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Abstract Symbolic data structures using Binary Decision Diagrams (BDDs) ha-
ve been successfully used in the last decades to analyse large systems. While
various BDD and MTBDD packages have been developed in the community, the
CUDD package remains the default choice of most of the symbolic (probabil-
istic) model checkers. In this paper, we provide the first comparative study of the
performance of various BDD/MTBDD packages for this purpose. We provide
experimental results for several well-known probabilistic benchmarks and study
the effect of several optimisations. Our experiments show that no BDD package
dominates on a single core, but that parallelisation yields significant speedups.

1 Introduction

Probabilities play a central role in many areas such as distributed systems, sensor net-
works, and robotics. They are used to break symmetries, e.g., to elect a leader [21], to
resolve conflicts in a network, like the exponential backoff in CSMA/CD [20], or to
model unreliable components, such as sensors.

Model checking [7] is an important approach to assess the correctness of such sys-
tems, by exploring the state space of a model and checking whether a probabilistic prop-
erty is satisfied. Model checking faces the so-called state space explosion problem: a
combinatorial blowup of the number of states in the number of system components and
variables. For real-world models, it is therefore infeasible to traverse all states explicitly,
since they often contain billions of states [10]. To obtain a more compact representation
of the state space, Burch et al. proposed Binary Decision Diagrams (BDDs) [10, 27].
These have now become a standard technique to tackle large systems, with successful
applications in the analysis of many systems.

BDDs are a heuristic method to represent a large set of states or a transition matrix.
They are typically small if the state space contains symmetries, for example in a system
containing multiple similar modules. Standard BDDs store state spaces (denoted by
S ⊆ BN) and transition relations according to their characteristic function BN → B.
To store functions with any codomain, multi-terminal BDDs (MTBDDs) have been
proposed [12, 16]. In this way, functions BN → N and BN → R can be represented.

In [5], MTBDDs were first applied in probabilistic symbolic model checking to
represent the transition probabilities. They play a central role in the leading probab-
ilistic model checker PRISM [23], which exploits the well-known MTBDD package
CUDD [33].



Many parts of probabilistic model checking can be carried out using BDD opera-
tions only, and these are often the computationally most expensive steps of the process.
In particular, the computation of the set of reachable states and the qualitative precom-
putation step, which finds the set of states satisfying a formula with probability 0 or 1,
are computationally heavy, since they operate on the initial, large model.

In fact, MTBDDs may not be most efficient in probabilistic model checking. The
reduced state space obtained after the above operations already contains the information
required to compute the probability of the formula by means of numerical approaches,
such as linear equation systems or linear programming. MTBDDs may be disadvant-
ageous in such cases, as their regularity is destroyed [4, 19]. A major advantage of
avoiding MTBDDs is that the probabilistic model checking process could be acceler-
ated by choosing a suitable BDD package.

In this paper, we provide a comparative study of the model checking process using
several BDD packages, together with different settings that influence the performance of
these packages. In our model checker ISCASMC [17], we have integrated the packages
CUDD [33], BuDDy [13], CacBDD [26], JDD [35], Sylvan [36], and BeeDeeDee [25].
As case studies, we use various well-known probabilistic examples from the PRISM
website [31]. We observe that there is no clear winner for the single-core BDD packages
while computing BDD operations in parallel may improve the runtime considerably, in
particular for large models. We observe moreover that native BDD features offered by
the package to atomically perform a sequence of BDD operations on average improve
both time and memory consumption, but there are cases where such a feature slightly
degrades the performance. Our results suggest it is indeed useful to be able to choose
among several BDD packages and optimisations when performing probabilistic model
checking, since different BDD packages perform very differently on different models.

2 Probabilistic Model Checking

In this section, we first recall the formal definitions of Markov chains and Markov de-
cision processes. To specify probabilistic properties, we then employ the temporal logic
PCTL. Moreover, we sketch some techniques of model checking based on (MT)BDDs.

2.1 Markov Decision Processes

A Markov Chain (MC) can be used to describe a fully probabilistic model; a Markov
Decision Process (MDP) serves to describe a system containing both probabilistic and
nondeterministic choices. Such a system typically arises from the parallel composition
of multiple probabilistic models.

