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INTRODUCTION 

Trabecular bone, also called cancellous or spongeous bone, is one ol two 

macroscopically distinct types It consists ot a complex three-dimensional lattice oí struts 

and plates, which occupies about live to fifty percent of the bone volume The remaining 

part contains marrow and blood vessels The other type is cortical (dense or compact) 

bone This is solid bone, except for blood vessels and cells embedded inside the matrix 

These two types form the skeleton, in which cortical bone is mainly found in the shafts of 

long bones, and trabecular bone is primarily located near joint surfaces, at the end ol long 

bones and in the vertebrae, but also between cortical shells, such as inside the pelvic bone 

Bone is characterized by its calcified extracellular matrix, which provides its high 

stiffness This property points at the major function of bone, which is to sustain and 

transfer mechanical loads Other lunctions arc storage of calcium and other matrix 

constituents and the production of blood cells in the bone marrow 

Although bone appears to be a very stable and inert material it is, in fact, a vital 

and dynamic tissue Bone is constantly being broken down and rebuilt in a process called 

remodeling, which continues throughout lite The primary advantage of this process is 

maintenance of mechanical integrity and adaptation to mechanical loads Bone is 

remodeled in a highly coordinated way by specialized cells, osteoclasts and osteoblasts, 

bone resorbing and bone forming cells, respectively In this process, osteoclasts first 

excavate a iesorption pit, which osteoblasts refill with osteoid, which mineralizes slowly to 

lorm new bone During bone formation, some osteoblasts are embedded inside the bone 

matrix and differentiate into osteocytes The trabecular bone surface is covered with a 

layer of lining cells These cells are also thought to represent a final stage of osteoblastic 

differentiation The osteocytes are stellate shaped, with long thin processes that are 

connected to those from other osteocytes and with lining cells and osteoblasts at the bone 

surlace Together they form a network throughout the bone matrix (Fig 1) 

1 
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CHAPTER 1 

Humans gain bone mass 

during growth until a maximum 

is reached at the age of about 20 

years, approximate-ly between 

the ages of 25 and 30, bone mass 

starts to decrease gradually In 

women, this loss is accelerated 

during the menopause as a result 

of a reduction in estrogen 

production Age related bone 

loss can be considered as 

lining cells 

trabecular bone 

osteoclast 

osteoblasts 

Figure 1 
A schematic pictuie of bone ¡issue with the various 
types of bone cells 

normal, however, about one third of the population in developed countries develops 

osteoporosis (Wasnich, 1996, Ross, 1996) This condition is characterized by low bone 

mass and a deteriorated bone architecture (confeience report, 1993) It presents itsell 

through bone fractures, after minimal trauma The most common fracture sites in 

osteoporosis are the lemoral neck, the veitebrac, and the distal forearm, where trabecular 

bone would normally attribute substantially to the mechanical strength The pioblem ol 

osteoporosis is extensive For instance, the prevalence ot vertebral fractures in elderly 

people ranges from 10-45% (O'Neill et al , 1996, Jones et al , 1996, Davies et al , 1996, 

Ross, et al , 1995) In the U S A , the total number of osteoporotic fractures annually is 

roughly 1 5 million, associated with costs of health care of $5-$10 billion (Zohman and 

Lieberman, 1995, Riggs and Melton, 1995) With continued aging ol the population, it is 

only to be expected that the incidence ot osteoporotic fractures will increase even further 

Due to the complexity ot the regulatory processes involved, it is presently unclear 

what causes the malfunction of bone maintenance in osteoporosis However, the world 

wide problem of osteoporosis impels researchers to unravel the mechanisms responsible lor the 

control of bone architecture Many agents, such as giowth factors and hormones, are 

involved in the regulation of bone remodeling, of which very little is currently known It is 

generally assumed that, besides chemical agents, mechanical factors play an important 

role Rodan (1996) summarized the regulatory process as bone homeostasis іч controlled 

by mechanical factors in a hormonal cmaonment Disturbances in this finely tuned 

process may lead to perturbation ol the remodeling balance and result in bone loss, or 

occasionally, an increase of bone mass, but may perhaps also lead to inappropriate bone 

architectures 



INTRODUCTION 

The competence ot bone is determined by its mechanical properties The 

relationship between trabecular bone architecture and its mechanical function has been 

recognized tor several centuries (Treharne 1981) In 1892 Wolff described how the 

directions of trabeculae coincide with the directions of the stress trajectories as can be 

calculated in a mathematical model Ever since, Wolffs law has been referred to as the 

phenomenon that bone architecture adapts to mechanical loads Nevertheless, the first one 

to speculate on the mechanism of bone adaptation, ι с the process controlling the 

distribution of bone mass, was Roux (1881) He suggested a process analogous to Darwin's 

evolution theory, only with cells as the individuals Cells that arc appropriately stimulated 

will prosper and form more matrix, whereas other cells, that do not receive the appropriate 

stimulus, will disappear Translated to bone tissue, Roux proposed that bone will be 

formed at locations where the local stresses are relatively high and bone will vanish where 

stresses arc low Although this general theory has become more or less the prevalent one, 

its consequences for the behavior ol the remodeling process have never been fully resolved 

That changes in mechanical loading affect bone is clear from many experimental 

studies Whereas overloading stimulates bone formation (Rubin and Lanyon, 1984), disuse 

induces bone loss (Carter et al , 1981, Schaffler and Pan, 1992, Thomas et al , 1996, 

Biewcner et al , 1996, Li et al, 1990, Palle et al , 1992, Jaworski and Uhthoff, 1986, 

Kannus et al , 1996) The dilliculty to investigate the exact role of mechanical factors is 

partly due to the complexity of measuring and controlling mechanical variables in bone 

tissue In addition, it is difficult to assess the mechanical and morphological properties of 

the complex three dimensional trabecular bone architecture The techniques for making 

three dimensional reconstructions of bone recently developed (Odgaard et al , 1994, 

Ruegsegger et al , 1996) and large scale finite element models of bone architecture (van 

Rietbergen et al , 1994) have provided new prospects The reconstruction of bone 

architectures in the computer offers the possibility to accurately analyze its three 

dimensional morphological characteristics (Odgaard, 1994) which, until this moment, had 

to be inferred from two dimensional measurements of bone surfaces (Parfitt et al , 1983, 

1987) Moreover, with the recently developed finite element methods these reconstructions 

can be mechanically analyzed Using this method, it is now possible to simulate 

mechanical tests and even to fully characterize the mechanical properties of trabecular 

architectures (Van Rietbergen et al , 1994, 1996) 

It has been only recently that researchers have started to investigate the precise 

mechanisms by which bone tissue is able to detect mechanical loads and by which 

pathways mechanical signals may affect bone remodeling Presently the leading theory is 
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CHAPTER I 

that the osteocyte network functions as a mechano-sensory system Some evidence lor this 

theory was found In organ cultures, it was shown that osteocytcs respond metabohcally to 

mechanical loading of the bones (Pead ci al , 1988 Skerry et al, 1989 Lean et al 1996) 

Isolated osteocytes were found to be extremely sensitive to mechanical stimulation by fluid 

flow (Klein-Nulend et al , 1995), which has been proposed to be the mechanism by which 

these cells are also stimulated in vivo (Reich et al 1990, Reich and Frangos 1991, 

Weinbaum et al , 1994, Harrigan and Hamilton, 1993) 

The prediction that a local control mechanism, such as proposed by Roux, produces 

the typical trabecular structures that resist mechanical loads effectively with lclativcly 

little material is fai from trivial Nevertheless, indications that this is indeed the case were 

given by the work of Weinans et al (1992) With the use of computer models they 

simulated adaptation ol bone to mechanical loads in a locally regulated process They 

discovered thai such a process induces the formation of patterns In a recent theoretical 

analysis of this type of process, Weinans and Prcndergast (1996) explained that the 

nonlinear nature of this process is the reason for pattern formation The positive feed-back 

control loop and discrete sensor sites are the ingredients that arc responsible lor the 

dynamic behavior of the process The piocess passes through bifurcations and each 

resulting morphology is melastable, prone to jump lo a diffeicnt metastable morphology 

after perturbation of the system 

The findings of Weinans el al (1992) and the experimental information have lead 

us to hypothesize that the morphology ol trabecular bone is the result of a process of self 

organization, controlled by osteocytes, which in turn are stimulated by local mechanical 

signals Whereas Weinans and Prcndergast (1996) conclude that in order to simulate the 

adaptive behavior of bone, this non linear behavior (caused by the positive feed-back loop 

and discrete sensor sites) should be incorporated in analytical models used we think that 

first it is necessary to investigate if the assumption that adaptive bone remodeling is such a 

non linear process is indeed a realistic one The principal questions that are addressed in 

this thesis arc whether Roux s hypothesis is tcasible (chapters 2 and 3) and, if this is the 

case, whether this hypothesis can be substantiated by measurements of parameters in the 

proposed process, specifically the density ol sensor cells and the trabecular morphology 

(chapter 4) In addition, we have tested if the osteocytes, which we have assumed to be the 

mechano-sensors, are also the most suitable candidates for this role (chapter 5) Finally we 

have studied the question whether osteoporosis might be explained by differences in the 

parameters involved in the regulatory process (chapteis 6 8) 

10 



INTRODUCTION 

REFERENCES 

Biewener, A.A., Fazzalan, N L , Konieczynski, D D. and Baudinette, R.V. (1996) Adaptive changes 
in trabecular architecture in relation to functional strain patterns and disuse. Bone 19: 1-8. 

Carter, D.R , Vasu, R. and Harris, W.H. (1981) The plated femur relationships between the chan
ges in bone stresses and bone loss. Acta Orthop Scand. 52- 241-248 

Conference report, Concencus, development, conference, prophylaxis and treatment of osteoporosis 
(1993) Am. J. Med 94: 656-660 

Davies, K.M , Stcgman, M.R., Heaney, R P. and Recker, R.R (1996) Prevalence and severity of 
vertebral fracture: the Saunders County Bone Quality Study Osteopoi osis Int. 6: 160-165. 

Harrigan, T.P. and Hamilton, J J. (1993) Bone strain sensations via transmembrane potential 
changes in surface osteoblasts: loading rate and microstructural implications. J. Biomechan
ics 26: 183-200. 

Jaworski, Z.F. and Uhlhoff, Η К (1986) Reversibility of nontraumatic disuse osteoporosis during its 
active phase. Bone 7 431 -439. 

Joncs, G , White, C , Nguyen, T., Sambrook, Ρ N , Kelly, P.J and Eisman, J A (1996) Prevalent 
vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elder
ly men and women. Osteoporosis Int. 6: 233-239. 

Kannus, P., Jarvinen, T.L , Sievancn, H., Kvist, M., Rauhaniemi, J., Maunu, V.M., Hurme, T., 
Jozsa, L. and Jarvinen, M. (1996) Effects of immobilization, three lorms of remobilization, 
and subsequent deconditioning on bone mineral content and density in rat femora. J. Bone 
Miner. Res. 11: 1339-1346. 

Klein-Nulend, J., Van der Plas, Α., Semems, СМ., Ajubi, Ν E , Frangos, J.Α., Nijweide, Ρ J., Bur
ger, Ε Η (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9: 441-
445. 

Lean, JM, Mackay, AG, Chow, JW, Chambers, TJ 1996 Osteocytic expression of mRNA for c-fos 
and IGF-I: an immediate early gene response to an osteogenic stimulus. Am J Physiol 270. 
E937-E945. 

O'Neill, T.W , Fclsenberg, D , Varlow, J , Cooper, C , Kanis, J A and Silman, A J. (1996) The pre
valence of vertebral deformity in european men and women: the European Vertebral Osteo
porosis Study J. Bone Miner. Res. 11: 1010-1018. 

Odgaard, A. (1994) Three-dimensional quantification of cancellous bone structure. In: Barbosa, 
M.A and Campilho, Α., Eds., Imaging techniques in biotnaterials. Elscviers Science Pu
blishers, The Netherlands, pp 181-188. 

Odgaard, Α., Andersen, K., Ullerup, R., Frich, L.H and Meisen, F. (1994) Three-dimensional re
construction of entire vertebral bodies. Hone 15 335-342. 

Palle, S., Vico, L., Bourrin, S. and Alexandre, С (1992) Bone tissue response to four-month antior-
ihostatic bedrest a bone histomorphomctnc study. Calcif. Tissue Int 51. 189-194. 

Parhtt, A.M., Mathews, С H.E, Villanueva, AR and Kleerckopcr, M (1983) Relationships 
between surface, volume, and thickness of iliac trabecular bone in aging and osteoporosis. J 
Clin Invest 72: 1396-1409. 

Parhtt, A.M., Drezncr, M К , Glorieux, F H., Kanis, J Α., Malluche, H , Meunier, P.J , Ott, S M. 
and Recker, R.R. (1987) Bone histomorphometry Standardization of nomenclature, symbols, 
and units J. Bone Mm. Res. 2. 595-610 

Pead, MJ, Suswillo, R, Skerry, TM, Vedi, S, Lanyon, LE 1988 Increased 3H-undine levels in osteo
cytes following a single short period of dynamic bone loading in vivo. Calcif Tissue Int 
43(2). 92-96 

Reich, К M. and Frangos, JA (1991) Ellcct of flow on prostaglandin E2 and inositol triphosphate 
levels in osteoblasts Am J Pin чші. 261 c428-c443 

11 



CHAPTER 1 

Reich, К M , Gay, С V and Frangos, J A (1990) Fluid shear stress as a mediator ol osteoblast cy 
che adenosine monophosphate production J Cell Physiol 143 100-104 

Riggs, В L and Melton, L J-3rd (1995) The worldwide problem of osteoporosis insights afforded 
by epidemiology Bone 17 S505-S511 

Rodan, G A (1996) Coupling of bone resorption and formation during bone remodeling In Marcus, 
R , Feldman, D and Kelsey, J , Eds , Osteoporosis, 289-299 

Ross, Ρ D (1996) Osteoporosis Frequency, consequences, and risk factors Arch Intern Med 156 
1399-1411 

Ross, Ρ D , Fujiwara, S , Huang, С , Davis, J W , Epstein, R S , Wasnich, R D , Kodama, К and 
Melton, LJ-3rd (1995) Vertebral fracture prevalence in women in Hiroshima compared to 
Caucasians or Japanese in the US Int J Epidemiol 24 1171-1177 

Roux, W (1881) Der Kampf der Teile im Organismus Engelmann, Leipzig 
Rubin, C T and Lanyon, L E (1984) Regulation ot bone formation by applied dynamic loads J 

Bone Joint Surg Am 66 397-402 
Ruegsegger, Ρ , Koller, В , and Muller, R (1996) A microtomographic system for the nondestructive 

evaluation of bone architecture Calcif Tissue Int 58 24-29 
Schaffler, Μ В , Pan, H Q (1992) Alterations of trabecular microarchitecture during immobiliza-

tion-induced bone loss Trans Orthop Res Soc 17 p239 
Skerry, TM, Bitensky, L, Chayen, J, Lanyon, LE 1989 Early strain-related changes in enzyme activi

ty in osteocytes following bone loading in vivo J Bone Mm Res 4 783-788 
Thomas, Τ , Vico, L , Skerry, Τ Μ , Caulin, F , Lanyon, L E , Alexandre, С and Lafage, M H 

(1996) Architectural modifications and cellular response during disuse-related bone loss in 
calcaneus of the sheep J Appi Physiol 80 198-202 

Treharne, R W (1981) Review of Wolff's law and its proposed means of operation Orthop Rev 
10 35-47 

Van Rietbergen В , Weinans, Η , Huiskes, R and Odgaard, A (1994) A new method to determine 
trabecular bone elastic properties and loading, using micro-mechanical finite element 
models J Biomechanics 28 69-81 

Van Rietbergen, В, Odgaard, A, Kabel, J and Huiskes, R (1996) Direct mechanics assessment of 
mechanical symmetries and properties of trabecular bone architecture, J Biomech 29 1653-1657 

Wasnich, R D ( 1996) Vertebral fracture epidemiology Bone 18 179S-183S 
Weinans, H and Prendergast, Ρ J (1996) Tissue adaptation as a dynamical process far from equili

brium Bone 19 143-149 
Weinans, Η , Huiskes, R and Grootenbocr, H J (1992) The behavior of adaptive bone-remodeling 

simulation models J Biomechanics 25 1425-1441 
Weinbaum, S , Cowin, S С and Zeng, Y (1993) A model for the excitation of osteocytes by me

chanical loading-induced bone fluid shear stresses J Biomechanics 27 339-360 
Wolff, J (1892) Das Gesetz der Transformation der Knochen, Berlin, A Hirchwild The law of bone 

remodeling Translated by Maquet, Ρ and Furlong, R Springer-Verlag, Berlin (1986) 

Zohman, G L and Lieberman, J R (1995) Perioperative aspects ol hip fracture Guidelines for in
tervention that will impact prevalence and outcome Am J Orthop 24 666-671 

12 



A PHYSIOLOGICAL APPROACH TO THE 

SIMULATION OF BONE REMODELING AS A 

SELF ORGANIZATIONAL CONTROL PROCESS 

M G Muilender, R Huiskes and H Weinans 

journal of Biomechanics 27 1389-1394,1994 

Although the capacity of bone to adapt to functional mechanical requirements has 

been known for more than a century, it is still unclear how the bone adaption processes 

are regulated We hypothesize that osteocytes are sensitive to mechanical loading and 

control the legulation of bone mass in their envuonnient Recently simulation model1; 

were developed of such a process It was discovered that these models produce 

discontinuous structures, not unlike trabecular bone However, it was also found that 

severe discontinuities violate the continuum assumption underlying the finite element 

method and that the solutions were element mesh dependent 

We have developed a more physiologically and mechanically consistent simulation 

model which maintains the self-organizational characteristics but does not produce severe 

discontinuities This was accomplished by separating the sensor density and range of 

action from the element mesh 

The lesults clearly show that predicted tiabecular morphology, ι e sizes and 

branching of struts, depend on the actual relationship between local load, sensor density 

and range of influence We believe that the model is suitable to study the relationship 

between trabecular morphology and load and can also explain transformations of 

morphology, in the sense of 'Wolffs Law' 

2 

ABSTRACT 
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CHAPTER 2 

INTRODUCTION 

It is generally accepted that bone adapts to mechanical loading A decrease in 

mechanical load causes resorption of bone, whereas an increase leads to bone formation 

This adaptive process is usually referred to as bone adaptive modeling or remodeling 

Although this adaptive capacity ot bone tissue has been known for more than a century, 

most ot the processes involved in this behavior arc still poorly understood Specialized 

cells, the osteoclasts and osteoblasts respectively, arc responsible tor resorption and 

formation, but the mechanisms involved in the regulation ol these actor cells are still 

unclear Some way of measuring mechanical loading in bone must exist, in order for bone 

to adapt to the mechanical requirements It has been hypothesized that bone contains cells 

which are sensitive to mechanical signals and which in turn control the actor cells Cowin 

et al (1991) suggested that osteocytes, because of their favorable position and architecture, 

may function as mechanoreceptors It has indeed been shown that bone cells are sensitive 

to mechanical stimuli (Rodan et al, 1975, Harreil et al, 1977, Somjen et al, 1980, 1982, 

Binderman et al, 1984) More specifically, El Haj et al (1990) showed that mechanical 

loading affects the cellular metabolism of osteocytes in cancellous bone Recently these 

studies were reviewed by Burger and Veldhuizen (1993) Osteocytes are regularly 

distributed throughout the bone, interconnected and connected with bone lining and actor 

cells at the bone surface (Menton et al, 1984) This makes them very 

suitable candidates for the role of mechanical sensor The hypothesis that bone contains 

mechanoreceptors implies that the regulation of bone mass by actor cells is governed 

locally by sensor cells In other words, it is assumed that bone mass regulation occurs at a 

local level, which is typical tor a self-organizational control process (Yates, 1987) It is 

noteworthy that as early as 1881 Roux suggested remodeling to be governed by such a 

'quantitative self-regulating mechanism' (Roeslcr, 1987) 

Recently, simulation models, using finite element (FE) analysis, were developed in 

which bone remodeling is mathematically described as such a self organizational 

biological control process (Huiskes et al, 1989, Weinans et al, 1989, 1990, 1992, 

Beaupré et al, 1990) The sensor cells are assumed to 'measure' a mechanical signal and 

stimulate the actor cells (the osteoblasts and osteoclasts) in their vicinity to adapt bone 

mass accordingly Weinans et al (1990, 1992) discovered that when applied to a simple 

model ot local trabecular bone, this process produced a discontinuous patchwork not 

unlike trabecular bone itself They found that this behavior was caused by a negative leed-

back loop in the regulation model For a realistic set of parameter values the only stable 
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A PHYSIOLOGICAL APPROACH TO THE SIMULATION OF BONE REMODELING 

solution is one in which elements are either empty or saturated to the maximal permissible 

density In addition, they found that the process displayed chaotic behavior, due to its 

dependence on a large set of non linear equations (one per element) Although Weinans et 

al (1992) emphasized the assets of the control scheme as an explanatory model for the 

emergence of trabecular moiphology, its predictive quality was not without problems First 

ot all, the discontinuous element patchwork that emerges violates the continuum 

assumptions on which the finite element method is based Hence, the stress calculation in 

the eventual mesh is highly inaccurate Secondly although the trends of the solution 

remain intact when the clement mesh is refined, the solution is in tact mesh dependent 

This woik generated considerable interest fiom other groups working in the same 

area Jacobs and Beaupré (1992) reanalyzed the same local FE model with their bone 

remodeling simulation procedure (Beaupré et al, 1990) and found the same eltects 

Harngan and Hamilton (1992) developed analytical and numerical formulations of the 

problem They confirmed the instability ol the continuous solution, depending on the 

values of the parameters in the solution process They stressed that the discontinuous 

solution, obtained for realistic parameters, was in lact impermissible Jacobs et al (1992) 

suggested to repair the process lormulation by using quadratic instead of bilinear elements 

to attenuate the discontinuous behavior ot the finite clement model They also suggested to 

averaging the densities calculated in the nodes over the surrounding elements, whereby the 

development of discontinuities is prevented 

We believe that the only problem ol the self-organizational regulation models 

hitherto presented are the artifacts introduced inadvertently in the finite element 

formulation In these models, each clement is assumed to have one sensor cell which 

regulates bone mass in that same element Hence, the region of sensor effect is limited by 

the boundanes of the elements, which are artefacts because they do not represent a 

physical reality As a result, the solution is influenced by the element mesh Or, in other 

words, the mesh begs the question 

In this paper a more physiologically and mechanic-ally consistent approach to the 

self-organizational bone regulation process is presented It is hypothesized that osteocytes 

act as sensors by appraising a mechanical signal (Fig 1) Each sensor then produces a 

stimulus for bone mass regulation in its environment, the effect of which diminishes 

exponentially, away from the sensor's location So each actor cell is stimulated by the 

sensor cells, depending on their remoteness from the sensor location This approach 

intioduces the concept ol sensor (osteocyte) density, independent from the FE mesh, and of 
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CHAPTER 2 

sensor influence range (Cowin et al, 1991) as a model for the numerous interconnections 

of osteocytes and actor cells 

external loading 

ι— mechanical 
ч signal 

sensors о .. 

actors 4 stimulus mechanical 
properties 

-> A bone mass — ' 

Figure 1 
The basic assumptions of the biological control mechanism of adaptive bone remodeling are shown 
in this scheme a local mechanical signal is appraised by a sensor (osteocyte), which produces a 
stimulus for bone mass regulation to actors in its environment Changes of bone mass are trans 
lated in changes of mechanical properties, thus also of mechanical signals 

The purpose ot this project was to investigate whether this hypothesis produces 

mechanically permissible solutions consistent with the trabecular morphology of bone. In 

addition, the effects of the parameter values in the model - sensor influence range, sensor 

density - the FE mesh and the external load on the predicted morphology were studied 

METHODS 

The bone considered is assumed to have N sensor cells, arbitrarily distributed over 

its volume An arbitrary sensor ι measures a signal Sn the strain energy per unit of mass, 

at its location calculated from (Weinans et al 1989, 1992) 

Ρ, 
(i) 

where U, is the strain-energy-densily and p, the density at the location of the sensor The 

density p(x) at location χ is regulated by the stimulus value Φ(χ), to which all sensor cells 

contribute, relative to their distance from x, hence 

N 
Ф(х)= lf,(*)(S,- k), 

i=l 

(2) 
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where к is a reference signal and f,(x) is a spatial influence lunction Here, the function 

¡¿х)=е-Л'{х)т О) 

was used, with d,(x) the distance between sensor ι and location χ This function is 

illustrated in Fig 2, the rate of the spatial influence reduction is given by the parameter D 

D represents the distance from a sensor at which location its effect has reduced to e ', ι e 

36 8 percent 

d,(x) 

Figure 2 

The spatial influence of sensor ι, expressed asfi(x) is a function 

ofdi(x), the distane e between senwr ι and location χ 

The density p(x) is now governed by the rate 

dp(x) 

dt 
= τ Φ(χ), with 0<p(x)<pih 

(4) 

where pth is the (maximal) density of cortical bone, and τ is a lime constant regulating the 

rate of the process 

The elastic modulus at location χ is calculated from the density according to (Rice 

et al 1988, Currey, 1988) 

E(x) = Cp(x)i (5) 

where С and γ are constants 
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CHAPTER 2 

In the FE model used, the stress components σ and the strain components ε are 

determined at the integration points of each element, and interpolated per element to give 

their values in the sensor points (σ, and ε,) The stiain energy density is calculated Irom 

the tensor product U, = Vi a, ε,, where ; reteis to the sensor number Using equation (1) 

the signal per sensor point S, is then determined The stimulus Φ1 is evaluated in the 

center ol each element j , using equation (2), and a new density value p, is calculated in 

element j , in accordance with equation (4), from 

p/t+At) = Pj(i) + Δ/τφ/fj, (6) 

where At is the lime step in the iteration process The iteration is continued until no more 

significant changes in the density dislnbution occur 

This method was tested in a 2-dimensional plate model, as applied eailier by 

Weinans et al (1992) The plate is loaded by a compressive stress distribution, decreasing 

linearly over the top edge (Fig 3) In the calculations, a unilorm initial density 

distribution of ρ = 0 8 g/cm1 was used The bone tissue is assumed to be isotropic The 

icterence signal value к = 0 25 J/g, 

the maximal density p c b = 1 74 

g/cm\ τ = 1 (g/cmy/(MPa time-

unit), С = 100 MPaAg/cm1)2 and γ is 

2 0, as in the calculations ol 

Weinans et al (1992) The plate was 

meshed with 40x40 four-node 

elements The sensor disti lbution 

was unilorm and its density was 

assumed to be 1600/mrrf (N = 

1600), associated with a scnsoi 

influence parametei ol D = 0 025 

mm The behavior ol the model was 

studied for variations of the mesh 

density, the sensor density (Λ0, the 

sensor range ol influence D and the 

external load 

10 N/mm2 

1 mm 

Ο Ο Ο β 

О О О О 

rigure 3 
Two dimensional plate model of bone tissue with 
sensor ( ells (dots) subjected to a compressive load 
as indicated 
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RESULTS 

First the model was tested relative to the earlier one used by Weinans et al. (1992), 

by reproducing its conditions. For that purpose, the distance-influence parameter was 

diminished to D = 0.001 mm. The results shown in Fig. 4 are very similar for both 

models, indicating that indeed the conditions of earlier models can be reproduced. For a 

larger range of influence of the sensors, such that the stimuli generated by the sensors 

overlap, the model behaved as expected, producing trabecular-like structures without the 

checker board patterns seen as a result of earlier models (Fig. 5; D - 0.025 mm). The 

solution has been shown to be independent of mesh refinement, as shown in Figs. 5a and 

b, where the results for 80x80 and 40x40 meshes are compared. Although the morphology 

is not the same in both cases due to the differences in the density-pattern representations, 

the solutions are structurally similar. 

