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Chapter 1 

1.1 CSF-dynamics 

The cerebrospinal fluid (CSF) is appropiately viewed as the clinician's access to the brain 

and is capable of reflecting pathophysiological changes in brain function [1]. 

The rate of formation in adults is approximately 0.35 ml per minute, or 500 ml per day [2]. 

The turnover of CSF, based on an average volume of 150 ml [3], is therefore 14 % per 

hour. The choroid plexus is the principal source of CSF. Evidence exists for extrachoroidal 

CSF excretion; the failure to relieve hydrocephalus by choroid plexotomy provides indirect 

evidence for extrachoroidal fluid formation in humans. There are indications for a flow of 

fluid from blood to CSF through the brain [4], and Cserr has demonstrated a substantial flow 

of brain extra cellular fluid (ECF) into CSF [5]. 

Figure 1.1 Diagram of fluid compartments of the blood-brain-CSF system. Continuous 

arrows represent proven directions of CSF flow. Interrupted arrows indicate where diffusion 

of water and solutes may occur between the different compartments: (a) across the blood-

brain barrier, between brain capillaries and extracellular fluid; (b) across the epithelia of 

the chroroid plexuses; (c) across the ependyma; (d) across the piaglial membranes; (e) and 

Φ across the cell membranes of neurons and glial cells. Thick outline represents the 

arachnoid-dural enclosure of the system. Illustration from flOJ. 
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CSF is secreted by an incompletely understood two-step process [6]. First, fluid is Altered 

through the highly permeable core capillary of the choroidal frond into the extracellular space 

surrounding choroidal cells. Second sodium is actively transported across choroidal cells into 

CSF, and water follows obligatory down an osmotic gradient. 

It is generally agreed that the major absorptive sites are the arachnoidal granulations which 

penetrate the major dural venous sinusus in the cranium [7, 8] (fig. 1.1). The mechanisms 

by which the CSF and its constituents are absorbed in bulk through the arachnoid villi are 

not clear. 

Factors influencing CSF composition 

The majority of compounds in CSF has a concentration which is much lower than that іл 

blood (see following chapters). The concentration of amino acids, for example, is aboul 

10-15 % of the plasma concentration, with the exception of glutamine (equal concentrations). 

Davson et al [9] suggested that, because of the very low concentrations in the CSF, the lattei 

would act as a 'drain' or 'sink', continuously draining the brain tissue of the compound: 

acquired from the plasma (fig. 1.2). 

Figure 1.2 Illustrating the 'sink-action 'of the cerebrospinal fluid whereby the fluii 

imposes a low concentration on an extracellular tag in the brain. Thus if plasme 

concentration is 100, the cerebrospinal fluid concentration may be only 2 and thi 

concentration in the extracellular fluid may be only 30 [10]. 
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This, so called, sink-action explains why, in intravenous infusion studies, no equilibrium is 

reached between plasma and ECF in the brain, but rather a steady state with the 

concentration in the brain ECF lower than that in plasma, and much closer to that in the CSF 

[11]. The magnitude of this steady state level depends on the blood brain barrier (BBB) for 

a certain molecule, the diffusion coefficient in the nervous tissue, the rate of flow of the 

CSF, and so on. 

The low level of compounds in CSF can be produced by at least three possible mechanisms. 

Firstly, there could be a restriction at the point of entry of the newly formed CSF. Secondly, 

there could be a process by which these substances are actively transported out of CSF by 

e.g. the choroid plexuses. Thirdly, the neurons and glia may remove compounds from CSF 

by active uptake during the passage of this fluid through the ventricular and subarachnoid 

spaces, via the ECF space. 

The mechanisms influencing CSF and brain ECF composition and modes of control will be 

discussed in the following section, with special emphasis on amino acids, purines and 

pyrimidines. 

The cerebral barriers 

The basic modes of fluid and metabolites exchange between blood, CSF, brain ECF and 

brain parenchyma, are fivefold (see figure 1.1): 

(1) a BBB, representing the site of exchange between blood in the CNS capillaries 

and the ECF; 

(2) a blood-CSF barrier, the site of exchanges between blood in the choroid 

plexuses and the CSF in the ventricles; 

(3) relatively free exchange is possible between CSF and brain; 

(4) exchange across the cell membranes between ECF and neurons and glia; 

(5) exchange across arachnoid membranes is possible between CSF and blood 

[10]. 
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1.2 The blood-brain barrier 

In 1885 Paul Ehrlich described the presence of a diffusion barrier between blood and brain 

[12]. After injecting laboratory animals with vital dyes he noted that only the brain remained 

unstained. He believed that the brain had a low affinity for dyes. The reverse experiment was 

performed by Goldmann in 1913 [13]. He injected dyes into the CSF and observed that only 

the brain was stained. As a consequence he hypothesized the concept of a BBB. Two barrier 

systems are present. The BBB is found at more than 99 % of the brain capillaries. The 

blood-CSF barrier, however, is not found at the small number of capillaries perfusing the 

choroid plexus (and circumventricular organs as the median eminence, subfornical organ, the 

area postrema and organum vasculosum of the lamina terminalis cerebri), because these 

capillaries are fenestrated, but is formed by the tight junctions sealing together adjacent 

choroid epithelial cells [14]. The surface area of the BBB is 5000-fold greater than that of 

the blood-CSF barrier, which underscores the quantitative importance of the BBB as 

compared with the blood-CSF barrier [15]. 

Electron microscopic studies [14] revealed the specific features of brain capillaries (fig. 1.3). 

The endothelial tight junctions, the paucity of pinocytosis and the absence of fenestrations 

in brain capillary endothelia are the primary anatomical characteristics underlying the BBB 

phenomenon. Pericytes surrounding cerebral endothelia have phagocytic properties, and it 

has been suggested that the pericyte exercises a barrier function when the capillary integrity 

is compromised [16]. Evidence has been presented that the astrocytic foot processes induce 

the formation of barrier-type capillaries [17] (see below). 

Next to the anatomical or physical barrier we now recognize an equally important 

biochemical barrier and regulatory interface functions in the BBB [18]. The biochemical 

barrier is attributable to a number of enzymes that are largely specific to the brain capillary 

endothelia. They rapidly degrade certain substrates thus shielding the brain from neuroactive 

or -toxic effects [19]. For example, noradrenaline and serotonin are inactivated by 

monoamine oxidase. 
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Chapter 1 

BRAIN CAPILLARY GENERAL CAPILLARY 

Figure 1.3 Λ comparison of features ofBBB and periferal tissue capillaries. 

1. Many capillaries of the BBB are seamless, but cell-to-cell contacts, when observed, 

are characterized by the presence of tight-junctions. 

2. Fenestrations found in other capillaries and also in the choroid plexus capillaries, 

are absent at the BBB. 

3. Higher mitochondrial content at the BBB. 

4. Little or no pinocytosis occurs at the BBB. 

5. Greater electrical resistance imparts low ionic permeability. 

6. Differences in stucture (proteins) and function of the luminal and abluminal brain 

capillary surfaces have been established. 

7. Enzymes, largely specific to BBB capillary endothelia, rapidly degrade certain 

substrates. 

8. Pericytes, known to have phagocytic properties, serve as the first line of defense if 

BBB functions are compromized. 

9. Formation of barrier-type capillaries is induced by a signal from adjacent astrocytes. 

For further explantion see text. Illustration from [20]. 
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The regulatory interface is characterized by: 

(a) larger and greater numbers of mitochondria in BBB endothelia, maintaining 

a low potassium level needed for nerve impuls conduction; 

(b) an increased electrical resistance, which is consistent with low ionic 

permeability; 

(c) luminal and antiluminal brain capillary surfaces each having specific 

functions [18]. 

These specific functions will be discussed below. In general terms, the BBB provides a 

homeostatic mechanism by which the unique functions of the brain are maintained. 

Development of the BBB 

It is not fully understood what causes the induction of the BBB. A role for the glial feet has 

been suggested in 1972 [21] and now accumulating information [17, 22, 23] indicates that 

a stimulus from the astrocytic foot processes of the glial cells induces the formation of 

barrier-type endothelial cells in the central nervous system (CNS). In a study using quail-

chick transplantations, it was demonstrated that abdominal host vessels vascularizing grafted 

neural tissue formed structural, functional and histochemical features of BBB capillaries. The 

reverse experiment indicated that brain vessels vascularizing grafted mesodermal tissue were 

devoid of these characteristics [17]. 

In animal studies the anatomical characteristics of BBB capillaries are observed by the first 

trimester of fetal life [24], and the BBB of newborn organisms is known to be almost fully 

developed [25]. Metabolic barrier and regulatory functions have been demonstrated at birth 

[18]. Moreover, accumulating data suggest that BBB transport mechanisms may operate at 

much higher rates in the newborn than in the adult brain: e.g. the influx of monocarboxylic 

acids is higher in suckling brain [26]. 

BBB transport 

Because of the special characteristics of the BBB, transcellular transport is lipid- or carrier-

mediated. The brain capillary endothelium allows rapid transit of small-molecule lipophilic 

compounds, but restricts the penetration of hydrophilic molecules. Compounds, which have 

little or no affinity for the membrane lipids are preferentially bound to a receptor oi 

transporter protein and translocated to the internal side of the membrane. In this carrier-
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mediated, facilitated transport a receptor or transporter specifically recognizes a compound 

or group of compounds. 

This - regulation - system supplies, despite highly variable plasma levels, constant amounts 

of molecules to the brain. 

Seven receptors have been identified [27, 28], and others will be demonstrated. These 

receptors are believed to act as transcytosis systems and are therefore thought to be present 

on both luminal and antiluminal surfaces. The most extensively studied is the insulin 

receptor, where transcytosis is visualized as three sequential steps: endocytosis at the luminal 

membrane, movement through the endothelial cytoplasm and receptor-mediated exocytosis 

at the antiluminal membrane, delivering the peptide to the brain interstitium [27, 28]. 

Transporters or carriers are proteins traversing the capillary membranes which recognize 

classes of molecules and transfer them from the lumen to the brain in milliseconds, thus 

accomplishing transit of nutrients. Seven major independent transporters are controlling the 

brain uptake of: hexoses, monocarboxylic acids, neutral amino acids, basic amino acids, 

purine bases, nucleosides, and amines such as choline. These transporters, like enzymes, can 

be kinetically characterized [15, 18, 29], according to the Michaelis-Menten analysis. The 

half-saturation constants or Km (the concentration of substrate at which one-half of the 

transporter proteins will be bound by their substrate molecules) of the substrates of these 

transporter proteins are in the range of normal plasma concentrations [18, 30]. Therefore, 

mild increases or decreases in the plasma level of a particular substrate will result in 

comparable increases or decreases in brain influx. Strong increase of e.g. plasma lactate after 

strenuous exercise will not be reflected in high brain extracellular lactate concentration. In 

this situation the BBB monocarboxylic acid transporter is over-supplied with substrate and 

the transporter actually inhibits blood-to-brain transfer, protecting the brain from a potentially 

harmfull concentration of lactic acid. Thus the transporters function in a manner which 

promotes brain entry of substrates when plasma concentrations are low, but prevents excess 

brain influx when plasma substrates reach excessive concentrations. The maximal velocities 

are a function of both the number of transport proteins in the BBB membranes and the rates 

at which these proteins mobilize their substrates. Higher maximal velocities are possible with 

larger amounts of transporter proteins in the BBB; e.g. glucose shows the highest maximal 
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velocity but also the greatest density of transporters at the BBB, which is consistent with the 

brain's metabolic requirement for glucose. 

Erythrocyte-complemented and protein-complemented BBB transport are concepts which are 

recently developed [18, 29]. The prevailing view was that plasma-to-tissue exchange was 

primarily a function of that small free fraction which was not bound to plasma proteins. 

However, albumin can bind saturably and reversibly to cell membranes, and receptors 

delaying the transcapillary transit of plasma proteins (and albumin-ligand complexes) could 

thus effectively complement BBB transport of ligands. It also has been hypothesized that 

erythrocyte-bome nutrients might be available for BBB transport, but this is more 

speculative. In that way amino acid and nucleic acid precursors transported into red cells 

might become available to the brain capillaries [31, 32]. It is possible that circulating 

peptides may rapidly impart signals to the CNS without traversing the brain endothelia if 

specific receptors exist, and if a secondary messenger can both receive and transmit the 

peptide signal [33]. 

Transport of amino acids across the BBB 

There are four transporters involved in amino acid-transport across the BBB. The 

classification of the carriers is referred to as the Christensen classification [34]. We already 

mentioned two among the seven major independent transporters, controlling uptake of neutral 

amino acids and basic amino acids. These are active on the luminal and antiluminal surface 

of the capillary endothelium, so transport across the BBB involves a single bidirectional 

system. The first one transports the large neutral amino acids such as phenylalanine, leucine, 

isoleucine, tryptophane, tyrosine, valine, cysteine, and methionine. This is referred to as the 

leucine-preferring L-system [34], it is quantitatively the most important carrier. The basic 

amino acid transport system (the y+-system) mediates the BBB transport of arginine, lysine, 

and ornithine [33]. Additionally there are two other transporters, these are only active on the 

antiluminal surface of the capillary endothelium and they are energy-dependent (ATP-driven) 

[18]. One is transporting small (non-essential) neutral amino acids [14] such as glycine, 

alanine, serine and proline, and is referred to as the alanine-preferring Α-system. The other 

one, the XAO-system, is transporting acidic amino acids (glutamate, aspartate) and exports 

these putative neurotransmitters [36]. Thus these two systems pump amino acids out of the 
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brain into the capillary lumen. Cooperation between the L- and Α-system has been suggested, 

large neutral amino acids could be transported into brain in exchange for small neutral amino 

acids. Moreover, in vitro studies have shown that cerebral microvessels take up large neutral 

amino acids in exchange for glutamine [37]. 

Competition for transport in an in vitro model system is a classic approach for identifying 

which amino acids are transported by a given system [34]. The role of competition in vivo, 

however, has been much less studied. Transport competition effects in vivo are not expected 

to occur unless the half-saturation constant (Km) of the transport system is low, e.g. about 

50-100 /¿mol/L, which approximates the existing concentration of neutral or basic amino 

acids in plasma under normal conditions [38]. A survey of amino acid Km values in various 

tissues shows that the Km of the neutral amino acid transport is in the 1-10 mmol range, 

except for the BBB where Km values are in the order of 50-100 μπιοί [36]. The low Km 

values implicate that availability of a certain amino acid, e.g. phenylalanine, is a function of 

the plasma concentration and also the concentration of other large neutral amino acids that 

compete with phenylalanine for transport into the brain. A parameter for predicting 

phenylalanine availability to the brain is the ratio of serum phenylalanine to the sum of 

concentrations of competing large neutral amino acids. The low Km of BBB amino acid 

transport makes the brain uniquely vulnerable to the effects of hyperaminoacidemia. Clinical 

examples of this are the inborn errors of metabolism: patients with hyperaminoacidemia can 

show selective defects of the CNS, e.g. mental retardation, seizures, but with little, if any, 

involvement of other organs [39]. It has been demonstrated in phenylketonuria (PKU), for 

example, that high circulating phenylalanine levels cause depletions of the brain methionine, 

isoleucine, leucine, histidine, tryptophane and tyrosine concentration [40, 41]. Experimental 

hyper-phenylalaninemia in rats resulted in more than a doubling of brain glycine, a result 

suggesting that inhibitory effects on amino acid exodus may occur also for this tissue [42]. 

The analysis of Km also leads to insights into the regulation of bidirectional movement of 

amino acids across the BBB. With the exception of the branched-chain amino acids, there is 

little net uptake of neutral amino acids by the brain [43]. The overall net uptake of neutral 

amino acids is only about 10-15 % of the unidirectional flux of amino acids from blood to 

brain [15]. Therefore, the rate of influx of neutral amino acids from blood to brain is nearly 
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equaled by the rate of efflux of amino acids from brain to blood. This fact conflicts with the 

much greater concentration of amino acids in plasma versus brain interstitial space. This 

rather suggests an active efflux, that contrasts with the idea of a bidirectional and energy-

independent L-system. However, the Km on the brain side of the BBB is much lower than 

the Km on the blood side of the BBB, due to large differences in concentrations of competing 

amino acids. 

