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1 Introduction

It has long been known that the Standard Model cannot be the final theory of particle

physics. Issues such as the hierarchy problem or the absence of a satisfactory description

of dark matter or gravity lead theoretical physicists to develop more fundamental theories.

Supersymmetry is one of those theories, and the Minimal Supersymmetric Standard Model
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(MSSM) will be one of the main focuses for the second run of the Large Hadron Collider.

If signs of supersymmetry are indeed found, theorists will face the issue of figuring out

the exact underlying theoretical description. In case of the MSSM, this problem includes

finding the exact mechanism of supersymmetry breaking. If supersymmetry is a symme-

try of nature, every particle must have the same mass as its superpartner. Since this is

clearly not the case, supersymmetry must be broken. The MSSM accounts for several

breaking mechanisms by incorporating all possible soft supersymmetry breaking terms in

its Lagrangian. If any of the several possible breaking mechanisms is realized in nature,

this will be signified by a characteristic unification of some soft supersymmetry breaking

parameters at a high energy scale.

These unifications can be studied through renormalization group (RG) techniques.

Typical strategies include evolving the values of measured parameters upward to the uni-

fication scale (bottom-up), or choosing values of the parameters at the unification scale

that are evolved downward (top-down). We will discuss a third method that makes use of

RG invariant combinations of RG equations, called RG invariants. Using RG invariants to

probe high-scale physics, has several distinct advantages over the bottom-up and top-down

methods [1–3]. Finding these invariants can be very difficult though. In this paper we

will discuss two different methods to find RG invariants. One method relates invariants to

symmetries of the underlying theory and the other is based on computer algebraic tech-

niques. Both methods will be applied to the MSSM, the diagonal MSSM (dMSSM), and

the phenomenological MSSM (pMSSM) to find invariants up to two-loop order.

The paper is organized as follows. In section 2 we describe the method of RG invariants

and its merits. In section 3 we investigate whether some of these RG invariants can be

related to symmetries of the underlying theory. For this underlying theory we will consider

the MSSM, dMSSM, and pMSSM. In section 4 a generic computer algebraic method for

finding RG invariants is introduced. This method is used to find previously unknown

invariants at one- and two-loop level within the aforementioned supersymmetric theories.

2 Probing high-scale physics with RG invariants

Let us consider a renormalized theory with a running parameter p(µ). We define the

corresponding β-function as follows:

β(p) ≡ 16π2
dp

dt
, (2.1)

where t ≡ log10(µ/µ0). The energy scale µ is normalized by an arbitrary reference scale µ0
to make the logarithm dimensionless. For quantum field theories, the one-loop β-functions

are polynomials of the parameters of the theory with rational coefficients. Higher order

contributions contain additional factors of 1/(16π2).

How could RG invariants be used to probe high-scale physics? We will explain this

through a toy system of one-loop β-functions for the parameters v, w, x, y, z that closely

resembles some of the one-loop MSSM β-functions; we define

β(v) = v3, (2.2a)
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β(w) = v2 (5w + 6x− 4y) , (2.2b)

β(x) = v2 (−w − 2x+ 4z) , (2.2c)

β(y) = v2 (x+ y − 5z) , (2.2d)

β(z) = v2 (w − 2y + 6z) . (2.2e)

This system of β-functions was built such that the parameter v resembles a gauge coupling

parameter, while w, x, y, z resemble MSSM scalar masses. An RG invariant is an algebraic

combination of parameters I, such that

d

dt
I = 0. (2.3)

As it turns out, two independent RG invariants can be constructed from the β-functions

given by eqs. (2.2a)–(2.2e); we define

I1 ≡ w + 3x− 2z, I2 ≡ x+ 2y + z. (2.4)

Supersymmetry breaking mechanisms typically predict the unification of scalar masses at

some large, experimentally inaccessible energy scale. We can use the invariants in (2.4) to

check whether the unification of w, x, y, z is realized in nature. Suppose that these scalar

masses unify to the value s at some scale, then we would have

I1 = 2s, I2 = 4s, (2.5)

from which it follows that

2I1 − I2 = 0. (2.6)

Such a relation between RG invariants is called a sum rule. Since I1 and I2 are invariant

under RG flow, sum rules such as eq. (2.6) remain true at all energy scales, if unification

occurs. In particular, sum rules can be checked at the collider scale, potentially falsifying

the assumed unification.

The approach using RG invariants avoids a number of issues that the top-down and

bottom-up methods suffer from. The top-down method requires knowledge of both the

unification scale and value in order to evolve the parameters down to experimentally ac-

cessible scales. Since theory does not predict these values with much accuracy, scans are

typically performed over a range of scales and values. These scans can be computationally

very time-consuming (depending on the number of unifying parameters), and are often not

feasible. The use of RG invariants requires no knowledge of the unification scale or value

whatsoever, so that this problem is avoided.

The bottom-up method does not require knowledge of unifying scales or values either,

but suffers from a different problem resulting from the numerical evolution of experimental

input values. When parameters are evolved up to higher scales, any experimental errors

are typically greatly enhanced. Figure 1 shows the running effects of a slight change of

one of the low-scale values of the parameters v, w, x, y, z when w, x, y, z unify at some high

scale. After the slight change, the evolution of the parameters no longer shows any sign of

unification whatsoever. The use of RG invariants circumvents such numerical problems.
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Figure 1. Left: the evolution of the parameters v, w, x, y, z according to their one-loop β-

functions (2.2a)–(2.2e). The parameters w, x, y, z unify at t = 16 to the value 10. Right: the

initial value of y at t = 2 is raised by 1%.

Finally, it is usually not necessary to know all parameters of the theory when using RG-

invariants as probes of high-scale physics. The β-functions for most theories are heavily

coupled differential equations, and hence evolving the relevant parameters of a theory

usually requires the evolution of all other parameters of the theory as well. In our example

the sum rule of eq. (2.6) does not involve the parameter v, which does not participate in

the unification anyway. Both the top-down and bottom-up methods also require a value

for v to numerically evolve the other parameters.

Constructing RG invariants is generally a very non-trivial matter. To find invariants,

we will not use the “standard” algebraical techniques that are used in for example [3].

Instead, we will consider two different, more efficient methods: one relies on symmetries

of the underlying theory, and the other is based on computer algebraic techniques. Both

methods will be applied to find invariants for the MSSM, the dMSSM, and the pMSSM.

3 RG invariants from symmetries

First, we will look at the construction of RG invariants from a perspective that involves

symmetries of the underlying theory. The existence of such a relation between symmetries

and invariants was suggested by [2] in the context of the pMSSM. As yet, no compelling

arguments or proof of this has been presented though. First we will consider the MSSM,

then we will study a “flavor-diagonal” version of the MSSM (the dMSSM), and, finally,

the pMSSM will be discussed. All nomenclature regarding MSSM, dMSSM, and pMSSM

fields and parameters is defined in appendices A, B, and C respectively.

3.1 The MSSM

In this subsection we attempt to construct RG invariants in the MSSM. So far, RG invari-

ants have only been constructed for heavily constrained supersymmetric models, such as the

pMSSM [2, 3]. We will attempt to construct invariants for the full 168-parameter MSSM.
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3.1.1 Known invariants

We expect that some invariants that have been found in the pMSSM also exist in the

MSSM, since the simplifications of the pMSSM with respect to the MSSM mainly apply to

the family sector, and, for example, not at all to the gauge sector. The following invariants

that have been found in the pMSSM are also invariants in the MSSM, which can be checked

easily with the β-functions in appendix A.4. In the combined gauge and gaugino sectors,

we can construct three invariants:1

I1 ≡
M1

g′2
, I2 ≡

M2

g2
, I3 ≡

M3

g2s
, (3.1)

and in the pure gauge sector we have

I4 ≡
1

g′2
− 11

g2
, I5 ≡

3

g′2
+

11

g2s
. (3.2)

Finally, the invariant that involves the quantity S turns out to be an invariant of the MSSM

as well:

I6 ≡
S

g′2
. (3.3)

Thus, six invariants that we already know from the pMSSM carry over trivially to the

MSSM.

3.1.2 New invariants

As we know from [2, 3], all remaining invariants in the pMSSM (there exist eight more be-

sides I1, . . . , I6) involve scalar masses only, or combinations of scalar and gaugino masses.2

For this reason, we will now focus on these sectors in the MSSM to see if more invariant

quantities can be constructed.

