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Introduction 

Treatment with corticosteroids (CS) is frequently indicated in patients with obstructive 

pulmonary disease (asthma and COPD) Among the well-known side-effects of these 

drugs are myopathy and atrophy of skeletal muscles Continuously active muscles were 

believed to be relatively spared from this complication Recent animal studies (3,4) and 

clinical observations (2), however, have shown that the diaphragm may be involved m 

this process as well 

The mechanisms by which CS cause myopathy are m part unknown Protein wasting 

due to a reduction in protein synthesis and an increase m intracellular proteolysis is 

believed to be an important factor in CS-mduced myopathy (9) Animal studies were 

performed to obtain insight in the underlying mechanisms responsible for the 

corticosteroid-induced muscle impairment Fiber atrophy (5), changes in myosm heavy 

chain composition (10), in energy substrate and enzyme activities (8) have been reported 

So far, only high doses of steroids were administered for short periods This resembles 

acute steroid myopathy whereas chrome steroid myopathy is more often found in clinical 

practice Furthermore, there is an important difference in the effects of fluormated and 

non-fluonnated steroids on striated muscles (3) In contrast to non-fluormated steroids, 

fluormated steroids cause severe body weight loss and muscle atrophy 

Respiratory muscle function in patients with severe COPD has been shown to be 

affected by hyperinflation, hypoxemia, hypercapnia, malnutrition, chrome heart failure 

and physical inactivity This is of interest since COPD patients are occasionally treated 

with corticosteroids It is unknown, however, to what extent normal and emphysematous 

diaphragm structure and function are affected by clinically relevant dosages of a non-

fluonnated CS We were also interested in the antagonistic potency of anabolic steroids 

on CS-induced changes in the diaphragm muscle Isotonic and isometnc contractile 

properties, morphological and biochemical parameters, and structure and function of 

neuromuscular junctions were evaluated to obtain inside in the cellular adaptations to the 

drugs tested 

Outlines of the study 

Chapter 2 is a review of literature describing the differences between chrome and acute 

steroid myopathy and the clinical presentation of steroid myopathy m humans 

The aim of Chapter 3 was to evaluate if different CS treatment regimens caused 

different changes in rat diaphragm muscle structure and function Alternate-day CS 

therapy is believed to reduce side effects without loss of efficacy smce the anti-
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inflammatory potency persists longer than the metabolic side-effects (1,6) In contrast, 

recovery of acute steroid myopathy, caused by short-time high-dose steroid 

administration, appears to take several months (7) 

In Chapter 4 the effects of a non-fluonnated steroid, in a low clinically relevant dose, 

on rat diaphragm structure and function were evaluated. Rats were treated for six months 

with methylpredmsolone (MP) in a dose comparable with 10-15 mg per day m humans 

In Chapter 5 the effects of CS on diaphragm muscle neuromuscular junctions (NMJ) 

were studied NMJ morphology was assessed using a three-color immunocytochemical 

technique combined with confocal microscopy. Measurement of neuromuscular 

transmission fatigue was used to evaluate function of the NMJs. 

The effects of CS on diaphragm muscle power and endurance were studied m Chapter 

6 These measurements were determined from diaphragm isotonic contractile properties, 

using a load clamp technique Power was calculated as a product of velocity of shortening 

and force. The time at which power declined to zero was defined as the endurance time 

of the muscle 

The aim of Chapter 7 was to evaluate the reversibility of MP-induced alterations in 

diaphragm function and structure by addition of the anabolic steroid nandrolone decanoate 

(ND). Both ND and MP were administered in clinically relevant dosages. 

The interactive effects of emphysema and MP treatment are described m Chapter 8 In 

addition, m this chapter the antagonistic efficacy of ND on MP-induced changes in the 

emphysematous diaphragm were studied 
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Abstract 

Corticosteroids may cause myopathy of both skeletal and respiratory muscles This is of 

specific clinical importance in patients with chronic obstructive pulmonary disease 

(COPD), who already have impaired respiratory muscle function After treatment with 

fluonnated steroids, side-effects occur more frequently and are worse compared to 

treatment with non-fluonnated steroids Acute myopathy and atrophy are caused by short-

term high-dose corticosteroid administration, resulting m rhabdomyolysis, diffuse muscle 

weakness and severe dyspnoea In contrast, chrome myopathy occurs after prolonged 

treatment with corticosteroids, and results m proximal muscle weakness and type lib fiber 

atrophy The pathophysiology of steroid myopathy is unknown, but reduction in protein 

synthesis and increased glycogen accumulation may play a major role Animal models 

have demonstrated weakening of the diaphragm and a decrease m body and diaphragm 

mass after corticosteroid administration In humans, a reduction in respiratory and 

peripheral muscle strength, an elevation of urinary creatine excretion and selective type 

lib fiber atrophy may be observed Treatment of corticosteroid-induced myopathy consists 

of tapering the dose of steroids or switching to non-fluonnated steroids 

Introduction 

Treatment with systemic corticosteroids is frequently indicated in severe asthma, during 

exacerbations in chrome obstructive pulmonary disease (COPD), and m various other 

diseases In 1932, Cushing reported an association between endogenous corticosteroid 

excess and muscle weakness (1) Exogenously administered corticosteroids have been 

used since the 1940s and are associated with similar myogemc changes, affecting striated 

muscles of the limbs This especially occurs when fluonnated steroids such as 

triamcinolone and dexamethasone are used However, non-fluonnated steroids such as 

(methyl-) prednisolone and hydrocortisone are also associated with the occurrence of 

muscle weakness (2) 

At first it was believed that only skeletal muscles were affected, as opposed to the 

respiratory muscles, which were thought to be spared because of their continuous activity 

Recent clinical reports and animal studies, however, showed changes in respiratory 

muscles induced by steroids This may occur in patients with pulmonary diseases, as well 

as in patients usmg systemic steroids for other disorders Steroid myopathy is of specific 

clinical importance in patients with COPD, since respiratory muscle function m these 

patients has already been affected by hyperinflation, hypoxaemia, hypercapma, 
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malnutrition, chronic heart failure and physical inactivity. 

The incidence of muscle weakness associated with chronic steroid use varies from 2.5 

up to 21% (2). This may be an underestimation, since hip flexor weakness occurred in 

more than 50% of asthmatics using prednisone >40 mg· day1 (3). In a series of 216 

patients with brain tumors, clinically apparent steroid myopathy occurred in 10.6% after 

treatment with dexamethasone (4). This may also be an underestimation since EMG-

examination was not performed. These findings suggest that myopathy is not an exceptio­

nal complication in systemic steroid therapy. 

In this review steroid-induced abnormalities in both respiratory and peripheral skeletal 

muscles are discussed. 

Clinical patterns 

Two types of steroid-induced myopathy can be distinguished depending on height and 

duration of steroid treatment: acute and chronic steroid myopathy (5). 

Acute myopathy 

Short-term high-dose steroid administration as given during exacerbation in patients with 

asthma and COPD may cause acute myopathy. This complication has been observed in 

patients with acute severe asthma treated with hydrocortisone 3-4 g· day ' IV (6,7). 

However, acute myopathy has also been reported in asthmatics who never received more 

than 1 g of intravenous hydrocortisone daily (8,9). 

Pathological features include rhabdomyolysis, marked elevation of creatine kinase 

(CK), and focal or diffuse necrosis without predilection for a specific fiber type (7-12). 

Diffuse (proximal and distal) muscle weakness is the main clinical feature. In contrast to 

peripheral neuropathy, no changes in deep tendon reflexes or in the sensory component 

were observed. Respiratory muscle involvement may occur, resulting in severe dyspnoea 

and difficulty during weaning after mechanical ventilation (9). Recovery appears to be 

slow; electromyographic examination may show evidence of mild myopathy 6 months 

after clinical recovery (8). 

Chronic myopathy 

The classical pattern of steroid myopathy consists of proximal muscle weakness, 

occurring after prolonged treatment with corticosteroids (13-15). There is a wide 

variation in duration until symptoms of steroid myopathy appear and the correlation with 

either the total steroid dose or duration of therapy is poor. However, several authors 

reported muscle weakness after treatment with prednisolone 30-40 mg· day"1 (4,14-16). 
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Symptoms of this complication vary from complaining of muscle weakness with no 

objective fall in strength to inability to raise upper or lower limbs. Laboratory 

investigation shows normal or slightly elevated CK and increased urinary creatine 

excretion, while myoglobinuria and rhabdomyolysis are absent. 

Biopsies from peripheral muscle show selective type lib fiber atrophy (2), in contrast to 

the generalized fiber atrophy associated with acute steroid myopathy. Fiber type 

classification and distribution are summerized in table 1. The recovery of weakness after 

chronic use of steroids may take weeks or months (2). 

Table 1. Fiber type classification and distribution 

Histochemical type 

Physiological nomenclature 

Anatomical appearance 

Biochemical properties 

Fiber distribution 

Biceps & vastus lateralis 

Diaphragm 

Type I 

slow twitch 

fatigue resistant 

intermediate 

oxidative 

+ 33% 

± 55% 

Type Ha 

fast twitch 

fatigue resistant 

red 

oxidative glycolytic 

± 33% 

± 21% 

Type Ilx/b 

fast twitch 

fatigue sensitive 

white 

glycolytic 

± 33% 

± 24% 

Aetiology and pathogenesis 

To improve the anti-inflammatory effect of the conventional glucocorticosteroids, a 

fluorine atom and a methyl group were added, resulting in the so-called fluorinated 

steroids. The fluorine atom increases both glucocorticoid and mineralocorticoid activity, 

while the methyl group decreases sodium-retaining properties. Fluorinated steroids such 

as triamcinolone and dexamethasone are more potent than non-fluorinated steroids. 

Similarly, steroidal side-effects occur more frequently and are worse after treatment with 

fluorinated steroids. The cause of these differences between the two steroid groups is 

unknown, as is the exact cause of steroid myopathy. Several mechanisms have been 

suggested (2). 

Effect on proteins and enzymes. Steroid-induced protein wasting is due to a reduction in 

protein synthesis and to an increase in intracellular proteolysis. Glucocorticoids inhibit 

protein synthesis primarily in type II muscle fibers, mainly by regulating the activity of 

factors involved in peptide initiation (17) Increased muscle cytoplasmatic protease 
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activity, associated with steroid treatment, results in myofibrillar destruction (18). 

Effect on muscle glycogen metabolism. Treatment with steroids increases muscle 

glycogen, probably by increasing muscle glycogen synthetase activity. Moreover, 

glycogen utilization is decreased (19). 

Effect on mitochondrial function. Mitochondrial alterations in muscles affected by steroids 

have suggested that impaired oxidative respiration may be an important factor in 

pathogenesis. The severity of the corticosteroid-induced changes correlated with the 

percentage of type II glycolytic fibers (20). 

In conclusion, steroid-induced myopathy may be caused by a complex of changes in the 

muscle cells, of which reduction in protein synthesis and glycogen accumulation play a 

major role. 

Histological and functional changes in animal models 

Animal models have been used to study respiratory muscle involvement in steroid 

myopathy (Table 2). The advantage of this is that isolated steroid effects can be observed. 

Interference with other factors affecting respiratory muscle function, such as the 

underlying disease, is thus excluded. 

Fluorinated steroid administration affected type lib fibers, whereas type I and type IIa 

muscle fibers were spared (21-23). Vacuolar changes may occur in all fiber types 

(22,24-27). Glycogen levels in muscle cells were elevated (24). 

The above-mentioned histological alterations led to changes in contractile properties 

(21,22,28,29). As a result of the selective type lib fiber atrophy, seen after fluorinated 

steroid administration, the cross-sectional area of the diaphragm contained more slow 

(type I and Ila) muscle fibers. Therefore, the diaphragm ended in having the same 

contractile abilities as slow muscles, such as prolonged contraction time, prolonged half 

relaxation time and a reduction in fatigability (23,28). On the other hand, the observed 

loss in diaphragm mass, which decreased in proportion to total body weight, also 

impaired diaphragm force. Non-fluorinated steroids, even in low doses (30), caused loss 

of function of the diaphragm without muscle fiber atrophy, resembling chronic steroid 

myopathy (22,29,30). These findings suggested that moderate and low doses of non-

fluorinated steroids resulted in myopathy rather than in atrophy and affected the intrinsic 

contractile apparatus of the diaphragm. 

From these animal models it can be concluded that glucocorticosteroid administration 

resulted in a reduction in total body and diaphragm mass. Type IIb fiber atrophy, which 
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occurred after treatment with fluonnated steroids, converted the contractile properties of 

the diaphragm to those of slow muscles Loss of diaphragm mass without fiber atrophy, 

as observed after administration of low doses of non-fluormated steroids, also affected 

diaphragm contractile properties Thus, besides causing loss of mass, corticosteroids also 

weaken the diaphragm through changes in the intrinsic contractile apparatus 

Clinical Findings 

In recent years, several case reports have shown involvement of respiratory muscles in 

chrome steroid myopathy The clinical studies are summenzed m table 2 Janssens and 

Decramer (16) reported two patients with connective tissue disease receiving prednisone 

30-36 mg day \ who complained of muscle weakness and dyspnoea Pulmonary function 

tests showed decreases in maximal inspiratory mouth pressure ( P ^ , 35-52% predicted) 

and maximal expiratory mouth pressure ( P E , ^ , 40% predicted) Pi,^ and ΡΕ„„„ are used 

as a measure for inspiratory and expiratory muscle force After gradual reduction of the 

steroid dose, Pi^, and P E ^ markedly increased Similar changes in P ^ and P E ^ were 

described durmg prolonged treatment with high doses of corticosteroids m two patients 

with asthma and one with COPD (Fig la and lb) The quadriceps force was reduced in 

these three patients (Fig lc) (13) In a study of 21 patients with asthma and COPD the 

corticosteroid dose, expressed as the average daily dose durmg the last six months 

(ADD), negatively correlated with Pl,^ (r=-0 64, p < 0 002) and with the quadriceps 

force (r=-0 56, p < 0 01) A similar tendency was found between ADD and PE,^ 

(r=0 41, p < 0 1) (31) These reports strongly suggest that treatment with corticosteroids 

contributed to the observed muscle weakness in patients with asthma and COPD 

In several patients suspected of steroid myopathy, biopsies of striated skeletal muscles 

were performed to confirm the diagnosis There are histological differences between acute 

and chrome steroid myopathy 

Acute steroid myopathy Biopsies showed atrophy of all fiber types (1,6,7,10), without a 

predilection for type lib fibers Generally the degeneration of fibers was accompanied by 

diffuse necrosis (1,6,7,10,12) Lacomis et al (11) perceived myofibrillar disorganization 

and loss of both thick and thin myofilaments and Ζ bands 

Chronic steroid myopathy Most biopsies showed abnormal variation in fiber size with 

selective atrophy of type lib fibers (14,32) In some reports type II fiber atrophy was 

observed, while no differentiation was made between type Ha and IIb muscle fibers 

(15,33) No inflammatory cells were found (13,31) Muscle fiber necrosis was absent 
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quadriceps force (fig. C), expressed as % of predicted, versus time after gradual dose reduction in 
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(15,32) 

Although of little importance in diagnosing steroid myopathy, a major electron 

microscopic feature in chronic (15) as well as in acute (7) steroid myopathy is the 

presence of large numbers of glycogen granules in the intermyofibrillar spaces 

Corticosteroids are often administered to patients with COPD Steroid-induced respiratory 

muscle involvement may be more obvious and of more clinical importance in these 

patients since respiratory muscle function m COPD is already affected in several ways 

The high airway resistance increases the work load of these muscles and at the same time 

the work capacity is decreased by hyperinflation, malnutrition, hypercapnia, chrome heart 

failure, and physical inactivity (34) 

Hyperinflation of the diaphragm results in a reduced number and length of sarcomeres 

Thus, the muscle fibers of the diaphragm continue to operate at an optimal length (35,36) 

However, as a result of this shorter length m COPD, the pressure generation of the 

diaphragm is reduced (37) 

Beside this mechanical disadvantage, nutritional status is an important factor 

influencing respiratory muscle strength Malnutrition in animal models results m 

generalized fiber atrophy, also affecting the diaphragm (38,42) This is of clinical 

importance, smce approximately one third of patients with COPD are significantly under­

weight (37) Rochester et al (37) reported a significant correlation between maximal 

inspiratory pressure and body weight in patients with COPD At necropsy they observed a 

substantial reduction in diaphragm dimensions in markedly underweight patients with 

COPD The degree of hypercapnia m COPD was inversely related to the maximal inspira­

tory pressure (37) Physical inactivity, as in severe COPD, further curtails respiratory 

muscle strength (38) 

Diagnosis of chronic steroid myopathy 

There is no specific test to diagnose steroid-induced myopathy However, the possibility 

of this diagnosis should be taken into account when the following abnormalities are found 

Laboratory findings 

In contrast to chrome steroid myopathy, high levels of CK (1,000 - 100,000 Ul1) were 

measured in acute steroid myopathy This was associated with myoglobinuria, indicating 

rhabdomyolysis (7,10) In chronic myopathy, however, biochemical parameters like 

SGOT, aldolase and CK were not correlated with corticosteroid dose or muscle weakness 

(3,16) LDH may be within normal range (14) or slightly elevated (38) Myoglobinuria 

and rhabdomyolysis are absent Urinary creatine excretion seems to be the most sensitive 
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laboratory indicator for clinical diagnosis and for individual follow-up (14,16) However, 

changes in urinary excretion of creatine were of no help in confirming the diagnosis in a 

cross-sectional study (3) 

Electromyographic examination (EMG) 

The power of the EMG to discrimínate between steroid myopathy and myopathy due to 

other causes is low (2) Most authors observed excessive numbers of easily recruited, 

short-duration, low-amplitude motor unit potentials, and occasional low-amplitude 

polyphasic motor units in predominantly the proximal muscles (8,11,12) The muscles 

were silent at rest and fibrillation potentials were absent, which is in contrast with 

findings in inflammatory myopathy (2) These changes are frequently detectable in some 

areas of the myopathic muscle, whereas other areas in the same muscle seem normal 

Muscle strength testing (Table 3) 

Respiratory muscle strength can be objectified by measurement of P ^ and P E ^ at the 

mouth These values are frequently reduced in severe COPD patients Additional effects 

of corticosteroids may be detected by serial measurements, combined with changes in 

steroid dosages Peripheral muscle strength testing may reveal lowered force in 

extremities Bowyer et al (3) observed a good correlation between P i ^ and hip flexor 

strength 

Pulmonary function tests 

Pulmonary function tests in patients with steroid myopathy are expected to be similar to 

those observed m patients with respiratory muscle weakness due to other causes (40) A 

reduced diffusion capacity for carbon monoxide may be observed because of 

microatelectases Lung compliance is reduced with low recoil pressures at total lung 

capacity (TLC) (40) This is in contrast to the pattern observed in interstitial lung disease 

in which elastic recoil pressure at TLC is increased (41) A decrease m lung volume 

occurs if respiratory muscle strength is lower than 50% of predicted (13,15) 

Muscle biopsy 

In a biopsy from an affected peripheral muscle, for example the deltoid muscle, type lib 

fiber atrophy is prominent, without signs of inflammatory cells or myonecrosis A less 

specific finding is the presence of large numbers of glycogen granules m the 

intermyofibnllar spaces Muscle biopsy can differentiate between muscle weakness due to 

steroid myopathy and malnutrition, since malnutrition is associated with generalized 

muscle fiber atrophy (42) A muscle biopsy can be useful in strengthening the diagnose 
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Treatment of corticosteroid-induced myopathy 

Steroid therapy is barely replaceable in present-day medical treatment As there is no 

definitive dose at which steroid myopathy occurs, it is difficult to give firm guidelines to 

prevent steroid myopathy 

When steroid myopathy occurs during treatment with fluonnated steroids, the 

alternative is to switch to non-fluonnated steroids such as prednisolone or 

methylpredmsolone (43) When non-fluorinated steroids are the cause of steroid 

myopathy, the dose should be tapered off If this is not possible, therapeutic interventions 

to antagonize steroid-induced myopathy may be considered, although they have not yet 

been confirmed by clinical studies 

Exercise Several animal studies showed that exercise can impede steroid muscle atrophy 

(44,45), since it partially encounters the loss in muscle protem This may be explained by 

an increase in glucocorticoid receptors in immobilized muscles (46) 

Anabolic steroids A reduction m corticosteroid induced weight loss due to the suppletion 

of anabolic steroids has been observed (18,47,48) This is possibly caused by an 

interaction on glucocorticoid receptor level between corticosteroids and anabolic steroids 

(18,49) In male rats anabolic steroids increased the mass of respiratory muscles in 

proportion to body weight (50), with an increase of specific tension generation m the 

diaphragm (50,51) 

Growth hormone Growth hormone accelerated the recovery of the 'malnourished' 

diaphragm in rats (52) It may therefore be useful in refeedmg malnourished patients with 

COPD, by improving their diaphragm function 

ß2-agomsts Agents such as clenbuterol and salbutamol have been used to manipulate 

growth and body composition These drugs reduce protem degradation, possibly 

accompanied by a similtaneous increase m protein synthesis Administration of clenbute­

rol, alone (53) or combined with growth hormone (54), increased the cross-sectional area 

of both type Ha and lib fibers Martineau et al (55) observed an increase m peripheral 

muscle strength and inspiratory mouth pressure in humans after administration of 8 mg 

salbutamol twice daily for 3 weeks The effects of clenbuterol on diaphragm contractility 

and fatigue resistance are not clear yet 
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Conclusions 

The incidence of involvement of the respiratory muscles in chronic steroid myopathy is 

unknown at present, yet may be quite common Current therapy with positive inotropic 

drugs such as theophylline and inhaled Bj-agomsts, might mask this complication 

Especially in patients with COPD, who already have unpaired respiratory muscle 

function, diagnosing steroid myopathy with respiratory muscle involvement is difficult but 

essential If the diagnosis of chrome steroid myopathy is considered, peripheral and 

respiratory muscle strength, urinary creatine excretion, and serum muscle enzymes should 

be measured Pulmonary function tests and a peripheral muscle biopsy may provide 

additional information Treatment of corticosteroid-induced myopathy consists of tapenng 

off the dose of steroids or switching to non-fluonnated steroids Other therapeutic 

interventions are being studied 
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Abstract 

Systemic corticosteroid therapy may affect diaphragm structure and function We 

postulated that functional, immunohistochemical and biochemical characteristics of rat 

diaphragm were less affected by alternate-day methylprednisolone (MP) administration, 

and more by repeated bursts of MP, m comparison to daily s с MP Sixty adult rats were 

randomized into 4 groups saline sc , MP contmuously (MP-C, 1 mg kg1 daily), MP 

alternate-day therapy (MP-A, 2 mg kg ' every other day), or MP in bursts (MP-B, 2 

mg kg ' daily for 2 weeks, saline for 4 weeks, MP 2 mg kg l daily for 2 weeks) The total 

treatment period was 8 weeks Contractile properties of isolated diaphragm strips were 

measured Antibodies reactive with type I, Ha, IIx and lib myosin heavy chains were 

used for immunohistochemical analysis Biochemical evaluation mcluded markers of fast 

energy supply, glycogenolytic activity, ß-oxidation capacity and oxidative capacity The 

force-frequency curve was depressed m all MP groups Fiber type I, IIx and lib cross 

secticnal area (CSA) decreased m all MP groups Burst therapy decreased the contribution 

of type lib CSA to total diaphragm CSA MP A affected glycogenolytic activity less than 

MP С Burst MP therapy reduced CK activity and ß-oxidation capacity compared to MP-

C Oxidative capacity was increased m all MP groups In conclusion, although the MP 

treatment regimens affected diaphragm muscle morphology and bioenergetic enzyme 

activities m different ways, force generation decreased in all MP groups to the same 

extent 

Introduction 

Recently, animal and clinical studies have shown evidence of respiratory muscle 

dysfunction induced by treatment with corticosteroids (8,9) Morphological changes such 

as selective type lib fiber atrophy were observed in animal studies following 

administration of fluonnated steroids (11,37) Non fluorinated steroids, however, caused 

loss of diaphragm function without muscle atrophy, suggesting myopathy (11) 

The mechanisms by which non-fluonnated steroids cause myopathy are in part 

unknown Changes in myosin heavy chain composition in the muscle fibers may 

contribute, since myosin heavy chain turnover rate in muscle cells was decreased 

following dexamethasone therapy (31) These myosin heavy chains determine myosin 

ATP-ase activity and the speed of shortening in the muscle fibers and are therefore m part 

responsible for contractile properties Polla et al (26) reported a complete disappearance 

of rat diaphragm muscle fibers containing lib myosin heavy chains (MyHCs) following 
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cortisone acetate 100 mgkg 'day ' for eleven days. It is unknown if similar changes 

occur after administration of lower, clinically more relevant dosages. 

Changes in energy substrate and enzyme activities may also contribute to the onset of 

steroid-induced myopathy. A consistent observation is the increase in glycogen content in 

the diaphragm (15,33). However, conflicting effects on diaphragm mitochondrial function 

were found following corticosteroid therapy (24,36). This may be explained by the 

differences in the dosage, duration and types of steroids studied. 

In addition, the severity of structural and biochemical changes in the respiratory 

muscles may depend on the treatment regimens applied. Alternate-day glucocorticoid 

therapy may reduce side effects since anti-inflammatory potency appears to persist longer 

than the undesirable metabolic effects (4,17). The clinical efficacy of alternate-day 

therapy was similar in patients with COPD or stable asthma compared to daily treatment 

(2,6). Another treatment regimen, short-term high-dose steroid therapy is often applied 

during exacerbations of COPD or asthma. Repeated episodes of high-dose steroid 

administration, in this study referred to as bursts, may cause more severe side effects. 

