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Introduction 

1 INTRODUCTION 

An implant can be broadly defined as an artificial device, inserted (semi-)permanently into the body 
In the last few decades, there has been an enormous increase in both the vanety and the number of 
implants used in medicine and dentistry The primary reasons for this increase are the exponential 
growth of the population and wealth in the western world Implants are usually placed to aid patients 
that, due to a congenital defect, a trauma or a pathologic cause, have some part of the body absent, 
damaged, diseased, or just simply worn In such cases an implant can be used to restore the missing 
function, or improve its healing or operation Additionally, a relatively small number of implants is 
used for cosmetic reasons It has to be noticed that due to the growing percentage of elderly people in 
the population, the number of geriatrie diseases will increase, and thus the number of implants used in 
their treatment 

With our improved understanding of medicine, chemistry, and physics, a parallel expansion in 
the number of implant matenals and designs has occurred A good example of this trend is the current 
emphasis in biomedical research on tissue engineering, defined as "an interdisciplinary field in which 
the pnnciples of engineenng and the life sciences are applied toward the regeneration of biologic 
substitutes aimed at the creation, preservation, or restoration of lost organ function" ', or in other words 
"the application of the principles and methods of engineenng and the life sciences toward the 
fundamental understanding of structure/function relationships in normal and pathological mammalian 
tissues and the development of biological substitutes to restore, maintain, or improve functions"2 

However, epidemiologic research still indicates that a number of implant procedures can be 
regarded as "failures", meaning that the implantation did not result in lasting clinical performance This 
often leads to so-called revision surgery Causes for implant revision can be inherent to the patient, 
surgical procedure, and of course compatibility of the implant itself It is supposed that an important 
factor in the final tissue-reaction towards an implanted device is the (initial) reaction of cells towards 
the device Therefore, many studies performed dunng the last two decades have focused on 
understanding of the interactions between different cells and tissues of the body, and implant matenals 
It is of the most importance that the used implant matenal fits in and is functional in a living organism, 
in other words it has to be 'biocompatible' For instance, when implants are placed in the soft tissues 
of the body, minimal capsule formation around the implant, implant migration, or implant extrusion 
are desired 

This thesis will focus on the possible influence of micrometer sized groove and ridge patterns, 
so-called 'microgrooves', on the biocompatibility of implant matenals First the structure and behaviour 
of cells will be desenbed After this, microgrooves and previous experiments on this subject will be 
regarded 
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Chapter I 

Figure 1 : Schematic representation of microfilaments (MF), 
intermediate filaments (IF), and microtubules (MT) in a cell 

2 CELL STRUCTURE: CYTOSKELETON AND CELL ATTACHMENT 

All living organisms consist of cells. The shape, internal organization, and motility of these cells are 
determined by two structural elements. First, the cells' internal framework: the cytoskeleton. Second, 
the attachments of the cell to its environment. The cytoskeleton of animal cells consists merely of three 
groups of protein-based structures: microfilaments, intermediate filaments, and microtubules (Figure 
1). Continuous breakdown and assembly of pieces of the cytoskeleton and cell attachments allow the 
cell to change its shape, to move, to divide, and to respond on its micro-environment. Besides this 
'mechanical' responsibility, the cytoskeleton and attachments have another important function. They 
controls the spatial location of the cell's components, and provide a communication pathway between 
cellular protein complexes and organelles, like the nucleus, mitochondria or Golgi-apparatus 3. 

2.1 Microfilaments 
The microfilaments are a group of proteins consisting of actin, myosin, and several associated proteins. 
Actin is the most abundant protein in many cells. In actively motile fibroblasts up to 15% of the total 
protein can be actin. Actin monomers are globular proteins (G-actins) with a 375 amino acids long 
sequence, with a molecular weight of 43 kDa. Above a critical concentration the monomers 
self-assemble into flexible 8 nm thick filaments. This filamentous form is called F-actin. In an actin 
filament the monomers are packed into a single tight helix with about two monomers each turn. This 
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gives the polymer the misleading appearance of a double helix twisting around each 37 nm (Figure 2) 

In a fibroblast usually about 50% of the actin is filamentous and 50% is free or bound to the 

actin-binding protein profihn, which sequesters free actin monomers in the cytoplasm, and thereby 

serves as a pool of stored actin The actin filaments are joined together, to form an extensive gel-like 

framework by cross-linking proteins, especially filamin-dimers When exposed to a short penod of 

mechanical stress, the network will not change its formation When exposed to a long penod of 

mechanical force, however, the cross-linkers will dissociate and re-associate, thereby irreversibly 

changing the shape of the network Next to the filamentous actin in the cytosol, actin filaments are also 

especially abundant just beneath the plasma membrane, forming an organelle-free cellular cortex This 

cortex prevents organelles from touching the inner cellular membrane 

There are many associated proteins that influence the structure and functionality of the actin-

framework The main associated protein is myosin, which is responsible for the sliding of 

actin-filaments Myosin molecules, when correctly aligned with the polanty of actin filaments, are able 

to bind to these actins Then, myosin can move along the actin strand This process is adenosine 

triphosphate (ATP)-dependent, the required energy is obtained by metabolism of ATP into adenosine 

diphosphate (ADP) When one actin-bound myosin binds to another actin-bound myosin molecule, 

movement of one or both myosins results in movement of the entire actin network 

The other actin-associated proteins have vanous functions Gelsolm is capable of fragmenting 

filaments into smaller ones when the cellular calcium concentration is higher than 107 M Therefore, 

it seems to be involved in the rearrangement of the actm skeleton Tropomyosin binds actin filaments 

in order to strengthen them Fimbnn and α-actinin bundle filaments into fibers Mmimyosin is capable 

of transporting various vesicles along actin-filaments Spectnn attaches the sides of filaments to the 

plasma membrane Finally, cap-proteins cap one side of the filament and are involved in the attachment 

to the plasma membrane 

2.2 Intermediate filaments 
The intermediate filaments were named 'intermediate' because they are larger than the actin 

microfilament, but smaller than the myosin microfilament, abouti e 8-1 Onmin diameter Intermediate 

filaments are usually divided into four types, on basis of homology in their amino acid sequence Type 

I are the keratins, that are present in epithelial cells Type II consists of vimentin (in cells of 

Figure 2 The arrangement of globular actm 
molecules in an actm filament The molecules are 
packed into a single tight helix This arrangement 
may give the appearance of two helical strands 3 
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mesenchymal origin, like fibroblasts and osteoblasts), desmin (in muscle cells), and glial fibrillary 
acidic protein (in glial cells) Type III are the neurofilament proteins, found in neurons Finally, type 
IV are the nuclear lamins, present around the cell nucleus The subunits of intermediate filaments are 
dimer-forming filamentous proteins from 40-130 kDa Dimers line up side by side to form so-called 
protofilaments, which associate in a staggered manner to form filaments 

As mentioned above, fibroblasts contain nuclear lamins, that line the inner membrane of the 
nucleus Further, fibroblasts possess vimentin-filaments, a 52 kDa large protein It has to be noted that 
this type of filament is also regularly seen in other cultured cells, due to the dedifferentiation in vitro 
of differentiated cell-types towards a fibroblast-hke phenotype Staining of vimentms shows that they 
are present into the fibroblast as a network that surrounds the nucleus and extends across the cytoplasm 
Presence of intermediate filaments is not necessary for the survival of cells, but it provides mechanical 
support for the cell and its nucleus 

2.3 Microtubules 
Microtubules consist of vast numbers of tubuhn-molecules Tubulin is a heterodimer, formed from two 
subunits a- and ß-tubulm Each subumt is about 450 aminoacids long and 50 kDa in weight Tubulins 
self-assemble into microtubules, with the α-subunit of one tubulin touching the ß-subumt of another 
Microtubules are very labile cylindncally shaped structures with an inner-diameter of 14 nm and an 
outer-diameter of 25 nm When a cross-section of a tubule is made, it can be seen that 13 tubulins are 
present Microtubules are polar structures They have a fast growing (plus) end, while the other end 
(minus) tends to lose subunits if not stabilized This minus end is stabilized by embedding in the 
microtubule organizing center (MTOC) called the centrosome, which is located next to the nucleus near 
the center of a cell This centrosome contains two centnoles and is surrounded by a cloud of a yet 
uncharactenzed amorphous material The plus ends of microtubules are extending outward from the 
centrosome 

Similar to actin, there are various associated proteins, which can influence the behaviour of 
microtubules These associated proteins are involved in linking the tubule to other parts of the 
cytoskeleton, or in transporting organelles along a microtubule Antibody-staining shows that 

Figure 3 Arrangement of a number of proteins 
involved in a focal adhesion 
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Figure 4: Shapes of cells and distribution of cortical actm 
filaments during various stages of cellular movement. 
1=nonpolarized cell, 2=bipolar cell, 3=stretched cell, 4=unipolar 
cell3. 

microtubules are lying co-linear with parts of the intermediate filament framework. Removal of the 
tubules causes the collapse of the intermediate filament network into a perinuclear cap. From such a 
expenments is concluded that microtubules organize the intermediate filament network. Microtubules 
were also shown to be associated with the determination of the orientation of actin-filaments, and 
location of endoplasmatic reticulum and Golgi-apparatus in the cell. It is known that organelles can be 
transported along microtubules. In this ATP-dependent transport along microtubules two proteins are 
involved: kinesin and dynein. Kinesin moves an organelle to the plus end of a microtubule, dynein to 
the minus end 3. 

2.4 Fibroblast attachment to substrates 
When cells are cultured, they adhere to each other and to the substratum they are growing on. 
Adhesions from cells to a certain substratum can be divided into three groups, on the basis of a 
morphologic criterion, i.e. the size of the separation between the plasma membrane and substratum4. 
The first group, extracellular matrix (ECM) contacts, show a separation of ± 100 nm between the 
membrane and the substratum. This space is filled with strands and cables of ECM material, connecting 
membrane and substratum. Second, close contacts have a separation of 30-50 nm. These contacts 
exhibit submembraneous densities parallel to the plasma-membrane, and can be compared to one half 
of aparticular cell-cell junction: the zonula adhaerens. The third and last group are focal adhesions, who 
show a 10-20 nm gap between membrane and substratum. They can be compared to one half of another 
particular cell-cell junction· the zonula occludens. 

At focal adhesions filamentous components of the cytoskeleton are bound to ECM proteins, 
with the help of transmembrane proteins. More specific: the end of an actin filament is connected to 
an integrin. An integnn is a transmembrane glycoprotein that can bind to ECM components, like 
fibronectin, vitronectin, or laminin. An integrin is built as a noncovalently associated complex of two 
high-molecular-weight polypeptides: the a- and ß-chain. The integrins are divided in three families 
according to their β chain. Though there are at least 14 different α-chains and at least 8 ß-chains, not 
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all heteromers are possible. Matrix proteins often contain a RGD sequence, i.e. a sequence of the 
aminoacids arginine, glycine and aspartic acid. This sequence is the part of the matrix protein that is 
bound by the integrin 5 7. 

In the connection between actin-filaments and integrin several proteins play a role: amongst 
others cap-proteins, a-actinin, vinculin, tallin (see Figure 3), tenuin, and paxillin. Tenuin strengthens 
the binding of vinculin to actinin. Paxillin is capable of binding vinculin and is thought to be involved 
in the control of focal adhesion organization. The attachment sites are well positioned to act as signal-
transducing centers to report on changes in the cell's immediate environment. Recent findings indicate 
that such signals are in part mediated through the activation of tyrosine kinases concentrated at the sites 
of adhesion. Changes in the phosphotyrosine content of paxillin accompanying this elevation in kinase 
activity suggest that paxillin may be an important intermediary in these pathways 5•8"10. 

2.5 Cell locomotion and the formation of focal adhesions 
The cytoskeleton and attachment sites of a cell are involved in cellular movement. In in vitro 
experiments, cytochalasins can be used to break actin filaments down. Besides, phallodin can be used 
to stabilize filaments. If cytochalasins are administered to a cell, locomotion, phagocytosis, cytokinesis 
and production of microspikes and lamellopodia are paralyzed. If phallodin is injected into a cell, it 
blocks cell migration. Such experiments underline that changes in cell morphology and cell movements 
are actin-based events, rather than dependent on other cytoskeletal components 3. 
When cell movement is studied microscopically the following observations can be made. 

Before movement starts, a cell has thin extensions in all directions: the lamellopodia. In these 
lamellopodia, short filamentous pieces of actin are present: the microspikes (Figure 4, no. 1 ). When two 
opposing lamellopodia become strongly engaged, they cause the cell to become bipolar (no. 2). At the 
organelle-free periphery of a cell, actin-filaments are oriented along the membrane. This inhibits the 
outgrowth of other lamellopodia. The opposite forces then cause a cell to become stretched (no. 3). 
Subsequently, cell movement can propagate to real cell locomotion. One end of the cell becomes rather 
quiet, whereas the other side, the leading edge, shows enlargement of the lamellopodium, with 
extensive microspikes (no. 4). In an electron-micrograph the leading edge is visible as a ruffled 
membrane. In the leading edge new cell adhesions are formed, after which the cortical actin-meshwork 
contracts. This causes the cell to move on in the direction of the new adhesion. On the other end of the 
cell, old adhesions are abandoned. When this happens cells usually leave behind complete integrins, 
i.e. including cytoplasmatic and transmembrane domains "·1 2 . 

When the lamellopodium of a spreading fibroblast is observed in more detail, it can be seen that 
it is 200-300 nm in thickness. Actin monomers diffuse, or are transported, to the front edge of the 
lamellopodium. Subsequently, they attach to the many present short microspikes. In this way, the 
growing end of the spikes abut the front edge of the lamellopodium. In this process, possibly also a 
'motor protein' is involved. This could be either myosin itself, or a myosin-like protein. In the 
extending lamellopodium, the new focal adhesions of a cell are formed, from precursor contacts. These 
precursor contacts are made in two steps. The first step in the formation of a precursor contact is a non­
specific approach of the cell membrane to the substrate surface, based on electrostatic and Van der 
Waals powers. The second stage is the specific binding of integrin membrane-receptors to proteins on 
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the substratum-surface. After the pushing of the lamellopodium by the microspikes has come to a halt, 
the microspikes start moving in a lateral way, searching for suitable attachment sites. It is proposed that 
in this process also microtubules are involved. When a single or several microspike(s) reach a newly 
formed precursor contact, this contact is stabilized. Vinculin and other proteins accumulate, and the 
adhesions will eventually mature into a complete focal adhesion, a cluster of integnns. From this focal 
adhesion the further formation of the actin stress fiber into the cytoplasm takes place (Figure 5). The 
formation of new focal adhesions can be established very quickly, with times reported varying from 
1 to 30 minutes. Recently it has been proven that immediately after ECM-integrin binding, mRNAs and 
nbosomes are relocated to the newly formed focal adhesions M. In this way, specialized regions in the 
cell are created, where mechanical forces on the integnns can immediately be reflected in protein 
production. 

Figure 5: The formation of a new focal adhesion. Microspikes 
(ms) abut the edge of the lamellopodium When the propagation 
stops, microspikes move laterally, until they encounter a 
precursor contact (PC). Then specific proteins accumulate and 
the contact matures into a full focal adhesion (FA). From this 
focal adhesion actin stress fibers are formed 13 
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3 CELL ADHESION TO MICROGROOVED BIOMATERIALS 

The engineering scope of current implant systems is focused on the development of so-called 'smart' 

biomaterials, which can be defined as man-made materials which have been designed to induce a 

specific biological response. Such materials actively influence the surrounding wound healing 

processes. In general, wound healing around implants is influenced by four material-related factors '5: 

1- Physico-chemical properties of the implant material 

2- Mechanical properties of the implant 

3- Surface-topography of the material: i.e. the macrotopography and microtopography 

4- Overall shape and design of the implant 

As mentioned in section 1, this thesis will deal with the influence of a certain microtopography, i.e. 

microgrooves, on the behaviour of cells and tissues. Consequently, the next paragraphs will first 

describe the manufacturing of microgrooved surfaces. Subsequently, previous experiments performed 

by our and other research groups with such surfaces will be reviewed. 

3.1 Microgrooved surfaces 

Material surface topography can be divided into roughness and texture. With 'roughness' non-

standardized discontinuities, and with 'texture' a standardized and controlled pattern is meant. It is 

already known since the beginning of this century that surface topography can influence cell behaviour. 

During that time, it was noticed '6 that cells in vitro migrated along spider web filaments. This 

regulation of cell behaviour, called 'contact guidance', was rediscovered about twenty-five years ago 

by Rovensky '7, who saw fibroblast aligning themselves to 40 μπι deep triangle-shaped grooves with 

a 200 μηι pitch. Recently, the microgroove principle was further explored in cell culture as well as 

animal studies. Many studies were performed to investigate the possible use of textured surfaces for 

medical and dental implants, because of their resemblance to the structure of the ECM network, or to 

direct specific migration or (out)growth of cells and tissue '8 '". 

3.2 Production of microgrooves 
For the production of microtextured surfaces numeral techniques can be applied, i.e. from simple 

manual scratching to more controlled fabrication methods. In the last decade, with the rise of the 

microconductor technology photo-lithographic techniques have become available. Because these 

techniques are relatively fast and cheap, and also allow the texturing of surfaces of reasonable size, they 

seem the most promising for biomedical research and applications 15'20. 
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3 6 
Figure 6: A schematic representation of the 
photo-lithographic technique The material (1 ) is 
covered with photo resist (2) This resist layer is 
illuminated through a patterned mask After this 
the developed resist is washed of (4), the 
material is etched (5), and finally the left-over 
resist is removed (6) 

surface 

- 9 - r / 

Π-ΠίΠ 
î 

njnjnJHJ-^yiJnJlJ-LrLr 

Figure 7: Dimensions of a surface groove pattern as seen in 
a cross-section p=pitch, r=ridge-width, g=groove-width, 
d=groove-depth 
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In this method the material, usually silica, is first cleaned and dned with filtered air Then the material 

is coated with a pnmer and photo-resist The samples are patterned by exposing to light through a mask 

that has the desired pattern Subsequently, the exposed resist is developed and nnsed off In the last 

step, the samples are etched This etching can be performed under wet or dry conditions In the first 

situation, chemicals are used that etch the material along its crystal planes A disadvantage of this 

method is that it can only be applied in crystalline matenals In the second situation, ion beams or 

directed ions denved from a plasma are used as etchants This technique of physical etching allows a 

higher resolution than the wet technique, and is also applicable in amorphous matenals Finally, after 

the etching process the remaining resist is removed (Figure 6) If a substrate is provided with 

microgrooves, the dimensions of the applied texture are usually descnbed in pitch (or spacing), ndge-

width, depth and groove-width (Figure 7) 

Apart from using the so obtained microtextured material as substrates for cell-growth, they can 

also be used as a template in a solvent-casting procedure for the production polymenc substrates In this 

way, the photo lithographic techniques have to be performed only once, and vast numbers of identical 

replicas can be made in many matenals ^ 23 

3.3 Cell and tissue response to microgrooved surfaces 
Dunng the last years many research has been done to reveal the mechanisms by which micro-texture 

can influence cellular growth, migration and attachment Recently, excellent reviews have been 

published by Von Recum l 8 2 \ Singhvi25, Brunette l5, and Curtis " 

In our research group, den Braber performed a senes of expenments27 " To evaluate the effect 

of surface treatment and surface microtexture on cellular behaviour, smooth and microtextured silicone 

substrata were produced (width 2, 5, and 10 μπι, depth 0 5 μπι) Subsequently, these substrata were 

either left untreated or treated by ultraviolet irradiation, radio frequency glow discharge treatment 

(RFGD), or both It was found that the dimension of the surface events did not influence the wettability 

characteristics 

When the effect of the substrata surface topography on cellular behaviour was quantified, cell 

counts proved that neither the presence of the surface grooves, nor the dimension of these grooves had 

an effect on the cell proliferation Cells were elongated and aligned parallel to the surface grooves The 

cells were capable of spanning the surface grooves on all textures Wettability and surface free energy 

influence the cell growth, but play no measurable role in the shape and onentation of cells on 

microtextured surfaces Analysis of grooves with a width from 1 to 10 and a depth of 0 45 or 1 μιη 

showed that the ndge width is the most important parameter in the establishment of contact guidance 

Varying the groove width and groove depth did not affect cell size, shape, or the angle of cellular 

onentation 

Microfilaments and vincuhn containing attachment complexes, were also investigated In 

addition, depositions of bovine and endogenous fibronectin and vitronectin were studied Here, it was 

observed that microfilaments and vincuhn aggregates on the 2 μπι grooved substrata were onentated 

along the surface grooves, while this orientation occurred significantly less on the 5 and 10 μιη grooved 

surfaces In contrast, bovine and endogenous fibronectin and vitronectin were orientated along the 

surface grooves of all textured surfaces These proteins did not seem to be hindered by the surface 
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grooves, since many groove spanning filaments were found on all microgrooved surfaces Vinculin was 

located mainly on the surface ndges on all textured surfaces 

A TEM study showed that the cells attached specifically to the ndges Only on 10 μπι wide 

groove patterns adhesions were observed in the surface grooves On all other textures, cell protrusions 

extended into the grooves, but none of these were found to contact or attach to the bottom of the 

microgrooves Focal adhesions were observed on the ndges of the surface patterns 

Also, the effect of microtextured surfaces on cell behaviour was studied on gratings produced 

into commercially pure titanium wafers TEM revealed that focal adhesions were wrapped occasionally 

around the edges of the ndges On 5 and 10 μιη wide grooves cells protruded into the grooves, and even 

possessed adhesions on the walls of the grooves Companson of these results with the observations on 

microtextured silicone rubber substrata suggests that matenal specific properties do not influence the 

onentational effect of the surface texture on the observed cellular behaviour The proliferation rate of 

the RDFs however seemed to be much higher on titanium than on silicone rubber substrata 

Finally, an in vivo study was performed, using silicone rubber implants, either smooth or 

equipped with 2, 5, and 10 μτη wide grooves These were implanted subcutaneously in rabbits for 3, 

7, 42, and 84 days SEM observation showed fibroblasts, erythrocytes, lymphocytes, macrophages, 

fibnn, and collagen on all implant surfaces after 3 and 7 days After 42 and 84 days only little collagen, 

a small number of fibroblasts, but no inflammatory cells, were seen on the implant surfaces The 

fibroblasts were not orientated along the surface grooves on all textured surfaces No significant 

differences between the thickness of the capsule sunounding the smooth and microgrooved implants 

were found In contrast, lower numbers of inflammatory cells, and higher numbers of blood vessels 

were found in the capsules surrounding the microgrooved implants 

Reviewing these results, it was concluded that the expenments in this work did not provide a 

final model or explanation for the working mechanisms of cellular behaviour to microtextured surfaces 

The in vitro studies provided new insight in the contact guidance phenomenon, but did not confirm nor 

reject unequivocally one of the earlier published hypotheses concerning contact guidance Many 

investigators speculated on the benefits of microtextured implants, and even speculated that such an 

implant surface would prevent the formation of a fibrous capsule In the in vivo expenment, no 

reduction of the fibrous capsule around the microtextured implants was found Most likely, the depth 

of the groove was insufficient to facilitate mechanical interlocking of the implant 

In Table 1 the most relevant in vitro and in vivo studies to the effect of surface microtexture on 

cell and tissue response as reported by other research groups are listed 
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Table 1 : A number of previous experiments on cell growth behaviour on microtextured and patterned substrates 

Cell 

BHK 

PEC, 
HGF 

HGF, 
PEC 

fibroblast 
epithelial 
in vivo 

in vivo 

epithelial 
in vivo 

Substrate 
material 

fused 
silica 

Τι coated 
silicon 

Τι coated 
silicon, 
epoxy 

epoxy 

(silicone 
coated) 
versapor 
filters 

Τι coated 
epoxy 

Topography 
(μπι) 

grooves, d=0 1-
6 0, combined 
with adhesive 
tracks 

V-grooves, g=70-
130, p=80-140 

V-grooves, or 
vertical, g=34-
162, r=24-96, 
d=5-92 pm (a) 
d=0 5-60, p=4 9-
220 pm (b) 

V-grooves d=0 5 
and up, ρ varying 

pores 0 4-10 

V-grooves, d=10 

Method of production 

ion etching 

etching of silicon, 
coating of 50 nm Τι, 
sterilize in EtOH, wash 
in medium 

see Brunette '83 

micromachimng 
photolithographic 
technique followed by 
epoxy replica 

X 

micromachimng 

Results 

Cells respond to multiple guidance cues Adhesiveness tracks 
always overrule effects of topography 

Alignment (note that the groove dimensions are larger a cell) 

Alignment of cells along the grooves, TEM shows similar 
organization in cytoskeleton Cells are rounded and have more 
filopodia Little influence of groove pitch and depth 

In vitro Attachment on grooved better than on smooth surface, not 
influenced by increased surface area Grooves direct cell migration 
In vivo around percutaneous implants the length of epithelial 
attachment is decreased 

Topography of 1-2 pm allows direct fibroblast attachment and 
shows minimal tissue response or inflammatory reaction 

In vitro Cells orient and attachment increases In vivo 7-10 days 
placed percutaneous implants show shorter length of epithelial and 
longer length of connective tissue attachment 

First 
author 
tref.] 

Britland 
'96 [34] 

Brunette 
'83 [35] 

Brunette 
'86 a,b 
[36,37] 

Brunette 
OSa.b 
[38,39] 

Campbell 
'89 [40] 

Chehroudi 
'89 [41] 



epithelial 
in vivo 

in vivo 

epithelial 
in vivo 

epithelial 
in vivo 

in vivo 

endo 
thelial 
cells 

RBC 

Τι coated 
epoxy 

Ti coated 
epoxy 

Τι coated 
epoxy 

Τι coated 
epoxy 

Τι coated 
epoxy 

ECM 
coated 
islands 
separated 
by non-
adhesive 
regions 

poly­
styrene 

V-grooves, d=3-
22, p=7-39 

V-grooves, d=3-
22 

V-grooves, d=19, 
30 

V-grooves and 
pits, d=10 

V-grooves and 
pits, d=30-120 

20-3 

grooves; g=5, 
d=0 5, 5 

micromachming 

micromachimng 

micromachming 

micromachimng 

micromachming 

microcontact printing of 
self-assembled 
monolayer (SAM) of 
alkanethiolates on 
gold, ECM coating 

not mentioned 

Adhesion best when d=3 or 10 pm. Fibroblasts obliquely insert 22 
nm grooves Epithelial downgrowth in vivo inhibited by vertically 
placed d=10 or 22 pm Effect d=22 caused by connective tissue 
reaction, effect of smaller grooves due to contact guidance 

In electron microscopy it was observed that epithelial cells 
interdigitate with 3-10 pm grooves, but not with 22 pm Fibroblasts 
insert obliquely into 22 pm implant 

Percutaneous implant encourages connective tissue ingrowth and 
inhibits apical epithelial migration 

3D reconstructions are made of epithelial cells on grooved 
percutaneous implants Cells are aligned along the grooves and 
less flattened. 

Radiography is used as a method to evaluate bonelike tissue 
formation around implants Most bonelike foci around shallow 
grooves and deep pits. 

Culturing cells on smaller islands regulates a transition from growth 
to apoptosis. The cells shape plays a central role in cell function. 

Protein-synthesis increases. 

Chehroudi 
'90 [42] 

Chehroudi 
'91 [43] 

Chehroudi 
'92 [44] 

Chehroudi 
'95 [45] 

Chehroudi 
'97 [46] 

Chen, '98 
[47] 

Chesmel, 
'89 [211 



calvarial 
bone 
cells 

calvarial 
bone 
cells 

fibroblast 

fibroblast 

BHK, 
CHF, 
CCH, 
PMN 

BHK, 
CEN, 
MDCK 

BHK, 
CEN, 
MDCK 

poly­
styrene 
with 0-2% 
styrene 
monomer 

poly­
styrene 
with 0-2% 
styrene 
monomer 

Τι 

Τι 

Perpex 

Perspex 

Quartz 

0.5-5 grooves 

0 5-5 grooves 

V-grooves, d=3, 
p=6-10 

V-grooves, d=3, 
p=6 

5 grooves 

grooves; p=4-24, 
d=0.2-1 9 

ultra fine grooves: 
p=260, d=100-
400 nm 

PS replica of silicon 
mold, 15 minutes 
RFGD (25V, 100 
mTorr) 

see Chesmel 95a 

micromachming 

micromachinmg 

photolithographic 
technique, followed by 
an oxygen-plasm 
surface treatment 

see Clark '87 

laser holography, 
photolithography, clean 
by sonication in 
acetone, then 
acid/peroxide 

Uniform adsorption of proteins on surface, no influence on DNA 
synthesis. 

