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The dual equivalence of equations

and coequations for automata

A. Ballester-Bolinches∗ E. Cosme-Llópez∗ J. Rutten†‡

Abstract

Because of the isomorphism (X × A) → X ∼= X → XA, the transition structure
α : X → XA of a deterministic automaton with state set X and with inputs from an
alphabet A can be viewed both as an algebra and as a coalgebra. Here we will use
this algebra-coalgebra duality of automata as a common perspective for the study of
equations and coequations. Equations are sets of pairs of words (v, w) that are satisfied
by a state x ∈ X if they lead to the same state: xv = xw. Dually, coequations are sets
of languages and are satisfied by x if the language accepted by x belongs to that set. For
every automaton (X,α), we define two new automata: free(X,α) and cofree(X,α) that
represent, respectively, the greatest set of equations and the smallest set of coequations
satisfied by (X,α). Both constructions are shown to be functorial, that is, they act
also on automaton homomorphisms. The automaton free(X,α) is isomorphic to the so-
called transition monoid of (X,α), and thereby, cofree(X,α) can be seen as its dual. Our
main result is that the restrictions of free and cofree to, respectively, preformations of
languages and to quotients A∗/C of A∗ with respect to a congruence relation C, form
a dual equivalence. In the present context, preformations of languages are sets of – not
necessarily regular – languages that are complete atomic Boolean algebras closed under
left and right language derivatives. This result is used to give an alternative definition
of the notion of “varieties of regular languages” introduced by Eilenberg. This definition,
based on equations and coequations, underscores the prominent role of congruences in this
kind of results. As a consequence, we present a variant of Eilenberg’s celebrated variety
theorem for varieties of monoids (in the sense of Birkhoff) and varieties of languages.
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1 Introduction

In this paper, a deterministic automaton is a pair (X,α) consisting of a possibly infinite set
X of states and a transition function α : X → XA, with inputs from an alphabet A. Because
of the isomorphism

(X ×A)→ X ∼= X → XA

a deterministic automaton can be viewed both as an algebra [Eil74, Eil76] and as a coalgebra
[Rut98, Rut00]. This algebra-coalgebra duality in the modelling of automata leads us to the
following setting for our investigations:

1

A∗

2

(X,α) 2A
∗

c

ε?

oc

x

ε

rx

(1)

In the middle, we have our automaton (X,α). Any function x : 1→ X represents the choice
of a designated point, that is, initial state, x ∈ X. Dually, any function c : X → 2 gives
us a (binary) colouring of the states in X or, equivalently, a set {x | c(x) = 1} of final or
accepting states. On the left side of our diagram, A∗ is the automaton of all words over A,
with transitions

v va
a

and with the empty word ε as initial state. Furthermore, every point x : 1 → X determines
a unique homomorphism (that is, transition preserving function)

rx : A∗ → X w 7→ xw

that sends any word w to the state xw reached from the initial state x on input w. Dually, on
the right side of our diagram, 2A

∗
is the automaton of all languages over A, with transitions

L La = {v ∈ A∗ | av ∈ L}a

and colouring function ε?, asking whether the empty word belongs to a language or not

ε?(L) =

{
1 if ε ∈ L
0 if ε 6∈ L

Every colouring c : X → 2 determines a unique homomorphism

oc : X → 2A
∗

x 7→ {w ∈ A∗ | c(xw) = 1}

that sends a state x to the language that it accepts.
As it turns out, a pointed automaton (X,x, α) is an algebra (and not a coalgebra); a

coloured automaton (X, c, α) is a coalgebra (and not an algebra). And a pointed and coloured
automaton (X,x, c, α), which is what in the literature is usually taken as the definition of
‘deterministic automaton’, is neither an algebra nor a coalgebra.

Now sets of equations will live in the left – algebraic – part of our diagram and correspond
to the kernels of the homomorphisms rx; that is, sets of pairs of words (v, w) with xv = xw.
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Dually, sets of coequations live in the right – coalgebraic – part of our diagram and correspond
to the image of the homomorphisms oc; that is, sets of languages containing oc(x), for every
x ∈ X. Satisfaction of sets of equations and coequations by the automaton (X,α) will then
be defined by quantifying over all points x : 1→ X and all colourings c : X → 2, respectively.

The main contribution of the present paper will be the observation that equations and
coequations of automata are related by a dual equivalence. To this end, we will further refine
diagram (1) as follows:

1

A∗ free(X,α) (X,α) cofree(X,α)

2

2A
∗

cx

The new diagram includes, for every automaton (X,α) a new automaton free(X,α), which
will be shown to represent the largest set of equations satisfied by (X,α). And, dually, we
will construct an automaton cofree(X,α), which will represent the smallest set of coequations
satisfied by (X,α). The automaton free(X,α) will turn out to be isomorphic to the so-
called transition monoid from algebraic language theory [Sak09, Pin14] and as a consequence,
cofree(X,α) can be viewed as its dual.

Next, we will show that the constructions of free(X,α) and cofree(X,α) are in fact func-
torial, that is, they act also on (certain) homomorphisms of automata. If we then restrict
the functor cofree to the image of the category of automata under free, we obtain our main
result: a dual equivalence. This dual equivalence relates, more precisely, two special classes of
automata: on the one hand, the class of quotients A∗/C of the automaton A∗ with respect to
a congruence relation C ⊆ A∗×A∗; on the other hand, the class of preformations of languages,
which in the present paper are defined as subautomata of the automaton 2A

∗
that are com-

plete atomic Boolean algebras closed under left and right language derivatives. As it turns
out, this duality is a lifting of the well-known dual equivalence between sets and complete
atomic Boolean algebras: on congruence quotients, cofree acts as the powerset construction,
and on preformations, applying free amounts to taking the set of atoms.

We then illustrate the dual equivalence between equations and coequations by applications
to both regular languages and non-regular ones, such as context-free languages. Furthermore,
we will show how to use the duality to give (co)equational definitions of interesting classes
of languages, again not restricted to regular ones. We also present a variant of Eilenberg’s
celebrated variety theorem [Eil76]. We replace pseudovarieties in the original work of Eilen-
berg by varieties of monoids (in the sense of Birkhoff [Bir35]). Further, we replace varieties of
regular languages by varieties of languages, which are classes of formal languages closed under
some properties defined upon equations and coequations. Following the spirit of the original
result by Eilenberg, we prove that there is a one-to-one correspondence between varieties of
monoids and varieties of languages. Finally, we introduce the notion of equational bisimula-
tion and a corresponding coinduction proof principle. For a given congruence relation C, we
can show that a language satisfies C and hence belongs to the correponding preformation of
languages, by constructing a suitable equational bisimulation.

Related work

The algebra-coalgebra duality of diagram (1) is a modern rendering of the duality between
reachability and observability of automata [AZ69, AM75], which ultimately goes back to
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Kalman’s duality between controllability and observability in system theory [Kal59, KFA69].
Our work builds on[BBRS12] and [BBH+14], using the combined algebra-coalgebra per-

spective on automata that was used there to give a new proof and various generalisations of
Brzozowski’s [Brz64] minimization algorithm. Our work is remotely related to [AMMU15],
where the same perspective plays a role, albeit in a rather different manner. None of these
papers, however, – nor for that matter any other paper we know of – discusses the relation
between equations and coequations for automata.

We already mentioned that the automaton free(X,α) is isomorphic to the transition
monoid of (X,α), which is usually defined in terms of the function space XX . We define
free(X,α) here by means of a product, because it allows us to define cofree(X,α) using co-
products, making it the dual of the transition monoid. In Section 10, we shall discuss the
connection between our work and the approach of algebraic language theory [Eil76, Pin14],
where the notions of the syntactic monoid and congruence play a central role.

The way we have obtained the dual equivalence, namely, as a restriction of the (more
generally defined) constructions of free and cofree – or, in other words, the constructions
of the syntactic monoid and its dual – seems to be new. For the case of finite automata,
our duality as such coincides with the use of Stone duality in [Geh11, Theorem 1]. This is
explained in some detail in Section 10. This last section moreover discusses how our work
connects with the duality results appearing in Almeida [Alm89, Alm94], Pippenger [Pip97],
Gehrke [Geh09, Geh11] and Gehrke, Grigorieff and Pin [GGP08]. Based on that discussion,
Section 10 presents also some ideas for future research.

2 Preliminaries

Sets and languages

For sets X and Z we define XZ = {g | g : Z → X}. For sets X,Y, Z and functions f : X → Y
we define fZ : XZ → Y Z by fZ(g) = f ◦ g. We define the image and the kernel of a function
f : X → Y by

im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}
ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}

Let A be a (possibly infinite) alphabet, in all our examples fixed to {a, b}. We write A∗

for the set of all finite sequences (words) over A. We denote the empty word by ε and the
concatenation of two words v and w by vw. A language L over A is a subset L ⊆ A∗ and we
denote the set of all languages over A by

2A
∗

= {L | L ⊆ A∗}

(ignoring here and sometimes below the difference between subsets and characteristic func-
tions). For a language L ⊆ A∗ and a ∈ A we define the a-derivative of L by

La = {v ∈ A∗ | av ∈ L}

and we define, more generally,

Lw = {v ∈ A∗ | wv ∈ L}
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In fact, La and Lw are also called right derivatives of L, in contrast to the left derivative of
L, which we define by

aL = {v ∈ A∗ | va ∈ L} wL = {v ∈ A∗ | vw ∈ L}

One readily verifies that the operations ( )w and w( ) of right and left derivatives commute
with the Boolean operations of (possibly infinite) union, intersection and complement, on
languages.

Algebras and coalgebras

For a functor H : Set→ Set, an H-algebra is a pair (S, α) consisting of a set S and a function
α : H(S) → S. An H-coalgebra is a pair (S, α) with α : S → H(S). We will be considering
algebras and coalgebras of the following specific functors:

F (S) = SA

G(S) = S ×A
(2× F )(S) = 2× SA

(1 +G)(S) = 1 + (S ×A)

Automata

An automaton is a pair (X,α) consisting of a (possibly infinite) set X of states and a transition
function

α : X → XA

In pictures, we use the following notation:

x ya
⇔ α(x)(a) = y

We will also write xa = α(x)(a) and, more generally,

xε = x xwa = α(xw)(a)

We observe that automata are F -coalgebras. Because there is, for any A and X, an isomor-
phism

(̃ ) : (X → XA)→ ((X ×A)→ X) α̃(x, a) = α(x)(a)

automata are also G-algebras [MA86].
An automaton can be decorated by means of a colouring function

c : X → 2

using a basic set of colours 2 = {0, 1}. We call a state x accepting (or final) if c(x) = 1, and
non-accepting if c(x) = 0. We call a triple (X, c, α) a coloured automaton. In pictures, we use
a double circle to indicate that a state is accepting. For instance, in the following automaton

x y

a

b

b a
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the state x is accepting and the state y is not. By pairing the functions c and α, we see that
coloured automata are (2× F )-coalgebras:

〈c, α〉 : X → 2×XA

An automaton can also have an initial state x ∈ X, here represented by a function

x : 1→ X

where 1 = {0}. We call a triple (X,x, α) a pointed automaton. By pairing the functions x
and α̃, we see that pointed automata are (1 +G)-algebras:

[x, α̃] : (1 + (X ×A))→ X

We call a 4-tuple (X,x, c, α) a pointed and coloured automaton. We could depict it by either
of the following two diagrams

1 2

X

XA

x c

α

1 2

X

X ×A

x c

α̃

We will be using the diagram on the left, which is just a matter of personal preference. We
observe further that pointed and coloured automata are simply called automata in most of
the literature on automata theory. A pointed and coloured automaton (X,x, c, α) is neither
an algebra nor a coalgebra – because of c and x, respectively – which can be a cause of
fascination and confusion alike.