Let us now try to construct invariants from the one-loop β-functions of the soft scalar

masses and gaugino masses that are listed in appendix A.4. The first thing we note when

we look at the β-functions for the soft scalar masses, is that no invariants can possibly be

constructed for the off-diagonal terms of the sfermion mass matrices. The reason for this

is that the order in which the family space matrices (i.e. the Yukawa and trilinear coupling

matrices) appear is different for all five β-functions of the sfermion mass matrices. In other

words, there are simply too many different structures present. In order to avoid this, we

need to work with terms that are insensitive to this order of matrices. Hence, a logical step

would be to consider the β-functions for the traces of the sfermion mass matrices. These

β-functions are given by

β
[
Tr(m2

Q̃
)
]

= −24Y 2
Q̃L
g′2|M1|2 − 18g2|M2|2 − 32g2s |M3|2 + 6Y

Q̃L
g′2S

+ 2 Tr
(
m2
Hu
y†uyu +m2

Q̃
y†uyu + y†um

2
ũyu + a†uau

)
1Strictly speaking there are six invariants: these three, plus their complex conjugates.
2Actually, in the pMSSM two more invariants exist that involve the Higgs mixing parameters µ and b,

but as argued in [3] these are useless to probe high-scale physics models. For completeness, though, they

are listed in appendix D.
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+ 2 Tr
(
m2
Hd
y†dyd +m2

Q̃
y†dyd + y†dm

2
d̃
yd + a†dad

)
, (3.4a)

β
[
Tr(m2

L̃
)
]

= −24Y 2
L̃L
g′2|M1|2 − 18g2|M2|2 + 6Y

L̃L
g′2S

+ 2 Tr
(
m2
Hd
y†eye +m2

L̃
y†eye + y†em

2
ẽye + a†eae

)
, (3.4b)

β
[
Tr(m2

ũ)
]

= −24Y 2
ũ∗R
g′2|M1|2 − 32g2s |M3|2 + 6Yũ∗Rg

′2S

+ 4 Tr
(
m2
Hu
y†uyu +m2

Q̃
y†uyu + y†um

2
ũyu + a†uau

)
, (3.4c)

β
[
Tr(m2

d̃
)
]

= −24Y 2
d̃∗R
g′2|M1|2 − 32g2s |M3|2 + 6Y

d̃∗R
g′2S

+ 4 Tr
(
m2
Hd
y†dyd +m2

Q̃
y†dyd + y†dm

2
d̃
yd + a†dad

)
, (3.4d)

β
[
Tr
(
m2
ẽ

)]
= −24Y 2

ẽ∗R
g′2|M1|2 + 6Yẽ∗Rg

′2S

+ 4 Tr
(
m2
Hd
y†eye +m2

L̃
y†eye + y†em

2
ẽye + a†eae

)
, (3.4e)

β(m2
Hu

) = −8Y 2
Hu
g′2|M1|2 − 6g2|M2|2 + 2YHug

′2S

+ 6 Tr
(
m2
Hu
y†uyu +m2

Q̃
y†uyu + y†um

2
ũyu + a†uau

)
, (3.4f)

β(m2
Hd

) = −8Y 2
Hd
g′2|M1|2 − 6g2|M2|2 + 2YHd

g′2S

+ 6 Tr
(
m2
Hd
y†dyd +m2

Q̃
y†dyd + y†dm

2
d̃
yd + a†dad

)
+ 2 Tr

(
m2
Hd
y†eye +m2

L̃
y†eye + y†em

2
ẽye + a†eae

)
, (3.4g)

where, for convenience, we have also added the β-functions for m2
Hu

and m2
Hd

(which

already involved traces).

In the MSSM, all interactions in family space are described by the Yukawa terms in

the superpotential and the soft supersymmetry breaking trilinear terms (cf. appendix A.2).

In case that the order of the family space matrices does not matter by taking a trace, then

these interactions give rise to three different trace structures in (3.4a)–(3.4g), labeled by

u, d, and e. These trace structures each belong to one of the three Yukawa and trilinear

interaction terms in the superpotential and the soft breaking Lagrangian respectively, and

each of those terms involves a unique set of three scalar fields. For example, the terms in

the MSSM Lagrangian that give rise to the trace structure that features the label u are

∆WMSSM = ũ†Ryu(Q̃L)α(Hu)α, ∆Ltril. = −ũ†Rau(Q̃L)α(Hu)α + h.c. (3.5)

Note that the coefficients of the three trace structures are different for the various

scalar masses. This is because in the β-functions no traces have been carried out over the

gauge degrees of freedom of the corresponding scalar fields. How is this to be understood?

Let us consider the trilinear interaction between the fields ũR, Q̃L, and Hu, as well as the

one-loop corrections to the scalar propagators that this interaction gives rise to. These

three fields can all occur as external fields or inside loops. The gauge degrees of freedom

that are “closed” inside the loops (i.e. those gauge degrees of freedom that the external

fields do not possess) are summed over. Say we take ũR to be the external field, then

– 6 –
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there is an SU(2) doublet degree of freedom inside the loop that has to be “traced over”,

giving a factor of 2. If we had taken Hu to be the external field, then a trace over SU(3)

degrees of freedom inside the loop would have resulted, giving a factor of 3, etc. Hence,

if we multiply the β-functions (3.4a)–(3.4g) by the factors that result from summing over

the gauge degrees of freedom of the external scalar fields, then all three trace structures

each get exactly the same coefficients.

How many RG invariants do we expect to find in the soft scalar and gaugino sectors?

We have ten equations (seven β-functions for the scalar masses and three for the gaugino

masses) that contain seven different structures (three trace structures, three gaugino masses

and S). Having ten equations to eliminate seven different terms should give 10 − 7 = 3

independent RG invariants.

To construct invariant quantities from these β-functions, we can first try to get rid

of the three different trace structures. To cancel these structures, we could consider a

linear sum of the β-functions (3.4a)–(3.4g), appropriately multiplied by numbers of gauge

degrees of freedom, such that the coefficients of this sum add up to zero for each trace

structure. Now we can use the fact that each trace structure corresponds to a unique

combination of three scalar fields in the Lagrangian. For the cancellation to take place, we

should assign quantum numbers to these groups of three fields that each add up to zero,

which is equivalent to saying that the quantum number should be conserved by all family

space interactions. This means that to cancel the Yukawa and trilinear contributions to

the β-functions, we should consider U(1) symmetries of the MSSM family sector. More

specifically, for any quantum number Q that pertains to a symmetry U(1)Q of the MSSM

family sector, the β-function of the quantity

Tr

(∑
φ

Qφm
2
φ

)
, (3.6)

with the sum running over all scalar fields φ, does no longer contain the three trace struc-

tures. Note that sums like the one in (3.6) over fields that occur inside family space traces

are implicitly understood to be over all gauge degrees of freedom of the gauge multiplets.3

What could the quantum number Q be? As is discussed in appendix A.3, the relevant

U(1) symmetries correspond to the quantum numbers weak hypercharge (Y ), baryon num-

ber (B), lepton number (L), and X. Table 1 provides the quantum numbers Y,B,L,X for

all scalar fields in the MSSM. The presence of exactly four independent U(1) symmetries in

the family sector of the MSSM can be explained as follows: from table 1 we infer that this

sector of the theory is constituted by seven scalar multiplets. We can regard each set of

quantum numbers pertaining to a given symmetry as being a vector in a seven-dimensional

vector space. This vector is subject to three independent symmetry constraints coming

from the interaction terms in the superpotential and the soft trilinear terms (the terms in

eq. (3.5) give one of these constraints). This means that we can construct 7−3 = 4 linearly

independent vectors in this space, i.e. four sets of quantum numbers each corresponding to

a different U(1) symmetry.

3For the field Q̃L, for example, such a sum would give a factor of 2 for SU(2) and a factor of 3 for SU(3)

degrees of freedom, yielding a total multiplication by 6.
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Spin 0 Y B L X

Q̃L
1
6

1
3 0 1

L̃L −1
2 0 1 1

ũ∗R −2
3 −1

3 0 1

d̃∗R
1
3 −1

3 0 1

ẽ∗R 1 0 −1 1

Hu
1
2 0 0 −2

Hd −1
2 0 0 −2

Table 1. The quantum numbers Y,B,L,X for all MSSM scalar fields.

We now know how to get rid of the three family space trace structures in eqs. (3.4a)–

(3.4g), but what about the other terms present? Can quantum numbers also be used to

eliminate the remaining structures (i.e. S and the three absolute squared gaugino masses

|M1|2, |M2|2, |M3|2)? For any Q, we have

β

[
Tr

(∑
φ

Qφm
2
φ

)]
= 2

(∑
φ

YφQφ

)
g′2S − 8

(∑
φ

Y 2
φQφ

)
g′2|M1|2

− 6

(∑
d

Qd

)
g2|M2|2 −

32

3

(∑
t

Qt

)
g2s |M3|2, (3.7)

where d denotes the scalar weak isospin doublets and t the scalar color triplets. Note that

sums without any family space traces involved are implicitly understood to be over all

families as well (besides the gauge degrees of freedom).4 From eq. (3.7) it directly follows

that to eliminate S, |M1|2, |M2|2, |M3|2 respectively, we must have:∑
φ

YφQφ = 0,
∑
φ

Y 2
φQφ = 0,

∑
d

Qd = 0,
∑
t

Qt = 0. (3.8)

The latter three sums over charges are reminiscent of mixed anomaly cancellations of the

charge Q with the separate gauge groups that we know from for example the Standard

Model.

Which quantum numbers actually satisfy the requirements in (3.8)? This is summa-

rized in table 2. From this table it follows that to eliminate S, suitable quantum numbers

would be 3B + L, 11(B − L)− 8Y , and X. For the cancellation of |M1|2, we could use Y ,

B − L, or 16B + 3X, while for |M2|2 the quantum numbers Y , B − L, and 8B − 3X are

suitable. For |M3|2 to cancel, we could pick Y , B, or L. Naturally, linear combinations of

these quantum numbers also work.