Transport of nucleosides and nucleobases across the BBB 

The presence of specific saturable transport at the BBB has been demonstrated for certain 

purines: the adenine carrier transports the purine bases such as adenine, guanine and 

hypoxanthine [32]. The nucleoside carrier transports the purine nucleosides adenosine, 

inosine, guanosine and uridine, a pyrimidine nucleoside [32]. There is no known transport 

system for pyrimidine bases within the BBB, and this is consistent with the ability of the 

brain to synthesize pyrimidine bases at rates commensurate with its needs [44]. 

Defects of pyrimidine metabolism should be studied in CSF. 

1.3 The blood-CSF barrier and transport of 

nucleosides, nucleobases and amino acids 

Tight junctions sealing together adjacent choroid epithelial cells are the foundation of the 

blood-CSF barrier. They serve a similar function between the endothelial cells lining the 

cerebral capillaries, where they create the BBB [45]. These two barriers do not work in the 

same way, each is specialized to carry specific categories of nutrients into the brain by 

different mechanisms. The choroid plexus mainly controls the transfer from blood to CSF 

of some micronutrients which are only needed in the brain in relatively small amounts (e.g. 

vitamin C, folates, vitamin B6 and deoxyribonucleosides [45]), where the BBB transports 

substances that the brain consumes rapidly (fig. 1.4). The choroid plexus, the main source 

of CSF, can also act as an excretory organ by transporting compounds out of the CSF. 

Ventriculo-cistemal perfusion studies [46] demonstrated an absorptive process against a 

concentration gradient (active transport). This suggests, that the choroid plexuses may have 
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an important function in cleansing the CSF [45]. This can be considered as a scavenging 

activity, regarding for example transmitters and their metabolites [10]. 

BASOLATERAL 
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Figure 1.4 Flow of molecules across the blood-CSF barrier is regulated by several 

mechanisms in the choroid plexus. Some micronutrients, such as vitamin C, are pulled into 

the epithelial cells at the basolateral surface by an energy-consuming process known as 

active transport; the micronutrients are released into the CSF at the apical surface by another 

regulated process, facilitated diffusion, which requires no energy. Essential ions are also 

controllably exchanged between the CSF and blood plasma. Transport of an ion in one 

direction is linked to the transport of a different ion in the opposite direction, as in the 

exchange of sodium (Na*) ions for potassium (K*) ions f45]. 

Transport of nucleosides and nucleobases across the blood-CSF barrier 

The transport of deoxyribonucleosides, and ribonucleosides, which are different classes of 

molecules, is governed by a single system in the choroid plexus [45]. Ribonucleosides, but 
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not deoxyribonucleosides, can also cross the BBB. Both substances compete for acces to the 

carrier molecules, whichever nucleoside is the most abundant in the blood plasma is 

transported into the CSF most frequently [45, 47]. 

Barlin [48] showed that xanthine was accumulated by the in vitro rabbit choroid plexus. 

Analogues that inhibited the accumulation were hypoxanthine, guanine, adenine, uracil and 

urate. 

From thymidine, required for the de novo synthesis of DNA, it is shown that the 

concentration in the CSF follows that in the serum quite closely [49]. In adult rats, thymidine 

crosses the BBB poorly, if at al [32]. Spector [50] considered the possibility that penetration 

of thymidine into the CSF by way of the choroid plexus might be the primary step in 

penetration into the brain, as with, for example ascorbic acid. He demonstrated an active 

transport in choroid plexus [50]. When thymidine was given intraventricularly to rabbits, it 

left the CSF rapidly by a saturable mechanism, suggesting an active removal [51]. These 

facts suggest that the choroid plexus may control purine and pyrimidine levels in CSF. 

Transport of amino acids across the blood-CSF barrier 

The choroid plexuses are capable of actively transporting amino acids from CSF into blood. 

Davson et al [52] carried out ventrículo-cisterna! perfusion of labelled amino acids, 

simultaneously with intravenous infusion of labelled amino acids, and was able to proof that 

labelled glycine and methionine continues to be cleared from the perfusion fluid in spite of 

the large concentration gradient of the different labelled compounds on passing from CSF to 

blood. Other studies on the isolated choroid plexus showed accumulation of substrates, thus 

providing another argument for active outward tranport of amino acids [53, 54]. A flux in 

both directions was demonstrated but no net direction for this movement could be found [53]. 

Cross-inhibition features in the latter study suggested the involvement of the Α-carrier system 

[54]. The results of Davson's in vivo study [52] broadly agree with these in vitro data 

showing that there is carrier mediated uptake out of the CSF perfusate. The carrier types 

broadly follow the Christensen classification [34, 55]. With an indicator dilution method 

Segal and Zlokovic [56] demonstrated the existence of carriers for the uptake of large neutral 

amino acids and small neutral amino acids and on the other hand the absence of a significant 

A-transport system at the blood side of the choroid plexus epithelium. Differences between 

the possible routes into the CSF, however, have not been cleared up yet. The key question 
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remains to be answered is whether the concentration of amino acids in the CSF is the result 

of a restriction at the site of the entry process with the newly formed CSF, or is it due to 

activity of the choroid plexusus transporting these substances out of the CSF thereby 

maintaining a steep concentration gradient between this fluid and the neurons of the CNS 

[56]. A combination of these two mechanisms would also be possible. It is demonstrated that 

the low level of sugars in CSF is a consequence of the restriction placed on the entry process 

and not one of active efflux [57]. Whether the same results will hold true for amino acids 

remains to be seen. 

1.4 Exchange between brain ECF and CSF 

Since the ependymal lining of the ventricles is highly permeable, it can be seen that the CSF 

will act as a 'sink' in which the brain ECF amino acids will diffuse, as stated before. So on 

this site there is no functional barrier. 

1.5 Exchange between brain ECF 

and neurons and glia 

The concentration of amino acids in the CSF will depend on the concentration in the plasma 

and the kinetics of transport across the barriers of the CNS as pointed out above. Particularly 

important in this respect are exchanges with the central nervous parenchyma since many cells 

tend to accumulate amino acids in concentrations well beyond the level of their outside 

medium. The neurons and glia can take up amino acids from the brain ECF, so can exert 

some control on the composition of amino acids in the ECF. There are 14 or more transport 

systems present for amino acids in mouse brain tissue [58, 59]. Some of them are high 

affinity systems, needed for clearing synaptosomes from potent neurotransmitters. Other 

carriers are active in transporting non-essential amino acids. Five of the carriers described 

were the A, L, ASc, anionic and kationic systems as described by Christensen [55] and the 

remainder were specific for glycine, GABA, taurine and lysine. This complexity is necessary 

for control of these amino acids which also have a neurotransmitter role. Uptake of non-
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essential amino acids is very active in brain cells but is mostly absent in brain capillaries 

where the uptake of essential amino acids is more rapid and several systems seem to be 

absent (such as for G ABA). The K„ and V,,,̂  values for BBB transport of amino acids are 

1/3 and 1/10 of values at the brain cell membrane, respectively [60]. This indicates that 

transport restriction is located at the BBB and not at the brain cell membrane. 

With respect to CSF composition it is also important to realize that the nature of the 

intracellular cerebral metabolic pathways will influence intracellular fluid (ICF) and ECF 

composition, and indirect CSF composition, since the availability of certain types of enzymes 

in brain can be different from other tissues. An example is neurotransmitter metabolism. 

Another example is the absence of xanthine oxidase in cerebral purine metabolism. This 

means that uric acid cannot be formed in brain tissue from hypoxanthine. In the following 

chapters this will be illustrated further. 

1.6 Exchange across the arachnoid membranes 

The arachnoid membranes have shown to be active in amino acid uptake [61]. The isolated 

frog arachnoid membrane showed a marked uptake of glycine from CSF to blood [62]. These 

observations indicate active amino acid uptake by the arachnoid membrane from CSF, the 

relative importance of this route is not yet known. 

1.7 Conclusions and aim of study 

In this introducing chapter a type of system is described, with a restricted entry at the BBB 

and blood-CSF barrier, active uptake by neurons and a bulk flow drainage into CSF, and 

clearance from the CSF by choroid plexus and the arachnoid membrane. This system could 

act as an efficient homeostatic mechanism for the brain ECF amino acid, purine and 

pyrimidine control. 

The acces to this system in the clinical setting is by way of CSF examination. This route has 

become more important since the biochemical basis of most metabolic or supposed metabolic 
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brain diseases in children remains unknown. Metabolic brain disease can be associated with 

abnormal CSF levels of purines, pynmidines, or amino acids. The availability of new and 

more sensitive methods for determining these compounds urged us to establish normal values 

of amino acids, purines and pyrimidines in CSF. Our ultimate aim was to study CSF amino 

acid, purine and pyrimidine levels in various neurological disorders hoping to contribute to 

the etiologic unraveling of metabolic brain disease. Moreover, we wanted to answer the 

question whether the determination of the concentration of amino acids, purines and 

pyrimidines in CSF is a usefull tool in screening for metabolic disorders in children with 

unknown psychomotor retardation. The following chapters describe the results of our efforts. 
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Chapter 2 

2.1 Abstract 

Disturbances in the metabolism of purines and pyrimidines in neurologically affected patients 

can be reflected by aberrant concentrations of nucleosides and nucleobases in cerebrospinal 

fluid (CSF). However, normal values, especially for children at different ages, are lacking. 

We collected 1000 specimens of CSF from subjects ranging in age from newborn to 18 

years, who were undergoing a diagnostic lumbar puncture for several clinical indications. Of 

these, 78 samples could be used retrospectively as a reference according to our criteria. The 

analyses were performed with a modified HPLC procedure. None of the substances shows 

age-dependency except uridine and uric acid. Uridine increases with age, and uric acid 

increases with age in boys older than 12 years. 

2.2 Introduction 

Purine and pyrimidine bases and nucleosides in biological fluids can now be measured with 

sufficient sensitivity by 'high-performance' liquid chromatography (HPLC) [1, 2]. However, 

data on the concentrations of nucleobases and nucleosides in human cerebrospinal fluid (CSF) 

of children are lacking, although some reports have been published about the oxypurines in 

CSF in relation to hypoxia and cerebral ischemia [3-6]. 

Abnormal concentrations of some purine and pyrimidine bases in CSF have been reported 

in a few cases of deficiencies in purine and pyrimidine metabolism. Defects have been 

described for the de novo synthesis pathway, for nucleotide interconversion, for the salvage 

pathway, and for purine and pyrimidine catabolism [7-10]. Subjects with these disorders 

frequently present with neurological symptoms and psychomotor retardation. 

We measured the concentrations of nucleobases and nucleosides in CSF of children of 

different ages. The data we report here can be used as reference values for further studies 

of purine and pyrimidine metabolism in relation to brain function and to various neurological 

disorders. 

33 



2.3 Materials and methods 

Samples 

From 1983 to 1987, 1000 specimens of CSF were obtained from subjects ranging in age 

from three days to 18 years, who were undergoing a diagnostic lumbar puncture for 

conventional clinical indications such as suspected central nervous system infection or a 

neurological disorder. 

Whenever possible, 1 ml of each CSF sample was put aside for the present investigation. We 

were able to use 78 of the samples, selected according to the following criteria: no evidence 

of a neurological disorder, of inherited metabolic disease, or of malignant disease, and 

erythrocyte content < 100/μ1. Figure 2.1 shows the age distribution of these 78 subjects. 

number of patients 

U 

12 

10 

8 

2 

2 3 4 5 6 7 8 9 1 
α 

0 11 12 13 U 15 16 17 18 
age in years 

Figure 2.1 Age distribution of subjects. 

Group 1 (infants, ages 3 days to 12 months) consisted of 6 boys and 8 girls. 

The remaining 64 subjects (ages 3-18 years) consisted of 40 boys and 24 girls. 
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Extraction procedure 

The CSF samples were stored at -70° С until analysis. Just before analysis the samples were 

thawed, then deproteinized by adding 8 mol/l perchloric acid at 1/20 of the sample volume. 

After mixing, the samples were kept in crushed ice for 20 min and then centrifuged (9000 

χ g) for 5 min at room temperature. We precipitated the excess perchloric acid in the cold 

as potassium Perchlorate by adding a mixture containing 1 mol of potassium hydroxide and 

4 mol of dipotassium hydrogen phosphate per liter (this adjusted the pH range of the sample 

to 6.0-6.7). The volume of the mixture was approximately a tenth the volume of perchloric 

acid extract. After 15 min on ice, the neutralized extract was again centrifuged. We used the 

supemate for HPLC analysis. 

HPLC procedure 

For HPLC we used a Model SP 8000B liquid Chromatograph (Spectra Physics, Santa Clara, 

CA), connected to a cooled (4° C) automatic sampler (MSI660; Kontron, Electrolab, 

London, U.K.), and 250 χ 4.6 mm columns of Supelcosil (5-μΐτι particle size; Supelchem 

BV, Leusden, The Netherlands). Column temperature was 35° C, flow-rate was 0.7 ml/min, 

and the sample loop delivered 200 μΐ. Table 2.1 lists the mobile phase components and their 

proportions. All mobile phases were degassed by continuous purging with helium. Before 

use, we filtered the solutions through a Millipore filter (type HA, pore size 0.45 μπ\; 

Millipore Corp., Bedford, MA). 

Table 2.1 Composition of the Mobile Phase Used in the Modified HPLC procedure 

KHjP04, 0.1 mol/l Methanol, Distilled 
pH 4.5 500 ml/1 water 

assay 

time, min % of total volume 
0 98 2 0 
10 40 5 55 
20 40 7 53 
30 40 7 53 

_45 5 30 65 

The indicated mixtures are reached at the indicated time intervals 
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We monitored the column effluents at 254 and 280 nm, calculating concentrations from the 

peak areas at 254 nm. Comparisons were made with external standards included in the 

beginning of the run and periodically between the samples. 

Figure 2.2 shows a characteristic chromatogram of nucleosides and nucleobases. 

The minimum detectable concentrations of several purines and pyrimidines (jxmol/l) were: 

hypoxanthine and guanosine 0.01; cytidine, thymine and xanthine 0.04; and uric acid 0.08. 

Statistics 

Most substances displayed a gaussian distribution; we calculated their reference limits as the 

mean value ± 1.96 SD. For those substances for which more than half of the samples had 

values below the detection limit, we calculated sample-based upper percentiles (95 and 97.5 

percentiles) for the older children. Age and sex dependency of values was investigated by 

regression analysis. Results for groups I (3 days-12 months) and II (3-18 years) were 

compared by Student's r-test. We had no subjects between 12 and 36 months of age. 

The number of patients in group I is small, and we present their data only for the sake of 

comparison. 

2.4 Results 

Table 2.2 lists the reference values for the purine and pyrimidine bases and nucleosides in 

CSF of children. The results of the analysis of CSF of these 'normal' children show that two 

clusters of substances can be distinguished. One is usually detectable in measurable amounts 

and includes inosine, hypoxanthine, xanthine, uric acid, guanosine, uridine, uracil and 

cytidine. A second cluster of substances, only sometimes detectable, includes adenine, 

adenosine and thymine. 

In some cases cytidine, uric acid and uracil were difficult to measure because of insufficient 

separation. Therefore fewer values are reported for them. 

When comparing groups I (infants of age 3 days to 12 months) and II (children, ages 3-18 

years) we saw no statistically significant differences in reference values for most of the 

nucleobases and nucleocides, except for inosine, which is lower in infants. 
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A characteristic chromatogram of nucleosides and nucleobases in a CSF Figure 2.2 
sample. 

Compound 
Uracil 
Pseudouridine 
Uric acid 
Cytidine 
Hypoxanthine 

A characteristic с 

Retention time, s 
319 
367 
450 
559 
621 

Compound 
Xanthine 
Uridine 
Thymine 
Inosine 
Guanosine 

Retention time, s 
696 
811 
954 

1510 
1622 
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Chapter 2 

In children, none of the substances showed age-dependency except uridine and uric acid. 

