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We study string field theory (third quantization) of the two-dimensional model of quantum geometry 
called generalized CDT (“causal dynamical triangulations”). Like in standard non-critical string theory 
the so-called string field Hamiltonian of generalized CDT can be associated with W -algebra generators 
through the string mode expansion. This allows us to define an “absolute” vacuum. “Physical” vacua 
appear as coherent states created by vertex operators acting on the absolute vacuum. Each coherent state 
corresponds to specific values of the coupling constants of generalized CDT. The cosmological “time” only 
exists relatively to a given “physical” vacuum and comes into existence before space, which is created 
because the “physical” vacuum is unstable. Thus each CDT “universe” is created as a “Big Bang” from the 
absolute vacuum, its time evolution is governed by the CDT string field Hamiltonian with given coupling 
constants, and one can imagine interactions between CDT universes with different coupling constants 
(“fourth quantization”)

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two-dimensional models can be useful when it comes to ad-
dressing a number of conceptual issues related to the quantization 
of geometry, simply because the corresponding quantum field the-
ory is well defined and explicit calculations can be performed. 
Here we will consider the model of quantum geometry denoted 
“causal dynamical triangulations” (CDT) [1]. The name refers to the 
regularization of the continuum theory, which is regularized by tri-
angulating spacetime in a specific way using the path integral for-
malism. The continuum limit is obtained when the cut-off, the link 
length a used in the triangulations, is removed. This limit is well 
defined and corresponds to quantized two-dimensional Hořava–
Lifshitz gravity1 (for Hořava–Lifshitz gravity see [4], for the CDT 
connection see [5]).

In two-dimensional CDT it is assumed that space, which is one-
dimensional, has the topology of a circle. CDT then describes the 
quantum “propagation” of space as a function of time. Here we 
will consider so-called generalized CDT (GCDT) where one allows 
space to split and join into disconnected circles as a function of 

E-mail addresses: ambjorn@nbi.dk (J. Ambjørn), watabiki@th.phys.titech.ac.jp
(Y. Watabiki).

1 CDT can be formulated also in higher dimensions, and also in that case there 
is seemingly a continuum limit of the regulated theory (see [2] for the original 
articles, [3] for a recent review).

time [6]. A complete “string field theory” which allows us to cal-
culate any such amplitude has been developed [7]. It is inspired by 
the string field theory for non-critical string theory [8–10]. Both 
theories are perturbative theories in the topology of the space-
time connecting the “incoming” (“initial”) spatial boundaries and 
the “outgoing” (“final”) spatial boundaries.2

In the case of non-critical string field theory W -algebras play 
an important role and are intimately related to integrable KP hi-
erarchies associated with non-critical string theories [13,10]. In 
the case of GCDT this relation is not yet fully developed, but 
most likely it exists. Multicritical GCDT and Ising models coupled 
to GCDT can be formulated [14] and the associated W -algebras 
can be identified [15]. However, here we will concentrate on the 
very simplest GCDT model, its associated W -algebra and a possible 
physical interpretation. In Section 2 we show how the W -algebra 
appears in GCDT and we discuss how the simplest W -Hamiltonian, 
being a Hamiltonian with no coupling constants and no spacetime
interpretation, contains the string field theory of GCDT and the 
seeds for a Big Bang. Section 3 contains conclusion and discussion.

2 It is even possible to perform certain sums over all topologies, both in the case 
of non-critical string field theories [11] and in the case of GCDT [12].
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2. The W - and GCDT Hamiltonians

The formal definition of a W (3) algebra in terms of operators 
αn satisfying

[αm,αn] = m δ0,n+m (1)

is the following

α(z) =
∑
n∈Z

αn

zn+1
, W (3)(z) = 1

3
: α(z)3 : =

∑
n∈Z

W (3)
n

zn+3
. (2)

The normal ordering :(·): refers to the αn operators (αn to the left 
of αm for n > m)3 and we have

W (3)
n = 1

3

∑
a+b+c=n

: αaαbαc : . (3)

In the W (3)-algebra related to non-critical string field theory α0 is 
identical zero (see [10] for details), but in the GCDT case α0 plays 
a special role and we thus write

αn =
⎧⎨
⎩

a†
n [n > 0]

p [n = 0]
−na−n [n < 0]