Definition 1. A Markov decision process is a tupleM = (S,s0,AP,L,Act,P) where S
is a countable, nonempty set of states, s0 ∈ S is the initial state, AP is a set of atomic
propositions, L : S→ 2AP a labelling function, Act is a countable, nonempty set of ac-
tions, and P: S×Act×S→ [0,1] is the transition probability function such that for all
states s ∈ S and actions α ∈ Act it holds that ∑s′∈S P(s,α,s′) ∈ {0,1}.

A (discrete-time) Markov chain can be seen as an MDP where |Act|= 1.



2.2 PCTL Model Checking

Now we introduce the probabilistic logic PCTL, which we use in our case studies.

Definition 2. A PCTL formula is a state formula φ defined by the following grammar,
where a ∈ AP is an atomic proposition, ./ ∈ {<,>,≥,≤}, p ∈ [0,1]∩Q, n ∈N, and ψ

is a path formula.

φ ::= a | φ ∧φ | ¬φ | P./p[ψ]

ψ ::= Xφ | φ U φ | φ U≤n φ

A qualitative formula is a formula where each p in P./p[ · ] is either 0 or 1.

We use standard derived operators such as φ1 ∨ φ2 = ¬(¬φ1 ∧¬φ2), false = a∧¬a,
true = ¬false, Fφ = true U φ , Gφ = ¬F¬φ and their bounded counterparts.

PCTL model checking is performed by a recursive descent into the formula under
consideration. For model checking the PCTL formula P./p[ψ] over a MCM, we first
need to compute the probability that a path starting from each state s satisfies the path
formula ψ , which is denoted ps(ψ). We divide all states into three disjoint sets: Sno,
Syes, and S?; we call this operation the precomputation. The sets Sno and Syes contain the
states s such that ps(ψ) is trivially 0 and 1, respectively. The remaining states belong to
S?. In order to compute ps(ψ) for s∈ S?, we reduce it to solving a linear equation system
iteratively. The remaining work is straightforward: we just compare the results with
./p. Model checking PCTL over MDPs is similar, but it should deal with adversaries
(schedulers, policies) and fairness because MDPs are non-deterministic models, see [7].

2.3 BDD-Based Probabilistic Symbolic Model Checking

In this section, we recall BDDs and MTBDDs. Then, we briefly discuss symbolic model
checking using BDDs.

The concept of (reduced ordered) binary decision diagrams (BDDs) was proposed
by Bryant [9], based on early works in [1, 24]. A BDD represents a Boolean function
f (x1,x2, . . . ,xn). It is a rooted directed acyclic graph [2] where terminal nodes (leaves)
are labelled with either 0 or 1. Non-terminal nodes contain a variable label xi and two
edges labelled 0 and 1, typically called the low and the high edge. Each non-terminal
node represents the Boolean expression (¬xi∧ fxi=0)∨ (xi∧ fxi=1), where the cofactors
fxi=0 and fxi=1 are represented by the target nodes of the low and the high edge, re-
spectively. Furthermore, variable labels xi appear along paths in the BDD according to
an ordering. Finding a good variable ordering is critical for the performance of sym-
bolic model checking; good heuristics exist, which are beyond the scope of this paper.
Reduction rules that remove redundant and duplicate nodes ensure that BDDs represent
Boolean functions canonically.

Some BDD packages use complement edges as further edge labels to denote nega-
tion of a Boolean function, which results in efficient negation and allows optimisations
that are beyond the scope of this paper. To construct and manipulate BDDs efficiently,
BDD packages usually have a unique node table to store all the BDD nodes and provide
a way to access nodes in constant time. They also have a cache that stores previously
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Figure 1. Overview of the data structures used by the model checking algorithm

computed results to avoid duplicate computations. The initial node size and initial cache
size are the initial numbers of entries in the unique node table and the cache, respect-
ively.

MTBDDs. The papers [12, 16] use a variant of BDDs to represent general matrices. It
is claimed that MTBDDs are the space-optimal representation of both dense and sparse
matrices, and of permutation matrices [16]. Unlike BDDs, the terminal nodes in MTB-
DDs are not restricted to be 0 or 1. (MT)BDDs enable storing and manipulating very
large matrices in a symbolic manner due to their shared structures. Symbolic encoding
of MDPs with (MT)BDDs can be then applied directly, see [5].