Uridine concentration increases with age (fig. 2.3). Uric acid increases with age in boys 

jlder than 12 years; in this case there is also a sex-related difference (fig. 2.4). 

jridine in μιτηοΙ/Ι 1 

15-

10-

35 . 

3 0 - " 
• 

25 

2.0 - " · 

10-

0 5 f 

1 ι ι ι 1 — ι 1 1 1 1 1 1 1 1 1 1 1 ' ' ' ' ^ 

3 6 9 12 3 6 9 12 15 1Θ 
months years 

Figure 2.3 Changes in concentrations of uridine with age 

By linear regression, undine (μτηοΙ/Ι) (± SD) = 1.67 + ¡0.046χ age (years) (± 0.56)1 

The lines indicate mean ±1.96 SD. 

Although the number of specimens analyzed for uric acid in group I is small, there seems 

to be an age-related difference between the patients in group I and II. 

Three children had remakably high values for certain analytes. For example, a three-month-

old boy, the healthy brother of a child who died because of sudden infant-death syndrome, 

had high values for thymine (1.05 μιτιοΐ/ΐ). Other extensive examinations did not reveal any 

abnormalities. 
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Two children of age 7Ά and 10 years showed high values for adenosine (0.67 and 1.24 

μπΊθΙ/l, respectively); their only complaint was headache and all other test results were 

normal. The values for all the other components measured were within normal limits in these 

children. 

We also looked for correlations between metabolically related substances. For group Π, the 

Pearson correlation coefficient between hypoxanthine and xanthine was 0.49, between 

hypoxanthine and inosine 0.33, and between inosine and guanosine 0.38. 
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Figure 2.4 Sex- and age-related differences in uric acid concentrations 

For girls and for boys < 12 years, mean (± SD) concentration is 8.35 (± 4.94) μηιοΐ/l. For 

boys > 12 years, the concentration is described by the following linear regression equation: 

concentration (μτηοΙΙΙ) (± SD) = 8.35 μτηοΙΙΙ + 4.07[age (years) -12] (± 4.94). The lines 

indicate mean ± 1.96 SD. 
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2.5 Discussion 

Here we compare our results with those already reported in the literature, and comment on 

some of the striking results. 

Table 2.3 summarizes most of the reported data. With respect to the oxypurines it appears 

that our reference values for hypoxanthine and xanthine in children compare well with those 

found in adult controls by Eells and Spector [11] and Hällgren et al. [6]. Harkness and Lund 

[5] obtained higher values for younger infants. Inosine values in our group I have a smaller 

range than we found in group II or was found by Harkness and Lund [5]. 

Uric acid values have wide ranges in all studies. In children we found reference values with 

a mean value of 10.22 /лпоі/і, comparable with concentrations in CSF reported by Hällgren 

et al. [6]. Eells and Spector [11] reported higher control values in a group of 10 adults. From 

the age of 12 years we found a sex-related difference, boys having higher values than girls 

(fig. 2.4). After puberty, boys also have higher values than girls for uric acid in serum [16]. 

Hällgren et al. [6] did not find such a difference in adults. 

Uric acid can be regarded as a sensitive marker of blood-CSF barrier function, being a low-

molucular-mass substance that cannot be formed in cerebral tissue owing to the lack of 

xanthine oxidase (EC 1.1.3.22) in the brain [12]. This might explain its greater range in 

infancy as compared with the other nucleobases and nucleosides in CSF, because of the 

different rates of maturity of the blood-CSF barrier in the young. Values for uridine in CSF 

in our reference group of children compare well with control values in adults as reported by 

others [5, 11]. It was the only substance in our study that showed a linear increase with age, 

after the age of three years (fig. 2.3). 

In 29 normal children we also measured the concentrations of uridine in plasma, finding a 

similar increase with age as was found for CSF. Spector [14] described the choroid plexus 

as having an active-transport system from blood into choroid plexus and an efflux system for 

nucleosides out of choroid plexus into CSF. Our observations could be explained by these 

mechanisms. 
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Chapter 2 

As far as the other nucleobases and nucleosides are concerned, we could find no reliable CSF 

reference values in the literature. Only Eells and Spector [11] studied these substances in 

CSF, but they could not detect measurable amounts of cytidine, uracil, thymine, adenine or 

adenosine. In contrast, we found cytidine, uracil and guanosine in very low but measurable 

concentrations. Thymine, adenine and adenosine were detectable only in some cases. 

Not enough reference values for nucleobases and nucleosides are yet available for infants 

between one and three years. Our values for the ages three days to 12 months and for three 

years and older allow a cautious interpolation of values for infants between one and three 

years. 

In this study we obtained reference values for purines and pyrimidines in children of different 

ages. The availability of these values allows interpretation of CSF analyses of patients with 

different pathological conditions such as psychomotor retardation, epilepsy, CNS infections 

and other neurological disorders - perhaps leading to a better understanding of the role of 

purines and pyrimidines in CNS metabolism. 
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Chapter 3 

3.1 Summary 

One thousand specimens of CSF were collected from subjects ranging in age from 

newborn to 18 years, who were undergoing a diagnostic lumbar puncture. Sixty-two 

samples were judged retrospectively as being suitable for calculating age-related reference 

values. The analyses were performed by an amino acid analyser using ion-exchange 

chromatography with fluorimetrie detection giving a tenfold increase in sensitivity, 

thereby enhancing the diagnostic capabilities. As many as 36 known compounds could be 

detected, 10 peaks could not be identified. In children older than 3 years nine of the 

identified compounds showed age-dependency. We found 22 amino acids to be 

significantly higher in infants younger than 1 year, with only 7-aminobutyric acid being 

significantly lower in infants. Alpha-aminoadipic acid showed a sex difference, being 

slightly higher in girls. 

3.2 Introduction 

Several investigators have reported on amino acids in CSF of normal subjects [1-9] and in 

various neurological disorders [1, 9-12]. Limited information is available about normal 

values of amino acids in CSF in infancy [2, 9, 11] and childhood. Establishing these 

values is difficult: CSF aliquots of controls can hardly be obtained in childhood and these 

samples are often inadequately prepared as previously observed [13-14]. Application of a 

new, more sensitive, method for measurement formed an additional reason for 

determining reference values of amino acids in CSF in childhood. The concentrations of 

amino acids in CSF of 62 'normal' children at different ages (3 days-18 years) were 

measured by ion-exchange chromatography with fluorimetrie detection. This method has a 

much higher sensitivity than the conventional one using ninhydrin-detection. Using the 

latter Honda [9] found 17 compounds whilst Heiblim et al. [11] found 25 compounds. We 

were able, however, to measure accurately 36 known compounds including GABA and in 

addition to detect 10 unidentified peaks. 
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The aim of this study is to present extended reference values in infants and children. Age-

and sex-dependency have been studied too. The data presented are compared with those in 

the literature and will be used in further studies investigating amino acid metabolism in 

relation to brain function in various neurological disorders. 

3.3 Materials and methods 

Samples 

From 1983 to 1987 1000 specimens of CSF were obtained from patients ranging in age 

from 3 days to 18 years, who were undergoing a diagnostic lumbar puncture during the 

investigation of suspected meningitis or neurological disorders. 

Whenever possible, 1 ml of each CSF sample was put aside for the present investigation. 

We were able to use 62 samples for compiling reference intervals according to previously 

published criteria [15]: where there existed no evidence of a neurological disorder, of 

inherited metabolic disease, or of malignant disease, and erythrocyte content < 100 /μΐ, 

the spinal fluid showed a normal protein content and the number of white blood cells was 

normal. 

Sample preparation 

The CSF samples were kept frozen at -70° С until analysis. Just before analysis the 

samples were thawed, then deproteinized by adding 0.05 ml of a 3 mol/1 sulfosalicylic 

acid solution to 1 ml of the sample. The sulfosalicylic acid solution contains 180 ^mol/l 

norleucine as an external standard. After mixing, the samples were kept on ice for 10 

min, then centrifuged (3500 χ g) for 10 min at room temperature. The supernatant was 

centrifuged again for 10 minutes. We used 250 μ\ of the supernatant for analysis. 

Amino acid analysis 

Amino acids in CSF were determined using ion-exchange chromatography on an amino 

acid analyser (Biotronik LC 6000 or LC 6001, Biotronic, Frankfurt, FRG) according to 

the procedure advocated by the manufacturer with some modifications. 
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In order to increase the sensitivity of the method, the ninhydrin detection system was 

replaced by a fluorescence detection system using o-phthaldialdehyde (OPA) [16] as a 

reagent. A tenfold increase in sensitivity was obtained employing a Biotronik-fluorescence 

detector (BT 6630). Reaction time was reduced to 1.5 min and reaction temperature was 

changed from 100°C to room temperature. The column eluate and the reagent were mixed 

at a ratio 1:1 (35 mbh"1 each). To prepare buffer solutions lithium chloride was replaced 

by lithium citrate · 4H20. The same final lithium concentration was achieved as in the 

original procedure using ninhydrin. This modification was introduced because of 

impurities in the commercially available lithium chloride. Phenol in the buffer solution 

was also replaced by caprylic acid (0.1 nl-l"1). 

Statistics 

Amino acids concentrations displayed lognormal distributions, so reference intervals were 

calculated after logarithmic transformation. Age (children above 3 years) and sex-

dependency were investigated by linear regression analysis applied on the logarithmically 

transformed data. A separate comparison was made between infants and children by a t-

test (logtransformed data). 

3.4 Results 

The controls were subdivided into two age groups: group I, infants aged 3 days-12 

months, and group II, children aged 3-18 years. Not enough samples could be collected 

between 1 and 3 years. The reference values for the different compounds for both groups 

are given in table 3.1. A few compounds are not always detectable or only in trace 

amounts because of their low concentration. These compounds are: cystine, cystathionine, 

fl-alanine, hydroxylysine, 1-methylhistidine and homoarginine. Their values are given in 

table 3.2. In group I (infants ages 3 days-12 months) camosine could be measured only 

four times. 
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Table 3.2 Amino acids which are not always detectable; their frequence of absence 
md the number of healthy infants and children in which we were able to quantify the 
:oncentrations in CSF (in μΐηοΙ/Ι). 

Compound Group I (n = 12) Group II (n = 50) 

absent quantified concentrations absent quantified concentrations 
(n) (n) (n) (n) 

:ystìne 9 2 0.15,3.93 33 5 0.2,0.31,0.33, 
0.6, 1.04 

;ystathionine 3 0 18 5 0.12,0.37,0.5, 
0.64, 2.36 

»lanine 3 6 0.06,0.1,0.18, 44 1 0.07 

2 

0 

6 

10 

0 

0.15,3.93 

0.06,0.1,0.18, 
0.24, 0.29, 0.42 
0.05, 0.07, 0.08, 
0.11,0.19, 0.2, 
0.4, 0.58, 2.42, 
2.57 

33 

18 

44 

23 

7 

hydroxyzine 1 10 0.05,0.07,0.08, 23 6 0.05,0.08,0.11, 
0.15,0.78,4.06 

1 methyl-histidine 5 0 7 10 0.06, 0.07, 0.09, 
0.11,0.12,0.16, 
0.83,0.87, 1.03, 
1.14 

homoarginine 12 0 16 2 0.46, 0.59 

When comparing group I and II, there are some significant age dependent differences in 

reference values. Taurine, aspartate, threonine, serine, asparagine, glutamine, alanine, 

litrulline, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, ß-alanine, 

ethanolamine, tryptophane, ornithine, lysine, histidine, n-e-methyl-1 -lysine and 

homocamosine are significantly higher in infants (all ρ < 0.001, except glutamine: ρ = 

0.028, phenylalanine: ρ = 0.002, ethanolamine: ρ = 0.004, n-e-methyl-1-lysine: ρ = 

0.005 and homocamosine: ρ = 0.038). Gamma-aminobutyric acid (GABA) is the only 

compound which is significantly lower in infants (p < 0.001) (fig. 3.1). The other amino 

acids show no difference between both groups. 
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Within group II, nine amino acids show an age-dependency in childhood. Threonine, 

isparagine, glutamate, alanine, valine, methionine, leucine and lysine increase with age 

[all ρ < 0.01, except asparagine: ρ = 0.043). Homocamosine is the only compound 

measured which decreases with age (p = 0.015) (fig. 3.2). In none of the substances we 

find any sex differences, except for a-aminoadipic acid where females have slightly 

higher values than males (p = 0.047). 

We found 10 hitherto unidentified compounds. In group I, 4 and in group II, 6 of these 

ire always present. 

GABA 

1 . 0 

0 . 9 

0 . 8 

0 . 7 

0 . 6 

0 . 5 

0 . 4 

0 . 3 

0 . 2 

0 . 1 

0 . 0 
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• · · · 
. · 
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IM 
0 3 6 9 12 3 6 9 12 15 18 
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Figure 3.1 Concentrations of free у-атіпоЬшугіс acid in CSF as a function of age 

(μπιοΙ/Ι). The lines indicate mean, ρ 2.5 and ρ 97.5. 
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homocarnosine 
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Figure 3.2 Concentrations of homocarnosine in CSF as a Junction of age (μΐηοΙ/Ι). 

The lines indicate mean, ρ 2.5 and ρ 97.5. 

3.5 Discussion 

Normal values for amino acids in CSF are only rarely reported in literature, especially 

for young infants and children [2, 9, 11]. When published, these data have been collected 

from measurements using ion-exchange chromatography with the ninhydnne detection. 

Due to low concentrations of amino acids in CSF compared with serum, the sensitivity of 

this method is inadequate to measure accurately the concentration of those amino acids 

which are normally present in low amounts, e.g., GABA, homocarnosine, a-aminoadipic 

acid, ß-alanine, hydroxylysine and 3-methylhistidine. A few investigators have used 
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HPLC procedures with fluorimetrie detection to characterize CSF amino acid profiles [3, 

17]. This method, has a lower resolution, however, than our technique. These 

considerations prompted us to study the amino acid cerebrospinal fluid concentrations in a 

large group of children of different ages using a highly sensitive detection system 

involving fluorimetrie detection after post-column derivatization with o-phthaldialdehyde. 

Using this method we were able to measure more reliable the concentrations of a greater 

number of amino acids than previously reported, to include particularly compounds of 

special importance in cerebral metabolism like GABA and homocamosine. In addition, 10 

unidentified compounds could be detected using this fluorimetrie detection. In the near 

future attempts will be made to identify these compounds in order to increase the 

diagnostic potential of the procedure. Three of the unidentified compounds appear less 

frequently in infants which could be a reflection of cerebral immaturaty. 

We found the concentration of 22 amino acids to be higher in younger children. Liappis 

et al. [5] found in the youngest age group (1-24 months) higher values for 7 amino acids 

in boys but only serine in the case of girls when compared with the older age group (2-14 

years). In our study only GABA was lower in younger children. 

Using the present method we were able to measure accurately the concentration of 

GABA. Until now there have been only a few well documented studies on the 

determination of this very important inhibitory neurotransmitter [3, 17-20]. For young 

infants (0-12 months) we found similar values for GABA to those determined by 

Goldsmith et al. [19], whereas higher values were found by us for the older children. 

Goldsmith et al. [19] used a method based on reverse-phase liquid-chromatography with 

precolumn derivatization with OPA. They did not, however, deproteinize their samples 

because of the possible breakdown of conjugated GABA during deproteinization with 

sulfosalicylic acid. In spite of involvement of this deproteinization step in our procedure, 

we recorded comparable values for the youngest children. As far as age-dependency is 

concerned we can confirm the findings of Goldsmith et al. [19] about GABA 

concentration as being lower in children younger than 1 year. Hare et al. [20] found a 

downward trend with age in adult females. The higher GABA concentration in our group 

Π as compared with group I could be related to an increase of the activity of the primary 

GABA synthetic enzyme, glutamic acid decarboxylase (GAD) (EC 4.1.1.15), during early 

life. A tenfold increase of this enzyme during the first month of life has been established 
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in studies on developing rat brain [21,22], which is consistent with Purkinje cell 

maturation in the cerebellum and maturation of the GABA-ergic system. 