This concept is supported by the observation that recovery of acute steroid myopathy, 

caused by short-time high-dose steroid administration, appears to take several months 

(21). 

We postulate that the structure and function of the rat diaphragm (1) is less affected by 

alternate-day corticosteroid administration and (2) is more affected by repeated bursts, in 

comparison to daily administration. In order to test this hypothesis, we studied functional, 

immunohistochemical and biochemical changes in rat diaphragm induced by continuous, 

alternate-day and burst administration of the non-fluorinated steroid methylprednisolone. 

Methods 

Study design, animals, and treatment 

Sixty adult male outbred Wistar rats, aged 18-20 weeks, mean (±SD) weight 525±34.8 

g, were randomised into 4 groups: 

- control (C): saline 0.2 ml day' subcutaneously (s.c.) 

- methylprednisolone (MP) continuously (MP-C): 1 mgkg 'day ' s.c. 

- MP alternate-day therapy (MP-A): 2 mg-kg"' s.c. every other day alternating with saline 

0.2 ml s.c. 

- MP in bursts (MP-B): MP 2 mgkg 'day ' s.c. for 2 weeks followed by saline 0.2 ml 

s.c. for 4 weeks and by MP 2 mg-kg 'day"' s.c. for 2 weeks. 

With each injection all animals received a similar volume ( — 0.20 ml). During 8 weeks 

the animals were s.c. mjected daily between 8.30 and 10.00 a.m. in the neck. The total 
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dose of steroids administrated was equal in all treatment groups The rats were fed ad 

libitum, held on a 12/12 hour light-dark regime and weighed twice weekly At the end of 

the treatment period, contractile properties, immunohistochemical and biochemical 

characteristics of the diaphragm were examined All animals were investigated between 

23 and 30 hours after the last injection Adrenal and diaphragm weights were measured 

immediately following dissection The study was approved by the local Animal 

Experiments Committee of the University of Nijmegen 

Contractile properties 

The rats were anaesthetized with sodium pentobarbital (70 mg kg ' ι ρ ) and a poly­

ethylene cannula was inserted through a tracheotomy The animals were mechanically 

ventilated with an oxygen-enriched gas mixture (flow 0 5 ml g ' body weight mm ', 

respiration frequency 70 mm1 and a duty cycle of 50%) The diaphragm was quickly 

removed through a combined laparotomy and thoracotomy and was immediately immersed 

in a cooled, oxygenated Krebs solution at a pH of 7 4 This solution consisted of 

(mmol l1) 137 NaCl, 4 KCL, 2 MgCl2, 1 KH2P04, 24 NaHC03, 2 7 CaCI2, and 7 

glucose D-tubocuranne chloride 25 μΜ (Sigma Chemicals, The Netherlands) was added 

to prevent spontaneous neuromuscular activity Two small rectangular bundles, parallel to 

the long axis of the muscle fibers, were dissected from the middle part of the lateral 

costal region of each hemidiaphragm Silk sutures were firmly tied to both ends of the 

bundle to serve as anchoring points Each bundle was placed in a tissue bath between two 

large platmum stimulating electrodes The tissue baths were filled with Krebs at 37°C and 

were oxygenated with 95% 0 2 and 5% C0 2 The central tendon insertion of the bundles 

were lied to a fixed point and the costal margin origin to an isometric force transducer 

(Sensotec, model 31/1437, Columbus OH, USA) Data acquisition and storage were 

performed using a Dash-16 interface and Twist-Trigger software (I D -electronics, 

University of Nijmegen, The Netherlands) Stimulations were applied with a Grass S 48 

stimulator (Quincy, MA, USA) Maximal twitch force was reached at 34 volt To ensure 

supramaximal stimulation, subsequent stimulations were performed with a 20% higher 

voltage (40 V) The pulse duration was set on 0 2 ms Twitch stimuli were used to 

determine the optimal length (Lo), followed by a 15 min thermo-equilibration period 

(10) The following measurements were made 

Twitch characteristics two twitches were recorded at Lo to obtain maximal twitch force 

(PJ, contraction time (CT), and half relaxation time O/2RT) The averages were used for 

further analysis 

Maximal tetanic contraction two maximal tetanic stimuli (with a frequency of 160 Hz 

and a train duration of 250 ms) were generated to obtain maximal tetanic force (P0) 
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Force-frequency (FF) protocol muscle bundles were stimulated every 2 min with the 

following frequencies 25, 160, 50, 160, 80, 160, 120 and 160 Hz (tram duration 250 

ms) Forces were also expressed as percentage of the average force at 160 Hz before and 

after each stimulus (11,25) 

The generated force was expressed per cross-sectional area (kg cm2) Cross-sectional 

area (CSA) was measured by dividing diaphragm bundle weight by muscle density (1 056 

mg mm3) and bundle length 

Immunohistochemical procedures 

Muscle strips obtained from the costal part of the right hemidiaphragm were embedded in 

Tissue-Тек* m a plastic holder The muscle fibers were oriented parallel to the long side 

of the holder Subsequently, these specimens were quickly frozen m isopentane cooled m 

liquid N2 followed by further freezing in liquid N2 Serial cross sections were cut at 7 μτα 

with a cryostat kept at 30DC Anti-myosin heavy chain antibodies (Regeneron 

Pharmaceuticals, New York, U S A ) were used for morphometnc examination The 

following antibodies were used BA-D5 reactive with type 1 MyHCs, SC 71 reactive with 

type IIa MyHCs, BF-35 reactive with type I, Ha and lib but not with type IIx MyHCs, 

and BF-F3 reactive with type lib MyHCs (30) Incubation with anti-myosin heavy chain 

antibodies was performed at room temperature for 1 hour Antibodies were subsequently 

labelled with ultra small immunogold reagent followed by silver enhancement (Aurion, 

Wageningen, The Netherlands) A minimum of 300 fibers were analysed from each 

diaphragm usmg a Sprynt-based, PC-Image digital analysis system (Bos В V , 

Waddinxveen, the Netherlands) 

Biochemistry 

Parameters of the bioenergetic capacity of the diaphragm included the activities of 

creatine kinase (CK), responsible for the fast energy supply, the glycogenolytic enzyme 

Phosphorylase, and the mitochondrial enzymes 3-hydroxyacyl-CoA dehydrogenase 

(HADH), a marker for the ß-oxidation capacity, and citrate synthase (CS), an index of 

citric acid cycle activity 

Tat and tendon were quickly removed from remainings of the left and right 

hemidiaphragm Subsequently, these diaphragm parts were frozen in liquid N2 and stored 

dt 80oC Segments of fresh frozen diaphragm were thawed in ice-cooled buffer 

containing 250 mM sucrose, 2 mM EDTA and 10 mM Tns-HCl (pH 7 4) In this buffer 

muscle homogenates (5% wt vol ') were prepared by hand homogemzation, using a 

Potter blvehjem glass teflon homogemzer 

CK activity was determined with the Boehringer CK-NAC activated kit (19) and 
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expressed in mmol NADPH formed mm1 g tissue Total Phosphorylase (a+b) activity 

was assayed according to the method described by Jacobs et al (18) Phosphorylase 

activity was expressed as μηιοί NADPH formed mm ' g tissue HADH activity was 

assessed at 50 μΜ acetoacyl-CoA (5) and expressed in nmol HADH oxidized min ' g 

tissue Citrate synthase activity was determined at 25CC (32) and was expressed as /¿mol 

coenzyme A formed min ' g tissue All other above mentioned measurements were 

performed at 37 °C The assays for metabolic enzymes were performed spectrophoto-

metrically in duplicate The coefficient of variation for the assays applied was —5% 

Data analysis 

Data of contractile properties of the two bundles obtained from one rat were averaged 

The SPSS/PC + package V5 0 1 (Chicago Illinois, USA) was used for statistical analysis 

Data were compared using one-way analysis of variance followed by Duncan's multiple-

range test Repeated measures analysis of variance was used for growth curve analysis 

and a two-way analysis of variance was used to detect treatment differences m force 

generation during the FF protocol Results were considered significant at ρ < 0 05 All 

data were expressed as mean ± SD 

Results 

Body, muscle and adrenal weight 

Figure 1 shows the body weight curve during the 8-week treatment period A significant 

effect of steroid treatment on growth curve was noted throughout this period (p = 0 039) 

Continuous MP administration affected body growth most Body weights of the MP-A 

animals closely tracked those of the control group Administration in bursts temporarily 

inhibited growth 

No differences in absolute diaphragm weights were observed Diaphragm weight, 

normalized for body weight, was also similar m all groups (control 0 0132 ±0 001%, 

MP-C O0143±0O01%, MP-Α 0 0136±0 001%, MP-B 0 0141 ±0 002%) Absolute 

adrenal weight was reduced in all MP treatment groups Adrenal weights in the treatment 

groups were reduced in proportion to body weight (control 0 0082 ±0 0014%, MP-C 

0 0077±0 0008%, MP-A 0 0074±0 0007%, MP-B 0 0079+0 001 %) 

Contractile properties 

Diaphragm bundle dimensions did not differ between the four groups (average length 

-16 5 mm, thickness ~0 67 mm, width - 1 8 mm, and weight -26 mg) Ρ, and P0, 
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Figure 3. Fiber type cross sectional area 
Open bars: control; hatched bars: M P C ; solid bars: MP-A; 
cross hatched bars: MP-B; 
* ρ <0.05 compared to control; # ρ <0.05 compared to MP-C 

Figure 4. Relative fiber contribution to total diaphragm muscle area 
Open bars: control; hatched bars: MP-C; solid bars: MP-A; 
cross hatched bars: MP-B; * ρ <0.05 compared to control 
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normalized for CSA, decreased by 7.0 to 9.5% in all MP groups (p = 0.07). Twitch 

characteristics did not differ between the groups (table 1). 

The FF curves, expressed as absolute values, showed significant differences in force 

generation (p = 0.026) in all groups treated with MP. Force generation was equally 

reduced in all MP groups (fig. 2). MP treatment affected force generation at all 

stimulation frequencies in a similar way. The percentage decrease in Ρ160 Hz during the 

FF protocol was similar in the three MP groups, and did not differ from control (MP-C 

11.4±10.0%; MP-Α 11.7±7.5%; MP-B 12.5±11.0%; control: 9.0±7.7%). 

Immunohistochemistry 

Methylprednisolone administrated in bursts (MP-B) caused a shift in fiber distribution 

from type lib to type Их in comparison to control (p<0.01) (table 2). 

Significant atrophy of type I, Hx and lib fibers was observed in all MP groups (fig. 3). 

The differences in type Ha fiber CSA, as shown in figure 3, were significant but very 

small. The degree of type IIx atrophy was less following alternate-day in comparison to 

continuous MP therapy. In addition, type IIx CSA decreased in the MP-B group 

compared to MP-C. In other words, type IIx fiber atrophy was most pronounced 

following bursts and least affected by alternate-day steroid therapy compared to daily 

treatment (fig. 3). In contrast, the degree of type IIb fiber atrophy was greater in the MP-

A animals compared to MP-C. 

As a result of the decrease in number of type lib fibers in the MP-B group, the relative 

contribution of type lib fibers to the total muscle area of the diaphragm was decreased 

compared to control (fig. 4). 

Biochemistry 

The data on bioenergetic enzyme activities are shown in table 3. An approximately 30% 

increase in CS activity was found in all MP treatment groups, indicating an increased 

oxidative capacity (p<0.01). 

Treatment with the three MP regimens affected energy supply by different mechanisms. 

First, continuous steroid administration decreased glycogenolytic activity, indicated by a 

decrease in Phosphorylase activity. Second, glycogenolytic activity was less affected 

following alternate-day steroid administration in comparison to daily treatment. Finally, 

burst MP administration affected CK activity and ß-oxidation capacity, as indicated by 

HADH, more in comparison to MP-C. Total Phosphorylase activity, however, was higher 

in the MP-B group than in the MP-C group. 
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Table 1. Diaphragm contractile properties. 

treatment P, CT V4RT P„ P,/P„ 

kg-cm2 ms kg-cm2 

control 0.64±0.18 29.3±1.8 17.7±1.3 2.23±0.51 0.29±0.03 

MP-C 0.58±0.20 28 8±2.1 17.9±1 2.02±0.65 0.29+0.02 

MP-Α 0.60±0.15 29.2±2.3 18 1± 1.1 2.07±0.42 0.29±0 03 

MP-B 0.59±0.23 29.2+2.6 18.1±1.6 2.02±0.74 0.29±0.04 

means +SD; P,: twitch force; CT: contraction time; 
ViRT: half relaxation time; P„- maximal tetanic force 

Table 2. Fiber type distribution 

treatment 

control 

MP-C 

MP-A 

MP-B 

typel 

% 

32.7+4.1 

33.4±3.6 

34.6±3.5 

33.6±3.1 

type IIa 

% 

33.5+4.2 

31.6+6.1 

33.4+3.9 

31.5+3.5 

type IIx 

% 

28.3±4.1 

31.4+4.2 

28.7±3.5 

33.2+4.9' 

type lib 

% 

5.5+4 3 

3.7+3.7 

3.3+3.6 

1.8±2.0-

means +SD; * p<0.05 compared to control; # p<0.05 compared to control and the MP-Α group 

Table 3. Biochemical analysis of the diaphragm. 

treatment 

control 

MP-C 

MP-A 

MP-B 

CK 
k U g 1 

2.18+0.54 

1.82+0.64 

1.48+0.32" 

1.39+0.47"' 

Phosphorylase 
U-g' 

35.5+3.3 

32.6+2.0* 

38.0+3.2 

37.2±4.0 

HADH 
U-g' 

2.86±0.44 

2.83±0.66 

2.84±0.51 

2.24 ±0.35' 

CS 
U-g"' 

23.9±2.3 

30.8±6.5* 

31.2±4.0" 

30.6±4.8' 

means +SD; CK: creatine kinase, HADH: 3-hydroxyacyl-CoA dehydrogenase; CS: citrate synthase; 
* p<0.01 compared to control; χ p<0.05 compared to MP-C; # p<0.01 compared to all other groups 
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Discussion 

The question in the present study was whether there were differences in changes in rat 

diaphragm following different corticosteroid treatment regimens The data showed that the 

MP treatment regimens affected body weight, diaphragm morphology and bioenergetic 

capacity in a different way Force generation, however, decreased to a similar extent m 

all MP treatment regimens This apparent discrepancy can be explained by the fact that 

the net result of these combined morphometnc and biochemical changes, was an equal 

reduction m force generation 

Rationale of methylprednisolone dosage 

The rationale for the dose of MP used m the present study was based on an absorption of 

60% after ι m injection (25) and the finding that the s с route may require higher doses 

to produce effects similar to ι m administration (16) Similar anti-inflammatory potency 

and metabolism of methylprednisolone have been described in rats and humans (20,28) 

Therefore, 1 mg kg ' of MP, as administrated m the MP-C group, may be equivalent to a 

dose of 35 mg day ' in a 60 kg human A daily dose of 35 mg methylprednisolone is not 

uncommon m the treatment of patients with COPD during an exacerbation (1) 

The duration of biological effects of methylprednisolone in rat is difficult to analyse 

because of the nonlinear clearance (22) In addition, no close correlation was found 

between the circulating half-life of a glucocorticoid and its duration of action (4) 

However, the differences in growth curves observed m the present study indicates that 

there are differences m biological effects between continuous and alternate-day therapy 

Contractile properties 

The reduction in diaphragm force generation following MP therapy, observed in this 

study during the FF protocol, cannot be explained by differences in oxygenation of the 

bundles, since their measures were similar m all groups Smce MP has little or no 

mmeralocorticoid activity, an overestimation of the CSA due to an increase in 

extracellular fluid is unlikely Glucocorticoids are known to cause protein wasting (27) A 

reduction in myofibnlar protem density would result in a reduction m the number of 

cross-bridges available for interaction with actin This can lead to a reduction in force 

generation Other plausible causes for the impairment in diaphragm force are the 

morphological and biochemical changes 

In previous studies no changes in twitch and maximal tétame forces were found 

following 0 5 mg MP kg ' day ' for 6 weeks (10), or following 5 mg kg 'day ' of 

prednisolone for 4 weeks (11) Cortisone acetate 100 mg kg' day' for 10 days did not 
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lead to functional changes in the diaphragm either (25). The downward shift of the FF 

curve in the present study may be explained by differences in effects of dosage and 

duration of the steroid therapy on morphological and biochemical characteristics (see 

below). 

Immunohistochemistry 

Immunohistochemical differentiation between type Hx and lib fibers, as performed in this 

study, may be of importance since type Их and ПЬ MyHCs possess biochemical and 

functional differences. Maximum velocity of shortening (29) and resistance to fatigue (23) 

in type Hx muscle fibers are intermediate between those of type Ha and lib fibers. Twitch 

and tetanic forces are higher in lib in comparison with Ha and Hx motor units (23). Type 

Hx muscle fibers have a rich mitochondrial content, in contrast to type lib fibers (30). 

In line with our hypothesis, the degree of type Их atrophy was less following alternate-

day MP administration compared to continuous therapy. On the other hand, type lib fiber 

atrophy was more pronounced in the alternate-day group. Cortisone acetate treatment in 

rabbits resulted in atrophy of all diaphragm fiber types (13), whereas no changes in fiber 

CSA were found in rats following prednisolone treatment (11). Muscle fiber atrophy can 

be the result of steroid-induced protein wasting due to a reduction in protein synthesis and 

an increase in intracellular proteolysis (27). However, muscle fiber atrophy may also 

occur as an attempt to increase oxygen delivery by decreasing the cell diameter, in this 

way creating a smaller diffusion distance (34). 

Burst therapy reduced the number of type lib fibers and decreased the contribution of 

type lib CSA to total diaphragm CSA. Cortisone acetate administration (100 m g k g ' d a y ' 

for 11 days) even resulted in a complete disappearance of fibers containing lib MyHCs, 

while fiber type distribution was not described (26). These changes were not detected 

using ATP-ase staining (11,13). 

The cause of the shift from type lib to type Hx fibers following burst therapy is not 

entirely clear. This shift may be caused by a disappearance of type lib fibers combined 

with an appearance of new type Hx fibers. The following observations, however, support 

the occurrence of a transformation from type lib to IIx fibers. Corticosteroids decrease 

the rate of amino acid incorporation into the MyHCs, resulting in a decreased turnover 

rate of the MyHCs in the muscle cell. As this decrease in turnover rate is most 

pronounced in the fast twitch muscle fibers (31), type lib fibers are likely to be affected 

most. This may lead to a decrease in lib MyHCs in type lib fibers. Since genes of IIx 

MyHCs are coexpressed in a number of type lib muscle fibers (12), an increase of IIx 

MyHCs in type lib muscle fibers may occur to compensate for the decrease in type lib 

MyHCs. To our knowledge, there is no evidence that type lib fibers disappear while new 
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type Hx fibers are generated The shift from type lib to type Их fibers following MP 

burst therapy is probably too small to cause functional changes at different stimulation 

frequencies 

Biochemistry 

Treatment with MP resulted in a decrease in energy supply as indicated by a reduction m 

CK activity or m glycogenolytic activity This impairment in energy supply may have 

caused the increase in oxidative capacity m all MP groups To what extent these 

differences ш biochemistry were influenced by the fact that ammals m the MP-Α and MP-

B group received 2 mg kg ' MP 23 to 30 hours before investigation, whereas, animals in 

the MP-C group only received 1 mg kg ', is not clear 

Creatme kinase rapidly rephosphorylates ADP from phosphocreatme m order to keep a 

constant ATP level in the muscle A decrease m CK activity may therefore directly lead 

to a reduction in fast energy supply CK activity decreased following steroid 

administration in bursts compared to MP-C In patients with bronchial asthma, CK 

activity m the deltoid muscle decreased following prednisone treatment (17 mg day ' 

during 15 years) (15) 

The increase m glycogen storage m the diaphragm muscle following steroid 

administration found by others (14) may be the result of a decrease in glycogen 

breakdown or an increase in glycogen production (33) or both (15) Our data show that 

alternate-day and burst therapy did not affect glycogenolytic capacity, measured by 

Phosphorylase activity, in contrast to continuous steroid administration 

Since the diaphragm muscle possesses a high ß-oxidation capacity (35), it is unclear if 

the 20% reduction in HADH activity, observed following steroid administration m bursts, 

has functional consequences Short-term (10 days) prednisolone treatment (5 mg kg ' day ' 

sc) did not change HADH activity m rat diaphragm (24) However, a decrease m 

HADH activity m vastus lateralis muscle of patients with rheumatoid arthritis occurred 

with low doses of prednisolone (7) 

In the present study, administration of methylprednisolone resulted m an increase m 

oxidative capacity, as indicated by the increased CS activity, independent of the treatment 

regimen applied This is in line with the increase in oxidative staming reaction in skeletal 

muscle reported by others (36) Mitochondrial changes in rabbit diaphragm following 

glucocorticoid administration ranged from a numerical increase to the presence of 

enlarged and degenerated mitochondria (3) In contrast to these observations, CS activity 

in rat diaphragm was reduced following 5 mg kg ' prednisolone per day for 10 days Yet, 

no changes in CS activity were reported following 0 5, 1 or 2 mg kg1 per day (24), 

suggesting that enzyme activity was more affected using high dosages of prednisolone in 
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comparison to low dosages. Reactions of metabolism to corticosteroids may also depend 

on the fiber type composition of the muscle (14,24) because the resistance of different 

fiber types is believed to depend on their ability to compensate the steroid-induced 

deficiency of the glycogenolytic route by converting to oxidative metabolism (36). 

In conclusion, force generation decreased in all MP groups to an equal extent, although 

the MP treatment regimens affected diaphragm muscle morphology and bioenergetic 

enzyme activities in a different way. 
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Abstract 

In animal studies, high dosages of corticosteroids cause changes in diaphragm structure 

and function The present study was designed to investigate the effects of long-term low-

dose methylpredmsolone (MP) administration on rat diaphragm contractile properties and 

morphology Thirty adult rats were treated with saline or MP (0 2 mg/kg/day sc) during 

six months Contractile properties of isolated diaphragm strips, immunohistochemical 

analysis using antibodies reactive with myosin heavy chain isoforms, and enzyme 

activities were determined in the diaphragm muscle MP significantly reduced diaphragm 

force generation by -15% over a wide range of stimulation frequencies The number of 

type lib fibers was reduced by MP There was a mild but significant decrease in type I 

and Ha fiber cross-sectional area (CSA), whereas type IIx and lib CSA did not change 

These changes resulted in a reduction in the relative contribution of type lib fibers to total 

diaphragm muscle area Biochemically, MP decreased glycogenolytic activity, while fatty 

acid oxidation and oxidative capacity were increased In conclusion, long-term low-dose 

MP administration caused a marked impairment in diaphragm function This is 

accompanied by changes in diaphragm muscle morphology and enzyme capacity 

Introduction 

Treatment with corticosteroids may cause peripheral and respiratory muscle dysfunction 

Two types of steroid-induced myopathies have been described in humans, depending on 

the extent and duration of steroid treatment acute and, more often found in clinical 

practice, chronic steroid myopathy (4) Weakness of the respiratory muscles was recently 

reported following low doses of methylpredmsolone (MP) (average daily dose ranging 

from 1 4 to 21 3 mg during 6 months) in patients with chrome obstructive pulmonary 

disease (COPD) (3) 

The mechanisms by which non-fluorinated steroids cause myopathy are in part 

unknown In animal studies, mcreased variation in fiber dimensions and excess of 

connective tissue were observed after administration of prednisolone 5 mg/kg/day during 

four weeks (7) Cortisone acetate 10 mg/kg/day during three weeks resulted in 

myonecrosis, vacuolization and fiber atrophy (9) Changes in myosin heavy chain 

composition in the muscle fibers may contribute, since myosin heavy chain turnover rate 

in muscle cells was decreased following dexamethasone therapy (26) These myosin heavy 

chains determine different levels of myosin ATP-ase activity depending on their type (I, 

Ha, IIx, lib) and are therefore in part responsible for the differences in contractile 
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properties between the different fibers (18,24) Since the fast and most powerful fibers 

(i e type Их and Hb) are expected to be most sensitive to the side effects of 

corticosteroids (26), we speculated that the contribution of fast fibers to total muscle area 

declines and maximal force generation decreases following treatment with corticosteroids 

Changes in energy substrate and enzyme activities have also been reported previously 

(19,31), but to what extent this influences diaphragm contractile properties is unclear 

Most of the above mentioned animal studies were performed using relatively high 

dosages dunng short periods of time The present investigation was designed to study if 

lower, clinically relevant doses of corticosteroids also affect rat diaphragm function We 

therefore examined functional changes in rat diaphragm in response to administration of 

methylprednisolone (MP) 0 2 mg/kg/day sc for six months Morphological and 

biochemical parameters were determined to obtain insight m possible underlymg 

mechamsms 

Methods 

Study design, animals, and treatment 

Adult male outbred Wistar rats (n=30), aged 18-20 weeks, weighing 380 ± 25 g, were 

randomized into two groups a control group (C), receiving salme 0 2 ml sc daily and a 

MP group, receiving methylprednisolone hemisuccinate (Sigma Chemicals, Bomem, 

Belgium) 0 2 mg/kg sc daily (7 days a week) for six months With each injection all 

animals received a similar volume (~0 20 ml) The rats were fed ad libitum, held on a 

12/12 hour light-dark regime and weighed twice weekly The animals were daily injected 

between 8 30 and 10 00 a m Although daily food intake was not accurately quantified 

(animals were not held in metabolic cages), food intake appeared to be similar in both 

groups At the end of the treatment period, contractile properties, lmmunohistochemical 

and biochemical characteristics of the diaphragm were examined All MP-treated animals 

were investigated between 23 and 30 hours after the last injection with MP The study 

was approved by the Animal Experiments Committee of the University of Nijmegen and 

performed according to the Dutch National Guidelines of Animal Care 

Contractile properties 

At the end of the treatment penod, the rats were anaesthetized with sodium pentobarbital 

(70 mg/kg ip) A poly-ethylene cannula was inserted through a tracheotomy for 

mechanical ventilation (oxygen-enriched gas mixture, flow 0 5 ml/g body weight/min, 

respiration frequency 70/min and a duty cycle of 50%) A combined laparotomy and 

thoracotomy was performed to remove the diaphragm Immediately after excision the 
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diaphragm was immersed in a cooled, oxygenated Krebs solution at a pH of 7.4. This 

solution consisted of (mmol/I): 137 NaCl, 4 KCL, 2 MgCl2, 1 KH2P04, 24 NaHC03, 2.7 

CaCl2, and 7 glucose. D-tubocurarine chloride 25 μΜ (Sigma Chemicals, The 

Netherlands) was added to prevent spontaneous neuromuscular activity. Contractile 

properties were measured on two small rectangular bundles, dissected from the middle 

part of the lateral costal region of each hemidiaphragm and parallel to the long axis of the 

muscle fibers. Silk sutures were firmly tied to both ends of the bundle to serve as 

anchoring points. Each bundle was placed in a tissue bath containing Krebs at 37°C and 

were oxygenated with 95% 0 2 and 5% C02. The central tendon insertion of the bundles 

were tied to a fixed point and the costal margin origin to an isometric force transducer 

(Sensotec, model 31/1437, Columbus OH, USA). Data acquisition and storage were 

performed using a Dash-16 interface and Twist-Trigger software (I.D.-electronics, 

University of Nijmegen, The Netherlands). The stimulator (I.D.-electronics, University of 

Nijmegen) was activated by a personal computer. The muscle strips were stimulated with 

two large platinum electrodes on both sides of the muscle. To ensure supramaximal 

stimulation, subsequent stimulations were performed 20% above the voltage at which 

maximal forces were obtained ( — 6 V). The pulse duration was set on 0.2 ms. Twitch 

stimuli were used to determine the optimal length (Lo), followed by a 15 min. thermo-

equilibration period. The following measurements were made: 

Twitch characteristics: two twitches were recorded at Lo to obtain maximal twitch force 

(PJ, contraction time (CT), and half relaxation time O/2RT). The averages were used for 

further analysis (7). 

