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NUMERICAL SIMULATION OF FLUID FLOW AND HEAT
TRANSFER IN A CURVED SQUARE DUCT BY USING
THE LATTICE BOLTZMANN METHOD

Quan Liao1 and T. C. Jen2

1College of Power Engineering, Chongqing University, Chongqing,
People’s Republic of China
2Department of Mechanical Engineering, University of Wisconsin—Milwaukee,
Milwaukee, Wisconsin, USA

In this article, the three-dimensional 27-velocities (D3Q27) lattice Boltzmann method

(LBM) is employed to simulate the fully developed fluid flow and heat transfer in a curved

square duct with curvature ratio 0.05–1.0 and Dean number 0–200. The so-called Dean

instability in the curved square duct is fully investigated. It is found that for the square duct

with high curvature ratio, the onset of transition from single-pair vortex to double-pair vor-

tex depends on both Dean number and curvature ratio. This is consistent with conventional

computational fluid dynamic (CFD) and experimental results, and the differences between

simulation and experiment are very small. For the friction coefficient and Nusselt number,

which are functions of Dean number and curvature ratio, it is found that the numerical

results are in good agreement not only with the available experimental correlation but also

with conventional CFD results under the given conditions.

INTRODUCTION

The study of viscous flow in curved ducts is of fundamental interest in fluid
mechanics due to the numerous applications such as flows through turbomachinery
blade passages, aircraft intakes, diffusers, heat exchangers, and so on [1–6]. The
major effect of curved ducts on the fluid flow involves the strong secondary flow
due to the longitudinal curvature in the geometry [7–9]. The presence of longitudi-
nal curvature generates centrifugal force (which is perpendicular to the main flow
along the axis) and produces so-called secondary flow on the cross sections of ducts.
As a consequence of this centrifugal force, the axial velocity profile is distorted
(from the typical parabolic velocity profile in straight ducts), with an outward shift
of the peak axial velocity, and the total flow rate is reduced due to the decrease of
average axial velocity.
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In the past two decades, the lattice Boltzman method (LBM) has been suc-
cessfully applied to simulate all kinds of hydrodynamic fluid flows with complex
boundary geometries [10, 11]. Compared with the conventional computational
fluid dynamics (CFD) methods (which are based on continuum theory with
macroscopic scale), the LBM is based on microscopic level and mesoscopic kinetic
equations, in which the collective behavior of particles is used to simulate the
continuum properties in a system. From the mathematical point of view, the
LBM is a special finite-difference discretization of the Boltzmann equation with
Bhatnagar-Gross-Krook (BGK) approximation. Due to its simple implementation
(i.e., streaming and collision), easy grid generation, and powerful complex-geometry
treatment ability, the LBM has been widely used in many research areas, such as
multiple phases flow, fluid flow in porous media, and so on [12–16].

To the authors’ best knowledge, the LBM has never been used to solve the fluid
flow and heat transfer problems in a curved square duct in which the flow pattern is
much more complicated than that in a straight duct. Therefore, it is proposed in this
article to use a three-dimensional 27-velocities (D3Q27, as shown in Figure 1) incom-
pressible LBM model [17, 18] and a passive-scalar thermal method to solve the fully
developed fluid flow and heat transfer in a curved square duct. The flow pattern
transition, friction coefficient, and Nusselt number are thoroughly investigated,
and the comparisons show good agreement between the results of conventional
CFD methods (i.e., Fluent software) or experimental correlations and those of
LBM solutions. In addition, it is also shown that this method can be more easily
implemented than the conventional CFD methods.

NOMENCLATURE

A cross-sectional area of square duct

c lattice speed

cs speed of sound

C curvature ratio

Cf Fanning friction factor

Dh equivalent hydrodynamic diameter

of square duct

Dn Dean number

~eea discrete particle velocity

f mass density distribution function

f ðeqÞ local equilibrium distribution

function

fa
�

post collision state of distribution

function

fc friction factor for curved duct

fs friction factor for straight duct
�hh average heat transfer coefficient

L side length of square duct

M Mach number

Nu Nusselt number

p pressure

pa pressure distribution function

P wetted perimeter of square duct

Pr Prandtl number

R radius of curved duct

Re Reynolds number

t time variable

Tm mean temperature

Tw wall temperature

T� dimensionless temperature

~uu macroscopic velocity

U average axial velocity
~xx space variable

a thermal diffusivity

dt time step

dx lattice constant

k relaxation time

t kinetic viscosity

q mass density
~nn microscopic particle velocity

s dimensionless relaxation time

sT heat transfer relaxation time

sw Average wall shear stress

xa weight factor
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THE LATTICE BOLTZMANN METHOD