Little is known on age-dependency of amino acids in CSF of older children. As stated, 

we found a positive correlation with age for 8 amino acids. McGale [23] reported a 

positive correlation with age for only valine and glycine. His patients, however, aged 

10-69 years, had diffuse neurological syndromes. 

Within our group II, homocamosine was the only compound which decreased with age. 

Perry et al. [7,24] found much higher values for homocamosine in infants and children 

than in adults. Van Sande et al. [1] reported a significant decreasing trend with age for 

homocamosine. Takahashi [25] reported a rapid increase of homocamosine in CSF after 

birth until two years of age. Between 2 and 8 years the homocamosine level remains 

constant and after 9 years the homocamosine level decreases. Homocamosine is present 

only in the central nervous system. Increased homocamosine concentrations may occur in 

parallel with functional alteration of brain, especially of the cerebellum [25]. Several 

studies [13, 25-31] reported on the GABA-containing dipeptide homocamosine 

(γ-aminobutyrylhistidine) and the related precursor GABA. Despite this relationship we 

could not find a correlation in the present study. 

No sex differences were found in both groups, except for cx-aminoadipic acid, being 

slightly higher in females. McGale et al. [23] found higher values for leucine in males 

than in females (aged 10-70 years). Hagenfeldt et al. [8] investigated the concentrations of 

amino acids in CSF of adults and found the concentrations of ten amino acids to be higher 

in males. Females showed a higher concentration for histidine. All these subjects were 

healthy adult volunteers and age was not taken into account. Ferrara and Hare [3] report 

sex differences for three amino acids, but not consistent with other authors. Liappis et al. 

[5] reported higher values for only lysine in boys (age 1-24 months) with no sex 

differences being found in the group from 2-14 years. In this study 149 children were 

investigated who were selected using critria similar to our own. 

The divergent findings reported in literature can be ascribed to differences in 

methodology (especially concerning method sensitivity, deproteinization procedure and 

storage of the samples) and to selection of the control subjects. We have to stress the 

importance of strict criteria for selecting control groups, acknowledging that collecting a 

sufficient number of samples is hindered by ethical considerations and practical problems. 
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We are convinced that our results are a valuable addition to reference values for amino 

acids in CSF in childhood. Our method also confers the possibility of improving 

diagnostic capabilities. 
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4.1 Abstract 

Three children with the late onset form of argininosuccinic aciduria are presented. The 

first two are sisters. The clinical features are characterized by mild retardation and ataxia, 

complicated by episodes of hyperammonemia. All patients showed elevated concentrations 

of argininosuccinic acid and its anhydrides in all body fluids, most pronounced in 

cerebrospinal fluid (CSF). Moreover, in Cases 1 and 2, we found elevated concentrations 

of pseudouridine and uridine limited to CSF, which was not reported before. In Case 3, 

with some residual activity of argininosuccinate lyase (ASL), we found normal values of 

these compounds. In urine we found elevated concentrations of uracil in Cases 1 and 2, 

and orotic acid in Case 2. Plasma showed an elevated concentration of orotic acid in all 

three patients, uracil was elevated in Case 2, cytidine was elevated in Cases 2 and 3. The 

results are being discussed and indicate that CSF values of pyrimidines reveal new 

biochemical abnormalities of brain tissue in urea cycle disorders. 

4.2 Introduction 

Argininosuccinic aciduria (ASA-uria) is a rare inherited disorder of metabolism, 

characterized by increased concentration of argininosuccinate and its anhydrides, and 

citrulline in tissues and body fluids, as well as by mild to marked hyperammonemia. The 

defect is an absent or decreased activity of argininosuccinase (= argininosuccinic lyase = 

ASL·) (EC 4.3.2.1), the fourth sequential enzyme in the urea cycle. The enzyme is 

essential for the conversion of argininosuccinic acid into arginine and fumarie acid (fig. 

4.1). 

The patient population shows a genetic heterogeneity and reveals two variants of ASA-

uria: the neonatal type, and the late onset type [4]. In the first variant symptoms including 

lethargy, poor feeding, tachypnea and seizures may appear within 48 hours after birth, 

often progressing rapidly to death within a few days. Patients with the second variant 

show symptoms later on in infancy or childhood. Some patients present with mental 

retardation and intermittant ataxia. There are also some infants with ASA-uria, which are 

completely asymptomatic [4]. 

63 



benzoate в 

Y 

MITOCHONDRION 

serine 5'10'THF 

I 
glycine 

hippurate 

carbamyl phosphate *orotate 

ornithine OTC citrulline 

aspartate 

CYTOSOL 
fumarate 

Figure 4.1 The normal urea cycle. In ASA the cycle is blocked at step 4. 

The abbreviation ag denotes acetylglutamate (a cefaclor for carbamylphosphate synthetase 

(CPS)); AL, argininosuccinase; AS, argininosuccinate synthetase; OTC, ornithine 

transcarbamylase; 5'10'THF, S'IO' methylene tetrahydrofolate; and GC, glycine cleavage 

complex. The excretion products are shown in the boxes. The open circle in the 

mitochondrial membrane denotes an ornithine transporter. Adapted from Batshaw et al. 

Ρ]. 
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Studies suggest biochemical heterogeneity of the disease [8, 11]. Mclnnes et al. [9] 

abserved extensive interallelic complementation in ASL deficiency, proving the presence 

af at least 12 allelic mutations and indicating extensive genetic heterogeneity of ASA-uria 

[9]. Immunoblot analysis showing a wide variation in the amount and size of ASL cross-

reactive material confirms this heterogeneity at protein level [17]. 

At DNA-level Barbosa et al [2] observed multiple mutations. ASA-uria is one of the few 

aminoacidopathies in which abnormal cerebral accumulation of amino acids is more 

pronounced than in serum [15]. 

New and more sensitive techniques enabled us to study purines and pyrimidines, and 

amino acids more accurately in CSF [5, 7]. In this paper, we report three cases of the 

late onset type of ASA-uria, two of them are sisters. Clinical and biochemical features 

will be discussed with special emphasis on CSF findings of amino acids and pyrimidine 

contents, in order to get a better insight in the cause and severity of the clinical symptoms 

reported in this disease. 

4.3 Case reports 

Case 1 

The first child of healthy unrelated parents, was referred to our hospital at an age of 5 xh 

years. Her psychomotor development was slightly delayed, she walked at an age of 19 

months. She was clumsy and fell down easily and her hands showed a tremor. There 

were no behaviour problems. Neurological examination revealed an atactic gait and ari 

intention tremor. Her score at the WISC-R intelligence test was 71. Ammonia was 

slightly elevated with 66 μιποΙ/1 (normal < 50 /tmol/1). Laboratory findings revealed tht 

diagnosis of ASA-uria (see Results). 

Case 2 

A sister of the first patient was subsequently referred at the age of 16 months because ol 

hypotonia and tremor. She was half of a not identical twin. Psychomotor development 

showed no delay. Neurological examination revealed hypotonia, an intention tremor and 

atactic hand movements. Laboratory findings revealed an increased ASA excretion. She 
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received a protein restricted diet (maximum protein intake 2.5 g/kg/day). ASA, however, 

remained elevated in urine. One year later she was admitted subcomatous after a period 

of diarrhoea and refusal of feedings. Laboratory findings, revealed a hyperammonemia 

(120 μπιοΐ/ΐ) and grossly elevated concentrations of ASA and its anhydrides. With 

intravenous rehydration and caloric supplementation she recovered. 

Case 3 

The child of healthy unrelated parents was already known because of growth retardation 

(length 10 cm < ρ 10). On the age of 5 years she was admitted for further diagnostic 

evaluation because of mild psychomotor retardation. Clinical examination showed frontal 

bossing, a short stature, and no neurological abnormalities. Laboratory findings revealed 

a normal concentration of ammonia (14.7 μηιοΐ/ΐ) and a clearly elevated excretion of ASA 

and anhydrides. No cause for the growth retardation was detected. Protein reduced diet 

(maximum protein intake 1.5 g/kg/day) lowered the concentration of ASA, without a 

beneficial effect on length growth. 

4.4 Materials and methods 

ASA and its anhydrides as well as other amino acids were determined in urine, plasma 

and cerebrospinal fluid (CSF). Pyrimidines were determined in urine, plasma and CSF. 

ASL activity was measured in liver tissue and in fibroblasts. 

Amino acid analysis 

Amino acid analyses in urine and plasma have been performed on a LKB alpha plus 

amino acid analyser according to the procedure of the manufacturer. Amino acids in CSF 

were determined on a Biotronik LC 6001 amino acid analyser using fluorescence 

detection as described earlier [7]. 
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Pyrimidine analysis 

Pyrimidines in urine, plasma and CSF were determined by high performance liquid 

chromatography according to a previously published method [5] and compared with 

normal values of purines and pyrimidines in CSF described earlier [6]. 

Enzyme assays 

Enzyme assays were performed according the method of Shin et al. [16]. This assay was 

validated according to normal laboratory procedures. 

4.5 Results 

Amino acids in urine, plasma and CSF 

In all three body compartments we found elevated concentrations of ASA and its 

anhydrides in all three patients. ASA and its anhydrides can not be quantified, because 

they are being interconverted during amino acid analysis. After performing acid 

hydrolysis, however, we were able to compare the total amount of ASA and anhydrides in 

CSF and serum. In CSF we found relatively more elevated concentrations of ASA and 

anhydrides as compared with plasma. We found a CSF-plasma ratio of 2.3 (Case 1). 

Further results concerning other compounds are presented below per patient. 

Case 1 showed in urine a clearly elevated excretion of citnilline (216 μιποΙ/g creatinine, 

normal: 24-45). In plasma glutamine and citnilline were elevated. In CSF we found 

elevated concentrations of aspartic acid, citnilline, ethanolamine, tryptophane and 

histidine. 

Case 2, sampled during a period of hyperammonemia, showed in urine only slightly 

elevated citnilline excretion (59 /imol/g creatinine). In plasma glutamine, alanine and 

citnilline were elevated. In CSF we found elevated concentrations of serine, asparagine, 

α-aminoadipic acid, citnilline, methionine, tyrosine, histidine, n-e-methyl-I-lysine and 

homocamosine. 

Case 3 showed a normal excretion pattern of amino acids in urine. In plasma citnilline 

was elevated. In CSF we found elevated concentrations of citnilline and homoarginine. 

Table 4.1 shows serum levels of amino acids, table 4.2 shows CSF levels of amino acids. 
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Table 4.1 Concentrations (μτηοΙ/Ι) of some relevant amino acids in serum of three 

patients with ASA-uria. 

Case no. 

glutamine 

alanine 

citrulline 

normal 

464 - 728 

150 - 694 

7 - 55 

1 

1061 t 

251 

333 Τ 

2 

2986 t 

900 t 

96 t 

3 

526 

355 

62 t 

Pyrimidines in urine, plasma and CSF 

Case 1 showed an uraciluria of 29.7 ¿tmol/mmol creatinine (normal < 8 /imol/mmol 

creatinine). Other pyrimidines were normal in urine. In plasma orotic acid and uridine 

were elevated (table 4.3). In CSF of Case 1 we found elevated concentrations of 

pseudouridine and uridine (table 4.3). 

Case 2 showed a clearly increased excretion of uracil (782 μΓηοΙ/mmol creatinine, normal 

< 8) and orotic acid (60 /xmol/mmol creatinine, normal < 0.02) during a period of 

hyperammonemia. Other pyrimidines showed normal values in urine. In plasma orotic 

acid was elevated, cytidine, uridine and uracil were slightly elevated. In CSF of Case 2 

we found elevated concentrations of pseudouridine and uridine (table 4.3). 

Case 3 had normal excretion of pyrimidines. In plasma orotic acid was elevated, cytidine 

was slightly elevated. In CSF of Case 3 we found normal concentrations of pyrimidines. 

Uracil, cytidine and orotic acid, elevated in urine and plasma, showed normal values in 

CSF of all three patients (table 4.3). 

ASL activity in tissues 

In Case 1 ASL activity in liver amounted to 0.001 μπιοί·min"1 ·mg'protein (normal 

0.006-0.020). In Case 3 ASL activity in cultured fibroblasts was 0.006 ^mobmin'-mg" 

'protein (normal 0.020-0.027). 
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Table 4.2 Amino acid 

ma. 

dase no. 

aurine 

phosphoethanolamine 

ispartic acid 

threonine 

serine 

asparagi ne 

м-aminoadipic acid 

|lycine 

alanine 

citrulline 

of-aminobutyric acid 

valine 

methionine 

cystathionine 

isoleucine 

leucine 

tyrosine 

phenylalanine 

γ-aminobutyric acid 

ethanolamine 

hydroxylysine 

tryptophane 

ornithine 

lysine 

histidine 

n-e-methyl-1-lysine 

3-methyl-histidine 

homocamosine 

arginine 

homoarginine 

concentrations (μΐηοΐ/l) in 

normal 

4 

3 

2 

14 

21 

3 

0 

3 

13 

1 

1 

9 

1 

3 

7 

5 

4 

0 

9 

1 

2 

10 

9 

0 

0 

2 

13 

- 9 

- 7 

- 4 

- 41 

- 44 

- 8 

- 1 

- 8 

- 31 

- 2 

- 5 

- 18 

- 4 

-

- 6 

- 16 

- 13 

- 14 

- 1 

- 26 

-

- 4 

- 6 

- 28 

- 19 

- 7 

- 1 

- 11 

- 31 

-

1 

6.9 

5.8 

4.7 

23.8 

38 

-

0.9 

5.6 

19.1 

18.6 

2.5 

11.4 

3.8 

-

2.4 

-

12.7 

8.5 

0.9 

26.8 

0.2 

6.1 

3.9 

16.9 

20.1 

6.7 

0.6 

10.4 

11.3 

-

t 

t 

t 

t 

t 

CSF of three 

2 

2.8 

4.3 

-

20 

52 

13 

1.1 

4.7 

27.4 

10.1 

3.3 

10.7 

12.7 

-

3.2 

7.2 

16 

13.9 

< 0.02 

20.1 

0.2 

1.4 

1.1 

10.7 

44.6 

7.9 

0.5 

16.6 

6.6 

-

t 

t 

t 

t 

t 

t 

Τ 

t 

t 

patients with ASA-

3 

7.9 

2.3 

3.0 

29 

37 

8 

0.5 

4.8 

28.1 

5.0 Τ 

2.7 

13.8 

3.8 

0.2 

5.2 

11.1 

9.7 

8.9 

0.8 

13.3 

0.02 

3.5 

3.9 

18.7 

12.3 

4.2 

0.2 

5.1 

21.0 

0.7 t 

ffí 



Table 4.3 Purines and pyrimidines in CSF and plasma of patents with ASA, values 
in μηΛοΙ/Ι. 

Case no. 

CSF values: 
pseudouridine 
cytidine 
undine 
inosine 
orotic acid 
uracil 

plasma values: 
pseudouridine 
orotic acid 
cytidine 
undine 
inosine 
uracil 

normal 

0 
0.96 
0.14 

0 

0.5 

0.5 

< 0.02 
- 0.72 
- 3.28 
- 0.86 
< 0.02 
- 2.62 

- 26.2 
< 0.02 
< 2 
- 5 
< 1.5 
< 2 

1 

1.00 t 
0.28 
3.43 t 

< 0.02 
< 0.02 
< 0.02 

7.43 
6.10 t 
1.67 
4.48 
0.43 
1.05 

2 

0.68 t 
0.28 
6.96 t 
0.69 

< 0.02 
< 0.02 

8.64 
3.22 t 
2.12 t 
5.33 t 
0.49 
2.03 Î 

< 
< 

< 
< 

3 

0.02 
0.02 
2.13 
0.70 
0.02 
0.02 

4.25 
3.25 t 
2.39 t 
1.61 
0.43 
0.03 

4.6 Discussion 

The clinical features of our patients are characterized by the presentation of mild 

symptoms during childhood. The only symptoms are mild retardation and ataxia. Case 3 

showed a growth retardation, but it is unlikely that this can be ascribed to the ASA-uria. 