Maximal tetanic contraction: two maximal tetanic stimuli (with a frequency of 160 Hz 

and a train duration of 250 ms) were generated to obtain maximal tetanic force (P0) (7). 

Force-frequency protocol: muscle bundles were stimulated every 2 min. with the 

following frequencies: 25, 50, 80, 120 and 160 Hz (train duration 250 ms). 

The generated force was expressed per cross-sectional area (N/cm2). Cross-sectional 

area (CSA) was measured by dividing diaphragm bundle weight by muscle density (1.056 

mg/mra3) and bundle length (20). 

Histological and immunohistochemical procedures 

Muscle strips obtained from the costal part of the right hemidiaphragm were embedded in 

Tissue-Тек* in a plastic holder. The muscle fibers were oriented parallel to the long side 

of the holder. Subsequently, these specimens were quickly frozen in isopentane cooled in 

liquid N2 followed by further freezing in liquid N2. During this procedure, the diaphragm 

muscle bundles were not fixed at optimal length. Serial cross sections were cut at 7 μτα 

with a cryostat kept at -30°C. Diaphragm sections were taken from each group for 
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routine H&E staining 

Anti myosin heavy chain antibodies (Regeneran Pharmaceuticals, New York, U S A ) 

were used for morphometnc examination of serial diaphragm sections The following 

antibodies were used BA-D5 reactive with type I myosin heavy chains (MHCs), SC-71 

reactive with type Ha MHCs, BF-35 reactive with type I, lia and lib but not with type Их 

MHCs, and BF-F3 reactive with type lib MHCs (25) Incubation with myosin heavy 

chain antibodies was performed at room temperature for 1 hour Antibodies were 

subsequently labelled with ultra small unmunogold reagent followed by silver 

enhancement (Aurion, Wageningen, The Netherlands) A minimum of 350 fibers were 

analysed from each diaphragm using a Sprynt-based, PC-Image digital analysis system 

(Bos Ine , Waddinxveen, the Netherlands) Fiber type distribution and cross sectional area 

(CSA) were analysed for type I, Ha, Hx and lib diaphragm muscle fibers The relative 

contribution to total diaphragm muscle area per fiber type was calculated as the product 

of the mean CSA and fiber distribution in the diaphragm 

Biochemistry 

Parameters of the bioenergetic capacity of the diaphragm included the activities of the 

glycogenolytic enzyme Phosphorylase, the mitochondrial enzymes 3-hydroxyacyl-CoA 

dehydrogenase (HADH), a marker for the fatty acid oxidation capacity, and citrate 

synthase (CS), an index of citnc acid cycle activity 

After dissection of the diaphragm, fat and tendon were removed from remairungs of the 

left and right hemidiaphragm These diaphragm parts were quickly frozen in liquid N2 

and stored at -80° С Segments of fresh frozen diaphragm were thawed in ice-cooled 

buffer containing 250 mM sucrose, 2 mM EDTA and 10 mM Tns-HCl (pH 7 4) In this 

buffer muscle homogenates (5% wt/vol) were prepared by hand homogenization, using a 

Potter-Elvehjem glass-teflon homogemzer 

Total Phosphorylase (a+b) activity was assayed at 37 °C according to the method 

described by Jacobs et al (16), and was expressed as μπιοί NADPH formed/min g tissue 

HADH activity, assessed at 50 μΜ acetoacyl-CoA at 37 °C (1), was expressed m nmol 

HADH oxidized/min g tissue Citrate synthase activity was determined at 25 °C (27) and 

was expressed as μιηοΙ coenzyme A formed/min g tissue The assays for metabolic 

enzymes were performed spectrophotometncally in duplicate The coefficient of variation 

for the assays applied was ~ 5 % 

Data analysis 

The SPSS/PC + package V5 0 1 (Chicago Illinois, USA) was used for statistical analysis 

Data of contractile properties of the two bundles obtained from one rat were averaged and 
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compared using Student T-test Repeated measures analysis of variance was used for 

force-frequency and growth curve analysis Morphometry analysis was performed using 

an average per fiber type per animal which was utilized as a single value in the statistical 

analysis Results were considered significant at ρ < 0 05 All data were expressed as mean 

±SE 

Results 

Body weight 

No differences in body weight were observed at the start of the study (375 ±7 g in saline 

vs 385+4 g in MP) At the end of the 6 month treatment period, body weight in the MP 

treated animals was 5% lower compared to the salme treated rats (500 ±5 g in MP vs 

529 ±9 g in saline) Repeated measurements showed a significant effect of treatment on 

body growth during the 6 month study period 

Contractile properties 

Diaphragm bundle dimensions were equal m both groups (salme vs MP length 21 7±0 3 

mm vs 21 3±0 3 mm, thickness 0 62+0 01 mm vs 0 62±0 01 mm, width 2 13±0 06 

mm vs 2 12±0 05 mm, and weight 312 + 1 1 mg vs 31 5±0 8 mg) 

Both P, and P0 decreased by -14% following MP administration (p<0 001) (Table 1) 

No changes were observed in P,/P0 ratio, CT or 'ART (Table 1) 

The force-frequency curves, expressed in N/cm2, showed a significant reduction in 

force generation at all stimulation frequencies in the MP group (Fig 1) When 

normalized for P0, forces were similar m the two groups (data not shown) 

Tabic 1 Diaphragm contractile properties 

treatment 

control 

MP 

p, 

N/cm2 

7 7 + 0 02 

6 6 ± 0 01* 

CT 'ART 

ms 

25 7 + 0 5 23 1 ±0 3 

26 0 ± 0 5 22 9+0 3 

Po 

N/cm2 

27 1 ±0 06 

23 4 + 0 06* 

pyp. 

0 29±0 01 

0 29+0 01 

means ±SE, P, twitch force, CT contraction time, 'ART half relaxation time, P„ maximal telarne force 
* p < 0 001 compared to control 
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Figure 1. Force-frequency curve 
Open circles: control; closed squares: MP; 
dashed line: pooled SD; 
* ρ < 0.01 compared to control 
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Histology and immunohistochemistry 

Histological examination of H&E stained slides of the diaphragm showed a normal 

muscular pattern in both groups. No signs of myogenic alterations such as an increase in 

the number of nuclei, excessive variations in fiber dimensions and excess of connective 

tissue were found. 

Morphometric analysis of the immunohistochemically stained slides showed a 

significant reduction in the percentage of type lib fibers in the MP diaphragm, being 

1.8±0.4% compared to 4.8±0.6% in the control group (p<0.05) (Table 2). No 

significant changes were found in the numbers of type I, Ha and IIx fibers among the two 

groups. 

Small but significant reductions in type I and Ha fiber CSA were observed in the MP 

group. In contrast, no changes were found in type IIx and lib fiber CSA (Table 2). The 

distribution of fiber CSA per fiber type is shown in figure 2. The histogram for type lib 

fibers illustrates that the MP-induced decrease in number of lib fibers occurred without 

preference for fiber size. This explains the similarity in fiber CSA between MP and 

control. As a result of the changes in number and CSA of the different fiber types, the 

relative contribution of type lib fibers to total diaphragm muscle area was reduced in the 

MP group, while the contribution of type IIx fibers was increased (Table 2). 

Table 2. Fiber type distribution, cross sectional area, relative fiber type contribution to the total diaphragm 
muscle area 

fiber type distribuitoti 

control 

MP 

fiber CSA 

control 

MP 

fiber type contribution 

to total diaphragm area 

control 

MP 

type I 

% 

41.6±1.0 

43.5±1.6 

μητ? 

1164±95 

1041 ±88* 

% 

23.2 ±0.6 

24.2±0.9 

type Ila 

% 

27.1 + 1.1 

29.0±1.3 

μην2 

1403 ±140 

1214±104* 

% 

18.4±0 4 

19.8±0.8 

type IIx 

% 

26.4±0.64 

25.7±1.0 

μτη2 

3528±421 

3532 ±415 

% 

45.2±1.3 

50.2±0.7* 

type lib 

% 

4.8±0.6 

1.8±0.4* 

μ/Π2 

5828 ±599 

5926 ±557 

% 

13.2±1.3 

5.8±1.3* 

means ±SE; * p<0.05 compared to control 

Biochemistry 

MP administration caused a significant reduction in glycogenolytic activity, as measured 
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by Phosphorylase (ρ<0.01). Fatty acid oxidation capacity, measured by HADH, and 

oxidative capacity, indicated by CS activity, both increased in the MP group (p<0.01) 

(Table 3). 

Table 3. Biochemical analysis 

treatment 

control 

MP 

Phosphorylase 

U/g 

42.7±0.9 

38.6±0.8* 

CS 

U/g 

26.2±0.8 

31.5+1.1* 

HADH 

U/g 

6.19±0.3 

7.32±0.3* 

means ±SE; CS: citrate synthase; HADH: 3-hydroxyacyl-CoA dehydrogenase; 
* p<0.01 compared to control 

Discussion 

The aim of the present study was to evaluate the kind and the extent of changes in rat 

diaphragm caused by low-dose administration of MP during six months. Our data show 

that MP significantly reduced diaphragm force generation over a wide range of 

stimulation frequencies. This was accompanied by a marked reduction in the number of 

type lib fibers, and slight but significant type I and IIa fiber atrophy. The combined effect 

of these morphological alterations was a reduction in the relative contribution of type ПЬ 

fiber CSA to total diaphragm CSA and, conversely, an increase in the relative 

contribution of type IIx fibers. In line with these data, there was a reduction in 

Phosphorylase activity, combined with an increase in markers of oxidative capacity, 

confirming a shift towards slower fibers. However, these changes in muscle morphology 

and biochemistry, although statistically significant, were subtle and explained at most in 

part the reduction in diaphragm force generation. 

Our intention was to evaluate the effects of a low dose of a non-fluorinated steroid 

(MP) comparable to the dose that is occasionally used in chronic treatment of patients 

with COPD. The MP dose used in the present study was based upon the following 

considerations. Anti-inflammatory potency and metabolism of MP have been described as 

being similar in rats and humans (17,23). Assuming an absorption of 100%, 0.2 mg/kg of 

MP may be equivalent to a dose of —14 mg/day in a 70 kg human. This is probably an 

overestimation since an absorption of 60% was found after im injection of cortisone 

acetate (20). In addition, the sc route requires higher doses to produce similar effects 

compared to im administration (12). Prolonged prednisolone administration in doses of 

10-15 mg daily are no exception in the treatment of patients with COPD, although the 
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therapeutic efficacy of corticosteroids in COPD is at least controversial (15) 

To our knowledge, no animal studies have been performed using low steroid dosages 

for a prolonged period In a previous study we found that 1 mg/kg/day MP for eight 

weeks depressed the force-frequency curve in rat diaphragm (31) The clear reduction m 

diaphragm force as observed in this study, was not found previously following 0 5 mg 

MP/kg/day for 6 weeks (5), or following 5 mg/kg/day of prednisolone for four weeks 

(7) Cortisone acetate in a dose of 100 mg/kg/day for 10 days did not induce functional 

changes either (20) The discrepancy with the present data suggests that diaphragm 

impairment is likely to occur following low dosages of corticosteroids, particularly if they 

are administrated for prolonged periods 

At the end of the six month treatment period, body weight in the MP ammals was 5 % 

lower compared to the control group The question may anse to which extent this 

reduction in body weight growth may influence diaphragm force production Severe 

nutritional depletion (40% decrease in body weight over a period of 6 weeks) did not lead 

to a reduction in diaphragm force production m rats (6) In addition, in the same study, 

nutritional depletion caused a -30% decrease in type I and IIa fiber CSA, while type lib 

Fiber CSA decreased by -50% Since these finding are substantially different from the 

morphometnc results in the present study following MP, the observed differences in force 

production are not likely to be the result of the small difference in final body weight 

Since diaphragm bundle dimensions were similar in both groups, the reduced force 

generation of the MP treated diaphragm is unlikely to be caused by differences in 

oxygenation of these muscle strips An overestimation of the CSA due to increased 

extracellular fluid is unlikely smce MP has little or no mineralocorticoid activity (14) An 

increase in connective tissue as noticed previously in the diaphragm following 

prednisolone treatment (5 mg/kg/day for four weeks) (7), may also lead to an 

overestimation of the muscle CSA and therefore reduce force per CSA However, 

differences in connective tissue proportion m the diaphragm muscle were not observed m 

the present study Pathologic features like myonecrosis (7,9), vacuolization (7,9), excess 

of internal nuclei and greater than normal variation of fiber type diameter (7) were 

described following administration of prednisolone 5 mg/kg/day for four weeks (7), and 

cortisone acetate 10 mg/kg daily for 3 weeks (9), respectively None of the above 

mentioned pathologic changes, however, occurred in the present study, possibly as a 

result of the low dose studied 

Another explanation for the functional changes in this study may be a change in fiber 

distribution and size Indeed, our data show that MP administration caused small but 

significant changes in muscle morphometry First, a significant reduction in the 

percentage of type lib fibers was found, whereas no changes occurred in the numbers of 
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type I, Па and IIx fibers. This is in line with the data by Polla et al. (21) who even 

reported a total disappearance of type lib fibers in rat diaphragm treated with cortisone 

acetate (100 mg/kg for 11 days). The cause of this phenomena is not entirely clear. 

Corticosteroids decrease the rate of amino acid incorporation into MHCs, resulting in a 

decreased turnover rate of MHCs in the muscle cell (26). This decrease in turnover rate is 

most pronounced in the fast twitch muscle fibers (26), thus type lib fibers are likely to be 

affected most. This may lead to a decrease in lib MHCs in type lib fibers. Since genes of 

IIx MHCs are coexpressed in a number of type lib muscle fibers (8), it may be 

speculated that an increase of IIx MHCs in type lib muscle fibers may occur to 

compensate for the decrease in type lib MHCs. 

Second, significant but small reductions in type I and Ha fiber CSA were observed in 

the MP group, while type IIx and lib fiber CSA were not altered. Previous studies using 

ATP-ase based fiber typing showed no effect of prednisolone (7) and MP (5) on rat 

diaphragm fiber size and composition. In another study, atrophy of type I, IIa and lib 

fibers was observed after administration of cortisone acetate (10 mg/kg daily for 3 weeks) 

in rabbits (9). Dose and duration of treatment with steroids presumably explain these 

differences. 

When combining the two above described types of alterations, the relative contribution 

of type lib fibers to total diaphragm muscle area was reduced in the MP group while the 

contribution of type IIx fibers increased. This might be of functional significance, since 

type IIx and lib MHCs possess differences in contractile properties. Maximum velocity of 

shortening (24) and resistance to fatigue (18) in type IIx muscle fibers are intermediate 

between those of type IIa and lib fibers. In addition, twitch and tetanic forces are higher 

in lib compared to Ha and Их motor units (18). However, it must be stressed that the 

morphological changes in the present study were small. Consequently, it is unlikely that 

these alterations completely explain the changes in diaphragm contractile properties. 

A methodological point of consideration is that diaphragm muscle morphology in the 

present study may have been influenced by the fact that the muscle strips were not fixed 

at optimal length before freezing. The excised diaphragm bundle was therefore allowed to 

assume its equilibrium length, resulting in shortening of the muscle. The degr* of 

shortening is associated with loss of passive tension present in vivo (30). In our study this 

passive muscle tension was similar in the control and the MP group (0.038±0.01 and 

0.037±0.01 N). As a consequence, the degree of muscle shortening (and thus the change 

in fiber CSA) is not likely to be different between control and MP. This, however, does 

not exclude the possibility of a disproportion in degree of shortening between fiber types. 

In addition, the differences in CSA between type I, Па, Их and IIb fibers in the control 

group were in proportion to the differences in CSA when muscle strip were fixed at 
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optimal length (29). Thus, the physiological differences in size among the different fiber 

types did not appear to be affected by muscle shortening in the present study. 

In line with the small shift towards slower fiber types, glycogenolytic activity decreased 

and oxidative capacity increased following MP treatment. The increase in glycogen 

storage in the diaphragm muscle following steroid administration found by previous 

investigators (10) is the result of a decrease in glycogen breakdown or an increase in 

glycogen production (28) or both (11). This reduction in glycogenolytic activity may 

result in an increase in diaphragm muscle dependence on fatty acid oxidation capacity of 

fatty acids to provide acetyl-CoA for mitochondrial oxidation. Indeed, HADH activity 

increased in the MP group, confirming this increase in fatty acid oxidation capacity, 

although 10 days of prednisolone (5 mg/kg/day sc) (19) or 8 weeks of MP (1 mg/kg/day) 

(31) did not change HADH activity. The increase in oxidative capacity in this study 

matches with our morphometrical observations, since type Их muscle fibers are known to 

have a rich mitochondrial content in contrast to type lib fibers (25). This is in line with 

the increase in oxidative staining reaction in skeletal muscle reported previously (32). An 

increase in CS activity was also found following MP 1 mg/kg/day (31). In contrast to 

these observations, CS activity in rat diaphragm was reduced following 5 mg/kg 

prednisolone per day for 10 days (19). Yet, no changes in CS activity were reported 

following 0.5, 1 or 2 mg/kg per day (19), suggesting that CS activity was only reduced 

following high dosages of prednisolone. 

Changes in metabolism due to corticosteroids may, besides depending on dose and 

duration of the steroid, also be related to fiber type composition of the muscle (10,19). 

The resistance of different fiber types is believed to depend on their ability to compensate 

the steroid-induced deficiency of the glycogenolytic route by converting to oxidative 

metabolism (32). It remains unclear if these biochemical changes are also responsible for 

the changes in fiber types or, in tum, whether this shift is responsible for the biochemical 

changes. 

Since the changes in muscle morphology and biochemical capacity in the present study 

are likely to be responsible for a part of the reduction in muscle force generation, other 

alterations are presumably involved. For example, protein degeneration, caused by 

corticosteroids, may lead to a reduction in myofibrillar protein density (22). This is likely 

to reduce the number of cross-bridges available for interaction with actin which will lead 

to a reduction in force generation. Further studies are required to explore these potenttial 

changes. 

The observed reduction in force generation following MP administration in this study 

may be of clinical significance in patients with severe COPD, since in these patients 

diaphragm function may be compromized as result of hyperinflation, malnutrition, 
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inactivity, disturbances in blood gases and cardiac failure (13). Indeed, it has recently 

been shown that in these patients administration of low dose corticosteroids compromise 

diaphragm function even more (2). The present study shows that these functional 

alterations are accompanied by biochemical and structural changes in the diaphragm. 
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Abstract 

The effects of corticosteroid (CS) treatment (6 mg/kg prednisolone; 3 weeks) on 
neuromuscular junction (NMJ) morphology and neuromuscular transmission in rat 
diaphragm muscle (DIAm) were compared to weight matched (SHAM) and ad tibitum fed 
control (CTL) groups. Fibers were classified based on myosin heavy chain (MHC) isoform 
expression. CS treatment caused significant atrophy of fibers expressing MHC2X, either 
alone or with MHC2B (type Hx/b). Fibers expressing MHCs,ow (type I) and MHC2A (type 
Ha) were unaffected by CS. The planar areas of nerve terminals and motor endplates at 
type Ilx/b fibers were smaller in CS treated DIAm compared to SHAM and CTL. 
However, CS-induced atrophy of type Ilx/b fibers exceeded changes in NMJ morphology. 
Thus, when normalized for fiber diameter, NMJs were relatively larger in the CS group 
compared to CTL. Neuromuscular transmission failure, assessed in vitro by comparing 
force loss during repetitive (40 Hz) nerve vs. direct muscle stimulation, was less in CS 
treated DIAm. These results indicate that alterations in NMJ morphology following CS 
treatment depend upon fiber type, and may contribute to improved neuromuscular 
transmission. 

Introduction 

Exogenously administered corticosteroids (CS) are used clinically to treat a variety of 
pulmonary conditions including asthma and severe chronic obstructive pulmonary disease. 
Several studies have reported atrophy of diaphragm muscle (DIAm) fibers and muscle 
weakness (20, 40, 42). In the DIAm, the effects of CS treatment, especially in high doses, 
appear to be manifest predominantly at type Ilx/b fibers (20, 40, 42). 

There are several previous studies which have reported that CS treatment induces 
morphological changes at the neuromuscular junction (NMJ) (7, 8, 18, 19, 39), but only a 
few studies (7, 8) have examined fiber type differences in CS-induced changes in NMJ 
morphology. In these studies, which were performed in limb muscles predominantly 
expressing a single fiber type, NMJ adaptations were more found to be more prominent at 
type I fibers. Previously, we reported that in the rat DIAm, the structure of pre- and 
postsynaptic elements of NMJs varied with fiber type, as determined by myosin heavy 
chain (MHC) isoform expression (27). The planar areas of nerve terminals and motor 
endplates of DIAm fibers expressing the MHC2x isoform, either alone or in combination 
with the MHC2B isoform (type Ilx/b fibers), are larger and more complex than those at 
fibers expressing the MHCsl0W (type I fibers) and MHC2A (type Ha fibers) isoforms. In the 
present study, we hypothesized that the selective atrophy of type Ilx/b induced by CS 
treatment may also be reflected by a selective effect at NMJs on these fibers. 

