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Chapter 1

Introduction

In this thesis we are concerned with systems of logic, systems of types and the
relations between them The systems of types should be understood here as
systems of typed lambda calculus, so 1n fact this thesis takes up the study of the
relation between typed lambda calculus and logic This 1s not a new subject
a lot of research has been done, most of which 1s centered around the so called
‘formulas-as-types embedding’ from a logical system into a typed lambda calculus
This embedding will also be the main topic of this thesis

The first to describe the formulas-as-types embedding was Howard, who also
introduced the terminology ‘formulas-as-types’, [Howard 1980] The manuscript
of this paper goes back to 1968 and a lot of ideas behind the embedding go
back even further, especially to Curry (see [Curry and Feys 1958]), who was the
first to note the close connection between mimimal proposition logic and combi
natory logic The article of Howard 1s mainly concerned with giving a formal
explanation of the intuitiomstic connectives In this way 1t 1s an attempt to
formalize the Brouwer-Heyting-Kolmogorov (BHK) interpretation of the intu-
1tionistic connectives, as 1t can be found 1n the onginal work [Kolmogorov 1932]
and [Heyting 1934], but also in the recent book [Troelstra and Van Dalen 1988]
In that interpretation a connective 1s explained in terms of what 1t means to have
a proof of a sentence built up by that connective Howard gives a formal nter
pretation of proofs (and hence of connectives) in terms of typed lambda calculus,
by giving an interpretation to the introduction and ehmination rule of the logic
For O and V, the introduction rule corresponds to A abstraction and the elimi
nation rule to apphcation The 1deas in [Howard 1980] were used and extended
further by Martin-Lof 1n his Intuitiomistic Theory of Types [Martin-Lof 1975,
[Martin-Lof 1984] and by Girard who extended 1t to higher orders [Girard 1972],
[Girard 1986], [Girard et al 1989] All this work can be united under the heading
of ‘proof-theory’

Another approach was taken in the research project Automath by de Bruyn
[de Bruyn 1980], who independently defined a kind of formulas-as-types embed-
ding from logic into typed lambda calculus which 1s of a different nature and,

1



2 Introduction Ch 1

maybe more important, which has a different purpose The difference 1n nature
lies 1n the fact that the typed lambda calculus 1s not meant to represent one
particular system of logic as close as possible, but to serve as a framework for
mathematical reasoning 1in general The purpose of this work 1s to clarify and
formalize the underlying principles that all mathematicians use and agree on In
a sense this 1s an attempt to put on stage the part of mathematics that comes
‘before logic’, the part that every mathematician 1s informally aware of, such as
how to use and give defimitions A practical off-shoot of this program 1s the pos-
sibility of doing mathematics on a computer by implementing the formal system
of typed lambda calculus Let’s point out here that the difference between the
two approaches 1s not always as sharp as this discussion might suggest It 1s very
well possible to use both approaches in one system

The most interesting part of the various embeddings 1s not that formulas are
interpreted as types, but that proofs are interpreted as terms (which obviously
comes as a consequence of ‘formulas as-types’, if we understand a type as a set 1n
some weak sense) This makes that the proofs become first class citizens 1n the
type system On the one hand this provides for a whole world of new options, hike
the possibility to formalize meta-reasoning (reasoning about proofs) in the system
or the possibility to let terms depend on proofs (like a function that extracts from
a proof of an existential sentence a ‘witnessing object’ of the sentence) On the
other hand this requires a well-understood notion of what a proof 1s 1f we claim
that the terms of some typed lambda calculus represent proofs, this statement
implicitly contains a defimtion of the notion of proof A workable approximation
of the notion of proof 1s the notion of ‘derivation’ 1n a specific formal system of
logic

The formulas-as-types embedding described by Howard goes from first order
predicate logic 1in natural deduction style to an extension of the simply typed
lambda calculus It yields an 1somorphism on the level of proofs (derivations), if
we 1dentify derivations that only differ in some specific trivial way The systems
described by de Bruijn provide the possibility to embed a large variety of formal
logics, hence we can not expect to have an 1somorphism on the level of deriva-
tions only some of the proof-terms correspond to a derivation 1n the logic In
both systems, the interpretation of proofs-as-terms does provide an equivalence
relation on the proofs, signifying which derivations are to be understood as being
equal

We have already mentioned as a practical application of the formulas-as-types
embedding the possibility of doing mathematics on a computer This was one of
the main starting points for de Bruin in setting up the Automath project In
Automath the computer was mainly used as a proof-checker the user typesin a
proof (in the form of a A-term) and the formula 1t 18 supposed to be proving (in
the form of a type) and the computer checks whether the proof proves the for-
mula, that 18 whether the term 1s of the given type Later, other research groups
enlarged the job of the computer by developing interacttve theorem provers The



proneering work on LCF {Gordon et al 1976] has been very important here, be-
cause 1t has lead to the interactive meta-language ML This language 1s very well
suited for implementing a typed lambda calculus that 1s to be used for interac-
tive theorem proving, because it allows the user to program tactics for proof-
search Important developments in the field are the Calculus of Constructions
[Coquand 1985] [Coquand and Huet 1985], [Coquand and Huet 1988] and 1ts re-
cent extension Coq [Dowek et al 1991], which are implemented 1n a language
closely related to ML Further we want to mention the work in Edinburgh on
ECC (Extended Calculus of Constructions, [Luo 1989)] and 1ts implementation
in ML ‘LEGO’ [Luo and Pollack 1992} and the work at Cornell on the system
Nuprl [Constable et al 1986], which 1s an implementation of Martin-Lof’s type
theory The work on LCF 1itself grew into the system HOL [Gordon 1988], a proof-
assistant for classical higher order logic, which does not use the formulas-as-types
embedding but implements Church’s simple theory of types [Church 1940]

Another important practical application of the formulas-as-types embedding,
mn particular the one described by Howard, 1s the possibility to extract programs
from proofs This conforms to the BHK-1nterpretation of connectives and proofs
in constructive mathematics, according to which, for example, a proof of the
sentence Vr € A3y € By(r,y) contains a construction of an element b, € B
for every a € A such that p(a,b,) holds for every a € A. In the formulas-
as-types interpretation of Howard, the proof-term contains an algorithm in the
form of a A-term This was extended to higher order logic by Girard, who also
emphasized the consequence of this approach, namely that cut-elimination in the
logic corresponds to evaluation of a program As a calculus for typing the A-terms
that were extracted [rom the proofs he introduced the systems Fn (n > 2) and Fw
[Girard 1972], which can be seen as very rudimentary programming languages.
Also Martin-Lof made contributions to the idea of extracting programs from
proofs, not by going to higher orders but by adding an inductive type forming
operator [Martin-Lof 1984]

The programs-from-proofs notion has been extended and refined a lot over the
years, notably by the Projet Formel group in Paris (Calculus of Constructions and
Coq, [Coquand and Huet 1985], [Coquand and Huet 1988], [Mohring 1986] and
[Paulin 1989]), the Nuprl project at Cornell [Constable et al 1986], the Equipe
de Logique group in Pans [Krivine and Parigot 1990], [Parigot 1992] and the re-
search group 1n Goteborg [Nordstrom et al 1990] The crucial feature of the
programs-[rom-proofs approach 1s that the proofs are preserved in the formal
system 1n some ‘algorithmic’ form If one just wants to do mathematics on a
computer this 1s less important, because 1t will often be sufficient to know that
a formula 1s provable Note however that also in the latter case i1t can be an
advantage to preserve proofs, for example if one wants to set up a hbrary of
mathematics which 1s reproducible 1n book form

In this thesis we are mainly concerned with the formulas-as-types embedding
1tself, with some emphasis on the Howard approach So we do not for example



4 Introduction Ch 1

discuss technical details of the programs-from-proofs notion, nor do we discuss
technical problems that arise when trying to set up a hbrary of mathematics
The reader can find a detailed description of the logics that are subject to the
formulas-as-types interpretation These logics are chosen 1n such a way that we
can easily define a collection of typed lambda calculi for which the embedding
1s an 1somorphism on the derivations of the logic (modulo some easy equivalence
relation) Then we discuss the two approaches to formulas-as-types by studying
some examples Further we study and prove Strong Normalization and Conflu-
ence of the reduction relation in the typed lambda calculi, which are important
properties for these systems Most of the typed lambda calculi that are looked
at 1n this thesis are instances of so called ‘Pure Type Systems’ This 1s a general
framework for describing typed lambda calculi that will be discussed 1n detail
here Most of the meta-theory that one would like to have for the typed lambda
calculi can be proved once and for all for the whole collection of Pure Type
Systems

An important 1ssue of the formulas-as-types embedding 1s 1ts completeness on
the level of provabihity even if there 1s no 1somorphism on the level of derivations,
1t would be really undesirable 1f the typed lambda calculus would prove more
sentences than the logic This 1ssue will be discussed 1n detail for the Calculus of
Constructions On the one hand the embedding 1s not complete, but on the other
hand this 1s not so dramatic, because there 1s a completeness result for sentences
of a specific form

We give a short overview of each of the chapters

1 Chapter 2 describes the logics 1n a generic way, from first order predicate
logic to higher order predicate logic, and relates them to more standard
presentations of these logics The logics are mimimal 1n the sense that
we only have D and V Also the propositional varnants will be described
We discuss the conservativity relations between these systems The most
interesting result in this Chapter 1s probably the proof of conservativity of
higher order propositional logic over second order propositional logic (both
classical and intuitionistic ) The proof for the intuitionistic case 1s given by
describing a semantics 1n terms of complete Heyting algebras As far as we
know this 1s a new result

2 Chapter 3 discusses the formulas-as types embedding Here we distinguish
two approaches, one ‘4 la Howard’ and one ‘a la de Bruyn’ We give a de-
tailed description of the embedding of mimmal first order predicate logic 1n
a typed lambda calculus (4 la Howard) and show completeness on the level
of derivations This means that the embedding constitutes an 1somorphism
between the derivations in the logic and the terms 1n the typed lambda cal-
culus Then we discuss the formulas-as-types embedding (& la de Bruyn)
in Automath systems and 1n LF [Harper et al 1987]



3 Chapter 4 treats the notion of ‘Pure Type System’ We prove a lList of
meta-theoretic properties and give examples of instances of Pure Type Sys-
tems The properties we prove are the ones that are well- known from
[Geuvers and Nederhof 1991], but now extended to Pure Type Systems
with Sn-reduction

4 In Chapter 5 we give a proof of Confluence of A7 reduction 1n normalizing
Pure Type Systems Confluence of 3-reduction 1s quite easy, but Confluence
of Bn-reduction 1s remarkably complicated Confluence 1n fact states the
consistency of the type system as a calculus (in the sense that 1t shows
that two different values are indeed distinguished by the system) The
importance of this property lies further 1n the fact that it 1s one of the
main tools for proving decidability of equality and from that decidability
of typing (Under the formulas-as-types embedding, to decide whether a
term 1s of a certain type 1s the same as to decide whether a proof proves a
certain formula )

5 In Chapter 6 we discuss the Calculus of Constructions (CC) and 1ts fine
structure 1n the form of the so called ‘cube of typed lambda calcul’ We
study the formulas-as types embedding from (subsystems of) higher order
predicate logic 1nto (subsystems of) CC We also look at conservativity with
respect to provability between the type systems of the cube A new result
here 1s the conservativity of Fw over F, which comes as a Corollary of the
fact that higher order propositional logic 1s conservative over second order
propostitional logic, which result was proved in Chapter 2

6 In Chapter 7 we give a proof of Strong Normahzation of Gn-reduction 1n
CC (Strong) Normalization 1s the other main tool for proving decidability
of equality and from that decidability of typing It 1s also the main tool for
showing consistency of a type system as a logic (in the sense that not all
types are inhabited by a closed term) To be a bit more precise the con-
sistency of CC 1itself is quite easy, but if one wants to show the consistency
of a context of CC, (Strong) Normalization comes 1n

7 In Chapter 8 we briefly discuss some 1ssues that have been left and list some
open problems that may be of interest for further study

Some of the work reported 1n this thesis has already appeared somewhere
or will do so later, notably Chapters 4 and 7, which 1s can an extension of the
work 1n [Geuvers and Nederhof 1991] to the case that includes n-reduction (In
[Geuvers and Nederhof 1991] we only considered §-reduction) Chapter 6 has
appeared in a shightly different form (with some mistakes) as [Geuvers 1992] and
both Chapters 4 and 6 contain work that has also been reported 1n [Geuvers 1990]
and [Geuvers 199+]
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Chapter 2

Natural Deduction Systems of
Logic

2.1. Introduction

In this chapter we want to discuss the logical systems that will be used in the
context of the Curry-Howard 1somorphism In the original paper by Howard
[Howard 1980] on this formulas-as-types 1somorphism, there are interpretations
of all the standard connectives of intuitionistic logic As we are manly inter-
ested 1n second and higher order systems (in which cases all connectives can be
coded 1n terms of O and V), we shall restrict our attention mainly to O and V
The Curry-Howard 1somorplusm gives an interpretation of derivations as lambda
terms 1n a typed lambda calculus, but 1t only does so for derivations 1n natu-
ral deduction style (As already pointed out, the D- and V-introduction rules
correspond to A abstraction and the D and V-elimination rules correspond to
application) Consequently, the representation of our logical systems will also be
in natural deduction style

This doesn’t yet settle the whole question of what the precise formulation of
the system should be If we would only be interested in provability the choice
for the formalization of the logic should be determined by the questions about
provability that we want to tackle In our case however, we are interested in
the formal proofs (derivations) themselves and 1t depends heavily on the formal
presentation that we have chosen, how many distinct derivations of a proposition
we have (This 1s also a reason for not choosing Gentzen's sequent calculus to
describe the formulas-as-types embedding, because 1in that system distinctions
between derivations are often due to an inessential difference in bookkeeping)
So our choice for the formal system of logic will be determined by the formulas-
as-types interpretations of the proofs in typed lambda calculus that we want to
do later
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2.2. The Logics

One issue that we want to stress here is the choice of the so called ‘discharge
convention’ that has to be made. This issue was drawn to our attention by the
book of [Troelstra and Van Dalen 1988], where the crude discharge convention,
CDC, is used throughout the book, except when it comes to the formulas-as-
types interpretation. Let’s briefly state the problem by an example in minimal
implicational propositional logic PROP, which we shall describe in two formats,
to be called PROP4 and PROPg, both natural deduction style. This example
also shows how our choice for the formalisation of the logic is determined by
the Curry-Howard isomorphism. In fact the isomorphism clearly visualizes the
differences between the formalizations.

2.2.1. DEFINITION. The systems PROP,4 and PROPg have as formulas the ele-
ments of the set FORM, given in abstract syntax by

Form ::= Var | Form D Form,

where Var is a countable set of vaniables.
The derivation rules of PROP, are the following. (In the rules,  and ¢ are
formulas and I" is a finite set of formulas).

() T o€l

r = IT'FeTCheD
(>1) U{elt v (>-E) ¢ TFoD9
TFyDYy THy

The derivation rules of PROP g are the following. (¢ and 4 are formulas).

]

(>-1) ” (3-E)

wOY

$OY p

The formula ¢ in the -1 rule is said to be discharged (or cancelled). The [p] does
not refer to one single occurrence of ¢, but to arbitrary many (zero or more) ¢’s.
With the derivation rules one can form deduction trees, starting from a single
formula being the most basic form of a deduction tree. Then we say that I'F ¢
is derivable if there is a derivation tree with root ¢ and all open formulas of the
tree in I'. (A formula is open in a derivation tree if it occurs as a leaf in non
discharged form).

In practice the name of the rule will of course not be mentioned explicitly.
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In the system PROPp there is 1n general no canonical node in a derivation
tree to which a specific cancelled formula corresponds Look for example at the
following derivation

222 EXAMPLE
]

POy
pD(pDy)

The discharging of ¢ can ambiguously either belong to the first or to the
second use of the D-1 rule To make the proofs more readable this ambiguity 1s
often solved by writing a number on top of the discharged formula and writing the
same number besides the line where the discharging took place In that case the
derivation tree above in fact corresponds to two different derivation trees One
can also solve the ambiguity by using the so called crude discharge convention
(CDC), which says that at the D-I rule in the defimtion of PROPg all open
occurrences of ¢ are discharged If we adopt CDC, the derivation tree above 1s
canonical ¢ 18 discharged at the first 2-I rule

In view of the Curry-Howard 1somorphism, 1t 1s preferable to choose for
the discharge convention which attaches a number to the discharged formula-
occurrences and to the rule where the formula has been discharged This 1s not
for reasons of soundness but for the completeness of the Curry-Howard embed-
ding The example above represents two proofs of ¢ D ¢ D ¢ Az¥ A\y* ¢ (the
discharged ¢ corresponds to the second D-I) and Az¥ Ay¥ y (the discharged ¢
corresponds to the first D-I) If the formal logical system has CDC, only the
latter term can be obtained as the interpretation of a proof This 1s why, 1n
[Troelstra and Van Dalen 1988] CDC 1s dropped when discussing the formulas-
as-types 1somorphism

The system PROP, already has a sequent-like notation that 1s familiar from
typed lambda calculi, but 1t 1s nevertheless more inconvement then PROPg for
describing the Curry-Howard 1somorphism (And therefore 1t 1s even more re-
markable that this 1s the kind of formalization that 1s often used for describing
the 1somorphism) The problem lies partly in the fact that the judgements ' F ¢
are not really sequents in the sense of Gentzen, because in that case the I' would
have to be a (ordered) sequence instead of a set We adopt the example above
to the formalism of PROP 4 to see what the problem 1s

223 EXAMPLE
{p}re

{e}FeDe
FoD(p2y)
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The first application of the D-I rule sort of ‘sphts’ the assumption ¢ into two
copies of ¢, reading {p} as {¢}U{e} It 1smpossible to recover the two possible
proofs of ¢ D ¢ D ¢ (Az¥ A\y¥ z and Az¥ \y¥ y n typed lambda calculus format)
from the derivation above one could say that the first version 1s obtained by
letting the ¢ 1n the succedent correspond to the ‘right copy’ of ¢ and the second
version by letting the succedent correspond to the ‘left copy’ of ¢, but this 1s the
type of forced solution (with no motivation at all in the logic) that we want to
avold Note that replacing the D-I rule by the two rules

Thy Ty
oL) —— (Oh) ————m
TFeDy P\ {¢}FeD¥
to solve this problem 1s not only very unpleasant but on the other hand doesn’t
give the general solution So we conclude that presenting natural deduction 1n a
way similar to PROP 4 1s not what we are looking for
In the onginal paper by Howard [Howard 1980] the defects of PROP, do
not appear because there the format of the natural deduction system uses real
sequents, which are of the form I' F ¢ with ¢ a formula and T a fimite sequence of
formulas The rules of first order propositional logic (we call this version PROP()
are then as follows

224 DEFINITION The formulas of the system PROP. are the same as for
PROP,4 and PROPp The denvation rules of PROP¢ are the following (In
the rules, ¢ and ¢ are formulas and I 1s a finite sequence of formulas, I', A 1s the
concatenation of I' and A)

(ax) I-\|_‘plf<p€[‘

Lok FFe A Dy
o) —m— (>-E) ——
TFeDw ARy
'ty L9, Ak x Lo,0,8Fx
(weak) —— (perm) —m8M8 —— (contr) —8
Loky L9,0,AF x L, A x

It 1s clear how a denvation in the system PROP¢ corresponds to a lambda
term (construction in the terminology of [Howard 1980]) of the sumply typed
lambda calculus The weakeming rule amounts to an extension of the context
with one new declaration, the permutation rule does not change anything (the
contexts of the sumply typed lambda calculus are a kind of ‘multisets’ of formu-
las) and the contraction rule amounts to substituting in the lambda term one free
variable for another Now there are many more derivations then there are distinct
lambda terms of the corresponding type, due to the structural rules of weakening,
permutation and contraction So we can view the Curry-Howard embedding as
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splitting up the set of derivations 1n equivalence classes (Where two derivations
are equivalent 1f they are mapped onto the same 1mage under the Curry-Howard
embedding) In fact the embedding only takes care of the ‘computationally in-
teresting’ part of the derivation, 1t extracts the construction from the derivation
and 1n that sense 1t 15 a satisfying formal treatment of the BHK-interpretation
of proofs-as-constructions In our case, however, we do not just want to recover
the construction behind the proof, but also find a unique (up to certain trivial
changes) proof that corresponds to the construction For that purpose, PROP¢
1s not so convenient as the following example will illustrate

225 EXAMPLE Look at the following derivations of - ¢ D ¢ D ¢ 1n PROP¢

prko whkyp
) FeDe . ppkp
phpDo pbeDop
FeDpDyp FeDpDe
eky
pky p,ob e
g0k vk o
B) oty 4) g,opbp
pFeDy Pty
FeDdpDy pFpDyp
FeDpDeyp

From the logical derivations 1t 1s not very obvious that the first and the third
derivation should be considered equivalent and distinet from the second deriva-
tion The Curry-Howard embedding makes this apparent (1) and (3) correspond
to Az¥ Ay¥ y, while (2) corresponds to Az¥ Ay¥ z The situation for denvation (4)
1s even more complicated the lambda term 1t corresponds to depends on which
two occurrences of » 1n the sequence ¢, p, ¢ have been contracted 1n the apph-
cation of the contraction rule So, disregarding completeness, even to make the
soundness of the embedding work we have to make the contraction rule more ex-
phait, exither by annotating in the sequent the formulas that are being contracted
or by restricting the contraction to the last two formula occurrences

From the discussion above 1t may have become clear that we have a strong
preference for the format of the system PROPg, with annotations to fix the
formula occurrences that are being discharged at a specific application of a rule
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226 DEFINITION For n a natural number, the system of nth order predicate
logic, notation PREDn 1s defined by first giving the nth order language and then
describing the deduction rules for the nth order system as follows

1 The domains are given by
D = B|Prop|(D-D),

where B 1s a specific set of basic domains

We let the brackets associate to the right, so Prop—(Prop—Prop) will
be denoted by Prop—Prop—Prop and so every domain can be written as
Di\— —=D,—D,with Dy, ,D, domains and D a basic domain or the
domain Prop

2 The order of a domain D, ord(D), 1s defined by

ord(B) = 1for B€B,
ord(Prop) 2,
ord(D;—» —D,—B) = maz{ord(D,)|1 <:<p}, f B€eB,
ord(Di— —D,—Prop) = maz{ord(D,)|1 <2< p}+1

Note that ord(D() = 1 1ff D does not contain Prop So the ‘functional’
domains (hke for example (B— B)— B) are of order 1, whereas one might
expect them to be of a hgher order or not being part of any of the log-
1cs  This use of the orders confirms however with the formulas-as-types
interpretation that will be studied in the following Chapters The orders
are defined in such a way that 1n n-th order logic one can quantify over
domains of order < n

3 For n a fixed positive natural number, the terms of the nth order language
are defined as follows (Each term 1s an element of a specific domain, which
relation 1s denoted by ¢)

e There are countably many variables of domain D for any D with
ord(D) < n,

o If M ¢ Dy, r a vanable of domain D; and ord(D;—D,) < n, then
AICD] Me Dl—’DQ,

e f M e Diy—D,y, Ne Dy, then MN ¢ Dy,

o If ¢ € Prop, z a variable of domain D with ord(D) < n, then VzeD ¢ €
Prop

e If v ¢ Prop and ¥ ¢ Prop, then ¢ O ¢ ¢ Prop

The system PREDI1 1s a special case In addition to the rules above we
have as rules
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o There are countably many variables of domain D if ord(D) = 2,

o If M ¢ D,, £ a variable of domain D; and ord(D;—D,) = 2, then
/\.’EEDl.M € Dl—PDg.

The first states that we have arbitrary many predicate symbols. The sec-
ond allows the definition of predicates by A-abstraction, e.g. Az ¢ B.p ¢
B—Prop.

4. On the terms we have the well-known notion of definitional equality by -
conversion. This equality is denoted by =. The terms ¢ for which ¢ ¢ Prop
are called formulas and Form denotes the set of formulas.

5. For n a specific positive natural number, we now describe the deduction
rules of the nth order predicate logic (in natural deduction style) that allow
us to build derivations. So in the following let ¢ and ¢ be formulas of the
nth order language.

(o)t
(o-1) ¢ >k 22V¥
DY’
Y VzeD.y
(v-I) V:z:eD.w(*) (V-E) o] ifteD

(conv) % ifp=1
7]

The formula occurrences that are between brackets ([—]) in the D-I rule are
discharged. The superscript 7 in the D-I rule is taken from a countable set
of indices I. The index : uniquely corresponds to one specific application
of the D-I rule, so we do not allow one index to be used more than once.
The use of the indexes allows us to fix those formula occurrences that are
discharged at a specific application of the D-I rule.

(*): in the V-I rule we make the usual restriction that the variable z may
not occur free in a non-discharged assumption of the derivation.

For T" a set of formulas of PREDn and ¢ a formula of PREDn, we say
that ¢ s derwable from I' in PREDn, notation I Fprep. ¢, if there is a
derivation with root ¢ and all non-discharged formulas in T'.

The system of predicate logic of finite order, notation PREDw, is the union of all
PREDn. We follow the usual convention of not writing the number in case of a
first order system, so for PRED1 we write PRED.
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227 REMARK The choice for the connectives D and V may seem minimal
It 1s however a well-known fact that in second and higher order systems, the
intuitionistic connectives &, V, = and 3 can be defined 1n terms of O and V as
follows (Let ¢ and % be formulas)

pw&y = VaeProp(p D9y Da)da,
wVYy = YaeProp(pDa)D (¥ Da)Da,
1 = VaeProp a,
-y = Dl

Jze Dy = VacProp(VzeDpDa)Da

Similarly we can define an equality judgement (the S-equahty =, the definitional
equality of the language, 1s purely syntactical) by taking the so called Leibniz
equality for t,qe D,

t=pq =VPeD—Prop Pt O Pgq,

which says that two objects are equal if they satisfy the same properties (It 1s
not difficult to show that =p 1s symmetric)

It 1s not difficult to check that all the standard logical rules hold for &
,V,1,-,3 and = In the following we shall freely use these symbols

228 REMARK In each PREDn (n > 2), the comprehension property 1s satis-
fied That 1s, for all o(£) Prop with £ = z,, ,z, a sequence of free variables,
possibly occurning in ¢ (z, € D,), we have

IPeD,—» D, —PropVzeD(p = Pz, z,)
(Take P=Ar1 e Dy Azpe Dy o(Z) )

The above defimtion has some peculiarities that we want to bring into the
spothght We have allowed countably many vanables of all domains of order
< 2, which 1ncludes for example countably many vaniables of domain Prop For
first order logic it may seem more natural to allow only variables of domains of
order 1, but the slight extension we give here doesn’t do us any harm (It 1s
a conservative extension ) We have also forced the possibility of forming new
predicates by A-abstraction in first order predicate logic This 1s unusual (in
second and higher order cases this feature 1s called ‘comprehension’) and 1t has
only been added to make the formulas-as-types embedding complete on the level
of the proofs Frnally we do not have constants, but only vanables This may
seem strange but 1t confirms with the feature that we allow variables of domains
of order 2 1n first order logic a binary relation on B 1s represented by a variable
of domain B—B—Prop That we don’t have constants 1s also related to the fact
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that 1n our presentation a logic 1s not introduced via a similarity type that fixes
the language (mainly by declaring of the constants) Instead what we described
above 1s more a general presentation of the logic that captures all of the logics-
with-similanty-type

In paragraph 2 3 we show some easy conservativity results to justify the choice
of our ‘extended’ systems

2.2.1. Extensionality

The definitional equality on the terms 1s $-equality There 1s no objection to
taking On equality nstead all the properties remain to hold In fact 1t would
make a lot of sense to do so, especially for predicates, where we tend to view
A-abstraction as the necessary mechanism to make comprehension work (And
so both P ¢ B—Prop and Az ¢ B Pz describe the collection of elements ¢ of
domain B for which Pt holds)

This 1s related to the 1ssue of eztensionality terms of domain D—Prop are to
be understood as predicates on D or also as subsets of D (an element ¢ being in
the set P ¢ D—Prop if Pt holds) But if we take this set theoretic understanding
serious, we have to identify predicates that are extensionally equal

(VZ fEDgT& gD fZ)D f=pg (1)

Obviously, this formula 1s 1n general not provable However, in the standard
models where predicates are interpreted as real sets, the formula 1s satisfied, so 1t
15 an important extension A difficulty 1s, that extensionality 1n the form of (1)
1s 1n general not expressible in PREDn we can not express extensionality for f
and ¢ of domain D if ord(D) = n, because f =p ¢ 1s not a formula of PREDn (1t
uses a quantification over D—Prop) This means that we shall have to express
extensionality by a schematic rule The most obvious choice 15 the following

VI fZD g% VIgTD fT o(f)
)

where f and g are arbitrary terms of the same domain D,—  —D,,—Prop and
»(f) stands for a formula » with a specific marked occurrence of f For reasons
to be discussed presently our choice for the scheme will be a different one, namely
the one given 1n the following definition

229 DEFINITION The eztensionality scheme, (EXT), 1s

JED 9T ¢Z> fZ
(EXT) 9Z 2 fZ »(f) ()
v(g)
where f and g are arbitrary terms of the same domain D;—»  —D,—Prop and
w(f) stands for a formula ¢ with a specific marked occurrence of f (%) signifies
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the usual restriction that the variables of  may not occur free in a non-discharged
assumption of the derivations of fZ O ¢ and of g7 D f7.

The extension of a system with the rule (EXT) will be denoted by adding the
prefix E-, so E-PREDn is extensional nth order predicate logic.

NOTATION. For f,ge D = D\— ---— D,—Prop, if quantification over Dy, .., D,
is allowed in the system we can compress the first two premises in the rule (EXT)
to VZ.fT D gZ & g O fi. For convemence this will also be denoted by f ~p g,
S0

fr~pg.=VEfTD 9T & gZ D fZ,
where the D will usually be omitted if it is clear from the context.

2.2.10. LEMMA. The eztenstonalily scheme for D = Prop 1s admasstble wn any of
the predicate or propositional logics, 1 e.