As the sensor grid was separated from the FE-mesh, the number of sensors could be 

varied independently. A saturation effect occurred when the number of sensors was 

increased: increasing the sensor density beyond a particular value (A/ about 1000) did not 

further influence the results. The value of this 'cut-off density number also depended on 

the influence parameter D; for a larger value of D, saturation occurred at a lower sensor 

density. 

Figure 4 
Comparison of the density distributions as predicted by the earlier model (a), used by Weinans et al. 
(1992), and the model described here, where the distance-influencing parameter is diminished to D = 
0.001 nvn (b). In both models the number of sensors is equal to the number of elements: N = 1600. 
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« l i Г-i ν 

0.00 

1.75 g/cm 

Figure 5 
Density distribution resulting from the bone remodeling simulations using a HO χ 80 FE mesh (и) 
and a 40 x 40 FE mesh (b). The number of sensors N = 1600 and the influencing parameter D = 
0.025 mm. 

10N/mm2 \ | \ ì 

0.00 

_| 

| 

1.75 g/cm 

Figure 6 
Density distribution as predicted by the bone remodeling simulation, where the influencing parame
ter D is increased to 0.05 mm (N = 1600). 
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Changing the range of action of the sensors D, for a constant sensor density, has a 

distinct influence on the morphology (Fig. 6). If D is small relative to the plate size, finer 

struts are formed and more branching can be seen than for a larger D. A form of 'self 

similarity' is evident when comparing Figs. 5 and 6. Similar results were obtained when 

the 'scale' of the problem was varied, i.e. by enlarging the plate dimensions and range of 

influence D by the same ratio. 

a |; | 7*T. t _ ь | ι Г У . 

shear shear 

Figure 7 
Bone remodeling is simulated starting with a uniform density distribution and using a compressive 
ramp load (a). After remodeling, a trabecular morphology has emerged (b). When equilibrium is 
reached an additional shear load (3.5 Nmm'2) is applied (c). The simulation predicts that the mor
phology adapts to the new loading requirements and a new equilibrium is reached (d). 
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Solutions hitherto produced were based on a unitorm density as the initial 

condition That the model can also explain transformations of morphology in the sense ol 

Wolffs Law, is demonstrated in Fig 7 The morphology that emeiged hom the unitorm 

distribution as stimulated by the compressive ramp load (Fig 7b) is provided with 

additional boundary shear stresses As a result, the morphology transforms to a new 

equilibrium (Fig 7d) 

DISCUSSION 

We have developed a simulation model of the sell organizational biological control 

process ot bone remodeling, suitable to study the relationship between trabecular 

morphology and load and the hypotheses comprised in Wolffs Law It should be clear that 

for the purpose of studying trabecular morphology the element mesh should be fine 

enough to adequately describe the tiabeculae In order to compare the results with the 

results from previous models some simplifications have been made in this study We used 

a two-dimensional square plate and a uniform initial density distribution to investigate the 

model behavior This is not a realistic assumption for bone remodeling, but as shown, the 

model also performs well Irom a nonuniform starting configuration Further, a unifoim 

sensor distribution was assumed, but this is no principle limitation of the model 

In this model, the sensor points are dclincd independently of the FE-mesh In other 

words, the sensor cells are modeled separately from the actors which are represented by 

the elements in the model, enabling us to vary sensor density and sensor influence The 

model results reported by Weinans et al (1992) can be reproduced if the influence domain 

ol the sensors is smaller than the element size The difference between the figuies shown 

here and the figures Irom Weinans et al arc due to a difference in the lime increments 

used Weinans et al used larger time steps which resulted in a dillerent remodeling 

pathway and slightly difleient results The behavior of the model confirmed oui 

assumption that the checker board type density patterns lound in earlier models were 

caused by a discontinuous stimulus distribution due to the artilicial limitation ol sensor 

action to the bounded region of one element 

The sensors are considered to control the remodeling process by compaiing the 

mechanical signal with a reference signal Further we presumed that their influence 

decreases exponentially with increasing distance Obviously, as it is still unknown if the 

remodeling process is contiolled by the sensor cells, as opposed to the actor cells for 

instance, and how these cells influence actor cells, no evidence exists to support these 
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assumptions Bui, it we assume that the osleocytes, located in the bone matrix, are 

sensitive to mechanical stimuli as was shown by El Haj et al (1990) and that they activate 

the actor cells by using chemical pathways (Binderman et al 1984, Rodan, 1975), these 

propositions are quite realistic The distance over which the sensor cell can influence actor 

cells is also speculative The existence of a connective network ot osteocytes is widely 

accepted and osteoblasts and bone lining cells are also believed to take part in this network 

(Menton et al, 1984, Cowin et al, 1991) Thus, it seems reasonable to assume that the 

area which is influenced by a sensor is limited, yet, that this area is large enough, such 

that at each arbitrary point in the bone tissue a significant stimulus can be received We 

assumed that the influence domain of the osteocytes has a magnitude in the order of the 

trabecular thickness (about 0 15 mm) Using this more realistic environmental-scnsor-

ìnfluence model, trabecular like structures arc formed without the lormalion of alternating 

density patterns near the load application surlace Hence, the problem ot 'checker board' 

type density patterns can be solved by using a more realistic model without the addition ol 

the averaging procedures proposed by Jacobs et al (1992), provided that the element size 

is small enough in proportion to the sensor influence range (ι e the element size should be 

in the range of the influence parametei D or smaller) 

Due to the separation ol FE mesh and sensor grid, the FE-mesh can be refined 

without changing the essential model characteristics The similarity between the solutions 

tor different mesh rclincmenls confirm that the solution is no longer FE-mesh dependent 

The model can be used to study the îelationship between sensor distribution (eg 

osteocyte density) and trabecular morphology The results obtained suggest that the effects 

ot sensor cell density are subject to a saturation criterion It appears that the solution is 

independent ot the number ot sensors, provided that the distribution of the mechanical 

signal is 'adequately' measured by the sensors in the structuie A reduced number of 

sensois relative to the 'saturation' amount results in a coarser structure Note that reducing 

the number of sensors while maintaining a constant range of influence will ultimately lead 

to a discontinuous stimulus distribution and hence an alternating density pattern 

Accoidingly, the sensor influence parametei D affects the minimum number of sensors 

necessary to obtain a continuous stimulus distribution For a larger D the critical number 

of sensors is smaller The critical sensor density was about 1,000/mm2 where D is 0 025 

mm This value lies in the same order of magnitude as the values ol osteocyte lacunae 

numbers lound in spongy bone ol several different species, which ranged between 

1,000/mm2 and 3,000/mm2 (Marotti et al , 1990) However, these figures should be 
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considered carefully Marolli et al only measured the number ot osteocyte lacunae per area 

of bone tissue The number of osteocytes per volume ol bone is still unclear In order to 

make a valid comparison between experimental data and the model results it is necessary 

to establish the number of osteocytes per volume ot bone tissue 

It was also shown that D has a distinct effect on the eventual morphology ol the 

structure The results indicate that the formation of trabecular-like structures is 

characteristic of the model behavior, as has been suggested earlier by Weinans et al 

(1992) and Harrigan and Hamilton (1992), but that the thickness ot the struts and the 

degree ot branching is determined by the range ot action of the sensors, whereby a smaller 

range results in finer struts and more branching This effect may be explained by a less 

homogeneous stimulus distribution, ι e larger stimulus gradients, in the case ot a smaller 

range ot action of the sensors It was found that the thickness of the trabeculae produced 

by the model was similar to the magnitude of the sensor influence domain This was in 

agreement with our assumption stated earlier 

The results presented here clearly show that predicted trabecular morphology, ι e 

sizes and branching of struts, is dependent on the actual relationship between local load, 

sensor density and range of influence Our hypothesis is that differences in trabecular 

morphology in various species can be explained by variations in these parameters We 

believe that trabecular morphology can be explained as a result of a load-dependent local 

self-organizational biological control process We conclude that the method described here 

is suitable to study the effect of the various parameters presumably controlling this process 

and may be used to estimate physiological parameters 
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MECHANISM OF WOLFF'S LAW 
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ABSTRACT 

It is currently believed that the trabecular structure ¡n bone is the result of a 

dynamic remodeling proces1; controlled by mechanical loads We propose a regulatory 

mechanism based on the hypothesis that osteocytes located within the bone sense me

chanical signals and that these cells mediate osteoclasts and osteoblasts in their vicinity 

to adapt bone mass A computer-simulation model based on these assumptions was used to 

investigate if the adaptation of bone m the sense of Wolffs Law and remodeling 

phenomena as observed in reality, can be explained by such a local control process The 

model produced structures resembling actual trabecular architectures The architecture 

transformed after the external loads were changed, aligning the trabeculae with the actual 

principal stress orientation in accordance with Wolffs trajectorial hypothesis As in 

reality, the relative apparent density of the structure depended on the magnitude of the 

applied stresses Osteocyte density influenced the remodeling rate, which is also 

consistent with experimental findings Furthermore the results indicated that the domain 

of influence of the osteocytes affects the refinement of the structure as represented by the 

separation and thicknessof the struts We concluded that the trabecular adaptation to 

mechanical load as described by Wolff can be explained by a relatively simple 

regulatory model The model is useful for investigating the effects of physiological 

parameters on the development maintenance and adaptation of bone 

3 
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INTRODUCTION 

More than a century ago, Wolff (1892) put foiward his trajectonal hypothesis, 

which impied that the internal structure ot bone is adapted to mechanical demands, such 

that the trabecular patterns coincide with stress trajectones Although the hypothesis that 

the shape and the internal structure of bone adapt to functional or mechanical 

requirements generally has become known as Wolffs law, the present idea that remodeling 

of bone is a continuous dynamic control process originated from Roux (1881) He 

suggested that the adaptive processes in bone are regulated by cells influenced by the local 

state of stress 

Only recently have scientists first begun experimenting with mathematical control 

models of mechanical bone-mass regulation (Pauwels, 1965, Frost, 1964, Cowin, 1976) 

The model of Cowin and Hcgedus (1976) - in particular, the theory of adaptive elasticity -

provided the mathematical background tor future developments It assumed d continuous 

feed-back loop between the maintenance ot bone mass and local strain values in the 

tissues, enabling mathematical predictions of local bone regulation based on external 

loads Others later proposed similar mathematical remodeling rules, albeit introducing 

different kinds of mechanical signals to control the lced-back loop to maintenance of mass 

(Hart et al , 1984, Huiskes et al , 1987, 1989 Carter et al 1989, Beaupré et al , 1990) 

These authors used finite element methods to link external loads to local mechanical 

signals, thereby enabling computer simulations ol bone-mass regulation in complex 

geometrical structures, such as whole bones It was shown in validation studies, that these 

computer simulations could accurately predict long term bone formation and resorption 

around orthopaedic implants in animals and humans (van Rietbergen et al , 1993, 

Weinans et al , 1993, Huiskes, 1993) Nevertheless, these are empirical models, not 

physiological ones They are useful to estimate the gross outcome of a remodeling process, 

but do not explain anything about the remodeling process itself In addition, these models 

regulate only bone mass, and ignore the trabecular structure 

Weinans et al (1992) found that these kinds of computer models are likely to 

produce noncontinuous patchworks when used to simulate remodeling of a continuous, 

uniform material, after application of an external load It was established that this 

phenomenon was based on instable behavior of the finite element solution procedure in 

conjunction with a positive feed-back loop Since every element in the model acts as a 

more or less independent strain sensor and mass regulator, it acts in competition with its 

neighboring elements Each element tends to fill up to its maximum capacity or, 

28 



PROPOSAL FOR THE REGULATORY MECHANISM OF WOLFF'S LAW 

alternatively, to lade out (Wemans et al , 1992) The results ot these analyses were 

inconsistent with their underlying theory ot continuum mechanics and hence 

impermissible However, they inspired us to re-examine the hypothesis of bone as a self-

optimizing structure, as proposed by Roux (1881), which resulted in our proposal tor a 

physiologically-based mathematical control model of local bone-mass regulation 

We hypothesize osteocyles as sensors ol a mechanical signal or "mechanoreceptors" (Cowin 

et al, 1991, Marotti et al, 1990, Lanyon, 1993) and regulators of bone mass by mediating the 

actor cells - the osteoblasts and osteoclasts (Fig 1) The mathematical model proposed to 

simulate this control process uses the strain energy density as the mechanical signal that the 

osteocytes appraise (Huiskes et al, 1987) The ostcocytcs, distributed through the bone in a 

particular density pattern, emit a stimulus in Ihcir environments equivalent to the difference 

between the local strain energy density and a constant refeience value The actor cells 

legulatc bone density in their area between /ero and maximal density, dependent on the 

total stimulus they receive from the osteocytes, whereby the influence of an individual 

osleocyle stimulus diminishes exponentially according to Us distance from the actor cell 

concerned 

It was shown earlier that such a simulation model, when used together with the 

finite element method, produces trabecular patterns in an initial domain ol uniform 

external loading 

mechanical 
signal 

stimulus mechanical 
properties 

' •- Δ hone mass ' 

Figure I 

A schematic lepiesentation of the hypothetical tegulatory mechanism Bone lemodelmç is assumed 

to be conti oled by an adaptive local feed back loop The osteocytes in the bone sente a local 

mechanical signal and m turn stimulate the actoi cells the osteoblasts and osteoclasis - in their 

vicinity The actor cells adapt the local bone mass in accordance with the magnitude of the received 

stimulus This· results in a change of the local mechanical properties which again affects the local 

mechanical signal 

osteocytes 

osteoclasts 
osteoblasts 
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density, after it is externally loaded (Mullender et al , 1994) Furthermore, in contrast to 

other models (Wcinans et al , 1992, Harngan and Hamilton, 1992), the solution is 

spatially stable and mesh- independent, provided that the mesh is adequately refined 

(Mullender et al, 1994) 

The purpose of this study was to investigate whether this proposed control model is 

indeed a feasible candidate tor the cell based bone-mass regulation process suggested by 

Roux For that purpose, three questions had to be answered First, if the parameters of the 

model (initial density pattern, external load, reference strain energy density, osteocytc 

density, and maximal bone elastic modulus) are given realistic values, does the model 

produce trabecular patterns of realistic morphology7 Second, can the model confirm the 

trajectonal hypothesis of Wolff9 And third, can the model reproduce adaptive remodeling 

phenomena found in reality' These questions are addressed in this paper In addition, the 

effects of the physiological parameters in the model are investigated 

METHODS 

The bone tissue is assumed to contain и osteocytes per mm1 located in the 

mineralized matrix, with a total ol N in the domain considered Each osteocyte Í measures 

a mechanical signal S,(t) (MPa), the strain energy density in its location In turn, the 

osteocyte stimulates actor cells (osteoclasis and osteoblasts) to adapt the bone mass 

depending on the difference between the measured signal {S,(t)) and a reference signal к 

(Fig 1) The influence of an osteocyte on its environment is assumed to decrease 

exponentially with increasing distance to the actor cells The influence of osteocyte / on 

the actor cells at location χ is desciibed by the spatial influence function 

fM) = '-d0cVD (i) 

where d,(x) (mm) is the distance between osteocyte ι and location χ The parameter D 

represents the distance (mm) from an osteocyte at which location its ellcct has reduced to 

e ' , i e , 3 6 8 % 

The relative density at location χ is regulated by the stimulus value F(x,t), to which 

all osteocytes contribute, relative to their distance from x, hence 

N 

f(*,/) = £ / l ( x ) ( S l ( r ) - A ) (2) 
; = ] 
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The regulation ot the relative density ni(x,t) in location χ is governed by the rate 

— — = T F ( X , Í ) with 0<ffi(jt,r)< 1 (3) 
dt 

where τ (MPa ' s ') is a constant regulating the rate of the process It is assumed that the 

osteocytes disappear at locations where the density approaches zero, hence these sensors 

are disconnected in the model during the process The local elastic properties were calcu

lated from the local relative density with use ot a cubic power relationship in accordance 

with experimental data from Currey (1988) Hence, the elastic modulus at location χ is 

calculated Irom 

E(x,t) = Cm(x,t)y (4) 

where С (MPa) and γ are constants 

The model was applied to a square domain of 2x2 mm, with a thickness ot 0 02 

mm (20 μπι) The domain was loaded at each face with uniform tensile or compressive, 

and shear stress distributions, such that a particular principal stress state was mimicked, 

albeit with variable orientation relative to the domain Hence, the external load is 

characterized by principal stress values σι and σ2, associated with a principal stress 

orientation φ 

Finite element analysis was used to calculate the mechanical variables inside the 

bone for externally applied loads The FE model was meshed with 80x80 four-node 

elements Stresses and strains in the locations of the osteocytes were calculated via linear 

interpolation from the stresses and strains in the nodal points The mechanical signal per 

ostcocyte was then calculated according to 

where σ, and ε, are the stress and strain tensors in the location ot osteocyte ι The local 

bone density was regulated per element by the total stimulus received trom the osteocytes 

(equation (3)) 

Several ot the model parameters were set trom the beginning The maximal elastic 

modulus ot the trabecular tissue was taken as Emax = 5,000 MPa (Choi et al , 1990, Rho et 

al , 1993, van Rietbergen et al, 1995) Using an exponent of γ = 3 (Currey, 1988) in 
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equation (4), this implies that С = 5,000 MPa. The rate constant was arbitrarily set at τ = 1 

MPa'1 s" . This means thai the velocity of the simulation process is measured in simulation 

time, unrelated to real time. The (external) principal stress values were taken as σι = σ 

and O2 - -o, with σ = 4 MPa, which is considered to be a value in a realistic range for 

human trabecular bone in the proximal femur (Brown and DiGioia, 1984). However, σ 

was also varied to study its effects. 

The osteocyle density was taken as η = 1,600/mm", uniformly distributed over the 

domain. This number was based on reports by Marotti el al. (1990), who found 500-3,000 

lacunae per square milimeter in 20-30 μπι histological slices from several species. 

However, to study its effect, osteocyte density was also varied in the analyses. 

The reference strain energy density is not known, but estimates can be derived from 

investigations of Rubin (1984) and Rubin and Lanyon (1987). They found in several 

species that peak values of strains in bone during normal, "physiological" activities vary 

between 2,000 and 3,000 Ц5ігаіп. With a lissue modulus of 5,000 MPa, and if uniaxial 

strain state is assumed, this implies normal peak strain energy density values between 0.01 

and 0.0225 MPa, which was used as the range of variation of к in the analyses. 

No information is available on the regional osteocyte influencing function 

represented by the influence parameter D (equation (1)). Its effect on the model behavior 

was studied by varying this parameter. It was shown earlier that the size of the element 

should not be smaller than the range of influence of the sensors (Muhender el al., 1994). 

Hence, a minimum value of D = 0.025 mm was assumed, as limited by the size of the 

elements. 

Two kinds of initial conditions were considered. First a uniform relative density 

distribution of m = 0.8, and second, an arbitrary initial pattern of a regular lattice. This 

second pattern was based on the fact that in the process of bone morphogenesis, the initial 

configuration is always trabecular, due to the patterns of perichondral mineralization 

inherent to endochondral ossification (Aray, 1965; Schaffler et al., 1993). 

RESULTS 

When the reference parameter values lhat have been described were used, the 

density distributions converged to trabecular patterns of struts of maximal density 

surrounding empty pores after application of load. This occurred regardless of the initial 

distribution of density or the principal orientation of stress (Fig. 2). The morphological 

qualities of the resulting architectures can be characterized by three independent global 
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Figure 2 
Tiabecular-like patterns aie formed by the simulated leinodehng piocess starling from a uniform 
mineral disti ibution (A) or a lattice structure (B) The eventual directions of the trabeculae match 
the external principal stress orientations The osteoi yte influence parameter D = 0 05 mm, the ref
erence strain energy density к = 0 02 M Pa The orientation of the principal stress φ = 30' 

parameters the relative apparent density (or analogously, the bone area fraction), the 

average trabecular oncnlation, and the perimeter/area ratio (corresponding to the three-

dimensional surface/volume ratio (Paifitt et al , 1987)). 

The relative apparent density in the equilibrium morphology depends predominantly 

on the magnitude ol the external load in relation to the value of the reference strain energy 

density к For к - 0 02 MPa and the chosen principal stress magnitude of 4 MPa, the re

sulting relative apparent density was about 0 5, associated with a bone area fraction also of 

0 5 The osteocyte influence parameter D had an effect as well, however, twice the magni

tude of D - fiom 0 05 to 0 10 mm - resulted in only a 10% increase in the relative apparent 

density The el feet of the initial morphology on the relative apparent density was marginal. 

This is remarkable, because its effect on the final architecture was considerable (Fig 2). 
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Trabecular orientation was always dnectly related to the external puncipal stress 

orientation This implies that when, for a particular equilibrium morphology (e g , Fig 

2b), the principal stress orientation is rotated, the architecture "transforms" and the 

trabeculae are realigned to the principal stiess orientation (Figs 3 and 4) During this 

process, bone lormation occurs at the surfaces of the trabeculae Evidently, although the 

overall equilibrium orientation of the trabeculae is in accordance with the principal stress 

orientation, not every single trabecula is aligned similarly (Figs 3 and 4) 

Initial morphology 

M ^1 ^1 
Remodeling in progress 

\ 1 I I \ I 

<=0> 

Equilibrium morphology 

ι I I. 

Figure 3 
One particular equilibrium configuration (Fig 2B) was used as the initial moiphology Aftei the 
orientation of the applied stresses was changed from φ = 30' to φ = О', the architecture adapted to 
align with the new sliess oiientation The liabeculae that weie unloaded gradually disappeared 
while other overloaded trabeculae adapted b\ realigning and thickening The parameter values D 
= 0 050 mm and к = 0 02 MPa 

Initial morphology Equilibrium morphology 
/*• , - * >*• 

% % % \ \ \ 

Δ IMH^ \ \ \ 

Figure 4 
With use of the same initial morphology as in Fig 3 the principal stresses were rotated b) 15" 

from φ = 30' to φ = 15" ¡η this case, all existing liabeculae remained bul they adapted to the new 
loading situation All trabeculae realigned some trabeculae thickened and others became thinner 
The parameter values D = 0 05 mm and к = 0 02 MPa 
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Initial morphology 

\ \ \ 

Д 

i = > 
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Equilibrium morphology 

D = 100\im \ V V 

Equilibrium morphology 
D = 25\im \ \ \ 

Equilibrium morphology 
D = 50\im \ \ \ 

Figure 5 
The effect of the influence parameter D on the end-configuration η shown With use of the lattice 
structure as the starting configuration, the osteocyte influence parameter D was vaued D affects 
the dimensions of the formed structure Increasing values of D result m a lower pore density and 
less and thicker struts 

The perimeter/area ratio depended mostly on the osteocyte regional influence 

range, as represented by the influence parameter D (Fig 5) For a smaller D, the 

architecture became more refined, with more, smaller pores and thinner trabeculae For 

given values of the external stress and reference strain energy density k, trabecular 

thickness seems lo be directly related to the value of D However, the perimeter/area ratio 

also depended on the initial morphology, as illustrated in Fig 3, where the bone perimeter 

decreases after rotation of the principal stress orientation 

The osteocyte density, tor osteocyte densities higher than a certain threshold value, had 

little eflect on the quality of the solution The threshold osteocyte density is the density 

where the distance between osteocytes is about equal to the influence parameter D of the 

osteocytes. Lower osteocyte densities resulted in large gradients in the stimulus, which 
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caused spatial differences in the remodeling rate When bone was resorbed, this occurred 

most rapidly in the location of the osteocyte itself, such that the osteocyte disappeared 

while the surrounding bone remained. 

