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GENERAL INTRODUCTION 

The vertebrate retina is a thin layer of tissue in the back of the eye, 

which contains the light-sensitive photoreceptor cells. The vertebrate 

photoreceptor cell is an elongated cell, consisting of an inner and an outer 

segment. The inner segment contains the nucleus and the metabolic machinery 

of the cell and has a synaptic end. Attached to the other side of the inner 

segment through a narrow ci li urn is the outer segment, which is specialized in 

light absorption. There are two kinds of vertebrate photoreceptor cells: rods 

and cones. The short cone outer segment has a continuously infolding plasma 

membrane. The longer rod outer segment consists of a stack of several 

hundreds of parallel, flat disks, surrounded by a plasma membrane (Fig. 1). 

The plasma membrane is infolded a few times at the base of the rod outer 

segment. The disks are free-floating and are probably not directly connected 

with the plasma membrane. The cones are responsible for color vision in 

pigment epithelium 

inner 
s e g m e n t 

—plasma 
membrane 

connecting cilium 

mitochondria 

endoplasmatic 
ret iculum 

nucleus 

synaps 

Fig. 1. Schematic diagram of a rod cell. The direction of the incident light 
is given by the arrow. Modified after Young (1976). 



bright light, the rods for black and white vision in dim light. 

Since in most vertebrate retinas rods greatly outnumber cones, and since 

the rod outer segments can be easily separated from the rest of the retina by 

gentle homogenization, which also permits isolation in large amounts, this 

study is concerned with rod outer segments only, and particularly with the 

disk membrane, the photoreceptor membrane. 

The photoreceptor membrane consists of a bilayer of mainly phospholipids, 

between which protein molecules are interspersed. More than 85% of these 

membrane proteins are formed by the visual pigment, rhodopsin. Rhodopsin 

consists of a chromophore, 11-cis retinal, bound to a glycoprotein called 

opsin. The rhodopsin molecule most likely spans the entire disk membrane with 

the C-terminal end of opsin exposed to the cytosol and the carbohydrate 

bearing N-terminal end of opsin to the intradiscular space. The chromophore 

is buried in the rhodopsin molecule and is linked as a protonated Schiff-base 

to the ε-amino group of a specific lysine residue of opsin. 

The phospholipids in the disk membrane have a large number of highly 

unsaturated fatty acids. This makes the disk membrane highly fluid and allows 

rhodopsin great freedom of movement. The rhodopsin molecules rapidly diffuse 

in the membrane and also rotate around an axis perpendicular to the plane of 

the membrane. These movements of rhodopsin and the orientation of the 

chromophore in the plane of the membrane contribute to a highly efficient 

photon absorption. 

Upon illumination rhodopsin undergoes a series of conformational changes, 

beginning with the isomerization of 11-cis retinal to its all-trans 

conformation and finally resulting in the release of free all-trans retinal 

from opsin. Only the first step in this photolytic sequence is light-

dependent. The intermediates have been characterized spectroscopically by 

their particular visible-absorption spectrum. Fig. 2 shows the characteristic 

absorption spectra of rhodopsin before and after illumination. A light-

independent adaption process allows the generation of rhodopsin from opsin 

and newly formed 11-cis retinal. 

Following photon capture by rhodopsin, the rod cell becomes hyper-

polarized within 200 msec, the underlying mechanism of which is only partially 

elucidated. In the dark an electric current, consisting of sodium ions, runs 

from the outer segment to the inner segment. The sodium ions are pumped out of 

the inner segment and enter the outer segment passively through some kind of 

Na channels in the plasma membrane. Illumination causes closure of Na 
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Channels and consequent reduction of the dark current and hyperpolarization 

of the plasma membrane. The hyperpolarization spreads over the entire plasma 

membrane and reaches the rod cell synapse, thus exciting the connecting 

neurons. These eventually send an elaborated signal through the optic nerve 

to the brain. 

It is generally accepted that the sodium permeability of the plasma 

membrane must be regulated by an internal transmitter (or transmitters), that 

mediates between the photolysis of rhodopsin in the disk membrane and the 

decrease in sodium conductance of the plasma membrane (see, however, 

Schnetkamp, 1980: evidence for a direct communication between disk membranes 

and the plasma membrane). Although the exact nature of the transmitter(s) and 

of the process of closing and opening of the Na channels has not yet been 

clarified, two general mechanisms are currently under consideration, 
?+ 

involving Ca and/or cyclic GMP (Hubbell and Bownds, 1979): 

250 300 350 400 450 500 550 600 650 
•wavelength (nm) 

Fig. 2. Absorbance spectra of detergent-solubilized rhodopsin before ( o — o ) 
and after ( · — · ) illumination in the presence of hydroxylamine (NH20H). 
Hydroxylamine allows complete 'bleaching', but shifts the characteristic 
absorbance of all-trans retinal (380 nm) towards lower wavelength (about 
365 nm) due to oxim formation. 
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(1) Calcium as internal transmitter. It is assumed that the photolysis of 

rhodopsin in the disk membrane causes the release of many calcium ions, which 

diffuse to the plasma membrane and there close Na channels. However, the 
2+ light-activated release of a large number of Ca ions has yet to be 

demonstrated; 

(2) Cyclic GMP as negative transmitter. Upon illumination a very fast and 

large decrease in the cytoplasmic cyclic GMP concentration has been observed. 

This led to the hypothesis, that in the dark the level of cyclic GMP is 

sufficiently high to keep the Na channels open, and that upon illumination a 

cyclic GMP phosphodiesterase is activated resulting in decrease of the cyclic 
+ 2+ 

GMP concentration and closure of the Na channels. The role of Ca in this 
model is restricted to activation of the cyclic GMP phosphodiesterase, which 

2+ is sensitive to changes in cytoplasmic Ca concentration. 
Thus, the coupling between the photolysis of rhodopsin in the disk 

membrane and the changes in sodium conductance of the plasma membrane, 

possibly mediated by a transient transmitter mechanism, remains largely 

unanswered. Some indirect evidence suggests that the coupling events are 

associated with the metarhodopsin I-metarhodopsin II transition: (1) it is the 

last step in the photolytic sequence which is fast enough (msec); (2) it is 

accompanied with large conformational changes in the rhodopsin molecule and 

is pH-dependent (proton uptake), and (3) it is sensitive to changes in the 

lipid environment of rhodopsin (e.g., it is markedly slowed down in the 

absence of the disk membrane or in a bilayer of saturated lipids; Daemen and 

de Grip, 1980). There is no direct evidence that rhodopsin itself acts as a 
2+ 

transmembrane (Ca ) channel (Hubbell and Bownds, 1979). 

It is clear that a detailed knowledge of structure and composition of the 

photoreceptor and plasma membrane will contribute to a full understanding of 

the visual excitation process. 

The composition of the photoreceptor membrane, including the plasma 

membrane*, has been known for some time (Daemen, 1973). The three major 

phospholipids of this membrane, comprising about 95% of total phospholipids, 

are: phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

•The plasma membrane comprises only a small fraction (1-3 wt %) of the total 
membrane content of the rod outer segment. An isolation procedure, that 
separates disks from the plasma membrane, is not yet available. 
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phosphatidyl serine (PS). They are arranged in a bilayer, with the hydrophobic 

fatty acyl chains pointed towards each other and the polar head groups 

located on the outer faces of the membrane. The question still open is the 

distribution of the phospholipids and their fatty acyl chains over the two 

leaflets of the disk membrane. This study has been aimed at answering this 

question for the three major phospholipids. 
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CHAPTER 1 

CURRENT CONCEPTS ON STRUCTURE AND FUNCTION OF THE ROD PHOTORECEPTOR MEMBRANE 

This chapter deals primarily with rod disk (phospho)lipids, possible 

functions of which are discussed in relation to their metabolism and to some 

known properties of rhodopsin and the disk membrane. 

1.1 Chemical composition 

Rhodopsin and phospholipids are the main components of vertebrate rod 

outer segments. Rhodopsin accounts for 85 wt % of the total protein (which is 

38 wt %) and phospholipids for 81 wt % of the total lipid (which is 51 wt %) 
in water-washed and lyophil i zed bovine rod outer segment preparations, which 

contain 5-10 wt % of water (de Grip et al., 1980). These values refer mainly 

to water-insoluble, membrane-bound constituents. (In intact rod outer segments 

about 30% of the total protein is soluble, non-membrane protein; Godchaux and 

Zimmerman, 1979). From molecular weights of 38,000 for rhodopsin and 800 for 

phospholipid, it can be calculated that the phospholipid content is about 61 

mol/mol rhodopsin. The amounts of protein and lipid may vary somewhat 

depending on the isolation procedure used and the quality criteria applied 

(Daemen, 1973). Their values are not very much different from those for rod 

outer segments from frog and rat (Anderson et al., 1975). 

The remaining part of the total protein represents most likely membrane-

bound enzymatic activities (Zimmerman et al., 1976; Shichi and Somers, 1980) 

and that of the total lipids mainly cholesterol (about 4 wt %, or б mol/mol 

rhodopsin; Hendriks et al., 1976). Also present are minor amounts of retinal, 

α-tocopherol (vitamin E), diglycerides, free fatty acids and glycolipids, but 

except for retinal (0.47 wt %, or 1 mol/mol rhodopsin; de Grip et al., 1980) 

no exact figures are available for these compounds. Values of 0.07 mol 

α-tocopherol/mol rhodopsin (Farnsworth and Dratz, 1976), 2 mol diglycerides/mol 

rhodopsin and 5 mol free fatty acids/mol rhodopsin (Dratz et al., 1979) have 

been reported for bovine rod outer segments. They may vary considerably when 

no extensive precautions against oxidative degradation of the lipids have been 

employed (Farnsworth and Dratz, 1976). Glycolipids make up less than 1 wt % 
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of total lipids in bovine rod outer segments (de Grip et al., 1980). 

The phospholipid classes observed in rod outer segment preparations are 

phosphatidylcholine (PC), phosphatidyl ethanol ami ne (PE), phosphatidyl serine 

(PS), phosphatidyl inositol (PI) and sphingomyelin, the former three of which 

are by far the most abundant ones (Table 1.1). Minor amounts of phosphatidic 

acid (PA), lysophospholipids and di phosphatidyl glycerol appear to be present, 

but their determination must be carefully executed as they may derive in part 

from contaminants and (enzymatic) degradation. The structure of some of these 

phospholipids is shown in Fig. 1.1. 

Analysis of the fatty acid composition of rod outer segments reveals a 

very high content of polyunsaturated fatty acids, notably docosahexaenoic 

acid (22:6). The saturated fatty acids are mainly palmitic (16:0) and stearic 

(18:0) acid. Some published data are collected in Table 1.2. As pointed out 

by Stone et al. (1979), a number of different factors could contribute to the 

observed differences in polyunsaturated fatty acid content, such as 

contaminants having a polyunsaturated fatty acid content different from that 

of pure rod outer segment preparations, differences in precautions against 

lipid autooxidation and differences in genetic factors and dietary history 

(see also section 1.2.3). 

The fatty acid analyses of the individual phospholipids (see the 

References in Table 1.2) show that PE and PS are enriched in docosahexaenoic 

acid (22:6) relative to PC and PI. All these phospholipids have roughly the 

same proportional content of palmitic (16:0) and stearic (18:0) acid with the 

exception of PS. PS hardly contains palmitic acid (16:0) and has, in bovine 

rod outer segments, also appreciable amounts of relatively long-chain fatty 

acids (i.e., 24:4-24:5). 

The position of the various fatty acids in individual phospholipids of 

bovine rod outer segments has been investigated by Anderson and Sperling 

(1971). They used Crotalus adamanteus phospholipase A„ to hydrolyse the fatty 

acyl chains at the 2-position in the glycerol backbone of the phospholipids. 

Their results indicate that the polyunsaturated fatty acids are mainly 

located at the 2-position as normally found in nature, but that the 24-carbon 

polyunsaturated fatty acids of PS are predominantly located at the 1-position. 

The positional distribution of the fatty acids has been approximated by 

Miljanich et al. (1979) in an indirect way. They used thin-layer chromato

graphy to separate the three major phospholipid classes of bovine rod outer 

segments into subfractions, which differ markedly in fatty acid composition. 
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TABLE 1.1 

PHOSPHOLIPID COMPOSITION OF PHOTORECEPTOR MEMBRANE EXPRESSED AS MOL PERCENT 

OF TOTAL PHOSPHOLIPIDS 

SPH, sphingomyelin; nd, not determined 

PC PE PS PI SPH 

cattle 

Borggreven et al. (1970) 

Anderson and Maude (1970) 

Nielsen et al. (1970) 

Anderson et al. (1975) 

Miljanich et al. (1979) 

frog 

Mason et al . (1973) 

Anderson and Risk (1974) 

rat 

Anderson and Maude (1972) 

34.7 

40.2 

38.8 

35.7 

39 

44.6 

45.3 

39.2 

38.6 

47.2 

45.0 

42 

26.1 

34.6 

11.2 

13.3 

13.8 

15.8 

16 

15.1 

12.8 

5.7 

2.3 

1.7 

1.5 

nd 

2.1 

2.2 

1.0 

3.6 

1.5 

0.8 

nd 

6.4 

1.9 

41.0 36.6 12.6 2.2 3.9 

H 0 

H - C - 0 - C - R j 

0 | 

R 2 - C - 0 - C - H 

1 ° 
• I l Н - С - 0 - Р - О -

H 0" 

χ 

ΡΑ: 

PC: 

PE: 

PS: 

PI: 

-Χ 

-Χ 

-Χ 

-Χ 

-Χ 

= 

= 

= 

= 

= 

-Η 

+ 
-CH2-CH2-N(C 

+ 
-CH2-CH2-NH3 

+ 
-CH2-CH-NH3 

COO" 

OH 
J 1* 

η/ΟΗ V 

УУон 

Fig. 1.1. Structure of some 3-sn-phosphoglycerides (at pH 7). 
Rl and R2, fatty acyl chains; X, alcohol or base group, which determines the 
name of the phospholipid. 
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TABLE 1.2 

FATTY ACID COMPOSITION OF PHOTORECEPTOR MEMBRANE EXPRESSED AS MOL PERCENT OF TOTAL FATTY ACIDS 

cattle 

Borggreven et al. (1970)** 

Poincelot and Abrahamson (1970b)** 

Anderson and Maude (1970)* 

Nielsen et al. (1970)** 

Anderson et al. (1975)* 

Hendriks et al. (1976)** 

Miljanich et al . (1979)* 

Stone et al. (1979) 

frog 
Mason et al. (1973)** 

Anderson and Risk (1974)* 

Stone et al. (1979) 

rat 

Anderson and Maude (1972)* 

Stone et al. (1979) 

Fatty acid 

<16 

0.7 

0.2 

2.6 

2.1 

0.3 

-

-

1.7 

17.1 

1.3 

2.2 

0.5 

1.9 

16:0 

22.1 

21.5 

18.0 

15.3 

20.5 

15.6 

17.5 

16.3 

15.2 

18.1 

14.3 

17.0 

9.8 

(C atoms: double 

18:0 

23.9 

24.6 

18.1 

19.9 

24.9 

20.9 

20.6 

20.2 

9.2 

17.2 

13.8 

26.3 

24.3 

18:1 

6.7 

8.0 

7.4 

4.6 

4.0 

3.5 

3.7 

4.7 

4.8 

6.5 

4.2 

8.8 

3.8 

20:4 

5.8 

6.9 

4.1 

8.4 

3.0 

5.5 

3.0 

3.6 

1.2 

3.3 

2.6 

4.9 

5.3 

bonds) 

22:4/5 

2.4 

-

6.4 

3.3 

5.9 

7.7 

2.7 

2.7 

7.1 

6.8 

8.5 

1.1 

5.6 

22:6 

30.9 

20.6 

24.7 

34.1 

34.8 

45.6 

44.1 

47.1 

14.6 

34.3 

46.9 

31.3 

43.3 

>22 

nd 

5.6 

1.9 

3.6 

2.3 

nd 

3.8 

2.7 

3.3 

-

2.9 

-

4.4 

PUFA 

41 

38 

39 

47 

47 

60 

53 

57 

42 

45 

63 

38 

60 

PUFA, polyunsaturated fatty acids; nd, not determined. 
•Calculated from the author's data on the fatty acid composition of the major phospholipids. 
»»Calculated from the author's data, which are in wt %, by using the molecular weights of the 
fatty acid methyl esters. 



They calculated that in 43 mol% of the PS, in 24 mol% of the PC and in 24 

mol% of the PE two unsaturated fatty acids are present, which are mainly 

polyunsaturated, and that 18 mol% of the PC must contain two saturated fatty 

acids. The other part of each phospholipid class contains one saturated and 

one unsaturated fatty acid, which are probably distributed in the way 

Anderson and Sperling (1971) suggest. 

The high content of polyunsaturated fatty acids makes the photoreceptor 

membrane very fluid. The rates of rotational movement (Brown, 1972; Cone, 1972) 

and translational diffusion (Liebman and Entine, 1974; Poo and Cone, 1974) of 

rhodopsin in the plane of the membrane are consistent with a membrane 

viscosity in the range of 1-10 poise, i.e., like that of olive oil. The 

photoreceptor membrane exhibits a reversible phase transition around - 20 С 

in frog, as studied with differential scanning calorimetry (Mason and 

Abrahamson, 1974). This transition can be interpreted as a gel-to-liquid 

crystalline change, and confirms that the disk membrane has a fluid nature at 

physiological temperatures. The photoreceptor membrane of cattle also has a 

fluid nature at such temperatures. While a reversible phase transition is 

observed around 7° С with differential scanning calorimetry (Miljanich et al., 

1978), ESR studies (Watts et al., 1979) and fluorescent measurements (Stubbs 

et al., 1976) give no indications for lipid phase transitions or lateral 

phase separations* between 3 and 37 C. 

In sunmary, vertebrate rod outer segments contain rhodopsin and phospho

lipids as their major constituents. The three major phospholipid classes are 

PC, PE and PS with palmitic (16:0) and stearic (18:0) acid as the major 

saturated fatty acids and with docosahexaenoic (22:6) acid as the predominant 

polyunsaturated fatty acid. PS contains also relatively long-chain 24-carbon 

polyunsaturated fatty acids. The polyunsaturated fatty acids are mainly 

located at the 2-position, but appreciable amounts, including the 24-carbon 

polyunsaturates, are also present at the 1-position in the glycerol backbone 

of the phospholipids. The higher contents of polyunsaturated fatty acids 

found in recent investigations are probably due to the improved isolation 

procedures used for rod outer segments. 

•Phase separation: formation of domains, which differ in lipid fluidity 
and/or composition. 
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1.2 Metabolism 

1.2.1 Renewal of rod outer segment disks and rhodopsin 

Rod outer segment membranes are continually renewed by a process which 

involves both membrane and molecular replacement, as demonstrated by auto

radiographic and biochemical techniques (reviewed by Young, 1976). Rhodopsin, 

after synthesis on the endoplasmic reticulum of the inner segment, is 

transported through the myoid part of the inner segment and the connecting 

cilium to the infoldings of the plasma membrane at the base of the outer 

segment. The repeated infoldings of the plasma membrane pinch off and form 

free-floating disks. Once they are incorporated into the disk membrane (Hall 

et al., 1969; Papermaster et al., 1975), radioactive rhodopsin molecules are 

displaced to the apical end of the outer segment as a single band without 

significant turnover. At the apical end small groups of disks are shed, 

phagocytized and destroyed by the pigment epithelium (Young and Bok, 1969). 

Complete outer segment renewal requires 9-12 days in warm-blooded animals 

like rat, mouse and monkey, and 6-9 weeks in cold-blooded animals like frog 

(Young, 1967, 1971; Hall et al., 1969). Unlike rhodopsin, the water-soluble 

outer segment proteins appear to be replaced diffusely, i.e., on a molecular 

basis (Bok and Young, 1972). 

1.2.2 Phospholipid renewal 

In view of the high metabolic activity of the retina and the continuous 

renewal of photoreceptor membranes, there must also be an adequate synthesis 

of membrane lipids. The pathways generally operating for the biosynthesis and 

interconversion of phospholipids in vertebrates (Fig. 1.2) also function in 

the photoreceptor cell (Swartz and Mitchell, 1970; Dreyfus et al., 1978; 

Giusto and Bazan, 1979). Experiments with labeled phospholipid precursors 

demonstrate that the phospholipids are synthesized de novo in the inner 
segment and then become incorporated into newly formed disks. However, unlike 

rhodopsin, the phospholipids are subject to random, molecular replacement, the 

nature of which depends on the particular phospholipid precursor used. 

In continuation of the earlier work of Bibb and Young (1974b) with 

labeled glycerol, Anderson and coworkers (1980a-d) show that the three major 

phospholipids turn over with a hal f-life of 18-23 days in frog outer segments. 
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Fig. 1.2. Simplified scheme for the biosynthesis and interrelationships 
between the major classes of phospholipids in vertebrates. 
Interrelationships: (1) decarboxylation of PS to PE; (2) base exchange 
reactions between PS and PE, and (3) methylation of PE to PC. 
[fatty acid], fatty acid activated to acylCoA thioester; [СНЦ], methyl 
group from S-adenosyl-L-methionine. 

In addition, their results suggest a conversion of PS to PE in the outer 

segment. Synthesis and turnover of PI is much faster than for the other 

phospholipids. The half-life of PI turnover is 3-5 days in frog. There appears 

to occur a rapid hydrolysis of PI into 1,2-diglycerides. A rapid PI turnover 

is often recognized in various cell types in response to external stimuli 

(Micheli, 1975, 1979). Its function in photoreceptor cells is not known, but 
2+ 

the rapid hydrolysis of PI may be involved in Ca release from the disks upon 

illumination (see also section 6.2). In addition, the resulting diglycerides 

may be involved in the fusion events associated with the formation of new and 

the shedding of old disks (Anderson et al., 1980d). 

The rapid turnover of PI and the conversion of PS to PE are also observed 

with labeled phosphate (Anderson et al., 1980a, 1980d; Hall et al., 1973). 

However, as compared to glycerol, phosphate is slowly incorporated into the 

phospholipids of the outer segment and, once incorporated, turns over slowly. 

This is due to storage of phosphate in the retina, so that its specific radio

activity remains high for several weeks. 

CDP-ethanolamine 

Í 
ethanolamine 

C02(1) 

[CH3](3) 

serine(2) 

\ 

r 
ethanolamine(2) 

PS 
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A similar observation is made for choline in relation to PC. Choline is 

mainly stored as choline phosphate and acetylcholine in the rabbit retina. 

With time, choline phosphate is used for the biosynthesis of phospholipids, 

primarily PC (Masland and Mills, 1979). The kinetics of PC incorporation into 

disk membranes is nearly identical to that of rhodopsin, in vivo (Hall et al., 

1973), as well as in vitro (Basinger and Hoffman, 1976). However, as PC 

incorporation continues when rhodopsin synthesis is inhibited by puromycin, 

their pathways for incorporation must be partly independent. Unlike that of 

rhodopsin and other phospholipids, incorporation of PC is significantly 

inhibited by light exposure and in the presence of the pigment epithelium 

(Basinger and Hoffman, 1976; Mizuno, 1976). Basinger and Hoffman (1976) 

suggest that disk shedding at the tip of the outer segment is initiated by a 

change in PC composition in disks, which in turn may be mediated by 

illumination of the retina. 

Compositional changes in the disk membrane are also reported for choles

terol. By making use of the freeze-fracture technique and the sterol-specific 

antibiotic filipin, Andrews and Cohen (1979) tentatively attributed the 

preferential location of cholesterol to particle-free patches in the plasma 

membrane and in the basal disks of outer segments in rods of mice and frog, 

but not in the older disks farther from the inner segment. They suggested that 

disk membranes undergo changes in cholesterol composition during their 

replacement towards the pigment epithelium. 

Like phosphate, ethanolamine is slowly incorporated into outer segment 

PE, but it is found to be a poor lipid precursor in the retina (Anderson et 

al., 1980c; Mizuno, 1976). Thus, PE synthesis by a base exchange mechanism and 

de novo from CDP-ethanolamine appears to play a minor role. There is an active 
conversion of PE to PC by methylation. Experiments with labeled serine show 

that PS is synthesized de novo in the inner segment and that it serves as a 
precursor for PE by decarboxylation, in both inner and outer segment 

(Anderson et al., 1980a). This confirms the observations with glycerol and 

phosphate, but appears to contradict the generally accepted concept that base 

exchange is the principle route of PS biosynthesis in vertebrates (van Golde 

et al., 1974). 

The random, molecular replacement mechanism is clearly demonstrated with 

labeled palmitic (16:0), stearic (18:0) and arachidonic (20:4) acid (Bibb and 

Young, 1974a). In stead of initial concentration of label in the endoplasmic 

reticulum of the inner segment, as found with other lipid precursors, the 
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whole photoreceptor cell becomes quickly labeled, in particular the oil 

droplets of the pigment epithelium, which are storage sites for vitamin A 

esterified with fatty acid. The experiments indicate a rapid turnover of fatty 

acids in outer segment phospholipids with exchange reactions between outer 

segment and pigment epithelial cells. 

In summary, experiments with radioactive phospholipid precursors indicate 

that the phospholipids are synthesized de novo in the inner segment and are 

then incorporated into newly formed disks at the base of the outer segment. 

But, unlike rhodopsin, the phospholipids are in addition subject to random, 

molecular replacement. In the frog, the half-life for the turnover of PC, PE 

and PS is 18-23 days and 3-5 days for PI, while rhodopsin in the disks turns 

over much slower (6-9 weeks). Decarboxylation of PS to PE and methylation of 

PE to PC take place in both inner and outer segment. There is a rapid 

hydrolysis of PI into diglycerides and a fast exchange of fatty acids between 

outer segment and pigment epithelial cells. 

These findings strongly suggest the existence of specific enzymes of 

lipid metabolism in outer segments for modification reactions. Although 

phospholipases (Swartz and Mitchell, 1973), acyl transferases (Swartz and 

Mitchell, 1974), phospholipid exchange proteins (Dudley and Anderson, 1978) 

and base exchange activities (Mizuno, 1976) have been demonstrated in whole 

retina, their presence in outer segments has not been proved. 

1.2.3 Essential fatty acids 

The photoreceptor membrane has an unusually high content of polyunsatu

rated fatty acids (see Table 1.2), of which the function is not well 

understood. The two major polyunsaturated fatty acids, docosahexaenoic acid 

(22:6ω3) and arachidonic acid (20:4ω6), belong to the ω3 and ω6 families, 

of which T-linolenic acid (18:3ω3) and linoleic acid (18:2ω6) are the 

respective precursors. Since vertebrates cannot synthesize these precursors, 

they are called essential fatty acids and must be derived from dietary sources. 