© 21,9 Dy, x(w) Fx(®)
15 always provable.
PROOF. By an easy induction on the structure of y. X
Of course there is also a scheme for extensionlity of functions:
fE=p 9% ¢(f) .
v(g)

where f and g are arbitrary terms of the same domain D,—---—D,—B (B € B)
and further as in Definition 2.2.9. We shall not be working with this scheme and
hence not introduce it as a new definition. (Note that, if F fZ = gZ, then

f =619

2.2.2. Some useful variants of the systems

For the systems PREDn of Defimtion 2.2.6, the scheme (EXT) is equivalent to
the scheme that we gave just before Definition 2 2.9. The reason for taking the
more general scheme lies 1n the fact that for reasons of semantics we want to look
at slight extensions of the systems in which the two versions of the scheme are not
equivalent. these extensions come into consideration quite naturally when one
notices that the term language of each of the PREDn is a subsystem of the simply
typed lambda calculus, found by restricting to terms below a certain order. So
for an interpretation of the term language one 15 tempted to take a model of
the full simply typed lambda calculus. (The interpretation of the logic is then
given by describing a binary relation between sets of formulas and formulas.)
The syntactical analogue is to allow the term language to be the full simply
typed lambda calculus and to put the order-restriction only on quantifications.
Then we can show that there is no problem with this extension by establishing a
conservativity result between the two systems.
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2211 DEeFINITION For L one of our logical systems, say of order n, L based
on the full ssmply typed lambde calculus, notation L7, 1s obtained by taking as
description of the term language of Definition 2 2 6 the following

e There are countably many varniables of domain D for any D € D,

o There are countably many constants of domain D for any D € D,

If M € Dy, r a vaniable of domain D,, then AreD; M ¢ D,—D,,

If M e Dy—D;, N e Dy, then MN € Dy,

If ¢ € Prop, z a vanable of domain D with ord(D) < n, then YzeD ¢ € Prop

If ¢ € Prop and 9 ¢ Prop, then ¢ D ¥ € Prop

One can now do without the last two cases by taking (for D with ord(D) <
n) a special fixed constant ¥p ¢ (D—Prop)—Prop and similarly a special fixed
constant De Prop—Prop—Prop We do not feel that this 1s useful thing to do, so
we don't do 1t

By an easy restriction we define nth order propositional logic from nth order
predicate logic

2212 DEFINITION For n a natural number, the nth order propositional logic,
notation PROPn, 1s defined by removing i1n the definition of the nth order pred-
1cate logic, the set of basic domains B

2213 LeMMA The rule (EXT) vmplies (convg,) wn propositional logic, 1 e n
E-PROPn,

‘P=ﬁn¢=>'_903w

ProoF We only have to show that if ¢ —, ¢, then - ¢ D ¥ (This 1s s0
because of CR for B7n for the term language and the fact that ¢ = ¢ imphes
Fe 2% Nowlet ¢ —, ¢, say ¢ = C{hzeD Mz] —, C[M] = ¢ Now
M e D—  —Prop and MZ D (AzeD Mz)Z and vice versa by the (conv) rule,
so F C[AzeD Mz] > C[M] by (EXT) ®

The first order predicate and propositional logics are very mimumal they do
not have a connective for negation (The second order logics do not either but
1n that case intuitionistic negation can be defined by letting L = VaeProp o and
¢ =y D 1) This implies that we can not specialize PROP or PRED to a
classical variant Therefore, to define classical first order logic, we have to add
negation to the system (Because of the 1deological completeness of {D, L} n
classical logic, this 1s sufficient for a treatment of the full classical proposition
and predicate logic For the intuitionistic case, the extension with just L1 1s still
quite minimal)
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22 14 DEFINITION First order propositional and predicate logic with negation,
notation PROP+ and PRED* are defined by adding to PROP and PRED the
following

1 A fixed constant L ¢ Prop,

2 The denvation rule
(L) -
@
The classical vanants of the logics can be defined 1n several ways, by adding
a rule or an axiom We choose for a rule in the first order case and an axiom 1n
the higher order case

2215 DEFINITION The classical systems of proposition and predicate logic are
defined by adding the following

1 For PROP* and PRED? by adding the rule
—|—1¢

() —
@

2 For the other systems PROPn and PREDn by adding the axiom

VYaeProp ——a D «

NOTATION the classical variants of the systems will be denoted by addin g a
subscript ¢ So for example PROPj‘, PRED;L, PROPn, and PREDn.  They
also have extensional variants, which are defined by adding the scheme (EXT)
and which are denoted by adding the prefix E-

Just as 1n the first order case there 1s a faithful translation of the systems
of classical higher order logic into the systems of intuitiomstic higher order
logic This extends the Godel translation The definition we give 18 the one
in [Coquand and Herbelin 1992], where 1t was described more generally 1n the
form of a so called ‘A translation’ 1n a typed lambda calculus framework

Let 1n the following L be one of the intuitionistic logics defined in Definitions
226, 2212 and 2 2 14, but not one of the mimimal systems PROP or PRED,
and let L. be the classical variant of L, as defined in Definition 2 2 15

2216 DEFINITION The Godel translation (—)~ from the terms of L to itself 1s
defined inductively by

() = «z, for z a varnable or the constant L,
(PQ)” = (P)(Q),
(AzeD P)™ = MzeD (P),
(e 29)" = -=(e)" 2 (¥),

(VzeD )" = VzeD —~—{p)”

This mapping extends straightforwardly to sets of formulas
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So, for example 1n the higher order systems (L)~ = Va =—-a, which 1s logically
equivalent to L In the first order systems we have (1)" = (L D> 1) D 1, which
15 also logically equivalent to L Further 1t 1s convenient to remark that (-—y)”
15 logically equivalent to ~—(p)~

2217 LEMMA We have the follounng properties for (=)~ Lett and g be terms,
z a varable and D o doman

! teD=({)"eD
2 (tlg/z])” = (O)"[(9)" /1]
3 t=gq=> ()" =5(q)"

PROOF The first two by an easy induction on the structure of terms The third
by showing the statement for a one step g reduction and applying the Church-
Rosser property X

2218 THEOREM For g a formula of L, I' a setl of formulas of L,
Thr o6 (D) b ~=(e)”

PROOF From right to left 1s easy by the fact that ()™ 1s logically equivalent to
v 1n classical logic

From left to right 1s by induction on the derivation, using Lemma 2 2 17 One
also uses the general facts

and
—lﬁ(V.’EED <p) |"L VzeD ial'7

Further one has to note that the rule (-—) 1s sound in L for formulas of the form
==( ) (f L 1s first order) and that (Va -—a D a)” 1s provable in L (if L 1s
higher order) X

2.3. Some easy conservativity results

This paragraph contains a number of syntactic proofs of conservativity results
The results are relatively easy and not surprising Most of the work therefore
lies 1n a precise formulation of the notions First we show that (E)-PREDn™ (see
Definition 2 2 11) 1s conservative over (E)-PREDn This means that the extension
of the logical language of order n to the full simply typed lambda calculus does
not affect the provability

Furthermore we show that our first order predicate logic with all function
domains 1s conservative over the system that has only function constants (which
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1s more standard) This system, in which 1t 1s still possible to define predicates
by A abstraction, 1s again conservative over the ‘standard’ system, where one
has only basic predicates The proof of the latter result will only be outhned
In section 6 53 we give a precise proof in terms of typed lambda calculi, using
the formulas-as-types embedding In order to achieve our goals, we first have
to give some definitions, writing PRED™/ for PRED without function domains
and PRED™/" for PRED without function domains and definable predicates So
PRED /" is the standard mimimal first order predicate logic, which has only
function constants and predicate constants

We first turn to the conservativity of (E)-PREDn" over (E)-PREDn We
define a mapping from (E)-PREDn" to (E)-PREDn which preserves provability

231 DEFINITION Let n € N The mapping (-)* on (E) PREDn™ 1s defined
by substituting in a term of (E)-PREDn” for all free variables and constants

of a domamn D of order > n the fixed closed term dp of domain D, where for
D=D,— D,—Prop, dp s defined by

dD = )\I]ED] /\ImEDm 1

The 1mage of a term of (E)-PREDn” will only contain free variables and
constants of domains of order < n Furthermore, if t € D, then t" ¢ D We now
want to take S-normal forms and long-87n-normal forms Recall that a long-G7-
normal form 1s obtained by first taking the g-normal form and then doing all
n-expansions, where C[g] n-expands to C[AzeD gz] if ¢ FV(q) and this does
not create a f-redex (This s well defined by normalization of 3 and the fact that
if C[q] n-expands to C'[AzeD gz], we can not expand on g or AzeD gz anymore )
The long-fn normal form of M is denoted by long-87 nf(M)

232 LEMMA Ift € (E)-PREDn™ with t ¢ D and ord(D) <, then S-nf(t*) and
long-Bn-nf(t*) are in (E)-PREDn

Proor By induction on the structure of G-nf(t*), respectively the structure
of long-An-nf(t*) We only treat the proof of the statement that B-nf(t*) 1s 1n
(E)-PREDn t* contains no free vanables or constants of domarns of order > n
So

B-nf(t*) = AzyeDy AzneDn, p@Q) Q.
with p a constant, a free vanable or one of the z, Now, all the domains
Dy, , Dy, are of order < n, so the domain of p 1s of order < n By IH, the
terms @, , @, are in (E)-PREDn, and hence §-nf(¢*) 1s ®

233 PROPOSITION Forn € N orn = w we have the follourng

I' Fprepn @ = B-nf(I'™) Fprepn B-nf(p"),
I Fg-prepar ¢ =  long-Bn-nfI") Fe-preD. long-On-nfle”)
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PrOOF By induction on the derivation First remark that ¢ = ¢ = ¢* = ¢¥*
and ¢*[P*/z] = (p[P/z])* Then all cases are easy except for the case when the
last rule 1s (EXT) So say we have

fTD 9% gD fZ o(f)
v(g)
as the last step in the proof By IH we have
long-An-nf(I"*) + long-Bn-nf((fZ)") O long Bn-nf((gZ)"),

long-An-nf(T*) + long-Bn-nf((g9Z)") D long-Bn-nf((fZ)*),
long-fn-nf(I'*) + long Bn-nf(((f))")

Now we take a fresh variable z of the same domain as f and g and replace f by
z1m p(f) We look at the term ¢*(z), which 1s the same as (p(z))* except for
the possible substitution of a term for z, which 1s not performed Now

(long-Bn-nf(*(2))[f*/2] =gy ©"(2)[f* /2] = (¢(f))" =gy long-Br-ni((¢(f))")

So the third part of the IH can be read as

long-fn-nf(C*) F (long Bn nf(y"()))[f/2]

and we are done 1f we prove

long-fAn-nf(I"*) & (long-Gn-nf(v*(2)))[g"/ 2]

All occurrences of z in long-gn-nf(p*(z)) are of the form zg, gy withzq1  gp ¢
Prop We have extensionality on the level of Prop (Lemma 2 2 10, so

f*29'7 ¢°7D f*7 (D
¥(g*q)

Now, for each occurrence of z 1n long §n nf(¢*(2)), the first two premises of (1)
are satisfied by IH So all occurrences of f* in (long-87n nf(p*(2)))(f*/2] can be
replaced by g* by consecutive applications of rule (1) As conclusion we obtain
that (long-On-nf(¢*(2)))[g*/z] holds ®

(1)

234 COROLLARY For all n € NuU {w}, (E) PREDn" s conservative over
(E)-PREDn

235 REMARK The Proposition and Corollary remain to hold if we replace
PRED by PROP everywhere

236 CoROLLARY If(E)-PROP(n+1)" s conservative over (E}-PROPn™ then
(E)-PROP(n + 1) 1s conservative over (E)-PROPn
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We now turn to the issue of the functional domains and define a subsystem

of first order predicate logic (PRED) that only has the simplest domains for
functions (Usually these domains are called ‘first order’ but this conflicts with
our terminology, so we shall refrain from using that term )

237 DEeFINITION The language of the system PRED— f 1s defined as follows

1 The domains are given by
D =B|Prop|D—» —D—Prop

So there are basic domains (the ones in B) and predicate domains (the ones
that contain Prop)

2 The functional domains are given by
F =B— B,

(We assume every functional domain to be built up from at least two basic
domains ) Note that F ¢ D

3 The order of a domawn D, ord( D), 1s defined as 1t 15 done for PRED1n 22 6
(So the functional domains have no order, which confirms with the intention
that in PRED/ there 1s no quantification over functional domains )

4 There are countably many function-constants ¢ for every function domain
F € Fin PRED™/

5 The terms of the language of PRED ™/ are described as follows

e There are countably many variables of each domain D,

e If ¢/ 15 a function constant of domain F = B;— —B,and t, ¢ B,
for 1 <2 <p, then cft;, ,t, € Bpy,

H t e Dy z a vanable of domain D; and ord(D;—D,) = 2, then
AzeD; t e Di—D,,

Ift e D1—D,, qe Dy, then tq e Dy,

If ¢ € Prop, z a vanable of domain D with ord(D) = 1, then VzeD ¢ ¢
Prop

e If p € Prop and v € Prop, then ¢ D 9 € Prop

The derivation rules of PRED ™/ are the same as for PRED, so the quantification
1s restricted to the domains of order 1 (the D € B)

It 1s convenient to let PRED also have constants ¢ for functional domains F,

because then PRED~/ 1s formally a subsystem of PRED We have the following
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238 PROPOSITION PRED 1s conservative over PRED™Y, that s, for I' a set
of formulas and ¢ a formula of PRED ™,

['Fprep ¢ = T Fprep-r @

ProoF The proof 1s by cut-ehmination and normalization The notion of cut-
elimination will only be discussed 1n section 32 3, so we can only sketch this
proof One can show that, if I" 1s a set of formulas and ¢ a formula of PRED™/
such that ' Fprgp ¢ 1s derivable with derivation ©, then the derivation ©’,
which 1s obtained from © by cut elimination and normalization of all first order
expressions, 15 a derivation of I' F ¢ 1n PRED™/ 1In section 6 53 we discuss
two typed lambda calculi that correspond to PRED respectively PRED ™/ by the
formulas-as-types embedding The proof of Proposition 6 5 28 can therefore be
seen as a detailed proof of this Proposition X

This 1s not yet the end of the story 1n the usual first order system one can
not define predicates by A-abstraction, so we want to show that this extension 1s
conservative too

239 DEFINITION The system PRED /" 1s PRED™/ minus the clause

‘If M € Dq, z a vanable of domain D; and ord(D;—D5) = 2, then AzeD; M e
DI—PDZ’

in the term formation rules, and the clause

‘If t e Di—Ds, g€ Dy, then tq e Dy’

replaced by

MfteDi—» —Dp,—Prop, g, e D, forl <2< p,thentq ¢,eProp’

In PRED™/T there are no more A-abstractions It 1s the ‘usual’ system of
mimimal first order predicate logic the set of terms of the object language 1s
inductively defined from variables and constants by function application, and
the set of formulas 1s inductively defined from the basic formulas by applying
connectives (Where the basic formulas are of the form zPt, tp, with ¢, terms
of the object language, and allowing for p = 0) The conservativity of PRED™/
over PRED /" 1s now proved by normalizing out all A-abstractions, just like we
normalized out all relevant A-abstractions in the proof of conservativity of PRED
over PRED™/

2310 PROPOSITION ForT a set of formula and ¢ a formule of PRED™/,
I'Fprep-s ¥ = 7AT) Fprep-r- nfle)
Proor Easy induction on the denvation ®
2311 COROLLARY ForT a set of formulas and ¢ o formula of PRED™/",
['Fprep-r ¢ = I Fpgep 1+ @
PROOF By the fact that for ¢ a formula of PRED™/", ¢ = nf(p) ®
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2.4. Conservativity between the logics

Having justified the systems PREDn in relation to more standard presentations of
predicate logic, we now want to say something about the conservativity relations
between the systems themselves This gives a better understanding of the logics
while at the same time these results will be useful later for reference when we
discuss the conservativity relations between systems of typed lambda calculus in
Chapter 6 1 So this paragraph may be skipped for now 1f one 1s merely interested
1n the typed lambda calculi The conservativity relations betweem the logics can
be collected 1n the following diagram

PROPw - PROPw, PREDw » PREDw,

PROP3 - PROP3, PRED3 - PREDS.

PROP2 - PROP2, PRED2 - PRED2,

PROP* - PROP} PRED+ - PRED?
PROP PRED

where a dotted arrow depicts a non conservative inclusion and an ordinary arrow
depicts a conservative inclusion The (non-)conservativities between predicate
logic and propositional logic follow by the fact that any predicate logic on the
right 1s conservative over 1ts proposttional variant on the left, and further by
transitivity of conservativity and the fact that if L, 1s not conservative overL,
and Ly C Lj, then Lj 1s not conservative overf,

We do not present this diagram as a theorem, because {or some of the depicted
arrows we have no proof In this section, only a small part of the diagram above
will be proved formally One of the things we do not prove 1s the whole tower of



Sec 24 Conservativity between the logics 25

vertical arrows 1n the propositional part We only prove the conservativities for
extensional versions of the systems This implies the conservativity of PROPn
over PROP2 for any n > 2 (and stmularly [or the classical variants)

Also the vertical tower of arrows 1n the predicate part of the diagram will
not be proved For n > 2, we believe that non-conservativity can be proved by
looking at a structure for Arithmetic in each of the logics Then one obtains nth
order Heyting Arnithmetic on the left side and nth order Peano Arithmetic on the
nght side Then Godel’s Second Incompleteness Theorem says that each of those
systems can not prove its own consistency Then the non-conservativity can be
established by showing that (n+4 1)th order Anithmetic can prove the consistency
of nth order Arithmetic

A similar method should apply to the systems PRED2 and PRED?, respec-
tively PRED2. and PRED} For the classical vaniants this 1s straightforward
PRED} may seem mimimal, but due to classical logic, all connectives can be
defined 1n terms of D, ¥ and 1. Hence we can look at Robinson’s system Q for
Anthmetic, for which Godel’s Second Incompleteness Theorem already applies
The non-conservativity of PRED2 over PRED* can then be derived from the
non-conservativity of PRED2, over PREDZ by applying a version of the Godel’s
double negation translation This s a faithful mapping from PRED2 respectively
PRED* to PRED2, respectively PRED. (See section 6 53 )

The conservativity of PROP2 over PROP and of PRED2 over PRED will be
discussed later when we look at typed lambda calculus versions of the systems
Then we shall describe mappings from the larger system to the smaller one that
also take 1nto account the proofs From the conservativity of PROP2 over PROP
and of PRED2 over PRED 1t immediately follows that PROP* 1s conservative
over PROP and that PRED? 1s conservative over PRED

The non-conservativity of PROP} over PROP 1s easy ((a—f3)—a)—a 1s
provable in PROPZ, but not in PROP A denvation of 1t in PROP} 1s

@Dfl(edf)Da [~a] [a]
a [—a] L
L g
~(a D B) adf
1
o

[t can easily be seen that ((a—f@)—a)—a 1s not provable in PROP by notic-
ing that there 1s no closed term of type ((a—f8)—a)—a 1n the simply typed
lambda calculus (which 1s saying the same as ‘there exists no cut-free proof of
((a—B)—a)—a 1in PROP’) The example ((a—J)—a)—« also applies for show-
ing the non-conservativity of PRED} over PRED
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It 1s obvious that the conservativity of the classical version of the logic over
the intuitionistic version never holds, hence the dotted arrows from left to right
1in the diagram

Note further that any predicate logic 1s conservative over 1ts propositional
version This 15 easily seen by defimng a mapping {—] from formulas of the
predicate logic to the propositional logic that preserves derivability and 1s the
wdentity on the propositional logic It can be defined as follows

241 DEFINITION Let Ly be a system of predicate logic and L, 1ts propositional
variant The mapping [—] 1s defined on predicate domains of L, (the ones of
the form  —Prop) by just removing all the basic domains, so for example
[(B—Prop)—Prop] = Prop—Prop Then [-] Form(L;) — Form(L,) 1s defined
as follows

0] = 2,
[pD%] = [¢] D[
VzeA ] = Vze[A][p] f A=  —Prop,
= [p] else,
[AzeA M] = Xze[A] [M] L A=  —Prop,
= [M] else,
[PM] = [P][M]fMA=  —Prop,
= [P} else,

This map 1s very similar to the one in Definition 6 5 23, which shows the
conservativity of dependent typed lambda calculus over non-dependendent typed
lambda calculi

It 15 easily shown that this map satisfies the requirements

The proof of conservativity of extensional PROP(n + 1) over extensional
PROPn 1s given by semantical methods We give a notion of model 1n terms of
complete Heyting algebras that 1s sound and complete for each of the E-PROPn
We shall also describe a Kripke semantics for PROPn (non-extensional) We
had hoped to prove the conservativity of PROP(n + 1) over PROPn by using
this semantics However, although we have a sound and complete model notion
for each of the PROPn, we haven't been able to derive conservativity because a
Kripke model of PROPn 1s not immediately a Kripke model of PROP(n + 1)

The proof of conservativity of E PROP(n + 1), over E-PROPn, follows di-
rectly from the proof of conservativity of E-PROP(n + 1) over E-PROPn (Just
add the axiom Yaa V —a everywhere) Nevertheless we also describe a truth table
semantics for E-PROPn,, because 1t 1s the basic semantics for classical proposi-
tional logics Further 1t shows not only the conservativity of E-PROP(n+ 1), over
E-PROPn,, but also the decidability of E-PROPn, (for any n > 2) This should
be contrasted with intuitionistic versions of propositional logic all the systems
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PROPn (n > 2), extensional or not, are undecidable This 1s a consequence

of the undecidabilty of PROP2, shown by [Lob 1976], and the conservativity of
(extensional) PROPn over PROP2 for all n > 2

2.4.1. Truth table semantics for classical propositional logics

The method of deciding the validity of a judgement I' + ¢ in classical logic
by using truth tables immediately extends to the second order case by letting
the value of a vary through {0,1} 1n the interpretation of ¢ For higher orders
we have to be a bit more careful The straightforward thing to do 1s to let
for example the value of variables of domain Prop—Prop vary through the set of
functions from {0, 1} to {0,1} This, however, gives a model that 1s not complete,
because 1t 1s too extensional compared with the syntax, in the sense that e g for
all f, g ¢ Prop—Prop,

(VaeProp fa D ga & ga D fa) D (f =Prop—Prop 9)

15 satisfied in 1t (The equality 1s the definable Leibniz’ equality) We shall show
that the truth table model i1s complete for the extensional version of the logic

Extensionality 1s not derivable in any of the logics This can for example be
seen from the fact that 1f

Feropq. Vf, geProp—Prop (f ~g) D f =g,
then (for P a vanable of the appropriate domain)
.P(/\CY aJaD a), ﬂP(Aa aD a) '_PROP4C 4

by the fact that Aa @ D @ D a and Aa @ D «a satisfy the assumption for f and g
1n the extensionality Now by applying the Godel’s ~—-translation of Definition
2 2 16, we obtain

—|—1P(,\a a D '1—\(—|—|a D ﬁﬁa)), —|P()\a =g D ﬂﬂa) }_PROP‘l 1

This, however can only be the case if Aa =—a O ==(=-a D =—a) =5 Aa ~—a D
—-q, which 1s clearly not the case

242 DEFINITION For every domain D we define the set Vp of possible values
for the terms of domain D as follows

VProp = {0, 1},
Vp,—p, = Vp, — Vp,,the set of functions from Vp, to Vp,

The interpretation of terms as values (modulo a valuation of the free vanables)
1s now straightforward, given the following definitions
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243 DEFINITION Any valuation v that maps vanables to values of the appro-
priate set extends immediately to an interpretation v on all terms as follows

v(AzeD P) = Xa € Vp o[z = a](P),
W(PQ) = u(PW(Q),
vip DY) = 01f v(p)=1and v(¥) =0,
= 1 otherwise,
v(VzeD p) = 1afforalla e Vp, v[z =a](p) =1,
= 0 otherwise

Here v[z = a] denotes the valuation with v[z = a](z) = ¢ and v[z = a](y) =
vy)ifz#y

As was to be expected, the value of a closed term does not depend on the
particular choice for v and values are stable under 37n-equality

244 DEFINITION For I a set of formulas and ¢ a formula of any of the propo-
sitional logics, we define

= ¢ =for all valuations v, v(I") =1 = v(p) =1,

where v(I') = 1 f v(y) =1forallp €T
We say that ¢ s true if E o
{The subscripts will usually be omitted)

245 PROPOSITION (Soundness) For T a set of formulas and ¢ a formula of
E-PROPn],
I'FeproPrr w = @

PRrROOF By an easy induction on the derivation X

246 LEMMA Forany domain D, all values of Vp are A definable in E-PROPn]
That 13, for all F' € Vp there 1s a closed term t of domawn D n E-PROPnT such
that

u(t)=F

(for any valuation v)

PROOF By induction on the structure of D The proof uses the fact that, due
to the extensionality, one can define a function by cases 1n the logic For example
the value in ({0,1} — {0,1}) — {0,1} that maps the 1dentity and the swop
function to 0 and the two constant functions to 1 can be defined 1n the syntax by

AfeProp—Prop (f ~daaVf~da-a) D L& (f~AalVf~daT)DT
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In general, a function F': Vp,— .- —Vp,—{0,1} can be described in the format

Fuvy,---v, = 0ifv, =t and ... and v, =1,
= 1if ---,

e,

where we just go through all the possible input values. By IH we know how to
A-define all the elements of Vp,,...,Vp,, so we can translate the format for F
into a A-term by replacing the ¢, by its defining element and = by ~, wherez ~ y
for z and y of domain D;— -+ —D;—Prop is defined by Azt ~ yi) with A the
finite generalised conjinction that lets £ vary through the sequences of defining
elements of Dy,..., Dy. ®

For example 0 can be defined by L and 1 by T.

Due to the previous lemma we can internalize a valuation v in the syntax.
This is done by substituting for the free variable z the term that A-defines v(z).
We introduce the following notation.

NoTATION. For v a valuation, the substitution that replaces a free variable z by
the closed term that A-defines v(z), will be denoted by ,. (So, for example, for
v with v(a""°P) = 0, T, substitutes L for a).

The lemma also states that any Vp can be summed up by closed terms, i.e. we
can always write Vp = {v{t1),v(t2),...,v(tp)}, for some closed terms ty, ts, .. ., ¢,
where v is totally arbitrary. This fact can even be proved inside the logic.

2.4.7. LEMMA. In E-PROPn,, if ord(D) < n and Vp = {v(t1),v(t2),...,v(tp)},
then
FVYfeD.f =tV f=t,v---V f=t,

PRroOOF. By induction on the structure of D, by proving
f#FUDf# LD - Df#t,1Df=t,.
The proof uses extensionality in the form of
f#LEIZ(fE& D)V (-fF & t,T)

which is provable from the extensionality axioms.
The reason that the lemma does not hold for all domains of the logic is simply
because for domains of order n the formula

FVYfeDf =tV f=taV--Vf=t,

is not in the language of E-PROPn.. ®
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The lemma says, among other things, that - VaeProp.(a = TV a = 1)
is provable in E-PROP3.. Let’s shortly digress on how one proves this fact as
an illustration of the proof. Extensionality in E-PROP3, implies the following
axiom.

Va,feProp.la~3) Da=0

Nowa Fa~Tand ~at a~ L, henceaV-alta=TVa= L1 by
extensionality, and so  VaeProp.(a =T Vva=1).

We have a version of Lemma 2.4 7 for domains of order n in E-PROPn,. It
is strong enough for our purposes.

2.4.8. LEMMA. In E-PROPn,, of Vp = {v(t1),...,v(tp)}, then
VieD.f ~ti V-V f ity

ProOOF. For domains of order < n the lemma follows immediately from the
previous one (Lemma 2.4.7) For domains D of order n we have to do a case
analysis and use the previous Lemma. What one really proves 1s

FVYfeD.(IE.f7 £ 08) D - D (ITfT # tyrT) D (VE.fT = 1,7)

which 1s sufficient. We give some details for the case of the domain Prop—Prop
in E-PROP3.. We have to prove

F VfeProp—Prop.(Ja.fa # a) D (Ja.fa # ~a) D (3a.fa# T) D (Va fa = 1).

This is easily done by deriving a contradiction from Ja.fa # «, da.fa # e,
da.fa#Tand (fT=T)v(fL=T) K

2.4 9. PROPOSITION. In E-PROPn,, for v a valuation,

vp)=1 = F I p),
v(p) =0 = F-X,(p),

ProoF. Simultaneously, by induction on the structure of the normal form of «.
For ¢ = VzeD.yp we distinguish two subcases: ord(D) = n and ord(D) < n. We
treat both subcases for v(yp) = 1.

Suppose v(VzeD.1p) = 1 and ord(D) < n. Then v[z := F](¢) = 1 for all F' € Vp.
Say Vp = {v(t1),...,v(tp)} (which is justified by Lemma 2.4.6). Then by IH

F E,,[l' = tt](¢)
forall ¢, (1 €1 < p). By Lemma 2.4.7 we know that

Fz=tV---Vz=t,



Sec 24 Conservativity between the logics 31

so we can do a case analysis to find

F 2. (¥)

Now L, does not substitute anything for z, so z 1s still free in £,(¢) We may
conclude
F X, (VzeD o)

Suppose now that v(Vz € D ) = 1 with ord(D) = n Then again v[z = F](%) =
1forall FeVp (Say Vp={v(t1), ,v(t,)}) Agam by IH

for all ¢, (1 <1 <p) By Lemma 24 8 we know that
bz~ t1 \ VI~ tp

This 1s not as strong as what we had 1n the first case, but 1t still suffices because
we may assume that in ¥ all occurrences of z appear in the form (zq;  ¢.) with
zq1 g, € Prop,1e  occurs only as a real function (If ¢ 1s not yet of this shape
we n-expand 1t) We can do a case analysis to find

F X, (%)
Again z 1s free in £,(¢) and we can conclude
FE,(VzeD o) ®
2410 CoRrOLLARY (Completeness) In E-PROPn., for ¢ a formula
Feo =>Fo

PROOF | p means Vv v(p) = 1, so by the Proposition - ¥,(¢) for any valuation
v Hence F ¢ because we can make all the necessary case distinctions by Lemma
247 and Lemma 248 ®

2411 CoroLLARY All E-PROPn. are decidable

PrOOF Immediate from the previous Corollary and the Soundness (Proposition
24 5) by the fact that the vahidity of a formula can always be checked 1n a finite
part of the truth table model X

2412 ProprosITION E-PROP(n+1), s conservative over E-PROPn, (n # w),
and hence E PROPw. 1s conservatve over each of the E-PROPn,

PRrROOF By the fact that the truth table model 1s a model for all the E-PROPn,
X

2413 CoROLLARY PROPn. s conservative over PROP2, for each n

ProoF Immediate from the fact that PROP2, and E-PROP2. are the same
system (By Lemma 2210) ®
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2.4.2. Algebraic semantics for intuitionistic propositional logics

In this section we describe ¢ semantics for our systems of intuitionistic propo-
sitional logic in terms of Heyting algebras It 1s well-known how this 1s done
for the full first order propositional logic, giving rise to a completeness result
For second and higher order propositional logic we need to refine the notion of
Heyting algebra to also allow interpretations for the universal quantifier It 1s
easily seen that complete Heyting algebras are strong enough to satisfy our pur-
pose complete Heyting algebras have arbitrary meets and joins, so for example
Vf ¢ Prop—Prop ¢ can be interpreted as /\{[np][f _m | F € A—-A} It 15 how-
ever not so easy to show the completeness of compiete Heyting algebras over
E-PROP= (for any n), because the Lindenbaum algebra defined from E-PROPn
15 not a complete Heyting algebra The way out was suggested by Theorem
13 6 13 of [Troelstra and Van Dalen 1988], stating that any Heyting algebra can
be embedded 1n a complete Heyting algebra such that D, L and all existing V
and A are preserved (and hence the ordering is preserved) The embedding: that
1s constructed 1n the proof 1s also faithful with respect to the ordenng, that 1s,
if ¢(a) < ¢(b) in the image, then a < b 1n the original Heyting algebra All this
implies completeness of complete Heyting algebras with respect to E-PROPn, for
any n Hence we have conservativity of E-PROP(n + 1) over E-PROPn

In fact the argument that we use gives a completeness result for the systems
E-PROPn™, which 1s E-PROPn based on the language of the full sumply typed
lambda calculus This 1s only done to make things slightly easier and 1t does not
have any effect on the results (See also Remark 2 3 5)

At this point we do not know how (if at all possible) to conclude the conser-
vativity of PROP(n + 1) over PROPn from the conservativity of E PROP(n 4+ 1)
over E-PROPn However, we do have the conservativity of PROPn over PROP2
for any n, because PROP2 and E PROP2 are the same system

It 1s obvious that extensionality 1s required 1n the syntax because the model
notion 1s extensional 1if, for example, F,G A—A (where A 1s the carner set of
the algebra) and F'(a) = G(a) for all a € A, then F =G

The method of showing conservativity by semantical means seems to be quite
essential here Most of the other conservativity proofs in this chapter use map-
pings from the ‘larger’ system to the ‘smaller’ system that are the identity on the
smaller system These mappings also constitute a mapping from derivations to
derivations that 1s the 1dentity on derivations of the smaller system For the case
of intuitionistic propositional logics, this method seems to be essentially impossi-
ble there are formulas of PROP2 that have more and more cut-free derivations
when we go higher 1n the hierarchy of propositional logics

24 14 DEFINITION A Heyting algebra (or just Ha) 1s a tuple (A4,A,V,L,D)
such that (A4, A, V) 1s a lattice with least element L and D 1s a binary operation
with

aAb<c&a<bDe
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Remember that (A4, A, V) 1s a lattice if the binary operations A and V satisfy
the following requirements

aAa = a, aVa = a,

aAb = bAa, aVb = bVva,
aA(bAc) = (aAb)Acg, avV(bve) = (aVvb) Ve,
aV(eAb) = a, aA(aVvb) = a

Another way of defining the notion of lattice 1s by saying that 1t 1s a poset (A, <)
with the property that each pair of elements a,b € A has a least upperbound
(denoted by e V b) and a greatest lowerbound (denoted by a A b) By defining
a <b =aAb=a we can then show the equivalence of the two definitions of
lattice

2415 DEFINITION A complete Heyting algebra (cHa) 1s a tuple (4, A, V, 1, D)
such that (A, A,V) 1s a complete lattice and (A, A, V, L, D) 1s a Heyting algebra
(So V and A are mappings from gp(A) to A such that for X C A, VX 15 the
least upperbound of X and A X 1s the greatest lower bound of X The binary
operations A and V are defined by (for a,b € A) aAb = A{e,b} andaV b =
V{a,b})

An important feature of Heyting algebras which 1s forced upon by the presence
of the binary operation D, 1s that they satisfy the infinitary distributive law

(D) aAVX =V{anblbe X} f VX exists

(The inclusion D holds in any lattice, for the inclusion C 1t 1s enough to show
that aAc C V{a Ab|b € X} for any ¢ € X, due to the properties of D)
Two other important facts are the following

2416 Fact 1 If a complete lattice satisfies the infimtary distnibutive law
(D), 1t can be turned into a cHa by defining

boec =\{d|dAb<c}

2 Any Heyting algebra 1s distributive, 1 e any Ha satisfies
aA(bve)=(aAb)V(aAc)

For the first statement cne has to show that aAb < c < a < V{d|dAb< ¢}
From left to nght 1s easy, from right to left, notice that if a < V{d|d A b < ¢},
then aAb < bAV{d|dAb < c} and the latter 1s (by D) equal to V{bAd|dAb < c},
which 15 just ¢ The second 1s easily verified

We are now ready to give the algebraic semantics for the systems E-PROPn”
(A logical system L™ 1s based on the full simply typed lambda calculus, see Def-
mtion 22 11) Let in the following (A, A, V, L, D) be a cHa We shall freely use
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the notions V and A, as they were given 1n Definition 2 4 15 The interpretation
of the terms of E-PROPn will be in A and 1ts higher order function spaces We
therefore let [—] be the mapping that associates the right function space to a
domain D, so

[Prop] = A,
[Dy— Ds] [Dy] = [Da],

where the second — describes function space In the following we shall freely
speak of the ‘interpretation of E-PROPn"™ 1n (A, A, V, L, D)’, where of course this
interpretation includes the mapping of higher order terms into the appropriate
higher order function space based on A

It

2417 DEFINITION Let n € NU {w} An algebraic model of E-PROPn" 15 a
pair (0,C), with © a cHa and C a valuation of the constants 1n © such that, if ¢
1s a constant of domain D, then C(c) € [D]

2418 DEFINITION The interpretation of E-PROPn™ 1n the algebraic model
((A AV, L, D),C), [-], 1s defined modulo a valuation p for free variables that
maps variables of domain D into [D] So let p be a valuation Then [-], 15
defined inductively as follows

[c], = C(c), for c a constant,
f[a], = »(a), for a a vanable,

(PQl, = I[PLIQL,.
[\zeD Q), = At € [D][Q
leo¥l, = [¥l, 0¥l
IVzeD ], = A{l#), =yt € [D1}

It 1s easily seen that |[—]]p satisfies the usual substitution property and that
interpretations are stable under 3n-equality, 1e

[[P]]p(z =1, = [[P[Q/IHI,,

and

P =4, @ =[P],=1[Q],

2419 DEerFiNITION For I a finite set of formulas of E-PROPn™, ¢ a formula
of E-PROPn"™ and (©,C) an algebraic model, v s (0,C)-vakd wn T, notation
[ =0 v, if for all valuations p,

A{I¥1, ¥ €T} < fyl,
If I' 1s empty we say that ¢ s (0,C)-valid of o) @
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Note that A{[v] | € T'} exists, beacuse I is finite. In the following we just
write [I'], for A{[¥], [y € I'}.