The remodeling process can be characterized by changes in the mineral distribution 

and changes of the relative apparent density in time, as represented by the rate ot 

remodeling A general pattern could be observed in the change of mineral distribution. 

Bone formation always occurred at the surfaces of overloaded trabeculae while 

underloaded trabeculae gradually disappeared, thinned or became porous. This implies 

that the newly formed architecture is based on the initial configuration, such that 

trabeculae can only form at locations where bone already exists. The process also 

depended on the external load in relation to the initial configuration. When the principal 

stress orientation was rotated slightly relative to the directions of the trabeculae, the 

trabeculae realigned (Fig. 4) However, when the principal stress orientation was rotated 

considerably relative to the directions of the trabeculae, some trabeculae became totally 

unloaded and disappeared, while other trabeculae, which were overloaded, realigned and 

thickened at the same time (Fig 3). The effect of overloading and unloading on trabecular 

adaptation is also demonstrated in Fig 6, where a trabecula was artificially disconnected 

while the same externally applied load was maintained. The disconnected and therefore 

unloaded trabecula disappeared, while the neighboring, overloaded trabeculae thickened. 

Initial morphology Equilibrium morphology 

Figure 6 
One strut in the equilibrium architecture is artificiale discon-nected, while the external stress is 
maintained After remodelling the existing architecture is again adapted to the applied stresses by 
removal of the unloaded trabecula and thickening of the overloaded trabeculae. Note that the trabe
cula under the sectioned one. aligned with it, also disappears 
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Relative apparent density 

500 mm 2 

1600 mm2 

2500mm2 

Simulation time 

Figure 7 
The relative apparent density of the structure as a function of remodeling time for three different 
osteocyte densities (n = 500 mm г η = ¡600 mm 2 and η = 2500 mm 2) Osteocyte density clearly 
influences the remodeling rate For higher osteocyte densities the remodeling rate increases The 
relative apparent density in the end-configuration is independent of osteocyte density 

The rate of remodeling was affected by both the parameter D and the osteocyte density as 

both parameters influence the magnitude of the stimulus received in the bone tissue The 

remodeling rate increased tor larger values of D and higher osteocyte densities (Fig 7) 

The mechanical quality of the resulting architectures can be characterized by its principal 

strain, principal stress and strain energy-density distributions These distributions were 

determined primarily by the value of the reference signal k, but the influence parameter D 

also had a small efiect When D = 0 050 mm, the principal strain in the structure averaged 

4,200 mstrain, with principal strain values ot 1,000 to 7,000 mstrain in more than 90% of 

the bone tissue The principal stress averaged 7 7 MPa, with a variation ol 0-20 MPa in 

more than 90% of the area of bone The strain energy density, measured in the locations of 

the osteocyles, averaged 0 02 MPa, which equals the reference value к and varied between 

0 and 0 045 MPa High stress or strain values were found at the boundary of the plate and 

can be considered as boundary artefacts 

DISCUSSION 

Presently, no consensus exists about the mechanisms controlling functional 

adaptation of bone It was suggested that osteocytes are primary candidates for the role of 

mechanical sensors because of their favorable architecture and distribution (Cowin et al , 
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1991, Lanyon, 1993) It has frequently been demonstrated that the precursors of the 

osteocytes, the osteoblasts, are sensitive to mechanical stimuli (see Burgei and 

Veldhuijzen (1993) tor a recent review) but knowledge about the response of osteocytes to 

mechanical stimuli is scarce Skerry et al (1989) and Dodds et al (1993) found that 

osteocytes responded rapidly to dynamical loading ol bone Recently, Klein-Nulend et al 

(1995) found that isolated osteocytes were more sensitive to fluid shear stress than 

osteoblasts Marotti et al (1990) suggested that osteocyte death precludes bone turnover 

These findings support the assumption that osteocytes are sensors of the local mechanical 

load The results of Dunstan et al (1990), who found that patients with hip fractures who 

had extensive osteocyte death in the femoral head had little microfracture callus compared 

to osteoporotic patients who had prominently viable bone, also indicate that bone 

remodeling and microfracture repair are related to the presence of sufficient viable 

osteocytes in bone 

The mechanism by which the osteocyte within the bone may sense a mechanical 

signal still is subject to speculation It is believed that osteocytes are stimulated by the 

interstitial lluid flow caused by mechanical loading, either indirectly by the detection ol 

streaming potentials (Harngan and Hamilton, 1993) or directly by detection of shear 

stresses at the cell surface (Weinbaum el al , 1994) In addition, very little is known about 

the pathway by which the local mechanical stimuli are transduced into the activation of 

osteoblasts and osteoclasis A coupling between the activity of these cell types has been 

established (Parfitt, 1982) and units of combined resorplive and formative cell populations 

are referred to as basic multicellular units (Frost, 1964) Nevertheless, the regulation of 

these units still is obscure It has been hypothesized that the osteocytes communicate 

directly with adjacent cells through the osteocytic piocesses and that a signal propagates 

by way of the osteocytic network towards the osteoblasts and bone lining cells at the bone 

surface (Weinbaum et al, 1994, Harngan and Hamilton, 1993, Marotti et al, 1990) 

Support for this assumption has been supplied by Jeansonne et al (1979), who 

demonstrated electrical coupling and molecular transport between osteoblasts, and Doty 

(1981) and Palumbo et al (1990) who showed that gap junctions between osteocytes and 

osteoblasts exist The lining cells and osteoblasts, in turn, are thought to influence the 

proliferation and activity of osteoclasis (Martin, 1983, Enksen and Kassem, 1992) 

Furthermore, bone cells are involved in paracrine and possibly autocrine effects (Rodan 

1993) It has been shown that osteoblastic cells do produce local factors and the sensitivity 
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ot osteoclasis and osteoblasts to several mediators has also been established (Burger and 

Nijwcide, 1991, hnksen and Kassem, 1992) 

In this study, we used a mathematical model to investigate if a local control 

mechanism, based on the hypothesis that osteocytes are mechanoreceptors and regulators 

ot bone mass, actually can predict remodeling of trabecular bone as we would expect 

according to Woltfs law In the model we used quite simple relationships for (a) the 

signal sensing function ot the osteocytes, (b) the influence ol the osteocytes on the actor 

cells, and (c) the relationship between the stimulus received and the change in local bone 

density We assumed that the actual signal measured by the osteocytes is related to stress 

and strain at its location The strain energy density was used as the mechanical signal, and 

only the amplitudes of the strain energy density were taken into account, hence, the 

influence of strain rate was neglected Only net changes in bone mass were modeled, and 

only the net effects of the basic cellular units were considered Thus, the model cannot be 

used to investigate changes in osteoclast or osteoblast activity Implicitly, the material of a 

trabecula is modeled as being homogeneous and isotropic This is also a simplification ol 

reality Finite element analysis was used to calculate the mechanical variables inside the 

bone specimen The solution process was introduced earlier by Mullender et al (1994), 

who showed that the results were independent of the finite element mesh, as long as the 

elements were smaller than the influencing parameter D and small enough to adequately 

describe the resulting trabecular structure from a continuum mechanics point of view 

The location of the sensors within the mineralized matrix has consequences for the 

remodeling behavior The stimulus for remodeling always originates from within the 

mineralized matrix Due to the decay of the stimulus with increasing dislance, the model 

predicts that new bone is formed at the boundaries of existing trabeculae, as it is in reality 

However, resorption of bone is not restricted to the boundaries ot trabeculae In the model, 

in contrast to reality, it can take place at locations inside the bone matrix as well 

Although this happened only if the loading configuration was changed drastically, this 

behavior is not physiological 

The most striking behavior ol the proposed control mechanism is the formation of 

trabecular like patterns Weinans et al (1992) showed that positive feed-back loops in the 

regulating process cause spatial discontinuity It is interesting to note that, already in 

1881, Roux described the regulation of bone remodeling as a positive feed-back loop, as he 

stated that parts ol the bone that are stressed more than other parts will increase their 

strength, thereby unloading the other parts which then will eventually disappear, until a 
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structure has developed where bone is only present at the locations where the highest 

stresses occur (Roux, 1881) This phenomenon can also be observed in the model and 

results in the formation of a trabecular structure whereby the regional influence of the 

osteocytes prevents spatial discontinuity The development of the structure is such that the 

load is resisted by as few struts as possible but, the number and thickness of the struts are 

controlled by the parameter values in the model, particularly region of influence of the 

osteocyte, the reference strain energy, and the magnitude of the applied external load The 

outcome of the regulatory process depends principally on the applied loads It is 

noteworthy that the signal controlling the process - the strain energy density - is a scalar 

and independent of stress orientation Still, the results showed that the trabecular 

architecture is formed in accordance with the magnitude and the directions ot the external 

principal stresses Hence, the osteocytes would not need information about the local strain 

orientation in order to form, in concert, an anisotropic structure 

The adaptive behavior of the model was investigated by change of the orientation or 

the magnitude of the principal stresses and by artificial disconnection of one strut in an 

equilibrium architecture In all three cases, the behavior of the model showed similarities 

with actual remodeling behavior observed in cancellous bone After the orientation of the 

principal stress was changed, the architecture transformed to resist the new pattern of 

stress In the newly formed structure, the orientations of the trabeculae approximate the 

new principal stress orientation These predictions are consistent with Wollfs trajectonal 

hypothesis When the level of load is changed, the model predicted that the architecture 

adapts by changing the thickness of the struts while maintaining the same number of 

struts This is consistent with the results from Jee and Li (1990), who found that, in the 

overloaded limb of a rat, the trabecular number and separation remained unchanged while 

the trabecular thickness increased significantly Mosekilde (1990) showed that, once 

disconnected, trabeculae are removed by resorption and suggested this was due to 

mechanical adaptation This behavior also was reproduced by the model An important 

observation is that, again, the regional influence of the osteocyte is essential to the 

remodeling behavior of the model In order to form new bone the osteocytes' stimulus must 

reach outside the area of mineralized bone 

The model is particularly suited for investigation of the dependence of the 

remodeling behavior on the physiological parameters in the remodeling process 

Varyiation of the osteocyte density within a certain range influenced only the remodeling 

rate in the model This result is in agreement with the finding that osteocyte lacunae are 
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larger and more numerous in bone regions with a higher bone turnover than in regions 

whith a lower turnover (Cane et al , 1982) However, lack of experimental data prevents 

further verification of this finding For extremely low osteocyte densities, remodeling rates 

depend predominantly on the distance from the osteocytes whereby resorption especially 

occurs most rapidly at the location of the osteocyte itself The result is that in some areas 

the osteocytes disappear, while the surrounding bone remains, in the end leaving very few 

osteocytes Although this model behavior is not compatible with reality, it implies that a 

certain minimal number of osteocytes is necessary for adequate functional adaptation 

The function f,(x) with the influencing parameter D represents the relationship 

between distance and the osteocyte's influence on its environment, where an increase of D 

results in a larger influencing domain of the osteocyte If it is assumed that osteocytes 

communicate through the osteocyte network and by way of the release of local mediators, 

the relationship depends on the extent of the osteocytic network, its connectivity and the 

diffusion rale of the local mediators Actual information about these factors is far from 

complete It was shown here that the effect of distance not only is essential to the 

formation of trabecular patterns and to the adaptive capacity of the model, but that it also 

has important effects on the structure formed The parameter D affects the refinement of 

the architecture as represented by the perimeter to area ratio, dependent on trabecular 

separation and thickness Trabecular thickness is about twice the magnitude of the 

parameter D This indicates that the domain of influence of an osteocyte has indeed the 

same range as the extent of the connected osteocytic network Smaller values of D also 

resulted in a slightly lower total mass, which caused higher resultant strains and stresses 

in the trabeculae This implies that the existence of a network in the bone, by which a local 

mechanical stimulus can affect the local area within a certain distance, is useful for the 

regulation of the maximal local load 

If, for instance, we compare the results from the model with the experimental 

finding that the trabecular thickness of the iliac cancellous bone in normal humans is 100-

200 μπι and the trabecular plate separation, 400-600 μιτι (Parfitt et al, 1983), we can 

estimate that the influence parameter D should be 50-100 μπι Nevertheless, although the 

predicted morphologies show a general resemblance with actual trabecular morphologies, 

the trabecular structure is essentially a three-dimensional structure and a three-

dimensional model is needed in order to compare the predicted morphology with actual 

trabecular bone 
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The distribution of mechanical variables, principal stress, principal strain and 

strain energy density, was non-uniform Fyhne et al (1992, 1991) and van Rietbergen et 

al (1995) showed that values for stress, strain and strain energy density varied widely in a 

piece of trabecular bone loaded by uniaxial displacement Although these authors did not 

use physiological loads, it seems likely that there are always parts in the bone that are 

stressed more than other parts This assumption is consistent with our results 

In conclusion, it was demonstrated that the genesis of trabecular morphology, its 

transformation induced by changes in the loading pattern and the alignment of trabeculae 

with the principal orientations of the stress patterns - in accordance with Wollfs 

hypothesis - can be explained as the result of a local biological control process It was 

shown that many features of bone remodeling can be explained by assuming a relatively 

simple mechanical regulatory process The behavior of the model corresponds very well 

with actual remodeling behavior observed in trabecular bone This mathematical model 

can be useful (or the investigation of the effects of physiological parameters, such as 

density of osteocytes, domain ol their influence, degree of minerah/ation, and distribution 

of stress Further validation of the hypothetical regulatory mechanism is currently 

ongoing 

Our results do not prove that the regulation model proposed is correct They prove, 

however, that Roux's hypothesis was realistic bone morphogenesis, maintenance, and 

adaptation can be explained by a (surprisingly simple) local, cell-based control process 
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OsTEOCYTE D E N S I T Y A N D H I S T O -

MORPHOMETRIC PARAMETERS 

IN CANCELLOUS BONE OF THE PROXIMAL 

FEMUR IN FIVE MAMMALIAN SPECIES 
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ABSTRACT 

The species-specific relationships between trabecular morphology and osteocyte 

density were investigated in the femoral heads of thirty adult animals of five mammalian 

species (rat rabbit, Rhesus monkey, pig and cow) Our hypothesis is that osteocytes are 

mechanosensory cells and are involved in the regulation of bone remodeling According 

to the predictions from a simulation model, this hypothesis implies that the influencing 

distance of osteocytes, together with the magnitude of the mechanical loads, determines 

the thickness of trabeculae and that the number of osteocytes primarily affects the rate of 

bone remodeling The number of osteocytes per bone volume ranged from 93,200 mm 3 in 

rat to 31,900 mm in bovine cancellous bone Osteocyte density was inversely related to 

the size of the species Since basal metabolic output is related to body mass, we speculate 

that osteocyte density may be related to metabolic rates Trabecular thickness was larger 

in the cow than in the othei species, but the range of variation between species was 

relatively small This agrees with the hypothesis that trabecular thickness is limited by the 

domain that can be regulated by an osteocyte and that this domain is of similar size 

regardless of the species Only in the rat was trabecular thickness considerably smaller 

than in the other species This is probably due to the presence of the cartilaginous growth 

plate in the femoral head of the rat The relationships with species are different for 

osteocyte density than for morphometric parameters Hence, our data support our 

hypothesis that osteocyte density is not directly associated with the macroscopic 

trabecular architecture 
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INTRODUCTION 

Cancellous bone is thought to be designed to optimally lulfill its mechanical 

functions Wolff (1892) proposed that the orientations of the trabeculae are adapted to 

directions ot the principal stresses acting on the bony structure As early as 1881, Roux 

suggested that the capacity of bone to adapt its architecture to mechanical loading is the 

result of local regulation by cells that are influenced by mechanical stimuli More than a 

century has passed, but the mechanisms by which the adaptive behavior of bone is 

regulated are still not understood Recently, in an attempt to clanly these relationships 

between adaptation of trabecular bone and mechanical load, a regulatory mechanism was 

proposed (Mullender et al , 1994, Muilender and Huiskes, 1995, van Rietbergen et al , 

1995) Il was based on the hypothesis that ostcocytes regulate the local adaptation of bone 

mass, driven by mechanical stimuli Although, in (act, it is not certain what mechanism is 

responsible tor sensing the mechanical loading in bone, the involvement ot osteocylcs has 

been suggested by several authors (Marotti et al , 1990, Cowin et al , 1991, Lanyon, 1993, 

Aarden et al, 1994) The simulation model could explain the morphogenesis ot typical 

trabecular morphologies with plates or rods, depending on the external loading pattern 

(van Rietbergen et al , 1995), and could also explain the adaptation of the trabeculai 

pattern to the directions of the applied loads (Mullender and Huiskcs, 1995) 

In addition, it has been shown that particular parameters in the regulatoiy process 

had distinct effects on the predictions of the model In the model, it was assumed that the 

amplitude of the stimulus produced by each individual osteocyte decreases exponentially 

with increasing distance from the osteocyte The decay of the stimulus with incieasing 

distance is characterized by one parameter called the osteocyte-influcncing distance, ι e , 

the distance over which the osteocytes can effectively influence the activity ot actor cells 

The model predicted that osteocyte-influencing distance typically affected the dimensions 

ot the trabecular morphology an increase ot the osteocyte-influencing distance caused a 

decrease of the number ot trabeculae, while their thickness and separation increased 

(Mullender and Huiskes, 1995) In other words, the influencing distance ot the osteocytes 

determined the scale of the predicted trabecular patterns The magnitude of the applied 

loads altected the relative volume of the bone by modulating trabecular thickness In 

contrast, the number ot osteocytes per bone volume had no effect on the morphometric 

parameters of the predicted architecture but altected only the rate of the remodeling 

process 
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The actual values ot osteocylc density and the domain ol influence of osteocytes are 

unknown II is still unclear how osteocytes signal other cells It they produce chemical 

messengers (Klcin-Nulend et al , 1995), their eftecl will depend on diffusion Diffusion of 

signaling molecules is determined by the same physical laws in all animals and is likely to 

be independent of cell packing On the other hand, osteocytes may signal other cells 

directly by means oí gap junctions (Doty, 1981, Palumbo, 1990) and electrical coupling 

(Jcansonne et al , 1979) In that case, their range of influence may depend on cell density 

but may also depend on the density of their processes and other parameters Hence, the 

relationships between species, osteocyte density and the influencing distance of individual 

cells are not entirely clear yet 

The predictions of the model have led us to hypothesize that trabecular thickness is 

determined pnmarily by the ìnlluencing distance of the regulating cells, which we assume 

to be the osteocytes, and that trabecular thickness is not directly related to osteocyte 

density If this is true, trabecular thickness can be used as an indicator of the range of 

influence of the osteocyte In addition, we hypothesize that the rate of bone modeling and 

remodeling is closely related to the number of osteocytes Since it is known that basal 

metabolic rate is inversely related to body size (Schmidt-Nielsen, 1984, Spaargaren, 1994, 

Couture and Hulbert, 1995), we speculate that turnover rates may also vary between 

mammals of divergent sizes To test these hypotheses, we have investigated wether 

histomorphometnc parameters and osteocyte density depend on species size in trabecular 

bone of five different mammals of various sizes 

METHODS 

ANIMALS 

Femoral heads were obtained fiom 30 healthy full grown mammals of five different 

species six Wistar rats (7 + 0 months old (±SD)), six New Zealand White rabbits (18 ± 0 

months old), seven Rhesus monkeys (5 6 ± 1 1 years old), six domestic pigs (3 0 ± 0 4 

years old), and five domestic cows (6 4 ± 3 2 years old) The diameters of the femoral 

heads were measured The femoral heads were fixed with a 4% phosphate buflered (0 1 M) 

toimalin solution, pH 7 2 Right femoral heads were used for morphometnc 

measurements, and left femoral heads were used for measurements of osteocyte density 
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HISTOLOGY 

The undecalcified right femoral heads were embedded in polymethylmethacrylate 

Sections of 20-40 μιτι thickness were made with use of a Leitz sawing microtome (Leitz, 

Rockleigh, NJ, U S A ) fitted with a diamond sintered blade The surfaces of the sections 

were stained using a modified Von Kossa method, which stained the bone surface black 

The left femoral heads were decalcified with 20% EDTA and embedded in 

polymethylmethacrylate Before embedding, the femoral heads of pigs and cows were 

divided into eight blocks Serial sections (7 μιτι) were made using a Leitz microtome and 

stained with hematoxylin and eosin Both the left and right femoral heads were sectioned 

in the frontal plane 

HiSTOMORPHOMETRY 

Morphometnc parameters were measured 

using a microscope in conjunction with a digital 

camera (Videk Megaplus Camera, Kodak, NY, 

USA) Digital analysis soft-ware (TIM, Difa 

Measuring Systems В V and TEA, The Nether

lands) was used to analyze the images The digi

tal images were thresholded and manually cor

rected for artifacts The number of bone pixels 

divided by the total number of pixels (PP) in the 

area of analysis and the number of intersections 

between bone and none-bone pixels per unit lest 

line length (PL) were determined PL was taken as 

the average value measured in two perpendicular 

directions From these measure-ments a number 

of morphometnc parameters were calculated 

according to the parallel plate model (Parfilt et 

al , 1987) bone volume fraction (BV/TV) = PP , 

bone surface per bone volume (BS/BV) = 2PL / Pp 

(mm '), mean trabecular plate thickness (Tb Th) 

= 2 / (BS/BV) = Pp / PL (mm), mean trabecular 

plate separation (Tb S ρ) = (1 - PP) / PL (mm), 

trabecular number (Tb Ν) = PL (mm ') 

Figure 1 
A schematic representation of the sites 
of measurement m the femoral heads 
of pigs and cows 
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Measurements were taken from eight sections from the midfrontal plane in each 

animal In the rat, rabbit, and monkey, the total trabecular area in each section was 

analyzed Due to the large size of the femoral heads of pigs and cows, only a part of the 

total trabecular area was analyzed per section, ι e tour fields of 16 mm2 in four specific 

sites (Fig 1) 

Osteocyte density was measured using a microscope (Leitz) in conjunction with a 

digitizing system (Videoplan, Kontron Bildanalyse, Eching-Munchen, Germany) The 

number of osteocyte nuclei per bone area (N Ot Nc/B Ar) was measured in a total of 32 

randomly selected fields (0 16 mm2) in 16 nonconsecutive sections per animal In total, a 

bone area oí 1 5-3 5 mm2 was analyzed per animal The method described by Gundersen 

(1986), by which ostcocytes are identified in two successive sections, was used to measure 

a percentage of double counts, dclined as 

_ , , , the number of osteocyte nuclei identified m both sections , . „ _ 
% double counts = - x 1004c (I) 

the total number of osteocyte nuclei in the first section 

The percentage of double counts was measured in two animals per species in two 

randomly selected fields of eight section pairs The mean value per species was then used 

to estimate the number of osteocyte nuclei per bone volume according to 

. , • , w , ™, (100% - % double counts) NOtNc/BAr 
NOtNc/BV= χ 2 

100% t 

with t (mm) representing the section thickness 

Averages and standard deviations of all measured parameters were determined per 

group Differences between groups were tested using analysis oí variance 

RESULTS 

The trabecular morphologies of animals of the same species had very similar 

appearances This is also evident from the small variation among morphometnc data of 

animals of the same species (Fig 2) In one rabbit trabecular only were thickness and 

separation distinctly larger than in the other rabbits (Fig 2) From a qualitative 

examination of the trabecular morphologies oí the different species, it appeared that the 

dimensions of the trabecular structures are quite similar in all species, except for the rat 

(Fig 3) In the rat, trabecular thickness and trabecular separation were significantly 

smaller and trabecular number and bone surface per bone volume were significantly larger 
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Figure 2 
The individua! dala points of lìnee sttuctural paiameters - trabecular thickness, trabecular separation, 
anil tiabecuiar number - are given for each animal In addition, the individual data points of the nunibei 
ofosteocyte nuclei per bone area ai e presented 

than in the other species The measurements indicated, however, that several 

morphometric parameters in the cow also dilfcr from those in the other species (Table 1). 

In the cow, trabecular number was significantly lower and trabecular thickness and 

separation were higher than in the other species, although the difference between the 

trabecular thickness in the cow and that in the rabbit was not signilicant The 

morphometric parameters in the rabbit, monkey and pig were not significantly dilferent, 

with the exception of trabecular separation, which was sigmlicanlly larger in the pig than 

in the monkey (Table 1). 
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Table 1 Histomorphometnc parameters (average ± SD) of trabecular bone 

m the femoral heads of five manunalian species. 