BDD-based Probabilistic Symbolic Model Checking. Figure 1 gives an overview of the
data flow during model checking for PCTL formulas. The data structures with white
background are symbolically stored as (MT)BDDs while the data structures with grey
background are stored explicitly. Given a PCTL formula P./p[ψ] and a description of
the model, the common procedure is to first encode the transition relation of the model
as MTBDDs and the formula and initial states as BDDs. Moreover, a BDD copy of
the transition relation is constructed by abstracting the probabilities between the states.
The resulting transition relation is the adjacency matrix of the underlying graph. Then
the reachability analysis identifies the reachable states of the model. By employing the
reachE and prob1E iterations proposed in [14], the reachable states are divided into the
three sets we mentioned before, namely Sno, Syes, and S?.

In the next step, one computes the probability of ψ by solving a linear equation
system for MCs, or a Linear Programming (LP) problem for MDPs. First, the transition
relation MTBDD is transformed to a probability sparse matrix, which is used to encode
the corresponding LP problem to compute the probabilities. In practice, approximate
value iteration is often used. The resulting reachability probability is then compared
with ./p to decide whether P./p[ψ] is satisfied. For nested PCTL formulas, the smallest
state subformula is handled first, and then the above procedure is recursively applied
while traversing through the abstract syntax tree of the formula in a bottom up order.



And-Exist Optimisation. One of the first steps in the PCTL model checking algorithm
is the computation of the states that are reachable from the initial states. These are ob-
tained by a fix-point computation of the transition probability matrix for MCs or of
the transition probability function for MDPs starting from the set of initial states. For
simplicity, consider the MC case and define the function Post : 2S → 2S as Post(X) =
{s′ ∈ S | ∃s∈ X .P(s,s′)> 0}. Symbolically, we can represent this operation as ∃V.R∧T
where R is the BDD encoding the set of states X , T the BDD encoding the adjacency
matrix, and V are the variables representing the current states. The resulting BDD en-
codes the set of next states (using variables V̂ ); by means of a variable renaming from
V̂ to V , we convert it to represent the states in Post(X).

A similar construction underlies the computation of the predecessor states; this op-
eration is the base of the precomputation step that, even for general PCTL properties,
may be performed very frequently and it is quite time consuming.

In the above two computations, we first have to build the conjunction of two BDDs
encoding the current states and the adjacency matrix and afterwards to remove a number
of variables from this conjunction by existential quantification such as ∃v.bdd1∧bdd2.
It is often the case that the BDD representing the conjunction is quite large. Therefore,
building bdd1∧bdd2 and afterwards applying the existential quantification is often very
slow. On the other hand, the BDD obtained after the existential quantification is often
quite small. To improve this operation, many BDD packages support a so-called And-
Exist (relational product) operator, in which these two steps are performed at once. This
means that the construction of the intermediate BDD bdd1∧bdd2 can be avoided, so as
to reduce computation time and memory consumption.

2.4 BDD Packages

In this paper, we study the performance of six different BDD packages: CUDD [33],
BuDDy [13], CacBDD [26], JDD [35], Sylvan [36], and BeeDeeDee [25]. CUDD is
a well-known BDD implementation used in several model checkers. BuDDy has been
integrated in several theorem provers and provides many efficient BDD operations. As
for CacBDD, experiments in [26] show that it outperforms CUDD in many benchmarks.
JDD is a BDD package implemented in Java. Sylvan is a novel parallel decision diagram
implementation that parallelises the BDD operations [36]. BeeDeeDee is a recent Java
thread-safe implementation of a BDD package. We remark that we are aware of other
BDD packages including ABCD [8], PBF [37], Janssen’s BDD [22], Carnegie Mellon’s
BDD [30], BDDNOW [29], and CAL BDD [32]: they are not included in our tool as
these packages are outdated and no longer maintained since 2000. Two recently updated
packages are BiDDy [28] and MEDDLY [3], however they lack certain basic operations
and can therefore not be compared to the other packages.

CUDD is a C implementation of BDDs and MTBDDs developed by Fabio Somenzi,
University of Colorado at Boulder. It provides support for operating with ordinary
BDDs, Algebraic Decision Diagrams (ADDs), and Zero-suppressed Binary Decision
Diagrams (ZDDs). ADDs are a special implementation of MTBDDs that are used, for
instance, by PRISM as its MTBDD implementation. The three types of decision dia-
grams provide essentially the same set of operations; this means, for instance, that an



Table 1. Overview of the features of the BDD packages used.