Several studies have demonstrated changes in the electrophysiological properties of CS-
treated NMJs (2, 4-6, 24, 38, 43, 44). For example, van Wilgenburg et al. (38, 39) 
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reported that low doses of dexamethasone and prednisolone result in increased miniature 

endplate potential (mepp) amplitude at rat DIAm NMJs, while high doses decrease mepp 

amplitude Similar results at low CS doses were also reported by Dalkara and Onur (5) In 

the rat DIAm, Wilson et al (43) reported that prednisolone facilitated spontaneous release 

of ACh, manifest by a two to threefold increase in mepp frequency Furthermore, they 

found a reduction of mepp amplitude suggesting an additional postsynaptic effect Leeuwin 

et al (18) reported an increase in synaptic vesicle size, suggestive of an increase m quantal 

size for neuromuscular transmission If CS treatment leads to an increase in the quantal 

release of ACh at the NMJ, it might be expected that such an effect should improve 

neuromuscular transmission However, with repetitive stimulation, an increase m quantal 

release of ACh may lead to a more rapid depletion of transmitter stores and an impairment 

of neuromuscular transmission In previous studies, we found that type Ilx/b DIAm fibers 

are more susceptible to neuromuscular transmission failure than type I and Ha fibers (15) 

To date, the effects of CS treatment on neuromuscular transmission failure during repetitive 

stimulation in the DIAm have not been examined The purpose of the present study was to 

examine the effects of three weeks of predmsolone treatment on the morphological 

properties of pre- and postsynaptic elements of the NMJ on type-identified fibers of the rat 

DIAm, and to evaluate DIAm neuromuscular transmission We hypothesized that the 

effects of prednisolone will be more pronounced on the NMJs of type Hx/b fibers 

Methods 

Twenty-four male Sprague-Dawley rats were randomly divided into 3 groups 1) Normal 

controls (CTL, n=8), 2) Surgical sham and weight-matched controls (SHAM, n=8), and 

3) Corticosteroid-treated (CS, η=8) The animals were housed in separate cages under a 2-

12 light dark cycle, fed with Purina Rat Chow, and provided with water ad libitum 

Animals in the CTL and CS groups were also provided food ad libitum, while the rats m 

the SHAM group were given limited quantities of food to match their weight growth curve 

with that of the CS group Body weights were monitored regularly 

Animals were anesthetized with pentobarbital sodium (70 mg/kg), and the DIAm was 

rapidly excised Five muscle segments (2-3 mm wide) were dissected from the midcostal 

region of the right and left sides of the DIAm In one muscle strip from the right side, 

neuromuscular transmission failure was assessed by repetitive stimulation of the phrenic 

nerve (see below) In the remaining strips, resting (excised) muscle length was measured 

using digital calipers, and the strip was then stretched to 1 5 times this excised length, to 

approximate optimal length (L0) for force production (25) before pinning to a sylgard-hned 

petri dish for lmmunocytochemical analysis 

All procedures were approved by the Institutional Animal Care and Use Committee of 

the Mayo Clinic, and were in strict accordance with the American Physiological Society 

Animal Care Guidelines Surgical procedures were performed under aseptic conditions 
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The recovery of animals from surgery was carefully monitored 

Corticosteroid treatment 

Surgical procedures were performed only on animals m the CS and SHAM groups Under 

ketamme (60 mg/kg) and xylazme (2 mg/kg) anesthesia, a mimosmotic pump (Alzet 2M4) 

filled with either 37 5 mg/ml prednisolone sodium succinate (Upjohn) m aqueous 

suspension (CS group), or sterile physiological saline (SHAM group) was implanted sc in 

the dorsum of each animal This concentration of prednisolone provided a final sc dose of 6 

mg/kg at a flow rate of 2 5ml/h At the end of a three week treatment period, the 

remaining amount of solution in the pump was measured to ensure adequate drug delivery 

In addition, at the time of the terminal experiment, 3 ml of blood was collected to measure 

both steroid and thyroid hormone (T3 and T4) levels 

Immunohistochemistry 

Detailed descriptions of the three color fluorescent immunohistochemical technique used to 

label nerve terminals, motor endplates and muscle fibers have been recently published (27) 

Briefly, motor endplates were first labeled by incubation of each muscle strip m 5-10 

mg/ml tetramethylrhodamine a-bungarotoxin (Molecular Probes Ine ) in phosphate buffer 

(PB) The samples were then washed and immersion-fixed in 2% paraformaldehyde The 

fixed samples were blocked for non-specific staining using 4% normal donkey serum 

(NDS) in 0 IM Tris-buffered saline (0 15M NaCl) contaimng 0 3% Tnton-XlOO 

(TBS-Tx) The tissue was then incubated in a primary mixture of 1 200 donkey anti-protem 

gene product (Biogenesis Ine , to label axons and nerve terminals), and any one of the 

following antibodies specific to different MHC isoforms 

1 1 400 mouse anti- MHCsl0W IgG (Novocastra) 

2 1 200 mouse anti-MHC2A IgG (14) 

3 1 200 mouse anti-MHCA112X IgG (31) 

4 1 20 mouse anti-MHC2B IgM (31) 

Following incubation in these primary antibodies, the samples were washed and incubated 

further in a secondary cocktail of 1 100 fluorescein-conjugated donkey anti-rabbit IgG 

(Jackson Immunoresearch) and 1 200 Cy5 conjugated donkey anti mouse IgG or IgM 

(Jackson Immunoresearch) All samples were finally washed, blotted dry, mounted on 

slides, and coverslipped with low-fluorescence immersion oil (Cargille Labs Ine , refractive 

index 1 515) 

Confocal imaging and analysis 

Detailed descriptions of the three-color confocal imaging and analysis procedures have also 

been recently published (27) Briefly, optical sections of labeled NMJs and muscle fibers 

were obtained using a Bio-Rad MRC500 confocal system mounted on an Olympus BH2 

microscope and equipped with an Ar Kr laser and a Ζ axis focus controller A 40X 1 25 

NA oil-immersion objective lens was used, and the step size for optical sectioning was set 

to 0 8 mm, matching the optical section thickness for the confocal system (29) 
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Morphometry and registration validations of the confocal imaging technique were 
performed using multicolor fluorescent latex beads, as described previously (27) 2D 
projection images were obtained by superimposing a stack of optical sections 

A comprehensive image analysis software package (ANALYZE, Biomedical Imaging 
Resource, Mayo Foundation) running on a Sun 4/330 UNIX workstation was used to create 
3D reconstructions of the digitized images and to make 2D and 3D morphometnc 
measurements Grayscale images were converted to binary images usmg an intensity 
threshold An automated procedure was used to delineate the borders of nerve terminals 
and endplates Planar areas of nerve terminals and endplates were measured from the 2D 
projections, and normalized to muscle fiber diameter The extent of overlap between nerve 
terminal and endplate was estimated by subtracting the binary image of the nerve terminal 
from the binary image of the endplate The partem of arborization of nerve terminals and 
endplates was quantified from optical sections using a tree-tracing tool in ANALYZE 
Details of this analysis technique have been previously published (27), and a schematic 
representation of the procedure is shown in Figure 1 The point of origin for each nerve 
terminal was defined as the first branch point of the axon The longest uninterrupted 
branches were classified as primary branches, and daughter branches arising from the 
primary branches, regardless of thickness, were classified as secondary branches Branch 
length was measured along the center of the branch The total number of branches and total 
branch length were determined The average distance between the occurrence of secondary 
branches along a primary branch (individual branch length) was used as an index of 
arborization 

Assessment of neuromuscular transmission failure 
The procedures for assessing neuromuscular transmission failure m the rat DIAm have been 
previously described (12, 15) A muscle strip from the right mid costal region, together 
with a 1-2 cm length of phrenic nerve, was mounted vertically in a glass chamber 
containing oxygenated (95% 0 2 5% C02)Ringers' solution (137 mM Na+, 5 mM K+, 5 04 
mM Ca2+, 2mM Mg2 + , 121 mM CI, 20 mM HC03 , and 1 9 mM HP04

2, pH 7 4) 
maintained at 26°C The muscle was attached at one end to a calibrated force transducer 
and at the other end to a micromanipulator for adjustment of muscle length The muscle 
was stimulated directly (1 ms pulses) through platinum plate electrodes placed on either 
side of the muscle using a Grass stimulator and power amplifier (Section of Engineering, 
Mayo Clinic) Muscle fiber length was incrementally adjusted until maximal isometric 
twitch responses were obtained (L0) The phrenic nerve was stimulated through a suction 
electrode using 0 2-ms duration pulses In both cases, stimulus intensity was increased until 
maximal twitch force responses were obtained and then set at 125% of this value 
(supramaximal intensity) 

The phrenic nerve was stimulated repetitively at 40 Hz in 330-ms duration trains 
repeated every s (duty cycle 33%) for a 2 min period Direct muscle stimulation was 
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superimposed every 15s and the relative contribution of neuromuscular transmission 

failure to total fatigue was estimated usmg the following formula (1) 

% Neuromuscular Transmission Failure = (DN-DM) /(1-DM) 

where DN is force loss during nerve stimulation (normalized to initial muscle force) and 

DM is force loss during direct muscle stimulation (normalized to initial muscle force) 

Statistical analysis 

Muscle fibers were classified based on lmmunoreactivity for the different MHC antibodies 

Fibers classified as type I were lmmunoreactive only for the anti-MHCS|0W antibody 

Similarly, type IIa fibers were reactive only for the anti-MHC2A antibody Approximately 

22% of all DI Am fibers were not immunoreactive for the anti-МНСдц 2 X antibody, and 

were thus classified as type IIx Approximately 12% of all DIAm fibers were 

immunoreactive for the anti-MHC2B antibody, but previously we found that most of these 

fibers also expressed the MHC2x isoform (32) Given the relatively rare incidence of "true" 

type lib fibers in the rat DIAm ( — 4% (32)), and the fact that it was not possible to 

distinguish these fibers from those co-expressing the MHC2X isoform by 

immunohistochemistry, we combined the fibers expressing the MHC2X and МНС2в 

isoforms into a single group classified as type Ilx/b Based upon a power analysis at 

b=0 8, and a=0 05, we determined that at least 15 fibers per type in each DIAm were 

required to establish a difference in NMJ architecture (27) 

Means and standard errors were calculated for each parameter of interest Differences 

between groups were examined using a 2-way ANOVA, with experimental group and fiber 

type as grouping variables When justified, a Student's t-test was used for post hoc 

analysis Statistical significance was accepted at P < 0 05 

Results 

Prednisolone and thyroid hormone levels 

Serum prednisolone levels were below the detectable range ( < 0 1 μg/dl) in the CTL and 

SHAM groups, while m the CS treated animals the predmsolone level was 4 9+1 μg/dl 

Serum T3 and T4 levels were not significantly affected by predisolone treatment (CTL T3 

46±3 ng/dl, T4 4 0+0 2 mg/dl, SHAM T3 48±6 ng/dl, T4 4 2±0 4 mg/dl, and CS T3 

47+4 ng/dl, T4 3 9±0 4 mg/dl) At the end of the 3-week period, body weights of the CS 

animals were significantly lower than CTL (P<0 05) but comparable to the SHAM 

animals (final body weights, 327 2±8 8 g for CS, 337 5 ±9 5 g for SHAM and 

397 3±3 4 g for CTL) 

Muscle fiber diameters 

In all three experimental groups, there were significant differences in DIAm fiber diameters 

across fiber types (Table 1) In CTL and SHAM groups, the diameters of type I DIAm 

fibers were the smallest followed in rank order by type IIa and Ilx/b (P<0 05, Table 1) 
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In the CS-treated animals, the diameters of type I and Ha fibers were not significantly 
different, although type Ilx/b fibers remained larger (P<0.05; Table 1). The diameter of 
type Ilx/b fibers in the CS DIAm were significantly smaller than those of type Hx/b fibers 
in both CTL and SHAM animals (P<0.05; Table 1). The diameters of type Ilx/b fibers in 
the SHAM group were also smaller than those of CTL animals (P<0.05; Table 1). 

Nerve terminal morphology 
In each experimental group, the planar (2D) area of nerve terminals innervating type I and 
Ha fibers were comparable, but smaller than that of nerve terminals innervating type Ilx/b 
fibers (P<0.05; Table 2; Fig. 2). The planar areas of nerve terminals innervating type I 
and IIa fibers were not significantly different across experimental groups, while the planar 
area of nerve terminals innervating type Ilx/b fibers varied significantly. In SHAM 
animals, the planar area of nerve terminals innervating type Ilx/b fibers was significantly 
larger than that of CTL (P<0.05), whereas, in CS animals, type Ilx/b fiber nerve terminal 
area was significantly smaller than both CTL and SHAM animals (P<0.05; Table 2). 

When normalized for fiber diameter, the planar areas of nerve terminals innervating 
different fiber types in CTL animals displayed a rank order, with type I>IIa>IIx/b 
(P<0.05; Table 2). This rank order in normalized nerve terminal planar area was 
essentially reversed in both SHAM or CS animals where the normalized nerve terminal 
area of type Ilx/b fibers was significantly greater than that of both type I and Ha fibers 
(P<0.05; Table 2). Compared to CTL, the normalized nerve terminal area of type Ilx/b 
fibers was significantly larger in SHAM and CS groups (P<0.05; Table 2). However, in 
CS treated animals, this increase in normalized nerve terminal area was due to the 
disproportionate reduction of fiber diameter since nerve terminal area decreased (Tables 1 
and 2). In contrast, in SHAM animals, the increase in normalized nerve terminal area 
resulted from both a decrease in fiber area as well as an increase in nerve terminal planar 
area (Tables 1 and 2). 

In CTL and SHAM animals, the total number of nerve terminal branches displayed a 
rank order across different fiber types, with type I<IIa<IIx/b (P<0.05; Table 2; Fig. 2). 
In CS animals, the total number of nerve terminal branches at type Ilx/b fibers was also 
significantly greater than that at type I and Ha fibers (P<0.05; Table 2), but there was no 
difference between type I and Ha fibers. In the CS group, the total number of nerve 
terminal branches on type Ilx/b fibers was significantly lower, compared to CTL (P<0.05; 
Table 2). In CTL animals, the total cumulative length of all nerve terminal branches 
displayed a rank order across different fiber types, with type KIIa<IIx/b (P<0.05; Table 
2). In SHAM and CS groups, total nerve terminal branch length was not significantly 
different between type I and IIa fibers, but remained larger in type Ilx/b fibers. In the CS 
group, the total cumulative length of type Ilx/b nerve terminal branches was significantly 
reduced compared to both CTL and SHAM groups (P<0.05; Table 2). In the CTL DIAm, 
the mean individual branch length of nerve terminals at type I fibers was greater than that 
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of nerve terminals at type Ha and Hx/b fibers (P<0.05; Table 2). In the CS group, mean 
individual nerve terminal branch lengths at type I and Ha fibers were comparable, but 
remained significantly greater than that of nerve terminals at type Ilx/b fibers (P<0.05; 
Table 2). Within each fiber type, there was no significant difference between CTL, SHAM 
and CS groups in the mean individual branch length of nerve terminals. 

Motor endplate morphology 
In all experimental groups, the planar areas of motor endplates at different fiber types 
displayed a rank order with type KIIa<IIx/b (P<0.05; Table 3; Fig. 2). The planar 
areas of motor endplates at type I and Ha fibers were comparable between the three groups. 
However, the planar area of endplates at type Hx/b fibers of the CS DIAm was 
significantly smaller compared to that in both CTL and SHAM animals (P<0.05; Table 3). 
When normalized for fiber diameter, the planar areas of motor endplates at different fiber 
types were comparable in the CTL DIAm (Table 3). In both SHAM and CS groups, the 
normalized endplate areas at type Ilx/b fibers were significantly greater than those at type I 
and Ha fibers (P<0.05; Table 3) which were comparable to each other in both groups. In 
the CS DIAm, the normalized endplate area at type Ilx/b fibers was significantly greater 
than that in CTL (P<0.05; Table 3). The normalized endplate areas at type I and Ha fibers 
were not different across experimental groups (Table 3). 

In CTL and SHAM animals, the number of endplate branches displayed a rank order 
across different fiber types, with type KIIa<IIx/b (P<0.05; Table 3). In the CS group, 
the number of endplate branches was also greater at type Ilx/b fibers compared to type I 
and Ha fibers (P<0.05; Table 3). The number of endplate branches at type I and Ha fibers 
was comparable across the three experimental groups. However, the total number of 
endplate branches at type Ilx/b fibers was significantly smaller in the CS group compared 
to CTL (P<0.05; Table 3). In all experimental groups, the total cumulative length of 
endplate branches was comparable between type I and Ha fibers, but significantly greater at 
type Hx/b fibers (P<0.05; Table 3). Total cumulative endplate branch length at type I and 
IIa fibers was comparable across the three experimental groups. However, the total 
cumulative branch length at type Ilx/b fibers was significantly lower in the CS DIAm 
compared to CTL and SHAM animals (P<0.05; Table 3). In the CTL DIAm, the mean 
individual branch length of endplates displayed a rank order across different fiber types, 
with type I > IIa > IIb (Ρ < 0.05; Table 3). In SHAM animals, the mean individual branch 

length of endplates at type I fibers were longer than those at type IIa and Hx/b fibers 

(P<0.05; Table 3). In the CS DIAm, there were differences in mean individual endplate 

branch lengths across the different fiber types (Table 3). Across the three experimental 

groups, there were no significant differences in mean individual branch lengths at any fiber 

type (Table 3). 
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Figure 1: Schematic of the procedure used to characterize the branching patterns of nerve terminals and 
motor endplates. The origin of the NMJ was defined as the first point of branching. Primary 
branches were defined as the longest segments, secondary branches as those emanating from 
primary branches and so on. 
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Figure 2: Grayscale images of nerve terminals and motor endplates on NMJs of type-identified DIAm 
muscle fibers. The extent of overlap of nerve terminal and motor endplate was determined from 
non-overlapping areas, obtained from a binary subtraction of the corresponding grayscale images. 
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Table 1: Effect of corticosteroid treatment OD diaphragm muscle fiber diameter 

Group Fiber Diameter (mm) 
I Ha Ilx/b 

CTL 262 + 14 3 1 1 ± l l t 65 7 + 2 7ft 
SHAM 214 + 11* 275 + 1 3 t 4 6 4 + 3 8 * 

CS 24 7 + 18 28 5 + 2 2 34 2 ± 3 5*§tt 

Values are means _+ SE * indicates significant difference from CTL § indicates significant difference from 
SHAM t indicates significant difference from type I, and % indicates significant difference from type Ha 
Significance value is at Ρ < 0 05 

Table 2 Morphometric analysis of nerve terminals at different diaphragm muscle fiber types 

Planar Area (um ) 

Normalized Planar Area 

(μΐη) 

Total Number of Branches 

Total Branch Length (μιη) 

Individual Branch Length 

(μιη) 

Group 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

CTL 

SHAM 

CS 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

Type I 

343 + 19 

322 + 23 

359 + 23 

1 3 9 ± 0 6 

15 3 + 1 2 

145 + 1 1 

6 + 1 

6 + 2 

7 + 1 

105 ± 7 

99 + 8 

105 + 9 

17 5 + 1 4 

16 2 ± 1 1 

14 8 ± 1 3 

Type Па 

370 ± 12 

362 + 22 

410 + 26 

1 2 4 + 0 8t 

13 5 + 1 2 

14 4+_ 1 4 

10 +_lt 

10 + i t 

9 + 1 

123 ± 8 t 

115 + 8 

127 + 15 

13 2 ± 1 It 

11 3 + 1 It 

1 4 2 + 1 2 

ТуреПх/Ь 

656 ± 12tt 

737 + I5*n 

618 + l l * § t t 

10 l ± 0 9t t 

1 7 0 ± 0 7 * ф 

18 l ± 2 2*tt 

24 + 2t t 

21 ±3tt 

17 + 2*tt 

224 ± lOti 

235 ± 26tt 

1 6 8 ± 1 5 * § t t 

9 5 + 1 Ott 

11 2 + 1 3 

9 9 + 1 l t t 

Values are means +_ SE * indicates significant difference from CTL § mdicates significant difference from 
SHAM t indicates significant difference from type Ι φ indicates significant difference from type Ha 
Significance level is at Ρ < 0 05 
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Extent tf overlap between nerve terminals and motor endplates 

In CTL animals, the extent of overlap between nerve terminals and motor endplates varied 

significantly across fiber types, with the overlap being -95% at type I fibers, -90% at 

type Па fibers and -80% at type Пх/Ь fibers (P<0 05, Fig 3) In CS animals, the extent 

of overlap between nerve terminals and motor endplates was unchanged at type I and Па 

fibers, but was significantly greater at type Ilx/b fibers, compared to CTL (P<0 05, Fig 

3) 

Table 3 Morphometry analysis of motor endplates at different diaphragm muscle fiber types 

Planar Area (μπι2) 

Normalized Planar Area (μπι) 

Total Number of Branches 

Total Branch Length (μπι) 

Individual Branch Length 

(μπι) 

Group 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

CIL 

SHAM 

CS 

Typel 

382 +_ 18 

345 + 21 

383 ± 19 

14 6 ± 0 8 

164 + 1 1 

15 8 ± 1 7 

6 + 2 

6 + 2 

7 ± 1 

109 ± 1 3 

104 ± 8 

108 ± 8 

183 + 1 5 

173 + 1 4 

15 7 +.1 5 

Type Па 

420 + l i t 

394 + 22t 

427 + 21t 

14 0 + 0 9 

14 7 ± 1 2 

15 3 + 2 1 

10 + i t 

10 + l t 

9 + 1 

132 + 9 

125 ± 7 

128 ± 15 

13 5 + 1 2 t 

124 + 1 3t 

14 4 +_ 1 4 

Type Пх/Ь 

830 + 17 t í 

8 0 8 ± 1 8 t t 

708 ± 19*§t* 

12 7 ± 1 4 

17 7 ± 1 9*ф 

20 9 + 1 7*tt 

24 + 3tt 

22 ± 3t t 

16 ± 2 * t * 

230 +1Ott 

266 + 19tt 

199 +_14*§tt 

9 8 + 1 4 t t 

122 + 1 5t 

1 2 6 + 1 6 

Values are means +. SE * mdicates significant difference from CTL § indicates significant difference from 
SHAM t mdicates significant difference from type I t indicates significant difference from type Ha 
Significance level is at Ρ < 0 05 

Neuromuscular transmission failure 

During the 2-min period of repetitive stimulation, the incidence of neuromuscular 

transmission failure progressively increased in all groups The relative extent of 
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neuromuscular transmission failure was significantly smaller in the CS DIAm compared to 
both CTL and SHAM animals (P<0.05; Figure 4). 

Figure 3: Effect of CS treatment on the extent of overlap of nerve terminal and motor endplate at type-
identified fibers in the rat DIAm. In CTL animals, there was a rank order in the extent of overlap 
of pre- and postsynaptic elements among fiber types, with type I>IIa>Hx/b. The extent of 
overlap between nerve terminals and motor endplates was significantly increased at type Ilx/b 
fibers of the CS-treated DIAm. * indicates significant difference from CTL (P<0.05). ft indicates 
significant difference from SHAM (P<0.05). 

CTL SHAM CS 

Figure 4: Effect of CS treatment on the extent of neuromuscular transmission failure during repetitive nerve 
stimulation. In the CS DIAm, neuromuscular transmission during repetitive nerve stimulation 
significantly improved compared to both CTL and SHAM animals. * indicates significant 
difference from CTL (P<0.05). ft indicates significant difference from SHAM (P<0.05). 
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Discussion 

The major observations of the present study were that 3 weeks of prednisolone treatment 
resulted in remodeling of pre- and postsynaptic elements of NMJs at type Ilx/b DIAm 
fibers and an improvement in neuromuscular transmission. At type Hx/b fibers, nerve 
terminal and endplate areas decreased with CS treatment, while NMJs on type I and IIa 
fibers were largely unaffected. The reduction in NMJ area at type Ilx/b fibers in the CS 
treated DIAm resulted from a decrease in the number of nerve terminal and endplate 
branches and a shorter mean branch length. However, the decrease in NMJ size at type 
Ilx/b fibers with CS treatment was proportionately less than the fiber atrophy. Thus, with 
CS treatment, NMJ size normalized for fiber diameter actually increased at type Ilx/b 
fibers compared to CTL. Furthermore, the extent of overlap between nerve terminal and 
motor endplate increased at type Ilx/b fibers of the CS DIAm. Since type Ilx/b fibers are 
normally more susceptible to neuromuscular transmission failure (15), these selective 
changes in NMJ morphology at type Ilx/b fibers were consistent with the improvement in 
neuromuscular transmission observed in the CS treated DIAm. 

Corticosteroid treatment regimen 
In the present study, a dose of 0.3 mg/kg/day prednisolone was continuously infused via a 
miniosmotic pump. Although the prednisolone dose was comparable to that used in 
previous studies (37), the mode of CS administration via a miniosmotic pump was 
different. Undoubtedly, this mode of administration maintains a more stable serum CS 
level compared to bolus injections. The efficacy of the miniosmotic pump infusion was 
confirmed by measurement of elevated serum prednisolone levels. Furthermore, in the CS 
treated animals, there was an ~20% reduction in body weight, which was comparable to 
the weight loss observed in previous studies conducted over a 3 week period (11, 20, 42). 
Therefore, it is doubtful that the mode of CS administration significantly affected the 
results of the present study. 

tjfects cf corticosteroids on diaphragm muscle fiber morphology 
The observation that CS treatment was associated with a selective atrophy of type Ilx/b 
fibers in the rat DIAm was consistent with several previous reports both in the DIAm (20, 
36, 40, 42) as well as in hindlimb muscles (13, 40). However, the results of the present 
study contrast with those reported in the rabbit DIAm, where 3 months of cortisone 
treatment was found to be associated with a greater atrophy of type I fibers (11). This 
apparent discrepancy cannot be fully explained, but may reflect species differences in the 
response to CS treatment. Furthermore, there may be differences between the effects of 
prednisolone, a non-fluorinated CS, versus cortisone, which is fluorinated. Yet another 
factor that needs to be considered is the time course for CS effects, which may differ across 
species and/or the type of CS agent used. In the present study, CS effects on the rat DIAm 
were assessed only after 3 weeks. 
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The differential effect of CS treatment on type Ilx/b fibers most likely reflects a 

selective inhibition of protein synthesis and/or an enhancement of protein degradation in 

these fibers (21). The underlying mechanisms for this selective catabolic effect remain 

unknown. One possibility is that fiber type differences exist in glucocorticoid receptor 

expression. However, in a previous study, it was reported that muscles predominantly 

composed of type I fibers have a higher concentration of glucocorticoid receptors, 

compared to muscles predominantly composed of type II fibers (16). However, fiber type 

differences in glucocorticoid receptor expression in the rat DIAm have not yet been 

characterized. 

Ejfects с fcorticosteroids on NMJ morphology 

In the CTL DIAm, the planar areas of nerve terminals and motor endplates at type I and Ha 

fibers were significantly smaller than the planar area of NMJs at type Ilx/b fibers. This 

result is consistent with our previous observations in the rat DIAm (26, 27), and with other 

studies in the DIAm (41) as well as limb muscles (10, 35, 41). Also consistent with our 

previous observations, we found that NMJ size normalized for muscle fiber diameter was 

actually greater at type I and Ha fibers compared to type Ilx/b fibers. Moreover, as 

reported earlier (26, 27), we found that the branching patterns of NMJs at type I and Ha 

fibers were relatively simple and compact compared to the more rosette and elaborate 

patterns of NMJs at type Ilx/b fibers. 