2% and 0.5 pm causes increase in collageneous protein production, 
1 % and 0.5 pm and all 2% surfaces cause increase in non-
collageneous protein production. 1% or 0.5 pm cause increase of 
migration velocity. 

Topography alters fibronectin mRNA level, stability, secretion, and 
assembly. 

Topography alters the expression of metalloproteinase-2 

PMNs are the only not to align Reaction is dependent on cell-type. 

Groove depth most important factor. Alignment is cell-type 
dependent. Cells interaction must be allowed. 

Groove depth is the most important factor determining cell 
alignment. 

Chesmel, 
95a [22] 

Chesmel, 
95b [23] 

Chou, '95 
[48] 

Chou, '98 
[491 

Clark, '87 
[50] 

Clark, '90 
[51] 

Clark, '91 
[52] 



BHK, 
MDCK 

epithelial 
fibroblast 

hepato-
cytes, 
various 
tumor 
cells 

CHF 

gingival 
fibroblast 

gingival 
fibroblast 

human 
fibroblast 

Quartz 

Τι coated 
epoxy 

poly­
styrene 

Quartz 

Τι and Τι 
alloys 

Τι 

silicone 

adhesiveness 
patterns of 4-50 

V-grooves d=3, 
g=40 

g>l0 

grooves, d=0 69, 
g=1.65-8.96, p=3-
32 

not mentioned 

d=3, p=30 

Up (pillars) and 
down (wells) 
confi-gurations, 1-
10 pm 

photolithographic 
technique, photo resist 
removed by rinse in 
acetone and water 
causing (hydrophobic) 
methyl groups to 
covalently adhere to 
quartz 

micromachming 

photolithographic 
technique followed by 
oxygen treatment 
resulting in tracks of 
reduced hydrophobicity 

photolithographic 
technique followed by 
ion-milling 

grinding 

micromachining 

photolithographic 
technique, silicone 
replica, wash in 
hquinox, 70% EtOH, 
drv under UV 

BHK cells· alignment, increases in time; MDCK cells, elongation of 
single cells, cell colonies are unaffected. 

Grooves are used to direct confrontations between epithelial and 
fibroblast cells. Fibroblast movement is accelerated. Fibroblasts 
show contact inhibition, epithelial cells not Grooves promote the 
invasion of fibroblasts into epithelial sheets 

Selective adhesion of collagen and cells. 

Alignment, ndge-width determining, F-actins and focal adhesions 
parallel to groove. 

Cells have a higher density of focal adhesions at the edges of the 
ridges. 

Serum concentration and topography both influence the 
appearance of ECM protein tenascin. 

2 and 5 pm up: increased proliferation compared to down. 

Clark, '92 
[53] 

Damji, '96 
[54] 

Dewez, 
'98 [55] 

Dunn, '86 
[56] 

Eisenbart 
h, '96 [57] 

Goto, '98 
[58] 

Green, '94 
[59] 



PLE 

χ 

HGF 

human 
skin 
fibroblast 

rat 
epithelial 

endo­
thelial 

endo­
thelial 

neuro 
blastoma 

HGF 

epoxy 

various 
polymers 

Τι 

silicone 

quartz 

glass 

glass 

fused 
silica 

Si02 layer 
on Si 
plate 

V-grooves, d=60, 
p=92 

X 

polished, sand­
blasted and 
etched surface. 

g=2-10 

cylindrical 
diameter 32 

various 

20-130 

X 

g =1.0, 1 Sand 
2 0 

micromachining 

X 

etching with 
hydrofluoric acid, store 
in 99% EtOH, 
ultrasonica! rinse 20 
minutes in 99% EtOH, 
airdry 

photolithographic 
technique 

fused quartz fibers on 
microscope slide 

laser ablation, various 
chemical modification 
techniques 

adhesional stripes 

self-assembled 
monolayers 

photolithographic 
technique, etch in Si02 

layer until Si is 
reached. 70% EtOH, 
water, steam sterilize 

Secretion of several proteinases increases. 

A new method for texture production is described. 

On polished surface cells are extremely flat, and show random 
orientation. On etched and sandblasted: cells round or flat with long 
processes. Etched alignment, sandblasted: cells grow in clusters. 

Cell cycle analysis reveals some differences in proliferation 
between cells on various textures 

Alignment of actins and ECM(fibronectin/laminin). The behaviour of 
cells changes when transformed cells are used. 

Micro cell culture chambers are studied Cells grow in a tube-like 
fashion Chambers could also be useful as micro reactors. 

Migration rates are not influenced by texture, only the migration 
direction. 

Neuronal networks can be assambled with micro manufacturing 
techniques. 

Cells arrange parallel during adhesion, to achieve maximum 
contact area 

Hong, '87 
[601 

Kapur, '96 
[611 

Kökónen, 
'92 [62] 

van 
Kooten, 
'98 [63] 

Levma, 
'96 [64] 

Matsuda, 
'94 [65] 

Matsuda, 
'96 [66] 

Matsuzaw 
a '93 [67] 

Meyle, '91 
[68] 



HGF 

5 human 
cell 
types 

HGF 

HGF 

PEC 

HGF 

CHF, 
epithelial 

in vivo, 
rat 

calvanal 
osteo 
blast 

Araldite 

Si02 layer 
on Si 
plate 

Τι 

Τι 

Τι 

Τι 

poly­
styrene, 
epon 

silicone 

Τι coated 
epoxy 

dand r=1.0, 
g =1 Oor 4.0 

1.0 pm deep and 
wide grooves 

p=30, d=3 

p=30, d=3 

p=30, d=3 

p=30, d=3 

p= 5-30 

pillars diameter 
50-500, height 
100-1000 

V-grooves 

photolithographic 
technique, etch in Si02 

/Si plate, Araldite 
replica, disinfect in 
70% EtOH 

see Meyle '91 

micromachming 

micromachming 

micromachming 

micromachming 

microtome in cell 
culture dish, or in brass 
with epon replica 

micromachming 

micromachming 

In TEM: some cells ignore grooves, some fill grooves with 
cytoplasm, some bridge grooves and just attach to ridges. Focal 
adhesions and micro-filaments are oriented: only visible in a cross 
section parallel to groove 

Fibroblasts align, keratinocytes and PMNs do not. Monocytes and 
macrophages about 20% shows alignment. 

Alignment of micro-tubules after 20 minutes, focal contacts after 40-
60 minutes Microfilaments appear at random, orient after 3 hours 

Colcemid is used to inhibit micotubule formation, cells still align. 

Single cells, pairs, and clusters are studied. Cell contacts increased 
cell spreading, most variability of alignment m cell clusters. 

Colcemid and cytochalasin Β are used to inhibit microtubule, and 
microfilament formation. Still alignment occurs. Tubules seem 
principal, but not sole factor in alignment. 

Alignment, probably caused by effect on focal adhesions. 

These textures result in reduced fibrous capsule formation, and 
increased blood vessel proximity. 

More cells on grooved surfaces Cells align from 20 minutes on. 
Bonelike nodules are formed, also in an oriented fashion. 

Meyle, '93 
[69] 

Meyle, '95 
[70] 

Oakley, 
'93 [71] 

Oakley, 
•95a [72] 

Oakley, 
•95b [73] 

Oakley, 
'97 [74] 

Ohara, '79 
[75] 

Picha, '96 
[76] 

Qu, '96 
[77] 



mouse 
macro­
phages, 
in vivo 
(rabbit) 

CEF 

AtT-20, 
PRH 

in vivo, 
rat 

fibroblast 

various 
types 
nerve 
cells 

BHK 

P388D1 
mouse 
macro 
phage 
cell-line 

silicone 

glass 

glass 

PTFE 

silicone 

quartz 

silica 

silica 

pillars and pits, 
2, 5 or 8 

grooves p=10, 
d=2Mm 

grooves g=7, 18, 
r=3, 12, d=3, 5 
pm 

conical, height = 
12 at the base 
and 0 1 at the tip 

d=1.7, g=1-6, r=2-
6 

d=100nm, p= 260 
nm 

depth 0 5, 1,2, 
5.0 pm, width 5, 
10 or 25 pm 

depth 0 5 and 5.0 
pm width 10 pm 

photolithographic 
technique, silicone 
replica. Cleaned 
ultrasomcally, Liqumox 
wash, autoclaving. 

? 

? 

ion beam etching 

ion etching 

micromachinmg 

photolithographic 
technique, removal of 
photo resist by 
acetone. 1 minute 
additional etching 

see Clark, '90 

in vivo: 2 and 5 pm events show less mononuclear cell and thinner 
capsule, in vitro, macrophages elongated, extensive pseudopods. 

Position of MTOC is dependent on substratum surface. 

On PRH: increase in DNA synthesis and albumin secretion. On 
AtT-20 no effect on growth and function; in transformed cell shape 
control is lost. 

Fibrous capsule is 30% less in thickness. 

Cyclic stretching of silicone leads to fibroblast orientation Texture 
overrules this effect. 

Some cells show no high-order F-actm cytoskeleton, still alignment 
occurs. 

After 5 minutes periodic (0.6 pm) actm/ vinculm condensation at 
the groove edge. Cytoskeletal poisons reduce alignment/ 
elongation. 

Pattern increase cell spreading, elongation and movement. Shallow 
grooves most effective 

Schmidt, 
'91 [78] 

Schutze, 
'91 [79] 

Singhvi, 
'92 [80] 

Taylor, '83 
[81] 

Wang, '95 
[82] 

Webb, '95 
[83] 

Wójciak, 
'95a [84] 

Wójciak, 
'95b and 
'96 [85,86] 



fibroblast 
P388D1 
neuronal 
cells 

FMC 

ultrathm 
micro-
fibers 

Quartz 

diameter 0 2-5 

grooves; p=1 8-
7.4, d=1 1 

X 

etching, wash in 
chromic acid, 24 hour 
wash in distilled water 

These 3D environments caused cell alignment and influenced cell 
movements. 

ρ is the most important factor in cell-alignment. 

Wójciak, 
"97 [87] 

Wood, '88 
[88] 

Ti= titanium, CHF=chicken heart fibroblast, PEC=porcine epithelial cells; HGF=human gingival fibroblast, BHK=baby hamster kidney fibroblast; CCH=chick cerebral 
hemisphere, PMN=poly morpho nuclear cell; CEF=chick embryo fibroblast; RBC=rat bone cell; CEN=chick embryonal neuron, MDCK=Mandine-Darby canine kidney 
epithelial cell; PRH=primary rat hepatocyte; PLE=porcine periodontal ligament epithelial cell All dimensions given are in pm; for an explanation of groove-width (g), ndge-
width (r), depth (d) and pitch (p) see Figure 7 



Chapter 1 

4 RESEARCH OBJECTIVES 

Materials used for the manufacturing of medical and dental implants have to support the wound healing 
processes which occur in the direct environment of the implants. Previous studies showed that substrate 
surface microtexture has influence on cellular and tissue behaviour. Apparently, cells recognize the 
dimensions of surface configurations and react accordingly. In this process the cytoskeleton and focal 
adhesions of the cell play a vital role. Further knowledge and understanding of this surface topography 
principle would be of significant help in the improvement and development of biomaterials as used for 
the manufacturing of medical and dental implants. 

The main working hypothesis is the following: 'Cells that are predominantly involved in tissue 
regeneration around surgical implants recognize and specifically respond to topographical features by 
cytoskeletal rearrangement and modification of focal adhesions'. Consequently, the objective of this 
study is to determine how surface geometry of microgroove patterns influence cellular behaviour in 
vitro, and the tissue reaction m vivo. Therefore, the main research questions are: 

1. Does the cellular growth behaviour in vitro to standardized, well characterized surfaces relate 
to the microgeometrical properties of these surfaces? 

2. Does the orientation of intra-cellular cytoskeletal components differ between cells cultured on 
smooth and microtextured surfaces? 

3. Several scientific publications propose mechanisms for the occurrence contact guidance. Can 
any of these theories be proven true or denied? 

4. What is the influence of the groove-depth on the response of the cells? Is groove-depth an 
important factor in the alignment and maximal attachment of cells? 

5. Is the cellular response to microtextures the same if different substrate materials are compared? 
6. How is the initial attachment behaviour of cells towards the substrate influenced by the 

application of microgrooves? 
7. Is the response to microgrooves in the substrate dependent on cell-type? 
8. Does the application of microgrooves on implant surfaces influence the healing of these 

implants? 
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INTRODUCTION 

The biocompatibility of an implant material is determined by various factors, including surface 

topography. Microtexturing of a substrate surface has been shown to influence the behaviour of cells 

growing on such substrates1'2. On a microgrooved substratum, i.e. a substratum provided with grooves 

and ridges sized in the order of micrometers, especially fibroblasts show a phenomenon known as 

'contact guidance'. This means that cells tend to align themselves in the direction of the grooves. During 

the last years much research has been done to unravel the mechanisms underlying this phenomenon. 

On the basis of various experiments, three main explanations have been postulated. 

A first explanation is that the closest contacts between a cell and its substratum, the focal 

adhesions3, cause contact guidance. Focal adhesions are considered to be stiff rectangular structures, 

up to 10 μπι long4. When grooves are smaller than these measures, the focal adhesions are only able 

to attach themselves in an oriented way on the ridge. When the focal adhesions are oriented, so will be 

the actin filaments that originate from this point, and therefore the entire cell i·6. 

Secondly, surface texture can influence cell behaviour by an effect on extracellular matrix 

(ECM) protein adsorption. Cells produce ECM proteins, which are adsorbed by the surface. 

Subsequently, the cell adheres to these adsorbed ECM proteins. The composition and the conformation 

of this protein layer is determined by the surface properties of the substratum. One of the properties of 

importance is wettability. Due to an effect of microtexturing on the wettability properties of a substrate 

surface, cellular behaviour can be influenced7. If protein adsorbtion is different along the edges of 

ridges, focal adhesions might preferably be formed here, resulting in an oriented cell shape. 

The third theory is focused on the response of cells on mechanical local signals 8. The 

cytoskeleton is not a static, but a dynamic structure. External forces can be administered onto the 

cytoskeleton through the focal adhesions. Cells tend to find a state in which internal and external forces 

are in equilibrium, favorable for their differentiation 9 ' 1 0 · " . Cells cultured on microgrooved substrata 

could well be subjected to a certain pattern efforces, in which the equilibrium of forces induces an 

aligned cellular shape. 

Until now, none of the three theories mentioned above has been proven correct. Besides, all 

information up to this point is obtained with materials not commonly used in cell culturing, like silica 
12 or silicone rubber l3·'4·15. 

Therefore, we searched for a testing system in which microgrooved substrata could be made in 

polystyrene (PS), the most commonly used material for cell culturing. Silicon wafers provided with 

microgrooves allow the possibility of solvent casting polymers like polystyrene onto them16. In this way 

many PS substrata can be made easily and different kinds of histological techniques can be used to 

obtain information on the growth behaviour of cells on microtextured PS. 

The goal of our study is to see how the cellular behaviour in vitro does relate to the 

microgeometrical properties of these surfaces. Using various analytical techniques, information is 

obtained about the relevance of the three theories mentioned above. 
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MATERIALS AND METHODS 

Cell culture 

Rat dermal fibroblasts (RDF) were obtained from the ventral skin of male Wistar rats, using standard 

procedure as described by Freshney 17. To ensure quick and constant availability cells are 

cryo-preserved. Before experimentation, cells are thawed and cultured in MEM-a containing Earle's 

salts, L-glutamine, 15% FCS, gentamicin (50 μg/ml). All experiments were performed with 5,h or 6lh 

culture generation cells. Onto the various substrata, 15 to 30 thousand cells were seeded per square 

centimeter. Cells were cultured for three days, and then used for the various experiments. At least two 

separate sets of experiments were performed. Each set included all materials in triplicate. For counting 

assays measurements were done in triplicate. 

Production of surfaces and characterization 

Microgrooved patterns were photo-etched in a silicon wafer by the MESA institute of the University 

of Twente, Enschede. This wafer is divided into 4 quadrants with a ridge- and groove width of 1, 2, 

5 or 10 μιη. The wafer has a uniform groove depth of 1.0 μιη. The silicon wafer was used as a mold for 

the production of polystyrene (PS) substrates for cell culturing. PS was solvent cast in a similar manner 

as described by Chesmel and Black 16. In short, a casting solution was made by dissolving polystyrene 

bits from a Nunclon cell culture dish in chloroform (25 g/150 ml) and stirring gently overnight. After 

casting of this solution on the silicon mold, the chloroform was evaporated overnight. Replicas were 

removed from the mold and PS rings were glued to them, using a small amount of the casting solution. 

In this way, tissue culture vessels were created of 2.1 or 5.2 cm in diameter. Subsequently, these vessels 

were treated by radiofrequency glow-discharge (RFGD) treatment for 5 minutes at 100 mTorr l 8· '9·2 0. 

To exclude an interfering effect of remained chloroform molecules on the final experiments, 
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Figure 1 : Rat dermal fibroblasts lying on a 
grooved (2μιτι) polystyrene substratum Methylene 
blue staining, original magnification 20x Note the 
obvious alignment of cells with the grooves. Bar= 64 
μπη. 

3 S 



Growth behaviour offibroblasts on microgroovedpolystyrene 

selected specimens were investigated by energy dispersive spectrometry (EDS) and cytotoxity testing 
by a growth assay. Finally, before use, the substrates were examined by scanning electron microscopy. 

Cellular orientation 
To determine the orientational effect of the substrata, RDF were cultured for three days, fixed in situ 
in 100% methanol for five minutes, stained with methylene blue and dried to air. Cells were observed 
by transmitted light microscopy and micrographs were taken at a magnification of 20 times. The 
micrographs were digitalized and about 100 cells on each substratum were analyzed with Foster-
Findlay PC-Image software. The average angle between cells and the grooves was measured (Figures 
1 and 2). If the average angle between cells and the groove direction is 45 degrees, cells are supposed 
to lie in an at random orientation. If the average angle is lower, cells are supposed to be oriented. 

Scanning electron microscopy 
Qualitative information on the spreading and onentation of cells was obtained using scanning electron 
microscopy (SEM). After incubation, cells were fixed in 2% v/v glutaraldehyde in 0.1 M sodium-
cacodylate buffered solution for 5 minutes. Cells were rinsed in cacodylate buffered solution, 
dehydrated in a series of ethanol, dried in tetramethylsilane to air and covered with gold. Finally they 
were examined in a JEOL 6310 scanning electron microscope. 

3,4 

1 2 
Figure 2: Schematic drawing of a RDF cell on a microgrooved 
substratum. From digital light microscopic and CLSM images the 
following parameters were derived' 1) angle between longest axis of 
the cell and groove direction, 2) angle between actm filaments and 
groovedirection, 3) angle between focal adhesions and groove 
direction, and 4) position of the focal adhesions in relation to the 
substrate pattern 
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Figure 3° Energy dispersive spectrograph of solvent-cast 
polystyrene, showing the presence of chlorine atoms 

Confocal laser scanning microscopy and image analysis 
Components of the cytoskeleton can be imaged using fluorescent antibody-staining techniques RDF 

cells, cultured on microgrooved substrata, were fixed for 20 minutes in 2% paraformaldehyde and 

permeabilized with 1% Tnton X100 Then filamentous actin was stained with phalloidin-TRlTC 

(Sigma) Focal adhesions contain vincuhn 2 1 2 2 Therefore, vinculin was stained with mouse anti-

vmculin (Sigma) followed by an incubation with goat anti-mouse-FITC (Sigma) Antibodies were 

diluted in phosphate buffer containing 1 % BS A to block aspecific epitopes Finally, the specimens were 

examined with a Biorad MRC 1000 confocal laser scanning microscope (CLSM) system 

The CLSM micrographs were analyzed with Foster-Findlay PC-Image software The onentation 

of (vinculin-stamed) focal adhesions was examined as well as the onentation of actin filaments (Figure 

2) Similar to the cellular onentation assay, an angle of 45 degrees was considered to be cntical for 

onentation of focal adhesions or actin filaments For the evaluation, about 100 focal adhesions or actin 

filaments were measured on each substratum In addition to this, the positions of the focal adhesions 

were determined and divided into three categories, adhesions lying in the groove, on the ndge, or 

adhesions touching the edge of a ndge 

Transmission electron microscopy 
For transmission electron microscopic (TEM) analysis, substrata covered with cells were fixed in 2% 

glutaraldehyde in 0 1 M sodium cacodylate buffer After postfixation m OsO,, and dehydration in 

ethanol, they were cut into small pieces and embedded in epoxy resin In the preparation process, 

standard procedures were followed except for the use of propyleneoxide This was replaced with 
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Growth behaviour of fibroblasts on microgrooved polystyrene 

ethanol, since propyleneoxide dissolves the polystyrene After the polymerization of the specimens, 

sections of about 5 μπι thickness were cut and stained with toluidine-blue and examined After 

determination of the right cutting direction, ι e perpendicular to the grooves, the embedded tissue block 

was trimmed to the desired size and cut into ultrathin sections for TEM analysis These were stained 

in uranylacetate/lead citrate Finally, sections were examined with a JEOL 1210 transmission electron 

microscope 

RESULTS 

Surface characterization 

To exclude an interfering effect of remained chloroform molecules on the final experiments, selected 

specimens were investigated by energy dispersive spectrometry (EDS) EDS showed that some 

chloroform was left in the surface of the casted substrata (Figure 3) Cytotoxity experiments showed 

that cell growth did not vary between commercially available dishes and casted culture dishes with 

RFGD treatment Cell growth was only significantly reduced when bacteriological or self-made PS 

dishes without RFGD treatment were used (Figure 4) 

SEM revealed that, with few exceptions, the pattern of grooves and ndges was perfectly 

reproduced in the substrata (Figure 5) We observed that the ndges showed an additional nano-

roughness This is due to the etching process as used to prepare the silicon wafers In the production 

of replicas, this roughness appears then on the ndges 
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Figure 4 Cell growth assay of rat dermal fibroblasts on solvent-
cast smooth (smooth) or textured with 1,5 pm grooves (1,5) 
polystyrene Positive control is a commercially available tissue 
culture flask (TC Flask), negative controls are bacteriological (bact) 
vessels and vessels that were not pretreated with a radiofrequency 
glowdischarge treatment (no RFGDT) Intervals indicate standard 
deviation 
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Figure 5: Scanning electron micrograph, showing a rat dermal 
fibroblast on a 10 μm wide grooved polystyrene substratum, at 
magnification 850x. Note the descending of cells into the 
groove. The inset displays the nano-roughness visible on the 
ridges of the groovepattern at a higher magnification. 
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Figure 6: The average orientation of entire cells, actin filaments and 
focal adhesions on microgrooved polystyrene. Intervals indicate standard 
deviation. 
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Figure 7: Digitalized confocal laser scanning 
image of vinculin, a protein abundant in focal 
adhesions. In this image, grooves were directed 
horizontally. From these images focal adhesion 
position and orientation were calculated. Original 
magnification 120x. 

Light microscopy and image analysis 
Light microscopical analysis revealed an orientational behaviour of RDF cells on all microgrooved 

surfaces (Figure 1 ). Image analysis of the light microscopic images revealed that the cellular alignment 

did not significantly (ANOVA) differ between the various groove widths (Figure 6). 

Scanning electron microscopy 

Scanning electron microscopy showed that the RDF cells had a very flattened appearance on PS 

substrata (Figure 5). Nevertheless, the cells did align obviously to the groove direction on all surfaces. 

Still, there was a clear difference between the various surface dimensions. Cells cultured on 1 or 2 μπι 

wide grooves seem to lie on top of the ridges. In contrast, on the wider 5 and 10 μηι grooves, the cell 

appears to be able to descend into the grooves. Further, cells showed micropodiae and the nucleus, 

including the nucleoli, was clearly visible. 

Confocal laser scanning microscopy and image analysis 

In confocal laser scanning microscopy the actin cytoskeleton, vinculin, and the substratum 

microgrooves were visualized and digitalized. The focal adhesions were visible as somewhat elongated 

structures (Figure 7). Apparently, they were lying in the same direction as the actin filament where they 

attached to. Evaluation of the focal adhesion position revealed that on the 5 and 10 μηι surfaces only 

21% of the focal adhesions were located on the edge of a ridge. For the 2 μηι surfaces this was 41% 

(Table 1 ). On the other hand, for these surfaces about 50% of the focal adhesions were just positioned 

on the ridge without touching its edge. Considering these findings, we suggest that there is no indication 

for a preferential position of the focal adhesions on the edges of ridges. 

Further, we measured the orientation of focal adhesions and actin filaments (Figure 6). Both cell 
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structures appeared to show an onentational behaviour, as charactenzed by an average angle lower than 

45 degrees No significant differences (ANOVA) could be found between the different groove patterns, 

neither for the orientation of focal adhesions nor the actin filaments 

Transmission electron microscopy 

Transmission electron microscopy was performed to provide detailed cross-sections of cells on the 

substrata Prominent structures like the nucleus, mitochondria, nbosomes and rough endoplasmic 

reticulum appeared to be well preserved As shown in Figure 8a-b, on the 1 and 2 μηι groove patterns, 

cells very occasionally were seen to touch the bottom of the grooves In contrast, on wider patterns the 

cells and even the entire nucleus were able to descend into the groove On all substrata, focal adhesions 

were observed as thickened dark plaques in the plasma membrane The adhesions were lying in the 

middle, and on the edge of ndges (Figure 8c) On the wider groove patterns focal adhesions were also 

seen at the bottom of the grooves Figure 8d shows that focal adhesions are not stiff An adhesion is 

observed that is bent around the edge of a ndge 

Table 1 Categorized positions of the place of focal adhesions on the microgrooved substrata NA= not 

available 

groove 
size (μπι) 

10 

5 

2 

1 

in groove 

(%) 

30 

23 

5 

NA 

on middle 

of ndge (%) 

49 

55 

53 

NA 

on edge of 

ndge (%) 

21 

21 

41 

NA 

ndge total 

(%) 

70 

76 

95 

NA 

total (%) 

100 

100 

100 

NA 
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Figure 8: A) Transmission electron micrograph of rat dermal fibroblast on a 2 pm wide, 1 pm deep 
groove pattern. Note that the cell does not descend into the groove. Bar= 2 pm. B) as A), but 10 pm 
wide pattern. Note that the cell descends into the groove. Bar= 2 pm. C) At higher magnifications, focal 
adhesions can be observed. Here two adhesions on a 10 pm wide ridge are seen, one in the middle 
and one in the proximity of the edge of the ridge. Bar= 0.7 pm. D) A focal adhesion that is bent around 
the edge of a 2 pm wide ridge. Bar= 1 pm. 