Homomorphisms, subautomata, bisimulations

A function h : X → Y is a homomorphism between automata (X,α) and (Y, β) if it makes
the following equivalent diagrams commute:

X Y

XA Y A

h

α

hA

β

X ×A Y ×A

X Y

(h,idA)

α̃

h

β̃

An epimorphism is a homomorphism that is surjective, and a monomorphism is a ho-
momorphism that is injective. A homomorphism of pointed automata (X,x, α) and (Y, y, β)
and of coloured automata (X, c, α) and (Y, d, β) moreover respects initial values and colours,
respectively:

1

X Y

x

h

y 2

X Y

c

h

d
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If in the diagrams above X ⊆ Y , and (i) h is subset inclusion

h : X ⊆ Y

(and, moreover (ii) x = y or (iii) c = d), then we call X a (i) subautomaton of Y (respectively
(ii) pointed and (iii) coloured subautomaton). For an automaton (X,α) and x ∈ X, the
subautomaton generated by x, denoted by

〈x〉 ⊆ X

consists of the smallest subset of X that contains x and is closed under transitions. We call
a relation R ⊆ X × Y a bisimulation of automata if for all (x, y) ∈ X × Y ,

(x, y) ∈ R ⇒ ∀a ∈ A, (xa, ya) ∈ R

(where xa = α(x)(a) and ya = β(y)(a)). For pointed automata (X,x, α) and (Y, y, β), R
is a pointed bisimulation if, moreover, (x, y) ∈ R. And for coloured automata (X, c, α) and
(Y, d, β), R is a coloured bisimulation if, moreover, for all (x, y) ∈ X × Y ,

(x, y) ∈ R ⇒ c(x) = d(y)

A bisimulation E ⊆ X×X is called a bisimulation on X. If E is an equivalence relation then
we call it a bisimulation equivalence. The quotient map of a bisimulation equivalence on X
is a homomorphism of automata:

X X/E

XA (X/E)A

q

α

qA

[α]

with the obvious definitions of X/E, q and [α]. If the equivalence E is a pointed bisimulation
on (X,x, α) or a coloured bisimulation on (X, c, α), then we moreover require, respectively,

1

X X/E

x

h

[x] 2

X X/E

c

h

[c]

with, again, the obvious definitions of [x] and [c]. For a homomorphism h : X → Y , ker(h) is
a bisimulation equivalence on X and im(h) is a subautomaton of Y . Any homomorphism h
is equal to the composition of an epimorphism followed by a monomorphism, as follows:

X X/ker(h)

XA (X/ker(h))A

Y

Y A

e m

α

eA mA

[α] β

h

hA

with e(x) = [x] = {z ∈ X | h(z) = h(x)}, and m([x]) = h(x). Note that X/ker(h) ∼= im(h).
The pair (e,m) is called an epi-mono factorisation of h.
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Congruence relations

A right congruence is an equivalence relation E ⊆ A∗×A∗ such that, for all (v, w) ∈ A∗×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (vu, wu) ∈ E

A left congruence is an equivalence relation E ⊆ A∗ ×A∗ such that, for all (v, w) ∈ A∗ ×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (uv, uw) ∈ E

We call E a congruence if it is both a right and a left congruence. Note that E is a right
congruence iff it is a bisimulation equivalence on (A∗, σ).

Products and coproducts of automata

Automata (are both G-algebras and F -coalgebras and hence) have both products and co-
products, as follows.

• The product of two automata (X,α) and (Y, β) is given by (X × Y, γ) where X × Y is
the Cartesian product and where

γ : (X × Y )→ (X × Y )A γ((x, y))(a) = ( α(x)(a), β(y)(a) )

• The coproduct (or: sum) of two automata (X,α) and (Y, β) is given by (X+Y, γ) where
X + Y is the disjoint union and where

γ : (X + Y )→ (X + Y )A γ(z)(a) =

{
α(z)(a) if z ∈ X
β(z)(a) if z ∈ Y

Pointed automata (are (1 + G)-algebras and hence) have products, as follows. The product
of two pointed automata (X,x, α) and (Y, y, β) is given by (X × Y, (x, y), γ) with (X × Y, γ)
as above and with initial state

(x, y) : 1→ X × Y

Coloured automata (are (2 × F )-coalgebras and hence) have coproducts, as follows. The
coproduct of two coloured automata (X, c, α) and (Y, d, β) is given by (X + Y, [c, d], γ) with
(X + Y, γ) as above and with colouring function

[c, d] : (X + Y )→ 2 [c, d](z) =

{
c(z) if z ∈ X
d(z) if z ∈ Y

All of the above binary (co)products can be easily generalised to arbitrary families of au-
tomata.

Complete atomic Boolean algebras

A Boolean algebra B is called complete if every subset has both a supremum and an infimum,
with respect to the ordering defined by a ≤ b⇔ a∧ b = a. An element a ∈ B is called atomic
whenever, for all b ∈ A: if b ≤ a then either b = 0 or b = a. A Boolean algebra B is called
atomic if every element b ∈ B can be expressed as the supremum of a (possibly infinite) set
of atoms in B.
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The class of all complete atomic Boolean algebras together with Boolean algebra homo-
morphisms forms a category CABA. Every complete atomic Boolean algebra B is isomorphic
to P(S), for some set S. (As a consequence, the cardinality of a finite Boolean algebra, which
is always complete and atomic, is a power of 2). More precisely, there exists the following
dual equivalence between the category Set of sets and functions, and the category CABA:

Set ∼= CABAop

P

At

where the functor At maps a complete atomic Boolean algebra to its set of atoms.

3 Setting the scene

The set A∗ forms a pointed automaton (A∗, ε, σ) with initial state ε and transition function
σ defined by

σ : A∗ → (A∗)A σ(w)(a) = wa

It is initial in the following sense: for any given automaton (X,α), every choice of initial
state x : 1 → X induces a unique function rx : A∗ → X, given by rx(w) = xw, that makes
the following diagram commute:

1

A∗ X

(A∗)A XA

x

rx

(rx)A

ε

σ α

This property makes (A∗, ε, σ) an initial (1+G)-algebra. Equivalently, the automaton (A∗, σ)
is a G-algebra that is free on the set 1. The function rx maps a word w to the state xw reached
from the initial state x on input w and is therefore called the reachability map for (X,x, α).

The set 2A
∗

of languages forms a coloured automaton (2A
∗
, ε?, τ) with colouring function

ε? defined by

ε?: 2A
∗ → 2 ε?(L) =

{
1 if ε ∈ L
0 if ε 6∈ L

and transition function τ defined by

τ : 2A
∗ → (2A

∗
)A τ(L)(a) = La

It is final in the following sense: for any given automaton (X,α), every choice of colouring
function c : X → 2 induces a unique function oc : X → 2A

∗
, given by oc(x) = {w | c(xw) = 1 },

that makes the following diagram commute:

10



2

2A
∗

X

(2A
∗
)AXA

ε?

oc

(oc)A

c

τα

This property makes (2A
∗
, ε?, τ) a final (2×F )-coalgebra. Equivalently, the automaton (2A

∗
, τ)

is an F -coalgebra that is cofree on the set 2. The function oc maps a state x to the language
oc(x) accepted by x. Since the language oc(x) can be viewed as the observable behaviour of
x, the function oc is called the observability map.

Summarizing, we have set the following scene for our investigations:

1

A∗ X

(A∗)A XA

2

2A
∗

(2A
∗
)A

ε?

oc

(oc)A

c

τα

x

rx

(rx)A

ε

σ

(2)

If the reachability map rx is surjective then we call (X,x, α) reachable. If the observability
map oc is injective then we call (X, c, α) observable. And if rx is surjective and oc is injective
then we call (X,x, c, α) (reachable and observable, or:) minimal.

Fixing the language L ∈ 2A
∗
, we obtain the following variation of the picture above:

1

A∗ 2A
∗

(2A
∗
)A

τ

L

ε

h

L

where the lower L is in fact the characteristic function of L ⊆ A∗, and where the homomor-
phism h satisfies h(w) = Lw. As a consequence, we have

h(v) = h(w) ⇔ v ≡MN w

where on the right, we have the celebrated Myhill-Nerode equivalence, defined by

v ≡MN w ⇔ ∀u ∈ A∗, vu ∈ L⇔ wu ∈ L

A minimal automaton accepting L is now obtained by the epi-mono factorisation of h:

1

A∗ A∗/ker(h) 2A
∗

(2A
∗
)A

τ

L

ε

L

q i

x

c

11



where x = q ◦ ε and c = ε? ◦ i. This minimal automaton is unique up-to isomorphism because
epi-mono factorisations are. And because A∗/ker(h) ∼= im(h), it is equal to

〈L〉 ⊆ 2A
∗

that is, the subautomaton of (2A
∗
, τ) generated by L. All in all we have obtained the following

picture:

1

A∗ 〈L〉 2A
∗

2

ε?

L

ε

L

r i
(3)

with r(w) = Lw and i(K) = K, for all w ∈ A∗ and K ∈ 〈L〉. In this case, ker(r) = ≡MN.
In conclusion of this section, we observe that 〈L〉 is finite iff the language L is rational.

This fact is a version [Brz64, Con12] of Kleene’s correspondence between finite automata and
rational languages [Kle56].

4 Equations and coequations

We will be referring to the situation of (2).