Deficiency of the essential fatty acids usually results in compensatory 

production of eicosatrienoic acid (20:3ω9), as its precursor, oleic acid 

(18:lu>9), can be synthesized by vertebrates (see Fig. 1.3). However, in rats 

raised during 2-11 months on a fat-free diet with extremely low levels of 

essential fatty acids, this compensatory production of 20:3ω 9 occurs in 
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Fig. 1.3. The three fatty acid families with chain elongation and 
desaturation pathways. First number, carbon atoms; second number, double bonds; 
number after ω, the position of the first double bond from the methyl terminus 
(ω-end) of the fatty acid. Since vertebrates cannot introduce double bonds 
between existing double bonds and the methyl terminus, the fatty acid family 
remains the same regardless of the number of added carbon atoms and/or double 
bonds. Underlined fatty acids are commonly found in photoreceptor membranes. 

tissues such as liver, kidney, lung and red cells, but hardly at all in brain, 

retina (Futterman et al., 1971; Forrest and Futterman, 1972) and rod outer 

segment phospholipids (Anderson and Maude, 1972). Likewise, there is hardly 

any change in rhodopsin content, phospholipid to rhodopsin ratio and protein 

composition of rod outer segments, in photoreceptor ultrastructure and electro-

retinogram (Dudley et al., 1975). Thus, the retina must possess an efficient 

mechanism to maintain its high level of essential polyunsaturated fatty acids. 

Apparently, the essential fatty acids are recycled after phagocytosis by the 

pigment epithelium, while the retina may also be able to produce these fatty 

acids or to extract small amounts of them from the blood. Slowing down of 

photoreceptor renewal by a decrease in the rate of new disk formation does 

not seem to occur (Anderson, 1978). 

Only after depriving rats of essential fatty acids for two generations 

on a diet containing only minor amounts of 18:2ω6, a decreased 22:6ω3 fatty 

acid content of rod outer segments is observed (Anderson et al., 1974). A 

decrease in retinal 22:6ω3 by 90% has been obtained in the second generation 

by Tinoco et al. (1977). Under those circumstances the a-wave of the electro-

retinogram is significantly reduced (Anderson et al., 1974). Wheeler and 

Benolken (1975) demonstrated that the electrical response of photoreceptor cell 
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membranes appears to be a function of the position as well as of the total 

number of double bonds in fatty acid supplements. They found the a-wave 

amplitude of the electroretinogram to increase linearly with increasing ω3 

concentration. The importance of the polyunsaturated fatty acid content for 

the electroretinographic response is also shown by the observation, that 
2+ 

induction of lipid peroxidation by the Fe -ascorbate system in the frog 

retina decreases the amplitude of the electroretinographic waves (Shvedova 

et al ., 1979). 

1.3 Bi layer structure 

1.3.1 The fluid mosaic model 

The basic structure of biological membranes is currently presented in 

the fluid mosaic model of Singer and Nicolson (1972). The lipid components 

are thought to be organized as bilayers, with the hydrophilic moieties 

exposed to the aqueous medium and the hydrophobic hydrocarbon chains of the 

inner and outer molecules meeting at the center of the bilayer. The ionic 

lattice at both inner and outer surfaces stabilizes the structure and 

presents an electrostatic barrier to penetration, whereas the interior of the 

bilayer is an extremely unfavourable environment for water-soluble compounds. 

The lipids are thought to be fluid at physiological temperatures, with 

intramolecular motion of the liquid crystalline hydrocarbon chains and 

relatively high mobility of the molecules within the plane of the membrane. 

Membrane proteins may either span the membrane or be partially embedded in 

it (intrinsic proteins), or be associated with the inner or outer monolayer 

only (extrinsic proteins). There is no reason to assume that the various 

lipid components are uniform in their characteristics. It is quite possible 

that different degrees of molecular packing and mobility occur in different 

regions of the membrane. In particular, lipid associated with proteins may 

be relatively restricted in its molecular motion. 

The fluid mosaic model holds also for the photoreceptor membrane. The 

lipid bilayer, fluid at 37° С (see section 1.1), is the major structural 

frame of the rod disk membrane, as evidenced by birefringence (Liebman et al., 

1974), X-ray diffraction (Dratz et al., 1979), neutron diffraction (Yeager et 

al., 1980) and freeze-fracturing (Corless et al., 1976; Olive, 1980) studies. 

These and other techniques reveal rhodopsin as an intrinsic, amphipathic 
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glycoprotein. It appears to span the lipid bilayer of the disk membrane and 

to be partly exposed to the aqueous environment of the disks. Rhodopsin is an 

intrinsic membrane protein since it cannot be removed from the disk membrane 

without the use of detergents (de Grip et al., 1980). Physical studies have 

demonstrated that rhodopsin displays rapid lateral and rotational movements 

in the plane of the disk membrane, aided by the fluidity of the lipid 

environment in which rhodopsin is partly embedded (see also section 1.1). 

This indicates that the lipids and rhodopsin are hold together in the disk 

membrane by weak forces. Rhodopsin is also partly exposed to the aqueous 

environment of the disks. Specific parts of the molecule can react with 

water-soluble reagents like proteolytic enzymes (Daemen and de Grip, 1980), 

chemical modifying reagents (ibid.; Chen and Hubbell, 1978; Hubbell and 

Bownds, 1979) and the lectin concanavalin A (Adams et al., 1978). 

Other membrane proteins (i.e., cyclic GMP phosphodiesterase, GTPase and 

rhodopsin kinase) may be extrinsic, associated with the external surface of 

the disk membrane, as shown by their easy removal from the intact disk 

membrane by low ionic strength or in the absence of divalent cations (Shichi 

and Somers, 1980). 

1.3.2 Non-bilayer structures in biological membranes 

It has recently been demonstrated that the lipid bilayer, while still 

the basic feature of biological membranes, is not the only conformational 
31 

state in which the lipids of membranes can occur. Ρ NMR and freeze-fracturing 

studies have presented strong evidence that in the microsomes and the inner 

mitochondrial membranes of rat liver the phospholipids can undergo isotropic 

motion, which suggests that inverted mi cellar structures may be present in 

conjunction with the bilayer (de Kruijff et al., 1978; Cul li s et al., 1980). 

Model studies of fully hydrated preparations of individual (membrane) 

lipids show that the preferred phase depends on the type of lipid (reviewed 

by Cullis and de Kruijff, 1979). Under most conditions (at 37° C) PC, PS, 

sphingomyelin and saturated PE adopt the bilayer, while lysophospholipids 

prefer the micellar phase, and unsaturated PE and PA-Ca
 +
 and diphosphatidyl-

glycerol-Ca
 +
 mixtures the hexagonal (H,,) phase (see Fig. 1.4). Of particular 

importance are bilayer-to-hexagonal (H,,) phase transitions, induced by 

changes in temperature, divalent cation concentration and pH. While saturated 

PE prefers the bilayer, unsaturated PE undergoes a bi layer-to-hexagonal (H·,,) 
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Phospholipid phases Ρ NMR spectra Freeze-fracture 

micrographs 

50 ppm 

Fig. 1.4. Polymorphic phases available to hydrated liquid crystalline 
phospholipids and corresponding (36.4 MHz)

 3 1
P NMR spectra and freeze-fracture 

micrographs (150,000 x). A, bilayer phase (egg PC, 30°C); B, hexagonal ( H
n
) 

phase (soya PE, 30°C); С and D, phases which show isotropic motion spectra; 
C, sonicated vesicle (dipalmitoyl PC, 50°C); D, inverted micelle sandwiched 
between the monolayers of the bilayer phase (diphosphatidylglycerol-PC-Ca2+, 
30°C). Adapted from Cull is and de Kruijff (1979). 

phase transition as the temperature is increased through a characteristic 

value, which depends in part on the fatty acid composition. This temperature 

is about 5° С in dioleoyl (18:1/18:1), about 10° С in erythrocyte, 25-30° С 

in egg and 55-60° С in Escherichia coli PE, i.e., values which are 10-20° С 

above the gel-to-liquid crystalline phase transition temperature. This means 

that in general unsaturated PE adopts the hexagonal (H,,) phase at 

physiological temperatures. Unlike PE, PC has always the bilayer structure, 
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independent of the fatty acid composition or other biologically relevant 

conditions. Diphosphatidylglycerol and (unsaturated) PA undergo a bilayer-to-
2+ 

hexagonal (H,·,) phase transition when the Ca concentration increases. 

Unsaturated PS prefers the bilayer at physiological pH, but below pH 4.0 

(i.e., below the pK of the carboxyl group) it adopts the hexagonal (H,,) 

phase. Calcium is able to immobilize the polar head group of PS strongly and 

specifically. 

The preference of a lipid species for a given phase may reflect the 

dynamic molecular shape assumed by the lipid. The larger polar head group of 

PC dictates a cylindrical shape. The smaller polar head group of PE in 

combination with the unsaturation of its acyl chains, which leads to 

decreasing chain order at higher temperatures, may result in a cone shape with 

the polar head group at the top. Saturated fatty acids do not require as much 

space and so the bilayer phase of saturated PE is stable, even at temperatures 

well above the gel-to-liquid crystalline phase transition temperature. A 

lysophospholipid may have an 'inverted cone' shape, as its polar region is 

larger than that of the single acyl chain. The same way of reasoning can be 

applied in relation to the negatively charged phospholipids, of which the 

area per molecule at the lipid-water interface is also sensitive to the net 
2+ 

charge in the polar region (e.g., depending on pH and Ca concentration). 

Most interesting is the behavior of hydrated, mixed lipid systems, 

consisting of bilayer and hexagonal (H,,) phase phospholipids (Cuilis and de 

Kruijff, 1979). Egg PC is able to stabilize bilayer structure in the presence 

of (equimolar) unsaturated PE, which prefers the hexagonal (H·,,) configuration 

upon hydration. At intermediate PC concentrations, isotropic motion is 
31 

indicated by Ρ NMR spectra. This has also been demonstrated in other 

mixtures of bilayer and hexagonal (H,,) phase lipids, such as PC-diphosphati-
2+ dylglycerol-Ca and PC-PE-cholesterol systems. Freeze-fracturing studies of 

lipid systems exhibiting 'isotropic' NMR spectra reveal numerous small 

particles and pits on the fracture faces, indicating the presence of 'lipidie 

particles' (possibly inverted micelles* or small hexagonal (H,,) structures) 

sandwiched between the two faces of the lipid bilayer (see Fig. 1.4.D) or at 

attachment sites of two lipid bilayers. 

•Inverted micelles can be considered as very small hexagonal (H,,) fragments, 
i.e., very small cylinders of the type water-in-paraffin. 
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The data discussed so far have clearly established that several lipid 

components of biological membranes can adopt the hexagonal (H,,) phase upon 

hydration. Moreover, mixed lipid systems containing bilayer and hexagonal (H,,) 

phase lipids often exhibit inverted micellar structures. Recently, this has 

also been demonstrated for the total lipid extract of Escherichia coli, which 

contains 74% PE of total phospholipids (Burnell et al., 1980). This total 
31 

lipid extract gives rise to Ρ NMR spectra, which indicate bilayer, isotropic 

and hexagonal (H,,) phases. These phases are also detected by freeze-fracturing, 

suggesting the presence of inverted micelles associated with bilayer structure. 

However, lipid extracts of microsomes (which contain mainly PC and PE) and of 

inner mitochondrial membranes (which contain mainly diphosphatidylglycerol, 

PC and PE) of rat liver adopt the bilayer with only minor structure giving 

31 2+ 

rise to isotropic motion in Ρ NMR spectra. Addition of Ca results in some 

hexagonal (H,,) phase formation as well as lipidie particles as detected by 

freeze-fracturing. Thus, the observed lipidie particles in natural intra

cellular membranes of rat liver, suggesting inverted micellar structures in 

conjunction with the bilayer, may be partly due to the presence of protein 
2+ 

(or endogenous Ca ). Nevertheless, the possible occurrence of transitory 

non-bilayer structures in such dynamic membrane systems may have important 

functional implications, which are difficult to reconcile with purely bilayer 

structures. These include membrane fusion (e.g., phagocytosis) and trans-

bilayer transport processes (e.g., transbilayer movement of lipids and 

facilitated transport). 

Since photoreceptor membranes have a large portion of highly unsaturated 

PE (see Table 1.2), (transitory) non-bilayer structures may be present. This 

may offer a new insight on fusion and transport mechanisms of the photo

receptor membrane. 
31 

Recently, we have undertaken a Ρ NMR and freeze-fracturing study of 

both the isolated intact photoreceptor membrane and aqueous dispersions of its 

extracted lipids (de Grip et al., 1979). The results indicate a bilayer 

configuration for the photoreceptor membrane, and inverted micellar structures 

for the extracted lipids, associated with the bilayer below 25° С or the 

hexagonal (H·,,) phase at 37° С This confirms the fluid mosaic model, but 

with rhodopsin as the major structuring component for the photoreceptor 
31 

membrane. However, Deese et al. (1981) showed that the Ρ NMR spectra are 

indicative of the bilayer phase for both the rod outer segment membrane and 
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its extracted (phospho)lipids. We cannot presently account for the 

discrepancy between our results of the extracted lipids and those of Deese et 

al. (1981), which are obtained under slightly different experimental 

conditions. 

1.4 Interaction between phospholipids and rhodopsin 

As mentioned in section 1.3.1, the rod disk membrane is a fluid, 

bilayered structure, in which rhodopsin-lipid interaction is probably not too 

strong as to allow high rotational mobility. Several approaches have been 

used to determine specific rhodopsin-lipid interactions. In most studies 

these interactions have been deduced from alterations in the properties of 

rhodopsin after modification or removal of the lipids normally present in the 

disk membrane. Following delipidation, rhodopsin can be incorporated into 

lipid bilayers of known composition (Hong and Hubbell, 1972; van Breugel et 

al., 1977). The complexity of the natural disk membrane is greatly reduced in 

such model systems, permitting better control of the properties of rhodopsin. 

The properties of rhodopsin, which are frequently used to study the 

influence of an altered lipid environment on rhodopsin, are: its characteristic 

500 nm absorbance, the photolytic sequence upon illumination, the regeneration 

capacity (i.e., the ability of bleached rhodopsin to combine with 11-cis retinal 

to the visual pigment), the thermal stability, and the accessibility of 

functional groups within the rhodopsin molecule to certain reagents (Daemen 

and de Grip, 1980). 

Evidence that lipids may have a functional role in rod outer segments 

comes from earlier work on the extractability of lipids under different 

conditions. When rod outer segments are treated with non-polar organic solvents 

which do not bleach rhodopsin (hexane, Borggreven et al., 1970; Poincelot and 

Abrahamson, 1970a; petroleum ether, Shichi, 1971; Ishimoto and Wald, 1946; 

diethyl ether, Poincelot and Abrahamson, 1970a; Krinsky, 1958), PE is 

preferentially removed at the expense of PC, which appears to be more 

tightly bound to the membrane. Borggreven et al. (1970) found no further 

release of phospholipids upon illumination, but others (Poincelot and 

Abrahamson, 1970a; Ishimoto and Wald, 1946; Krinsky, 1958) observed a large 

release of residual phospholipid, mainly during the conversion of rhodopsin 

to metarhodopsin I (Poincelot and Abrahamson, 1970a). When rod outer segments 

are extracted with chloroform-methanol, which bleaches rhodopsin, all lipids 
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are removed (Borggreven et al., 1970; Poincelot and Zull, 1969). Thus, the 

experiments with the milder non-polar organic solvents show the presence of 

a loosely bound and a more tightly bound phospholipid pool, and could suggest 

that native rhodopsin binds phospholipids in a different manner than does 

bleached rhodopsin. 

Borggreven et al. (1971, 1972) and Shichi (1971) used phospholipases Ap 

and С to modify photoreceptor membrane phospholipids. Phospholipase A„ 

hydrolyses phospholipids into lysophospholipids and free fatty acids, phospho

lipase С produces diglycerides and phosphate esters. Borggreven et al. (1971) 

could hydrolyse 95% of the rod disk phospholipids with phospholipase С from 

Bacillus aereus without loss of 500 nm absorbance but with a decreasing 

regeneration capacity of rhodopsin. Hexane extraction of the diglycerides 

caused no further change in the regeneration capacity. Lipid analysis 

revealed that phospholipase С treated-hexane extracted disk membranes contain 

0.2 mol PE and 1.6 mol PS per rhodopsin molecule. Treatment of this preparation 

with phospholipase A
?
 from Crotalus adamanteus and subsequent removal of the 

released lysophospholipids with serum albumin (Borggreven et al., 1972) did 

not further lower the regeneration capacity of rhodopsin and only slightly 

reduced the 500 nm absorbance. The final preparation contained only 0.1 mol 

PE and 0.1 mol PS per rhodopsin molecule. These results indicated that PS and 

PE are not involved in binding the chromophore at its active center, but they 

did show the dependence of the regeneration capacity of rhodopsin on the lipid 

environment. Shichi (1971) found a complete loss of the regeneration capacity 

of rhodopsin upon treatment with phospholipase A„ from Naja naja, which is 

restored after addition of phospholipids to the partially hydrolyzed disk 

membranes. Lysophospholipids, which are potential detergents, may contribute 

to the observed effect, since detergents like Emulphogene have a similar effect. 

Van Breugel et al. (1978) also modified rod disk phospholipids by means 

of phospholipase С from Bacillus cereus, which hydrolyses up to 90% of the 

phospholipids. Electronmicroscopic observations showed that aggregation of 

rhodopsin occurs, when more than 20% of the phospholipids are hydrolyzed. This 

is due to removal of diglycerides from the disk membrane and their coalescence 

into lipid droplets (Olive et al., 1978). Extraction with hexane is thus not 

needed to produce partly delipidated disk membranes. Van Breugel et al. (1978) 

also isolated lipid-free rhodopsin and incorporated purified rhodopsin into 

lipid bilayers of unsaturated egg phospholipids. The characteristic 500 nm 

absorbance was unaffected in all cases, again indicating that the chromophoric 
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center is not influenced by the altered lipid environment. However, the 

photolytic sequence after the formation of metarhodopsin I is markedly slowed 

down and the thermal stability and the regeneration capacity of rhodopsin are 

reduced in phospholipase С treated membranes and in delipidated rhodopsin. The 

changes, observed in phospholipase С treated membranes, start after 40% 

hydrolysis of the phospholipids and gradually reach maximal levels at 90% 

hydrolysis. The indicated properties of rhodopsin are completely restored upon 

its reconstitution in lipid bilayers (at 25 C). However, when unsaturated egg 

PC (which contains about one double bond per molecule) or saturated PC (O'Brien 

et al., 1977) is used for reconstitution, the photolytic sequence after meta

rhodopsin I formation is again slowed down (at 18 C). It thus appears that 

rhodopsin can only function properly, when it is dispersed in a lipid bilayer 

consisting of at least 37 (i.e., 40% of 62) phospholipids per pigment molecule. 

The lipid bilayer must be sufficiently fluid, i.e., more than one double bond 

per lipid molecule should be present. The results also suggest that no 

specific, polar lipid-rhodopsin interactions are involved in keeping 

rhodopsin structurally and functionally intact (as judged from the properties 

of rhodopsin presently known). 

1.4.1 Speaifia phospholipid-rhodopsin interactions 

Some observations, however, suggest specific lipid-rhodopsin interactions, 

the function of which is not always understood. Experiments on the 

extractability of phospholipids with non-polar organic solvents suggest that 

PC is tightly associated with the membrane of rod outer segments, whereas the 

bulk of PE belongs to a loosely bound lipid pool (see above). It is not clear, 

whether this effect is caused by stronger interaction of rhodopsin with PC, or 

is due to better solubility of PE in a particular non-polar organic solvent. 

In addition, the experiments of Borggreven et al. (1972) with phospholipases 

indicate that it is difficult to remove PS from the disk membrane. It can be 

removed completely only after extensive sequential treatment with 'phospholi

pase C, hexane, phospholipase A„ and serum albumin. Thus, PS might be closely 

associated with rhodopsin. However, it cannot be excluded that this effect is 

caused by the substrate preference of these phospholipases. 

Upon modification of the primary amino groups in disk membranes with 

methylacetimidate (MAI), de Grip et al. (1973) found 0.2 mol PS, 0.4 mol PE 

and 1.4 mol lysine/mol rhodopsin unmodified in darkness. After illumination 
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these values became 0.9, 0.5 and 0.5, respectively. This suggests that the 

chromophore is released from the ε-amino group of lysine and moves largely 

to PS. After illumination in the presence of NADPH the observed values are 

0.1, 0.2 and 0.4, respectively, indicating that the chromophore is liberated 

and reduced to reti nol by the reti nol dehydrogenase system, which requires 

NADPH as cofactor. The results could suggest a role of PS in chromophore 

binding after illumination, but could also indicate the relative inertness of 

PS towards modification with methylacetimidate upon illumination. 

Upon illumination of disk membranes, rhodopsin undergoes a series of 

conformational changes. Metarhodopsin II is formed within milliseconds at 

physiological temperatures. It decays in the course of several minutes into 

three stable products: opsin, free retinal and metarhodopsin III. The latter 

substance consists of a mixture of all-trans retinal bound to opsin and to PE. 

In the case of bovine disks, illuminated in suspension, retinal is distributed 

as follows: 30-35% free, 51% opsin-bound, 15% PE-bound (van Breugel et al., 

1979). The fraction of retinal, bound to PE, could be increased up to 34% at 

the expense of free retinal, when purified rhodopsin was reconstituted with" 

egg PE into bilayers. Reconstitution of rhodopsin into bilayers of PC or PS 

shows no lipid-bound retinal fraction. These observations suggest that in the 

later, slow part of the photolytic sequence PE is involved in chromophore 

displacement during metarhodopsin III formation, at least under the 

experimental conditions used in this study. 

The purification of rhodopsin is most conveniently achieved through 

affinity chromatography on immobilized concanavalin A in the presence of 

detergent (de Grip et al., 1980). All common detergents are capable of removing 

the lipids from rhodopsin, except digitonin and dodecylmaltose. In the presence 

of 2% digitonin, 3 mol PC, 3 mol PE and 7 mol PS remain bound per mol rhodopsin 

(de Grip, unpublished result), suggesting again that PS could be more tightly 

associated with rhodopsin than the other lipids. However, the incomplete 

delipidation of rhodopsin may also reflect the limited solubilization capacity 

of this mild detergent. 

Bifunctional chemical reagents, i.e., with two reactive groups, can be 

used to introduce both inter- and intra-molecular cross-links. Under suitable 

conditions a nearest neighbor analysis of membrane components can be per

formed. Crain et al. (1978) were able to cross-link primary amino groups in 

photoreceptor membranes with the membrane-permeable reagent di fluorodinitro

benzene (DFDNB). Under maximal cross-linking conditions (pH 8.5, 21-37° C, 
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75-100 uM reagent), 6-11% of PE and 35-39% of PS were found to be cross-linked 

to protein, i.e., 2-3 mol PE and 3-4 mol PS per rhodopsin molecule (lower 

values correspond to lower temperature and reagent concentration). Light 

exposure did not appreciably influence the cross-linking of aminophospholipids 

to protein. Fatty acid analysis of the various reaction products indicates that 

PE, not cross-linked to protein, contains the same fatty acids as PE in the 

original membrane preparation. The aminophospholipids, cross-linked to protein, 

are slightly enriched in docosahexaenoic acid (22:6). The results suggest that 

a minor part of PE and PS is closely associated with rhodopsin, but that the 

aminophospholipids are randomly distributed in the plane of the disk membrane 

with respect to their fatty acids. However, it is difficult to make a 

distinction between links formed between membrane components which show static, 

long-term interactions, and links between membrane components, which 

accidentally collide during the course of diffusion in the membrane (Peters 

and Richards, 1977). 

Various physical techniques have recently been used to investigate lipid-

rhodopsin interactions in disk membranes. Results obtained with photoreceptor 

membrane are usually compared with those of its extracted lipids in order to 

detect lipid populations, which are immobilized by rhodopsin. Stubbs et al. 

(1976) found no evidence for different lipid populations, when using the 

fluorescent probe diphenylhexatriene. Since the disk membrane has a (fourfold) 

higher effective microviscosity than the extracted lipids, they concluded that 

almost all lipids in the disk membrane are immobilized by rhodopsin and behave 

as a single pool, with rapid exchange between boundary and bulk lipid 

populations. Lower temperatures resulted in decreasing fluidity of the disk 

membrane (1.4 poise at 40° С to 15 poise at 0° C), which was not affected by 

bleaching of rhodopsin. From ESR studies with spin-labeled fatty acids, Favre 

et al. (1979) concluded that the lipids are only slightly affected in their 

mobility by rhodopsin. Other ESR studies with a number of lipid spin-labels 

(Watts et al., 1979) suggested that a large part of the lipids (33-43%) is 

immobilized by rhodopsin, but that all lipids can diffuse in the plane of the 

disk membrane with rapid exchange between boundary and bulk lipid populations. 

The results indicated a limited preference for the immobilized region by PS 

molecules. A critical assumption in the interpretation of these results is that 

the distribution of membrane lipids be identical with that of spin-labels of 

the same type. In addition, the lipid extract is probably not a good reference 

preparation, since it adopts an isotropic phase. The isotropic phase 
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represents possibly inverted micellar structures, associated with the bilayer 

below 25° С or the hexagonal (H,,) phase at 37° С (de Grip et al., 1979; but 

see Deese et al., 1981). H and carbon-13 NMR studies with rhodopsin-egg PC 

recombinants also indicate that the lipids exchange rapidly (<10 sec) 

between boundary and bulk lipid populations, but the saturated sn-1 acyl 

chains of the phospholipids are significantly more imnobilized than the 

polyunsaturated sn-1 acyl chains (Zumbulyadis and O'Brien, 1979). 

In summary, there are in general no indications for a strongly immobili

zed lipid population by rhodopsin in the disk membrane. Biochemical evidence 

indicates that rhodopsin needs a minimal fluid lipid environment to function 

adequately, at least in so far as revealed by its properties presently known. 

The dependence of rhodopsin activity on the lipid environment is not so much 

an expression of the need for a particular lipid as it is the need for a 

suitable fluidity in the overall lipid phase. Specific rhodopsin-lipid inter

actions are only apparent during the final stages of the photolytic sequence 

involving chromophore displacement, and appear to involve both PE and PS. 