Our definition is a bit different from the one in [Troelstra and Van Dalen 1988],
where I' [=(g.¢) ¢ is defined by

Werwl,=T) = [, =T.

Our notion implies the one above, but not the other way around. However, they
are the same if ' = @ and they also yield the same consequence relation. One
disadvantage of our notion 1s that we have to restrict to finite I'. This is easily
overcome by putting

[ e ¢ if for all finite I C T, " @) ¢

2.4.20. DEFINITION. Let " be a (finite) set of formulas of E-PROPn™ and ¢ a
formula of E-PROPn"™. We say that ¢ s a consequence of I, notation I = ¢, if
' Ee,¢) @ for all algebraic models (©,C).

2.4.21. PROPOSITION (Soundness). For I' e finite set of formulas of E-PROPn”
and ¢ a formula of E-PROPn",

I'Fe-proprr ¢ = T E @

ProoF. Let (©,C) be a model. By induction on the derivation of I' - ¢ we show
that for all valuations p, [I'], < [¢],. None of the six cases is difficult. We treat
the cases for the last rule being (D -E) and (V-I).

(D -E) Say ¢ has been derived from 4 D ¢ and ¢. Let p be valuation. Then by [H
[r], < [¥], and |[l"]]P < [¥ D ¢l,- The second implies ['], A [¢], <[],
So, by [I'], < [¥], we conclude [I'], < [¢],.

(v-I) Say o =VfeD.yp and I C T is the finite set of non-discharged formulas
of the derivation with conclusion . Then by IH, Vp[[I'], < [¢],], so
VpvF € [D][[I"], < [¥],; =F))s because f ¢ FV(I"). This immediately
implies that [I'], < [Vf € D.dzip. b

To show completeness we first construct the Lindenbaum algebra for E-PROPn™.
This is a Ha but not yet a cHa. The construction in [Troelstra and Van Dalen 1988]
tels us how to turn it into a cHa which has all the desired properties.

2.4.22. DEFINITION. For n € N U {w}, we define the Lindenbaumn algebra for
E-PROPn, £,. First we define the equivalence relation ~ on Sent(E-PROP=™)
by

o~ =tppropnr ¢ DYV &Y Dy
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We denote the equivalence class of ¢ under ~ by [p]. £, 15 now defined as the
Ha (A, A, V, L, D) where

A = (Sent(E-PROPn")).,
LAY = [p&¥),
blvig] = leve]
WD W] = w24

(L] = [i].

Note that the &, v, D and L on the right of the = are the logical connectives:
D is basic and the others were defined in Remark 2.2.7 by

w& Y = VaeProp(¢ D9y Da)Dda,
eVYy = VYaeProp(p Da) D (¢ D a)Da,
1l := VacPropa.

Each L, is obviously a Ha: [p] < [¢] iff ¢ Fe-propar ¥. Further each £, can
trivially be turned into a model by taking as valuation of the constants C the map-
ping that associates to a constant its equivalence class. We shall not distinguish
between the Lindenbaum algebra £, and the model (£,,C).

2.4.23. LEMMA. For I a finite set of sentences of E-PROPn™ and ¢ a sentence
of E-PROPnT,
FFeprop- @ & I'<pwm L,).

PROOF. Immediate by the construction of £,. X

2.4.24. THEOREM ([Troelstra and Van Dalen 1988]). Fach Ha © can be embed-
ded nto a cHa c© such that A, V, L, D and ezisting A and \ are preserved and
< 15 reflected.

PROOF. Let © = (A,A,V, 1,D) be a Ha. A complete i1deal of ©, or just c-ideal,
is a subset I C A that satisfies the following properties.

1. Lel,
2. Iis downward closed (i.e. if b € [ and a < b, then a € I),
3. Iis closed under emisting sups (i.e. if X C I and VX exists, then VX € I).

Now define ¢© to be the lattice of c-ideals, ordered by inclusion. Then c© is a
complete lattice that satisfies the infinitary distributive law D, and hence ¢© is
a cHa by defining

I>J=\{K|KAICJ}.

To verify this note the following.
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o cO has infs defined by Aycqly = Ngeq Iy

e cO has sups defined by Voeoly = {VX | X C Useq I, VX exists}. the set
{VX|X C Ueq I, VX exists} 1s indeed a c-1deal and 1t 1s also the least
c-1deal contaiming all [,

o INVeeol,=V{INI|q€Q} and soD holds
The embedding @ from © to c© 1s now defined by
fa)={zeA|z<a}

The embedding preserves L, D and all existing A, V For the preserving of V,
let X C A such that VX exists iIn ®© We have to show that 1(VX) = V,ex(z),
1e show that

fveAlygsVX}={VY|Y¥c sz(z),\/Yemsts}

For the inclusion from left to night, note that X C {y € A|3z € X[y < z]} and
$0 X C Uzex t(z) This imphes that VX € {VY |Y C U,ex (), VY exists} and
so we are done because the latter 1s a c 1deal For the inclusion from right to left,
let z = VYy with Yo C U.ex t(z) Then 2 < VX so we are done

Finally, the embedding 1 reflects the ordering, 1e

a)Ceb)2>e<b K

2 4 25 CoROLLARY (Completeness) ForI' a finite set of sentences of E-PROPn”
and v a sentence of E-PROPn7,

I'E ¢ =T Fepropar @

ProoF Following the Theorem, we embed the Lindenbaum algebra of E-PROP=n",
Ln, 1 the cHa ¢£, This cHa ¢C, 1s then turned into an algebraic model of
E-PROPn™ by taking as valuation of the constants, C, just the embedding of the
equivalence classes of constants 1n ¢, This algebraic model (¢L,,C) is com-
plete with respect to the logic for I' a finite set of sentences and ¢ a sentence of
E PROPn™, we have

FEeanoey = T'<pm Ly, = ['Feprop v B

2426 COROLLARY (Conservativity) For anyn > 2, E-PROP(n+1) s conser-
vatwe over E-PROPn, and hence E-PROPw 1s conservative over E-PROPn



38 Natural Deduction Systems of Logic Ch 2

Proor By Corollary 2 3 6, 1t suffices to show the conservativity of E-PROP(n +
1)" over E-PROPn™ ForI" a finute set of sentences and y a sentence of E-PROPn",

['Fg proP(+1)r ¢ = T v = [ FE-proPar ¢

by soundness and completeness of the algebraic models for any of the E-PROPn”
The conservativity of E-PROPw over E-PROP7 1s now immediate any deriva-
tion in E-PROPw 1s a denvation in E-PROPm for somem € N ®

2427 COROLLARY Foranyn € NU{w}, PROPn s conservative over PROP2

PROOF By the fact that PROPn 1s a subsystem of E-PROPn and the fact that
PROP2 and E-PROP2 are the same system ®

2.4.3. Kripke semantics for intuitionistic propositional logics

In the previous section we saw an algebraic semantics for the systems E-PROPn"
(which 1s at the same time a semantics for the systems E PROPn) In this
paragraph we want to give a Kripke semantics for the systems PROPn, so without
extensionality In fact this was our first starting point for the research into the
conservativity of PROP(n+1) over PROPn However, as 1t did not seem to work
for our purpose, we considered using an algebraic semantics instead This, as the
previous paragraph shows, works only for the extensional case So, although we do
not know how to use the Kripke semantics for solving the conservativity problem,
we do want to describe 1t here, because 1t gives a complete model notion for the
PROPn For convenience we describe the models as a semantics for PROPn™,
but we know that there 1s no problem 1n that shght extension

The exposition we give here owes much to [Smorynski 1973, where extensions
of Kripke models to higher orders are suggested

The basis of a Kripke model 1s a partial order, which 1s in practice usually a
well-founded tree, <K,C >, whose elements are called nodes There 15 a relation
I+ between the set of nodes and the set of formulas of the propositional logic,
such that certain conditions are satisfied (Roughly that ‘knowledge’ grows with
the increasing of the order and that L 1s not satisfied at any of the nodes) Now,
if one adds first order quantification to the logic, the partial order <K,C >
has to be extended with a function W that assigns to every node k a set W(k)
(the ‘world’ at node k) such that W 1s monotone (Our knowledge of the world
grows) The case for many-sorted logics 1s not really different, in that case we
have a number of monotone functions W,, as many as we have sorts 1n the logic

For second order propositional logic the situation 1s not very different from
that for first order predicate logic, except that now the domain of quantification 1s
the set of closed formulas, Sent, andso W K — Sent Higher order propositional
logic can now just be treated in a ‘many-sorted’ way for every domain D in the

logic we have a function Wp K — D, where D 1s in fact just obtained by
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replacing Prop by Sent everywhere in D So we see that the sets over which 1s
quantified 1n the model are just sets of syntactic objects of the same domain It
1s a bit peculiar to let the sets that one quantifies over in the model only be a
subset of the set of all syntactic objects of the corresponding domain shouldn’t
Wpiop(k) be Sent for all k € K7 (All formulas are known to us at any specific
node) It turns out that this 1s the nght choice 1t conforms with the Kripke
semantics for higher order predicate logic and, more importantly, this 1s the way
to get a notion of model that 1s sound and complete with respect to the logics

It 15 obvious that the kind of model that we get by this construction 1s very
syntactical Moreover 1t doesn’t seem to use the partial order structure of the
Kripke model 1n an essential way One way to make 1t a it less syntactical 1s by
letting the world not be Sent at any point but an arbitrary model of the language
of PROPn", that 1s an arbitrary model of the simply typed lambda calculus We
shall not follow this possibility here because at the one hand 1t doesn’t seem to
give us a lot of extras while at the other hand 1t will be quite obvious from our
definitions how to do 1t

24 28 DEFINITION To every domain D of PROP,, we associate a set of terms,
D, which 1s just {t|t € D,t1s closed}

So, for example Prop = Sent The defimition 1s very trivial, but we want to be
specific about this, because 1t 1s easy to confuse the object language of the logic
and the language of the model

2429 DEFINITION A Kripke model for PROPn™ 1s a triple <K, C, IF >, where
<K,C > 1s a partial order and IF 1s a binary relation between elements of K and
sentences that satisfies

klFp& o=y = klFqy,
kWop&ldk = g,
koD y o VIZJElIIFe=11+9],

kIFvzPy & Vte DlkIF o[t/z]],

where the | and k range over the nodes (the set K), ¢ and 9 are formulas and
D 1s a domain over which quantification 1s allowed iIn PROPn”

Note that the VI and V¢ in the defimtion are in the meta-language of the
model

2430 REMARK As condition on the relation IF with respect to the V connective,
one usually finds

kIFVzPp < VI J kVt € D[l I+ o[t/z]],

but as the range of quantification 1n the model does not grow with the increasing
of the ordering C, this 1s equivalent to the second condition 1n Defimtion 2 4 29
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In some defimtions of Kripke model (like the one in [van Dalen 1983]) the
relation Ik 1s between the nodes and the atomic formulas As the systems we are
constdering are all impredicative this method does not work here

To interpret formulas we have to close them by substituting closed terms for
the free variables We denote such a substitution by * and we always assume that
for all vanables 1t substitutes a closed term of the right domain

24 31 DEFINITION Let ¢ be a formula of PROPn™ and I'" a set of formulas of
PROPn™

1 For <K, C,IF > a Kripke model for PROP~n™, we say that ¢ 1s <K, C,IF >-
vehd i I, notation I' ke s 0, 1f

for all substitutions *, Vk € K[k IF (T)* = k I+ ()],
where k |F (I')* obviously means that k i+ 4 for all ¢ € (T')*
2 We say that ¢ 1s valid in T, notation I' = ¢, 1f

I'lFeg o> o for all Kripke models < K, C, Ik > of PROPn™

2 4 32 PROPOSITION (Soundness) For I" a set of formulas of PROPn™ and ¢ a
formula of PROPn™,
I'Feroprr ¢ = T E e

Proor Let <K,C,IF > be a Knipke model for PROPn™ By induction on the
derivation of ' Fpropar ¢ we prove

I Fpropar @ = TlFeg s @
If the last rule 1s (conv), or if ¢ € T, we are immediately done

(D>-1) Say p = x D% Then by IHT,x k1, 1e for all substitutions * we have
Vk € KlkIFT*, x* = kIF»*] Now let * be a substitution and let [ € K
with { IF T and m 3 with m | x* Then m I+ T'*, x* and hence by IH
m Ik 4*, so we are done

(2-E) Say ¢ has been derived from 9 D ¢ and ¥, so we haveas IHT IF ¢ D ¢
and ' IF ¢ Now let * be a substitution and let £k € K with kIF I'* Then
by IH k- ¢* and VI J k[l IF ¢* = [ I+ ¢*] Because & J k we find that
k IF ¢* and we are done

(Vv-I) Say ¢ =VzeD 9, so we have as IH " IF b That 1s, for all substitutions *
we have Vk € K[k IF ' = kI %*] Now z” does not occur free in T', so
we know that for all substitutions * and all t € D, Vk € K[k IF T* = k IF
(¥[t/z])"] Hence [ IF VzeD o
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(V-E) Say ¢ = y[P/z], which has been derived from VzeD 1 Then by IHT IF
VzeD ¢ Now let * be a substitution and k € K such that k IF T'* Then
for all t € D k IF (¢[t/z])* and hence k IF (3[P*/z])*, 1e kIF (¥[P/z])"
=

24 33 PROPOSITION (Completeness) For I' a set of sentences of PROPR™ and
@ a sentence of PROPn",

'k ¢ =T Fpropr @

PrROOF The proof 1s by contraposition, so we suppose I' propn- @ and construct
a Kripke model <K, C,IF > of PROPn™ 1n which I I ¢ (Our construction of
the counter-model 1s a direct generalisation of the standard construction of a
counter-model for showing completeness of Kripke models with respect to first
order intuitionistic predicate logic, as 1t 1s given for example 1n [van Dalen 1983])
Before giving the model we introduce one extra notion for A a set of sentences,
we wnte A for the closure of A under derivability in PROPn™ Now the model
1s defined as follows

e K = N* the set of finite sequences of natural numbers,
o pC m = 3d[fx & = M), where * 1s the concatenation operation,

o For every m € N* we define a set of sentences of PROPn™, X(mi), by
induction on the length of 71, as follows

- Z(<>) =T,

— For X(71) defined, consider an enumeration of sentences @, ;,  such
that () U {¢.} 15 consistent for all 2+ Now define

DM xe) = (i) U {0}
The relation IF 15 now defined by

My =9 € L(R)(e B(R) - ¥)

We now only have to verify the following two facts
1 <N*, C,IF > 1s a Kripke model of PROPn",
2 In the model we have <> IFT', <> If ¢ and hence ' ¥ ¢

The second follows immediately from the construction of the model The first 1s
shghtly more work we have to check the four cases of Definition 2 4 29 The first
two cases are trivial, we give detailed proofs of the third and fourth case
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el p D>y @ VFIMFI o= Flky] for (=), letfgam oy
Then X(F) + p and Z(F) F ¢ D 9, so () + ¥, so § IF ¢ For (&),
let 7 be a finite sequence From the assumption we know that V5 3
m E(P) F ¢ = E(P) - ¢ We distinguish two cases according to whether
E(m)U{p} 15 consistent or not If L(sR)U{p} 1s inconsistent, then trivially
E(m)u{p} F ¢ and so (M) F ¢ Dy and hence M I+ p D ¥ I Z(M)u{yp}
18 consistent, then (1) U {¢} = E(rix2) for some ¢, and hence X(rfi*1) F ¢
by the assumption But then E(m 1) U {¢} F ¢, so E(ri) F v D ¢ and
hence m Ik p Dy

o M IFVYzeDp & YVt € D[t IF [t/z]] for =, let t € D Now L(ii) F Vze Dy
and hence X(m) F p[t/z] For <, from the assumption we know that
m Ik p[c/z] for all constants ¢, 1e () F ¢[c/z] for all constants and so
E(m)FVzeD p R

Technically, the reason that we can not get conservativity from this model
notion 18 that a model of PROPn™ 1s 1n general not a model of PROP(n + 1)7
In less technical terms the reason seems to be that the model notion 1s too
syntactical, especially 1n the clause for the universal quantifier, where the ordering
C doesn’t play any role at all



Chapter 3

The formulas-as-types
embedding

3.1. Introduction

The so called formulas-as-types embedding provides a formalization of the Brou-
wer-Heyting-Kolmogorov interpretation of proofs as constructions. The first de-
tailed description is in [Howard 1980], where also the terminology ‘formulas-as-
types’ is first used. There it 1s shown how, in first order logic, types can be
associated with formulas and lambda terms with proofs in such a way that there
1s a one-to-one correspondence between types and formulas and terms and proofs
and further that cut-elimination in the logic corresponds to reduction in the term
calculus. In view of the last point it would be correct also to associate Tait with
the formulas-as-types notion, as his [Tait 1965] ‘discovery of the close correspon-
dence between cut-elimination and reduction of lambda terms provided half of the
motivation’ for [Howard 1980]. Also de Bruijn is often associated to the formulas-
as-types notion, because the Automath project which was founded by de Bruijn,
was the first to rigorously interpret mathematical structures and propositions as
types and objects and proofs as lambda terms. So, from a wider perspective it
is certainly justifiable to speak of the Curry-Howard-de Bruijn embedding (also
because the earliest developments in Automath took place independent of the
work of Howard). Having said this we want to point out that there are essential
differences between the two approaches. For example, in the Automath systems
the logic is coded 1nto the system, so there is in general no reduction relation
in the term calculus that corresponds to cut-elimination. Automath systems are
intended to serve as a logical framework in which the user can work with any for-
mal systems he or she desires. Application, A-abstraction and conversion serve
as tools for handling the basic mathematical manipulations like function applica-
tion, function definition and substitution. It is appropriate to remark here that
some later systems of the Automath family do use the abstraction-application
features of the system to interpret logical connectives directly (and hence reduc-

43
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tion corresponds to cut-elimination) Later 1n this section we shall give some
examples of Automath systems to clanfy these remarks

We do not go into great detail about the Brouwer Heyting Kolmogorov (BHK)
mterpretation of proofs [Troelstra and Van Dalen 1988] 1s a good reference and
gives a thorough explanation of the idea Let's just discuss the connectives D
and V according to the BHK interpretation

1 A proof of p D 9 1s a method for constructing a proof of ¢ from a proof of
©

2 A proof of Vz € A p(z) 1s a method for constructing a proof of p(e) from
a proof of a € A

It 1s obvious (in retrospect) that the lambda calculus provides the necessary
mechanmsms for turning the informal interpretations into a formal system For
mimmal propositional logic this was already noticed by [Curry and Feys 1958]
For first order predicate logic, [Howard 1980] was the first to give a formahsation
of the BHK interpretation using typed lambda calculus Due to the work of
[Church 1940] 5t was already known that also the language of predicate logic can
be presented as a typed lambda calculus Over the years this has led to the
definition of various typed lambda calculi that incorporate the logical language
and proofs (in the form of lambda terms) in one system In this thesis we shall
see a variety of those systems

We do not claim to give an overview of all the possible approaches to the
formulas as-types embedding In fact we do not even attempt to do this For
example one of the main contributions to the field, the work in Martin-Lof’s type
theory, will not be treated at all One of the reasons s that a PhD thesis 1s not the
place to give a detailed technical overview of such a broad field as Type Theory,
but another important reason 1s that the approach of Martin Lof does not really
fit with the framework of logics as we have set 1t up in the previous chapter
One of the main problems 1s that, due to the understanding of the existential
quantifier 1n terms of a strong X type, the logic of Martin-Lof 1s strictly first
order (i1n order to remain consistent) We do not feel that the forced lack of
Y-types in our higher order logics 1s a big gap, but that i1s because we feel that
the strong X-type 1s not the right way to formalise the intuitionistic existential
quantifier (To be precise we do not mean to say that X types are not a vald
mathematical concept, but only that ¥ should not be understood as 3)

Of course there 1s also a lot to say about systems that we do treat and we
shall do so at the appropriate places in the text

3.2. The formulas-as-types notion a la Howard

In this paragraph we look at an interpretation of formulas as types and proofs as
terms m the flavour of [Howard 1980], where the interpretation 1s given for full
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first order predicate logic. Although in flavour the same, our treatment is quite
a bit different from Howard’s, as has already been pointed out in the previous
chapter. As we are mainly concerned with logics that only use O and V we shall
not treat the full first order predicate logic here but restrict to the system PRED.
First order logic based on just D and V is quite minimal, but it is sufficient to make
the general idea sufficiently clear. In our formalisation the logical language will
also be presented in a typed lambda calculus manner. This idea of an ‘all-in-one
presentation’ is probably due to de Bruijn and s Automath project, although
we are not absolutely sure.

3.2.1. DEFINITION. 1. The set of functional types of APRED, Typef, is de-
scribed by the following abstract syntax.

Type! ::= Var'? | Type/ - Type’,

with Var'¥ a countable set of type-variables. The set of predicate types of
APRED, Type®, consists of the expressions

0, —0y— -+ - —0,—Prop,

with n > 0 and all o, {functional types.

2. The object-terms of the language of APRED form a subset of the set of
pseudoterms, T, which is generated by the following abstract syntax

T = Var® | TT | Az Type! . T|T > T|WVar*:Type! T,

with Var® a countable set of object-variables. An object-term is of a certain
type only under assumption of specific types (functional or predicative) for
the free vaniables that occur 1n the term. That the object-term ¢t 1s of type
A of z, 15 of type A, for 1 <1 < n, is denoted by

T1:A1, 20 As, .. Tt A H LAl

Here z,,...,z, are different object-variables and A,, ..., A, are types. The
part z,:A;,T2: Ao, ..., T4 A, is called an object-contezt. The rules for deriv-
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1ng these typing judgements are the following

(var) Itz A fzAmT

FLzAFt B
(X abs) * if A functional
'l At A—-B

'Fq A-BTFt A
'Hqt B

(app)

'y Prop T4y Prop
'y D>y Prop

I''zAkF ¢ Prop
v) ——— if A a functional type
'Yz Ay Prop

3 The set of proof-terms 1s a subset of the set of pseudoproofs, P, generated
by the following abstract syntax

P = Var” |PP|PT| Az Type/ P| Az T P,

where Var™ 1s the set of proof variables The rules for generating statements
of the form

I Al) yIn Aﬂypl ©1, y Pk kaM A1

where the Z 4 1s as 1n 2, p1, D are different proof-variables and

1Ay, ,z, Ak, Propforl<:<k,
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are the following (The part p; @1, ,pr @& 18 called the proof contert as
opposed to the object-context )

(axiom) TAFp o fpyin A,

LLAppbM o
TLARXMpoe M oD

(3 -n)

TILAFM >y [LAFN o
IAFMN %

(D -el)

Lt AAFM o
(V-1n) if z ¢ FV(A), A a functional type,
CLAFMAM Vo Ay

TAFM VzAp THt A
VAR Mt oft/z]

(V-el)

INAFM o THo Prop
(conv) =59
LAFM ¥

The 1intention of the system should be clear natural deduction proofs of
PRED are interpreted as typed lambda terms in APRED The language of PRED
1s also a typed lambda calculus and also that part 1s formalised in APRED 1n a
typing judgement that 1s obtained via denivations Note that the functional types
correspond to domains of order 1 (the ones over which quantification 1s allowed)
and the predicative types correspond to domains of order 2 Before describing a
formal correspondence between derivations in PRED and proof-terms in APRED,
we give two examples

322 EXAMPLES 1 From the deduction
Ve A(PzD>Q) VYz APz
Pr> @ Pz
Q

we obtain the judgement

P A—Prop, @ Prop,z A,
VYV A(PtDQ),po V2 APz + piz(pez) @

Notice that the declaration of z 15 essential here for the construction of
the proof (APRED explicitly takes care of the so called free logic, where
domains are allowed to be empty )
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2 From the deduction
VtA(PzD>Q) VrAPz
Pz>Q Pz

e
Vi AQr

we obtain the judgement

P A—Prop, @ Prop,
VYV A(PrDQ),p,¥YT APr + Axr Apiz(pez) VZ AQ

Now 1t 15 not needed for the construction of the proof to declare z

Ch 3

We list some of the meta theoretical properties of APRED that we shall be
using later They are given without proof later we shall encounter other (more
complicated) typed lambda calculi for which these properties also hold and we

prefer to prove them once for all systems together

323 FacT Let I, A+ M ¢ be derivable in APRED We have the following

properties

1 Permutation if I 1s a permutation of I" and A’ a permutation of A, then

" A'F M s also denivable

2 Substitution if ' containsz A and T'\(z A) ¢ Athen['\(z A),Alt/z]F

Mit/z] [t/z] 15 also derivable

3 Thinning f IV D T, I'" an object context and A’ D A, A’ a proof-context,

then IV, A’ M ¢ 15 also denivable

4 Closure or Subject-ReductionIf M -5 M’, then I'A F M' ¢ 1s also

denivable
5 Stnipping or Generation
IAFp o = p=yvwithp veA

(p a proof vanable) for some 1),
LAFXMAM ¢ = INeAAFM Yywithp=Vz Ay
(A a type) for some ¥,
LA pxM ¢ = TLApxFM Yywmithp=xD%
(x a proposition) for some 1,

IN'AFMN ¢ 2> TVAFM vDOx,[AFN yYywmthyp=x

(N a proof) for some %, x,

T,AFMt ¢ = T,AFM Yz Ap,THt Awtho=y[t/z)

(t an object) for some ¥, A
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To a deduction of
4% y¥Pn F 1/»'

in PRED, we are going to associate an object context I' and a proof-term M such
that

Fupl ©1, an‘Pn'_M 1.0

in APRED We want M to be a faithful representaton of the deduction in PRED
such that there 1s a one-to-one correspondence between deductions (in PRED)
and proof-terms (in APRED) To achieve this, I" should assign types to all the
free term-vanables 1n the deduction that are not bound by a V at any later stage
(What 1t means for variables to be ‘bound by a V¥’ will be explained later) From
the examples 1t will be clear that sometimes we have to declare a vanable z,
even though this variable does not occur free in the conclusion or in any of the
premises of the derivation Before giving the translation we have to define two
operations on contexts that will be used

324 DEerFINITION ForTl'; and I'; object-context, the union of T'y and I’y , [ UT,,
1s Ty followed by T'y, with the restriction that if £ 1s declared in both contexts,
sayz A€Tl;andz B €T, then

A=B = z Bisleft out, (so weleave onlyz A
A#£B = bothz Aandz B areleft out

For A; and A; proof-context, the disjoint union of A, and Ay , Ay W Ay, 15
A, followed by A,, with the restriction that if p 1s declared in both contexts,
say p @ € Ay and p ¥ € A,, then the second p 1s renamed with a fresh
proof variable ¢ So, for example

(P P)U(P w)=p v.q ¥
Note that I'; U5 1s always a correct object-context and that, if A; and A,

are corrects proof-contexts w rt I, then A; WA, 15 a correct proof-context w r t
r

325 DEFINITION Forevery term ¢t of the language of PRED we define a context
[, such that Iy +¢ D (in APRED) if t ¢ D (1in PRED), as follows

t = P I = zpD,

t = dxeDM T, = I'y\(z D),
t = MN I'hr = I'yuly,
t = DY Iy = TFLuly,

t = VzeDoy . = I,\(zD)
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We now define, by induction, for every deduction in PRED an object context
I', a proof context A and a term M such that

AR M ¢ (in APRED),

if ¢ 15 the conclusion of the deduction In fact this establishes a mapping from
deductions to A terms In the {ollowing we shall denote deductions by the capital
Greek characters ¥ and © To denote explicitly that v 1s a conclusion of the
deduction ¢ we shall often use the format

z
7

(So when we write this down we mean that o 1s part of the deduction ¥ ) For
reasons of hygiene we shall assume that in a deduction all bound vanables are
chosen distinct and different from the free ones

326 DEFINITION We inductively define the mapping (-] from deductions of
PRED to proof terms of APRED Together with the proof term we define an
object-context and a proof context in which the proof term1s typable The double
horizontal lines on the right mean that the judgement below 1s being defined 1n
terms of the judgement above

Y — Ty,pvbkp 9,

5 T,AF(Z) v
¢ — -~
TUl, A\(Pe)Fdpe(X) 9D
Oy’
r o TLAF(E) oDy Th,A0F(O) o

Nuly, Aty A F(EN(E) v

¥
i LLAF(E) ¢
VzeDy [\(zD),Ar XD (%) Yz D4
>
VzeDy s I'VA+(E) VzDy I+t D
vlt/a] NUTz, Ak (E) ylt/z]
b
A (X T,y P
v fp=19y ([D’f’ o @ Prop

—
— TUT, AF(Z) ¢
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The cases 1n the definition for the last rule being (O-I) and (D-E) need some
extra clarification

(D-1) The [¢]* on top of the deduction signifies a specific set of occurrences of the
formula ¢ as leaves of the deduction tree As this set may also be empty
we have to take the umon of ' with I',  What happens at an (D-]) rule1s
the following

1 Add a fresh declaration p v to A

2 Remove the declarations p’ ¢ that correspond to an occurrence of ¢
that 1s being discharged

3 Substitute p for p’ 1n (Z]
Abstract from the last declaration in A (which 1s p )

(D-E) In fact the (©] 1s not exactly the (O] that 1s found by induction Possi-
bly some of the free vanables in (O] are renamed What happens 1s the
following

1 Consider the proof-context A; W A, and especially the renaming of
the declared variables in A, that has been caused by the operation W

2 Rename the free proof-variables in (O] accordingly, obtaining say,
(CY)
3 Apply (Z) to (©)

(There will 1n practice be no confusion if we just write (O] instead )

Of course the intended meaning 1s that the judgement below the double lines
18 derivable if the judgement above the lines 1s This will be proved later in
Theorem 3 2 8 It should be clear at this point however that there 1s a one-to-one
correspondence between the occurrences of ¢ as a (non-discharged) premise in
the deduction and declarations p ¢ 1n A

NotaTiON If for ¥ a deduction in PRED, I, A + (£]) ¢ 1s the judgement that
we obtain from ¥ by Definition 3 2 6 above, we write ['y for " and Ag for A

Let us state the following trivial facts about the defimtion

327 FacT 1 For ¥ a deduction in PRED there 1s a one-to-one correspon-
dence between occurrences of non-discharged formulas of ¥ and declarations
of vanables to the same formula in Ag

2 In the case for the (V-I) rule the vanable r does not occur free in the
proof-context A
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3.2.8. THEOREM.

m PRED = I'g;AgF (E]):¢ 15 derwable :n APRED

Proor. By induction on the deduction ¥.. The proof follows easily by using the
meta-theoretical facts of APRED that were stated in 3.2.3. X

The proof-context Ay represents precisely the non-discharged assumptions of
Y. The object-context I's. declares precisely those object-variables that occur in
¥ and are not bound later by a v
Due to the conversion rule, the context I's is not minimal with respect to the
judgement
FE; AE - (IED 2

in the sense that there may be a smaller object-context I" for which
MAs F(Z]) e

is derivable. (A proof of the statement ‘all declared vanables in I's occur free in
Ay or ()’ breaks down on the conversion rule.) A counterexample to minimality
of 'y, is given by the derivation

el
PO
(Mz:A.p D)y
Y

We have 'y = ¢Prop, y:A, Ax = 0, (£]) = Ap'p p, whereas
w:Prop;F Ap:o.p v D .

The conversion rule is also the reason that the embedding (J) is not really one-
to-one. The A-term (X)) that we obtain ignores all applications of (conv) in the
deduction ¥ and, as 1s easily seen, applications of (conv) can be moved through
the tree ¥ more or less freely. There is however a one-to-one correspondence
between equivalence classes of deductions and A-terms if we let two deductions
be equivalent if one obtains the same tree after removing all applications of (conv).
We shall define this equivalence relation more precisely later.

3.2.1. Completeness of the embedding

We now define a mapping back from the proof-terms of APRED to deductions of
PRED.
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3.2.9. DEFINITION. For any proof-terms M with I'; A F M : ¢ we define by
induction on the structure of M a deduction (M) as follows.

(]
FAFp:p — — ifp:ypeA
7

[¥]
£(N)

CiARMY N @ — X
¥DOx'
@

B(N)
(]
Vz:D.y

@

AFMAN: ¢ —

(M)  S(N)

X2y X
TAFMN:p —m ————

%)
L(N)
Vze Dy
AR Nt:p — T/z]
7

For every case, the final rule is always an application of (conv). This can be
vacuous if the conclusion that was obtained 1s already .

The Definition is justified by Stripping, which says that the proposition ¢ is
always equal to a proposition of the form we require.

3.2.10. ProPoOSITION. I[fT;AF M : ¢ in APRED, then

1. the conclusion of (M) s ¢ and all non-discharged assumptions of L(M)
are declared in A,

2. ([E(M)]) =M and FE(M) CT, A):(M) CA.