From eq. (3.7), as well as from the β-functions for the gaugino masses (A.20) and

S (A.23), it follows that any one-loop RG invariant I in the MSSM that involves scalar

4This simply amounts to an additional factor of 3 for all sfermions.
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Quantity Sum Y B L X

S
∑

φ YφQφ 11 2 −6 0

|M1|2
∑

φ Y
2
φQφ 0 −3

2 −3
2 8

|M2|2
∑

dQd 0 6 6 16

|M3|2
∑

tQt 0 0 0 36

Table 2. The evaluation of the sums that are related to the elimination requirements (3.8) for the

quantities S, |M1,2,3|2, given for the quantum numbers Y,B,L,X. The outcome 0 for a certain

quantum number indicates that this quantum number is suitable for eliminating the corresponding

quantity from the β-functions (3.4a)–(3.4g).

masses and gaugino masses, is of the following form:

IQ = Tr

(∑
φ

Qφm
2
φ

)
− 1

11

∑
φ

YφQφS +
2

11

∑
φ

Y 2
φQφ|M1|2 +

3

2

∑
d

Qd|M2|2

− 8

9

∑
t

Qt|M3|2, (3.9)

where Q is any quantum number that is preserved by all MSSM family space interactions

(i.e. Q must be a linear combination of Y,B,L,X).

Now we are ready to construct RG invariants using table 2 and eq. (3.9). From table 2

we infer that the quantum number 11(B − L) − 8Y cancels S and all gaugino masses, as

this linear combination of Y,B,L vanishes for each row in the table. This leads us to define

the following RG invariant:

I7 ≡ Tr

(∑
φ

(11Bφ − 11Lφ − 8Yφ)m2
φ

)
= Tr

(
14m2

Q̃
− 14m2

L̃
+ 5m2

ũ − 19m2
d̃

+ 3m2
ẽ

)
− 8m2

Hu
+ 8m2

Hd
. (3.10)

If we wish to construct an invariant where both S and |M3|2 are eliminated by a symmetry,

then we could use the quantum number 3B + L. We define

I8 ≡ Tr

(∑
φ

(3Bφ + Lφ)m2
φ

)
+

2

11

∑
φ

Y 2
φ (3Bφ + Lφ)|M1|2 +

3

2

∑
d

(3Bd + Ld)|M2|2

= Tr
(

6m2
Q̃

+ 2m2
L̃
− 3m2

ũ − 3m2
d̃
−m2

ẽ

)
− 12

11
|M1|2 + 36|M2|2. (3.11)

For the third and last independent invariant in this sector, let us pick the quantum number

X (which only cancels S) and define5

I9 ≡ Tr

(∑
φ

Xφm
2
φ

)
+

2

11

∑
φ

Y 2
φXφ|M1|2 +

3

2

∑
d

Xd|M2|2 −
8

9

∑
t

Xt|M3|2

5Even though we have four symmetries at hand, only three independent RG invariants can be con-

structed. This is because taking Q ∝ Y gives IQ = 0. In fact, the quantum number Y has already been

used for the invariant that involves the quantity S (cf. eq. (3.3)).
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= Tr
(

6m2
Q̃

+ 2m2
L̃

+ 3m2
ũ + 3m2

d̃
+m2

ẽ

)
− 4m2

Hu
− 4m2

Hd
+

16

11
|M1|2

+ 24|M2|2 − 32|M3|2. (3.12)

3.2 The dMSSM

Let us consider a constrained version of the MSSM, the so-called dMSSM, where all matri-

ces in family space (i.e. the sfermion mass matrices and the Yukawa and trilinear coupling

matrices) are taken diagonal (cf. appendix B for a more extensive discussion of the dMSSM),

and let us again focus on the soft scalar and gaugino sectors to find RG invariants. In this

particular model, we have twenty equations (fifteen β-functions for the sfermion masses,

two for the Higgs masses, and three for the gaugino masses) containing thirteen different

structures (nine structures coming from the diagonal components of the Yukawa and tri-

linear coupling matrices, three gaugino masses, and S). Eliminating only thirteen different

terms using twenty equations would result in 20 − 13 = 7 RG invariant quantities for this

simplified model, on top of I1, . . . , I6.

The “traced” β-functions for this simplified model are again given by eqs. (3.4a)–

(3.4g) and, as we discussed in the previous subsection, give rise to three independent RG

invariants of the form (3.9). Thus, the invariants I7, I8, I9 are also invariants in this model.

How can we construct the remaining four invariants? Can we again benefit from symmetry

arguments?

As we have taken all family space matrices diagonal, there is no longer any flavor mixing

present. In other words, the three (s)fermionic generations have completely decoupled. This

means that the baryon and lepton numbers are separately conserved for each generation, i.e.

B and L can now be split up into B1, B2, B3 and L1, L2, L3 respectively.6 Table 3 provides

all quantum numbers that pertain to (independent) U(1) symmetries of the dMSSM. The

completeness of this list can be shown in the same way as we did for the MSSM: from

table 3 and appendix A.2 we infer that we have seventeen gauge multiplets that are subject

to three constraints per generation. Hence there must be 17− 3× 3 = 8 independent U(1)

symmetries in this model.

Since there are four new independent symmetries in the dMSSM with respect to the

MSSM, four additional invariants of the form

IQ =
∑
φ

Qφm
2
φ −

1

11

∑
φ

YφQφS +
2

11

∑
φ

Y 2
φQφ|M1|2 +

3

2

∑
d

Qd|M2|2 −
8

9

∑
t

Qt|M3|2

(3.13)

can be constructed. Clearly, the quantum numbers B1−B2, B1−B3, L1−L2, and L1−L3

automatically eliminate both S and all gaugino masses. We define

I10 ≡
∑
φ

(B1φ −B2φ)m2
φ = 2m2

Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃2
+m2

ũ2
+m2

d̃2
, (3.14a)

I11 ≡
∑
φ

(B1φ −B3φ)m2
φ = 2m2

Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃3
+m2

ũ3
+m2

d̃3
, (3.14b)

6Note that two linear combinations of these six quantum numbers are equivalent to B and L, namely

the combinations B1 +B2 +B3 and L1 + L2 + L3 respectively.
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Spin 0 Y B1 B2 B3 L1 L2 L3 X

(Q̃L)1
1
6

1
3 0 0 0 0 0 1

(Q̃L)2
1
6 0 1

3 0 0 0 0 1

(Q̃L)3
1
6 0 0 1

3 0 0 0 1

(L̃L)1 −1
2 0 0 0 1 0 0 1

(L̃L)2 −1
2 0 0 0 0 1 0 1

(L̃L)3 −1
2 0 0 0 0 0 1 1

(ũ∗R)1 −2
3 −1

3 0 0 0 0 0 1

(ũ∗R)2 −2
3 0 −1

3 0 0 0 0 1

(ũ∗R)3 −2
3 0 0 −1

3 0 0 0 1

(d̃∗R)1
1
3 −1

3 0 0 0 0 0 1

(d̃∗R)2
1
3 0 −1

3 0 0 0 0 1

(d̃∗R)3
1
3 0 0 −1

3 0 0 0 1

(ẽ∗R)1 1 0 0 0 −1 0 0 1

(ẽ∗R)2 1 0 0 0 0 −1 0 1

(ẽ∗R)3 1 0 0 0 0 0 −1 1

Hu
1
2 0 0 0 0 0 0 −2

Hd −1
2 0 0 0 0 0 0 −2

Table 3. All quantum numbers that pertain to U(1) symmetries of the dMSSM family sector. The

dashed lines separate the different family multiplets.

I12 ≡
∑
φ

(L1φ − L2φ)m2
φ = 2m2

L̃1
−m2

ẽ1
− 2m2

L̃2
+m2

ẽ2
, (3.14c)

I13 ≡
∑
φ

(L1φ − L3φ)m2
φ = 2m2

L̃1
−m2

ẽ1
− 2m2

L̃3
+m2

ẽ3
. (3.14d)

3.3 The pMSSM

For the pMSSM, with respect to the dMSSM, there are a couple of additional constraints:

the first two generations of sfermions are mass degenerate, and the Yukawa and trilinear

coupling matrices only have non-zero entries for the third generation sfermions (cf. ap-

pendix C for a more extensive discussion of the pMSSM). This means that for the pMSSM

we have fifteen equations (ten β-functions for the sfermion masses, two for the Higgs masses,

and three for the gaugino masses) to eliminate seven different structures (three structures

coming from the (33)-components of the Yukawa and trilinear coupling matrices, three

gaugino masses, and S), which should yield 15 − 7 = 8 invariant quantities on top of

I1, . . . , I6. Indeed, for the pMSSM eight RG invariant quantities have been constructed

in [2, 3] that involve scalar and gaugino masses only. Can we construct these invariants

also based on our approach involving symmetries?
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Spin 0 Y1 Y B1 B3 L1 L3 X1` X1q X

(Q̃L)1
1
6

1
6

1
3 0 0 0 0 1 1

(Q̃L)3 0 1
6 0 1

3 0 0 0 0 1

(L̃L)1 −1
2 −1

2 0 0 1 0 1 0 1

(L̃L)3 0 −1
2 0 0 0 1 0 0 1

(ũ∗R)1 −2
3 −2

3 −1
3 0 0 0 0 1 1

(ũ∗R)3 0 −2
3 0 −1

3 0 0 0 0 1

(d̃∗R)1
1
3

1
3 −1

3 0 0 0 0 1 1

(d̃∗R)3 0 1
3 0 −1

3 0 0 0 0 1

(ẽ∗R)1 1 1 0 0 −1 0 1 0 1

(ẽ∗R)3 0 1 0 0 0 −1 0 0 1

Hu 0 1
2 0 0 0 0 0 0 −2

Hd 0 −1
2 0 0 0 0 0 0 −2

Table 4. All quantum numbers that pertain to U(1) symmetries of the pMSSM family sector. The

dashed lines separate the different family multiplets.