Rat (n = 6) Rabbit (n = 6) Monkey (n = 7) Pig (n = 6) Cow (n = 5) 

Femoral head (cm) 0 3 ±0 0" 10 ±00'' 14 ±0 1' 4 6 ±0 2'' 5 5 ±0 4' 

Relative bone 
volume 0 50 ±0 04" 0 44 ±0 05"'' 0.45 ±0 05"'' 0 40 ±0 02'' 0 40 ±0 04'' 
Trabecular 
number (mm1) 6 54 ±0 24" 2 72 ±0 37'' 3 08 ±0 21h 2 70 ±0 12'' 2 07 ±0 05' 

Bone surface per 
bone volume (mm1) 26 8 ±2 9" 12 6 ±2 l'' 14 0 ±2 0* 13 6 ±12'' 10 8 ±0 7'' 

Trabecular 
thickness (μιτι) 77 ±9" 165 ±32'" 147 ±21* 151 ± |V' 190 ±13' 

Trabecular 
separation (цт) 77 ±5" 212 ±34'" 180 ± 1б'' 229 ±8' 299 ± 26d 

No ofosteocyte 
nuclei per bone 
area (mm'2) 942 8 ± 49 5" 679 2 + 6 8 51' 400 1 ± 47 9' 399 5 ± 65 4' 294 8 ± 24 4J 

Double counts (%) 30 8 ± 0 6 36 6 ±16 34 7 ± 0 4 24 5 ± 0 8 24 4 ± 2 4 
(n=2) (n=2) (n=2) (n=2) (n=2) 

No. of osteocyte 
nuclei per bone 
volume (mm'jXlO1 93 2 ±5 4" 615 ±6 8* 37 1 ± 4 8 ' J 43 1 ±76' 319 ± 2 9 J 

The parameter values arc compared between species 
" ' " 'tr Unequal characters indicate a significant ditlerence with ρ < 0.01. 

The number ol" osteocyte nuclei per bone area was similar for animals ot the same 

species, but showed large variation between species (Fig. 2). The mean values differed 

significantly between all species, except between the pig and the monkey (Table 1). The 

number of osteocytes per bone area decreased with increasing size of the animal. The 

percentage of double counts is an indirect measure of the average si/.c of the osteocyte 

nuclei. This percentage ranged from 24 and 37 % and was lowest in the pig and the cow 

and highest in the rabbit and the monkey. Due to these differences, the relative differences 

between the calculated number of osteocyte nuclei per bone volume were smaller than the 

relative differences between the measured number of osteocyte nuclei per bone area. The 

number of osteocyte nuclei per bone volume differed significantly between all species 

except between the pig and the monkey and between the cow and the monkey (Table 1). 
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Table 2 Histomotphometi ic parameters infoiti spec φι sites within the femoral heads of pigs and 

cows Average values ± standard deviation 

Relative Trabecular Bone Trabecular Trabecular No of osteocytc 

bone number surtace/bone thickness separation nuclei/bone area 

volume (mm 1 ) volume (mm') (μιτι) (μπι) ( m m 2 ) 

Pig (n=6) 

Epiphysis 

1 0 41 ±002° 2 94 ±0 20" 14 3 ±0 8° 

2 0 41 ±0 02" 2 88 ±0 24° Π 6 ±12" 

3 0 40 ±0 05" 2 84 ±0 22" 14 4 ±2 б" 

Metaphysis 

4 0 47 ±0 04° 2 15+0 16* 12 0 ±16° 

142 ±8 " 201 ±16" 

149 ±14" 202 ±19" 

143 ±24" 211 ±16" 

171 ±21" 298 ±33* 

440 8 ±97 8" 

388 2 ±82 9" 

397 9 ±62 6" 

376 6 ±68 8" 

Cow (n=5) 

Epiphysis 

1 

2 

3 
Metaphysis 

4 

0 37 

0 49 

041 

031 

±0 04" 

+0 06'' 

±0 04'"' 

±0 03' 

2 16 

2 24 

2 14 

1 76 

±0 12' 

±0 07' 

±0 08' 

±0 1 \d 

118 ±0 8' 

9 3 ±1 3 J 

10 5 ±1 0"7 

117 ±10' 

172 ±13' 

220 ±28"' 

194 ±19' J 

174 ±15' 

294 ±34' 

229 ±23 J 

275 ±23"У 

398 ±42' 

306 I 

288 9 

274 6 

312 1 

±29 0' 

±30 4' 

±47 1' 

±33 4' 

The parameter values are compared between the different sites within the same species 

«bid, Unequal characters indicate a significant difference with ρ < 0 01 

Figure 3 

Examples of digital images of traheculai morphologies of each species are given Note that in the 

rat the growth plate is still present 
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Consistent differences could be found between the morphometnc parameter values 

measured at the ditlerent sites in the femoral heads of pigs and cows The average 

parameter values per site are presented in Table 2 The relative bone volume was 

consistently lower in the metaphysial area than in the epiphysial area, due to a 

significantly smaller trabecular number and larger trabecular separation in the 

metaphysial area In both species, the trabecular bone was densest in site 2, ι e the most 

central location of the epiphysis This difference was significant only in the cow No 

significant differences in osteocyte numbers were observed between the different locations 

DISCUSSION 

We have assumed that osteocytes regulate the local bone turnover, influenced by 

mechanical stimuli Previous results suggested that trabecular thickness and separation 

might be independent of osteocyte density (provided that a certain minimum number of 

osteocytes is present) but dependent on the distance over which the regulatory signals can 

affect the actor cells (Mullender et al , 1994, Mullender and Huiskes, 1995), and that 

osteocyte density affects the rate of bone remodeling In the light of these results two 

questions were investigated in this study First, are the values of morphometnc parameters 

in trabecular bone limited within a certain range or do they differ between species of 

various sizes, and second, how is bone cellulanty related to bone structure and species9 

Significant differences in morphometnc parameters between sites of measurement 

were found The difterences between sites in cows and pigs consisted of a smaller bone 

volume in the metaphysis compared with the epiphysis due to a significantly smaller tra

becular number In the most central area of the epiphysis, the relative bone volume was 

highest, this was associated with larger trabecular thickness and smaller separation These 

differences within the epiphysis may be explained by differences in loading, assuming that 

the central part of the epiphysis transfers the largest part of the load to the underlying 

bone However, the differences in morphometry were significant only in bovine epiphysial 

bone 

When the morphometnc parameters for the different species are compared, it 

appears that trabecular thickness and separation are smallest in the smallest species (rat) 

and largest in the largest species (cow) The opposite holds for trabecular number These 

results indicate that trabecular thickness and separation tend to increase and trabecular 

number tends to decrease with increasing size ot the species However, the absolute range 

of variation between morphometnc parameters, especially trabecular thickness, in the 
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rabbit, monkey, pig and cow was actually remarkably small (trabecular thickness ranged 

from 147 to 190 μπι). The femoral diameter increases as much as 5.5-fold from the rabbit 

to the cow, whereas trabecular thickness showed at most a 1.2-fold increase (between 

monkey and cow). Although few allometric studies of trabecular bone structure are 

available, histomorphometric parameters are regularly being used to give an indication of 

the quality of cancellous bone structure. In Table 3, an arbitrary selection of values is 

given for trabecular thickness in animals of several mammalian species, which served as 

controls in a wide range of experimental studies. These data indicate that trabecular 

thickness is indeed of the same order of magnitude in all of these species and that no 

relationship between the size of the species and trabecular thickness seems to exist. 

Nevertheless, the values reported for trabecular thickness in the rat are invariably lower 

than those reported in the other species. Within this group of species, the rat is not only 

the smallest but also the only one in which the growth plates do not usually close. Hence, 

the smaller mean trabecular width in the rat might be due partly to the presence of primary 

trabeculae and relatively new secondary trabeculae, which usually are more numerous and 

thinner than relatively older secondary trabeculae (Schaffler et al., 1993). Furthermore, the 

growth plate provides a more even distribution of the mechanical load, which causes a 

very different mechanical environment compared with the other species. 

Table 3 Trabecular thickness measured m cancellous bone of several mammalian species. 

Source 

Jee and Li, 1990 
Vico el al., 1993 
Vico et al, 1993 
Vico et al , 1993 
Vico et al., 1993 
Wuetal., 1990 
Wuetal , 1990 
Fettmanet al , 1992 
Norrdin et al, 1993 
Kuhn et al , 1990 
Mosekilde et al , 1993 
Kragsirupet al , 1984 
Boumn et al , 1992 
Lundunetal., 1994 
Schmtzlcr et a l , 1993 

Parfitt et a l , 1983 
Odgaard, personal 

communication, 1995 

Species 

Sprague-Dawley 
Wistar rais 
Wistar rais 
Wistar rais 
Wistar rats 

rats 

New Zealand White rabbits 
New Zealand Wh 
Cats 
Cats 
Mongrel dogs 
Minipigs 
Pigs 
Rhesus monkeys 
Macaques 
Baboons 

Humans 
Sperm whale (11 

ite rabbits 

m, 

n=l) (PlnicWi taludan) 

Age 

9 mos 
15 wks 
15 wks 
15 wks 
15 wks 
Mature 
Matuie 
Adult 
13-18 mos 
Mature 
16 mos 
14 mos 
Aduli (9 yrs) 
Aduli (9 5 yrs) 
Adult 

Adults < 50 yrs 
t 

Location 

Prox. tibia me 

thi 

itaphysis 
Prox. tibia metaphysis 
Prox tibia epi 
L2 

ipliysis 

Femoral fossa trochanteri 
Femoral head 

L3 
Iliac crest 
Iliac crest 
Distal femur 
L4 
L4 

Iliac crest 
L2 
Iliac crest 

Iliac crest 
Vertebra 

Trabecular 

ckness (μηι) 

40-45 
37 
71 
53 
78 

146 

111 
184 
105 
170-210 
110 
134 

103 
125 
91 

145 
180 
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The differences between morphometric parameters found between species suggest 

thai in these species the remodeling process is regulated within a specific spatial range. 

However, the absolute differences between parameter values are quite small, which 

indicates that the local domain of regulation is of similar size in the mammalian species 

that we used, except in the rat. This is consistent with the hypothesis that the regulatory 

domain of osteocytes is similar regardless of species. Only in the rat is the trabecular 

thickness clearly smaller; this may be due to the different mechanical environment in the 

femoral heads of rats but also to a smaller spatial regulatory domain. Possibly the 

regulation in the femoral head of the rat is modified by the presence of the cartilageous 

growth plate and the presence of chondrocytes within the primary trabeculae. 

The percentage of double counts is an indirect measure of the sire of the cell 

nucleus, because a larger cell nucleus has a greater chance of being hit by sectioning. The 

percentage of double counts was measured in only two animals per species; however, the 

results from the animals of the same species were always very similar (which can be seen 

from the small standard deviation). It was noteworthy that the percentage of double counts 

was lowest in the cow and the pig, indicating that these animals have smaller osteocyte 

nuclei than the other species. The percentage of double counts was not related to the 

number of osteocyte nuclei per bone area. 

The results show that the number of osteocyte nuclei per bone volume is specific for 

each species and seems to be inversely related to species size, although osteocyte density 

was similar in the pig and the Rhesus monkey. The number of osteocyte nuclei per bone 

volume ranged from 93,200 m m ' in the rat to 61,500 mm ' in the rabbit to 31,900 mm"1 

in bovine cancellous bone. Data of osteocyte density in various species are scarce. 

Mullender et al. (1995) found that osteocyte density in cancellous bone of the iliac crest in 

humans (30-55 years old) varied around 13,000 mm' , which is lower than the values 

measured in the animals. They also reported that both osteocyte and lacunar density 

decreases with increasing age. Li et al. (1991) measured osteocyte density in 5 μπι sections 

of cortical bone in several regions of the tibia and the second metatarsal in the rat. They 

found that osteocyte density varied between 810 and 1,060 per mirf. They also found that 

osteocyte density could be affected by exercise. Although their data agree very well with 

the values that we obtained for the rat, these values arc actually not comparable with ours, 

because they counted osteocytes (not osteocyte nuclei) and used thinner sections. Norrdin 

et al. (1993) counted osteocyte nuclei in trabecular bone of the iliac crest in cats. They 

reported an osteocyte density of 156 per mm2 bone. However, they measured osteocyte 
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density in 1 μπι sections, which explains the small number compared to our values If it is 

assumed that osteocyte nuclei in cats are similar in size to those in the species thai we 

used, the number of osteocytes per bone volume estimated from their data is close to the 

values that we found for monkeys and pigs Marotli et al (1990) and Hobdell and Howe 

(1971) have been, to our knowledge, the only authors to compare osteocyte densities in 

various species Contrary to our findings, the data Irom Marotti et al (1990) suggests no 

relationship with animal size, therefore they stated that neither osteocyte density or 

lacunar volume seem to be related to animal species Since they found osteocyte density to 

be much higher in woven bone than in lamellar bone, they argued that osteocyte density, 

distribution, and shape are strictly related to collagen fiber texture Most of the data of 

Hobdell and Howe (1971) were collected in primary bone They found only small 

differences in osteocyte density in primary bone between several mammalian species 

(24,000-33,000 per mm3) For example, they found no difference in osteocyte density 

between a rat and an elephant From these findings, it can be seen that the relationship 

between osteocyte density and species is not straightforward and depends on the type of 

bone. In addition, age and loading may affect osteocyte density Hence, more data are 

needed to draw definite conclusions about the relationships between osteocyte density and 

other variables 

Still, we speculate that osteocyte density may be related to turnover rates It is well 

known that body size, basal metabolic rate, life span and growth rate are all interrelated 

according to physiological scaling laws (Schmidt-Nielsen, 1984) Hence, it can be 

expected that turnover rates also are related to the size of the species, and our finding that 

in cancellous bone osteocyte density decreases with the size of the species fits well with 

this concept Furthermore, as the rate of turnover is much higher in woven bone than in 

lamellar bone it is also consistent with the greater osteocyte densities in the former type of 

bone than in the latter In addition, Cane et al (1982) found that, in dogs, the number and 

size of osteocytes are larger in locations within the bones with a higher turnover rate than 

in locations where turnover is lower 

In conclusion, it was found that morphomctnc parameters and osteocyte density 

both are related to species size The range of variation of trabecular thickness between 

species, however, is relatively small This finding agrees with the hypothesis that the 

thickness of trabeculae is limited by the size of the domain that can be regulated by 

osteocytes Osteocyte density in trabecular bone, however, varies widely between species 

and is inversely related to species size The relationships with species are different for 
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osteocyte density than for the morphometric parameters. Hence, the data support our 

hypothesis that osteocyte density is not directly related to the macroscopic trabecular 

architecture. 
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MECHANO-SENSORS IN CANCELLOUS BONE? 
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Bone 6: 527-532, 1997 

ABSTRACT 

Previously, we have investigated the possible role of osteocytes as mechano-

sensors, and mediators of bone turnover. It was found that the proposed regulatory 

mechanism produced morphologies of trabecular bone, under particular loading 

conditions, which were consistent with morphogenesis and adaptation as seen in reality. 

The main objective of this study was to discern whether lining cells or osteoblasts could 

possibly play a similar role as effectively with regard to their capacity for self-

optimization of the trabecular architecture, in terms of a low apparent mass to stiffness 

ratio. For that purpose the earlier analyses with osteocytes as mechano-sensors, 

distributed throughout the bone, were repeated for mechano-sensors located at bone 

surfaces only. Compared to the osteocyte model, the surface cell remodeling algorithm 

was reluctant to change its architecture, which implies that it is less sensitive to changes 

in the loading pattern. This resulted in less efficient bone adaptation, which was reflected 

by a considerably higher relative mass for a similar apparent stiffness in the loading 

direction. In other words, more mass is needed to obtain an equally stiff structure, at the 

apparent level, with respect to the externally applied loads. Furthermore, stresses and 

strains at the tissue level vary across a much wider range, relative to the osteocyte model, 

where the higher incidence of elevated strains indicates an increased failure risk. 

Therefore, we conclude that mechanical information at the bone surface may not be 

sufficient to adequately regulate functional bone adaptation. 
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INTRODUCTION 

Although it is generally accepted that bone tissue adapts to mechanical demands, the 

regulatory mechanisms responsible for this process are not understood For one thing, the 

mechanism by which the bone tissue senses mechanical stimuli has not been established 

Neither the cells responsible for transduction of mechanical into chemical signals nor the means 

by which the actual bone remodeling processes are subsequently regulated are identified 

Osteocytes, located within the bone matrix, bone lining cells, covering the bone surface, 

and osteoblasts have all been proposed to play important roles as mechano-sensors in the 

regulatory process In vitro studies showed that the activity ol both lining cells and osteocytes 

increased after loading (Skerry et al, 1989, El-Haj et al, 1990) Osteocytes were suggested as 

the most suitable candidates for the role of mechano-receptors, because of their location and the 

interconnections by which they communicate with each other and with cells at the bone surface 

(Marotti et al, 1990, Cowin et al, 1991, Lanyon, 1993) Il was proposed that these cells are 

stimulated by fluid flow in the caniculi, due to mechanical loading of the tissue (Weinbaum et 

al, 1993, Harrigan and Hamilton, 1993) In fact, it was shown experimentally that osteocytes 

are very sensitive to fluid flow across their cell membranes (Klein-Nulend et al, 1995) 

The hypothesis that osteocytes sense mechanical signals and regulate the local 

adaptation of bone mass was recently investigated for its feasibility, using a computer simulation 

model (Mullender and Huiskes, 1995) In this regulatory model, bone density was adapted at 

any location within the tissue, according to a stimulus received from the osteocytes in the 

vicinity It was shown that the proposed regulatory mechanism could explain the genesis and 

adaptation of trabecular patterns in accordance with the external loads, indicating that such a 

hypothesis is realistic (Mullender et al, 1994, Mullender and Huiskes, 1995, van Rietbergen et 

al, 1995a, van Rietbergen et al, 1996a) Nevertheless, in reality trabecular bone turnover occurs 

only at surfaces and not within the tissue Furthermore, the question remains, if sensors located 

at the bone surface (lining cells and osteoblasts) could regulate bone remodeling equally well It 

was shown in many studies that osteoblasts and osteoblast-hke cells are very sensitive to 

mechanical loads as well (see Burger and Veldhuijzen (1993) for a review) In addition, Miller 

et al (1989) and Parfitt (1984) suggested that bone lining cells probably play important roles in 

bone remodeling by mediating the activation of the bone remodeling sequence 

We have investigated two questions in this paper First, do the results of the regulatory 

model based on osteocytes as mechano-sensors differ from those previously described, if, as in 

reality, remodeling is allowed only at trabecular surlaces9 Second, can a simulation model, 

based on the assumption that lining cells and osteoblasts are mechano-sensors and regulators of 
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bone turnover, explain mechanical adaptation ot trabecular bone equally well? To investigate 

the latter question, a model was developed based on the alternative hypothesis that sensor cells 

are located only on the trabecular surfaces. The behavior of this regulatory model was compared 

to the regulatory models in which the sensors are located within the bone matrix. 

METHODS 

Two hypothetical regulatory mechanisms for trabecular bone (re)modeling were 

compared. In both regulation schemes local mechanical signals are appraised by sensor cells 

which subsequently stimulate populations of osteoclasts and osteoblasts (basic multicellular 

units, BMUs) to adapt the local bone mass (Fig. 1). In the first regulation model, osleocytes are 

assumed to be the sensor cells (osteocyte model), while in the second regulatory mechanism it is 

presumed that only cells covering the trabecular surface act as sensors (surface cell model). For 

the osteocyte model two possibilities were compared. The first is "overall remodeling", which 

implies that bone density can be adapted at any location in the tissue. This model was described 

earlier by Mullendcr et al. (1994) and Mullender and Huiskes (1995). The second is "surface 

remodeling", where the bone density is allowed to change only at the bone-marrow interface. In 

the surface cell model, surface remodeling was investigated only 

load 

\ (2) (1) 
mechanical ^ 

signal 

lining cells 
\ \/i^ \osteocytes 

BMUs 

stimulus 

A bone mass 

mechanical 
properties 

i t 

Figure I 
Two alternative hypothetical regulatory schemes are compared. Bone remodeling is assumed to be con
trolled by local feedback. The first hypothesis is that osleocytes appraise mechanical signals and stimulate 
BMUs to adapt bone mass (I) The second hypothesis states that bone surface cells (lining cells and os
teoblasts) are the mechano-sensors and that these cells stimulate bone turnover by BMUs (2). In both 
schemes, this results in a change of local mechanical properties, which again affects local mechanical 
signals. 
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MATHEMATICAL FORMULATION OF THE REMODELING HYPOTHESES 

The mathematical foundation of the models was analogous to Mullender and Huiskes 

(1995) The strain energy density (SED) was taken as the mechanical signal S,(t) (MPa) 

measured by a sensor cell ; The strain energy density is in fact the local elastic (strain) energy 

stored per volume ol bone tissue According to the difference between the actual signal and a 

reference signal k, the sensor produces a stimulus The amount ol stimulus received by the 

BMUs depends on the distance between the sensor cell ι and the location χ ot the actor cells 

The local stimulus value F(x,t) at location χ at time t is the sum ol the stimuli received from all 

sensors 

N 
F(x,t) = Zf.ixitS.fO-k), (1) 

1 = 1 

with A/the number ot sensors and the spatial influence function 

-d.(x) 

f,(x) =e D , (2) 

describing the decrease in stimulus with increasing distance d,(x) (min) between location χ and 

sensor ι The parameter D determines the decay ot the inlluence function 

The change in the relative density m(x,t) in location χ is governed by the local stimulus 

value F(x,t) Hence, in case of overall remodeling 

m^XJ' = iF(x,t) with 0 < m{x,t) < 1, (3) 

and in case of surface remodeling 

dm(x, f) , 
= τ F(x, t) χ e trabecular surface 

dt 
with 0 < m(x, ή < / (4) 

dm{x,t) 
=0 χ g trabecular surface 

dt 

where τ (MPa's ') is a constant regulating the rate ol the process The local clastic properties 

were calculated from the local relative density using a cubic power relationship in accordance 
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with experimental data (Currey, 1988) Hence, the elastic modulus at location χ was calculated 

from 

E(x, t) = С m ' (χ, t), (5) 

with С (MPa) a constant 

NUMERICAL FORMULATION 

The regulatory models were applied to a volume of bone tissue Input to the 

regulation models was given by the magnitudes and directions ot the mechanical loads In 

turn, the model predicted the distribution of bone mass in time, ι e the development or 

architecture, for given parameter values The bone tissue was modeled by finite elements, 

which allowed the calculation of the mechanical variables inside the tissue for externally 

applied loads The development ot bone architecture in time was simulated numerically, 

ι e equations (3) and (4) were solved recuisively, using a numerical integration technique 

(forward Euler) to find the new values tor the relative density per element The procedure 

was continued until the changes in architecture were virtually zero A variable time step 

was used that was calculated from the maximal stimulus and a prescribed maximal change 

in relative density at any location according to van Rietbergen et al (1996a) 

For surface remodeling, it was necessary to define a bone-marrow interface within 

the finite element model since changes in density are only allowed at this location Bone 

surfaces were modeled by elements of intermediate density, representing partial volumes 

of bone and marrow These elements are located between elements with minimal density 

(marrow) and elements with maximal density (bone) (Fig 2) 

bone 
m — Ì 

Ύ 
\ 

\ 

ma 
m 

\ 

interface 

0<m<l 

FE mesh 

Figure 2 
The jagged boundaries of the elements prevent an accurate repi esenlulion of a smooth bone surface 
This problem has been solved by allowing boundary elements to have intermediate densities repre
senting palliai volumes of bone 
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The difference between the osteocyte model and the surface cell model was the 

location of the sensors In the osteocyte model the sensors were umlormly distributed over 

the mineralized bone matrix In the surface cell model, the sensors were located in the 

centers of the elements representing the bone surface Stresses and strains in the locations 

ot the sensors were calculated via extrapolation of the values in the integration points to 

the nodal points of each element, and subsequent-ly linear interpolation to the location in 

which the sensor was situated The mechanical signal per sensor was calculated according 

to 

Si = {αι ε, , (6) 

where σ, and ε, are the stress and strain tensors in the location ol sensor Í 

APPLICATION OF THE REMODELING HYPOTHESES 

The regulation models were applied to a plate of 2x2mm (thickness 0 02 mm), 

meshed with 80x80 four-node elements The initial architecture was an arbitrary 

trabecular structure resembling a lattice (Fig 3) The physiological parameters in the 

models were the reference energy k, the sensor density η [equal to their number N divided 

by the area of bone tissue (osteocyte model) or divided by the length of the bone perimeter 

(surface cell model)], the exponential osteocyte-influence function (characterized by the 

distance parameter D), and the constants τ and С (equal to the maximal clastic modulus) 

η was taken as 1600 mm 2 in the osteocyte model and 40 mm ' in the surface cell model 

Osteocyte density was chosen within a physiological order of magnitude, which was 

estimated lorm measurements by Marolti et al (1990) and Mullender et al (1996a, 

1996b) The value for lining cell density was based on an average length of the cells ot 25 

μπι However, no actual data of lining cell density were available A value of 0 02 MPa 

was used lor к and D was 100 μπι (Mullender and Huiskes, 1995) С was taken as 6 GPa 

(van Rietbergen et al, 1995b) and the rate constant was arbitrarily set at τ = 1 MPa 's ' 

The plate was loaded at each side with uniform stress distributions The stress 

magnitudes O; and ΰ2 weie 5 MPa and -2 5 MPa respectively Alter 200 increments (after 

which stable configurations were reached) the loading configuration was altered by 

changing the applied stress orientations from 20° to 0° relative to the plate Hereafter, the 

simulations were continued tor another 200 increments 
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EVALUATION OF THE RESULTS 

The resulting architectures were evaluated lor their apparent mechanical properties 

and the relative apparent density. To assess the mechanical properties of the architectures 

produced by the models, the global stiffness matrices were determined for each 

equilibrium architecture from the structure morphology and the element stiffness matrices 

according to van Rietbergen et al. (1996b). From the global stiffness matrix, the axes of 

ortholropy and the principal Young's moduli associated with these axes were determined 

(Rietbergen et al., 1996b). To appraise the differences between architectures at the tissue 

level, the stress, strain and SED distributions in the structures produced were determined, 

by calculation of the maximum principal stress and strain values and the SED values in 

each element. 