PRrOOF. By induction on the structure of M.&
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To be more precise as to what extent there 1s a bijective correspondence be-
tween deductions in PRED and proof-terins in APRED, we define an equivalence
relation on deductions of PRED

3211 DEerFINITION We define a stripping operation (—) from deduction trees
to labelled finite trees as follows

e — o,
(¢]*
) (%)
v T
DY’
5 )
oo o e (%) (©)
” MP
5
" )
VzeD zeD
b
VICD’LZ) — SE_)
vlt/z] t
b
Y afp=9v — (T)
©

Remember that, when wniting » below £, we mean that ¢ 15 a part of the
deduction £ So, the mapping () removes all formulas from the tree I, except for
the leaves In doing so 1t leaves just enough information behind to reconstruct
which rule has been applied and in which form (like which occurrences of a formula
have been discharged, which variable has been abstracted from and which term
has been substituted)

3212 EXAMPLE

¢DeDY (o D9 DY [¢f
DY [o]* . MP [e]!
¥ MP

wDoYP'? 1
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3.2.13. DEeFINITION. The equivalence relation ~cg on deductions of PRED is
defined by
b ~NCH 0 .= (E) = (@)

The ~¢y equivalence classes will be denoted by [—]cy.

3.2.14. EXAMPLE. Let ¢ — 3 9. The following deductions are equivalent under
~CcH:

oy 28
¥ (2
1 (p :) (p 3
DY YOy
P D
YOy
and are different from
[¥])
YOY’
Dy

Also in APRED there is a trivial variation on a proof-term that we want
to abstract from. The situation occurs already in the definition of (]), which is
not fully fixed, due to the choices of renamings of proof-variables that we have
to make. So, what we want to do is consider pairs (A, M), where A is a proof-
context and M a proof-term, and an equivalence relation on these pairs such that
(Aq, M) and (Ag, M) are equivalent if there is a substitution of proof-variables
for proof-variables o such that o(A;) = A, and o(M;) = M,. If this is the case
we call (A, M)) and (A,, M3) equivalent modulo renaming of proof-variables.

3.2.15. PROPOSITION. Let © and ©' be deductions :n PRED.

L If©® ~cy ©, then (Ao, (O)) and (Ao, (O'])) are equivalent modulo re-

naming of proof-variables.

2 Z((©]) ~cu ©.

PROOF. The first by induction on the structure of (©)(= (©')). The second by
induction on the structure of ©. &

The following is now an obvious consequence of Proposition 3.2.15 and Propo-
sition 3.2.10.

3.2 16. COROLLARY. The mappings £(—) and (=) constitute a byection between
~cy-equvalence classes of deductions in PRED and pairs (A, M) modulo renam-
ing of proof-varables.
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3.2.2. Comparison with other embeddings

In [Barendregt 1992] a different embedding of logic-in-natural-deduction-style
into typed lambda calculus 1s given For this system we have no completeness
on the level of derivations (and hence the embedding 1s not an 1somorphism
on the level of derivations) In Chapter 2 1, paragraph 2 2, we have already
pointed out what the problem 1s the formalization of the logic 1s not good. 1t 1s
somewhere 1n between a sequent-formulation of natural deduction (as 1t 1s used
in [Howard 1980]) and a ‘real’ natural deduction formulation, (hke the one in
[Prawitz 1965]) As a consequence the proof-terms Ap ¢ A\g p p and Ap g Ag v ¢
will always be mapped to the same derivation-tree of the original logic

The embedding that was described 1n [Barendregt 1992] has been studied
extensively 1n [Tonino anf Funta 1992] for the case of higher order logic In this
paper a completeness result is stated which can not be right, namely Theorem
6 2, saying that the composition of, first the mapping from type system to logic
and then the mapping from logic to type system, constitutes the identity on the
level of proof terms The two proof terms of the formula ¢ D ¢ D ¢ as given
above present a counter-example

It will be clear from these remarks that we feel a strong preference for the
embedding as described above there is a clear correspondence between derivation
trees and proof-terms Note also that in [Barendregt 1992] the embedding s
done 1n two steps first linearize the derivation trees and then embed these as
typed lambda terms in a calculus This calculus (APRED) 1s different from
our APRED, because 1t does not distinguish proof contexts and object-contexts
Our embedding 1s also done 1n two steps Above we have given the interpretation
of derivation trees as typed lambda terms in APRED In Chapter 6 1 1t will
be shown that our system APRED 1s the same as the calculus APRED used
in [Barendregt 1992] We think that the way in which we have spht up the
embedding 1s more natural and gives a better insight

3.2.3. Reduction of derivations and extensions to higher orders

It 1s well-known that cut-ehmination in PRED corresponds to normalization of 3-
reduction Let’s make this precise by defining a reduction relation on deductions
of PRED
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3217 DEFINITION The reduction relation — g on deductions of PRED 1s de-
fined as follows

T ©
" ¥
DY —n g
o'oYy Y
v Y
z
I T[t/x)
VzeDy —p  plt/z]
VreD '[t/z)
/2]

The defimition of X[t/z] will be clear and 1t 1s easy to check that L[¢/z] 1s indeed
a deduction of p[t/z]

The reduction relation — 5 eliminates what 1s generally known as a ‘cut’
a redundancy 1n a proof by first introducing a connective and then immediately
eliminating 1t

3218 PROPOSITION There 15 a one-to-one correspondence between reduction
steps —g 1 a deduction © of PRED and f-reductions in the corresponding
proof-term (©) of APRED Hence we have

— g 15 (strongly) normalizing on deductions of PRED
& [ reduction 1s (strongly) normalizing on proof-terms of APRED

PrOOF Immediate from the one-to-one correspondence between equivalence clas-
ses of deductions and proof-terms modulo renaming of proof-variables, as 1t was
stated 1n Corollary 32 16 ®

In [Howard 1980] the formulas-as-types embedding 1s discussed for the full
mtuitionistic first order predicate logic In APRED this amounts to the addition
of the connectives V,&, - and 3 and the corresponding operators for the intro-
duction and elimination rules Also these operators come together with reduction
rules that correspond to the rules for cut-elimination for the connectives in the full
first order predicate logic [Howard 1980] also discusses the extension to Heyting
Arnthmetic which amounts to the addition of an induction operator We do not
give details of these extensions Qur exposition for the case of PRED covers all
the basic difficulties that one encounters, so the extension 1s a straightforward
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one Moreover we are more interested 1n giving some details of the extension to
second and higher order systems, in which all the extra connectives and induction
can be defined

3219 DEFINITION The systems APRED2 and APREDw are defined by extend-
ing APRED 1n the following way

1 For APRED2, allow quantification over all types, 1e add the possibility
of quantification over predicate types (The distinction between functional
and predicate types is still meaningful, because we do not allow the forma-
tion of object-terms by A abstraction over predicate types )

2 For APREDw, extend the types to
Type = Var"|Prop| Type— Type,

and allow quantification and X abstraction over all types (Then there1s no
need to distinguish between functional and predicate types, but we may still
do so, a type being a functional type if 1t 1s of the form 4,— — A, with
A, a type-vanable and a predicate type if 1t 1s of the form A;—  —Prop)

The connectives V,&, = and 3 can now be defined in terms of D and V 1n
both APRED2 and APREDw The definitions have already been given in Re-
mark 2 27 This means that there are closed proof terms that correspond to the
introduction and elimination rules for the connectives The correspondence 1s
even stronger 1n the sense that these closed terms satisfy part of the reduction
rules that correspond to cut-ehmination It is not difficult to venfy this and we
therefore just treat the cases for V and 3 as an example (The terms correspond-
Iing to introduction and elimination only satisfy part of the cut-elimination rules,
because in the full predicate logic there are also rules that combine an elimmation
rule for one connective with a rule of another connective These are not satisfied
See e g [Girard et al 1989] for these type of rules )

3220 ExampPLES We work in APRED2

1 The connective V 1s defined by pVy =Va Prop{p D a) D (¥ D a) D aand
we have the following combinators for V introduction and V elimination
(For reasons of readability we have omitted some type information )

v YDV,
= Az ¢ dagh gz,
V-1, YD eV,
= Az ¢ dagh hz,
V-E VaPropoVyDd(pDa)dD (W Da)Ddae,

= Aa Az ¢ VY Agh zagh
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These combinators satisfy the following reductions

V-Ex(V-Iit)gh —»g gt,
V-Ex(v-Iot)gh —»g ht

These reductions correspond 1n the obvious way to the rewnting of a part
of a deduction where we have done an V-introduction and then immediately
a V-elimination

2 The connective 315 defined by 3r Ap = Va Prop (V2 Ay D a) Da and
we have the following combinators for 3-introduction and 3-ehimination
(Again we have omitted some type information )

31 Vr A(p D3z Ay),
= Ar A Mhp dag gzh,

3-E VaProp(3IzAp) DVt ApDa)Dda,
= Aahg hag

These combinators satisfy the following reduction
3-Ex(3-1th)g —»5 gth,

which corresponds to the rewriting of a part of a deduction where we have
done an 3-introduction and then immediately a 3-elimination

In a similar way one can also interpret Heyting Anithmetic in APRED2 start-
ing from a fixed type A and two objects0 A and S A— A (declared as vanables
in the object-context, but in fact treated as constants), one would like to con-
struct a proof-term of type

Ind =VYP A—Prop PO D (Vy A Py > P(Sy)) D (Vz A Pz)

As 1t 15 stated now this is of course impossible nothing tells us that the objects
of type A are just the ones built up from 0 and S We can handle this by
relativization Let N A—Prop be defined by

N =Xz AVP A—Prop P0 > (Vy A Py D P(Sy)) D Pz

So Nt s true if ¢ 1s built up from 0 and S only,1e
Ntas true if ¢t 1s a numeral We have the following proof-terms

Zero NO
= AP A—Prop Ahgh, hg,
succ Yz A Nz D N(Sz)
= Az AXg Nz AP A—Prop Ahohy hiz(qPhohi)
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We can now define induction as follows
Ind =VP A—Prop PO D (Vy A (Py & Ny) D P(Sy)) > (Vz A Nz D Pz)
So Ind states induction for numerals We can now find a closed term
ind Ind

that also satisfies the required equality rules (Compare for example with the
scheme for induction 1n [Howard 1980] )

1ndPt0t102er0 g to PO,
ind Ptoty(Sn)(suceng) =p tin(indPtoting) P(Sn)

3.3. The formulas-as-types notion a la de Bruijn

We now want to say something about the work of de Bruyn 1n the Automath
project 1n relation to the notion of formulas as types Presenting things in this
way suggests that there are two totally different approaches, which is not true
(For example 1n the Automath project many different systems have been intro
duced and some of them are quite close to systems that we have seen in the
previous section ) The reason for separating the two 1s that both have their own
basic underlying 1deas that we want to single out This 15 also the reason that
in this section we restrict our attention mainly to the system AUT 68, which
probably covers best those basic 1deas of Automath that we want to talk about

We do not want to introduce AUT 68 1n the original format, but 1n a format
close to the typed lambda calculus APRED that we have encountered in the
previous section The reason 1s twofold first 1t would take a lot of space to
explain AUT-68 1n 1ts original format (Something which has been done quite
succesfully in [van Daalen 1973] ) Second we want to present 1t 1n a format which
1s close to one that will be used later for describing typed lambda calculi This
means that we 1gnore some of the features that are inevitable for making the
system feasible for man-machine interaction but are inessential for our discussion
of formulas-as-types (Like the definition-mechanism of Automath )

Our definition of AUT-68 owes a lot to discussions with van Benthem Jutting
In fact 1t 15 a derivative of he description he has given of AUT-68 as a Pure Type
System

331 DEerFINITION AUT-68 1s a system for deriving judgements of the form
'tM B

Here I 1s a contest, 1 e a sequence of declarations, which are statements of the
form z A, where z 1s a variable and A a term The M and B are terms, which
are taken from the set of pseudoterms

T =Var|type|TT{Az TT|IIzTT,
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on which we have the usual notions of substitution, §- and 7-reduction etcetera.
The terms are singled out from the set T by the derivation rules that determine
which judgementsI' - M : B are derivable. The derivation rules are the following.

(base) OF

'+ A(: type
(ctxt) —ﬂ ifznotinT
I'z:AF+

'k~
'l type
(proj) —L ifz:Ael
'kz: A
T, z:type + B(: type)
I'FIlz:type.B

z:AFBTF A:type
I'-1lz:A.B

I'z:AF B:type ' A : type
I'-1lz:A.B : type

Iz:AF M : B T'F1z:A.B(: type)
't Az:AM :1Iz:A.B
FFM:MIzABTHN:A
' MN : B[N/z]

(app)

'FM:BTFA((:t
(conv) (: type) A=5B
'EM: A

We use the convention of writing A— B for Ilz:A.B if z ¢ FV(B).

As people familiar with Automath may notice, we have not only changed the
presentation of the system, but also the system itself. For example the original
system does not contain II-expressions: A is used everywhere at places where we
have put a II. We feel that the systems with IIs is more natural and it is certainly
more readily understood by people who are familiar with the actual developments
in typed lambda calculi. Moreover there is no real difference between the two
versions of the system: if we use the formalisation without Il we can always
‘recognise’ the As that should be ‘read as’ IIs. (This is not true for extensions
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of AUT 68 like AUT-QE, where the 1dentification of IT and A really extends the
system )

Those not famihiar with this kind of calculus may wonder what the use of this
system 1s We therefore give an example The general purpose of the system 1s
to provide a logical framework 1n which a user can work with a formal system of
his or her choice The situation 1s then that the language of the formal system 1s
declared 1n a context, which 1s then fixed (This part of the context 1s then used
as a kind of ‘signature’ and the varnables declared 1n 1t act as constants )

332 ExXAMPLE First Order Predicate Logic The 1dea 1s to interpret the do-
mauns of the logic as well as the formulas as types, a domain being understood as
the type of i1ts elements and a formula being understood as the type of 1ts proofs
Consider the following context

I' = 1 type,V type—type—type,
abs Ilz type L—z,
iny Mz,y type z—(z Vy),iny Iz,y type y—(z Vy),
out Iz,y,z type (z V y)—(z—2)—(y—z2)—2,
c Iz typezV(z—1)

Then, we have for example (abbreviating A—_L to -~A),

I' + Az type Ay =~z outzyz(clz)(\p z p)(Aq -z absz(yq))
[z type ((z—L1)—1)>z

The universal quantifier is interpreted by the I1
ViAp =l Ay

and we can define the existential quantifier in terms of the universal one (classi-
cally) by
JzAp =~V A-p

The theory of natural numbers can now be developed by adding to '

N type, 0 N,§ N>N+ N-N-o-N= N-oN-=N,
comm lz,y Nz+y=y+z, etc

One of the drawbacks of this kind of interpretation of first order predicate logic
1s that domains of the logic and formulas are not only treated in the same manner
(as types), but even as if they were the same kind of things the system 1itself
can not distinguish between formulas and domains This was also recognised
by de Bruyn who especially emphasized this drawback in relation to so called
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‘proof-irrelevance’ This becomes very apparent if we look at situations where
proof-terms are subexpressions of the object-terms, for example 1f we have

R type,pos R—type,sqrt Ilz R pos(z)—R,

where R represents the real numbers, pos the predicate that decides whether a
number 1s non-negative and sqrt constructs the square root of a number if that
number 1s non-negative Although in general we may want to distinguish different
proofs of a formula, we obviously want sqrtrp only to depend on r and on the
fact that 7 1s non-negative (not on the particular proof sqrtrp and sqrtrp’ should
represent the same real number) Clearly there 1s no way to state proof-irelevance
1n 1ts most general form like ‘for all formulas ¢ all terms of type ¢ are equal’

One of the extensions of AUT-68 that has been considered (and 1s also known
under the name AUT-68) 1s the one which sphts type nto type and prop So
for prop we have the same rules as type (but we can now easily make variants of
the system that handles type and prop differently), but we can specify different
axioms for prop in the context

There are some other drawbacks to the direct interpretation of formulas as
types Note that the system 1s essentially first order we can not quantify over
the collection of subsets of a domain To do this we would have to be able to
write down (IIP A—type ¢) type, which 1s not allowed As a consequence we
also can not formahse induction 1n 1ts most general form It would have to be
something hke

IIP N—type P0—(Ilz N Pz—P(Sz))—(Ily N Py)

(Note that the fact that we have Iz type B (for B type) in the system does
not mean that the system 1s impredicative [z type B 1tself 1s not of type type )
For the same reason we can not represent the (first order) intuitionstic existential
quantifier Knowing that it can't be defined in terms of V, the only option 1s to
declare 1t 1n the context with 1ts introduction and elimination rules

31 Ilz type (z—type)—type,

but this 1s not allowed

To overcome the drawbacks that we just mentioned, yet another option has
been developed by the Automath community, which does not require a change of
the system but only a different use of it The 1dea 1s to not let formulas be types
themselves but to introduce a fixed type constant prop, representing the names
of the formulas, and a kind of hfting operator T prop—type, which maps a
name of a formula to the type of its proofs Although the difference with the first
iterpretation may seem small at first sight, this 1s a major improvement. First
the system 1s now really used as a framework 1n the previous interpretation some
features of the type system were used directly for the logic (like the II which 1s
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used as V and D), whereas now all the quantifiers have to be represented 1n a
context Further this interpretation gives much more flexibility, allowing one to
interpret for example second order and higher order logic 1n a similar way, but
also more exotic formal systems like typed lambda calculus 1tself Let’s give an
example of a formalisation done according to this new point of view

333 ExaMpPLE First Order Predicate Logic We adapt the example that we
gave before to the new interpretation
I' = prop type,T prop—type,
L prop,V prop—prop—prop,
D prop—prop—prop,V [z type (z—prop)—prop,
abs [z prop T(L)—T(z),
iy Iz, y prop T(z)—T(z V y),1ny [z,y prop T(y)—=T(z V y),
out Ilz,y,z prop T(z V y)—=(T(z)->T(2))—(T(y)—T(2))-T(2),
V1 Iz type 1P z—prop (I1z z T(Pz))—=T(Vz P),
V-E Ilz type IIP z—prop T(Vz P)—Ilz £ T(Pz),
cl Mz prop T{(z) Vv T(z D 1),
etcetera
(We have not stated the rules for D ) Again we have an M such that
'M TzpropT(((zD>L)DL)Dxz)
The intwitionistic existential quantifier can now also be defined by letting
3 Iz type (z—prop)—prop
and adding declarations for the intuitionistic mtroduction and elimination rule
We can also add induction for the natural numbers by declaring

ind [P N—prop T(P0)—T(VN(Az N Pz D P(Sz)))—T(VN(Ay N Py))

The flexibility 1s really an enormous advantage of the system This was
also noticed by researchers in Edinburgh, who defined their system LF (‘Log
ical Framework’, [Harper et al 1987]) based on 1deas from Automath We have
again been inspired by LF 1n the choice for our representation of AUT-68, which
1s quite close to L We shall say something more about LF later Now we want
to treat as an example higher order predicate logic (PREDw) 1n AUT-68 As one
may have noticed in the previous example, the domains of the logic are still types,
which may be undesirable if one wants to allow operations on domains that are
not allowed on types in AUT-68 (For example cartesian products of domains )
In that case one would hke to push the language of the logic one level lower by
introducing a type of names of domains ‘dom’ and an operator D dom—type
that maps a name of a domain to the type of its elements Higher order predicate
logic 15 one example of a system where such an approach 1s appropriate
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334 ExaAMPLE We nterpret the system PREDw 1n AUT-68 by introducing the
following context

I' = dom type,D dom—type,
= dom—dom—dom, prop dom
= IId dom Dd— Dd—type,
Ap Ild, e dom D(d=e)— Dd— De,
Abs Ild,e dom (Dd—De)—D(d=e),
8 IMd,edomIlf Dd—Dellz Dd Apde(Absdef)z=fz,
£ Ild,edom I1f, g Dd—De (Ilz Dd fz=gz)—(Absdef=Absdeg),
comp Ild,e dom IIf, g D(d=e) llz,y Dd z=y— f=9—(Apfr=Apgy),
T Dprop—type,
> Dprop— Dprop— Dprop,V Ild dom (Dd— Dprop)— Dprop,
D-1 Mz,y Dprop T(z O y)—=Tz—Ty,
D-E Hz,y Dprop (Tz—Ty)—T(z D y),
V-1 [Id dom [P Dd— Dprop (Ilz Dd T(Pz))—T(VdP),
V-E IId dom I1P Dd— Dprop T(VdP)—Ilz Dd T(Pz)

By pushing the domains one level lower, all of the higher order language 1s
now coded, but still the substitution and conversion mechamsms of the system
take care of substitution and a-conversion 1n the defined higher order language

Note that this 1s not the only possibility an alternative is to let the domains
still be types 1n which case one would have for example

I' = prop type,T prop—type,
D prop—prop—prop,V Ild type (d—prop)—prop,
DO-1 Ilz,y prop T(z D y)—Tz—Ty,
2-E Iz,y prop (Tz—Ty)—T(z D y),
V-1 Ild type [P d—prop ([1z d T(Pz))—T(VdP),
V-E Ild type I1P d—prop T(VdP)—Ilz d T(Pz),
etcetera

But this 1s exactly the same context as we had in Example 3 3 3!

335 REMARK The context of Example 3 3 3 represents higher order predicate
logic in AUT-68 The V quantifier that 1s declared 1n the context applies to all
types, so 1t apples to A, A—prop, (A—prop)—prop etcetera

Obviously, less coding makes things easier to read and write However, there
1s also an important advantage of the approach of Example 3 3 4, which 1s that



66 Formulas-as-types Ch 3

adequacy of the interpretation 1s easier to prove This 1ssue has not received a
lot of attention in the Automath project, but which 1s of course very relevant
To which extent 1s the interpretation of the logic in AUT-68 adequate? (Are
there sentences that are provable in the interpretation in AUT-68 that were not
provable 1n the original logic?) In the interpretation of higher order predicate
logic of Example 3 3 3, the V quantifier can range over any type, including types
of the form Ty, with ¢ prop Clearly this 1s not available in the logic so we
really have to do some work to show that this extra feature doesn’t provide us
any ingenious proof of an unwanted theorem (like L for example)

The problem of adequacy of encodings of formal systems has been taken very
seriously by those who defined the system LF See for example [Gardner 1992)
Let’s introduce this system and sketch how adequacy proofs are given for the
system (There 1s no general theorem saying that a specific way of encoding
formal systems will always yield an adequate interpretation, but there 1s a general
proof procedure that will usually do the job of proving adequacy )

336 DerFINITION LF [Harper et al 1987)is a system for deriving judgements
of the form
'M B

where I" 18 a contert and M and B are terms, which are taken from the set of
pseudoterms
T =Var|type |kind |TT|Az TT|IzTT,

like 1n the definition of AUT-68 (Definition 33 1) The derivation rules are the
following (s ranges over {type, kind} )

'A s
(base) QF (ctxt) ———— fznotmnT
rzAt+
rr T+
(ax) ———mM (pro)) —— ifz A€l
' type kind 'tz A
(I zAFB sTHA type
'+TMlzAB s
A cArM BTFHIzAB s (ap) 'tM NNz ABTHFN A
app
'FAdxAM Nz AB ' MN B[N/z]
'MM BTFA s
{conv) A=p, B

'M A
Again we use the convention of writing A—B for [Iz A Baf £ ¢ FV(B)
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In the defimition we have ignored one feature of LF, which 1s the use of so
called ‘signatures’ These are special contexts in which constants are declared In
our definition a signature 1s part of the context, to be precise that part in which
the language of the formal system 1s fixed (like the I' in 3 3 4)

Looking again at the example of higher order predicate logic, we see that
only the interpretation of Example 3 3 4 1s possible in LF The second requires
a Il-abstraction over type, which 1s not allowed i1n LF Apart from conversion,
this 1s 1n fact the only difference between LF and AUT-68 (in the way 1t was
defined in Defimtion 33 1) If one reads the judgements of AUT-68 that are of
theform '+ B as'+ B kind, the the systems have the same rules, except for
the rule(I11), which 1s extra in AUT-68

The way to prove adequacy of the interpretation 1s by using so called ‘long-
fn-normal forms’ We already encountered this notion in the previous chapter
Recall that a long-3n-normal form 1s obtained by first taking the -normal form
and then doing 7 expansion, where a term C[M] 1in § normal form 7 expands
to C[Az A Mz] only if z ¢ FV(M), M Ilz A B and C[Az A Mz] 1s again 1n
B-normal form We wrnte long-Gn-nf(M) for the long fn-normal form of the
term M  The usefulness of this definition depends on the normalization and
confluence of (n reduction in LF The first property 1s relatively easy (shown
in [Harper et al 1987]), but the second 1s surprisingly complicated and was first
proved by [Salvesen 1989]

Now one can define an 1somorphism between (n-equivalence classes of terms
of a specific type in I and terms of the corresponding domain 1n the higher order
predicate logic (It 1s of course allowed to extend T" a httle bit, but only with
vaniable declarations £ dom or z D(d) ) This is done by defining the 1somorphism
on the long-Bn-normal forms, which form a complete set of representants for the
Bn-equivalence classes For example all the terms of type Dd correspond to terms
of the higher order predicate logic by first taking long-fn-normal forms and then
defining the inductive mapping [—] by

[[.’E]] — xProp,
[e2¥] = []> W]
[Vd(xe Dd M)] = Vz ¢ [d} [M],
[ApMN] = [M][N],

[Abs(Az Dd M))] Az e [d] [M],

where the correspondence [~] between terms of type dom and domains 1s obvious
In a similar way one defines a correspondence between terms of type Ty 1n LF
and deductions of ¢ 1n PREDw, establishing in this way the adequacy of the
interpretation

As pointed out already, LF can be seen as a subsystem of AUT-68, modulo
some small changes And, although the number of rules 1s limited, LF 1s very pow-
erful in nterpreting a wide variety of formal systems (See [Harper et al 1987),
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[Avron et al 1987] or [Gardner 1992] for examples ) It 1s however not minimal
yet We can do without a rule without weakening the power of the system This
1s partly due to the way in which the system 1s being used (See the example
of higher order predicate logic, 334 ) Once the context I that represents the
formal system has been established, one 1s only interested in judgements of the
form

I'FM A, with A atype

On the other hand there 15 no reason to let the context I' not be 1n normal form
From these two principles we can show that half of the rule ()) is superfluous
there 1s no need to be able toform A\t AM Ilz A Bincasellrt A B kind

337 DEFINITION In LF we split the rule (A) in two, a (Ag) and a (Ap) rule
For convenience we attach a label to the abstraction that we introduce with the
rule, so

'zA+M BTFIlz AB type
'XzAM Tz AB

(o)

I'zArM BTFHIzAB kind
'XpzAM Tz AB

The system LF without the rule (Ap) we call LF~, and we write -~ for judgements
in LF~ On the terms of LF we now distinguish Gy-reduction from fp-reduction
1n the obvious way

(Ar

(Moz AM)N —5 M[N/z),
(Apz AM)N —s5, M|N/z]

Similarly we can now talk about Sp normal forms etcetera

We can show that a Gp-normal form of a relevant judgement contains no Ap
and that if a judgement contains no Ap, 1t can be derived without the rule (Ap)

3 38 PROPOSITION 1 IfM typeor M A type n LF, then Bp-nf{M)
contains no Ap

2 IfTEM AT, M and A contain no Ap, thenTH M A

Proor Both by induction on the denivation of ' - M A Details can be found
1n [Geuvers 1990] X

339 CoroLLARY [fTF M A( type), all in Bp-normal form, then'F~ M
A( type)
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If T 1s an LF context representing some system of logic and A 1s a type that
represents some formula of this logic, then we can assume I" and A to be in Bp-
normal form Now, when looking for a proof of A 1n LF, one only has to look at
terms that do not contain a Ap the (Ap) rule can totally be 1ignored

The previous Proposition says that the only real need for Iz A B kind
15 to be able to declare a variable 1n it Even this use 1s usually of the most
simple form where z ¢ FV(B) The standard application of 1t in both AUT-
68 and LF (certainly for logical systems) 1s the declaration of T prop—type,
where prop type 1s another declaration In practice, this going hence and forth
between v prop (the name of the formula) and Ty type (the type of 1ts proofs)
can be very inconvenient, as was already noticed by de Bruyn 1n [de Bruyn 1974]
This was one of the reasons for im to introduce the system AUT-4 In fact 1t
1s a family of systems which are obtained by adding to an Automath system the
‘fourth level’ In terms of the system AUT-68, as we defined 1t 1n Defimition 3 3 1,
this means that we add prop as a new constant of the language with the axiom

prop type

and all the rules for prop to make 1t 1nto a logic For the set of rules one allows,
[de Bruiyn 1974] suggests different possibilities We give here an extension of
AUT-68 to an AUT-4 like sysiem where the set of rules for prop 1s rather minimal
but still interesting

3310 DEFINITION We define the system AUT 68* as an AUT-4 like extension
to AUT-68, by adding to AUT-68 (Definition 3 3 1) the constant prop with the
following rules (s stands for type or prop )

'k ' A prop
(ax) —m————— (ctxt'y ——————ifznotin
' prop type Iz AF
NtAFB prop'HFA s ) ''zA+rM BTFIzAB prop
'+Ilz AB prop 't AM Iz AB

The example of higher order predicate logic can now be done without any
coding at all, by taking type for the class of domains, prop for the class of
proposttions and defining

w—1 for p,9 € Prop,
Iz A ¢ for A a domain and ¢ € Prop

pDY
VrecAyp

Then all introduction and ehmination rules are obviously satisfied
We see that the formulas-as-types interpretation of PREDw 1n the system
AUT-68* 1s very ‘Howard-lhke’ 1n the sense that there 1s no coding and that
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introduction rules correspond directly to A-abstractions, elimination rules to ap-
plications. We can make this correspondence formal by restricting the rules of
AUT-68% and showing that the system obtained in this way is equivalent to
APREDw as discussed in the previous section. The restriction of AUT-68" is
easily defined; we just remove all rules that have no meaning in higher order
predicate logic.

3.3.11. DEFINITION. The system AUT-HOL (Automath for higher order predi-
cate logic) 1s defined by removing from AUT-687 the rules (II1) and (I12). So we
have the following rules. (s stands for type or prop.)

'k A(:s) )
(base) OF (ctxt) ———= ifznotinT
Io:AF
i L+
(ax) ——— (ax) ————
I'F type 'l prop : type
r+
(proj) ———— ifxAeT
I'Fz. A
) I'z:At+ B:type ' A: type I I''z:A+-B:prop 'FA:s
I'Mz:A.B : type I'+1Iz:A.B : prop
N Iz:AFM . B T'HIz:AB s (app) FM:NIzABTEN:A
app
't Ac:A.M : Iz:A.B 'k MN : B[N/z]
r-M:BTFA:
(conv) PTOP 4 =4 B
M A

In the definition we have already anticipated towards its properties by re-
stricting the (conv) rule to propositions. We can prove that, if ' M : A and A
contains a redex, then I' + A : prop.

Due to the fact that we have removed the rules (II1) and (I12), the system
has a nice property that is sometimes called contezt separation. Notice first that
there are three ways of adding a variable to the context, namely by declaring
it as a variable of A where A : prop or A : type or neither of the two, in
which case A = type as is easily seen. So we can speak of proof-variables (if
A : prop), object-variables (if A : type) and set-variables. The system has some
nice properties.

3.3.12. LEMMA. In the system AUT-HOL we have the following.

1. Strengthening: Ty, z:B,ToF M : A wnth z ¢ FV(I',, M, A), then
Fl,Fz FM:A.
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2. Permutation: ', z:B,y:C,To b M : A wnth ¢ FV(C), then
I,y:C,z:B,T, - M : A.

3. IfTH A:type, then A= Aj—---—A,_1—A, withA, =propor A, =z
with z:type € I' and all A, of the same form as A (n > 0).

4 IfT'+ M : A(: type), then M contains no proof-variables (variables ¢ with
z:p(: prop) € I').

ProOF. The proof is by induction on derivations. ®

3.3.13. COROLLARY. In AUT-HOL we can splt up every context I" into three dis-
joint parts T'y, Ty, T3, the first containing the set-varwables, the second the object-
variables and the third the proof-variables such that

Fr'C-M:A = I',TL,,I3-M: A uth
A=type = I''+ M:type,
A:type = TI'1,[LFM: A

As a consequence of the Lemma and the Corollary we find that AUT-HOL is
isomorphic to the system APREDw of Definition 3.2.19. The isomorphism from
AUT-HOL to APREDw consists of a rearrangement of the context as suggested in
the Corollary and replacing set-variables by names for basic domains. Further we
have to write Yz ¢ A.p for [Iz:A.p if A:type and @:prop and ¢ D 9 for p—y(=
Mz:p.4) if ¢, ¥:prop In the reverse direction we have similar replacements and
rewritings.