During the last years, progress has been made in the characterization 

(and isolation) of soluble outer segment proteins, which can be activated by 

light-excited rhodopsin (Shichi and Somers, 1980; Kühn, 1980). It is not yet 

clear whether the presence of a wide variety of phospholipids with remarkably 

high degree of unsaturation has any relevance for such or other still unknown 

activation processes. 

1.5 Transverse distribution of phospholipids 

Biological membranes, consisting of a bilayer in which proteins are 

(partially) embedded, serve not only as barriers separating two compartments 

and allowing bidirectional passive diffusion, but also maintain various uni

directional active transport processes. Thus, biomembranes must be asymmetri

cally organized to some extent in order to maintain the latter processes. 

Asymmetrical insertion of membrane proteins has been demonstrated in many 

instances. Asymmetrical distribution of membrane lipids has also been claimed 

in many instances, most firmly for the erythrocyte plasma membrane (op den 

Kamp, 1979). 

The photoreceptor membrane also consists of a lipid bilayer, in which 

rhodopsin is asymmetrically inserted (see section 1.3). The involvement of PS 

27 



and PE in chromophore binding upon illumination, and the possibility that PS 
2+ 

binds the (proposed) transmitter Ca at the disk membrane, suggest a specific 

transbilayer distribution of (part of) PE and PS. A fully or partly asymmetric 

lipid distribution may also be needed for attachment (orientation) and full 

activity of some extrinsic membrane proteins. 

Before this study was started, little was known about the transbilayer 

distribution of the phospholipids. The transbilayer distribution of the 

primary amino group containing phospholipids, i.e., PE and PS, has been 

studied in bovine rod outer segment preparations by means of amino group 

modifying chemical reagents (see further). In principle, the use of membrane-

impermeable reagents, like trinitrobenzenesulfonate (TNBS) and isethionyl-

acetimidate (IAI), allows selective labeling of primary amino groups which are 

located in the outer leaflet of the membrane. The use of membrane-permeable 

reagents, like ethylacetimidate (EAI) and fluorodinitrobenzene (FDNB), or the 

use of membrane-impermeable reagents under conditions at which all amino 

groups from both leaflets become accessible, gives an estimation of the total 

amount of primary amino groups available to the reagents. 

In biochemical studies on the effect of amino group modification on the 

properties of rhodopsin, de Grip et al. (1973) determined that 52 primary 

amino groups/mol rhodopsin are present in bovine rod outer segments, consis

ting of 16 ε-amino groups of lysine, 27 amino groups of PE and 9 amino groups 

of PS. They observed that at pH 8 and 40° С a 15-fold molar excess of TNBS 

labels all primary amino groups present, in darkness as well as in light and 

also after addition of Triton X-100 (final concentration, 1 wt % ) . These 

conditions led to complete denaturation of rhodopsin, i.e., complete loss of 

characteristic 500 nm absorbance. At 20° C, in darkness at pH 8, a final level 

of 70% modification is observed without loss of 500 nm absorbance, which has 

been confirmed by the experiments of Litman (1974). At a 3-fold molar excess 

of TNBS at pH 8.5 and at 20° С in darkness, Litman (1974) also found a plateau 

level of about 60% modification. The complete labeling of the primary amino 

groups at elevated temperatures was attributed to a change in the permeability 

of the membrane as a direct consequence of the thermal denaturation of 

rhodopsin by reagent labeling. 

Raubach et al. (1974) observed that 4-6 ε-amino groups of lysine and 26 

amino groups of the aminophospholipids are labeled by excess IAI at pH 9 and 

20 С These numbers are increased to 10-11 and 38, respectively, by excess 

EAI under the same conditions, which labels the total amount of the amino-
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phospholipids. Hence, they concluded that about 70% of the aminophospholipids 

(i.e., 26 of 38) are located at the outside of the disk membrane. 

This comprises our knowledge of the transverse distribution of phospho

lipids at the time when this study was started: a suggestion that the amino-

phospholipids predominate at the outside face of the disk membrane. 

Two papers about transverse distribution of aminophospholipids have been 

published during the course of this study (Smith et al., 1977; Crain et al , 

1978). The results of Smith et al. (1977) indicated complete asymmetry of 

aminophospholipids, since all lipid primary amino groups react with a 2-fold 

molar excess of TNBS at pH 8.5 and 20° C, while arginine, which also contains 

reactive amino groups and which is trapped inside the disks, does not react 

at all. The most detailed information on reactivity of lipid primary amino 

groups in disk membranes is given by Crain et al. (1978), who used various 

chemical reagents under different conditions. At 21° С and pH 8.5 an excess 

of TNBS, but also of FDNB, labels 94-86% of PE and 43-63% of PS very quickly. 

At 0° С only 63% of PE and 25% of PS react relatively fast with TNBS, as 

compared to the remaining fraction of these lipids. In the presence of valino-

mycin, which makes the erythrocyte permeable to TNBS (Marinetti and Crain, 

1978), 86% of PE and 50% of PS react quickly. The authors concluded that 63% 

of PE and 25% of PS are located outside, that 23% (i.e., 86-63%)'of PE and 

25% (i.e., 50-25%) of PS are located inside, and that the remaining fraction 

of these lipids is not readily available. The fractions, not readily availa

ble, are consistent with corresponding fractions, cross-linked to protein 

(see section 1.4.1). The authors suggested that TNBS at 21° C, or at 0° С in 

the presence of valinomycin, penetrates the membrane. Experiments with excess 

IAI, applied at pH 8.5 and 21° C, confirmed the results of TNBS reacting at 

0° С 

The data of Crain et al. (1978), together with those of the other 

investigators, are summarized in Table 1.3, and suggest that 60-100% of the 

aminophospholipids are located at the outside face of the photoreceptor 

membrane. It is clear from these results that the reaction conditions greatly 

affect the accessibility of the amino groups to the reagents. The influence of 

the reaction conditions will be evaluated in more detail when we have presen

ted our results regarding the transverse distribution of the phospholipids. 
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TABLE 1.3 

ACCESSIBILITY OF PRIMARY AMINO GROUPS IN DARK-ADAPTED BOVINE ROD OUTER SEGMENTS 

ΝΗ~, total primary amino groups; NH^-PL, total primary amino groups of aminophospholipids. 

De Grip et al. (1973)* 

Litman (1974)* 

Raubach et al. (1974)* 

Smith et al. (1977)* 

Crain et al. (1978)** 

TNBS + vai 

Reagent 

TNBS 

TNBS 

IAI 

EAI 

TNBS 

TNBS 

inomycin 

FDNB 

IAI 

Incubât 

0° С 

63% of РЕ, 25% of PS 

86% of PE, 50% of PS 

ion temperature 

20-21° С 

70% of NH
2 

60% of NH
2 

70% of NH
2
-PL 

100% of NH
2
-PL 

100% of NH
2
-PL 

94% of PE, 43% 

86% of PE, 63% 

72% of PE, 31% 

of 

of 

of 

PS 

PS 

PS 

37-40° С 

100% of NH
2 

100% of NH
2 

•Final modification level. 
**Fast-reacting phospholipid pool. 



1.6 Aim of this study 

The aim of this study was to elucidate the transbilayer distribution of 

the three major phospholipids and their fatty acyl chains over the two leaflets 

of the disk membrane. The study has been performed with rod outer segments 

isolated from bovine retina. Bovine rod outer segments contain phosphatidyl

choline (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) as 

their major phospholipids (respectively, 36, 44 and 15 mol% of total phospho

lipids; Table 1.1). In these preparations the plasma membrane is still present, 

but only as a minor impurity (1-3 wt %). 

Knowledge of the transverse distribution of phospholipids in the disk 

membrane is obviously needed to obtain a detailed picture of the membrane 

structure and to understand its functioning on a molecular scale. Because of 

conflicting results, reported for the transverse distribution of the amino-

phospholipids PE and PS in rod disk membranes (section 1.5), there is a need 

for further investigation. Moreover, neither the transverse distribution of 

PC is known, nor the transverse distribution of the acyl chains in individual 

phospholipid classes. 

In addition to the use of amino group modifying reagents like trinitro-

benzenesulfonate (TNBS) we have used three different, specific phospholipid 

hydrolyzing enzymes (phospholipases A„, С and D) and combined treatment with 

TNBS and phospholipase D. Considerable effort has been expended on determining 

correct conditions for these experiments, which guarantee complete accessibili

ty of only externally located phospholipids (e.g., to minimize membrane 

inversion upon isolation, inaccessibility of externally located phospholipids, 

redistribution of phospholipids upon modification, and reagent penetration). 
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CHAPTER 2 

PHOSPHOLIPASES AND TRINITROBENZENESULFONATE AS TOOLS FOR STUDYING THE 

STRUCTURE OF PHOTORECEPTOR MEMBRANE 

In this chapter a description is given of materials, procedures and 

determinations, which have been used throughout this study. In the intro

ductory part some characteristics of phospholipases and trinitrobenzene-

sulfonate (TNBS) are described, as well as prerequisites for the correct use 

of these reagents in determining the phospholipid distribution across the 

photoreceptor membrane. 

2.1 Introduction 

Phospholipases and group-specific reagents like TNBS have been widely 

used as mild agents for the modification and removal of phospholipids of 

biological membranes. They have been used as probes for the transbilayer 

organization of phospholipids in erythrocyte membranes (Zwaal et al., 1975; 

Marinetti and Crain, 1978) and in many other biological membranes (Bergelson 

and Barsukov, 1977; Rothman and Lenardj 1977; op den Kamp, 1979; Etémadi, 

1980). In addition, phospholipases have been useful in studying the dependence 

of membrane-bound enzymatic activities on phospholipids (Gazzotti and Peterson, 

1977; Bonting and de Pont, 1980). Group-specific reagents are less suitable 

for the latter purpose, since they can also react with functional groups of 

proteins. 

Phospholipases have been used to investigate the influence of photo

receptor membrane phospholipids on the properties of rhodopsin (section 1.4; 

see also Cohen, 1973; Farnsworth and Dratz, 1976; Baroin et al., 1979; Favre 

et al., 1979). The transverse distribution of phospholipids in photoreceptor 

membranes has previously been studied only with amino group reagents (section 

1.5). These reagents could thus only provide direct information on the 

position of amino-containing phospholipids like phosphatidylethanolamine (PE) 

and phosphatidylserine (PS). Hence, we have undertaken a study with three 

different phospholipases, which in principle can attack all available 

phospholipids in photoreceptor membranes. These phospholipases are: phospho-
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lipase A„ from porcine pancreas, phospholipase С from Bacillus cereus, and 

phospholipase D from Savoy cabbage. To corroborate the results of our work 

with phospholipases, we have also used TNBS, which appears to be a very 

useful tool, particularly in combination with phospholipase D. 

2.1.1 Some characteristics of phospholipases 

Phospholipases are lipolytic enzymes, classified according to the type 

of bond they hydrolyse in phospholipids (see Fig. 2.1; not shown is their 

action on phosphate-containing sphingolipids like sphingomyelin). Phospho

lipase A
?
 (EC 3.1.1.4) specifically removes the fatty acid from the 2-position 

of the glycerol backbone to leave a lysophospholipid. Phospholipase С (EC 

3.1.4.3) hydrolyses the bond between phosphoric acid and glycerol, yielding a 

phosphate ester and a diglyceride, while phospholipase D (EC 3.1.4.4) removes 

the polar group leaving a phosphatidic acid (PA). Phospholipase D can also 

catalyze a transferase reaction by which the base group of the phospholipid 

substrate is replaced by an other acceptor alcohol. This transferase reaction 

may be considered the general reaction, with hydrolysis representing a 

specific case in which the acceptor alcohol is water. Phospholipase A, (EC 

3.1.1.4) will not be considered here, since we have not made use of it. 

Each phospholipase (A~, С and D) is available from different sources 

(Brockerhoff and Jensen, 1974) and may exhibit variations in substrate 

specificity and in the rates of hydrolysis for individual substrates. The 

phospholipases A„ from pancreas and venoms act on all common types of 

phosphoglycerides, although they are not all hydrolyzed at the same rate. 

phospholipase A 

№ H 

H - С - 0 — С - R
x 

О I 
R, - С — 0 - С - H 

/ I » 
/ I 'i 

Н - С - 0 — Ρ — 0 - Х vhospholipase Ai 
H 'Л\ 

phospholipase С phospholipase D 

Fig. 2.1. Sites of action of different phospholipases on phosphoglycerides. 
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Porcine pancreatic phospholipase A~ prefers negatively charged phosphoglyce-

rides like PA and PS, whereas the enzyme from the venom of Naja naja is more 

active towards PE and phosphatidylcholine (PC; de Haas et al., 1968; Roberts 

et al., 1978). 

The situation is more complex with phospholipases C. The enzyme from 

Bacillus oereus degrades only phosphoglycerides, except phosphatidylinositol 

(PI), but PC and PE faster than PS (Zwaal et al., 1975; Otnaess et al., 1977; 

Roberts et al., 1978). It may, however, hydrolyze sphingomyelin under certain 

conditions (Otnaess, 1980). On the other hand, the Staphylococcus aureus 
sphingomyelinase С is strongly specific for sphingomyelin, whereas the 

Clostridium perfringens (welahii) phospholipase С can attack sphingomyelin 

and zwitterionic phosphoglycerides but not acidic ones like PS (Zwaal et al., 

1975). Pi-specific phospholipases С have been purified from bacterial 

sources (see Ohyabu et al., 1978) 

Phospholipases D from plants like peanut and cabbage show a broad 

substrate specificity. These enzymes are able to hydrolyse various phospho

glycerides, but not PI. Under certain conditions the cabbage enzyme may 

hydrolyse sphingomyelin (Heller, 1978). 

The activity of a particular phospholipase is dependent on several factors, 

in particular on the physical properties of the lipid-water interface at which 

catalysis occurs. This will be illustrated for phospholipases A-. 

Porcine pancreatic and bee-venom'phospholipases A
?
 display maximal 

activity on multilamellar liposomes of saturated PC only when structural 

defects, disorder or more space are induced in the membrane, e.g., by 

sonication yielding small unilamellar vesicles, by osmotic shock and by 

temperatures near the gel-to-liquid crystalline transition of the lipids. 

Apparently, conditions which introduce structural defects (free space) in the 

membrane favour penetration of the enzyme into the interface. Similarly, 

unsaturated PC is hydrolyzed at temperatures above the transition temperature, 

which has been ascribed to an increased distance between the lipid molecules 

allowing penetration of the enzyme (op den Kamp et al., 1975; Wilschut et al., 

1978; Upreti and Jain, 1980). With Naja naja phospholipase A~ no specific 

enhancement of hydrolysis rate has been observed in sonicated PC vesicles 

at the transition temperature (Kensii and Dennis, 1979). The action of various 

phospholipases Ap is also stimulated at temperatures just above the transition 

temperature of the substrate, after a certain concentration of products (free 

fatty acids) has been reached. This may be attributed to an increase in the 
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phase transition or in the free space, caused by the free fatty acids 

(Wilschut et al., 1978; Upreti and Jain, 1980). 

Porcine pancreatic phospholipase A
?
 is unable to attack intact erythro

cyte membranes and resealed ghosts, but produces breakdown of proper substra

tes when it is trapped inside resealed ghosts or these are lysed (Zwaal et al., 

1975). Hydrolysis also occurs in monolayers of palmi toy1-oleoyl (16:0/18:1) 

PC at a surface pressure below 16.5 dynes/cm, and in monolayers of dioleoyl 

(di 18:1) ΡΕ/PS mixtures at a pressure as high as 39 dynes/cm (Demel et al., 

1975). The outer membrane surface of the erythrocyte consists mainly of PC 

and sphingomyelin, whereas the inner leaflet contains mainly PE and PS. This 

indicates that the action of pancreatic phospholipase A„ is dependent on the 

state of compression of the membranous lipid layer upon which it acts. Naja 

naja phospholipase A« belongs to the group of lipolytic enzymes, which are 

able to hydrolyse their respective substrates in intact erythrocyte membranes 

(Zwaal et al., 1975; but see Adamich and Dennis, 1978; Roelofsen et al., 1980). 

It fails to hydrolyse monolayers of choline-containing phospholipids at a 

surface pressure above 35 dynes/cm (Demel et al., 1975). Thus, the Naja naja 

enzyme may penetrate the interface more easily than the pancreatic enzyme. 

However, Roelofsen et al. (1980) report the existence of several isoenzymes 

from Naja naja, which exhibit phospholipase A- activity, but only one of which 

produces optimal hydrolysis (68%) of PC in intact erythrocyte membranes. The 

observed differences in final PC hydrolysis could be the result of a slight 

increase in lateral surface pressure in the outer monolayer, caused by the 

production of lyso-PC and free fatty acid and making the less potent iso

enzymes unable to penetrate the interface after a certain hydrolysis level is 

reached. This phenomenon can be expected to occur in biological membranes 

with a surface pressure close to the limit above which the phospholipase can 

no longer attack the membrane phospholipids (e.g., 31-35 dynes/cm for the 

erythrocyte membrane and 35 dynes/cm for the Naja naja enzyme; Demel et al., 

1975). 

The presence of other lipids, who need not be cosubstrates, may stimulate 

the activity of a given phospholipase A- towards a particular substrate, but 

it may also alter the apparent substrate specificity. In individual phospho-

lipid-Triton X-100 mixed micelles, the Naja naja enzyme strongly prefers PC 

above PE, but in mixtures of PE and PC the rate of PE hydrolysis is greatly 

enhanced. PE is also the preferred substrate in erythrocyte ghosts (Adamich 

and Dennis, 1978; Roberts et al., 1979) It is clear that the apparent substrate 
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specificity of a given phospholipase is markedly affected by many factors. 

2.1.2 Some characteristics of trinitrobenzenesulfonate 

The negatively charged reagent TNBS is now widely used to modify primary 

amino groups in proteins and aminophospholipids. It introduces a large, 

uncharged trinitrophenyl group (Fig. 2.2). The reaction is strongly pH-

dependent and is usually carried out at alkaline pH, since TNBS reacts only 

with unprotonated amino groups (Means et al., 1972). TNBS can also react with 

sulfhydryl groups, but the resulting S-trinitrophenyl groups are unstable at 

alkaline pH (ibid.; but see Haest et al., 1981). Sulfite ion, liberated in 

the reaction of TNBS with amino groups, readily complexes with trinitrophenyl 

products above pH 7, giving a characteristic visible absorption peak. This 

peak can be abolished by acidification, which dissociates the sulfite complex 

(Habeeb, 1966). The modification reaction can then be followed spectroscopi-

cally by measuring the absorbance at 340 nm against appropriate blanks 

( ε
3 4 0
 = 13,100 М

- 1
ст

- 1
; de Grip et al., 1973). 

Since the reaction of TNBS with amino groups is dependent on the pH of 

the medium and the pK of the amino groups, differences in reaction rate of 
α 

individual amino groups can be expected to occur. In a CHCWChUOH/H-O medium 

of pH 8.5 at 23° С PE reacts more rapidly with TNBS than does PS (Gordesky and 

Marinetti, 1973). A similar pattern is observed in photoreceptor membranes 

solubilized in Triton X-100 at pH 8 and 40° С (de Grip et al., 1973). 

Likewise, the extent of the reaction with PE of intact erythrocyte membranes 

0
2
N -(' V N H - R + HSO, 

TNBS Trinitrophenyl derivative 

(λ , about 340 nm) v
 max ' 

Fig. 2.2. Reaction equation for the amino group modification by 2 , 4 , 6 - t r i -
nitrobenzene-1-sulfonate (TNBS). 
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for 0.5 h at 23° С increases with the pH between pH 6 and 8. It does not 

further increase above pH 8, probably because all outside-located PE has been 

modified during that period (Gordesky et al., 1975; Marinetti and Crain, 1978; 

but see next paragraph). 

Studies with phospholipid monolayers demonstrated that introduction of 

the bulky trinitrophenyl group during amino group modification can cause a 

significant increase in the surface pressure of the monolayer, leading to 

incomplete reaction. The increase in surface pressure is greater for unsatu

rated PE and PS in the liquid crystalline state than for saturated PE and PS 

in the gel state. At an initial surface pressure of 25 dynes/cm, only 80% of 

PE from Bacillus subtilis could be trinitrophenylated. Incorporation of 

negatively charged phospholipids resulted in a further decrease in the 

labeling of PE. These and other results clearly indicate that a high initial 

surface pressure as well as negative surface charge inhibit the reaction and 

that both parameters become more effective as more aminophospholipids are 

modified (Bishop et al., 1979). 

2.1.3 Requirements for phospholipid localization 

Incubation of photoreceptor membranes with a selected probe leads to 

modification of natural substrates as mentioned in sections 1.4 and 1.5. In 

all cases residual, unmodified phospholipids can be quantitatively analyzed 

after extraction and two-dimensional thin-layer chromatography. Analysis of 

the products of the action of the reagent allows an independent control 

determination of the degree of modification. In order to establish the 

phospholipid distribution across the bilayer unambiguously, it is necessary 

to select reaction conditions, which guarantee complete accessibility of 

outside-located phospholipids only. Such conditions should minimize inacces

sibility of externally located phospholipids, redistribution of phospholipids 

upon modification, and reagent penetration. In addition, the isolation 

procedure of the membrane vesicle should not induce membrane inversion. 

Naturally occurring transbilayer movement of phospholipids (flip-flop) should 

be negligible during the period of treatment. These requirements and their 

fulfilment are discussed below and at appropriate places in the next chapters. 

Membrane inversion. Freshly prepared stacked disk preparations show very 

little membrane inversion. This is indicated by the lack of binding of 

concanavalin A, which would react with sugar residues of rhodopsin if inversion 
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occurs. When applied on top of a concanavalin A-Sepharose column, essentially 

all disks are recovered in the non-adherent void volume, and none of them are 

collected after subsequent elution with a-methylmannoside, the inhibitor of 

concanavalin A binding (Adams et al., 1978). Drastic treatments like exposure 

to a hypotonic medium or sonication give disk vesicles, which also fail to 

bind concanavalin A. However, the reduced yields of disks frequently observed 

after these treatments may indicate that sonication and hypotonic disruption 

of disks result in a mixture of inverted and uninverted vesicles, and that 

small inverted vesicles cannot be dissociated from the concanavalin A beads 

by elution with a-methylmannoside. When intact disks are frozen and thawed, 

the membrane shows inversion and becomes capable of binding concanavalin A 

(Adams et al., 1978, 1979). Freeze-fracture studies indicate that membrane 

inversion is a rare event in the case of intact disks and water-washed 

vesicles. They reveal, however, that upon lysis by water the disks rupture 

and that only the uninverted disks tend to reseal (Barry et al., 1980). 

However, this does not exclude that packing and mobility of the lipids are 

subtly altered, which appears to occur upon preparing ghosts of erythrocytes 

(Bloj and Zilversmit, 1976; Adamich and Dennis, 1978). Thus, the original, 

right-side-out configuration of the disk membrane is best assured by using 

freshly prepared stacked disk preparations, which have not been washed with 

strongly hypotonic solutions. 

Inaccessibility of externally located phospholipids. Reduced reactivity 

of phospholipids, leading to incomplete reaction, may be caused by several 

factors such as lipid-protein interactions, sterical unavailability of the 

lipids to large reagents (phospholipases), differences in local packing of the 

lipids, differences in local pH and ion concentrations, and changes in state 

of compression of the lipids upon modification (op den Kamp, 1979; preceeding 

sections). Such factors should not constitute a serious drawback in the case 

of the photoreceptor membrane, since its lipids are highly unsaturated and 

thus have a fluid nature, at least above 7° С (no space limitations), and 

there are no strong interactions with rhodopsin (section 1.4). Open, leaky 

membrane systems, in which all lipids from both membrane leaflets will be 

available to the reagent, can be used to trace masked lipid populations. 

Membrane structure and lipid reactivity should not be altered too much in open 

systems in order to allow comparison with the native situation. In any case, 

when all lipids become modified, e.g., in the presence of detergent, the rea

gent has been applied under conditions which in principle guarantee complete 
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reactivity. 

Redistribution of lipids upon modification. Modification of phospholipids 

inevitably disturbs the membrane structure to some extent. This may lead to 

lipid redistribution and reagent penetration. Induced transbilayer movement of 

lipids has been demonstrated in unilamellar vesicles of egg PC upon treatment 

with cabbage phospholipase D, where part of the outside-produced PA rapidly 

exchanges with inside-located PC, but without disturbing the barrier 

properties of the bilayer (de Kruijff and Baken, 1978). Sundler et al. (1978) 

reported hydrolysis of inside-located PE in mixed PC/ΡΕ vesicles by phospho

lipase D, when the vesicles were first made asymmetric by modification of 

outside-located PE with isethionylacetimidate (IAI). They suggested that 
2+ 

aggregation of PA with Ca ions present in the medium occurs with subsequent 

loss of vesicular structure and penetration of the enzyme. On the other hand, 

when unilamellar vesicles of rat liver PC are treated with cabbage phospholi-
2+ 

pase D in the presence of Ca , or are subjected to exchange with mitochondrial 

PC by means of beef heart exchange protein, it appears that the hydrolyzed 

fraction and the exchangeable fraction are the same. This indicates that no 

lipid reorganization occurs (Johnson et al., 1975). Similarly, production of 

asymmetric vesicles by removing PI from the outer surface of unilamellar PC-

Pl-diphosphatidylglycerol vesicles by means of exchange protein or PI-specific 

phospholipase C, did not induce rapid phospholipid translocation (Low and 

Zilversmit, 1980). Obviously, the findings in these model systems are 

contradictory, but may be caused by different reaction conditions. 

Phospholi pases A« from Crotalus adamanteus and Naja naja and phospholi

pase С from Bacillus cereus give nearly complete hydrolysis of natural 

substrates in photoreceptor membranes (section 1.4), indicating that the 

action of these probes does not leave the membrane structure intact. 

Diglycerides, produced by phospholipase C, tend to aggregate into discrete 

droplets after hydrolysis of 20% of the disk phospholipids. This probably 

induces gross disorganization of the membrane, although membranous structures 

are still present after 90% phospholipid hydrolysis (Olive et al., 1978). 

Phospholipase A« produces lysophospholipids and free fatty acids, which form 

micelles when separately dispersed in aqueous buffer, and thus disruption of 

the bilayer structure may occur. However, model studies demonstrated that an 

equimolar mixture of palmitoyl (16:0) lyso-PC and fatty acid forms a stable 

bilayer phase (Jain et al., 1980). Palmitoyl (16:0) lyso-PC, added to dio-

leoyl (di 18:1) PC vesicles, is incorporated in the outer monolayer of the 
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vesicles, and shows appreciable transbilayer movement only when the vesicles 

contain glycophorin (de Kruijff et al., 1977; van Zoelen et al., 1978). 