Again, three independent invariants can be constructed that are of the form (3.9), thus

I7, I8, I9 trivially carry over to the pMSSM. Of the invariants I10, . . . , I13, only I11 and I13
also exist in the pMSSM (the invariants I10 and I12 vanish due to the mass degeneracy of

the first two sfermionic generations).7

Are there additional symmetries in the pMSSM with respect to the flavor diagonal

model of the previous subsection? The first thing to note is that the first and second gen-

erations of sfermions are completely identical in the pMSSM, which means that we need to

consider twelve gauge multiplets only (ten sfermionic multiplets and two Higgses). As the

Yukawa and trilinear coupling matrices only have non-zero entries for the third generation

sfermions, no first and second generation sfermions feature in any of the family space inter-

actions. This in turn means that any set of quantum numbers for the first two generations

automatically corresponds to a symmetry of the pMSSM. The only constraints on allowed

sets of quantum numbers (corresponding to symmetries) arise from the third generation

sfermions. Similar to the MSSM, we have three constraints coming from the interaction

terms in the superpotential and the soft trilinear couplings. This means that there exist

12−3 = 9 independent U(1) symmetries in the pMSSM family sector. Table 4 provides the

quantum numbers that correspond to nine independent U(1) symmetries of the pMSSM.8

Let us now construct the three remaining invariants in the pMSSM, making use of the

newly available symmetries and eq. (3.13). A suitable quantum number to cancel both S

7Another way to look at this is that in the pMSSM the quantum numbers B1, B2 and L1, L2 are each

equivalent to each other, which means that there are only two new symmetries (and thus two new invariants)

with respect to the MSSM.
8The quantum numbers in this table, of course, are not unique.
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and all gaugino masses is 10(B1 − L1)− 8Y1. For the other two, let us pick X1` and X1q.

We define

I14 ≡
∑
φ

(10B1φ − 10L1φ − 8Y1φ)m2
φ

= 12m2
Q̃1
− 12m2

L̃1
+ 6m2

ũ1
− 18m2

d̃1
+ 2m2

ẽ1
, (3.15a)

I15 ≡
∑
φ

X1`φm
2
φ +

2

11

∑
φ

Y 2
φX1`φM

2
1 +

3

2

∑
d

X1`dM
2
2

= 2m2
L̃1

+m2
ẽ1

+
3

11
M2

1 + 3M2
2 , (3.15b)

I16 ≡
∑
φ

X1qφm
2
φ +

2

11

∑
φ

Y 2
φX1qφM

2
1 +

3

2

∑
d

X1qdM
2
2 −

8

9

∑
t

X1qtM
2
3

= 6m2
Q̃1

+ 3m2
ũ1

+ 3m2
d̃1

+
1

3
M2

1 + 9M2
2 −

32

3
M2

3 . (3.15c)

The invariants found for the pMSSM are consistent with the ones derived in [2, 3].

4 RG invariants from computer algebraic techniques

Next, we approach the problem of finding RG invariants from a computer algebraic angle.

The goal of this approach is to find a method that can in principle be applied to any set of

β-functions, for any theory. By letting a computer do the heavy lifting, we will not have to

rely on any properties of the underlying theory as in the case of the previous method, but

we will instead be limited by the available computational power. To develop the method,

we consider two specific forms of one-loop invariants before extending the method to higher

loop orders.

4.1 Monomial invariants

Let us first consider the simple class of monomial invariants. A monomial invariant M has

the following form:

M =

n∏
i=1

xaii , (4.1)

where xi (with i = 1, . . . , n) are running parameters and ~a ∈ Zn. The requirement for RG

invariance simply reads

dM

dt
= M

n∑
i=1

aiβ(xi)

xi
= 0, (4.2)

from which it follows that for all values of the parameters xi, we must have

n∑
i=1

aiβ(xi)

xi
= 0. (4.3)

To see how this works in practice, let us consider a simple toy system for two parameters

x and y with

β(x) = xy + 3xy2, β(y) = 2y2 + 6y3. (4.4)
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From requirement (4.3), it follows that

axβ(x)

x
+
ayβ(y)

y
= (ax + 2ay) y + (3ax + 6ay) y

2 = 0, (4.5)

or in matrix form: (
1 2

3 6

)(
ax

ay

)
= 0. (4.6)

Finding a RG invariant has now reduced to solving for the nullspace of a linear system of

equations. We find that ~a = (2,−1) spans the nullspace, which leads to the invariant

I ≡ x2

y
. (4.7)

Note that the existence of only a single invariant already implies the existence of an

infinite amount of invariants, since a product of invariants is also an invariant. However,

each of these invariants must solve eq. (4.3), and must therefore be included in the nullspace

of the linear system of equations. By finding a basis vector for this nullspace, we are

effectively including all of these solutions. A higher-dimensional nullspace would imply

the existence of multiple independent invariants. Any products of these invariants are also

invariant, but their existence is again implied by the linearity of the problem.

4.2 Polynomial invariants

Let us now consider polynomial invariants. Such an invariant P has the following general

form:

P =
m∑
j=1

Cj

n∏
i=1

x
aij
i . (4.8)

The powers aij of the parameters xi now in fact form a matrix a ∈ Zn×m. We have also

introduced ~C ∈ Zm as a vector that contains the coefficients for the separate monomial

terms. The invariance requirement amounts to

dP

dt
=

m∑
j=1

Cj

n∏
i=1

x
aij
i

(
n∑
k=1

akj
xk

β(xk)

)
= 0. (4.9)

Unlike the case for monomials, we cannot factorize the invariant itself and we are left

with a highly nonlinear equation in both the unknowns a and ~C. In addition to the fact

that considering products of invariants yields an infinite set of solutions to eq. (4.9), now

also linear combinations contribute to this issue. Clearly, a method for finding polynomial

invariants must be able to deal with both of these sources for ending up with an infinite

number of solutions.

To fix the issue for products of invariants, we introduce the concept of dimensionality.

Let us consider the following toy system for two parameters x and y, with

β(x) = 2xy + 10y3, β(y) = −x− y2. (4.10)
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We now assign a dimension to the parameters of this system. If we set dim(x) = 2 and

dim(y) = 1, it follows that dim(β(x)) = 3 and dim(β(y)) = 2. Thus, we find that for all

parameters xi, dim(β(xi))− dim(xi) = c, where c is a constant. As a consequence, for any

monomial M ,

dim

(
d

dt
M

)
= dim(M) + c. (4.11)

In particular, if we consider two monomials M and M ′ with dim(M) 6= dim(M ′), then

eq. (4.11) implies that dim(dM/dt) 6= dim(dM ′/dt). As a consequence, the monomial

terms in dM/dt must be different from those in dM ′/dt. Hence, if both M and M ′ are to

be included in an invariant, they must be part of two separate groups of monomials that are

separately invariant. But then we are considering a linear combination of invariants, which

we are trying to avoid. Therefore, whatever the rest of the method is, no results are lost

by considering invariants consisting of monomials of the same dimensionality. In addition,

this deals with the issue of having an infinite set of solutions to eq. (4.9) due to considering

products of invariants, since the product of two dimensionful invariants has a dimensionality

that is different from the two original invariants. Since multiple dimensionalities can be

assigned to the parameters of a theory, the dimensionality of a monomial is in general a

vector ~d. For a system of β-functions with r distinct dimensionalities (i.e. ~d ∈ Zr), we

define a set of monomials of the same dimensionality as follows:

Mp(~d ) ≡

{
n∏
i=1

xaii

∣∣∣∣∣ ~a ∈ Zn, ∀` ∈ {1, . . . , r} : dim`

(
n∏
i=1

xaii

)
= d`, 0 ≤ ai ≤ p

}
. (4.12)

The restriction 0 ≤ ai ≤ p is simply included to ensure that Mp(~d ) is a finite set.9

For the toy system of x and y, for example, we have

M4(4) =
{
x2, xy2, y4

}
. (4.13)

A candidate invariant can now be built by using the monomials in this set:

P~d (~C) =

s∑
j=1

CjMj , (4.14)

where Mj ∈Mp(~d ), and s denotes the size of Mp(~d ). Requirement (4.9) now gives

0 = C12xβ(x) + C2y
2β(x) + C22xyβ(y) + C34y

3β(y)

= (10C2 − 4C3) y
5 + (20C1 − 4C3)xy

3 + (4C1 − 2C2)x
2y. (4.15)

As this equality must hold for all values of the parameters x and y, we again recognize a

linear system of equations: 
0 10 −4

20 0 −4

4 −2 0



C1

C2

C3

 = 0. (4.16)

9Such a restriction could also be implemented by for example including negative powers.
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We find that the vector ~C = (1, 2, 5) spans the nullspace of this matrix, leading to the

invariant

I ≡ x2 + 2xy2 + 5y4. (4.17)

Note that the reduction to a linear system of equations in the coefficients Cj automat-

ically takes care of the problem of having an infinite amount of solutions to eq. (4.9) due

to linear combinations of invariants. Those linear combinations are in fact just linear com-

binations of the vectors ~C. By finding the nullspace for a system of equations like (4.16),

we handily deal with all problems of eq. (4.9) while maintaining a simple procedure that

can be performed by a computer with ease. This method has been implemented in a C++

application and can be found in [4]. The program is able to find all invariants of the MSSM

(derived in section 3) within seconds. Additionally, two more invariants have been found

for the dMSSM:

I17 ≡ g′ 27501g−31965g25920s (yu1yu2yu3)−3859 (yd1yd2yd3)−21481 (ye1ye2ye3)21538 µ751 (4.18a)

I18 ≡ 309M1 + 4059M2 − 6336M3 − 693 Tr
(
auyu

−1)− 495 Tr
(
adyd

−1)
− 242 Tr

(
aeye

−1)+
2937b

µ
(4.18b)

For more details on the implementation of the above method, as well as a further extension,

see [5].