3.3.14. PROPOSITION. Let |, denote derwability in AUT-HOL and 1 denote
derwability in APREDw. If B 15 a domain, then

rl'AM:B<:>F1,F2|'AMZB¢>F2|'LMZB.
If B a proposition, then

FrkaM-Boel', T, IikaM:B& T, T3, M:B.
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Chapter 4

Pure Type Systems

4.1. Introduction

The framework of Pure Type Systems (PTSs) provides a general discription of a
large class of typed lambda calculi and makes 1t possible to derive a lot of meta
theoretic properties 1n a generic way We give a list of examples of systems 1n
the form of a PTS and then give a detailed study of the meta theory The notion
of a PTS first appears explicitly 1in [Geuvers and Nederhof 1991] under the name
GTS (Generalised Type System), where 1t 1s used to descnibe the so called ‘cube
of typed lambda calculi’ of Barendregt and 1ts meta theory The typed lambda
calculi that belong to the class of Generalised Type Systems have only one type
constructor (the I1 and hence the definable —) and equality rule (just §), and
therefore the name ‘Pure Type System’ was suggested by Thierry Coquand and
has been widely adopted since The situation 1s that (almost) every typed lambda
calculus contains a core PTS, which does of course not mean that the core PTS
1s 1n any respect the most essential part, but 1t gives a good starting point for
research

A notion very similar to that of PTS occurs already in the work of Ter-
louw ([Terlouw 1989a] and [Terlouw 1989b]), who describes (1n Dutch) what he
calls a ‘Generalised System for Terms and Types’ It is also implicat 1n the
work of Berardi ([Berard: 1988]), who describes various examples of Pure Type
Systems without insisting on a general defimtion Both have been inspired
by the notion of the ‘cube of typed lambda calcult’, (see [Barendregt 1992]),
a first important step towards the notion of PTS The first coherent study of
the meta theory 1s [Geuvers and Nederhof 1991], which has strongly benefit-
ted from suggestions in [Terlouw 1989a] The main meta-theoretic results of
[Geuvers and Nederhof 1991] can also be found 1n [Barendregt 1992]

In what follows we give a slight extension of the notion of PTS, with n-equality,
to be able to use 1t also for our study of the Church-Rosser property (CR) for
fAn-reduction for the Calculus of Constructions with 8n-conversion rule We also
do the meta theory for these extended PTSs

73



74 Pure Type Systems Ch. 4

It is well-known that the inclusion of  complicates things quite a bit, because
CR for 87 on the set of pseudoterms is false We therefore describe a very weak
form of the Church-Rosser property for 8, which turns out to be provable for the
set of pseudoterms. This ‘Key Lemma’ will do the job in almost all cases where
we used CR in the study of the meta theory of PTSs with only §-conversion in
[Geuvers and Nederhof 1991]. One important case is missing, which is Subject
Reduction for n (SR for 7), saying that if T - M : A and M —», N, then
' N : A. It seems that the proof can't be done without having first established
a proof of Strengthening.

I',z: AT, -M:B

z ¢ FV(I'y, M, B) } =>I,LFM:B.
In [Geuvers and Nederhof 1991] there is a proof of this rule for a certain subclass
of PTSs. The general proof for all PTSs is given in [van Benthem Jutting 199+]).
Both proofs use CR. in an essential way, i.e. where the Key Lemma doesn’t seem
to suffice.

The Calculus of Constructions is a relatively ‘simple’ system for which we
can prove Strengthening without having to rely on CR. This situation turns
out to occur more generally: We can describe a subclass of PTSs for which
Strengthening, and hence SR for 7 can be proved without having to rely on CR.
This will be discussed in Chapter 5.1, in Definition 5.2.7 and Lemma 5.2.10. It
will turn out that the Calculus of Constructions belongs to this class of systems,
so it satisfies SR for .

Often the situation is more complicated and it is not clear how to show that
SR for 1 holds in general. This is even more worrying because a proof of the
Church-Rosser property on well-typed terms will certainly require SR. So we
have no proof of CR for 87 and it seems we are in a deadlock situation. The way
out is suggested in the work of Salvesen ([Salvesen1991]) on proving CR for 37-
reduction for LF. The trick is to first add Strengthening as a rule to the system.
(This was also suggested in [Geuvers 1992] as an alternative; as things stand it
is not an alternative method but the only possible one.) Many problems then
vanish: The addition of a rule (strengthening) does not complicate the known
meta theory and allows to prove SR for 5 for the extended PTS notion. We can
use this, because the system without (strengthening) rule is a subsystem. This
does not yet mean that we can prove SR for  and CR for fn in general for
the system without the rule (strengthening). We only have a proof of these two
properties for normalizing systems. The general problem remains open.

We see that, for our study of PTSs with 8n-conversion rule, it is useful to also
study the extension of the system with a rule (strengthening). We therefore define
three notions of Pure Type System: The original one with only S-conversion, to
be denoted by PTSg, the one with 37-conversion, to be denoted by PTSg, and
the one with (7n-conversion and strengthening rule, to be denoted by PTSj, .
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4.2. Definitions
The Pure Type Systems are formal systems for deriving judgements of the form
'tM A,

where both M and A are 1n the set of so called pseudoterms, a set of expressions
from which the derivation rules select the ones that are typable The I 1s a fimte
sequence of so called declarations, statements of the form = B, where z 1s a
vanable and B 1s a pseudoterm The 1dea 1s of course that a term M can only
be of type A (M A) relative to a typing of the free variables that occur in M
and A Before giving the precise defimtion of Pure Type Systems we define the
set of pseudoterms T over a base set § (The dependency of T on S 1s usually
1gnored )

421 DEFINITION For S some set, the set of pseudoterms over S, T, 1s defined
by
T =8|Var|([IVar TT) | (AVar TT) | TT,

where Var 1s a countable set of expressions, called variables Both II and X bind
vaniables and hence we have the usual notions of free variable and bound varable
We adopt the A-calculus notation of writing FV(M) for the set of free variables
in the pseudoterm M

On T we have the usual notions of 3 and 7 reduction, generated from

(Az A MYP — 45 M[P/z],

where M[P/z] denotes the substitution of P for £ 1n M (done with the usual
care to avoid capturing of free variables) and

Az AMz —, M, f z ¢ FV(M)

and both compatible with application, A-abstraction and II-abstraction We also
adopt from the untyped lambda calculus the conventions of denoting the transi-
tive reflexive closure of — 4 by —»5 and the transitive symmetric closure of —+4
by =5 (and similar for —, and —g, =—sg U —, )

The typing of terms 1s done under the assumption of specific types for the
free variables that occur 1n the term

422 DEFINITION 1 A declaration 1s a statement of the form z A, where
z 1s a variable and A a pseudoterm,

2 A pseudocontext 1s a finite sequence of declarations such that, if z A and
y B are different declarations of the same pseudocontext, then z Z y,
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3 IfI'=1; A, ,z, An1sa pseudocontext, the domain of ', dom(T") 1s the
set {z1, ,z,}, for z, € dom(I"), the image of z, 1n [, notation imp(z,), 1s
the pseudoterm A,

4 For I' a pseudocontext, a variable y 1s I'-fresh (or just fresh if 1t 1s clear
which I" we are talking about) if y ¢ dom(I")

5 For I' and I pseudocontexts, IV \ I" 1s the pseudocontext which 1s obtained
by removing from I all declarations z A for which = € dom(I')

423 DEFINITION A Pure Type System wtth 3 conversion (PTSg) 1s given by a
set S,aset ACS xS andaset RCS xS xS ThePTS that 1s given by S,
A and R 1s denoted by Ag(S, A4, R) and 1s the typed lambda calculus with the
following deduction rules

(sort) ks s if (s1,82) €A
I'FA s
(var) _
ItAkFz A
'rA s THF-M C
(weak)
LztAFM C
I'FA s, Tt AFB s,
(H) if (51,82,53) eER
I'FIIzt AB s3
) I''cArM B TFHIzAB s
'@ AM Iz AB
'M IlzAB THN A
(app)
T+ MN BIN/d]
'tM A THB s
(COan) A=gB

'M B

In the rules (var) and (weak) 1t 1s always assumed that the newly declared vanable
15 fresh, that 1s, 1t has not yet been declared in " If s = s3 1n a triple (s4, 32, 33) €
R, we write (s;1,52) € R The equality 1n the conversion rule (convg) is the 3-
equality on the set of pseudoterms T

The elements of S are called sorts, the elements of A (usually written as s; $3)
are called arioms and the elements of R are called rules

A Pure Type System wnth fn conversion (PTSg,) 1s also given by a set S, a set
ACSxSandaset RCS xS xS and now denoted by Ag,(S,A4,R) The
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only difference with a PTSg is that a PTSg, has a G7-conversion rule:

( )FI—M:A reB:s o
COnV;; =3
7 TFM:B "

Again the fn-equality in the side condition is an equality on the set of pseu-
doterms T.

A Pure Type System with Bn-conversion and strengthening (PTSj,) is also given
by aset S,aset AC S xS and aset RC S xS x8 and now denoted by
A3y(S, A, R). The difference with a PTSg, is that a PTS;, has a strengthening

le:
e Ty, oC Tk M: A
(streng) Ifz ¢ FV(T2, M, A)
Fl, F2 FM-A

In the following, when we use the notion ‘PTS’ (without subscript), we arbi-
trarily refer to one of the three notions above.

We see that there is no distinction between types and terms in the sense
that the types are formed first and then the terms are formed using the types.
The derivation rules above select the typable terms from the pseudoterms, a
pseudoterm A being typable if there is a context I' and a pseudoterm B such that
'FA:Borl'F B. Ais derivable. For practical reasons we make the following
definitions.

4.2.4. DEFINITION. Let A(S,4,R) be a PTS.

1. A pseudoterm A is typable in A(S, A, R) if there is a pseudocontext I" and
a pseudoterm B such that T A: Bor '+ B : A is derivable. The set of
typable terms of A(S, 4, R) is denoted by Term(A(S, A, R)) (or just Term
if the PTS is clear from the context.)

2. A pseudocontext I' is a contezt of A(S, A, R) (I' € Context(A(S, A, R) or
just I" € Context if there is no ambiguity), if there are pseudoterms A and
B such that '+ A : B is derivable,

3. For I' a context of A(S,4,R) and A a term, A s typable :n ' (notation
AeTerm(T'))ifCFA:BorT'F B: A for some B,

4. For ' a context, s a sort and A a term, A 1s an s-term n [ (notation
A€s-Term(T)ifI'F A: s,

5. For T" a context, s a sort and A a term, A s an s-element in ' (notation
A€ s-Et())fT'+ A: B: s for some term B,

6. For s a sort, the set of s-terms (of A(S, A, R)) is defined by s-Term :=
UreContextS-Term(I) and the set of s-elements/ (of A(S, A, R)) is defined
by S-Elt = UI‘eContexts'E‘t(F)'
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A practical purpose for the use of the PTS framework 1s that many properties
can be proved once and for all for the whole class of PTSs In paragraph 4 4 we
list and prove the most important ones for the three versions of the Pure Type
Systems, PTSs, PTSg, and PTSj, In order to do the meta theory for the latter
two versions, we first study the collection of pseudoterms T in a bit more detail
and prove a very weak form of Church-Rosser property for @n-reduction on T,
Just enough to handle most of the cases where we used CR of $-reduction in the
meta theory of PTSs (as 1t was given 1n [Geuvers and Nederhof 1991] ) We now
want to give some examples of type systems that fit in the PTS framework and
also say something about mappings between PTSs

The framework yields a mice tool for describing a specific class of mappings
between type systems that we call PTS-morphisms These PTS-morphisms will
be described as a subset of a general set of mappings between Pure Type Systems

425 DEFINITION Let A(S,A4,R) and A(S', A, R') be PTSs

A mapping from A(S, A, R) to M(S', A, R') 1s a function that assigns pseudojudge-
ments of M(S’, A", R') to derivable judgements of A(S, A, R), a pseudojudgement
being a sequent ' F M B with I" a pseudocontext and M, B pseudoterms

A morphism from A(S, A, R) to A(S', A, R') 1s a mapping f from S to S’ that
preserves axioms and rules, that 1s

81 89 € S = f(Sl) f(SQ) € Sl,
(51,82,83) ER = (f(s1), f(s2), f(s3)) € R’

A PTS-morphism f from A(S, A, R) to A(S', A, R') immedately extends to a
mapping from the pseudoterms of A(S, 4, R) to the pseudoterms of A(S', A", R')
and hence to a mapping between the PTSs by induction on the structure of terms
This mapping preserves substitution and 3(n)-equality and also derivability

426 LEMMA If f 1s a PTS-morphism from ¢ to (', then
P M A= f(T) ke f(M) f(A)

There are certainly many other interesting mappings between Pure Type Sys-
tems and we don't want to give the PTS-morphisms any priority However they
have some practical interest because they are easy to describe and share a lot of
desirable properties And of course the Pure Type Systems with the PTS mor-
phisms form a category with products, coproducts and as terminal object the
system with Type Type, often referred to as Ax

Type,
Type Type,
(Type, Type)

S
A
R
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There are two subclasses of PTSs that have some special interest because
the systems belonging to those subclasses share some additional nice properties.
Also, most of the known examples of Pure Type Systems belong to both classes.

4.2.7. DEFINITION. A PTS A(S, A, R) is functional if the relation A is a partial
function from & to S and the relation R is a partial function from § x S to S.
That is,

s:8,s:8"e A = §=4"
! —_— !
(81,52,83),(51,82,93) ER = s3 =35

A PTS A(S, A, R) 1s wngective if it is functional and the functions A and R are
also injective. That 1s,

§:55:5€e A > §=5",
! ! —_ _— !
(81, 82, 83), (81, 85,93) ER = s =8; & 32 =55

In [Barendregt 1992], the notion of functional is called ‘singly-sorted’ and the
notion of injective is called ‘singly-occupied’.

In [van Benthem Jutting et. al. 1992] there are more definitions of subclasses
of Pure Type Systems that are of interest. One of the purposes of that article is to
find different sets of rules that generate the same set of derivable judgements, but
have easier operational properties. This is especially important for proving the
completeness of type checking algorithms. We shall say something more about
this in Chapter 6.1. For now we want to describe two of the subclasses of Pure
Type Systems that are defined in [van Benthem Jutting et. al. 1992], because
they have some importance later in the text.

4.2.8. DEFINITION. 1. APTS MS,A,R) is full if
Vs, 82 € 5383 S S[(31,82,33) € R]

2. APTS MS,A,R) is semui-full if
Vs1, 52, 55, 53 € S[(81, 52, 83) € R = 3s3((s1, 83, 55) € R]].

The importance of the notion of ‘full’ PTS lies in the fact that the second
premuse of the (\) rule can be replaced by Vs € S[B # s] V 3s € §[B:s € A],
which 18 much easier to handle. The importance of the notion of ‘semi-full’ will
become clear when we study the Church-Rosser property for §n in PTSg,,.

To end this section we want to mention some subtle variant of the syntax
that has some practical use because it allows to prove a very nice meta property.
The idea is to devide up the variables in several disjoint countable subsets, one
subset for every sort s, which subset will be denoted by V¢. There are some small
alterations in the derivation rules given in the following definition.
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429 DEFINITION The syntax of Pure Type Systems with sorted varables has
the set of variables Var devided up into countable subsets Var® for every s € S
and the following (var) and (weak) rule

I'HFA s
(var) —— z € Var’
FLrAtz A

'FA s THFM C
(weak) z € Var’
rzArFM C

It will turn out that, if we use the syntax with sorted variables in an 1njective
PTSs, the sets s-Term and s'-Term are disjoint for s # s’ (and similarly for
s-Elt and s’-Eit ) The importance of this fact lies in the possibility of defining a
mapping on the well-typed terms of the PTS; by induction on the structure of
terms, without having to mention a specific context 1n which the term 1s typed
One only has to distinguish cases according to the sorts that specific subterms
are terms or elements of

4.3. Examples of Pure Type Systems and morphisms

4.3.1. The cube of typed lambda calculi

We first treat the so called ‘cube of typed lambda calculy’, as presented by Baren-
dregt 1n [Barendregt 1992] The cube includes well-known systems like the simply
typed and polymorphically typed lambda calculus To show that the two repre-
sentations of these systems are in fact the same requires some technical but not
difficult work

431 DEFINITION (Barendregt) The cube of typed lambda calcul consists of the
eight PTSgs, all of them having as sorts the set § = {x,0} and as axiom A =
{* 0O} the rules for each system are as follows

A= (x,%)

A2 (%,%x) (O,%)

AP (x,%) (x,0)

Ad (%, %) (4,0)
Aw  (*,%) (O,%) (0,0)
AP2 (x,%) (O,%) (%,0)

APT  (x,%) (x,0) (O,0)
APw (x,%) (O,%) (x,0) (O,0)

Note that all systems of the cube are injective and hence functional, so they
enjoy all the nice properties that hold for these subclasses of PTSs It 1s convenient
to think of the set of variables Var as being split up into a set Var* and a set Var®,
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as was suggested in Definition 4.2.9. Te first type of variables will be referred to
as object-variables, the second as constructor-variables.

The systems A— and A2 are also known as the simply typed lambda calculus
and the polymorphically typed lambda calculus (due to Girard as system F and
Reynolds.) The system Mw is a higher order version of A2, also known as Girard’s
system Fw. The presentation of these systems as a PTS is quite different from the
original one. If one is just interested in those systems alone it is in general more
convenient to study them in their original presentation. The PTS framework is
more convenient for systems with type dependency, that is the feature that a type
A may itself contain a term M with M:B:x. This situation only occurs in the
presence of the rule (x,0). In that case there is no other syntax for the systems
which is essentially more convenient then the PTS format. The system AP is
very close to LF, due to [Harper et al. 1987] (see Definition 3.3.6), in fact LF is
the PTSg, variant of AP. The system APw is the Calculus of Constructions, due
to [Coquand 1985]. (See also [Coquand and Huet 1988].) The system AP2 was
defined under the same name by [Longo and Moggi 1988].

Usually the eight systems of the cube are presented in a picture as follows

Aw APw

A2 AP2

Aw MPw

A— AP

where an arrow denotes inclusion of one system in another.

The use of the cube is to give a fine structure for the Calculus of Constructions
(APw), which is the largest system in the cube. It is now possible to understand
APw as built up from the basic constants x and O by allowing three kinds of
dependencies, where dependency should be understood as the possibility to ab-
stract over specific terms to form a term of another specific kind. For example if
we call the terms of type * types and the terms of type O kinds, then (x, x) means
that we can abstract over a type to define a term of a type (e.g. Az:0.z : 0—0)
and (0, ) means that we can abstract over a kind to define a term of a type (e.g.
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da x Adraz Illa » a—a ) An extensive explanation of these dependencies 1s
given n [Barendregt 1992]

As we have already pointed out, the PTS format 1s not always the most
practical if one wants to study a specific system by itself It 1s however very
convenient 1f one wants to compare different systems Applications of this will be
given later when studying for example the Strong Normalization for the Calculus
of Constructions One of the features that can come 1n handy are the PTS
morphisms as defined in Defimition 4 2 5 Obviously, all the inclusions inside the
cube are PTS-morphisms

Without a proof we now state the correspondence between the systems A—,
A2 and Aw 1n their oniginal presentation and the PTS-format Let’s therefore
define these systems here again 1n a different format

432 DEeFINITION The system Fw 1s defined as follows The set of kinds, K 1s
given 1n abstract syntax by

K =x|K->K
The constructors of Fw are given by
1 There are countably many variables o k for every k € K,
2 M ki—ky, N ki, then MN ko,
3 I M ky, then Xa™* Mk —k,,
4 Ifo *thenllafo =,

5 lfo,7 x theno—7 *

we have the usual notions of bound and free variables, substitution and 8-
reduction on the set of constructors An object-context 1s a sequence of dec-
larations z; ¢, ,z, o, with all z, distinct Let I" be an object-context The
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derivation rules of Fw are the following
(axiom) T'kz:0 ifzioin T,
FzobM:71
'k Azio. M :0—7
'FM:0-71 THFN:0o
F'FMN:7
'FM:o

II-in if o ¢ FV(I),
( ) ['FXa* M : oo ¢ @

(—-in)

(—-el)

[FM:Tla*e )
(M-el) —— ——— if t:k
L'k Mt:oft/a]

I'M:o .
(conv) ———— ifo=pr.
rEM:7
We can define the order of a kind, ord(k), just as we defined the order of domains
for predicate logic in Definition 2.2.6, as follows.

ord(x) = 2,
ord(ky— ... »k,—*) = maz{ord(k;)|1 <i¢<p}+1

Now define for n € N, Fn by restricting the set of kinds of Fn (and hence the
formation of constructors) to those of order < n. The system F2 will be called
F and the systems F0 and F1, which are the same, are just the simply typed
lambda calculus and will also be referred to as STA.

Just as we have defined the systems Fn for 3 < n as subsystems of Fw that
contain the system F, we can also define PTSs An for all 3 € n such that

A2C A C---Chw.

We shall not do it, because on the one hand it is quite clear what such systems
should look like (restrict the formation of kinds to a certain depth) while on
the other hand the definition is very involved and doesn’t give any real insight.
To state the equivalence of Fw and Aw and of F and A2, we introduce some
notation. For I'" a context in Aw or A2, let I'® be the subcontext that contains
only the declarations of constructor-variables, and let I'* be the subcontext that
contains only the declarations of object-variables. We have the following Lemma.
(Something similar would hold for the other systems An, if we would have defined
them.)
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433 LEMMVA [n )w and A2 we have

I'FA O = A€K,andin A2, A=x,
'-M A(0) = I'°FM A4
M A(%) = I'°T"FM A

PROOF Immediately by induction on derivations &

Now, if M A with A a kind 1in Fw, we have to introduce a context 1n Aw to
type M in We denote this context by ['ys For every free constructor variable in
M, T'ys contains a declaration of this vanable to the kind 1t has in M Similarly
for M A =, I'yy 4 contains a declaration of each constructor variable that is
freein M or A

The other way around, f T F M A in A\, we denote by M* the term M
where each constructor vanable 1s replaced by a variable of the kind that 1s given
foritin T

We now have the following proposition

4 34 PROPOSITION

'k, M A(O) = M* A€ K) n Fu,
'k M A(*) = I"rFer, M A,

and the other way around

M A(eK)mFw = Tyhkyw M A
', M A(*) =2 I'yaThoM A

PrRoOOF By induction on derivations or the structure of terms, using the Lemma ®

We shall go into more details about the Calculus of Constructions and other
systems of the cube later, in Chapter 6 1

4.3.2. Logics as Pure Type Systems

Other 1interesting example of PTSs were given by [Berardi 1988], who defined
logical systems as PTSs In Chapter 3 1 we encountered the typed lambda cal-
culh APRED (Definition 3 2 1), APRED2 and APREDw (Definition 3 2 19) that
correspond directly to the logical systems PRED, PRED2 and PREDuw, as de-
fined iIn 226 The correspondence was only venfied 1n full detail for the case
of APRED and PRED (see Theorem 3 2 8 and Proposition 3 2 10), but 1t 15 not
very difficult to extend 1t to the other cases We also saw that the correspon-
dence 1s very strong in the sense that there 1s a correspondence between proofs
and proof terms (See Proposition 32 15) The next step 1s now to define PTSs
that correspond to the systems APRED, APRED2 and APREDw The systems
that we are looking for are precisely the systems that were defined by Berard:
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4 35 DEFINITION (Berardi) The cube of logical typed lambda calculi, also re-
ferred to as the logic cube, consists of the following eight PTSgs Each of them
has

S = {Prop,Set, Type?, Type’},
Prop Type?,Set Type’

b
il

The rules of each of the systems 1s given by the following table

APROP

(Prop, Prop)

APROP2
(Prop, Prop) (Type®, Prop)

APROPw (Type?, TypeP)
(Prop, Prop)

APROPw (Type?, Type”)
(Prop, Prop) (Type?, Prop)

APRED (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)

APRED2 (Set, Set) (Set, Type?)
(Prop, Prop) (Set,Prop) (Type”,Prop)

APREDw (Set, Set) (Set, Type?) (TypeP,Set) (Type?, TypeP)
(Prop, Prop) (Set, Prop)

APREDw (Set, Set) (Set, Type®) (Type?,Set) (Type?, TypeP)
(Prop, Prop) (Set,Prop) (Type?, Prop)
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The systems are presented 1n a picture as follows

APROPw APREDw

APROP2 APRED?2

APROPw APRED@

APROP APRED

where an arrow denotes inclusion of one system in another

Some 1ntuition 1s required here, 1t 1s probably best to keep APRED and 1ts
extensions 1n mind The sort Prop 1s to be understood as the class of propositions
The sorts Set and Type® together form the universe of domains Domains of the
form A;—» —A,—a with a a variable are of type Set, the functional types,
while domains of the form A;—  —A,—Prop are of type Type’(n > 0) the
predicate types The sort Type® allows the introduction of variables of type Set,
and that 15 1ts only purpose This should be sufficient to understand the first
four rules of R in APREDw The other three correspond to the logical rules in
the following sense

(Prop, Prop) ~» 1mplication (¢ D w),
(Set,Prop) ~» quantification over functional types (Vz 4 ¢, A Set)
(Type?,Prop) ~ quantification over predicate types (Vz A p, A TypeP)

The systems of first, second and higher order proposition logic are defined by
Just removing the sorts Set and Type® Note that the systems APROP, APROP2
and APROPw that we get in this way are just A—, A2 and Aw The two systems
APREDw and APROP@ have just been added to make the whole thing into a
cube analoguous to the cube of Defintion 431 They are 1n formulas-as-types
correspondence with two logical systems that we encountered in Defimition 2 2 11,
namely APROP® corresponds to PROP” and APREDw corresponds to PRED"
These are logics in which there 1s no order-restriction on the M-abstraction, but
only on the V-quantification, so the whole higher order language 1s available but
not the possibility to do higher order quantification
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It is not immediately obvious that we can still see the systems of 4.3.5 as
being built up in three stages. (First the domains, then the terms and finally
the proofs.) It could well be the case that an object expression contains a proof
expression or that a domain expression depends on a term. This is however not
the case: The systems APRED, APRED2 and APREDw correspond to APRED,
APRED?2 respectively APREDw in the similar way as A2 and Aw correspond to F
and Fw. We are not going to state this correspondence explicitly, let alone prove
it. It is very similar to the work for A2 and Aw that we did before. Let’s only
state the basic property that makes the whole correspondence work. (Compare
this Proposition with Lemma 4.3.3.)

4.3.6 PROPOSITION. In A\APREDw we have the follounng. IfI' v M : A then
FD,FT,FPFMZA with

e I'p,I'r,I'p 15 a sound permutation of T',

I'p only contains declarations of the form z : Set,

It only contains declarations of the form z : A with Tp F A : Set/Type®,

Tp only contains declarations of the form z : ¢ with Tp, 't F ¢ : Prop,

if A= Set/Type? , thenTpF M : A,
o if F A Set/Type®, then 'p,I'r F M : A.
ProoF. By induction on the derivation.®

Similar Propositions hold for APRED and APRED2. They demistify these
PTSs enough to be able to verify the stated correspondences.

As was noticed by [Barendregt 1992, it is also possible to describe a PTS that
corresponds to the subsystem PRED™/ of PRED (Definition 2.3.7).

4.3.7. DEFINITION APRED™ is the PTS with

S Prop, Set, Fun, Type®, Type®,

A Prop: Type®,, Set : Type®,

R (Set, Set, Fun), (Set, Fun, Fun), (Set, Type?),
(Prop, Prop), (Set, Prop)

The idea is that Set contains only basic domains (B of PRED~/) and Fun
contains the functional domains ((F of PRED~f). Quantification is only possible
over types in Set. The system APRED ™/ is not really a subsystem of APRED,
but only via the morphism that maps Set and Fun to Set. We have a Proposition
like 4.3.6 to prove in detail that the formulas-as-types embedding from PRED~/
to APRED~/ is an isomorphism.
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We have seen that many of the logical systems of Chapter 2 1 are 1n one-to-one
correspondence with a PTS; To show such a correspondence one has to make
two steps First define a typed A calculus ‘as close as possible’ to the original
logic and formalize the formulas-as-types embedding a la Howard (This has been
done 1n detail for the system PRED 1n Chapter 3 1, where we defined APRED
and the formulas-as-types embedding from PRED to APRED ) Then show that
the intermediate typed A calculus 1s the same as the PTS; that we want the logic
to correspond with (This has been done 1n detail for the intermediate systems F
and Fw, that correspond to A2 (= APROP2), respectively Aw (= APROPw)) For
the systems PRED2, PREDw and PRED /| we have only given the corresponding
PTS; without detailed proof, which 1s very similar to the proof for the other cases
We can depict the correspondences in a picture as follows, where ~ denotes a
correspondence and [~ denotes a correspondence that we have verified in great
detail

PRED |[=] APRED ~ MPRED,
PRED2 ~ APRED2 ~ APRED2,
PREDw =~ APREDw ~ APREDw,
PROP =~ ST ~ A— (= APROP),
PROP2 ~ F =) A2(= APROP2),
PROPw ~ Fw 1~] Aw (= APROPw),
PRED™f =~ APRED~/

For most of the other logical systems of Chapter 2 1 one can also define cor-
responding PTSss We have not done this here Most of the times the definition
becomes a hack without any intuitive meaning, so we don’t see this as a very
useful operation

4.3.3. Morphisms between Pure Type Systems

The reason for introducing the cube of logical Pure Type Systems (Definition
43 5) 15 to formalise the embedding of logics into the typed lambda calculi of
the cube, and especially the Calculus of Constructions (APw ) This was also the
original motive for Berard: to define these systems To formalse the practical
use of APw as a system of higher order predicate logic and to better understand
the use of APw as a higher order predicate logic We come to speak about APw
and 1ts relation to PREDw 1n more detail later At this point we just want
to treat the interpretation of logics in the systems of the Barendregt’s cube by
defining a mapping of the cube of logical systems into the Barendregt’s cube. This
mapping 1s sometimes referred to as the formulas-as-types embedding (or even
1somorphism), but we feel that 1t 1s more appropriate to use that terminology for
the transition from ‘real’ logical systems to typed lambda calculi
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438 DEFINITION The collapsing mapping from the logic cube to the Baren-
dregt’s cube 1s the PTS-morphism H given by

H(Prop) = =x,
H(Set) *,
H(Type?) = 0,
H(Type’) = O

It 1s easy to venfy that for each corner of the cube, H 1s a PTS-morphism
from the system 1n the logic cube to the system in the Barendregt’s cube The
question arises whether the mapping 1s complete, especially with respect to the
inhabitation of propositions One of the mice things of doing logic 1n for example
APw, 1s that domains of the logic and propositions are treated in exactly the
same way This opens up a wide range of new possibilities (like the possibility
to define domains that represent inductive data types ) On the other hand 1t 1s
not so obvious that all this 1s still sound We shall see that in the broadest sense
this operation 1s not sound, 1 e the collapsing mapping 1s not complete, while 1n
a more narrow sense, things are not that bad More about this in Chapter 6 1

To end this section we want to give a different Pure Type System that cor-
responds to PREDw that 1s more intuitive then APREDw It can be seen as a
direct formulas-as-types formalisation of PREDw, using the fact that in PREDw
there 1s no reason to distinguish between functional types and predicate types,
as was done 1n APREDw (See also Defimition 3219 ) On the other hand this
alternative version can also be obtained by defining the system AUT-HOL in a
PTS format (AUT-HOL was defined 1n 33 11 by applying 1deas from the Au-
tomath systems AUT-4 to the system AUT-68) We already pointed out the
correspondence between AUT-HOL and APREDw 1n Proposition 3 3 14

439 DEFINITION The typed lambda calculus AHOPL 1s the PTS with

S = {Prop, Type, Type'},
A = Prop Type, Type Typ¢e,
R = (Type, Type),

(Prop, Prop), (Type, Prop)

The meaning of the components of the system should be clear from the in-
tended correspondence with PREDw Prop 1s the sort of formulas, Type 1s the
sort of domains and the sort Type 1s just there to be able to introduce vanables of
type Type (These variables are to be the basic domains of the logic ) There 1s a
heavy overloading of symbols Ilz A B stands for logical implication (D) if A and
B are both propositions (of type Prop), for universal quantification (V4) if A1sa
type and B a proposition (A Type, B Prop) and 1t stands for the domain A—B
if both A4 and B are types (of type Type ) Again 1t 1s not immediately obvious
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that AHOPL can be seen as being built up in three stages. (First the domains,
then the objects and finally the proofs.) That this is still the case is stated 1n
the following proposition, which is the AHOPL equivalent of Proposition 4.3.6

4.3.10. PROPOSITION. We work in AHOPL. [fT M : A thenTp,I'7,[p+- M -
A wnth

e I'p,I'r,I'p 15 a sound permutation of T,

e I'p only contains declarations of the form z : Type,

o 't only contains declarations of the formz : A wnthTp F A : Type,

e I'p only contains declarations of the form x : ¢ with T'p,I'r - ¢ : Prop,
if A=Type, thenp+ M - A,

o if '+ A: Type, thenT'p, ' M : A.

The Proposition states (among other things) that the domains (terms of type
Type) are just built up from domain-variables using II, so no object- or proof-
variables occur as subterms, so the domains are as in AHOPL. Further it states
that the terms of the object-language are formed from the object-vanables by
A-abstraction and application and (for terms of type Prop) by II, so they don’t
contain proof-variables: Ilz:p.¢ (v, : Prop) denotes ¢ D #, the logical implica-
tion.

As an application of the notion of PTS-morphism and also to fully justify
the two systems AHOPL and APREDw in terms of each other, we prove that
APREDw and AHOPL are in a sense the same system.

4 3.11. PROPOSITION. There s a PTS-morphism G from APREDw to AHOPL
and o derwability-preserving map F from AHOPL to APREDw such that F o
G=Idand Go F=1d.