BDD implementation MTBDDs/
ZDDs And-Exist

dynamic var
remarks

engine language ADDs reordering

CUDD C 4 4 4(7) 4

BuDDy C 7 7 4 4

CacBDD C++ 7 7 4 7 dyn. cache mgmt.
JDD Java 7 4 4 7

Sylvan C 7 7 4 7 supports multi-core
BeeDeeDee Java 7 7 7 7 thread-safe

operation available when operating with BDDs is also available for ADDs. A notable
exception is the And-Exist operation that is not yet available for ADDs. Besides its
several operations on BDDs, ADDs, and ZDDs, CUDD also supports the conversion of
BDDs into ADDs or ZDDs and vice versa. In addition, it also provides a large assort-
ment of variable reordering methods. Though written in C, it provides a C++ interface
that provides overloaded operators and that offers to free the decision diagrams that are
no longer used by the application.

BuDDy is a BDD package implemented in C by Jørn Lind-Nielsen as a Ph. D. pro-
ject on model checking finite state machines. It supplies most useful operations for the
manipulation of BDDs as well as functions for integer arithmetic like addition and re-
lational operations like And-Exist. It provides also several highly efficient vectorised
BDD operations and it supports dynamic variable reordering and garbage collection.

CacBDD is a BDD package written in C++ by Guanfeng Lv. It supports common BDD
operations as well as other useful operations like the multiple-operand And-Exist. An
interesting aspect of CacBDD is its dynamic cache management algorithm and lazy
garbage collection that offer remarkable improvements in the performance of the BDD
operations at the expense of free physical memory.

JDD is, unlike the previous BDD packages, a pure Java BDD package developed by
Arash Vahidi. JDD supports BDDs as well as ZDDs and it has been originally inspired
by BuDDy. Though it is implemented purely by Java, it is still an efficient BDD package
and, thanks to its new cache scheme, JDD’s memory usage per node is less than BuDDy,
which is the major advantage of JDD.

Sylvan is a parallel decision diagram package implemented in C by Tom van Dijk as a
Ph. D. project on multi-core decision diagrams. It uses work-stealing and scalable paral-
lel data structures to provide parallelisation of algorithms on decision diagrams. Sylvan
currently supports BDDs and list decision diagrams, which are a variation of multi-
valued decision diagrams. Among the implemented parallel BDD operations, Sylvan
provides other useful operations for model checking such as And-Exist and the Rel-
next operation that combines And-Exist with variable renaming. It has been designed
as an extensible framework with custom BDD operations in mind and features parallel
garbage collection.



BeeDeeDee is a thread-safe BDD package implemented in Java developed by Juliasoft,
a spin-off company from the University of Verona. It supports the most common BDD
operations. Thread-safety allows for sharing BDD nodes between threads, thus reducing
the memory footprint when used in multi-threaded model checking. To improve its
performance, BeeDeeDee uses the most modern techniques for multi-threading in Java
such as the split locks that are used to control the concurrent garbage collection and the
concurrent accesses to the node table.

An overview of the features of the considered BDD packages is given in Table 1.

3 Experimental Results

In order to compare the different BDD packages, we have implemented the BDD-based
probabilistic model checking methods in our tool ISCASMC [17].

In ISCASMC, we provide a common high level Java interface to interact with the
specific BDD packages, each of them wrapped into a dedicated Java class. This sep-
arates the BDD implementations from the model checking algorithms and enables ex-
tending the tool with new or updated BDD packages, without having to change other
parts of the tool. ISCASMC is mainly implemented in Java and it uses Java Native Ac-
cess (JNA)1 to call BDD libraries written in C or C++. JNA is a library decreasing the
programmer’s effort to call native methods from Java. JNA introduces a small overhead
compared to using Java Native Interface (JNI). The overhead turned out to be negligible
compared to the total runtimes.

Since we use some features that are not provided natively by all BDD packages,
like the And-Exist operation, we have implemented ISCASMC such that it falls back
to use ordinary BDD operations when these features are not available. The BDD pack-
age to use in the model checking process can be chosen by setting the corresponding
ISCASMC command line option. We do not use dynamic variable reordering, since it is
not supported by all BDD packages we compare. Also, the reorder algorithm typically
has a high performance cost and good static orders were available for the models under
consideration.

