependent on m(t). For instance if the 

input is a frequency modulated Poisson process, or a sum of independent 
2 

identically modulated Poisson processes, then s (t) is proportional to m(t). 

On the other hand, in the neurophysiologically unlikely situation that the 

amplitude of the pulses is modulated, s(t) is proportional to m(t). If only 
2 

additive noise is present s (t) is independent of m(t). In the case that 

s(t) = 0 for all t, this description and the previous one for completely 

known signal are identical. 

A general property of these signals is that the sum of two signals 

2 2 
{m (t), (t)} and {m (t), s (t)} with uncorrelated white noise carriers 
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2 
w (t) and w (t) is a signal {m(t), s (t)} with 

m(t) = m^t) + m
2
(t) 

s
2
(t) = s^(t) + s^t) 

Because of the stochastic nature of the input, the output is also 

stochastic. The output signal is therefore defined as 

n(t) = <o(t)> (4.1.4) 

For neurons the output is a sequence of action potentials. The traditional 

assumption is that this signal is determined only by the times at which 

the action potentials occur. As a consequence it may be written 

o(t) = Σ 6(t-t
i
) (4.1.5) 

The output signal n(t) is then the event density of action potentials. A 

proper definition of this function is given by the equation. 

t+dt 

n(t) dt = < | duS6(u-t
1
)> (4.1.6) 

t 

The analysis starts now from the relations between input signal 
2 

{m(t), s (t)} and output signal n(t). This type of analysis will be needed 

if seemingly identical repetitions of an experiment produca different 

results. 

Since n(t)dt represents the probability that an action potential occurs 

in (t,t+dt), the event density n(t) is the theoretical counterpart of the 

experimental quantity called the post stimulus time histogram. The input 
2 

signal {m(t), s (t)} is then usually an impulse, step,ramp or sinewave. 

In contrast to the first method described in this paragraph, here the 

averaging operation is performed before relations between input and output 

are analysed. Moreover this averaging operation cannot be taken anymore 

over time, but has to be over a number of repetitions of the experiment. 

In this chapter attention is given to the dynamical relations between 
2 

{m(t), s (t)} and n(t). Two situations will be analysed. In § 4.2 the 
2 

response to a stepwise change in the input signal from a level {m , s ) 
« о о 

to another level {m , s } is considered: the switch-response. This name is 

choosen to indicate that this response is, in contrast to the step-response 

in linear systems, dependent both on initial and final level of the input 

signal. An important special case is the switch -on response, which occurs 



71 

when {m ,9 } = {0,0}. The second case analysed in § 4.3 is that of small 

о о 2 

arbitrary variations of the input signal {m(t), s (t)} around a fixed level 
2 

{m ,s }. Linearisation leads here to the concept of a stochastic transfer 
matrix, which supplies an approximative characterisation of the dynamical 

2 
behaviour in a region around {m ,s }. Combination of a number of the stochas-

" о' о 

tic transfer matrices, guided by the stationary characteristics might finally 

result in a general dynamical representation of the input-output relations. 

The last paragraph of this chapter is devoted to the formulation of inter­

action equations. 
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4.2. THE STOCHASTIC SWITCH-RESPONSE 

On the base of the derivations in Ch. 2 it is assumed that two 

functions are known. 

h(y) = stationary distribution of the somatic potential, 

g(t,x) = first passage time distribution for a start at χ at time t = 0. 

In order to be able to make use of these functions for a nonstationary 

situation, a single stepwise change in the input signal is choosen for 

2 2 

analysis. m(t) = m , s (t) = s for t < 0 . 

о 2 ? (4.2.1) 

m(t) = m., s (t) = s^ for t > 0 

For negative t the output signal, the event density, is independent of 

time 
2 2 2 - 1 

n(t;m ,s ) = n(m ,s ) = {T (m ,s )} , t < 0 
o o o o l o o 

For positive t this event density is explicitly dependent on time. The 

following line of thought supplies an expression for n(t). 