Cases 1 and 3 were discovered during a routine screening because of a mild retardation. 

They never suffered from episodes of hyperammonemia and subsequent clinical signs of 

metabolic dysregulation, which are characteristic for this inherited metabolic disorder. 

Case 2 was suspected to be suffering from ASA-uria because of a positive family history. 

She was the only one suffering an episode of hyperammonemia with clinical symptoms of 

a metabolic dysregulation. The variability of ASA-uria, in age of onset, severity, and 

degree of residual enzyme activity is large [4]. This explains the absence of clinical 

symptoms in Case 3, having a residual enzyme activity in fibroblasts. In this patient the 

citmlline concentration in blood and CSF was only mildly elevated. 
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Hyperammonia results in increased de novo synthesis of pyrimidines. The increased 

carbamylphoshate, synthesized in mitochondria, cannot be fully utilized by the urea cycle. 

Hence, the excess carbamylphosphate leaks into the cytosol where it serves as a source 

for pyrimidine biosynthesis, leading to an increased flux for pyrimidine synthesis in the 

cytosol. 

We found an increased excretion of uracil in Cases 1 and 2, and orotic acid in Case 2. 

This can be an expression of increased plasma level. In ASA-uria Naylor and Cederbaum 

[10] mentioned the presence of orotic aciduria and reported it as an unpublished 

observation. Van Gennip et al. [21] reported slightly elevated urinary levels of orotic 

acid. In the latter report uracil, uridine and pseudouridine were within the normal range 

in patients' urine. 

To our knowledge, CSF contents of pyrimidines have not been reported before in an urea 

cycle defect. We were particularly interested in the CSF concentrations of pyrimidines, 

because the urea cycle is present in brain [19]. Abnormalities in CSF may more 

accurately reflect the diversity of the clinical symptoms. In ASA-uria the concentration of 

ASA and its anhydrides in CSF is found to be twice to four times that noted in plasma 

[15]. We found a ratio of 2.3. 

The most striking result in our study is an elevated concentration of pseudouridine in CSF 

in Cases 1 and 2, the patients with the lowest ASL activities. In Case 3, having a 

substantial residual activity we found no pseudouridine. Normally pseudouridine is not 

detectable in CSF. Pseudouridine is a t-RNA catabolyte and its excretion in urine is 

related to growth rate or cell turnover and can be associated with tissue destruction [14]. 

In chronic diseases, in which cell turnover is assumed to be higher than normal, 

pseudouridine excretion is increased [12]. Moreover, in both patients a moderately 

elevated concentration of uridine was demonstrated in CSF. 

Phosphoribosylpyrophosphate (PRPP) is a substrate for purine as well as pyrimidine de 

novo synthesis. Thus, increased pyrimidine de novo synthesis results in a shift of PRPP 

available away from the purine pathway and can conceivably result in decreased purine 

biosynthesis. In rat liver high levels of ammonia clearly stimulated pyrimidine de novo 

synthesis and inhibited purine de novo synthesis. In rat brain, UMP synthesis by the de 

novo pathway was also stimulated by high ammonia, although purine de novo sythesis 

remained constant. As the liver provides a major portion of purine nucleotides for the 
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brain, a decrease in purine biosynthesis in liver could influence brain nucleic acid 

synthesis. 

A decreased rate of purine nucleotide biosynthesis could at least partly explain the 

retardation of growth seen in infants and children with chronic hyperammonia [18]. The 

pyrimidine de novo pathway is the predominant route in pyrimidine nucleotide 

biosynthesis [20]. However, two pyrimidine biosynthetic pathways exist, the de novo and 

the salvage pathway, which utilizes exogenous nucleosides. Uridine kinase is a major 

enzyme of the salvage pathway. Uridine is converted into UMP by this enzyme. The 

conversion is ATP dependent. As mentioned, hyperammonia can result in increased 

pyrimidine de novo biosynthesis, e.g. increased UMP, and decreased purine biosynthesis, 

e.g. depleted ATP. Both, elevated UMP and depleted ATP, may account for a lower 

conversion of uridine into UMP by uridine kinase. This may explain the elevated uridine 

levels observed in CSF. Uridine has been described to have anticonvulsant effects in 

animals with experimental seizure phenomena, indicating that this compound may play a 

role of importance in regulating nervous system activity [13]. 

Elevations of uracil and orotic acid, demonstrated in urine (uracil in Cases 1 and 2, and 

orotic acid in Case 2) and plasma (uracil in Case 2 and orotic acid in all three patients), 

were not present in CSF of all three patients. Regarding the uridine elevation in CSF, it 

puzzles us why this is not resulting in an uracil elevation in CSF. The presence of 

isoenzymes of uridine kinase offers an explanation. Four types of uridine kinase are 

known [1], and one form is present in rat brain. 

It can be concluded that CSF values of pyrimidines in ASA-uria and probably other urea 

cycle disorders reveal new biochemical abnormalities of the brain tissue. 
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Chapter 5 

5.1 Abstract 

Chronic renal failure during childhood may be associated with delayed cognitive 

development. From 10 children with chronic renal failure, aged 2-59 months, plasma and 

cerebrospinal fluid (CSF) purines and pyrimidines have been determined. A marked 

increase of pseudouridine and cytidine was demonstrated in CSF of 10 and 8 children, 

respectively. The plasma concentration of pseudouridine was increased in a varying 

degree to a maximal value of more than 10 times the upper limit of normal. The plasma 

concentration of cytidine showed only moderately elevated values. In 3 children the study 

of CSF and plasma was repeated 6 weeks after the start of continuous ambulatory 

peritoneal dialysis. The abnormal concentrations of pseudouridine and cytidine were still 

present in CSF and plasma. Further studies are necessary to elucidate the cause of this 

unknown biochemical aberration of the central nervous system. 

5.2 Introduction 

Chronic renal failure in infancy and childhood can be associated with delayed cognitive 

development. This delay in development remains as yet unexplained. Extensive studies in 

adults fail to explain adequately the effects of uremia on the central nervous system [1-3]. 

A high incidence of neurodevelopmental disturbances in uremic children have been 

reported by several authors [4, 5]. To evaluate uremic encephalopathy many approaches 

have been applied. Neuro-electrophysiological, psychological and biochemical studies in 

cerebrospinal fluid (CSF) have been performed. In the latter, amino acid derangements 

and imbalance of neurotransmitters are the most striking features [1]. It is, however, 

unknown if and to what extend these derangements give rise to the clinical features of 

uremic encephalopathy. Studies explaining the pathogenetic role of chronic renal failure in 

neurodevelopmental dysfunction in childhood are still lacking. In the only study related to 

purine and pyrimidine metabolism an increased concentration of pseudouridine was found 

in serum of adult patients undergoing continuous ambulatory peritoneal dialysis (CAPD) 

[6]. We investigated the content of purines and pyrimidines in CSF and plasma of 10 

children with chronic renal failure. The concentration in CSF is a better reflection of 
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cerebral metabolism than the plasma concentration, as the concentration in CSF is in 

equilibrium with the brain interstitial fluid. 

5.3 Materials and methods 

From 10 children with chronic renal failure, aged 2-59 months, plasma and CSF samples 

were collected for determining the content of purines and pyrimidines. This study was 

approved by the local ethical comittee. Some clinical features of these patients are 

summarized in table 5.1. Three of them (nrs. 2, 5 and 8) were treated by CAPD a few 

months later. From these patients samples of plasma and CSF were collected a second 

time after CAPD therapy for at least six weeks, in order to study the possible effect of 

CAPD on the content of purines and pyrimidines. 

Table 5.1 Some clinical and laboratory features of the patients. 

patient age 
no. months 

clearance of 
Creatinin 
ml/min/1.73 m2 

1 2 
2 2 
3 7 
4 8 
5 8 
6 8 
7 8 
8 26 
9 32 
10 59 

serum 
Creatinin 
/imol/l 

83 
275 
384 
75 

286 

137 

204 

500 

869 

485 

24.0 
7.5 
6.6 

32.9 
9.9 

19.8 
12.3 
7.2 
3.7 
8.0 

underlying disease 

renal dysplasia 
urethral valves 
renal dysplasia 
renal dysplasia 
urethral valves 
renal dysplasia 
renal dysplasia 
urethral valves 
glomerulosclerosis 
glomerulosclerosis 
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Purines and pyrimidines were determined by high-performance liquid chromatography 

according to a previously published method [7] and compared with normal values of 

purines and pyrimidines in CSF described before [8] and with control children for 

plasma. Heparinized plasma was centrifuged immediately after venipuncture. 

Table 5.2 Concentrations (μπιοΐ/l) of pseudouridine (normal < 0.02) and cytidine 

(normal < 1.07) in CSF of patients with chronic renal failure before (n = 10) and after 

(n = 3) start of CAPD. 

Patient 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

age, months 

before 

2 

2 

7 

8 

8 

8 

8 

26 

32 

59 

after CAPD 

6 

19 

28 

Pseudouridine 

before after CAPD 

12.7 

37.8 

17.3 

9.8 

12.0 

21.4 

6.8 

28.8 

25.9 

10.9 

36.4 

21.5 

14.2 

Cytidine 

before after CAPD 

11.2 

14.7 

4.2 

10.8 

5.1 

10.0 

9.3 

13.6 

0.50 

0.47 

13.3 

11.8 

8.7 

5.4 Results 

A typical chromatogram of CSF from a patient with chronic renal failure is shown in fig. 

5.1. For comparison, a chromatogram of a control patient is shown in fig. 5.2. 

In all children a marked increase of pseudouridine was found in CSF with values ranging 

from 6.8-37.8 /imol/1 (normal < 0.02 jimol/l) (table 5.2). In plasma collected at the 

same time as CSF elevated values for pseudouridine were observed in 6 out of 7 patients, 

with values ranging from 34.6-355 μπ\οΙ/1 (normal 0.5-26.2) (table 5.3). 
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Table 5.3 Plasma values of purines and pyrimidines in patients with chronic renal 

failure (n = 7, range in μτηοΙ/Ι). 

uracil 

pseudouridine 

uric acid 

cytidine 

hypoxanthine 

xanthine 

uridine 

inosine 

control 

children 

< 2 

0.5-26.2 

120-400 

< 2 

< 4 

< 2 

0.5-5 

< 1.5 

1 

3.1 

25.5 

522 

2.6 

15.8 

3.8 

6.7 

1.45 

2 

2.2 

73.4 

648 

1.4 

21.6 

4.9 

3.8 

0.80 

5 

4.0 

40.5 

873 

3.1 

15.9 

3.5 

3.1 

0.94 

patients 

7 

0.85 

34.6 

431 

2.9 

10.8 

2.4 

4.1 

0.63 

8 

3.3 

45.8 

556 

2.9 

6.6 

2.8 

6.4 

0.90 

9 

< 0.10 

255 

446 

5.4 

20.4 

6.9 

2.24 

10 

0.47 

355 

232 

2.2 

6.8 

2.6 

3.2 

3.68 

In 8 out of 10 children we also found a marked increase of cytidine in CSF with values 

ranging from 4.2-14.7 μιτιοΐ/ΐ (normal value < 1.07 μπ\ο\Ι\). Plasma also showed 

moderately elevated values for cytidine in 6 out of 7 patients, with values ranging from 

2.2-5.4 μπιοΐ/ΐ (normal < 2 μιηοΐ/ΐ). The increase of the concentration of pseudouridine 

and cytidine in CSF in 3 patients remained present after CAPD treatment was instituted 

for a period of at least 6 weeks (table 5.2). 

Concerning the other purine and pyrimidine compounds measured in CSF, the following 

results were obtained (table 5.4); uridine showed in 3 out of 10 cases slightly decreased 

values in CSF and in patient nr. 4 a substantial decrease. Increased values to a varying 

degree were observed in CSF in 3 cases for hypoxanthine, in 5 cases for xanthine and in 

5 cases for inosine. Except for patient nr. 10, in whom both xanthine and inosine were 

increased, all other patients (with the exception of nr. 5) showed an increase in either one 

of both compounds. Uracil, uric acid, guanosine, adenosine, adenine and thymine showed 

normal values in CSF. 
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Table 5.4 Concentrations (μ/nol/l) of other purines and pyrimidines in CSF of 

patients with chronic renal failure. 

patient Hypoxanthine Xanthine Uridine Inosine 

no. (0.64-4.12) (0-4.16) (0.33-3.71) (0.15-0.59) 

3.95 

3.78 

1.97 

3.45 

1.45 

4.74 

2.55 

3.61 

6.62 

5.05 

7.25 

5.62 

2.35 

6.55 

1.88 

1.74 

1.55 

6.08 

3.74 

4.23 

0.37 

0.20 

1.52 

0.12 

0.29 

0.72 

0.52 

0.29 

2.19 

1.86 

0.40 

0.54 

0.69 

0.25 

0.54 

0.87 

0.69 

0.40 

1.33 

0.97 

Values in parentheses indicate normal range. 

Plasma values of the mentioned compounds were normal in the 7 patients measured, 

except for uric acid, hypoxanthine and xanthine which showed elevated levels in plasma 

(table 5.3). Four out of 7 patients showed an elevated level of uracil in plasma. Two 

patients showed an elevated level of uridine, 2 patients showed an elevated level of 

inosine. 

Moreover, we found in the chromatograms of CSF of all patients a large still unknown 

compound (fig. 5.1). This unknown compound was also present in plasma. 
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time (min) 

Figure 5.1 A typical chromatogram of CSF from a patient with chronic renal 

failure. Peak identification: 1 = pseudouridine; 2 = uric acid; 3 = cytidine; 4 = 

hypoxanthine; 5 = xanthine; 6 = uridine; 7 = unknown; 8 = inosine. 

5.5 Discussion 

The most outstanding result in our study of CSF was the strong increase of the 

concentration of pseudouridine in all patients and of cytidine in 8 out of 10 patients. 

Pseudouridine, a t-RNA catabolite, is associated with tissue destruction. Pseudouridine 

excretion in urine is also more generally related to growth rate or cell turnover and was 

thought to be a possible tumor marker [9]. In chronic diseases, in which cell turnover is 

assumed to be higher than normal, pseudouridine excretion is increased [10]. 
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Time, min 

Figure 5.2 A normal chromatogram of CSF of a healthy child. 

Peak identification: 1 = uracil; 2 = uric acid; 3 = cytidine; 4 = hypoxanthine; 5 = 

xanthine; 6 = uridine; 7 = unknown peak; 8 = inosine. 

Pseudouridine excretion gradually decreases with age, with a rapid fall in the first year of 

live [11, 12]. Schoots et al. [6] and Schoots [13] demonstrated high pseudouridine 

concentrations in serum from CAPD patients but not in serum of patients treated with 

hemodialysis. 

They suggested two possible explanations for this phenomenon: nonclinical peritonitis 

accompanied by cell death or increased protein synthesis in CAPD patients. Both these 

conditions are associated with a higher t-RNA turnover. Our observations leave no role 

for CAPD in the elevation of pseudouridine because this increase remains elevated. 
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Secondary effects associated with the derangement state of uremia formed their second 

speculation. The enormous increase of pseudouridine in CSF (factor 1,000) compared to 

the increase in plasma (factor 10) suggests a cerebral abnormality in our patients. 

The much greater increase of cytidine in CSF, resulting in a much higher concentration in 

CSF compared to plasma, indicates that the metabolic disturbance related to cytidine is 

more pronounced in cerebral tissue. The high cytidine elevation in CSF of uremic patients 

resulting in a concentration surpassing the plasma concentration points to a hitherto 

unknown biochemical disturbance of the central nervous system. We cannot explain why 

cytidine is not elevated in the 2 oldest children. It is possible that maturation effects 

would explain this discrepancy, which would mean that younger children show greater 

derangements, or less probably it could be related to the diagnosis of dysplasia. In 

patients with severely disturbed renal function and urethral valves renal dysplasia is a 

common feature. A secondary inhibition of a metabolic pathway specific to cerebral tissue 

might explain the increase of cytidine. Inhibition of an isoenzyme involved in the 

metabolism of cytidine and located mainly in the cerebrum could offer such an 

explanation [14]. Four types of enzymes of uridine-cytidine kinase (EC 2.7.1.48) are 

known [15]. Type four is the form present in rat brain and is a tetramer of the first form. 