Experimental Setting and Models. We have performed several experiments on the BDD
packages by tuning their settings. All experiments have been performed on a Linux
machine with an Intel Core i7-4790 processor at 3.6GHz with 16GB of RAM of which
only 8GB are usable by ISCASMC. The time-out for the experiments is 30 minutes.

Table 2 shows the models and the path properties taken from the PRISM web-
site [31] we used for the experiments: the IEEE 1394 FireWire protocol (implementa-
tion) [34] (“firewire-impl”), the Google File System model [6] (“google”), the Asyn-
chronous Leader Election protocol [21] (“leader”), the Dining Cryptographers pro-
tocol [11] (“dining-crypt”), the Dining Philosophers protocol with no fairness assump-
tion [15] (“phil-nofair”), and the Workstation cluster [18] (“cluster”). Except for the
“cluster” and “google” models that are Continuous Time Markov Chains (CTMCs)2,

1 https://github.com/twall/jna#readme
2 As we consider qualitative unbounded properties, they can be checked by transforming the

CTMCs to the corresponding embedded Markov chains.



Table 2. Models and properties.

model path property ψ

firewire-impl F((s1=8 & s2=7) | (s1=7 & s2=8))
leader F (”elected”)

dining-crypt F (”done” & parity=func(mod, N, 2))
phil-nofair F (”eat”)

cluster F (”premium”)
google F (”light hardware disaster”)

other models are MDPs. The actual formula we checked isP≥1[ψ] for the firewire-impl,
leader, cluster, and google models while it is of the form filter(forall,cond⇒P≥1[ψ])
for the remaining dining-crypt (where cond is “hungry”) and phil-nofair (where cond is
pay = 0) models. The keyword filter allows us to analyse the property in a given set of
states we are interested in: filter(forall,(cond)⇒P≥1[ψ]) is satisfied whenever for all
states satisfying cond the property P≥1[ψ] holds. Note that the initial state may or may
not be considered in the analysis, depending on whether it satisfies cond.

Remark 1. All the properties we consider here are qualitative properties, so they can
be decided by using the information from the sets Syes, Sno, and S? obtained from the
precomputation step on BDDs. This allows us to measure the time spent by ISCASMC
working with only (MT)BDDs, so we get a better understanding of the effects of the
different packages and options on the time spent for checking the formulas. We do use
MTBDDs to construct the transition relation, as doing so is easier than just using BDDs.
The construction never took a significant amount of time.

We further emphasise that our tool can handle quantitative properties. For quant-
itative properties, various BDD packages will produce the same problem instance but
–mostly– in different orders. This will further influence performance of the linear pro-
gramming problem solvers in a way that is loosely connected to the BDD packages.

Running Time. Table 3 shows the running time in seconds for the six different engines
CUDD, BuDDy, CacBDD, JDD, BeeDeeDee, and Sylvan. We repeated each experi-
ment 10 times and report the rounded average time of the 10 runs. We used CUDD as a
pure BDD package (cudd-bdd) or as a pure MTBDD package (cudd-mtbdd) while for
Sylvan we considered the sequential computation with 1 worker (sylvan-1) or the par-
allel computation with 7 workers (sylvan-7); we use 7 workers instead of 8 to reserve
a processor core for other threads in Java and the operating system, as explained at the
end of the section. We kept the default values for the BDD packages except for the
initial cache size that we set to 2612440 entries and the initial node size to 1250000
entries, for packages supporting such options. Moreover, we enabled the And-Exist op-
timisation for all packages whenever supported natively (see further below). For each
model, we considered several instances corresponding to different parameter choices.
For example, for the model “firewire-impl”, we considered the values 36, 45, 54, and
63 for the parameter “delay”. We marked by ‘–TO–’ the cases where the computation
took more than 30 minutes and by ‘–MO–’ the computations using more than 8GB of



Table 3. ISCASMC performances with different BDD packages where the values are the rounded
average running time of 10 executions.