DISCUSSION 

Polystyrene is the most common material used for cell culture and is easy to section for histology and 
TEM. Solvent casting of polystyrene seems to be an accurate and easy way to produce large numbers 
of microgrooved substrata. Our SEM and TEM analysis showed that the groove patterns were 
accurately reproduced from the various templates. Although EDS showed that some minor amounts of 
chlorine atoms were still present, cytotoxicity assays showed that this did not affect cellular growth. 
Further, we have to notice that it is impossible to quantify this maintained chloroform, since no 
standard, i.e. a polystyrene with a known chloroform content, can be produced. In scanning electron 
microscopy (SEM) a difference in nano-roughness was observed between grooves and ridges (Figure 
5). This is inevitable with the etching procedure as used to produce the silicon wafers. Although we 
know that the differences in roughness of grooves and ridges can be reduced by etching the entire 
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" T2 26 μπι 

groove 
16 4° direction 

Figure 9 Schematic drawing of a Focal adhesion 
Adhesions are 8 μπι large, and their average angle with 
the groove direction is 16 4° 

silicon wafer a second time, after the grooves are etched, we decided not to do this Such a second 

etching procedure will decrease the sharpness of the edges of the ndges Besides, etching a second time 

will not result in exact the same roughness for grooves and ndges 

Light microscopy and subsequent image analysis showed that the average orientation of cells 

vaned between 12 1 and 17 9 degrees on grooved substrata Apparently, the surface events cause 

contact guidance However, the spacing of the used events did not lead to significant differences 

between the vanous textures This means that the cells are lying in a fairly onentated way on all our 

grooved substrata 

Further SEM analysis of RDF on polystyrene showed that the cells had a flattened and 

widespread morphology The cells seemed to be draped over the surface ndges, and alignment was 

evident In the wider grooves, the cells were able to descend into the groove cavity, whereas in the 

smaller grooves cells were less wavelike The observed morphological and alignment behaviour of the 

RDF cells differs with previous studies of den Braber in our group, in which similar texture dimensions 

were used Then, we found that cells were somewhat rounder and not aligned to the surface texture on 

10 μηι wide substrata l 4 This difference in findings may be caused by three factors First, the grooves 

in our expenments were deeper than used in these earlier expenments (1 μπι vs 0 45 μπι) Vanous 

studies ' 2 2 3 already stressed the influence of groove depth on the alignment of cells Secondly, in this 

study we used polystyrene, while den Braber casted replicas with silicone rubber Recently, Singvi and 

coworkers ' reviewed studies on the contact guidance phenomenon They observed that until now 

numerous matenals have been used to investigate cell orientation However, no coherent studies exist 

companng exclusively the effect of matenal properties while the same surface dimensions are created 

Thirdly, the reproduction technique for polystyrene is much more accurate than for silicone rubber This 

holds especially for the edge of the ndge which are less rounded in polystyrene 

In agreement with the above mentioned light microscopical results, also CLSM did not reveal 

differences in the onentation of cytoskeletal structures like vincuhn and actin for the various substrata 

This observation corresponds with an earlier report of den Braber 15, that already descnbed a strong 

correlation between cellular and cytoskeletal protein orientation 

Besides onentational effects, using CLSM and digital image analysis (DIA), the position of the 

focal adhesions was determined This evaluation revealed no preferential position of the focal adhesion 

in relation to the edge of the ndge This is supported by the following reckoning Focal adhesions are 

elongated structures with an average length of 8 μπι Their measured average angle towards the groove 

direction is 16 4 degrees The adhesion is calculated (see Figure 9) to cover 2 26 microns perpendicular 
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to the groove direction (sin(16.4)*8=2.26). For the 10 μπι surfaces it can be supposed that when all 

adhesions were spread totally at random over the surface, the probability of an adhesion touching an 

edge of a ridge would be 0.226 or 22.6% (2.26 microns divided by a 10 micron distance between the 

grooves). This agrees with the value as found in the experiment, which is 21%. For substrata with 

smaller grooves and ridges automatically more adhesions will touch the edge of ridges. In those cases, 

the predicted number according to our method will be even much more than the measured numbers. 

Finally, we have to notice that we did not determine the position of the focal adhesions on the 1 μπι 

substrata. Focal adhesions on these substrata of course always touch the edge of the ridge, because of 

the limited space available on the ridge. 

TEM even showed that FA plaques are able to bend around rather sharp comers. These findings 

dispute two of the theories, as mentioned in the introduction 5·7, to explain contact guidance. The 

rejection of these two hypotheses, imply that contact guidance is the result of a mechanoreceptive 

response. Ingber9''0'" suggested that cell shape is based on the transduction of external forces onto the 

cells. He made so-called 'tensegrity models' of sticks interconnected with elastic strings. Speaking in 

terms of cells, this model could be translated into actins interconnected with contractile elements. If 

forces are administered on the model, rearrangement of the elements in its structure will result in a 

change in shape of the model. Comparably, when forces are administered on the actin skeleton, this will 

result in rearrangement of these filaments, in our case resulting in an aligned cell. The external forces 

are the result of the structure of the environment and are transduced onto the actin filaments via the 

focal adhesions 8. However, this system regards the actin filament to be a static structure. We rather 

suggest that the dynamics of the cytoskeleton, like actin polymerization, could be the explanation of 

contact guidance. Actin filaments are broken down and elongated constantly in live cells. The front 

edges of cells, the lamellopodia, contain actin microspikes. With these spikes, cells probe the substrate 

surface for suitable attachment places, after which focal adhesions and mature actin fibers are formed 
2 4 · 2 5 . The probing of these microspikes could be influenced by surface discontinuities. When a spike 

faces a ridge it is faced with an unfavorable force and will not give rise to actin polymerization. 

Consequently, actin filaments will form and elongate oriented along the groove direction. This process 

will proceed until the cell on the microgrooved substratum reaches an equilibrium state, which 

corresponds with an orientational behaviour. 

In summary, we can conclude that 1-10 μπι wide and 1 μπι deep microgrooves in polystyrene 

cause fibroblasts to orient themselves to the groovedirection. This orientation does not seem to be the 

result of alterations in focal adhesion orientation or positioning. Probably the breakdown and formation 

of fibrous cellular components, especially in the filopodium, is influenced by the microgrooves. 

Consequently, we hypothesize that microgrooves create a pattern of mechanical stress, which influence 

cell spreading and cause the cell to be aligned with surface microgrooves. 
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INTRODUCTION 

Providing a substrate-surface with micrometer-sizes grooves, has been shown to influence the 

behaviour of our cells growing on such substrates in vitro ' 2 Cells, like fibroblasts, recognize these 

surface features, and react accordingly, probably by reshaping the actm filaments in their surface-

probing structures like filopodia3 The result is a cell which is lying in the same direction as the surface 

grooves This phenomenon is known as 'contact guidance'4 Microgrooves are also known to influence 

a range of other biological processes, like cellular attachment, and protein production5 Consequently, 

it has been proposed that such surfaces could be used to influence the performance of medical implants 
5 8 Microtextures could be helpful in directing and organizing capsule formation around implants 

During the last 5 years, several studies have been performed in both our laboratories, to learn 

more about 'cell orientation' phenomena for application to implants 3 7 1 4 From one of their studies ', 

the "Nijmegen" group concluded that apparently the ndge width of the microgrooved patterns had more 

effect on the alignment of rat dermal fibroblasts (RDF) than the groove width The results further 

suggested that the groove depth was unimportant In this study however, only grooves with a depth of 

0 45 and 1 00 μιτι were used In contrast, Clark and coworkers investigated in the "Glasgow" laboratory 

a very large range of depths up to 20 μπι " 12 From these studies they concluded that the groove depth 

was much more important in alignment of cells than the spacing of the grooves Curtis and Clark 13 

reviewed the effects of topographic properties on cellular behaviour, again stressing the importance of 

groove depth Even when patterns of nanometnc scale were used, an increase in groove depth led to 

better alignment '4 Because of the contradictions in the findings, the present cooperative paper between 

both involved laboratories provides further data about the possible relevance of groove depth Besides, 

we have to bear in mind that probably surfaces with deeper grooves are also able to support larger 

numbers of cells, simply due to the fact that the total available surface in a culture vessel is larger 

In our previous studies we also reported about the application of transmission electron 

microscopy (TEM) to examine the cellular contact of RDF cells with microgrooved substrate surfaces 
3 1 0 This technique has several disadvantages, which can interfere with the final conclusions For 

example, TEM does not provide a complete overview of the cell Only a small part of the plasma 

membrane can be sampled Also no living cells can be examined, and the preparation of TEM 

specimens is very laborious As a result, artefacts can be introduced '5 Therefore for a correct 

estimation of the cellular proximity to a substrate surface, other more reliable techniques have to be 

used, such as interference reflection microscopy (IRM)16 This method allows the m situ observation 

of complete living cells without pnor handling or fixation 

Consequently, the objective of this in vitro study is to quantify the influence of groove depth 

on alignment and maximal cell support in RDF cell cultures Further, the attachment of the plasma 

membrane as seen in IRM, was determined In these experiments, we used microgrooved polystyrene 

substrates, which were produced by a solvent-casting technique This method enables the preparation 

of large numbers, high quality, culture surfaces 3 1 7 
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MATERIALS AND METHODS 

Culturing substrata 

Using photo-lithographic techniques, vanous microgrooved patterns were made at the Department of 

Electronics and Electrical Engineering of the University of Glasgow, UK Fused silica (TSL Quartz, 

Newcastle) was cleaned by immersion in a solution of 7 1 sulphunc acid hydrogen peroxide (98% 

Η^Ο,ι, 30% H202) at 75 0C for 5-10 minutes, nnsed in water and blow dned Samples were spin coated 

with AZ Pnmer (Shipley) and S1818 photoresist (Shipley ) followed by a softbake at 90° C for 30 

minutes This gave a final resist thickness of 1 8 microns The samples were patterned by exposing to 

UV light through a chrome mask (Hoya, Japan) The exposed resist was developed, nnsed and blow 

dned Subsequently, the patterned quartz was dry etched in a Plasma Technology (Bnstol) Reactive Ion 

Etch Unit After the etch process the remaining resist was removed by nnsing in acetone followed by 

a clean in the sulphunc acid/ hydrogen peroxide solution, nnsed and blow dned Finally, to maintain 

uniform chemistry, all samples were blanket etched with CHFj for 1 minute Using similar techniques, 

microgrooves were made m three inch silicon wafers, at the MESA institute, University of Twente, 

Enschede, the Netherlands 

Both the silica and silicon surfaces were used as molds for the production of microgrooved 

substrates for cell cultunng For the production of smooth, control surfaces, a glass plate was used 

Polystyrene (PS) was solvent cast in a similar manner as descnbed by Chesmel and Black l 7 A casting 

solution was made by dissolving bits from tissue culture PS (Greiner, Germany) in chloroform 

(LabScan, UK) (25 g/150 ml) and stimng gently for 24 hrs After casting of this solution on the molds, 

the chloroform was evaporated overnight in a laminar flow hood Replicas then were removed from the 

molds, and PS nngs were glued to them, using a small amount of the casting solution In this way, 

tissue culture vessels were created of 2 1 cm in diameter Before use, all substrates were given a radio 

frequency glow discharge (RFGD) treatment18 20, for 5 minutes at 100 mTorr The dimensions of all 

substrates used are summarized in Table 1 For a complete characterization of the obtained PS surfaces 

we refer to one of our earlier publications 3 
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Table 1 Summary of the dimensions of the used substrata Substrates provided with microgrooves have a 

larger total surface, compared to smooth ones For the substrates that were included in the confluency assay, 

the percentage of extra surface and number of used substrates are presented in the last column 

Substrate 

0.5PS1 

0.5PS2 

0.5PS5 

0.5PS10 

1PS1 

1PS2 

1PS5 

1PS10 

1.5PS1 

1.5PS2 

1.5PS5 

1.5PS10 

1.8PS2 

1.8PS5 

1.8PS10 

1.8PS20 

5.4PS2 

5.4PS5 

5.4PS10 

5 4PS20 

SMOOTH 

groove width 
(μη) 

1 

2 

5 

10 

1 

2 

5 

10 

1 

2 

5 

10 

2 

5 

10 

20 

2 

5 

10 

20 

0 

ridge width 
(pm) 

1 

2 

5 

10 

1 

2 

5 

10 

1 

2 

5 

10 

2 

5 

10 

20 

2 

5 

10 

20 

0 

groove depth 
(μπι) 

0 5 

0 5 

0 5 

0 5 

1 

1 

1 

1 

1 5 

1 5 

1 5 

1 5 

1 8 

1 8 

1 8 

1 8 

54 

54 

54 

54 

0 

extra surface 
(number) 

50% (11) 

25% (15) 

10% (18) 

5% (12) 

100% (15) 

50% (12) 

20% (15) 

10% (12) 

150% (9) 

75% (12) 

30% (6) 

15% (12) 

0%(18) 
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Cell culture 
Rat dermal fibroblasts (RDF) were obtained from the ventral skin of male Wistar rats, using the 

standard procedure described by Freshney 2' To ensure quick and constant availability, cells were 

cryo-preserved Before expenments, cells were thawed and cultured in MEM-a containing Earle's salts 

and L-glutamine (Gibco, UK), supplemented with 15% heat treated FCS (Gibco), and gentamicin (50 

μg/ml; Gibco) All expenments were performed with S* or 6* culture generation cells, 15 thousand 

cells were seeded per square centimeter of substrate 

Cellular orientation assay 

To determine the onentational effect of the various substrata, RDF were cultured for three days, fixed 

in situ for 5 minutes in methanol, stained with methylene blue, washed, and dned to air The 1 5 μπι 

deep specimens were not included in this expenment, because of the similar 1 8 μπι deep specimens 

All specimens were examined with a Leica DM RBE light microscope at a magnification of 40x The 

microscopic images were digitahzed with a Sony DXC151P CCD camera attached to the light 

microscope Subsequently, the onentation of at least 60 cells on each substratum were analyzed with 

PC-Image software (Foster-Findlay Associates, UK) For each cell, the mean angle between the longest 

axis of the cell and the groove-direction was measured, and the mean angles were calculated This mean 

angle is than considered to be representative for the entire population of cells on a particular substrate 

An angle of 45 degrees was considered to be critical for onentation of the cells If the mean angle 

between cells and the groove direction was 45 degrees, cells were supposed to he in an at random 

onentation The lower the mean angle, the better the cells were said to be onented 3. 

Confluency assay 

To measure how many cells are present on the vanous substrates, when covered by a confluent 

monolayer of RDF cells, we performed a confluency assay On the basis of a previous proliferation 

assay, for the assessment of confluency, cells were cultured on all the different 0 5,10, and 1 5 μιη 

deep substrata for 14 days After the cultunng penod, cells were harvested by trypsinization for 

subsequent counting with a Coulter Counter The expenment was performed twice In each expenment 

the substrates were present at least in tnphcate (see also Table 1 ) 
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LENS 

Cavity slide 

Polystyrene 
Substrate 

Wax 

C e l l s C02 Independent Medium 

Figure 1 : Schematic representation of the way cells were 
observed. Polystyrene substrata, covered with cells, were 
mounted onto a cavity microscope slide sealed with paraffin 
wax. Then they were observed 'upside down'. 

Figure 2: Schematic representation of a cell being observed 
with interference reflection microscopy. Both at the polystyrene-
medium interface, and at the medium-cell interface bundles of 
light will be reflected. The reflected bundles of light will interfere 
with each other and so form the interference reflection pattern. 
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Interference Reflection Microscopy (IRM) 
Interference reflection microscopy was carried out as described before by Curtis l6. On at least three 

specimens of all substrates, RDFs were cultured for one or two days. Cellular densities at this point 

were still low to exclude effects of contact inhibition. Then, the substrata covered with cells were 

mounted onto a cavity slide filled with CO2 -independent medium22 (Gibco) and sealed with paraffin 

wax (Figure 1). These specimens were illuminated with an intense monochromatic beam of collimated 

light, obtained by using a mercury arc lamp with a 546 nm filter. Its intensity was reduced with neutral 

density filters to ca. 1% to avoid damage to the cells. The images were made at a light level not easily 

visible to the human eye. 

Light will be reflected at two interfaces: first at the substrate-medium interface and second at 

the medium-cell interface. These reflections will interfere with each other, due to their phase 

differences, which will result in an interference image (Figure 2). This interference reflection image was 

observed with a light microscope (Vickers, UK) with a lOOx oil-immersion objective. Images were 

digitized with a CCD camera (low light level, Reece Scientific Ltd, Berkshire, UK) attached to an 

image enhancer (Adv-2, Reece Scientific Ltd, Berkshire, UK). The micrographs were stored on a 

computer using Matrox Intellicam Interactive software (version 2.0, Matrox Electronic Systems Ltd), 

for later evaluation. Background subtraction was performed to improve the images. This was done after 

image analysis, to prevent any influence on the measurements. 

IRM image analysis 
The IRM micrographs are patterns made out of dark and light interfering reflections. The intensity of 

reflected light, after interference, has been described in literature16,23 and is given by the equation: 

π, (n-n^cos^—2n1<fcos6)+(n1 -n^Ysin^—In^cosQ) 
Λ A . . . 

p=— (1) 
nf(n +n0)

2cos2(—Σ/ι,Λοβθ) +(n1

2 +n0n)2sm2(—2π1Λθ8θ) 

In this equation λ is the wavelength of the used light, d is the distance between cell and substrate, and 

θ is the angle of incidence light (normally 0°). There are three refractive indices in the formula, namely 

n, of medium in the gap between cell and substrate, η of the cells, and r^ of the polystyrene. In the 

experiment we used monochromatic light of 546 nm. The n, and η are known to be 1.340 and 1.370 

respectively 16. The n^ was measured with a refractometer, and was 1.715. Since all values but ρ and 

d are known, a relation between ρ and d could be plotted (Figure 3). In this figure also the background 

reflectivity is represented, calculated from: 

Pbackground ( ) ( 2 ) 
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For the analysis of the IRM micrographs, grey levels of certain parts of these pictures were measured, 

using Scion Image software (version beta 2, based on NIH image software for Macintosh; ScionCorp, 

Frederick, Maryland, USA). In such a grey level measurement 0 represents completely white, while a 

grey level of 255 represents totally black. 

With the image analysis software, the grey level of the darkest part in the reflection pattern was 

measured. The same was done for the lightest part that could be found in the micrograph. These 

measured grey levels can be calculated in a change in optical density (OD) using the calibration curve 

(Figure 4), specific for the used microscope. These OD changes could then be calculated into changes 

in reflectivity (p) using the following formula: 

OD=-2logp (3) 

So now our measured grey levels are recalculated to a ρ value. Using the curve from formula 1 (Figure 

3) these ρ values can easily be coupled to distances. 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
20 40 60 

distance d (nm) 

80 100 

Figure 3: Curve of reflectivity ratio (p) against gap-distance (d) The dotted line 
indicates the background reflectivity 
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OJ 

Figure 4: Calibration curve, for the used optical system. The curve 
is made by adding various neutral density filters to the lightway, and 
measuring the effect on the grey level of the background. 

I I fe 
Figure 5: Light micrographs of RDF cells on a 0.5PS10 (A), and a 1.5PS1 
(B) substrate. Groove direction is vertical, methylene blue staining, original 
magnification 20 x. Note the alignment of the cells towards the groove 
direction. 

58 



Attachment of fibroblasts on smooth and microgrooved polystyrene 

RESULTS 

Cellular orientation assay 
Light microscopical analysis showed clearly contact guidance of RDF on most of the microgrooved 

substrates. Light micrographs of the cells are shown in Figure 5. The orientation of single cells was 

measured and then the mean orientation was determined. The calculated mean angles between cells and 

the direction of the grooves, as well as the distribution of the data are shown in Figure 6. If the cells 

have all aligned with the surface grooves, the mean is very low, with a relatively small distribution. If 

the cells have not aligned, the mean is about 45 degrees, with a large dispersal. The statistical analysis 

of the orientation assay was performed with a unpaired t-test (StatMost 2.01, DataMost corporation, 

Salt Lake City, USA). Clearly, the substrates can be divided into three groups. On the 0.5PS10 and 

0.5PS5 substrates, cells show no or hardly any orientation. On all other 0.5 μη) deep, and on the 1 μηι 

deep substrates the RDF show orientation, but the distribution of the orientations is very wide. On the 

deepest groove patterns, i.e. 1.8 and 5.4 μηι deep, the RDF are very well oriented. The distribution of 

the data is very small, which indicates that nearly all cells have adapted to this orientation. 

Confluency assay 

To measure how many cells at most were present on the various substrates, RDF were cultured upon 

confluency. Counting with a Coulter Counter showed that on all microgrooved surfaces the number of 

cells was significantly increased (t-test, p<0.05), compared with the smooth reference surface (Figure 

7a). On the other hand, Figure 7a also proved that the surface enlargement does not directly correlate 

with an increase in cell number. 

In Figure 7b the same data are represented, pooled for all groove depths, but now corrected for 

surface enlargement. For instance, a 1PS5 substrate has a 1 μιτι groove wall spaced at each 5 μπι. This 

provides for 20% of extra surface, when compared to a smooth culturing substrate. Consequently, the 

number of cells measured on such a surface was divided by 1.2, to correct for surface enlargement of 

the 1PS5 substrate. The percentages of extra surface for each used substrate are shown in Table 1. From 

Figure 7b it becomes apparent that an increase in groove depth was not used by the cells for extra 

proliferation. Otherwise, all bars would have been of the same height. In contrast, the 1.5 μπι deep 

textures showed even a significantly lower number, relative to their total surface. If the same procedure 

is followed for all groove widths (Figure 7c) than the same remark can be made about narrow grooves. 
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Figure 6: Box-whisker plot of the orientation of the cells. Line indicates the 
median of the orientations measured, the box indicates 50% of the data points, 
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Figure 7a: Results of the confluency assay The relative number of cells is showed, compared to 
that of smooth tissue culture vessels Error bars represent one standard deviation 
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Figure7b: Results of the confluency assay, when all 
depths are pooled Error bars represent one standard 
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Figure 7c: Results of the confluency assay, when all widths are 
pooled. Error bars represent one standard deviation. 
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Interference reflection microscopy 
With the help of IRM, the contact side of cells can be visualised, which is seen as areas with various 
darker and lighter reflections (Figure 8a). The dark areas resemble a close contact between cell 
membrane and substrate, whereas the lighter areas indicate that the membrane was further away from 
the substrate. In the micrographs as obtained in our study, we measured grey levels of darkest parts in 
the image, and of the lightest parts that could be found. The results are presented in Table 2. 
Subsequently, we calculated that the darkest parts, which represent the focal adhesion points, were 10 
nm from the substrate surface. The lightest parts indicated that the cell membrane there was about 41 
nm from the substrate. 

Table 2: The grey levels (0 is dark, 255 is light) as measured in dark, middle, and light areas in the IRM 
micrograph shown in Figure 8a. From these values, the distances between the membrane and the substrate are 
calculated. 

dark 

light 

average grey 
level 

94.99 

132.19 

distance (nm) 

10 

41 

Figure 8a: IRM image of a RDF cell on a smooth polystyrene substrate. 
Bar= 5 pm. 
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Figure 8b: IRM image of a RDF cell on a microgrooved polystyrene 
substrate (0.5PS10). Grooves are 10 pm wide, and 0.5 pm deep. Notice that 
reflection patterns are observed on both the groove (G) and the ridge (R). 
Bar= 5 pm. 

Figure 8c: IRM image of a RDF cell on a microgrooved polystyrene 
substrate (1.5PS2). Grooves are 2 pm wide, and 1.5 pm deep. When 
focused on the grooves (G) no reflection patterns are observed, except for 
distant reflections (arrow) that can be seen as white spots. Bar= 5 pm. 
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In RDF cultures on shallow microgrooves, like the 0.5PS2 or 0.5PS10 (Figure 8b) substrate, the 

reflection-pattern was quite similar to that of cells on smooth substrata. Reflections of the entire cellular 

membrane could be observed, which means that the cell membrane perfectly follows the contours of 

the substrate. In contrast, on deep grooves like the 1.5PS2, reflections were almost only found on the 

tops of ridges. This is not an effect of being out-of-focus. When we focused on the grooves, only 

occasional distant reflections are seen (Figure 8c). These distant reflections were seen as white spots. 

This indicated that, though the cell might locally descend somewhat into the groove, at no point did 

the underside of the cell come close to the substrate. 

DISCUSSION 

In our study we investigated the attachment of rat dermal fibroblasts (RDF) on polystyrene substrata, 

by various analytical techniques. The substrates used, were either smooth or microgrooved. The groove 

width varied between 1-20 μιτι, and the groove depth between 0.5-5.4 μιη. 

The polystyrene grooved material was produced by solvent casting, which proved to be fast and 

reliable method to produce a large number of identical substrates. The reflective index of polystyrene 

made in this way, was 1.715. This was somewhat higher than the 1.5129 mentioned in literature for 

polystyrene 24. This difference is probably due to the fact that solvent casting resulted in terms of 

density and purity in a different quality polystyrene than 'commercial' polystyrene. Either casting 

condensed the matter more than it normally is, or a much higher refractive index impunty was included 

in the process. 

Light microscopy, and additional image analysis confirmed that RDF are oriented on 

microgrooved surfaces. This observation was made for almost the whole range of available 

microgrooves. When comparing cellular alignment, it became apparent that the rate of orientation 

increased drastically when the grooves are made deeper. 

After two weeks of culture, cells had stopped proliferating on basis of contact inhibition and 

formed confluent monolayers. The analysis of these layers of RDF showed that microgrooves are able 

to support greater numbers of cells. This might be caused by effects of the grooves on cell division, 

diffusion of nutrients and factors, or other processes. More likely, this increase is due to the surface-

enlargement. In a tissue culture vessel provided with microgrooves, the total available surface is higher 

compared with a smooth one. On the other hand, we have to emphasize that we could not conclude from 

our measurements that narrow and deep grooved surfaces support the largest numbers of cells. This is 

surprising because these surfaces have the most of 'extra' surface, and cells on these surfaces exhibit 

the best alignment. 

The IRM measurements showed that the RDF formed focal adhesions to the polystyrene. These 

adhesions mainly occurred at the edges of the fibroblast. In this area, the cells were colored very dark, 

which was calculated to correspond with a distance of only 10 nm from the polystyrene substrate. 

Similar distances are well known in literature for glass and commercial polystyrene12'25. This indicated 

that the produced polystyrene is a suitable cell-culturing material, regarding the forming of close focal 

attachments of RDF to the substrate. 