4.3 Higher loop orders

The computer algebraic method can easily be extended to higher loop orders. To this

end, let us consider the general form of a β-function for xi in terms of its different loop

contributions:

β(xi) = β(1)(xi) +
1

16π2
β(2)(xi) + . . . (4.19)

Two-loop invariants can therefore be found by considering candidate invariants of the form

I = I1 +
1

16π2
I2. (4.20)

The derivative of I with respect to t reads

dI

dt
= I

(1)
1 +

1

16π2

(
I
(2)
1 + I

(1)
2

)
+

1

(16π2)2
I
(2)
2 , (4.21)

where I
(j)
1,2 is the contribution to the derivative that involves the j-th loop order β-function

β(j)(xi). Moreover, the terms have been grouped by equal powers of the factor 1/(16π2).

The requirement for RG invariance now reads:

I
(1)
1 = 0, I

(2)
1 + I

(1)
2 = 0, (4.22)

which can be reduced to a linear system of equations, equivalent to the method for one-loop

invariants.
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The computer algebraic method has been applied to the one and two-loop β-functions

of the MSSM, the dMSSM, and the pMSSM. All one-loop invariants found are consistent

with the ones constructed in section 3. While the one-loop β-functions are quite well-known,

the two-loop ones are not. They were taken from [6] and thoroughly checked against the

results of [7–9]. For the MSSM, we have found the following two-loop invariant:

J1 ≡
11M2

g2
− 1

16π2

(
M1 + 209M2 − 88M3 +

22b

µ

)
. (4.23)

Note that, apparently, only the one-loop invariant M2/g
2 has a two-loop continuation in

the MSSM. For the dMSSM, we have found two additional two-loop invariants:

J2 ≡
363M1

g′2
+

1

16π2

[
894M1 + 6732M2 − 16104M3 − 1111 Tr

(
auyu

−1)
− 1243 Tr

(
adyd

−1)+
5907b

µ

]
, (4.24a)

J3 ≡
11M3

g2s
− 1

16π2

[
66M3 + 11 Tr

(
auyu

−1)+ 11 Tr
(
adyd

−1)− 33b

µ

]
, (4.24b)

and for the pMSSM we have found

J4 ≡
2079M1

g′2
− 1

16π2

(
2869M1 + 1485M2 − 13640M3 + 3762At + 3498Aτ

− 1518b

µ

)
, (4.25a)

J5 ≡
693M3

g2s
− 1

16π2

(
227M1 + 3861M2 − 3586M3 − 198At − 330Aτ +

1320b

µ

)
. (4.25b)

Due to simplifications in the trilinear sector with respect to the MSSM, the dMSSM and

pMSSM have two-loop continuations of the one-loop invariants M1/g
′2 and M3/g

2
s as well.

5 Conclusion and outlook

We have developed two novel, efficient methods for finding RG invariants. The more

theoretically inclined approach links the existence of one-loop invariants to symmetries of

the underlying theory. For any given supersymmetric theory that has the same structure

as the MSSM, the number of RG invariants that involve scalar masses is equal to the

number of U(1) symmetries of its family sector. The computer algebraic method is able to

find invariants at higher loop orders and is applicable to any set of RG equations. Both

methods have been applied to the β-functions of for example the unconstrained MSSM and

the pMSSM. For the MSSM, three new invariants at one-loop order, and one new invariant

at two-loop order have been found. For the pMSSM we have found three new invariants

at two-loop order.

A next step in the development of using RG invariants as probes of high-scale physics,

could be the construction of new sum rules for various supersymmetry breaking models.

This has been done in [3] for the previously known invariants in the pMSSM, and could
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now be extended to the (d)MSSM. In case supersymmetry is found, it is unlikely that the

entire spectrum will quickly be measured. Even our present knowledge of the Higgs mass

and other supersymmetry-sensitive data only serves to constrain a number of parameters,

depending on the supersymmetry breaking scenario. However, one of the advantages of

using RG invariants to probe high-scale physics is the fact that not all parameters of the

theory need to be included, simply because the invariants typically contain only a subset

of all the parameters, and some parameters do not enter at all.

Furthermore, since most invariants are directly linked to symmetries of the underlying

theory, there is a certain amount of freedom to choose what parameters to include in the

invariants. Thus, one might be able to exclude certain parameters from part of the analysis

(i.e. particular sum rules of invariants) by cleverly picking linear combinations of quantum

numbers such that those parameters do not appear in the relevant invariants. Of course, it

could turn out that physics beyond the Standard Model matches a different (perhaps non-

supersymmetric) effective field theory rather than one that is discussed in this paper. Since

the RG invariants method is completely general, it could still be used to probe high-scale

physics models once the β-functions of the appropriate effective field theory are known.
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A The MSSM

After we consider a general supersymmetric Lagrangian, we will provide the field content

and Lagrangian for the MSSM, its U(1) symmetries, and some one-loop β-functions.

A.1 A general supersymmetric theory

In supersymmetric theories the fields are grouped into supermultiplets. A chiral supermul-

tiplet (labeled by i, j) consists of a complex scalar field φ and a left-handed Weyl spinor ψ.

Each gauge group (labeled by v) with corresponding infinitesimal generators T av , structure

constant fabcv , and gauge coupling gv, gives rise to a gauge supermultiplet. A gauge super-

multiplet consists of real gauge boson fields Aavµ and Weyl spinors λav. The gauge invariant

superpotential is denoted by W , and we define

W i ≡ δW

δφi
, W ij ≡ δ2W

δφiδφj
. (A.1)

Using this notation, a general supersymmetric Lagrangian then has the following form [10]:

LSUSY = −1

4
F avµνF

aµν
v + iλav

†σµ (Dµλv)
a + (Dµφi)

† (Dµφi) + iψ†iσ
µDµψi

−
√

2
(
gvφ
†
iT

a
v ψi · λav + h.c.

)
−
∣∣W i

∣∣2 − 1

2

(
W ijψi · ψj + h.c.

)
− 1

2
g2v

(
φ†iT

a
v φi

)2
, (A.2)
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Name Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

sleptons, leptons
L̃L = (ν̃L ẽL) LL = (νL eL) (1,2,−1

2)

ẽ∗R ecR (1,1, 1)

squarks, quarks

Q̃L = (ũL d̃L) QL = (uL dL) (3,2, 16)

ũ∗R ucR (3,1,−2
3)

d̃∗R dcR (3,1, 13)

Higgs, Higgsinos
Hu = (H+

u H0
u) H̃u = (H̃+

u H̃0
u) (1,2, 12)

Hd = (H0
d H

−
d ) H̃d = (H̃0

d H̃
−
d ) (1,2,−1

2)

Table 5. Chiral supermultiplets of the unbroken MSSM and the corresponding gauge group rep-

resentations.

where σµ ≡
(
I,−σ1,−σ2,−σ3

)
involves the unit matrix I and the Pauli matrices σa

′
. The

indices of Weyl spinors are raised and lowered by the antisymmetric symbol εαβ with non-

zero components ε12 = −ε21 = −ε12 = ε21 = 1. By convention, spinor indices are always

contracted diagonally downwards for left-handed Weyl spinors. The dot in eq. (A.2) is

used to denote the contraction of two Weyl spinors that yields a spin-0 singlet.10 The field

strength tensors are defined by

F avµν ≡ ∂µAavν − ∂νAavµ − gvfabcv AbvµA
c
vν , (A.3)

and the gauge covariant derivatives read

(Dµλv)
a =

(
∂µδ

ac − gvfabcv Abvµ

)
λcv, (A.4a)

Dµφi =
(
∂µ + igvA

a
vµT

a
v

)
φi, (A.4b)

Dµψi =
(
∂µ + igvA

a
vµT

a
v

)
ψi. (A.4c)

In the remainder of this appendix, the gauge couplings belonging to the gauge groups

U(1), SU(2), and SU(3) are denoted by g′, g, and gs respectively. The completely anti-

symmetric structure constants are respectively given by 0, εa
′b′c′ , and fabc (the primes are

used to distinguish SU(2) from SU(3) indices). The generators of SU(2) and SU(3) are

proportional to the Pauli matrices σa
′

and the Gell-Mann matrices λa respectively.