Rhodopsin may thus induce transbilayer movement of the products of phospholi

pase action, leading to almost complete hydrolysis of phospholipids. 

Reagent penetration. Penetration of the reagent into the membrane 

interior can be demonstrated by the modification of cytoplasmic proteins. The 

reaction conditions should allow adequate modification of these proteins. 

Reagent penetration may also be indicated indirectly, when inside-located 

proteins (enzymes) become detectable in the external medium or when they 

express their activity on presumed impermeable substrates. Thus, whenever 

hemoglobin in the interior of the erythrocyte becomes modified by TNBS, or 

detectable in the external medium upon phospholipase treatment, penetration 

of the reagent most likely occurs. Penetration of TNBS into the erythrocyte 

leads, however, to modification of sulfhydryl groups of the tripeptide 

glutathione rather than of amino groups of hemoglobin (Haest et al., 1981). 

Thus, conclusions with respect to the absence of binding of TNBS to amino 

groups of inside-located proteins must be drawn with caution. 

Compared to a reagent like TNBS, the phospholipases have large molecular 

weights: 13,800 for porcine pancreatic phospholipase A
2
 (de Haas et al., 1968), 

23,000 for Bacillus aereus phospholipase С (Otnaess et al., 1972), at least 

100,000 for Savoy cabbage phospholipase D (Allgyer and Wells, 1979) and 

22,000-200,000 for the peanut enzyme (Heller, 1978). Penetration of phospho

lipases would only be expected, when the membrane structure is severely 

damaged, whereas penetration of the relatively small TNBS molecules has been 

observed in many instances, depending on temperature, type of buffer and 

reagent concentration (Gordesky et al., 1975). In photoreceptor cells no 

adequate internal marker for detecting reagent penetration is presently known. 

Naturally occurring transbilayer movement of phospholipids. In model 

systems the spontaneous transbilayer movement of phospholipids under 

equilibrium conditions is slow, with halftimes in the order of days (Johnson 

et al., 1975; Low and Zilversmit, 1980). Incorporation of protein may enhance 

the transbilayer movement (van Zoelen et al., 1978; but see Dicorleto and 

Zilversmit, 1979). Halftimes in the order of minutes have been observed in 

bacterial membranes (Rothman and Kennedy, 1977) and microsomes (Zilversmit and 

Hughes, 1977; but see van den Besselaar et al., 1978). The transbilayer 

movement of phospholipids is rather slow in some other biological membranes, 

in the order of hours in erythrocytes (Bloj and Zilversmit, 1976; Renooij et 
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al., 1976), vesicular stomatitis virus (Shaw et al., 1979) and chromaffin 

granules (Buckland et al., 1978), and in the order of days in influenza virus 

(Rothman et al., 1976), inner mitochondrial membranes (Rousselet et al., 1976) 

and LM cell plasma membranes (Sandra and Pagano, 1978). Membranes capable of 

phospholipid synthesis and growth, like microsomal and bacterial membranes, 

appear to have rapid rates of transbilayer movement of the phospholipids, 

representing a special mechanism used in membrane assembly (Rothman and 

Kennedy, 1977). This mechanism may be partially lost or absent in membranes 

incapable of growth, like erythrocyte and viral membranes. At present, no 

evidence for naturally occurring transbilayer movement of phospholipids in 

rod outer segment membranes is available (see section 1.2.2). 

In summary, it will be difficult to meet all requirements for correct 

localization of phospholipids across the disk membrane. Although membrane 

inversion may be small in freshly prepared stacked disk preparations, and all 

phospholipids freely accessible in the outer surface of the disk membrane 

(no strong interactions with rhodopsin), an internal marker to establish the 

moment of reagent penetration is lacking, while a naturally occurring flip-

flop of phospholipids is not known. Yet, the treatment with phospholipases 

A~ and С will lead to nearly complete modification of disk phospholipids. 

The degradation of individual phospholipids in disk membranes by phos

pholipases A~ and С can be followed in time and be compared with that of a 

reference preparation, in which the same phospholipids are present in random 

distribution. Differences in initial hydrolysis rate of individual phospho

lipids in either preparation should then reveal differences in phospholipid 

availability, provided that the disk membrane disturbance is small in the 

early stages of modification (compare Sundler et al., 1977, 1978). 

2.2 Preparations and their treatments 

2.2.1 Modifying agents 

Highly purified, lyophilized phospholipase A- (EC 3.1.1.4) from porcine 

pancreas is a gift of Professor G.H. de Haas (Department of Biochemistry, 

University of Utrecht, The Netherlands). It has been purified according to the 

method of Nieuwenhuizen et al. (1974) and has a specific activity of about 

800 units per mg of protein with egg-yolk lipoprotein as substrate (ibid.). 
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The enzyme is dissolved in H90 before use (100 units per m l ) . I t has an 
2+ absolute requirement for Ca and can be inactivated by EDTA. 

Phospholipase С (EC 3.1.4.3) is pur i f ied from cultures of Bacillus eereus 

according to the method of Otnaess et a l . (1972). I t has a speci f ic a c t i v i t y 

of about 1950 units per mg of protein with egg-yolk l ipoprote in as substrate 

(Zwaal and Roelofsen, 1974). The enzyme is dissolved in 50% glycerol (by 
2+ 2+ 

volume) containing 1 mM Zn (100 units per ml) . I t needs Zn for a c t i v i t y 

and can be inactivated by EDTA or o-phenanthroline. 

Phospholipase D (EC 3.1.4.4) is isolated and p a r t i a l l y p u r i f i e d from 

Savoy cabbage according to the method of Davidson and Long (1958), or obtained 

coronerei a l l y (Boehringer, Mannheim, F.R.G.). Both preparations give the same 

r e s u l t s . The enzyme has a speci f ic a c t i v i t y of about 1 uni t per mg of dry 

weight with egg-yolk PC as substrate (Davidson and Long, 1958). The preparation 

is dissolved in water before use (20 units per ml) . P a r t i a l l y p u r i f i e d prepa

rations from Savoy cabbage are contaminated with phosphatidate phosphohydrolase 

a c t i v i t y (EC 3.1.3.4) , which causes some addit ional hydrolysis (maximally 20%) 

of PA into diglycerides and P. (Davidson and Long, 1958). The enzyme is 
2+ stimulated by Ca and inh ib i ted by EDTA. The three phospholipase preparations 

used do not have proteolyt ic a c t i v i t i e s . 

2,4,6-Trinitrobenzene-l-sulfonic acid tetrahydrate has been purchased 

from BDH Chemicals L td, Poole, U.K. TNBS is added as a freshly prepared 

solut ion in the same buffer as used in the experiments. 

2.2.2 Rod outer segment and lipid preparations 

Three d i f f e r e n t types of bovine rod outer segment preparations and a 

r e t i n a l l i p i d extract have been used, always s t a r t i n g from fresh ret inas. 

'Stacked disks' are prepared in a sucrose-Ficoll 400 medium according to 

the method of Schnetkamp et a l . (1979). Rod-like structures are c lear ly 

v i s i b l e under the phase-contrast microscope. Electron-microscopic observation 

reveals stacked disks, p a r t i a l l y surrounded by plasma membrane. 

'Disk vesicles' are isolated rod outer segments according to the method 

of de Grip et a l . (1972), omitt ing the enrichment procedure, which are 

f i n a l l y washed three times with d i s t i l l e d water. Electron-microscopic 

observation shows that a f ter washing with d i s t i l l e d water the f l a t disk 

structure has been converted to globular unilamellar vesicles. The term disk 

membranes is used to imply both stacked disk and disk vesicle preparations. 
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' Sol ubi 1 ized disks' are made by dissolving disk vesicles in 0.16 M Tris-

maleate buffer (pH 6.0) containing 20 mM ß-1-nonylglucose. The non-ionie 

detergent 0-1-nonylglucose was prepared by Dr. W.J. de Grip in our laboratory 

(de Grip and Bovee-Geurts, 1979). 

'Retinal lipid suspension' is prepared by extraction of the lipids from 

whole bovine retina by a modification of the procedure of Bligh and Dyer 

(1959). After evaporation of the organic solvent, the lipids are suspended in 

0.16 M Tris-HCl buffer (pH 7.4) and subjected to sonic vibration at 0° С 

(Branson Sonifier B-12; three 1-min periods at half-maximal output with a 1 

min delay between each sonic burst), and finally centrifuged (10 min at 

10,000 χ g) in order to remove metal (titanium) contamination and larger lipid 

particles. When retinal lipid suspensions are applied on top of a Sepharose 

4B column and eluted with 0.16 M Tris-HCl buffer (pH 7.4), they are collected 

near the void volume of the column. This indicates that retinal lipid 

suspensions consist of large particles, in agreement with similar observations 

for dispersions of rod outer segment phospholipids (Brown et al., 1977). 

The phospholipid composition of the retina (Anderson et al., 1970) very 

much resembles that of rod outer segments (Tables 1.1 and 1.2). Hence, a 

retinal lipid suspension can be used as a reference which reflects the 

substrate specificities of phospholipases A~ and С for different phospholipids, 

present in a given ratio and randomly available. In the case of phospholipase 

2+ 2+ 

D, which requires 40 mM Ca for good activity (section 2.2.3) and which Ca 

concentration causes aggregation and flocculation of the retinal lipid 

suspension, solubilized disks are used as a reference for the substrate 

specificity of the enzyme. 

2.2.3 Treatment with modifying agents 

Phospholipase treatment. The most suitable reaction conditions for 

treatment with phospholipase D have been determined by varying pH, amount of 
2+ 

Ca , amount of enzyme and temperature, and measuring the extent of total 

hydrolysis in disk vesicles after 60 or 120 min (see Fig. 2.3). Optimal 

activity has been observed at pH 6.0, 40 mM Ca
 +
, at 30° С and about 1 unit/ml 

phospholipase D in a disk vesicle suspension containing 30-40 μΜ rhodopsin. 

At temperatures above 32° С the contaminating phosphatidate phosphohydrolase 

activity increases significantly (data not shown), but at 30° С and the other 

conditions selected, less than 20% (av. 10%) PA is converted to diglycerides 
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Fig. 2.3. Dependence of phospholipase D catalyzed hydrolysis of disk vesicles 
on pH, Ca2+ and enzyme concentration. Results are expressed as percent 
hydrolysis of t o t a l phospholipids. 
A, pH-dependence (40 mM Ca 2 + ; 1.6 unit/ml phospholipase D; 120 min); В, Ca2+-
dependence (pH 5.6; 1 unit/ml phospholipase D; 60 min); С, dependence on 
enzyme concentration (40 mM Ca2+; pH 5.6; 60 min). Disk vesicle concentration 
30-40 μΜ rhodopsin, incubation temperature 27°C. 

and P.. Suitable reaction conditions for phospholipases A- and С have been 

derived from Borggreven et a l . (1971) and van Breugel et a l . (1978). 

The stacked disks are suspended in a medium containing 600 mM sucrose, 

5% (w/w) FT col 1 400 and 20 mM Tris-HCl buf fer , pH 7.4 ( for treatment with 

phospholipases A~ and C), or 20 mM Tris-maleate buf fer , pH 6.0 ( for treatment 

with phospholipase D). Disk vesicles are suspended in 0.16 M Tris-HCl buf fer , 

pH 7.4 ( f o r treatment with phospholipases A~ and C), or 0.16 M Tris-maleate 

buffer, pH 6.0 (for treatment with phospholipase D). 

Incubations with phospholipase С are carried out at 20° C, with phospho

lipase A- at 20° С in the presence of 10 mM CaCl2, wi th phospholipase D at 

30° С in the presence of 40 mM CaCl«, a l l in darkness under N~. The reactions 

are started by adding an appropriate amount (1-2 units/ml) of solubi l ized 

enzyme at disk concentrations equivalent with 30-40 μΜ rhodopsin. The 

reactions are stopped by adding an excess of ice-cold buffer containing 10 

mM EDTA. 

Retinal l i p i d suspensions and detergent-sol ubi l i zed disk membranes are 

incubated as described for disk vesicles, and the reaction is stopped by 

adding the CHCWCH-,ΟΗ extract ion mixture to the incubation medium. 
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The entire procedure, starting with the isolation of rod outer segment 

membranes, takes less than 6 h. Freshly isolated rod outer segment membranes 

have been used throughout. Control incubations, omitting phospholipase, are 

always carried out and demonstrate the absence of endogenous phospholipase 

activity under the conditions used. 

Treatment with trinitrobenzenesul fonate. Optimal conditions for the 

application of TNBS as an impermeable reagent with respect to disk membranes 

have first been established (see section 4.3.2). In the routinely adapted 

procedure, the membrane preparations are suspended in 40 mM Mops buffer (pH 

7.4), 2 mM CaCl
2
, 3 mM MgClp, 140 mM NaCl to a final rhodopsin concentration 

of 3-4 μΜ. TNBS is added as a freshly prepared solution in the same buffer to 

a final concentration of 1 mM, representing a 5-fold excess with regard to the 

number of primary amino groups present in the membrane preparations. Incubation 

is performed at 20 С under N
?
. The reaction is stopped by lowering the pH 

through addition of excess ice-cold 0.2 M sodium acetate buffer (pH 5.5). 

Spectral assay procedures for determining the extent of modification are 

described in section 2.3.3. 

Combined treatment with phospholipase Ό and trinitrobenzenesulfonate. 

The incubations with phospholipase D and TNBS are carried out as described 

above. When the first treatment is with TNBS, the reaction is stopped by 

addition of an excess of ice-cold buffer (pH 6.0), the mixture is centrifuged 

(0° C, 10,000 χ g, 30 min), and the pellet is resuspended in the buffer used 

for the phospholipase D treatment. When the first treatment is with phospho

lipase D, the incubation mixture can be diluted directly by addition of the 

medium used for the modification with TNBS (e.g., without prior centrifugation). 

2.3 Assay methods 

The methods, described here, include the electron-microscopic procedures 

and the spectral determinations of rhodopsin and trinitrophenyl compounds. In 

addition, methods are given for the quantitative extraction of the phospholi

pids and their separation by two-dimensional thin-layer chromatography. In the 

spots the phospholipid content can be determined as P
i
 after destruction or 

the fatty acid composition can be measured by gas-liquid chromatography. All 

procedures are carried out under an N- atmosphere wherever possible, and all 

solutions are bubbled with N~ before use, in order to avoid oxidation of the 

highly unsaturated phospholipids. 
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2.3.1 Electron microscopy 

Stacked disk and disk vesicle suspensions are fixed in glutaraldehyde 

(final concentration 2%, v/v) in the same buffer as used for stopping the 

phospholipase treatment of disk vesicles (section 2.2.3), and post-fixed in 

1% OsO.. The samples are then dehydrated and embedded in Vestopal W. Thin 

sections are stained with uranyl acetate and lead citrate and examined in a 

Philips 300 or 301 electron microscope (Olive et al., 1978). 

2.3.2 Rhodopsin determination 

Rhodopsin is determined spectrophotometrically by measuring the 500 nm 

absorbance of a disk membrane suspension before and after illumination in the 

presence of 50 mM ΝΗ,ΟΗ and 1% (w/v) Triton X-100 (van Breugel et al., 1978). 
-1 -1 

By means of the molar absorbance of 40,500 M cm at 500 nm (Daemen et al ., 

1972), the 500 nm absorbance difference can be converted to the molar 

rhodopsin concentration. 

2.3.3 Spectral determination of trinitrophenyl compounds 

The t o t a l number of modified amino groups a f t e r treatment with TNBS is 

determined by stopping the reaction through addit ion of 1 M HCl ( f i n a l pH 2.5) 

and Tr i ton X-100 ( f i n a l concentration 1%, w/v) and reading the 340 nm 

absorbance. Appropriate blanks are used to correct for s c a t t e r i n g , rhodopsin 

and TNBS absorbance and TNBS hydrolysis. They include: (1) buf fer , to which 

are added HCl, Tr i ton X-100 and TNBS j u s t before reading; (2) TNBS in buf fer , 

to which are added HCl and Tr i ton X-100, and (3) disk membranes in b u f f e r , to 

which are added HCl, Tr i ton X-100 and TNBS. Molar contents are obtained by 

using the molar absorbance value c?.Q = 13,100 M" cm" (de Grip et a l . , 1973). 

The t o t a l number of amino groups present is determined by a modif icat ion 

of the method of Habeeb (1966). The reaction with TNBS is then performed in 

the presence of 1% (w/v) Tr i ton X-100 for 3-4 h. After addit ion of 1 M HCl 

( f i n a l pH 2.5), the 340 nm absorbance is read against appropriate blanks and 

converted to molar content. 
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2.3.4 Lipid extraction 

Aliquots of the d i lu ted suspensions (1 m l , containing about 2 umol 

phospholipid; section 2.2.3) are centrifuged (30 min, 100,000 χ g, at 4° С). 

The supernatant, which contains neither rhodopsin nor phospholipids, is 

co l lected. When water-soluble products of the enzymatic hydrolysis (phosphate 

esters and P.) are expected, aliquots of the supernatant are taken to 

determine the P. content. In t h i s way the balance of phospholipid breakdown 

can be checked. The p e l l e t is resuspended in an equal volume of СНЦ0Н. This 

suspension is extracted with 20 volumes of CHCWChUOH ( 2 : 1 , v/v) , containing 

50 mg/1 butylated hydroxytoluene (BHT) as ant ioxidant, by vigorous shaking 

during 30 min at room temperature (modified a f t e r Folch et a l . , 1957). After 

centr i fugat ion (5 min at 3000 χ g) the supernatant is removed and extract ion 

is repeated. The pooled extracts are washed with 0.2 volumes of a c i d i f i e d 

0.1 M KCl (Palmer, 1971) by gentle shaking. After centr i fugat ion the lower 

layer i s removed and concentrated by evaporation under reduced pressure at 

room temperature. During washing and centr i fugat ion minor amounts of lyso-PS 

are l o s t into the upper aqueous layer in spite of the use of the a c i d i f i e d 

s a l t s o l u t i o n . The concentrated extract is d i luted with 4 volumes of CHC1,/ 

CH30H ( 1 : 1 , v / v ) , and taken to dryness in a stream of N~. The residue is 

dissolved in 0.5 ml CHCU/CH30H ( 1 : 1 , v/v) f o r d i rect analysis or stored in 

0.5 ml toluene/ethanol ( 4 : 1 , v/v) at - 20° С under N-. 

L ip id dispersions and detergent solutions can be extracted by a 

modif ication of the procedure of Bligh and Dyer (1959), in certain cases a f t e r 

addition of EDTA (5 mg to 1 ml aliquots containing about 2 umol phospholipid) 

and cooling to 0° С The al iquots (1 ml) are mixed with 3 ml CHCU/CHUOH 

(1:2, v/v) containing 50 mg/1 BHT, so that a monophasic system r e s u l t s . The 

mixture is f i l t e r e d through a sintered glass funnel and the f i l t e r is washed 

with 1 ml CHC1,. The combined f i l t r a t e s are washed with 1 ml a c i d i f i e d 0.1 M 

KCl. After c e n t r i f u g a t i o n , the upper and lower layers are separated, and 

analyzed for P. and phospholipids, respect ively. 

2.3.5 Thin-layer chromatography of lipids 

Two-dimensional thin-layer chromatography of phospholipids. L ip id 

extracts, containing about 0.8 umol phospholipid, are applied to th in- layer 

plates as a single spot by means of a micropipette. The plates (20 χ 20 cm) 
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Fig. 2.4. Schematic two-dimensional thin-layer chromatogram of a total lipid 
extract of bovine rod outer segments. Development in two dimensions (I and II) 
on plates prepared as described in the text. Staining with iodine vapour. 
Identity of the spots: SPH, sphingomyelin; DPG, di phosphatidyl glycerol ; FFA, 
free fatty acids; Re, retinal; NL, (other) neutral lipids; LPC, LPE and LPS, 
lyso-compounds of PC, PE and PS, respectively. 

are coated with 0.30-0.25 mm silica gel and preactivated for 1 h at П О С 

Either, precoated plates (e.g., DC-Fertigplatten Kieselgel 60, Merck, Darmstadt, 

F.R.G.), cleaned by a prerun in CHC1
3
/CH

3
0H/H

2
0 (65:25:4, v/v), are used or 

else plates prepared from a slurry of purified silica gel (Silicagel 60 HR, 

Merck) containing 3% (w/w) alkaline Mg silicate (Woelm, Eschwege, F.R.G.). 

The latter plates give better separation of acidic phospholipids and do not 

contain any phosphorus (Broekhuyse, 1968). 

After evaporation of the solvent in a stream of N
2
, the chromatogram is 

developed in the first dimension with solvent I and in the second dimension 

with solvent II. Solvent I contains CHC1
3
/CH

3
0H/14 M ammonia/H

2
0 (90:54:5|:5J, 

v/v) and solvent II CHCl
3
/CH

3
0H/acetic acid/H

2
0 (90:40:12:2, v/v). After each 

dimension the plates are dried for 1 h under reduced pressure over concentra

ted H
2
S0«. Trinitrophenylated aminophospholipids are identified by their 

yellow color (Gordesky et al., 1975), the other phospholipids are localized 

by staining with iodine vapour. 

When fatty acid analysis is to be performed, precoated plates are 
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preferred and 50 mg/l BHT is added to the e l u t i on solvents. The l i p i d s are 

then local ized by spraying with 0.001% (w/v) l-amino-2-hydroxy-4-naphthalene-

sulfonic acid (ANSA) and detection in u l t r a v i o l e t l i g h t . 

A schematic chromatogram is given in Fig. 2.4. The tr in i t rophenylated 

aminophospholipids are located near the solvent f ront next to t h e i r respective 

mother compounds PE and PS. 

The spots are scraped o f f and transferred to test tubes (16 χ 160 mm) for 

phosphate determination, or to screw-cap v ia ls (5 ml) f o r f a t t y acid analysis. 

Aliquots of the p lates, containing no spots, are also scraped o f f to serve as 

(phosphate) blanks. 

Thin-layer chromatography of neutral lipids. Neutral l i p i d s are collected 

by applying the t o t a l l i p i d extract in CHCln to a s i l i c i c acid column (Bio-Sil 

HA, 325 mesh; Bio-Rad Labs., Richmond, USA), prepared and eluted according to 

the procedure of Kates (1972). As internal standard heneicosanoic acid (21:0; 

Supelco, I n c . , Bel lefonte, USA) is added. The neutral l i p i d s are removed by 

e lut ion with 7 volumes of CHCU. No phosphorus can be detected in th is 

f r a c t i o n . A l t e r n a t i v e l y , the neutral l i p i d s are collected from the f r o n t of 

precoated s i l i c a gel plates a f t e r e lut ion in CHCK/ChUOH/HLO (65:25:4, v/v) . 

The neutral l i p i d s are separated by th in- layer chromatography on s i l i c a gel 

plates in hexane/diethylether/acetic acid (80:30:1, v/v) and visualized as 

before. I d e n t i f i c a t i o n is achieved by co-chromatography of reference compounds. 

2.3.6 Phospholipid phosphate determination 

Samples containing 0.02-0.2 ymol phospholipid are transferred to 

thoroughly steamed test tubes (16 χ 160 mm), topped with glass marbles, and 

dried at ПО С The organic material is digested with 0.2 ml concentrated 

H2S04/70% HC104 ( 5 : 1 , v/v) for 1 h at 180° С The tubes are then cooled below 

50° С Usually, especial ly when sucrose is present in the sample, the 

destruction is incomplete. In that case 0.1 ml 30% H^O^ is added and the 

mixture is heated again for at least 1 h at 180° С This step is repeated 

u n t i l the mixture has become color less. After cool ing, 4.75 ml of the color 

reagent (Broekhuyse, 1968) is added. The tube is mixed and incubated for 20 

min in a b o i l i n g water bath. After cooling with tap water and standing for 

30 min in darkness, the 820 nm absorbance is measured against water as blank. 

In each determination reagent blanks and a series of standard P. samples 

(0.02-0.2 ymol) are s i m i l a r l y t reated. Tubes, containing samples scraped o f f 
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from thin- layer p lates, are centrifuged (5 min at 3000 χ g) pr ior to 

measuring the ext inct ion in order to remove s i l i c a g e l . Since the method is 

quite sensit ive to changes in f i n a l pH, the concentration of acid (HUSO.) in 

the f i n a l mixture is c r i t i c a l . The re lat ive standard error in the phosphate 

determination of phospholipids, scraped o f f from th in- layer p lates, varies 

from 5 to 10%, depending on the amount of l i p i d analyzed. 

2.3.7 Fatty acid analysis 

Lipid extracts are transferred to screw-cap v ia ls (5 m l ) . For f a t t y acid 

analysis of disk preparations, the tota l l i p i d extract is evaporated a f t e r 

addit ion of heptadecanoic acid (17:0; Supelco, I n c . ; 15 yg dissolved in 50 yl 

n-pentane) as internal standard. The v ials are sealed with a Teflon/rubber 

septum a f t e r addit ion of 0.5 ml CH.,0H containing e i ther 14% (w/v) BF~ 

(Morrison and Smith, 1964) or 10% (v/v) CHjCOCl. Both reagents give the same 

r e s u l t s . The v ia ls are heated for 15 min at 100° С to allow l i p i d hydrolysis 

and methylation of the f a t t y acids. Equal volumes (0.5 ml) of n-pentane and 

water are added. The mixture is vigorously shaken (15 min) and the methyl 

esters are extracted into the upper pentane layer by centr i fugat ion (5 min at 

3000 χ g ) . The aqueous lower layer is re-extracted once with n-pentane (0.5 

m l ) . The pooled pentane layers are washed by shaking with 1 volume of H?0 

(15 min) and centr i fugat ion (5 min at 3000 χ g ) . The upper pentane layer is 

removed, dried over anhydrous Na-SO. and centr i fuged. The methyl ester 

solut ion is evaporated in an N- stream and the residue is taken up in 50 yl 

n-pentane. 

In the case of f a t t y acid analysis a f ter th in- layer chromatography, the 

spots of the various l i p i d classes are scraped o f f and treated as above. 

Methylation of the f a t t y acids is then carried out with CbUCOCl/ChUOH, since 

the use of BF3/CH30H makes s i l i c a gel s t ick to the glass w a l l . 