IRM also showed that RDF followed the contours of shallow microgrooves perfectly, with 
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attachments all over the substrate In the grooves and on the ndges throughout the whole cell reflection 

patterns were observed In order to get these patterns, the cell membrane must have been closer to the 

substrate than a few tens of nanometers 

In contrast, on deeper microtextures, the RDF seemed to bridge the grooves, like for example 

the used 1 5PS2 substrate When these substrates were observed in IRM, reflection patterns were not, 

or hardly, found in the grooves This means that the under side of the cells did not reach to the substrate 

at these places This difference in cellular attachment between cells on differently sized microgrooves 

might account for the results found in the confluency assay The highest number of cells were not found 

on the deep grooves, which exhibit the biggest surface-enlargement Though cells are onented on these 

surfaces, they bridge the grooves and therefore are unable to use the 'extra' surface for attachment 

For the observed bridging of the grooves by the RDF cells we propose two possible 

mechanisms First, the membrane, including the adjacent actin cell cortex, might be to stiff to bend 

totally into the deep grooves, or this would be energetically very unfavourable Second, it could also 

be possible that in these deeper grooves the RFGD treatment does not accurately penetrate This will 

result in an additional pattern of differences in wettability properties between grooves and ndges, which 

may also cause cellular alignment2627 This last phenomenon is an issue that deserves attention and 

further experimentation 

We theonze that the depth of the applied grooves is a determining factor in establishing the 

reaction of the cells towards microtexture In our study it was shown, that cells on substrates to 1 μπι 

deep are well able to reach the bottom of the grooves On these surfaces, the dynamics of actin 

polymerization, could be the explanation of contact guidance At the front edges of cells, the 

lamellopodia contain actin microspikes With these spikes, cells probe the substrate surface for suitable 

attachment places When such a place is found, focal adhesions and mature actin fibers are formed The 

probing of these microspikes could be influenced by surface discontinuities When a spike faces a ndge, 

it is faced with an unfavorable force and will not give nse to actin polymerization Consequently, actin 

filaments will form and elongate onented along the groove direction This process will proceed until 

the cell on the microgrooved substrate reaches an equihbnum state, which corresponds with an 

onentational behaviour 3 2 8 2 , In such a situation, the distnbution of the onentations of the cells are 

relatively wide, and is depending on the number of surface discontinuities In the current assay, the 

spacing of the groove pattern The more tightly spaced this pattern is, the better the onentation For 

instance, in contrast with the 0 5PS1 substrate, on our 0 5PS10 substrates no onentation is observed 

Besides, on surfaces with deeper grooves, there is an additional effect Here, the cells also loose 

the contact with the bottom of the grooves This results in a state, where cellular extensions only probe 

the ndges, and therefore only extend along these surface ndges Consequently, the vanation in the 

orientations of the cells on these substrates is very small, and does not or hardly depend on the spacing 

of the surface grooves The cells always elongate in the groove direction, without significant difference 

in behaviour between a 2 or 20 μιτι wide groove 

On the basis of our observations, we suggest that polystyrene made by solvent casting is a 

suitable matenal for fibroblast attachment When microgrooves are applied to a biomatenal surface, 

they are able to change the onentation of cells Evidently, the depth of the grooves is a determining 

factor in the cellular response Also the numencal cellular adhesion is influenced This could be a 
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finding of interest for implantology, since implants in soft tissues of the body are usually covered with 

a capsule, containing fibroblasts. Further in vitro studies are required to investigate the influence of 

RFGD treatment in deeper microgrooves. In addition, further in vivo studies are necessary to clarify 

the benefits of microtextures for implantology. 
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INTRODUCTION 

Microtextunng of a substrate-surface has been shown to influence the behaviour of cells growing on 

such substrates in vitro ' 3 Studies on the response of fibroblasts, epithelial, and bone cells to 

microgrooved substrata showed that, while the response is cell type dependent, overall the cell 

elongates in the direction of the groove and travels guided by the grooves This phenomenon is known 

as 'contact guidance' * The determinants of the alignment response are the depth and width of the 

grooves The alignment response is reflected in changes to the cytoskeleton and the deposited 

extracellular matnx (ECM) Even after short incubation periods, the cells show the polymenzation of 

F-actin parallel to the direction of the groove edges Although significant progress has been made, the 

exact cellular and molecular mechanisms that lead from the detection of the microgroove to the 

formation of aligned cytoskeleton and ECM are not yet completely known 

Examining previous m vitro studies on microgrooved cultunng substrata, it becomes apparent 

that a number of matenals of different substrate chemistry have been used, ι e silicone rubber 5 6, 

polystyrene 7 8, silicon ', silica microscope slides l0, perspex ' ', titanium '2 '4, epoxy '5, and araldyte l 6 

Besides surface chemistry, also the used surface designs were far from uniform In view of this, it is 

not very surpnsing that all results do not corroborate with each other It can be supposed that the 

observed differences in cellular behaviour might just be caused by the differences in substrate 

properties Still, a lot of researchers claim that the response towards textures is predominantly 

dependent on surface topography, and that vanation of the matenal has little effect ' 

On basis of the above mentioned, we prefer to hypothesize that contact guidance of fibroblasts, 

using substrates with the same groove pattern, can be altered by varying the matenal Currently, no 

study compared exclusively the differences in contact guidance in relation to differences m matenal 

composition Consequently, the objective of this study is to determine the effects of different surface 

patterns and substrate chemistry on fibroblast growth behaviour Therefore, we cultured pnmary dermal 

fibroblasts on relevant metallic (titanium) and polymenc (polystyrene, poly-1-lactic acid, silicone) 

implant materials, which were provided with uniform parallel grooves and ndges varying in distance 

MATERIALS AND METHODS 

Culturing substrata 
Using photo-lithographic techniques, microgrooved patterns were made in three inch silicon wafers 

(Twente Microproducts, Enschede, the Netherlands) The wafers were divided into 4 quadrants with 

a ndge- and groove width of 1,2, 5 or 10 μηι and a groove depth of 0 5 μιτι Three similar wafers were 

used These wafers were used as molds for the production of substrates for cell cultunng For the 

production of smooth, control surfaces, non-textured glass plates were used The expenmental matenals 

were 

1 ) Polystyrene (PS) PS was solvent cast in a similar manner as descnbed before by Chesmel and 

Black 8 A casting solution was made by dissolving bits from tissue culture PS (Greiner, 

Germany) in chloroform (LabScan, UK) (25 g/150 ml) and stimng gently for 24 hrs After 

casting of 3 ml of this solution on the molds, the chloroform was evaporated overnight in a 
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laminar flow hood Replicas were removed from the molds, and PS rings were glued to them, 

using a small amount of the casting solution In this way, tissue culture dishes were created of 

2 1 cm in diameter 

2) Titanium coated polystyrene (PSTi) Polystyrene dishes were made as described above 

Additionally, a thin film of titanium was deposited on the inner surface of the prepared 

polystyrene dishes, using high vacuum coating apparatus (CV-18, Consolidated Vacuum 

Corporation, Rochester, New York) equipped with a film thickness monitor A commercially 

pure titanium wire (Drijfhout, Amsterdam, the Netherlands) was wrapped around a tungsten 

wire and evaporated by critical heating to incandescence at a pressure of approximately 104 

Torr The deposited titanium layers had a thickness of 50 nm 

3) Silicone (SIL) Silicone substrata were made as described before by den Braber et α/12 In short, 

molds were covered with polydimethylsiloxane (NuSil MED-4211, NuSil Technology, 

Carpintena, California) After polymerization, replicas were removed from the molds, and cut 

to desired size, ι e rounds with a diameter of 15 mm They were washed in 10% liquinox 

(Alconox, New York, NY), cleaned ultrasomcally in 1% liquinox solution, nnsed thoroughly, 

and given an overnight Soxhlet nnse in distilled, deiomzed water 

4) Poly-1-lactic acid (PLL) Poly-1-lactic acid (Purac Biochem, Gonnchem, the Netherlands) was 

dissolved in chloroform (10 g/300 ml) Solvent casting was performed by putting 12 ml of the 

PLL solution on a wafer After evaporation of the chloroform, substrata were placed overnight 

in a heating stove of 45CC Replicas were removed from the molds, and PS rings were glued 

to them, using a small amount of the PLL casting solution In this way, tissue culture vessels 

were created of 2 1 cm in diameter 

Just before use, all experimental substrates for cell cultunng were given a radiofrequency glow 

discharge (RFGD) treatment " ", for 5 minutes at 100 mTorr, to improve the surface wettability of the 

substrates 

Measurement of elastic modulus and wettability 
To assess the elastic properties of the PS, SIL, and PLL materials, bars were cut measuring 5x 15 mm, 

and a thickness of 0 2 mm (for the PS and PLL) or 1 1 mm (for the SIL) These bars were used for a 

tensile test From the stress-strain curve, the elastic modulus was derived The measurements were 

performed using an Instron mechanical testing machine with a cross head speed of 0 5 mm/sec At least 

three specimens of each material were used 

The water wettability of smooth substrate materials before and after glow discharge was 

determined using the sessile drop method 20 A drop of milli-Q (10 μΐ) was placed on the test 

substrates The drops were photographed immediately after positioning on the substrate surface The 

contact angle (Θ) was calculated from the height (h) and breadth (b) of the drop according to 

Ih 
θ =2 arctan — (1) 

b 

In this way, the wettability of each substrate was measured in sixfold 
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Cell culture 
Rat dermal fibroblasts (RDF) were obtained from the ventral skin of male Wistar rats, using standard 

procedure as described by Freshney 2' To ensure quick and constant availability cells were 

cryo-preserved Before experimentation, cells were thawed and cultured in MEM-a containing Earle's 

salts, L-glutamine, 15% FCS, gentamicin (50 μ&/Γη1) All expenments were performed with 5lh culture 

generation cells Onto the vanous surfaces, 15 thousand cells are seeded per square centimeter of 

substratum 

Proliferation assay 

Cells were cultured on the vanous expenmental matenals for 1,3, and 7 days Only smooth substrates 

were used Both RFGD treated and non-RFGD treated substrates were included The non-treated 

surfaces were stenhzed by washing in 70% EtOH and subsequent drying to air in a stenle environment 

After the cultunng penods, cells were harvested by trypsimzation, and subsequently quantified with 

a Coulter Counter (Coulter Zl, Coulter Electronics Ltd, UK) Two runs of the expenment were earned 

out In each run, all substrata were present in threefold, and also all counts were performed in tnphcate 

Scanning electron microscopy 
Qualitative information on the reproduction quality of the substrates, and on the morphology of the cells 

was obtained using scanning electron microscopy (SEM) After 3 days of incubation, the cells on PS, 

PSTi, and PLL were fixed in 2% v/v glutaraldehyde in 0 1 M sodium-cacodylate buffered solution for 

5 minutes Cells were nnsed in cacodylate buffered solution, dehydrated in a senes of ethanol, and dned 

in tetramethylsilane (TMS, Merck) to air For SIL surfaces, the same procedure was followed, except 

for TMS-drying SIL specimens were dned to air directly from EtOH 100% Finally, specimens were 

sputtercoated with a thin layer of gold, and examined in a JEOL 6310 scanning electron microscope 

Cellular orientation assay 
From previous research in our group it is known that the onentation of cells is highly correlated to the 

orientation of intracellular actin filaments7 22 This onentational effect can be very precisely measured 

using actin staining, confocal laser scanning microscopy (CLSM), and subsequent digital image 

analysis Therefore, to determine the contact guidance effect of the substrata, the onentation of cells 

was measured in this way 

RDF were cultured on microgrooved substrata for three days, fixed in situ for 20 minutes in 2% 

paraformaldehyde and permeabihzed with 1% Tnton X100 Then filamentous actin was stained with 

phalloidin-TRITC (Sigma) Subsequently, the specimens were examined with a Biorad MRC 1000 

CLSM system Digital micrographs were taken at a magnification of 20 times and were analyzed with 

Scion Image software (v beta 2, based on NIH image, ScionCorp, Frederick, Maryland, USA) For 

each cell in the image, the angle between the actin skeleton and the groove-direction was measured 

Then, average angles and standard deviations were calculated These were considered to be 

representative for the onentation of the entire population of cells on the particular substrate If the cells 

have all aligned with the surface grooves, the average angle is very low, with a relatively small standard 

deviation If the cells have not aligned, the average is about 45 degrees, with a large standard deviation 
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Angles were therefore compared using an unpaired t-test. This test is suitable for comparing two 

distributions with significantly different variances. For the evaluation, over 50 measurements were 

made on each substratum. 

Transmission electron microscopy 
The PS 7 and SIL2 3 specimens have been described in our group in detail before, and were therefore 

not further elaborated for TEM examination. For transmission electron microscopic (TEM) analysis, 

PSTi and PLL substrata covered with cells were fixed in 2% glutaraldehyde in 0.1 M sodium cacody late 

buffer. After postfixation in Os04 and dehydration in ethanol, they were cut into small pieces and 

embedded in epoxy resin. In the preparation process, standard procedures were followed except for the 

use of propyleneoxide. This was replaced with ethanol, since propyleneoxide would dissolve PS and 

PLL. After polymerization of the specimens, sections of about 5 μπι thickness were cut and stained with 

toluidine-blue and examined. After determination of the right cutting direction, i.e. perpendicular to the 

microgrooves, embedded tissue blocks were trimmed to the desired size and cut into ultrathin sections 

for TEM analysis. These were stained in uranylacetate/lead citrate. Finally, sections were examined 

with a JEOL 1210 transmission electron microscope. 

RESULTS 

Measurement of elastic modulus and wettability 

The results of the Ε-modulus measurements are summarized in Table 1. Statistical analysis (ANOVA) 

revealed that all values are different. The Ε-modulus of PLL appeared to be twice as low as that of PS, 

while the elastic modulus of the silicone is a factor 1000 lower. 

The results of the wettability measurements are shown in Table 2. Statistical analysis, using a 

one-way analysis of variance (ANOVA) and a multi-comparison test (Student Newman Keuls, p<0.05) 

was performed. The measurements showed that Ti-coating improves the wettability of PS. The RFGD 

treatment improves the wettability of all substrates. On the other hand, the effect of the RFGD treatment 

is much higher on the PS and PSTi substrates, than on the PLL and SIL materials. The wettabilities of 

the various substrate materials were significantly different, after the RFGD treatment. The wettability 

of the RFGD-treated surfaces can be described as good for PS and PSTi, intermediate for SIL, and 

remains moderate for the PLL material. 
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Table 1 : Elastic moduli of the materials 

Material 

PS 

PLL 

SIL 

Elastic modulus (Mpa) 

894 

539 

0 39 

Standard deviation 

69 

155 

0 15 

Table 2: Contact angles (degrees) of water droplets on the culturmg materials, before and after a RFGD 
treatment 

Material 

PS 

PSTi 

PLL 

SIL 

Contact 
angle 

(-RFGD) 

85 

66 

79 

88 

Standard 
deviation 

2 

4 

4 

5 

Contact 
angle 

(+RFGD) 

13 

7 

52 

33 

Standard 
deviation 

2 

1 

3 

3 

Proliferation assay 
The results of the proliferation experiment are shown in Figure 1 Statistical analysis was performed 
using an analysis of variance (ANOVA) followed by a multi-companson test (Student Newman Keuls, 
p<0 05) 

After three days, cells were observed to be proliferating exponentially on all RFGD-treated 
substrates On the PLL substrates more cells were present than on SIL, but no further differences could 
be found On all substrates without RFGD treatment, cell proliferation was significantly lower On SIL 
and PSTi substrates, cell numbers had not increased compared with day 0 (seeding) On PS and PLL 
substrates cell numbers had even decreased 

After five days, cells are still proliferating exponentially on the RFGD treated substrates Some 
differences can be observed between the materials PLL substrates show significantly more cells than 
PS and PSTi substrates, but not more than on SIL The substrates without RFGD treatment show less 
proliferation compared with their treated counterparts On the other hand, it can be clearly observed 
that on the non-treated substrates cells also have started to proliferate Especially on the PSTi and PLL 
substrates, cell numbers have increased compared with day 3 

Finally, after seven days of culturmg, cells appear to be growing exponentially on all RFGD 
treated substrates Cell numbers on PLL and on SIL are somewhat higher than on PS, but no other 
differences can be found The substrates without RFGD treatment still show less cells compared with 
their treated counterparts Nevertheless, cells appeared to be growing rapidly There are no differences 
between untreated PSTi, PLL, or SIL substrates However, cell proliferation on the untreated PS is still 
significantly lower 

75 



Chapter 4 

•m—ps —»--PSTI --A--PLL — » — S I L 
•β—PS no RFGD — *• -PSTI no RFGD - - A - -PLL no RFGD — o—SILnoRFGD 

o - l 1 1 1 

0 3 5 7 

days 

Figure 1 Proliferation assay of RDF cells on polystyrene titanium coated polystyrene, poly-l-
lactic acid, and silicone smooth cultunng substrata No significant differences were found 
between the various substrates 

Scanning electron microscopy 
General observation of the RDF cells by SEM showed that the cells had attached to, and spread out on 

the various substrata Micropodiae, nucleus, and nucleoli were clearly visible in most cells This 

indicated that all substrates were suitable for cell culture, and that fixation, dehydration, and drying of 

the cells had been sufficient 

On PS substrata, SEM observation showed that the RDF cells had a very flattened appearance 

(Figure 2a,b) Cells did align obviously to the groove direction on surfaces Qualitatively, there was a 

difference between the vanous surface dimensions Cells cultured on 1 or 2 μιτι wide grooves seem to 

be better onented, and were lying on top of the ndges In contrast, on the 5 and 10 μπι grooves, cells 

had descended more frequently into the grooves On PSTi substrata cells appeared to have similar 

morphological properties as on PS matenal (Figure 3a,b) On the other hand, on PSTi cells appeared 

to be less aligned with the surface grooves On PLL substrata (Figure 4a,b), cells were observed to be 

a little more rounded than on PS and PSTi matenals Especially, on substrates with 1 μιτι wide grooves, 

cells rounded up and seemed spindle-like 
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Figure 2: Scanning electron micrographs of cells on PS substrates: a) PS1 b) PS10. Note the alignment on 
the narrower grooves. PS1 is a substrate with 1 pm wide grooves, etcetera. 

Figure 3: Scanning electron micrographs of cells on PSTi substrates: a) PSTH b) PSTilO. 
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Figure 4: Scanning electron micrographs of cells on PLL substrates: a) PLL1, note the extreme spindle-like 
shape of the cells, and b) PLL10. 

Figure 5: Scanning electron micrographs of cells on SIL substrates: a) SIL10 b) smooth SIL material. Note 
the deformation of the grooves in 5a, and the wrinkling of the substratum in 5b. 
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Figure 6: Box whisker plot of the orientation of the RDF cells on the various 
surface grooves. Line indicates the median of the orientations measured, the box 
indicates 50% of the data points, and whiskers 75% of the data points 

The SIL substrata (Figure 5 a,b) apparently are not as accurately reproduced from the molds, compared 

with PS The edges of the ridges seemed to not be as sharp. The morphology of the cells resembled that 

of PS substrates However, it can also be clearly seen that the cells have contracted and deformed the 

substrate surface grooves. The smooth substrates seemed wrinkled (Figure 5a), and on microgrooved 

substrates, even the ridges were pulled together by the cells (Figure 5b). 

Cellular orientation assay 
Observation with a light microscope showed that on most microgrooved surfaces cells had aligned 

towards the microgrooves. Confocal laser scanning microscopy and subsequent digital image analysis 

confirmed this cellular alignment. The results of these measurements are showed in the box-whisker 

plot in Figure 6 All significant differences between the alignment of cells are summanzed in Table 3. 

We have to notice that no Bonferroni correction was applied, and therefore not every single significance 

mentioned in the table is to be regarded individually. Generally speaking we can see that the 0.5 μπι 

deep and 10 μιη wide grooves hardly induced alignment on the PS substrates. When the groove width 

was decreased up to 1 μιη, the alignment improved drastically. The RDF also align on PSTi substrates. 

However, an improvement of alignment with decreasing groove width was not observed here. The PLL 

substrates seemed to be much more potent in inducing alignment. The best cellular alignment was 

found on the 1 μιη wide PLL substrates Finally, the orientation of RDF on SIL was comparable to that 

on the PS structures. 
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Table 3: Differences between the cellular orientation on the various substrates, as calculated by an unpaired 

t-test (+ indicates a significant difference, - indicates no significant difference). 
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Transmission electron microscopy 
Transmission electron microscopy was performed to provide detailed cross-sections of cells on the PSTi 

and PLL substrata. In all sections, prominent cell structures like nucleus, mitochondria, ribosomes and 

rough endoplasmic reticulum appeared to be well preserved. 

Titanium coating, seen as an electron-dense layer, covered the substratum surface very uniformly. On 

the narrow grooves cells bridged the grooves, contacting only the ndges. In contrast, on wider groove 

patterns, cells had descended into the grooves, and contacted the groove bottom (Figure 7a,b). Further, 

a striking observation was that the ridges on the substrate appeared to be somewhat rounded. 

On PLL substrates generally a similar cell morphology was observed. In contrast with the PSTi 

substrates, on this material the cells were never able to establish contacts with the bottom of the 

grooves. This was observed both for the wide as the narrow groove patterns (Figures 7c,d). In contrast 

to the PSTi substrates, with the PLL the surface pattern appeared to be very sharp. 
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Contact guidance on various implant materials 

Figure 7: Transmission electron micrographs of cells on microgrooved 
substrates. PS = polystyrene, PLL = poly-l-lactic acid, η = nucleus. A) PSTÌ2: 
Note the electron dense (ed) layer, and the bridging of the grooves by the 
cells. Bar = 0.25 pm. B) PSTÌ10: Note that cells descend into the grooves, 
and contact (c) the groove bottom. Bar = 4 pm. C) PLL5; Note that the cells 
bridge the grooves. Bar = 1.2 pm. D) PLL2: Bar = 2 pm. 

DISCUSSION 

In this study, we determined the behaviour of fibroblasts on microgrooved cultunng substrata with a 
standardized texture, but with different chemical composition. The proliferation assay showed that cells 
proliferated exponentially on all used cultunng materials that were RFGD treated. This indicates that 
each material was suitable for the attachment and proliferation of fibroblasts. On the non-RFGD treated 
substrates, cell numbers initially stayed the same or even decreased, indicating poor cellular attachment 
or cell death. This result strongly correlates with the findings of the wettability measurements, i.e. the 
materials with the highest contact angles were found to be the least favorable for cell attachment. 
Nevertheless, after five days the cells that attached seem to proliferate in a similar way as the treated 
substrates. Apparently, as observed before 24'25, absence of RFGD treatment resulted in a delay of 
proliferation. 

Of the substrates that were given a glow discharge treatment, PLL showed the highest 
proliferation. Here, cell proliferation was not correlated perfectly with the measurements of wettability. 
Of course, wettability is not the only factor involved in cell behaviour. Certain chemical groups, present 
on the surface of the material can alter cell response26. Besides, we have to remark that PLA is a bio­
degradable material. Degradation of the PLA could alter surface roughness and composition, and 
therefore influence the final behaviour of cells on the material. Current pilot experiments, using atomic 
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force microscopy (AFM), already showed this degradation of the surface of PLA materials 

The polystyrene used in this study, has to be considered as a reference material First, because 

polystyrene is the most commonly used material for cell cultunng techniques Second, because we 

already used this material in earlier studies on the effect of surface texture on fibroblast behaviour The 

current observations agree also with these previous studies, ι e that almost no alignment is observed 

on wide grooves, and strong cellular orientation on narrow grooves 7 22 27 

Titanium was used as a substrate material, because it is still the most widely used implant 

material The titanium was applied as a thin coating on the textured polystyrene We know that the 

chemical composition of such a titanium coating is not completely similar to bulk titanium material 

On the other hand, we have to emphasize that in an earlier study in our group, textured bulk titanium 

substrates were used '2 The current SEM and TEM findings corroborate perfectly with this earlier 

study Only the cell alignment results are somewhat different In the earlier study, improved alignment 

was observed with decreasing groove width, while in the current study no such relationship was seen 

Two explanations can be given for this observation First, in the bulk titanium study, the prepared 

surface grooves had a depth of 1 -2 μηι In our study, the groove depth was only 0 5 μηι We know that 

groove depths affect cellular orientation27 A further explanation for the lesser alignment is provided 

by the TEM analysis of the PSTi substrates The applied layer of titanium seemed continuous, and the 

deposition does have exactly the same thickness throughout the whole coated area However, it was 

observed in TEM that the groove pattern had lost its sharp edges Probably, this is caused by the 

developed heat during the evaporation of the titanium onto the thermoplastic polymer material 

From this last observation an important conclusion can be drawn Some studies propose that 

contact guidance is a result of preferential protein adsorbtion on sharp surface discontinuities, like the 

edges of ridges on microgrooved substrates 3 28 In the PSTi substratum, no sharp discontinuities are 

present, but still these textures are potent of inducing contact guidance This impairs that such 

preferential adsorption theones are probably not valid Consequently, we suggest again that contact 

guidance is caused by mechanical forces on the cells' filopodia, which cause the cells to reshape actin 

filaments here, and adjust to the substrate topography7 

The casting of PLL has proven to be of the same accuracy as PS It is obvious from the SEM 

and CLSM analysis that the RDF had strongly aligned to the surface grooves, and showed a much more 

rounded morphology than on the other materials Especially on the 1 μηι wide grooves, cells seem to 

be extremely spindle-hke Also, in contrast with the other materials, TEM revealed that on PLL the 

cells are nowhere able to establish contacts with the bottom of the grooves, neither on wide, nor on 

narrow groove patterns We assume, that this is due to the hydrophobic nature of the PLL, even after 

RFGD treatment Probably, PLL adsorbs specific serum proteins differently than the other materials, 

or adapt the conformational state of these proteins Despite the shallowness of our grooves, we can also 

not exclude for all our samples that the RFGD treatment does not reach the bottom of the microgrooves 

If the penetration of the treatment is insufficient for the grooves, the resulting would be an additional 

pattern of different wettabilities between grooves and ridges Such an additional patterning effect will 

be enhanced when the to be treated material is already very hydrophobic, and not really "sensitive" for 

RFGD This could explain why no cell contacts with the bottom of the grooves were formed, and the 

cells were caused to bridge the grooves 2 9 3 0 
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SEM observations of the SIL substrates showed that the reproduction of the surface patterns was 

not as accurate, compared to PS. This was already observed earlier by Den Braber et al.21 in a TEM 

study with microtextured silicone rubber. We suppose that this is due to the viscoelastic properties of 

silicone. Silicone has a relative high viscocity. If this viscocity is too high, the silicone might not be 

able to flow into the sharp comers of the grooves. The more viscous a reproductive material is, the 

poorer the quality of reproduction of the mold. Besides surface patterns, we have to notice that also the 

mechanical properties of silicone differ significantly from the other used materials. This is also obvious 

in the scanning electron micrographs. Apparently, the morphology of the cells is influenced by the 

shape of the substratum, but substratum is also deformed by the forces applied by the cells. Similar 

observations have been done in earlier studies23. We have to emphasize that the distorted shape of the 

grooves in combination with the inferior reproduction of the surface patterns makes it very complex 

to compare results from studies on contact guidance performed on silicone with studies using textures 

in other materials. 

In summary we can conclude that the accuracy of microtexture production depends greatly on 

the used material. Also coating techniques, as described in many studies, can affect the applied patterns 

and subsequent contact guidance. Nevertheless, even if no sharp discontinuities are present, 

microtextures can still induce contact guidance. Consequently, explaining contact guidance by the use 

of preferential adsorption theories seems unlikely. Finally, there is a definitive influence on cell 

morphology and behaviour, caused by differences in the used substrate. Material properties like 

wettability or elasticity are just as well of influence on cellular behaviour, as the topographical 

properties like texture size and shape. 
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INTRODUCTION 

Vanous studies already proved that substrate surfaces provided with micrometer-sizes grooves force 

the cells cultured on them to align to these features ' 4 This phenomenon is known as 'contact 

guidance'5 On basis of a previous study, we suggested that this contact guidance phenomenon is 

probably based on mechanical clues67 The breakdown and formation of fibrous cellular components, 

is influenced by microgrooves They create a pattern of mechanical stress, which influences cell 

spreading and causes cell alignment Besides, we also noticed that the extracellular matrix (ECM) 

possesses certain specific mechanical properties Many in vitro studies already indicated that cell-

generated forces of tension can actually re-orgamze the organization of the ECM into structures that 

direct the behaviour of single cells8 '2 As cells cannot penetrate in narrow (<2 μπι) or deep (>0 5 μιη) 

grooves, and only attach to the ndge surface '3 >A, the exerted forces can achieve a reorganization of 

deposited ECM proteins Definitively, this will have an effect on cellular spreading and elongation In 

this way, alignment, and directed cell migration will be established Of course, the validity of this 

theory has to be proven in further studies 

If indeed mechanical clues are the basis of contact guidance, we would expect the phenomenon 

to occur from the earliest phases of cell spreading, directly after cell attachment In view of this, cellular 

behaviour (i e cytoskeletal formation) has to be examined, shortly after attachment 

Therefore, the current investigation is aimed at further investigating the influence of 

microgrooves on initial cell morphology and cytoskeletal development To further unravel the role of 

the cytoskeleton, cells were also incubated in the presence of the actin polymenzation inhibitor 

cytochalasin-B " " 

MATERIALS AND METHODS 

Substrate production 

Using photo-lithographic techniques, microgrooved patterns were made in a three inch silicon wafer 

(Twente Microproducts, Enschede, the Netherlands) The wafer was divided into 4 quadrants with a 

ndge- and groove width of 1, 2, 5 or 10 μπι and a groove depth of 0 5 μιη This wafer was used as a 

mold for the production of substrates for cell cultunng For the production of smooth, control surfaces, 

non-textured glass plates were used Polystyrene (PS) was solvent cast in a similar manner as descnbed 

by Chesmel and Black " l 8 A casting solution was made by dissolving bits from tissue culture PS 

(Greiner, Germany) in chloroform (LabScan, UK) (25 g/150 ml) and stimng gently for 24 hrs After 

casting of 3 ml of this solution on the molds, the chloroform was evaporated overnight in a laminar 

flow hood Replicas were removed from the molds, and PS rings were glued to them, using a small 

amount of the casting solution In this way, tissue culture dishes were created of 2 1 cm in diameter 

Just before use, all substrates used for cell cultunng were given a radiofrequency glow discharge 

(RFGD) treatmentl9 21, for 5 minutes at 100 mTorr, to improve the surface wettability of the substrates 
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Cell culture 
Rat dermal fibroblasts (RDF) were obtained from the ventral skin of male Wistar rats, using standard 

procedure as described by Freshney 22. To ensure quick and constant availability cells were 

cryo-preserved. Before experimentation, cells were thawed and cultured in MEM-a (Gibco) containing 

Earle's salts, L-glutamine, 15% FCS, gentamicin (50 μg/ml). All experiments were performed with 5,h 

culture generation cells. Prior to the assays, cells were detached with a solution of 0.25% Trypsin /1 

mM EDTA (pH 7.2), for 2 minutes. Subsequently, cells were washed and resuspended in culturing 

medium. For each experiment, about 15 thousand cells were seeded per square centimeter on the 

various experimental substrates. Cells were incubated for 15, 30, 45, 60, 120, or 240 minutes. All 

experiments were also performed with addition of cytochalasin-B to the culturing medium, at a 

concentration of 2.5 μπιοί/ L. 