This enzyme could be more susceptible to the influence of abnormalities observed in 

uremia such as increase of phenolic acid and aromatic or alifatic amines or intracellular 

calcium content [1]. It is remarkable, however, that uridine is normal or slightly 

decreased in CSF, suggesting an influence on cytidine-deaminase (EC 3.5.4.5) activity. It 

is known that cytidine nucleotides are involved as cofactors in phospholipid metabolism in 

brain [16]. In brain, cytidine is converted in vivo into CMP, and by a stepwise 

mechanism to CDP, CTP (fig. 5.3), and finally to ethanolamine and choline cytidine 

nucleotides [17]: CDP-ethanolamine is the limiting factor for cephalin synthesis and CDP-

choline is the limiting factor for lecithin sythesis [16]. We wonder whether the 

disturbance of pyrimidine metabolism could result in an impaired cognitive development. 

Our results indicate that, if the pyrimidine disturbances are involved in the impaired 

cognitive development, CAPD will not influence this cognitive development. 

Concerning purine metabolism, we observed constant elevated plasma levels of xanthine, 

hypoxanthine and uric acid (table 5.3). It is well known that uric acid is elevated in serum 
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in impaired renal function. An increase in plasma levels of hypoxanthine ала xanthine can 

be expected when the renal function is disturbed. 

Normally these substances are regulated by glomerular filtration and tubular reabsorption 

[18]. The constant elevation of these compounds, however, was not reflected by a 

constant increase in CSF. Uric acid was even normal in CSF. These findings are 

consistent with the very high and very low concentration of hypoxanthine-guanine 

phosphoribosyltransferase and xanthine oxidase, respectively, in brain parenchyma [19]. 
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Figure 5.3 A schematic representation of pyrimidine metabolism. 

1 = Uridine-cytidine kinase; 2 = Cytidine deaminase. 
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6.1 Abstract 

Chronic renal failure (CRF) is associated, especially in young children, with delayed 

cognitive development of unknown origin. As cerebrospinal fluid (CSF) reflects the 

composition of the extracellular fluid of the brain, not only plasma but also CSF amino 

acids concentrations were determined in 8 infants (age 2-8 months) and 3 children (age 

26, 32 and 56 months) with CRF (creatinine clearance 13 ± 9 ml/min/1.73m2). In three 

of these children investigations were repeated after six weeks of CAPD treatment. 

In the infants, a significant decrease was found in CSF of α-aminobutyric acid, valine, 

isoleucine, leucine, tyrosine, tryptophane, histidine and n-e-methyl-l -lysine, whereas there 

was a significant increase of 3-methylhistidine. In plasma serine, valine, leucine, tyrosine, 

and histidine were significantly decreased, whereas there was a significant increase of 

aspartic acid, citrulline, and 3-methylhistidine. 

These abnormalities remained constant after the start of CAPD except for the 

normalisation in CSF and plasma of 3-methylhistidine. 

These data indicate a generalized disturbance of amino acids in young children with CRF. 

An abnormal substrate is offered to the neurons and astroglia in children with CRF. 

6.2 Introduction 

Chronic renal failure (CRF) can be associated with delayed cognitive development in 

children [1-4], the exact cause of this delay being still unknown [S]. It has been assumed 

that infants are more susceptible to develop an uraemic encephalopathy, because of the 

significant growth and maturation of the brain that occurs during the first years of life 

[4]. Besides electrophysiological and psychological aspects, several investigators examined 

the relationship between amino acid concentrations in urine, plasma and muscle cells in 

chronic renal disease [6-8]. Cerebrospinal fluid (CSF) studies - the clinician's access to 

the brain - however have only been performed in adults [2, 5, 9, 10]. We already carried 

out CSF studies of purines and pyrimidines in children with CRF [11]. A new, more 

sensitive technique enabled us to study amino acids in CSF more accurately [12]. Not the 
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plasma amino acid concentration but the CSF amino acid concentration reflects the 

extracellular amino acid concentration of the brain interstitial fluid. 

In order to contribute to the understanding of the developmental delay of children with 

CRF, not only plasma but also CSF amino acid concentrations were determined in 11 

children with chronic renal failure. Three of these children were treated by continuous 

ambulatory peritoneal dialysis (CAPD) several months later. Amino acid concentrations in 

CSF were repeated after at least six weeks of therapy. 

6.3 Materials and methods 

From 11 children with CRF, aged 2-59 months, plasma and CSF samples were collected 

for determining the content of amino acids. After collection by venapuncture, 1 ml of 

heparinized plasma was put aside for the present investigation. The CSF samples were 

kept frozen at -70° С until analysis. Just before analysis the samples were thawed and 

deproteinized according to previous published methods [12]. 

The study was approved by the local ethical committee. 

Some clinical features of the patients are summarized in table 6.1. Three of them (nrs. 2, 

6 and 9) were treated by CAPD a few months later. In these patients samples of plasma 

and CSF were collected a second time after CAPD therapy for at least six weeks. Amino 

acids were determined according to a previously published method [12] and compared 

with normal values of amino acids in CSF described before [12] and with plasma values 

of 26 age-matched control children. 

6.4 Statistics 

Amino acids in plasma and CSF displayed log-normal distributions. So the comparisons 

with normal values were made on the log-transformed data, using Student's t-test. The 

significance level α is set as 0.01. 
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Table 6.1 

patient 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

Clininal and laboratory features of the patients. 

age 
months 

2 
2 
4 
7 
8 
8 
8 
8 

26 
32 

59 

serum 
Creatinin 
f¿mol/l 

83 
275 
322 
384 
75 

286 
137 
204 
500 
869 

485 

clearance of 
Creatinin 
ml/min/1.73 m2 

24.0 
7.5 
7.3 
6.6 

32.9 
9.9 

19.8 
12.3 
7.2 
3.7 

8.0 

underlying disease 

renal dysplasia 
urethral valves 
urethral valves 
renal dysplasia 
renal dysplasia 
urethral valves 
renal dysplasia 
renal dysplasia 
urethral valves 
focal glomerulo- -
sclerosis 
focal glomerulo
sclerosis 

6.5 Results 

Plasma amino acids 

In seven patients (nr. 1, 2, 6, 8, 9, 10 and 11) we were able to determine amino acids in 

plasma obtained simultaneously with the CSF. In the four youngest children the plasma 

values were compared with age-matched controls. Significantly decreased values in 

plasma were obtained in the four infants for serine, valine, leucine, tyrosine, and histidine 

(table 6.2). 

Significantly increased values in plasma were observed for aspartic acid, citrulline, 3-

methylhistidine (table 6.2). 

In the three older children (nrs. 9, 10, and 11) compared with age-matched controls, 

elevated concentrations were found in plasma for glutamine, glycine, citrulline, and 3-

methylhistidine. 
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Chapter 6 

In three patients (nrs. 2, 6, and 9) plasma amino acid concentrations were repeated after 

treatment with CAPD. 

Valine, leucine and histidine improved in two patients. 

In all three aspartic acid became normal. In two patients 3-methylhistidine showed lower, 

but still increased values. Glycine showed even higher values in two patients. 

CSF amino acids 

In CSF of the 8 infants (nrs. 1-8) we found a significant decrease of: ot-aminobutyric 

acid, valine, isoleucine, leucine, tyrosine, tryptophane, histidine, and n-e-methyl-1-lysine 

(table 6.3). 

A significant increase of 3-methylhistidine (p < 0.001, table 6.3) was measured. 

In the three older children (nrs. 9, 10, and 11) we found also decreased values for a-

aminobutyric acid. Valine, leucine, tyrosine, tryptophane, lysine, histidine and n-e-

methyl-1-lysine were decreased in either one or two patients. 3-methylhistidine was 

increased in all three older children. Alanine, citrulline and ornithine showed increases in 

two patients. 

In three patients (nrs. 2, 6, and 9) the amino acid concentrations in CSF were determined 

again after more than six weeks of CAPD-treatment. No normalisation of the pre-CAPD 

values was observed except for 3-methylhistidine, the only compound with a significant 

increase (table 6.4). 

Valine, leucine, tyrosine, and histidine concentrations were decreased both in plasma and 

CSF. 3-Methylhistidine was the only compound increased in both compartments. For the 

other compounds the deviations in either plasma or CSF can not be related. 

6.6 Discussion 

Before discussing our results in children with CRF, the known factors which are 

determining the amino acid concentration in CSF will be briefly reviewed. The amino 

acid concentration is known to be much lower in plasma compared to CSF except for 
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glutamine. CSF is formed by the choroid plexus, bathes the brain and is drained via the 

arachnoid villi (fig. 6.1). The brain compartment is in close contact with the blood at the 

blood-brain barrier (BBB), located at the brain capillary endothelium sealed with tight 

junctions, and via the CSF at the blood-CSF barrier located at the choroid plexus (fig. 

6.1). Amino acid transport across these barriers is carrier mediated. 

Figure 6.1 Diagram of fluid compartments of the blood-brain-CSF system. 

Continuous arrows represent proven directions of CSF flow. Interrupted arrows indicate 

where diffusion of water and solutes may occur between the different compartments: (a) 

across the blood-brain barrier, between brain capillaries and extracellular fluid; (b) 

across the epithelia of the chroroid plexuses; (c) across the ependyma; (d) across the 

piaglial membranes; (e) and φ across the cell membranes of neurons and glial celL·. 

Thick outline represents the arachnoid-dural enclosure of the system. Illustration from 

[34]. 
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Four amino acid carriers are active at the BBB [13, 14]. The L-system (transporting 

leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophane, methionine, histidine, 

threonine, and DOPA), and the y+-system (transporting the basic amino acids arginine 

and lysine), are located at the luminal side of the brain capillary endothelium, they are 

sodium independent and are responsible for the influx of amino acids. 

The Α-system (transporting the small neutral amino acids alanine, glycine, proline and 

methyl-aminoisobutyric acid), and the XA0-system (transporting the acidic amino acids 

glutamic acid and aspartic acid) are located at the abluminal side of the brain capillary 

endothelium. They are ATP-driven and responsible for brain amino acid efflux, against a 

concentration gradient. The uptake of glutamine, studied in rat brain microvessels, was 

partly sodium dependent (Α-system) and partly sodium independent (L-system) [15]. 

Within the brain parenchyma numerous amino acid carriers (more than 14) are described 

to be active at the cell-membranes [16, 17]. These carriers affect the brain extracellular 

fluid (ECF) composition and indirect the CSF composition, because CSF is in free 

exchange with the ECF. The К,, and V^, values for BBB transport of amino acids are 

1/3 and 1/10 of values at the brain cell membrane, respectively [18]. This indicates that 

transport restriction is located at the BBB and not at the brain cell membrane. 

At the choroid plexus all types of the mentioned carriers are shown to be present. Uptake 

was found to serve mainly in situ protein synthesis, meaning that efflux via the choroid 

plexus is probably not very important for amino acids [19]. 

In case of aspartic acid and glycine the flux reverses from CSF to blood when 

concentrations are raised [20]. 

Our findings in plasma amino acids in infants with CRF are in agreement with reports in 

literature concerning adults and children [6-8, 10, 21]. Explanations for the derangements 

in plasma amino acids are offered by several of the authors referred to [22-29]. 

No CSF studies have been performed in children with chronic renal failure before, except 

our own study of purines and pyri midi nes in CSF of uremic children [11]. Concerning 

amino acids, CSF studies have been performed only in adults with chronic renal failure 

[2, 10]. 

99 



The results we obtained in the plasma of our patients are only partly responsible for the 

aberrations found in CSF. In case of the large neutral amino acids we found a decrease in 

plasma and in CSF for valine, isoleucine, leucine, tyrosine ала histidine. Decreased 

plasma concentrations may lead to a decreased transport via the L-carrier to the cerebral 

compartment. Phenylalanine, methionine, and threonine which are transported by the 

same carrier however, show normal values in both plasma and CSF. These findings form 

a strong arguement against the hypothesis of an isolated carrier-transport abnormality in 

CRF. Moreover, in plasma we found deviations of compounds which are not changed 

significantly in CSF: serine is decreased, aspartic acid and citrulline are elevated. On the 

contrary, for α-aminobutyric acid, isoleucine and n-e-methyl-1-lysine we found isolated 

decreases in CSF. 

In our three patients receiving CAPD only 3-methylhistidine shows clearly improved 

values in both compartments indicating that this particular abnormality in CSF of uremic 

patients is a plasma related phenomenon. So far there are no indications that during 

CAPD the other deviations in CSF are improving. 

Changes of CSF amino acid concentrations, unrelated to alterations in their blood 

concentrations, have been described in adults with CRF [10]. Low 7-aminobutyric acid 

levels, high glycine levels, and elevated ratios of phenylalanine/tyrosine and of 

glycine/branched-chain amino acids have been described [1,2,9]. Pye et al. [10] 

extensively studied amino acids of CSF of adults with renal failure. We confirm their 

findings concerning the decreased concentrations of valine, leucine, and tyrosine, and the 

elevated concentration of 3-methylhistidine in CSF. For glycine and ornithine, for which 

they found elevated concentrations in CSF, we found normal values in CSF of infants 

with renal failure. Sullivan et al. found elevated CSF tryptophane levels and normal CSF 

tyrosine levels [27], for both substances we found a decrease. In case of G ABA we found 

in four patients values above P97.5, for the whole group however the concentration was 

not significant elevated. 

In our view intracellular disturbances are contributing to the changes found in CSF. The 

changes in CSF amino acids can not be explained sufficiently by affected transport 

systems but could arise from local - cellular - disturbances. It has been pointed out that in 

CRF an excess of parathyroid hormone results in alterations in membrane phospholipids 
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and in an incraesed intracellular calcium content [30]. There is an abundance of evidence 

that in chronic renal failure there is a reduced Na-K pump flux [31, 32]. This reduction 

has also been demonstrated in brain synaptosomes resulting in a decreased extrusion of 

sodium and intracellular increase of calcium [30, 33]. 

Studies of cultured astrocytes and neurons in uremic environment will further elucidate 

the metabolic alterations of these cells in CRF. 
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Chapter 7 

7.1 Summary 

After establishing more extended reference values for amino acids, purines and 

pyrimidines in cerebrospinal fluid (CSF) in infancy and childhood, we studied 1250 CSF-

aliquots from patients who were undergoing a diagnostic lumbar puncture for diverse 

clinical indications. Our primary aim was to answer the question whether determination of 

the concentration of amino acids, purines and pyrimidines in CSF is a useful tool in 

screening for metabolic disorders in children with unexplained mental retardation. 

In unexplained mental retardation (95 patients) we observed varying abnormalities of 

CSF. These were reproducible in only 2 patients (a decrease of homocamosine in 

combination with two unidentified compounds). Striking abnormalities in pyrimidine 

content which are limited to CSF are found in argininosuccinic aciduria and uraemia. In 

uraemia a general decrease in amino acids in CSF and increase of 7-aminobutyric acid 

(GABA) was observed. 

The results obtained indicate that determination of amino acids, purines and pyrimidines 

in CSF is only of limited value in the diagnosis of unexplained mental retardation. 

7.2 Introduction 

Metabolic brain diseases can be associated with abnormal cerebrospinal fluid (CSF) levels 

of amino acids, purines and pyrimidines. In some disorders, like Leigh's syndrome [20] 

and non-ketotic hyperglycinaemia [17], the presence in CSF of high concentrations of 

specific metabolites (lactate and glycine, respectively) is a diagnostic feature. In 

argininosuccinic aciduria (ASA), a urea cycle defect, the concentration of argininosuccinic 

acid and its anhydrides in CSF is found to be twice to four times that noted in plasma 

[18] (McKusick 20790). Furthermore, it is evident that neurotransmitter metabolism 

shows abnormalities limited to CSF, e.g. disorders in γ-aminobutyric acid (GABA) 

metabolism are reported with either increased or decreased CSF levels of GABA [14]. 