The methyl esters are analyzed at 210° С in a Pye Unicam gas-l iquid 

Chromatograph model 204, equipped with an al l-glass sample stream and flame 

ionizat ion detector. In ject ion of the sample (1 yl ) and detection are 

performed at 250° С. A 6 f t χ 4 mm inner diameter column, containing 10% 

SP-2330 on 100/120 Supelcoport (Supelco, I n c . ) , is used to separate the 

methyl esters. I d e n t i f i c a t i o n is by comparison with reference methyl ester 

mixtures PUFA No. 1 , PUFA No. 2, GLC 50 and GLC 60 (Supelco, I n c . ) . Relative 

molar concentrations of each f a t t y acid in the sample are calculated with a 
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Hewlet Packard integrator model HP 2280 A. The internal standard method is 

used and the integrated area of each peak is divided by the molecular weight 

of the corresponding methyl ester. 

The overall recovery is always better than 95% as estimated by using 

heneicosanoic acid (21:0; Supelco, Inc.), added as internal standard to the 

suspensions prior to lipid extraction. The error in the fatty acid analysis 

appears to be Ъ% or less (standard deviation of the mean). 
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CHAPTER 3 

TRANSBILAYER DISTRIBUTION OF PHOSPHOLIPIDS IN PHOTORECEPTOR MEMBRANE STUDIED 

WITH VARIOUS PHOSPHOLIPASES* 

3.1 Introduction 

The question as to whether membrane lipids are distributed symmetrically 

or asymmetrically over the two faces of biological membranes is currently much 

studied because of its obvious significance for our understanding of the role 

of lipids in membrane function. It has recently been claimed that asymmetrical 

distribution of phospholipids occurs in various biological membranes (Rothman 

and Lenard, 1977), although in some cases controversy still exists (van den 

Besselaar et al., 1978; Nilsson and Dallner, 1977; Sundler et al., 1977; 

Higgins and Dawson, 1977). 

Various independent methods are available to obtain information on the 

lipid arrangement in biological membranes and artificial bilayered systems. 

These involve the use of chemical modifying reagents, of lipolytic enzymes 

like phospholipases, of phospholipid exchange proteins and of physical 

techniques like NMR spectroscopy (Bergelson and Barsukov, 1977). 

Relatively little is known in this respect about the photoreceptor 

membranes of rod outer segments, which contain 36% phosphatidylcholine (PC), 

45% phosphatidylethanolamine (PE) and 16% phosphatidylserine (PS), together 

97% of total phospholipid (Anderson et al., 1975; see also Table 1.1). So far, 

chemical labeling experiments, mainly with trinitrobenzenesulfonate (TNBS), 

have suggested that at least PE is preferentially located at the cytoplasmic 

(outer) face of the rod outer segment membranes (see section 1.5). 

It is, however, generally felt that more than one approach should be used 

before reliable conclusions can be drawn. Hence, we have carried out a study 

of the phospholipid distribution of rod outer segment membranes by means of 

three different phospholipases. The results suggest a nearly symmetrical 

distribution of the phospholipids. 

•Adapted from Drenthe et al. (1980a). 
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3.2 Materials and methods 

A description of the experimental procedures is given in Chapter 2 

(sections 2.2 and 2.3). 

Two approximations have been applied in order to establish the transbi-

layer distribution of phospholipids in photoreceptor membranes. In the first 

approximation the final levels of phospholipid hydrolysis after prolonged 

treatment with phospholipases А«, С and D are determined. In the case of 

treatment with phospholipases A,, and C, nearly complete hydrolysis of natural 

substrates has previously been observed, suggesting that the phospholipid 

hydrolysis is not restricted to the outer leaflet of the disk membrane (see 

sections 1.4 and 2.1.3). 

Therefore, a second approximation has been used in accordance with the 

method of Sundler et al. (1977, 1978). The hydrolysis of individual phospho

lipids in disk membranes is followed in time and compared with that of a 

reference preparation in which the same phospholipids are assumed to be 

randomly available. These reference preparations are retinal lipid suspensions 

in the case of treatment with phospholipases A„ and C, and detergent-solubilized 

disk membranes in the case of treatment with phospholipase D. Special attention 

is given to the early stages of hydrolysis, since then disturbance of disk 

membrane structure may be minimal. 

3.3 Results 

3.3.1 Rhodopsin content 

Determination of rhodopsin before and after incubation with any of the 

three phospholipases never shows a significant loss of rhodopsin absorbance, 

regardless of the degree of phospholipid hydrolysis reached. 

3.3.2 Phospholipase treatment 

Phospholipase С treatment. During phospholipase С treatment, quantitative 

agreement exists between the amount of phosphate ester, appearing in the 

aqueous supernatant and measured as P. after acid destruction, and the 

disappearance of phospholipids from the disk membranes and the retinal lipid 

suspension. 
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TABLE 3.1 

LEVELS OF PHOSPHOLIPID HYDROLYSIS UPON PROLONGED TREATMENT WITH PHOSPHOLI-

PASE C, A
2
 AND D 

Results are expressed as percent of total phospholipids hydrolyzed in stacked 
disks, disk vesicles and reference preparations: retinal lipid suspensions 
(for phospholipases С and A2) and detergent-solubilized disk membranes (for 
phospholipase D). Incubation conditions as in Figs. 3.1-3.3, except that a 
double concentration of phospholipase D as in Fig. 3.3 has been used; 
incubation time, 180 min. The results are an average of at least three 
experiments with a relative standard error of maximally 6%. 

Phospholipase Stacked disks Disk vesicles Reference 

98 

100 

40 

97 

100 

53 

99 

100 

88 

Stacked disks Disk vesicles 
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R e t i n a l 
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P-es ter 

PS 
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PE 
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40 

20 

10 20 30 40 

mi ñutes 

Fig. 3.1. Treatment with phospholipase С. Percent retention of individual 
phospholipids (solid symbols) and percent hydrolysis (open symbols) upon 
treatment of stacked disks, disk vesicles and retinal lipid suspensions are 
shown. Conditions: pH 7.4; darkness; 20°C; about 2 ymol/ml phospholipid and 
2 units/ml phospholipase C. P-ester, phosphate ester. 

Exhaustive phospholipase С treatment of disk membranes and retinal lipid 

suspensions results in nearly complete hydrolysis of the phospholipids (Table 

3.1). Residual phospholipid is almost exclusively phosphatidyl seri ne, 5-20% of 
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Stacked disks Disk vesicles Retinal lipid suspension 

' 1 1 1 — 1 1 1 1 — 1 1 1 г 

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 

mi nu tes 

Fig. 3.2. Treatment with phospholipase A?. Percent retention of individual 
phospholipids (solid symbols) and percent hydrolysis (open symbols) upon 
treatment of stacked disks, disk vesicles and retinal lipid suspensions are 
shown. Conditions: pH 7.4; darkness; 20°C; 10 mM Ca

2 +
; about 2 umol/ml phos

pholipid and 0.7 pg/ml phospholipase A2. LPL, lysophospholipid. 

which is resistant to this enzyme. 

The substrate preference of phospholipase C, as measured with the retinal 

lipid suspension, decreases in the order: PE>PC>PS (Fig. 3.1). The same 

order of preference is found for stacked disks and disk vesicles. 

Phospholipase A„ treatment. During phospholipase A~ treatment, the 

decrease for each phospholipid is completely accounted for by the increase in 

the corresponding lysocompounds, except that some lyso-PS is lost, probably 

during the washing procedure. 

Treatment of disk membranes with high concentrations of phospholipase A-

completely modifies all phospholipids into their corresponding lysoproducts 

(Table 3.1). 

The observed order of preference of phospholipase A« using retinal lipid 

suspension is PS>PE>PC, which is also found with stacked disks and disk 

vesicles (Fig. 3.2). 

Phospholipase Ό treatment. The optimal conditions for phospholipase D 

hydrolysis of phospholipids in rod outer segment disk membranes have been 
2+ 

ascertained by varying pH, temperature, Ca concentration and amount of 

enzyme. Maximal hydrolysis is obtained at pH 6.0 and 30° С in the presence of 

40 mM CaClp. Under these conditions no transferase activity of phospholipase D 
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Detergent-solubilìzed 

Stacked disks Disk vesicles disk membranes 
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Ο 10 20 30 40 0 10 20 30 10 0 10 20 30 40 

minutes 

Fig. 3.3. Treatment with phospholipase D. Percent retention of individual 
phospholipids (solid symbols) and percent hydrolysis (open symbols) upon 
treatment of stacked disks, disk vesicles and detergent-sol ubi lized disk 
membranes are shown. Conditions: pH 6.0; darkness; 30°C; 40 mM Ca2+; about 
2 ymol/ml phospholipid and 0.7 mg/ml phospholipase D. Disk membranes 
solubilized in 20 mM ß-1-nonylglucose. PA, phosphatidic acid. 

is observed (section 2.2.3). 

The decrease in each phospholipid after treatment with phospholipase D 

should be equal to the amount of phosphatidic acid (PA) formed, but we always 

find less PA than expected. This is due to the presence in phospholipase D 

preparations of phosphatidate phosphohydrolase (EC 3.1.3.4), which hydrolyzes 

PA to diglyceride and Pi (Davidson and Long, 1958). Determination of P. in the 

aqueous layers gives the contribution of PA breakdown, which is less than 20%. 

The sum of PA and P. fully accounts for the amount of phospholipids hydrolyzed. 

In contrast to the situation with phospholipases A„ and C, there is a 

limited final level of hydrolysis upon treatment of disk membranes with 

phospholipase D (Table 3.1). Approx. 50% of PC and PE and nearly all PS, 

together 60% of the membrane phospholipids, are resistant to this enzyme in 

stacked disks. Removal of the water-soluble hydrolysis products, either by 

centri fugation followed by addition of fresh phospholipase D or by dialysis of 

the incubation mixture against fresh buffer, does not result in additional 

hydrolysis. Thus, inhibition by the water-soluble hydrolysis products does not 

play a role and the final level seems to represent a true limit to hydrolysis. 

Also, in disk vesicles an apparent final level of phospholipid hydrolysis is 
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observed. This level is significantly higher (53%) than in stacked disks and 

will be discussed later. 

When the membranes are sol ubi li zed in nonylglucose, phospholipid 

hydrolysis by phospholipase D proceeds much further, viz., to approx. 90% 

(Table 3.1). Residual intact phospholipid consists of approximately equal 

amounts of PE (9% retention) and PS (30% retention). Nearly complete hydro

lysis (at least 95%) of the phospholipids can only be obtained at longer 

incubation times (up to 6 h) and higher concentrations of phospholipase D. 

The substrate preference of phospholipase D decreases in the order: 

PC>PE » PS in detergent-sol ubi li zed disk membranes. The same order of 

decreasing preference is found in stacked disks and disk vesicles (Fig. 3.3). 

3.3.3 Initial· hydrolysis 

Under identical incubation conditions, the rate at which the phospholipids 

of stacked disks are hydrolyzed in the first 10 min is always lower than that 

for disk vesicles and retinal lipid suspension. This is shown for phospholi

pase С in Fig. 3.1 and for phospholipase A„ in Fig. 3.2. In the case of phos

pholipase D, this is true for PC and PE, of which the initial rates of 

hydrolysis decrease in the order: detergent-solubilized disk membranes>disk 

vesicles>stacked disks (Fig. 3.3). PS is only attacked in detergent solution. 

The differences are most readily explained by the different degree to which 

the substrates are directly accessible to the enzymes. 

The effects of the enzymes during the initial stage of the incubation are 

particularly important, since in this early period changes in the membrane 

organization due to phospholipid hydrolysis can be expected to be minimal. The 

most relevant results of 10-min incubations are, therefore, analyzed in more 

detail in Table 3.2. In stacked disks about 30% overall hydrolysis is achieved 

with phospholipase С during this time and about 10% with the two other phos-

pholipases at the enzyme concentrations used. The results are presented as the 

percent at which each phospholipid class contributes to the total fraction of 

phospholipids hydrolyzed in 10 min. In this way the substrate specificities of 

the phospholipases in the reference preparations are easily compared with 

those in stacked disks. A lower percentage indicates that the phospholipid is 

less available to enzyme action than in the randomized sample and vice versa. 

The data of Table 3.2 clearly argue against a major asymmetrical 

distribution of any of the phospholipids in the disk membrane. If the phos-
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TABLE 3.2 

PHOSPHOLIPID HYDROLYSIS DURING THE INITIAL STAGE OF TREATMENT WITH PHOSPHO-

LIPASE C, A
2
 AND D 

Results are expressed as the percent at which each phospholipid class 
contributes to the total fraction of phospholipids hydrolyzed after 10 min of 
incubation. Overall hydrolysis is the percent of initially present total 
phospholipid hydrolyzed at that time. Minor phospholipids {3% of total phos
pholipid) are neglected. Reference preparations as in Table 3.1. Values are 
averages of two experiments with a relative standard error of maximally 10%. 
Ref., reference preparation. 

Phospholipase Stacked 

С 

A
2 

D 

phosphati dylcholi ne 

phosphatidyl ethanol ami ne 

phosphatidyl seri ne 

overall hydrolysis 

phosphatidylcholine 

phosphatidylethanol ami ne 

phosphatidylseri ne 

overall hydrolysis 

phosphati dylcholi ne 

phosphatidylethanol ami ne 

phosphatidylseri ne 

overall hydrolysis 

38 

47 

15 

33 

30 

45 

25 

14 

54 

44 

2 

9 

disks Reference 

49 

48 

3 

59 

38 

36 

26 

23 

61 

37 

2 

32 

Ratio disks: 

0.75 

0.98 

5 

0.79 

1.25 

0.96 

0.89 

1.20 

1 

ref. 

pholipids in the reference preparations are indeed randomly available (see 

section 3.4.1), PC would appear to occur at a somewhat lower, and PE at a 

somewhat higher percentage at the outer face of the disk membranes. Even after 

a 30 min incubation period, these percentages are fairly close to those after 

enzyme treatment for 10 min. This is particularly true for phospholipases A-

and D, which have both produced about 20% overall phospholipid hydrolysis at 

that time. 

Corresponding calculations for disk vesicles have been omitted from 

Table 3.2, since they do not provide additional information. 
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Fig. 3.4. Thin sections of stacked disks treated with phospholipase D. A, 
control sample incubated for 150 min in the absence of enzyme; B, sample 
incubated with phospholipase D during 40 min, resulting in 19% phospholipid 
hydrolysis; C, sample incubated with phospholipase D during 150 min, resulting 
in 41% phospholipid hydrolysis. The dark spots in В and С are presumably 
aggregates of phospholipase D (+ Ca2+?), since they are absent if the sus
pensions are centrifuged and washed prior to fixation. Bar represents 0.4 um. 
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3.3.4 Mi aros copy 

Phase-contrast microscopy reveals that treatment of the stacked disk 

preparations with any of the three phospholipases does not seriously change 

their appearance in the earlier stages of incubation. Electron microscopy of 

thin sections (Fig. 3.4) convincingly shows that stacked disks retain their 

original morphology when 19 or even 41% of the phospholipids are hydrolyzed 

by phospholipase D. Similar results are obtained with phospholipase С and A~ 

at relatively low (approx. 30%) phospholipid hydrolysis levels. 

3.4 Discussion 

3.4.1 Principles of the approach 

The distribution of phospholipids over the two faces of biomembranes can, 

in principle, be deduced from their availability to the action of phospholi

pases on intact cells or cell organelles. However, if valid conclusions are to 

be drawn, a number of conditions must be fulfilled: (1) the outer membrane 

face of the intact preparation should be the original outer face and this 

outer face should remain exposed during incubation with phospholipase; (2) the 

membranes should not be significantly penetrated by the phospholipase, and (3) 

the specificity of the phospholipase towards different phospholipids should be 

taken into account by using random control preparations. In addition, the 

results with different phospholipases should agree. 

Membrane orientation. Studies on the topography of phospholipids in rod 

outer segment disk membranes have, so far, only been conducted with disk 

vesicles (Raubach et al., 1974; Smith et al., 1977; Crain et al., 1978). In 

order to avoid the uncertainty about the maintenance of the original inside-

outside arrangement in these structures (section 2.1.3), we have used isolated 

rod outer segments (stacked disks) as the primary experimental preparation. 

Their morphology resembles that of outer segments in situ so closely that 

membrane inversion must be considered to be extremely unlikely. Microscopic 

and electron-microscopic evidence indicates that the gross morphology of the 

stacked disks is hardly affected during the early stages of incubations with 

phospholipases. Therefore, it seems safe to assume that the stacked disk 

membranes retain a 'right-side-out' orientation under these conditions. 

Feneration of phospholipases. Since phospholipases are water-soluble 
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proteins with molecular weights of at least 14,000, it seems improbable that 

they would penetrate the intact hydrophobic core of a biological membrane. 

However, the application of phospholipases results in chemical alteration of 

part of the phospholipids, which might lead to abolition of the permeability 

barriers in the membrane. Unfortunately, an endogenous or exogenous internal 

marker, the release of which could indicate gross permeability of the membrane 

(as has been applied with erythrocytes), cannot be used very well. A well 

defined internal marker is lacking, whereas the introduction of an exogenous 

marker presents unknown risks of loss of the right-side-out orientation in the 

resulting vesicles. Since, however, secondary effects due to the action of 

phospholipases should be minimal in the early phase of enzymatic degradation 

(Sundler et al., 1977), special attention has been given to the initial period 

of incubation (Table 3.2). 

Substantial disturbance of the membrane, leading to almost complete 

hydrolysis of the phospholipids, clearly happens in the later stages of 

incubation with phospholipases С and A- (Table 3.1). The products of phospho-

lipase С treatment, hydrophobic diglycerides and water-soluble phosphate esters, 

will not fit very well in a bil ayer membrane, while the products of phospholi-

pase A„ treatment, lysophospholipids, are well known for their lytic activity. 

Therefore, it is not surprising that these enzymes upon extensive incubation 

induce serious disturbance of the membrane, resulting in complete accessibility 

of all phospholipids. 

Phospholipase D, which hydrolyses glycerophospholipids to PA, would be 

expected to present less risk. PA very much resembles the usual phospholipids 

with respect to its amphiphilic character and, therefore, serious membrane 

disturbance is unlikely (Berden et al., 1975; Papahadjopoulos et al., 1976). 

This probably explains the limited final level of hydrolysis by phospholipase 

D, at least in stacked disks. It also suggests that in this preparation, even 

up to 180 min incubation, penetration of the enzyme, gross disturbance of the 

membrane and appreciable transbilayer exchange of phospholipids against PA do 

not occur. Although it has been shown that phospholipase D is able to induce 

transbilayer exchange of PA against PC in unilamellar PC vesicles in the 
2+ 

absence of Ca (de Kruijff and Baken, 1978), this phenomenon was not found in 
2+ 

the presence of 6 mM Ca (Johnson et al., 1975; see also section 2.1.3). The 

alternative explanation for the limited final level of hydrolysis, viz., 

shielding of outer face phospholipids either by their interaction with protein 

or by accumulation of negative charge, seems unlikely. The unrestricted action 
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of phospholipase A- and, especia l ly , phospholipase С argues against the f i r s t 
2+ p o s s i b i l i t y and the presence of 40 mM Ca during phospholipase D treatment 

against the second. 

The reason for the d i f f e r e n t f i n a l hydrolysis levels in stacked disks 

(40%) and in disk vesicles (53%) af ter phospholipase D treatment is not 

immediately c lear. A possible explanation is provided by the observation of 

Woodward and Zwaal (1972) that resealed ghosts, prepared from intact erythro

cytes by a hypotonic lys is procedure, are more easi ly hemolyzed by treatment 

with phospholipase С {Bacillus oereus) than erythrocytes themselves. This 

shows that p r i o r exposure to hypotonic conditions makes the membrane 

permeability barr ier for macromolecules more vulnerable to phospholipases, 

which attack the polar head groups. Disk vesicles, obtained by washing disk 

membranes with d i s t i l l e d water, may s i m i l a r l y have become p a r t i a l l y permeable 

to phospholipase D. This would imply another argument in favor of preferr ing 

stacked disks to disk vesicles in studying phospholipid d i s t r i b u t i o n in the 

photoreceptor membrane. 

Specificity of the phospholipases. The s p e c i f i c i t y of the phospholipases 

has been determined by measuring t h e i r e f f e c t on control preparations of 

phospholipid composition s imi lar to rod outer segments, but with presumably 
31 random or ientat ion of the phospholipids. The Ρ NMR spectra obtained with 

r e t i n a l l i p i d suspensions indicate that the phospholipids in t h i s preparation 

are present in hexagonal and inverted micel lar phases, in which at least PC 

and PE are randomly available (de Grip et a l . , 1979; but see Deese et a l . , 

1981). Disks solubi l ized in nonylglucose above i t s c r i t i c a l micelle concen

t r a t i o n (6.5 mM; de Grip and Bovee-Geurts, 1979) must also have t h e i r phospho

l i p i d s randomly avai lable. 

The s p e c i f i c i t y of phospholipase С decreases in the order: PE >PC>PS 

(Fig. 3.1). Roberts et a l . (1978) reported the same substrate preference of 

th is enzyme in Tr i ton X-100-solubilized phospholipid preparations. 

The s p e c i f i c i t y of phospholipase A- decreases in the order: PS>PE >PC 

(Fig. 3.2). This s p e c i f i c i t y is in agreement with the preference of pancreatic 

phospholipase A- f o r negatively charged phospholipids ( l i k e PS) compared to 

neutral ones (de Haas et a l . , 1968). 

The substrate s p e c i f i c i t y of phospholipase D decreases in the order: 

PC>PE»PS (F ig. 3.3). The s p e c i f i c i t y of t h i s enzyme, which has not been 

obtained in a pure form so f a r , is not well established (Davidson and Long, 

1958; Roughan and Slack, 1976; Hel ler, 1978; Al lgyer and Wells, 1979). 
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3.4.2 Tentative conclusions 

The phospholipid hydrolysis patterns obtained from stacked disks and disk 

vesicles with phospholipase С (Fig. 3.1), phospholipase A- (Fig. 3.2) and 

phospholipase D (Fig. 3.3) do not substantially deviate from those obtained 

from randomized control preparations, apart from readily explained differences 

in reaction rate. They suggest symmetry rather than asymmetry in the distri

bution of the phospholipids over both faces of the disk membrane. 

In view of the discussion in section 3.4.1, more refined conclusions 

might be derived from the comparison of the effects of a brief (10 min) 

phospholipase treatment on stacked disks and randomized control preparations 

(Table 3.2). With respect to PC, all three approaches show a slightly asym

metrical distribution with 40-45% of this phospholipid at the outer (cyto

plasmic) face of the disk membrane. For PE, a similar conclusion seems 

warranted, albeit with 55-60% of this phospholipid at the outer face of the 

membrane. For PS, we must rely primarily on the results with phospholipase A
?
, 

since its high preference for this phospholipid compensates for the reduced 

analytical accuracy caused by the low PS concentration. The results obtained 

with phospholipase A
2
 indicate a symmetrical distribution of PS over the two 

faces of the membrane. 

Our present conclusions obtained with three different phospholipases can 

only have a preliminary character. The occurrence of preferential transmem

brane flip-flop of a specific phospholipid and the possibility of shielding 

of outer face phospholipids against phospholipase D, including inaccessibility 

due to the piled disk structure, cannot yet be excluded. In addition, our 

conclusions do not agree with those obtained by studies of the modification 

of PE and PS by amino group reagents, where preferential (70-100%) location 

of both PE and PS (Raubach et al., 1974; Smith et al., 1977) or of PE only 

(63-72%; Crain et al., 1978) on the cytoplasmic side of the disk membrane has 

been concluded. We shall return to these aspects in Chapter 4, which describes 

the effects of TNBS alone and in combination with phospholipase D. Such 

multiple approaches are necessary in order to avoid the many pitfalls that 

may occur in studies of the phospholipid distribution in biological membranes 

(section 2.1.3). 
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3.4.3 Summary 

The distribution of the three major phospholipids of bovine rod outer 

segment disk membranes over the two faces of the membrane has been studied by 

means of treatment with phospholipase C, phospholipase A„ and phospholipase D. 

Two different preparations of rod outer segment disk membranes have been 

used, which are called 'stacked disks' and 'disk vesicles' on account of their 

morphological appearance. 

The hydrolysis patterns obtained by phospholipase treatment of these 

preparations have been compared to those of a retinal lipid suspension or 

detergent-solubilized disk membranes, which serve as control preparations with 

a similar phospholipid composition but a random availability of the phospho

lipids. 

Special attention is given to the early phase of enzyme treatment in 

order to eliminate secondary effects on the molecular organization of the 

membrane due to appreciable phospholipid hydrolysis. Analysis of the hydro

lysis patterns for all three phospholipases in stacked disks, as compared to 

those in randomized control preparations, suggests a slightly asymmetrical 

distribution of phosphatidylcholine (PC; 40-45% at the outer face) and 

phosphatidylethanolamine (PE; 55-60% at the outer face) and a symmetrical 

distribution of phosphatidylserine (PS) in rod outer segment disk membranes. 

Extensive treatment with phospholipases С and A~ leads ultimately to 

nearly complete hydrolysis of all phospholipids, but with phospholipase D a 

final level of 40% phospholipid hydrolysis is observed in stacked disk 

preparations. This suggests that in the latter case the inner face of the 

membrane is inaccessible to the enzyme. 

Further work will be necessary in order to substantiate these conclusions. 
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CHAPTER 4 

TRANSBILAYER DISTRIBUTION OF PHOSPHOLIPIDS IN PHOTORECEPTOR MEMBRANE STUDIED 

WITH TRINITROBENZENESULFONATE ALONE AND IN COMBINATION WITH PHOSPHOLIPASE D* 

4.1 Introduction 

In Chapter 3 we have used three phospholipases in a study of the phos

pholipid distribution over the two faces of the disk membrane in bovine rod 

outer segments. The results suggested an approximately symmetrical distribution 

of the three major phospholipids: 40-45% of the phosphatidylcholine (PC), 

55-60% of the phosphatidyl ethanol ami ne (PE) and 50% of the phosphatidylserine 

(PS) in the outer (cytoplasmic) face. Our conclusions were conditioned by the 

consideration that the possible occurrence of preferential transbilayer 

movement (flip-flop) of a given phospholipid as well as shielding of outer 

face phospholipids against phospholipase D has yet to be disproved. 

The conclusions disagree with those of other investigators (see section 

1.5) who had used amino group reagents like tri nitrobenzenesulfonate (TNBS). 