The probability density for the somatic potential at t = 0 is stationary 
2 

and give by h(x;m ,s ). The probability density that the first pulse occurs 

at t > 0 when the potential has a value χ at t = 0 is the function 
2 

g(t,x;m ,s ) averaged over all initial values x, each with its probability 

density. Symbolically this may be written as 

d 

g(t;m
1
,s

1
 |n>

o
,s

o
) = dx h(x;m

o
,s

o
) gCt^jm^s^ (4.2.2) 

The event density n(t) that an arbitrary pulse occurs at some time 

t > 0 obeys in the Laplace domain the equation 

2 2 I(P>
m
i>

s
il

m

0
»

s

0
) 

ñ(p;m1,s1|mo,so) = 2 (4.2.3) 
1 - gíPíi^.s^ 

2 
where g(t;m ,s ) is the stationary distribution of intervals for an input 

signal {m ,s2}. 
2 2 

Since h(x;m ,s ) was given in Eq.(2.2.9) and g(p,x;m.,s.)forms a power 
о о 1 1 

series in ρ for which the coefficients were derived in 5 2.3, the function 

fKpjm-.s |m ,s ) is, at least in principle, fully known. 

Two special cases of Eq.(4.2.3) are treated. 
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In most models, with the exception of the SIPIT-model which contains 

a perfect integrator, an equilibrium value of the potential exists: χ . 
2
 e 

It is evident that in these models for m = 0, s = 0 the distribution of 
о о 

the somatic potential at t = 0 is concentrated at χ = χ 
e 

Ь(х;0,0) = 6(х-х
е
). (4.2.4) 

This simplifies Eq.(4.2.2) to 

gít^.s^lO.O) = gít.x^iiys^) (4.2.5) 

and Eq.(4.2.3) becomes 

2 g(p,x ;m s ) 
ñíp^.s^lO.O) = e -' 2' (4.2.6) 

I-KP;^^) 

If reset and equilibrium potential would be identical, χ = χ 
e о 

E q . ( 4 . 2 . 6 ) becomes 
ñ ( p ; m 1 l s 1 | θ , 0 ) = ñ ( p , x o ; m 1 , s 1 ) ( 4 . 2 . 7 ) 

ConcJbiiion '· 

¿ú zquAJU-b/Uxm potzrvtiat к and tieAzt potzntíai. χ оле ¿dznt¿<ia¿ 

then the. dynamical ¿uiitch-on Kupomz 0(5 thz zvznt dzn&JXy ¿i ¿dzntizal 

to thz ¿tatlonaAy condLtionat zvznt dzn&¿ty (ол. zxpzaXation dztibity) 

¿ок алЫЛ/шлу vatazi o^ avz>iagz vaZuz and ¿ncAZjnzntaJt vaAiancz o¿ thz 

¿nput ¿¿gnaZ. 

The second case i s the application of the switch-response on the 

SIPIT-model. The stat ionary d is t r ibu t ion of the somatic potent ia l depends, 

as shown in § 3.2 for th i s model only on the r a t io of average value and 

incremental variance of the input 
2 2 

h(y;m,s ) = h(y;m/s ) . (4.2.8) 
2 

For the input signal {m,s } the assumption is made that, though average 
value and incremental variance change, their ratio is constant 

mjs2. = m /s2 (4.2.9) 
1 1 о о 

Using Eqs.(4.2.2)
t
 (4.2.3) and (A.2.8) it can be shown that the condition 

of Eq.(4.2.9) leads to the relation 

n(t;m
l
,s

1
|m

o
,s

o
) = n(t;m

1
,s

1
|m

1
,s

1
) (4.2.10) 

The right hand side of this equation is the event density in case no change 

in the input signal occurred; this however, is the stationary event density. 
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As a consequence 

n( t ¡m 1 , s 1 I m ^ s p = n d n ^ s p (4.2.11) 

Eq.(4.2.11) states that the event density is in this situation independent 

of previous values of input or output signal, Since an arbitrary function 

of time may be approximation by a sequence of steps, this leads to 

n(t; m(t), s2(t)) = n(m(t)) (4.2.12) 

From the results of § 3.2 follows 

n(m) = λ.m (4.2.13) 