Light microscopy 

Quantitative information on cell spreading was obtained using light microscopy (LM). After the 

various incubation periods, the cells were fixed in methanol p.a., stained in methylene blue dye, washed 

in milliQ water, and dried in iso-pronanol. Subsequently, they were observed with use of a Leica DM 

RBE light microscope. Digital micrographs were made using a Donpisha 3CCD camera attached to a 

computer that was equipped with Leica Qwin Pro software (v. 2.2, Leica, Germany). These images 

were analyzed using Scion Image software (v. beta-2, based on NIH image software for Macintosh; 

ScionCorp, Frederick, Maryland, USA). Measurements were made in 12 randomly chosen areas of 

observation of 0.2 mm2. First we measured the numerical cell adhesion, by counting the total number 

of cells in the area of observation. The attachment percentages were calculated by considering 100% 

cell attachment to occur on the smooth control surfaces. Second, cell orientation was measured, as the 

angle between the long axis of the cell and direction of surface grooves. Third, cell surface area space 

occupied by each cell was determined. Statistical analysis was performed using an analysis of variance 

(ANOVA), followed by a Student Newman Keuls test (p<0.05). Analysis of the orientation assay was 

performed with a unpaired t-test. All statistics were performed with StatMost (v. 2.01, DataMost 

corporation, Salt Lake City, USA). Data are the result of two separate experiments. In each experiment 

all substrates were present at least in twofold. 

Scanning electron microscopy 

Qualitative information on the morphology of the cells was obtained using scanning electron 

microscopy (SEM). After the various incubation periods, the cells were fixed in 2% v/v glutaraldehyde 

in 0.1 M sodium-cacodylate buffered solution, for 5 minutes. Cells were rinsed in cacodylate buffered 

solution, dehydrated in a series of ethanol, and dried in tetramethylsilane (TMS, Merck) to air. Finally 

specimens were sputtercoated with a thin layer of gold, and examined in a JEOL 6310 scanning electron 

microscope. One experiment was performed, with all substrates present in threefold. 
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Confocal laser scanning microscopy 
Components of the cytoskeleton were imaged using fluorescent antibody-staining techniques. For this 

purpose, cells were fixed for 20 minutes in 2% paraformaldehyde and permeabilized with 1% Triton 

XI00. Then, filamentous aclin was stained with phalloidin-TRITC (Sigma), diluted in phosphate buffer 

containing 1% BS A to block aspecific epitopes. Finally, the specimens were examined with a Biorad 

MRC 1000 confocal laser scanning microscope (CLSM) system. Digital micrographs were made, and 

analyzed using Scion Image software. 

Actin organization was evaluated using a method described by Sinha et al. " . For this purpose, 

the cells were divided into three types. Type I cells display a faint staining with no discernable actin 

filament formation; Type II cells show cortical filaments below the cell membrane with some radially 

oriented filaments; and Type III cells have distinct, well formed actin filaments that are oriented parallel 

to one another and to the long axis of the cell. For each specimen an average of 20 cells was observed. 

Statistical analysis was performed using an analysis of variance (ANOVA), followed by a Student 

Newman Keuls test (p<0.05). Data are the result of two separate experiments. In each experiment all 

substrates were present in twofold. 

RESULTS 

Light microscopy 
Figure 1 shows the numerical cell adhesion, relative to smooth control surfaces. Statistical analysis 

revealed that at 30 and 45 minutes of incubation, cell numbers on all grooved surfaces were 

significantly lower compared with smooth control surfaces. After this time point, cell numbers 

increased to comparable levels. Finally, after 4 hours of cultunng the cell number found on 1 μπι wide 

grooves was significantly higher than on smooth surfaces. 

Quantitative evaluation of the number of attached cells in cultures that were incubated with 

cytochalasin-B showed that up to 2 hours almost no cells had attached. Only after 2 and 4 hours of 

incubation, fibroblasts were present. Nevertheless, cell numbers were extremely low compared to the 

normal cultures (< 25%). Therefore, for the rest of the quantitative experiments with cytochalasin 

supplemented culture medium no time points before 2 hours were examined. 

Figure 2 shows the distribution of cellular orientation. The calculated median angles between 

cells and direction of the grooves, as well as the data distribution are shown in a box-whisker plot. The 

boxes indicate 25th to 75th percentile, and the whiskers indicate the 5th and 95th percentile of the data. 

Cellular alignment with the surface grooves, is characterized by a very low median, and a relatively 

small distribution. If no alignment exists, the median is about 45 degrees, with a large dispersion. The 

data showed that no orientation occurred at any time point on the smooth surfaces. Furthermore, we 

found that the occurrence of cell onenlation for different groove sizes started at different time points. 

On 1 μιτι wide grooves, strong cell orientation was found after 1 hour; on 2 and 5 μπι wide grooves 

after 2 hours; and on 10 μπι wide grooves after 4 hours of incubation (Figure 3). The measurements 

regarding cellular orientation in the presence of cytochalasin-B are presented in Figure 4. On the 1 μιτι 

wide grooves, orientation was seen after 2 hours. After 4 hours, cells were also found to be oriented on 

2 μπι wide grooves. In addition, the rate of orientation on 1 μπι textures was further increased. On the 
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5 and 10 μπι wide grooves and smooth control surfaces no orientation was observed. 

Figure 5 shows the surface area covered by the cells, during cell spreading. After 15 and 30 minutes 

the area was relatively small. Cells did not spread (area<10 μιτι2). From 45 minutes on the area started 

to increase, indicating that spreading had started. The standard deviation at these time points is very 

high. Evidentially not all cells start spreading at the same time. Although at 2 and 4 hours cell 

spreading on the 1 and 2 μπι surfaces appeared to be less, no significant differences in cell area could 

be determined between smooth and the various textures at any incubation time. 

Cells that were cultured in the presence of cytochalasin-B after 2 and 4 hours showed less 

spreading. These cells covered surface areas that were comparable to normal cultures, at 1 and 2 hours 

respectively. 

-10 micron » 5 micron —ή—2 micron —M—1 micron smooth 

Figure 1: Numerical cell numerical adhesion in time, relative to smooth control 
surfaces (=1). There are no differences behveen the textures At 30 and 45 minutes cell 
numbers are lower than 1, whereas they are significantly higher than 1 on 1 pm after 4 
hours. 
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Figure 3: Digitalized light micrographs of cells on 
various substrates. On smooth surfaces no alignment 
is observed. On 1 pm wide grooves, cellular 
orientation is established after 1 hour, on 10 pm wide 
grooves cellular orientation is only found after 4 hours 
of incubation. Original magnification 20x. 
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Figure 4: Cellular orientation, in cultures supplemented with 
2,5 prnol/ L cytochalasm-B No orientation is observed, except 
for 1 pm textures at 2 hours, and 1 and 2 pm at 4 hours. 
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Scanning electron microscopy 
Figures 6a-b show scanning electron micrographs of representative cells on microgrooved substrates 

It was observed that after 15 minutes cells exhibited a very rounded morphology After 30 minutes, 

cells showed extensive membrane extensions in all directions After 45 minutes, the cell surface seemed 

smooth again, and cells were spreading Finally, after 4 hours of incubation cells were totally flattened 

Figures 7a-b show SEM micrographs of a similar expenment, in the presence of cytochalasin-B 

After 15 minutes no cells could be found on the substrates After 30 and 45 minutes, only some rounded 

cell fragments were found Notably, After 2 and 4 hours, the fibroblasts seemed to have spread like the 

cells that were cultured without the presence of cytochalasin, but with a marked delay 

Confocal laser scanning microscopy 
Figure 8a-c are representative micrographs of the actin staining of cells cultured on the vanous surfaces 

We observed that up to 2 hours of incubation actin staining remained rather diffuse This indicated the 

absence of well-formed cellular actin filaments On the other hand, apparent differences were seen after 

4 hours, between smooth and all textured substrates Cellular actin was better developed in cells that 

were cultured on microgrooved surfaces Actin fibers were aligned to the surfaces grooves Cells in the 

cultures supplemented with cytochalasin-B showed no distinct cellular actin skeleton, even after 4 hours 

of incubation 

• •«••10 — A 5 — G— 2 — H- -1 X anooth 

χ — 10 + cyto 5 + cyto — 0 ^ 2 + cyto 1 1 + cyto smooth • cyto 

15 30 45 60 120 240 

time (minutes) 

Figure 5 Surface area covered by the cells Note that from 45 minutes, the size of the areas start to 
increase No differences in cell area could be determined between smooth surfaces, and the various 
textures Cells incubated in the presence of cytochalasin-B show a delay in spreading 
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Figure 6a: Scanning electron micrographs of cells on substrates with 2 pm 
wide grooves. Extensive membrane extensions in all directions are formed 
after 30 minutes. Original magnifications 5500x, 2500x, 3500x, 2300x, 
3000x, and 900x. 
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Figure 6b: Scanning electron micrographs of cells on substrates with 5 pm 
wide grooves. Original magnifications 5500x, 5500x, 3500x, 2300x, 1700, 
and 850x. 
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Figure 7a: Scanning electron micrographs of cells on substrates with 2 pm 
wide grooves, in the presence of cytochalasin-B. After 2 and 4 hours the 
fibroblasts have spread like cells that were cultured without the presence of 
cytochalasins. Original magnifications 3300x, 3000x, 4300x, 3500x, and 
3500X. 
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I 

Figure 7b: Scanning electron micrographs of cells on substrates with 5 pm 
wide grooves, in the presence of cytochalasin-B. Original magnifications 
5500X, 2200X, 5000x, 3000x, and 2300x. 
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Figure 8a: Confocal laser scanning micrograph of actin-stalned cells on a 
smooth substrate. In the early phases of cell spreading actin staining remains 
diffuse. Original magnification 20x. 
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Figure 8b: Confocal laser scanning micrograph of actin-stained cells on a 
substrate, equipped with 2 pm wide grooves. Note that differences occur 
after 4 hour with smooth substrates, where cellular actin is less developed. 
Original magnification 20x. 
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Figure 8c: Confocal laser scanning micrograph of actin-stained cells on a 
substrate, equipped with 5 pm wide grooves. Original magnification 20x. 
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III I II 

2h + 4h + 
cyto cyto 

actin type/ incubation time 

Figure 9: Actin typing of the cells from the CLSM micrographs After 15 minutes of culturmg, all cells 
exhibit type I. Later also type II and III are observed. No differences between the various textured 
substrates were found Smooth surfaces cells are the first to exhibit types II and III (after 45 minutes), 
but after 4 hours still exhibit little type III actm Cells incubated in the presence of cytochalasm-B only 
exhibit type I 

Actin typing (Figure 9) revealed that after 15 minutes of culturmg, all cells exhibited type I actin 
organization. After longer culturmg periods, also type II and III were observed. No differences were 
present among the various textured substrates, but significant differences were found between textured 
and smooth control surfaces. On smooth surfaces, cells were the first to exhibit type II (after 30 
minutes) and type III (after 45 minutes). Strikingly, cells on smooth surfaces after 4 hours still exhibited 
mostly type II and very little type III. On the other hand, after 4 hours of incubation, on the textured 
surfaces type III expression was more pronounced. Finally, all cells cultured in the presence of 
cytochalasin-B exhibited type I staining only. 

DISCUSSION AND CONCLUSIONS 

Our study confirmed again that surface microgrooves influence in vitro fibroblast behaviour. The 
numerical cell attachment evaluation revealed that no differences existed between the various textures. 
In contrast, significant differences were observed with smooth control surfaces. At the early time points 
a decrease is seen, but at later phases cell attachment drastically increased to levels like, or even 
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exceeding that of smooth surfaces A reasonable explanation for this observation is that the formation 

of organized cell-substrate contact junctions is hampered on textured surfaces As a consequence no 

stable cell adhesion can be ensured resulting in initially reduced attachment percentages 

The importance and effect of the formation of cell adhesions is confirmed by the morphology 

and orientation assays SEM images showed that after 30 minutes the cells formed abundant membrane 

extensions Probably, the cell is then in the process of exploring and probing the surface Of course, 

these extensions are made in all directions, since in its natural environment a cell is totally surrounded 

with neighbouring cells and ECM material When the presence of suitable attachment sites is 

confirmed, contacts are established with the ECM proteins as deposited on the substrate surface 

Thereafter, the cells exert forces on these adhesive junctions and start to spread In case of a 

microgrooved substrate surface, cellular spreading is associated with a rapid orientation parallel to the 

surface grooves In view of this, we have to notice that the driving force which finally results in cellular 

alignment is clearly determined by the groove dimensions As we observed, surfaces provided with the 

narrowest grooves induced faster orientation 

To determine the effect of the actin cytoskeleton in the cell alignment process, we typed the 

actin organization as occurred within the cells during time CLSM showed that up to 2 hours no distinct 

(type III) cellular actin filaments were present Even after 4 hours, the amount of type III filaments was 

still limited (about 60%) This is remarkable, since in the light microscopical assays, cells were already 

found to be aligned at these time points The importance of this finding is further emphasized in the 

comparative expenments where cytochalasin-B was added to the cultures Cytochalasin-B is an active 

inhibitor of actin polymerization It is especially effective in the actin microspikes in the lamellopodia 
15 Surprisingly, cells still aligned to the 1 and 2 μιτι grooves after 4 hours of incubation Apparently, 

as confirmed by the attachment, SEM and CLSM results, the chemical is only able to postpone cell 

attachment and subsequent spreading Except this delay, no other obvious effect on cell shape could 

be determined These findings corroborate with studies of Oakley et al '6, who also reported that the 

addition of cytochalasin results in a delay of cell spreading 

Finally, besides the morphological appearance, we found that cellular alignment had no effect 

on the totally occupied cell area This indicates that oriented cells have gained in length associated with 

a proportional decrease in width This finding is in contrast with earlier studies by Chehroudi et al v 

and den Braber et al '3, in which cellular alignment could only be related to a decrease in cell width 

complemented by a small increase in cell height We suppose that this difference is due to the used cell 

type, and substrate material Chehroudi used epithelial cells, which are much smaller in size Den 

Braber used silicone rubber substrates on which cell spreading is lower than on more hydrophilic 

polystyrene substrates 25 

In conclusion, the results suggests that 1) a well formed cellular actin cytoskeleton is no 

prerequisite for the occurrence of contact guidance, and 2) orientation of cytoskeletal actin filaments 

in the cell body is more the result than the ongin of cell alignment This hypothesis is supported by our 

observation that even if type III actin filaments in the cell body are absent, cellular alignment still 

occurs Consequently, we assume that a clear distinct has to be made between the cellular actin 

skeleton, and actin microspikes that are present in the cells lamellopodia The alignment of cells on 

microgrooves is not dependent on the properties or the dynamics of a formed actin cellular 
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cytoskeleton. The delay of spreading by administration of cytochalasin-B confirms that the breakdown 
and formation of fibrous components in the filopodium appear to be a much bigger determinant in the 
establishment of contact guidance. 

Usually, cell movement starts with a cell making thin extensions in all directions. These 
lamellopodia contain short filamentous pieces of actin, so-called microspikes. Here, actin monomers 
attach so that the growing end of the spikes abuts the front edge of the lamellopodium. If a microspikes 
meets a precursor contact, i.e. a non-specific approach of the cell membrane to the substrate surface, 
this contact is stabilized 26·27. We suggest that at this stage contact guidance is already induced. The 
forces of attraction and rejection between surface-adsorbed ECM molecules and probing membrane 
extensions are the determining factor 28"30. Subsequently, vinculin and other proteins accumulate. 
Eventually, the adhesions will mature into a complete focal adhesion (a cluster of integrins). This focal 
adhesion induces the further formation of the actin stress fiber into the cytoplasm. 

Our theory also corroborates the results found in our previous in vitro studies '4'25. For instance, 
we observed that the depth of the applied grooves is an important factor in determining the rate of 
cellular alignment '4. The direction of the forces exerted onto the ECM is related to the direction of the 
grooves. Besides, the deeper the grooves get, the more the cells will be unable to attach to the bottom 
of the groove. As a consequence, with increasing groove depth cell spreading will predominantly occur 
along the ridges on the surface. This phenomenon is also independent of the design of the surface 
texture. It will occur on all surfaces where discontinuities can be detected by cells. This confirms why 
there is no need for the presence of sharp surface texture, as we observed before ". Finally, the theory 
explains why the substrate material itself has also influence on contact guidance. In general, the 
physico-chemical properties of a substrate material determine the quantity, strength, and conformation 
of ECM absorption. As a consequence, via this pathway the amount of force that cells can exert onto 
these proteins, and thus their spreading behaviour is influenced 25. 
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INTRODUCTION 

Currently, there is an increasing need for biomaterials, which not only allow and support cellular 
attachment, spreading and growth, but which also improve cellular function. For example, in the 
treatment of periodontitis or periimplanlitis, bony defects of the alveolar ridge have to be reconstructed. 
Besides grafting procedures, guided tissue regeneration (GTR) has been suggested as treatment 
technique1,2. The principle of GTR is sealing offa bone defect around the tooth root or implant surface 
by means of a synthetic membrane to improve healing. The membrane acts as a mechanical barrier. It 
excludes nondesirable cells from the wound area and creates a secluded space into which cells from the 
surrounding bone can migrate. The membranes are not involved in a real regeneration of the required 
tissue, e.g. by guidance or migratory stimulation of the involved cells. Already a lot of different 
materials have been used in GTR. Despite some favorable reports, GTR is still frequently associated 
with significant clinical problems3·4·5, like preliminary exposure of the membrane to the oral cavity, 
and deformation or collapse of the membrane. Consequently, the outcome of this therapy is still 
unpredictable6,7·8. 

In view of the above mentioned problems with GTR materials, we have to notice that the 
biological properties of an implant material are determined by bulk as well as surface properties. 
Important bulk properties are chemical composition and mechanical characteristics. Surface properties 
considered of interest are: surface free energy and surface geometry. In addition, these various material 
parameters have different effects. While surface free energy specifically influences cell adhesion, 
chemistry and surface geometrical properties are of importance for cell spreading and growth. For 
extensive reviews about the relationship implant material and biological interactions reference can be 
made to the excellent reviews by Schakenraad ', von Recum 10, Harris ", and Shinghvi et al '2. Briefly, 
four different components are supposed to be involved in the orientation, growth and differentiation of 
cells to substrate surfaces, i.e. (1) serum components adsorbed to the substratum, (2) extracellular 
matrix components secreted by the cell, (3) cell adhesion molecules, like integrins, and (4) 
cytoskeleton. Through the use of in vitro experiments, considerable progress has been made in the 
understanding of cell-substratum interactions. 

Recognizing the importance of material surface properties to manipulate cellular growth and 
orientation in relation to the problem associated with GTR, the purpose of the current in vitro study is 
to evaluate the potential of microtextured surfaces for periimplant and periodontal bone regeneration. 
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MATERIALS AND METHODS 

The production of substrates 
Using photo-lithographic techniques, microgrooved patterns were made in silicon wafers (Twente 

Microproducts, Enschede, the Netherlands). Three types of wafers with different groove depths i.e. 0.5, 

1.0 and 1.5 μιη were produced. Each wafer surface was divided into 4 quadrants with a ridge and 

groove width of 1, 2, 5 and 10 μιη. The wafers were used as templates to make polymeric surface 

replicas. For this purpose, the templates were covered by polystyrene (PS) or polylactic acid (PLA) 

casting solution. The PS solution was made by dissolving PS bits from a culture dish in chloroform 

(25g / 150ml). The PLA solution was made by dissolving PLA (Purasorb, poly-1-lactide, Purac 

Biochem B. V., Gorinchem, The Netherlands) in chloroform (5g / 150ml). After evaporation of the 

chloroform, the PS and PLA surface replicas were removed from the templates. The dimensions of the 

obtained surfaces are summarized in table 1. 

Table 1 : Dimensions of the micro features on the substrates surfaces (Gd = groove depth, G-R w = groove and 

ridge width, PLA = poly-l-lactic acid, PS = polystyrene) 

PLA or PS 0.5-1 

PLA or PS 0.5-2 

PLA or PS 0.5-5 

PLA or PS 0.5-10 

PLA or PS 1.0-1 

PLA or PS 1.0-2 

PLA or PS 1.0-5 

PLA or PS 1.0-10 

PLA or PS 1.5-1 

PLA or PS 1.5-2 

PLA or PS 1.5-5 

PLA or PS 1.5-10 

PLA or PS 
smooth 

Gd 
(Mm) 

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

1.0 

1.0 

1.5 

1.5 

1.5 

1.5 

0.0 

G-Rw 
(Mm) 

1.0 

2.0 

5.0 

10.0 

1.0 

2.0 

5.0 

10.0 

1.0 

2.0 

5.0 

10.0 

0.0 

Before use, out of the center of each microtextured sheet a 20mm diameter round disc was cut, which 

contained all 4 different groove / ridge dimensions as present on each wafer (Figure 1). Besides, four 
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additional 15mm round discs were cut out of each microtextured sheet. All experimental substrates 

were washed manually in 80% ethanol. Then, they were air-dried and bonded to a polystyrene ring 

(inside diameter 20mm or 15mm) with a small amount of the casting solution. Finally, all substrates 

were treated by a radiofrequency glow-discharge (RFGD) treatment (PDC-3XG, Harrick; Argon, 

0.1 Torr, 5 min). For comparative reasons, smooth control substrates were manufactured in the same 

way using non-textured silicon wafer as moulding surface. The surface characterization of the produced 

materials was described before by our group '3''4. 

Cell culture 
For biological evaluation of the test materials a rat bone marrow cell culture technique was used as 

described by Maniatopoulos'5. Briefly, bone marrow cells were obtained from femora of male Wistar 

rats, 40 to 43 days of age (100-130 g). Epiphyses were cut off, and both diaphyses were flushed out, 

using alpha-MEM (Gibco, Life Technologies BV, Breda The Netherlands) supplemented with 10% 

fetal calf serum (FCS, heat induced at 56 CC for 35 min., Gibco), 50 mg/ml freshly prepared ascorbic 

acid (Sigma, Chemical Co., St. Louis, MO., USA), lOmM Nabeta-glycerophosphate (Sigma), ΙΟ"8 M 

dexamethason (Sigma) and antibiotic (gentamicin). Per femur 15 ml of this medium was used. Cells 

were suspended and cultured in three 80 cm2 tissue culture flasks (Nunc Products by Gibco). Finally, 

cultures were incubated in a humidified atmosphere of 95% air, 5% C0 2 at 37 0C. 

After 8 days of primary culture, cells were detached using trypsin/ EDTA (0.25% w/v trypsin/ 

0.02% EDTA; pH 7.2). Subsequently, cells were resuspended in the supplemented culture medium as 

described above, and used for the experiments. 

15 mm 

Figure 1 : schematic drawing of the manufacturing of the substrates. From 
a textured mold, replicas were made in polystyrene or poly-l-lactic acid. Onto 
these replicas rings were glued. In this way tissue culture dishes were 
produced, one with a 20mm diameter containing 4 different textures, and four 
with a 15mm diameter each containing one texture. 
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Scanning electron microscopy 
Cell suspension (approximately 15 χ IO3 cells / substrate) was seeded to smooth and each type of 

grooved 20mm disc The cultures were incubated for 8 or 16 days to evaluate the influence of the 

substrate surface composition and geometry on RBM cell morphology and extracellular matrix (ECM) 

synthesis using a scanning electron microscope (SEM) At the end of both incubation times, the non-

attached cells on the various substrates were removed by rinsing twice with 0 IM sodium-cacodylate 

buffer (pH 7 4,37 °C) Subsequently, fixation was earned out for 5 minutes at room temperature in 2% 

glutaraldehyde in the same buffer Cells were nnsed in cacodylate buffered solution, dehydrated in a 

senes of ethanol, dned by tetramethylsilane (Merck, Germany) and sputter-coated with gold Finally, 

they were observed in a JEOL 6310 scanning electron microscope at an accelerating voltage of 15kV 

Three runs of expenments were earned out, which included all different samples in threefold 

To observe the contact side of the cells and ECM with the substrate, the multilayer of cells of 

the 16 days specimens was scratched and peeled off using a needle and forceps This layer was turned 

upside down, sputter coated with gold and examined with SEM Also the original specimens were 

examined again, to observe if any residual layer was left 

Tetracycline assay 

In this expenment again approximately 15 χ IO3 RBM cells were seeded on smooth and all different 

grooved 20mm substrates A fluorescent technique, as desenbed by Todescan el al (1996), was used 

to quantify the calcified ECM produced by the RBM cells Where bone mineral is being formed, 

tetracycline antibiotics bind to hydroxyapatite, through chelating with calcium Therefore, starting from 

incubation day 3 tetracycline (9 μg/ml) replaced the early mentioned antibiotics (Gentamicin) m the 

culture medium After 16 days of incubation, the medium was removed, the cultures were nnsed twice 

in 70% ethanol, and finally dehydrated m 100% ethanol at 4 0C for 6 hours Subsequently, the cultures 

were allowed to dry in a dark room After drying, a Biorad MRC 1000 confocal laser scanning 

microscope (CLSM) was used to visualize fluorescence This CLSM was equipped with a krypton / 

argon mixed gas laser (Ion Laser Technology, Salt Lake City, UT, USA), which was mounted on a 

Nikon diaphot microscope with non-cover glass objective lens (Nikon, X 40) The specimens were 

illuminated at an excitation wavelength of 488 nm For each groove depth and width, 10 randomly 

chosen areas were imaged The 10 observed areas covered in total 7 15mm2 of the substrate 

The resulting digital images were stored on hard disc Digital image analysis of the images was 

performed using Scion image software (v beta-2, based on NIH Image, Scion corp, Fredench, 

Maryland, USA) Mineralization was quantified by calculating the area of the excited pixels, and 

expressed as a percentage of the total surface area Three runs of expenments were earned out In each 

run, all substrates were measured in tenfold 

Measurement of alkaline phosphatase activity 
Approximately 10 χ 103 RBM cells were seeded on smooth and all types of grooved 15mm substrates 

The cultures were incubated for 8 and 16 days After removal of the culture medium, the cell layers 

were rinsed in PBS Then, deminerahzed H20 (milliQ) was added to each substrate and specimens were 

put on ice Finally, the cells were harvested with a rubber policeman and the cell suspension was 
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transferred in a 10 ml tube. The cells were sonicated for 10 minutes, and centrifiiged at 2000 rpm for 

10 minutes. Subsequently, 100 μΐ aliquot of this cell lysate was added to 100 μΐ working reagent in a 

96 well culture plate and incubated for 1 hour at 37 °C. The working reagent consisted of 0.5M 2S-

amino-2methyl-l-propenyl (Sigma, St. Louis, MO), 5mM p-nitrophenol phosphate (Sigma), and 5mM 

magnesium chloride (1:1:1). The reaction was stopped using ΙΟΟμπι of 0.3M sodium hydroxide, and 

the finally absorbance read at 405nm using a microplate reader (Biorad 450, USA). 

To determine the Alkaline Phosphatase (ALP) specific activity, protein production from the 

same lysale was determined using the Pierce BCA protein assay (Pierce, Rockford, IL). A 150μ1 aliquot 

of the cell lysate was added to 150μΙ of BCA working reagent in 96 well culture plate and incubated 

for 2 hours at 37 °C. Absorbance was measured at 562 run using the microplate reader. The ALP 

specific activity was determined using the following formula: 

AT α Λ *.- ^ /· ii ι \ ALP cone, (umol/ml) 1 ALP specific activity (μ»ιο//μ /̂8β€) = — L χ 
protein cone, (\iglmt) ALP incubation time (sec) 

Two runs of experiments were carried out. In each run, two specimens of each sample type were used. 