They reported predominant (between 65 and 100%) location of PE in the outer 

face of the membrane. The location of PS remained unclear with values of 25% 

(Crain et al., 1978) and 100% (Smith et al., 1977; see Table 1.3) at the outer 

face. PC, which has no primary amino group, cannot be localized by this method. 

In order to resolve this discrepancy, we decided to study in more detail the 

reaction between rod disk membranes and TNBS, alone and in combination with 

phospholipase D. The results strengthen our earlier conclusion of a nearly 

symmetrical distribution of the three major phospholipids in the disk membrane 

and offer a possible explanation for the divergent earlier reports. 

4.2 Materials and methods 

A description of the experimental procedures is given in Chapter 2 

(sections 2.2 and 2.3). 

•Adapted from Drenthe et al. (1980b). 
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4.3 Results 

4.3.1 General 

In accordance with previous results from our laboratory (de Grip et al., 

1973), analysis of the primary amino groups in disk membranes with TNBS in 

detergent solution shows the presence of 52 ± 2 mol/mol rhodopsin, consisting 

of 16 ε-amino groups of lysine, 27 amino groups of PE and 9 amino groups of 

PS. 

4.3.2 Treatment of disk vesicles with trinitrobenzenesulfonate 

Disk vesicles have primarily been used to establish reaction conditions 

leading to a limited final level of modification, which would represent 

minimal reagent penetration and membrane disturbance. These conditions have 

then been used in our further studies with disk vesicles and stacked disks. 

In addition, inclusion of disk vesicles in these studies allows comparison of 

our results with those of other investigators (section 1.5) who have exclu

sively used this type of preparation. 

Previously, it has been observed that temperatures substantially above 

20° С and illumination lead to complete modification with TNBS (de Grip et al., 

1973; Litman, 1974). Hence, we have chosen to work at 20° С and in darkness. 

Buffer composition, pH and concentration of TNBS have been varied. The buffer 

composition hardly influences the final degree of modification, except that 

the reaction proceeds rather slowly in a medium containing sucrose and Ficoll 

400. 

The effect of the reagent concentration has been studied by spectrophoto

metry determination of total amino group modification as a function of time 

at pH 7.4 and 20° С (Fig. 4.1). The TNBS concentration has been varied from 

1 to 5 mM, representing a 5- to 25-fold molar excess with regard to the total 

number of primary amino groups. Both the course and the final level of 

modification are greatly influenced by the reagent concentration. The complete 

modification occurring at 3-5 mM TNBS shows that in principle all amino groups 

are reactive with the reagent and suggests that at these concentrations TNBS 

penetrates the membrane. However, at 1-2 mM TNBS the final level of modifi

cation remains restricted to 50-60% of the amino groups. Therefore, we have 

further investigated the course of the reaction at 1 mM TNBS. 
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minutes 

Fig, 4.1. Amino group modification in disk vesicles at different TNBS concen
trations. Results are expressed as percent modification of total amino groups, 
determined by measuring the 340 nm absorbance. Conditions: pH 7.4; darkness; 
20°C; 3-4 μΜ rhodopsin. 

pH Θ.5 -

pH 6.8 

τ 1 • 1 
0 60 120 180 

m ι η utes 

Fig. 4.2. Amino group modification in disk vesicles at three pH values. Results 
are expressed as percent modification of total amino groups, determined by 
measuring the 340 nm absorbance. Conditions: darkness; 20°C; 1 mM TNBS; 3-4 
μΜ rhodopsin. Incubations at pH 6.8 and 7.4 are carried out in 40 mM Mops 
buffer containing 2 mM СаСІ2, 3 mM MgCl2 and 140 mM NaCl; incubations at pH 
8.5 in 120 mM NaHC0

3
 and 40 mM NaCl. 
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Fig. 4.3. Treatment of disk vesicles with TNBS at pH 7.4 and 8.5. Percent 
retention of PE (·) and PS (•) is shown. Conditions: see legend of Fig. 4.2. 

Variations of pH also appears to have a large influence (Fig. 4.2). After 

3 h of incubation, approx. 70, 50 and 30% of the amino groups are found to be 

modified by 1 mM TNBS at pH 8.5, 7.4 and 6.8, respectively. Analysis of the 

individual amino groups, modified at pH 7.4 and 8.5, shows that after 3 h of 

incubation the higher overall modification at pH 8.5 is largely due to almost 

complete modification of PE: 92% at pH 8.5 as compared to 63% at pH 7.4 (Fig. 

4.3). PE is the compound of most interest to us, since in contrast to PS, it 

is also a substrate of phospholipase D. Considering the limited final level 

of PE modification at pH 7.4, we have chosen this pH for our further 

experiments. 

Under the standard conditions for limited final modification thus 

established (20° C, darkness, 1 mM TNBS, pH 7.4), complete modification can 

be induced within 1 h by addition of Triton X-100 to a final concentration of 

1% (w/v). Thus, even at 1 mM TNBS and pH 7.4, all amino groups can in principle 

be modified. 

4.3.3 Combined treatment of disk vesicles with TNBS and phospholipase D 

We have previously noticed (Chapter 3) that phospholipase D also shows a 

limited final hydrolysis level of disk membrane phospholipids. Therefore, it 
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Fig. 4.4. Successive treatment of disk vesicles with TNBS and phospholipase D. 
Disk vesicles are first treated with TNBS during 0 (•), 30 (•) and 60 (·) min. 
After removal of TNBS, each preparation is treated with phospholipase D-during 
120 min. The results for each phospholipid are expressed as percent retention: 
100% - % modified - % hydrolyzed. Conditions: for TNBS treatment, pH 7.4; 
darkness; 20°C; 1 mM TNBS; 3-4 μΜ rhodopsin; for phospholipase D treatment, 
pH 6.0; darkness; 30°C; 40 mM СаСІг; 30-40 μΜ rhodopsin; 0.7 mg/ml phospho
lipase D. PL-ase D, phospholipase D. 

seemed of interest to test the complementarity of the reactions of TNBS and 

phospholipase D with disk vesicles. 

Aliquots of a single disk vesicle preparation are treated with TNBS for 

either 30 or 60 min. This leads to trinitrophenylation of 30 or 43% of PE and 

28 or 39% of PS, respectively. A third aliquot, incubated for 60 min without 

reagent, serves as the control. After removal of excess TNBS by centrifugation 

and washing, these samples are incubated with phospholipase D during 2 h, 

leading to a plateau level of hydrolysis. The reaction products are analyzed 

by thin-layer chromatography, and the results are shown in Fig. 4.4. The 

trinitrophenylated phospholipids are found not to be hydrolyzed by phospho

lipase D. 

With respect to PC (a good substrate) and PS (a poor substrate), the 

action of phospholipase D appears to be largely independent of the pretreat

ment with TNBS. The most relevant results concerns PE, for which the 
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Fig. 4.5. Treatment of stacked disks with TNBS. Percent retention of PE ( · ) 
and PS (•) and percent modif ication (o) of PE are shown. Conditions: pH 7.4; 
darkness; 20°C; 1 mM TNBS; 3-4 μΜ rhodopsin. TNP-PE, tr in i trophenyl-PE. 

cumulative, f i n a l level of modification ( t r i n i t r o p h e n y l a t i o n + hydrolysis) is 

equal f o r a l l three preparations. 

4.3.4 Treatment of s backed disks with trinitrobenzenesulfonate 

Reaction of stacked disks with TNBS under our conditions leads to the 

results shown in Fig. 4.5. Quantitative th in- layer chromatography shows that 

50% of PE is rather rapidly modified wi th in 1 h. During the next 2 h an 

additional 10% is slowly modified. These results are confirmed by analysis of 

the product: tr ini trophenyl-PE. PS reacts rapidly with 40% modif ication in 1 

h and a further 10% reacting slowly during the next 2 h. In th is case, analy

sis of the product, tr in i trophenyl-PS, gives unsatisfactory results due to 

d i f f i c u l t i e s with the exact location of the less intensely colored spot on the 

thin- layer p l a t e , leading to recoveries varying from 50 to 100%. 

Addition of Tr i ton X-100 ( f i n a l concentration 1%, w/v) to the incuba

t i o n mixture leads again to complete modif icat ion of both phospholipids, 

indicat ing that also in stacked disks a l l aminophospholipids can in pr inc ip le 

be modified with 1 mM TNBS at pH 7.4. 
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Fig. 4.6. Treatment of stacked disks with phospholipase D. Percent retention 
of individual phospholipids (solid symbols) and percent hydrolysis (open 
symbols) are shown. Conditions: pH 6.0; darkness; 30°C; 40 mM СаСІ2; 30-40 
μΜ rhodopsin; 0.7 mg/ml phospholipase D. 

4.3.5 Combined treatment of stacked disks with phospholipase D and TNBS 

The complementarity of the action of TNBS and phospholipase D is 

investigated by treating stacked disks first with phospholipase D, followed 

by treatment with TNBS. Treatment of stacked disks with phospholipase D 

alone for 3 h causes maximally 40% phospholipid hydrolysis, comprising 55% 

hydrolysis of PC and 50% hydrolysis of PE, while PS is almost resistant to the 

enzyme (Fig. 4.6). This confirms our earlier experiments (Chapter 3 ) . 

The results obtained after treatment with phospholipase D, followed by 

TNBS, are shown in Fig. 4.7. Aliquots of a single stacked disk preparation 

are incubated for either 30 or 120 min with phospholipase D, leading to the 

hydrolysis of 20 or 40% total phospholipid, viz., 20 or 50% PE, 1 or 3% PS and 

29 or 55% PC, respectively. A third aliquot, incubated for 120 min without 

enzyme, serves as the control. Subsequently, these preparations are incubated 

with TNBS during 3 h and the course of the reaction is followed by phospho

lipid analysis. For PE, the same cumulative, final level of nearly 60% 

modification (hydrolysis + trinitrophenylation) is obtained, regardless of the 

degree of previous hydrolysis by phospholipase D. The final level of modifi

cation of PS (50-52%, largely trinitrophenylation), and even the rate at which 
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Fig. 4.7. Successive treatment of stacked disks with phospholipase D and TNBS. 
Stacked disks are first treated with phospholipase D during 0 (•), 30 (•) and 
120 (·) min ( ). After removal of the enzyme each preparation is treated 
with TNBS during 180 min ( ). The results for each phospholipid are 
expressed as percent retention: 100% - % hydrolyzed - % modified. Conditions: 
for phospholipase D treatment as in Fig. 4.6, for TNBS treatment as in Fig. 
4.5. PL-D, phospholipase D. 

this level is reached, appear to be almost independent of the previous treat

ment with phospholipase D. Hence, successive treatment with the two reagents 

again does not lead to greater modification than that maximally obtained 

with either reagent alone, taking into account their different specificities. 

4.4 Discussion 

During the last 5 years, it has become evident that studies of the 

transbilayer distribution of phospholipids in biological membranes should be 

executed and interpreted with great caution (op den Kamp, 1979). Maintenance 

of the original lipid orientation, exclusive reactivity of the outer face of 

the membrane and complete accessibility of all outer face lipids to the 

reagent should be firmly established before valid conclusions can be drawn. 

We will discuss our results with TNBS and phospholipase D treatment in the 

light of these conditions. 
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4.4.1 TriniLrobenzenesulfonate and disk vesicles 

The conditions under which TNBS has previously been used as a supposedly 

impermeable amino group reagent vary considerably, especially with respect to 

reagent concentration and pH. Since differences in membrane permeability of 

TNBS have been noticed for different membrane systems (op den Kamp, 1979), it 

is essential to establish conditions under which its permeability is restricted 

as much as possible. One of the difficulties with disk membranes is the lack 

of a well defined endogenous marker, becoming detectable in the case of 

membrane leakage, like hemoglobin in erythrocytes. Insertion of an exogenous 

marker, if at all possible, presents unknown risks of loss of the right-side-

out orientation in the resulting vesicles. Therefore, we have confined our

selves to finding incubation conditions which lead to a clearly limited 

modification level of the amino groups in disk vesicles. 

Figs. 4.1-4.3 suggest that at 1 mM concentration and pH 7.4, TNBS behaves 

as a non-permeant probe with respect to PE. The lower reactivity of PS at pH 

7.4 is probably due to the higher pK of its amino group and a possible 
α 

shielding effect of the carbonyl group. This is suggested by the observation 

that trinitrophenylation of PS rapidly reaches a plateau level at pH 8.5 only 

(Fig. 4.3). The reactivity of the lysine ε-amino group is even lower than that 

of the phospholipid amino groups due to its higher pK, (de Grip et al., 1973), 
α 

but this substance can be left out of consideration for our present purpose. 

The fact that, even at pH 7.4, all amino groups of the membrane can be 

modified in the presence of detergent or at high (3-5 mM) TNBS concentration 

shows that in principle all amino groups are available for modification with 

TNBS and that appreciable shielding effects due to protein-lipid interaction 

do not seem to occur. 

The effects of combined treatment of disk vesicles with TNBS and phos

pholipase D (Fig. 4.4) indicate that the pool of PE, susceptible to the action 

of phospholipase D, coincides with that accessible to TNBS under the conditions 

used. Since trinitrophenylation of PE and PS does not seem to influence 

seriously the action of phospholipase D towards residual substrate, indicating 

little perturbation of the membrane, this strongly suggests that the 

accessible PE represents the outer face of the disk membrane. 
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4 .4 .2 Trinitrobenzenesulfonate and stacked disks 

In studies of the phospholipid transbilayer distribution, stacked disks 

are preferable to disk vesicles, since disk vesicles may show membrane 

inversion (Adams et al., 1979) which is unlikely to occur in the native 

structure of stacked disks. 

Treatment of stacked disks with TNBS under our standard conditions 

results in modification of PE in a way similar to that in disk vesicles. The 

reaction course suggests a biphasic reaction, in which about 50% of the total 

PE belongs to a fast-reacting pool and this PE must almost certainly be 

located at the outer face of the membrane. The slow second phase of trinitro-

phenylation could then represent penetration of the reagent or perturbation 

of the membrane, leading to modification of originally inside-located PE. A 

similar biphasic pattern of trinitrophenylation is observed for PS, although 

percentually slightly less PS than PE is susceptible to modification. 

As already mentioned, the behavior of TNBS towards disk vesicles is 

rather similar to that found towards stacked disks. Therefore, it is very 

unlikely that in stacked disks phospholipids are not accessible due to spatial 

restrictions like residual plasma membrane and juxtaposition of disks, which 

are not present in disk vesicles. 

4.4.3 Combined treatment of stacked disks with phospholipase D and TNBS 

In our earlier experiments we have already obtained evidence that phos

pholipase D does not seem to penetrate the disk membrane (Chapter 3). In 

agreement with this, we now find that exhaustive treatment of stacked disks 

with this enzyme shows (Fig. 4.6) that approximately one-half of the PE and 

PC present is susceptible to enzymatic hydrolysis. 

The experiments with combined treatment of stacked disks with phospholi

pase D and TNBS (Fig. 4.7) show that only the PE, which is susceptible to 

phospholipase D action, can be modified by TNBS. Although we cannot exclude 

the possibility of a rapid 1:1 exchange between the pools of non-accessible 

and accessible unmodified PE, this would not change the overall conclusion of 

a symmetrical distribution of PE. 

The maximal extent of trinitrophenylation of PS is virtually the same, 

regardless of whether 0, 20 or 40% of the accessible phospholipid pool is 

hydrolyzed. This indicates that no net transfer of PS occurs from one pool to 
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the other due to treatment with phospholipase D. The independence of the rate 

of the PS trinitrophenylation of prior phospholipase D treatment can only 

mean that the membrane is not seriously disturbed by either reagent. 

Thus, we find that the combined action of phospholipase D and TNBS gives 

the same results as those obtained with these reagents separately: about one-

half of the three major phospholipid classes is accessible in stacked disks. 

For PE we find that both reagents see the same pool, even though they differ 

very much in molecular size, mode of action and other properties. Since (1) we 

start with the original right-side-out configuration, (2) disk structure 

remains essentially intact, and (3) all phospholipids can in principle be 

modified (no shielding), we conclude that the accessible pool represents the 

outer face of the disk photoreceptor membrane. This implies phospholipid 

symmetry in these membranes. 

4.4.4 Comparison with previous studies 

Our conclusions differ from those of earlier studies on the phospholipid 

distribution in rod outer segment membranes with amino group reagents. 

Raubach et al. (1974) find 70% of the aminophospholipids on the outer surface 

when isethionylacetimidate (IAI) is used as a modifying reagent. Smith et al. 

(1977) find complete modification of all amino groups by TNBS, while more 

recently, Crain et al. (1978) conclude that 63-72% of the PE is located at the 

outer surface, 18-27% at the inner surface and that 6-14% is not readily 

available to labeling with TNBS (see section 1.5). PS was found to be located 

on the outer face at an amount of 25-31% and on the inner face at 25-35% with 

35-50% resistant to labeling. 

However, these studies have been conducted under conditions, which in 

our hands give evidence of reagent penetration and membrane disturbance. In 

all cases, a pH of 8.5 or higher was used, higher TNBS concentrations (4.9 

and 2 mM) were used in two cases, and in all three studies disk vesicles were 

used, which in the TNBS studies were prepared from frozen retinas. Freeze-

thawing of disk vesicles causes inversion of rhodopsin molecules, as detected 

by concanavalin Α-labeling studies (Adams et al., 1979), indicating serious 

disturbance of the membrane. The results obtained in these experiments agree 

with our own results for disk vesicles at similar TNBS concentrations and pH 

(Figs. 4.1-4.3). The low level of PS modification in the experiments of Crain 

et al. (1978) at 0° С may be due to the difference in reactivity between it 
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and PE, which may be even more pronounced at low temperature. 

Recent experiments of Bishop et al. (1979) with monolayers show that in 

this case, the rate and extent of trinitrophenylation of PE are greatly 

affected by the fatty acid composition of this phospholipid. Saturated PE 

reacts much more slowly than dioleoyl (18:1) PE at the same surface pressure. 

However, in the highly unsaturated disk membranes (at least six double bonds 

per phospholipid molecule), the individual phospholipid molecules are probably 

so far apart that their trinitrophenylation does not cause the spatial 

restrictions for further reactivity observed in other membranes. 

Another factor, which may interfere with trinitrophenylation of membrane 

aminophospholipids, could be the presence of negatively charged phospholipids 

(op den Kamp, 1979; Bishop et al., 1979). However, a negative surface charge 

introduced in stacked disk membranes by prior phospholipase D treatment, 

leading to up to 40% PA, does not seem to influence the rate and extent of 

trinitrophenylation of the enzyme-resistant PS molecules (Fig. 4.7). This may 

be due to the spacing of the phospholipids in the disk membrane, but it is 
2+ also conceivable that Ca , present in high concentration, shields the extra 

negative charge of the PA. 

In Chapter 3, we have stated that our tentative conclusions on the trans

bilayer phospholipid distribution rested on the assumption that no induced 

preferential transbilayer movement of a specific phospholipid and no shielding 

of outer face phospholipids against phospholipase D occur. The results of the 

combined treatment with phospholipase D and TNBS indicate that this assumption 

is valid. Hence, the present findings confirm and strengthen our earlier 

conclusions obtained with three different phospholipases of a nearly symmetri

cal distribution of the three major phospholipids, viz., 55-60% of the PE, 

40-45% of the PC and approx. 50% of the PS located on the outer (cytoplasmic) 

surface of the disk membrane. The question as to whether this symmetrical 

distribution represents a static or a dynamic situation remains open. Hence, 

the rate of transbilayer movement of phospholipids in intact disk membranes 

needs further investigation. 

4.4.5 Summary 

In a fur ther study of the transbi layer d is t r ibu t ion of phospholipids in 

rod disk membranes, the amino group reagent tr initrobenzenesulfonate (TNBS) 

and the phospholipid-hydrolyzing enzyme, phospholipase D, have been used alone 
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and in combination. 

Under carefully defined conditions (1 mM TNBS, pH 7.4, 20 C, darkness), 

TNBS yields limited final levels of modification of phosphatidylethanolamine 

(PE) and phosphatidylserine (PS), suggesting only minor reagent penetration 

and membrane disturbance under these conditions. 

Treatment of stacked disks with TNBS under these conditions leads to a 

biphasic modification of the aminophospholipids. Relatively fast (less than 

1 h) modification of 50% PE and 40% PS occurs, slowly rising (approx. 3 h) to 

60 and 50%, respectively. 

Extensive treatment of stacked disks with phospholipase D leads to the 

hydrolysis of 55% phosphatidylcholine (PC) and 50% PE, while PS is hardly 

attacked by this enzyme. 

Treatment of stacked disks with TNBS after prior treatment with phospho

lipase D leads to no further modification than that maximally obtained with 

either reagent alone: about one-half of the three major phospholipid classes 

is accessible. Although both reagents differ greatly in molecular size, mode 

of action and other properties, they apparently see the same pool of PE, their 

joint substrate. Considering that we start with the original right-side-out 

configuration, that all phospholipids can in principle be modified (no 

shielding) and that the membrane remains essentially intact, we conclude that 

the accessible lipid pool represents the outer face of the disk membranes. 

These results confirm our earlier conclusions from treatment with three 

phospholipases that the three major phospholipids are nearly symmetrically 

distributed over the two faces of the disk membrane. 

The divergence with the conclusions of other investigators is most likely 

explained by their use of disk membranes (disk vesicles) in which the original 

phospholipid distribution had not been maintained and/or conditions under 

which TNBS markedly penetrates the membrane. 
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CHAPTER 5 

TRANSBILAYER DISTRIBUTION OF PHOSPHOLIPID FATTY ACYL CHAINS IN PHOTORECEPTOR 

MEMBRANE* 

5.1 Introduction 

We have been studying the transbilayer distribution of the phospholipids 

in the rod disk membranes by means of phospholipases (Chapter 3) and trinitro-

benzenesulfonate (TNBS; Chapter 4). Reliable methods were developed, in which 

phospholipase D and TNBS in principle only attacked the outer leaflet of the 

bilayer of these membranes. A nearly symmetrical distribution of the three 

major phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) 

and phosphatidyl serine (PS), was concluded. 

The same methods have now been used to investigate the transbilayer 

distribution of the phospholipid fatty acyl chains. The results indicate a 

symmetrical distribution of the fatty acyl chains of all three major phospho

lipids. 

5.2 Materials and methods 

A description of the experimental procedures is given in Chapter 2 

(sections 2.2 and 2.3). 

5.3 Results 

5.3.1 Lipid composition of outer segments 

The fatty acid composition of stacked disks and of the phospholipids 

present in these preparations is shown in Table 5.1. The total amount of 

phospholipid is 62±2 (n = 5) mol per mol rhodopsin. Appreciable amounts of 

diglycerides and free fatty acids (2±1 and 4 ± 1 mol per mol rhodopsin, 

»Adapted from Drenthe et al. (1981). 
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TABLE 5.1 

FATTY ACID COMPOSITION OF ROD OUTER SEGMENTS AND THEIR MAJOR PHOSPHOLIPIDS 

Fatty acids making up less than 0.3 mol% in any fraction are omitted. Values 
are averages with standard deviation for five preparations. 

Phospholipid 
composition 

Fat ty acids 

16:0 

18:0 

18 :1ω9 

18:2ω6 

2 0 : 4 ω 6 

2 2 : 4 ω 6 

22:5ω6 

2 2 : 5 ω 3 

2 2 : 6 ω 3 

24:4 

24:5 

Outer 
segments 

19.9 ± 0.3 

22.1± 0.6 

3.3 ± 0 . 1 

<0.1 

4 . 8 ± 0 . 1 

1.6 ± 0 . 1 

2.3 ± 0.1 

1.9 ± 0.2 

4 3 . 0 ± 0 . 4 

1.2 ± 0 . 1 
) 

PC 

(mol% of t o t a l 

36 .0± 1.5 

(mol% of t o t a l 

30.6 ± 2.2 

19.4 ± 1 . 0 

4 . 5 ± 0 . 5 

0 . 9 ± 0 . 1 

2.7 ± 0 . 1 

0 . 4 ± 0 . 1 

0 . 9 ± 0 . 1 

1 . 4 ± 0 . 1 

35.9 ± 2.2 

<0.1 

<0.1 

PE 

phospholipids) 

44.1 ± 1 . 6 

f a t t y acids) 

1 2 . 6 ± 0 . 3 

2 5 . 0 ± 0 . 4 

4 . 2 ± 0 . 1 

0 . 9 ± 0 . 1 

2 . 4 ± 0 . 1 

0 . 8 ± 0 . 1 

1.5 ± 0 . 1 

1 . 4 ± 0 . 1 

5 0 . 2 ± 0 . 8 

<0.1 

<0.1 

PS 

15.2 ± 0 . 9 

4.1 ± 0 . 4 

21.0 ± 1.1 

1.5 ± 0.4 

<0.1 

4 . 3 ± 0 . 5 

3 . 0 ± 0 . 2 

1 . 6 ± 0 . 3 

3 . 3 ± 0 . 2 

4 8 . 1 ± 0 . 8 

3.9 ± 0.4 

9 . 3 ± 0 . 7 

TABLE 5.2 

FATTY ACID COMPOSITION OF FREE FATTY ACIDS AND DIGLYCERIDES IN ROD OUTER 

SEGMENTS EXPRESSED AS MOL PERCENT OF TOTAL FATTY ACIDS 

Values are averages of two preparations. 

Fatty acids (C atoms: double bonds) 

<16 16:0 18:0 18:1 18:2 20:4 22:4 22:5 22:6.24:4/5 

Free fatty ac 

Diglycerides 

ids 3.9 21.4 18.6 12.5 3.6 20.4 2.7 

0.9 28.9 20.5 3.6 0.7 33.1 0.8 2.5 1.6 

4.0 8.5 4.6 
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respectively) appear to be present consistently, whereas triglycerides are 

virtually absent. The fatty acid composition of free fatty acids and diglyce-

rides is shown in Table 5.2. 

5.3.2 Treatment with trinitrobenzenesulfonate 

Treatment of stacked disks with TNBS leads to trinitrophenylation of PE 

and PS (40 and 38" modification, respectively, after 60 min). PC does not 

react with TNBS. Hence, the fatty acid composition of this phospholipid can 

serve as a control to indicate the reliability of the method, notably of the 

retention of acyl chain unsaturation during the experiments. This seems to be 

satisfactory. After separation of the phospholipids by thin-layer chromato

graphy, the fatty acid composition of the unmodified phospholipids is 

determined. 