X = ( d - x ) "
1
, m > 0 

о — 

n(t; mit), s
2
(t)) = X.m(t) (4.2.14) 

which gives finally for the SIPIT-model 

СопсЫі Á.on : 
2 

-¿(( tíiz SJPIT-modeZ ¿6 ¿ubjzctzd to an -input ¿¿gnaZ {m(t),s ( t ) = c .m(t)} , 

с > 0 

then ÜiQ. output і-ідпаЛ n ( t ) ¿ь, apasit ¿лот thí ¿eating (Jacios λ, ¿dwtiaal 

to thz input iignaJ. m(t) 

n( t ) = X.m(t) (4.2.15) 
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4.3 LINEAR REGION AND STOCHASTIC TRANSFER MATRIX 

The purpose of this paragraph is to develop a generalisation of the 

transfer function. This function, defined· as the Laplace transform of 

the impulse response, has proven extremely useful in linear system theory. 

The relation between the input current i(t) and the output sequence 

of action potentials o(t) is strongly nonlinear. Traditional methods of 

linearisation will be unsuccesful in this case. However, the redefined 
2 

input signal {m(t), s (t)} and output signal n(t) are much more linearly 
2 

related. This is well illustrated by the stationary N versus {M,S } graphs 

in 9 3.3. 

A linear description, expressed by means of a stochastic transfer 

function, will serve as a first order approximation of the dynamical 

properties. The usefulness of this approximation depends on the size of 

the region*in which the linear description applies with a precision ε. 

The point of departure is again a stepwisse change in the input signal 

at t = 0, but now limited to small amplitudes 

2 2 2 
{m ,s } •* {m + um,s + as } 
о о о о 

2 
The stationary event density for t < 0 is equal to n(m ,s ). The stochastic 

о о 
step response i s 

9 9 n o n ty 

u(t:Am,As ¡m , s ) = n ( t , m + Am,s + As m . s ) - n(m . s ) ( 4 . 3 . 1 ) 
' о о о о ' о ' о о о 

If the event density and its derivatives are differentiable, which 
2 

appears in general to be the case for s > 6 > 0, then it may be approximated 

by a power series in both Am and As 

7 9 2 
n(t:m + Am,s + As m ,s ) 

о о о о 

- Σ
 Г і

 lAm -г + As - ji n(t;m,s lm ,s ), ,. , _, 
, к! 3m 3s

z
 о о /т=т (4.3.2) 

к—о о 
s=s 

о 
2 

For Am and As small enough the terms with к > 2 give a contribution less 

than a given e; neglecting then terms with к > 2 gives the linear approxi-
—
 2 2 

mation to the step response. The values of {Am,As } around {m ,s } for which 
the linear approximation to the stepresponse differs less than ε from the 

2 
(exact response is defined as the ε-region of {m ,s }. 

о о 
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The linear approximation of the stochastic stepresponse is 

9 2 й 9 Д 7 9 
u(t:Am,us ;m ,s ) = {Am - + as - 2} n(t;in,s Itn ,s ) , (4.3.3) 

' o o dm 3s ' o o /m=m 

or in matrix notation 

|. pm "I 
LÛS2j 

u =[um'U Zi' \àm I (4.3.3) 

with 
/ 2. Э . 21 2. 

u (t;m ,s ) = - n(t;m,s m ,s ) , _ 
m о' о Эш о I о* о/ііі=і 

;
m 
о (4.3.4) 

u
 2
(t;m

o>
s2)= J

 2
 n(t¡moIs

2 ^.з2^ 
s /s=s 

о 

An arbitrary function of time can be approximated by a sequence of 
2 

steps. If e << 1 then all steps within the e-region of {m ,s } have the 
У o o 

form of the step response of {m ,s } as described by [u .u^] of Eq.(4.3.4) 

о о m s 

with an error of the order of ε. A linear description of the input-output 
2 

relations applies then in the whole ε-region of {m ,s } with precision ε 
о о 

and methods analogous to linear system theory may be used. 