Definition 1 (equations). A set of equations is a bisimulation equivalence relation E ⊆
A∗×A∗ on the automaton (A∗, σ). We define (X,x, α) |= E – and say: the pointed automaton
(X,x, α) satisfies E – by

(X,x, α) |= E ⇔ ∀(v, w) ∈ E, xv = xw

Because
∀(v, w) ∈ E, xv = xw ⇔ E ⊆ ker(rx)

we have, equivalently, that (X,x, α) |= E iff the reachability map rx factors through A∗/E:

1

A∗ A∗/E X

x

ε
[ε]

q h

rx

where the homomorphisms (of pointed automata) q and h are given by

q(w) = [w] h([w]) = rx(w)

We define (X,α) |= E – and say: the automaton (X,α) satisfies E – by

(X,α) |= E ⇔ ∀x : 1→ X, (X,x, α) |= E

⇔ ∀x ∈ X, ∀(v, w) ∈ E, xv = xw

12



Note that we consider sets of equations E and that (v, w) ∈ E implies (vu,wu) ∈ E, for
all v, w, u ∈ A∗, because E is – by definition – a bisimulation relation on (A∗, σ). Still we
shall sometimes consider also single equations (v, w) ∈ A∗ ×A∗ and use shorthand such as

(X,α) |= v = w

to denote
(X,α) |= v=w

where v=w is defined as the smallest bisimulation equivalence on A∗ containing (v, w). Fur-
thermore, we shall use also variations such as

(X,α) |= {v = w, t = u} ⇔ (X,α) |= v = w ∧ (X,α) |= t = u

Definition 2 (coequations). A set of coequations is a subautomaton D ⊆ 2A
∗

of the automa-
ton (2A

∗
, τ). We define (X, c, α) |= D – and say: the coloured automaton (X, c, α) satisfies D

– by
(X, c, α) |= D ⇔ ∀x ∈ X, oc(x) ∈ D

Because
∀x ∈ X, oc(x) ∈ D ⇔ im(oc) ⊆ D

we have, equivalently, that (X, c, α) |= D iff the observability map oc factors through D:

2

X D 2A
∗h i

oc

ε?

c

ε?

where the homomorphisms (of coloured automata) h and i are given by

h(x) = oc(x) i(L) = L

We define (X,α) |= D – and say: the automaton (X,α) satisfies D – by

(X,α) |= D ⇔ ∀c : X → 2, (X, c, α) |= D

⇔ ∀c : X → 2, ∀x ∈ X, oc(x) ∈ D

Example 3. We consider the automaton (Z, γ) defined by the following diagram:

(Z, γ) = x y

a

b

b a

Here are some examples of equations:

(Z, x, γ) |= {b = ε, ab = ε, aa = a}
(Z, y, γ) |= {a = ε, ba = ε, bb = b}

13



Taking the intersection of the (bisimulation equivalences generated by) these sets, we obtain
that

(Z, γ) |= {aa = a, bb = b, ab = b, ba = a}

The above set of equations or, again more precisely, the bisimulation equivalence relation on
(A∗, σ) generated by it, is the largest set of equations satisfied by (Z, γ). For examples of
coequations, we consider the following 2 (out of all 4 possible) coloured versions of (Z, γ):

(Z, c, γ) = x y

a

b

b a (Z, d, γ) = x y

a

b

b a

(Thus c(x) = 1, c(y) = 0, d(x) = 0 and d(y) = 1.) The observability mappings oc and od map
these automata to

im(oc) = (a∗b)∗ (a∗b)+

a

b

b a im(od) = (b∗a)+ (b∗a)∗

a

b

b a

It follows that

(Z, c, γ) |= {(a∗b)∗, (a∗b)+} (Z, d, γ) |= {(b∗a)∗, (b∗a)+}

5 Free and cofree automata

Let (X,α) be an arbitrary automaton. We show how to construct an automaton that cor-
responds to the largest set of equations satisfied by (X,α). And, dually, we construct an
automaton that corresponds to the smallest set of coequations satisfied by (X,α).

Definition 4. Let X = {xi | i ∈ I} be the set of states of an automaton (X,α). We define a
pointed automaton free(X,α) in two steps, as follows:

(i) First, we take the product of the pointed automata (X,xi, α) that we obtain by letting
the initial element xi range over X. This yields a pointed automaton (ΠX, x̄, ᾱ) with

ΠX =
∏

x:1→X
Xx
∼= Xn

(where Xx = X), with x̄ = (xi)i∈I , and with ᾱ : ΠX → (ΠX)A defined component-wise

ᾱ((yi)i∈I)(a) = ((yi)a)i∈I

(ii) Next we consider the reachability map rx̄ : A∗ → ΠX and define:

Eq(X,α) = ker(rx̄) free(X,α) = A∗/Eq(X,α)

This yields the pointed automaton (free(X,α), [ε], [σ]):

14



1

A∗ free(X,α) ΠX

rx̄

ε
[ε]

x̄

Note that free(X,α) ∼= im(rx̄).

Definition 5. Let X = {xi | i ∈ I} be the set of states of an automaton (X,α). We define a
coloured automaton cofree(X,α) in two steps, as follows:

(i) First, we take the coproduct of the 2n coloured automata (X, c, α) that we obtain by
letting c range over the set X → 2 of all colouring functions. This yields a coloured
automaton (ΣX, ĉ, α̂) with

ΣX =
∑

c : X→2

Xc

(where Xc = X), and with ĉ and α̂ defined component-wise.

(ii) Next we consider the observability map oĉ : ΣX → 2A
∗

and define:

coEq(X,α) = im(oĉ) cofree(X,α) = coEq(X,α)

This yields the coloured automaton (cofree(X,α), ε?, τ):

2

X cofree(X,α) 2A
∗

oĉ

ε?

ĉ

ε?

Note that cofree(X,α) ∼= ΣX/ ker(oĉ).

The automata free(X,α) and cofree(X,α) are free and cofree on (X,α), respectively,
because of the following universal properties:

1

free(X,α) (X,α)
∃!

∀x 2

(X,α) cofree(X,α)

∀c

∃!

For every point x : 1→ X there exists a unique homomorphism from free(X,α) to (X,x, α),
given by the “x-th” projection from the product ΠX to X. Dually, for every colouring
c : X → 2, there exists a unique homomorphism from (X, c, α) to cofree(X,α), given by the
“c-th” embedding of X into the coproduct ΣX.

The main raison d’être for the constructions of free and cofree is that they represent the
sets Eq(X,α) and coEq(X,α), which are, by construction, the largest set of equations and
the smallest set of coequations satisfied by (X,α).
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Proposition 6. The set Eq(X,α) is the largest set of equations satisfied by (X,α):

Eq(X,α) =
⋃
{E ⊆ A∗ ×A∗ | E is a set of equations and (X,α) |= E }

The set coEq(X,α) is the smallest set of coequations satisfied by (X,α):

coEq(X,α) =
⋂
{D ⊆ 2A

∗ | D is a set of coequations and (X,α) |= D }

Proposition 7. The set of equations Eq(X,α) is a congruence on A∗.

Proof. We already know that Eq(X,α) is a right-congruence. Let (v, w) ∈ Eq(X,α) and
u ∈ A∗. For a state x ∈ X, we have

xuv = (xu)v = (xu)w = xuw

(since equations (v, w) ∈ Eq(X,α) hold in all states of X). It follows that (uv, uw) ∈ Eq(X,α)
and we conclude that Eq(X,α) is a congruence.

Applying the picture above to the minimal automaton 〈L〉 of a given language L ∈ 2A
∗

yields the following refinement of (3):

1

A∗ free〈L〉 〈L〉 cofree〈L〉 2A
∗

2

ε?

L

r1ε

L

r2

(4)

We already saw in (3) that ker(r1) = ≡MN, the Myhill-Nerode equivalence for L. Furthermore,
it follows from Proposition 6 and Proposition 7 that

Eq〈L〉 = ker(r2) = ≡L (5)

where ≡L is the so-called syntactic congruence of L, which is defined, for all v, w ∈ A∗, by

v ≡L w if and only if ∀u1, u2 ∈ A∗, (u1vu2 ∈ L⇔ u1wu2 ∈ L)

Corollary 8. For a language L ∈ 2A
∗
, the congruences Eq〈L〉 and ≡L coincide.

Proof. Let (v, w) ∈ Eq〈L〉 and let u1 be an arbitrary word in A∗. The language Lu1 is in 〈L〉
and satisfies the equation Lu1v = Lu1w, that is, for any word u2 ∈ A∗,

(u2 ∈ Lu1v ⇔ u2 ∈ Lu1w) equivalently, (u1vu2 ∈ L⇔ u1wu2 ∈ L)

that is, (v, w) ∈ ≡L. The other inclusion is proved similarly.

Example 9 (Example 3 continued). We consider our previous example
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(Z, γ) = x y

a

b

b a

The product of (Z, x, γ) and (Z, y, γ) is:

(ΠZ, (x, y), γ) =

(x,y)

(y,x)

(x,x) (y,y)

a

b

b a

ab

ab

Taking im(r(x,y)) yields the part that is reachable from (x, y):

im(r(x,y)) =

(x,y)

(x,x) (y,y)

a

b

b a

ab

We know that free(Z, γ) ∼= im(r(x,y)), which leads to the following isomorphic automaton:

free(Z, γ) =

[ε]

[b] [a]
a

b

b a

ab

Since free(Z, γ) = A∗/Eq(Z, γ), we can deduce from the above automaton that Eq(Z, γ)
consists of

Eq(Z, γ) = {aa = a, bb = b, ab = b, ba = a}

where the set on the right represents the smallest bisimulation equivalence – in fact, a con-
gruence – on (A∗, σ). The set Eq(Z, γ) is the largest set of equations satisfied by (Z, γ).

Next we turn to coequations. The coproduct of all 4 coloured versions of (Z, γ) is

(ΣZ, ĉ, γ̂) =

x1 y1

a

b

b a

x3 y3

a

b

b a

x2 y2

a

b

b a

x4 y4

a

b

b a
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The observability map oĉ : ΣZ → 2A
∗

is given by

oĉ(x1) oĉ(y1) oĉ(x2) oĉ(y2) oĉ(x3) oĉ(y3) oĉ(x4) oĉ(y4)

∅ ∅ (a∗b)∗ (a∗b)+ (b∗a)+ (b∗a)∗ A∗ A∗

Since cofree(Z, γ) = im(oĉ), this yields

cofree(Z, γ) =

∅ a,b

A∗ a,b

(a∗b)∗ (a∗b)+

a

b

b a

(b∗a)+ (b∗a)∗

a

b

b a

(6)

The set of states of this automaton is cofree(Z, γ), which is the smallest set of coequations
satisfied by (Z, γ).

Summarizing the present section, we have obtained, for every automaton (X,α), the
following refinement of our previous scene (2):

1

A∗ free(X,α) (X,α) cofree(X,α)

2

2A
∗

∀c∀x (7)

The automata free(X,α) and cofree(X,α) represent the largest set of equations and the small-
est set of coequations satisfied by (X,α). As we mentioned earlier, all of this applies to infinite
X as well.