RESULTS 

Scanning electron microscopical observation 
Scanning electron microscopy showed that all substrates were covered with osteoblast-like cells after 

8 days of incubation. The cells had a very flattened appearance on both PS and PLA substrates. Cells 

cultured on the grooved substrates were aligned parallel to the surface grooves. In contrast, cells on the 

smooth surfaces grew in an at random orientation. Cell protrusions on all 1 and 2μιτι grooved substrates 

attached predominantly to the surface ridge. In contrast, on the 5 and ΙΟμπι substrates cell protrusions 

attached also to the bottom of the grooves (Figure 2-a, b). Further, cells cultured on the 1 and 2 μιη 

grooved surfaces appeared to span the surface grooves independent on the groove depth. The cells on 

the 5 and 1 Ομιτι surfaces protruded into the grooves. Frequently, the cells on these surfaces did contact 

with the bottom of the grooves. 
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Figure 2: Scanning electron micrographs of RBM cells on grooved surfaces after 8 days of incubation, a) a 
PLA 1.5-1 substrate; Note that cell extensions attach to the groove ridge and b) a PS 1.5-10 substrate; Note 
that cell extensions attach to both ridge and bottom. 
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Figure 3: Scanning electron micrographs showing 
the formation of ECM on PS1.0-2 surface after 16 
days of incubation. Note that layers of mineralized 
ECM can be observed onto the cells. 
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Figure 4: Scanning electron micrographs of microtextured substrates, after scratching. The multilayer of 
cells is removed, but still substrates are covered with a residual layer of ECM. a) a PS1.0-1 substrate. Note 
that calcified globuli are covering the entire substrate, and b) a PLA1.5-1 substrate. Here, calcified globuli 
are preferentially attached to the surface ridge. 

Figure 5: Scanning electron micrograph of RBM cells 
on PLAO.5-5 surface after 16 days of incubation. Note 
that in general the deposited collagen bundles were 
aligned parallel to the surface pattern. 
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Figure 6: Scanning electron micrographs of the scratched-off cellular/ ECM layers. The side that 
originally contacted the substrate is shown. A) a PLA 1.0-2 substrate, and b) a PS 0.5-2 substrate. 

After 16 days of incubation, a layer of mineralized globuli was seen on all substrates. On the grooved 

surfaces, the globular accretions were aligned parallel to the surface grooves (Figure 3). Further, on the 

0.5 and 1.0 μηι depth PS substrates calcified globuli were also formed on the bottom of the grooves. 

A different situation was observed on the 1.5μιη deep PS and all types of PLA substrates (Figure 4-a, 

b). On these surfaces mineralized globuli were mainly attached to the ridges. Besides this mineralized 

layer, a rich fibrous collagen matrix was observed. The deposited collagen bundles were oriented 

parallel to the surface grooves irrespective of the groove dimensions (Figure 5). 

Figure 6 shows SEM images of mineralized ECM in contact with the substrate side. It was 

observed that the ECM on 1.0 and 1.5 μηι deep PLA substrates was oriented more to the groove 

direction, than on 0.5μπι deep PLA, and all types of PS substrates. 

Tetracycline assay 
The tetracycline labeling experiment confirmed the aligned direction of the produced mineralized layers 

on the grooved surfaces. Figure 7 shows the image analysis results. Statistical evaluation was performed 

by ANOVA testing, to reveal if significant differences existed between similar groups. If so, post-

ANOVA Tukey testing was performed. It was found that on grooved substrates more fluorescent 

labeling was found, than the smooth control substrates. This was true for both the PS and PLA material. 

Furthermore, smooth PLA exhibited more labeling than smooth PS. Between the various grooved PS 

substrates no differences could be found. If the grooved PS substrates were compared with the grooved 

PLA substrates, it was seen that only on PLA with 1.0 μηι deep grooves significantly more labeling was 

found. Between the grooved PLA substrates some differences were found, but only among the 1.0 μιτι 

deep grooves. Here, it was found that most mineralized ECM appeared to be deposited on the substrates 

with a groove width of 1 or 2 μηι. 
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Figure 7: Diagram showing the results of the tetracycline assay, indicating the rate of 
ECM formation. The mineralized surface area is expressed as a percentage of the total 
surface area The bars indicate the mean, intervals represent the standard deviation. 

Measurement of alkaline phosphatase activity 
Figure 8 and 9 show the results of the alkaline phosphatase activity (ALP) assay. Again statistical 

evaluation was performed using an ANOVA test, to reveal if significant differences existed between 

similar data groups. Because not all data groups contained the same number of measurements, post-

ANOVA testing was performed using a Student-Newman-Keuls test in stead of a Tukey test. 

In Figure 8, results are presented for pooled data with as varying parameter groove depth. In 

general, the ALP activity of RBM cells on PLA and PS surfaces after 16 days of incubation was higher, 

compared to that after 8 days. After 8 days, it was observed that ALP activity on 0.5 and 1.5 μηι deep 

textures in PS were higher compared to the smooth PS surfaces. Between the various PLA substrates 

no differences were found. When PS and PLA were compared, also no differences were found. After 

16 days, it was observed that ALP activity on 1.0 and 1.5 μιη deep textures in PS was higher, compared 

to the activity found on smooth surfaces. Also between the various PLA substrates some differences 

were found; here 0.5 and 1.5 μιη deep textures showed more ALP activity than the smooth control 

substrates. When PS and PLA were compared, all groups were different. Cells cultured on PLA showed 

more ALP activity, except for 1.0 μιη deep textures were remarkably activity on PS was higher. 
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Figure 8: Diagram showing results of the alkaline phosphatase specific 
activity assay Results are pooled for each groove depth The bars indicate 
the mean, the intervals represent the standard deviation 
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Figure 9: Diagram showing the results of the alkaline phosphatase specific 
activity assay Results are pooled for each groove width The bars indicate 
the mean, the intervals represent the standard deviation 
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In Figure 9, results are presented for pooled data with as varying parameter the groove width 

Again, the ALP activity of RBM cells on PLA and PS surfaces after 16 days of incubation proved to 

be higher than on 8 days After 8 days, it was observed that ALP activity on all grooved substrates was 

higher, compared to that on the smooth surfaces This was found for both the PS as the PLA material 

When PS and PLA were compared, no differences could be found After 16 days, again it was observed 

that ALP activity on grooved substrates was higher, compared to that found on the smooth surfaces 

And also again, this was found for both the PS as the PLA material When PS and PLA were compared, 

only few differences were found On 1 μπι wide and on smooth PLA substrates, it was observed that 

cells showed more ALP activity, compared to their PS counterparts 

DISCUSSION 

The biocompatibihty of an implant-matenal is determined by vanous factors, including its surface 

topography In this study we evaluated growth behaviour of osteoblast-hke rat bone marrow cells on 

microgrooved polystyrene and poly-1-lactic acid substrates Polystyrene was chosen because it is the 

most common material used in cell and tissue cultunng Poly-L-lactic acid was selected because it is 

biodegradable polymer, often used in implanted matenals involved in bone tissue healing Both types 

of substrates were made by solvent-casting Solvent casting of PS has been described earlier by our 

group14 to be an accurate and easy way to produce large numbers of microgrooved substrata of high 

quality The same was observed in this study for the production of the PLA substrates 

Scanning electron microscopy was performed to visualize the morphology of the cells The 

fixation of the cells seems accurate, since delicate structures like the micropodiae of the cells are very 

well preserved The RBM cells have a flattened appearance and, after eight days of incubation, are 

clearly onented in the direction of the surface grooves on both matenals Independent on the groove 

depth, the cell extensions attached always to the surface ndge on the 1 and 2 μιη wide patterns On the 

other hand, on the 5 and 10 μιτι wide substrates they attached both to ndges and the bottom of the 

grooves The observed morphology and alignment behaviour of the RBM cells is in agreement with 

previous studies of Walboomers et all4 in our group, in which similar texture dimensions were used 

Although the rate of onentation was not measured in this study, this also seems to be comparable to 

earlier studies on fibroblasts in our group14 '6 20 

After 16 days of cultunng the cells have formed a nearly confluent monolayer of cells, covenng 

the entire substratum Qualitatively in SEM we could not observe any differences in the formation of 

ECM between smooth or grooved surfaces, or between the two substrate matenals Nevertheless, we 

noticed that the globular accretions as well as the formed collagen bundles were aligned to the surface 

grooves The forming of mineralized globuli has been descnbed extensively in literature 2 ' 2 4 Our 

results closely resemble a recent report of osteoblast being cultured on nano- and microtextures by the 

groups of Brunette25 26, Chesmel27, Boyan 28 3I, and Curtis32 " Apparently, microtexture is not only 

capable of influencing the shape of the cells, but also in determining the deposition of extracellular 

malnx 

A tetracycline assay was performed to quantify the formation of calcified extracellular matnx34 

We observed that more calcification occurred on the smooth PLA substrates, compared to PS When 
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PLA substrates were compared, especially the 1 μιη deep and 1 or 2 μιτι wide grooves exhibited high 

calcification levels Evidently, microtextured surfaces are capable of increasing calcification Our 

results agree with in vivo reports by Chehroudi35, who observed increased mineralization around 

micromachined surfaces, implanted in rats These bonelike foci were also onented with the applied 

microtexture However, we think that quantification of fluorescent images remains a rather difficult 

process Therefore, future research should also address to more accurate biochemical measurements on 

ECM formation and calcification 

An alkaline phosphatase assay was also performed Alkaline phosphatase activity is a parameter 

of bone cell differentiation Our results showed that after 16 days the alkaline phosphatase activity was 

greatly increased, compared to the situation after 8 days This seems logical After a longer incubation 

period the culture is gradually reaching confluency More cells are differentiated and producing 

extracellular matrix, hence the higher alkaline phosphatase activity After 16 days of culture, it is 

observed that the cells on smooth surfaces show less alkaline phosphatase activity than cells on 

microgrooved substrates In general, alkaline phosphatase activity seems to be increased on PLA 

surfaces This is in agreement with reports in literature Generally, around bone-bonding implant 

materials the alkaline phosphatase activity is increased28 Investigations on the effect of PLA wire on 

the proliferation and differentiation of primary bone cells in vitro showed also an increase in the 

alkaline phosphatase activity of osteoblasts36 Further, the same group showed that bone formation took 

place around poly-L-lactic acid wires, in an in vivo model37 Our results confirm that the application 

of PLA influences the differential stage of the cells Apparently, the expression of the osteoblastic 

phenotype is upregulated by the PLA, resulting in an increased alkaline phosphatase activity 

Overall, the osteoblast-hke RBM cells did respond better to PLA than to PS Although at the 

moment no explicit reasons for this phenomenon can be given, vanous explanations can be suggested 

First, we know that PLA is a bio-degradable matenal Released degradation products of the PLA, a 

lower pH at the surface, and an increased surface roughness, can influence the final behaviour of cells 

on the matenal Perhaps that in future expenments, atomic force microscopy (AFM) appears to be a 

suitable technique to visualize the degradation of the surface of PLA matenals in time Second, 

mineralized ECM formation on culture surfaces is the result of an adsorbtion/ precipitation (protein and 

apatite) process, which can be influenced by the increased roughness after degradation Previous studies 

already showed that changes in surface morphological structure can act as nucleation point for matnx 

formation and nodule production 3 8 ' , 0 Third, specific serum proteins, that act as initiators of 

mineralization, might be adsorbed differently on PS and PLA matenal We cannot exclude that 

differences in surface chemistry between the substrates not only cause a different numencal and 

preferential adsorption of proteins, but also influence the conformational state of the adsorbed proteins 

Hasegawa41 demonstrated that the conformational state of proteins can influence cell activity and 

consequently ECM formation More research has to be performed to prove any of the above mentioned 

theones 

In the treatment of penodontitis or implantitis, the alveolar bone often needs to be regenerated 

One of the treatment techniques involves guided tissue regeneration (GTR) The hereby used 

membranes are often made of PLA, because of the biocompatible, low cytotoxic, and biodegradable 

properties 6 7 Our results show, that application of microtexture could possibly increase the bone 
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regeneration around such devices. Microtextured surfaces are able of influencing the deposition of 

mineralized matrix, and the stage of differentiation of osteoblast like cells. Despite these promising in 

vitro cell culture studies, the final efficacy of surface microtextured GTR membranes has to be proven 

in animal experiments. 
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INTRODUCTION 

Microtexlunng of a substrate-surface has been shown to influence the behaviour of cells growing on 

such substrates in vitro ' 2 Cells, especially fibroblasts, recognize the micrometer-sized dimensions of 

surface configurations They react accordingly, probably by reshaping the actin filaments in their 

surface-probing structures like filopodia3 5 The result is a cell which is lying in the same direction as 

the surface grooves This phenomenon is known as 'contact guidance'6 

Because of the evident influence of microgrooves on fibroblasts in culture, it has been suggested 

in literature that they could also affect capsule formation after implantation in soft tissue Microtexture 

might influence the number of inflammatory cells, capsule thickness, capsule organization, capsule 

quality and the number of blood vessels present around the implant78 

Previous in vivo studies on microtextured implants are limited in number The group of 

Cheroudi and Brunette8 '3, when studying percutaneous implants, found that micro-machined implants 

were able to impede epithelial downgrowth around the implant This could greatly improve implant 

performance It was found that the reactions of fibroblasts to microtexture differed greatly with the size 

of the applied texture Fibroblasts onent along 3 and 10 μιτι deep grooves, whereas they seem to insert 

obliquely into 22 μιτι deep grooves In this group also a better osseo-integration l 4 and induction of 

mineralized tissue l 5 caused by microlextures was described Von Recum and coworkers studied the 

implantation of porous implants surfaces in dogs 16 Here it was found that topography of 1 to 2 μιη 

allowed direct fibroblast attachment, which diminished the presence of inflammatory cells In our group 
17 m vivo experiments were done with silicone microgrooved implants in rabbits From this study, it was 

concluded that the applied texture did not affect the thickness of fibrous capsule around the implant 

On the other hand, both the presence of immunological cells as well as the number of blood vessels 

around implants were markedly influenced by the grooves A similar experiment, was done by Picha 

and Drake l8 However, they used silicone implants provided with micropillars much larger than used 

by Den Braber '7 (100 μιτι diameter, 500 μπτ high) They found that this surface texture reduced fibrosis 

and improved blood vessel proximity around the implants 

A disadvantage of the use of silicone in implant studies is, that this material limits the 

histological evaluation, since it cannot be easily sectioned for light or transmission electron microscopy 

We therefore looked for a way to produce an implant, not subjected to such disadvantages The 

production of silicon wafers provided with microgrooves allows also the possibility of solvent casting 

other polymers than silicone, like polystyrene (PS) " Implants made of this material can be subjected 

to different kinds of histological techniques, to obtain information about the effect of surface 

microtexture on the tissue reaction 

We hypothesize that an optimal surface topography exists, that can be recognized by the cells, 

and minimizes tissue reaction in vivo The objective of this study therefore is to quantify the influence 

of microgrooves on capsule formation, around subcutaneous PS implants, in an animal expenment 
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MATERIALS AND METHODS 

Substrata 

The PS substrates were solvent-cast " on molds from a solution of 25 g tissue culture PS (Greiner, 

Germany) in 150 ml chloroform (LabScan, UK). As molds we used a smooth glass plate, or a silicon 

wafer provided with parallel microgrooves (MESA institute, University of Twente, Enschede, the 

Netherlands). The groove-depth always was 1.0 μπι; the ridge- and groove-width was 1.0, 2.0, 5.0, or 

10.0 μηι (Table 1). 

Table 1 : Types of implants placed subcutaneously, with the sizes of grooves (pm) 

type 

0 

1 

2 

5 

10 

groove 

width 

0 

1 

2 

5 

10 

ridge 

with 

0 

1 

2 

5 

10 

groove 

depth 

0 

1 

1 

1 

1 

The PS replicas were cut to appropriate size: round discs with a diameter of 18 mm. These discs were 

glued back to back so that an implant was produced, textured at both sides. The total implant was 

approximately 0.2 mm thick. For the glueing, a small drop of Sycomet 8400 (Henkel, the Netherlands), 

a medical-grade cyanoacrylate glue, was used. At both sides of the implant the groove orientation was 

kept similar. The glue was allowed to dry. Then, the produced implants were washed by ultrasonica! 

rinse (10 min.) in milliQ water, and kept in 70% EtOH for at least two days. Just before use, they were 

dried to air in a sterile environment and given a radiofrequency glow discharge (RFGD) treatment20"22. 

Implant characterization 

To observe the quality of the pattern-reproduction on the implant surface implants were observed by 

scanning electron microscopy (SEM). For this purpose specimens were washed in 100% EtOH, dried 

to air, and coated with gold. Subsequently they were examined with a JEOL 6310 SEM. 

To test any cytotoxic effect23 of the implants, discs were positioned on the bottom of a 6 wells 

plate. Rat dermal fibroblasts (RDF) was obtained from the ventral skin of male Wistar rats as described 

before 3. A suspension of these RDF was added to the wells, at 5*105 cells/ 3 ml. Cells were cultured 

for 24 hours in MEM-a medium, containing Earle's salts, L-glutamine, 15% FCS, and gentamicin (50 

μg/ml). Subsequently, the possible formation of an inhibition zone around the discs was observed by 

phase contrast microscopy. 
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Animal 
In this study one healthy mature female Saanen goat was used The animal was housed in a stable The 

vanous samples were inserted subcutaneously into the flanks of the goat for either 1, 4 or 12 weeks 

For each penod, three specimens with identical surface texture were used A total of 45 implants was 

placed 

Surgery was performed under general anaesthesia induced by intravenous pentobarbital (25 

mgkg ') and atropine (0 5 mg) After oro-tracheal intubation, anaesthesia was maintained by ethrane 

(2-3%) with a constant volume ventilator 

For the insertion of the discs, the dorso-lateral skin was shaved, washed and disinfected with 

iodine Implantation of the 1,4 and 12 week implants was performed in three separate surgical sessions 

In each session fifteen longitudinal incisions of about 3 cm were made through the full thickness of the 

skin Subsequently, lateral to the incisions subcutaneous pockets were created by blunt dissection with 

scissors One implant was inserted in each pocket Finally the wounds were carefully closed The 

position of the implants is shown in Figure 1 To reduce the postoperative infection nsk, prophylactic 

antibiotic Albipen® was administered for three days, starting one hour postoperatively 

Histological evaluation techniques 
At the end of all implantation penods the goat was killed by an overdose of Nembutal® iv Then the 

implanted PS discs were removed including all surrounding tissues For histological analysis the 

capsule-covered implants were fixed in 2% glutaraldehyde in 0 1 M sodium cacodylate buffer, 

dehydrated in a senes of ethanol and embedded in LR White acrylic resin (Polysciences, Wamngton) 

Sections of about 10 μιη were cut using a modified diamond blade sawing microtome technique M 25 

These were stained with methylene blue and basic fuchsin Subsequently, the sections were examined 

with a Leica DM RBE light microscope at a magnification of 40x 

Since the groove direction is not visible when the implant is covered with tissue, all embedded 

blocks were cut in two directions, perpendicular to each other In this way large and small sections were 

produced (Figure 2) Of each direction at least three sections suitable for evaluation were made 

Histomorphometrical evaluation 
To assess the soft tissue response to the implants, histomorphometnc evaluations were performed In 

these measurements the thickness of the fibrous capsule was measured in the sections of 1, 4, and 12 

week implants Also the presence of inflammatory cells after 4 weeks, and the presence of bloodvessels 

after 4 and 12 weeks were quantified For this purpose, the microscopic images were projected with a 

total magnification of 400x on a color monitor using a CCD/RGB camera (Sony DXC15 IP) attached 

to the light microscope Subsequently, measurements were performed in 4 (small sections) or 8 (large 

sections) predetermined fields The fields were positioned at regular 2 mm intervals, in the capsule 

surrounding the implant (Figure 3) 
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10 5 2 1 0 
10 5 2 1 0 

5 2 1 0 10 5 2 1 

0 1 2 5 10 0 1 2 5 10 
0 1 2 5 10 
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4 weeks 
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Figure 1 : Schematic representation of the goat, with the positions and healing times of the 
implants On both flanks three rows of implants were placed The numbers 0, 1, 2, 5, and 10 in 
Table 1 indicate the groove- and ridge widths (0 is the smooth control surface) 

D E 
Figure 2: Embedding and sectioning 
Implants covered with tissue (A) were 
embedded in LR White resin (B) and cut in 
two directions perpendicular to each other 
(C) After sectioning, large sections (D) 
and smaller ones (E) are available for 
histologic evaluation 
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] Tissue 

] Area of evaluation 

| Implant 

Figure 3: Schematic drawing of the sections of the subcutaneous implant, 
showing the fields of evaluation used in the histomorphometric analysis. 

Figure 4: Scanning electron micrograph of the implant surface, showing 
the groovepattern. In the inset, an additional nano-roughness can be 
observed on the ridges (Bar= 25 pm). 
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Statistical analysis 
Of each implant 3 microscopical slides were examined histomorphometncally Subsequently, the 
averages and standard deviations were calculated and compared with StatMost (DataMost corporation, 
Salt Lake City, USA), using an analysis of vanance (ANOVA) and a non-parametnc Kruskall-Walhs 
test 

Transmission electron microscopy 
Embedded tissue blocks, used for the production of light microscopical sections, were further cut for 
transmission electron microscopy (TEM) First, semi-thin sections were cut of these specimens After 
determining the right position for evaluation, the embedded tissue block was trimmed to desired size 
and cut further into ultrathin sections for TEM analysis The sections were stained with uranylacetate 
and leadcitrate No osmmmtetroxide was used Finally, specimens were observed with a JEOL 1210 
transmission electron microscope 

RESULTS 

Implant characterization 
SEM evaluation of the implant surface revealed that the microgrooved pattern was reproduced perfectly 
from the molds However, at large magnifications an additional nano-roughness can be observed on the 
ndges (Figure 4) This is the result of the etching process of the grooves in the replicas the roughness 
then will appear on the ndges 

The cytotoxicity testing revealed that fibroblasts were growing around, and adhering to the 
implantable discs (Figure 5) Nowhere an inhibition zone could be observed, which indicates no toxic 
effect of the produced polystyrene, or leached cyanoacrylate glue 

Macroscopic findings 
During the post-implantation penod, the animal showed an unevoked healing without any disturbance 
of the wound healing process All removed implants were surrounded by a thin fibrous capsule There 
was no sign of an inflammatory reaction Some implants did show the presence of a haematoma 
Further, we observed that also some of the discs were bent or broken Table 2 summanzes all 
macroscopic findings It has to be emphasized that haematoma only occurred in the short implantation 
penods Bending or breaking of implants could not be correlated to a difference in implant texture, but 
was observed more frequently at the longer implantation times Broken implants were not further 
evaluated Three implants were damaged dunng recovery or subsequent embedding, and therefore not 
further analyzed (labeled not available in Table 2) 
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Figure 5: Phase-contrast micrograph of fibroblasts growing around and 
adhering to an implantable PS disc. Original magnification 20x. 

Table 2: The macroscopic quality of the implants after implantation. + =implant intact and suitable for 

evaluation; - =implant broken; H =haematoma; NA =not available. 
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Light microscopy 
Examination of the histological sections revealed a fairly uniform tissue response for all tested 

materials. At all implantation periods, the PS discs were surrounded by a fibrous capsule containing 

over 30 layers of fibroblasts. 

After one week (Figure 6a), the tissue around the implants was still at the beginning of wound 

healing. The matrix of the capsule was loose, and contained fibrocytes and many inflammatory cells 

(macrophages, granulocytes, monocytes). 

After 4 weeks (Figure 6b), the matrix of the capsule had matured, and contained fibrocytes and 

many newly formed blood vessels, recognizable by their large lumen. Inflammatory cells were also 

present in the capsule, but to much lesser extent than after 1 week of implantation. However, at the 

implant surface a multilayer of mainly inflammatory cells was present. 

After 12 weeks (Figure 6c) fibrocytes had flattened very much compared with 4 weeks, and 

immunological cells were hardly present in the capsule. We observed that the fibrous capsule was still 

separated from the implants by a single layer of mono- and multinucleated phagocytotic cells. 

Compared to 4 weeks, the observed blood vessels in general had much smaller lumen. 

Histomorphometrical evaluation 

Figure 7 shows the data of the thickness measurements of the capsule layer surrounding the implant. 

The capsule thickness after 1, 4 or 12 weeks was about 80 μιτι. No decrease in capsule thickness was 

observed in time. Also no significant differences (p>0.05) were seen in relation to the reaction towards 

the various textures. 

In Figure 8 the thickness of the inflammatory layer surrounding 4 week old implants is listed. 

This layer was relatively thin, about 10 μιη. No significant differences were present (p>0.05) between 

the smooth and various textured surfaces. The thickness of the layer of inflammatory cells, present at 

12 weeks of implantation, was not quantified since it was a single layer. 

Figure 9, finally, shows the numerical appearance of the blood vessels in the examined fields. 

In each examined field of evaluation about 2 vessels were present. Again, no significant differences 

were apparent between the numbers of vessels in the fibrous tissue capsule, surrounding either smooth 

or grooved implants. 
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Figure 6: A) The capsule around a smooth implant after 1 week contains fibrocytes and many inflammatory cells; B) Histological 
picture of the fibrous capsule around a microgrooved (1 pm deep, 5 pm wide) implant, 4 weeks after implantation. Note the newly 
formed blood vessels and the layer of mainly inflammatory cells at the implant surface; C) After 12 weeks fibrocytes have flattened 
very much compared with 4 weeks. Still the fibrous capsule is separated from the implants by a single layer of mono- and 
multinucleated phagocytotic cells (methylene blue/ basic fuchsin staining; original magnification 40x). 
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Figure 7: Thickness measurements of the fibrous capsule surrounding the various implants 
0mu1wk= smooth implant, 1 week of implantation 1mu1wk= 1 pm wide grooves, 1 week of 
implantation, etc 
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F i g u r e 8 : Thickness measurements of the layer of inflammatory cells, surrounding the 

implant after 4 weeks of implantation 
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Figure 9: Representation of the number of blood vessels, present in the fibrous 
capsule, surrounding the subcutaneous implants 

Transmission electron microscopy 

Transmission electron microscopy showed that the microgrooved patterns had been conserved well 

during implantation Although the tissue layer on the implants was relatively thick (about 2 to 3 mm), 

and no osmium was used, fixation proved to be successful Nuclei and organelles of all cells were 

conserved well The absence of osmium accounts for the somewhat lower contrast of cellular and 

organelle membranes In all TEM images dark structures appeared in the PS 

After 4 weeks (Figure 10a) the interfacial tissue layer surrounding implants showed normal 

wound healing Prominent structures like the nucleus, mitochondria, nbosomes and rough endoplasmic 

reticulum were well preserved in all cells When observing the cytoplasm and shape of the nucleus, 

fibrocytes and inflammatory cells can be distinguished Inflammatory cells were present, directly at the 

implant surface The inflammatory cells filled the groove cavities totally, and touched the bottom of 

the grooves After 12 weeks (Figure 10b) inflammatory cells were still present at the implant surface 

The surrounding layer consisted of flattened fibroblasts Occasionally, coUageneous bundles could be 

observed 
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Figure 10: A) Transmission electron micrograph of the tissue surrounding implants after 4 weeks. 
Note that the microgrooved pattern (1 pm deep, 1 pm wide) has been conserved well. F=fibrocyte; 
l=inflammatory cells; B) The microgrooved implant (1 pm deep, 5 pm wide) after 12 weeks still is 
surrounded by inflammatory cells; C) Dark structures (arrows) appear in the polystyrene. These 
structures are also present in this seroma cavity (bar= 2 pm; original magnification 3000x). 

DISCUSSION 

In the last few years, most researchers have focused on contact guidance on microgrooved substrata in 

vitro, but little in vivo work has been undertaken. Our goal was to determine the behaviour of 

microgrooved implants, in subcutaneous tissue. In our study, the overall tissue reaction around the 

implants was characterized by fibrous encapsulation. No obvious effects of microtexturing on capsule 

formation was found. This is not in agreement with previous research1718. 

In the 1950s, cancer researchers investigated implantation of polymers in mice and rats. In this 

research, also PS implants were thoroughly studied 26"29. It was shown that PS, after implantation is 

covered by a capsule with generalized reactive fibroblastic activity, that in time becomes almost 

inactive. PS therefore seems a suitable implant material to study fibrous capsule formation. The glueing 

of polystyrene with cyanoacrylate is not expected to cause any negative effects. Implants were dried 

and cleaned carefully. No inhibition zone, indicating cytotoxicity, could be observed in the performed 

in vitro test. 

In our study, a goat was chosen as experimental model, so that multiple substrates could 

be placed in the same goat, without animal to animal variability. Besides, the data obtained from big 

animals are more comparable to human wound healing processes, than if rats or other small laboratory 

animals had been used. 
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We observed that after 4 and 12 weeks of implantation, several implants were bent or broken. 