It is well known that conventional CFD methods compute the pertinent fields, such
as velocity~uu and pressure p, by solving the Navier-Stokes equations numerically in space
(~xx) and time (t). However, the kinetic methods use the transport equation, such as the
Boltzmann equation in particular, to solve the problems in a fluid dynamics field [19].

The lattice Boltzmann equation approximates the kinetic equation for a single
particle mass density distribution f ð~xx;~nn; tÞ on the mesoscopic level. For example,
the Boltzmann equation with the single time relaxation approximation (i.e., the BGK
approximation) is

qf

qt
þ n � rf ¼ � 1

k
ð f � f ðeqÞÞ ð1Þ

where~nn is microscopic particle velocity, f ðeqÞ is local equilibrium distribution (or Maxwell
Boltzmann distribution), which has exactly the same mass density and macroscopic
velocities of a gas as given by the distribution f at specific location, and k is the so-called
relaxation time.

In Eq. (1), the right-hand-side term models the effect of the fluid viscosity on
the molecular level through the collision (or relaxation) process. The macroscopic
quantities (such as mass density q and velocity ~uu ) are the hydrodynamic first and
second moments of the distribution f,

q ¼
Z

f ð~xx;~nn; tÞ d3~nn ð2Þ

q �~uu ¼
Z
~nn � f ð~xx;~nn; tÞ d3~nn ð3Þ

Since the theoretical premises of the lattice Boltzmann equation (LBE) are
that (1) hydrodynamics is insensitive to the details of microscopic physics, and

Figure 1. D3Q27 lattice model.
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(2) hydrodynamics can be preserved as long as the conservation laws and associated
symmetries are satisfied at the microscopic level, the velocity space ~nn can be discre-
tized into a very small, finite set of velocities f~nnag without seriously degrading the
hydrodynamics. Therefore, in the finite discretized velocity space, the Boltzmann
equation becomes,

qfa
qt
þ~nna � rfa ¼ �

1

k
ð fa � f ðeqÞ

a Þ ð4Þ

with the distribution function of discrete velocities fað~xx; tÞ � f ð~xx;~nna; tÞ. The local
equilibrium distribution f

ðeqÞ
a and the discrete velocity set f~nnag for the D3Q27

LBE model are

f ðeqÞ
a ¼ xaq 1þ 3 � ð~eea �~uuÞ

c2
þ 9 � ð~eea �~uuÞ2

2 � c4
� 3 � ð~uu �~uuÞ

2 � c2

" #
ð5Þ

where ~eea is the discrete particle velocity, c ¼ dx=dt is the lattice speed, ~uu is the
macroscopic velocity, xa is the weight factors, and dx and dt are the lattice constant
and time step, respectively.

ea ¼

ð0; 0; 0Þ a ¼ 0
ð�1; 0; 0Þc; ð0;�1; 0Þc; ð0; 0� 1Þc a ¼ 1; 2; . . . ; 6
ð�1;�1; 0Þc; ð0;�1;�1Þc; ð�1; 0;�1Þc a ¼ 7; 8; . . . ; 18
ð�1;�1;�1Þc a ¼ 19; 20; . . . ; 26

8>><
>>: ð6Þ

xa ¼

8=27 a ¼ 0;
2=27 a ¼ 1; 2; . . . ; 6
1=54 a ¼ 7; 8; . . . ; 18
1=216 a ¼ 19; 20; . . . ; 26