(4)

where the operators satisfy

[am , a†
n ] = δm,n [am, an ] = [a†

m, a†
n ] = 0 (5)

[q , p ] = i, [q , q ] = [ p , p ] = 0 (6)

[ p , a†
n ] = [ p , an ] = [q , a†

n ] = [q , an ] = 0. (7)

In (6) and (7) we have introduced an operator q conjugate to p =
α0. We then define the “absolute vacuum” |0〉 by the following 
condition:

an|0〉 = p|0〉 = 0 [n = 1,2, . . . ], (8)

and the so-called W -Hamiltonian ĤW :

ĤW := −W (3)
−2

= −
∑

n, m, l
[n+m+2=l ]

a†
na†

mlal −
∑

n, m, l
[n+2=m+l ]

a†
nmamlal

− 2
∑
n, l

[n+2=l ]

pa†
nlal − pa1a1 − 2p2a2. (9)

Note that ĤW does not contain any coupling constants.
Related to ĤW and the absolute vacuum we now define a gen-

erating functional with sources x, y

3 We remark that this ordering is opposite to the standard ordering one would 
use in conformal field theory. One can obtain the conventional ordering by the 
so-called �-operation [10], where one uses generating functionals like (10) to ex-
press the action of the αn operators by the action of differential operators acting 
on the sources of the generating functional. That is also the more precise way 
the W (3) algebra becomes related to integrable KP-hierarchies in non-critical string 
theory: certain Dyson–Schwinger equations satisfied by the generating functionals 
combined with the W (3)-algebra properties of the αn ’s represented as differential 
operators acting on the sources ensure integrability (see i.e. [10] for details for non-
critical string field theory and [15] for GCDT string field theory). Here we omit for 
transparency these technical details.

Z [x, y; T ] := 〈0|exp

( ∞∑
n=1

ynan

)
e−T ĤW exp

( ∞∑
n=1

xna†
n

)
|0〉 (10)

The states in the Hilbert space H associated with ĤW are obtained 
by acting repeatedly on the absolute vacuum |0〉 with the opera-
tors a†

n and q. Such an “initial” state is then “propagated” a “time” 
T and projected onto a similar “final” state. These amplitudes can 
be obtained from the generating functional Z [x, y; T ] by differen-
tiation with respect to x and y. However, we should stress that 
at this point there is no compelling reason to denote T a (Eu-
clidean) time and the form of ĤW does not suggest any obvious 
geometry-interpretation. One could equally well view T as an “in-
verse temperature” and use Z [x, y; T ] to calculate the correspond-
ing partition function. Here we will view the states and dynamics 
associated with ĤW as “pre-geometry”, and only by a projection 
onto a subspace of H the parameter T will get an interpretation 
as (Euclidean) time and the states will obtain an interpretation 
as spatial geometries, and the amplitudes will then be probability 
amplitudes for the propagation of spatial geometries in (Euclidean) 
time. This reinterpretation of ĤW will be made by relating it to the 
standard string field Hamiltonian Ĥ of GCDT defined relatively to 
a “physical” vacuum |vac〉.

Recall the following representation of the GCDT Ĥ (the one 
originally used in [7]):

Ĥ = Ĥ0 − g

∫
dL1

∫
dL2 �†(L1)�

†(L2) (L1 + L2)�(L1 + L2)

− gG

∫
dL1

∫
dL2 �†(L1 + L2) L2�(L2) L1�(L1)

−
∫

dLρ(L)�(L), (11)

where

Ĥ0 =
∞∫

0

dL �†(L)H0�(L), H0 = − ∂2

∂L2
L + μL,

ρ(L) = δ(L), (12)

and where the operators �(L) and �†(L) satisfy

[�(L),�†(L′)] = δ(L − L′), �(L)|vac〉 = 0. (13)