Proor. Take for G : \PREDw — AHOPL the PTSmorphism

G(Prop) = Prop,
G(Set) = Type,
G(Type?) = Type,
G(Type®) = Type'

and for F': \HOPL — APREDuw first define the mapping F from Term(AHOPL)\
{Type'} to Term(A\PREDw) by

F(z) = z,(z a variable),
F(Prop) = Prop,
F(Type) = Set,
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and further by induction on the structure of the terms G, being a PTS morphism,
preserves derivations F' preserves substitution and 8-equality and F extends to
contexts straightforwardly by defining

F(Il Ala yTn An) =I F(Al)u yIn F(Aﬂ)

(The sort Type' does not appear 1n a context of \AHOPL ) Now we extend F to
derivable judgements of AHOPL by defining

FT+-M A) F(TYF F(M) F(A), if A# Type, Type',
F(THFM Type) FYF F(M) Set, UM =  —aq,(a a vanable),
F(THM Type) F(T)F F(M) Type?, f M=  —Prop,

F(T'F Type Type') = F(I')F Set Type’

Now F1s a PTS mapping 1n the sense of Definition 4 25 By easy induction one
proves that F' preserves derivations Also F(GT+ M A)) =T+ M Aand
GIFCFM A)=TFM A X

We feel that the correspondence between PREDw and AHOPL 1s more 1ntu-
1tive then the one between APREDw and PREDw A disadvantage of presenting
higher order predicate logic as \AHOPL 1s that we can not find e g second order
predicate logic as a subsystem by an easy restriction on the rules For the rules
there 1s no distinction between the basic domains and the domain Prop Further
AHOPL doesn’t allow a straightforward syntactical description of the formulas-
as types embedding of higher order predicate logic into CC (APREDw does, as
we saw 11 Defimtion 4 3 8) In the following we therefore also look at the system
APREDw

4.3.4. Inconsistent Pure Type Systems

Inconsistency 1s not really a property of a PTS as such, but 1t depends on a
interpretation that has been given to the different parts of it One could say
that a PTS 1s inconsistent 1f all closed types of a specific sort that 1s intended
to be the sort of all formulas, are inhabited by a closed term, but that 1s not
always satisfying In [Coquand and Herbelin 1992], a restriction 1s made to so
called logical PTSs systems that have two specific sorts Prop and Type with the
oproperttes that Prop Type 1s an axiom, (Type, Prop) is a rule, the system 1s
functional and there are no sorts of type Prop Usually 1t 1s obvious which sort 1s
to be understood as the sort of formulas, so we just speak of ‘inconsistent PTSs’
One of the inconsistent PTSs we have seen 1s Ax (which 1s not a logical PTS)
Other ones are the following
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4312 DEeFINITION The system AU~ 1s defined as follows

S = Prop, Type, Type',
A = Prop Type, Type Type',
R = (Type, Type), (Type', Type)

(Prop, Prop), (Type, Prop)
The system AU 1s defined by extending AU~ with the rule (Type’, Prop)

In [Girard 1971] these systems are discussed as logics They are obtained
by extending PREDw with polymorphic domains (system U~) and with quan-
tification over all domains (together with the polymorphic domains, this forms
the system U) As typed lambda calcul they are extensions of \AHOPL AU~ 1s
AHOPL with the rule (Type’, Type) (polymorphic domains) and AU 1s AU~ with
(Type, Prop) (quantification over all domains) For example in AU~ one has do-
mains like ITA Type A—(A—A)— A (numerals) and IIA Type (A—Prop)—Prop
In AU one can write down formulas like [1A Type [1P A—Prop [Iz A Pr—Px

It 15 not so difficult to see that the extension of higher order predicate logic

with just quantification over all domains 1s consistent and conservative over
PREDw

4313 THEOREM Both AU~ and AU are inconsistent, 1 e in both systems there
15 a term M unth
FM L(=IlaPropa)

Proor For AU the proof 1s in [Girard 1972] A good explanation of 1t and a
discussion of applications of the proof to other type systems can be found in
[Coquand 1986] This fact has become known as Girard’s paradox, especially
in 1ts application to the system A« The proof for AU~ 1s in [Coquand 199+]
It internalises Reynold’s argument that there are no set theoretic models of the
polymorphic lambda calculus ®

Using the meta theory for Pure Type Systems, 1t 1s easy to see that in an in-
consistent system there are terms that have no normal form So the normalization
property does not hold for AU, AU~ and A

That AU 1s not such a strange system 1s shown by the fact that we can separate
contexts in the system, just hke in AHOPL and other systems That 1s, we have
the following

4314 ProprosiTION We work win AU IfT+ M AthenTp I7,I'pEM A
with

o I'p,I'r,T'p 15 a sound permutation of T,
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I'p only contains declarations of the form z : Type,

[t only contains declarations of the form z: A wnth 'p + A : Type,

p only contains declarations of the form . ¢ with I'p, 't F ¢ : Prop,

if A= Type , thenTp+ M : A,

if T A: Type, then'p, ' F M : A.

In Chapter 6.1 we shall see that, if we are a little bit more careful, it is possible
to extend higher order logic with polymorphic domains and still have a consistent
system.

4.4. Meta theory of Pure Type Systems

In this section we want to treat the meta theory for our different notions of
Pure Type System. For the PTSgs, most of the results that are listed here have
already been treated in {Geuvers and Nederhof 1991]. A lot of the proofs in that
paper can immediately be extended to the cases for PTSp, and PTSj,, but not
all. The essential problem is that the Church-Rosser property for Gn-reduction
does not hold for T (the set of pseudoterms). This is very problematic, not only
because CR on T is the tool for proving Subject Reduction and Church-Rosser
for the typable terms, but also because it makes the whole system PTSg, quite
suspect: Think of the possibility that A and B are types with A =4, B, but
only by means of an expansion-reduction path which passes through the set of
non-typable terms. The conversion rule says that the types A and B still have
the same inhabitants, but that is of course not what we want.

Having realised ourselves how problematic the absence of the Church-Rosser
property for On-reduction on T is, we are of course going to look for solutions.
It should be remarked here that the solutions given in this thesis have some
generality, but can not be the final answer The fact is that we did manage
to prove a general property of gn-equality on T that can in practical situations
replace CR. However, using this we only managed to prove CR for #n on well-
typed terms for a restricted class of PTSg,;s: The ones that are functional and
normalizing. So we have no proof of CR for (7 for a system like A, although we
very strongly believe that it holds, even more so because there are other PTSg,s
that are not normalizing, for which CR for 37 can easily be proved. (So the lack
of normalization doesn’t seem to be very essential.) It should be possible to find
a general proof which works for all PTSg,s. Further, the dependency of CR for
0n on normalization implies that CR becomes essentially a higher order property
(for example for the Calculus of Constructions, for which a normalization proof
can not be done in higher order arithmetic.) We feel that this can not be the
case (also because for some non-normahzing PTSg,s the proof of CR for A7 can
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be done 1n first order arithmetic ) Having made all these negative comments on
the work, we want to stress that there 1s still enough generality in the proof,
especially the part that analyses (n equality on pseudoterms, that we think 1t
can be an important contribution to a general proof of CR for gn-reduction for
arbitrary Pure Type Systems

4.4.1. Specifying the notions to be studied

We now want to fix some notions and notations that will be studied in the rest
of this thesis

441 DEFINITION Let X be a set of pseudoterms closed under 3(n)-reduction
We say that X satisfies the Church-Rosser property for 3(n)-reduction, notation
X |E CRg(y), or Just X satisfies CRypy, of

VYM,N,P € X[N gy« M —»p0) P = 3Q € X[N »p() Qi) « Pl

We say that X satisfies Confluence for §(n)-reduction, notation X = CONg(,),
or just X satisfies CONgy, \f

VM, N € X[M =gy N = 3Q € X[M —5(n) Qp(n) «= N]
Obviously, for S-reduction
X ECRg & X = CONg,
But for #n-reduction this 1s not the case

442 DEFINITION Let X be a set of pseudoterms closed under 3(7n)-reduction
We say that X satisfies Strong Normalization for 3(n) reduction, notation X |
SNg(n), or Just X satisfies SNg(y, if there are no infinite 5(n)-reduction sequences
m X

We could have formulated this property more positively, for example by saying
that for all M 1n X there1s an n € N such that n 1s an upperbound to the length
of B(n)-reduction sequences starting from M We have not done so because the
first 1s a bit easier to work with Most of the proofs of Strong Normalization 1n
this thesis can be redone with the alternative definition

4.4.2. Analyzing On-equality on the pseudoterms

In the proof of Church-Rosser we shall relate the 8n-reduction on typed terms to
the reductions on untyped lambda terms Properties of reduction and equality on
the untyped terms will be used to obtain results about reduction and equality in
T We therefore define an erasure mapping from T to A and give some properties



Sec 44 Meta theory of Pure Type Systems 95

for 1t With this we can prove the so called Key Lemma about #n-equality in T,
which will enable us to prove the important meta theoretical properties ike UT
(Uniqueness of Types) and SRy for PTSg, and SR, for PTS3,  But first of all
we give a proof of postponement of n-reduction 1n T, a well-known property of
fBn-reduction 1n A

Postponement of nj-reduction

We prove the postponement of 7-reduction for a set of pseudoterms T by an argu-
ment similar to the one used 1n [Barendregt 1984] (Chapter 15) for the untyped
lambda calculus The idea 1s to mark 7-redexes as superscripts inside the terms
(as superscript we take the type of the abstracted variablein the n-redex ) In case
one 1s convinced of the fact that postponement of n-reduction holds for T, this
paragraph may be skipped

443 DEFINITION The set of pseudoterms with markers, T* 1s defined by ab-
stract syntax as

T+ = &|Var|(IIVar T* T+)| (AVar T* T+)| T*T+| T+
The reduction relation on Tt 1s 8%, defined by the basic steps

(Az AP)Q —p PlQ/z],
PAQ g+ PQ,

and further by induction on the structure of terms, such that 1t 1s compatible
with application, A- and Il-abstraction and the superscript operation

The intended meaning of PAQ 1s (Az A Pz)Q, a f-redex, so this should in-
deedreduce to PQ in T+ We define the two mappings ||* and ¢ from T+ to
T, the first erasing the superscripts and the second inserting an n redex for a
superscript

444 DEFINITION 1 The mapping ||* Tt — T 1s defined by erasing all
superscripts,

2 The mapping ¢ T* — T 1s defined by
@(P*) = Az (A) ¢(P)z (for a fresh z)
and further by induction on the structure of the term
The following are now easily proved (by induction on the structure of terms )

445 LEMMA For M,N e TH,
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L p(M[N/z]) = p(M)[p(N)/z],
2. (M) -, M|

The following lemma is a formal justification for the definition of A¥-reduction:
It shows that ¢ preserves (3*-)reductions and | |* reflects (3*-) reductions.

446 LEMMA For PLQe T, MM €T,

1. P —pt Q= o(P) —50(Q),

2. Pll" M —5 M' = 3P € T[P 4+ P' =!I M),
ProoF. The proof of the first splits into two cases, depending on the type of
redex: P = C[(Az'A.B)C] or P = C[BAC]. For both of them the required
property is easily proved, using for the first case Lemma 4.4.5(1). The proof
of the second is by imitating the reduction from M to M' in T*. Let M =
Cl[(hz:A.Q)S), M' = C[Q[S/x]). Then P = C°[((Az:B.R)°T)?], where ° denotes
a possible superscript and |B|* = A, |R|* = Q and |T|* = S. Now P —»g+
C°l((Az:A.R)T)°] — 5+ C°[R[T/z]). So we are done by taking P' = C°[R[T/z]).
X

4.4.7. LEMMA. ForQ M, M' €T,

Q —a Mg M =30 €TQ —»5Q —», M]
PROOF. Let’s say that @ = C[Az:4.Nz|, M = C[N]. Now define P := C[N4].
Then ¢(P) = @ and |P|* = M, so, by Lemma 4.4.6(2) we find P’ € T* such
that P =4+ P " M'. By Lemma 4.4.5(2) we find that also ¢(P') -, M'. By

Lemma 4.4.6(1) we find that (Q =)p(P) -5 o(P').
We are now done by taking Q' = p(P') X

4.4.8. COROLLARY (Postponement of 7-reduction). For M, N € T,
M —»g, N=3Q € TIM -5 Q —», N].
Proor. It suffices to prove the following property, which is a slight variation of

the Lemma: If @ -, M —»5 M', then Q' € T[Q -5 Q" -, M’]. This property
follows immediately from the Lemma itsell. R

4.4.9. THEOREM. For X C T, X closed under B-reduction, 1f X = SNj, then
inX = SNg,, where inX denotes the closure of X under —»,,.

Proor. First remark that L,,X is the same as lﬁnX by the postponement of
n. Now, an infinite Gn-reduction in LWX ylelds an infinite S-reduction in X by
postponement of n and the fact that there are no infinite n-reductions. So we
are done by X | SNj. (Note that, if we have an effective bound to the number
of §-reduction steps to normal form in X, then we can also compute an effective
bound to the number of 37-reduction steps in inX.) x
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The Key Lemma for Bn-reduction on T

The counterexample of [Nederpelt 1973] shows that, if one tries to prove CRgy,
there is a problem in the types of the A-abstracted variables. We call these types
domains.

4.4.10. DEFINITION. Let M € T. A subterm A of M is a domain if it occurs as
Az:A in M. (So we are not concerned with Il-abstractions.)

The erasure map removes all domains.

4.4.11. DEFINITION. The erasure map || : T — AT is defined by induction on
the structure of pseudoterms as follows.

|z| = =,
ls| = s,
[Az:A.M| = Az.|M|,
liz:A.B| := Iz:|Al.|B|,
IMN| = |M||N].

Here, AT is A extended with the extra variable binder II and constants s for each
SES.

4.4.12. REMARK All the well-known facts (like CRg,) about fn-reduction in A
continue to hold for fAn-reduction in A”. This can easily be seen by viewing
[z:| A|.|B| as G|A|(Az.|B]), with G some fixed constant.

If, for M, M' € T, [M| = |M'|, then M and M’ have the same ‘structure’,
apart from the domains that may be very different. We therefore give the follow-
ing definition.

4.4.13. DEFINITION. Let M, M' € T. If |M| = |M’| and the respective domains
in M and M’ are all fn-equal, we say that M and M’ are doman-equal, notation
M =4 M

We have the following proposition, relating reduction in T to reduction in A™.
4.4 14. PROPOSITION. For M and M' in T,
(1) M—sM = M| —g|M|VIM|=|M|
and ssmalar for — ., and so for =g,. For M € T, Q € A",
(2) IM|—5Q = 3N[M —s N&|N[=|Q]

The latter doesn’t hold wn general for —,, but we do have (for ¢ a varable or
sort)
(3) M| —»,c 2> M-, c
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Proor The first 1s trivial If the redex 1s erased by ||, then |M| = |M'| and
otherwise the same redex can still be done 1in A", so |[M| — |M’| The second
1s almost trivial, as || only erases domains, a J redex in |M] 1s also a 3 redex in
M, and by evaluating 1t we find N € T with M —3 N and |[N| =@

That the second 1s not valid for 7 1s shown by the taking M = Az o y(Az Pz 2)z
(This term can even be well-typed 1n e g the Calculus of Constructions Take
P=Mzor,y(ro1)>0—0 In Lemma 52 3 we see that nevertheless, if M 1s
well-typed 1n a functional normahzing PTSg,, and M 1s 1n 7 nf, then |M]|1s1n
Bn-nf )

The third 1s a corollary of the following more general lemma X

4415 LEMMA Let M and M' bein T

M| =+, Q,Q contains no As = IN[M —, N & |N|=Q)]

Proor By induction on the number of As in |M| First remark that, as Q
contains no As, all the As in |M| become the A of an 7-redex at some point 1n the
reduction |M| -, @ Further note that the only way in which an 7-redex can be
created 1n A™ 1s by Az M (\y zy) —, Az Mz, which implies that the innermost
An |M| s always an n-redex in |M| If |M| contains only one A we are easily
done Now suppose that |M| contains n + 1 As and that we are already done
for terms containing n As Take the innermost n redex of |M|, say 1t 1s Az |P|z,
coming from Az A Pz in M Then |P| does not contain any A, for if 1t would this
A would have to be the A of a redex, which would make Az |P|z not innermost
This imples that Az A Pz 1s also an n-redex in M So we can apply IH to the
term obtained by contracting the n-redex Az A Pz in M and we are done X

The following 1s an immediate corollary of the counterexample to CRg, on T

4416 LEMMA (Domain Lemma) If C[Az AM] and Bare in T (1e C 15 a
pseudoterm unth subterm Az A M), then

ClAz A M] =g, C[\z B M]

Proor
Clhy B (Az A M)y]

Chz A M) CPz B M)

where y 1s some variable not occurring free in Aor M ®
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First some notation For D € T and M € T, MP € T 1s the pseudoterm
obtamned by replacing all domainsin M by D For De Tandte A", ¢+2 e T
1s the pseudoterm obtained by adding D as domain to every A abstraction in ¢
(So for example (Az z)*P1s Az D 1)

4417 COROLLARY For A and B pseudoterms,

|Al =gq |B| = A =g, B

Proor Let |A| =g, |B|, so by Church-Rosser |A| lﬁn |B|, say |A| -»g, tag «
|B| Take for D some closed pseudoterm (or fresh variable), then we have the
following diagram (The =g, are an immediate consequence of Lemma 4 4 16 )

A =p AP B? =5 B

Bn n

t+D

SoA=g, B ®

4418 LEMMA (Key Lemma) Let ¢ be a varable or a sort

1 cP Po=p, Q= Q=3 \fAcQr Q. with@, =5, L(1<1<n)
and B and § are of the same length unth R >,

2 Iz Pl P, =4, Q = Q 5 /\yA (Ilz @, QQ)R with P, =g, @, (2 = 1,2)
and R and § 7 are of the same length with R g

PRrROOF We only prove the first, since the proof of the second 1s totally similar
For reasons of readability we adapt here the convention to use captals for pseu-
doterms and small characters for elements of A™

Let cP, P, and @ be as in the first case of the lemma By CRg, on AT we find
ti, o ta € AMwithelP| |P| »p,cti  t.and |Q| »p, cti ¢, Using post-
ponement of -reduction, we find that |Q| »g Ajeqi g7 5 ¢ty ¢, (Dong
as many [-reductions as possible, 1 ¢ we J-reduce all the 7-redexes that overlap
with a (J-redexe More precisely, if (Ax Mz)N —, MN or Az (Az N)z —,,
Az N 1s one of the n-reductions from A\jcq; g.7toct; i, then we do1t al-
ready as a -reduction step ) So 7 and 7 are of the same length By 4 4 14 we find
aterm A\j AcQ, QnEwithQ »g \fAcQ; Q.Rand|\JAcQ: Q.R|=
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Mjcqr  gn™ The situation 1s as follows

cPL P,——>c|P| |Py R e————1 Q@

Bn 6n 8 g8

cty by =— /\ﬁ cq1 gaT <— Aif A‘ CQI Qnﬁ
]

Now R —, ¢ follows from 7 —,  and Proposition 4 4 14(3) We also have
|Q.| =g, | P} (for 1 <1 < n), so, by Corollary 44 17 we have @, =g, P, (1 <1 <
n) and we are done '®

There 15 a generalisation of the Key Lemma to include terms that begin with
a A abstraction We give 1t for technical completeness

4419 LEMMA (General Key Lemma) Let ¢ be a varable or a sort
1 Az A Ay ApePr Ppo=p5,Q = Q@ —p A2y By Azg BgcQr Qm,

withn+g=m+pand P,, ,Pnz, ,21andQ1, ,Qm,2, 21 are
pasrunse [Bn-convertible

2 NEANz PPy =5, Q = Q —p AP BAC (MuQ, Q)R, wnth P, =,
Q.(=12)and R—»,§

Proor The proof is quite similar to the proof of the Key Lemma Agan we

only treat the first case because 1t 1s the most difficult one of the two Using

the properties of the untyped labda calculus we now get the following picture
(Notation # denotes 2y, ,z,, 2" denotes z;, ,2,)

A A cPy P,r—> A c|P| |l Ql «<——1@Q

Bn bn 8 g

Acty i, A" o «—1 A" B" cQ

]

where 7 1s 21, 2, for some s < p,q First, we can conclude from this that
g—s=m-rand p—s=n-—rand hence n + g=m + p Further, this means
that for r <+ < n, |P,| », Zg4s—r and for 7 < 1 £ m, |Q,| -, 2441—» Just asin
the Key Lemma, we use Corollary 4 4 17 to conclude that P;, , P, 2, .2
and @1, ,@m, 2 21 are pairwise On-equal and we are done ®

1The Lemma can also be proved by induction on the length of the reduction-expansion path
from ¢P, P, to Q, as was suggested to us by B Werner This does not change the proof tn
an essential way, we think that the proof above explains the 1dea better
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4.4.3. A list of properties for Pure Type Systems

At those points in the text where essential use of specific meta theory 1s being
made, we refer to the relevant lemmas and propositions, so this paragraph may
be skipped for now

In the following we let { = A(S,.A, R) be an arbitrary PTS If we do not make
explicit reference to the PTS, we always refer to this generic system ¢ If the
lemma or proposition only holds for a specific notion of PTSs or for a specific
subset of the class of all PTSs, this will be explicitly mentioned So, the generic
case 18 that a lemma or proposition holds for all three notions of PTS and also
that the given (sketched) proof works for all three cases

As remarked, we treat terms modulo a-equivalence, so, for example Az Ay
and Az A y are the same terms (for different z, y and z ) This makes that, for
z ¢ FV(B),

A yBrX Ay TIz AB

1s derivable, whereas 1t 15 not without a-conversion Also variables that are free
1n a typable term are 1n a sense bound by a declaration in the context For those
variables we also have a notion of a-conversion that we call ‘replacement’ and
that 1s provable, as 18 shown by the following lemma

4420 REPLACEMENT LEMMA For I';,z A,T'; a context, M and B terms and
y a fresh variable that 1s not bound in M or B,

I,z ATobM B = T,y A TDfy/zl- Mly/z] Bly/z]
by a derivation with the same underlying tree,

where the underlying tree of a derivation 1s the labelled tree that 1s found by
removing from the derivation everything but the names of the applied rules (at
every node )

The lemma says that the names of the declared variables 1n the context really
don’t matter and we may assume them to be different from any of the bound
vaniables The importance of this lemma 1s illustrated by the fact that now, if we
do some proof by induction on the derivation and we want to handle the case that
the last rule was (streng), we may take for the variable that has been removed
just any fresh variable (So the lemma implies that the name of the removed
variable doesn’t matter )

ProOF By induction on the denvation of I'1,z A,I', F M B The only 1n-
teresting case 18 when the last rule 1s (streng) and the variable that has been
removed 18 y, say

rl,.’L'A,Fg,yC,Fa}‘M B
Fl,l' A,FQ,Fa FM B

y ¢ FV(F3yM1B)
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Then by IH T'y,z:A,09,2:C,T3 M : B is derivable with a derivation with
the same underlying tree (for z an arbitrary fresh variable.) So, again by IH,
I, yiA Taly/z), 2:Cly/z), Taly/z) & M[y/z] : Bly/z] is derivable with a deriva-
tion with the same underlying tree. Now we are done by one application of the
rule (streng) to remove the declaration z:C[y/z]. B

Another basic property, that is especially important and handy when it comes
to proving meta theory and which was first remarked by Randy Pollack is the
following.

4.4.21. LEMMA (Restricted Weakening). If I' - M : A 1s derwable, we may as-
sume the derwation of '+ M : A to contain only applications of the rule (weak)
that are of the follounng form.

''HrA:sT'ke:B
(weak) ¢ a vanable or a sort, T fresh
I'z:Atc: B

1.e. the weakening rule 1s only apphed to typings of variables and sorts.

The proof of the property for PTSs and PTSg, is quite straightforward. We
give it below. For PTSj,, the proof is more complicated. For that case the
property will be proved later, as a corollary to the more general Sublemma 4.4.25
(that also implies the Thinning Lemma 4.4.24.)

Proor. (For PTSs and PTSg,) The proof is by induction on the derivation. All
cases except for the last rule being (weak) are easy. In case the last rule s (weak),
5,

Y 'HrA:sTHFM:B

(weak) z fresh
I'o:AFM:B

we find by IH that 'F A: sand ' - M : B are provable with the restricted form
of weakening rule as described in the lemma. Now we are going to make some
small alterations in the derivation tree of ' - M . B to turn it into a derivation
tree of I';z:A - M : B with restricted weakening rule. The alterations are as
follows: Go up in the tree to the place where the context I' is created. So, if
[' =", y:C we go to the places where I is extended to T'. This is done by a (var)
rule or a restricted (weak) rule, so we have either

'+C:4d
(var) ———
MyCky:C
or
rEC:8 Tke: E

(weak)
Iy Ckc: E
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In the first case we change the derivation by inserting

'+C:s
MyCry:CTHA:s
Nz:AkFy: C

and replacing I' by ', z: A downwards. In the second case we change the derivation
by inserting
'FC:s ke E
MyCkrc:E TFA:s
I'z:Akc: E
and replacing I' by I',z:A downwards. It is easy to see that these alterations
satisfy the requirements. &

It is convenient to have some special notation for derivability in a system with
a restricted (weak) rule as in the lemma. We therefore introduce the following.

NOTATION. ' F¥ M : A denotes the fact that ' - M : A is derivable with
a derivation tree with the weakening rule restricted to typings of variables and
SOTtS:

'rA:sTkFc¢: B

(weak) c a variable or a sort, = fresh
I''z:Av+c:B

Consequently, if we talk about a derwwation of ' F¥ M : A, we refer to a derivation
tree with the restricted weakening rule.

4.4.22. LEMMA (Free variables). For ' = z1:41,...,Zn:An and T+ M : B, then
1. FV(M,B) C{zy,...,Za},
2 Vi) <nfz,=z,=>1=).
PROOF. By easy induction on the length of the derivationof T M : B. ®
4.4.23. LEMMA. For ' =1z,:A,,...,1.:A, € Context,
1.Tks:¢ forallss €S,
2.Thkaz,: A forallr <n,
3. z1:A1, ..., T-1:A1 F A, i s for some s € S.

ProOF. All three by an easy induction on the length of the derivation that shows
that " is a context (i.e. a derivation of a sequent I' = A : B for some A and B.)
X
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4424 THINNING LEMMA For I and I contexts and M and B pseudoterms,

'ar /
I'M B }=> r'+M B

The proof for PTSg and PTSg, 1s straightforward Due to the strengthening
rule, the proof 1s quite difficult for PTS;, It comes as an easy corollary of the
Sublemma 4 4 25, which 1s an induction loading to prove both Thinning and the
Lemma on the restricted use of the weakening rule (4 4 21 )}

Proor (For PTSg and PTSg,) The proof 1s by induction on the derivation We
treat the case of the last rule being the (IT) rule, because 1t has some interest
(just as the case of the () rule, which 1s similar )

Say

TFA sT,zAFB &

''tNzAB 4

and let ' O T We may assume that z ¢ dom(I") (by Lemma 44 20 ) By IH
I"F A s and hence [V, A 1s a context By applying IH to the second premise
wefind [V, z A+ B &', s0 by the (Il) rule I"+IIz A B " and we are done X

4425 SUBLEMMA For I''T” and A contezts and M and B terms we have the
follounng

rasr
z € dom(I") Ndom({A) = imp(z) = ma(z) } => A, T'\AF*M B
'M B

The Sublemma 1s only interesting for the system PTSj, because 1t has as
consequences that Thinning and Restricted Weakening hold for PTS;, Moreover,
the Sublemma for PTSs and PTSg, 1s a very easy consequence of Thinning and

" 1As was pointed out to us by J McKinna, 1t 1s also possible to prove Thinming and Substi-
tution (Proposition 4 4 26) at once by proving the following Lemma

r-M B
Al’p([‘) }=>A‘_P(M) P(B)v

where p 13 an arbitrary substitution of pseudoterms for variables, which is straightforwardly
extended to a mapping from T to T, and A + p(I') means that A F p(z) p(A) for every
z A€ This Lemma can easily be proved if one adapts the rule (streng) as follows

Fl,:C,Fgl-M AFll—C L
(streng’) If z ¢ FV([3, M, A)
LM A

Thas rule 1s equivalent to (streng), as 1s easily shown by using Lemma 4 4 22
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Restricted Weakening themselves (which have already been proved): The only
thing to do is to show that A, I\ A in the statement of the Sublemma is indeed
a context.

Proor. (For PTSj,) By induction on the derivation of I' - M : B. We treat the
cases for the last rule being (var), (weak), (II) and (streng). (The case for (A) is

similar to (IT) and the cases for (sort), (app) and (conv) are easy, like the case
for (weak).)

(var)  Say
I'A:s
Iz:AFz: A
and IV D I',z:A and A are contexts satisfying the requirements of the
lemma. Now, I D T, so we can apply IH to ' + A : s to obtain
A I'\AFY A:s By an argument similar to the proof of the second
case of Lemma 4.4.23 one can show that in general, if [ +¥ P : C and
z:A € T, then T ¥ z : A. Now, in the present situation we have
that 24 € A,T"\ A and A,T"\ A F* A : s, so we may conclude
A,T"\AF" z: A and we are done.

(weak) Say
'rA:sTHFM:B
'r:A-M:B

and IV D I',z:A and A are contexts satisfying the requirements of the
lemma. Now, because of I'" O I we can apply IHto I' - M : B to obtain
AT\ AF* M : B and we are done.

(IT) Say

I'FB:s; Tyz: BFC:3,
T'HIIz:B.C: s,

and I D T" and A are contexts satisfying the requirements of the lemma.
Then by I[H A, T"\ A F* B : s, s0 A,I"\ A z:B is a context. Also
AT'\A z:B D T,z:B, so we can apply IH to T', z: B - C : s, to obtain
AT\ A,z:B+¥ C : 35 and we can conclude (by an application of (IT))
that A, IV\ AF¥ [z:B.C : s3.