8>><
>>: ð7Þ

With the velocity space discretized, the hydrodynamic moments are evaluated by

q ¼
X

a

fa ¼
X

a

f ðeqÞ
a ð8Þ

q �~uu ¼
X

a

~eea � fa ¼
X

a

~eea � f ðeqÞ
a ð9Þ

Discretizing Eq. (4) in space ~xx and time t and rearranging, one obtains the
following discretized lattice Boltzmann equation:

fað~xxi þ~eea � dt; tþ dtÞ � fað~xxi; tÞ ¼ �
1

s
½ fað~xxi; tÞ � f ðeqÞ

a ð~xxi; tÞ� ð10Þ

where s ¼ k=dt is the dimensionless relaxation time.
Equation (10) is the so-called lattice Boltzmann equation with BGK

approximation, and it is often referred as the LBGK model. By using a lengthy
and complicated multiscale technique (i.e., Chapman-Enskog expansion) on the
Boltzmann BGK equation [i.e., Eq. (1)], the conventional Navier-Stokes equation
can be recovered, and the corresponding pressure and kinetic viscosity for the fluid
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are defined as follows:

p ¼ q � kBT

m
ð11Þ

t ¼ c2 � ðs� 0:5Þ � dt

3
ð12Þ

Since the equilibrium distribution [Eq. (5)] has implicit nature in time and the LBGK
model [Eq. (10)] has a Lagrangian nature in space discretization, the LBGK model is
a second-order method in space and time for compressible fluid flow, and it can be
solved by the following two consecutive steps:
Collision step:

�ff að~xxi; tÞ ¼ fað~xxi; tÞ �
1

s
½fað~xxi; tÞ � f ðeqÞ

a ð~xxi; tÞ� ð13Þ

Streaming step:

fað~xxi þ~eea � dt; tþ dtÞ ¼ �ff að~xxi; tÞ ð14Þ

where fa
�

denotes the postcollision state of the distribution function. It is apparent
that the collision step is completely local (which is the native parallel computing
feature of LBM without any other efforts as compared to the conventional
CFD method), and the streaming step is easy to implement and requires little
computational effort.

It is worth noting that the above mass density representative LBGK scheme is
a kind of compressible fluid model, i.e., the mass density is one of the primitive vari-
ables. In the real world, all the fluids are theoretically compressible; therefore the
mass density is always a function of space and time. However, for lower-speed fluid
flow problems (in which the Mach number is very close to zero), the incompressible
fluid assumption is widely used in real applications because of the simple governing
equations and acceptable errors. For the condition of low Mach number, the fluctu-
ation of mass density is small enough to neglect, and then the pressure can be used as
an independent variable to replace the mass density. Therefore, the incompressible
LBE model can be obtained within this incompressible fluid flow limit.

For a compressible fluid within an incompressible limit, it is well understood
that the mass density is approximately a constant, q0, and the density fluctuation,
dq, should be of the order OðM2Þ in the limit of M!0, where M is the Mach num-
ber. If one explicitly plugs q ¼ q0 þ dq into the equilibrium distribution function,
f
ðeqÞ
a , and neglects the terms that are proportional to dqðu=cÞ and dqðu=cÞ2 [which

are of the order OðM3Þ or higher], then the equilibrium distribution function
becomes

f ðeqÞ
a ¼ xa qþ q0

3 � ðea � uÞ
c2

þ 9 � ðea � uÞ2

2 � c4
� 3 � ðu � uÞ

2 � c2

" #( )
ð15Þ

If a local pressure distribution function, pa � c2
s fa, is introduced into the above

equilibrium equation, then the pressure representative ‘‘incompressible’’ equilibrium
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equation can be evaluated as

pðeqÞ
a ¼ c2

s f ðeqÞ
a ¼ xa pþ p0

3 � ðea � uÞ
c2

þ 9 � ðea � uÞ2

2 � c4
� 3 � ðu � uÞ

2 � c2

" #( )
ð16Þ

where cs is the speed of sound, and cs ¼ c=
ffiffiffi
3
p

for the D3Q27 model. Then the
corresponding evolution equation of the LBE system for incompressible fluid flow
becomes

pað~xxi þ~eea � dt; tþ dtÞ � pað~xxi; tÞ ¼ �
1

s
½ pað~xxi; tÞ � pðeqÞ

a ð~xxi; tÞ� ð17Þ

The pressure p and the macroscopic velocity ~uu are evaluated by

p ¼
X

a

pa ð18Þ

p0 �~uu ¼
X

a

~eea � pa ð19Þ

The pressure representative incompressible LBE system can be solved by the
same procedure, i.e., collision and streaming, as the mass density representative
compressible LBE in Eqs. (13) and (14). In this article, the fully developed fluid
flow in a curved square duct is solved by this method. Since this incompressible
LBE model is based on the incompressible limit for compressible fluid, the Mach
number has to be much smaller than unity (the Mach number usually cannot be
greater than 0.15 in this incompressible fluid limit) if the simulation results are to
be acceptable.