The availability of new and more sensitive methods for determining amino acids, purines 

and pyrimidines urged us to establish more extended normal values of these compounds in 

CSF [5, 6]. Our aim was to study CSF amino acid, purine and pyrimidine levels in 
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various neurological disorders in order to contribute to the aetiologic unravelling of 

metabolic brain diseases. 

We studied amino acids, purines and pyrimidines in CSF of a large number of CSF-

aliquots (1250) from patients who were undergoing a diagnostic lumbar puncture for 

diverse clinical indications. 

7.3 Materials and methods 

Samples and patients 

Specimens of CSF (1250) were obtained from 1154 different subjects ranging in age from 

0-18 years, who were undergoing a diagnostic lumbar puncture for conventional clinical 

indications such as suspected central nervous system infection or other neurological 

disorders. Whenever possible, 1 ml of each CSF sample was put aside for the present 

investigation. The CSF samples were kept frozen at -70е С until analysis. Just before 

analysis the samples were thawed and deproteinized according to previous published 

methods [6]. 

Table 7.1 The diagnostic groups in the patients (n = number of patients). 

η 

1. Reference group normal children 122 
2. Rest group 265 
3. Diagnostic groups: 

metabolic disorders 27 
heredodegenerative disorders 31 
structural congenital disorders of the brain 27 
perinatal pathology 49 
febrile convulsions 32 
epilepsy 134 
unexplained mental retardation 180 
mental retardation with a known cause 35 
syndromes 17 
infections such as meningitis 36 
oncology such as leukaemia 134 
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The subjects were divided into different clinical diagnostic groups by retrospective study 

of the patient records (table 7.1). The total number of patients studied is 856, because we 

had to exclude retrospectively a number of patients owing to too high erythrocyte counts 

in CSF or technical problems concerning the amount of CSF. Some patients had more 

than one diagnosis. Ninety-five patients were selected with mental retardation without any 

other diagnosis. The values obtained were compared with previously established normal 

values of amino acids, purines and pyrimidines [5, 6]. Our reference group has been 

extended compared to our earlier publications, the reference ranges have been confirmed 

and remain the same. 

In addition the coefficient of variability was calculated from repeated sampling of CSF 

from a group of 13 patients with stable leukaemia without central nervous system 

localization (table 7.2). 

Table 7.2 
13). 

The coefficient of variability for the different compounds in CSF (η = 

taurine 
phosphoethanolamine 
aspartic acid 
threonine 
serine 
asparagine 
a-aminoadipic acid 
glycine 
alanine 
citrulline 
α-aminobutyric acid 
valine 
methionine 
cystathionine 

10.5 
11.6 
22.2 
18.8 
12.3 
11.7 
30.2 
17.5 
13.5 
13.2 
20.2 
10.1 
20.2 
23.7 

isoleucine 
leucine 
tyrosine 
phenylalanine 
γ-aminobutyric acid 
ethanolamine 
tryptophane 
ornithine 
lysine 
histidine 
n-e-methyl-1-lysine 
3-methylhistidine 
homocarnosine 
arginine 

11.4 
9.8 

15.8 
6.9 

28.0 
12.1 
27.2 
19.1 
12.8 
14.4 
18.4 
22.1 
14.9 
15.4 

Analyses 

For detailed information about the chemical analyses the reader is referred to previous 

publications [5, 6]. 
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Statistics 

The probability that a given number of subjects falls outside the normal values (defined as 

the interval between the 2.5 and 97.5 percentile) is calculated using a binomial 

distribution. The significance level is set as 0.01. 

7.4 Results 

Three groups showed abnormalities in either amino acids and/or purines and pyrimidines. 

From the group of 'metabolic diseases' we found abnormalities in 3 patients with ASA. 

Besides the known deviations in amino acids (increases in argininosuccinic acid, its 

anhydrides and citrulline) we found an elevation in CSF of pseudouridine and uridine, 

which was not found in urine and plasma [8]. 

The second group contains 10 patients, aged 2-59 months, with a chronic renal failure 

and a disturbed mental development. All patients showed increased concentration of 

pseudouridine in CSF up to 1000 times the normal value. Plasma showed concentration 

up to 10 times the normal value. Eight out of 10 showed a cytidine increase limited to 

CSF. Plasma values were normal or slightly increased. Cytidine in CSF was even greater 

than the respective plasma values in 8 out of 10 patients. Also a large peak of an 

unknown compound was detected in the pyrimidine-spectrum of each patient [7]. 

In the patients with chronic renal failure a significant decrease in CSF was observed for 

taurine, phosphoethanolamine, aspartic acid, serine, alanine, a-aminobutyric acid, valine, 

isoleucine, leucine, tyrosine, tryptophane, lysine, histidine, n-e-methyl-1-lysine and 

homocamosine (p < 0.001). A significant increase of GABA and 3-methylhistidine was 

observed (both ρ < 0.001). 

Plasma citrulline, a-aminobutyric acid, tryptophane and cystine were significantly 

decreased (p-values < 0.001) while glycine concentration was increased (p = 0.004). 

In 3 of these patients the amino acid concentrations in CSF were determined again after 

more than six weeks of continuous peritoneal ambulatory dialysis (CAPD) treatment. 

Similar results were obtained as before CAPD treatment, only 3-methylhistidine 

normalized. 
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The largest group in our study, concerns the group with mental retardation of unknown 

aetiology. In this group of 95 patients careful clinical selection was done to obtain a 

group with no other diagnosis. Within this group, 52 patients showed deviations of more 

than 2SD in one or more CSF amino acids, and from these 19 patients showed deviations 

of more than 3SD. Fifteen of this last group of 19 were asked for permission for a 

repeated lumbar puncture in order to investigate whether the observed abnormalities were 

reproducible. Nine Patients agreed. In the CSF of these patients we could not confirm the 

abnormalities, except for 2 patients. They showed a decrease of homocamosine and the 

presence of two unknown peaks in CSF. GABA was normal. In both patients, the two 

hitherto unidentified peaks in the CSF-amino acid pattern were not found in serum. 

Thirty-two of the 95 retarded patients showed deviations of more than 2SD in one or 

more CSF purine and pyrimidine concentration. From these we selected two groups: one 

group of 11 patients with 5SD deviations in one or more purine and pyrimidine but no 

typical pattern, and a second group of 22 patients with, amongst other purine and 

pyrimidine deviations, a cytidine elevation of more than 2SD. One patient appeared in 

both groups. The last group was selected because we noted that cytidine concentration 

was abnormal in more cases than for other purine and pyrimidine compounds. From the 

first group 8 patients responded on our request for a further lumbar puncture. None of 

them showed reproducible patterns in CSF purines and pyrimidines. Of the group with the 

elevated cytidine concentration 12 responded; in no patient was the cytidine elevation 

reproducible. 

7.5 Discussion 

Reference values for amino acids in CSF of young infants and children have been 

infrequently reported [1, 12, 11]. As far as reported, these data have been collected from 

measurements using ion-exchange chromatography with the ninhydrine detection system. 

A few investigators have used HPLC procedures with fluorimetrie detection to 

characterize CSF amino acid profiles [4, 9]. This method, however, has a lower 

resolution than our technique. As a consequence of the fluorimetrie detection and the 
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technical modifications of our method we can measure 36 compounds in one run with a 

tenfold increase of sensitivity compared to the conventional ninhydrine method [6]. 

Concerning the reference values of purines and pyrimidines in CSF it can be stated that 

few data are available from literature. Abnormal concentrations of some purines and 

pyrimidines have been reported in a few cases of disturbances in purine and pyrimidine 

metabolism [15, 13, 2]. Also some reports have been published on the oxypurines in CSF 

in relation to hypoxia and cerebral ischaemia [16, 10]. 

In our patients with ASA we demonstrated aberrations in pyrimidines limited to CSF [8]. 

We were particularly interested in the CSF concentrations of pyrimidines, because the 

urea cycle is present in brain [19]. Therefore, CSF could be a sensitive indicator fluid in 

which to detect urea cycle defects distal to carbamylphosphate synthetase (E.C. 2.7.2.2.) 

by elevated pyrimidine concentrations. In ASA we demonstrated elevated concentrations 

of uridine and pseudouridine limited to CSF. Pseudouridine, a t-RNA catabolyte and 

metabolic end product, is associated with tissue destruction. 

Our results in patients with chronic renal failure are striking [7]. Patients with uraemia 

are prone to develop a uraemic encephalopathy. Our results show that there are metabolic 

aberrations in uraemia limited to the cerebral compartment. The concentrations of cytidine 

in CSF are in our patients even greater than the plasma concentration. This could possibly 

give some clues for the still not understood uraemic encephalopathy. Cytidine is involved 

in membrane metabolism as has been pointed out [7]. We demonstrated that С APD had 

no influence on these elevated concentrations. 

An impaired transport of amino acids can explain the lowered concentration of most 

amino acids in CSF [3]. 

The screening for metabolic disorders in patients with unexplained mental retardation 

revealed only 2 patients with reproducible abnormalities in CSF amino acids. These 

patients showed a decrease of homocamosine and two unknown peaks limited to CSF. 

The bulk of patients with retardation showed no reproducible abnormalities in either 

amino acids, or purines and pyrimidines. Probably, when we are able to describe 

different clinical subgroups in mental retardation, it will also be possible to discern 

statistically significant abnormalities, e.g. as we are able to describe abnormalities in 

amino acids in uraemia. 
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[η our view CSF can be used to study metabolic diseases suspected to be limited to the 

cerebral compartment. For screening of mental retardation an additional value is only 

present for a small number of patients. In view of the large number of retarded children 

studied the results are rather poor. This is of particular importance since in mental 

retardation an increasing number of clinicians is requiring metabolic screening of CSF. 

In this article we have given an overview of our results in using CSF amino acid and 

purine and pyrimidine contents as tools in the study of metabolic brain diseases. In mental 

retardation, clinical and biochemical findings should point to a specific cerebral metabolic 

involvement before CSF investigation of amino acids, purines and pynmidines should be 

performed. 
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Chapter 8 

8.1 Summary and general discussion 

The aim of this thesis is to explore the significance of analysis of cerebrospinal fluid 

(CSF) on amino acids, purines and pyrimidines in the diagnostic approach of patients with 

unexplained mental retardation and/or brain disease. 

CSF is the clinician's access to the brain. Anatomical relations in the brain compartment, 

transport processes across the different barriers and other determinants influencing CSF 

production and composition are described in chapter 1. CSF is used as a diagnostic 

medium in central nervous system diseases such as meningitis, malignancies and 

metabolic disorders. In some metabolic disorders, like Leigh's syndrome [1] and non

ketotic hyperglycinemia [2], the presence in CSF of high concentrations of specific 

metabolites (lactate and glycine, respectively) is a diagnostic indicator. Neurotransmitter 

metabolism shows abnormalities limited to CSF, e.g. disorders in gamma-aminobutyric 

acid (GABA) metabolism are reported with either increased or decreased CSF levels of 

GABA [3]. 

In our laboratory new sensitive methods came available for determining purines and 

pyrimidines, and amino acids in body fluids [4,5]. These developments encouraged 

clinicians to determine purines, pyrimidines, and amino acids in CSF of patients for an 

increasing scala of indications. Especially in case of unexplained mental retardation an 

increasing number of CSF specimens has been investigated on these metabolites. 

Interpretation of investigations required knowledge of age-related reference values. These 

facts urged us to establish normal values of purines, pyrimidines, and amino acids in CSF 

of children of different ages. The methods and results of these studies are described in 

chapter 2 for purines and pyrimidines [4], and in chapter 3 for amino acids [5]. 

We studied 1250 CSF-aliquots from patients, who had received a diagnostic lumbar 

puncture for diverse clinical indications. 

The subjects were divided into different clinical diagnostic groups by retrospective study 

of the patient records. The total number of patients studied is 856, because we had to 

exclude retrospectively a number of patients due to increased erythrocyte counts in CSF 
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or technical problems concerning the amount of CSF. The groups which showed 

abnormalities in either amino acids and/or purines and pyrimidines are described in the 

following chapters. 

In chapter 4 three patients are presented with an argininosuccinic aciduria (ASA) [6]. All 

three patients showed elevated concentrations of argininosuccinate and its anhydrides in 

all body fluids, most pronounced in cerebrospinal fluid. Moreover, in patients 1 and 2, 

we found elevated concentrations of pseudouridine and uridine limited to CSF, which was 

not reported before. In patient 3, with some residual activity of argininosuccinate lyase 

(ASL), we found normal values of the latter compounds. In urine we found elevated 

concentrations of uracil in patients 1 and 2, and orotic acid in patient 2. Plasma showed 

an elevated concentration of orotic acid in all three patients, uracil was elevated in patient 

2, cytidine was elevated in patient 2 and 3. The results indicate that CSF values of 

pyrimidines reveal, so far unknown, biochemical abnormalities of brain tissue in a urea 

cycle disorder. The brain tissue has its own urea cycle. 

In children with chronic renal failure (CRF) abnormalities in CSF pyrimidines have been 

detected, too [7]. These findings are presented in chapter 5, and point to a metabolic 

disturbance in CRF limited to the cerebral compartment. 

Chronic renal failure during childhood can be associated with delayed cognitive 

development. From ten children with chronic renal failure, aged 2-59 months, plasma and 

(CSF) purines and pyrimidines have been determined. A marked increase of 

pseudouridine and cytidine was demonstrated in CSF of ten and eight children, 

respectively. The plasma concentration of pseudouridine was increased in a varying 

degree to a maximal value of more than ten times the upper limit of normal. The plasma 

concentration of cytidine showed only moderately elevated values. In three children the 

study in CSF and plasma was repeated 6 weeks after the start of continuous ambulatory 

peritoneal dialysis. The abnormal concentrations of pseudouridine and cytidine were still 

present in CSF and plasma. From these findings it was concluded that this disturbance has 

implications for the cell metabolism as explained in chapter 5. 
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Further studies are necessary to elucidate the cause of this unknown biochemical 

aberration of the central nervous system. 

In chapter 6 we describe our findings of amino acids in children with CRF [8]. Plasma 

and CSF amino acids concentrations were determined in 8 infants (age 2-8 months) and 3 

children (age 26, 32 and 56 months) with CRF (creatinine clearance 13 ± 9 

ml/min/1.73m2). In three of these children investigations were repeated after six weeks of 

CAPD treatment. 

In the infants, a significant decrease was found in CSF of α-aminobutyric acid, valine, 

isoleucine, leucine, tyrosine, tryptophane, histidine and n-e-methyl-1-lysine, whereas there 

was a significant increase of 3-methylhistidine. In plasma serine, valine, leucine, tyrosine, 

and histidine were significantly decreased, whereas there was a significant increase of 

aspartic acid, citrulline, and 3-methylhistidine. 

These abnormalities remained constant after the start of CAPD except for the 

normalisation in CSF and plasma of 3-methylhistidine. 

These data indicate a generalized disturbance of amino acids in young children with CRF. 

An abnormal substrate is offered to the neurons and astroglia in children with CRF. The 

results can not be explained by disturbed transport only, and demonstrate that there is a 

disturbance at the cellular level. 

Chapter 7 describes our efforts to answer the question whether determination of the 

concentration of amino acids, purines and pyrimidines in CSF is a useful tool in screening 

for metabolic disorders in children with unexplained mental retardation [9]. 

In unexplained mental retardation (95 patients) we observed varying abnormalities of 

these metabolites in CSF. These deviations, however, were reproducible in only 2 patients 

(a decrease of homocamosine in combination with two unidentified compounds). The 

obtained results indicate that determination of amino acids, purines and pyrimidines in 

CSF is of limited value in the diagnosis of unexplained mental retardation. 

When comparing chapters 6 and 7 one may notice differences in the results of the amino 

acids in CSF in the same group of children with CRF. This is due to the fact that the 
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results in chapter 7 were preliminary at the time of publication. Statistics were performed 

using a binomial distribution. Later on we were able to use Student's t-test, which 

resulted in better but slightly different results. 