RESULTS 

All models converged towards equilibrium solutions which resembled trabecular-

like structures (Figs. 3a-c). The number of increments necessary to reach a stable solution 

was smaller for "overall remodeling" than for "surface remodeling". In addition, the 

remodeling rate (although given in arbitrary units) was about two times higher for "overall 

remodeling" as compared to "surface remodeling". After convergence, the signals (SED) 

in the sensors averaged 0.02 MPa, which is equal lo the value of the reference signal k, in 

all models. 

The architectures produced by the osteocyle model described earlier and the 

osteocyte model, in which remodeling was only allowed at the bone-marrow interface, 

were not identical but very similar. The apparent properties of the equilibrium 

architectures were very similar as well. In these architectures, the axes of ortholropy were 

identical to the external loading directions. Furthermore, the proportion between the 

principal Young's moduli, Exx and £w was between 1.7 and 2.0 (Table 1), which 

approximates the proportion between the load magnitudes a¡ and σ2· In other words, the 

anisotropy of these structures matched the externally applied loads. Both the relative 

apparent densities and the maximal principal Young's moduli were somewhat higher (2-

6%) in the structures produced by surface remodeling than those produced by overall 

remodeling (Table 1). 
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a Osteocyte model • overall remodeling 

b Osteocyte model - suface remodeling 
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Figure 3 
The equilibrium architectures are presented for the osteocyte models using overall remodeling (a), 
and surface remodeling (b), and ¡or the surface cell model (c). The architectures produced b\ both 
osteocyte models show large resemblance. Note that the architectures produced by the surface cell 
model are closer to the initial architecture. 

66 



CANDIDATES FOR MECHANO-SENSORS IN BONE 

Osteocyte model 

Frequency (% of bone tissue) 

20 т 

•^ target signal 

0.02 

load case I 
load case 2 

004 0.06 

Surface cell model 

20 τ 

10--

! ̂  target signal 

0.02 0.04 0.06 

Stram energy density (MPa) 

Figure 4 
The distributions are shown of strain energy density in the tissue of the equilibrium an hitectures 
produced by the osteocyte model (surface remodeling) and the surface cell model. The distributions 
for the osteocyte model are very similar for both load cases and peak at the value of the target 
signal. In contrast, no clear optimum is present in the distributions for the surface cell model. 
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Figure 5 
The maximal principal strain values vary around 3000 mstrain m the architectures produced by the 
osteocyte models The maximal prim ¡pal strain distributions for the surface cell model are different 
for each load case In partícula!, the architecture produced by the first load case shows a much 
wider distribution, indicating that it is less well adapted to the applied loads. 
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The surface cell model produced very different architectures compared to the 

osteocyte models (Fig 3c) The equilibrium architecture alter 400 increments shows 

clearly that, using this remodeling algorithm, the initial architecture is more persistent in 

the eventual result Local adaptation occurs, but the equilibrium architecture is closer to 

the initial one than those produced by the osteocyte models The equilibrium architecture 

for the first load case was not orthotropic, which implies that the principal Young's 

moduli cannot be determined Instead, the Young's moduli in the directions of the applied 

loads were determined The apparent density in this architecture was about 11% higher 

than for the osteocyte model, whereas the apparent Young's modulus in the main loading 

direction was only 2% higher The stiffnesses in all other directions were considerably 

higher than those in the osteocyte models After the direction of loading was changed, the 

trabeculae re-orientated In this second architecture, which was rather similar to the initial 

configuration, both the apparent density and the apparent stiffness values were lower in 

the surface cell model than in the osteocyte models 

Table I Apparent properties of the produced architectures for each model 

Model 

Algorithm 

Osteocyte model 

Overall remodeling 

Osteocyte model 

Surface remodeling 

Surface cell model 

Load case 

1 
2 

1 
2 

1 
2 

Relative 
density 

0 52 
0 52 

0 55 
0 54 

061 
0 50 

Apparent properties 

Principal Young 's 
moduli in orthotropic 

Exx 
(Gpa) 

1 79 
1 85 

1 89 
2 00 

1 92' 
1 77 

directions 

Eyy 
(Gpa) 

1 04 
1 08 

1 03 
1 05 

1 50' 
107 

Gxy 
(Gpa) 

0 23 
0 17 

0 22 
0 23 

2 

0 12 
1 Young's modulus in direction of applied load 
2 Architecture was not orthotropic 
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The evaluation of the mechanical variables at the tissue level revealed that, for the 

architectures produced by the osteocyle models, the SED values always varied around 0.02 

MPa, which is equal to the target signal. In contrast, the SED distributions for the surface 

cell model have no clear optimum value (Fig. 4). With osteocytes as the sensors, the 

maximum principal stress and strain distributions were similar for the two load cases as 

well as for both the overall and surface remodeling algorithms. The narrow shape of the 

maximum principal strain distributions show that the greater part of the tissue was 

strained at a similar level (Fig. 5). Compared to the osteocyte models, these distributions 

were much wider for the surface cell model and also varied more between the two 

equilibrium architectures. 

DISCUSSION 

Previously, we have considered a strain adaptive bone-remodeling theory for which 

it was assumed that osteocytes appraise mechanical signals and regulate bone adaptation 

(Mullender and Huiskes, 1995). Adaptation of bone density could take place at any 

location within the tissue represented in the model. It is known, however, that bone 

remodeling in trabecular bone occurs only at surfaces. A more realistic description of the 

process, based on surface remodeling, was compared with the previous model. Both 

remodeling algorithms produced qualitatively similar architectures. This is not surprising, 

because although the previous model allowed remodeling to take place throughout the 

tissue, it was in fact limited predominantly to the surfaces of existing trabeculae 

(Mullender and Huiskes, 1995). Nevertheless, it was found that remodeling occurs much 

faster in overall remodeling as compared to surface remodeling. This is caused by the 

restricted volume available for simultaneous transformation in the latter case. We 

conclude, however, that the results from the surface remodeling algorithm are very similar 

to the ones from the overall remodeling algorithm reported earlier (Mullender and 

Huiskes, 1995). 

The second goal of this project was to establish whether bone surface cells, such as 

lining cells and osteoblasts, could potentially regulate bone remodeling by themselves, 

without mechano-sensory stimuli from osteocytes. For this purpose, two regulation models 

were compared. Some limitations of these models need to be discussed. First, trabecular 

bone tissue was represented in two dimensions. This limits comparison with actual bone, 

but presumably has no consequences for the comparison between the regulatory schemes, 

because van Rietbergen et al. (1995a) showed that the ostcocyte-based regulation process 
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behaves similarly in a tluee-dimensional model Second, the use of square elements hmils 

the representation ot trabecular geometry This is partly resolved by allowing intermediate 

bone densities in boundary elements (Fig 2) More importantly however, digital models 

introduce solution errors at boundary elements It has been shown that these errors can be 

significant and that (urther refinement of the clement mesh does not necessarily reduce 

these boundary artifacts (Holhster et al , 1992) The use of smooth boundary models does 

not solve this problem, for these were shown to produce similar errors (Guldberg and 

Holhster, 1994) To minimize boundary artifacts, the sensors in the surface cell model 

were chosen at the centers ol the boundary elements (as opposed to the clement nodes) 

Nevertheless, errors arc inevitable when calculating signals in boundary elements and no 

solution for this problem is yet available (Guldberg and Holhster, 1994) However, the 

effect of these errors on the remodeling results should be limited, because the pattern of 

boundary errors is oscillatory (Guldberg and Holhster, 1994) and therefore, errors arc 

averaged out by the sensor influence function, which filters" the erroneous oscillations 

and reduces their effect on the stimulus distribution Another limitation is that only one 

specific load case was considered, whereas in reality bone is loaded by a variety of loading 

patterns, changing both in amplitude and direction However, this probably does not affect 

the quality of the differences found between the models and it facilitates the assessment ol 

effectiveness ot the resulting architectures considerably Furthermore, only net bone loss or 

gain was considered Hence, the models do not account for separate effects of osteoblasts 

and osteoclasts and effects associated with the remodeling sequence Finally, strain energy 

density was chosen as the mechanical signal, because the models used here are too coarse 

to obtain a more precise measure ol the mechanical signals that osteocytes or lining cells 

perceive when the tissue is loaded Strain energy density is a measure ot the energy stored 

as a result of deformation of the (issue, and may be considered as a reasonable indication 

of the mechanical deformation which the cells experience Although in tact, it is still 

unclear how bone cells sense mechanical signals, it is also uncertain how a more accurate 

representation ol the mechanical signals might al feet the results 

It was lound that bone remodeling regulated by osteocytes is very cllective indeed 

The bone mass is distributed such that the apparent stiffness of the architecture is very 

well adapted to the externally applied loads, ι e the equilibrium architecture has properties 

of (near) minimal mass tor a certain average strain energy density value As a result, the 

total mass of the structure produced is relatively independent of the loading direction 

However, with surface cells as sensors, remodeling is less sensitive to the external loads, 
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which is manifested by less change in Ihe architecture When bone remodeling is regulated 

by osteocytes, it leads primarily to adaptation of the architecture, but if it is regulated by 

surface cells, it mainly causes adaptation ol strut thickness in the existing architecture, 

which leads to changes in the total mass Apparently, with osteocytes as sensors, the 

remodeling process drifts more easily towards a significantly different morphology Bone 

adaptation is less effective for changes of the loading directions with surface cells as 

sensors This is evident from the frequency distribution plots, which indicate that parts of 

the structure receive relatively little loading, whereas other parts carry relatively high 

loads It might be argued, however, that in reality loading patterns arc relatively constant 

For changes in load magnitudes only, surface cells should be equally capable to regulate 

adaptation as osteocytes, since changes in the load magnitudes require changes in mass 

rather than in architecture It should be noted that adding suriace cells to the osteocyte 

model makes no difference for the output of the model This is due to the choice of the 

surface cell location in the boundary elements, which are also included in the tissue area 

where osteocytes are located 

Computational models, according to which strain derived signals are evaluated at 

the tissue surface and where bone mass is adapted accordingly, as in the present surface 

cell model, have been introduced by Luo et al (1995) and Siffert et al (1996) They found 

changes in strut thickness after changing the load magnitudes in a unit cell model (Siffert 

et al , 1996), but also shape changes when applying loads to idealized structures (Luo et 

al , 1995) However, their results can not be easily extrapolated to larger, more complex 

structures, which inhibits comparison with our results 

The present results indicate that osteocytes would be more efficient sensors than 

bone surface cells, in the sense that they produce architectuies with a more appropriate 

mass distribution relative to the applied loads It has long been suggested (Wolff, 1892) or 

even implicitly assumed that bone is an optimal structure, however, it is uncertain if this is 

in fact the case Therefore, the superior performance of osteocytes as sensors gives no 

direct evidence that they actually fulfill this role 

In conclusion, the incorporation of surface remodeling into the remodeling 

algorithm had no essential effects on the architectures produced or their properties The 

regulation of functional bone adaptation by mechano-sensitive osteocytes would be the 

most effective modality This indicates that mechanical information at the bone surface 

may not be suflicicnt to adequately regulate lunctional bone adaptation 
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OsTEOCYTE D E N S I T Y C H A N G E S 

IN AGING AND OSTEOPOROSIS 

M G Muilender, D D. van der Meer, 
R Huiskes and P. Lips' 

Bone 18 109-113, 1996 

Recently, it was suggested that osteocytes aie involved in the regulation of bone 

remodeling We have examined human trabecular bone of the iliac crest of fracture 

patients and control subjects to determine if osteoporosis is associated with changes in 

osteocyte density or osteocyte death The relationships of these parameters with age was 

also investigated It was found that osteocyte death was not related to age, nor was it 

increased in osteoporosis compared with the tonti ois In healthy adults ranging from 30 

to 91 years, lacunai number per bone area decreases with advancing age, from about 

210/mm2 to 150/mm2 Significantly higher lacunai and osteocyte numbers per bone tissue 

xoluine were found m osteoporotics than in contiols (17,100 lacunae/mm3 and 13,300 

osteocytes/mm vs 12,900 lacunae/mm and 10,500 osteocytes/mm respectively), whereas 

lacunar area was significantly reduced in osteoporotics (from 44 1 \im2 to 39 1 \im2) 

These findings aie compatible with the hypothesis that in osteoporosis osteoblasts produce 

less bone per (ell This can in turn explain the reduced wall thickness, which has· 

previously been desci ibed as characten stic for osteoporosis 
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CHAPTER 6 

INTRODUCTION 

Bone is a dynamic tissue undergoing continuous renewal. The mechanical integrity 

of bone is ensured by removal of bone and subsequent replacement by new bone. After the 

age of 25-30 years, a slightly negative balance between bone resorption and formation may 

cause progressive bone loss. Usually, mechanical integrity is maintained. However, in 

osteoporosis, excessive bone loss and loss of structural elements can lead to mechanical 

failure (Parfitt et al., 1983). As turnover is highest in cancellous bone, osteoporosis 

becomes manifest particularly in regions where the trabecular architecture is of great 

structural importance such as, for instance, in the vertebral body and the femoral 

trochanter. The cause of osteoporosis is sought in a disturbed regulation of the bone 

remodeling process (Eriksen et al., 1994). It is well established that mechanical usage is 

essential for the maintenance of bone. Hence, several investigators suggested that 

osteoporosis is possibly caused by an inadequate appraisal of the mechanical load in bone, 

because the changes in bone occurring in osteoporosis are similar to changes resulting 

from disuse (Frost, 1988; Rodan, 1991). Yet, the normal regulation of bone remodeling 

has still to be unraveled. The regulation of the remodeling sequence and the coupling 

mechanism between the activity of osteoclasts and the activation of osteoblasts are still 

unknown. 

Recently, it was suggested that osteocytes play a role in the regulation of bone 

remodeling. It was hypothesized that osteocytes regulate the recruitment of basic 

multicellular units (BMUs) in response to mechanical stimuli (Marotti et al., 1990; Cowin 

et al, 1991; Lanyon, 1993; Aarden et al., 1994) and that they play a role in the modulation 

of osteoblast activity and the recruitment of osteoblasts which differentiate into osteocytes 

(Marotti et al., 1992). A number of experiments (in vivo and in vitro) showed that 

osteocytes respond to mechanical loading with an increased production of factors which 

are known to affect bone turnover (Lanyon, 1993; Klein-Nulend et al., 1995). Muilender et 

al. (1994) and Mullender and Huiskes (1995), using a computer simulation model, have 

shown that trabecular modeling patterns due to mechanical stimuli can be explained 

quantitatively by assuming osteocytes to act as strain-sensing cells in a regulatory process. 

They showed that osteocyte density and range of influence, i.e. the distance from which 

they can affect BMU activity, may have distinct effects on the trabecular morphology. 

They also showed that a reduced sensitivity of osteocytes to mechanical load caused bone 

loss in a similar way as did disuse. 
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The above hypotheses and lindings have led us to the hypothesis that a disturbance 

in the regulation of bone remodeling in osteoporosis may be associated with a lack of 

osteocytes or inefficacy of function To investigate this hypothesis, we have determined the 

number ot osteocytes per bone area and volume and the fraction of empty lacunae, as an 

indicator ot osteocyte death, in osteoporotic patients and control subjects 

MATERIALS AND METHODS 

SUBJECTS 

The osteoporosis group consisted of 14 patients [4 men and 10 women, age 65 2 ± 

7 2 years (mean ± SD)] with each at least one vertebral crush fracture (collapsed vertebra), 

and 23 patients (9 men and 14 women, age 73 6 ± 113) with hip fractures Transiliac 

biopsies were taken from all patients Iliac crest bone samples trom twenty-five autopsy 

subjects (sudden death in previously healthy persons) and four patients who received 

cosmetic or orthopaedic surgery unrelated to bone disease were obtained for the control 

group (24 men and 5 females, age 57 0 ± 18 5 years) None ol the control group had a his

tory of any disease known to predispose to osteoporosis and neither control subjects or 

patients received drugs with known effects on bone 

HISTOLOGY 

The undecalcified biopsies were embedded in methylmetacrylate, sectioned (5 μπι) 

and stained with Goldner's tnchrome Histomorphomclry was perlormed on the trabecular 

bone of two sections per biopsy Microscopic fields were sampled in equally spaced rows 

by moving the specimens in equally sized steps such that the total specimen area was 

covered A Zeiss integrating eyepiece was used for the measurement of trabecular bone 

volume (BV/TV) by counting the number of hits and the number of intersections More 

extensive hislomorphomelnc data ot both groups were published in a different study 

(Uilcwaal et al , 1987) 

In addition, the number ot lacunae occupied by osteocytes and the number of empty 

lacunae per bone area were measured in trabecular bone Osteocytes are colored red and 

are readily visible in the bone matrix Empty lacunae were defined as lacunae without any 

visible remnant of a cell inside These measurements were performed using a Zeiss micro

scope in conjunction with a digital image analysis system (Videoplan) Twenty fields were 

sampled in two sections per subject (x25 objective) by moving the specimen in equally 

sized steps in χ and y directions In this way, a total bone area ot approximately 1 mm2 per 
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subject was measured to determine lacunar and ostcocyte numbers The investigator had 

no knowledge about the origin of the sections From these measurements the following 

parameters were deducted the traction of empty lacunae (number ol empty lacunae / total 

number ot lacunae), the total number of lacunae per bone area (N Lc/B Ar) and the 

number of lacunae occupied by osteocytes per bone area (N Ot/B Ar) 

The measured number of osteocyte lacunae per area depends on both the number of 

lacunae per volume and the average lacunar size As we wanted to determine if differences 

in lacunar number per bone area between controls and osteoporotics are due to differences 

in lacunar size or to differences in lacunar number per bone volume, we also measured 

lacunar area (Lc Ar) as an indicator of lacunar size These measurements were made by 

outlining at least 75 lacunae per section in randomly selected fields, totaling at least 150 

lacunae per subject (xlOO oil immersion objective) 

The measured parameters N Ot/B Ar, N Lc/B Ar and Lc Ar were used to estimate 

the number ot osteocytes per bone volume (N Ot/BV) and the number ot lacunae per bone 

volume (N Lc/BV) First, the measured lacunar area was used to calculate an average 

"osteocyte radius ' R Assuming that osteocytes have a spherical shape, the measured 

Lc Ar is equal to Lc Ar = 2/t KR2, for infinitely thin sections It (he equation is corrected 

tor the section thickness (f) and it it is iurther assumed that к is the thickness ot the 

smallest part ot a cell which must be included in the section lor its identiticalion, the 

equation modifies to 

Lc Ar = π ' R > - < * - ^ 
3(R к + i/2t) 

(1) 

As this equation is not easily inverted in order to calculate R, it was estimated by fitting R 

to obtain the measured Lc Ar with a maximal error ol 0 005 μιτι2 This is only a rough 

estimate ot R, because osteocytes in fact have an elliptical shape 

The number ot osteocytes and lacunae per volume weie calculated according to 

NOUBV- N O t / B A ' (2) 
2R + t 2k 

N Lc/BV = NI*/BAr (3) 
2R + t 2k 
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where к and t are the same factors as above (Sissons and O'Connor, 1977). A section 

thickness t = 5.0 μηι and a value of λ- - 0.2 μιτι was used. 

STATISTICAL ANALYSIS 

Averages and standard deviations of all measured parameters were determined per 

group. The reproducibility of the method for measuring lacunar density and size was 

assessed using the coefficient of variation. These parameters were measured four times in 

six sections by one observer and were again measured by a second investigator. To 

increase reproducibility, all measurements were conducted by the same investigator. 

Correlations between parameters and age were examined by linear regression analyses. 

Differences between groups were tested using the two-tailed Student's f-test. To exclude 

effects of age differences, only subjects older than 55 years were used for the comparison 

between the control group and the osteoporosis group. However, it should be noted that the 

group of hip fracture patients was still older than the control group. 

RESULTS 

The values for reproducibility are given in Table 1. The mean values and standard 

deviations of all measured parameters are given in Table 2. No differences in parameter 

values were found between males and females within each group. BV/TV was significantly 

decreased in the osteoporotic patients relative to the control group older than 55 years. The 

BV/TV of two control subjects could not be reliably measured because the specimen sizes 

were too small. The N.Lc/B.Ar and also the N.Ot/B.Ar were significantly higher in 

younger controls than in older controls. In addition, the N.Lc/B.Ar and N.Ot/B.Ar were 

Table 1 
Coefficient of variation (%)for repeated measurements". 

Iniraobserver Interobserver 

Lacunae per bone area 4.5 3.5 
Osteocytes per bone area 4.8 5.3 
Percentage of empty lacunae 3.9 7.6 
Lacunar area 14.6 23.1 

"Reproducibility of lacunar numbers, osleocyle numbers and fraction of 
empty lacunae is good, but measurements of osteocyte size show large 
variation. 
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Table 2 
Subject data and htslomorphometnc parameters m control subjects and osteoporotic patients 
(average values and standard deviations). 

Total 
Male 
Female 

Age (ys ) 
BV/TV (%) 
NLc/B Ar (mm2) 
N.Ot/BAr(mm2) 
Fract emply 1 

Lc Ar (μπι2) 
NLc/BVOO1 

NOt/BVOO1 

acunae 

mm3) 

mm ) 

Controls 
<55ys. 

12 

12 

— 
39 0 ± 7 7" 

180 ± 6 1 

206 5 ± 2 9 2" 

172 8 ± 34 9 J 

0 17 ± 0 08 

47 3 ± 5 8 

15 6 ± 2 0" 

13 1 ± 2 4 

>55 ys. 

17 

12 

5 

69 7 ± 1 2 0 

16 8 ± 5 9L 

165 7 ± 3 8 3 

135 1 ± 3 8 0 

0 19 ±0.10 

44 1 ± 7 3 

129 ± 3 2 

105 ± 3 0 

combined 

29 

24 

5 

57 0 ± 1 8 5 

174 ± 6 1 

182 6 ± 3 9 9 

150 7 ± 40 7 

0 18 ± 0 09 

45 5 ± 6 8 

140 ± 3 0 

11 6 ± 3 0 

Osteoporolic patients >55 
hip 

79 7 

12 5 

203 0 

158 3 

0 22 

38 5 

16 5 

128 

fract. 

22 

8 

14 

± 9 3" 

± 4 f 

± 29 7" 

± 2 3 6 J 

± 0 05 

± 4 1" 

± 2 5 " 

± 1 9" 

vert, fract. 

12 

2 

10 

67 6 ± 4 7 

8 4 ± 4 2" 

228 9 ± 2 8 2" 

176 0 ± 2 l 6 d 

0 22 ± 0 06 

40 0 ± 6 2 

184 ± 2 2 

13 7 ± 2 2J 

ys. 
combined 

34 

10 

24 

75 4 ± 9 9 

1 1 0 ± 4 5" 

212 1 ± 3 1 4 b 

164 5 ± 2 4 2 J 

0 22 ± 0 05 

39 1 ± 4 9" 

17 1 ± 2 5 b 

13 3 ± 2 0 b 

a significantly different from the control group >55 years (p < 0.05) 
h significantly different from the control group >55 years (p < 0.01 ) 
L measurements of two subjects discarded (n = 15). 

significantly higher in the hip fracture and vertebral fracture groups relative to (he older 

control group (Fig. 1). Lc.Ar was significantly smaller in hip Iraclure patients and in the 

combined osteoporosis group than in the older control subjects (Fig. 2). As the lacunar size 

was smaller in the osteoporosis group relative to the older control group, the differences in 

number of lacunae and osteocytes per bone volume were even more pronounced than the 

differences between numbers per bone area. The N.Lc/BV and N.Ot/BV were also 

significantly higher in the younger controls in comparison with the older controls. The 

fraction of empty lacunae did not differ significantly between groups. 