PASSIVE SCALAR METHOD FOR THE THERMAL LATTICE
BOLTZMANN MODEL

The passive scalar approach [20, 21] utilizes the fact that, compared to the fluid
flow LBE model, the macroscopic temperature satisfies a much simpler passive scalar
equation (which can be simulated by solving an additional LBE) if the viscous dissi-
pation and compression work done by the pressure are negligible. Therefore, in the
passive-scalar thermal LBE model, the temperature is simulated using a separate dis-
tribution function which is independent of the fluid mass density or pressure distri-
bution. However, this independent distribution function has the same lattice
velocity (i.e., D3Q27 in this article) and equilibrium distribution function as fluid flow;
this is different from the double-population method or multispeed LBE thermal model
[22] (which have their own lattice velocity and equilibrium distribution function).

Similar to the kinetic viscosity in fluid flow LBE model, the corresponding
thermal diffusivity in the passive scalar model is defined as

a ¼ c2

3
sT �

1

2

� �
Dt ð20Þ

where sT is the corresponding heat transfer relaxation time.
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Since the viscosity in the LBE model is defined as

t ¼ c2

3
st �

1

2

� �
Dt ð21Þ

The corresponding Prandtl number of the fluid is

Pr ¼ t
a
¼ 2st � 1

2sT � 1
ð22Þ

Although there are some apparent shortcomings to the passive-scalar thermal
lattice Boltzmann model (for example, the viscous dissipation and compressible
work done by pressure cannot be taken into account), the main advantage of this
method is the enhancement of numerical stability compared to the multispeed ther-
mal lattice Boltzmann models. It has been shown that this passive scalar method has
the same stability as the fluid flow LBE model [20, 21]. In this article, this thermal
method is adopted to solve the fully developed heat transfer in a curved square duct.

PHYSICAL MODEL DESCRIPTION

As shown in Figure 2, a curved square duct with side length L is placed on
the horizontal plane, and the radius of the curved duct is R, measured from the
center of duct to the center of the curve. The fluid flows in the square duct about
the center of curvature toward the inside of the plane of the paper.

The curvature ratio of this curved duct is defined as

C ¼ Dh

R
ð23Þ

where Dh is the equivalent hydrodynamic diameter of the square duct, which is
defined as

Dh ¼
4A

P
¼ 4L2

4L
¼ L ð24Þ

Figure 2. Geometry of curved square duct.
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The nondimensional characteristic Dean number Dn is defined as a function of
Reynolds number and curvature ratio:

Dn ¼ Re � ðCÞ0:5 ð25Þ

Re ¼ U �Dh

t
ð26Þ

where Re is the Reynolds number of the duct flow. A uniform grid is used in this
article, and the corresponding relaxation factors for fluid flow and heat transfer
are in the range 0.6–1.0.

On each cross section of the curved duct, a constant pressure gradient is
introduced to drive fluid flow along the duct’s axial direction. Due to the longitudi-
nal curvature and axial velocity, the centrifugal force is involved and drives the fluid
flow far away from the center of the curved duct (i.e., point O as shown in Figure 2),
and then the so-called secondary flow is formed on the cross section. In this article,
both pressure gradient and centrifugal force are treated like body forces acting on
each interior lattice with different directions on the cross section of the duct (which
is the projection of the computational domain), and the macroscopic momentum
conservation method [23, 24] is used to apply these body forces to the LBE fluid flow
and heat transfer models.

MATHEMATIC MODEL AND BOUNDARY CONDITIONS

Mathematic Model

In Figure 2, the fluid flows in the square duct point toward the inside of
the plane of the paper. Since the fully developed fluid flow and heat transfer will
be studied numerically in this article, the axial velocity profile and dimensionless
temperature distribution on the cross section will not be changed along the main
flow direction. Therefore, the original computation domain, which consists of
the square cross section and curved duct, can be simplified to a domain including the
square cross section and a few lattice lengths perpendicular to this section plane.
As a result of this simplification, the basic LBM with uniform lattice can be used to
solve this problem without any special treatment for the curved boundary. It is worth
noting that although the original computation domain has been simplified, the fluid
flow and heat transfer simulations are still in three dimensions, i.e., two dimensions
on the cross section and one dimension in the axial flow direction.