As in linear system theory a transfer matrix is defined; 

however, here this is a region-dependent stochastic transfer matrix. Its 

elements are equal to the Laplace transforms of the corresponding elements 
of the stochastic unit stepresponse matrix multiplied with ρ 
A
 7 9 Э 7 7 
h (p;m ,s ) = ρ u (p;m

 t
s ) = ρ - n(p;m,s |m ,5 ), (4.3.5) 

m
 r
' о' о

 r
 m

 r* о о Эт
 г

 ' о' о о /т=т 
о 

h ,(р;ч· .s ) = ρ û _(р;т ,s ) = ρ - ñ(p;m ,s |ш .s ) (4.3.6) 
¿ о о ¿ о о аз О О О ι 
s s /s=s 

о. 

The region dependent stochastic transfer matrix is 

2І 
(A.3.7) 

The relation between an arbitrary input signal {m(t),s (t)} within the 
2 

ε-region of {ra ,s } and the output signal n(t) is then, in the Laplace 
о' о 

domain, given by 

ñ(p) - fio(p) = ihm,h 2 ] Гт(р) - fijjCp)"] 

|f
2
(p) - s^(p)J 
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гЦр) - η /ρ = h {m(p) - m /ρ} + h , {s
2
(p) - s

2
/p} (4.3.8) 

о ш о ¿. о 
s 

where 

η = η(m ,s ) 
о о о 

is the stationary event density for the centre of this domain and h and 

* m 

h 2 are as defined in Eq. (4.3.5) and Eq.(4.3.6). Eq.(4.3.8) is valid for 
s
 2, 

arbitrary but fixed {m ,s }. 
о' о - 2 2 

There are reasons to expect that the dependency of h (p:m ,s ) on s 
m o o о 

may, in a number of situations, be quite strong and that in many cases the 
2 

dependency of h 2(р;чі ,s ) on ρ will be weak. 
s о о 

Form and size of dynamical ε-regions are usually difficult to determine, 

however, these regions are always contained within the corresponding statio­

nary ε-region. A reasonable estimation of the dynamical ε-region would be 

the stationary ε/2-region. 

For the SIPIT-model, treated in § 3.2, the stationary relation between 

the input and the output signal is 

η = λ.m, λ = (d - x
0
) "

1
, m > 0 (4.2.13) 

The stationary ε-region of linearity is then for arbitrarily small ε 

m > 0 (4.3.9) 

Eq.(4.2.15) leads to the conclusion that the dynamical ε-regions of linearity 

are 

{m(t) > 0, s
2
(t) = c.m(t)}, с > 0 (4.3.10) 

Because of the character of the region defined by Eq.(4.3.10), it is 
2 

permitted to take η ,m and s in Eq.(4.3.8) all equal to zero. This results 

in the equation 

n(p) = h
m
 m(p) + h

 2
 s (p) (4.3.11) 

s 

under the constraint 

s
2
(p) = с m(p) , с > 0 (4.3.12) 

Laplace transformation of Eq.(4.2.15) gives 

ñ(p) = X.m(p) (4.3.13) 

Combination of the last three equations leads to a relation between the two 

elements of the stochastic transfer matrix of the SIPIT-model 

h (p;c) + c.h ,(p;c) = λ (4.3.14) 

га ¿ 
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Conclui-con: 

4.¿ thz SlVlT-modeZ izcejxu an -cnpuX i-Lgmt 
2 

{m( t ) , s ( t ) = c . n i ( t ) } , с > O 

thzn a otochaitsLC. іа і^гл ¿uneJxon con be difanzd ал 

h(p;c) = hm(p;c) + с h s 2 ( p ; c ) (4.3.15) 

utlu.ch -U, vaLid {¡ол. all m(t) > 0; 

thz ¿otm o i tlbU ілауи^ел ¿unotton -ei 

h(pic) = λ 

The stationary ε-regions of linearity for the SILIT-model were presen­

ted in S 3.3 for e = 0.01. The dynamical characteristics of this model are 

hard to analyse; no general properties could be derived. Intuitively it seems 

clear that for large values of the input signal the leakage of the somatic 

potential is relatively unimportant and the behaviour resembels strongly 

that of the SIPIT-model. For small values of the input such that firing 

frequency is low, a relation between the transfer function of the linear 

part of the neuron in front of the threshold and the correlation between a 

white noise input and the output spike sequence has been established by 

De Boer (1967, 1968). It appears that this correlation function is tightly 

related with the transfer function h (p;0,0). Values of the input comparable 

to the threshold may lead to much more complex characteristics. 