8.2 Further research; brain-specific proteins 

With reference to chapters 5 and 6, it can be stated that further investigation of the 

genesis of uremic encephalopathy is of utmost importance for the developing child with 

CRF. Our work provides starting points for this research. The nature of the 'unknown' 

peaks should be revealed. Specialists in mass-spectrometry, here is your task. 

We performed a study in which the brain-specific proteins in CSF of children with CRF 

have been determined. We studied the CSF-levels of neuron-specific enolase (NSE), S-

100 and myelin basic protein (MBP) in order to identify the affected cell type or 

compartment. The same patients as described in chapter 6 [8] were studied. Increased 

CSF levels of NSE are indicative for neuron damage, S-100 for astroglial cell damage 

and MBP for demyelinisation [10]. 

The brain-specific proteins were determined according to previously published methods 

including the reference values for children as established in our laboratory [11]. 

Brain-specific proteins were determined in all patients. We found elevated levels of S-100 

in 5 patients: patient no. 3, 2.8 μg/l; no. 5, 2.7 μg/l; no. 8, 6.8 /xg/1; no. 10, 2.8 μg/l; 

and no. 11, 3.3 /tg/1 (normal 0.9-2.6 Mg/l). The remaining 6 patients showed values 

within the normal range. MBP and NSE showed normal values, except for patient 8, who 

showed a MBP of 1.4 ^g/l (normal 0.12-0.72 μ%1\). The three (nrs. 2, 6, and 9, see 

chapter 6) patients who underwent a second lumbar puncture after more than six weeks of 

CAPD, had by coincidence normal levels of the brain-specific proteins from the start, so 

we are not able report whether there are possible effects of CAPD on elevated brain-

specific proteins. 

The observation of abnormal concentrations of the brain-specific protein S-100 in 5 out of 

11 patients points to the astroglial cell as an affected cell type in cerebrum in CRF. In 
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patient 8, showing the highest S-100 level, a concomittant elevated MBP content was 

demonstrated, suggesting also demyelinisation. 

Our findings are in agreement with suggestions made in literature: La Greca et al. [12] 

suggest that glial alterations could result in BBB alterations and subsequent metabolic 

alterations. The astroglial cell is responsible for BBB integrity, and for the nourishing of 

neurons. It is the main site where glutamate is converted into glutamine [13,14]. An 

affected astroglial cell compartment could result in altered BBB characteristics, and 

altered transport within the astroglial cell itself affecting the nourishing of neurons. 

8.3 Perspectives; nuclear magnetic spectroscopy 

With respect to the difficulties experienced for repeating the lumbar puncture non-invasive 

techniques become important. From a research point of view it is important to know what 

is happening in vivo inside the uremic brain. Moreover, in the children with CRF we are 

interested in monitoring therapy in a noninvasive way, especially when a better 

understanding of uremic encephalopathy can lead to improvement of therapy. 

Nuclear magnetic resonance (NMR) spectroscopy provides the possibilities to answer at 

least partially these needs [IS]. NMR spectra of human brain in vivo reveal a large 

number of components which are of major relevance for the metabolism of the 

functioning brain [16]. Enhanced levels of cerebral glutamine are detected in patients with 

liver cirrhosis [16,17]. Reductions of choline metabolites and myo-inositol levels have 

been reported in hepatic encephalopathy as well [17]. Studies of four patients with 

uraemia are reported in littérature. They showed a tendency towards higher choline and 

myo-inositol concentrations, but the results did not achieve statistical significance [17]. 

Suggestions have been made in literature that hepatic encephalopathy and uraemic 

encephalopathy are based on similar pathophysiological mechanisms [18]. 

We performed NMR spectroscopy in two children with CRF. These spectra showed a 

higher myoinositol level in 1 patient and small differences in glutamine and glutamic acid 

peaks in both patients compared to a control (fig 8.1.). This is in line with the discussion 

above. 
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Further research in this direction has to be performed, especially in young children with 

CRF, which are more vulnerable to metabolic changes during the maturation of the brain. 
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Figure 8.1 Cerebral H-l MR spectra demonstrating the major differences between a 

patient (B) with CRF and a control (А). Те abbreviation NAA denotes n-acetylaspartate; 

Ins, inositol; Cho, choline; Cr, creatine; and Glx, glutamine and glutamate complex. 
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Chapter 8 

8.4 Microdialysis of brain 

extracellular fluid 

In our study of the value of CSF in metabolic brain derangements, we interprete CSF as a 

reflection of brain extracellular fluid (ECF). In chapter 6 we hypothesize that intracellular 

disturbances are contnbuting to the changes found in CSF of uremic children. To achieve 

a better understanding of the factors involved it would be a progress to measure exactly 

the ECF concentrations of different compounds involved. To measure directly in ECF 

microdialysis techniques are required and available now [19]. This technique will allow us 

to study the composition of the extracellular fluid at different localisations in the brain. 

Investigation of the uremic state in this way may offer new perspectives. 
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Samenvatting 

Samenvatting 

Het doel van dit proefschrift is te onderzoeken wat de waarde is van de bepaling van 

aminozuren, purines en pyrimidines in de liquor cerebrospinalis in het kader van de 

diagnostiek bij patiënten met een onbegrepen mentale retardatie of cerebrale aandoening. 

De liquor is voor de klinicus de toegangsweg tot de hersenen. Anatomische relaties 

binnen het hersenkompartiment, transport-processen over de verschillende barrières en 

andere faktoren welke een rol spelen bij de liquorproduktie en samenstelling daarvan 

worden beschreven in hoofdstuk 1. Liquor wordt gebruikt als een diagnostisch medium 

bij aandoeningen van het centraal zenuwstelsel zoals meningitis, maligniteiten en metabole 

ziekten. Bij sommige metabole aandoeningen, zoals bij het syndroom van Leigh [1] en bij 

de non-ketotische hyperglycinemie [2], is de bevinding van een verhoging van specifieke 

metabolieten (respektievelijk laktaat en glycine) een belangrijk diagnostisch kriterium. Het 

neurotransmitter metabolisme laat verstoringen zien welke alleen in liquor aantoonbaar 

zijn; ontregelingen in het metabolisme van gamma-aminoboterzuur bijvoorbeeld worden 

beschreven met zowel verlagingen als verhogingen van de liquorkoncentratie van het vrije 

gamma-aminoboterzuur [3]. 

In ons laboratorium zijn nieuwe sensitievere methoden tot onze beschikking gekomen voor 

het bepalen van aminozuren, purines en pyrimidines in lichaamsvloeistoffen [4,5]. Deze 

ontwikkelingen nodigen klinici uit tot het aanvragen van bepalingen van deze stoffen in 

liquor in een groeiend indicatiegebied. Met name in geval van de onbegrepen mentale 

retardaties wordt er een toenemend aantal liquormonsters op deze metabolieten 

onderzocht. Interpretatie van deze bepalingen vereist de beschikking over goede 

leeftijdsgebonden referentiewaarden. Deze faktoren noopten tot het vaststellen van 

referentiewaarden voor aminozuren, purines en pyrimidines in liquor voor verschillende 

leeftijdsgroepen. De methoden en resultaten worden voor wat betreft referentiewaarden 

van de purines en pyrimidines beschreven in hoofdstuk 2 [4], en voor de aminozuren in 

hoofdstuk 3 [5]. 
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Onderzocht werden 1250 liquormonsters van patiënten, die op klinische gronden een 

lumbaal punktie ondergingen. 

De patiënten werden retrospectief onderverdeeld in verschillende diagnostische groepen. 

Het totaal aantal bestudeerde patiënten bedraagt 856, daar er retrospectief een aantal 

moesten worden uitgesloten ten gevolge van bijvoorbeeld een te hoog erythrocytengehalte 

in de liquor of technische problemen bij de bepaling. Daarnaast onderging een aantal 

patiënten seriële punkties. De patiëntengroepen welke afwijkingen vertoonden in 

aminozuren en/of purines en pyrimidines worden beschreven in de volgende 

hoofdstukken. 

In hoofdstuk 4 worden drie patiënten beschreven met een argininosuccinaat-acidurie [6]. 

Alle drie hebben ze een verhoging van het argininosuccinaat en de anhydriden in urine, 

plasma en de liquor. Daarnaast vonden we bij patiënten 1 en 2 alleen in de liquor 

verhoogde koncentraties van pseudouridine en uridine. Dit is niet eerder beschreven. Bij 

patiënt 3, welke nog wat restaktiviteit bezit van het argininosuccinaat-lyase, vonden we 

normale koncentraties van deze stoffen. In de urine werden bij patiënten 1 en 2 verhoogde 

koncentraties aangetroffen van uracil, en bij patiënt 2 eveneens een verhoogde 

koncentratie van orootzuur. Het plasma liet verhoogde koncentraties zien van orootzuur 

bij alle drie patiënten, uracil was verhoogd bij patiënt 2, cytidine was verhoogd bij 

patiënten 2 en 3. De resultaten geven aan dat de liquorwaarden van pyrimidines nieuwe, 

tot nu toe onbekende, biochemische afwijkingen laten zien in hersenweefsel bij een 

stoornis in de ureumcyclus. De hersenen hebben een eigen ureumcyclus. 

Bij kinderen met een chronische nierinsufficiëntie werden eveneens afwijkingen 

vastgesteld bij de pyrimidines in de liquor [7]. Deze bevindingen, die gepresenteerd 

worden in hoofdstuk 5, wijzen op een metabole verstoring bij de chronische 

nierinsufficiëntie welke beperkt is tot het cerebrale kompartiment. 

Chronische nierinsufficiëntie bij kinderen wordt geassocieerd met een vertraagde 

cognitieve ontwikkeling. Bij tien kinderen met een chronische nierinsufficiëntie, in leeftijd 

variërend van 2 tot 59 maanden, werden purines en pyrimidines bepaald in plasma en 

liquor. Een opvallende verhoging van het pseudouridine werd aangetoond bij alle tien 

kinderen, en van cytidine bij acht kinderen. De plasmakoncentratie van pseudouridine was 
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wisselend verhoogd, soms tot tienmaal de bovengrens van normaal. De 

plasmakoncentratie van cytidine liet slechts minimale verhogingen zien. Bij drie kinderen 

werd het onderzoek van liquor en plasma herhaald zes weken na de start van 

peritoneaaldialyse. De abnormale koncentraties van pseudouridine en cytidine waren 

onveranderd in zowel liquor als plasma. Deze bevindingen hebben implikaties voor het 

celmetabolisme zoals beschreven wordt in hoofdstuk 5. 

Vervolgstudies zijn noodzakelijk om de oorzaak aan te tonen van deze onbekende 

metabole verstoring van het centraal zenuwstelsel. 

In hoofdstuk 6 beschrijven we onze bevindingen betreffende de aminozuren bij 

-inmiddels 11- kinderen met een chronische nierinsuffièntie [8]. Aminozuurkoncentraties 

in plasma en liquor werden bepaald bij acht zuigelingen (leeftijd 2-8 maanden) en drie 

kinderen (leeftijd 26, 32 en 56 maanden) met een chronische nierinsufficiëntie 

(kreatinineklaring 13 ± 9 ml/min/1.73m2). Bij drie van deze kinderen werden de 

onderzoeken herhaald na zes weken peritoneaaldialyse. 

Bij de zuigelingen werd een signifikante daling in liquor gevonden van a-aminoboterzuur, 

valine, isoleucine, leucine, tyrosine, tryptophaan, histidine en n-e-methyl-1-lysine, 

daarnaast werd er een signifikante toename in liquor gevonden van 3-methylhistidine. In 

plasma waren serine, valine, leucine, tyrosine, en histidine signifikant verlaagd, terwijl 

asparaginezuur, citrulline, en 3-methylhistidine een signifikante verhoging lieten zien. 

Deze afwijkingen bleven aanwezig na het starten van peritoneaaldialyse, behalve voor 

3-methylhistidine, dat normaliseerde in zowel plasma als liquor. 

Deze bevindingen wijzen op een gegeneraliseerde verstoring van de aminozuren bij jonge 

kinderen met een chronische nierinsufficiëntie. Een afwijkend substraat wordt aangeboden 

aan de neuronen en astroglia bij deze kinderen. De resultaten kunnen niet verklaard 

worden door verstoorde transportprocessen alleen, doch geven aan dat er een stoornis is 

op cellulair niveau. 

Hoofdstuk 7 beschrijft onze pogingen om een antwoord te geven op de vraag of de 

bepaling van aminozuren, purines en pyrimidines in liquor een bruikbare methodiek is bij 

de screening op metabole aandoeningen bij patiënten met een onbegrepen mentale 

retardatie [9]. 
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Bij 95 patiënten met een onbegrepen mentale retardatie vonden we in de liquor een 

wisselend scala aan afwijkingen van deze metabolieten. Deze afwijkingen waren slechts 

bij twee patiënten reproduceerbaar (beiden hadden in liquor een verlaagd homocamosine 

met daarnaast twee onbekende metabolieten). De verkregen resultaten geven aan dat de 

bepaling in liquor van aminozuren, purines en pynmidines slechts een beperkte waarde 

heeft bij de diagnostiek van onbegrepen mentale retardaties. 

Hoofdstuk 8 is een samenvattende diskussie waarbij enkele lijnen voor de toekomst 

worden uitgezet. 
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STELLINGEN 

behorend bij het proefschrift 

METABOLIC INVESTIGATION 

OF CEREBROSPINAL FLUID 

IN CHILDHOOD 

amino acids, purines and pyrimidines 

in brain disease 

Peter Gerrits 



1. 

De metabole stoornissen in cerebro bij de chronische nierinsufficiëntie worden niet 

veroorzaakt door transportproblemen over de bloed-hersenbarrière, maar door intracellulaire 

processen (dit proefschrift). 

2. 

De bepaling van purines en pyrimidines in liquor is een veelbelovende aanvulling in het 

onderzoek naar de uremische encefalopathie en in de behandeling daarvan (dit proefschrift). 

3. 

De bepaling van aminozuren, purines en pyrimidines in liquor is als screening bij onbegrepen 

retardaties niet geïndiceerd en leidt tot een onverantwoorde kostenverhoging in de 

gezondheidszorg (dit proefschrift). 

4. 

De prognose van de nierfunktie bij kinderen met urethrakleppen is grotendeels reeds in utero 

bepaald (Parkhouse et al. Long term outcome of boys with posterior urethral valves. Br J 

Urol 1988;62:59-62). 

5. 

Het nut van NO toediening bij de behandeling van pulmonale hypertensie bij pasgeborenen 

dient met voortvarendheid ter hand te worden genomen (Kinsella et al. Clinical responses to 

prolonged treatment of persistent pulmonary hypertension of the newborn with low doses of 

inhaled nitric oxide. J Pediatr 1993;123:103-8). 

6. 

De autosomaal recessieve vorm van nefrogene diabetes insipidus kan worden veroorzaakt 

door een mutatie in het waterkanaal aquaporin 2, aanwezig in de verzamelbuis. 

7. 

Gezien de resultaten van gentherapie bij de muis met cystic fibrosis zijn de mogelijkheden 

van positieve resultaten bij de mens niet denkbeeldig (Tizzano and Buchwald. Recent 

advances in cysüc fybrosis research. J Pediatr 1993;122:985-8). 



8. 

De weerstand tegen een Iumbaal punktie wordt vooral bepaald door vooroordelen. 

9. 

Weerstanden tegen sponsoring berusten vaak op onvoldoende vertrouwen in de eigen 

onafhankelijkheid. 

10. 

Neonatologen dienen rekening te houden met de mogelijkheid van een levensbedreigende 

erfelijke stofwisselingsziekte bij ernstig zieke pasgeborenen. 

11. 

Het verspreiden van het konsensusbeleid bij de asthmabehandeling bij kinderen, heeft de 

kwaliteit van deze behandeling aanmerkelijk verbeterd. 

12. 

Het behoud van het karakter van de Ooij-polder is niet alleen van belang voor de kikkers. 