6 A dual equivalence

In this section, we shall first show that – when suitably restricted – the constructions of
free and cofree are in fact functorial, that is, they act not only on automata but also on
homomorphisms. Next we shall see that by restricting the functors free and cofree further
still, they turn out to form a dual equivalence.

We will be using the following categories:

A: the category of automata (X,α) and automata homomorphisms

Am: the category of automata (X,α) and automata monomorphisms

Ae: the category of automata (X,α) and automata epimorphisms

As it turns out, we can extend the definitions of free and cofree to monomorphisms and
epimorphisms, respectively, such that we obtain functors of the following type:

free : Am → (Ae)op cofree : Ae → (Am)op

Here the superscript op indicates a reversal of arrows: for monomorphisms,
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(X,α) (Y, β)
m free free(X,α)free(Y, β)

free(m)

where free(m) is defined by

free(m)( [w]Eq(Y,β) ) = [w]Eq(X,α)

Because m is a monomorphism, we have Eq(Y, β) ⊆ Eq(X,α), which implies that free(m) is
a well-defined epimorphism. Similarly, for epimorphisms,

(X,α) (Y, β)
e cofree cofree(X,α)cofree(Y, β)

cofree(e)

where cofree(e) is just set inclusion. Because e is an epimorphism, we have coEq(Y, β) ⊆
coEq(X,α), which implies that cofree(e) is a well-defined monomorphism.

6.1 The first theorem: congruence quotients

Next we introduce the category C of congruence quotients, which is defined as follows:

objects(C) = {(A∗/C, [σ]) | C ⊆ A∗ ×A∗ is a congruence relation}
arrows(C) = {e : A∗/C → A∗/D | e is an epimorphism of automata}

We observe that C is a subcategory of Ae and that it is in fact a set: C is isomorphic to
the set of all congruence relations on A∗, together with set inclusion. That is, there exists a
(unique) epimorphism e : A∗/C → A∗/D if and only if C ⊆ D.

Since congruence quotients come equipped with a canonical choice of transition function,
that is, [σ], we shall often simply write A∗/C for (A∗/C, [σ]).

Theorem 10. free(Am) = Cop

Proof. For every automaton (X,α), free(X,α) = A∗/Eq(X,α) is a congruence, by Proposition
7. For the reverse inclusion, consider a congruence C ⊆ A∗ ×A∗. One readily shows that

Eq(A∗/C) = C

which implies free(A∗/C) = A∗/Eq(A∗/C) = A∗/C. This proves the theorem for objects.
For arrows, we already saw that free maps a monomorphism to an epimorphism of congruence
quotients. Conversely, let e : A∗/C → A∗/D be an epimorphism. We define

m : A∗/D → (A∗/C +A∗/D)

where + denotes the disjoint union of automata. Because

Eq(A∗/C +A∗/D) = C ∩D

and because C ⊆ D, it follows that free(A∗/C+A∗/D) = A∗/(C∩D) = A∗/C, which implies
that free(m) = e.
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6.2 The second theorem: preformations of languages

We will be using the following notion of a preformation of languages.

Definition 11. A preformation of languages is a set V ⊆ 2A
∗

such that:

(i) V is a complete atomic Boolean subalgebra of 2A
∗
.

(ii) for all L ∈ 2A
∗
: if L ∈ V then for all a ∈ A, both La ∈ V and aL ∈ V .

We note that, being a subalgebra of 2A
∗
, a preformation V always contains both ∅ and A∗.

Next we define the category PL of preformations of languages, as follows:

objects(PL) = {(V, τ) | V ⊆ 2A
∗

is a preformation of languages},
arrows(PL) = {m : V →W | m is an monomorphism of automata}.

The category PL is a subcategory of Am; furthermore, PL is in fact a set and the arrows in
PL are just set inclusion. Since preformations of languages come equipped with a canonical
choice of transition function, that is, τ (right-derivatives of languages), we shall often simply
write V for (V, τ).

The main result of this subection will be that

cofree(C) = (PL)op

which we shall prove in several steps.
We begin with an elementary but useful property of colourings, which uses the following

definition. For an automaton (X,α) and state x ∈ X, we define the following (“one-point”)
colouring:

δx : X → 2, δx(y) = 1 ⇔ x = y

Lemma 12. For every automaton (X,α), state y ∈ X and colouring c : X → 2,

oc(y) =
⋃
{ oδx(y) | x ∈ X and c(x) = 1 }

The states of congruence quotients are equivalence classes of words w ∈ A∗, that is,
languages [w] ⊆ A∗. The following lemma shows that each of them occurs as the observable
behaviour of the inital state [ε], under the corresponding one-point colouring.

Lemma 13. For every congruence quotient A∗/C ∈ C and every [w] ∈ A∗/C,

oδ[w]
([ε]) = [w]

Proof. For all v ∈ A∗,

v ∈ oδ[w]
([ε]) ⇔ δ[w]([ε]v) = 1 ⇔ [ε]v = [w] ⇔ [v] = [w] ⇔ v ∈ [w]

The following lemma shows that all the observable behaviour of a congruence quotient
stems from its initial state.
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Lemma 14. For every congruence quotient A∗/C ∈ C and every L ∈ coEq(A∗/C), there
exists a colouring c : A∗/C → 2 with

oc([ε]) = L

Proof. If L ∈ coEq(A∗/C) then there exist a state [w] ∈ A∗/C and a colouring d : A∗/C → 2
with od([w]) = L. We define a new colouring c : A∗/C → 2, for all [v] ∈ A∗/C, by

c([v]) = d([w]v)

Note that c is well-defined because C is a (left) congruence on A∗. It now follows that

v ∈ oc([ε]) ⇔ c([ε]v) = 1 ⇔ c([v]) = 1 ⇔ d([w]v) = 1 ⇔ v ∈ od([w]) ⇔ v ∈ L

which concludes the proof.

Combining the above, we obtain the following characterisation.

Proposition 15. For every congruence quotient A∗/C ∈ C,

coEq(A∗/C) = ( {L | L ∈ 2A
∗

and L =
⋃
V for some V ⊆ A∗/C } , τ )

As a consequence,
coEq(A∗/C) ∼= P(A∗/C)

Proof. There is a trivial one-to-one correspondence between colourings c : A∗/C → 2 and
subsets V ⊆ A∗/C given by Vc = c−1(1). Using Lemma 12 and Lemma 13, we obtain, as a
consequence, that

oc([ε]) =
⋃
{ oδK ([ε]) | K ∈ A∗/C and c(K) = 1 }

=
⋃
{K | K ∈ A∗/C and c(K) = 1 }

=
⋃
Vc

The first equality of the proposition now follows from Lemma 14. Since the languages L ∈
A∗/C form a partitioning of A∗, the second identity (isomorphism) follows.

We are ready to prove the following.

Proposition 16. For every congruence quotient A∗/C ∈ C,

coEq(A∗/C) is a preformation of languages

with A∗/C as the set of atoms.

Proof. It follows from Proposition 15 that coEq(A∗/C) is a complete atomic Boolean algebra,
with A∗/C as the set of atoms, and containing A∗ and ∅.

Because coEq(A∗/C) is a subautomaton of (2A
∗
, τ), it is closed under right derivatives.

In order to prove that it is also closed under left derivatives, consider L ∈ coEq(A∗/C)
and w ∈ A∗. By Lemma 14, there exists a colouring c : A∗/C → 2 with L = oc([ε]). We
define a new colouring cw : A∗/C → 2, for [v] ∈ A∗/C, by

cw([v]) = c([vw])

(Note that cw is well-defined because C is a (left) congruence on A∗.) Because

v ∈ ocw([ε]) ⇔ cw([v]) = 1 ⇔ c([vw]) = 1 ⇔ vw ∈ L ⇔ v ∈ wL

it follows that ocw([ε]) = wL. And because ocw([ε]) is in coEq(A∗/C), so is wL.
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Still on our way towards a proof of cofree(C) = (PL)op, let us next fix a preformation of
languages V ∈ PL and show that it is the image under cofree of a congruence quotient on
A∗. To this end, we define the following mapping:

η : A∗ → At(V ) η(w) = the unique atom L ∈ V with w ∈ L

Because V is a complete atomic Boolean algebra containing A∗, η is well-defined and surjec-
tive. We shall show next that it is a congruence quotient of A∗.

Lemma 17. The set ker(η) is a congruence on A∗ and hence η is a congruence quotient

η : (A∗, σ)→ (At(V ), [σ])

Proof. It suffices to show that, for all v, w ∈ A∗, if η(v) = η(w) then, for all u ∈ A∗,

η(uv) = η(uw) and η(vu) = η(wu)

In order to prove the first equality, we assume η(v) = η(w) and consider η(uv). Because
uv ∈ η(uv) we have v ∈ η(uv)u. Because V is closed under right derivatives, η(uv)u ∈ V and
because V is atomic, we have η(v) ⊆ η(uv)u. We have the following sequence of implications:

η(v) ⊆ η(uv)u ⇒ η(w) ⊆ η(uv)u ⇒ w ∈ η(uv)u ⇒ uw ∈ η(uv) ⇒ η(uw) ⊆ η(uv)

The same argument will prove η(uv) ⊆ η(uw), which proves the first equality. The second
equality follows by the same argument, using left instead of right derivatives.

There is also the following.

Lemma 18. Eq(V ) = ker(η).

Proof. We have to show, for all v, w ∈ A∗, that

( for all L ∈ V : Lv = Lw ) ⇔ η(v) = η(w)

From ε ∈ η(v)v = η(v)w it follows that w ∈ η(v) and hence η(v) = η(w), which proves the
above implication from left to right.

For the implication from right to left, assume η(v) = η(w). Since V is a complete atomic
Boolean algebra, it suffices to prove that Lv = Lw for L ∈ At(V ), since (right) derivatives
commute with unions. So consider u ∈ A∗ and η(u) ∈ At(V ). For all x ∈ A∗,

x ∈ η(u)v ⇒ vx ∈ η(u) ⇒ η(u) = η(vx) ⇒ η(u) = η(wx) ⇒ x ∈ η(u)w

where the last but one implication follows from Lemma 17. This proves η(u)v ⊆ η(u)w. The
same argument proves the reverse inclusion, which concludes the proof.

Combining the two lemma’s above now gives the following.

Proposition 19. free(V ) = (At(V ), [σ])

Proof.
free(V ) = (A∗/Eq(V ), [σ]) = (A∗/ker(η), [σ]) = (At(V ), [σ])
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Corollary 20. cofree ◦ free(V ) = V

Proof. By Proposition 19, cofree ◦ free(V ) = cofree(At(V ), [σ]). And by Proposition 15,
cofree(At(V ), [σ]) = V .

Finally, we obtain the main result of this subsection.