BDD
engine

time (secs)

cluster / N firewire-impl / delay leader / N

1536 1792 2048 2304 36 45 54 63 6 7 8 9

cudd-mtbdd 63 92 125 170 109 65 69 86 11 58 218 709
cudd-bdd 40 54 75 95 65 43 42 45 7 25 86 301

buddy 4 4 6 7 78 46 51 82 7 48 165 662
cacbdd 21 28 40 53 87 71 72 85 8 28 95 410

jdd 4 4 7 7 88 49 54 77 8 47 170 637
beedeedee 7 8 12 16 91 55 61 61 11 42 183 853
sylvan-1 5 5 8 8 74 48 50 54 7 27 111 615

sylvan-7 5 5 8 8 29 26 27 28 4 9 28 139

google / M phil-nofair / N dining-crypt / N

500 1000 1500 2000 7 8 9 10 25 30 35 40

cudd-mtbdd 8 32 85 144 25 98 339 –MO– 13 44 68 206
cudd-bdd 6 22 56 91 19 74 268 –MO– 9 17 31 51

buddy 4 9 23 30 24 122 465 –TO– 18 41 91 169
cacbdd 5 15 42 68 13 51 194 –MO– 5 8 13 21

jdd 4 10 25 34 37 203 706 –TO– 19 39 92 172
beedeedee 6 22 56 97 32 136 514 –TO– 20 48 101 166
sylvan-1 5 12 32 46 20 120 500 –TO– 6 11 18 56

sylvan-7 6 12 30 35 5 25 102 –MO– 6 8 16 47

RAM. We highlighted the best runtimes among all packages in bold font; we marked
also the best runtimes excluding sylvan-7 so to consider only sequential computations.

By looking at the results in Table 3, we can immediately see that no BDD package
outperforms the others in all case studies. The first thing we note is that Sylvan-7 takes
a large advantage from its parallel operations for the high time-consuming models, but
the overhead induced by the synchronisation on the parallel operations penalise it on
small cases. If we focus on Sylvan-1 and the other sequential BDD packages, we note
that for the CTMC models “cluster” and “google” BuDDy and JDD perform better
than the other packages, while for the remaining MDP models the best are CUDD as
BDD (“firewire-impl” and “leader”) and CacBDD (“phil-nofair” and “dining-crypt”).
We remark that Sylvan-1 is usually very close to the best-performing BDD packages for
“cluster” and “dining-crypt”. The CUDD package remains the default choice of most of
the symbolic (probabilistic) model checkers, but an order of magnitude in the runtime
could be saved sometimes—see the “cluster” and “dining-crypt” examples.

The overall runtime of the packages on all experiments is summarised by the next
table, where we sum all entries in Table 3 excluding the failures.
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Figure 2. And-Exist Setting comparison (time).

cudd-mtbdd cudd-bdd buddy cacbdd jdd beedeedee sylvan-1 sylvan-7

2837 1522 2156 1433 2493 2598 1838 608

It is worthwhile to note that CUDD (as MTBDD) is always one of the slowest packages
and the slowest on the overall set of experiments. This suggests that using only BDD
operations sometimes improves the runtime of the model checker for probabilistic sys-
tems quite considerably.

And-Exist Optimisation. Figure 2 shows the effect of the use of the And-Exist optim-
isation in the model checking algorithm. We have performed the experiments by using
the BDD packages providing native support to the And-Exist optimisation in the same
setting as for Table 3; thus, we omitted CUDD (as MTBDD) and BeeDeeDee since they
do not provide such an optimisation.

Each mark in the plot corresponds to the execution of the BDD package with and
without the And-Exist optimisation for one instance of the models. The points below
(above) the dotted line represent the cases where the usage of And-Exist has reduced
(increased) the runtime. As we can see, it is in general convenient to use such an op-
timisation, but there are cases, like for CacBDD on “firewire-impl” and JDD on “phil-
nofair” where it is preferable to not use And-Exist.

Figure 3 is similar to Figure 2, except for the fact that we consider the used memory
instead of the runtime. We can note that usually the use of And-Exist helps in reducing



102.8 103 103.2

102.8

103

103.2

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

cluster

103.4 103.45
103.4

103.45

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

firewire-impl

103 104

103

104

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

leader

103 103.5

103

103.5

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

google

103 103.5

103

103.5

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

phil-nofair

103 103.5

103

103.5

Memory without And-Exist

M
em

or
y

w
ith

A
nd

-E
xi

st

dining-crypt

cudd-bdd buddy cacbdd jdd sylvan-1 sylvan7

Figure 3. And-Exist Setting comparison (memory, in MB).

the memory footprint but there are cases where CUDD (as BDD) and JDD require more
memory when And-Exist is used.