We suppose that this is due to the mechanical properties of the PS discs, which showed a brittle 

behaviour, even when casted into thin films (our implants were approximately 0.2 mm thick). During 

implantation, the discs are subjected to mechanical stress present in a free-moving animal. Further, 

capsule contraction evokes additional mechanical stress. For this reason, fracture occurs especially after 

longer implantation periods. In addition, this fracturing emphasizes again that also around soft tissue-

implants the influence of interfacial mechanical stresses on the final wound healing process cannot be 

neglected. 

When examining the tissue reaction histomorphometrically, we were unable to determine 

any effect of microstructured surfaces on wound healing. The inflammatory response, capsule 

thickness, and formation of blood vessels, all were not markedly affected. We propose two explanations 

for this finding. 

First there is a difference of Young's modulus of elasticity between the implants and the 

surrounding tissue. When implanting a material, caution should be taken that the implanted material 

has about the same mechanical properties as the surrounding tissue 30'3,. This mismatch could be the 

cause for the formation of a relatively thick capsule. Apparently, this discrepancy overrules the effect 

of the microgrooves on the capsule formation process. Studies by Picha " and den Braber l7, as 

mentioned in the introduction, used silicone implants, did not have this problem, or to lesser extent. 

Secondly, our grooves were relatively shallow (1 μπι), compared to the pillars used by Picha 

(500 μπι) ". If the effect of microtexture is based on stabilizing implants by mechanical retention, our 

grooves might have been to shallow to induce such an effect. On the other hand we have to emphasize 

that den Braber 17 also used shallow (0.5 μπι deep) grooves and still found an effect on inflammation 

and vascularization. We assume that the use of a material with the appropriate mechanical properties 

is a very important additional parameter. 

In TEM it was observed that the microgrooved patters and adherent tissue had been conserved 

well during implantation and subsequent processing. In all TEM images dark structures were visible 

in the PS (Figure 10c), which seems to be a result of embedding PS in LR White resin. The same 

structures sometimes appeared in the tissue. The presence of these structures in the tissue probably is 

not the result of fagocytosis of PS during the implantation period. Namely, these structures also 

appeared in places where no fagocytosis could have occurred, for instance in seroma cavities (Figure 

10c). Probably, the LR White has accumulated in empty spaces in the tissue, and shows the same dark 

structures there. 

Subjectively, in TEM there seemed to be no difference in tissue reaction at the interfacial layer 

between smooth or textured implants at any of the implantation times. As seen in light microscopy, in 

time the presence of inflammatory cells decreases, but no contact between fibrous tissue and the implant 

is accomplished. This might have been caused by a phenomenon known as rugophilia. In vitro and in 

vivo macrophages seem to be attracted to roughened surfaces 32'33. In the SEM evaluation it can be 

observed that part of our implant surfaces shows additional nano-roughness, caused by the etching 

procedure. This roughness is only present on ridges, and not in the grooves. Because implants are 

covered with inflammatory cells, it can also be argued that this might inhibit the effect of microgrooves. 

Namely, from previous in vitro research it is known that inflammatory cells show hardly show contact 
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guidance, compared to fibroblasts 34. If at the implant surface a layer of cells is present, that are not 

affected by the texture, the cells outside that layer cannot sense the difference between textured and 

smooth surfaces. 

From this experiment we conclude that the presence of 1 μπι deep and 1-10 μιη wide 

microgrooves does not affect the tissue response around polystyrene implants in soft tissue. 
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INTRODUCTION 

In vitro expenments have shown that providing a substrate surface with micrometer-sized parallel 

grooves, influences the behaviour of cells growing on such substrates ' 3 Cells elongate in the direction 

of the groove and migrate guided by the grooves This phenomenon is known as 'contact guidance'4 5 

Next to contact guidance, microgrooves are known to evoke a number of other responses in cell culture, 

like the expression of certain enzymes that in normal tissue are involved in remodeling 6 

Because of the evident influence of microgrooves on fibroblasts in culture, it has been suggested 

in literature that this phenomenon can also be used to affect the wound healing or tissue repair around 

medical implants For soft tissue devices, microtextunng might influence the number of inflammatory 

cells, capsule thickness, capsule organization, and the number of blood vessels present around the 

implant7 9 Despite this supposed effect of microtexture on soft tissue response, in vivo studies on 

microtextured implants are limited in number, and remain rather inconclusive For instance, in our 

group two in vivo expenments were done with microgrooved implants The first study 10 investigated 

the connective tissue response to silicone implants, provided at one side with 0 5 μπι deep 

microgrooves, in rabbits The implants were left for implantation penods from 2-12 weeks It was 

observed that the applied texture did not affect the thickness of the fibrous capsule around the implant 

On the other hand, both the presence of immunological cells as well as the number of blood vessels 

around implants were markedly influenced at the grooved side The second study ' ' considered similar, 

but now two-sided microgrooved polystyrene implants in goats The implants were left for 1 -14 weeks 

In this study no evident effects of the applied texture was found The results of both studies lead to the 

suggestion that the applied texture might have been too shallow to induce significant effects 

Consequently, in the current research we intend to further determine the extent with which tissue 

behaviour can be influenced and directed by surface microgeometry, and how this interferes with 

wound healing phenomena around implants 

We hypothesize that an optimal surface topography exists, that can be recognized by the cells 

surrounding the implant, and minimizes tissue reaction m vivo Therefore we qualified and quantified 

the influence of 2 μιη wide microgrooves, with vanous depths (0 5-6 μηι), on capsule formation around 

subcutaneous silicone implants, in an animal expenment 

MATERIALS AND METHODS 

Implant production 
Using photo lithographic techniques, four different micro grooved patterns were made in molds of 

silicon (Twente Microproducts, Enschede, the Netherlands), or fused silica (dept of Electronics and 

Electrical Engineering, University of Glasgow, UK) The molds were covered with silicone 

(polydimethylsiloxane, NuSil MED-4211, NuSil Technology, Carpintena, California) After 

polymerization, the silicone rubber sheets were removed from the molds Also smooth silicone sheets 

were produced, using a non-textured mold 
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Table 1 : Summary of the used types of implant 

Implant 
type 

control 

smooth 

0.5 

1 

1.5 

6 

groove depth 
(pm) 

0 

0 

0.5 

1 

1.5 

6 

groove width 
(Mm) 

0 

0 

2 

2 

2 

2.5 

ridge width 
(Mm) 

0 

0 

2 

2 

2 

2.5 

The lumen of a silicone tube (SiR tube, Baxter Healthcare, Mirandola, Italy) was filled with silicone, 
and left to polymerize. Subsequently, the silicone sheets were glued around the silicone tubes, using 
adhesive silicone (NuSil MED-1137). The groove direction was longitudinal to the tube. Finally, they 
were cut to the desired size, i.e. a length of 13 mm and diameter of 7 mm. This resulted in a tube shaped 
implant. The production process is visualized in Figure 1. Also control implants were made, without 
a silicone sheet glued onto it. The surface topographical dimensions of the prepared implants are 
summarized in Table 1. 

After drying of the glue, the finished implants were washed in 10% liquinox solution (Alconox, 
New York, NY), cleaned ultrasonically in 1% liquinox, rinsed thoroughly, and given an overnight 
Soxhlet rinse in distilled, de-ionized water. They were dried to air in a sterile environment and, just 
before use, given a radiofrequency glow discharge treatment (RFGD, 5 min, 150 mTorr), for 
sterilization '2I6 , and to ensure proper surface wettability for cell adhesion17. 

Silicone sheet with Mîcrotexture 

Silicone Tube 

Figure 1 : Schematic representation of the production of the implants 
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Characterization of materials 
To test any cytotoxic effectle of the implants, disc shaped test samples were cut from an implant These 

samples were positioned on the bottom of a 6 wells plate Primary rat dermal fibroblasts (RDF) were 

obtained from the ventral skin of male Wistar rats as described before5 " A suspension of these RDF 

was added to the wells, at 5*105 cells/ 3 ml Cells were cultured for 4 days in MEM-a medium, 

containing Earle's salts, L-glutamine, 15% FCS, and gentamicin (50 μg/ml) Subsequently, the possible 

formation of an inhibition zone around the discs was observed by phase contrast microscopy 

Animals 

In this study eight healthy mature female albino guinea pigs were used, 12-14 weeks of age The 

animals were housed according to standard regulations at the central animal facility (CDL) of the 

University of Nijmegen, the Netherlands 

Surgery was performed under general anaesthesia induced by a combination of fluamsone 

6 75mg/kg body weight, fentanylcitrate 0 2133 mg/kg body weight (Hypnorm®) and midazolam 3375 

mg/kg body weight (Dormicum®) Anaesthesia was maintained by ethrane (2-3%) with a constant 

volume ventilator For the insertion of the tubes, the dorsal skin was shaved, washed and disinfected 

with iodine Then, on both sides of the vertebral column three longitudinal incisions of about 2 cm were 

made through the full thickness of the skin Subsequently, lateral to the incisions subcutaneous pockets 

were created by blunt dissection with scissors One implant was inserted in each pocket Finally the 

wounds were carefully closed with two Vicryl sutures Of each type of implant, eight specimens were 

used A total of 48 implants was placed Randomization was achieved with a Latin square implantation 

schedule Each animal received all types of implant The implants were left in place for 10 weeks Three 

weeks after implantation the sutures were removed During the entire expenment, animal health was 

inspected weekly 

Histological evaluation techniques 
At the end of the implantation period, the animals were sacrificed by suffocation in C0 2 Then the 

implanted tubes were removed including all surrounding tissues For histological analysis the tissue-

covered implants were fixed in 4% buffered formalin for one week, dehydrated in a senes of ethanol 

and embedded in LR White resin (Polysciences, Wamngton, USA) for two days at 45 0C LR White 

was chosen because its viscosity properties allows excellent penetration into the tissue On the other 

hand, LR White does not penetrate into, or otherwise affects the silicone After polymenzation of the 

resin, the silicone implants were removed The created opening in the specimens was then filled with 

LR White, that was cured with LR White accelerator Subsequently, perpendicular to the groove 

direction, sections were cut of about 10 μπι in thickness, using a modified diamond blade sawing 

microtome technique20 21 These were stained with methylene blue and basic fuchsin Of each implant 

at least 3 sections suitable for evaluation were made, at different parts of the specimen Thereafter, from 

the same tissue blocks, sections were cut of 8 μπι in thickness using a Leica RM 2165 Microtome 

equipped with a D knife Three sections suitable for evaluation were made, and stained with a Van 

Gieson connective tissue staining The advantage of Van Gieson staining is that it clearly discriminates 

the newly formed fibrous tissue in the capsule, from the older fibrous tissue 
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Area of evaluation 

Tissue 

Textured Implant 

Figure 2: Schematic representation of a section 
used for the histomorphometncal evaluation, 
showing the predetermined areas of evaluation 

Scanning electron microscopy 
Scanning electron microscopy (SEM) was performed on silicone tube implants removed from the tissue 

after polymerization of the LR White In this way, the quality of the substrates after explantation could 

be observed, and the possibility of tissue remaining on the implant surface could be determined For 

this purpose, removed implant tubes were dned to air from EtOH 100% Subsequently, specimens were 

sputter-coated with a thin layer of gold, and examined in a JEOL 6310 scanning electron microscope 

Qualitative histology 
To assess the tissue reaction qualitatively, all sections were examined with a Leica DM RBE light 

microscope at a magnification of 40x 

Histomorphometncal evaluation 

To quantify the soft tissue response to the implants, histomorphometnc evaluations were performed on 

the 10 μπι thick methylene blue/basic fuchsin sections For this purpose, the microscopic images were 

projected with a total magnification of 400x on a color monitor using a CCD/RGB camera (Sony 

DXC151P) attached to the microscope Subsequently, measurements were performed in 8 

predetermined fields, using a computer, equipped with digital image analysis software (Arclmage, 

ν 1 43, Foster Findlay Associates) The fields were positioned at regular intervals, in the capsule 

surrounding the implant (Figure 2) The used method of evaluation was adapted from an earlier 

publication of our group 22 For each histological section we assessed four parameters, ι e capsule 

thickness (quantitatively, m μπι), capsule quality (in arbitrary points 0-4), interface thickness 

(quantitatively, in μπι), and interface quality (in arbitrary points 0-4) A complete description of the 

arbitrary point scale is shown in Table 2 
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Table 2: Histological grading scale for soft-tissue implants. 
Score Reaction Zone Response 

Capsule Qualitatively: 
4 Capsule tissue is fibrous, mature, not dense, resembling connective or fat tissue in the non-injured 

regions 
3 Capsule tissue is fibrous but immature, showing fibroblasts and little collagen 
2 Capsule tissue is gramous and dense, containing both fibroblasts and many inflammatory cells 
1 Capsule consists of masses of inflammatory cells with little or no signs of connective tissue organization 
0 Cannot be evaluated because of infection or other factors not necessarily related to the material 

Interface Qualitatively 
4 Fibroblasts contact the implant surface without the presence of macrophages or foreign body giant cells 
3 Scattered foci of macrophages and foreign body cells are present 
2 One layer of macrophages and foreign body cells is present 
1 Multiple layers of macrophages and foreign body cells are present 
0 Cannot be evaluated because of infection or other factors not necessarily related to the material 

Statistical analysis 

After histomorphometrical evaluation, averages and standard deviations of all obtained data were 
calculated. Data were compared with an analysis of variance (ANOVA). If this revealed that statistical 
differences were present, post ANOVA testing was performed with a Student-Newman-Keuls test. All 
statistics were executed using StatMost (v.2.01 DataMost Co, Salt Lake City, USA). 

RESULTS 

Implant characterization 
The cytotoxicity testing revealed that fibroblasts were growing around, and adhering to the discs in 
vitro. Fibroblasts were observed to exhibit normal cell morphology. Nowhere around the specimens 
an inhibition zone could be observed. 

Macroscopic findings 
During the post-implantation period, all animals showed an unevoked healing without any disturbance 
of the wound healing process. At implant retrieval, all removed implants were observed to be 
surrounded by a thin fibrous capsule. There were no macroscopic signs of an inflammatory reaction. 
The implants did not deteriorate. Unfortunately, one control-type implant was damaged during implant 
removal. In addition, another one could not be found during recovery. Consequently, only 6 controls 
were left for histological evaluation. 

Scanning electron microscopy 
SEM observation showed that the quality of the substrates after explantation was comparable to that 
before implantation. On all retrieved implants, surface microgrooves were clearly maintained. Hardly 
any tissue, or cellular debris, was found to be left on the explained surface. This confirmed that during 
removal of the silicone implants from the polymerized LR-White blocks, separation occurred at the 
interface tissue-implanted surface. 
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Light microscopy 
Examination of the histological sections revealed a fairly uniform tissue response for all tested 

materials. In all sections, normal skin and underlying tissues could be determined; i.e. epidermis, 

dermis, fibrous tissue, musculature, and fat. Sometimes a hair vesicle, blood vessel, or nerve bundle 

was seen. All implants were observed to be encapsulated in a fibrous layer, which could be clearly 

discerned from the original connective tissue like muscle fascia (Figure 3a). This capsule was about 

seven to eight layers of cells in thickness. The fibrocytes had flattened very much, indicating a matured 

capsule formation. Furthermore, a difference in capsule appearance existed between the median and 

skin side of the implants. At the skin side the capsule was always thicker (Figure 3b,c). Very 

occasionally, in the capsules small newly formed blood vessels were observed. Also, inflammatory cells 

were hardly seen in the capsule. On the other hand, in almost all sections, the fibrous capsule was found 

to be separated from the implant surface by a thin, single layer of mono- and multinucleated 

phagocytotic cells (Figure 3d). This layer was almost continuous, and only very occasionally a direct 

attachment of fibrous tissue to the implant was observed. For the microtextured surface, at the interface, 

the microgrooved pattern could be clearly seen. This again showed that the removal of the implants 

had not resulted in disruption of the tissue capsule. No gross differences in tissue response were 

observed between the various implant surfaces. Nevertheless, we noticed that on implants with the 6 

μπι deep surface microgrooves, the nuclei of the interfacial cells were frequently located in the grooves 

(Figure 3d). Finally, we found that the seam of the implant, where the edges of the sheets had been 

glued together, was always clearly visible. The non-uniform implant surface at these sites, gave rise to 

a local accumulation of fluid (Figure 3e). At these sites the fibrous capsule had a somewhat altered 

appearance. Therefore, these areas were therefore excluded from the histomorphometrical evaluation. 

Figure 3 a : Light micrograph of the tissue surrounding an 
implant, equipped with 0.5 pm deep microgrooves. Van Gieson 
staining enables clear distinction between new-formed fibrous 
tissue (N), and old fibrous tissue (F), original magnification 40x. 
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Figure 3b: Light micrograph of the tissue surrounding a 
'controi'-type implants. Implants are covered with a fibrous 
tissue capsule. Methylene blue/ basic fuchsin staining, original 
magnification 20x. 

Figure 3c: Light micrograph of the tissue surrounding an 
implant, at the median side. Note that capsule quality is 
remarkably less than on the skin side, in Figure 3b. Methylene 
blue/ basic fuchsin staining, original magnification 20x. 
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Figure 3 d : Light micrograph of the tissue surrounding an 
implant, equipped with 6 μπι deep microgrooves. A layer of 
inflammatory cells can be observed at the implant surface. Note 
that nuclei of these cells are mostly located in the grooves. Van 
Gieson staining, original magnification 40x. 

Figure 3e: At the seam of the implant, where the edges of the 
sheets had been glued together, a disruption in implant surface 
occurs (see also Figure 1). At these sites locally fluid 
accumulated. These areas were therefore excluded from the 
histomorphometrical evaluation. Methylene blue/ basic fuchsin 
staining, original magnification 20x. 
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Histomorphometrical evaluation 
All histomorphometrical findings are listed in Table 3. The data show that around all types of implants, 

the capsule thickness was about 20 μιτι. No significant differences (p>0.05) were seen in relation to the 

various applied textures. The results of the qualitative assessment of the fibrous capsule indicates that 

after 10 weeks of implantation the capsule had not matured fully yet. Again, no significant differences 

(p>0.05) were seen between the different implant surfaces. 

Further, measurement of the layer of inflammatory cells surrounding the implants revealed that 

this interfacial layer was about 3.5-4.5 μιη thick. Although the data suggest that this layer around the 

6 μπι deep textures was somewhat thicker, statistical analysis revealed no significant difference 

between the smooth and various textured surfaces. Also, in the histomorphometric rating of the 

interfacial layer quality no differences in response towards the surface grooves were found (p>0.05). 

DISCUSSION 

In the last few years, many researchers have focused on microgrooved substrata. Though most 

researchers suggest possible clinical applications in implantology, most of the studies deal with in vitro 

phenomena. Our goal was to determine the behaviour of microgrooved implants, placed in the 

subcutaneous tissue of guinea pigs. 

The guinea pig is often used as a model system for human skin 23. We choose to use it as our 

experimental model, because of the structural resemblance of also its subcutaneous tissue with the 

human analogue. Besides, multiple substrates can be placed in the same animal, which is favorable 

above smaller animals like rats or mice, and reduces intra-animal variability. 

As implants, we used microgrooved silicone. Silicone is, despite several disadvantages, still a 

common used implant material for incorporation in soft tissue. The overall design of our implant was 

tube-like. In this way a completely textured surface could be achieved. Supported by our cytotoxicity 

in vitro test, our production process including the glueing of the textured silicone sheets is not expected 

to cause any negative effects. On the other hand, we know that the mechanical properties of an implant 

have a definitive influence on the wound healing process. Implants of the same material and surface 

configuration, but with different shape, exert different mechanical stresses on the surrounding tissue. 

Subsequently, this can affect capsule formation and contraction. Therefore tubular, or at least rounded 

implant designs are preferable 24. Despite these favorable characteristics of our implant design, there 

is also a disadvantage. Silicone rubber is a very flexible material. We know that irrespective their shape, 

implants will always be subjected to some mechanical stress in a free-moving animal. This can be 

enhanced by capsule contraction. In view of this, recent in vitro studies showed that fibroblasts are 

capable to deform silicone microfeatures by cytoskeletal contraction of the adhering cells 17. SEM 

observation did not reveal any distortion of the surface patterns as applied on our implants during 

implantation. Still, the occurrence of a similar deformation effect as in vitro cannot completely be 

excluded. Consequently, we have to notice that the final 'controllability' of silicone rubber is perhaps 

not optimal. Nevertheless, based again on our in vitro results, we think that the used surface patterns 

were discriminating enough to induce a biological effect, even when some deformation occurs. 
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Table 3: Results of the histomorphometrical evaluations. 

Fibrous capsule thickness (μιτι (±standard deviation)) 

control 

smooth 

0.5 

1 

1 5 

6 

20.8(5.1) 

18.9(4.3) 

20.7 (5.5) 

19.2(4.3) 

19.0(4.0) 

21.4(4.8) 

| Fibrous capsule quality (arbitrary points, see Table 2) | 

control 

smooth 

0.5 

1 

1.5 

6 

2.9 (0.2) 

2.9 (0.2) 

2.9 (0.2) 

2 9 (0.2) 

2.9 (0.2) 

3.0(0.1) 

| Interfacial layer thickness (μπη (±standard deviation)) 

control 

smooth 

0.5 

1 

1.5 

6 

3.6(2 1) 

3.7(2.1) 

3.7(1.5) 

3.7(1.6) 

3.9(1.5) 

4.5(1.5) 

| Interfacial layer quality (arbitrary points, see Table 2) 

control 

smooth 

0.5 

1.0 

1.5 

6 

2.1 (0.2) 

2.2 (0.3) 

2.1 (0.2) 

2.1 (0.2) 

2.0(0.1) 

2.0(0.1) 
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Corroborating our previous study, here we have found again no beneficial effect of all applied 

microtextures on the subcutaneous tissue healing response. Even despite the fact that we also implanted 

surfaces with a significantly increased groove depth. The overall tissue reaction was characterized by 

a fibrous encapsulation associated with an interfacial layer of inflammatory cells. There are some 

indications that the number of inflammatory cells on the deeper microtextures are enhanced. We 

suppose that the mechanical forces applied on an implant during movement, have caused an 

accumulation of inflammatory cells onto the implant surface. Furthermore, we know that both in vitro 

and m vivo macrophages are attracted to roughened surfaces, a phenomenon known as rugophilia25·26. 

When comparing the different textures in this study, and those in our previous investigation ", we only 

conclude that an increase of groovedepth inevitably will lead to a further increase of this accumulation. 

This is confirmed by data from other investigators, who used micro-pillared surfaces with dimensions 

up to 500 μπι27. As soon as implants are covered with inflammatory cells, these inhibit any effect of 

microgrooves on the fibrous capsule architecture. Inflammatory cells are subject to contact guidance, 

compared to fibroblasts 2e. When at the implant surface a layer of inflammatory cells is present, the 

connective tissue cells outside that layer cannot sense the difference between textured and smooth 

surfaces. 

In summary, we conclude that parallel surface microgrooves do not have an effect on capsule 

formation around silicone implants in soft tissue. However, we cannot exclude that this type of surface 

microfeatures has effects on other tissue healing responses. For example, it has been described 

extensively that microtextures can inhibit epithelial downgrowth around percutaneous implants29"31. 

Further, because of their enlarged surface, microgrooves can also be applied as a carrier for tissue-

repairing proteins, such as growth factors 32. 
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Samenvatting, evaluatie van de doelstellingen, en afsluitende 
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SUMMARY, ADDRESS TO THE AIMS, AND CLOSING REMARKS 

Epidemiologic research still indicates that medical and dental implants are inclined to occasional early 

and more frequent late "failures", meaning that the implantation did not result in lasting and/or 

permanent clinical performance It is supposed that the initial reaction of cells is an important factor 

in the final tissue-reaction towards an implanted device Many studies performed during the last two 

decades have focused on understanding the interactions between different cells and tissues of the body, 

and implant matenals All studies in the current thesis deal with the potential use of microgrooved 

surfaces for application onto implant matenals Therefore, a general introduction into the cells' 

cytoskeleton, and current knowledge of cell reaction towards microtextures, is presented in chapter 1 
Each subsequent chapter discusses a separate study In this summary, the aims as described in the first 

chapter are addressed on a point-by-point basis 

1 Does the cellular growth behaviour in vitro to standardized, well charactenzed surfaces relate 

to the microgeometncal properties of these surfaces9 

2 Does the orientation of intra-cellular cytoskeletal components differ between cells cultured on 

smooth and microtextured surfaces9 

3 Several scientific publications propose mechanisms for the occurrence of contact guidance Can 

any of these theories be proven true or rejected9 

In chapter 2, a study is presented investigating the contact guidance phenomenon of rat dermal 

fibroblasts (RDF) on microgrooved polystyrene substrates Polystyrene (PS) microgrooved substrates 

were produced by solvent casting on molds produced by photo lithographic techniques The grooves 

were 1 μιη deep, and between 1 and 10 μπι wide Light microscopy and digital image analysis (DIA) 

showed that RDF were onented on all microgrooved substrates Scanning electron microscopy (SEM) 

showed that RDF cultured on 1 or 2 μπι wide grooves were positioned on top of the ndges On wider 

5 and 10 μπι grooves cells were able to descend into the grooves In confocal laser scanning microscopy 

(CLSM), focal adhesions were lying in the same direction as the actin filament where they attached to 

DIA confirmed an onentational behaviour of focal adhesions and actin filaments on microgrooves 

There were no differences in the measured onentation between the different grooves Besides, no 

obvious preference was found for focal adhesions to he along edges of the surface ndges Transmission 

electron microscopy (TEM) showed that focal adhesions were able to bend along the edges of ndges 

On basis of our observations we suggest that the breakdown and formation of fibrous cellular 

components, especially in the filopodium, is influenced by the microgrooves The microgrooves create 

a pattern of mechanical stress, which influences cell spreading and cause the cell to be aligned with 

surface microgrooves 

4 What is the influence of the groove-depth on the response of the cells9 Is groove depth an 

important factor in the alignment and maximal attachment of cells9 

In chapter 3, RDF cells were cultured on smooth or microgrooved (1-20 μπι wide, 0 5-5 4 μιη deep) 
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substrates We investigated the attachment of RDF with various analytical techniques Light 

microscopy and image analysis showed that RDF were oriented on most microgrooves The rate of 

onentation was effectively increased by an increase of groove depth Analysis of confluent layers of 

RDF showed that at confluency microgrooves were able to support greater numbers of cells However, 

the largest numbers of cells were not found on the narrowest and deepest microgrooves, though these 

have the largest total surface and induce strongest alignment Interference reflection microscopy (IRM) 

showed that the RDF form focal adhesions, where the cell membrane is only 10 nm from the substrate 

IRM also showed that RDF follow the contours of shallow and wide microgrooves, but bndge the 

grooves on deeper and narrower ones This could explain why such grooves are not able to increase the 

numerical cell adhesion more The absence of contact between cells and bottom of the grooves is a very 

important factor in establishing contact guidance 

5 Is the cellular response to microtextures the same if di fferent substrate materials are compared9 

In literature, it has been suggested that cellular alignment on microgrooves is predominantly dependent 

on groove dimensions, and that surface chemical variation of the substrate material has little effect 

Therefore, in chapter 4 we seeded RDF on smooth and microgrooved (grooves 1-10 μπι, depth 0 5 μιη) 

PS, poly-1-lactic acid (PLA), silicone (SIL), and titanium (Ti) substrates The production process was 

found to be more accurate for PS and PLA, than for SIL and Ti substrates A proliferation study, and 

scanning electron microscopy, confocal laser scanning microscopy, and transmission electron 

microscopy revealed differences between RDF behaviour on the materials Our conclusions are, that 

1) the accuracy of microtexture production by casting depends greatly on the used material, 2) even if 

no sharp discontinuities are present, microtextures are still potent of inducing contact guidance, and 3) 

besides surface texture, surface chemistry has a definitive influence on cell morphology 