The relationships between several parameters and age arc presented in Table 3. In 

the control group, the number of lacunae and osteocytes per bone area and per bone 

volume declined significantly with advancing age (Figs, la and lb). The fraction of empty 

lacunae and lacunar area were not significantly related to age. No significant relationships 

between age and other parameters were found in the osteoporosis group. 
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Figure 1 

The relationships between age and the number of lacunae per bone area (a) and ¡he number of 

osleocytes per bone area (b) are presented. In ¡he control group (Ш), the number of lacunae as well 

as the number of osleocytes per bone area decrease with age. In both groups of fracture patients 

(vert, fract. D ; hip fract. Ш), the numbers of lacunae and osleocytes per bone area are 

significantly increased compared with controls of similar ages 

Table 3 

Linear regression equations and correlation coefficients oj several parameters in relation to age 

У Group Regression equation 

Correlation 

coefficient 

Age (years) N Lc/BAr (mm ) Controls 29 

Osteoporotics 37 

Age (years) N Ot/BAr (mm"2) Controls 29 

Osteoporotics 37 

Age (years) N Lc/BV (101 mm ') Controls 29 

Osteoporotics 37 

Age (years) N.Ot/BV (10 1 mm ') Controls 29 

Osteoporotics 37 

у = 267.65 - 0.76 χ 

у = 210.10- 1.04 л 1 ' 

у = 200.30-0.49 χ 

у= 18.00-0.07 χ " 

у = 21 16- 0.06 χ 

у= 15 6 6 - 0 . 0 7 Jt" 

у= 15 83 -0.04 л: 

-0.48 " 

-0.27 

-0.47 " 

-0 23 

-0.42 J 

-0.25 

-0.44 ' 

-0.20 

"/ ;< 0.05; ь />< 0.01 
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Lacunar area (\im ) 2 60 

50 
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Figure 2 
The lacunar aiea is given a<¡ a juni Hon of age Although ¡he legiessiom are not significant they 
illustrate that lacunai aiea i\ ι educed in osteopoiosis compelled to the control group ((ontiol •, 
veri fract D, hip fract Щ) Regiessions (•— ) Controls у = 49 96 - 0 08 χ (ρ = О 26) and ( ) 
Oiteopoìotics у =43 Π -005 χ (ρ = 0 46) 

DISCUSSION 

Recently, it was suggested that osteocyles arc involved in the regulation ol bone 

remodeling (Marotti et al , 1990, 1992, Cowin et al , 1991, Lanyon, 1993, Aarden et al , 

1994, Mullender et al , 1994, Mullender and Huiskes, 1995) Furthermore, il was 

proposed that the incorporation of osteoblasts into the matrix (ι e the inclusion ot 

osteocytes) is a highly regulated process in which the pre-osteocytes themselves and 

osteocytes already incorporated are actively involved (Nelussi el al 1991, Palumbo et al 

1990a, 1990b, Marotti et al , 1992) Therefore, it is plausible that changes or disturbances 

in (pre-) osleocyte function also affect osteocyte morphology and osteocyte numbei If we 

assume that osteocytes do indeed play a central role in (he regulation of bone turnover, a 

disturbance of this regulatory process may be caused by disturbances in osteocyte presence 

or viability The questions investigated in this study were Does osteocyte number and size 

dillcr between osteoporotic patients compared with contiols, and does excessive osteocyte 
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death occur in osteoporosis' In addition, we have investigated whether osteoLyte death, 

osteocyte density and lacunar density are related to age 

Few investigators have actually measured osteocyte density Hobdell and Howe 

(1971) found that the average volume of bone matrix associated with one osteocyte lacunae 

was 0 000077 mm1 in human adult lamellar bone This is equivalent to 13,000 mm 

lacunae per bone volume Sissons and OConnor (1977) report values lor N Lc/BV 

between 13,900 and 19,400 mm3 in human cortical bone, depending on the type of 

sections used The most accurate method to determine numbers of cells per volume is 

known as the disector method (Steno, 1984, Gundersen, 1986) However, this method 

requires serial sectioning of the specimen As our specimens were already processed for 

the purpose of histomorphomelnc analysis it was not possible to use the disector method 

Instead we measured lacunar area, which is a direct estimate of lacunar volume and the 

number of osteocytes per bone area, which is a method generally accepted lor other cell 

types such as osteoblasts or osteoclasts Although our calculated figures for osteocyte and 

lacunar numbers per bone volume only give an estimate of the actual ligures, our figures 

(N Lc/BV ranging irom 12,900 to 18,400 mm 3) agree very well with the values reported 

earlier 

Significant differences were found in osteocyte density and lacunar density between 

osteoporotics and controls (>55 years) Lacunar and osteocyte number per bone area were 

significantly increased in osteoporotic patients relative to controls A higher number ot 

osteocyte lacunae per bone area may be due to a higher number ol lacunae per bone 

volume and/or to enlarged lacunar sizes (Sissons and O'Connor, 1977, Steno, 1984) 

Enlarged osteocyte lacunae have been reported in osteoporotic patients (Wright et al , 

1978) and in calcium deficient rats (Sissons et al , 1990, 1984) However, in this study we 

found that the lacunar area was smaller in the osteoporosis group compared with controls 

Hence, the differences in numbers of lacunae and osteocytes per bone volume were even 

more pronounced than these differences in numbers per bone area These results suggest 

that in osteoporosis less bone volume was produced per osteocyte There are three possible 

explanations tor this phenomenon (1) a highei percentage ot the bone lorming osteoblasts 

is embedded as osteocytes, whereas the average activity or longevity is unchanged, (2) the 

bone forming activity ol osteoblasts is reduced, and (3) the average lite span of osteoblasts 

is shorter The latter two explanations seem to be the most likely ones, because they are 

compatible with the lindings that bone formation and mean wall thickness are decreased 

in osteoporotic patients compared with normals (Enksen et al , 1990, Darby and Meunier, 
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1981). Eriksen and Kassem (1992) even state that the most marked difference between 

osteoporotic and normal women is a considerable reduction of mean wall thickness in 

osteoporotics. While Eriksen and Kassem (1992) suggested this to be due to a reduced 

osteoblastic vigor, Lips et al. (1978) explained the decrease in mean wall thickness by a 

decreased longevity of the osteoblasts. To distinguish between these two hypotheses, Shih 

et al. (1993) investigated the relationship between bone formation rate and osteoblast 

surface. They found that although bone formation rate is reduced in women with 

osteoporosis compared to normal women, the relationship was similar in both groups. This 

implies that in osteoporotics either fewer osteoblasts are recruited or that active osteoblasts 

are transformed quicker into less active ones. Our results suggest that the bone forming 

capacity per cell is reduced, which is compatible with the latter explanation of Shih et al. 

(1993). For, a decreased longevity of osteoblasts may explain that a higher number is 

incorporated as osteocytes per bone volume. The reduced lacunar size may also indicate a 

history of reduced activity of these cells. 

The relationship between age and osteocyte density in humans has (to our 

knowledge) not yet been reported. A significant decrease of osteocyte and lacunar density 

associated with a (not significant) decrease in lacunar size was found with increasing age 

in healthy adults from 30-91 years. This decrease was also observed in the osteoporosis 

group, but it was not significant due to the smaller age range. Some contradiction exists in 

these results. As Lips et al. (1978) showed that mean wall thickness in trabecular bone 

decreases with aging, it would be expected that osteocyte number increases with increasing 

age and that this increase is more pronounced in osteoporosis. However, it was found that 

osteocyte density decreases with age. Hence, it seems that two different phenomena occur 

at the same time. In order to explain these phenomena, it is necessary to investigate the 

relationship between osteocyte number and remodeling activity more closely. 

The percentage empty lacunae was used as an indicator of osteocyte death. 

Nonviable osteocytes can stain normally up to 16 weeks (Kenzora, 1978), but a gradual 

loss of osteocytes will be reflected by an increase of empty lacunae. It is possible that 

lacunae appear to be empty due to sectioning artifacts. However, this is very unlikely 

because the bone is undecalcified and the cellular processes of osteocytes are integrated 

within the bone matrix. Further, if artifacts occur, it is assumed that they occur equally in 

both control and osteoporosis groups such that differences in the number of empty lacunae 

between the two groups will still be detected. The percentage of empty lacunae ranged 

from 5 to 40% in all subjects. No significant correlation was found between the percentage 
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empty lacunae and age in both the control and the osteoporosis groups Similar results 

were found by Baud and Auil (1971), who looked at bone trom the mandible In contrast, 

Wong et al (1985, 1987) observed a loss of viable osteocytes in the femoral head with 

increasing age and Frost (1960) also found that the percentage empty lacunae increased 

with age Dunstan et al (1993) showed that the occurrence of osteocyte death with age 

depends strongly on the location of measurement They found that osteocyte death did 

increase with age in the femoral head but did not increase in the second lumbar vertebrae 

They suggested that bone with a constant high viability is remodeled at a higher rate, and 

thus bone is replaced before the osleocytes have a chance to die 

The fraction empty lacunae was not significantly elevated in osteoporosis compared 

with controls Hence, it seems that osteoporosis is not associated with increased osteocyte 

death, which challenges the hypothesis that mechanical load is appraised inadequately due 

to increased osteocyte death However, the hypothesis that osteocytes are less sensitive to 

mechanical stimuli still needs to be investigated 
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submitted 

Recently, the hypothesis that osteocytes sense mechanical stimuli and are involved 

in the regulation of bone remodeling has gained support It was suggested that 

osteoporosis is associated with a reduction m osteocyte mechano-sensitivity However, 

little is known about osteocytes and their function in healthy or in diseased bone In this 

study the relationships between osteocyte density, bone lemodelmg parameters, gender 

and osteoporosis were investigated The numbers and sizes of osteocytes were measured, 

in addition to conventional histomorphometnc parameters of trabecular bone, in healthy 

postmenopausal women and health) men of similar ages and in men and women with 

vertebral fractures Females were found to have markedly more osteocytes and higher 

total lacunar aiea per bone area than males, independent of the disease Furthermore, 

patients with vertebral fractures had reduced osteocyte numbers and reduced total 

lacunar area Histomorphometnc parameters revealed no differences between parameters 

of bone architecture, bone formation and lesorption between men and women In 

vertebral fiacture patients, bone mass, trabecular number and thickness, and bone 

turnover were significantly reduced while eroded surface was increased relative to 

healthy subjects These results aie consistent with impaired osteoblast function in 

patients Moreover, the differences in osteocyte numbers present evidence that alterations 

occur within the whole population of cells of the osteoblastic lineage Further research is 

needed to elucidate the interplay between the role of osteocytes, mechanical load, 

hormones and other factors 

1 Laboratoire de Biologie du Tissu Osseux, University ot Medicine, Saint Etienne, France 
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CHAPTER 7 

INTRODUCTION 

Both men and women lose bone with advancing age During menopause the rate of 

bone loss is increased, which leads lo an increased risk ol bone fracture in postmenopausal 

women compared to men of the same age However, the incidence of fractures is not only 

related to bone mass, but also to bone architecture It is thought that, in osteoporosis, the 

quality of the bone architecture is reduced as well as bone mass (Kleerekoper et al , 1985, 

Parfitt, 1984) Loss of bone mass is the result of increased osteoclastic activity, reduced 

osteoblastic activity or both Several authors have reported that the mechanism ot bone 

loss differs between men and women Whereas women lose bone mass mainly by the loss 

of whole trabeculae (Parfitt et al , 1983, Recker et al , 1988, Steinichc et al , 1994, Moore 

et al , 1992), in men the trabecular architecture remains intact but trabecular thickness 

reduces (Aaron et al , 1987, Scane et al , 1993) The precise mechanisms and causes of 

changes in remodeling activity in osteoporosis, and differences between gender, are still 

unclear In fact, the regulation of normal bone turnover has not yet been unraveled 

During the last decade, the hypothesis that osteocytcs play an important iole in the 

regulation of bone remodeling has gained support It is assumed that they mediate other 

cells to initiate remodeling activity in response to mechanical stimuli (Marotti, 1990, 

Cowin et al , 1991, Lanyon, 1993, Mullender and Huiskes, 1995, Aarden et al , 1996, 

Parfitt, 1996) It has been shown that osteocytcs are mechano-sensitivc (Pead et al , 1988, 

Skerry et al, 1989, Klein-Nulend et al , 1995, Lean et al , 1996) In addition, it was shown 

in computer simulation studies that osteocytcs are extremely well suited for the regulation 

of functional mechanical adaptation in bone (Mullender et al , 1994, Mullender and 

Huiskes, 1995) Rodan (1997) suggested that the coupling between osteoclastic and 

osteoblastic activity may be mechanically regulated In addition, it has been hypothesized 

that in osteoporosis mechanical signals are poorly measured, mimicking a situation of 

disuse (Frost, 1988, Rodan, 1991) It is well known that accelerated loss of bone in women 

during menopause is associated with reduced levels of estrogen The finding that estrogen 

receptors are abundantly present in osteocytes (Braidman et al , 1995) and relatively 

sparsely in other cells of the osteoblast lineage (Ourslcr el al , 1996) suggests that 

osteocytes are likely to be involved in the regulation of bone remodeling Moreover, the 

incorporation of osteoblasts into the bone matrix is a highly regulated process in which 

osteocytes, osteoblasts and pre-osteoblasts act in close cooperation (Nefussi el al 1991, 

Palumbo et al 1990a, 1990b, Marotti et al , 1992) Hence, knowledge of the osteocyte 
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population may be important lor normal bone biology and lor the assessment of bone 

diseases 

Pieviously we have tound that osteocyte density in trabecular bone trom the ilium 

decreases significantly with increasing age and that osteocyte density diifered between 

normal and osteoporotic subjects (Mullender et al, 1996) As osteocyte density reflects the 

result of the remodeling process and osteocytes may in turn affect remodeling activity, 

these results suggest thai differences exist between normal and osteoporotic subjects In 

this study we aimed to investigate the relationships between osteocyte density, bone 

remodeling parameters, gender and osteoporosis For this purpose histomorphometric 

parameters were measured in cancellous bone in healthy postmenopausal women and 

healthy men ot similar ages and in women and men with vertebral crush fractures 

MATERIALS AND METHODS 

SUBJECTS 

In this study tour subgroups of subjects were compared a control group and an 

osteoporotic group, each subdivided in males and females The control subjects were all 

healthy volunteers, who gave their informed consent for the tests performed The male 

control group consisted of 21 men over 60 years ot age (mean age 67 ± 6 (SD) years), the 

female control group consisted ot 13 postmenopausal women (mean age 64 ± 5 (SD) 

years) All control subjects were healthy and none of them were taking any medication 

known to atfect bone density or calcium and bone metabolism The osteoporotic groups 

were male and female subjects with untreated osteoporosis They each had at least one 

non traumatic vertebral crush (radure, but no other bone disease These groups consisted 

ot 15 men (mean age 60 ± 11 (SD) years) and 40 women (mean age 70 ± 11 (SD) years) 

None ol the patients was taking drugs with any known etlect on bone metabolism 

MATERIALS 

Transihac bone biopsies, were obtained with a Bordier trephine of 8 mm in 

diameter horn all subjects The site ol biopsy was 2cm interior trom the iliac crest and 2 

cm posterior trom the antenosupcnoi iliac spine The biopsies were processed according to 

the methods described by Chappaid cl al (1983a) All contiol subjects and 35 female and 

11 male osteoporotic subjects had received two demethyl Chlortetracycline labels separated 

by an interval ot 12 days 7 μιτι sections were cut (K Jung microtome) Four unstained 

sections were used tor the assessment ot fluorescent labels For the measurements ol 
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structural indices and osteocyte density non-serial sections were used, and stained with 

Mallory staining or Goldner staining (eight each) In 31 control and 30 osteoporotic 

subjects osteoclast numbers and surfaces were measured For these measurements, six 

sections were stained for the osteoclastic tartrate resistant acid phosphatase (TRAP), and 

counterstained with phosphomolybic analine blue (Chappard et al, 1983b) 

Measurements of trabecular bone volume (BV/TV) and cancellous bone surface 

(BS) were performed with an automatic image analyzer (Leilz TAS +) at a 25x 

magnification From these parameters architectural parameters were calculated (Parfitt et 

al , 1987) In addition, a number of parameters associated with bone formation were 

measured the distance between double fluorescent labels in order to calculate the mineral 

apposition rate (MAR), relative osteoid volume (OV/BV), surface (OS/BS) and thickness 

(O Th) Measurements associated with bone resorption were the relative trabecular surface 

covered by osteoclastic resorption lacunae (ES/BS), the number of osteoclasis per tissue 

area (N Oc/T Ar) and the trabecular surface covered by osteoclasts (Oc S/BS) Finally, the 

number of osteocytes per bone area (N Ol/B Ar) and the area of osteocyte lacunae (Lac Ar) 

were measured The numbers of osteocytes were counted in trabecular bone Osteocytes are 

colored red and are readily visible in the bone matrix Twenty fields were sampled in two 

sections per subject by moving the specimens in equally sized steps in χ and y directions 

In this way, a total bone area of approximately 1 mm2 per subject was measured to 

determine osteocyte numbers Lacunar area was measured by outlining at least 75 lacunae 

in the trabecular bone area per section in randomly selected fields (xlOO oil immersion 

objective), totaling at least 150 lacunae per subject (Sissons et al , 1990, MuUender et al , 

1996) For the latter two parameters the intra-observer reproducibility was determined by 

measuring the parameters six times in four different subjects 

The parameters were measured with a serru-aulomatic system (a microscope and a 

digitizing tablet connected to a computer) using a magnification of χ 100 and x250 for 

mineral apposition rate, osteoid thickness, relative osteoclast surlace and lacunar area All 

measured and calculated parameters are listed in Table 1 

STATISTICS 

To assess the reproducibility of the measured osteocyte number and lacunar area, 

the coefficients of variation were calculated for repealed measurements Comparison of 

means between groups was performed with two way analyses of variance (ANOVA) to 

analyze gender differences and differences between control subjects and osteoporotics and 
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Table 1 Measured and calculated parameters of bone lustomorphometry 

Parameter 

Bone architetture 
Bone volume 
Bone surface to volume ratio 
Trabecular thickness 
Trabecular number 
Trabecular separation 

Bone formation 
Relative osteoid volume 
Relative osteoid surface 
Osteoid thickness 
Mineral apposition rate 

Bone resorption 
Eroded surface 
Osteoclast numer per tissue area 
Osteoclast numer per bone area 
Acive resorption surface 

Osieocytes 
Number ot osteocytes per bone area 
Lacunar area 
Total lacunar area per bone area 

Abbreviation 

BV/TV 
BS/BV 
TbTh 
TbN 
TbSp 

OV/BV 
OS/BS 
OTh 
MAR 

ES/BS 
N Oc/TAr 
N Oc/BAr 
Oc S/BS 

N Ot/BAr 
Lac AT 

Lac Ar/BAr 

Unit 

% 
mm ' 
дт 
mm ' 
μπι 

% 
% 
цт 
mm/d 

% 
mm2 

mm2 

% 

mm2 

цт 2 

% 

Equation 

= 2 χ BV/BS 
= (BS/BV) χ (BV/TV) / 2 
= (l-BV/TV)/TbN 

corrected by π/4 
corrected by π/4 

= (Ν Ос/ГАг) / (BV/TV) 

= 10" χ N Ot/B Ar χ Lac Ar 

their interdependence Linear regressions and correlation coefficients between parameters 

were calculated using the method ol least squares 

RESULTS 

All architectural parameters differed significantly between controls and patients 

Bone volume was lower and trabeculae were fewer and thinner in osteoporotic patients 

(Table 2) Trabecular number was more reduced in osteoporotic women, whereas 

trabecular thickness was more reduced in osteoporotic men However, the differences 

between control subjects and patients did not depend significantly on gender 

Parameters related to bone formation differed significantly between control subjects 

and osteoporotic patients as well (Table 2) All osteoid indices and the mineral apposition 

rate were significantly smaller in osteoporotic patients compared to controls Furthermore, 

osteoid thickness was significantly smaller in men compared to women, independent of the 

condition 

The eroded surface was significantly laiger in osteoporotics compared to controls 

The number of osteoclasts per tissue area, however, was significantly smaller in the 
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osteoporotic groups (Table 2) This difference was larger in women than in men In 

addition, the trabecular bone surface covered by osteoclasts was smaller in osteoporotics 

The number of osteoclasts per bone area was not significantly different between groups 

In two female and four male vertebral fracture patients, osteocyte number and 

lacunar size could not be measured due to the poor quality of the sections The ïntra-

observer reproducibility of both parameters was satisfactory, the coefficient of variation 

was 6 6% for the number of osteocytes per bone area and 8 4% for lacunar area The 

number ol osteocytes per bone area and total lacunar area per bone area was significantly 

reduced in osteoporotic patients compared to controls However, these parameters 

depended even more strongly on gender the number of osteocytes and total lacunar area 

per bone area were both larger in women compared to men (Table 2) 

Between groups of parameters (bone architecture, bone lormalion, bone resorption 

and osteocytes) no consistent correlations were found 

DISCUSSION 

In this study, histomorphometnc parameters were compared between 

postmenopausal women and men of similar ages and between untreated vertebral fracture 

patients and healthy volunteers In addition to the conventionally measured parameters, 

the numbers and sizes of osteocytes were measured The most intriguing observation was 

the marked difference in osteocyte numbers and total lacunar area per area of bone 

between male and female subjects Females were found to have about 15% more osteocytes 

than males, independent of the disease It is known that sex steroid hormones have 

gender-dependent effects on bone cells, bone growth and modeling (Ornoy et al , 1994a, 

Oursler et al , 1996). Therefore, the difference in osteocyte number might be related to 

gender-dependent regulation by sex hormones, either indirectly or directly, as estrogen 

receptors have been identified in osteocytes (Braidman et al , 1995) and in osteoblasts 

(Oursler et al , 1996) Furthermore, Cheng et al (1994, 1995) found that combined 

mechanical loading and estrogen administration had a synergistic effect on bone formation 

in rat ulnae, but only in bones from female rats (Cheng et al , 1995) Parathyroid hormone 

(PTH) has been shown to potentiate the response of bone cells to mechanical strain as well 

(Carvalho et al , 1994) PTH receptors arc documented in osteoblasts and also in 

osteocytes and PTH was found to increase cAMP levels in both cell types (van der Plas et 

al , 1994) Furthermore, dilferences in PTH secretion profiles between men and women 

have been reported (Calvo et al , 1991) These findings suggest an interplay between 
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osteocyte function estrogen, PTH and mechanical load, which in turn depends on gender 

Other sex-related ditlercnces in bone biology have also been demonstrated such as 

differences in the distribution of osteocalcin in ihc extracellular matrix (Ingram el al 

1994) and gender-dependent responses to vitamin D metabolites in rats (Ornoy et al , 

1994b) However, in order to understand the mici dependence of these sex dilierences 

further investigations are needed 

It was also found that osteoporotic subjects have fewer osteocytes than control 

subjects This is in contrast to previous findings (Mullender et al , 1996) This discrepancy 

may be explained by a confounding effect of the mixing of sexes, since in the first study 

the groups were not matched tor gender Moreover, the use of autopsy patients as controls 

in the previous study may also have affected the results, as it remains questionable it 

autopsy subjects can be regarded as "normal" (Recker et al , 1988) The meaning of 

reduced osteocyte density in vertebral fracture patients is unclear Since there is no 

evidence for osteocyte death in iliac cancellous bone (Parliti, 1993, Mullender et al , 1996, 

Dunstan et al , 1993), the number of osteocytes present reflects the number ot cells which 

are embedded into the matrix A reduction in this number may be related to a decreased 

number of osteoblasts available tor embedding in the matrix, since it has been suggested 

that in aging and osteoporosis detective osteoblast recruitment is a major factor 

contributing to bone loss (Partitt et al , 1995, Vernejoul 1989) Likewise, Roholl et al 

(1994) showed that the maturation of prc-oslcoblasts into osteoblasts decreases with 

advancing age However, no relationships were found between osteocyte number or 

osteocyte lacunar area and parameters of bone formation Gohel el al (1995) íound that 

the formation of osteocytes in fetal rat bone, ι e osteocyte density, was stimulated by 

insulin-like growth factor I (IGF-I), which is associated with enhanced osteoblastic activity 

and bone formation In addition, mechanical loading has been reported to affect osteocyte 

density in rat bones (Li et al, 1991) It was further found that IGF-I mRNA was strongly 

expressed in osteocytes after mechanical loading of rat bone (Lean et al 1996) 

Combining these observations, it is conceivable that mechanical loading does not only 

affect bone mass, but that it influences bone cellulanty as well On the other hand, the 

effects of mechanical strain in bone depend on the bone s capacity to detect it and perhaps 

also on the number of oslcocyles present Moreover, the response ol bone to mechanical 

strain depends on the hormonal environment It is established that PTH levels increase 

with advancing age Yet, the role of PTH in osteoporosis is still controversial 

Nevertheless, the indication thai PTH enhances sensitivity to mechanical loads (Carvalho 
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et al., 1994) and the observation that PTH secretion and PTH response to a hypocalcémie 

stimulus are blunted in osteoporotic women (Silverbcrg et al., 1996) would favor the 

hypothesis that PTH protects against age related bone loss (Silverberg et al., 1996). 