A.2 The MSSM Lagrangian

The field content of the unbroken MSSM, including the corresponding gauge group rep-

resentations, is given by tables 5 and 6. To distinguish the notation for Standard Model

fields from their supersymmetric partners, the latter receive a tilde. In these tables the

right-handed Weyl spinors have been conjugated to bring them in a left-handed form: for

a Weyl spinor ψ we define ψcR ≡ iσ2ψ∗R.

10To avoid clutter, though, this dot is implicit in the remainder of this appendix.
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Name Spin 1/2 Spin 1 SU(3)C × SU(2)L × U(1)Y

gluinos, gluons g̃a Ga (8,1, 0)

winos, W bosons W̃ a′ W a′ (1,3, 0)

bino, B boson B̃ B (1,1, 0)

Table 6. Gauge supermultiplets of the unbroken MSSM and the corresponding gauge group rep-

resentations.

Including the phenomenologically motivated requirement of R-parity conservation, the

MSSM superpotential is given by [10]:

WMSSM = −ẽ†Rye(L̃L)α(Hd)α + ũ†Ryu(Q̃L)α(Hu)α − d̃ †Ryd(Q̃L)α(Hd)α

+ µ(Hu)α(Hd)α. (A.5)

Note that in this expression all color and family indices have been suppressed. For conve-

nience, we do show explicitly the weak isospin doublet indices that are raised and lowered

by εαβ (like the Weyl spinor indices). All parameters of the MSSM are defined in table 7

at the end of this subsection.

The full Lagrangian of the MSSM (including soft supersymmetry breaking terms), split

up in parts, is given by [10]:11

• Kinetic terms for the gauge supermultiplets and gauge interactions:[
−1

4
F avµνF

aµν
v + iλav

†σµ (Dµλv)
a

]
MSSM

= −1

4
GaµνG

aµν + ig̃a†σµ(Dµg̃)a

− 1

4
W a′
µνW

a′µν + iW̃ a′†σµ(DµW̃ )a
′

− 1

4
BµνB

µν + iB̃†σµ∂µB̃, (A.6)

where the gauge covariant derivatives for the gauginos read

(Dµg̃)a = (∂µδ
ac − gsfabcGbµ)g̃c, (A.7a)

(DµW̃ )a
′

= (∂µδ
a′c′ − gεa′b′c′W b′

µ )W̃ c′ . (A.7b)

The field strength tensors are given by

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν , (A.8a)

W a′
µν = ∂µW

a′
ν − ∂νW a′

µ − gεa
′b′c′W b′

µ W
c′
ν , (A.8b)

Bµν = ∂µBν − ∂νBµ. (A.8c)

• Kinetic terms for the chiral supermultiplets and gauge interactions:[
(Dµφi)

† (Dµφi) + iψ†iσ
µDµψi

]
MSSM

= (DµL̃L)†DµL̃L + iL†Lσ
µDµLL

11As gauge fixing terms are irrelevant for our analyses, we simply omit those here.
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+ (Dµẽ∗R)†Dµẽ
∗
R + iec†Rσ

µDµe
c
R

+ (DµQ̃L)†DµQ̃L + iQ†Lσ
µDµQL

+ (Dµũ∗R)†Dµũ
∗
R + iuc†Rσ

µDµu
c
R

+ (Dµd̃∗R)†Dµd̃
∗
R + idc†Rσ

µDµd
c
R

+ (DµHu)†DµHu + iH̃†uσ
µDµH̃u

+ (DµHd)
†DµHd + iH̃†dσ

µDµH̃d, (A.9)

where the gauge covariant derivatives for the leptons, quarks and Higgs doublets are

given by

DµLL =

(
∂µ +

1

2
igW a′

µ σ
a′ − 1

2
ig′Bµ

)
LL, (A.10a)

Dµe
c
R =

(
∂µ + ig′Bµ

)
ecR, (A.10b)

DµQL =

(
∂µ +

1

2
igsG

a
µλ

a +
1

2
igW a′

µ σ
a′ +

1

6
ig′Bµ

)
QL, (A.10c)

Dµu
c
R =

(
∂µ −

1

2
igsG

a
µλ

a∗ − 2

3
ig′Bµ

)
ucR, (A.10d)

Dµd
c
R =

(
∂µ −

1

2
igsG

a
µλ

a∗ +
1

3
ig′Bµ

)
dcR, (A.10e)

DµHu =

(
∂µ +

1

2
igW a′

µ σ
a′ +

1

2
ig′Bµ

)
Hu, (A.10f)

DµHd =

(
∂µ +

1

2
igW a′

µ σ
a′ − 1

2
ig′Bµ

)
Hd. (A.10g)

As superpartners have equal quantum numbers, the covariant derivatives for the

sleptons, squarks, and Higgsinos are exactly the same.

• Chiral supermultiplets coupled to gauginos:[
−
√

2
(
gvφ
†
iT

a
v ψi · λav + h.c.

)]
MSSM

= −
√

2

(
1

2
gL̃†Lσ

a′LLW̃
a′ − 1

2
g′L̃†LLLB̃

+ g′ẽTRe
c
RB̃ +

1

2
gsQ̃

†
Lλ

aQLg̃
a

+
1

2
gQ̃†Lσ

a′QLW̃
a′ +

1

6
g′Q̃†LQLB̃

− 1

2
gsũ

T
Rλ

a∗ucRg̃
a − 2

3
g′ũTRu

c
RB̃

− 1

2
gsd̃

T
Rλ

a∗dcRg̃
a +

1

3
g′d̃T

Rd
c
RB̃

+
1

2
gH†uσ

a′H̃uW̃
a′ +

1

2
g′H†uH̃uB̃

+
1

2
gH†dσ

a′H̃dW̃
a′− 1

2
g′H†dH̃dB̃+ h.c.

)
. (A.11)
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• Scalar interactions coming from the “F -fields”:[
−
∣∣W i

∣∣2]
MSSM

= −L̃†Ly
†
eẽRẽ

†
RyeL̃L − ẽ

†
Ryey

†
eẽRH

†
dHd

+ (H∗d)β(L̃†L)βy
†
eye(L̃L)α(Hd)α − Q̃†Ly

†
uũRũ

†
RyuQ̃L

− ũ†Ryuy
†
uũRH

†
uHu + (H∗u)β(Q̃†L)βy

†
uyu(Q̃L)α(Hu)α

− Q̃†Ly
†
dd̃Rd̃

†
RydQ̃L − d̃

†
Rydy

†
dd̃RH

†
dHd

+ (H∗d)β(Q̃†L)βy
†
dyd(Q̃L)α(Hd)α −

(
Q̃†Ly

†
dd̃Rẽ

†
RyeL̃L

− ũ†Ryuy
†
dd̃RH

†
dHu − µ∗ẽ†RyeH

†
uL̃L − µ∗ũ

†
RyuH

†
dQ̃L

−µ∗d̃ †RydH
†
uQ̃L + h.c.

)
− |µ|2H†uHu − |µ|2H†dHd. (A.12)

• Yukawa couplings:[
−1

2

(
W ijψi · ψj + h.c.

)]
MSSM

= e†Rye(LL)α(Hd)α + e†Rye(L̃L)α(H̃d)α

+ ẽ†Rye(LL)α(H̃d)α − u†Ryu(QL)α(Hu)α

− u†Ryu(Q̃L)α(H̃u)α − ũ†Ryu(QL)α(H̃u)α

+ d†Ryd(QL)α(Hd)α + d†Ryd(Q̃L)α(H̃d)α

+ d̃ †Ryd(QL)α(H̃d)α − µ(H̃u)α(H̃d)α + h.c. (A.13)

• Four-scalar interactions coming from the “D-fields”:[
−1

2
g2v

(
φ†iT

a
v φi

)2]
MSSM

= −1

8
g2s

(
Q̃†Lλ

aQ̃L − ũ†Rλ
aũR − d̃ †Rλ

ad̃R

)2
− 1

8
g2
(
L̃†Lσ

a′L̃L + Q̃†Lσ
a′Q̃L +H†uσ

a′Hu +H†dσ
a′Hd

)2
− 1

2
g′2
(

1

2
L̃†LL̃L − ẽ

†
RẽR −

1

6
Q̃†LQ̃L +

2

3
ũ†RũR

− 1

3
d̃ †Rd̃R −

1

2
H†uHu +

1

2
H†dHd

)2

. (A.14)

• Soft supersymmetry breaking terms:

L soft
MSSM = −1

2

(
M3g̃

aTg̃a +M2W̃
a′TW̃ a′ +M1B̃

TB̃ + h.c.
)

+
[
ẽ†Rae(L̃L)α(Hd)α − ũ†Rau(Q̃L)α(Hu)α + d̃ †Rad(Q̃L)α(Hd)α + h.c.