6 How is the initial attachment behaviour of cells towards the substrate influenced by the 

application of microgrooves9 

Before, we suggested that the contact guidance phenomenon is based on mechanical clues, and that it 

is expected to occur from the earliest phases of cell spreading Therefore, in chapter 5 we investigated 

the 'contact guidance' phenomenon, shortly after cell attachment For this purpose PS substrates were 

produced, either smooth, or equipped with micogrooves (depth 0 5 μιη, width 1-10 μτη) On these 

substrates, fibroblasts were cultured in standard culture medium, and in cytochalasin-B (an actin 

polymerization inhibitor) suppleted medium Cells were fixed at 15, 30, 45, 60,120, and 240 minutes 

and studied with light microscopy, SEM, CLSM, and DIA We found that up to 1 hour, cell attachment 

on the grooved substrates was impaired Further, cells onented to the direction of the microgrooves 

This orientation was established fastest on the narrow grooves SEM showed that cells form membrane 

extensions in all directions after 30 minutes CLSM showed that well-formed actin filaments were not 

present in the cell body at timepoints before 4 hours, and that cells on smooth surfaces exhibited less 

filaments Cytochalasin-B caused a delay of cell attachment and spreading From these experiments, 

we conclude that a well formed cellular actin cytoskeleton is no prerequisite for the occurrence of 
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contact guidance The interplay between the filopodium and extracellular matrix (ECM) molecules 

seems to be the determining factor in the establishment of contact guidance 

7 Is the response to microgrooves in the substrate dependent on cell-type9 

To be compared with the previous studies on fibroblasts, the study presented in chapter 6 evaluated 

the behaviour of rat bone marrow (RBM) cells RBM were cultured on microgrooved PLA and PS 

surfaces The applied groove depth was 0 5, 1 0 or 1 5 μπι, with a groove and ndge width of 1, 2, 5 or 

10 μηι SEM examination showed a collagen neh mineralized layer of ECM was deposited Alignment 

of the cells and matrix to the surface grooves, was observed as desenbed before Quantitative 

evaluation, using a tetracycline labeling assay, revealed that more mineralized ECM was formed on the 

PLA than on the PS Further, PLA surfaces with a groove depth of 1 0 μιη and groove widths of 1 and 

2 μπι induced most mineralized ECM Finally, alkaline phosphatase activity was also higher on most 

microgrooved PLA surfaces, compared with the other materials On basis of these observations, we 

concluded that microtextured surfaces are able to influence the differentiation of osteoblast-hke cells 

and the deposition of mineralized matnx Probably, this phenomenon can be used to increase the bone 

regeneration around oral implants 

8 Does the application of microgrooves on implant surfaces influence the healing of these 

implants9 

In this thesis, 2 in vivo studies are presented, where we investigated the behaviour of microgrooved 

implants in soft subcutaneous tissue 

In chapter 7, we used PS implantable discs, either smooth or microgrooved (1-10 μηι) at both 

sides Implants were placed subcutaneously for 1,4 or 12 weeks, in a goat Light and TEM showed that 

fibrous capsule formation around implants was fairly uniform After 1 week implants were covered with 

a fibrous capsule, about 80 μπι thick The collagen matnx was loose, and many inflammatory cells were 

present After four weeks, the matnx was more dense and contained many newly formed blood vessels 

At the implant surface a layer of inflammatory cells, about 10 μπι in thickness, had accumulated 

Finally, after 12 weeks, the matnx had densified One cellular layer of inflammatory cells was present 

at the implant surface We earned out histomorphometnc measurements, concerning capsule thickness, 

inflammatory layer thickness and number of blood vessels Capsule thickness appeared not to decrease 

in time Further, these measurements showed that there were no differences in tissue reaction between 

smooth and microgrooved implants On the basis of our observations, we suggest that 1 μιη deep, and 

1-10 μιη wide, microgrooves do not influence the tissue response around polystyrene implants in soft 

tissue 

In chapter 8, we studied the influence of 2 μιη wide microgrooves, with vanous depths (0 5-6 

μιη), on capsule formation around subcutaneous silicone implants, in an animal expenment Silicone 

sheets with microtexture were glued around silicone tubes These implants were placed subcutaneously 

in eight guinea pigs for 10 weeks The implanted tubes were removed including all surrounding tissues, 

and processed for light microscopy and subsequent histomorphometncal evaluation All removed 
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implants were surrounded by a thin fibrous capsule, and it was observed that this capsule was separated 

from the implants by a thin, single layer of mono- and multinucleated phagocytotic cells In 

histomorphometry no significant differences were seen in relation to the reaction towards the vanous 

textures We again conclude that microtextures do not have an effect on the morphological 

characteristics of capsule formation around silicone implants in soft tissue 

Closing remarks, and future perspectives 
The current investigations have provided further insight on the contact guidance phenomenon Based 

on all cell-cultunng expenments, a new explanation for the occurrence of contact guidance is 

postulated We suggest that cellular actin cytoskeleton is no prerequisite for the occurrence of contact 

guidance The interplay between the filopodium and ECM molecules seems to be the determining factor 

in the establishment of contact guidance Of course, further investigations to the properties of both cells 

and substratum are necessary to prove our assumptions The role of the filopodium should be 

investigated more extensively, for instance with high-resolution optics For investigating the physico-

chemical surface properties and related ECM adsorption, atomic force microscopy (APM) seems a 

valuable technique 

In our in vivo expenments we could not determine an evident effect of microtextures on the 

formation of fibrous capsules around subcutaneous implants Implant parameters in the soft tissue 

response to implants are the design and mechanical properties of the used implant material Vanous 

tissue layers shded over each other dunng movements of the animal This, in combination with a 

discrepancy in Ε-modulus between implant and surrounding tissue is a stronger determinant of capsule 

formation than the applied textures Though no influence of microtexture on capsule formation could 

be determined, on basis of the cell-cultunng expenments, and in vivo results of other groups, we still 

think that other possible applications for the microtextunng phenomenon in implantology have to be 

explored Perhaps microgrooved surfaces can be applied on membranes as used for guided tissue 

regeneration (GTR) techniques Further, since microgrooves onent the migration of cells they might 

also be useful to support healing of large tissue defects, like cleft palates, bum wounds, and to enhance 

repair of highly onentated structures like nerve bundles, and tendon In these regenerative processes 

additional benefit can be obtained from the use of microtextured surfaces as a earner for growth factors 

Besides soft-tissue applications, the use of surface textunng can be interesting for hard tissue 

implants Our and other recent studies indicated that microtextures can have an effect on bone cells 

Unfortunately, at the moment no in vivo data are available 

Finally, an additional point of interest remains the production of differently shaped, 

microgrooved surfaces Usually, implants are not planar Therefore, to study the possible beneficial 

effect of microtextunng for implants, development of new microfabncation techniques to manufacture 

microstructures on non-planar surfaces is imperative Development of these techniques will not only 

benefit biomatenal research, but also the production of microelectronic, mechanical, and optical devices 

and subsystems 
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SAMENVATTING, EVALUATIE VAN DE DOELSTELLINGEN, EN AFSLUITENDE 
OPMERKINGEN 

Epidemiologisch onderzoek toont aan, dat medische en tandheelkundige implantaties kunnen eindigen 
in een "mislukking" Hiermee wordt bedoeld dat de procedure niet heeft geleid tot een blijvend klinisch 
resultaat Af en toe treed dit falen vroeg na implantatie op, frequenter op latere tijdstippen Algemeen 
wordt aangenomen dat de initiële weefsel-reactie ten opzichte van een implantaat mede bepalend is 
voor het uiteindelijke succes Daarom zijn er in de laatste twee decennia vele studies uitgevoerd die zich 
richtten op het ontrafelen van interacties tussen de verschillende cellen en weefsels van het lichaam, 
en implantatie materialen De studies die in dit proefschrift besproken worden hebben betrekking op 
het gebruik van microgroeven, als mogelijk oppervlak voor implantatie materialen In hoofdstuk 1 
wordt eerst een algemene introductie gegeven, over het cel cytoskelet, en huidige kennis van 
microtexturen De volgende hoofdstukken bediscussiëren elk een afzonderlijk onderzoek Deze 
samenvatting behandeld puntsgewijs de in het eerste hoofdstuk aangegeven doelstellingen 

1 Is het groeigedrag m vitro op gestandaardiseerde, en goed gekaraktenseerde, celkweek 
oppervlakken gerelateerd aan de micro-geometnsche afmetingen van deze oppervlakken'' 

2 Is de oriëntatie van intra-cellulaire cytoskelet componenten verschillend bij cellen gekweekt op 
gladde oppervlakken versus oppervlakken voorzien van een microtextuur9 

3 Een aantal wetenschappelijke publicaties stellen mechanismen voor, ter verklaring van het 
verschijnsel contact geleiding Kan een van deze theoneen bewezen, of ontkend worden9 

In hoofdstuk 2 wordt een studie beschreven naar contact geleiding van ratte huid Fibroblasten (RDF) 
op polystyreen (PS) substraten met microgroeven Deze substraten werden gegoten op mallen, die 
gemaakt werden met behulp van een foto- lithografische techniek De groeven waren 1 μπι diep, en 
tussen 1 en 10 μιτι breed Licht microscopie, en digitale beeld analyse (DIA) heten zien dat RDF cellen 
geonenteerd groeiden op alle substraten die voorzien waren van microgroeven Scanning elektronen 
microscopie (SEM) liet zien dat RDF cellen op 1 of 2 μπι brede groeven boven op de richeltjes van het 
oppervlak gepositioneerd waren Op de bredere 5 en 10 μπι brede groeven daarentegen, waren de cellen 
ook in staat afte dalen m de groeven Met behulp van confocale laser scanning microscopie (CLSM), 
werden de focale adhesiepunten van de cellen afgebeeld Deze lagen in dezelfde richting als de actme 
filamenten waaraan zij verbonden waren DIA bevestigde het geonenteerde gedrag van de focale 
adhesies, en de actine filamenten Tussen de verschillende groef types, werden geen verschillen 
gevonden in de gemeten oriëntaties Daarnaast kon geen voorkeur vastgesteld worden van de focale 
adhesies voor een positie op de randen van de richeltjes Transmissie elektronen microscopie (TEM) 
het zien dat focale adhesies in staat waren om te buigen rond de randen van de richeltjes Gebaseerd 
op deze observaties stellen we voor dat de afbraak en vorming van fibreuze cellulaire componenten, 
vooral in het filopodium, beïnvloed wordt door de microgroeven De microgroeven veroorzaken zo een 
patroon van mechanische stress, dat op zijn beurt cel spreiding beïnvloed, en het cel uitnchtings-gedrag 
veroorzaakt 
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4. Wat is de invloed van de toegepaste groefdiepte op de respons van de cellen? Is groefdiepte een 
belangrijke factor voor cel uitrichting en maximale celhechting? 

In hoofdstuk 3, werden RDF cellen gekweekt op gladde en gegroefde (1-20 μπι breed, 0.5-5.4 μιη 
diep) substraten. We onderzochten de hechting van RDF met verschillende technieken. Licht 
microscopie en DIA liet zien dat RDF zich oriënteerden op de meeste soorten microgroeven. De mate 
van oriëntatie werd zeer effectief verhoogd wanneer de groefdiepte toenam. Bij analyse van confluente 
lagen RDF cellen, bleek dat substraten voorzien van microgroeven in staat waren om meer cellen te 
dragen, dan gladde substraten. Echter, de grootste hoeveelheden cellen werden niet gevonden op de 
smalste en diepste microgroeven, terwijl deze wel het grootste totale oppervlak hebben, en bovendien 
het sterkst celoriëntatie induceren. Interferentie reflectie microscopie (IRM) liet zien dat de RDF focale 
adhesies vormen. Op deze punten is de cel membraan slechts 10 nm van het substraat verwijderd. IRM 
toonde verder aan dat RDF de contouren van ondiepe en brede microgroeven volgen, terwijl de diepere 
en nauwere groeven overbrugd werden. Dit zou kunnen verklaren waarom deze laatste groeven niet in 
staat bleken de cel adhesie te vermeerderen. De afwezigheid van contacten tussen de cellen en de 
bodem van de groeven lijkt een erg belangrijke factor in het optreden van contact geleiding. 

5. Is de cellulaire reactie ten opzichte van microtexturen vergelijkbaar wanneer naar verschillende 
substraat materialen worden vergeleken? 

In de vakliteratuur wordt beweerd dat cellulaire uitlijning op micro-groefpatronen voornamelijk 
afhankelijk is van de groef dimensies, en dat oppervlakte chemische veranderingen van het substraat 
materiaal weinig effect zal hebben. In het onderzoek beschreven in hoofdstuk 4, werden daarom RDF 
cellen uitgezet op gladde en gegroefde (groeven 1-10 μηι, diepte 0.5 μπι) PS, poly-l-melkzuur (PLA), 
siliconen rubber (SIL), en titanium (Ti) substraten. Het gebruikte productie proces bleek veel accurater 
voor het maken van PS en PLA, dan voor SIL and Ti substraten. Een proliferatie studie, SEM, CLSM, 
en TEM onthulde een aantal verschillen tussen het gedrag van RDF cellen op de vier materialen. Onze 
conclusies waren dat 1) de accuratesse van microtextuur fabricage is grotendeels afhankelijk van het 
gebruikte materiaal, 2) zelfs als er geen scherpe oneffenheden aanwezig zijn, zijn microtexturen nog 
in staat contact geleiding te veroorzaken, en 3) naast oppervlakte textuur, hebben ook de oppervlakte 
chemische eigenschappen van een materiaal een beduidende invloed op cel morfologie. 

6. Hoe wordt het initiële hechtings gedrag van cellen aan substraten beïnvloed door de toepassing 
van microgroeven? 

Eerder beweerden we dat contact geleiding gebaseerd is op mechanische stimulansen, en waarschijnlijk 
optreedt vanaf de allereerste fasen van cel spreiding. Daarom was het onderzoek gepresenteerd in 
hoofdstuk 5 gericht op het verder onderzoeken van de invloed van microgroeven op de celvorm, vlak 
na celhechting. Hiertoe werden PS substraten gemaakt, die glad waren, of voorzien van microgroeven 
(diepte 0.5 μπι, breedte 1-10 μπι). Op deze substraten, werden fibroblasten gekweekt in standaard 
kweekmedium, en in medium waaraan cytochalasine-B (een actine polymerisatie remmer) was 
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toegevoegd De cellen werden gefixeerd na 15,30,45,60,120, en 240 minuten, en bestudeerd met licht 
microscopie, SEM, CLSM, en DIA Gezien werd dat tot een uur het aantal cellen op gegroefde 
substraten lager was, dan op gladde oppervlakken Cel oriëntatie trad het eerst op bij de smalste 
groeipatronen Geen verschillen in cel oppervlak konden worden aangetoond tussen de verschillende 
substraten SEM het zien dat cellen vanaf 30 minuten in alle nchtingen membraan-uitstulpingen 
maakten, om het oppervlak af te zoeken CLSM het zien dat volledig gevormde actine filamenten in 
het celhchaam pas na 4 uur ontstonden, en dat cellen op gladde oppervlakken een minder filamenten 
bezaten Cytochalasine-B veroorzaakte een vertraging van cel hechting en spreiding Uit deze 
expenmenten, leiden we af dat een volledig gevormd cellulair actine cytoskelet geen voorwaarde is 
voor het optreden van contact geleiding De interactie tussen het filopodmm en extracellulaire matnx 
(ECM) moleculen lijkt de beslissende factor te zijn in het optreden van contact geleiding 

7 Is de respons ten aanzien van substraat microgroeven afhankelijk van het celtype9 

Ter vergelijking met eerdere studies aan fibroblasten, werd in het onderzoek gepresenteerd in 
hoofdstuk 6, het gedrag van ratte beenmerg cellen (RBM) geëvalueerd Deze werden gekweekt op PLA 
en PS oppervlakken voorzien van microgroeven De aangebrachte groefdiepte was 0 5,1 0 of 1 5 μπι, 
met een groefbreedte van 1,2, 5 of 10 μιη SEM onderzoek wees uit dat door deze cellen een collageen 
njke laag van gemineraliseerde matnx werd afgezet De uitlijning van cellen in de nchting van de 
oppervlakte groeven, was vergelijkbaar met eerdere onderzoeken aan fibroblasten Kwantitatieve 
evaluatie, met een tetracycline labeling assay, het zien dat meer gemineraliseerde ECM gevormd werd 
op PLA dan op PS PLA oppervlakken met een groefpatroon van 1 0 μπι diep en 1 of 2 μιη breed 
induceren minerahsatie van de ECM het sterkst Tenslotte was ook de alkaline fosfatase activiteit hoger 
op de meeste gegroefde PLA substraten Op basis van deze observaties concluderen we dat 
microtexturen in staat zijn om de differentiatie van osteoblast-achtige cellen, en de depositie van 
gemineraliseerde matnx, te beïnvloeden Waarschijnlijk kan dit fenomeen gebruikt worden om de bot-
regeneratie te bevorderen rond bijvoorbeeld orale implantaten 

8 Kunnen microgroeven op implantaat oppervlakken de wondhehng rond die implantaten 
beïnvloeden9 

In dit proefschrift, worden 2 in vivo studies gepresenteerd, waarbij gekeken werd naar het gedrag van 
gegroefde implantaten in zacht weefsel 

In hoofdstuk 7, werden implanteerbare PS schijfjes gebruikt, die glad waren of aan beide 
kanten voorzien van microgroeven (1-10 μιη) Deze implantaten werden subcutaan in een geit geplaatst 
gedurende 1, 4 of 12 weken Licht microscopie en TEM heten zien dat de vorming van een fibreus 
kapsel rond de implantaten redelijk uniform optrad Na 1 week waren de implantaten bedekt met een 
fibreus kapsel, van ongeveer 80 μιη dik De collageen matrix was weinig georganiseerd, en er waren 
vele ontstekingscellen aanwezig Na 4 weken, had de matnx zich sterk verdicht, en bevatte het kapsel 
vele nieuwgevormde bloedvaatjes Op het implantaat oppervlak had zich een laag van ontstekingscellen 
gevormd, die ongeveer 10 μπι dik was Tenslotte, na 12 weken, was de matnx zeer verdicht Een enkele 
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laag van onstekingscellen was aanwezig op het implantaat oppervlak Met behulp van histomorfometne 
werden de dikte van het kapsel, de dikte van de laag ontstekingscellen, en het aantal bloedvaten 
bepaald De kapseldikte bleek niet afte nemen met de tijd Verder heten de metingen zien dat er geen 
verschillen bestonden in de weefselreactie tussen gladde implantaten, en implantaten voorzien van 
microgroeven Daarom nemen we aan dat 1 μπι diepe, en 1-10 μπι brede, microgroeven de weefsel 
respons rond polystyreen implantaten in zacht weefsel niet beïnvloeden 

In hoofdstuk 8, bestudeerden we de invloed van 2 μπι brede microgroeven met verschillende 
diepten (0 5-6 μιτι), op kapsel vorming rond subcutane siliconen implantaten Siliconen films met een 
microtextuur werden rond siliconen slangetjes gelijmd Deze implantaten werden subcutaan geplaatst 
in acht cavia's, gedurende 10 weken De geïmplanteerde slangetjes werden verwijderd inclusief al het 
omliggende weefsel, en bewerkt voor licht microscopie en daaropvolgende histomorfometnsche 
evaluatie Alle verwijderde implantaten waren omgeven met een dun fibreus kapsel Dit kapsel was 
gescheiden van het implantaat oppervlak door een dunne enkele laag van mono- en multinucleaire 
fagocytotische cellen In de histomorfometne werden geen significante verschillen gezien, in relatie tot 
de reactie op verschillende texturen We concluderen dat microtexturen geen effect hebben op de 
morfologische karaktenstieken van kapsel vorming rond siliconen implantaten in zacht weefsel 

Afsluitende opmerkingen en toekomstperspectief 
De studies in dit proefschnft hebben geleid tot nieuwe inzichten in het fenomeen contact geleiding 
Gebaseerd op alle celkweek expenmenten is een nieuwe theone geformuleerd ter verklanng van dit 
verschijnsel We nemen aan dat een cellulair actine cytoskelet geen vereiste is, maar dat interactie 
tussen het filopodium en ECM eiwitten de belangnjkste factor in het ontstaan van contact geleiding 
lijkt Natuurlijk zijn vervolg studies nodig, die verder ingaan op de eigenschappen van zowel de cellen 
als het substraat, om onze aannames te bevestigen De rol van het filopodium zou bijvoorbeeld beter 
bestudeerd moeten worden op een hogere resolutie dan voorheen Voor de bestudenng van de physico-
chemische oppervlakte eigenschappen van het substraat en de daaraan gerelateerde ECM adsorptie, lijkt 
atomic force microscopie (AFM) een veelbelovende techniek 

In onze in vivo expenmenten konden we geen duidelijke effecten van microtexturen vaststellen 
op de vorming van fibreuze weefsel kapsels rond subcutane implantaten De parameters die de zacht 
weefsel reactie ten opzichte van een implantaat bepalen zijn ten eerste de vorm, en ten tweede de 
mechanische eigenschappen van het gebruikte matenaal De verschillende lagen weefsel bewegen over 
elkaar bij bewegingen van het dier Dit, in combinatie met de discrepantie van E-modulus tussen het 
implantaat en het omliggende weefsel, blijkt een sterkere determinant van kapsel vorming dan de 
aangebrachte texturen Alhoewel geen invloed van microtextuur vastgesteld kon worden lijkt het op 
basis van de celkweek expenmenten, en in vivo resultaten van andere onderzoeksgroepen, dat er wel 
andere mogelijke applicaties van micro textuur techniek in implantologie onderzocht dienen te worden 
Microgroeven kunnen bijvoorbeeld toegepast worden op membranen zoals die in de tandheelkunde 
toegepast worden, voor geleide weefsel regeneratie (GTR) Omdat microgroeven de migratie nchting 
van cellen bepalen, zouden ze ook waardevol kunnen blijken ter ondersteuning van de reparatie van 
grote weefsel defecten zoals een gespleten verhemelte en brandwonden, en van sterk georiënteerde 
structuren zoals zenuwbanen en pezen Bij deze regeneratieve processen zou bovendien microtextuur 
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van additionele waarde kunnen blijken als drager voor groeifactoren 
Naast een toepassing in zachte weefsels, zou oppervlakte textuur gebruikt kunnen worden voor 

implantaten die geplaatst worden in harde weefsels Onze, en andere recente celkweek studies hebben 
bewezen dat microtexturen ook bruikbaar zijn om botcellen te beïnvloeden Helaas zijn er op dit 
moment nog geen in vivo data beschikbaar 

Tenslotte blijft een laatste punt van interesse de ontwikkeling van andersvormige micro-
gegroefde oppervlakken Normaliter zijn implantaten met vlak Voor het bestuderen van mogelijke 
positieve effecten van microtextuur op implantaten, is het noodzakelijk nieuwe microfabncage 
technieken te ontwikkelen om microtexturen te kunnen produceren op met-gladde oppervlakken De 
ontwikkeling van zulke technieken zal niet alleen een stimulans zijn voor het biomatenalen onderzoek, 
maar ook voor het onderzoek aan micro-elektronische, mechanische, en optische apparatuur en 
deelsystemen 

163 



DANKWOORD 

Bij het uitvoeren van de expenmenten, en schnj ven van dit proefschrift ben ik natuurlijk gesteund door 
een groot aantal mensen, die ik hierbij wil bedanken 
Allereerst prof dr John Jansen, hoofd van de afdeling Biomatenalen, mijn begeleider en promotor Zijn 
deskundigheid en enthousiasme waren de basis van het onderzoek Op een begeleider met zijn snelheid 
en accuratesse bij het correctiewerk zullen veel promovendi jaloers zijn 
Daarnaast wil ik de mensen van het Tngon bedanken Prof dr Leo Ginsel was mijn tweede promotor 
Vooral tijdens de 'maandag-praatjes' en werkoverleggen heeft hij me regelmatig van bruikbaar 
commentaar voorzien Voor het TEM werk dat in de diverse hoofdstukken staat beschreven heeft Huib 
Croes de coupes gemaakt Huib, hardstikke bedankt Daarnaast wil ik in het bijzonder Hans Smits 
noemen Hans is zonder meer een van de vriendelijkste mensen die ik ooit ben tegengekomen' Hij was 
altijd bereid om me te helpen met allerlei microscopie-problemen en het maken van dia's 
Twee analisten hebben bijzonder veel bijgedragen aan de expenmenten Anja de Ruijter heeft geholpen 
met alles wat met celkweek en histologie te maken heeft, met een grote no-nonsense aanpak Jan-Paul 
van der Waerden heeft op vele manieren zijn steentje bijgedragen, vooral op het gebied van histologie 
en microscopie Daarnaast weet JP (bijna) alles van computers, fotografie, en heeft hij vele mooie 
tekeningen voor me gemaakt 
Verder wil ik mijn kamergenoot Martijn Gerritsen bedanken Eigenlijk had ik een eigen kamertje op 
de afdeling, maar door 'duistere krachten' werd ik al na een halfjaar verdreven naar 671 Vaak hebben 
we gediscussieerd over het onderzoek en vele andere zaken En dan zijn stimulerende opmerkingen 
("hé, kan je met gewoon naar huis gaan ofzo ") 
Ook een dankjewel voor alle medewerkers van Biomatenalen van vroeger en nu Gonnie, Piet, Kitty, 
Hilde, Suzy, Yvonne, Anne-Gitte, Edwin, Frank, Joop, Suzanne, Harry, Kemchi Matsuzaka ('the crazy 
man from Japan'), Edwin, Jack, Juliette, Johan, Petra, Bas, Olga en Mananne Ook mogen de 'masters-
studenten' parodontologie met wie ik heb samengewerkt niet onvermeld blijven Roberto, Tijl, en 
Thorsten 
De mensen van het CDL wil ik bedanken voor alle deskundige hulp Fred, Ton en Theo voor de studie 
beschreven in hoofdstuk 7, en Alex en Henk voor het werk uit hoofdstuk 8 
Also I would like to express my gratitude to the people of the Centre for Cell Engineenng in Glasgow 
First of all prof Adam Curtis, who was so kind to have me on his lab for a while, and who showed me 
the Highlands dunng the weekend Dr Mathis Riehle and Graham Tobiasmck helped me a lot in the 
lab with cell cultunng and the 1RM microscopy And finally Douglas Hamilton, who showed me the 
pubs of Glasgow 
Tenslotte wil ik mijn familie, en Jenneke bedanken voor hun liefde, steun, en vertrouwen in de 
afgelopen jaren Zonder jullie was dit proefschrift nooit tot stand gekomen 

164 



CURRICULUM VITAE 

Xaverius Franciscus (Frank) Walboomers werd op 15 juni 1971 geboren in Apeldoorn. In 1989 
behaalde hij het diploma Atheneum-B aan het Katholiek Veluws College te Apeldoorn. Hetzelfde jaar 
begon hij een studie biologie aan de Katholieke Universiteit Nijmegen. In september 1995 werd het 
doctoraal examen afgelegd, in de medisch-biologische richting, met als hoofdvakken Celbiologie (prof. 
dr. E.J.J. van Zoelen) en Experimentele Gynaecologie (dr. H. Coverde), en als bijvak Vergelijkende 
en Fysiologische Psychologie (prof. dr. A.M.L. Coenen en dr. W.H.LM. Drinkenburg). Hiema werd 
hij aangesteld als onderzoeker-in-opleiding (OIO) om microtexturen te bestuderen op de afdeling 
Biomaterialen, vakgroep Orale Functieleer, Faculteit der Medische Wetenschapen van de Katholieke 
Universiteit Nijmegen (prof. dr. J. A. Jansen). Het onderzoek resulteerde in dit proefschrift. De studies 
werden uitgevoerd in samenwerking met de vakgroep Celbiologie en Histologie (prof. dr. L. A. Ginsel), 
en werden gesubsidieerd door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). 
Tijdens de onderzoeksperiode werden geregeld presentaties verzorgd op diverse binnenlandse en 
buitenlandse congressen, onder andere twee maal op de Annual Meetingofthe Society for Biomaterials. 
Dit werd mede mogelijk gemaakt door een aan hem toegekende subsidie in het kader van het Van 
Walree Fonds. Daarnaast werd een werkbezoek van enkele weken gebracht aan het Centre for Cell 
Engineering (prof. dr. A.S.G. Curtis), van de Universiteit van Glasgow, UK. Momenteel is hij 
werkzaam als onderzoeker ('post-doc') op de afdeling Biomaterialen. 

165 