In (11) �†(L) creates a spatial universe of length L from the phys-
ical vacuum |vac〉. The vectors |L〉 = �†(L)|vac〉, L positive, span 
the Hilbert space where H0 is defined (see [7] for details). Ĥ rep-
resents a third quantization in the sense that space can be created 
from the vacuum |vac〉 by acting with �†(L) and annihilated by 
acting with �(L). Thus Ĥ0 propagates spatial slices in time, can 
change their lengths but cannot merge or split the spatial splices. 
μ denotes the cosmological constant and acts to limit the growth 
of the spatial universe. The second term on the rhs of (11) splits 
a spatial slice of length L1 + L2 in two slices of lengths L1 and 
L2, governed by a coupling constant g of mass dimension 3. The 
third term on the rhs of (11) merges two spatial slices of length 
L1 and L2 into one slice of length L1 + L2, governed by a cou-
pling constant g · G , where G is dimensionless and is introduced 
to allow for a potential asymmetry between splitting and joining. 
Finally the fourth term on the rhs of (11) is a tadpole term which 
allows a spatial slice to disappear into the vacuum, but only if its 
length is zero. Thus the interaction terms in Ĥ preserve the to-
tal length of the spatial slices and any expansion or contraction of 
the universe is caused by Ĥ0 and the coupling constant for topol-
ogy change of spacetime is g2G . Ĥ is not Hermitian because of 
the tadpole term (and also if G �= 1), but that is always the case 
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for non-critical string field theory and is enforced upon us by the 
requirement of stability of the vacuum.

We now make a so-called mode expansion of Ĥ . The modes φn , 
φ

†
n are defined as follows

�(−ζ ) =
∞∑

n=1

φn ζn, �†(ζ ) = 1

ζ
+

∞∑
n=1

φ
†
n

ζn+1
(14)

where

�†(ζ ) =
∞∫

0

dL e−ζ L�†(L), (15)

and similar for � . By construction we have

φn|vac〉 = 0, [φn, φ
†
m] = δn,m. (16)

and after some algebra (see [15] for more details and mode expan-
sions also for GCDT coupled to matter) we obtain

Ĥ = μφ1 − 2gφ2 − gGφ1φ1 −
∞∑

l=1

φ
†
l+1lφl + μ

∞∑
l=2

φ
†
l−1lφl

− 2g
∞∑

l=3

φ
†
l−2lφl − g

∞∑
l=4

l−3∑
n=1

φ
†
nφ

†
l−n−2lφl

− gG
∞∑

l=1

∞∑
m=max(3−l,1)

φ
†
m+l−2mφmlφl. (17)

Let us now relate the physical vacuum |vac〉 to the absolute 
vacuum |0〉 and ĤW to Ĥ . We define the physical vacuum as the 
following coherent state relative to the absolute vacuum:

|ν〉 = eiνq|0〉, |vac〉ν = V (λ1, λ3) |ν〉, (18)

V (λ1, λ3) := exp

(
−|λ1|2

2
− |λ3|2

2
+ λ1a†

1 + λ3a†
3

)
(19)

and we have

a1|vac〉ν = λ1|vac〉ν a3|vac〉ν = λ3|vac〉ν
p|vac〉ν = ν|vac〉ν . (20)

From eq. (20) it follows that if we choose

λ1 = − μ

2g
√

G
λ3 = 1

6g
√

G
ν = 1√

G
(21)

and make the identification

an → V (λ1, λ3)an V −1(λ1, λ3) = an − λ1δn,1 − λ3δn,3

:= √
G φn (22)

a†
n → V (λ1, λ3)a†

n V −1(λ1, λ3) := 1√
G

φ
†
n (23)

then eqs. (5) and (8) become consistent with (16). We can finally 
write

g
√

G ĤW

∣∣∣
p=1/

√
G

= Ĥ − 1

G

(
μ2

4g
+ 1

4g
φ

†
4 − μ

2g
φ

†
2 + φ

†
1

)
(24)

valid on the subspace of H where the eigenvalue of p is 1/
√

G . 
This is our basic relation. By acting with the vertex operator 
V (λ1, λ3) defined in (19) on the absolute vacuum |0〉 we create a 

condensation of φ†
1, φ†

3 and q modes. This condensate defines the 
coupling constants of a GCDT string field theory, but if our starting 
point is ĤW the corresponding GCDT vacuum |vac〉ν is unstable, as 
is clear from (24).

It is the condensation of φ†
3 which creates a non-zero λ3 and 

it is this non-zero λ3 which results in the appearance of the term 
− 

∑∞
l=1 φ

†
l+1lφl . Such a term is necessary if we want to have the 

possibility of an expanding universe. In the physical vacuum |vac〉
the universe can thus both expand and contract and the parame-
ter T multiplying the Hamiltonian can then be interpreted as the 
time-evolution parameter of the universe. One can say that time T
refers to a vacuum |vac〉ν and only allows for an interpretation as 
the cosmological time of a spacetime after |vac〉ν is introduced.