(streng) Say
I',z:AI'hFM: B
Fl, F2 (o M . B

and I D I'},I’, and A are contexts satisfying the requirements of the
lemma. Then by IH (using the fact that I';,z:4,Ty 2 I'1,2:4,T,) we
get that I, (I, z:A, T) \ IV ¥ M : B and hence that I'V,z:4 is a
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context AlsoI",z A DT,z A Ty, so we can apply IH again to obtain
A"z A)\AF*M B Now,z ¢ FV(M,B),so A, I"\AF*M B,
by one application of (streng) X

As corollaries we find proofs of Restricted Weakening (Lemma 4 4 21) and
Thinning (Lemma 4 4 24) for PTSj, For the first take A = @, I = T and for
the second take A = 0

4 4 26 PROPOSITION (Substitution) For T';,z A, I, e context, M, B and N
terms,

e ATy B } = I, T4[N/a] - M[N/z] B[N/a]

ProoF By induction on the length of the dernivation of I'),z A, Ty F M B,
assurming that 'y F N A 1s derivable The only case that 1s really interesting
15, when the last rule 1s (streng), 1 ¢ when we are in the system PTS;,~ We also
treat the case when the last rule 1s (app), because some attention has to be given
to the substitutions

(streng) Say
I,z A T2)Y°+M B
(streng) y ¢ FV(A, M, B)
I‘l,Z A, Fg FM B

where we use the notation (I')¥€ to denote a context from which one
obtains the context I' by removing the declaration y C, and A 1s the tail
of the context (['),z A,T3)¥C, relative to the position of y C  Now, 1f
y C 15 a declaration to the right of £ A 1n (I'1,z 4,T2)¥C, the required
consequence follows easily by applying IH to (I, z A, T3+ M B
and ' H N A, and then (streng) If the declaration y C 1s to the left
of z A, then

(I)¥¢,z AT+ M B
(streng) y¢ FV(A, M, B)
I,z A+M B

The IH does not immediately apply, but by Thinning (Lemma 4 4 24),
we may conclude that (I';)V“ + N A and hence by IH ([',)¥ €, T2[N/z]
M[N/z] B[N/z] Note that y ¢ FV(N), so we can apply (streng) to
get I'1,T2[N/z] - M[N/z] B[N/z] and we are done
(app)  Say
[,z AT,FM TlyBC T,z AT,F P B
I,z A,Ta = MP C[P[y]

(app)
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Now by IH and (app), I, [2[N/a]  M[N/z|P[N/z] CIN/a][P[N/z)/3]
We may assume that y ¢ FV(I'y,z A,T;) (a precise justification of this
assumption may be found in the Replacement Lemma, 4 4 20 ) Hence
y ¢ FV(N) and so we can conclude C[N/z][P[N/z]/y] = (C[P/y))[N/z]
and we are done X

4 427 STRIPPING LEMMA For I" a context, M, N and R terms, we have the
following

i) T'ks R seS
() Ttz R, z€Var
() THIOzMN R

R=s withs s € Aforsomes €8,
R=Awithz AeT for some term 4,
'tM s,z MFN s;and R=s;
with (81, 82,53) € R for some 31, 52,83 € S,

I

FOI‘PTSB(,,)
(w) TFHXMMN R => I'tsMFN BTFHIzMB s and
R =TIz M B for some term B and s € S,
(v) FMN R = I'tM NIz AB,T+N Awth R= B[N/z]
for some terms A and B,
For PTS3,
(w) THAMN R = I"MzMFN B I'FIlIlzMB sand
R=1Ilz M B forsome B,s€ Sand " 2T,
(v") 'FMN R = I'FM NMzABTYFN Awth R= B[N/z]
for some terms A and B and context I D T

In fact the case (1v') can be strengthened to (1v) for PTSj,, so (1v) holds
generally for all three notions of PTS But we are only in the position to prove
this fact after we have proved the Subject Reduction property for §-reduction
(Lemma 4 4 30), which 1n turn uses Stripping (1n the weaker version given n the
Lemma above )

Proor For PTSg and PTSg, the proofis easy IfI'- P R, we may assume the
derivation tree of this judgement to have the restricted form of the weakening
rule We can go up in this denivation tree until we reach the point where the
term P has been formed In doing this we only pass through applications of the
conversion rule (so the context I' remains the same, only the type R 1s replaced
by a convertible one ) At the point where the term P has been formed we dis-
tinguish the five different cases above, according to the form of P, and we easily
check that the conclusions are satisfied

For PTSj, the proof 1s more complicated because, 1n going up through the deriva-
tion tree of a judgement ' F* P R, we also pass through applications of (streng),
which will extend the context I' to a context I'' So the proofs of (1v'), (v') and
(1) are easy The method described above, going up in the derivation tree until
we reach at the point where the term 1s formed, works for each of the three cases
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For the proof of (1) we can apply the same method to arrive at a context I" D I
whose last declaration 1s z A with A = R The context I' 1s obtained from
IV by removing declarations, but £ A can of course not be one of them, so
z A €T and we are done For the proof of (1) we apply the method to arrtve
atacontext I' DI forwhich"F M s, IV, MEFN spand["FIIz M N s
with s3 = B Now the domain of I'' may be larger than that of I', but none of
the extra variables occurs free in [z M N (and we may assume all of them to be
different from z), so we can conclude that '+ M s;and I,z M H N s, and
we are done X

4 428 CORRECTNESS OF TYPES LEMMA For I a context, M and A terms,
'FM A=3seS[A=sVvIiFA 4

PRrROOF The proof can be given by analysing the derivation tree of ' ¥ M A,
like 1n the proof of 4 4 27, but also by induction on the derivation of TF M A
We follow the second option, which gives the shortest proof The only two cases
that have some interest are when the last rule 1s (app) or (streng)

(app)
'P IlzABTHEN A
'+ PN B[N/z]
Then I' [z A B s by IH and hence by Stripping (Lemma 4 4 27),
LzAF B s for some ¢ € § Now by Substitution (Proposition
4 4 26), we conclude that ' - B[N/z] ¢
(streng)

Fl,I.A,FQ}-M B
r,omn+-M B

Then by IH B=sorI';,z A\, F B s for some s € S, so by one
application of (streng), B=sor |, B sforsomeseS X

4429 UNIQUENESS OF TyPES LEMMA For functional PTSs, 1f T 1s a context,
M, C and C' are terms we have

'-M C )
TFM C } »0=0C
ProoF By induction on the structure of the term M, using Stripping In case
M 15 a sort or a [I-term, we use the functionality The only interesting cases
are when M 1s an application term or when we are in a PTS;, and M 15 2 X
abstraction or an application We do the latter case, because 1t covers all the
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interesting cases So let M = PN Then we find by Stripping terms A, A, B
and B’ and contexts [' 2 I and I D I" such that

I' + P Nz AB,
I" + P Nz A' B,

with C =g, B[N/z], C' =5, B'[N/z] By the Replacement Lemma we may
assume that dom(I"\ T) ndom(I""\T) = @ So we can take A to be the union of
[ and I and we have

A F P Iz AB,
A+ P INlzA B

Now we can apply IH to conclude that [lz A B =g, [lz A’ B’ By the Key Lemma
we may conclude from this that B =5, B’ and hence B[N/z] =4, B'[N/z] and
we are done X

4430 SUuBJECT REDUCTION LEMMA FOR BETA (SRg) For ', I contexts, P, P’
and D terms,

TFP D&P—4s P = TFP D,
TP D&T —I' = I'FP D

Proor We do the proof for PTSj,, for PTSg, and PTSg the proof 1s shightly
easier because of the stronger version of the Stripping Lemma 4 4 27 The proof
of the two statements 1s done simultaneously, by induction on the derivation of
'k P D, distinguishing cases according to the last rule

Proof of (1) All cases except for the last rule being (app) are immediate, some-
times by using IH (For (IT) and (1)), use IH on (n) ) If the last rule 1s (app), we
distinguish subcases according to where the reduction takes place

Subcase 1
'kM NIz ACTHEN A

T'+MN C[N/q]

with P = MN and the reduction 1s mnside M or N Then we are
immediately done by IH

Subcase 2
F''kxxAM NNzBCTHN B

T+ (A AMN CIN/z]
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with P = (Ar A M)N and P' = M[N/z] Then by applying Stripping
(4 4 27) to the first premise, we find

MzARM C' (1)
"FOz AC s(eS)
Nz AC'=Nlz BC
with[" DT

So, again by Stripping

I'A s (2)
I'zAFC' s,
for some s;1,50 € S

By applying Thinning (4 4 24) to the second premise we find
I'N B (3)

By the Key Lemma (4 4 18), we conclude from [Iz AC' = Iz B C
that

A=B (4)
C'=C (5)
So, applying (conv) to (2) and (3), using (4), we get
'EN A (6)
Applying Substitution (Proposition 4 4 26) to (6) and (1) we get
I M[N/z] C'[N/z] (7)

By applying Correctness of Types (Lemma 4 4 28) to the first premse,
wefind 'FITlz BC s forsomes € S, hence I" -1z BC s and
hence by Stripping

[z BEC sy(eS) (8)
Now apply Substitution to (3) and (8) to get
I'FC[N/z] sy (9)
Apply (conv) to (7) and (9) (using (5)) to conclude
'+ M[N/z] C[N/z]

The variables that are in the set dom(I") \ dom(I') are not free in
M[N/z],C[N/z] or T, so they can be removed by consecutive appli-
cations of (streng) to obtain

'+ M[N/z] C[N/z]

and we are done
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Proof of (1) All cases can be handled eas:ly by applying IH In case the last rule
1s (var) or (weak), also use IHon (1) ®

4431 COROLLARY
M C,C—opC'aFFM C

PROOF Immediate, using Correctness of Types (4 428) ®

4432 SUBJECT REDUCTION LEMMA FOR ETA (SR, for PTSg and PTSj,) For
I',T" contexts, P, P' and D terms,

I'-P D&P—, P = T+P D
TP D&T—, ' = I'FP D

PROOF We do the prove for PTSj, The proof for PTSs 1s shghtly simpler and
follows the same lines (It uses the fact that (streng) 1s a derived rule, which
will only be shown 1n 44 35 ) Simultaneously by induction on the derivation of
' P D We treat the proof for PTSj,, because 1t 1s the most complicated
The only interesting case 1s when the last rule 1s the (lambda) rule and we are 1n
the following situation

tA-Mz BTFHIIzAB s
'zt AMz NIz AB
with z ¢ FV(M) Then by Stripping (4 4 27) we find

(bt A + M MiyCE
T,zA) + z C
E[z/y] B

with (I',z A) DT,z A We may conclude that A = C and hence that [Iz A B =
lyCE So

(T,z AYFM Tz A B,

and by some applications of (streng) we find
'~M NIz AB

and we are done
For all other cases the proof follows exactly the proof of SRy X

4433 COROLLARY For PTSs and PTSj, we have

TFM C,C—»,C'=>TFM C'
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ProOOF Immediate, using Correctness of Types (4 4 28) ®

4434 SUBLEMMA (for prowing that (streng) s o derwed rule for PTSg) For
PTSgs, of 1,z A, 'y 15 a contezt and M and B are terms, then

I,z AT, M B
z ¢ FV(Ty, M)

Although the property seems to be obviously correct, the proof for the general
case 15 remarkably complicated and requires the introduction of many new notions
and definitions For that reason and because the proof 1s not ours, we omit 1t
here and refer to [van Benthem Jutting 199+] for details (which 1s the original
source ) The 1dea of using the above Sublemma to prove that (streng) 1s a derived
rule, first appeared in [Luo 1989)], who used 1t for the system ECC The author
and Nederhof used 1t (in the joint paper [Geuvers and Nederhof 1991]) to give
the proof for functional PTSgs (For this case the situation 1s easier because we
have Uniqueness of Types ) We shortly repeat that proof here

}=>HBI[B —»g B,&Fl,rgf'M B’

PRrROOF of the Sublemma for functional PTSgs

The proof 1s by induction on the derivation of ',z A,y + M B, distinguishing
cases according to the last rule The only interesting cases are when the last rule
18 (A), (app) or (conv), so we treat those

(A) Say M=l CN,B=IlyC D and
I, zATl,,yCrN D THIyCD s
[,zAT,FAyCN IlyCD

Then by IH ', [,y C+ N D' for some D' with D —5 D'

Also, T';,z A,T;  C sy 1s a conclusion of a subdenivation of the derva-
tion with conclusion 'y, x A,Ly,y C+FN D,soby IHT',[b, FC s
By Correctness of Types we find that '), T,y CF D' ssor D'=s5€ S
In the second case too there 1s an s, such that D'(= s) s, because for
D there 1s such s; and we have SRy

Now, by functionality, the s; and s, are such that (s, s2,5) € R ((s1, 52, 8)
1s the rule that justified the formation of Iy C D), so we can apply (IT)
to conclude I'y,[3 Iy C D' s and hence I}, F Ay C N Iy C D'

(app) Say M = NP, B = D[P/y] and
[, zA LN IlyCD THP C
I,z AT, NP D[P/y]

Then by IH, ['[,T, v N IyC’'D' and I'1,Ty F N C" with C 4
C',C" and D -5 D' By Church-Rosser we find a term C" such that
C’,C" -5 C" and hence (by Corollary 44 31) I'},I; v N Tly-C" D/
and I'),I, F P C" We may now conclude that T'y,[s F NP D'[P/y]
and we are done
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(conv) Say
', AlobFM C THD s

I'ytAlLFM D

Then by IH I';,I, H M ' for some C' with C -5 C' By Church-
Rosser there 1s a C” such that C',D —5 C" Now '}, - M C" and
we are done ®

The statement of the Sublemma can be weakened a bit by requiring the B’ to
be convertible with B (and not necessarily a reduct ) This trivializes the case for
the last ruel being (conv), but doesn’t make the whole proof really easier We still
need Church-Rosser, functionality and the case for the last rule being (A\) becomes
a bit more involved Moreover 1t 1s slightly more work to get Strengthening from
the Sublemma

44 35 STRENGTHENING LEMMA FOR PTSs For I'),z A,y a context and M
and B terms,
',z A l,+M B
I ¢ FV(FQ,M,B) } = F],FQ FM B

PRrOOF By the Sublemma we find a B’ such that B -4 B’ and
r,L,+-M B

By Correctness of Types there are two possibilities, ',z A,To F B sor B =
s € S In the second case we are immediately done, because B = B’ In the first
case we can once again apply the Sublemma to

I,z AT, FB s

to find that
I',To+-B s

Now we are done by one application of (conv) R

4436 STRONG PERMUTATION LEMMA FOR PTSg AND PTSj,
ForI'1,z A,y B, T a context, M and C terms, with z ¢ FV(B),

Fl,.TA,yB,ng_M C=>F1,yB,:cA,F2}—M C

ProoF The only thing to do 1s to show that I'y,y B,z A,T's 1s a legal context
f T,z A,y B,T31s (Then we are done by Thinning, 4 4 24 ) By Lemma 4 4 23
we know that

I',zAFB s
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for some s € § By Strengthening for PTS; (Lemma 4 4 35) or by the rule
(streng) for PTSg,, we conclude that

FI}’"B 8

and hence that I'y,y B 1s a legal context So, by one again using Lemma 4 4 23
and Thinming we derive that '),y B,z A is a legal context We can repeat this
operation of applying Lemma 4 4 23 and Thinning for all declarations in I'> and
finally conclude that T'y,y B,z A,I'; 15 a legal context ®

A weak form of the Permutation Lemma, which holds for all notions of Pure
Type System 1s the following

rlle7yB,l—\2|_M C

I\ FB s }=>F1,yB,:cA,F2}-M C

The proof 15 the same as for the proof of the Strong Permutation Lemma, except
for the fact that one doesn’t need Strengthening because of the second assumption
in the statement

Finally we want to prove two properties that use the syntax with sorted var:-
ables as 1t was described 1n Definition 4 29 We prove the Lemmas for injective
PTSgs, which 1s an unpractical restriction, not so much because of the restriction
to injectivity but especially because we don’t have the Lemma for PTSj, There-
fore we shall look 1nto this matter again in detail when we study the Calculus of
Constructions with G7-conversion Let us remark here that the following Lemmas
are not true 1f we drop the restriction to injective systems, a counterexample can
be found 1n [Geuvers and Nederhof 1991)

4 4 37 CLASSIFICATION LEMMA FOR INJECTIVE SYSTEMS For s, s’ sorts, s #

s,

s Term N ¢'-Term = 0,
s-EtNs-Eit = @

PRrROOF For the first 1t suffices to prove the following
'FM s, "M s§=>s=4¢
For the second 1t suffices to prove the following
'r-M B s,T'+M B é§=s5=5

We prove these two statements stmultaneously by induction on the structure of
terms, using the Church-Rosser property, SRg and Uniqueness of Types The
proof 1s not really difficult but still a bit tricky and we therefore give 1t 1n quite
some detail
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var fIrz s, "tz ¢ andzeVar™thens AeTl with A —»5sand
z A €T’ with A" —»5 &' for some A, A’ Furthermore I' F A sy and
' A" 5o and hence s sy and s’ sy are axioms Now by injectivity,
s = s' For the second statement 1t suffices to show that, f 'z B s
with z € Var®®, then s = 59 Now,if 'z B,thenz A €T with
'FA syand A =3 B Hence by Church-Rosser, SRz and Umqueness
of Types, s = sg

M-abstr fIT'FTMz AB sandI"+IIz AB &, ,thenT’HFA syand[,z A+ B
sy with (81,82,5) € R and at the same time "+ A s and ",z A+ B
sy with (s}, 95,8') € R Now, by IH s, = s} and s, = s, and hence s = &'
because R C (§ x 8) x § 1s a function For the second statement we are
now easily done, because fI'FIIt AB C sand["FIIz AB C' ¢,
then C and C' reduce both to the same fixed so € S (which 1s found by
the argument for the first statement ) Hence s = s’ by the fact that A4
18 a function

A-abstr The first statement 1s trivially satisfied by the fact that a A-abstraction
can not be an s-Term For the second statement suppose that I'
MAM B sandT"F )X AM B s Then B =TIz AC with
F'FA s, tAFM C syandTHIz AC 53 ((51,82,83) € R)
and at thesametime B’ =lIlz AC'withI"F A s, IV, A+ M C' &
and I"F Iz AC" sy ((s],55,85) € R) Now, by IH s; = s} and s; = s},
and hence s3 = s3 Further, by Church-Rosser, SRg and Uniqueness of
Types, s = sz and ¢ =sjandso s = ¢

applic We first prove the second statement, so lee ' - MN D sand [V F
MN D ¢ ThenI'+FM TNzAB s, TN A s,TF
B[N/z] s, and B[N/z] =5 D ((s1, $2,83) € R) and at the same time
"M HzA B s, 'FEN A ¢, "+ B[N/z] s} and
B'[N/z] = D' ((s} s5,83) € R) Now, by IH s; = 5| and s3 = s}
and hence s, = s, by injectivity Also, by Church-Rosser, SR and
Uniqueness of Types, s = sp and 8’ = s, and so s = s’ For the first
statement, f [ F MN sand " v MN &, then we find by the
argument for the second statement a fixed sort sg such that s s¢ and

!

s’ so So, by injectivity, s=s' X

We can specialize this Lemma a bit further by noticing that in a lot of cases
the sort s for which A € s-Elt only depends on the ‘innermost symbol’ of A,
which 1s always a sort or a variable Let us first define this notion, we call the
innermost symbol of A the heart of the term A, notation h(A)
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4.4.38. DEFINITION. The heart of a pseusdoterm A, h{A), is defined by induction
on the structure of terms as follows.

h(s) = s, fors €S,

h(z) := =z, for z € Var,
h(Ilz:B.C) := h(C)
h(Az:B.M) := h(M),

h(MN) = h(M).

4.4.39. LEMMA. For an njective PTSg with all rules of the form (s, s2) (€.
(s1, 82, 83) € R => 3 = 33) we have

MesEt & h(M)=z€eVar'Vv
h(M) =s" unth s" : s’ : s € A for some s' € S,
MesTerm = h(M)=zecVar* wthss € AV
h(M) = s' unth s':s € A.

ProoF. By induction on the structure of M. For the first part of the Lemma:
The reverse implication uses the Classification Lemma in case M = z. All other
cases follow straightforward from IH and the restrictions on the rules and ax-
ioms. For the second part of the Lemma, all cases follow easily from IH and the
restrictions, except when M is an application term, in which case we need the
first part of the Lemma. We do this case in detail.

M=PN,sayI'’ PN . swithT'F P:Ily:B.C : s3and "' + N : B. Then
C[N/y] =p s and hence s:s3 € A. Now we can apply the first part of the Lemma
to the term PN to find that either h(PN) = z € Var®™ or h(PN) = s" with
s'":8':s3 for some s'. By the restrictions on the rules and the fact that s : s3, we
find that either h(PN) = z € Var®™ with s.s3 € A or h(PN) = 5" with s".s € A

and we are done. ¥



Chapter 5

The Church-Rosser property for
Bn-reduction

5.1. Introduction

In this chapter we want to treat the proof of the Church-Rosser property for
fn-reduction 1n functional normahizing Pure Type Systems By the restriction to
functional normalizing systems we don’t mean that the general property 1s false
At this moment this 1s still an open question, but we strongly believe that CRg,
holds in general for all Pure Type Systems At the end of this section we shall
make some comments on this and also on the proof, which we believe has some
deficits

In giving the proof we roughly follow [Geuvers 1992] In fact the proof we
give here 18 an expanded and updated version of the one that was given 1n there
We have changed the order of the lemmas a bit to stress which properties are
general and which ones are specific properties of functional normalizing PTSs

5.2. The proof of CRy, for normalizing systems

Before giving the proof we want to fix some terminology and highlight some
properties that come in handy for the proofs

NOTATION Suppose I' - M A 1s a denivable judgement 1n a functional PTS
If P 1s a subterm of M, we can speak of the type of P in the derwation of
I'FM A Infact this type 1s umque up to An-equality, due to the uniqueness of
type property (Lemma 4 4 29) We therefore introduce the notation ty(P), which
depends on I', M and A (but this dependency will usually not be mentioned
explicitly) and 1s unique up to =g, We also want to fix the notion of a variable
z being free in ty(P) or not As ty(P) 1s umque up to =g, we shall usually be
interested to know whether we can find a type for P in which z 1s not free We
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therefore mntroduce the notation z & ty(P) to denote that there 1s a type B of P
such that z ¢ FV(B) (Note that all this 1s still relative to ', M and A )

521 REMARK 1 For terms that have a sort as type, the Key Lemma 4 4 18,
gives 1n practice more specific information If Iz A; A, =5, C and C s for
3 € S, then C =5 Ilz C, Cy with C, =5, A, Similarly f P, P, =5,C
and C sfor s € §, then C =5 2Q; @Qn, with P, =g, @, This 1s true
because C can not be a A-abstraction

2 For well-typed terms (in an arbitrary PTS) that are On-equal to a sort, the
Key Lemma 4 4 18, also gives some extra information If A € Term(¢) and
A g, s(€ §), then A -5 3 (This 1s easily verified by noticing that,
if A =5, s, then A »5 A\jA sk —+, s (see Proposition 4 4 14) and that
A7 A sR can only be well typed if § 15 empty )

We first list some lemmas that are valid 1n all PTS (not just the functional
normalizing ones ) We have not listed them under the general meta theory for
Pure Type Systems because all the properties are about terms being (equal to a
term) 1n normal form, so for systems that are not normalizing these properties
loose their interest

522 LEMMA
T'HAs

A Gn nf
A=, B
z ¢ FV(B,I)

>z ¢ FV(A)

PRrROOF The proof 1s by induction on the structure of A For A a sort or a vanable
it’s trivial For A = Ilz Ay A;, we are done by induction hypothesis Suppose
now that A1san application term Then z can only be free in domainsof A (Note
that |B| =a, |A| -, nf(JA]), and 1n untyped lambda calculus 5-reductions do not
remove any free variables, so z ¢ FV(|A|)) Say C 1s the leftmost domain of A
in which z occurs free, say 1n the subterm 2Ry R,(Ay1 E; Myp Ep Ay C P)
Then z ¢ ty(z), because z 1s declared 1n the context or z 1s abstracted inside A
to the left of C This implies that also z ¢ ty(zR;  R,;) Now ty(zR; Ry) =
Mg (Ily, Ey My, E,Tly C D) F and hence C =g, E, for some E with r ¢
FV(E) Now we can apply IH because C in 8-nfand z ¢ FV(E) So,z ¢ FV(C)
and there 15 no leftmost domain 1n A 1n which z occurs free ®

523 PROPOSITION For M € Term, 1f M in On-nf, then |M| w Bn-nf

PROOF Suppose M 1n By nf and | M| not in Bn-nf Then |M] 1511 F-nf by Propo-
sition 44 14 So there 15 an n-redex 1n |M|, which 1s not an n-redex in M, say
Az |N|z 1s the left most such Then z € FV(N) while z ¢ FV(|N|), so z occurs
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only free in domains of N. We now follow roughly the same method as in the proof
of Lemma 5.2.2: Say C is the leftmost domain in which z is free, say C occurs in
the subterm 2R, --- Rg(Ay1:Ey. - - Ayp:Ep. Ay:C.P). Again ¢ ¢ ty(z). (If z is de-
clared in the context or abstracted left from the abstraction over z, then z ¢: ty(z)
by the convention that all bound variables are different and different from the
free ones. If z is abstracted right from z, then z ¢ ty(z) by the assumption that
C is the leftmost domain containing z.) This implies that z ¢ ty(zR;--+ R;) and
by the fact that ty(zR; - - - Ry) = Hg:(Ily: Ey. - - - Tlyp: Ep Ily:C.D). F we find that
C =g, E, for some F with z ¢ FV(E). Now, by Lemma 5.2.2, z ¢ FV(C), so
there is no leftmost domain in M in which z occurs free. Hence |M]| is in 8n-nf.
X

5.2.4. LEMMA.
' M:A

'+ M:A
A=g, A y=> M= M

|M| = |M|

M, M' wn B-nf

(The equality =4, was defined 1n Definition 4.4.13: M =4 M' 1of M =4 M' and
all corresponding domains are Bn-equal.)

PROOF. M and M’ have the same structure (apart from the domains) and we
have to show that all respective domains in M and M’ are pairwise On-equal. Say
M = dzi:Ay. .. Azn: A N and M' = dz1:AY. ... Az ALN', with N and N' not
abstractions. Then A =g, lz,:A,... . IIz,.A,.B =5, Hz:A]... Nz, ALB' =5,
A', for some B and B’ by Stripping, so A, =, A,. Now compare from left to
right all domains in N and N'.

Say C occurs as zRy - Ry(Ayi:Er. ... Ay Ep Az2C.P) in N and C’ occurs as
zRy -+ R (My1:EY. ... Adyp:Ep Az:C'P') in N’ and for all domains to the left of C
(respectively C') we are already done by induction. So R, =g, R, for all + and
E, =g, E, for all 2 and hence ty(zR, - -- R;) = ty(zR; - - R,). This implies that

ty(Ai:Er. .. Ayp: Ep Az:C.P) = ty(Ay1 E}.... Myp:E, Ar:C'P')
and so B =5, B'. &

The following Lemma collects the results of the previous Lemmas, establishing
the confluence of Gn-equality for types in normalizing PTS3,.

5.2.5. LEMMA. Let s,s' € S.
't A:s
'+ B:s'

A=, B
A, B in On-nf
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ProOOF By induction on the structure of A, using the Key Lemma, 524 and
523

If A= Iz A, A,, then B =g, Iz B, B, with A, =3, B, and A; =5, B, By
induction hypothesis A; = B; and A; = B,

IfA=zP, P, then B=z@Q, Q,wth P, =5, Q, (by Key Lemma ) Now,
ty(zP, P,)=ty(zQ, Q.),andsos=s" Further,zP, P,andzQ, Q.
are i (n-nf, so, by 523, |zP, P,| and |zQ, Q.| are, so |zP, P,| =
|z@1 @n.| We can apply 524 and conclude that all respective domains 1n
Py  P,and zQ; @, are On-equal By induction hypothesis (comparing the
domamns in zP; P, and zQ; @, from left to right) we conclude that all
respective domains 1n P, P, and rQ; @, are syntactically equal,that 1s
zh P, =z @. ®

526 THEOREM (CONpg, for normalizing functional PTS3, )

'-MA

TFM A =M M
, Bn

M=ﬂ.,7M

PRooF Define N = nf(M), N' = nf(M’) We prove N = N' and we are done

By SRg and SR, we find ' - N Aand T N'A By 523, |N| and |N'| are
in normal form, so |[N| = |[N'| By 524, all respective domains in N and N’
are On-equal We now compare all respective domains in N and N’, from left
to nght By Lemma 52 5 all respective domains in ¥ and N’ are syntactically
equal (=),so N=N' R

Obviously, the normalization 1s essential for the proof Note however that
also the restriction to PTSj, 1s essential, because in PTSg, we don’t know how to
prove SR, Of course we are still interested in proving CRg, for PTSg, (functional
and normalizing) Somewhat surprisingly maybe, that 1s easy now Using the
work on PTSj, that has been done 1n this section, we can show that (streng) 1s
a derived rule 1n a functional normahzing PTSg, and hence that Theorem 52 6
holds for any functional normalhizing PTSg, In fact, everything that 1s required 1s
a simple corollary of Lemma 52 5 Then the proof of the derivedness of (streng)
in functional normahzing PTSg, can be found by redoing the proof of derivedness
of (streng) in PTS; (Sublemma 4 4 34 and Lemma 4 4 35)

The property that proves strengthening and hence SR, 1s interesting enough
to give 1t a name and treat 1t as a specific feature on 1ts own This 1s because
1n practice 1t holds quite generally for functional systems, even 1if they are not
normalizing (like Ax), or if we do not yet have a proof of normahization (as 1s the
case for CCg, at this point in the text)



Sec 52 The proof of CRg, for normalizing systems 121

527 DEFINITION We say that a PTSg, or PTSj, satisfies Sn-preservation of
sorts, 1f

'A s

'FB § }y=>s=+¢

A=g, B

Obviously, there are non-functional PTS that do not satisfy (37n-preservation
of sorts (because Uniqueness of Types doesn’t hold ) It should also be clear
that we strongly believe the property to hold for all functional PTS It comes as
an 1mmediate consequence of Confluence, Subject Reduction and Uniqueness of
Types The Corollary of Lemma 52 5 that we are interested 1n 1n the present
context 1s that all functional normahizing PTSg, satisfy Gn-preservation of sorts
The reason to highlight this property here as a special definition 1s twofold Fuirst,
this 1s the specific feature we need to make the proof of strengthening and hence
SR.,, work Second, the O7-preservation of sorts 1s quite easily proved for other
systems hke CCg, and Ax

528 COROLLARY (of Lemma 52 5) A functional, normalizing PTSg, satisfies
Bn-preservation of sorts

PRoOOF Suppose ' A sand ' - B ' in a functional normalizing system
without (streng) Then also '+ A sand ' F B ' in the extension of the
system with the rule (streng) Now A and B both normalize, so, by SR and SR,
in the extended system, ' F nf(A) s and '+ nf(B) & (still in the extended
system) By Lemma 52 5, this implies nf(A) = nf(B), so by Uniqueness of Types,
s=s K

Trivially, the Corollary also holds for functional normahzing PTSg,
529 SUBLEMMA If a PTSg, satisfies Bn-preservation of sorts, then

Fl,IA,FQ}_M B

' _ ' '
2 ¢ FV(Ts M) }::»EIB[B_B,,B &T,,T,+ M B

Proor The proof 1s by induction on the derivation of I'y,z A, I, F M B,
distinguishing cases according to the last rule The only interesting cases are
when the last rule 1s (A\) or (app), so we treat those (The other cases sometimes
use the Remark 521)

(A) SayM=MyCN,B=IllyCD and
Fl,IA,FQ,yC}‘N D Fl,zA,Fgl-HyCD 83
T,z AT, F CN IiyCD

Then by IH I[',,I'5,y C+ N D' for some D' with D =g, D'
Also, ',z A, F C sy and T'y,2 A,T5,y C = D s, are conclusions
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of subderivations (with (si,s2,83) € R), so by IH I, + C : E with
E =g, 51 and hence I';, T, - C : s; by 5.2.1 and SRg.

By Correctness of Types we find that I'), [, y:CF D' : s, or D' =s € S.
In the second case we have D —g s and s:s; € A. So I'y, [ F IIy:C.s : 55
and hence I'1, Iy - A\y:C.N : [Iy:C.s with [1y:C D =g, [Iy:C.s.

In the first case we have by f7-preservation of sorts that s = s,. So
I, T2+ Hy:C.D' : s3 and hence 'y, Ty F Ay:C.N : [Iy:C.D’ with

MIy:C.D =g, Iy:C.D".

(app) Say M = NP, B= D[P/y] and

',z AT, - N:ly.C.D T,,z:A, L +P:C
I',z:A,T2 = NP : D[P/y]

Then by IH, I'1,[s W N : Eand I'1,I"; = N ¢ F with lIy:C.D =4, E and
F =5, C. By the Key Lemma we find that £ —4 [Iy:C".D’ with C' =4, C
and D' =g, D. So, by Corollary 4.4.31, I'},I'; - N : [Iy:C'.D'. We can
apply (convg,) toI'y,Ty = P: F and F =g, C' to conclude I';,I, - P : C"
and hence I';,I', - NP : D'[N/y], where D'[N/z] =5, D[N/z]. ®

5.2.10. LEMMA. If a PTSp, satisfies On-preservation of sorts, then it satisfies
strengthening, that 1s

I',z: AT, - M: B

I¢FV(F2,M,B) }:>F1,F2}—M:B.

PrOOF. By the Sublemma we find a B’ such that
I',To- M: B and B =4, B'.

By Correctness of Types there are two possibilities, 'y, 2:A4, T2 - B: sor B =
s € §. In the second case we are immediately done by SRy, because B' 5 s. In
the first case we have )

I',zzA,T3FB:s

and by once again applying the Sublemma we find that
[, Tk B: E=p,s.
Now we are done by the fact that E -4 s, SR and one application of (conv). &

5.2.11. COROLLARY (f7n-preservation of sorts implies SR,). A PTSg, that satis-
fies Bn-preservation of sorts, satisfies SR,
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PRrooF The proof 1s exactly the same as for Lemma 4 4 30, so one proves simul-
taneously the following

TP D&P—,P = TP D,
T+P D&T —,I" = I'FP D

The proof uses the fact that we have strengthening, which was stated in the
Lemma ®

5212 REMARK In fact we can do with less then f7n-preservation of sorts to
prove strengthening and hence SR, The specific property that we need in the
proof of strengthening 1s the following

'FA s
kB s,
A=s, B
(31,52,33) €ER

= 3s3[(s1, 85, 53) € R]

(This 18 used 1n the case of the (A) rule)

If the system satisfies An-preservation of sorts, the above property 1s obviously
satisfied But there are more Pure Type Systems that satisfy the above property,
for example the sema-full ones Remember that a PTS 1s semu-full 1f

(81,82,83) ER & 35 € S = 3s4[(s1, 85, 83) € R]

It 15 easy to verify that the above mentioned property holds Consequently, all
semu-full PTSg, satisfy strengthening and hence all semi-full PTSg, satisfy SR,

5213 THEOREM (CONg, for normalizing functional PTSg,)

T'+MA
TEMAY=M] M
M =g, M’ !