For fluid flow in pipes, the Fanning friction factor is defined as [25]

Cf ¼
2 � sw

q � V 2
avg:

ð27Þ

where sw is the average wall shear stress and is defined as

sw ¼ m � dUz

dn
ð28Þ
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Plugging Eq. (28) and Eq. (26) into Eq. (27) and rearranging, one obtains the following
friction factor for the curved duct:

Cf �Re ¼ 2 �Dh

Vavg:
� dUz

dn
ð29Þ

As far as fluid flow in straight square duct is concerned, the analytical friction factor is
available in literature and equals 14.25 [26].

For heat transfer in the curved duct, the corresponding dimensionless tempera-
ture and Nusselt number are defined as follows:

T� ¼ Tw � T

Tw � Tm
ð30Þ

Nu ¼
�hh �Dh

k
ð31Þ

where Tw and Tm are the wall temperature and mean temperature across the duct,
respectively. �hh is the average heat transfer coefficient around the four wall sides
and is defined as

�hh ¼ �k � qT=qn

Tw � Tm
ð32Þ

Plugging Eq. (30) and Eq. (32) into Eq. (31) and rearranging, one obtains:

Nu ¼ Dh �
qT�

qn
ð33Þ

For the fluid flow and heat transfer in a straight square duct, the analytical Nusselt
number with constant wall temperature is 2.98 [26].

In order to obtain more accurate results, the two-dimensional Simpson inte-
gration method is used to calculate the average axial velocity based on the uniform
lattice on the cross section.

Boundary Conditions

In the simplified computation domain, the boundary conditions have to be
specified in two parts with three directions, i.e., axial flow direction and two
directions on the cross-section plane.

Axial flow direction. Since both the fluid flow and heat transfer are fully
developed, the velocity and dimensionless temperature profiles will not change along
the axial flow direction (which is perpendicular to the plane of the paper and toward
inside). Therefore, a simple periodic boundary can be naturally applied for both fluid
flow and heat transfer in this direction, without any special treatment for the curved
boundary.
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Cross-section plane. On the duct cross section, four sides of wall are needed
to specify the boundary conditions. In this mathematic model, the no-slip boundary
and constant wall temperature conditions are applied on the four duct walls for fluid
flow and heat transfer, respectively. The second-order-extrapolation boundary treat-
ment [27] and counter-slip thermal boundary treatment [28] are employed for the
fluid flow and heat transfer to determine the unknown distributions (i.e., pressure
and dimensionless temperature distributions) coming from outside the computation
domain.

Once all these boundary conditions are established, the fully developed fluid
flow and heat transfer in the straight square duct are simulated using the current
LBM model by letting curvature ratio approach to zero (i.e., the radius of the curved
duct, R, is big enough, for example, 109), and the convergence criterion in this test
simulation is that the relative error of total velocity (including three components)
on each uniform lattice is less than 1.0� 10�4 for every 400 consecutive time steps.
After the convergence criterion is reached, the simulation results show that both fric-
tion coefficient and Nusselt number are in very good agreement with analytical
results (i.e., the relative errors versus analytical results are less than 0.1%). This vali-
dates that this LBM model is correct and that the simplification of the computation
domain is feasible and applicable. In addition to this benchmark validation of the
straight duct, a grid convergence test was implemented before any data were
adopted. For a given fluid flow problem, different numbers of uniform lattices
(i.e., 50� 50� 3, 100� 100� 3, and 160� 160� 3, where three lattices are used for
the periodic direction) for the same computation domain were used to compare
the differences in terms of friction coefficient and flow pattern on the cross section.
After a couple of comparisons, it was found that the uniform lattice 100� 100� 3
has both good accuracy and less computing cost. Therefore, the 100� 100� 3 uni-
form lattice mesh is used in this article to simulate the fluid flow and heat transfer
problems.