From the stochastic transfer matrix a deterministic transfer function 

can be derived. In the deterministic situation the input signal does not 

contain an unknown part, this implies 
2 

{m,s } •+ {m,0} 

The stochastic transfer matrix [ h ,h . 1 becomes a transfer function 
л m 2 
h defined as 
m 2 

h (p;m ) = lim h (p;m s ) (4.3.16) 
m о 2 m о о 

s ->·ο 
о 

and the input-output relation takes the form 

fi(p) - fi
o
(p) = h

m
(p;m

o
) {m(p) - m^p)} (4.3.17) 

For m = 0 this deterministic transfer function resembles strongly the 
о 

Laplace transform of the correlation function p(p) given in 5 4.1. 

For linear systems stochastic transfer matrix, deterministic transfer 

function and traditional transfer function are all identical. 
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4.4. INTERACTION EQUATIONS 

The results presented in this paper do not allo« a complete specifi­

cation of general interaction equations. However, it is possible to propose 

nonlinear equations describing the stationary interaction for a large region 

of the input and output variables. Moreover, linearised dynamical interaction 

equations can be formulated which are valid for small variations of the 

variables within an arbitrary region. 

The numerical data for the stationary input-output relations of the 

SILIT-model are given in graphical form in i 3.3. These results can b^· 

described through 

N = exp {aM + SS
2
 - γΝ - 6 + c(M,S2

)} (4.4.1) 

2 
where c(M,S ) is a correction function which is small for large regions of 

2 
the (M,S )-plane. The neglection of this function gives the approximation 

N = exp {aM + BS
2
 - γΝ - δ} (4.4.2) 

2 
Since for constant S 

•ч N
 - 1 

lim -г; = 1 
М-х° 

it follows that 

γ = а (4.4.3) 

Moreover there exists the relation 

1-х /mx -1 d+x 

β
 = lim

 {
 «- - (in -TÚJ-) } = і ^ (4.4.4) 

m-*
30
 о о 

When reset and equilibrium potential are equal, as choosen for the compu­

tations of § 3.3, then S = i. The results, especially Fig. 3.3.5, indicate 

that β/α is not really a constant but decreases with N; for N > 0.1 holds 

that 0 < ß/α < 1. In spite of this deficiency we shall accept Eq.(4.4.2) 

as an approximation to the stationary input-output relation. 

For a neuron in interaction with other neurons subscripts should be 

added to all variables. Eq.(4.4.2) reads then 

^ = exp { а ^ + ß ^ 2 - α
1
Ν

1
 - &± ) (4.4.5) 

The analysis of S 1.3 and S 1.4 showed that, in the absence of external 

influences and under the condition of high convergence, the input is to a 

large extent characterised by average value and incremental variance of 

this signal. 
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2 
The relation between M and S and the contributing spike sequences is 

given by Eq.(1.4.2)-(1.4.5) 

m τ с τ 
M i = - d - - 5 -a í τ - Ν ί < 4 · * · 6 ) 

i J ι j
 J 

2
 S

i
T
i
 C

i1 2
 τ
1 Sí = "Η = Z

 ( Η > Τ1 Ν
ι (4.4.7) 

1 d
i j

 d
i

 T
j

 j 

It is desirable to define the dimensionless quantities 

Y
i

3
 =

 { a
i ̂

 + h^)1} · Г· 1
 ̂

 ( 4
·

4
·

8 ) 

J
 i ι j 

Y
1 1
 = a^^ii - 1)

 + hCf) (4.4.9) 

The equations describing the stationary activity of an ensemble of inter­

acting neurons take then the form 

N = exp {Σ γ Ν - δ.) (4.4.10) 