]
− L̃†Lm

2
L̃
L̃L − ẽ†Rm

2
ẽẽR − Q̃

†
Lm

2
Q̃
Q̃L − ũ†Rm

2
ũũR − d̃

†
Rm

2
d̃
d̃R

−m2
Hu
H†uHu −m2

Hd
H†dHd − [b(Hu)α(Hd)α + h.c.] . (A.15)

All parameters of the MSSM are listed in table 7. Many degrees of freedom are

unphysical though, as they can be absorbed by clever field redefinitions.12

12The total number of independent parameters in the MSSM is 123 (not including the strong CP

violating angle).
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Name Physics description Math description #

gs, g, g
′ gauge couplings real numbers 3

ye,yu,yd Yukawa coupling matrices complex 3 × 3 matrices 54

M1,M2,M3 gaugino masses complex numbers 6

ae,au,ad trilinear coupling matrices complex 3 × 3 matrices 54

m2
L̃
,m2

ẽ,m
2
Q̃
,m2

ũ,m
2
d̃

sfermion mass matrices Hermitian 3 × 3 matrices 45

mHu ,mHd
Higgs masses real numbers 2

µ, b Higgs mixing parameters complex numbers 4

Total: 168

Table 7. All parameters of the MSSM including soft supersymmetry breaking terms. The param-

eters that are listed above the horizontal dashed line also occur in the Standard Model.

Spin 0 QA QB Spin 1/2 QA QB

L̃L 0 1 LL 1 0

ẽ∗R 0 1 ecR 1 0

Q̃L 0 1 QL 1 0

ũ∗R 0 1 ucR 1 0

d̃∗R 0 1 dcR 1 0

Hu −2 0 H̃u −1 −1

Hd −2 0 H̃d −1 −1

Table 8. The charges QA, QB for the fields that make up the chiral supermultiplets.

A.3 U(1) symmetries

The MSSM Lagrangian including soft supersymmetry breaking terms has three U(1) sym-

metries: weak hypercharge (Y ), baryon number (B), and lepton number (L). The last two

symmetries are present as a consequence of imposing R-parity conservation. If we ignore

the soft supersymmetry breaking terms and set the supersymmetry preserving Higgs mix-

ing parameter µ to zero, then, as it turns out, there are two more U(1) symmetries in the

MSSM. The corresponding groups, that we will call U(1)A and U(1)B, are equivalent to

the Peccei-Quinn (P ) and R symmetries (see [11, 12]). Let φ denote any field contained in

the MSSM, then the transformations under U(1)A and U(1)B are respectively defined as

φ −→ eiQAωAφ, φ −→ eiQBωBφ. (A.16)

The charges QA, QB depend on the fields and ωA, ωB are free parameters. Tables 8 and 9

list the values of QA, QB for the fields that make up the chiral and gauge supermultiplets

respectively.

Now let us consider the MSSM in full (including the soft supersymmetry breaking

terms), and let us apply the U(1)A and U(1)B transformations to all fields. If we would
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Spin 1/2 QA QB Spin 1 QA QB

g̃a −1 1 Ga 0 0

W̃ a′ −1 1 W a′ 0 0

B̃ −1 1 B 0 0

Table 9. The charges QA, QB for the fields that make up the gauge supermultiplets.

require invariance of the MSSM Lagrangian under these transformations, then we would

need to simultaneously redefine the Higgs mixing parameters as follows:13

µ −→ e2i(ωA+ωB)µ, b −→ e4iωAb, (A.17)

and the gaugino masses and trilinear coupling matrices as

Mk −→ e2i(ωA−ωB)Mk, aψ −→ e2i(ωA−ωB)aψ, (A.18)

where k = 1, 2, 3 and ψ = e, u, d. From eq. (A.18) we infer that the family sector of

the MSSM (which does not include µ and b), is not invariant under U(1)A and U(1)B
separately, but only under the combination U(1)A+B.14 This means that on top of Y,B,L,

there is a fourth quantum number X ≡ QA +QB that corresponds to a U(1) symmetry of

the MSSM family sector.

A.4 One-loop β-functions in the MSSM

The one-loop β-functions for the gauge couplings are given by

β(g′) = 11g′3, β(g) = g3, β(gs) = −3g3s , (A.19)

and those for the squares of the gaugino masses read [7]

β
(
|M1|2

)
= 44g′2|M1|2, β

(
|M2|2

)
= 4g2|M2|2, β

(
|M3|2

)
= −12g2s |M3|2. (A.20)

The one-loop β-functions for the soft scalar masses are given by

β(m2
Q̃

) = −8Y 2
Q̃L
g′2|M1|2 − 6g2|M2|2 −

32

3
g2s |M3|2 + 2m2

Hu
y†uyu + 2m2

Hd
y†dyd

+m2
Q̃
y†uyu +m2

Q̃
y†dyd + y†uyum

2
Q̃

+ y†dydm
2
Q̃

+ 2y†um
2
ũyu

+ 2y†dm
2
d̃
yd + 2a†uau + 2a†dad + 2Y

Q̃L
g′2S, (A.21a)

β(m2
L̃

) = −8Y 2
L̃L
g′2|M1|2 − 6g2|M2|2 + 2m2

Hd
y†eye +m2

L̃
y†eye + y†eyem

2
L̃

13As the transformations under U(1)A and U(1)B are parametrized by two independent parameters

ωA, ωB , two objects in eqs. (A.17) and (A.18) can each get one of their phases removed by fixing ωA, ωB in

a clever way. Conventionally, the soft breaking parameters b and M3 are made real in this way.
14One may argue that µ is contained in the family sector of the theory; this is a matter of taste.

However, since µ is a supersymmetry preserving parameter, it turns out to be completely irrelevant for

our analyses in section 3. Hence, we can safely ignore this parameter and simply define the MSSM family

sector to not include µ.
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+ 2y†em
2
ẽye + 2a†eae + 2Y

L̃L
g′2S, (A.21b)

β(m2
ũ) = −8Y 2

ũ∗R
g′2|M1|2 −

32

3
g2s |M3|2 + 4m2

Hu
yuy

†
u + 2m2

ũyuy
†
u + 2yuy

†
um

2
ũ

+ 4yum
2
Q̃
y†u + 4aua

†
u + 2Yũ∗Rg

′2S, (A.21c)

β(m2
d̃
) = −8Y 2

d̃∗R
g′2|M1|2 −

32

3
g2s |M3|2 + 4m2

Hd
ydy

†
d + 2m2

d̃
ydy

†
d + 2ydy

†
dm

2
d̃

+ 4ydm
2
Q̃
y†d + 4ada

†
d + 2Y

d̃∗R
g′2S, (A.21d)

β(m2
ẽ) = −8Y 2

ẽ∗R
g′2|M1|2 + 4m2

Hd
yey

†
e + 2m2

ẽyey
†
e + 2yey

†
em

2
ẽ + 4yem

2
L̃
y†e

+ 4aea
†
e + 2Yẽ∗Rg

′2S, (A.21e)

β(m2
Hu

) = −8Y 2
Hu
g′2|M1|2 − 6g2|M2|2 + 6 Tr

(
m2
Hu
y†uyu +m2

Q̃
y†uyu + y†um

2
ũyu

+ a†uau

)
+ 2YHug

′2S, (A.21f)

β(m2
Hd

) = −8Y 2
Hd
g′2|M1|2 − 6g2|M2|2 + 2 Tr

(
3m2

Hd
y†dyd + 3m2

Q̃
y†dyd +m2

Hd
y†eye

+m2
L̃
y†eye + 3y†dm

2
d̃
yd + y†em

2
ẽye + 3a†dad + a†eae

)
+ 2YHd

g′2S. (A.21g)

The quantity S that appears in the β-functions above arises from tadpole diagrams

and is defined as

S ≡ Tr

(∑
φ

Yφm
2
φ

)
= Tr

(
m2
Q̃
−m2

L̃
− 2m2

ũ +m2
d̃

+m2
ẽ

)
+m2

Hu
−m2

Hd
. (A.22)

The β-function for S follows directly from the β-functions for the soft scalar masses and is

given by

β(S) = 2
∑
φ

Y 2
φ g
′2S = 22g′2S. (A.23)

The β-functions for the soft scalar masses that are given above are in correspondence

with the ones in [7]. The advantage of our result though, is that these β-functions are

expressed in terms of the weak hypercharges of the fields, which is useful for our symmetry

analyses.

B The dMSSM

The dMSSM is the “flavor-diagonal” version of the MSSM. The simplifications with respect

to the MSSM are as follows:

• The Hermitian sfermion mass matrices m2
f̃

with f = L, e,Q, u, d are taken diagonal,

i.e.

m2
f̃

=


m2
f̃1

0 0

0 m2
f̃2

0

0 0 m2
f̃3

 . (B.1)
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Name Physics description Math description #

gs, g, g
′ gauge couplings real numbers 3

ye,yu,yd Yukawa coupling matrices real, diagonal 3 × 3 matrices 9

M1,M2,M3 gaugino masses complex numbers 6

ae,au,ad trilinear coupling matrices real, diagonal 3 × 3 matrices 9

m2
L̃
,m2

ẽ,m
2
Q̃
,m2

ũ,m
2
d̃

sfermion mass matrices real, diagonal 3 × 3 matrices 15

mHu ,mHd
Higgs masses real numbers 2

µ, b Higgs mixing parameters complex numbers 4

Total: 48

Table 10. All parameters of the dMSSM including soft supersymmetry breaking terms. The

parameters that are listed above the horizontal dashed line also occur in the Standard Model.

• The Yukawa and trilinear coupling matrices yψ and aψ with ψ = e, u, d are taken

real and diagonal, i.e.

yψ =


yψ1 0 0

0 yψ2 0

0 0 yψ3

 , aψ =


aψ1 0 0

0 aψ2 0

0 0 aψ3

 . (B.2)

All parameters of the dMSSM are listed in table 10.