Theorem 21. cofree(C) = (PL)op

Proof. The identity holds for objects, by Proposition 16 and Corollary 20. Furthermore,
every epimorphism of congruence quotients is mapped by cofree to the reversed inclusion of
the corresponding preformations, and conversely, every inclusion of preformations is easily
seen to stem from an epimorphism of congruence quotients.

6.3 The main theorem: free and cofree form a dual equivalence

We have obtained the following dual equivalence.

Theorem 22. The category C of congruence quotients is dually equivalent to the category PL
of preformations of languages via the functors free and cofree. That is,

cofree : C ∼= (PL)op : free

Proof. For a preformation of languages V ,

cofree ◦ free(V ) = V

by Corollary 20. For a congruence quotient A∗/C, we have

free ◦ cofree(A∗/C) = At(cofree(A∗/C)) = A∗/C

by Proposition 19 and Proposition 16, respectively. This proves the theorem for objects. One
readily shows that this correspondence extends to arrows as well.

As a consequence of our Theorem 22 we deduce the following corollary

Corollary 23. For every congruence C in A∗ and every language L in 2A
∗
,

L ∈ coEq(A∗/C) ⇔ C ⊆ Eq〈L〉.

Proof. If L ∈ coEq(A∗/C), then 〈L〉 is completely included in coEq(A∗/C). By Theorems
10 and 22 there exists an epimorphism from A∗/C to free〈L〉, that is, C ⊆ Eq〈L〉. On
the contrary, if C ⊆ Eq〈L〉, there exists an epimorphism from A∗/C to free〈L〉. By Theo-
rem 22, coEq(A∗/Eq〈L〉) is completely included in coEq(A∗/C). Recall that the colouring
δL : A∗/Eq〈L〉 → 2, given by δL([w]) = 1 iff w ∈ L, is a well-defined function and the equation
oδL([ε]) = L holds, therefore L ∈ coEq(A∗/C).

Corollary 24. Let L be a language in 2A
∗
, then L ∈ coEq(A∗/Eq〈L〉).
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7 Illustrating the duality

We illustrate the duality Theorem 22 with some examples.

Example 25 (Example 9, continued). We consider our previous example

(Z, γ) = x y

a

b

b a

for which we had computed

free(Z, γ) =

[ε]

[b] [a]
a

b

b a

ab

We recall that the transition structure of the automaton free(Z, γ) is inherited from the
automaton (A∗, σ) and hence satisfies

[w] [wa]
a

(In particular, transitions between these states are not given, as in (2A
∗
, τ), by right deriva-

tives.) By Lemma 13, each of the languages [ε], [a] and [b] can be explicitly computed as the
behaviour of the initial state [ε], under the corresponding one-point colouring. This gives:

free(Z, γ) =

1

(a∗b)+ (b∗a)+

a

b

b a

ab

By a computation similar to the one in Example 9, we obtain

cofree ◦ free(Z, γ) =

1 ∅
a,b

a,b

A+ A∗ a,b
a,b

(a∗b)∗ (a∗b)+

a

b

b a

(b∗a)+ (b∗a)∗

a

b

b a

(8)

By Proposition 16, the automaton cofree ◦ free(X,α) is a preformation of languages. In
particular, it is a Boolean subalgebra of 2A

∗
, which we can represent as follows (indicating
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language inclusion by edges):

cofree ◦ free(Z, γ) =

∅

1

A+

A∗

(b∗a)+ (a∗b)+

(b∗a)∗ (a∗b)∗

(9)

(Note that cofree ◦ free(Z, γ) ∼= P(free(Z, γ)). Since free ◦ cofree ◦ free = free, we obtain the
following picture, in which we have included an example of an epimorphism e and its image,
to illustrate the action of free and cofree on arrows:

[ε]

[b] [a]

a

b

b a

ab

∅

1

A+

A∗

(b∗a)+ (a∗b)+

(b∗a)∗ (a∗b)∗

e
free

cofree

m

[ε]

[a]a,b

a,b

∅

A∗

1 A+

(Although it is made superfluous by the duality theorem, it is an interesting little exercise to
apply free to the automaton cofree ◦ free(Z, γ) ‘by hand’, that is, by using the definition of
free.)

Example 26. Here is an example of an application of the duality Theorem 22 to a language
that is not regular. Let A = {a, b} and let, for w ∈ A∗,

|w|a = number of a’s occurring in w
|w|b = number of b’s occurring in w

We consider the context-free language L defined by

L = {w ∈ A∗ | |w|a ≥ |w|b }

Its minimal automaton 〈L〉, which is the smallest subset of 2A
∗

that contains L and is closed
under right derivatives, looks as follows:

〈L〉 = · · · L−1

a

b

L0

a

b

L1

a

b

L2

a

b

· · ·
a

b
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where Ln = {w ∈ A∗ | |w|a + n ≥ |w|b }, for all n ∈ Z. If we define a transition function
α : Z → ZA by na = n + 1 and nb = n − 1, then we obtain an isomorphism 〈L〉 ∼= (Z, α). It
is easy to see that free〈L〉 ∼= 〈L〉. If we next define a transition function β : P(Z) → P(Z)A,
for all K ⊆ Z, by

Ka = K + 1 = {n+ 1 | n ∈ K} Kb = K − 1 = {n− 1 | n ∈ K}

then it follows that cofree〈L〉 ∼= (P(Z), β).

Example 27. In this example, which is taken from [Dek08], we shall illustrate how the duality
Theorem 22 can be used for the equational definition of interesting classes of languages. Let
A = {a, b} and let ab=ba denote the smallest congruence on A∗ containing the equation
(ab, ba). It is easy to prove that, for all v, w ∈ A∗,

(v, w) ∈ ab=ba ⇔ |v|a = |w|a and |v|b = |w|b

As a consequence, languages [w] in the congruence quotient A∗/ab=ba satisfy

[w] = { v ∈ A∗ | v is a permutation of w }

(with the usual definition of permutation of words). By the duality Theorem 22, we have
that V = cofree(A∗/ab=ba) is a preformation of languages. We now call a language L
commutative whenever L ∈ V . This terminology is justified by the following equivalences:

L ∈ V ⇔ L is the union of permutation equivalence classes [w]

⇔ 〈L〉 |= ab = ba

The first equivalence follows from the fact that V is a preformation with atoms [w]; the second
from the fact that free(V ) = A∗/ab=ba, whence Eq(V ) = ab=ba.

8 Eilenberg’s variety theorem revisited

Eilenberg’s variety theorem [Eil76] is a celebrated result in computer science. It underscores
the importance of varieties of finite monoids or pseudovarieties in the study of regular lan-
guages.Eilenberg’s theorem states that varieties of regular languages are in one-to-one cor-
respondence with pseudovarieties of monoids, that is, classes of finite monoids closed under
taking submonoids, quotients and finite direct products.

Scattered results in this direction appeared in the mid-sixties. Schützenberger [Sch65],
for example, proved that star-free languages are in one-to-one correspondence with aperiodic
monoids. The success of Eilenberg’s theorem relies in generality of the result; he understood
that finite aperiodic monoids are just an example of a pseudovariety. We can find further
instantiations of this result; the rational languages, for example, are associated with the
variety of all finite monoids and the piecewise testable languages with the variety of finite
J -trivial monoids.

Several attempts to generalize this result appear in the literature; see for instance [Pin95,
Str02, EI03]. These papers aim at extending Eilenberg’s result by relaxing some conditions on
the class of monoids or in the class of languages. A strong attempt to embrace these results
in a common categorical background was made in [AMMU15], were the authors introduced
varieties of languages in a category C , and prove their correspondence with pseudovarieties of
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monoids in a closed monoidal category D , provided that C and D are dual on finite objects.
In any case, all the results involve classes of finite monoids.

In this section, we introduce an alternative description of varieties of regular languages
based on equations and coequations. Finally, with the Duality Theorem 22 we presented
above, we will prove a variation of Eilenberg’s original variety theorem: below, we will relate
varieties of monoids, instead of pseudovarieties, and varieties of languages, which are now de-
fined in terms of properties of equations and coequations (see Definition 40 below). Although
similar, the notion of pseudovariety differs from the notion of variety introduced by Birkhoff
[Bir35]. A class of monoids is a variety of monoids if it is closed under taking substructures,
quotients and (not necessarily finite) products. Thus, infinite objects are allowed in a variety.
This section provides one of the best possible examples of the expressiveness of the functors
free and cofree. Moreover, the results we present for classes of non-necessarily finite monoids
subsume Eilenberg’s original variety theorem.

8.1 On transition monoids

In algebraic language theory (cf. [Eil74, Eil76, Pin14]), regular languages are typically studied
in terms of so-called syntactic monoids and congruences. We recall that a monoid (M, ·, 1)
consists of a set M , a multiplication operation that is associative, and an element 1 ∈M with
m · 1 = 1 ·m = m. For every set, there is the monoid (XX , ·, 1X) defined by

XX = {φ | φ : X → X } 1X(x) = x φ · ψ = ψ ◦ φ

It can be used to define for every automaton (X,α) a pointed automaton

(XX , 1X , α̃) α̃(φ)(a)(x) = φ(x)a

where φ(x)a = α(φ(x))(a), as usual. Now the transition monoid [Eil76, Pin14] for (X,α):

(trans(X,α), 1X , α̃)

is defined by trans(X,α) = im(r1X ), where r1X is the reachability map of (XX , 1X , α̃):

1

A∗ trans(X,α) XX

ε
1X

1X

rx̄

Theorem 28. For an automaton (X,α),

(free(X,α), x̄, ᾱ) ∼= (trans(X,α), 1X , α̃)

Proof. Let X = {x1, . . . , xn}. For every ȳ ∈ free(X,α) we define

φȳ : X → X φȳ(xi) = yi

Then φ(ȳ) = φȳ defines an isomorphism of pointed automata.
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We have defined free(X,α) using the product space ΠX rather than the function space
XX , because it allows us to define the automaton cofree(X,α) using the coproduct ΣX.
As a consequence, cofree(X,α) can be seen as the dual of free(X,α) or, equivalently, of the
transition monoid. If (X,α) = 〈L〉, the minimal automaton for a fixed language L ∈ 2A

∗
:

1

A∗ free〈L〉 ∼= trans〈L〉
r1X

ε
1X

then the kernel of the reachability map r1X is the syntactic congruence ≡L of L, as we already
observed in (4) and (5). Interestingly, the fact that free(X,α) carries a monoid structure
(which it inherits from the concatenation of words in A∗) does not play any role in our proof
of the duality between free and cofree.

8.2 Eilenberg’s variety theorem

We recall in this sections the definitions used in the classical Eilenberg’s variety theorem. We
do this to better understand the results we will prove below.