J J J 

or 

In Ν, Ζ γ Ν, - 6 (4.4.11) 
1
 j

 1
J J

 1 

A reasonable way to incorporate refractoriness in the stationary 

equations is the multiplication of the right hand side of Eq.(4.4.10) with 

1 - Xft = 1 - P
1
N

i 

where r is the duration of the refractory period and ρ = г /т.. The 

resulting stationary equations are 

N. = (1 - P.N.) exp {Σ γ Ν - δ,} (4.4.13) 

Χ 1 1 j IJ J 1 

ι
 Ni 

In 
1 - Р ^ = Σ Y^Nj - &^ (4.4.14) 

Eq.(4.4.14) is formally equivalent to the stationary form of 

interaction equations used by Cowan (1967, 1968); however, the inter­

pretation of the interaction coefficients is different. 
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Dynamical interaction equations can only be derived in a linearised 

form. These equations are based on Eqs.(4.3.5), (4.3.6) and (4.3.8). 

In order to avoid double indices we define 

2 2 
h(p;m,s ) = h (p;m,s ) (4.4.15) 

m 
2 2 

k(p;m,s ) = h 2(p;m,s ) (4.4.16) 
s 

The linearised dynamical input-output equation for neuron i reads then 
2 2 2 2 

n i ( p ) " n±/p = h
i(P;

m.si){
ffl

i(P)
 _ "¡/Ρ) +

 k
1
(p;m

i
,s

i
){s

i
(p) - в±/р} ^ 

where 
2 2 

n. = <n.(t)>, m = <m.(t)>, s. = <s (t)> 

are the time-averaged levels of these quantities. 

A simplification of Eq.(4.4.17) is caused by the introduction of 

v
1
(t) = n

i
(t) - n; p

1
(t) = m.U) - m; 6

1

2
(t) = s

2
(t) - s^ (4.4.18) 

Substitution in Eq.(4.4.17) gives 

v
i
(p) = h

i
(p;m

1
,sj) μ^ρ) + к.(р;т.,з

2
) σ

1

2
(ρ) (4.4.19) 

Synaptic delay and transmission time in axon and dendrites result 

in a delay between the generation of an action potential in neuron j 

and the arrival of the resulting excitation or inhibition at the central 

structure of neuron i; this delay is designed as T... The analyses 

given in § 1.3 and § 1.4 indicate that for a neuron in interaction 

with many other neurons in the absence of an external stimulus the 

following relation holds 

y.(t) = Σ е., v.(t - τ,.) (4.4.20) 

1 j ij J ij 

o
2
(t) = Σ c j Vjít - т±і) (4,4.21) 

Here the assumption is made that the Signaltransmission from the soma 

of one neuron to the soma of another neuron can be described as an 

attennation (c.,) and a pure delay (τ.,). 
ij ij 

Combination of the last three equations results in the 

linearised form of the interaction equations 

"Pt.. ? 

v̂ p) = Σ e 4 V j ^ V V '/Ρ) (4.4.22) 

where 

2 - 2 2 - 2 
K
ij

( p ; m
i

, S
i

) = c
i1

 h
i

(
P;

m
i>

s

1
)

 + c

1
j kj/p;^.^) (4.4.23) 
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In Eq.(4.4.22) the factor exp (-ρτ..) represents the dynamical aspects 

of the signal transmission from neuron j to neuron i, where к 

describes the transformation of this signal within neuron i. 

The theory presented in this ehapter is a first order description. 

The central quantity is n(t), the ensemble-averaged event density of 

action potentials. Because of the high convergence assumption, made in 

§ 1.3 and § 1.4, higher order conditional event densities are irrelevant. 

As a consequence the applicability of the equations is limited to networks 

in which each cell synapees with many other cells. 

The theoretical results of this chapter are essentially incomplete. 