The values of the architectural parameters in healthy and osteoporotic subjects 

found in this study are consistent with the results of previous studies (Rccker et al, 1988; 

Recker, 1993; Parfitt et al., 1983; Arlot et al., 1990). Although both in male and female 

patients trabecular number and thickness were significantly reduced compared to controls, 

our findings confirm the observations of earlier studies that bone loss in osteoporotic 

women is primarily due to the loss of whole trabeculae, while in osteoporotic men 

trabecular thickness is reduced (Scane et al., 1993; Parfitt, 1992; Aaron el al., 1987). The 

reduced values of bone formation parameters in the vertebral fracture patients indicate that 

bone formation is impaired in these patients. Reduced osteoid indices and mineral 

apposition rates in osteoporotics have been reported by other authors as well (Parfitt et al., 

1995; Arlot et al, 1990; Moore et al., 1992). The values for osteoclast covered surface and 

osteoclast number are high in comparison with other studies (Recker et al., 1988), but this 

is probably due to the use of TRAP as an osteoclast marker (Parfitt, 1993). In contrast with 

most other studies (Arlot et al., 1990), we found osteoclast number per tissue area and 

osteoclast surface to be reduced in patients relative to controls. The eroded surface, 

however, was significantly larger in patients. These results indicate that in these patients 

overall turnover is reduced compared to controls. The increased extent of surface with 

erosions may indicate uncoupling between resorption and formation, which is consistent 

with impaired osteoblast function, or may be the result of a former period of increased 

osteoclastic activity. 

In conclusion, presently there is strong evidence that osteocytes are involved in the 

mechanical regulation of bone turnover. Osteocytes are the most numerous cells in bone 

tissue and are located in the most advantageous site to sense mechanical signals. Our 

results show that the numbers of osteocytes which are embedded in the bone matrix 

depend strongly on gender and differ between healthy and osteoporotic people. Patients 

with vertebral fractures showed changes in bone architecture typical for osteoporosis and 

had reduced bone turnover. These differences may present evidence that alterations occur 

within the whole population of cells of the osteoblastic lineage. At present one can only 

speculate on the physiological meaning of this finding. Further research is needed to 

elucidate the interplay between the role of osteocytes, mechanical load, hormones and 

other factors. 
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ABSTRACT 

The architecture of trabecular bone is thought to be controlled by mechano-

sensitive bone cells, where hormones provide a background for their responses to 

mechanical signals. It has been suggested that in osteoporosis this response is hampered 

by changed hormonal levels, thereby reducing the mechano-sensitivity of the cells or, in 

other words, increasing their mechanical set point, which would lead to bone loss. We 

have investigated if a temporary increase of the mechanical set point causes deterioration 

of trabecular bone architecture such as seen in osteoporosis. Furthermore, the effects of a 

changed loading pattern were investigated for the same reason. For this purpose, we used 

a computer simulation model, which was based on the regulation of bone architecture by 

mechano-sensitive osteocytes. It was found that a temporary shift of the mechanical set 

point causes no lasting changes in architecture. Although an increase of the mechanical 

set point induces bone loss, the mechanism of bone loss (trabecular thinning) differs from 

what is obseiyed in osteoporosis (loss of whole trabeculae). Hence, a change of the 

mechanical set point alone cannot explain bone loss as seen in osteoporosis. On the other 

hand, the removal of load components in a particular direction resulted in irreversible 

loss of whole trabeculae. These results indicate that such temporary changes in loading 

patterns could be important risk factors for osteoporosis. 

Institute for Biomedical Engineering, University of Zürich & ΕΤΗ, Switzerland 
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INTRODUCTION 

The architecture ot trabecular bone is thought to be related to the mechanical loads 

to which it is subjected This balance between bone architecture and mechanical loading is 

a dynamic one, where bone is constantly being resorbed and new bone is lormed In 

osteoporosis, however, bone is inadequately maintained, leading to inferior quality ot bone 

architecture and osteopenia (Kleerekoper et al, 1985, Parliti, 1984) Because the normal 

regulation of bone turnover is complex, with many factors involved, the causes lor bone 

deterioration are unclear Rodan (1996) summarized its essence as a process which is 

controlled by mechanical loading in an hormonal environment Yet, the precise role of 

mechanical factors in the process ot bone remodeling is unclear 

In previous studies, we investigated the effects of mechanical factors on trabecular 

bone architecture, using computer simulation models (Mullender et al , 1994, Mullender 

and Huiskes, 1995, Van Rietbergen et al , 1996a) We assumed that bone turnover is 

controlled locally by mechano-sensitive osteocytes In these simulations, a piece of bone 

tissue was modeled with finite elements to determine local mechanical quantities The 

specimen was loaded at the boundaries, and the mechanical adaptation process was 

simulated until a balance between loading and bone morphology was reached The 

assumed process could explain the genesis and adaptation ot trabecular patterns These 

patterns resembled typical trabecular architectures, including plates and struts (Van 

Rietbergen et al , 1996a), which aligned with the external load orientations (Mullender 

and Huiskes, 1995) This model demonstrated that the hypothesis of bone remodeling as a 

locally regulated process, governed by mechanical signals, sensed by osteocytes, is 

feasible 

In this study, the question is addressed whether temporary alterations in mechanical 

loads or deficiencies in the metabolic response to mechanical loads could be responsible 

for the deterioration ot bone architecture Several authors proposed that osteoporosis is 

associated with alterations in the response ot bone cells to mechanical loads (Frost, 1987, 

1992, Kimmel, 1993, Rodan, 1996), in other words, a change in the mechano-sensitivity 

(set point) of sensor cells We tested this hypothesis, using the osteocyte-regulated bone-

remodeling theory In addition, the effects of temporary changes of mechanical loads on 

trabecular bone architecture were investigated To permit comparison ot the results with 

phenomena as seen in real trabecular bone, the theory was applied to a three-dimensional 

finite element model of a reconstructed trabecular bone specimen from a vertebral body 
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Within the computer simulation model, the mechanical set point ot the osteocytes and 

mechanical loads were varied, and their effects on the trabecular architecture evaluated 

METHODS 

MATERIAL 

A core of trabecular bone was excised trom the 4th lumbar vertebra ol a 37 year old 

male autopsy patient The subject had no history of bone disease The specimen was 

digitized using a micro-CT scanner (Ruegsegger et al , 1996) with a resolution of 28 μιτι 

The CT-image was processed to obtain the trabecular morphology of the specimen 

(Ruegsegger et al , 1996) From the total reconstruction a 3 9 mm cubic specimen was 

selected tor use in the mode) The axes of the cube were oriented along the anatomical 

axes The digital reconstruction was reduced to a courser grid by grouping 7x7x7 voxels to 

one new voxel, which measured 98 μπι on each side A density value was assigned to each 

voxel, varying between 0 003 and 1, depending on the number of original "bone voxels" 

per new voxel The bone tissue was modeled by finite elements (FE) for the calculation ol 

the local signal distribution trom the external loads The model was generated by directly 

converting each voxel in the reconstruction into one element with material properties 

calculated trom the relative density (eq 4) In order to analyze the relatively large three-

dimensional model, a special purpose FE-code was used, which was specially developed to 

solve large scale FE problems (van Rietbergen el al , 1995a, 1996c) 

MODEL FOR MECHANICAL REGULATION OF BONE REMODELING 

The regulatory process according to Mullender and Huiskes (1995) was applied to 

the FE model of the reconstructed bone specimen (Fig 1) It assumes that osteocytes are 

distributed in a network throughout the bone tissue The external mechanical load is 

transmitted through the tissue in the architecture, whereby each osteocyte senses a 

particular mechanical signal After evaluation of the signal, the osteocyte stimulates 

populations of osteoblasts and osteoclasts, the basic cellular units (BMUs), to regulate net 

bone turnover It is lurther assumed that the effect of each osteocyte on a BMU depends on 

the distance from the osteocyte At each location in the bone tissue, the total stimulus 

value is evaluated and bone mass is adapted according to its magnitude This process is 

continued until a balance between the external loads and bone architecture is reached 
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*- Δ bone mass 

Figure 1 
The assumed feed-back control process for bone adaptation. The osteocyles sense mechanical signal·;. 
Consequently, they stimulate populations of osteoclasts and osteoblasts (bone multi-cellular uniti) to add 
or remove bone. The changed architecture affects the local mechanical loading of the structure, which m 
turn affects the signal sensed by the osteocytes. 

MATHEMATICAL FORMULATION 

For the mechanical signal S, sensed by each osteocyte, we lake the strain energy 

density (J/mm1) (Huiskes, 1997). According to the difference between the actual signal 

and a reference signal k, the osteocyte produces a stimulus. The amount of stimulus 

received by a BMU depends on the distance between the osteocyte and the location ol the 

actor cells. Hence, the stimulus value F(x,t) at location χ at time t is the sum of the stimuli 

received from all osteocytes: 

F(x.t) = Zf.fxHS.M-k), (I) 
i = l 

with N the number of osteocytes and the spatial influence function 

-d,(x) 

f,(x) =e D , (2) 

which describes the reduction of stimulus with increasing distance d,(x) (mm) between 

osteocyte i and location x. The parameter D determines the gradient of the decline. 

The change in the relative density m(x,t) in location χ is governed by the local 

stimulus value F(x,t). Hence, 

dm(X'l> =xF{x,t) with 0 < m(x,t) < 1, (3) 
dt 
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where τ (MPa s ) is a constant regulating the rate oí the process The local elastic proper

ties of (he tissue E(x,t) were calculated from the local relative density using a cubic power 

law 

E(x,t) = С m\x,t), (4) 

with С (MPa) a constant (Currcy, 1988) 

The development of bone architecture in time was simulated numerically (Fig 2). 

A variable time step (Δί,) was used, which was calculated from a maximal change in 

density in all elements (Ammtu) (van Rietbergen et al , 1996a), with the restriction that Δ/, 

< 2At,, 

load r- elastic properties 

Finite 

Clement 

architecture 

Δ m 

remodeling rule 

ugnai m 

osteocytes S, 

Δ ί 

ΡΦΟ 

stimulus value F 

target 

signal 

к 

F = 0 

»· end 

osteocyte 

di stance 

relationship 

Figure 2 

Schematic repi esentation of the computer simulation model 

REMODELING SIMULATIONS 

The physiological parameters in the models are the reference signal k, the sensor 

density n, the exponential osteocyte-influence function (characterized by the distance 

parameter D), the rate constant τ, and the constant C, which is equal to the maximal 

elastic modulus of bone tissue The reference signal к is the mechanical "set point" of the 

osteocytes, an increase of its value results in a decrease of the stimulus produced by the 

osteocytes, tor the same mechanical load The osteocyte density η was chosen within a 
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physiological range as 10,625 mm"3 (Mullender et al., 1996) and D was 117 μτη 

(Mullender and Huiskes, 1995). С was taken as 10 GPa (Rho et al., 1993) and the rate 

constant was arbitrarily set at τ = 0.1 mm3/Js. The maximal change in density allowed per 

time step Ammat was 0.1. 

The axes of orthotropy of the architecture were determined according to van 

Rietbergen et al., (1996b). As these axes coincided with the anatomical axes, the specimen 

was loaded in these orientations, as compressive stresses distributed over all 6 faces. The 

loads in the antero-posterior (x) and medio-lateral (у) directions were both 1 MPa, the load 

in the cranio-caudal (z) direction was 2 Mpa (Fig. 3, load case A). The set point к was 

assigned a value of 0.02 J/mm and the process of bone remodeling was simulated for 50 

increments, at which lime changes in architecture were minimal. The new architecture 

was used as the starting configuration for a number of variations. The effects of a change 

in the mechanical set point for the osteocytes was assessed for two variations of k: first, к 

was increased from 0.02 to 0.03 J/mm3 and then к was increased from 0.02 to 0.20 J/mm3, 

after which its value was restored to 0.02 J/mm3. The effects of changes in load were 

investigated for two cases as well. First, the load was reduced by removing compressive 

forces in the transverse directions, leaving only the load of 2 MPa in the vertical direction 

(Fig. 3, load case B), and then the process was restarted after restoring the original loading 

situation (load case A). Second, the load was changed by rotating the loading 

configuration by 45° around the x-axis, relative to the specimen (Fig. 3, load case C). The 

remodeling simulation for each of these variations was also continued for 50 increments. 

The resulting architectures were evaluated by their morphologies and by characterization 

of their apparent mechanical properties, according to Van Rietbergen el al. (1996b). 

ι F 

4 [ 

С 

Figure 3 
The directions of the applied loads are illustrated for the three load cases (А, В, C). 

104 



EFFECTS OF MECHANICAL SET POINT ON BONE ARCHITECTURE 

RESULTS 

During simulations the remodeling process maintained a trabecular architecture. 

The relative apparent density and apparent stiffness values (in the orthotropic main 

directions) for all architectures are given in Table 1. The initial morphology adapted to the 

applied loads by increasing the overall density (Table 1), after which a balance between 

the loads and the relative apparent density was obtained. This was accomplished by 

thickening of the existing trabeculae and by the formation of thin plates at the surfaces of 

the cube (Fig. 4). The overall stiffness of the specimen increased by approximately 150%, 

without changing the anisolropy of the specimen (Table 1). Increasing the mechanical set 

point, i.e. the reference signal k, to 0.03 J/mra , reversed this, resulting in loss of bone 

mass to almost that of the original architecture (Table 1). Again, the change in bone mass 

was mainly the result of a modulation of trabecular thickness without significant changes 

in architecture (Fig. 4). Even a ten-fold increase of к to 0.20 J/inm'1 did not change the 

integrity of the architecture significantly. Although the relative apparent density reduced 

considerably (Table 1), due to extreme thinning of the trabeculae, few trabeculae were 

actually lost (Fig. 4). Nevertheless, the stiffness of the specimen was reduced dramatically 

(Fig. 5). Restoration of bone mass, architecture and apparent mechanical properties were 

almost complete after reparation of к to 0.02 J/mm3 (Fig. 4, Table 1). 

Table J 
The relative apparerà density values and the orthotropic elastic moduli for the reconstructed 
specimen and for the architectures produced by the model. 

Architecture 
Original specimen 
After initial remodeling 
Variation of Л 

к = 0.03 J/mm' 
к = 0.20 J/mm3 

reversal of к to 0.02 J/mm 
Variation of loading 

load case В 
reversal to initial load case A 
load case С 

Relative apparent 
density 

(%) 

13 
20 

16 
9 

19 

14 
20 
19 

Apparent Young's 

Exx 
(GPa) 

0.15 
0.24 

0.17 
0.04 
0.23 

0.14 
0.28 
0.23 

Eyy 
(GPa) 

0.12 
0.21 

0.16 
0.04 
0.23 

0.15 
0.29 
0.19 

; moduli 

Ezz 
(GPa) 

0.34 
0.49 

0.38 
0.09 
0.49 

0.69 
0.58 
0.39 
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Figure 4 

The initial architecture and the architectures after remodeling are shown for the variations of the 

mechanical reference signal к To reveal the internal structure, only half of the model is shown and 

the top layer is omitted 
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The changes in the orthotopic Young '¡ moduli are shown for the subsequent variations of the 

reference signal Initially the apparent stiffness of the architecture increases After increasing the 

value of к to 0 20 J/mm the stiffness reduces significantly, however, reparation of к to Us initial 

value restores the apparent stiffness completely 
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In contrast, removing the loads in the transverse plane led to removal of almost all 

horizontal struts and caused belter alignment ot the remaining Irabeculae with the vertical 

axis In addition, a few plate-like structures that were present transformed into vertical 

columns, ι e strut-like structures (Fig 6) This resulted in a highly anisotropic 

architecture with increased stiftness in the vertical direction (Table 1) The relative 

apparent density was reduced lrom 20% to 14% (Table 1) After reapplying the loads in 

the transverse plane, no new horizontal trabeculae were formed The trabeculae that were 

still connected thickened and the plates at the top and bottom faces thickened as well (Fig 

6) After an equilibrium situation was reached, the apparent relative density was returned 

approximately to the value betöre removal ot the loads (Table 1) Nevertheless, the 

apparent stiffness in the thiee loading directions was about 20% higher than belore 

elimination of the horizontal loads (Table 1) 

Altering the loading direction resulted in transformation of the architecture and 

adjustment ot the apparent material properties to the new loading directions During the 

transformation process, some trabeculae were lost, leaving a structure with fewer and 

slightly thicker trabeculae (Fig 6) Nevertheless, the new apparent mechanical properties 

Figure 6 
The trabecular aichilectures aie piesentedfor \auations of the applied loads Tiabecular elements 
that aie Іочі aftei lemoval of liansveisal loads (B) aie not restored after reveisal of the loading 
conjiguiatwn Rotation of the loads (C) resulted in re-alignment of trabeculae 
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of the architecture relative to the applied loads differ from those after initial remodeling, 

in the sense that the stiffness values in the orthotropic directions (which coincide with the 

directions of loading) are lower. 

DISCUSSION 

We have tested the hypothesis that osteoporosis is caused by a shift in the 

mechanical set point of osteocytes, which we assumed to be the mechano-sensors. In 

addition, we have looked at the effects of changed loading conditions on the trabecular 

architecture. For this purpose, a regulatory process was studied, using a computer 

simulation model in which the architecture is controlled by mechanical load only. 

Although, it is still unclear how bone cells sense mechanical signals, the hypothesis that 

osteocytes are the mechano-sensors in bone has gained support (Marotti, 1990; Cowin et 

al., 1991; Lanyon, 1993; Aarden et al., 1996; Parfitt, 1996). Furthermore, osteocytes have 

shown to metabolically respond to mechanical loading (Pead et al., 1988; Skerry et al, 

1989; Klein-Nulend et al., 1995; Lean et al., 1996). It was shown earlier that this process 

produces patterns resembling typical architectures of cancellous bone (Mullender and 

Huiskes, 1995; Van Rietbergen el al., 1996a). With the use of true three dimensional 

trabecular architectures as input for the model, it is possible to investigate the effects of 

several parameters in the proposed regulation process. The results can be compared with 

genuine bone structures, because they can be assessed in the same way as real bone. The 

advantage is that mechanical variables can be completely controlled and that the three-

dimensional morphological and mechanical properties of the architectures can be fully 

characterized. 

It was indicated that such a nonlinear control process is able to generate many 

different morphologies, which are in fact melastable (Weinans and Prendergast, 1996). 

Perturbation of the system can cause it to converge to a significantly different morphology 

and may result in a degenerated state. Nevertheless, it was found that the original 

trabecular architecture was remarkably stable for the loading configuration applied. Except 

for changes at the boundaries and modulations of trabecular thickness, the architecture 

remained virtually unchanged. This can be interpreted in two ways. First, it indicates that 

in reality the vertebral body was loaded in a similar way as was simulated in the model. 

Secondly, it shows that an existing morphology is quite resistant to perturbations. 

Moreover, the convergence of the local control process to an architecture that is basically 

equivalent to the original one confirms the feasibility of the assumed control process. 
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Frost (1987) suggested that bone loss in osteoporosis is due to a shift of the 

mechanical set point to higher values. It was proposed that sensitivity of bone cells to 

mechanical loads is modulated by hormones, which in turn affects maintenance of bone 

mass (Kimmel, 1993). This assumption was further confirmed by findings that estrogen 

and parathyroid hormone, which are both associated with changes in bone mass, potentiate 

the response of bone cells to mechanical stimuli (Cheng, 1994; 1995; Carvalho et al., 

1994). Increasing the target signal in the model indeed resulted in the expected loss of 

bone mass. However, the mechanism of bone loss differed fundamentally from that 

observed in osteoporosis. In osteoporosis, bone mass is lost primarily by complete removal 

of trabeculae (Parfitt et al., 1983; Recker et al., 1988; Moore et al., 1992; Steiniche et al., 

1994), whereas changing the mechano-sensitivity in the model caused trabecular thinning 

predominantly. Furthermore, bone loss and reduction of mechanical stiffness were almost 

completely reversed after restoring the set point to the initial value. Yet, the current 

consensus is that in osteoporotic patients reversal of bone loss is highly unlikely, even after 

treatment or after physical exercise. Hence, these results do not substantiate the hypothesis 

that a change in the mechanical set point is the main cause of osteoporosis, as it cannot 

explain the mechanism of bone loss as observed in osteoporosis. A different mechanism, 

which explains the perforations and disconnections of trabeculae must be responsible for 

the loss of whole trabeculae. Of course, once a trabecula is disconnected, resorption of the 

remainder may be explained by mechanical adaptation (Mullender and Huiskes, 1995). 

Nevertheless, if the mechanical set point increases, the initial change in architecture 

should be trabecular thinning. 

In contrast, elimination of the loads in the horizontal plane caused complete 

resorption of horizontal struts. This pattern of bone loss is similar to that observed in 

aging and osteoporosis (Mosekilde, 1990). Re-application of the horizontal loads did 

restore the apparent mechanical properties of the structure, but not the initial architecture. 

Instead, the remaining trabeculae and the "end plates" of the specimen thickened. Rotation 

of the loads caused re-alignment of the architecture and loss of some elements. However, 

many features of the previous architecture were preserved. Whether such changes in 

loading patterns play a role in the pathogenesis of osteoporosis is unknown, but 

degeneration of the intervertebral disk, atrophy of muscles and ligaments and relative 

immobility are probable causes for changed loading patterns and therefore may be 

important risk factors contributing to osteoporosis. 
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The distinct patterns of bone loss tor altering the mechano-sensitivity and for 

changing the loading configuration, may partly explain the diHerences found between 

several experimental disuse models In fact, increasing the mechanical set point in the 

model is analogous to a general reduction ot the applied loads This can be seen directly 

from equation ( 1 ), in which an increase of the reference signal к is equivalent to a decrease 

ot the mechanical signal values S,(t) Thinning of trabeculae after disuse was described by 

several authors (Schattier and Pan, 1992, Thomas et al , 1995, 1996, Biewener et al , 

1996), but loss of trabecular elements has also been reported (Li et al, 1990, Palle et al , 

1992) Furthermore, Krolner and Tott (1983) reported that bone loss in the lumbar 

vertebrae after bed rest was almost completely restored after re ambulation, whereas other 

authors reported incomplete recovery ol bone loss after a period ot disuse (Jaworski and 

Uhthoff, 1986, Kannus et al 1996) Our results indicate that alterations ot the loading 

patterns or selective disuse may lead to loss ol trabeculae and that general disuse (as for 

instance after tenotomy, e g Biewener et al, 1996) or a change ol the mechanical set point 

primarily causes trabecular thinning In other words, a change in the loading pattern can 

cause the system to converge to a different slate with fewer trabecular elements, whereas a 

change ot the mechanical set point does not perturb the system enough to change it to a 

different architecture 

Some limitations ot the model one should keep in mind when discussing the 

results First, the method is computationally costly, which restricts the size of the model 

that can be analyzed As a whole vertebra is too large for analysis, the boundaries and 

application of loads are artificial This results in artificial densihcations at the specimen 

boundaries, but it also causes a relatively homogeneous distribution of the loads, which 

favors preservation of bone near the perimeter This phenomenon can be seen in real 

vertebrae as well, where trabeculae are also belter preserved near the endplates, ι с near 

the location of load introduction Although the architectures arc affected by this limitation, 

it is unlikely that it affects the mechanisms of bone adaptation The second limitation is 

that only net bone loss or gain was considered Hence, the model does not account tor 

separate effects of osteoblasts and osteoclasts and effects associated with the remodeling 

sequence Clearly, these etlccts arc important For instance, the initial action ot osteoclasts 

may be responsible tor disconnection of trabeculae, for which the model did not account It 

is conceivable that thin trabeculae have a high chance of being perforated by osteoclasts, 

such that trabecular thinning will ultimately lead to loss ot trabeculae as well In order to 

investigate the combined effects of mechanical control and the remodeling sequence, a 
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more detailed model is necessary Thirdly, no lailure criteria were incorporated in the 

model This implies that the trabeculae in the model do not lracture Even when the 

deteriorated architectures are fully loaded, tailure will not be predicted In reality, 

however, fracture would occur and this would in turn aftect the remodeling process To 

prevent tractures, loading should be increased gradually Finally, the model is too coarse 

to obtain a precise measure of the mechanical signals that osteocytes perceive Therefore, 

strain energy density, which is a measure of the energy stored as a result of deformation of 

the tissue, was chosen as the mechanical signal (Huiskes, 1997) It may be considered as a 

reasonable indication of the mechanical deformation which the cells experience 

Moreover, it was shown that the concentrations of potassium and sodium ions in 

osteocytes assume a similar pattern as the distributions of strain energy density (McDonald 

and Yettram, 1995) 

To conclude, the remodeling hypothesis can explain three-dimensional adaptation 

of trabecular bone The method offers the possibility to validate results of computer 

simulations relative to real bone architectures The morphology of the reconstructed 

vertebral bone specimen was roughly adapted to loads in vertical and horizontal directions 

The architecture is quite stable when loaded in its structural directions A shilt of the 

mechanical set point per sé cannot explain the loss ol trabecular elements as seen in 

osteoporosis, but may reflect bone loss after general disuse However, a change of the 

loading pattern, the removal of horizontal loads in particular, causes loss of whole 

trabeculae as seen in osteoporosis Hence, changes in the loading pattern may contribute to 

the pathogenesis of osteoporosis 
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DISCUSSION 

The process ol trabecular bone remodeling is subject to extensive study in many 

fields ol research The interest in this topic is the consequence ol its prominent role in 

clinical problems such as osteoporosis, other metabolic bone diseases, and prosthetic 

loosening Whereas endocrinologists tocus on the clfects ot hormones, drugs and many 

other local and systemic factors, with regard to metabolic bone diseases (Enksen and 

Kassem, 1992), biologists investigate the cells involved in the process, by exposing their 

behavior, chemical pathways, and gen expressions under différent circumstances (Rodan, 