Varieties of finite monoids

Definition 29. A variety of finite monoids, or pseudovariety, is a class of finite monoids H
satisfying:

(i) every homomorphic image of a monoid of H belongs to H,

(ii) every submonoid of a monoid of H belongs to H,

(iii) the direct product of a finite family of monoids of H also belongs to H.

Varieties of regular languages

Definition 30. A variety of regular languages H is an assignment to every alphabet A of a
family of regular languages satisfying

(i) For each alphabet A, H(A) is closed under Boolean operations and derivatives.

(ii) If L is a language of H(B), then for each monoid homomorphism ϕ : A∗ → B∗ the
language ϕ−1(L) belongs to H(A).

Recall that the syntactic morphism is just the quotient homomorphism η : B∗ → free〈L〉
(See Corollary 8). However, at first sight, no other relation with monoids seems to appear
in the definition of variety of regular languages. Despite this, it was Eilenberg [Eil76] who
proved the following striking theorem.

Theorem 31 ([Eil76]). There is a one-to-one correspondence between varieties of finite
monoids and varieties of regular languages.
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In order to prove that result, Eilenberg associates with each variety of finite monoids
H, the set H(A) of all recognisable languages of A∗ whose syntactic monoid belongs to H.
Conversely, to each variety of regular languages H, he associates the variety of finite monoids
H generated by the syntactic monoids of every regular language L in H(A), for certain
alphabet A. These constructions define mutually inverse bijective correspondences between
varieties of finite monoids and varieties of regular languages.

EC-varieties of regular languages

With this in mind, we will next give an alternative characterisation of varieties of regular
languages based on equations and coequations. Thus, we introduce the following definition.

Definition 32. An EC-variety of regular languages H is an assignment to every alphabet A
of a family of regular languages satisfying

EC(i) for each alphabet A, if L is a language in H(A), then coEq(A∗/Eq〈L〉) is included in
H(A);

EC(ii) for each alphabet A, if coEq(A∗/C1), coEq(A∗/C2) are included in H(A), then so is
coEq(A∗/C1 ∩ C2);

EC(iii) for every two alphabets A and B, if L is a language inH(B) and η : B∗ → free〈L〉 denotes
the quotient homomorphism, then for each monoid homomorphism ϕ : A∗ → B∗, the
set coEq(A∗/ker(η ◦ ϕ)) belongs to H(A).

Here, EC stands for equations-coequations. The above definition underscores the impor-
tance of congruences in the study of these kind of correspondences; moreover, its connection
with varieties of finite monoids seems much more natural. Our main result in this subsection
states that varieties of regular languages and EC-varieties of regular languages are equivalent
notions. This result can be regarded as an equational-coequational version of Eilenberg’s
theorem.

The proof of our result depends on the following lemmas.

Lemma 33 ([Geh11, Proposition 1]). If L is a regular language over A, then the set of right
and left derivatives {yLx | x, y ∈ A∗} is finite.

Lemma 34 ([BBPSE12, Proposition 2.14]). If L is a regular language over A, then every
class [w] in A∗/Eq〈L〉 can be expressed as follows

[w] =
⋂
{yLx | w ∈ yLx} \

⋃
{yLx | w 6∈ yLx}. (10)

Theorem 35. The assignment of regular languages H is a variety of regular languages if and
only if it is an EC-variety of regular languages.

Proof. We start showing that every variety of regular languages H is an EC-variety of regular
languages.

EC(i) Let L be a regular language in H(A) and consider a class [w] in A∗/Eq〈L〉 then, by
Lemmas 33 and 34, this class is a finite Boolean combination of languages in H(A). It
follows that [w] is an element in H(A). Recall that every language K ∈ coEq(A∗/Eq〈L〉)
is expressed as K =

⋃
w∈K [w] by Proposition 15. Recall that this union is finite as L

is regular and there are finitely many such classes [w]. Hence, as every atom [w] is
included in H(A), we conclude that coEq(A∗/Eq〈L〉) is completely included in H(A).

29



EC(ii) Now, assume that coEq(A∗/C1) and coEq(A∗/C2) are included in H(A). Then, for any
word w ∈ A∗, the languages [w]C1 and [w]C2 are regular languages in H(A). As H(A)
is a Boolean algebra, the language [w]C1∩C2 = [w]C1 ∩ [w]C2 is in H(A). As every atom
[w]C1∩C2 is included in H(A), so is coEq(A∗/C1 ∩ C2).

EC(iii) Now, let L be a language in H(B), let η : B∗ → free〈L〉 denote the quotient homo-
morphism, and let ϕ : A∗ → B∗ be a monoid homomorphism. As L is a language in
H(B) then, for all pair of words x, y ∈ B∗, the language yLx is in V(B). It follows that
ϕ−1(yLx) is a language in H(A), for all x, y ∈ B∗. By item EC(i) in this proof, the
preformation of languages coEq(A∗/Eq〈yLx〉) is completely included in H(A). As L is
regular, there are finitely many such derivatives yLx. Therefore, by several applications
of item EC(ii), the set coEq(A∗/

⋂
x,y∈B∗ Eq〈yLx〉) is included in H(A). We claim that⋂

x,y∈B∗ Eq〈yLx〉 is included in ker(η ◦ ϕ). Assume towards a contradiction that a pair
(v, w) of

⋂
x,y∈B∗ Eq〈yLx〉 is not included in ker(η◦ϕ), therefore there exists some x ∈ B∗

with Lxϕ(v) 6= Lxϕ(v). Therefore, we can find some y ∈ B∗ with y ∈ Lxϕ(v) such that
y 6∈ Lxϕ(w). We have the following chain of implications

y ∈ Lxϕ(v) ⇒ xϕ(v)y ∈ L ⇒ ϕ(v) ∈ yLx
⇒ v ∈ ϕ−1(yLx) ⇒ ε ∈ [ϕ−1(yLx)]v
⇒ ε ∈ [ϕ−1(yLx)]w ⇒ w ∈ ϕ−1(yLx)
⇒ ϕ(w) ∈ yLx ⇒ xϕ(w)y ∈ L ⇒ y ∈ Lxϕ(w)

therefore, we get a contradiction. It follows that
⋂
x,y∈B∗ Eq〈yLx〉 is included in ker(η◦ϕ).

Using the duality Theorem 22, we conclude that coEq(A∗/ker(η ◦ ϕ)) is included in
coEq(A∗/

⋂
x,y∈B∗ Eq〈yLx〉) and therefore it is included in H(A).

Now, assume that H is an EC-variety of regular languages and let us show that it is variety
of regular languages.

(i) Let L be a language in H(A), then coEq(A∗/Eq〈L〉) is in included in H(A). Note that
the complement of L is in coEq(A∗/Eq〈L〉) and so is every derivative. Now, let L and
K be two languages in H(A). Then coEq(A∗/Eq〈L〉) and coEq(A∗/Eq〈K〉) are included
in H(A) and, therefore, so is coEq(A∗/D) for D = Eq〈L〉 ∩ Eq〈K〉. As D ⊆ Eq〈L〉, by
Corollary 23, we conclude that L is in coEq(A∗/D). With a similar prove we conclude
that K also belongs to coEq(A∗/D). Therefore K ∩ L and K ∪ L are both included in
coEq(A∗/D) as it is a preformation of languages.

(ii) Let L be a language in H(B) and consider a monoid homomorphism ϕ : A∗ → B∗. If
η : B∗ → free〈L〉 denotes the quotient homomorphism, we have that coEq(A∗/ker(η◦ϕ))
is included in H(A). Consider the following coloration on A∗/ker(η ◦ ϕ)

ξ : A∗/ker(η ◦ ϕ) −→ 2

[w] 7−→
{

1 if ϕ(w) ∈ L
0 if ϕ(w) 6∈ L

In fact, if (v, w) is a pair in ker(η◦ϕ), then (ϕ(v), ϕ(w)) belongs to Eq〈L〉. In particular,

ϕ(w) ∈ L ⇔ ε ∈ Lϕ(w) ⇔ εLϕ(v) ⇔ ϕ(v) ∈ L
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Thus, the colouring ξ is well-defined. Now, the language oξ([ε]) is a language in
coEq(A∗/ker(η ◦ ϕ)) and, consequently, it belongs to H(A). Note that

v ∈ oξ([ε]) ⇔ ξ([ε]v) = 1 ⇔ ϕ(v) ∈ L ⇔ v ∈ ϕ−1(L)

As a direct consequence of last Theorem and Eilenberg’s variety theorem (31), we have
the following corollary.

Corollary 36. There is a one-to-one correspondence between varieties of finite monoids and
EC-varieties of regular languages.

Motivated by the alternative description of varieties of regular languages we presented in
definition 32, we will prove a variant of Eilenberg’s variety theorem [Eil76]. Here, varieties
of finite monoids are replaced by varieties of monoids (as stated by Birkhoff [Bir35]) and
varieties of regular languages are replaced by varieties of languages. The definition of variety
of languages is given in terms of equations and coequations. In fact, it is a modification of
the alternative description of varieties of regular languages we introduced above. As we did
above, we will introduce the definitions and concepts we will use on our proof.

Varieties of monoids

Definition 37. A variety of monoids is a class of monoids V satisfying:

(i) every homomorphic image of a monoid of V belongs to V,

(ii) every submonoid of a monoid of V belongs to V,

(iii) the direct product of every family of monoids of V also belongs to V.

There are two points in which this definition differs from that of pseudovariety (Definition
29). One is that all monoids in V are not assumed to be finite. The second one is that V is
closed under arbitrary direct products. Birkhoff proved two main results; the characterization
of varieties by sets of identities and the closure conditions a class of algebras must satisfy in
order to be a variety.

To simplify some proofs below, we will work with subdirect products. Following [Gri95,
p. 78], we say that a monoid M is a subdirect product of the product of a family of monoids
{Mi | i ∈ I} if M is a submonoid of the direct product

∏
i∈IMi and each induced projection

πi from M onto Mi is surjective. A monoid M which is isomorphic to such a submonoid P
is also called a subdirect product of the monoids {Mi | i ∈ I}. The following theorem of
Kogalovskĭı [Kog65] (see also [Neu67, Grä08]) characterizes varieties of monoids in terms of
quotients and subdirect products.

Theorem 38. A class of monoids V is a variety if and only if it is closed under taking
arbitrary subdirect products and quotients.

Varieties of monoids are equationally defined classes of monoids [Neu67, Bir35]. For a
monoid M , its residual with respect to a formation of monoids V, written MV, is defined as

MV =
⋂
{C ⊆M ×M | C is a congruence and M/C ∈ V}.

The above family is not empty as the total relation ∇M = M ×M is always included.
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Proposition 39. If V is a variety of monoids, for every monoid M , the quotient M/MV is
a monoid in V.

Proof. Note that M/MV is the subdirect product of the family of all quotients of M in V.
Kogalovskĭı’s Theorem 38 guarantees us that this subdirect product is in V.