3. Discussion

We have attempted to create a model of the universe where 
there is an “absolute” vacuum |0〉 and a “pre-geometry” Hamilto-
nian ĤW . We were inspired by non-critical string field theory to 
choose the simplest possible non-trivial ĤW , related to the W (3)

algebra. The corresponding partition function (10) can most likely 
be related to a tau-functions of a KP hierarchy (details are being 
worked out), but as mentioned the system does not offer an obvi-
ous interpretation as a dynamical system for spacetime. However, 
acting with a vertex operator on the absolute vacuum brings us 
to a coherent state (18), |vac〉ν , which has non-zero overlap to 
the absolute vacuum. We denote |vac〉ν a “physical” vacuum be-
cause the corresponding action (22) on creation and annihilation 
operators, which amounts to a simple shift of expectation values 
of the operators in ĤW , leads to an interpretation of ĤW as a 
Hamiltonian which creates, annihilates and changes space, thus 
creating a dynamical spacetime, relative to this physical vacuum. 
At the same time the simple shifts of expectation values define 
the coupling constants of the string field Hamiltonian which gov-
erns the evolution. Clearly this process has some resemblance to 
standard spontaneous symmetry breaking where the vacuum ex-
pectation values of a field might define the values of some of the 
coupling constants of the theory. At the same time this “symme-
try breaking” becomes the source of a “Big Bang”, the creation of 
a universe from nothing since ĤW |p=1/

√
G contains the creation 

operators which will act non-trivially on |vac〉ν . Once the choice 
of |vac〉ν is made T can be viewed as a cosmological time and 
space can next be created due to the instability of |vac〉ν with re-
spect to ĤW . The origins of space and time are thus different in 
our model, time being a “precursor” for space, a point also empha-
sized in [16] although from a different perspective. Many universes 
can be created and they can join and split as a function of T and 
we can explicitly calculate such amplitudes [7]. Let H(λ1, λ3, ν)

be the Fock space spanned by states obtained by acting repeatedly 
with the φ†

n operators on |vac〉ν . In the larger Hilbert space H of 
ĤW we have that

H(λ′
1, λ

′
3, ν

′) ⊥ H(λ1, λ3, ν) for ν ′ �= ν (25)

since the operator p is Hermitian. However, all Hilbert spaces with 
the same value of ν but different values of λ1 and λ3 are identi-
cal since the overlaps between different coherent states created 
by acting with V (λ1, λ3) for different values of λ1 and λ3 are 
non-zero. Thus universes with different coupling constants can in 
principle interact if we can provide a suitable interaction term and 
this interaction could change the values of the coupling constants 
of the universes. One could call such a scenario a “fourth quantiza-
tion” since our string field theory is already a “third quantization” 
as mentioned above. One could imagine to use such change in cou-
pling constants to explain aspects of inflation, provided suitable 
higer-dimensional models can be consistently formulated [15].
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This brings us to a missing ingredient in our construction, 
namely a mechanism for choosing a specific physical vacuum 
|vac〉ν . Being minimalistic one could say that the probability 
P (λ1, λ2) of being in a universe corresponding to a given choice 
of cosmological constant and a given choice of coupling constant g
would be given related to the overlap between |0〉 and |vac〉ν , i.e.

P (λ1, λ3) ∝
∣∣∣〈0|vac〉ν

∣∣∣2 ∝ e−λ2
1−λ2

3 (26)

where the relation between coupling constants and λ1 and λ3 is 
given by eqs. (21), but it would be desirable to have a dynamical 
mechanism for selecting |vac〉ν . Also, a statement like (26) does 
not make much sense if one allows interactions between universes 
with different coupling constants.

It would be interesting to generalize the model to include mat-
ter, in particular in such a way that the choice of physical vacuum 
|vac〉 would not only be a choice of the coupling constants related 
to geometry but also a choice of matter content. Understanding the 
mechanism for the choice of such |vac〉 would be exciting. Equally 
exciting is the possibility to extend the considerations here to gen-
uine four-dimensional models. All this indeed seems possible [15].
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