1992) Orthopaedic surgeons, on the other hand, are mainly interested in the outcome of 

the remodeling process (Rosenberg, 1989) while engineers translate it into mechanical 

terms, for instance, predicting changes in bone density after altered loading conditions 

with the use of computer models (Huiskes and Hollister, 1993, Huiskes, 1995a, 1995b, 

Huiskes and van Rietbergen, 1995) It is not easy to integrate information from all these 

research areas into a coherent theory ol bone remodeling What is clear, however, is that it 

is a very complex process, which is influenced in every phase by many diilerent factors 

The more remarkable is it to lind that a very simple control mechanism, as 

described in the previous chapters, can explain so many features of the bone remodeling 

process First of all, it explains the emergence ol trabecular patterns, regardless of the 

initial morphology Although the actual patterns depend on the initial ones, when exposed 

to comparable mechanical environments, their properties are similar This could explain 

the resemblance ol trabecular patterns of different individuals in the same anatomical 

location More importantly, it would provide a relatively consistent mechanical quality of 

the trabecular structure for certain loading conditions The advantage is, that this quality is 

not introduced in the process as a prerequisite, but as its outcome Furthermore, the typical 

structures that are found in bone, plates and struts, can be explained as a result of the type 

ol loading (van Rietbergen et al , 1996) It was also found that the regulation scheme 
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produces densifications at boundaries where loads are applied, and ramifications towards 

the boundaries, these phenomena can also be observed in real trabecular bone (Currey, 

1984) Finally, the observations described by WoHf (1892), that the trabecular orientation 

is closely related to the direction of load transfer, are reproduced by the proposed control 

process Our aim was to investigate the feasibility of the regulation scheme, first proposed 

by Roux (1881) In spite of the simple character of the regulation model, its dynamic, non

linear nature make its behavior complex and often unpredictable This feature in itself is 

reminiscent of the actual process, however, it complicates verification of its validity Still, 

the many similarities between the outcomes and trabecular bone itself allow the conclusion 

that the proposed control mechanism is indeed feasible Or perhaps more generally, that 

the trabecular architecture may well be the result of a dynamic process of self-

organization 

In this thesis we have focused on the macroscopic level of the trabecular 

architecture, which is also the most important limitation of the study We did not consider 

trabecular bone at the apparent level Only very small volumes of bone were studied This 

restricts especially the representation of realistic loading conditions, which in turn 

hampers validation of the models The size of the volume studied is limited by the amount 

of computer time associated with its analysis Since computer capacity and speed are 

growing continuously, this limitation will probably be solved in due lime It will then be 

interesting to model, for example, a whole vertebra to investigate the effects of mechanical 

factors on its trabecular architecture The trabecular tissue itself was modeled as a 

continuum The sensor cells were represented in a simplified manner, and only net 

changes in bone mass were considered, whereby the separate activities of osteoclasts and 

osteoblasts are ignored In order to further unravel the regulation process, and to 

investigate the activity of bone cells, a more detailed model, at the microscopic level, is 

needed, thereby deserting the continuum assumption Following this avenue, it will 

become possible to include the role ot other factors, besides mechanical ones, known to 

affect the cellular behavior, such as hormones and drugs Eventually, by studying the 

interplay between these factors, we could begin to understand the process of bone 

remodeling 

However, before complicating matters, it is useful to see what can be learned from 

the simple model we introduced It showed, for instance, that the rate of remodeling was 

strongly related to the number of sensor cells The trabecular morphology, however, was 

insensitive to the density of the sensors (above a certain threshold) In a number of 
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different mammalian species, it was indeed found that, whereas the density of osteocytes 

varied over a wide range, the histomorphometnc parameters varied relatively little 

Furthermore, it was discovered that the scale of the structure was determined by the 

distance over which the mechanical signal can affect the activity of the actor cells The 

average thickness of the trabeculae was found to be in the same order of magnitude as the 

domain of influence of the osteocytes These results suggest a significant role for the 

osteocyte network in bone Communication through this network over a certain distance 

might ensure the relatively constant dimensions of trabecular bone Regulation of these 

dimensions is important, because, both excessively thick and thin trabeculae are 

disadvantageous Thin trabeculae increase the probability of perforation by osteoclastic 

resorption and may therefore lead to loss of tiabecuale In addition, the stiffness of the 

tissue itself is probably lower for very small dimensions of the trabeculae, which in turn 

causes a reduction of the apparent stillness for a given bone volume fraction (Choi et al , 

1990) On the other hand, thick trabeculae would increase the amount of material 

unnecessarily and would therefore be inefficient Unfortunately, not much is known about 

the communication between osteocytes and other bone cells The functions of the osteocyte 

network are unclear and it is still possible that it affects these cells However, if the 

domain of influence of osteocytes is considered as being relatively constant, the remaining 

parameters that influence the trabecular architecture are the initial architecture, ι e its 

history, the mechano sensitivity of the osteocytes, and the mechanical loads Whereas the 

mechano sensitivity (or the mechanical set point) and the magnitudes of the loads 

predominantly determine the bone volume fraction, primarily by modulating trabecular 

thickness, the directions and proportions of the loads determine the anisotropy The effects 

of the initial architecture and the loading history were not thoroughly investigated in this 

thesis Nevertheless, it was shown that after a trabecular architecture was perturbed such 

that it remodeled to a diflcrent state, this was often attended with loss of elements 

Elements that are lost will never be regained This indicates that extensive remodeling 

activity, without changing the loading magnitude or mechanical set point, could 

intrinsically form a risk for deterioration of the architecture In this view, history might be 

a very important parameter for the properties of a trabecular architecture and deserves 

further attention 

Disturbances of the bone remodeling process can cause bone disease It is the 

general assumption that osteoporosis is caused by such a disturbance Essential for 

treatment is knowledge about where the regulation process is disturbed However, 
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osteoporosis is probably the manifestation ot a number of different disorders, each causing 

deterioration of the trabecular architecture and a reduction ol bone mass Osteoporosis has 

been associated with increased activity of osteoclasts (Eriksen et al , 1990) and diminished 

recruitment or activity of osteoblasts (Parfitt et al , 1981) The underlying assumption of 

inherent changes in cellular activity would be that the bone tissue is continuously being 

overloaded, yet bone formation cannot keep up with the demand for more bone Another 

possible cause that has been suggested is that of a reduced sensitivity of bone cells to 

mechanical loads (Frost, 1987, 1992, Kimmcl, 1993) In this case, the load is sensed 

inadequately, and the bone responds as if it is being disused, which induces bone loss 01 

course, reduced mechanical loading is of itself known to result in loss of bone mass 

(Jaworski and Uhlhotf, 1986, LeBlanc et al , 1990) Our regulatory model suggests that 

additional possibilities for malfunction exist First, altered properties of the osteocyte 

network might cause alterations in the trabecular dimensions, resulting in a less elficienl 

structure Secondly, perturbations that cause extensive remodeling, such as changes in the 

loading patterns or even elevated bone turnover, may by itself cause loss of trabeculae and 

deterioration of the trabecular architecture The feasibility of these possibilities needs to be 

investigated further 

Measurements of osteocyte density and lacunar area (ι e the area of osteocyte 

lacunae) indicated that differences do exist in the osteocyte network between healthy 

subjects and osteoporotic patients and between men and women Although it was first 

concluded that osteoporotic patients have more osteocytcs than normal subjects, the 

opposite was found in a second study In the later study it was also found that a significant 

difference existed between men and women This dependency on gender probably 

confounded the results of the first study The precise meaning of these differences is not 

clear yet Again, in order to unravel this fuithcr it is necessary to study the regulation ol 

bone remodeling at the microscopic level Osteocytes have only recently regained interest 

Because of their inaccessibility, not much is known about these cells The fact that their 

density depends strongly on gender and also differs between healthy subjects and subjects 

with vertebral fractures, suggests that it is worthwhile to further investigate their function 

The central theme ot this thesis is Roux's hypothesis, that the trabecular 

architecture is controlled by cells, where cells are sufficiently stimulated by mechanical 

loads, bone will form, where they are not stimulated enough, bone will disappear The 

process, as shown in this thesis, is likely to be one of sell-organization, just as Roux 

suggested We have shown that it is a realistic hypothesis, but it will probably take many 
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years before we know if this hypothesis is in fact the "truth", if we can ever be sure of such 

a thing In the mean time, it can be used as a guideline, for understanding the behavior of 

a complex system, lor investigating possible effects of certain parameters, and as a starting 

point for experiments, suggesting new questions And after all, this is what science is all 

about, is it not ' 
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SUMMARY 

Trabecular bone tissue consists of a complex three-dimensional structure of plates 

and struts. It is essential for the mechanical integrity of bone, especially in the vertebrae 

and the extremities of long bones, and as such, it plays an important role in load bearing. 

Its architecture is closely related to the mechanical loading patterns, in the sense that the 

material directions correspond with the main loading directions. 

Trabecular bone is continuously being remodeled by specialized bone cells; 

osteoclasts degrade small amounts of bone and osteoblasts refill the resorption cavities 

with new bone. With aging, bone mass is gradually lost and as a result the trabecular 

architecture becomes weaker. Although this is a normal process, in one third of the 

population, the architecture degenerates excessively, such that it becomes extremely fragile 

and may break after minimal trauma. This condition is known as osteoporosis. 

In this thesis we have investigated the regulation of the process of bone remodeling 

with the emphasis on the role of mechanical factors. Very little is currently known of how 

bone architecture is controlled. Nevertheless, it is well known that it is affected by 

mechanical loading. In the previous century, Roux suggested that the trabecular 

architecture is the outcome of a process, in which bone mass is controlled locally by cells 

under the influence of mechanical stresses. Bone is removed at locations where stresses are 

too low and bone is formed or maintained where stresses are sufficiently high. In chapters 

2 and 3, a computer simulation model was developed to investigate the feasibility of such a 

regulation process. The cells that control the adaptation process were assumed to be the 

osteocytes, i.e. bone cells that are embedded within the mineralized bone matrix. It was 

found that the model produced trabecular-like architectures, starting from any initial 

configuration. This formation of patterns was due to the non-linear dynamic behavior of 

the control process. The model could explain adaptation to changes of the applied loads; 

after the directions of the external loads were changed, the trabeculae aligned with the 

stress orientations. As in reality, the relative apparent density of the structure depended on 

the magnitude of the applied stresses. The number of osteocytes influenced the remodeling 

rate, and the domain of influence of the osteocytes affected the refinement of the structure. 

The distant control of actor cells by osteocytes was found to be fundamental to the genesis 

of trabecular-like structures, and to adaptation of the architecture to changes of the loads. 

Furthermore, it prevented the numerical inaccuracies, which were described in earlier 

studies. 
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The model results induced us. to study the actual relationships between trabecular 

morphology and osteocytc density In chapter 4, these relationships were determined in 

cancellous bone of the proximal femur in live mammalian species of diverse sizes (rat, 

rabbit, Rhesus monkey, pig and cow) The measurements showed that osleocyte density 

varied considerably between species and was inversely related to the size of the species 

Differences were also found in histomorphometnc parameters, but the range of variation 

between species was relatively small Hence, if the model predictions are accurate, these 

results indicate that the domain of influence or osteocytes is ol similar size in all of these 

species The rat, however, proved to be an exception, trabecular thickness in rats was 

considerably smaller than in the other species Probably, this is due to the presence ol the 

cartilaginous growth plate in the femoral head of the rat, which introduces a different 

mechanical and biological environment compared to the other species The relationships 

with species were found to be different for osteocyte density and morphometry parameters 

Hence, these data suggest no direct relationship between osteocyte density and the 

macroscopic trabecular architecture, which is consistent with the results of the computer 

model 

It was assumed that osteocytes are the mechano-sensors in bone However, no proof 

exists of the mechanism lor sensing mechanical signals in bone In chapter 5, we 

investigated if lining cells or osteoblasts could possibly play a similar role as effectively 

with regard to their capacity tor self-optimization of the trabecular architecture, in terms 

of a low apparent mass to stiffness ratio The behavior of two models of bone remodeling 

were compared, first a regulation model with osteocytes as mechano-sensors and second 

with mechano-sensors located at bone surfaces It was found that the surface cell 

remodeling algorithm was less sensitive to changes in the loading pattern, which resulted 

in less efficient bone adaptation This was reflected by a considerably higher relative mass 

for a similar apparent stillness in the loading direction, ι e more mass was needed to 

obtain an equally stiff architecture, with respect to the externally applied loads 

Furthermore, stresses and strains at the tissue level varied across a much wider range, 

relative to the osteocyte model These results indicated that osteocytes would be more 

efficient sensors than lining cells and osteoblasts, although the superior performance of 

osteocytes as sensors gives no direct evidence that they actually fulfill this role. 

The relationships between osteocyte density, histomorphometnc parameters, 

osteoporosis, and gender and were investigated in chapters 6 and 7 Measurements were 

performed in trabecular bone from the iliac crest In the fust study, it was found that 
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osteocyte density declines with advancing age Subjects with hip or vertebral fractures 

were found lo have more osleocytes then normal subjects However, opposite results were 

obtained in the second study Patients with vertebral fractures had reduced osteocyte 

numbers and reduced total lacunar area Furthermore, lemales were found to have 

markedly more osleocytes and higher total lacunar area per bone area than males, 

independent of the disease The contradictory findings may partly be explained by the 

confounding of the first results by the mixing of sexes, as the groups were not matched for 

gender Moreover, the use ot autopsy patients as controls in the first study might also have 

affected the results Histomorphometnc parameters revealed no differences between men 

and women In vertebral fracture patients, bone mass, trabecular number and thickness, 

and bone turnover were significantly reduced while eroded surface was increased relative 

to healthy subjects These results are consistent with impaired osteoblast function in 

patients Moreover, the differences in osteocyte numbers present evidence that alterations 

occur within the whole population of cells ot the osteoblastic lineage Yet, further research 

is needed to elucidate the interplay between the role of osleocytes, mechanical load, 

hormones and other factors 

It has been suggested that in postmenopausal osteoporosis the response of bone 

cells to mechanical signals is hampered by changed hormonal levels Such an increase of 

the mechanical set point of the cells, would lead to bone loss In chapter 8 we have 

investigated it a temporary increase of the mechanical set point causes deterioration of 

trabecular bone architecture such as seen in osteoporosis Similarly, the effects of a 

temporary change of the loading pattern were studied In this study, a three dimensional 

computer simulation model, based on the regulation ot bone architecture by mechano-

sensitive osleocytes, was used It was found that a temporary shift of the mechanical set 

point causes no lasting changes in architecture Although an increase of the mechanical 

set point induced bone loss, the mechanism of bone loss (trabecular thinning) differed 

Irom what is usually observed in postmenopausal osteoporosis (loss ot whole trabeculae) 

Hence, a change ot the mechanical set point alone cannot explain bone loss as seen in 

osteoporosis On the other hand, the temporary removal ot load components in a particular 

direction resulted in irreversible loss of whole trabeculae The results indicated that such 

temporary changes in loading patterns could be important risk factors for osteoporosis 

In chapter 9 we concluded that with this thesis we have been able to show that 

Roux's hypothesis was indeed leasible What docs that finding help us9 It is still unclear 

whether the hypothesis is actually false or true However, it has provided a new way of 
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looking at the remodeling process It has offered surprising answers to unanswered 

questions and it has provided new questions that hitherto no one thought ol asking 
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Trabecular, ofwel spongieus botweefsel bestaat uit een complexe driedimensionale 

structuur van botbalkjes en plaatjes Het draagt bij aan de mechanische sterkte, en speelt 

met name in de ruggewervels en de uiteinden van pijpbeenderen een belangrijke rol bij het 

dragen en doorleiden van mechanische belasting De architectuur is gerelateerd aan de 

belastingpatronen, doordat de richtingen van de trabekels in belangrijke mate 

overeenstemmen met die van de voornaamste krachten die op het bot worden uitgeoefend 

Bot wordt voortdurend geremodelleerd Dit gebeurt door gespecialiseerde botcellen, 

osteoclasten breken kleine hoeveelheden bot af, waarna Osteoblasten nieuw bot vormen De 

totale bolmassa neemt tijdens het ouder worden geleidelijk af Dit is een normaal 

verouderingsproces, echter, bij eenderde van de bevolking in ontwikkelde landen is er 

sprake van een overmatige degeneratie van de botstructuur In dat geval wordt het 

botweefsel zeer zwak en kan als gevolg van een minimaal trauma al breken Er is dan 

sprake van osteoporose 

In dit proefschrift hebben wij het botremodelleringsproces onderzocht, met de nadruk op 

de rol van mechanische factoren Er is op dit moment weinig bekent over de regulatie van 

botremodellenng Wel is duidelijk dat mechanische belasting hel proces beïnvloedt In de 

vorige eeuw heeft Roux de hypothese voorgesteld dat de trabeculaire architectuur het 

resultaat is van een proces waarin cellen lokaal de botmassa reguleren onder invloed van 

mechanische stimuli Bot wordt algebroken op plaatsen waar het te weinig wordt belast, 

bot wordt gehandhaafd of gevormd op plaatsen waar de belasting groot genoeg is 

In hoofdstuk 2 en 3 is een computersimulatiemodel ontwikkeld om te onderzoeken of een 

dergelijk regelmechanisme waarschijnlijk is Aangenomen werd dat osteocyten (cellen die 

zijn ingebed in de botmatnx) de mechanische signalen detecteren en het proces sturen Er 

werd gevonden dat het model vanuit een willekeurige initiële morfologie patronen 

genereert die lijken op trabecular bot De patroonformatie was het gevolg van het niet 

lineaire dynamische gedrag van het regelmechanisme Het model kon adaptatie aan 

belastingveranderingen verklaren, wanneer de belastingrichtingen werden veranderd 

heroriënteerde de trabeculaire structuur zich conform de opgelegde belasting 

Overeenkomstig met de werkelijkheid, hing de globale dichtheid af van de grootte van de 

belasting Het aantal osteocyten bepaalde de remodellenngssnelheid en de invloedsafstand 

van de osteocyten bepaalde de fijnheid van de structuur De controle op afstand van de 
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osteocyten bleek wezenlijk te zijn voor het ontstaan van irabeculaire structuren en voor de 

mogelijkheid tot adaptatie Daarnaast werden hiermee numerieke problemen /oals 

beschreven in eerdere studies voorkomen 

De modelresultaten waren voor ons aanleiding om de feitelijke relaties tussen trabeculaire 

morfologie en osteocytdichtheid te bestuderen In hoofdstuk 4 zijn deze relaties bepaald in 

bot uit de heupkop van vijf verschillende zoogdiersoorten, uiteenlopend in grootte (rat, 

konijn, resusaap, varken en koe) Osteocytdichtheid vertoonde een grote spreiding tussen 

de verschillende diersoorten en bleek al te nemen met toenemende afmeting van het soort 

dier Er werden ook verschillen gevonden in histomorfometrische parameters De trabekels 

waren bijvoorbeeld dikker in de koe dan in de andere diersoorten De verschillen waren 

echter relatief klein Wanneer de resultaten van het simulatiemodel juist zijn, betekent dit 

dat de invloedsafstand van osteocyten vergelijkbaar is in deze diersoorten Alleen de rat 

vormde een uitzondering, in de rat waren de trabekels aanzienlijk dunner Waarschijnlijk 

heeft dit te maken met de blijvende aanwezigheid van de groeischijf in de heupkop van 

ratten Deze groeischijf veroorzaakt een ander biologisch en mechanisch milieu ten 

opzichte van de andere diersoorten De relaties met diersoort verschilden voor 

osteocytdichtheid en morfometnsche parameters Deze resultaten wijzen erop dat 

osteocytdichtheid niet direct gerelateerd is aan de macroscopische trabeculaire 

architectuur, wat overeenkomt met de modelrcsultaten 

Aangenomen werd dal osteocyten de cellen zijn die mechanische belasting kunnen voelen 

en de massahuishouding reguleren Er is echter geen bewijs dat dit ook werkelijk het geval 

is In hoofdstuk 5 hebben we bekeken ol Osteoblasten en liningcellen deze rol op een even 

effectieve wijze zouden kunnen vervullen, met het oog op de verhouding tussen massa, 

stijfheid en belasting Twee modellen werden met elkaar vergeleken, waarbij de 

massahuishouding in het ene geval werd gereguleerd door osteocyten en in het andere 

geval door cellen op hel botoppcrvlak Het laatste remodellenngsalgoritme bleek minder 

gevoelig te zijn voor veranderingen in het belastingpatroon Dit resulteerde in een 

aanzienlijk hogere massa van de gevormde architectuur met een vergelijkbare stijfheid in 

de belastingrichting De rek- en spanningswaarden in het botwecfsel varieerden ook over 

een veel groter gebied dan in de architectuur geproduceerd door het osteocyt-

regulatiemodel Deze hogere rekwaarden betekenen een hogere kans op talen van de 

structuur Er werd geconcludeerd dat osteocyten efficiëntere sensoren en regulatoren zijn 
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voor bolremodellering. De resultaten zijn echter geen direct bewijs dat oslcocyten ook 

werkelijk deze rol vervullen. 

De relaties tussen ostcocyt dichtheid, histomorfometrische parameters, osteoporose and 

geslacht werden onderzocht in hoofdstuk 6 en 7. Hiervoor werd trabeculair bot uit de 

bekkenrand van gezonde en osteoporolische mensen bekeken. In de eerste studie werd 

gevonden dat ostcocytdichtheid afneemt met toenemende leeftijd. Het aantal osteocyten 

was hoger in patiënten met heup- of ruggewervelfracluren in vergelijking lot normale 

personen. De tweede studie gaf echter tegengestelde resultaten. Patiënten met ingezakte 

ruggewervels hadden een significant lagere osteocytdichtheid dan gezonde proefpersonen. 

Bovendien werd gevonden dat osteocytdichtheid in vrouwen hoger is dan in mannen. Deze 

tegengestelde resultaten kunnen deels worden verklaard doordat groepen in de eerste 

studie niet waren gematchl voor geslacht. Daarnaast kan het gebruik van autopsie 

materiaal als controle de resultaten in de eerste studie hebben beïnvloed. Er werden geen 

verschillen gevonden tussen mannen en vrouwen wat betreft de histomorfometrische 

parameters. In patiënten met ruggewervelfracluren waren bot massa, trabekel aantal en 

dikte, en botombouw significant lager en hel resorptieoppcrvlak was significant hoger 

vergeleken met gezonde controles. Deze resultaten komen overeen met een verminderde 

functie van Osteoblasten in osteoporolische patiënten. De verschillen in osteocylaantallen 

tonen aan dal er verschillen zijn in de gehele populatie cellen van de osteoblasl-stamboom. 

Nader onderzoek is noodzakelijk om het verband tussen osteocyten, mechanische 

belasting, hormonen en andere factoren te ontrafelen. 

Verschillende aulcurs hebben gesuggereerd dat in vrouwen met postmenopausal 

osteoporose de respons van botcellen op mechanische stimuli verstoord is door veranderde 

hormoonspiegels. Deze verandering van het mechanische "set point" van de cellen zou 

dan leiden lot een verminderde botmassa. In hoofdstuk 8 hebben we onderzocht of een 

tijdelijke verandering van het mechanische set point inderdaad een verslechtering van de 

bolstructuur te weeg brengt zoals wordt waargenomen in osteoporose. Dit zelfde werd 

bekeken voor een tijdelijke verandering van het belastingpatroon. In dit hoofdstuk werd 

een driedimensionaal computer simulatiemodel gebruikt. Er werd gevonden dat een 

tijdelijke verhoging van hel set point geen blijvende veranderingen aan de botarchitectuur 

veroorzaakt. Hoewel verhoging van het set point leidde tot botverlies, was het mechanisme 

waarmee dit gebeurde (dunner worden van de trabekels) principieel anders dan dat wat 
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over het algemeen wordt waargenomen in osteoporosis (verdwijnen van hele trabekels) 

Dus, een verandering van hel mechanische set point op zich kan het botverlies, zoals dat 

wordt waargenomen bij osteoporose, niet verklaren Anderzijds, resulteerde het tijdelijk 

wegnemen van belaslingcomponenten in een onomkeerbaar verlies van trabekels Deze 

resultaten wijzen erop dat zulke tijdelijke belastingverandenngen belangrijke risico

factoren zouden kunnen zijn voor osteoporose 

In hoofdstuk 9 concludeerden we dat we met dit proefschrift hebben laten zien dat 

Roux's hypothese realistisch is Wal betekent deze conclusie nu eigenlijk9 Er is geen 

bewijs dal de hypothese ook werkelijk waar is Wal deze bevinding evenwel biedt is een 

nieuw denkraam, een nieuwe wijze van kijken naar het remodellenngsproces Vanuit dil 

denkraam werden verassende antwoorden gevonden op gestelde vragen en daarnaast 

leverde het nieuwe vragen op waar tot nog toe niemand aan dacht om ze te stellen 
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Biomechanica en Biomatenalen 
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nt Suprème 
va η een heup of knie is iets waar de mee ste mensen tegenop 

vervelend De patiënt moet volledig op u kunnen vertrouwen, 

moet kunnen op uw mensen, uw apparatuur en de materialen 

t. Alles staat of valt nu eenmaal met de geleverde kwaliteit. 
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