SIMULATION RESULTS AND DISCUSSION

Fluid Flow

As shown in Figure 3, the nondimensional axial velocity distribution of cross
section b–b is presented at different Dean numbers with a constant curvature
ratio C ¼ 0.05. From this figure, it is evident that, as the Dean number increases,
the maximum axial velocity first shifts toward the outside of the duct from near
the center position until it reaches a most outside point on the cross section; then,
once the Dean number reaches a certain value (which is a function of the curvature
ratio), the velocity profile on cross section b–b suddenly changes to a new pattern
(as shown in Figure 3), and the location of maximum axial velocity is much closer
to the center of the duct than before. Moreover, as the Dean number increases
further, the maximum axial velocity moves toward the center of the duct, which is
the opposite moving direction compared to the case with smaller Dean number
before the new velocity profile was observed.

With the same conditions, the dimensionless axial velocity profile along
cross section a–a is shown in Figure 4. In this figure, it is apparent that as the
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Dean number increases, the peak of the velocity profile on cross section a–a
changes from one point at the beginning to two symmetrical points, and eventually
up to three points (one is at the center and the other two are symmetrical about

Figure 3. Velocity distributions along cross section b–b.

Figure 4. Velocity distributions along cross section a–a.
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the center one). Meanwhile, the axial velocity on cross section a–a is becoming
more uniform as Dean number increases. The switchback movement of maximum
axial velocity on cross section b–b in Figure 3 and the change of number of peak
velocities on plane a–a in Figure 4 can be explained as follows. On the duct cross
section, the centrifugal force (which is induced by axial velocity and duct curva-
ture) drives the fluid flow from inner side wall to the outer side wall, and this fluid
flow causes a symmetrical flow pattern on the cross section for the horizontal
curved duct. Compared to the main axial fluid flow (which is perpendicular to
cross section), the flow on the cross section is called secondary flow. When the

Figure 5. Velocity contour of cross section (Dn ¼ 50.0, C ¼ 0.05).

Figure 6. Velocity contour of cross section (Dn ¼ 100.0, C ¼ 0.05).
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Dean number is small, there is just one peak point on the axial velocity profile, and
the secondary flow is one pair of weak symmetrical eddies due to the small cen-
trifugal force. As Dean number keeps increasing, the axial maximum velocity
moves toward the outside of the wall and, at the same time, the two symmetrical
eddies become stronger and stronger, eventually distorting the axial velocity from a
single peak to two symmetrical peaks on cross section a–a. On the other hand,
once the Dean number exceeds a certain value, the secondary flow suddenly
changes from one pair of symmetrical eddies to two pairs of symmetrical eddies

Figure 7. Velocity contour of cross section (Dn¼150.0, C ¼ 0.05).

Figure 8. Velocity contour of cross section (Dn ¼ 200.0, C ¼ 0.05).
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(having opposite rotating directions), due to the imbalance between centrifugal
force and pressure gradient on the cross section. This is the so-called Dean insta-
bility [29, 30]. Therefore, the velocity distribution on section b–b suddenly changes

Figure 9. Axial velocity profile in 3-D view (Dn ¼ 50.0, C ¼ 0.05).

Figure 10. Axial velocity profile in 3-D view (Dn ¼ 100.0, C ¼ 0.05).

464 Q. LIAO AND T. C. JEN

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Jo

ha
nn

es
bu

rg
] 

at
 0

3:
38

 2
3 

Se
pt

em
be

r 
20

15
 



and another peak velocity appears at cross section a–a, that is, there are now three
peak velocities.

In Figures 5–8 and Figures 9–12, the detailed dimensionless axial velocity
distributions are presented and the transition process from one velocity peak to
two peaks and eventually to three peaks are all clearly shown (i.e., Figures 5–7 or

Figure 11. Axial velocity profile in 3-D view (Dn ¼ 150.0, C ¼ 0.05).

Figure 12. Axial velocity profile in 3-D view (Dn ¼ 200.0, C ¼ 0.05).
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9–11 in 3-D view). Based on these axial velocity contours, it is obvious that the
higher the Dean number, the greater the velocity gradient that will be observed
around the duct walls, especially for the two vertical sides, and this is consistent
with the previous results in Figure 4. Moreover, since the axial velocity with the
same number of uniform contour lines is provided at different Dean numbers,
the distribution of uniform contour lines shows how well the axial velocities distrib-
ute uniformly on the cross section. From Figures 6–8 or 10–12, one can conclude
that the axial velocity trends to be more uniform on the cross-sectional area as the
Dean number increases, which is also consistent with Figures 3 and 4.