Previous studies in various muscles have also demonstrated a correlation between muscle 

fiber diameter and NMJ size (22, 23, 27). In fact, it has been suggested that muscle fiber 

size is a major determinant of NMJ size, and that changes in muscle fiber size actually 

trigger changes in NMJ morphology (22, 23, 27). Our previous study in the rat DIAm 

demonstrated that the correlation between muscle fiber diameter and NMJ size is valid only 

within a fiber type, hence the differences in normalized NMJ size across fiber types (41). 

However, we observed that changes in NMJ size were not always associated with changes 

in muscle fiber diameter (30). For example, 2 weeks of DIAm hemiparalysis induced by 

cervical spinal cord hem i section was associated with a significant expansion of NMJ size at 

type Ilx/b fibers in the absence of any significant change in muscle fiber size (30). 

Conversely, 2 weeks of DIAm hemiparalysis induced by tetrodotoxin blockade of phrenic 

nerve axonal conduction resulted in substantial atrophy of type Ilx/b fibers and hypertrophy 

of type I and Ha fibers without concomitant changes in NMJ morphology (28). In the 

present study, the selective atrophy of type Ilx/b fibers induced by CS treatment was 

associated with a reduction in NMJ size at these fibers. However, the reduction in NMJ 

size did not match the atrophy of type Ilx/b fibers in the CS-treated DIAm. Indeed, type 

Ilx/b NMJ size normalized for muscle fiber diameter was actually greater compared to 

CTL. In previous studies by Fahim and colleagues (7, 8) fiber type differences in the 

effects of CS treatment on NMJ morphology were evaluated by comparing NMJs at fibers 

in the soleus (type I fibers) versus extensor digitorum longus (type II fibers) muscles. In 



76 Chcpter 5 

one study (8), it was reported that 3 months of cortisone treatment resulted in an 
enlargement of nerve terminals at type I fibers in the soleus muscle, with little or no 
structural changes in nerve terminals at type II fibers in the extensor digitorum longus 
muscle. However, in a subsequent study (7), these investigators reported that 3 months of 
cortisone treatment resulted in a reduction in nerve terminal size, which was greater at type 
II fibers in the extensor digitorum longus muscle. It was suggested that the apparent 
discrepancy between the results of these two studies could be attributed to the dynamic 
nature of NMJ remodeling, with simultaneous degeneration and regeneration of nerve 
terminals taking place (7), akin to that seen with aging (9). 

It is likely that in the CS treated DIAm the macroscopic changes in NMJ morphology at 
type Ilx/b fibers were also accompanied by a reduction in the number of nerve terminal 
active zones and/or the number of synaptic vesicles. However, these ultrastructural changes 
could not be resolved at the light microscopic level. Previous ultrastructural studies have 
reported that CS treatment is associated with changes in synaptic vesicle size, vesicular 
density and synaptic cleft width (7, 18, 19, 39). Glucocorticoids have also been reported to 
increase acetylcholinesterase levels at NMJs on innervated, cultured human skeletal muscle 
(3). Furthermore, electrophysiological studies have reported changes in mepp amplitude 
following CS administration (43). Thus, it appears that CS treatment induces both gross 
and ultrastructural changes at the NMJ that may impact neuromuscular transmission. 

Ejfect cf corticosteroids on diaphragm muscle neuromuscular transmission 
By comparing the decrement in force during repetitive nerve stimulation to the force 
induced by direct muscle stimulation, we found that the extent of neuromuscular 
transmission failure was lower in the CS treated DIAm compared to CTL. Neuromuscular 
transmission failure during repetitive nerve stimulation has been attributed to either a 
failure in the axonal propagation of action potentials, primarily at axonal branch points, or 
a failure of synaptic transmission, at either pre- or postsynaptic sites (12, 17, 33, 34). The 
improvement in neuromuscular transmission following CS treatment could be attributed to 
either mechanism. In the normal DIAm, type Ilx/b fibers are more susceptible to 
neuromuscular transmission failure, compared to type I or Ha fibers (15). This is consistent 
with the morphology of NMJs at type Ilx/b fibers which have a greater number of nerve 
terminal branches and less overlap between pre- and postsynaptic elements, compared to 
NMJs at type I and Ha fibers (27). Following CS treatment, the total number of nerve 
terminal branches was reduced at type Ilx/b fibers. Thus, the probability of axonal branch 
point failure may have decreased at type Ilx/b fibers. In addition, the extent of overlap 
between nerve terminals and motor endplates improved at type Ilx/b fibers following CS 
treatment. In areas of the NMJ where nerve terminals do not overlap with the motor 
endplate, the ACh released at nerve terminals may be less effective in inducing postsynaptic 
membrane potential changes, as reflected by a lower mepp amplitude. With an 
improvement in the extent of overlap between pre- and postsynaptic elements, the ACh 
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released at nerve terminals would become more effective in inducing postsynaptic 
membrane potential changes, and mepp amplitude would increase. Accordingly, previous 
electrophysiological studies have reported that CS treatment results in an increase in mepp 
amplitude (2, 4-6, 24, 38, 43, 44), indicating an improvement in synaptic efficacy. 

The disproportionate effect of CS treatment on type Hx/b fiber diameter versus NMJ 
size may have also contributed, at least in part, to the improvement in neuromuscular 
transmission. Larger muscle fibers have greater total capacitance, requiring greater synaptic 
current to generate a given change in membrane potential. Thus, the greater normalized 
size of NMJs at type I and Ha fibers ensures greater efficacy of synaptic input, compared to 
that at type Hx/b fibers. Following CS treatment, the normalized size of NMJs at type Ilx/b 
fibers increased, and this should have improved the efficacy of synaptic input. 

In conclusion, the present study found that CS administration leads to a selective atrophy of 
type Ilx/b fibers and a disproportionate reduction in NMJ size at these fibers. The 
morphological alterations of NMJs at type JJx/b fibers would lead to lower probability of axonal 
branch point failure and greater synaptic efficacy. Accordingly, it was observed that CS 
treatment was associated with decreased neuromuscular transmission failure in the DIAm. 
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Abstract 

The effects of corticosteroids (CS) on diaphragm muscle (DIAm) fiber morphology and 

contractile properties were evaluated in three groups of rats: controls (CTL), surgical 

sham and weight-matched controls (SHAM) and CS-treated (prednisolone 6 mg/kg/day at 

2.5 ml/hr for 3 wks). In the CS treated DIAm, there was a selective atrophy of type Их 

and lib fibers, compared to a generalized atrophy of all fibers in the SHAM group. 

Maximum isometric force (Po) was reduced by 20% in the CS group compared to both 

CTL and SHAM. Maximum shortening velocity (Vmax) in the CS DIAm was slowed by 

-20% compared to CTL and SHAM. Peak power output of the CS DIAm was only 60% 

of CTL and 70% of SHAM. Endurance to repeated isotonic contractions improved in the 

CS-treated DIAm compared to CTL. We conclude that the atrophy of type IIx and lib 

fibers in the DIAm can only partially account for the CS-induced changes in isotonic 

contractile properties. Other factors such as reduced myofibrillar density or altered cross-

bridge cycling kinetics are also likely to contribute to the effects of CS treatment. 

Introduction 

Corticosteroid (CS) treatment is common in the clinical setting, despite a variety of 

contraindications including skeletal muscle myopathy. Recently, considerable attention has 

focused on the possibility that CS treatment impairs diaphragm muscle (DIAm) function 

in patients with chronic obstructive pulmonary disease (COPD) (1). In these patients, CS 

treatment appears to contribute to DIAm weakness, further reducing their functional 

reserve capacity. To date, animals studies have examined only the effects of CS treatment 

on isometric properties of the DIAm. However, an examination of only the isometric 

properties of the DIAm may not reveal the true impact of CS treatment. The 

force/velocity relationship is an essential characteristic of DIAm contractile properties, 

and, to date, there is very little information concerning the effects of CS treatment on the 

ability of the DIAm to shorten. This may explain the equivocal results of animal studies 

reporting either no effect of CS treatment on maximum isometric specific force (Po; force 

normalized for muscle cross-sectional area) of the DIAm (2,3,10,13,22) or only a small 

reduction in specific force (20). 

As in other skeletal muscles, the maximum shortening velocity (Vmax) of DIAm fibers 

displays a strong association with myosin heavy chain (MHC) isoform composition 

(8,18). In the DIAm, type IIx and IIb fibers, expressing the MHC^ and MHC2B isoforms, 

respectively (16,19), have a faster Vmax than type I and IIa fibers, expressing the 
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Methods 

Male Sprague-Dawley rats (initial body weights 315 ±5 g) were divided into 3 groups: 

1) Untreated controls (CTL; η=8); 2) Surgical sham and weight-matched controls 

(SHAM; n=8); and 3) CS-treated (CS; n=8). All animals were housed in separate cages 

under a 12h-12h light-dark cycle, fed with Purina Rat Chow, and provided with water ad 

libitum. Animals in the CTL and CS groups were provided food ad libitum, whereas rats 

in the SHAM group were food-restricted to match their weight growth curve with that of 

the CS group. Body weights were monitored daily in all groups. 

All procedures used in this study were approved by the Institutional Animal Care and 

Use Committee of the Mayo Clinic, and were in strict accordance with the American 

Physiological Society Animal Care Guidelines. Surgical procedures were performed under 

aseptic conditions. The recovery of animals from surgery was carefully monitored. 

CS Treatment 
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Animals were anesthetized by im administration of ketamme (60 mg/kg) and xylazine (2 5 

mg/kg), and a miniosmotic pump (Alzet 2M4) was implanted se m the neck In the CS 

group, the miniosmotic pump contained a 37 5 mg/ml aqueous suspension of prednisolone 

sodium succinate (Upjohn), while m the SHAM group, the pump contained a sterile 

physiological salme solution Based on a flow rate of 2 5 μΐ/h for the osmotic pump, a 

dosage of 6 mg/kg prednisolone was provided continuously for a three-week period 

Measurements of the remaining amount of solution in the pump at the end the three-week 

treatment period was used to estimate total drug delivery At the terminal experiment, 

blood samples were obtained to measure prednisolone and T3/T4 levels 

Fiber Type Composition and Morphology 

Following the three-week treatment period, the rats were anesthetized with pentobarbital 

sodium (70 mg/kg), and the right DI Am was rapidly excised Muscle segments were 

dissected from the midcostal region, and the resting, excised length of the strip was 

measured using digital calipers The muscle strips were then stretched to 1 5 times this 

excised length (an approximation for Lo (15)), pinned on cork, and rapidly frozen in 

melting isopentane cooled to its meltmg point by liquid nitrogen 

Transverse sections of muscle fibers were cut at 6μπι usmg a cryostat (Reichert Jung 

2000E) kept at -20°C The muscle sections were then reacted with antibodies to different 

MHC ìsoforms 1) mouse anti-MHCslow IgG (Novocastra) for identification of type I 

fibers by positive lmmunoreactivity, 2) mouse anti-MHC2A IgG (7) for identification of 

type Ha fibers by positive lmmunoreactivity, 3) mouse anti-MHCA1,2X IgG (16) for 

identification of type IIx fibers by negative lmmunoreactivity, and 4) mouse anti-MHQg 

IgM (16) for identification of type IIb fibers by positive lmmunoreactivity Following a 2-

3 h incubation with the primary antibody, the sections were washed in 0 1 M phosphate 

buffer and incubated further in СуЗ-conjugated donkey anti-mouse IgG or IgM 

The fluorescently stained sections were visualized using an Olympus BH-2 microscope 

Images of the stained muscle sections were digitized into a 1024x1024 array of picture 

elements (pixels) using a CCD camera attached to a calibrated image processing system 

(19) Usmg a 20X microscope objective, each pixel had a projected area of 0 15 μπι2 

The cross-sectional area of individual muscle fibers was determined from the number of 

pixels within the delineated boundary of the fiber To determine fiber type proportions, 

~ 500 muscle fibers were sampled from each DIAm Cross sectional areas were measured 

for at least 25 fibers of each type within a given muscle The relative contribution of each 

fiber type to the total area of the muscle segment (an estimate of total mass when Lo was 

similar) was calculated based on the proportion and average cross-sectional area of each 

fiber type 
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МНС Isoform Composition 

The techniques for determination of MHC isoform composition of the rat DIAm have 

been previously described (8,19). Briefly, myosin was extracted from scissor-minced 

DIAm tissue and the extracts were centrifuged and supernatants recovered. Following 

overnight storage to allow precipitation of myosin filaments, the solution as centrifuged 

and the pellet was dissolved in a sample buffer, boiled and then stored frozen. Different 

MHC isoforms were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 

The identity of specific MHC bands in silver-stained gels had been previously determined 

using immunoblotting techniques (9,19). The relative composition of the different MHC 

isoforms was determined by densitometry, normalizing the average density of each band 

for the total peak densities for all the isoforms combined. 

Contractile and Endurance Properties 

Muscle strips ( — 3 mm wide) were dissected from the midcostal region with fiber 

insertions at the costal margin and central tendon left intact. The muscle strip was 

mounted vertically in a glass tissue chamber containing oxygenated mammalian Ringers' 

solution with the following composition (mM): 135 Na+, 5 K+, 2 Ca2+, 1 Mg2+, 121 Cl\ 

25 HCO3, 11 glucose, 0.3 glutamic acid, 0.4 glutamate, and N,N-bis(2-hydroxyethyl)-2-

aminoethane-sulfonic (BES) acid buffer (pH=7.4). A 0.0008% solution of d-tubocurarine 

chloride was added to prevent neuromuscular transmission. The solution was oxygenated 
о 

with 95% 0 2 and 5% C0 2 and maintained at 26 С The origin of the muscle bundle 

along the costal margin was attached to a metal clamp mounted in series with a 

micromanipulator at the base of the tissue chamber. The central tendon was glued to a 

thin, stiff plastic rod that was firmly fixed to the lever arm of a dual-mode length-force 

servo control system (Cambridge Technologies, model 300B). 

The muscle was stimulated directly using platinum plate electrodes placed in close 

apposition on either side of the muscle. Rectangular current pulses (0.5 ms duration) 

were generated using a Grass S88 stimulator, and amplified by a current amplifier 

(Mayo Foundation, Section of Engineering). The stimulus intensity producing the 

maximum twitch force response was determined, and the stimulus intensity was set at 

-125% of this value for the remainder of the experiment (-220 mA). Muscle preload 

was adjusted using the micromanipulator until optimal fiber length (Lo) for maximal 

twitch force was achieved. 

The Cambridge system was controlled using custom-built software (LabView), 

implemented on an IBM 486 personal computer. Length and force were independently 

controlled, allowing the Cambridge system to operate either in isometric or isotonic 

modes, respectively. Length and force outputs were digitized using a data acquisition 



Isotonic contractile properties 87_ 

board (National Instruments) at a sampling frequency of 1 KHz 

Peak isometric twitch force (Pt) and Po (600 ms duration train) were measured The 

force/velocity relationship of the DIAm was then determined While the muscle was 

maximally stimulated at 75 Hz for 330 ms, añerloads were clamped at values ranging 

from 3 to 100% of Po A shorter stimulus duration was used to accommodate the 

limited range of lever movement of the Cambridge system during muscle shortening At 

least 1 min intervened between each load level The velocity of shortening at each load 

clamp was calculated as the change in muscle length (normalized for Lo) during a 50 

ms period To eliminate the dynamics of connective and other non-contractile tissue in 

the muscle, the time window for this measurement was set to begin at 25 ms following 

the first detectable change in length Vmax was calculated by fitting the force-velocity 

curve using the modified Hill equation and extrapolating the fitted curve to zero-load 

(21) 

Power output during isotonic contraction was calculated as the product of force and 

velocity, and the load clamp level yielding maximum power was determined The load 

clamp was set to this value, and endurance was assessed during repetitive isotonic 

shortening induced by stimulating the muscle at 75 Hz in 330 ms duration trains 

repeated every s The time at which power output declined to zero (no detectable muscle 

shortening) was defined as endurance time 

Following the experiment, the muscle was weighed, and cross-sectional area was 

estimated based on the following formula muscle weight (g)/[Lo (cm) 1 056 (g/cm )] 

Forces were then normalized for cross-sectional area of the muscle segments 

Statistical Analysis 

Data were compared using a 1-way analysis of variance (ANOVA) followed by 

Duncan's multiple-range test Repeated measures ANOVA were used for analysis of 

force-frequency, force-velocity and force-power relationships, as well as for the analysis 

of the decline in maximum power output during the isotonic fatigue test Statistical 

significance was tested at the 0 05 level All data were expressed as mean ±SE 

Results 

Efficacy of CS Treatment 

Following three weeks of treatment, there was very little residual solution (<5% of total 

volume) remaining in the miniosmotic pumps Prednisolone levels measured m blood 

serum of CTL and SHAM animals were below detectable levels ( < 0 5jxg/dl) In 
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contrast, the serum prednisolone level measured m the CS-treated animals at the time of 

the terminal experiment was 4 9±1 jtg/dl Serum T3/T4 levels were not significantly 

different across the three experimental groups (CTL T3 46±3 ng/dl, T4 4 0±0 2 Mg/dl, 

SHAM. T3 48±6 ng/dl, T4 4 2±0 4 μg/dl, and CS T3 47±4 ng/dl, T4 3 9±0 4 μg/dl) 

Table 1. Effect of CS treatment OD fiber type proportions, cross-sectional areas and relative contributions to 
total diaphragm muscle cross-sectional area 

Treatment Type I 

Fiber Type Proportions (% of total) 

CTL 3 6 1 ± 0 5 
SHAM 37 4 ± 1 5 

CS 40 4 ± 2 2 

Fiber Cross-Sectional Area (μΐη2) 

CTL 875 ± 2 8 
SHAM 6 0 0 ± 1 9 ' 

CS 772 ± 6 2 ' 

Type Ha 

32 5 ± 0 7 
31 0±1 2 
29 9±1 5 

821 ±35 
693 ± 18" 
770 ±67* 

Relative Contribution to Total DIAm Area (% of total) 

CTL 2 1 7 ± 0 9 
SHAM 21 6 ± 1 6 

CS 29 8 ± 2 3"' 

18 6 ± 0 6 
20 6 ± 2 0 
21 7±1 4 

Type IIx 

23 5 ± 1 5 
24 1±1 5 
24 1±1 9 

2666+163 
1710±75' 

1668 ±202" 

44 2 ± 4 1 
39 5 ± 3 3 
37 2 ± 3 2 

Type lib 

6 8 ± 1 6 
7 5±1 4 
5 5 ± 1 5 

3388±263 
2685 ±186' 
2284 ±307' 

15 5 ± 3 8 
19 2 ± 4 1 
11 3 ± 3 1 

Values are means ±SE p<0 05 compared to CTL, p<0 05 compared to SHAM 

Body Weights 

Over the three-week experimental period, body weights of CTL animals increased by 

26% (315±7 g initial and 397±9 g final body weight) In the CS and SHAM animals, 

body weight gain was significantly reduced compared to CTL (p<0 05), increasing by 

only 6% and 4 %, respectively (CS 319+5 g initial and 338+9 g final body weight, 

SHAM 313 ±7 g initial and 327±9 g final body weight) 

Table 2. Effect of CS treatment on MHC isoform composition of the diaphragm muscle (% total MHC) 

Treatment 

CTL 
SHAM 

CS 

MHC S t o w 

22 5 + 1 1 
24 0 ± 2 3 
25 3±1 9 

MHQA 

29 0±1 2 
30 2±1 8 
34 8±1 5 

мне« 

34 1 +1 2 
31 6 ± 2 0 
33 4±1 0 

MHC2B 

14 5 + 1 9 
14 2 ± 2 1 
6 5±1 5'' 

Values are means ±SE " p<0 05 compared to CTL, ' p<0 05 compared to SHAM 
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Fiber Type Composition and Morphology 

In all three experimental groups, fiber types could be readily classified by 

immunoreactivity for the different MHC antibodies. The incidence of co-expression of 

MHC isoforms appeared to be very low (< 1%) in all three groups. However, it was not 

possible to detect co-expression of MHC2X and MHC2B isoforms by 

immunohistochemistry, and it is likely that such co-expression was more frequent (19). 

There were no differences across groups in proportions of different fiber types (Table 1). 

In the CS-treated animals, cross-sectional areas of type IIx and Hb DI Am fibers were 

significantly smaller than those of type IIx and Hb fibers in CTL (p<0.05; Table 1). In 

contrast, cross-sectional areas of type I and IIa fibers in the CS DIAm were comparable 

to similar fiber types in CTL animals. In the SHAM DIAm, there was a generalized 

atrophy of all fiber types compared to CTL (p<0.05; Table 1). Type I fibers in the 

SHAM DIAm were also smaller than type I fibers in the CS DIAm (p<0.05; Table 1). 

Cross-sectional areas of type Ha, IIx and IIb fibers in the CS DIAm were comparable to 

similar fiber types in SHAM animals. 

In the CS DIAm, the relative contribution of type I fibers to total DIAm cross-sectional 

area increased (p<0.05; Table 1). Otherwise, there were no differences across groups in 

the relative contribution of different fiber types to total DIAm cross-sectional area. 

However, the combined contribution of type IIx and lib fiber areas was —60% of total 

DIAm cross-sectional area in CTL and SHAM animals, but only —48% in the CS group 

(Table 1). 

MHC Isoform Composition 

Based on electrophoretic separation, the relative expression of the MHCJB isoform 

decreased in the CS-treated DIAm (p<0.05; Table 2). The MHC isoform composition of 

CTL and SHAM DIAm were comparable (Table 2). 

Contractile and Endurance Properties 

Following three weeks of CS treatment, Pt and Po of the DIAm were reduced compared 

to both CTL and SHAM groups (p<0.05, Table 3). Pt and Po were not different between 

CTL and SHAM animals. Compared to CTL and SHAM groups, the force-velocity 

relationships of the CS DIAm was shifted to the left (p<0.05; Fig. 1A). The Vmax of 

the CS DIAm was significantly slower than that of both CTL and SHAM DIAm 

(p<0.05, Fig. IB). In all DIAm, peak power output occurred at - 3 3 % of Po and 33% 

of Vmax (Fig. 2). Peak power output of the CS DIAm was significantly lower than that 

of both CTL and SHAM groups (Fig. 2; ρ<0.05). The peak power output of the SHAM 

DIAm was also slightly lower than that of CTL animals (Fig. 2; p<0.05). 
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Figure 1. A. Force-velocity relationship of the CS DI Am was shifted leftward compared to both CTL and 
SHAM animals (p<0.05). 
B. Vmax was slower in the CS DIAm compared to both CTL and SHAM groups (p<0.05) 
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Figure 2. Power output at each load was reduced in 
the CS an SHAM groups compared to 
CTL (p<0.05). In addition, the power 
output of the CS DIAm was less than that 
of the SHAM group (p<0.05). Peak 
power output was reduced in the CS and 
SHAM groups compared to CTL 
(p<0.05). Peak power output of the CS 
DIAm was lower than that of SHAM 
(p<0.05) 
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Figure 3. During repetitive shortening at 30% Po, 
power output of the DIAm rapidly declined 
in all three groups (p<0.05). The rate of 
decline of power was slower in the CS 
DIAm compared to CTL and SHAM 
(p<0.05). Endurance time of the CS 
DIAm was prolonged compared to CTL 
(p<0.05), but not significantly different 
from SHAM. 
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With repetitive shortening contractions, maximum power output of the DIAm rapidly 

declined in all three groups (Fig. 3, ρ<0.05) After 60 s of repetitive contractions, 

DIAm power output was comparable in all three groups (Fig 3) However, given the 

differences in the initial peak power output of each group, the rate of decline m power 

was slower in the CS DIAm compared to both SHAM and CTL animals (Fig. 3; 

p < 0 05) Endurance time of the CS DIAm was 120±6 s compared to 96±4 s for CTL 

(p<0 05) and 108±7 s for SHAM (Fig 3) 

Table 3. Effect of CS treatment on isometric contractile properties of the DIAm 

Treatment 

CTL 
SHAM 

CS 

Pi (N/cm2) 

10 5 ± 0 7 
11 4 ± 0 7 

7 4 ± 0 6*' 

Po (N/cm!) 