Fig. 5.1 summarizes the results after 10, 20, 30 and 60 min of treatment 

with TNBS. The unmodified phospholipids appear to have the same fatty acid 

composition as before incubation with TNBS, regardless of the degree of 

modification attained. For practical reasons only the four most abundant fatty 

acids are presented, viz., palmitic acid (16:0), stearic acid (18:0), 

arachidonic acid (20:4) and docosahexaenoic acid (22:6). Clearly, the fatty 

PC PE PS 

0 20 ¿0 60 0 20 40 60 0 20 ¿0 16 ° 60 

minutes 

Fig. 5.1. Fatty acid composition of unmodified phospholipids of bovine stacked 
disk preparations before and after treatment with TNBS. Closed symbols (solid 
lines) represent content of indicated fatty acids in PC, (residual) PE and PS. 
Broken lines represent the percent of native phospholipid left. 
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acid composition of the phospholipids accessible to TNBS is the same as that 

of the non-accessible phospholipids. Consequently, the products of the reac

tion, i.e., trinitrophenyl derivatives of PE and PS, must retain the same 

fatty acid composition as the mother compounds during the course of reaction 

with TNBS. Analysis of these derivatives indicates that this is indeed the 

case, but exact calculation is hampered by the presence of the (more saturated) 

diglycerides and free fatty acids near the spots of trinitrophenyl-PE and 

trinitrophenyl-PS (close to the solvent front). 

The results also show that no phospholipid with a particular fatty acid 

composition has been preferentially attacked. 

0 20 40 60 

PE PS 

О 20 40 60 0 20 40 60 

minutes 

Fig. 5.2. Fatty acid composition of phospholipids of bovine stacked disk 
preparations before and after phospholipase D treatment. Presentation as in 
Fig. 5.1. PA, phosphatidic acid, the hydrolysis product. Broken line in top 
right figure (PA) represents percent of total phospholipid hydrolysis. 

О 20 40 60 
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5.3.3 Treatment with phoepholipa.se D 

Treatment of stacked disks with phospholipase D leads to the hydrolysis 

of 50% PC and 42% PE after 60 min, and gives rise to 37% phosphatidic acid 

(PA) after this time. A final level of 40% hydrolysis is reached after 180 min. 

Since phospholipase D hardly hydrolyzes PS under these conditions, the fatty 

acid composition of this lipid can serve as a control in the same way as that 

of PC in the TNBS approach. 

Fig. 5.2 presents the results obtained with phospholipase D in the same 

way as those for the treatment with TNBS in Fig. 5.1. Again the unmodified 

phospholipids have the same fatty acid composition as before the incubation, 

regardless of the degree of hydrolysis reached. The fatty acid composition of 

the product, PA, also remains constant during hydrolysis. This composition 

clearly reflects the derivatives of the PA from roughly equimolar amounts of 

PC and PE. 

There is no indication for preference of the enzyme for phospholipids with 

a particular fatty acid composition. 

5.4 Discussion 

5.4.1 Lipid composition of outer segments 

Our data for the phospholipid composition of rod outer segments are in 

agreement with those in previous publications (Anderson et al., 1975; 

Miljanich et al., 1979; Daemen, 1973). The degree of unsaturation of the fatty 

acids is higher than given in the first reports (see Daemen, 1973, and Table 

1.2), but closely resembles that in more recent publications (Hendriks et al., 

1976; Miljanich et al., 1979; Stone et al., 1979). This probably reflects the 

higher purity of the present rod outer segment preparations as compared to 

about 10 years ago. 

Our rod outer segment preparations contain free fatty acids and diglyce-

rides in similar amounts as reported by Dratz et al. (1979). These neutral 

lipids contain relatively less docosahexaenoic acid (22:6) but more arachi-

donic acid (20:4) than the three major phospholipid classes; the free fatty 

acid fraction is also enriched in oleic acid (18:1). In view of the random, 

molecular replacement of outer segment phospholipids, in particular of 

phosphatidyl inositol (PI), and the fast exchange of fatty acids between outer 
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segments and pigment epithelial cells (see section 1.2.2), some or all of the 

free fatty acids may be involved in a deacylation/acylation renewal cycle. The 

rapid hydrolysis of PI into diglycerides might also explain the approximately 

close similarity in fatty acid composition of these two lipids (see section 

1.2.2 and Anderson et al., 1975). 

5.4.2 Transbilaycr distribution of fatty aayl chains 

In Chapters 3 and 4 we have presented considerable evidence for an 

approximately symmetrical distribution of phospholipids (phospholipid head 

groups) over the two faces of disk membranes. Under carefully defined condi

tions, both phospholipase D and the amino group reagent TNBS appeared to 

behave as probes, which in principle only act on the outer leaflet of the disk 

membranes. Therefore, these approaches can be used as well for investigating 

the transbilayer distribution of the fatty acyl chains. 

The fatty acid composition of the phospholipid classes and their 

modification products during the course of action of either TNBS or phospho

lipase D is constant within experimental error. This leaves little doubt that 

the fatty acyl chains of each of the major phospholipid classes in the disk 

membrane are symmetrically distributed over the two faces of this membrane, at 

least on the time scale of our experiments. Together with the approximately 

symmetrical distribution of the phospholipid head groups (Chapters 3 and 4), 

this demonstrates that the lipid part of the disk membrane displays no trans

verse asymnetry, in contrast to its major protein rhodopsin. 

To our knowledge, this is the first time that a symmetrical transverse 

fatty acyl chain distribution is found in a biological membrane. In all 

previous reports a higher unsaturation of the inner leaflet has been observed 

(Perret et al., 1979; Emmelot and van Hoeven, 1975; Renooij and van Golde, 

1977; Fontaine et al., 1980; Fong and Brown, 1978; Sandra and Pagano, 1978). 

It may be significant that, with one exception (mouse brain synaptosomes; 

Fontaine et al., 1980), these data refer to plasma membranes in which an 

asyimietrical phospholipid distribution has been found as well. Hence, the 

number of observations, at least for intracellular membranes, is too small to 

permit generalization at this time with respect to transverse fatty acyl 

chain distribution. 

Our present results show that no phospholipid with a particular fatty 

acid composition is preferentially attacked by or protected against TNBS or 
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phospholipase D, which suggests lateral randomness of the fatty acyl chains 

in the outer face of the membrane. Recent cross-linking studies of Crain et 

al. (1978) also 'indicate a random array of lipids with respect to their fatty 

acid content in the rod disk membrane'. 

5.4.3 Transbilayer movement of phospholipids 

The approximately symmetrical distribution of the phospholipids over the 

two faces of the disk membrane raises the question as to whether this repre

sents a static situation or a dynamic equilibrium. 

From the autoradiographic work of Young and coworkers (Young, 1976), it 

is well known that in many species the visual pigment rhodopsin, soon after 

its synthesis in the inner segment, becomes incorporated in the infoldings of 

the plasma membrane at the base of the rod outer segments. Later they form a 

package of labeled disks, which gradually moves to the apical end of the 

outer segment. The specific radioactivity of this rhodopsin remains constant 

until the labeled disks are scavenged by the pigment epithelium, which in-rat 

takes about 10 days (Young, 1967) and in frog about 40 days (Hall et al., 

1969). Clearly, the rhodopsin molecule remains to the end in the disk in which 

it is originally incorporated. In addition, it remains asymmetrically inserted 

in the membrane with the carbohydrate-bearing N-terminus at the inside of the 

disk (Adams et al., 1978). Its mobility in the outer segment is apparently 

limited to rotation around an axis perpendicular to the disk membrane (Brown, 

1972; Cone, 1972) and to lateral diffusion in this membrane (Poo and Cone, 

1974; Liebman and Entine, 1974). 

The synthesis and fate of the phospholipids of rod outer segments, stu

died by autoradiographic and biochemical approaches, show a quite different 

pattern. Most evidence derives from experiments with frog, but in rabbit 

(Masland and Mills, 1979; Mizuno, 1976) the same general pattern is observed. 

De novo synthesis of phospholipids takes place in the microsomes of the inner 

segment and the phospholipids are exported to the outer segment as demonstra

ted with a wide variety of radioactive precursors: glycerol, fatty acids, 

choline, ethanolamine and serine (see section 1.2.2). All evidence suggests 

that these phospholipids are used in the formation of new disks at the base 

of outer segments, together with newly synthesized rhodopsin (Bibb and Young, 

1974a, 1974b; Kinney and Fisher, 1978; Papermaster et al., 1975; Besharse and 

Pfenninger, 1978; Papermaster et al., 1979). However, autoradiography does not 
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reveal the banding phenomenon observed with rhodopsin. On the contrary, the 

radioactivity always diffuses quickly throughout the entire outer segment and 

any localized radioactivity at the base of the outer segment due to phospho

lipids is always short-lived (Bibb and Young, 1974a, 1974b; Anderson et al., 

1980b). These autoradiographic data are nicely confirmed by recent biochemi

cal experiments of Anderson and coworkers (1980a-d). They find that a pulse 
3 

label of [2- H]glycerol is rapidly incorporated into the phospholipids of 

frog outer segments and, subsequently, the specific radioactivity of all major 

phospholipids declines exponentially with a halftime of about 20 days. 

These observations demonstrate that, in contrast to rhodopsin, the major 

phospholipids of the outer segments exhibit a high interdiscal mobility, at 

least in frog and rabbit. This conclusion may probably be extrapolated to 

vertebrate species other than frog and rabbit, since the phospholipid and 

fatty acid composition of vertebrate photoreceptor membranes is rather 

similar (Daemen, 1973; Tables 1.1 and 1.2). The pool of exchanging phospho

lipids must include the inner leaflet of the disk bilayer, since otherwise 

more persistent banding of the radioactive label derived from a phospholipid 

precursor should have been detected. The fact that exchange of fatty acyl 

chains also seems to take place in outer segments (Bibb and Young, 1974a) only 

adds an additional dimension to the dynamic behavior of these phospholipids. 

In other words, there is most likely a transbilayer movement of rod outer 

segment phospholipids and the halftime of this phenomenon can be expected to 

be of the order of hours rather than days. Although direct evidence for this 

transbilayer movement is still not available, it is reasonable to assume that 

the approximately symmetrical transbilayer distribution of the phospholipids 

and their fatty acyl chains reflects the high mobility of the entire phospho

lipid pool of bovine disk membranes in vivo. 

If this assumption is correct, the question arises why in our experiments 

only maximally 40% of the total phospholipids (viz., PE and PC) can be 

hydrolyzed by phospholipase D, and maximally 35% (viz., PE and PS) can be 

modified by TNBS (see Chapter 4 ) . In the case of a continuous transbilayer 

movement of phospholipids, ultimately the entire pool of (susceptible) phos

pholipids would become accessible to the reagents, even when these do not 

penetrate the membrane at all. One possibility is that the products, PA and 

trinitrophenyl phospholipids, are not subject to transbilayer movement. The 

simplest explanation, however, is that the transbilayer mobility of all 

phospholipids is greatly reduced after isolation and/or under the conditions 
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of incubation (30 С, 40 гпМ Ca in the case of phospholipase D treatment, 

20° С in the case of TNBS treatment). Whereas most experimental evidence 

(Chapters 3 and 4) is in agreement with this explanation, the strongest 

argument against transbilayer movement of phospholipids under our experimen

tal conditions is provided by the combination experiments of Figs. 4.4 and 

4.7. These show that pretreatment of the disk membranes with phospholipase D 

or TNBS alters neither the size nor the composition of the accessible phos

pholipid pool. This seems to eliminate the possibility that we would arrive 

artifactually at a symmetrical phospholipid distribution during the reagent 

incubations. However, this does not exclude that an asymmetric distribution 

of phospholipids would be maintained in vivo by a mechanism dependent on 

active metabolism. 

5.4.4 Concluding remarks 

Many questions regarding the phospholipids of rod outer segments remain 

to be answered. Which mechanisms are involved in their high mobility, both in 

interdiscal transfer and in intradiscal transbilayer movements? What is the 

physiological relevance of a membrane system with a 'static' major protein 

and very 'dynamic' phospholipids? Is there a relation with the high content 

of docosahexaenoic acyl chains, not only a highly unsaturated (22:6), but an 

essential fatty acid as well? The answers to these and other questions on the 

phospholipid dynamics of disk membranes must clearly await further investiga

tions . 

5.4.5 Summary 

The transverse distribution of the fatty acyl chains of the major phos

pholipids over the two faces of the photoreceptor membranes has been deter

mined in bovine rod outer segment (stacked disk) preparations. For this 

purpose, the fatty acid composition of the phospholipids has been analyzed 

before and after treatment with tri nitrobenzenesulfonate (TNBS) and phospho

lipase D. The latter agents are used under conditions in which they have been 

demonstrated to attack only the outer (cytoplasmic) face of the membrane. 

After treatment with TNBS or phospholipase D, the fatty acid composition 

of the unreacted phospholipids is the same as that before treatment, regard

less of the extent of modification or hydrolysis attained. The fatty acid 
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composition of phosphatidic acid (PA), resulting from phospholipase D action, 

also remains unchanged during progressive hydrolysis. 

These results indicate that the fatty acyl chains of the major phospho

lipids have the same composition on either side of the disk membrane. Together 

with our previously obtained evidence for the distribution of the major 

phospholipids in rod outer segment disk membranes, this means that both the 

phospholipids and their fatty acyl chains have a remarkably symmetrical 

distribution over the two membrane faces. 

On the basis of literature data it is concluded that this approximate 

symmetry reflects the high mobility of the entire phospholipid pool of disk 

membranes, including appreciable transbilayer movements of the phospholipids. 
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CHAPTER 6 

GENERAL DISCUSSION 

6.1 Phospholipid topology in photoreceptor membrane 

The objective of our study has been the establishment of the transbi-

layer distribution of the three major phospholipids and their fatty acyl 

chains in rod photoreceptor membranes of bovine retina. For this purpose 

freshly isolated stacked disk preparations (stacked disks) are treated with 

various lipid-modifying agents, i.e., three different phospholipases (А«, С 

and D) and the amino group reagent trinitrobenzenesulfonate (TNBS). Water-

washed disk membranes (disk vesicles) are used for determining optimal 

reaction conditions and allowing comparison with previous studies. Reference 

preparations, in which the same phospholipids are present in random distri

bution, are also treated with phospholipases in order to take into account 

the specificity of each phospholipase towards individual phospholipids of 

disk membranes. 

The results have been presented in Chapters 3-5. It is concluded that 

the three major phospholipids and their fatty acyl chains are predominantly 

distributed symmetrically over the two faces of the disk bilayer. This 

conclusion relies on the assumption that disk membrane treatment is started 

and prosecuted with a bilayered membrane system of right-side-out orientation, 

in which all outside-located phospholipids are accessible to the reagents and 

become modified, and none of the inside-located phospholipids. In our opinion, 

this assumption is valid for stacked disks, in darkness treated with phospho

lipase D up to the final level of phospholipid hydrolysis, with TNBS for the 

fast-reacting phospholipid pool, and with each phospholipase during the 

early phase of phospholipid hydrolysis when disturbance of disk membrane 

structure is negligibly small. Host arguments in favour of this statement 

have been presented in Chapters 3-5. Some arguments will be discussed in 

relation to requirements for correct localization of membrane phospholipids 

(see section 2.1.3) and with respect to previous studies. 

Bilayered structure of disk membranes. The bilayered structure of disk 
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membranes has recently been confirmed by Ρ NMR and freeze-fracture studies 
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(de Grip et al., 1979). However, a total lipid extract of disk membranes may 

adopt non-bilayer structures upon hydration (ibid.; but see Deese et al., 

1981). Since transient local changes in lipid distribution during the 

excitation process may escape detection by NMR and thus cannot be excluded 

during light exposure of disk membranes, the whole procedure, including the 

isolation of disk membranes, has been performed in darkness. 

Right-side-out orientation of stacked disks. The choice of stacked disks 

is suggested by the close resemblance of their piled disk structure and the 

configuration in situ. Stacked disks also show very little membrane inversion 

as judged from the lack of concanavalin Α-binding by inside-located sugar 

residues of rhodopsin (see section 2.1.3). 

Inaccessibility of outside-located phospholipids. The presence of the 

plasma membrane and the juxtaposition of disk membranes in stacked disks may 

provide a barrier against full access of phospholipids to phospholipases in 

particular. This hindrance does not play an important role since, apart from 

the time course, hydrolysis patterns of stacked disks and disk vesicles are 

fairly similar during the early stages of phospholipase treatment (see section 

3.3.3). In addition, nearly all phospholipids are hydrolyzed by phospholipases 

A~ and С (Table 3.1), while the effects of phospholipase D treatment are 

uniformly spread over the outer segment (Fig. 3.4). 

The main part of disk vesicles has a right-side-out orientation for the 

same reason as quoted for stacked disks. The close similarity in hydrolysis 

patterns of stacked disks and disk vesicles also favours an identical phos

pholipid accessibility in each preparation. However, more phospholipid, 

mainly phosphatidylcholine (PC), is eventually hydrolyzed by phospholipase D 

in disk vesicles (see Table 3.1 and Fig. 4.4). Although the evidence is not 

absolutely compelling, this difference cannot be attributed to an outside-

located phospholipid (i.e., PC) pool, which becomes available after washing 

disk membranes with water. Since interactions of specific phospholipids with 

protein have not clearly been demonstrated (section 1.4.1), the availability 

of more PC in disk vesicles should have led to altered hydrolysis patterns in 

favour of this lipid. The difference in final hydrolysis level can be 

explained by penetration of phospholipase D into disk membranes, in which a 

more open, leaky membrane structure is induced by water-washing (see also 

section 3.4.1). Due to contaminating phosphatidate phosphohydrolase activity, 

maximally 10% (av. 5%) phosphatide acid (PA) is eventually converted into 

diglycerides and P. in disk vesicles (section 2.2.3). Although this amount of 
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diglycerides is probably not large enough to cause its aggregation into 

discrete droplets (see section 2.1.3), it may be an additional source for 

making the permeability barrier of disk vesicles more vulnerable for phos-

pholipase D. 

Redistribution of phospholipids. The evidence for a symmetrical trans-

bilayer distribution of phospholipids relies on the assumption of their 

static distribution. However, it can be concluded from metabolic studies that 

both the lipids and their building blocks are subject to dynamic transfer in 

the rod disk system in vivo (sections 1.2.2 and 5.4.3). For our objective 

this system is isolated and incubated with lipid-modifying reagents. The 

driving forces behind the dynamic lipid transfer are probably greatly 

diminished, at least the metabolic part of it, so that the lipids may have 

reached a new equilibrium distribution, not necessarily the same one as in 

vivo. On the other hand, the modification of lipids on one side of the disk 

membrane could result in another unstable situation. This instability arises 

from lipid alteration due to modification. A compensating movement of (un)-

modified lipid can occur and may enhance the transbilayer rearrangement. 

It is not unlikely that phospholipase D- and TNBS-modified phospholipids 

are not longer translocated across the disk bilayer, since otherwise the 

entire pool of susceptible phospholipid would ultimately become accessible, 

even for perfectly membrane-impermeable reagents. 

In stacked disks maximally 40% of total phospholipid, i.e. 55% PC and 

50% phosphatidylethanolamine (PE), is hydrolyzed by phospholipase D. About 

35% of total phospholipid, i.e., 50% PE and 40% phosphatidylserine (PS) reacts 

relatively fast with TNBS. (The slow-reacting lipid pool may arise from TNBS 

penetration and/or lipid transfer). So, as long as unmodified lipid is 

present, its translocation may occur. When this transfer is specific, i.e., 

exchange between lipids of the same class, this will not change the observed 

distribution of the lipids, provided that the original (e.g., 50/50) distri

bution of total lipid is maintained. When this transfer is aspecific, i.e., 

exchange between different lipid classes, this could result in an apparently 

symmetrical distribution, even if the bilayer was asymmetric. The simplest 

explanation, in agreement with most experimental evidence of Chapters 3 and 

4, would be that the mobility of all phospholipids of crossing the bilayer is 

seriously reduced upon isolation and/or at the ambient conditions of incuba

tion: 30° С at 40 mM Ca
 +
 in the case of phospholipase D treatment, 20° С in 

the case of TNBS treatment. The strongest argument against aspecific transfer 
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of lipid is provided by the successive treatment of disk membranes with 

phospholipase D and TNBS. These combination experiments demonstrated that 

pretreatment of disk membranes with either phospholipase D or TNBS does not 

alter the pool of phospholipid accessible to either reagent nor the rate at 

which this pool can be modified (see Figs. 4.4 and 4.7). The close similarity 

in hydrolysis patterns of stacked disks and reference preparations during the 

early phase (10 min) of phospholipase D treatment also argues against aspeci-

fie transfer of lipid. The hydrolysis patterns of stacked disks would be 

changed by an altered lipid distribution and not longer be comparable with 

those of the reference. Table 3.2 shows the 10-min data only, but the 

hydrolysis patterns remain constant at least during the first 30 min of 

incubation. In this time period about 20% total hydrolysis is reached in 

stacked disks with phospholipase D. 

Finally, a specific transfer of lipid, but aspecific concerning the 

fatty acyl chains, e.g., saturated lipid against unsaturated lipid of the 

same class, should lead to a gradual change in fatty acid composition of the 

unmodified lipids left in the membrane. This does not agree with the results 

presented in Figs. 5.1 and 5.2, provided that phospholipase D and TNBS do not 

modify lipids with a particular fatty acid composition. It has been shown 

that TNBS modifies aminophospholipids without preference for a particular 

fatty acid composition (Fontaine and Schroeder, 1979). Since the results for 

both reagents are similar, phospholipase D hydrolyzes phospholipids also 

without preference for a particular fatty acid composition. 

In conclusion, a symmetrical transverse distribution of phospholipids 

and their fatty acyl chains can be assigned to any moment in time during the 

reagent treatment. The occurrence of transbilayer movement of specific phos

pholipids is very unlikely. However, it cannot be excluded that an asymmetri

cal distribution of phospholipids is occurring in vivo, maintained by a 

mechanism dependent on active metabolism. 

Comparison with -previous studies. Our conclusion of a symmetrical 

transverse distribution of phospholipids differs from that of other studies, 

in which the same reagent (i.e., TNBS) has been used (see section 1.5: Smith 

et al., 1977; Crain et al., 1978). 

Smith et al. (1977) found in intact and sonicated disk membranes, 

prepared from frozen retinas, that all aminophospholipids are modified by 

TNBS. Arginine, which is trapped inside sonicated disks, does not react 

during the same period of incubation. They concluded that all aminophospho-
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lipids are located at the outer face of the disk bil ayer. However, TNBS 

penetration leading to complete modification can be expected to occur under 

the reaction conditions used (i.e., approx. 5 mM TNBS at 20° С and pH 8.5), 

as shown by us for disk vesicles (Figs. 4.1 and 4.3). Yet, induced transbi-

layer exchange of trinitrophenylated aminophospholipids against inside-located 

aminophospholipids without disturbing the permeability properties of the 

bilayer would be in agreement with the absence of arginine modification. This 

possibility is very unlikely (see above). In addition, the authors mention no 

relative reactivity of TNBS on arginine under the reaction conditions applied 

(compare with section 2.1.3: Haest et al., 1981). 

Crain et al. (1978) treated disk membranes, also prepared from frozen 

retinas, with 2 mM TNBS at pH 8.5 and 21° or 0° C. They performed the reaction 

at 0° С also in the presence of valinomycin to make the disk membrane per

meable for TNBS. They concluded that TNBS strongly penetrates the disk bilayer, 

at 21 С and at О С in the presence of valinomycin. We concluded the same 

for disk vesicles at pH 8.5 and 20 C, where TNBS modifies nearly all PE (see 

Fig. 4.3). 

While Crain et al. (1978) performed their final experiments at О С (but 

at pH 8.5), we lowered the pH to 7.4 (but at 20° C), in order to avoid 

excessive penetration of TNBS. (The additional replacement of disk vesicles 

by stacked disks in our experiments has hardly any effect on the behavior of 

TNBS). In the final procedures TNBS penetration is greatly reduced, but is 

still occurring. However, differences are found in reactivity of individual 

aminophospholipids. In the experiments of Crain et al. (1978) approx. 13% 

(i.e., 63% vs. 50%) more PE and approx. 15% (i.e., 25% vs. 40%) less PS 

belong to the fast-reacting phospholipid pool (compare Table 1.3 with Fig. 

4.5). Several factors may account for this discrepancy: (1) Disk membranes 

prepared from frozen retinas. Membrane inversion may occur in this prepara

tion, so that lipid distribution and availability are altered as compared to 

those in freshly isolated disk membranes, and (2) pH 8.5 and 0° С as reaction 

conditions. TNBS penetration and PE reactivity are greater at pH 8.5 than at 

pH 7.4, while PS reactivity is lower at 0° С than at 20° C. If domains, which 

differ in lipid fluidity and/or composition, are present at 0° C, lipid 

distribution and availability may also be altered. This could explain the 

high level of aminophospholipids, PS in particular, not readily available for 

labeling with TNBS in the experiments of Crain et al. (1978), even in the 

presence of valinomycin. 
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In conclusion, it is difficult to rely on experiments with TNBS alone. 

In view of our results with phospholipases and particularly those of the 

combination experiments with phospholipase D and TNBS (Chapter 4), we 

consider our conditions for TNBS labeling as optimal for assessing the trans-

bilayer distribution of phospholipids in disk membranes. 

6.2 Dynamics of photoreceptor membrane phospholipids 

The highly unsaturated phospholipids certainly contribute to the 

dynamic properties of the photoreceptor membrane. They are fluid at physio

logical temperatures, are subject to molecular renewal mechanisms, and may 

adopt transient non-bilayer structures. 

This study indicates that the three major phospholipids and their fatty 

acyl chains are randomly distributed over the two faces of the disk bil ayer. 

Evidence has been presented that they may also be randomly distributed in the 

plane of the disk bilayer. There are no clear indications for strong inter

actions of specific phospholipids with rhodopsin. Only during the later, slow 

part of the photolytic sequence PE and/or PS may serve as a hydrophobic sink 

for the liberated chromophore (section 1.4). 

Phospholipid fluidity. The rod cell has an effective mechanism to main

tain its high level of unsaturated phospholipids. Yet, all known properties 

of rhodopsin express their activity fairly well in the presence of less 

unsaturated phospholipids, which contain at least one double bond per 

molecule. It has been suggested that the highly unsaturated phospholipids may 

provide a fluid hydrophobic environment for the highly organized visual 

pigment system. They enable rhodopsin to display rapid lateral and rotational 

movements in the plane of the disk bilayer. However, it remains to be proved 

that these phospholipids are involved in the as yet unknown mechanism, by 

which light-excited rhodopsin regulates the plasma membrane conductance by 

means of an internal transmitter. 