Figure 13. Velocity vector of cross section (Dn ¼ 50.0, C ¼ 0.05).

Figure 14. Velocity vector of cross section (Dn ¼ 100.0, C ¼ 0.05).
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In Figures 13–16, the detailed secondary flows on the cross section are pre-
sented at different Dean numbers. These figures also clearly show the flow transition
from one pair of eddies (in Figures 13 and 14) to two pairs of symmetrical eddies
(in Figures 15 and 16) when the Dean number increasing up to certain values.
Compared to the single-pair symmetrical eddies, in the double-pair eddies case,
the additional pair eddies rotate in the opposite direction on the main vortices (as
shown in Figures 15 and 16). The imbalance between the pressure gradient and cen-
trifugal force on the cross section causes the transition from a single-vortex-pair to

Figure 15. Velocity vector of cross section (Dn ¼ 150.0, C ¼ 0.05).

Figure 16. Velocity vector of cross section (Dn ¼ 200.0, C ¼ 0.05).
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the double-vortex-pair structure; therefore, the location of maximum axial velocity
moves closer to the outer wall in symmetrical positions above and below the radial
centerline in Figures 7 and 8 or Figures 11 and 12.

In Figures 17–20 and Figures 21–24, the detailed pressure distributions
are presented at different Dean numbers. It is apparent that the pressure contour
patterns are considerably different for the double-pair eddies case (in Figures 19
and 20 or Figures 23 and 24) than for the single-pair eddies (in Figures 17 and 18
or Figures 21 and 22). Furthermore, the pressure gradient on the cross section
becomes more uniform as the Dean number continues increasing, as shown in
Figures 17–19 or Figures 21–23. Since pressure is always a passive variable in fluid

Figure 18. Pressure contour on cross section (Dn ¼ 100.0, C ¼ 0.05).

Figure 17. Pressure contour on cross section (Dn ¼ 50.0, C ¼ 0.05).
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flow problems, the pressure profiles shown in Figures 17–20 or Figures 21–24 are a
consequence of balance between centrifugal force and fluid viscous force.

In real engineering applications, one of the most important results of
fully developed flow in curved square duct is estimation of the friction factor (or
flow-rate reduction). The available well-known friction factor correlation in the
literature [31] is

fc

fs
¼ 0:225 Dn0:39 for a square duct with 100 < Dn<1; 500 ð34Þ

Figure 19. Pressure contour on cross section (Dn ¼ 150.0, C ¼ 0.05).

Figure 20. Pressure contour on cross section (Dn ¼ 200.0, C ¼ 0.05).
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In Figure 25, the computed friction factor ratios for a straight square duct at
different curvature ratios are presented. It is evident that the presented LBM simula-
tion results are in good agreement with the experimental correlation. On the other
hand, it is clearly shown in this figure that the friction coefficient for each specific
curvature ratio (from 0.05 to 1.00) changes suddenly when the Dean number is
between 115 and 130. This is because when the Dean number increases from 115
to 130, the flow pattern on the cross section changes from one pair of eddies to

Figure 21. Pressure profile in 3-D view (Dn ¼ 50.0, C ¼ 0.05).

Figure 22. Pressure profile in 3-D view (Dn ¼ 100.0, C ¼ 0.05).
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two pair of eddies. This Dean number which identifies the flow pattern is called the
critical Dean number. As a consequence of the flow pattern change, the correspond-
ing friction coefficient is increased .

With regard to the transition from single-pair eddies to a double-pair eddies, it
was proposed in [32] that, for a curved square duct, the transition is a result of a
complex structure of multiple, symmetric, and asymmetric solutions. The singular
value of Dean number for the transition of the two- and four-vortex flow patterns

Figure 23. Pressure profile in 3-D view (Dn ¼ 150.0, C ¼ 0.05).

Figure 24. Pressure profile in 3-D view (Dn ¼ 200.0, C ¼ 0.05).
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is between 113 and 191, which is consistent with the current results obtained from the
LBE model, i.e., the critical Dean number is between 115 and 130.

Heat Transfer

In Figures 26–33 and Figures 34–41, the dimensionless temperature contours
are presented at different Dean numbers and Prandtl numbers (two kinds of typical

Figure 25. Friction coefficients versus Dean number at different curvature ratios.