21 1±1 5 
20 3±1 0 

16 6 ± 0 9** 

Pt/Po 

0 50+0 02 
0 56±0 02 

0 44+0 02"' 

Values are means ±SE Pt peak twitch force, Po maximum tetanic force, " p < 0 05 
compared to CTL, ' p < 0 05 compared to SHAM 

Discussion 

The results of the present study support our hypotheses that CS treatment induces a 

selective atrophy of type Их and lib fibers in the rat DIAm, which is associated with a 

slowmg of Vmax, a reduction in power output and an improvement in isotonic endurance 

However, the CS-induced changes m DIAm isotome properties were disproportionately 

greater then the changes in type IIx and IIb fiber morphology and MHC isoform 

expression Therefore, we conclude that in addition to the selective atrophy of type IIx 

and lib fibers, CS treatment exerts an influence on cross bridge cycling kinetics 

Across the three-week period, the normal increase in body weight observed m CTL rats 

was blunted by CS treatment The final body weight of the CS-treated animals was 

—15% lower than that of CTL rats Since alterations in nutritional status alone can affect 

morphology and function of the rat DIAm (2,11,17), interpretation of the direct effects of 

CS treatment is confounded However, the morphological and contractile adaptations of 

the DIAm in the SHAM group, where body weight was matched to that of the CS group 

by food restriction, were generally dissimilar to those observed in the CS-treated animals 

These results suggest that the effects of CS treatment on DIAm structural and functional 

properties cannot be solely attributed to a non-selective catabolic effect 

The CS-induced selective atrophy of type IIx and IIb DIAm fibers observed in the 

present study is in general agreement with several previous studies (2,3,12,14,20,22) 
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However, these previous studies did not classify fiber types based on expression of 

different MHC isoform, nor did they distinguish between type IIx and lib fibers Standard 

histochemical classification of fiber types based on the pH lability of myofibrillar ATPase 

staining, as used in these studies, cannot distinguish type IIx fibers, which are abundant in 

the rat DI Am (9,19) In addition, the MHC2B isoform is often co-expressed with the 

MHC2X isoform Therefore, it is not surprising that type Πχ and IIb fibers displayed a 

similar pattern of atrophy m response to CS treatment In the SHAM DIAm there was a 

generalized atrophy of all fiber types which has also been previously observed 

(2,10,11,17,20,22) When combined, type IIx and IIb fibers comprised -60% of both 

CTL and SHAM DIAm, but only -48% of the CS DIAm In the CS-treated DIAm, 

there was a reduction in the relative expression of the M H Q B isoform, while no changes 

in MHC isoform expression were observed m the SHAM group When combined, MHQx 

and MHC2B isoforms comprised -40% of the CS DIAm compared to -49% of CTL 

and -46% of SHAM DIAm The relatively modest change m MHC îsoform composition 

of the CS DIAm was consistent with the normal T3/T4 levels of these animals Clearly, 

the CS-mduced morphological adaptations of type IIx and IIb DIAm fibers and the 

alterations in MHC isoform expression were not as pronounced as the changes in isotonic 

contractile properties 

Three weeks of CS treatment resulted in a 20% reduction m Po compared to both CTL 

and SHAM groups These results are in agreement with the previous report of van 

Balkom et al (20) but contrast with several other studies where no effect of CS treatment 

on DIAm Po was observed (2,3,10,13,22) The reasons for these discrepant results are 

unclear, but may relate to the type, dose and duration of CS treatment used It is unlikely 

that the reduction in specific force of the CS-treated DIAm observed m the present study 

was attributable only to the selective atrophy of type IIx and lib fibers or the reduction in 

MHC2B isoform expression A reduction in specific force could also arise from a number 

of alternative mechanisms, including a decrease in myofibrillar density and/or changes m 

cross bridge cycling kinetics Lieu and colleagues (12) reported that CS treatment is 

associated with a reduction of myofibrillar and sarcoplasmic protein concentration m the 

rat DIAm, albeit not as pronounced as in the plantaris muscle Such alterations in 

myofibrillar and sarcoplasmic protem concentration could reflect a decrease in the number 

of available cross bridges and/or changes m calcium handling 

The force-velocity relationship of the DIAm was altered by CS treatment such that 

Vmax was slowed by —20%, and peak power output was reduced by 40% compared to 

CTL animals The slowing of Vmax m the CS DIAm is generally consistent with the 

selective atrophy of type IIx and lib fibers and the reduction in MHC2B expression 

However, the slowing of Vmax mduced by CS treatment was substantially greater than 
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that which would be predicted by the relatively modest reduction in MHQg expression 

Therefore, it is unlikely that the slowing of Vmax in the CS-treated DIAm was solely 

attributable to a selective atrophy of type Их and lib fibers and/or the reduction in 

MHC2B expression In muscle fibers, Vmax is correlated with actomyosm ATPase activity 

(18) and cross bridge cycling rate Type I and IIa fibers have lower actomyosin ATPase 

activities than type IIx and IIb fibers (18,19), and as a result a slower Vmax It is 

possible that the slowing of Vmax m the CS treated DIAm reflects a decrease in 

actomyosin ATPase activity of muscle fibers independent of MHC isoform expression 

In all groups, the DIAm displayed very rapid fatigue during repetitive isotonic 

contractions at a load corresponding to peak power output During shortening 

contractions, muscle fiber energy utilization increases (4,18), thus, the rapid fatigue may 

be related to an imbalance between energy utilization and energy production CS-treated 

animals displayed a slower rate of power decrement during repetitive isotonic contractions 

compared to CTL and SHAM groups and prolonged endurance time compared to CTL 

These results are in general agreement with the improved fatigue resistance during 

repetitive isometric contractions noted in previous studies (13,22) However, the results of 

the present study are in contrast to the report of Ferguson and colleagues (5) who found 

that CS-treated rabbits displayed less endurance to an incremental inspiratory threshold 

load However, DIAm fatigue was not directly verified in this study, and respiratory 

failure, used to define endurance, could have resulted from a number of mechanisms 

other than DIAm fatigue 

The results of the present study suggest that CS treatment reduces energy utilization 

during repetitive isotonic contractions and thus improves the balance between energy 

supply and energy demand A reduction in energy utilization would result from the 

selective atrophy of type IIx and IIb fibers, which have higher actomyosin ATPase 

activities (18,19) In addition, as suggested above, CS treatment may directly reduce 

actomyosm ATPase activity independent of MHC isoform expression Other studies have 

also suggested that CS treatment impairs muscle energy utilization For example, 

following CS treatment, there is an accumulation of glycogen (5) and a reduction in 

creatine kinase activity (6) There may also be an effect of CS treatment on energy 

production For example, it has been reported that CS treatment reduces citrate synthase 

activity in the rat DIAm (12,20) However, no effect of CS treatment on succinate 

dehydrogenase activity was observed (10) 

In conclusion, CS treatment causes a reduction in specific force, a slowing of Vmax, a 

decrease m power output, and an improvement in endurance during repetitive isotomc 

contractions These contractile adaptations are generally consistent with the selective 

atrophy of type IIx and lib fibers and the reduction m MHC2B expression that was 
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Abstract 

Animal and clinical studies have shown respiratory muscle dysfunction caused by treatment 

with glucocorticoids. The present study was designed to investigate whether anabolic steroids 

are able to antagonize the loss of diaphragm force induced by long-term low-dose 

methylprednisolone (MP) administration. Male adult rats were randomized to receive saline 

or MP 0.2 mg/kg/day sc during nine months, with or without nandrolone decanoate (ND) 

1 mg/kg/wk im during the last 3 months. The —10% reduction in force generation of 

isolated diaphragm bundles induced by MP was completely abolished by addition of ND. The 

MP-induced decrease in number of fibers expressing lib myosin heavy chains (MHC) was 

not reversed by ND. MP slightly reduced type I, Ha and Hx fiber cross-sectional areas 

(CSA), but not type lib fiber CSA. Addition of ND abolished the reduction in Ha and Hx 

fiber CSA. The MP-induced alterations in glycogenolytic activity and fatty acid oxidation 

capacity were not reversed by ND. In conclusion, the marked reduction in diaphragm force 

caused by long-term low-dose MP was completely abolished by addition of ND. ND in part 

also antagonized the effects of MP on diaphragm morphology but showed no beneficial 

effects on biochemical changes. 

Introduction 

Animal studies have shown evidence of respiratory muscle dysfunction induced by treatment 

with Don-fluorinated glucocorticoids. Previously, high dosages were studied for short periods 

of time, resembling acute glucocorticoid myopathy (7). Subsequent studies, using lower 

dosages, showed no changes in rat diaphragm contractile properties following 

methylprednisolone (MP) 0.5 mg/kg/day for six weeks (8), or following 1.25 mg/kg/day of 

prednisolone for four weeks (10). In contrast, administration of a low dose of MP (0.2 

mg/kg/day) for six months caused a significant (-15%) reduction in rat diaphragm force 

generation (38). 

These observations in animal diaphragm following administration of low, clinically 

relevant dosages of MP for prolonged periods were recently confirmed in a clinical study in 

patients with chronic obstructive pulmonary disease (COPD) (6). In this study, a significant 

decrease in respiratory (and peripheral) muscle strength was observed after treatment with 

methylprednisolone 4.3 mg for 6 months (6). Since treatment with glucocorticoids is 

sometimes inevitable in these patients (21), interventions that attenuate or even abolish these 

alterations in respiratory muscles may be of importance. 

In this respect, the use of anabolic steroids may be of interest. Anabolic steroids are able 
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to raise muscle protein by increasing protein synthesis (19). This is of special interest since 

the decrease in muscle protein caused by glucocorticoids is believed to be a major cause of 

glucocorticoid-induced muscle dysfunction (30). A negative nitrogen balance, indicating a 

catabolic condition, can be the result of glucocorticoids treatment or malnutrition, both not 

uncommon in patients with COPD (21,24). This may in part be reversed by anabolic steroids 

under the condition that protein intake is adequate (19). Indeed, Schols and coworkers (33) 

recently showed that anabolic steroids improved respiratory muscle function in 

undernourished COPD patients who were refeeded. However, the effects of anabolic steroids 

in clinically relevant dosages on existing glucocorticoid-induced myopathic changes in the 

diaphragm have not yet been reported to our knowledge. 

Based on the metabolic effects of anabolic steroids described above, we hypothesized that 

anabolic steroids are able to reverse the loss in diaphragm force production observed 

following six months of glucocorticoid administration in clinically relevant dosages (38). To 

test this hypothesis, we examined in vitro contractile properties of the diaphragm of rats 

treated with nandrolone decanoate during the last three mouths of a nine month treatment 

period with a low dose of MP. Morphological and biochemical parameters were measured 

to evaluate cellular adaptations to the drugs tested. 

Methods 

Study design, animals, and treatment 

Adult male outbred Wistar rats (n=30), aged 18-20 weeks, weighing (mean ±SE) 380 ±25 

g, were randomized into three treatment groups: 

Saline group: NaCl 0.9% 0.2 ml/day sc for 9 months 

MP: methylprednisolone (MP): MP 0.2 mg/kg/day sc for 9 months 

MP + ND: MP and nandrolone decanoate (ND): MP 0.2 mg/kg/day sc for 9 months, 

during the last 3 months combined with ND 1 mg/kg im every week. 

The dose of MP (Sigma Chemicals, Bornem, Belgium) used in the present study was based 

upon the observation of similar anti-inflammatory potency and metabolism of MP in rats and 

humans (22). If an absorption of 100% is assumed, 0.2 mg/kg/day of MP would be 

equivalent to a dose of —14 mg/day in a 70 kg human. However, the actual biologically 

available dose may be less since an absorption of only 60% was found following im. 

injections (27). In addition, the s.c. route requires higher doses to produce effects similar to 

i.m. administration (16). ND (Organon, Oss, The Netherlands) was selected as an anabolic 

agent because this drug is a long-acting steroid ester which is slowly hydrolyzed and 

therefore provides a constant tissue level. The dose used in the present study falls within the 
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range recommended by the manufacturer for humans (50 mg im once every 3 weeks and 200 

mg im every week) and that has been proven to be effective in clinical studies (33) 

With each sc injection (saline or MP) all animals received a similar volume ( ~ 0 20 ml) 

During 9 months the animals were daily sc mjected m the neck between 8 30 and 10 00 a m 

ND was administered alternating in left and right upper hmdlimb The rats were fed ad 

libitum, held on a 12/12 hour light-dark regime and were weighed once weekly Although 

daily food intake was not accurately quantified (animals were not held in metabolic cages), 

food intake appeared to be similar m all groups At the end of the treatment period, 

contractile properties, histological, morphometncal and biochemical characteristics of the 

diaphragm were examined The soleus (containing predominantly type I fibers) and extensor 

digitorum longus (EDL, containing predominantly type Ilx/b fibers) were extracted and 

weighted All animals were investigated between 23 and 30 hours after the last sc injection 

Animals treated with ND were studied three to five days after the last ND injection The 

study was approved by the Animal Experiments Committee of the University of Nijmegen 

Contractile properties 

The rats were anaesthetized with sodium pentobarbital (70 mg/kg ip) and a poly-ethylene 

cannula was inserted through a tracheotomy The animals were mechanically ventilated with 

an oxygen-ennched gas mixture (flow 0 5 ml/g body weight/min, respiration frequency 

70/min, duty cycle 50%) The diaphragm was quickly removed through a combined 

laparotomy and thoracotomy and was immediately immersed in a cooled, oxygenated Krebs 

solution at a pH of 7 4 This solution consisted of (mmol/1) 137 NaCl, 4 KCL, 2 MgCl2, 

1 KH2PO„, 24 NaHCO·,, 2 CaCl2, and 7 glucose D-tubocurarme chloride 25 μΜ (Sigma 

Chemicals, The Netherlands) was added to prevent spontaneous neuromuscular activity Two 

small rectangular bundles, parallel to the long axis of the muscle fibers, were dissected from 

the middle part of the lateral costal region of each hemidiaphragm Silk sutures were firmly 

tied to both ends of the bundle to serve as anchoring points Each bundle was placed m a 

tissue bath between two large platinum stimulating electrodes The tissue baths were filled 

with Krebs at 37° С and were oxygenated with 95% 0 2 and 5% C0 2 The central tendon 

insertion of the bundles were tied to a fixed point and the costal margin origin to an isometric 

force transducer (Sensotec, model 31/1437, Columbus OH, USA) Data acquisition and 

storage were performed using a Dash-16 interface and Twist-Trigger software (I D -

electronics. University of Nijmegen) The stimulator (I D -electronics, University of 

Nijmegen) was activated by a personal computer To ensure supramaximal stimulation, 

subsequent stimulations were performed 20% above the voltage at which maximal forces 

were obtained The pulse duration was set on 0 2 ms Twitch stimuli were used to determine 

the optimal length (Lo), followed by a 15 min thermo-equilibration period The following 
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Histological and Immunohistochemical procedures 

Muscle strips obtained from the costal part of the right hemidiaphragm were embedded in 

Tissue-Тек* in a plastic holder. The muscle fibers were oriented parallel to the long side of 

the holder. Subsequently, these specimens were quickly frozen in isopentane cooled in liquid 

N2, followed by further freezing in liquid N2. During this procedure, the diaphragm muscle 

bundles were not fixed at optimal length. Serial cross sections were cut at 7 μπι with a 

cryostat kept at -30°C. Diaphragm sections of five animals in each group were taken for 

routine H&E staining. 

Anti-myosin heavy chain antibodies (Regeneron Pharmaceuticals, New York, U.S.A.) were 

used for morphometric examination of serial diaphragm sections. The following antibodies 

were used: BA-D5 reactive with type I MHCs, SC-71 reactive with type IIa MHCs, BF-35 

reactive with type I, Ha and lib but not with type IIx MHCs, and BF-F3 reactive with type 

IIb MHCs (32). Incubation with anti-myosin heavy chain antibodies was performed at room 

temperature for 1 hour. Antibodies were subsequently labelled with ultra small immunogold 

reagent followed by silver enhancement (Aurion, Wageningen, The Netherlands). A 

minimum of 300 fibers were analyzed from each diaphragm using a Sprynt-based, PC-Image 

digital analysis system (Bos Ine, Waddinxveen, the Netherlands). Fiber type distribution and 

CSA were analyzed for type I, Па, Их and IIb diaphragm muscle fibers. The relative 

contribution to total diaphragm muscle area per fiber type was calculated as the product of 

the mean CSA and fiber distribution in the diaphragm. 

Biochemistry 

Parameters of the bioenergetic capacity of the diaphragm included the activities of the 

glycogenolytic enzyme Phosphorylase, the mitochondrial enzymes 3-hydroxyacyl-CoA 
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dehydrogenase (HADH), a marker for the fatty acid oxidation capacity, and citrate synthase 

(CS) as an index of citric acid cycle activity. 

The procedures used to determine biochemical activities were recently described in detail 

(39). Briefly, remainings of the left and right hemidiaphragm were frozen in liquid N2 and 

stored at -80°C. Segments of fresh frozen diaphragm were thawed in ice-cooled buffer 

containing 250 mM sucrose, 2 mM EDTA and 10 mM Tris-HCl (pH 7.4). In this buffer 

muscle homogenates (5% wt/vol) were prepared using a Potter-Elvehjem glass-teflon 

homogenizer. Total Phosphorylase (a+b) activity was assayed at 37 °C and expressed as μτηοί 

NADPH formed/min g tissue. HADH activity, assessed at 50 μΜ acetoacyl-CoA at 37 °C, 

was expressed in nmol HADH oxidized/min g tissue. CS activity, determined at 25°C, was 

expressed as μιηοΐ coenzyme A formed/min g tissue. The assays for metabolic enzymes were 

performed spectrophotometrically in duplicate. The coefficient of variation for the assays 

applied was —5%. 

Data analysis 

Data of contractile properties of the two bundles obtained from one rat were averaged and 

compared between groups using one-way analysis of variance followed by Duncan's multiple-

range test. Repeated measures analysis of variance was used for growth curve analysis. 

Morphometric analysis was performed using an average per fiber type per animal which was 

utilized as a single value in the statistical analysis. All tests were performed using the 

SPSS/PC+ package V5.0.1 (Chicago, Illinois, USA). Results were considered significant at 

p<0.05. All data are expressed as mean ±SE. 

Results 

Body and muscle weight 

At the start of the study, body weight did not differ between the groups. Repeated measures 

analysis of variance showed a small but significant effect of treatment on rat body weight 

during the 9 month study period (Fig. 1). Body weight gain in saline, MP and MP+ND 

groups were 54% (from 384±7 g to 592±9 g), 44% (from 390±4 g to 564±7 g), and 41% 

(from 387±5 g to 546±9 g), respectively. Rat body length, measured as nose-anus as well 

as nose-tail length, was significantly reduced in both the MP and MP+ND groups compared 

to saline (Table 1). Total diaphragm muscle weight was not measured due to the speed of 

handling and the multiple purposes of the tissue. 
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Table 1. Body length 

treatment 

saline 

MP 

MP + ND 

length (nose-anus) 

cm 

26.3±0.5 

25.8±0.5* 

25.9±0.5» 

length (nose-tail) 

cm 

47.5±0.7 

46.8±0.7* 

47.0±0.5* 

means ±SE; * ρ <0.05 compared to saline 

Diaphragm bundle dimensions and contractile properties 

Diaphragm bundle dimensions were similar in all groups (data in the saline, MP and 

MP+ND groups: length 22.7±0.2, 22.6±0.3, and 22.9±0.2 mm; thickness 0.67±0.01, 

0.67±0.01, and 0.68±0.01 mm). 

Following MP treatment, P, and P„ significantly decreased by 10 and 13%, respectively, 

in comparison with saline. This reduction in diaphragm force generation in the MP group 

was completely abolished by the addition of ND (Table 2). No changes were found in CT 

or 'ART. The Ρ/Ρ0 ratio was significantly lowered in the MP+ND group in comparison with 

MP, but both values did not differ from saline. The force-frequency curves, expressed in 

N/cm\ showed a significant decrease in force generation in the MP group compared to 

saline. This downward shift was completely reversed by addition of ND to MP (Fig. 2). 

When expressed as percentage of initial P0, no differences were observed between the three 

groups (data not shown) 

Table 2. Contractile properties. 

treatment 

saline 

MP 

MP + ND 

P, 

N/cm2 

7.9±0.1 

7.1+0.1* 

7.8+0.2 

CT 

26.4+0.4 

26.8+0.4 

26.3+0.4 

ViRT 

ms 

23.5+0.4 

24.3+0.5 

23.6+0.3 

P. 

N/cm2 

27.1±0.3 

23.2+0.5* 

27.6+0.3 

P/P 
1 І , ж О 

0.29+0.02 

0.31 ±0.03 

0.28±0.02t 

means ±SE; P,: twitch force; CT: contraction time; ViRT: half relaxation time; P„: maximal tetanic force 
* p<0.01 compared to saline and MP + ND; t p<0.05 compared to MP 

Histology and immunohistochemistry 

Histological examination of H&E stained slides showed a normal muscular pattern in all three 

groups. No signs of myogenic alterations such as an increase in the number of nuclei. 
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excessive variations in fiber dimensions nor excess of connective tissue were observed 

Even though the proportions of the type lib fibers in CTL animals were small, 

morphometry analysis of the immunohistochemically stained slides showed a significant 

reduction in the number of type lib fibers (Table 3) mduced by MP This reduction was not 

reversed by ND Type I, Ha and IIx fiber CSA significantly decreased following MP 

treatment In the MP+ND group, the reduction in type Ha and IIx fiber CSA was completely 

abolished, while ND had no effect on type I CSA (Table 3) Type lib fiber CSA was not 

significantly changed by MP treatment Addition of ND to MP resulted in an increase in type 

lib fiber size compared to saline The distribution of fiber CSA per fiber type is shown in 

figure 3 The histogram for type lib fibers illustrates that the MP-induced decrease in number 

of lib fibers occurred without preference for fiber size (Fig 3D) 

Table 3. Fiber type distribution, CSA, and relative fiber type contribution to total diaphragm muscle area 

treatment 

fiber type distnbuiton 

saline 

MP 

MP + ND 

fiber CSA 

saline 

MP 

MP+ND 

fiber type conxnbulion to total 
diaphragm area 

saline 

MP 

MP+ND 

type I 

% 

39 6±1 1 

41 6 ± 1 5 

41 4 ± 0 9 

μητ1 

1308±422 

1197±335* 

1195±386* 

% 

21 5±1 2 

23 2±0 7 

21 2 ± 0 6 

type Ha 

% 

31 2±1 0 

30 4 ± 1 6 

31 9 + 1 0 

μπι2 

1519±160 

1451±125t 

1513±151 

% 

197 + 1 

20 7+0 9 

20 9 ± 0 7 

type IIx 

% 

24 9+0 9 

27 1 ± 1 2 

24 6±0 6 

μτη2 

4471+549 

4177±481t 

4716+580 

% 

45 5 ± 1 

52 7 ±0 9* 

49 5+0 6* 

type lib 

% 

4 3+0 8 

0 9 ± 0 9* 

2 1±0 9* 

ßtn2 

7667 ±935 

8650 ±894 

9514 ±804* 

% 

13 3±2 1 

3 4±0 9* 

8 4 ± 1 

means ±SE, * p < 0 05 compared to saline t compared to saline and MP + ND 

As a result of the changes in number and CSA of the different fiber types, there was an 

increase in the relative contribution of type IIx fibers to total diaphragm muscle area 

following MP This increase was not reversed by administration of ND The reduced 

contribution of type lib fibers m the MP group was in part reversed by addition of ND 

(Table 3) 
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Biochemistry 

Glycogenolytic activity, measured by Phosphorylase, was decreased in the diaphragm of the 

MP treated animals (p<0 05) (Table 4) Addition of ND to MP further reduced 

Phosphorylase HADH, a marker for ß-oxidation capacity, increased following MP treatment 

In the MP+ND group, HADH significantly decreased compared to MP MP alone did not 

change rat diaphragm oxidative capacity, indicated by CS activity Following addition of ND 

to MP, however, CS activity was reduced (p<0 05) 

Discussion 

The present study was designed to investigate whether the anabolic steroid ND was able to 

reduce changes in rat diaphragm observed after six months of MP therapy, both in low, 

clinically relevant dosages The results show that, despite continuation of MP administration, 

the reduction in force generation was completely abolished by ND ND reversed the MP-

ïnduced atrophy of type Ha and Их fibers but had no effect on type I fiber atrophy Both MP 

and MP+ND reduced the number of type lib Fibers in the diaphragm Biochemically, 

addition of ND to MP decreased oxidative capacity in the diaphragm muscle 

Table 4 Biochemical analysis 

treatment 

saline 

MP 

MP+ND 

Phosphorylase 

U/g 

44 3±1 3 

39 9 ± 0 7** 

33 9±0 7t 

CS 

U/g 

29 4 ± 1 3 

28 0 ± 0 7 

24 8 ± 0 7**ф 

HADH 

U/g 

7 97±0 4 

8 83±0 22* 

7 49±0 l ó t i 

means ±SE, CK creatine kinase, CS citrate synthase HADH 3 hydroxyacyl CoA dehydrogenase *p<0 05 
compared to saline, ** ρ <0 01 compared to saline, f ρ <0 01 compared to salme and MP, φ ρ <0 05 compared 
lo MP, φφ p<0 01 compared to MP 

Mechanism of action 

The blunting capacity of ND on MP-induced changes, as observed in the present study, may 

be due to either a direct anabolic effect of ND on muscle fibers or to an antagonistic action 

at the receptor level of ND agamst glucocorticoids, or to a combination of these two actions 

Regarding the first possibility, it is known that anabolic steroids can have an effect on 

normal skeletal muscles, ι e independent of glucocorticoid treatment Anabolic steroids 

promote amino acid incorporation into muscle proteins, decrease amino acid catabolism, and 
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cause nitrogen retention and tissue growth (19) This results in an increase in muscle protein 

synthesis (18) and an increase in myosin and myofibrillar protein fraction (29) This may be 

important in the protection against glucocorticoid-induced fiber atrophy since glucocorticoids 

are known to reduce protein synthesis (30) The direct effect of anabolic steroids seems to 

be more pronounced in fast muscle fibers (11) 

Second, several interactions between anabolic steroids and glucocorticoids have been 

described Anabolic steroids are believed to act via muscle glucocorticoid receptors rather 

than via muscle androgen receptors in antagonizing the catabolic effects of glucocorticoids 