However, a combination of the nonlinear stationary equation (Eq. (4.4.10)) 

with the linearised dynamical equations (Eq.4.4.22) might lead to more 

general interaction equations. 
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E P I L O G U E 

5.1. DISCUSSION AND SUMMARY 

The subject of this study is a theoretical analysis of the 

stochastic activity fо certain types of neural cells. The neurons 

considered are characterised by a large number of connections with 

other cells. The input signal to a single neuron is described through 

its average value and incremental variance; the detailed structure 

of the input is shown to be of less importance and considered as a 

white noise carrier. The neuron itself is represented by a, linear 

or nonlinear, first order filter followed by a threshold-reset 

mechanism. 

The time course of the somatic potential turns out to be 

describable through a transition probability density which obeys 

a second order partial differential equation (diffusion equation). 

The threshold acts as an absorbing barrier, while the distribution 

of output spikes is equivalent to the distribution of first passage 

times of the somatic potential. An expression for the transition 

probability density of the somatic potential would supply a complete 

description of the activity. In general this sort of expression does 

apparently not exist in closed form. In the stationary case, however, 

it has been possible to derive the unconditional distribution of the 

somatic potential (h(y) given by Eq.(2.2.11)) and a recurrence relation 

between the moments of the interval distribution ( given by Eq,(2.3.14) ). 

Though a way has been indicated to take account of relative 

refractory effects, this treatment cannot be considered as satisfactory. 

However, it is expected that insight in the dynamical activity will 

allow an acceptable description of these effects. The inclusion of 

absolute refractory properties does not present any mathematical 

problems. 

Specific applications have been presented for three cases: 

a linear filter without decay (SIPIT-model), a linear filter with 

proportional decay of the potential (SILIT-model) and the equivalent 

circuit of the membrane; each of these followed by a threshold-reset 

mechanism. 
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The SlPIT-model which is well known and completely solvable, 

has been treated mainly because of its properties in a nonstationary 

situation. The most interesting result under stationary conditions 

is that the unconditional distribution of the somatic potential does 

not depend on both average value and variance of the input, but is 

determined only by their ratio. 

The SILIT-model is accepted widely as a more realistic description 

of a neuron. The mathematical analysis showed that its interval 

distribution does not depend on all its five parameters but only on 

two combinations of these quantities. The numerical results include 

graphs for the mean rate of firing as a function of input variables, 

quasilinear input-output regions and distributions of the potential 

and its mean and variance. 

The large size of the quasi-linear region when the average value 

and variance vary proportionally is remarkable. It should be realised 

that frequency modulated pulse trains possess this characteristic. 

The hypothesis of Mountcastle (1967) that the central nervous system 

operates in a linear manner on its input, is understandable from a 

theoretical point of view under of the assumption that the ratio of 

excitation and inhibition is constant. Another noteworthy feature of 

the SILIT-model in this situation is the weak dependence of average 

value and standard deviation of the somatic potential on the value of 

the input (Fig. 3.3.11 and 3.3.14). This suggests that the contribution 

of the somatic potential to an evoked potential may be quite small. 

The equivalent circuit of the membrane is only treated as an 

example of a nonlinear system to which the theoretical frame­

work does apply. Because of the large number of parameters of this 

model a quantitative evaluation should await precise experimental data. 

The results of the analysis of the stationary situation are 

experimentally completely testable. Intracellular measurements, 

comparable to those of Calvin and Stevens (1968), will supply evidence 

concerning the applicability of the model and values of relevant 

parameters. Insertion of these values in the theoretical expressions 

should produce quantitative predictions of the stationary activity of 

such a cell. 

The investigation into the dynamical aspects of the signal processing 
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properties is of a more preliminary nature; only a number of qualitative 

results have been obtained. The input signal is defined as the pair 
2 

( m(t), s (t) ), the modulation of average value and incremental 

variance of a white noise carrier. The output signal is n(t), the 

event density of action potentials. This approach takes the partial 

observability of the input explicitly into account. Both input and 

output are averaged over a suitable ensemble until statistically 

reproducible results are acquired, then dynamical relations are 

analysed. Though the procedure is used in many electrophysiological 
2 

and in a number of psychological experiments, the presence of s (t) 

is not usually recognised. The theoretical analysis is limited to two 

cases: the response to a stepwise change and to small arbitrary 

variations of the input signal. 