Figure 26. Temperature contour of cross section (Dn ¼ 50.0, Pr ¼ 0.716, C ¼ 0.05).
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Figure 27. Temperature contour of cross section (Dn ¼ 50.0, Pr ¼ 6.587, C ¼ 0.05).

Figure 28. Temperature contour of cross section (Dn ¼ 100.0, Pr ¼ 0.716, C ¼ 0.05).

Figure 29. Temperature contour of cross section (Dn ¼ 100.0, Pr ¼ 6.587, C ¼ 0.05).
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Figure 30. Temperature contour of cross section (Dn ¼ 150.0, Pr ¼ 0.716, C ¼ 0.05).

Figure 31. Temperature contour of cross section (Dn ¼ 150.0, Pr ¼ 6.587, C ¼ 0.05).

Figure 32. Temperature contour of cross section (Dn ¼ 200.0, Pr ¼ 0.716, C ¼ 0.05).

474 Q. LIAO AND T. C. JEN

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Jo

ha
nn

es
bu

rg
] 

at
 0

3:
38

 2
3 

Se
pt

em
be

r 
20

15
 



fluid, i.e., air and water, were chosen). From all these figures, it is obvious that the
Prandtl number plays a considerable role in the temperature field at a given Dean
number and curvature ratio in a curved duct flow. For example, in Figures 26 and
27 or Figures 34 and 35, the fluid flow conditions are exactly the same (i.e., same
Dean number and curvature ratio), but the fluid physical properties (i.e., Prandtl
number) are different. As a result, the dimensionless temperature contours are
significantly different for these two cases with different Prandtl number. Similar
results with different Dean numbers are presented in Figures 28–33 or Figures 36–41.

Figure 33. Temperature contour of cross section (Dn ¼ 200.0, Pr ¼ 6.587, C ¼ 0.05).

Figure 34. Temperature profile in 3-D view (Dn ¼ 50.0, Pr ¼ 0.716, C ¼ 0.05).
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Figure 35. Temperature profile in 3-D view (Dn ¼ 50.0, Pr ¼ 6.587, C ¼ 0.05).

Figure 36. Temperature profile in 3-D view (Dn ¼ 100.0, Pr ¼ 0.716, C ¼ 0.05).

Figure 37. Temperature profile in 3-D view (Dn ¼ 100.0, Pr ¼ 6.587, C ¼ 0.05).
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Figure 38. Temperature profile in 3-D view (Dn ¼ 150.0, Pr ¼ 0.716, C ¼ 0.05).

Figure 39. Temperature profile in 3-D view (Dn ¼ 150.0, Pr ¼ 6.587, C ¼ 0.05).

Figure 40. Temperature profile in 3-D view (Dn ¼ 200.0, Pr ¼ 0.716, C ¼ 0.05).
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Figure 42 shows a comparison of Nusselt numbers between the passive-scalar
thermal LBE and Fluent software results with the same fluid flow and heat transfer
parameters, including boundary conditions and geometry configurations. Before the
thermal results by Fluent software were adopted in Figure 42, the grid convergence
test was implemented for fluid flow and heat transfer. It is also apparent from this
figure that the results of the LBE are very consistent with those of Fluent software
(i.e., the conventional CFD method).

Figure 42. Nusselt number comparisons between LBM and Fluent results (C ¼ 0.05).

Figure 41. Temperature profile in 3-D view (Dn ¼ 200.0, Pr ¼ 6.587, C ¼ 0.05).
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CONCLUSIONS

In this article, the fully developed fluid flow and heat transfer in a square
duct with curvature ratio 0.05–1.0 and Dean number 0–200 have been thoroughly
investigated using the D3Q27 incompressible LBGK model and the passive-scalar
thermal model, respectively. Based on the simulation results, the following conclu-
sions can be drawn.

1. The fluid flow simulation results of the D3Q27 LBE model are in good agreement
with experimental correlation at the given conditions.

2. The full Dean stability range as obtained in this article is consistent with results
in the literature.

3. The LBE method is a new and useful successive method to solve hydrodynamic
problems; compared to the conventional CFD approach, this method is very easy
to understand and implement. The unique parallelism characteristics can save a
lot of calculation time if a special programming technique is applied.
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