Remark 2. Due to space limitations we omit a detailed report of the memory usage
of the BDD packages. We have observed, unless a memory-out is reached, irregular
behaviour of memory usage. We think that it is due to the fact that different BDD
packages have their own way of memory managing strategies, for instance by preferring
to allocate new memory instead of performing a garbage collection.

Impact of the Initial Cache Size. In Figure 4 we plot the outcomes of several experi-
ments on the “firewire-impl” model with BuDDy by varying only the initial cache size.
Note that here the reference value D = 262144 = 218 is one tenth of the value we used
for Table 3. As one can expect, increasing this value usually improves the running time.
However, we can first note a big decrease in the running time going from 0.25D to 1D;
then, by enlarging the cache size to 4D, the runtime increases for then decreasing again
as expected. Note that by making the cache much larger (from 18D) slightly increases
the runtime again. The hashing of the elements in the cache and the locality of the
cached data may be the causes of the observed behaviour.

In Figure 5 we plot the result of varying the initial cache size and node size. For the
cache size, we range from D = 262144 = 218 to 20D; for the node size, we range from
0.5 ·106 to 2 ·106. By looking at the plots, we can note that increasing the cache size is
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Figure 4. BuDDy performance on “firewire-impl” with different initial cache sizes.

counter-productive if the node size is too small, while it is always worth to increase the
node size. Note however that increasing both parameters too much may cause a failure
by memory-out.

Effect of the Number of Workers on Sylvan. Figure 6 shows the speedup gained by
ISCASMC by using Sylvan with a different number of workers. For this case, we used
a different machine equipped with 48 cores (4 AMD Opteron 6168 processors) and
128GB of RAM, but with the same time and memory limits as before.

In general, we observe that the gained speedup is correlated to the runtime size
of the models. The “leader” and “phil-nofair” models result in a higher speedup. The
highest speedup we obtain is with the “phil-nofair” model: here we obtain a speedup of
26.5 with 47 workers. For the “cluster”, “google”, “dining-crypt” examples, the spee-
dup is at most 3. For the smallest models, the speedup increases first with the number
of workers, but with too many workers the gained speedups are lost again. This be-
havior could be explained as follows. When reachability consists of only small BDD
operations, then there is little opportunity for parallelisation. Meanwhile, all workers
are competing to execute the same suboperations, which aggravates the overhead from
parallelisation. For the “dining-crypt” example with N= 25, with more than 46 workers
we even observe a slowdown compared to running with 1 worker.

In all experiments we observe reductions of the speedup when nearly all cores are
used. This is likely to be due to the fact that all the 48 workers have to share the
cores with the system processes and the Java virtual machine, thus there is an increased
scheduling activity affecting the workers. Instead, with at most 47 workers, at least one
core remains always available for the system processes and the Java virtual machine, so
the scheduling activity is not expected to affect the workers. We can derive that in gen-
eral it is better to use a number of workers at most equal to the number of cores minus
1; this is why in Table 3 and Figure 2 we use 7 workers instead of 8, as confirmed by
similar experiments we performed but omitted for lack of space.

Finally, the result of a speedup of 26.5 with 47 workers is similar to results obtained
with LTSmin (a C-only model checker) in [36] and suggests that Java and JNA do not
have a significant impact on scalability, at least until 44 workers. The performance drop
with 45–48 workers, however, is not seen in [36].
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Figure 5. BuDDy performance on “firewire-impl” with different initial cache and node sizes.
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Figure 6. ISCASMC speedup with Sylvan BDD package with different workers.



4 Conclusion

This paper demonstrates the performances of different BDD packages in the context
of probabilistic model checking. From the experiments, we have seen that no BDD
package is remarkably faster than the others; CUDD (as BDD) and CacBDD performed
rather well on MDP models while BuDDy and JDD were more suitable for continuous
time MCs. The parallel BDD package Sylvan can outperform the other packages in
cases where the overall running time is sufficiently high and multiple cores are used,
and is competitive with the other packages when used sequentially, despite the overhead
added by parallelisation. This shows that parallelisation of BDD operations is very good
for performance and that other BDD packages might also profit from this approach. The
experiments confirmed that BDDs are sufficient for probabilistic model checking and
much faster than MTBDDs. We have also shown that the And-Exist optimisation speeds
up the whole verification process in some case studies, while for others it does not lead
to a considerable speedup or even leads to a decreased performance.
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