(5) Mayer and Rosen (26) proposed a binding competition between androgens and 

glucocorticoids for the same side of the receptor responsible for mediating the catabolic 

action of glucocorticoids Inhibition of glucocorticoid action at the gene level (20) or 

downregulation of the glucocorticoid receptor content (34) were also reported as anabolic 

effects counteracting glucocorticoid-induced muscular changes 

Besides these specific effects of anabolic steroids on muscle fibers, it has been shown that 

anabolic steroids increase capillary supply in the diaphragm resulting in an increase in 

endurance (12) In androgen-sensitive muscles like the levator am, anabolic steroids may 

affect neuromuscular structure and function The density of acetyl choline receptors at the 

endplates is increased in the levator am (3) probably as an adaptive adjustment to the 

androgen-mduced increase in muscle fiber size This adaptation may be required to maintain 

a normal synaptic function If such mechamsm also occurs in diaphragm muscle 

neuromuscular junctions is unknown 

Body weight and muscle masses 

The effects of anabolic steroids on body weight are gender related Anabolic steroids 

increased body weight gain in female animals (5,11), while m males a reduction (31) or 

similar (5) body weight gain was found compared to control When testosterone was 

combined with cortisone, body weight of male rabbits was higher in comparison to cortisone 

alone, but still significantly less than in control animals (14) In the present study, ND was 

not able to abolish the small reduction in weight gain caused by MP This discrepancy can 

be explained by the different starting points of the anabolic steroid intervention ND addition 

in this study was started following 6 months of MP treatment, while Ferguson (14) 

simultaneously started with testosterone and cortisone administration The small increase in 

relative EDL muscle weight in the MP + ND group compared to saline and MP, and the lack 

of changes in soleus muscle weight can be explained by a more pronounced effect of anabolic 

steroids on fast muscle fibers (11) 

It has been suggested that malnutrition is in part responsible for the glucocorticoid-induced 

diaphragm impairment Indeed, m most animal studies, including the present one, 
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glucocorticoid treatment resulted in a reduction in body weight gain (10) It must be noted, 

however, that in the present study the differences in body weight gain between the saline and 

MP group were small (54, and 44% of initial weight in salme and MP animals, respectively) 

In addition, rat diaphragm muscle function was reduced following prednisolone 

administration while contractile properties were not affected in a pair weight control group 

(40) Short term triamcinolone administration and malnutrition had significantly different 

effects on rat diaphragm muscle (9) Although in that study a fluonnated steroid was used, 

we believe that there is enough evidence that corticosteroids and nutritional deprivation both 

affect diaphragm muscle in a different way This argument is supported by the observation 

that addition of ND to the MP treated animals further decreased body weight, while muscle 

contractile properties were improved This apparent discrepancy may in part be explained by 

the increase fat free body mass observed as result of anabolic steroid administration (2,33) 

However, we believe that this is subordinate to the effects of anabolic steroids on 

corticosteroid induced changes 

Contractile properties 

Previous studies showed that glucocorticoids can reduce diaphragm force generation, 

depending on the dose and duration of the therapy (10,39) In the present study we used a 

very low glucocorticoid dosage which was 2 5 times lower than the lowest dosage previously 

reported (8), but the period of administration was fourfold prolonged This confirms that the 

duration of administration is an important factor contributing to the onset of glucocorticoid-

induced changes m contractile properties 

The effects of anabolic steroids on skeletal muscle force generation are inconsistent (19) 

Administration of durabohn increased twitch force and improved fatigue resistance in the 

EDL muscle of female rats (11) 

The MP-induced reduction in specific force in the present study was completely reversed 

by addition of ND to MP Testosterone administration was able to abolish the decrease m 

diaphragm muscle endurance observed following cortisone (10 mg/kg/day) treatment in male 

rabbits (14) The direct anabolic action of ND on muscle fibers as well as the antagonizing 

action of ND on MP, as described above, may be responsible for these drug-induced changes 

m diaphragm muscle function This direct effect of ND on muscle fibers results in an 

increase m muscle protein synthesis (18) and an increase in myosin and myofibrillar protein 

fraction (29) This may be an important mechanism in regaimng force generation, since 

glucocorticoids are known to reduce these proteins resposible for muscle contraction (30) 

Morphometry 

In the present study, ND did not reverse the MP-mduced decrease in number of fibers 
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expressing type lib MHCs Such effect would not be expected, since ND did not alter the 

expression of the different MHC genes (37) Moreover, anabolic steroids are not believed 

to stimulate satellite cells in muscles (4) Thus, it is unlikely that new fibers are generated 

by ND 

The type IIa and IIx fiber atrophy caused by MP, was completely abolished by ND In 

contrast, ND had no effect on MP-mduced type I fiber atrophy The observation that the 

effects of anabolic steroids on fast fibers are more pronounced is m accordance with the 

findings by Egginton (11) This author found hypertrophy of fast fibers in the diaphragm 

muscle following nandrolone phenylpropionate treatment (1 mg/kg every other day for 5-6 

weeks), while the CSA of slow fibers did not change 

Compared to saline, MP treatment shifted the fiber contribution to total diaphragm area 

from type IIb to IIx fibers Addition of ND did reverse this reduction in type lib 

contribution, while the increase in type Их contribution to total diaphragm area compared to 

saline was still present Since fiber type distribution was similar in the MP and MP+ND 

groups, the changes in fiber contribution to total diaphragm muscle area are the result of the 

ND-induced changes m fiber CSA Although changes in type lib fiber CSA and proportion 

were statistically significant between the treatment groups, it must be noted that this is 

probably of minor cluneal relevance since the amount of type lib fibers in the rat diaphragm 

is small 

The morphometric data in the present study may have been influenced by the fact that 

muscle strips were not fixed at optimal length during freezing The excised diaphragm bundle 

was therefore allowed to assume its equilibrium length, resulting in shortening of the muscle 

The degree of shortening is associated with loss of passive tension present in vivo (36) In 

our study this passive muscle tension was similar in the salme, MP, and MP+ND groups 

(0 038±0 01 N, 0 037±0 01 N, and 0 038±0 01 N, respectively) As a consequence, the 

degree of muscle shortening (and thus the change in fiber CSA) is not likely to be different 

between the groups This, however, does not exclude the possibility of a disproportion in 

degree of shortening between fiber types The differences m CSA between type I, Ha, IIx 

and IIb fibers in the saline group, however, were in proportion to the differences in CSA 

when muscle strip were fixed at optimal length (35) Thus, the physiological differences in 

size among the different fiber types did not appear to be affected by muscle shortening in the 

present study 

Biochemistry 

Treatment with glucocorticoids alone has been shown to increase glycogen storage in rabbit 

diaphragm muscle (15) In the diaphragm of MP treated rats (1 mg/kg/day for 8 weeks) 

glycogenolytic activity decreased, oxidative capacity increased, and β oxidation capacity 
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(HADH) remained unchanged in comparison to saline (39). Short-term (10 days) low-dose 

prednisolone (0.5, 1 and 2 mg/kg/day sc) administration did not change HADH enzyme 

capacity or CS activity in diaphragm muscle (25). 

In soleus or superficial vastus muscle of male rats, nandrolone phenylpropionate (0.5 mg 

every second day) did not change CS activity or glycogen content (41). Methandrostenolone 

did not change glycolytic activity or oxidative capacity in the gastrocnemius muscle of male 

guinea pigs (13). Other investigators observed an increase in oxidative capacity in the EDL 

muscle of male rats, while no such change was found in the soleus muscle (23). Thus, 

anabolic steroids appear to cause little or no change in muscle biochemistry. 

In the present study, addition of ND to MP had no beneficial effects on biochemical 

activities. ND addition even reduced glycogenolytic activity, ß-oxidation capacity and 

oxidative capacity compared to MP alone. Compared to cortisone treatment alone, the 

combination of cortisone and testosterone did not improve biochemical enzyme activities 

either (14). The mechanism of the additional negative effects on diaphragm biochemistry in 

the ND+MP group is unclear. 

Clinical significance 

The observed reduction in diaphragm force generation following MP administration in this 

study may be of clinical importance in patients with severe COPD. In these patients, 

respiratory muscle function may be compromised by factors like hyperinflation, malnutrition, 

physical inactivity, disturbances in blood gases and cardiac failure (17). 

Regarding the effects of ND, Schols et al. provided evidence that anabolic steroids may 

be beneficial in regaining respiratory muscle strength in malnourished COPD patients (33). 

This was probably the result of an increase in muscle mass in patients receiving ND in 

addition to the nutritional support. A recent study by Bhasin and coworkers showed a 

beneficial effect of a high dose of testosterone (600 mg per week) on fat-free body mass, 

muscle size and peripheral muscle strength in normal men (2). 

Other pharmacological interventions to reduce glucocorticoid-induced myopathic changes 

in skeletal muscles have been studied. Growth hormone did not prevent glucocorticoid-

induced changes in rat diaphragm (28), while glucocorticoid-induced muscle atrophy was 

partly prevented by clenbuterol (4 mg/kg/day) (1) and by testosterone (20 mg/kg/day) (14). 

The clinical applicability of anabolic drugs in glucocorticoid-induced myopathy, has yet to 

be evaluated. 
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Abstract 

This study was designed to investigate whether nandrolone decanoate (ND) was able to 

antagonize the loss in diaphragm function induced by long-term low-dose 

methylprednisolone (MP) administration in emphysematous hamsters Male hamsters were 

randomized mto 1) control (CTL), 2) normal hamsters receiving MP (MP), 3) 

emphysema (EMPH), 4) EMPH receiving MP 0 2 mg/kg/day for nine months 

(EMPH+MP), and 5) EMPH receiving MP combined with ND 1 mg/kg/wk im during 

the last 3 months (EMPH+MP+ND) Contractile properties of isolated diaphragm strips 

and diaphragm muscle fiber composition, using antibodies reactive with type I, Ha, and 

IIx myosin heavy chains (MHC), were determined Force generating capacity was 

lowered by -12% in the EMPH group compared to CTL and further decreased by 

— 11% in the EMPH+MP animals However, diaphragm force impairment was similar in 

the MP and EMPH+MP animals Addition of ND to the EMPH+MP hamsters improved 

force generation Force generation at low stimulation frequencies reached the level of 

CTL, while force generation at high frequencies improved to the level of the EMPH 

hamsters MP decreased type IIx fiber cross sectional area (CSA) compared to control 

Type Ha fiber CSA was reduced in the EMPH+MP group Addition of ND, however, 

prevented this reduction in type Ha fiber CSA MHC-Hx fiber CSA was reduced by 

-20% in the EMPH and EMPH+MP groups Addition of ND restored type IIx fiber 

CSA to CTL values In conclusion, ND in part reversed the loss in diaphragm force 

generating capacity in emphysematous hamsters treated with MP, and reversed type Ha 

and IIx fiber atrophy completely 

Introduction 

Patients with severe chrome obstructive pulmonary disease (COPD) may suffer from 

respiratory muscle weakness due to hyperinflation, malnutrition, disturbances m blood 

gases and cardiac failure (13) In these patients, respiratory muscle function was recently 

reported to be further reduced by administration of a low-dose methylprednisolone (MP) 

(mean dosage 4 3 mg) daily for 6 months (3) Since respiratory muscle weakness may 

contribute to respiratory failure, interventions that attenuate or even abolish respiratory 

muscle impairment in these patients may be of clinical importance 

With respect to the impairment caused by glucocorticoids, the use of anabolic steroids 

may be considered Anabolic steroids are able to raise skeletal muscle protein synthesis 

(15) This may be of relevance since the major cause of glucocorticoid-induced muscle 
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dysfunction is believed to be a reduction in muscle protein (32). Besides glucocorticoid 

treatment, malnutrition is also known to cause a catabolic condition in patients with 

COPD (17,21). This catabolic condition may in part be reversed by anabolic steroids in 

combination with adequate protein intake (IS). Indeed, Schols and coworkers (35) 

recently showed that anabolic steroids combined with refeeding improved respiratory 

muscle function in undernourished COPD patients. Whether anabolic steroids are also 

able to counteract the glucocorticoid-induced impairment in human respiratory muscle 

function has not yet been studied. 

Animal models have been used to obtain insight in the underlying mechanisms 

responsible for the changes in diaphragm muscle structure and function. The type and 

severity of alterations caused by glucocorticoids appear to depend on the type of steroid 

used, and the dosage and the duration of administration. In a previous study, we observed 

changes in contractile properties and morphology of the diaphragm from normal rats 

following long-term treatment with a low dose of methylprednisolone (MP; 0.2 

mg/kg/day for 6 months) (39). Recent results from our lab showed that in normal rats 

anabolic steroids were able to reverse diaphragm function loss due to corticosteroid-

induced myopathy (40). 

The use of emphysematous animals to determine drug effects on the diaphragm may be 

of interest since this animal model resembles to some extent the functional alterations 

observed in COPD patients. Induction of emphysema by intratracheal instillation of 

elastase in hamsters resulted in a progressive increase in lung volumes and compliance 

(38), diaphragm muscle adaptation to hyperinflation of the lungs (7,23), and impairment 

in respiratory muscle function (7,23). 

Therefore, we used this emphysematous model to investigate whether anabolic steroids 

in a clinically relevant dose are able to antagonize the impairment caused by long-term 

low-dose MP treatment on the diaphragm that adapted to emphysematous changes in the 

lung. Based on the metabolic effects of anabolic steroids described above, we 

hypothesized that anabolic steroids are able to reverse the alterations in diaphragm 

function and structure induced by MP. Therefore, contractile properties of the diaphragm 

of emphysematous hamsters treated with nandrolone decanoate during the last three 

months of a nine month treatment period with a low dose of MP were examined. 

Immunoreactivity to MHC antibodies was tested to evaluate the effects of MP and ND on 

diaphragm fiber composition. 

Methods 

Study design, induction of emphysema, and treatment 
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Adult male Golden hamsters (n=48), aged >40 weeks, weighing -150 g, were lightly 

anaesthetized with a mixture of halothane and N20, vaporized in air A poly-ethylene 

cannula was inserted into the trachea with the tip located above the carina The hamsters 

received either a smgle instillation of NaCl 0 9% 0 5 ml/100 g body weight (n=12) or 25 

IU porcine pancreatic elastase (PPE) (Sigma Chemicals, Bornem, Belgium) per 100 g 

body weight (n=36) PPE was dissolved m a concentration of 25 IU per 0 5 ml 0 9% 

NaCl to ensure similar fluid loads per animal To improve the distribution to the 

peripheral parts of the lung, 3 ml of room air was injected through the tube The 

hamsters were monitored carefully until spontaneous breathing 

Six months following instillation, emphysematous hamsters were randomized into three 

groups (n=12 per group, fig 1 ) 

normal hamsters 

- controls (CTL) receiving saline 0 2 ml sc daily 

- controls receivmg methylprednisolone (MP) hemisuccinate (Sigma Chemicals, Bomem, 

Belgium) 0 2 mg/kg sc daily for nine months 

emphysematous hamsters 

- emphysematous hamsters (EMPH) receiving saline 0 2 ml sc daily 

- emphysematous hamsters receiving MP 0 2 mg/kg sc daily for nine months 

(EMPH+MP) 

- emphysematous hamsters receivmg MP 0 2 mg/kg sc daily, during the last 3 months 

combined with nandrolone decanoate (ND) (Organon, Oss, The Netherlands) 1 mg/kg im 

once a week (EMPH+MP+ND) 

Our mtention was to evaluate the effects of a low dose of a non-fluonnated steroid (MP) 

comparable to the dose that is occasionally used in chrome treatment of patients with 

COPD We made a calculated estimation that 0 2 mg/kg of MP is equivalent to a dose of 

at most 14 mg/day in a 70 kg human This was based on similar anti-mflammatory 

potency and metabolism in rodents and humans (18,33), an absorption of only 60% after 

im injection of cortisone acetate (26), and the observation that the sc route requires higher 

doses to produce similar effects compared to im administration (12) Indeed, m a previous 

study, administration of 0 2 mg/kg/day of MP for 6 months in normal rats caused a 10-

15% reduction in diaphragm twitch and maxunum tétame force generation (39) Although 

the therapeutic efficacy of glucocorticoids m COPD is at least controversial (17), 

prolonged prednisolone administration in doses of 10-15 mg daily are no exception m the 

treatment of these patients ND was administered in a dose used by others m cluneal 

studies (35), and recommended for patient use by the manufacturer 

During the nine month treatment period, all hamsters received a similar volume 
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( — 0.20 ml) with each sc injection. The hamsters were fed ad libitum (RMHB, Hope 

Farms, Woerden, the Netherlands) with free access to drinking water, held on a 12/12 

hour light-dark regime and weighed once every week. Although daily food intake was not 

precisely quantified (animals were not held in metabolic cages), food intake appeared to 

be similar in all groups ( — 10 g per day). In line with earlier studies (20,25), previous 

pilot experiments showed no change in body weight curve in normal and EMPH 

hamsters. Therefore, a pair-weight or pair-fed control group was not included. 

Fifteen months after instillation and nine months following the start of the treatment 

with MP or saline, the animals were sacrificed to measure contractile properties and 

histological characteristics of the diaphragm. The diaphragm, museums extensor 

digitorum longus (EDL) and the soleus muscle were weighed immediately after dissection 

and the lungs were removed to evaluate the extent of emphysema. The study was 

approved by the Animal Experiments Committee of the University of Nijmegen and 

performed according to the Dutch National Guidelines of Animal Care. 

Verification of emphysema 

Five animals per group were used to evaluate the degree of emphysema induced by PPE. 

At the end of the treatment period, the hamsters were anaesthetized with sodium 

pentobarbital (70 mg/kg ip). A poly-ethylene cannula was inserted through a tracheotomy 

for mechanical ventilation (oxygen-enriched gas mixture, flow 0.5 ml/g body weight/min, 

respiration frequency 70/min and a duty cycle of 50%). After dissection, the lungs were 

inflated with 4% buffered formalin to a pressure of 25 cm H20. Minimal fixation time 

was 2 hours. Postfixation lung volume was determined by fluid displacement. The left 

lower lobe was embedded in paraffine and sagittal sections (6 μπι thickness) were cut and 

stained with hematoxylin-eosin. Alveolar cross sectional area (CSA) was measured to 

determine the extent of emphysematous changes in the lung. These measurements were 

made using a Sprynt-based, PC-Image digital analysis system (Bos Ine, Waddinxveen, the 

Netherlands). 

Contractile properties 

Procedures for anaesthesia and intubation were performed as described above. A 

combined laparotomy and thoracotomy was performed to remove the diaphragm. 

Immediately after excision the diaphragm was immersed in a cooled, oxygenated Krebs 

solution at a pH of 7.4. This solution consisted of (mmol/1): 137 NaCl, 4 KCL, 1 MgCl2, 

1 KH2P04, 24 NaHCOj, 2 CaCl2, and 7 glucose. D-tubocurarine chloride 25 μΜ (Sigma 

Chemicals, The Netherlands) was added to prevent spontaneous neuromuscular activity. 

Contractile properties were measured on two small rectangular bundles, dissected from 
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the middle part of the lateral costal region of each hemidiaphragm and parallel to the long 

axis of the muscle fibers Silk sutures were firmly tied to both ends of the bundle to serve 

as anchoring points Each bundle was placed in a tissue bath containing Krebs at 37° С 

and was oxygenated with 95% 0 2 and 5% C0 2 The central tendon insertion of the 

bundles were tied to a fixed point and the costal margin origin to an isometric force 

transducer (Sensotec, model 31/1437, Columbus OH, USA) Data acquisition and storage 

were performed using a Dash-16 interface and Twist-Trigger software (I D -electronics, 

University of Nijmegen, The Netherlands) The stimulator (I D -electronics, University of 

Nijmegen) was activated by a personal computer The muscle strips were stimulated with 

two large platinum electrodes on both sides of the muscle To ensure supramaximal 

stimulation, subsequent stimulations were performed 20% above the voltage at which 

maximal forces were obtained The pulse duration was set on 0 2 ms Twitch stimuli 

were used to determine the optimal length (Lo), followed by a 15 min thermo-

equihbration period The following measurements were made 

Twitch characteristics two twitches were recorded at Lo to obtain maximal twitch force 

(P[), contraction time (CT), and half relaxation time ('ART) The averages were used for 

further analysis 

Maximal tetanic contraction two maximal tetanic stimuli (with a frequency of 160 Hz 

and a train duration of 400 ms) were generated to obtain maximal tetanic force (P0) 

Force-frequency protocol muscle bundles were stimulated every 2 mm with the 

following frequencies 25, 50, 80, 120 and 160 Hz (tram duration 400 ms) 

The generated force was expressed per cross sectional area (N/cm2) Cross-sectional area 

(CSA) was measured by dividing diaphragm bundle weight by muscle density (1 056 

mg/mm3) and bundle length 

Morphometnc evaluation of the diaphragm muscle 

Resting (excised) muscle length of strips obtained from the costal part of the right 

hemidiaphragm were measured Before freezing, the strips were stretched to 1 5 times 

this excised length to approximate Lo (29), and pinned on cork These specimens were 

quickly frozen m isopentane cooled in liquid N2 followed by further freezmg in liquid N2 

Serial cross sections were cut at 7 μπι with a cryostat kept at -30CC 

Myosin heavy chain antibodies (DSM, Braunschweig, Germany) were used for 

morphometnc examination of serial diaphragm sections The following antibodies were 

used BA-D5 reactive with MHC-I, SC-71 reactive with МНС-Ila, BF-35 reactive with 

MHC-I, МНС-Ila and MHC-IIb but not with MHC IIx, and BF-F3 reactive with MHC-

Ilb (34) Incubation with anti-myosin heavy chain antibodies was performed at room 

temperature for 1 hour Antibodies were subsequently labelled with ultra small 
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unmunogold reagent followed by silver enhancement (Aunon, Wagerungen, The 

Netherlands) The cross sectional area (CSA) of at least 250 fibers were analyzed from 

each diaphragm using a Sprynt-based, PC-Image digital analysis system (Bos Ine, 

Waddmxveen, the Netherlands) 

Data analysis 

Data of contractile properties of the two bundles obtained from one hamster were 

averaged The SPSS/PC + package V 6 1 3 (Chicago Illinois, USA) was used for 

statistical analysis Data were compared using one-way analysis of variance followed by 

Duncan's multiple-range test Repeated measures ANOVA was used to analyze the force-

frequency relationship Morphometnc analysis was performed using the average per fiber 

type per animal which was utilized as a single value in the statistical analysis Results 

were considered significant at p<0 05 All data were expressed as mean ±SE 

Results 

Body and muscle weights 

Growth curve was not significantly affected by drug treatment or by induction of 

emphysema Initial and final body weight were similar in all groups (table 1) No 

differences m diaphragm and soleus muscle weight were observed An increase in EDL 

muscle weight, normalized for body weight, was found in the EMPH + MP+ND group 

compared to CTL, EMPH, and EMPH+MP (table 1) 

Table 1. Body and muscle weights 

treatment 

CTL 

MP 

EMPH 

EMPH + MP 

EMPH + MP + ND 

initial body weight 

g 

150±3 

151±4 

149±3 

152±4 

149 ±4 

final body we 

g 

149±2 

145±3 

148±3 

147±3 

145±3 

ight diaphragm 

%o b w 

2 02±0 04 

1 94 ±0 03 

2 08 ±0 02 

2 04 ±0 03 

2 07±0 04 

EDL 

%o bw 

0 21+0 01 

0 22±0 01 

0 20±0 01 

0 21 ±0 01 

0 23±0 01* 

soleus 

%o b w 

0 24±0 01 

0 24±0 01 

0 22±0 01 

0 23±0 01 

0 24±0 01 

means ±SE, EDL extensor digitorum longus, b w body weight, * p < 0 05 compared to CTL, EMPH, 
and EMPH + MP 

Degree of emphysema 

The alveolar cross sectional area in the EMPH, EMPH+MP, and EMPH+MP + ND 
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Table 2. Diaphragm muscle strip dimensions 

treatment 

CTL 

MP 

EMPH 

EMPH+MP 

EMPH+MP + ND 

length 

mm 

15 6±0 3 

15 2±0 3 

14 2±0 2* 

14 5±0 1* 

14 6±0 3* 

width 

mm 

2 1 ±0 03 

2 2±0 05 

2 0±0 02 

2 1 ±0 03 

2 0±0 03 

thickness 

mm 

0 6±0 01 

0 6±0 02 

0 6±0 01 

0 6±0 01 

0 6+0 01 

weight 

mg 

15 3±0 7 

15 9±0 8 

12 9±0 5* 

14 1±0 6 

14 1±0 5 

weight normalized 
for strip dimension 

mg/mm3 

0 8±0 02 

0 8+0 03 

0 8±0 03 

0 8±0 02 

0 8±0 02 

means ±SE, * p<0 05 compared to CTL and MP 

Diaphragm bundle dimensions and contractile properties 

Diaphragm muscle strip length was significantly reduced m all EMPH groups compared 

to CTL and MP (table 2) Muscle strip weight was reduced only in the EMPH group 

However, no differences were found between the groups when muscle strip weight was 

normalized for muscle strip dimension (table 2) 

Table 3. Diaphragm contractile properties 

treatment 

CTL 

MP 

EMPH 

EMPH + MP 

EMPH + MP + ND 

CT 

ms 

26 7±0 2 

26 1 ±0 3 

26 7±0 4 

27 0±0 3 

27 5±0 4 

•ART 

ms 

28 4±0 7 

28 1±0 7 

28 8±0 8 

29 5±0 6 

30 8±1 0 

CT + '^RT 

ms 

55 1 ±0 9 

55 2±1 0 

55 5±1 2 

56 5±0 7 

58 3 + 1 2* 

Pt/Po 

% 

26 5±0 6 

27 2±0 9 

26 8±0 6 

27 9±0 8 

29 3+0 9f 

means ±SE, CT contraction time, '¿RT half relaxation time, P, twitch force, P0 maximal tetanic 
force, * p<0 05 compared to CTL and MP, t p<0 05 compared to CTL and EMPH 
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Pt was reduced in the diaphragm of the MP, EMPH and EMPH+MP animals 

compared to CTL and EMPH+MP+ND (fig 2) Twitch force in the MP animals was 

significantly lower compared to EMPH Addition of ND increased Pt to the level of CTL 

Po was significantly lower m all intervention groups No significant differences m 

contractile properties were found between MP and EMPH+MP Since Po decreased in 

the MP and EMPH+MP group compared to all other groups, the most pronounced 

reduction in maximum force was observed following MP treatment Administration of ND 

to the animals increased Po to the level of the EMPH group (fig 2) Induction of EMPH 

nor treatment with MP or ND caused changes in CT or 1/2RT However, since fusion of 

the contractions is dependent on the speed of contraction and relaxation, we also analyzed 

the sum of CT and 1/2RT ND addition significantly lengthened the sum of CT and 

1/2RT compared to CTL and MP (table 3) This suggests earlier fusion of contractions at 

lower frequencies in the EMPH+MP + ND diaphragm muscle 

Repeated measures ANOVA indicated a significant effect of treatment on absolute and 

normalized force-frequency relationship (fig 3 and 4) Force generation at 25 Hz was 

decreased in the MP and EMPH + MP group compared to CTL but not compared to 

EMPH (fig 3) At all stimulation frequencies above 25 Hz, no differences in force 

between the MP and EMPH+MP group were found, however, force production in the 

EMPH+MP animals was significantly lower compared to EMPH Addition of ND 

reversed this decrease in force to the level of the EMPH animals No differences were 

found between CTL, MP, EMPH, and EMPH+MP when forces were normalized for 

maximum tétame tension (fig 4) However, ND addition seemed to have a more 

pronounced effect at lower frequencies as reflected by the significant increase in Pt/Po m 

the EMPH+MP + ND compared to CTL, MP, and EMPH (table 3) Normalized force 

production at 25 Hz was significantly increased in the EMPH+MP + ND group compared 

to CTL (fig 4) 

Diaphragm muscle morphology 

The number of fibers expressmg predominantly type I MHC isoforms decreased m the 

diaphragm of the EMPH hamsters compared to CTL and EMPH+MP+ND (table 4) No 

significant changes in МНС-Ha and MHC-IIx fiber distribution were observed 

MP reduced MHC-IIx CSA, whereas, EMPH and EMPH+MP both reduced CSA of 

МНС-Ila and MHC-IIx diaphragm muscle fibers compared to CTL (fig 5) However, no 

significant difference was found between CSA m the EMPH and the EMPH+MP groups 

ND addition reversed the reduction in both the МНС-Ila and MHC-IIx CSA m the 

EMPH+MP diaphragm to the level of CTL 

Relative fiber type contribution to total diaphragm muscle area was not changed by 
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either treatment (table 4). No fibers reactive with type lib MHCs were found. 