Varieties of languages

Definition 40. A variety of languages V is an assignment to every alphabet A of a family
of formal languages satisfying:

(i) for each alphabet A, if L is a language in V(A), then coEq(A∗/Eq〈L〉) is included in
V(A);

(ii) for each alphabet A, if the family {coEq(A∗/Ci) | i ∈ I} is included in V(A), then so is
coEq(A∗/

⋂
i∈I Ci);

(iii) for every two alphabets A and B, if L is a language in V(B) and η : B∗ → free〈L〉 denotes
the quotient homomorphism, then for each monoid homomorphism ϕ : A∗ → B∗, the
set coEq(A∗/ker(η ◦ ϕ)) belongs to V(A).

We will see that varieties of languages are in one-to-one correspondence with varieties
of monoids. Consequently, we adopted the name “variety of languages” to emphasize this
property. Note that being a variety of languages requires additional closure conditions to
those necessary for being an EC-variety of regular languages. Here, we require closure under
arbitrary intersection of congruences to mirror the respective closure under arbitrary products
in the definition of variety of monoid. Note that, as any variety of languages satisfy the
conditions for being an EC-variety of regular languages, it is closed under Boolean operations,
inverses of monoid homomorphisms and left and right derivatives (Theorem 35).

A variant of Eilenberg’s variety theorem

Proposition 41. Every variety of monoids V induces a variety of languages V.

Proof. Consider the assignment:

V : A 7−→ coEq(A∗/A∗V)

(i) Let L be a language in V(A) then by Corollary 23, A∗V ⊆ Eq〈L〉. It follows that
coEq(A∗/Eq〈L〉) is included in V(A).

(ii) Assume that the family {coEq(A∗/Ci | i ∈ I} is included in V(A), then A∗V ⊆ Ci for all
i ∈ I. It follows that A∗V ⊆

⋂
i∈I Ci. By Theorem 22, coEq(A∗/

⋂
i∈I Ci) is also included

in V(A).

(iii) Now, let A and B be two alphabets, let L be a language in V(B) and let η : B∗ →
free〈L〉 denote the quotient homomorphism. Finally, let ϕ : A∗ → B∗ be a monoid
homomorphism. Since L is a language in V(B), we conclude that free〈L〉 is a monoid in
V. Recall that A∗/ker(η ◦ϕ) is isomorphic to im(η ◦ϕ) which is a submonoid of free〈L〉.
Since V is closed under taking submonoids, we conclude that A∗/ker(η ◦ϕ) is a monoid
in V. It follows that the residual A∗V is included in ker(η ◦ϕ), thus coEq(A∗/ker(η ◦ ϕ))
belongs to V(A).
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Proposition 42. Every variety of languages V induces a variety of monoids V.

Proof. We take V to be the class of all monoids M that are isomorphic to A∗/C for some
alphabet A and some congruence C on A∗ satisfying that coEq(A∗/C) ⊆ V(A). We will use
the characterization made by Kogalovskĭı (Theorem 38).

(i) Let f : M → N be a surjective monoid homomorphism defined on a monoid M in
V. Then there exists a set A and a congruence C satisfying that M ∼= A∗/C and
coEq(A∗/C) ⊆ V(A). Let γ denote the isomorphism between A∗/C and M . Then
f ◦ γ : A∗/C → N is a surjective monoid homomorphism. Moreover, C ⊆ ker(f ◦ γ)
which implies that coEq(A∗/ker(f ◦ γ)) is included in V(A). Finally, A∗/ker(f ◦ γ) is
isomorphic to N , which implies that N belongs to V.

(ii) Now, let M be a monoid that can be expressed as the subdirect product of an arbitrary
family {Mi | i ∈ I} of monoids in V. Therefore, for each index i ∈ I, there exists an
alphabet Ai and a congruence Ci on A∗i satisfying Mi

∼= A∗i /Ci and coEq(A∗i /Ci) ⊆
V(Ai). Let us denote the corresponding quotient homomorphisms as ηi : A

∗
i → A∗i /Ci.

Consider the alphabet B =
⋃
i∈I Ai. By the universal property of the free monoid, we

can construct a monoid homomorphism ϕi : B
∗ → A∗i , for all i ∈ I. Thus, ηi ◦ϕi : B∗ →

A∗i /Ci is a surjective monoid homomorphism for all i ∈ I. Denote the congruence
ker(ηi ◦ϕi) by Di. As V is a variety of language, the set coEq(B∗/Di) belongs to V(B).
Note that M can be expressed as the subdirect product of the family {B∗/Di | i ∈ I}.
Since B generates each monoid in the family, M is generated by B. It follows that
M ∼= B∗/F for some congruence F on B∗. Since M is a subdirect product of the
monoids B∗/Di, we have that

⋂
i∈I Di ⊆ F . Note that coEq(B∗/

⋂
i∈I Di) is included

in V(B). By Theorem 22, coEq(B∗/F ) is included in V(B) and, finally, M is a monoid
in V.

In order to prove our variant of Eilenberg’s variety theorem, we shall use the following
universal property of the free monoid (see [Pin86, p. 10]).

Proposition 43. Let γ : A∗ → Q be a monoid homomorphism and η : P → Q be a surjective
monoid homomorphism, then there exists a monoid homomorphism ϕ : A∗ → P with η◦ϕ = γ.

A∗

P Q

ϕ
γ

η

Theorem 44. The assignments V 7→ V and V 7→ V define mutually inverse correspondences
between varieties of monoids and varieties of languages.

Proof. Consider a variety of monoids V. The first correspondence gives us the variety of
languages V that assigns to each alphabet A the set coEq(A∗/A∗V). Let W be the class of all
monoids M that are isomorphic to A∗/C for some alphabet A and some congruence C on A∗

satisfying that coEq(A∗/C) ⊆ V(A).
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Let M be a monoid in V and let B be the set of generators of M . Then M ∼= B∗/F for
some congruence F on B∗. Recall that B∗V is included in F , therefore coEq(B∗/F ) is included
in V(B). We conclude that M is a monoid in W. On the contrary, let N be a monoid in W,
then N is isomorphic to D∗/E for some alphabet D and some congruence E on D∗ satisfying
that coEq(D∗/E) ⊆ V(D). By Theorem 22, D∗V ⊆ E and N is a quotient of a monoid in V.
We conclude that N is a monoid in V.

Now, let V be a variety of languages. The first correspondence give us the variety of
monoids V which is defined as the class of all monoids M that are isomorphic to A∗/C for
some alphabet A and some congruence C on A∗ satisfying that coEq(A∗/C) ⊆ V(A). Let W
be the variety of languages that assigns to each alphabet A the set coEq(A∗/A∗V).

Let L be a language in V(B), then coEq(B∗/Eq〈L〉) is included in V(B). It follows that
free〈L〉 is a monoid in V. Hence, B∗V ⊆ Eq〈L〉. By Theorem 22, coEq(B∗/Eq〈L〉) is included
in W(B). Note that L is always a language in coEq(B∗/Eq〈L〉).

Now, let L be a language in W(B), then coEq(B∗/Eq〈L〉) is included in W(B). By
Theorem 22, B∗V ⊆ Eq〈L〉, therefore free〈L〉 is a monoid in V. By definition of V, the monoid
free〈L〉 is isomorphic to D∗/E for some alphabet D and some congruence E on D∗ satisfying
that coEq(D∗/E) ⊆ V(D). Let η : D∗ → D∗/E and δ : B∗ → free〈L〉 be the corresponding
quotient homomorphisms. Let ρ : free〈L〉 → D∗/E be the corresponding monoid isomorphism.
It follows that γ = ρ ◦ δ is a monoid epimorphism from B∗ onto D∗/E. By Proposition 43,
there exists a monoid homomorphism ϕ : B∗ → D∗ with η ◦ ϕ = γ. Summarising,

B∗

D∗

free〈L〉

D∗/E

ϕ

δ

γ

η

ρ

As V is a variety of languages, the set coEq(B∗/ker(η ◦ ϕ)) belongs to V(B). Note that L
is a language in coEq(B∗/ker(η ◦ ϕ)).

For a variety V of monoids, since the residual A∗V is the smallest congruence on any free
monoid A∗ whose quotient is a monoid in V, the preformation of languages coEq(A∗/A∗V) is
the biggest preformation of languages over A whose syntactic monoid is in V.

Example 45. A monoid M is commutative if for all m,n ∈ M , the equation mn = nm
holds. The class of all commutative monoids, denoted by C, is a variety of monoids that
can be characterized using the identity xy = yx. For an alphabet A, the residual of A∗ with
respect to the variety of commutative monoids is given by

A∗C =
∨
{ab=ba | a, b ∈ A}

where the right-hand side of the above equation denotes the smallest congruence on A∗ con-
taining all congruences ab=ba, for a, b in A. Every class [w] in A∗/A∗C is completely de-
termined by the amount of diferent letters appearing in w. Thus, it is easy to show that
the monoid A∗/A∗C is isomorphic to the monoid NA, of all functions from A to N. Following
Example 27, we see that a language L over A is commutative if L ∈ cofree(A∗/A∗C).
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9 Equational bisimulations

This section introduces the notion of equational bisimulation and we show how it can be used
to prove that a language satisfies a given set of equations. First of all, recall the following
property on coloured bisimulations (see Section 2 and [Rut98]), which follows from the fact
that 2A

∗
is a final (2× F )-coalgebra.

Proposition 46 ([Rut98]). Let R ⊆ 2A
∗ × 2A

∗
be a coloured bisimulation on (2A

∗
, ε?, τ). If

(K,L) ∈ R then K = L.

It follows that no non-trivial coloured bisimulation can be defined on 2A
∗
. The above

property is often called the coinduction proof method: in order to show that K = L, it suffices
to define a coloured bisimulation R with (K,L) ∈ R. We refer to [Rut98] for examples that
illustrate the usefulness of this proof method. In [BP13], it is shown how variations on the
above proof method lead to surprisingly efficient algorithms for proving the equivalence of
non-deterministic finite automata.

Here we generalise the notion of bisimulation for languages as follows. Let C ⊆ A∗ × A∗
be a congruence. We call a relation R ⊆ 2A

∗ × 2A
∗

an equational bisimulation with respect
to C, or C-bisimulation for short, if, for all (K,L) ∈ R,

(i) ε ∈ K ⇔ ε ∈ L

(ii) ∀(v, w) ∈ C, (Kv, Lw) ∈ R
We have the following corresponding proof principle.

Proposition 47. Let C ⊆ A∗×A∗ be a congruence and let R ⊆ 2A
∗×2A

∗
be a C-bisimulation.