Molecular renewal mechanisms. Photoreceptor membranes are renewed by 

membrane replacement, a continuous process of assembly at the base and 

shedding at the top of outer segments. Phospholipids and their building 

blocks are, in addition, subject to random renewal mechanisms. It has been 

suggested that the latter processes are needed for maintaining the high level 

of unsaturated fatty acids of the phospholipids. Replacement of damaged lipid 

molecules by new ones may be very effective in cancelling the harmful effects 
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of l i gh t and oxygen (Daeraen, 1973). 

Molecular renewal mechanisms may also be needed for specialized functions 

of the visual pigment system. This is suggested by the rapid turnover of 

phosphatidylinositol (see next paragraph). 

Phosphat-Ldylinositol turnover. Phosphatidylinositol (PI) is the major 

inosi to l -conta in ing l i p i d in most c e l l s , with much smaller quanti t ies of 

PI 4-phosphate (PI-P) and PI 4,5-diphosphate (PI-bisP; compare Fig. 1.1). 

The concentration of the l a t t e r two l i p ids is greater in t issues, which are 

enriched in plasma membrane material ( e . g . , neural white matter and erythro

cytes) , suggesting that they are located at the plasma membrane. PI is a 

minor phospholipid in rod outer segments (at most 2 mol% of to ta l phospho

l i p i d ; Table 1.1). I ts location is not known. The presence of PI-P and P I -

bisP has so far not been reported, probably because they break down rapidly 

post-mortem and are d i f f i c u l t to extract quant i ta t i ve ly . 

Inosi tol-containing l i p ids are interest ing minor compounds of cel l 

membranes. They are involved in various active membrane funct ions, such as 

(1) select ive control of ion movements; (2) packaging and translocation of 

macromolecules; (3) grouping and or ientat ion of vec tor ia l l y directed enzyme 

systems, and (4) t ransfer of ext racel lu lar information to the cel l i n t e r i o r 

(Michel i , 1975, 1979). 

Involvement of PI in information transfer is indicated by the rapid 

hydrolysis of PI into 1,2-diglycerides, the Pi-response, which can be provoked 

in various ce l l types in response to external s t i m u l i . A common feature of 

external s t i m u l i , which enhance PI hydrolysis, is that the i r action on 
2+ ce l lu la r metabolism involves Ca mobil izat ion and elevates the cycl ic GMP 

concentration. 

Involvement of inosi to l -contain ing l i p i ds in information transfer is 

also indicated by the breakdown of PI-P and PI-bisP into dig lycer ides, which 
2+ appears to be control led by a r ise in the cytosol Ca concentration in 

response to external s t imu l i . The function of these ce l lu la r reactions is not 

known. Since PI-P and PI-bisP strongly bind divalent cat ions, these ce l lu la r 

reactions cause the removal of high a f f i n i t y binding si tes for divalent 

cations from the cytoplasmic surface of ce l l membranes. 

These processes may also operate in rod outer segments, in which a rapid 

hydrolysis of PI in to diglycerides has been reported (Anderson et a l . , 1980d). 

PI hydrolysis may then be involved in the regulation of the extradiscal 
2+ concentration of the internal transmitter (possibly Ca and/or cycl ic GMP) in 
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response to light absorption by rhodopsin. A role of PI hydrolysis in fusion 

events associated with the assembly and shedding of disk membranes has been 

suggested by Anderson et al. (1980d). 

Transient non-bilayer structures. The bilayered structure of disk 
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membranes has recently been confirmed by Ρ NMR and freeze-fracture studies. 

However, disk membranes contain appreciable amounts of highly unsaturated PE, 

which adopts non-bilayer structures upon hydration (section 1.3.2). A total 

lipid extract of disk membranes may also adopt non-bilayer structures (de 

Grip et al., 1979), although controversy still exists (Deese et al., 1981). 

Since transient non-bilayer structures of disk membranes exposed to 

light may escape detection by NMR, they cannot be excluded. Such structures 

may offer a new insight on fusion and transport mechanisms of the photorecep

tor membrane (e.g., transbilayer movement of phospholipids). 

6.3 Perspectives 

As indicated in the previous section, there is a need for further 

investigations to clarify the role of the highly unsaturated phospholipids in 

photoreceptor membranes. It might be worthwhile to place special emphasis on 

studies of transbilayer phospholipid movements and transient non-bilayer 

structures, which might be induced by light-excited rhodopsin. Such studies 

may offer insight in the dynamic properties of the phospholipids. 

Considering the transbilayer distribution of photoreceptor membrane 

phospholipids, we have demonstrated that under certain conditions TNBS and 

phospholipases can successfully be used to localize PC, PE and PS. However, 

the application of chemical and enzymatic agents eventually lead to reagent 

penetration and membrane disturbance in particular, as shown for TNBS and 

phospholipases A„ and С There are now methods available, which may offer a 

better approach. These involve the use of phospholipid exchange proteins and 

NMR spectroscopy (see Bergelson and Barsukov, 1977; op den Kamp, 1979; 

Etémadi, 1980). 

Phospholipid exchange proteins cause phospholipid transfer between 

different membranes. Only the outer leaflet of the membranes appears to be 

involved in this process. In principle, the use of phospholipid exchange 

proteins of different specificities should permit the determination not only 

of the transbilayer distribution of particular phospholipids but also of 

their transbilayer movement. The rate of the latter process should not be too 
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fast in order to allow a distinction between both processes. In the case of 

photoreceptor membranes, disturbance of membrane structure may occur, if less 

unsaturated phospholipids are introduced in the outer leaflet of the highly 

unsaturated disk membranes. On the other hand, introduction of less unsatura

ted phospholipids may reveal their influence on certain properties of 

rhodopsin. 

NMR spectroscopy has been useful in studying the transbilayer distribution 

and movement of phospholipids in model systems. Membrane-impermeable paramag

netic ions, affecting the NMR signals of outside-located phospholipids only, 

are used to distinguish between inner and outer leaflet phospholipids. Although 

large, complex structures are difficult to study with NMR spectroscopy, this 

technique has been applied successfully to localize PC in sarcoplasmic 

reticulum (de Kruijff et al., 1979). 
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SUMMARY 

Vertebrate retinas contain photoreceptor cells, capable of light 

absorption, signal transduction and amplification, eventually leading to 

vision. Light absorption exclusively occurs in the outer segments of photo

receptor cells. In the rod photoreceptor cell, which is responsible for black 

and white vision in dim light, the outer segment consists of regularly stacked 

flat disks, enclosed by the plasma membrane. The membrane of these disks, the 

photoreceptor membrane, is a lipid bilayer in which the visual pigment 

rhodopsin is embedded. The primary event in vision is light absorption by 

rhodopsin in the disk membrane. The next, firmly established event is a 

modified ion current across the plasma membrane, eventually leading to vision. 

To link both events, which take place in different membrane systems, a 

diffusable internal transmitter has been postulated accounting for signal 

transduction and amplification. The exact nature of the internal transmitter 

and the regulation of its functioning by light-excited rhodopsin are presently 

not known. 

In the General Introduction current views of the visual excitation 
2+ 

process are presented with emphasis on Ca and cyclic GMP as possible inter
nal transmitters. 

The lipid part of the photoreceptor membrane consists mainly of 

phospholipids. Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

phosphatidylserine (PS) comprise more than 95% of these phospholipids. 

Some characteristics of the phospholipids are presented in Chapter 1. 

They contain highly unsaturated fatty acyl chains, so that rhodopsin is 

embedded in a very fluid lipid environment. Rhodopsin cannot be removed from 

the disk membrane without disturbing the lamellar membrane structure and 

altering its properties presently known. Thus, rhodopsin should be dependent 

on its native lipid environment for full activity. However, there are no 

clear indications for a lipid population strongly immobilized by rhodopsin. 

In addition, by modifying photoreceptor membrane phospholipids, by removing 

them partially, and by reconstitution of delipidated rhodopsin in a lipid 

bilayer of known composition, it has been shown that at least one double bond 

per lipid molecule should be present for full activity of rhodopsin. Yet, the 
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rod cell has an effective mechanism to maintain its high level of unsaturated 

phospholipids (at least six double bonds per molecule). It has been suggested 

that these phospholipids may provide a fluid hydrophobic environment for the 

highly organized visual pigment system. 

It is clear that a detailed knowledge of the structure of photoreceptor 

membranes will contribute to a full understanding of the visual excitation 

process. The aim of this study is to establish the distribution of the three 

major phospholipids and their fatty acyl chains over the two faces of the 

photoreceptor membrane (Chapter 1). For this purpose disk membranes of bovine 

retina are treated with , in principle impermeable, lipid-modifying reagents, 

i.e., three different phospholipases (A„, С and D) and the amino group 

reagent trinitrobenzenesulfonate (TNBS). Lipid analysis after reagent treat

ment enables then determination of kind and composition of the phospholipids, 

either modified or not. 

In Chapter 2 a description is given of materials, procedures and deter

minations, which have been used throughout this study. Prerequisites are 

given for the correct use of phospholipases and TNBS in determining the trans-

bilayer distribution of photoreceptor membrane phospholipids. 

In Chapters 3-5 the results are presented. Considerable effort has been 

expended on determining correct conditions in order to meet the requirements 

formulated in Chapter 2. These conditions should minimize membrane inversion 

upon isolation, inaccessibility of externally located phospholipids, redis

tribution of phospholipids upon modification, and reagent penetration. In the 

final procedures disk membranes are used, prepared from freshly isolated 

bovine retinas and showing the native stacked flat disk structure. 

Treatment of stacked disks with phospholipase D leads to a final modi

fication of 55% phosphatidylcholine and 50% phosphatidylethanolamine. Treat

ment of stacked disks with TNBS leads to a biphasic modification of the 

aminophospholipids. Relatively fast (less than 1 h) modification of 50% 

phosphatidylethanolamine and 40% phosphatidylserine occurs, slowly rising 

(approx. 3 h) to 60 and 50%, respectively. The fast-reacting lipid pool is 

considered to be located outside. The slow-reacting lipid pool arises from 

modification of inside-located phospholipids due to TNBS penetration. Treat

ment of stacked disks with TNBS after prior treatment with phospholipase D 

leads to no further modification than that maximally obtained with either 
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reagent alone: about one-half of the three major phospholipids is accessible. 

Hence, we conclude that the accessible lipid pool represents the outer face 

of the disk membranes. The results indicate transbilayer symmetry of the three 

major phospholipids (Chapter 4) and their fatty acyl chains (Chapter 5). 

With phospholipases A~ and С nearly all natural substrates are modified, 

indicating appreciable disturbance of disk membrane structure (Chapter 3). 

Therefore, special attention is given to the early stages of phospholipase 

treatment, since then disturbance of disk membrane structure can be expected 

to be minimal. The modification of individual phospholipids of stacked disks 

is compared with that of reference preparations, in which the same phospho

lipids are present in random distribution. Apart from the time course, 

modification rates of individual phospholipids of stacked disks and reference 

preparations are fairly similar, indicating a symmetrical phospholipid 

distribution across the disk bilayer. 

In Chapter б it is concluded that the reagents are correctly used to 

meet all requirements in determining the transbilayer distribution of phos

pholipids in the photoreceptor membrane. We present evidence that appreciable 

transbilayer movement of phospholipids (flip-flop) does not occur during 

treatment of stacked disks with the reagents. In vivo, however, photoreceptor 

membrane phospholipids are continuously renewed by molecular exchange 

mechanisms, most likely involving their transbilayer movement. Therefore, it 

cannot be excluded that an asymmetric transbilayer distribution of photo

receptor membrane phospholipids is occurring in vivo, maintained by a 

mechanism dependent on active metabolism. The occurrence of transbilayer 

exchange mechanisms of photoreceptor membrane phospholipids needs, therefore, 

further investigation. This and other aspects of photoreceptor membrane 

phospholipids have to be studied in further detail to enable full understanding 

of the dynamics of the visual excitation process. 

Our results differ from those of earlier studies on the phospholipid 

distribution of disk membranes with amino group reagents. These studies 

indicate transbilayer phospholipid asymmetry rather than symmetry. In Chapter 

6 we conclude that these studies have been conducted under conditions, which 

in our hands give evidence for appreciable reagent penetration and membrane 

disturbance. 
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SAMENVATTING 

De fotoreceptor membraan speelt een belangrijke rol bij de omzetting van 

een lichtprikkel in een zenuwimpuls, die via de oogzenuw naar de visuele 

cortex wordt geleid. Het netvlies van vertebraten bezit twee soorten foto

receptor cellen: staafjes, die functioneren bij schemerlicht (zwart-wit zien), 

en kegeltjes, die functioneren bij daglicht (kleur zien). Licht absorptie 

vindt plaats in een daartoe gespecialiseerd deel van de fotoreceptor cel, het 

buitensegment. In staafjes is het buitensegment opgebouwd uit een groot aantal 

dicht op elkaar gestapelde platte zakjes, die omgeven worden door de celmem

braan. De membraan van de zakjes, de fotoreceptor membraan, is een dubbellaag 

van lipiden met daarin het visuele pigment rhodopsine. De eerste stap in het 

proces van het zien is licht absorptie door rhodopsine. Dit leidt tot een 

verandering in de celmembraan permeabiliteit voor kationen en vervolgens tot 

een stimulering van het synaptische uiteinde van de fotoreceptor cel. 

In het inleidende hoofdstuk wordt een kort overzicht gegeven van de 

huidige kennis omtrent het proces van het zien. Speciale aandacht is daarbij 

besteed aan het tot nu toe onopgeloste probleem van de signaaloverdracht van 

het door licht geactiveerde rhodopsine naar de celmembraan. 

De lipiden in de fotoreceptor membraan bestaan voornamelijk uit fosfo

lipiden, waarvan de belangrijkste zijn: fosfatidylcholine (PC), fosfatidyl-

ethanolamine (PE) en fosfatidylserine (PS). 

In hoofdstuk 1 worden de voornaamste kenmerken van deze fosfolipiden 

besproken: hun hoge gehalte aan hoog onverzadigde vetzuren, hun hoge metabole 

activiteit, en hun invloed op bekende eigenschappen van rhodopsine. Wat dit 

laatste betreft, het membraan-gebonden eiwit rhodopsine is voor een optimaal 

functioneren afhankelijk van de fosfolipiden in zijn directe omgeving. Speci

fieke fosfolipiden blijken echter niet nodig te zijn voor een juiste werking 

van rhodopsine. Wel dienen de fosfolipiden tenminste éên dubbele binding per 

molecuul te bevatten. Het hoog onverzadigde karakter van de fosfolipiden in de 

fotoreceptor membraan (tenminste zes dubbele bindingen per molecuul) en de 

hiermee samenhangende hoge vloeibaarheidsgraad van de membraan worden daarom 

nog steeds niet goed begrepen. 
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Voor een beter begrip van de functie der fosfolipiden is een gedetaileer-

de kennis nodig van de structuur der fotoreceptor membraan. Het onderzoek, 

beschreven in dit proefschrift, wil hiertoe bijdragen door de verdeling van 

de drie belangrijkste fosfolipiden over de binnen- en buitenzijde van de foto

receptor membraan te bepalen met behulp van fosfolipases en het amino-reagens 

trinitrobenzeensulfonzuur (TNBS). In principe penetreren deze reagentia de 

membraan niet, zodat hun werking beperkt is tot die fosfolipiden, die aan de 

buitenzijde van de membraan voorkomen. 

In hoofdstuk 2 wordt een beschrijving gegeven van de bepalingen die 

gedurende het gehele onderzoek zijn toegepast. In dit hoofdstuk wordt tevens 

vermeld aan welke voorwaarden voldaan moet worden om uit de verkregen resul

taten de verdeling van de fosfolipiden over de binnen- en buitenzijde van de 

fotoreceptor membraan ondubbelzinnig te bepalen. Eén van deze voorwaarden is 

het gebruik van preparaten, waarin de oorspronkelijke (in situ) verdeling der 

fosfolipiden gehandhaafd blijft. Vers bereide preparaten van staafjes buiten

segmenten met een gestapelde zakjes-structuur benaderen de in situ structuur 

het beste en worden daarom bij voorkeur gebruikt. 

In hoofdstuk 3 zijn drie verschillende fosfolipases (fosfolipase A„, С en 

D) gebruikt om de verdeling van de fosfolipiden over de binnen- en buitenzijde 

van de fotoreceptor membraan te bepalen. Fosfolipase D hydrolyseert ongeveer 

de helft van fosfatidylcholine en fosfatidylethanolamine. Dit wijst op een 

symmetrische verdeling van deze fosfolipiden over de fotoreceptor membraan. 

Fosfolipase A~ en С hydrolyseren echter vrijwel alle fosfolipiden in de foto

receptor membraan. Blijkbaar leidt de hydrolyse in deze gevallen tot een 

ernstige verstoring in de membraanstructuur. Om dit laatste tot een minimum te 

beperken, is het hydrolyse patroon van de fosfolipiden in de beginfase van de 

reactie bepaald. Dit patroon is vrijwel hetzelfde als dat van zgn. referentie 

preparaten, waarin dezelfde fosfolipiden voorkomen als in de fotoreceptor 

membraan, maar nu vrij toegankelijk voor het fosfolipase. Dit betekent, dat 

alle fosfolipiden nagenoeg symmetrisch verdeeld zijn over de fotoreceptor 

membraan. 

In hoofdstuk 4 wordt het amino-reagens TNBS gebruikt, alsmede fosfolipase 

D. Met fosfolipase D wordt maximaal 55% fosfatidylcholine en 50% fosfatidyl

ethanolamine gehydrolyseerd. TNBS reageert betrekkelijk snel (binnen een uur) 

met 50% fosfatidylethanolamine en 40% fosfatidylserine. De reactie gaat echter 
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langzaam verder en na 3 uur is van elk lipid ca. 10% extra gemodificeerd. Dit 

laatste wordt toegeschreven aan penetratie van TNBS, waardoor de fosfolipiden 

aan de binnenzijde van de fotoreceptor membraan beschikbaar komen voor modifi

catie. Het maakt geen verschil of de fotoreceptor membraan eerst met fosfo-

lipase D behandeld wordt en dan met TNBS, of omgekeerd: ongeveer de helft van 

de fosfolipiden is toegankelijk voor hydrolyse en modificatie. Hieruit volgt, 

dat tijdens de reactie geen verstoring in de oorspronkelijke verdeling der 

lipiden optreedt. Uit deze experimenten wordt geconcludeerd dat het toeganke

lijke deel van de fosfolipiden zich aan de buitenzijde van de fotoreceptor 

membraan bevindt; dit impliceert wederom een vrijwel symmetrische verdeling 

van de fosfolipiden over de fotoreceptor membraan. 

In hoofdstuk 5 worden de experimenten met fosfolipase D en TNBS herhaald, 

maar nu wordt de vetzuursamenstelling bepaald van dat deel der fosfolipiden, 

dat niet gehydrolyseerd of gemodificeerd is. De vetzuursamenstelling van deze 

fosfolipiden is dezelfde als die van de fosfolipiden in het oorspronkelijke 

preparaat, m.a.w., ook de vetzuurketens van elk fosfolipide zijn syimietrisch 

verdeeld over de fotoreceptor membraan. 

In hoofdstuk 6 wordt toegelicht, dat aan de voorwaarden, gesteld in 

hoofdstuk 2, om uit de verkregen resultaten de verdeling van de fosfolipiden 

over de fotoreceptor membraan ondubbelzinnig te bepalen, lijkt te zijn vol

daan. Eén nog niet eerder genoemde voorwaarde is het niet optreden van een 

trans-bilaag beweging van de fosfolipiden (uitwisseling tussen binnen- en 

buitenzijde van de membraan). Onder de door ons gebruikte experimentele 

omstandigheden treedt een trans-bilaag beweging van fosfolipiden hoogstwaar

schijnlijk niet op. In vivo, echter, vertonen de fosfolipiden vrij zeker wel 

deze beweging. Het mechanisme wat hieraan ten grondslag ligt en de betekenis 

ervan voor het proces van het zien dienen nader bestudeerd te worden. 

De resultaten beschreven in dit proefschrift verschillen met die uit 

eerdere onderzoekingen, waarin gevonden werd dat met name fosfatidylethanol-

amine beter toegankelijk is voor modificatie met TNBS. In hoofdstuk 6 wordt 

geconcludeerd dat deze eerdere onderzoekingen verricht werden onder omstandig

heden die leiden tot penetratie van TNBS en verstoring van de membraanstructuur. 
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STELLINGEN 

I 

Bij de bepaling van de fosfolipide verdeling over de binnen- en buitenzijde 

van biologische membranen verdient het gebruik van fosfolipase D de voorkeur 

boven dat van fosfolipase A- of С 

Dit proefschrift, hoofdstuk 3 en 4. 
H e l l e r , M. (1978) Adv. L ip id Res. 16, 267-326. 

II 

Het gebruik van een ionofoor om alle aminofosfolipiden in biologische 

membranen toegankelijk te maken voor reactie met amino-groep reagentia leidt 

niet tot het gewenste resultaat. 
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4186-4192. 

Ill 

Het gemak, waarmee fosfolipase A
?
 uit varkenspancreas fosfolipiden in foto

receptor membranen afbreekt, illustreert de wijdmazigheid van deze membranen. 

Dit proefschrift, hoofdstuk 3. 

Demel, R.A., Geurts van Kessel, W.S.M., Zwaai, R.F.Α., Roelofsen, B. en 
van Deenen, L.L.M. (1975) Biochim. Biophys. Acta 406, 97-107. 

IV 

Wanneer geringe verschillen in lipide- en vetzuursamenstelling van staafjes 

buitensegmenten grote gevolgen hebben voor de lipide structuur, dan is een 

goede isolatiemethode met behoud van de oorspronkelijke lipide samenstelling 

van evident belang. 

De Grip, W.J., Drenthe, E.H.S., van Echteld, C.J.A., de Kruijff, B. en 
Verklei'j, A.J. (1979) Biochim. Biophys. Acta 558, 330-337. 
Deese, A.J., Dratz, E.A. en Brown, M.F. (1981) FEBS Letters 124, 93-99. 

V 

De waarneming, dat water-oplosbare eiwitten in staafjes buitensegmenten zich 

na belichting gaan gedragen als extrinsieke (membraan-gebonden) eiwitten, 

illustreert treffend het dynamische karakter van de fotoreceptor membraan. 

Godchaux, W. en Zimmerman, W.F. (1979) Exp. Eye Res. 28, 483-500. 
Shichi, H. en Somers, R.L. (1980) Photochem. Photobiol. 32, 491-495. 
Kühn, H. (1980) Nature 283, 587-589. 



VI 

Bij de localisatie van calcium ionen in staafjes buitensegmenten met behulp 

van röntgen-microanalyse is voorbehandeling van het preparaat met kalium 

pyroantimonaat niet voldoende om diffusie van ionen tegen te gaan. 

Fishman, M.L., Obere, Μ.Α., Hess, H.H. en Engel, W.K. (1977) Exp. Eye 
Res. 24, 341-353. 
Läuchli, A. (1975) J. Microscopie Biol. Cell. 22, 239-246. 

VII 

De conclusie van Sen en Ray, dat inactivering van het (К + H )-ATPase uit de 

varkensmaag door ethanol het gevolg is van extractie van fosfolipiden uit de 

onmiddellijke omgeving van het enzym, is ongewettigd. 

Sen, P.C. en Ray, Т.К. (1980) Arch. Biochem. Biophys. 202, 8-17. 
Saccomani, G., Chang, H.H., Spisni, Α., Heiander, H.F., Spitzer, H.L. en 
Sachs, G. (1979) J. Supramol. Struct. 11, 429-444. 

VIII 

Het door Allgyer en Wells gevonden complexe kinetische gedrag van fosfolipase 

D uit savooiekool is mogelijk mede een gevolg van een nevenactiviteit van het 

enzym. 

Allgyer, T.T. en Wells, M.A. (1979) Biochemistry 18, 5348-5353. 
Davidson, F.M. en Long, С (1958) Biochem. J. 69, 458-466. 

IX 

Bij de beschrijving van een analytische bepalingsmethode voor nucleosiden 

dient meer aandacht besteed te worden aan de monster voorbereiding en de 

gevoeligheid van de methode bij biologisch relevante concentraties der 

nucleosiden. 

Rustum, Y.M. (1978) Anal. Biochem. 90, 289-299. 

Pallavicini, M.G. en Mazrimas, J.Α. (1980) J. Chromatogr. 183, 449-458. 

X 

Fosfatidylserine-decarboxylase uit Escherichia coli is niet goed bruikbaar om 

de transbilaag verdeling van fosfatidylseri ne en de invloed van dit lipide op 

de binding van opiaten aan membranen te bepalen vanwege zijn experimentele 

afhankelijkheid van aanwezigheid van het detergens Triton X-100. 

Abood, L.G., Salem, N., MacNeil, M. en Butler, M. (1978) Biochim. 
Biophys. Acta 530, 35-46. 
Warner, T.G. en Dennis, E.A. (1975) J. Biol. Chem. 250, 8004-8009. 



XI 

Bij studies naar de invloed van een dieet, dat deficient is in essentiële 

vetzuren, op de vetzuursamenstelling van biologische membranen wordt 

onvoldoende rekening gehouden met de noodzakelijke aanwezigheid van vitamine 

E om vetzuuroxydatie tegen te gaan. 

Anderson, R.E., Benolken, R.M., Dudley, P.A., Landis, D.J. en Wheeler, 
T.G. (1974) Exp. Eye Res. IB, 205-213. 
Tinoco, J., Miljanich, P. en Medwadowski, В. (1977) Biochim. Biophys. 
Acta 486, 575-578. 
Jager, F.C. (1975), in: The role of fats in human nutrition (A.J. 
Vergroesen, ed.). Academic Press, London, pp 381-432. 

XII 

3 
De conclusie van Sugden en Lilleyman uit hun experimenten met [ Η] thymidine, 

dat de thymidine inbouw in het DNA van leukemische lymfoblasten geremd wordt 

door autoloog plasma, is voorbarig bij gebrek aan gegevens omtrent de niet-

radioactieve thymidine concentratie in het plasma. 

Sugden, P.J. en Lilleyman, J.S. (1980) Brit. J. Haematol. 46, 367-375. 

XIII 

Bij grasparkieten is sexuele voorlichting onontbeerlijk voor hun voortplanting. 

Eigen waarneming. 

XIV 

De huidige belastingwetgeving is in strijd met de wet op gelijke behandeling 

van man en vrouw. 
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