Table 4. Fiber type distribution and relative fiber type contribution to the total diaphragm muscle 
area 

treatment 

fiber type distribution 

CTL 

MP 

EMPH 

EMPH+MP 

EMPH + MP+ND 

fiber type contribution 

to total diaphragm area 

CTL 

MP 

EMPH 

EMPH + MP 

EMPH + MP + ND 

MHC-I 

% 

26 5 ± 0 9 

23 8 ± 0 9 

22 7±1 2* 

24 3±0 8 

26 4 ± 0 8 

% 

17 4 ± 0 7 

18 6 ± 0 9 

17 5±1 0 

18 1±0 7 

18 2+0 5 

MHC-IIa 

% 

41 4 ± 2 4 

44 8 ± 1 9 

42 8±1 9 

42 3 ± 0 7 

41 4 ± 1 2 

% 

32 2 ± 2 3 

35 5±2 4 

33 5 ± 2 4 

32 7 ± 0 7 

31 5±1 4 

MHC-IIx 

% 

32 0±1.9 

31 5 ± 2 5 

34 5 ± 2 1 

33 4 ± 0 7 

32 2 ± 1 1 

% 

50 4 ± 2 5 

45 9 ± 3 2 

49 0 ± 2 6 

49 2 ± 1 0 

50 3 ± 1 3 

means + SE, * p < 0 05 compared to CTL and EMPH + MP + ND 

Discussion 

Summary of the results 

The present study was designed to evaluate diaphragm muscle impairment caused by nine 

months of low-dose MP administration in emphysematous hamsters. In addition, we 

investigated whether the anabolic steroid ND was able to antagonize the loss m diaphragm 

function caused by the combination of emphysema and long-term treatment with a low 

dose of MP 

The results show that, despite the decrease in force generation in the diaphragm of 

emphysematous hamsters, MP reduced force generation in the diaphragm of 

emphysematous and normal hamsters to a similar extent. Second, our data show that 

diaphragm function in the MP treated EMPH hamsters improved following ND addition. 

At low stimulation frequencies, this improvement in force generation was to the level of 

CTL, while maximum force generation improved to the level of force production in the 

EMPH hamsters The МНС-Ila and MHC-IIx fiber atrophy in the EMPH+MP 
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diaphragm was completely reversed to the level of CTL by the addition of ND. 

Effects of emphysema and MP on diaphragm function and structure 

Hamsters have been frequently used to evaluate diaphragmatic adaptations to elastase-

induced emphysema. The increase in alveolar CSA observed following induction of 

emphysema combined with an -50% increase in fluid displacement in all three PPE 

instillated groups indicated the presence of emphysematous changes in this study. 

Induction of emphysema may cause changes in diaphragm force generation (7,22,23). The 

reduction in Pt and Po in the present study was in line with previous reports with this 

animal model (7,22,23). This reduction in specific force can be the result of an increase 

in diaphragm muscle load, as result of emphysematous changes in the lung (41). Force 

generating capacity was also reduced in models representing skeletal (19) and diaphragm 

muscle (6) overloading. In these overloaded muscles and also in the diaphragm of 

emphysematous hamster (23), the reduction in force was associated with fast fiber 

hypertrophy. However, in line with our findings, muscle overload (9) and induction of 

emphysema (8) can also decrease fiber CSA. Although emphysema did not change 

relative fiber type contribution to total diaphragm muscle area in the present or in 

previous studies (23), MHC-IIx fiber CSA decreased by -20% in the diaphragm of the 

EMPH animals. The observation that in the emphysematous diaphragm a decrease in 

force generating capacity can be associated with fast muscle fiber hypertrophy and 

atrophy, indicates muscle changes at the ultrastructural level. 

In the emphysematous diaphragm, Farkas and Roussos (8) observed an increased 

oxidative and decreased glycolytic activity, measured by citrate synthase and 

phosphofructokinase, respectively. These biochemical changes following emphysema were 

associated with a fast fiber atrophy. Besides these disadvantages, more subtle alterations 

like changes in muscle contractile protein composition, are also likely to be responsible 

for the decrease in force in the overloaded muscles. 

Following MP administration, twitch and tetanic forces further decreased in the 

diaphragm of the EMPH animals. Morphometrically, type Ha fiber atrophy was found in 

the EMPH + MP group compared to CTL, but type IIx fiber size decreased to a similar 

extent in the EMPH and EMPH+MP animals. In a previous study, using the same dose 

of MP in normal rats, MP also decreased diaphragm force production without a decrease 

in type IIx fiber CSA while type I and Ha fibers mildly atrophied (39). In that study the 

decrease in force was in part explained by the reduction in the number of type Hb fibers. 

Other investigators, using ATP-ase based fiber typing showed no effect of prednisolone 

(5) and MP (4) on normal rat diaphragm fiber size and composition, whereas type I, Ha 

and lib fiber atrophy was observed following administration of cortisone acetate (10 
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mg/kg daily for 3 weeks) in rabbits (11). Since changes in muscle fiber morphometry 

cannot explain the difference in force production between the EMPH and EMPH+MP 

groups, more subtle ultrastructural changes are likely to be responsible. 

Effects of ND on MP treated emphysematous diaphragm 

Several pharmacological interventions to prevent glucocorticoid-induced myopathic 

changes in skeletal muscles have been studied. Growth hormone treatment improved 

maximum inspiratory pressure and nitrogen balance in COPD patients (27). This, 

however, was a preliminary report on a non-placebo controlled trial. In rat diaphragm, 

glucocorticoid-induced changes were not prevented by growth hormone administration 

(28). Clenbuterol (4 mg/kg over a 21 day period) (1) and testosterone (20 mg/kg/day) 

(10) partly prevented glucocorticoid-induced muscle atrophy. In these studies, treatment 

with the anabolic drugs was started simultaneously with the glucocorticoid administration 

in order to evaluate the antagonistic potency of the anabolic drugs. Reid et al. (30) 

reported an increase in lean body mass and a decrease in body fat mass following 

testosterone replacement in prednisolone treated ( -10 mg/day) hypogonadal men. In the 

present study, however, we were interested if MP-induced changes could be reversed. 

Since changes in diaphragm structure and function occurred following 6 months of MP 

treatment (0.2 mg/kg/day) (39), the hamsters in this study were treated with MP for 6 

months before ND was added to the glucocorticoid treatment. ND was chosen because of 

the specific antagonistic action at the receptor level between synthetic anabolic steroids 

and glucocorticoids (2,37). Besides this antagonistic mechanism, anabolic steroids have 

proven to be beneficial in clinical practice (35). 

Theoretically, the blunting capacity of ND on MP-induced changes may be due to a 

direct anabolic effect of ND on muscle fibers (14,15,31), or to an antagonistic action 

between ND and glucocorticoids. Addition of ND to EMPH+MP restored Pt to normal 

(CTL) values but increased Po only to the level of the EMPH animals. At physiological 

stimulation frequencies ( — 25 Hz), force generating capacity was similar in the 

EMPH+MP + ND, EMPH, and CTL groups. The increase in normalized force in the 

EMPH+MP+ND animals at 25 Hz can in part be the result of the increase in the sum of 

contraction and relaxation time of the muscle strips. 

The reversibility of the loss in diaphragm force production in the EMPH+MP animals 

by addition of ND can be due to an anabolic effect on the emphysematous changes, to an 

antagonistic effect on the MP-induced changes, or a combination of both. In normal rats, 

however, ND completely abolished the MP-induced impairment in diaphragm force 

generating capacity (40). It is therefore most likely that ND predominantly antagonized 

the action of MP with at most a small effect on the changes induced by emphysema. 
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Several mechanisms might be responsible for the interaction between anabolic steroids 

and glucocorticoids. Anabolic steroids are believed to act via muscle glucocorticoid 

receptors rather than via muscle androgen receptors in antagonizing the catabolic effects 

of glucocorticoids (2). Mayer and Rosen (24) proposed a binding competition between 

androgens and glucocorticoids for the same site of the receptor responsible for mediating 

the catabolic action of glucocorticoids. Inhibition of glucocorticoid action at the gene level 

(16) or downregulation of the glucocorticoid receptor number (37) were also reported as 

anabolic effects counteracting glucocorticoid-induced muscular changes. The direct effects 

of anabolic steroids on normal skeletal muscles include promoting amino acid 

incorporation into muscle proteins, decreasing amino acid catabolism (15), and increasing 

myosin and myofibrillar protein fraction (31). These actions, however, apparently had at 

most a minor effect on EMPH-induced diaphragm function impairment. 

No pair-weight or pair-fed control group was added in the present study, since EMPH 

and the drugs tested did not affect body weight and food intake in a pilot study. Indeed, 

at the end of the treatment period, no changes in body weight were found among the four 

groups. This confirms earlier data, showing no difference in body weight growth in adult 

hamsters (20,25). Therefore, functional and structural changes as described above can not 

be explained by differences in body weight. The viability of the in vitro muscle 

preparation is not likely to be influenced by the bath temperature of 37°C in this study. 

Segal and Faulkner (36) showed that the critical radius for 0 2 diffusion was ~0.6 mm at 

37 °C. Apart from the fact that no differences in muscle strip thickness were observed, 

this radius is clearly above the radius of 0.3 mm found in our muscle strips. 

In conclusion, the decrease in force generating capacity in the MP treated 

emphysematous diaphragm was partly antagonized by ND addition. ND only antagonized 

the effects of MP but did not influence diaphragmatic changes induced by emphysema. 

МНС-Ila and IIx diaphragm muscle fiber atrophy in the EMPH+MP group was 

completely reversed by ND. Since both MP and ND were administered in low, clinically 

applied dosages, these observations may support the rationale for the development of 

clinical trials to investigate if anabolic steroids have similar protective effects in COPD 

patients with steroid-induced respiratory muscle dysfunction. 
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Summary 

Weakness of the respiratory muscles was recently reported following low doses of 

methylprednisolone (MP) in patients with COPD (1). The mechanisms by which non-

fluorinated steroids cause myopathy are in part unknown. Most of the previous animal 

studies were performed using relatively high dosages during short periods of time. This 

resembles acute steroid myopathy whereas chronic steroid myopathy is more often found 

in clinical practice. In patients with chronic obstructive pulmonary disease (COPD) a 

significant decrease in respiratory (and peripheral) muscle strength was observed after 

treatment with methylprednisolone 4.3 mg for 6 months (1). Since treatment with 

glucocorticoids is sometimes inevitable in these patients (2), interventions that attenuate or 

even abolish these alterations in respiratory muscles may be of importance. The aim of 

this thesis was to evaluate functional, histological, biochemical and neuromuscular effects 

of glucocorticoids on the diaphragm of normal rats and emphysematous hamsters. In 

addition, the antagonistic potency of anabolic steroids on glucocorticoid induced changes 

were evaluated. 

Chapter 2 describes the differences between acute and chronic steroid myopathy. In 

addition, clinical presentation and diagnostic features in corticosteroid induced myopathic 

changes in patients were discussed. 

Twitch force (Pt), maximum tetanic force (Po), force frequency relationships, velocity 

of shortening, muscle power output, and neuromuscular transmission fatigue from isolated 

diaphragm strips were evaluated in vitro. Antibodies reacting with type I, Ha, all but Их 

and IIb myosin heavy chains were used for morphometrical analysis. Bioenergetic enzyme 

activities were measured on biopsies from the costal part of the diaphragm. Fiber type 

identified neuromuscular junction morphology was assessed using a three-color 

immunocytochemical technique. 

In Chapter 3, three different treatment regimens of methylprednisolone (MP) in rats 

(MP 1 mg/kg/day; 2 mg/kg every other day; 2 mg/kg/day for 2 weeks, saline 4 weeks, 2 

mg/kg/day for 2 weeks) were compared with saline. The total treatment period was 8 

weeks. All MP treatment regimens studied reduced diaphragm force generating capacity. 

Alternate-day MP administration caused less biochemical impairment compared to 

continuous MP treatment. Administration in bursts resulted in a decrease in type lib fiber 

proportion compared to control and caused a considerable impairment of diaphragm 

enzyme activities compared to continuous MP treatment. We therefore concluded that 

although the MP treatment regimens affected diaphragm muscle morphology and 

bioenergetic enzyme activities in different ways, force generation decreased in all MP 

groups to the same extent. 
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In Chapter 4, the effects of long-term low-dose MP (0 2 mg/kg/day during six months) 

were evaluated m rats Diaphragm force generating capacity decreased by —14% 

following MP administration This impairment m functional capacity was, at least in part, 

explained by a shift towards slower fibers and a reduction m glycogenolytic activity 

Chapter 5 reports the effects of prednisolone (6 mg/kg/day for 3 wks) on structure and 

function of rat diaphragm neuromuscular junctions (NMJ) Normalized for fiber 

dimension, prednisolone increased NMJs innervating type Ilx/b fibers Neuromuscular 

transmission failure was less in predmsolone treated diaphragm muscle These results 

indicate that alterations in NMJ morphology following predmsolone depend upon fiber 

type, and may contribute to unproved neuromuscular transmission 

The effects of predmsolone on rat diaphragm muscle isotonic contractile properties 

were studied in Chapter 6 Prednisolone treatment resulted m a decreased maximum 

velocity of shortening and maximum power output (the product of force and velocity) 

This decreased power output of the prednisolone treated diaphragm did not prolong 

endurance to repeated isotonic contractions at peak power output 

Chapter 7 describes the antagonistic potency of the anabolic steroid nandrolone 

decanoate (ND) on MP-induced changes in rat diaphragm Addition of ND during the last 

3 months of 9 months of low-dose MP treatment completely reversed the marked 

reduction in diaphragm force caused by long-term low-dose MP This was associated with 

reversibility of the MP induced type Ha and IIx fiber atrophy, while ND addition showed 

no beneficial effects on biochemical changes 

The interactive effects of elastase-induced emphysema (EMPH) and MP on hamster 

diaphragm function and structure were studied in Chapter 8 MP and EMPH-I-MP 

reduced diaphragm force generation to a similar extent, which was significantly more 

pronounced than EMPH alone Therefore, despite the decrease in force generation, the 

diaphragm of emphysematous hamsters seemed less susceptible to MP treatment compared 

to the normal diaphragm This chapter also describes the effects of ND addition to 

emphysematous hamsters treated with MP The reduction in force in the MP treated 

EMPH animals was reversed to the level of the EMPH hamsters Therefore, ND was able 

to antagonize the MP-induced impairment but had at most a minor effect on the changes 

induced by emphysema 

Conclusions 

In conclusion, prolonged administration of MP in low doses results in reduced force 

generation and structural changes in rat diaphragm NMJ morphology changed and 

neuromuscular transmission failure decreased following prednisolone treatment 
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Prednisolone reduced diaphragm power output without prolongation of the endurance 

time. The MP-induced changes in muscle function and morphology are to a large extent 

reversed by anabolic steroids. MP and EMPH+MP reduced diaphragm force generation 

to a similar extent, suggesting that the emphysematous diaphragm is less susceptible to 

MP-induced impairment. Anabolic steroids improved diaphragm force production in the 

MP treated emphysematous hamsters to the level of force production in the 

emphysematous hamsters, which was significantly less compared to the control group. 

The observations described in this thesis may have consequences for future treatment of 

patients with severe chronic obstructive pulmonary disease (COPD). Patients with COPD 

may suffer from respiratory muscle weakness due to hyperinflation, malnutrition, 

disturbances in blood gases and cardiac failure. In these patients, respiratory muscle 

function is further reduced by administration of corticosteroids. Since respiratory muscle 

weakness may contribute to respiratory failure, interventions that attenuate or even 

abolish respiratory muscle impairment in these patients may be of clinical importance. In 

this respect we believe that anabolic steroids can be of use in corticosteroid treated 

patients with severe COPD. 

Recommendations for future research 

In future research, measurements of growth factors and satellite cell activity in the 

diaphragm muscle may provide additional information on the mechanisms responsible for 

corticosteroid-induced muscle impairment. 

Evaluation of the influence of corticosteroid on the amount of crossbridge attachments 

and the force production per crossbridge may be helpful clarifying the functional 

impairment caused by corticosteroid. 

Additional information on corticosteroid-induced neuromuscular changes, as described 

in this thesis, can be obtained from measurements of the acetylcholine quantum and 

number of acetylcholine receptors on the post synaptic membrane. 

The reversibility of the corticosteroid-induced myopathy of the respiratory muscles by 

addition of anabolic steroids, as reported in this thesis, will have to be confirmed in 

clinical randomized trials. 
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Samenvatting 

Patiënten met een ernstig COPD worden in sommige gevallen behandeld met systemische 

corticosteroïden (CS). In diermodellen werd aangetoond dat CS de structuur en de functie 

van perifere en ademhalingsspieren negatief beïnvloed. Hierbij werden relatief hoge doses 

CS in een korte tijd toegediend. Het doel van deze dierexperimentele studie was het 

evalueren van functionele en structurele veranderingen in het diafragma t.g.v het 

toedienen van een klinisch relevante dosis CS. Contractiele eigenschappen van het 

diafragma werden in vitro bepaald. Steroïd-geinduceerde cellulaire adaptatie werd 

geëvalueerd door bepaling van biochemische veranderingen in enzymsystemen in 

combinatie met morfologische analyse op immunohistochemisch gekleurde spier 

preparaten. Hiervoor werden antilichamen tegen type I, Ha, Hx en IIb myosine zware 

ketens gebruikt. 

Verschillende behandelingsschema's met methylprednisolon (MP) werden vergeleken. 

We hypothetiseerden dat het alternerend toedienen van MP minder en het toedienen van 

MP in stootkuren meer bijwerkingen op het diafragma zou hebben i.v.m. continue MP 

behandeling. De drie bovenbeschreven MP toedieningsschema's resulteerden in een zelfde 

mate van krachtsverlies. Morfologische en biochemische analyse lieten sterkere 

veranderingen na stootkuur toediening zien. 

Vervolgens werden de effecten van chronische lage dosis MP behandeling, 

vergelijkbaar met 10-15 mg bij mensen, in het ratten diafragma geëvalueerd. Deze dosis 

MP veroorzaakte een 14% krachtsvermindering van het diafragma. Omdat deze 

krachtvermindering klinische relevant kan zijn, werd de antagonerende werking van 

anabole Steroiden op de MP-geïnduceerde veranderingen in het diafragma bestudeerd. 

Nandrolone decanoate (ND), in een door de fabrikant aanbevolen dosis, werd gedurende 

de laatste drie maanden van een negen maanden durende MP behandeling toegediend. ND 

herstelde de afname in diafragma functie, veroorzaakt door MP, compleet. 

Bij COPD patiënten kan de diafragma functie door hyperinflatie van de longen, 

malnutritie, hypoxie en inactiviteit reeds gestoord kan zijn. De invloed van MP op het 

reeds door emfyseem aangetaste diafragma is nog onbekend. Een studie hiernaar liet zien 

dat ondanks vermindering van krachtgeneratie in het emfysemateuze diafragma, de 

krachtproductie in het met MP behandelde emfysemateuze en normale diafragma tot het 

zelfde niveau afneemt. Hieruit concluderen we dat het diafragma van emfysemateuze 

dieren minder gevoelig is voor de effecten van MP. Dit zou het gevolg kunnen zijn van 

een verhoogde activiteit van het diafragma bij emfyseem. 

De effecten van CS op isotonische contractiele eigenschappen van het diafragma, zoals 

power (produkt van snelheid van verkorting en kracht) en endurance (tijd totdat power nul 
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is), werden geanalyseerd CS behandeling verlaagde de maximale power output Ondanks 

een lagere power output (=minder werk belasting) was er geen verlenging van de 

endurance tijd na CS behandeling 

CS veroorzaken electrofysiologische veranderingen in de neuromusculaire transmissie 

De effecten van CS op morfologie en functie van de neuromusculaire overgangen (NMJ) 

zijn nog onbekend Met dne-kleuren fluorescentie techniek werden gelijktijdig de zenuw-

uitemden (NT), motorische eindplaatjes (EP) en vezeltypes gelabeled Deze structuren 

werden geanalyseerd met 3D confocale microscopie Het neuromusculaire falen werd 

berekend uit het verschil in krachtafname gedurende herhaalde zenuw versus 

spierstimulaties Genormaliseerd voor vezel diameter induceerde CS een toename van de 

NMJ grootte van type Ilx/b vezels Het neuromusculaire falen was minder uitgesproken 

na CS behandeling in vergelijking met controle 

Conclusies Chronische toediening van lage dosis CS veroorzaakt dysfunctie van het 

normale en emfysemateuze diafragma De effecten van CS op het emfysemateuze 

diafragma zijn niet sterker uitgesproken Anabole Steroiden antagoneren de negatieve 

effecten van CS op de functie van het normale en emfysemateuze diafragma CS verlaagt 

de power output van het diafragma en vermindert het falen van de neuromusculaire 

overdracht 
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Stellingen 

behorende bij het proefschrift 
Corticosteroid-induced myopathy of the animal diaphragm 

Pathophvsiologx and interventions 

1 Hct is een misverstand dat corticosteroiden alleen in een hoge dosis een 
myopathie induceren Ook na chronische behandeling met een lage dosis 
corticosteroiden vermindert de ademhalingsspierfunctie (dit proef schuft) 

2 Een corticosteroid gcinduceeide myopathie betekent niet alleen een 
vermindering van de maximale spierkracht, maar gaat ook gepaard met een 
afname in uithoudingsvermogen (dit proefschrift) 

1 In een diermodel ?i|n anabole Steroiden in staal de negatieve effecten van 
Loiticosteroiden op het diafragma volledig te antagoneren (du pi oef schrift) 

4 Het diafragma van emfysemateuze hamsters is minder gevoelig voor de 
bijwerkingen van corticosteroiden (dit proefschrift) 

"5 Corticosteroid-geinduceerde myopathie behoort een plaats te hebben in de 
differentiaal diagnose van progressieve dyspnoe bij patiënten met COPD 
die orale corticosteroiden gebruiken 

6 Ot anabole Steroiden naast een plaats in de pnjzenkast ook een plaats in de 
mcdicijnkast kunnen verwerven dient nader onderzocht te worden 

7 Het bedroevend lage aantal terugzendingen van de donorregistratie 
formulieren heeft weinig te maken met het vertrouwen in het eeuwige 
leven, maar weerspiegelt de tijdgeest 

8 De levensvreugde van een Sumatraan met een karbouw bevestigt dat 
ontwikkelingssamenwerking niets met ontwikkeling, maar alles met 
samenwerking te maken heeft 

9 Er is meer tussen hemel en aarde dan onderzoek Het is echter een 
wetenschappelijk gegeven dat het meeste daarvan lucht is 

10 Leven is de juiste weg volgen, zonder te weten waarheen die leidt 
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