C The pMSSM

The pMSSM is a heavily simplified version of the MSSM. Some parameters in the MSSM

give rise to processes that seem improbable from a phenomenological point of view, such

as flavor-changing neutral currents and CP violation beyond experimental bounds. To

suppress these possibilities, one usually imposes several constraints. For the pMSSM they

are as follows:

• The Hermitian sfermion mass matrices m2
f̃

with f = L, e,Q, u, d are taken diagonal,

and the first and second generation masses are assumed to be degenerate, i.e.

m2
f̃

=


m2
f̃1

0 0

0 m2
f̃1

0

0 0 m2
f̃3

 . (C.1)

• The first and second generation Yukawa couplings are neglected and the third com-

ponents are taken real:

ye =


0 0 0

0 0 0

0 0 yτ

 , yu =


0 0 0

0 0 0

0 0 yt

 , yd =


0 0 0

0 0 0

0 0 yb

 . (C.2)
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Name Physics description Math description #

gs, g, g
′ gauge couplings real numbers 3

yτ , yt, yb Yukawa couplings real numbers 3

M1,M2,M3 gaugino masses real numbers 3

Aτ , At, Ab trilinear couplings real numbers 3

m2
L̃
,m2

ẽ,m
2
Q̃
,m2

ũ,m
2
d̃

sfermion mass matrices real, diagonal 3 × 3 matrices 10

mHu ,mHd
Higgs masses real numbers 2

µ, b Higgs mixing parameters real numbers 2

Total: 26

Table 11. All parameters of the pMSSM including soft supersymmetry breaking terms. The

parameters that are listed above the horizontal dashed line also occur in the Standard Model.

• The trilinear coupling matrices are taken proportional to the corresponding Yukawa

coupling matrices, which implies

aτ = Aτyτ , at = Atyt, ab = Abyb. (C.3)

• The gaugino masses and Higgs mixing parameters are taken real.

All parameters of the pMSSM are listed in table 11.

D Summary of results

This appendix lists all RG invariants that have been found for the MSSM, the dMSSM,

and the pMSSM. The one-loop invariants have been found by both using the approach

involving symmetries and by applying the computer algebraic techniques. The two-loop

invariants, however, have only been found by the latter.

D.1 The MSSM

Tables 12 and 13 contain all one and two-loop RG invariants respectively that have been

found for the (unconstrained) MSSM.

D.2 The dMSSM

Tables 14 and 15 contain all one and two-loop RG invariants respectively that have been

found for the dMSSM.

D.3 The pMSSM

Tables 16 and 17 contain all RG invariants that have been found for the pMSSM. These

invariants are also listed in [1–3], but often as different linear combinations.
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J
H
E
P
1
0
(
2
0
1
5
)
0
1
4

# Q RG invariant

1, 2, 3 M1
g′2 , M2

g2
, M3

g2s

4, 5 1
g′2 −

11
g2

, 3
g′2 + 11

g2s

6 Y 1
g′2

[
Tr
(
m2
Q̃
−m2

L̃
− 2m2

ũ +m2
d̃

+m2
ẽ

)
+m2

Hu
−m2

Hd

]
7 11(B − L)− 8Y Tr

(
14m2

Q̃
− 14m2

L̃
+ 5m2

ũ − 19m2
d̃

+ 3m2
ẽ

)
− 8m2

Hu
+ 8m2

Hd

8 3B + L Tr
(

6m2
Q̃

+ 2m2
L̃
− 3m2

ũ − 3m2
d̃
−m2

ẽ

)
− 12

11 |M1|2 + 36|M2|2

9 X
Tr
(

6m2
Q̃

+ 2m2
L̃

+ 3m2
ũ + 3m2

d̃
+m2

ẽ

)
− 4m2

Hu
− 4m2

Hd

+ 16
11 |M1|2 + 24|M2|2 − 32|M3|2

Table 12. One-loop RG invariants in the MSSM. The second column, if applicable, lists the

quantum number Q that corresponds to the invariant.

# RG invariant

1 11M2
g2
− 1

16π2

(
M1 + 209M2 − 88M3 + 22b

µ

)
Table 13. Two-loop RG invariant in the MSSM.

# Q RG invariant

1, 2, 3 M1
g′2 , M2

g2
, M3

g2s

4, 5 1
g′2 −

11
g2

, 3
g′2 + 11

g2s

6 Y 1
g′2

[
Tr
(
m2
Q̃
−m2

L̃
− 2m2

ũ +m2
d̃

+m2
ẽ

)
+m2

Hu
−m2

Hd

]
7 11(B − L)− 8Y Tr

(
14m2

Q̃
− 14m2

L̃
+ 5m2

ũ − 19m2
d̃

+ 3m2
ẽ

)
− 8m2

Hu
+ 8m2

Hd

8 3B + L Tr
(

6m2
Q̃

+ 2m2
L̃
− 3m2

ũ − 3m2
d̃
−m2

ẽ

)
− 12

11 |M1|2 + 36|M2|2

9 X
Tr
(

6m2
Q̃

+ 2m2
L̃

+ 3m2
ũ + 3m2

d̃
+m2

ẽ

)
− 4m2

Hu
− 4m2

Hd

+ 16
11 |M1|2 + 24|M2|2 − 32|M3|2

10 B1 −B2 2m2
Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃2
+m2

ũ2
+m2

d̃2

11 B1 −B3 2m2
Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃3
+m2

ũ3
+m2

d̃3

12 L1 − L2 2m2
L̃1
−m2

ẽ1
− 2m2

L̃2
+m2

ẽ2

13 L1 − L3 2m2
L̃1
−m2

ẽ1
− 2m2

L̃3
+m2

ẽ3

14
g′ 27501g−31965g25920s (yu1yu2yu3)−3859 (yd1yd2yd3)−21481

× (ye1ye2ye3)21538 µ751

15
309M1 + 4059M2 − 6336M3 − 693 Tr

(
auyu

−1)
− 495 Tr

(
adyd

−1)− 242 Tr
(
aeye

−1)+ 2937b
µ

Table 14. One-loop RG invariants in the dMSSM. The second column, if applicable, lists the

quantum number Q that corresponds to the invariant.
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# RG invariant

1
363M1
g′2 + 1

16π2

[
894M1 + 6732M2 − 16104M3 − 1111 Tr

(
auyu

−1)
− 1243 Tr

(
adyd

−1)+ 5907b
µ

]
2 11M2

g2
− 1

16π2

(
M1 + 209M2 − 88M3 + 22b

µ

)
3 11M3

g2s
− 1

16π2

[
66M3 + 11 Tr

(
auyu

−1)+ 11 Tr
(
adyd

−1)− 33b
µ

]
Table 15. Two-loop RG invariants in the dMSSM.

# Q RG invariant

1, 2, 3 M1
g′2 , M2

g2
, M3

g2s

4, 5 1
g′2 −

11
g2

, 3
g′2 + 11

g2s

6 Y 1
g′2

[
Tr
(
m2
Q̃
−m2

L̃
− 2m2

ũ +m2
d̃

+m2
ẽ

)
+m2

Hu
−m2

Hd

]
7 11(B − L)− 8Y Tr

(
14m2

Q̃
− 14m2

L̃
+ 5m2

ũ − 19m2
d̃

+ 3m2
ẽ

)
− 8m2

Hu
+ 8m2

Hd

8 3B + L Tr
(

6m2
Q̃

+ 2m2
L̃
− 3m2

ũ − 3m2
d̃
−m2

ẽ

)
− 12

11M
2
1 + 36M2

2

9 X
Tr
(

6m2
Q̃

+ 2m2
L̃

+ 3m2
ũ + 3m2

d̃
+m2

ẽ

)
− 4m2

Hu
− 4m2

Hd

+ 16
11M

2
1 + 24M2

2 − 32M2
3

10 B1 −B3 2m2
Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃3
+m2

ũ3
+m2

d̃3

11 L1 − L3 2m2
L̃1
−m2

ẽ1
− 2m2

L̃3
+m2

ẽ3

12 10(B1 − L1)− 8Y1 12m2
Q̃1
− 12m2

L̃1
+ 6m2

ũ1
− 18m2

d̃1
+ 2m2

ẽ1

13 X1` 2m2
L̃1

+m2
ẽ1

+ 3
11M

2
1 + 3M2

2

14 X1q 6m2
Q̃1

+ 3m2
ũ1

+ 3m2
d̃1

+ 1
3M

2
1 + 9M2

2 − 32
3 M

2
3

15 g′ 73g−297g−2816s y891t y693b y330τ µ−2013

16 73M1 − 297M2 − 2816M3 − 891At − 693Ab − 330Aτ + 2013b
µ

Table 16. One-loop RG invariants in the pMSSM. The second column, if applicable, lists the

quantum number Q that corresponds to the invariant.

# RG invariant

1 2079M1
g′2 − 1

16π2

(
2869M1 + 1485M2 − 13640M3 + 3762At + 3498Aτ − 1518b

µ

)
2 11M2

g2
− 1

16π2

(
M1 + 209M2 − 88M3 + 22b

µ

)
3 693M3

g2s
− 1

16π2

(
227M1 + 3861M2 − 3586M3 − 198At − 330Aτ + 1320b

µ

)
Table 17. Two-loop RG invariants in the pMSSM.
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