The stochastic switch-response is expressed in terms of the 

stationary distribution of somatic potential and first passage time. 

For the SIPIT-model this leads to the conclusion that, for constant 
2 

ratio of s and m, input and output signal are identical in form, 

For the SILIT-model this results in a relation between switch-on 

response and stationary conditional event density (expectation density). 

This again leads to a prediction of nonlinear oscillations in the post-

stimulus-tirae histogram of a square wave stimulus. The period of these 

oscillations is strongly dependent on the amplitude of the input, but 

will in general be of the order of the time constant of the neuron, 

Experimental evidence of this type of microstructure in the P.S.Т.Н. 

of a square wave light modulation with a period of 100 - 1000 msec. 

has been found by Coenen (1968) in the lateral geniculate body of the 

cat and by Allen (1968) in ganglion cells of the rabbit; the period 

of the nonlinear oscillations being 1 - 10 m sec. 

The input-output relations for small variations of the input 
2 

signal ( m(t), s (t) ) are described in a linear approximation. 

This allows the definition of a stochastic transfer matrix, which 

forms a generalisation of the (stochastic) transfer function. 

For the SIPIT-model an important property of this matrix has been 

established. Conceptually the stochastic transfer matrix is considered 

to be of great importance; one reason for this is that its use allows 

a comparison of P.S.T.H.'s for different type of stimuli. 
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Moreover 1С suggests precise ways for the embedding of a sinple signal 

in a complex environment. This technique, which generally results in 

an enlargement of the quasi-linear region, has been successfully ap­

plied in engineering and in the analysis of e.e.g. responses in man 

evoked by sine wave modulated light (Spekreyse, 1966). 

A knowledge of the input-output relations for a single neuron 

allows the formulation of interaction equations for a network of a 

given structure. Since the stationary single cell relations are 

known over the complete region, interaction equations for a stationary 

network could be formulated in a general way. The more Interesting 

equations for a nonstationary network could only be given m a 

linearised approximation. Theoretical work will be continued and 

experimental work initiated along these lines with an emphasis upon 

the investigation of the stochastic transfer matrix. 
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S T E L L I N G E N 

I 

De "momentane frequentie" van een pulsreeks gedefinieerd op basis van de 
intervallen tussen opeenvolgende pulsen leidt tot theoretische en experimentele 
problemen Een acceptabele continue representatie van een pulsreeks wordt 
gegeven door een lineaire functionaal van deze reeks. 

II 

In een neuronaal net gekenmerkt door hoge convergentie zijn de hogere orde 
eigenschappen van de pulsreeksen (bijv. intervalverdelmg) irrelevant. 

I l l 

De correlatie functie tussen extern aangeboden ruis en de puisactiviteit in de 
gehoorzenuw zoals bepaald door de Boer, vormt een speciaal geval van de 
stochastischeoverdrachtsfunctie, beschreven in § 4.3 van dit proefschrift. 

(E. de Boer. J. of Auditory Research, 7,209-217 (1967)). 

IV 

Het is geenszins vanzelfsprekend dat de spontane activiteit van het centraal 
zenuwstelsel een stationair proces is. Inductie van de stationanteit door gunstig 
gekozen stimulering lijkt mogelijk. 

V 

Een stochastische beschrijving van een verschijnsel dient te worden opgevat als 
een relatie tussen waarnemer en verschijnsel. Dit is in het bijzonder relevant voor 
de controverse random versus deterministische verbindingen tussen 
zenuwcellen. 

VI 

De veel gebruikte analogie tussen hersenen en computer draagt vrijwel niet bij 
tot het begrip van de eigenschappen van hersenen. 

VI I 

In Nederland bestaat een behoefte aan een postdoctorale opleiding in de 
biofysica, zowel voor fysici en mgenieursalsvoor biologen. 

V I I I 

Een streven naar een grotere zelfstandigheid van een groep of organisatie binnen 
een democratische samenleving dient gepaard te gaan met een bevordering van 
de interne democratie. 

31 oktober 1969. 