For all (K,L) ∈ R,

(i) K = L

(ii) 〈K〉 |= C

Proof. Since (a, a) ∈ C, for all a ∈ A, any C-bisimulation is trivially also an ordinary bisim-
ulation. Thus (1) follows from Proposition 46. For (2), let (K,L) ∈ R and consider any state
Ku ∈ 〈K〉 and any pair (v, w) ∈ C. Since (K,K) = (K,L) ∈ R and R is a C-bisimulation,
and since (uv, uw) ∈ C, it follows that (Kuv,Kuw) ∈ R. By (1), we have Kuv = Kuw and
thus (Ku)v = (Ku)w, which proves (2).

Example 48. Let K = aA∗ + b(a∗b)∗ + b(b∗a)+. We shall use Proposition 47 to show that
K is commutative. Referring to Example 27, we need to prove that 〈K〉 |= ab = ba. Let

M = A∗, N = (a∗b)∗ + (b∗a)+, O = (a∗b)+ + (b∗a)∗

and let
R = {〈K,K〉} ∪ {M,N,O}2

Then R is an (ab=ba)-bisimulation. Thus 〈K〉 |= ab = ba, by Proposition 47.

Example 49. For a next example, we return to the context-free language of Example 26:

L = {w ∈ A∗ | |w|a ≥ |w|b }

and show that also L is commutative. Let Ln = {w ∈ A∗ | |w|a + n ≥ |w|b } and let

S = {〈Ln, Ln〉 | n ∈ Z }

Then S is an (ab=ba)-bisimulation and thus 〈L〉 |= ab = ba, by Proposition 47.
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10 Discussion

The work by Gehrke

We begin by relating our duality result to the work of Gehrke [Geh11]). There all automata
A = (Q,A, δ, I, F ) are finite. Consequently, the language recognised by A, denoted L(A), is
regular. For a finite alphabet A, the concatenation operation on A∗ gives rise to a residuated
family of operations on the set of all languages of A∗ as follows. Complex concatenation on
P(A∗) is given by

KL = {uv | u ∈ K and v ∈ L}

The residuals of this operation are uniquely determined by the residuation laws:

∀K,L,M ∈ P(A∗) KM ⊆ L ⇔ M ⊆ K\L ⇔ K ⊆ L/M

In particular, for any word w ∈ A∗, the following operations coincide

{w}\L = Lw and L/{w} = wL

Since L is regular, the set {yLx | y, x ∈ A∗} is finite (See Lemma 33).

Definition 50 ([Geh11, Definition 4]). Let A be a finite alphabet and L ⊆ A∗ a language
over A. Let B(L) be the Boolean subalgebra of P(A∗) generated by the set {yLx | x, y ∈ A∗}.
We will call B(L) the quotienting ideal generated by L. More generally a quotienting ideal of
P(A∗) is a Boolean subalgebra which is closed under the quotienting operations ( )x and y( )
for all x, y ∈ A∗.

The following theorem is one of the most important results of [Geh11].

Theorem 51 ([Geh11, Theorem 1]). Let L be a language recognised by an automaton. The
extended dual of the Boolean algebra with additional operations (B(L), \, /) is the syntactic
monoid of L. In particular, it follows that the syntactic monoid of L is finite and is effectively
computable.

The next proposition states that the dual object to the syntactic monoid of a regular
language L coincides with the preformation of languages cofree ◦ free〈L〉 we described in the
present paper. To prove it, we will use a previous lemma stating that every class [w] in
A∗/Eq〈L〉 belongs to the Boolean algebra generated by the set {yLx | x, y ∈ A∗}.

Proposition 52. For a regular language L over an alphabet A∗, the Boolean algebra with
additional operations (B(L), \, /) and cofree ◦ free〈L〉 coincide.

Proof. We will use the following abbreviation V = cofree ◦ free〈L〉. Let (v, w) ∈ Eq〈L〉, then
for all x ∈ A∗, we have that Lxv = Lxw. Therefore, for y ∈ A∗ we deduce the equations

yLxv = yLxw. It follows that Eq〈L〉 ⊆ Eq〈yLx〉. By Corollary 23 yLx is included in V . Since
V is a variety of languages, we conclude that B(L) is included in V . Recall that for any
pair of languages K,M in 2A

∗
, the equations K\M =

⋂
w∈KMw and M/K =

⋂
w∈K wM

hold. Hence, V is closed under residuals. Now, let [u] be an element in A∗/Eq〈L〉. Since L is
regular, every atom in V can be defined according to Lemma 34 using finitely many Boolean
operations. Thus, it belongs to the Boolean algebra generated by the derivatives of L. It
follows that V is included in B(L).
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Recall that, for regular languages, the set B(L) is a finite lattice and it is, therefore,
complete and atomic. We can say that, for finite automata, our duality coincides with that
obtained by Stone duality in Theorem 51. It is interesting to note that our result emerges
from an structural study of automata and, so far, no direct appeal to Stone duality is required.

Profinite techniques

Stone duality is used to obtain further stronger results for regular languages and finite
monoids. The connection between profinite words and Stone spaces was already discovered
by Almeida [Alm89, Alm94]. However, it was Pippenger in [Pip97] the first to formulate it
in terms of Stone duality. They both observed that the Boolean algebra of regular languages
over A∗ is dual to the Stone space Â∗ of profinite words. This duality extends to a one-to-one
correspondence between Boolean algebras of regular languages and quotients of Â∗.

On the other hand, Reiterman [Rei82] showed that pseudovarieties of monoids are charac-
terized by “implicit” identities that they satisfy. “Implicit” identities are limits of sequences
of the ordinary terms that appear in ordinary identities. Eilenberg stated that pseudovarieties
could be characterized by infinite sequences of identities, with each monoid satisfying all but
finitely many identities in each sequence. (Thus, aperiodic finite semigroups, for example,
satisfy the identity xk = xk+1 for sufficiently large k). The modern rendering of such in-
tuitions appear in the work done by Gehrke [Geh09, Geh11] and Pin [GGP08], who take a
further step in this direction showing that lattices of languages are precisely those classes of
regular languages being defined by profinite identities [GGP08]. It follows from these works
the strong connection between classes of regular languages, finite monoids and sets of profinite
identities. This approach is also very useful to establish effective decision procedures.

This correspondence strongly depends on profinite techniques. Recall that the profinite
monoid Â∗ can be constructed both as the completion of an ultrametric defined on A∗ or
as the projective limit of all finite monoids whose generators are in A (See [GGP08] and
[Alm03], respectively). Indeed, our results in the monoid side refer to objects (A∗/C, for
some congruence C on A∗) and the results on [Pip97], [GGP08], [Geh09] and [Geh11] refer

to limit constructions (profinite monoid). Indeed, the monoid Â∗ cannot be written as A∗/C
for some congruence C on A∗ and, therefore, our results per se do not apply.

However, the functorial approach we present here could be used to retrieve a similar
situation. Projective limits (the profinite monoid Â∗) and inductive limits (the set of all
regular languages Reg(A∗)) are categorical limits in which all arrows involved are epi or
mono, respectively. So far, we know that the category Am has inductive limits, whereas Ae
require an additional argument to guarantee that the mediating map from the limit to the
monoids is epi. At this point, it seems necessary to appeal to topological arguments (see for
instance [RS09, Lemma 3.1.27]). If such limits in both Am and Ae exist, our equivalence will
preserve both limits and colimits and we will retrieve a similar result on limit constructions.
All in all, this line of future work deserves further study.

The present paper already contains some contributions that encourage us to continue
working along these lines. The first relevant insight is that we are able to deal with infinite
automata and non-regular languages. It lies in the fact that the duality we find is the (con-
ceptually simpler) discrete duality between sets and complete atomic Boolean algebras. The
latter duality is also used in [Rou11], where it was lifted to a dual equivalence between deter-
ministic automata and so-called Boolean automata. We hope to retrieve some of the results
presented in the papers [Alm89, Alm94, Pip97, GGP08, Geh09, Geh11], specially Reiterman’s

37



characterization in terms of profinite equations. Further limit constructions of non-necessarily
finite monoids need to be investigated.

A second useful approach we presented here is the categorical description of the duality
presented in Theorem 22 and its more manageable Corollary 23. Of special interest on its own
is the variant on Eilenberg’s theorem we presented here as an almost immediate consequence.
The expressiveness of the functors free and cofree has been decisive in this proof. Recall
that the connection between varieties of languages (Definitions 32 and 40) and congruences is
explicitly presented from the very beginning with the help of equations coequations. We want
to understand further variants of Eilenberg’s result. We are specially interested in the result
achieved in [BBPSE12], where varieties of finite monoids were replaced by the less restrictive
concept of formations of finite monoids. We hope that the version for varieties presented here
could help us to achieve a result on formations of non-necessarily finite monoids.

Because we are working within the algebra-coalgebra duality, we can use both algebraic
notions, such as congruence, and coalgebraic notions, such as bisimulations. Our notion of
equational bisimulation, which is a generalisation of the standard notion, seems to be new and
so does the corresponding coinduction proof principle. Within this context of the algebra-
coalgebra duality, we also want to study the notions of varieties and covarieties of automata.
In [RBBCL13], some initial results are mentioned but with the present duality in place, we
expect that more can be said. The notion of equational bisimulation and its corresponding
coinduction proof principle deserve further study, both the present instance for automata and
its coalgebraic generalisations.

Finally, we want to investigate to what extent our duality can be further generalised to
other dynamical systems, such as Moore automata and probabilistic automata. The algebra-
coalgebra duality as such has already been extended to such automata in [BBRS12, BBH+14],
leading to generalisations of Brzozowszki’s algorithm. In addition, we plan to study the
connections with [BKP12] and [AMMU14], where dualities for generalised rational structures
have been studied.
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[EI03] Z. Ésik and M. Ito. Temporal logic with cyclic counting and the degree of
aperiodicity of finite automata. Acta Cybern., 16(1):1–28, 2003.

[Eil74] S. Eilenberg. Automata, languages and machines (Vol. A). Pure and applied
mathematics. Academic Press, 1974.

[Eil76] S. Eilenberg. Automata, languages and machines (Vol. B). Pure and applied
mathematics. Academic Press, 1976.

[Geh09] M. Gehrke. Stone duality and the recognisable languages over an algebra. In
Kurz et al., editor, Algebra and Coalgebra in Computer Science (CALCO 2009),
volume 5728 of LNCS, pages 236–250, 2009.

[Geh11] M. Gehrke. Duality and recognition. In Murlak and Sankowski, editors, Math-
ematical Foundations of Computer Science, volume 6907 of LNCS, pages 3–18,
2011.

[GGP08] M. Gehrke, S. Grigorieff, and J.-E. Pin. Duality and equational theory of regular
languages. In Proceedings ICALP, volume 5126 of LNCS, pages 246–257, 2008.

39
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