ProoF The Theorem follows immediately from Theorem 5 2 6 by the fact that
in any functional normahzing PTSg, the rule (streng) 1s satisfied, which again
follows immediately from Corollary 52 8 and Lemma 52 10 X

5.3. Discussion

We have proved CONg, for terms in a fixed context of a fixed type, but only for
functional normahzing PTSg, This immediately imphes CRg, on Term, because
we have SRg and SR, for these systems Confluence for well-typed terms of
different types doesn't hold Just consider the well-known counterexample The
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same can be said for well-typed terms in different contexts Take A #4, B and
I’ and I" such that

Fhz(hy Ay) »and"Fz(ly By) *

Then z(Ay Avy) =g, z(Ay By), but not z(dy Ay) iﬁn z(dy By)

We think that, using the work of [van Benthem Jutting 199+], who gives
an analysis of typing in PTSs, these results can be extended to arbitrary nor-
malizing type systems The most interesting extension, however, 1s the one to
non-normalizing type systems like Ax First because the proof given here relies
very heavily on the normalization Second, and maybe even more important,
because from CONg, on Term(I", A) 1n Ax (with (convga,)) we hope to get CONg,
on Term(I", A) for an arbitrary PTSg,, by imitating the reduction steps 1n Ax in
the other PTSg,, using the terminality of Ax 1n the category PTSg,

Let’s now prove a general statement along these lines, 1 e describe a PTSg, ¢
such that, 1f { | CONg,, then CONg, holds for any PTSs, Note Remark 52 12,
saying that SR, holds for any semi-full PTSg,

531 DEFINITION The PTSg, AN 1s the system A(S, A, R) with

S = N,
A = NxN,
R = NxNxN

So AN 1s full (and hence semi-full), which implies that AN satisfies SR, (See
Remark 52 12 ) We now have the following Proposition

532 PROPOSITION If AN satisfies CONg,, then all PTSg, satisfy CONg,

PRooF Suppose AN satisfies CONg, and let ¢ be an arbitrary PTSg, with I" k¢
M,N Aand M =5, N We have to show that M | N Now let ~bea
mapping from the sorts of { to N that 1s injective on the set of sorts of { that
occurin ', M or A AN s full, so the map — is a PTS-morphism, so

Iy M,N A
Now, M iB N and due to the local injectivity of =, the reduction paths from

M, resp N can be faithfully translated back to reduction paths from M, resp
N, andsoM%nN =

Because of the restriction to normalizing systems, we need to prove normal-
1zation of Bn-reduction without using the Church-Rosser property This may
look problematic but 1n practice it 1sn’t For example for the Calculus of Con-
structions, the strong normahzation proof in [Geuvers and Nederhof 1991] for the
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system with (convg) can quite easily be adapted to a proof of strong normaliza-
tion for the system with (convg,) We conjecture here the general theorem that,
if a PTS; 15 (strongly) normalizing, then the PTSg, 1s

That the proof of CRg, for non-normahzing systems need not be very com-
plicated 1s shown by the example of AU This 1s the system defined 1n Definition
4312 for which normalization does not hold If we extend the system by re
placing the conversion rule with the (convg,) rule, the separation of contexts
(Proposition 4 3 14) still holds Due to this property, the proof of CRg, is easy
It works as follows

1 Note that, f ' A Type', then 4 contains no redexes

2 Hence, f '+ M, N A( Type), then the domains in M and N contain no
redexes

3 Conclude that CONg, holds for such M and N

4 Note that, f '+ M A( Prop), then the domains of M are terms B with
' B Typeor '+ B Prop( Type)

5 Hence, for these domains CONg, already holds
6 Hence CONg, holds for M and N withT'F M, N A( Prop)

If we look at the Church-Rosser property from a point of view as to how
to compute the common reduct, we see that the situation 1s really a bit more
complicated then for untyped lambda calculus In untyped lambda calculus, 1f
M —g, My and M -5, M,, a common reduct of M; and M; can be found using
complete developments (See [Barendregt 1984] ) Here one has to do something
more, namely reduce the domains Consider again M = Az A (Ay By)z, My =
Az Az and My = Ay By There are no residuals of the S-redex in M3, nor are
there any residuals of the 7 redex 1n M), so we have a complete development of
the set of both redexes, but M; # M, (They would have been 1n the untyped
case ) We still have to unify A and B



126 CR for 3n Ch. 5



Chapter 6

The Calculus of Constructions
and its fine structure

6.1. Introduction

In pragraph 4 3 1 we encountered the Calculus of Constructions (CC) as an ex-
ample of a Pure Type System, where 1t was also called A\Pw In this chapter
we want to study this system in more detail This will be done 1n various ways
First we say something about the practical meaning of the system in terms of
logic and data types If we want to see the Calculus of Constructions as a logic
we have to study the formulas as-types embedding from higher order predicate
logic into CC We have already defined this embedding in Chapter 4 1 (paragraph
4 3 1) as an embedding from the system APREDw to CC As we have already
convinced ourselves of the fact that APREDw and PREDw are isomorphic sys-
tems via the formulas-as-types analogy we shall only be studying the embedding
from APREDw mto CC In paragraph 4 31 we also encountered the so called
cube of typed lambda calculi, which gives a fine structure for CC We shall also
study the other systems of this cube, especially in relation to the formulas-as-
types embedding The central question for each of these systems will be whether
the formulas as-types embedding 1s complete As we are mainly concerned with
the cube from a point of view of logic, 1t 1s also interesting to see to which extent
the systems of the cube are conservative over one another

Two of the more complicated issues regarding CC are not treated in this
Chapter, namely the strong normalization and the Church Rosser property for
(Bn-reduction on terms of CC Strong normalization will be dealt with in Chap-
ter 71 We discussed the Church-Rosser property in Chapter 51 From the
normahization 1t follows by the techniques developed in Chapter 51 that the
Church-Rosser property holds for gn-reduction in CC

127
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6.2. The cube of typed lambda calculi and the logic cube

We recall some definitions of previous chapters First remember that the Baren-
dregt’s cube of typed lambda calculi (Definition 4 3 1) consists of eight PTSgs
Each of them has

S = {x0},
A = {x 0)
The rules for each system are as given 1n the following table
A= (%,
A2 (%, %) (O,
AP (e, %) (x,0)
Aw (%, %) (0,0)
A (%) (O,*) (@,0)
AP2  (x,x) (O,%) (x,0)
AP (%) (»0) (O,0)
APw (%,%) (O,%) (%,0) (O,0)

The system APw 1s the Calculus of Constructions, sometimes called the Pure
Calculus of Constructions to distinguish 1t from 1ts variants and extensions We
shall refer to 1t as CC The systems of the cube are usually presented as follows

Aw APw (= CC)

A2 AP2

Aw APw

A— AP
where an arrow denotes inclusion of one system 1n another
Remember that we also defined the logic cube (Defimtion 4 3 5), following
[Berard: 1990] as follows It consists of eight PTSgs, each of them having

S = Prop,Set, Type?, Type’,
A = Prop TypePSet Type®
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and the rules of each of the systems as given by the following table

APROP
(Prop, Prop)

APROP2
(Prop, Prop) (Type®, Prop)

APROPw (Type®, TypeP),
(Prop, Prop)

APROPuw (Type?, TypeF)

(Prop, Prop) (Type?, Prop)

APRED (Set, Set) (Set, Type?)
(Prop, Prop) (Set, Prop)

APRED2 (Set, Set) (Set, Type)
(Prop, Prop) (Set,Prop) (Type?, Prop)

APREDw (Set, Set) (Set, Type®) (Type®,Set)  (Type?, Type®)
(Prop, Prop) (Set, Prap)

APREDw (Set, Set) (Set, Type”) (TypeP,Set) (TypeP, TypeP)
(Prop, Prop) (Set,Prop) (Typef, Prop)

The systems are presented in a picture as follows.
APROPw APREDw

APROP2 APRED2

APROPw APREDw

APROP APRED
where an arrow denotes inclusion of one system in another.



130 The Calculus of Constructions Ch 6

Because we have convinced ourselves of the fact that the formulas-as-types
embedding of a logic into the corresponding system of the logic cube 1s in fact an
1somorphism, we can restrict our study of the formulas as types embedding 1nto
the systems of the Barendregt’s cube to the study of the collapsing mapping H
Remember that H 1s defined as the family of PTS-morphisms from logic cube to
Barendregt’s cube given by

H(Prop) = =«
H(Set) = =,
H(Type?) = 0O,
H(Type*) = O

6.3. Some more meta-theory for CC

Before going 1nto studying the systems, we want to make some further definitions
This will also be necessary for the proof of strong normalization that will be
given 1n a later chapter In the rest of this chapter we always assume that we
are working 1n a system with sorted variables, so e g for the cube we have two
sets of vaniables Var” and Var* See Definition 4 2 9 for details about the sorted
vanables

631 DEFINITION For { a system of the cube we define the sets of kinds, types,
construclors and objects as follows

Kind(¢) = O-Term,
Type({) = x-Term,
Constr(() = O-Elt,
Oby(¢) = =-Elt

Usually ¢ will be clear from the context, in which case we omit 1t Note that
Type(¢) C Constr(()

Now we can apply Lemma 4 4 37 to conclude that

Kind N Type
Constr N Ob

0,
0

This will be very useful when defining mappings on terms of a system of the
cube A related property that 1s useful for defining mappings 1s given by Lemma
4 4 39, which allows to distinguish cases according to the ‘heart’ of a term (See
Definition 4 4 38 ) In the cube, the heart of a term A, h(A), 1s a variable, x or
O From Lemma 4 4 39 we denive the {ollowing
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632 LEMMA For A a well-typed term of the cube we have

AeKnd & h(A4)=x
A€ Type = h(A) € Var",
A€ Constr & h(A) € Var®,
A€Ob & h(A)e Var

In [Barendregt 1992], mappings on (subsets of the) well-typed terms of the
cube are often defined on a speafic subset of the pseudoterms T, and the case
distinction 1n the definition 1s then made according to the level of terms This
notion of ‘level’ 1s very close to our notion of ‘heart’, and in fact all the mappings
1n [Barendregt 1992] can be defined similarly by using case distinctions according
to the heart of subterms We try to refrain from defining mappings on the
pseudoterms, and instead define mappings only on the well-typed terms as much
as possible, because we feel that this 1s more intuitive For completeness we define
the notion of level though, and give the main property that one would want for
1t

633 DEFINITION For M a pseudoterm of the cube, the level of M, (M), 15
the natural number defined as follows

h(M)=z € Varr = {(M)=0,
h(M) =z € Var'" = {(M)=1,
h(M)=x = £(M)=2,
h(M)=0 = $(M)=3

The notion of level 1s closely related to the Automath notion of ‘degree’
(In Automath the numbering 1s reversed ) The main property for levels 1s the
following

634 LEMMA [n a system of the cube,
T'EM A= §(M)+1=H(A)
PROOF Immediate consequence of Lemma 632 X

One mmportant mapping from the well typed terms to the untyped lambda
terms we have already encountered The map |-] that erases all domains (1 e
types 1n a A-abstraction ) This 1s a very syntactical mapping, which leaves 1n
a lot of type information that 1s of no importance for the underlying algorithm
that the A-term represents We therefore define a mapping |-|* that erases all
type information
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635 DEFINITION The mapping |-|* from the objects of a system of the cube to
the untyped lambda calculus 1s defined as follows

lz| = =,

Az A M| Az |M], f A s a type,

[da A M| = [M],f Aisakind,
IMN| = |M]||N]|,if N s an object,
|IMN| = |M],if N isa constructor

6 36 DEFINITION The A-abstractions n a well-typed term of CC (but the defi-
nition immediately extends to pseudoterms of CC) are spht 1nto four classes, the
0-, 2-, P- and w-abstractions, as follows

1 Az A M 1s a 0-abstraction 1if M 1s an object, A a type,
2 da A M s a 2-abstraction 1f M 1s an object, A a kind,
3 Ax A M 1s a P abstraction f M 1s a constructor, A a type,
4 Aa A M 1s aw abstraction 'f M 1s a constructor, A a kind

We can decorate the As correspondingly, so we can speak of the Ags A, of a term
etc We now also define the notions of 3(n)%-reduction, 8(n)?-reduction, 3(n)*-
reduction and §(n)“-reduction by just restricting reduction to the redexes with
the appropriate subscript attached to the A We use an arrow with a superscript
above 1t to denote these restricted reductions, so —34, etcetera

We want to state two of the most important properties of CC

637 THEOREM CC s strongly normahzing (All 3 reduction sequences starting
from an M € Term(CC) are finute )

PRrROOF A detailed proof is given in Chapter 71 X

A first proof of normalization can be found 1n {Coquand 1985}, but the proof
contained a bug as was remarked by Jutting Coquand repaired his own proof
in [Coquand 1986] and together with Gallier he gave a (different) proof of strong
normalization 1n {Coquand and Gallier 1990] There are various other versions of
(strong) normahization proofls for CC 1n the hiterature All of them use a higher
order variant of the ‘candidat de réducibilité’ method as developped by Girard for
proving strong normalisation for his system F and Fw (See [Girard et al 1989]
for the proof for system F ) The 1dea 1s to define a kind of realisability model
in which propositions are interpreted as sets of lambda terms (the realisers) A
detailed explanation of the method can be found in [Gallier 1990] The proof of
strong normalization in Chapter 7 1 1s given by defining a reduction preserving
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mapping from CC to Fw. Then SN for CC follows from SN for Fw. This makes
things slightly easier because we don’t have to bother about type dependency.
(Fw is easier to handle than CC.) A complicating matter of Chapter 7.1 is that
the proof is given for CC with a (convg,) rule. (That 1s, the PTSg, CC.) The
Strong Normalization of this system was an open problem up to now.

Intuituively it is clear that the hard part (proof-theoretically speaking) of a
proof of SN for CC should be the normalization of Aq redexes. For one thing,
it can be observed that this is the case for Fw. In the proof of Chapter 7.1 this
becomes also clear The whole problem of SN for CC is reduced to the problem
of SN for erased terms in Fw (in which case we have only the O-redexes left.) In
[Coquand and Huet 1988}, a version of CC is discussed in which the conversion
rule 1s restricted to performing - and (“-reductions. There 1t is called the
restricted Calculus of Constructions.

6.3.8. DEFINITION. The restricted Calculus of Constructions is the system CC
with the (conv) rule restricted to Gp,-equality.

Let us show that for that restricted case, SN is relatively easy (like in the
simply typed lambda calculus.)

Recall the defimitions of 4“-redex and 3" -redex of Definition 6.3.6: A (-redex
is a A“-redex if it is of the form (Aa:A.B)P with A a kind and B a constructor.
A f-redex is a BF-redex if it is of the form (Az:A.B)t with A a type and B a
constructor. We write —>4 and —P>5 for the corresponding reductions. In the
following we show that 3“-reduction is normalizing.

6.3.9 PROPOSITION. The combination of f-reduction of P-redezes and w-redezes,
B -reduction, 1s normahzing mn CC.

PRrOOF. The proof is in flavour and complexity quite close to the normalization
proof for A—. We assign to every term M of CC a pair (d,n), where d is the
maximum of the depths of all 3F¥-redexes in M and n is the number of gF~-
redexes of maximal depth Then we proceed by contracting an innermost redex
of maximal depth. That this procedure yields the 57“-normal form is then shown
by induction on the lexicographical ordering on the pairs (d,n). Before giving
the definition of depth, let us remind us of the fact that there are the following
three ways in which new [-redexes can be created by a 3-reduction.

(Az:A ) Qy:B M)Q —p5 (Ay:B.M)Q, (1)
(A AC[zQ)(M\y:B.M) —j5 Cl(Ay:B.M)Q), (2)
(A A My:B.M)PQ —p5 (Ay:B[P/z).M[P/z])Q, (3)
where the last possibility can at the same time be an example of the second.

Further there is one way 1in which existing redexes can be duplicated by a §-
reduction:

(A\z:A.M)C|[(My:B.P)Q] — s M[C[(My:B.P)Q]/x],
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with z having more then one free occurrence in M Now we define the depth of
a AP- or B“-redex by

depth((Au A M)Q) = rank(type of Au A M),

where the rank of a kind (the type of Apz A M or A,a A M 1s always a kind) 1s
defined by

rank(x) = 1,
rank(Ilz A B) 1 + rank(B), if A s a type,
rank(Ila A B) rank(A) + rank(B), if A 1s a kind

All this 1s well-defined by the Uniqueness of Types property for CC (Lemma
4 4 29) and the fact that if two kinds are 8 equal, their ranks are the same

The normalization procedure 1s now by contracting each time an innermost 37+-
redex of maximal depth If we define for any term M 1ts complexity c(M) as
the pair (d,n) with d the maximal depth of all 37“-redexes and » the number
of AP redexes of depth d 1n M, the normalization procedure as given above
reduces the complexity of terms (in the lexicographical ordering ) We show this
by distinguishing the three different possibilities for creating new redexes that
are mentioned above (The duplication of redexes can only happen with redexes
of rank smaller then r, so duplication 1s no problem )

o Note that, in the first case the contracted redex can not be a #P-redex
Further, 1f 1n the second case the contracted redex 1s a F7-redex, the created
redex 1s not a AF“-redex

o If, in the first two cases, the contracted redex i1s a §“-redex of depth d (with
as type of the A-part Ila A B so d = rank([la A B)), the depth of the new
redex 1s rank(A), so the number of redexes of depth d 1s reduced by one

e If, 1n the third case, the contracted redex is of depth d (with as type of
the A-part Ilu A B so d = rank(Ila A B)), the depth of the new redex 1s
rank(B), so the number of redexes of depth d 1s reduced by one (This uses
the fact that the rank of a kind 1s stable under substitution ) ®

The restricted Calculus of Constructions 1s of limited interest, because 1t 1s
not possible to first 3% normalize and then perform only 3°? steps to obtain the
B-normal form This 1s because e g a 32 reduction can create a 3°-redex (and a
Bo-reduction can again create 0, redexes) An example 1s

(M2Q a— % Qy)(Apz at) —25 (ApzaT)y

The importance of the (strong) normalisation property lies in the fact that 1t
gives a handle on the number of proofs of a proposition (One can for example
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show that every closed term of type Nat is S-equal to a numeral (i.e. a term
of the form S(...S(Z)...).) Further, by using normalization one can prove the
decidability of typing.

6.3.10 THEOREM. In CC, gwen a contert I' and a pseudoterm M, 1 1s decidable
whether there ezists a term A with U+ M : A. If such a term A exists, 1t can be
computed effectively.

The proof is prooftheoretically hard beacuse it depends on normalization.
Note therefore that type checking in the restricted calculus is much easier, due
to the ‘easy’ normalization proof.

Some hints towards a proof can be found in [Coquand and Huet 1988] and
more details in [Coquand 1985] and especially in [Martin-L6f 1971]. See also
[Harper and Pollack 1991] for an exposition on the decidability of typing for an
extended version of CC, which also describes an algorithm for computing a type.

6.4. Intuitions behind the Calculus of Constructions

Let’s first make some remarks about the impredicative coding of data types in
(higher order) polymorphic lambda calculus. We feel this is necessary for a
good understanding of CC. For this purpose it doesn’t matter if we consider
the versions that we called F and Fw or the PTSg-versions that we called A2 and
Aw. Details of the encoding can be found in [Béhm and Berarducci 1985] and
[Girard et al. 1989]. We just treat three examples

6.4.1. ExaAMPLES. 1. The natural numbers in A2 and Aw are defined by the
type
Nat := [la : Prop.a—(a—a)—a

and we find zero and succesor by taking Z ‘= Aa:Prop.Az:a.Afia—az
and S := An:Nat.AaProp.Az:a. A fia—a.f(nazf). Now it is easy to define
functions by iteration on Nat, by taking for c:o, g:0—0, ltcg:Nat—o as
Itcg := Az:Nat.zocg. It 1s also possible to define functions by primitive
recursion, but this 1s a bit more 1nvolved and also inefficient.

2. For o a type, the type of list over ¢ is defined by the type
List(o) := [la:Prop.a—(c—a—a)—a)
and we find the constructors Nil := Aa:Prop.Az:a.A f:0—sa—a.z and Cons :=

At:ol:List(o). Aa:Prop.Az:a. A f:0—~a—a. fi(lazf). Again function (like ‘head’
and ‘tail’) can be defined by iteration and primitive recursion over lists,
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3 Also coinductive dat types can be defined in A2 and Aw, which can be
understood as greatest fixed points in a domain (the inductive data types
correspond to smallest fixed points ) As an example we treat the type of
streams (infinite lists) of natural numbers

Str(Nat) = Jda (a—Nat)&(a—a)&a
For convenience we write
(fig,z) (a—Nat)&(a—a)ka

if f a—Nat, g a—a and z «, with projections 7, 73 and 713 Then we have
destructors
Head Str(Nat)—Nat and Tail Str(Nat)—Str(Nat) defined by

Head = As Str(Nat) sNat(Aaz (m2)(r32),
Tal = As Str(Nat) sStr(Nat)(Aaz AGk ka(m2)(me2)(mez(ms2))

It 1s possible to define function to Str(Nat) by corteration and corecursion

The impredicative data types of A2 and Aw have a lot of structure already
(Girard has shown that 1n Aw one can define on the type Nat all recursive func-
tions that are provably total in higher order anthmetic ) It seems a good 1dea to
use them for the domains of the logic So now we view Aw not as higher order
proposition logic, but as a term calculus in which one can construct functions (as
A terms ) Then, because we want to do predicate logic, we have to add to \w
the possibility of defining predicates on these new domains by adding the rule
(x,0) to R The kind A—x then represents the type of predicates on A and
we can declare variables of type A—x* 1n the context This 1s the Calculus of
Constructions, CC, the Pure Type System with

S = %0,
A = * Dv
R = (x%),(*0),(0,0),(0x%)

Using our understanding of higher order predicate logic, the sort * 1s the
universe of both propositions and domains in which a whole range of (closed)
data types 1s present There 1s however another way to see things This 1s to
understand = just as the universe of propositions (refraining from understanding
the propositions as domains), in which case a type ike p—* (¢ *) can be
understood as the type of predicates on proofs of ¢ For practical purposes
this latter approach doesn't seem to be so fruitful For example one can not
distinguish between proofs that are cut-free and proofs that are not This 1s
because lambda terms that are 3-equal (proofs that are equal via cut-elimination)
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are 1dentified If Pt 1s provable and t =4 t/, then also Pt’ 1s provable If one s
looking for these kind of applications, 1t 1s much more promising to use the
‘coding’ of a logic 1n a relatively weak framework like Automath or LF There 1s
however also the possibility to restrict the conversion rule of CC, such that only
some convertible propositions are identified (A system like this 1s described in
[Coquand and Huet 1988] )

It should be clear that in any of the two approaches the distinction between
domains, objects and proofs 1s blurred propositions may contain proofs and
there 15 no a prion distinction between domains and propositions On the other
hand 1t does take the formulas-as-types approach very seriously 1n the sense that
formulas are not only treated in the same way as the types (domains) but just as
if they were types, putting them in the same universe Because of this mixing of
formulas and domains, the Curry-Howard embedding from higher order predicate
logic into CC 1s not complete The embedding from higher order propositional
logic into CC (1 e 1if one refrains from understanding the propositions as domains)
15 complete

We want to treat some examples to get the flavour of the system In these
examples, the impredicative coding of data types will be used as described 1in
641 First we want to discuss induction over the terms of type Nat and see to
which extent Nat represents the free algebra of natural numbers Then we treat
two formulas that represent specifications of programs This touches upon one of
the most interesting aspects of CC To use 1t as a higher order constructive logic
in which one can represent specifications as formulas (about data types ) From a
proof of the formula the constructive content can then be extracted as a program
(more precisely a lambda term typable in Aw ) A lot of work on this subject has
been done in [Paulin 1989], we shall say a little bit more about this in paragraph
67

642 EXAMPLE We know from the normalization property that in CC each
closed term of type Nat 1s F-equal to a term of the form

Aa * Az adfa—-a f( (fz) )

That 1s, modulo 3 equality the closed terms of type Nat are precisely the ones
formed by S out of Z This induction property can be expressed in CC, but 1s
not provable inside it To be precise, if we define

Indy,; =VP Nat—» PZ—(Yz Nat Pr—P(Sz))—(Vz Nat Pr),

then Indp,4 15 not provable If we assume Indpy,¢, we still can’t prove that the
type Nat 1s the free structure generated by Z and S To establish this we have to
add the premises Z #N,4 SZ and Vz,y Nat (St = Sy)—(z = y) None of these
two propositions is provable in CC In higher order predicate logic (working 1n the
natural numbers-signature (N, Z, S)) these three assumptions are independent,
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so we would have to add all three of them to obtain the [ree algebra of natural
numbers In CC this s not so Due to the specific structure of the type Nat, the
assumptions Indn,s and Z #xN,¢ SZ suffice to prove the freeness of Nat (This
18 so because one can define P Nat—Nat with Indn,¢ F Vz Nat P(Sz) =n,¢ T
in CC)

643 EXAMPLES 1 Abbreviate List(Nat) to List The proposition stating
that for every fimte list of numbers there 1s a number that majorizes all 1ts
elements can be expressed by

ViList In NatVm Natm €l - m < n,
where mm € [ stands for
VP List—* (Vk List P(Consmk)) — Yk List¥r Nat (Pk— P(Consrk)) — Pl
and m < n stands for
VR Nat—Nat— * (Vz Nat Rzz)—(Vz,y Nat Rzy— Rz(Sy))— Rmn

A proof of this proposition constructs for every hist { a number 7 and a
proof of the fact that n majorizes [ From 1t one can extract a program of
type List—Nat that satisfies this specification

2 Abbreviate Str(Nat) to Str The proposition that every (infinite) stream
that 1s majorizable has a maximal element can be expressed by

Vs Str (3n Nat Vm Nat m € s » m < n)—(3n Nat ‘n 18 maximum of s’),
where m € s now stands for
Ip Nat Head(pStrTals) = m,
and ‘n 1s maximum of s’ stands for
(n € s)&(Vm Natm € s = m < n)

From a proof of this formula one would like to be able to extract a term
of type Str—Nat that computes the maximum of a stream, if it exists
This means that we want to extract a partial function (the maximum may
not exist), which 1s not possible, because in CC all functions are total
(Due to the normalization ) In practice this 1s no problem, because the
extracted function will produce an ‘arbitrary’ number 1n case there 1s no
maximum This corresponds to the fact that in the proof of the formula, 1f
s has no maximum we can take any number n to satisfy the conclusion ‘n
1s maximum of ' It will be clear that the construction n the proof (and
hence the algorithm) depends heavily on the proof of the premise that s 1s
majorizable



Sec 65 Formulas-as-types of logics mnto the cube 139

6.5. Formulas-as-types of logics into the cube

The Curry-Howard embedding from logics into the typed lambd calculi of the
cube makes an essential distinction between on the one hand basic and functional
domains (including the definable data types) and on the other hand predicate
domains ke A—Prop The basic domains are interpreted as variables of type x,
the functional domains as implicational formulas and the definable data types via
the embedding of data types in system F' The predicate domains are interpreted
as kinds, eg A—x O Using the logic cube we have described the formulas-as-
types embedding as a PTS-morphism In fact this was the reason for introducing
the logic cube 1n the first place In this section we study the completeness of the
formulas-as-types embedding into the different systems of the cube by studying
the PTS-morphism H from the logic cube into the cube Although the main
concern of this Chapter is the Calculus of Constructions, we also look at the
embedding 1nto the other systems

In fact there are other ways of interpreting PREDw 1in CC, but the one we
describe here 1s what the inventor(s) of CC aim at (see [Coquand 1985] and
[Coquand and Huet 1988]), and which 1s sometimes called the ‘canonical embed-
ding’ of lugher order predicate logic into CC The same holds for the system AP2
From [Longo and Mogg: 1988] 1t becomes clear that the intention of the system 1s
the formulas-as-types embedding of PRED2 1nto 1t 1n the way we have described
1t by the mapping A In our setting the canonicity 1s partly forced upon by the
syntax and therefore 1t 1s worthwile to also understand the embedding from a
more semantical point of view

It 1s well-known by now that the embedding into CC 1s not complete, 1 e
there are sentences that are not provable in PREDw that become provable when
mapped into CC We shall treat some examples of those sentences This incom-
pleteness result 1s sometimes referred to as the ‘non-conservativity of CC over
higher order predicate logic’, but this terminology 1s a bit ambiguous because
(non )conservativity actually only applies if a system 1s a subsystem of the other
Therefore we shall use the more correct terminology of ‘(in)completeness of the
embedding’ here For the embedding into AP2 the question 1s still open, although
there are reasons to believe that the embedding 1s not complete This was ex-
plained to us by [Berard: 1990a] and we shall discuss these reasons briefly later
The embedding of PRED 1nto AP 15 complete, as was shown independently by
[Berard: 1988) and [Barendsen and Geuvers 1989] We shall give the proof of the
latter, which uses a method developped by [Swaen 1989] to show completeness
of the formulas-as-types embedding of full first order pedicate logic into Martin-
Lof’s intuitionistic theory of types Although the completeness of the embedding
mto AP 1s quite non-trivial, the result 1s not very interesting from a practical
point of view The logic PRED 1s too mimimal to be of practical mathematical
interest There 1s no notion of negation 1n 1t
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6.5.1. The formulas-as-types embedding into CC

Let’s first remark that there are terms of type «, typable in CC in a context
that comes from APREDw, that do not have an intuitive meaning in higher order
predicate logic, like o Prop, P a—Prop,z o - Pz—a Prop (Is Pr—a a domain
or a proposition in APREDw?)

As has been pointed out already,one can refrain from predicate logic and
view CC as a higher order propositional logic with propositions about (proofs of)
propositions The typed lambda calculus corresponding to higher order proposi-
tional logic 1s APROPw, which 1s exactly the same systems as Aw So to under-
stand the embedding from PROPw 1nto CC we just have to look at the inclusion
of v 1n CC Then all kind of rather exotic types can be understood as meta
propositions about higher order propositional logic For example

ax, Pa—xzabk Pr—a x

states that for a a proposition and z a proof of a, if P holds for z, then « holds
We can go to arbitrary high levels of meta-reasoning, lor example

ax*x Pa—*za @ Pr—x,y Pt Pr—Qy *

but also
Plla x a—*, ¢ x,z ¢,y Ppzt P(Ppz)y *

It 15 well-known that the inclusion of Aw into CC 1s complete, 1 ¢ CC 1s conserva-
tive over Aw This was proved independently by [Paulin 1989] and [Berard1 1989],
we give the proof 1n paragraph 6 53 It is quite ssmilar to the proof of conserva
tivity of PREDn over PROPn that we gave in Chapter 2 1

As already pointed out, the formulas-as-types embedding from higher order
predicate logic in CC 1s not complete We now want to discuss some examples of
sentences that are not provable 1n the logic but become inhabited when mapped
into CC At the same time one obtains a better understanding of the logical
merits of CC First we show that if one allows empty domains 1n the logic, the
incompleteness is quite easy

651 REMARK In CC, the existential quantifier has a first projection, similar
to Martin-Lof’s understanding of the existential quantifier as a strong X-type
(See e g [Martin-Lof 1984] ) Remember that

Jz Ap =1a » ([Iz A p—a)—a
in APREDw Now, in CC there 1s a projection function
p (IzAp)—4A

for A, = Take
p=X2(3zAyp)zA(Az Adypz)
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So, if 3z A p 1s provable one immediately obtains a closed term of type A by
applying p In general there 1s no second projection, so the 3 1s not a strong X
(If, for example, 3z A p 1s assumed 1n the context, say by z 3z A p, then ¢[pz/z]
1s not provable ) Obwviously, in APREDw the existential quantifier has no first
projection The expression (3 A p)— A can not even be formed if A Set, ¢ Prop

652 LEMMA In APREDw, for z ¢ FV(p),
A Set, P A—Prop,p Prop i/ (3z A Pz) D (V2 A ) D v,
but 1n CC there 1s a term M with
Ax, P Ao o« M (3z A Pz)—(A—p)—p

PROOF Because the \PREDw-context doesn’t contain a declaration of a variable
to A, we can’t construct a term of type A, so we have no proof In CC, take
M = Az (3z A Pz) Ay (A—y) y(pz), with p as in Remark 651 K

Even without using empty domains the embedding 1s not complete, as was
first independently shown by [Berardi 1989] and [Geuvers 1989] We treat both
counterexamples, starting with the latter as 1t 1s very short (but syntactic ) Both
proofs give a counterexample already for the completeness of the embedding of
third order predicate logic 1n so called third order dependent typed lambda cal-
culus (In this terminology, CC 1s higher order dependent typed lambda calculus
and the system AP2 1s second order dependent typed lambda calculus ) The coun
terexample with empty domains above already works for second order dependent
typed lambda calculus, 1t 1s not known whether one can find a counterexample
without allowing empty domains

6 53 PROPOSITION The formulas-as-types embedding of higher order predicate
logic into CC 1s not complete

PROOF ([Geuvers 1989)) We use the fact that if z ¢ FV(p), then Vz A ¢ and
A D p can not be distinguished in CC (In APREDw they are distinguished by
A Set or A Prop ) Take

' = ASet,a A, ¢ Prop, P Prop—Prop, z P(Ilz A ),

and we try to find a proof ¢t of 33 Prop P(8—¢) As no extensionality has been
assumed 1n the context, such ¢ can't be found (Supposing there 1s such ¢, one
easily shows that 1t can’t be in normal form ) However, in CC one can take the
type A for 8 because sets and propositions are not distinguished More precisely,
ml'=Axa A p* P x—kz2 P(Ilz A ¢),

['F My« AR (11§ x P(y—p)—B) hAz 36 x P(B—¢) ®
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PROOF ([Berard1 1989]) Define
EXT = Ila, 3 Prop (a—f3) — (a = 3),

where e~ denotes (a—0)&(—a) and = denotes the Leibniz equality on Prop,
@ =prop 3 = VP Prop—Prop Pa— P This ‘EXT" 1s the extensionality axiom
for propositions Let’s denote the CC-version of EXT by EXT’, so

EXT =TIla,8 x (a=f) = (a = f)

In CC this axiom has some unexpected consequences If we take A Set nonempty,
then in CC
aAFM A~ (A-A)

for some M so from EXT' 1t follows that all generic properties that hold for A,
hold for A—A and vice versa This can be used to construct in CC a proof p
with

Axa A zEXT' Fp Aisa Amodel,

where

Aiisaldmodel = 3JA (A—-A)—AJApp A—A—A
App oA = IdA_.A&
Ao App=1d,

This implies (among other things) that every term of type A—A has a fixed
point  Of course, 1n higher order predicate logic, from EXT 1t doesn’t follow that
every function on a non-empty domain has a fixed point

If we look for example at a context for Heyting anthmetic,

Tya = N#*0N.SNoN,
2z N (St =x Sy)—(z =~ y),
22 50 #5 0,

23 [IP N— x P0—(Ily N Py—P(Sy))—(Ily N Py),
then there 1s a term ¢ 1n CC with

Tya,zEXT'Ft LR

6.5.2. The formulas-as-types embedding into subsystems of CC

The formulas-as-types embedding into the systems 1n the left plane of the cube1s
certainly complete We have shown 1n chapter 3 1 that the embedding 1s even an
isomorphism This leaves us with the other three systems of the nght plane We
do not treat the case of the embedding of \APREDw 1nto APw, because we believe
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that a conservativity proof can be given by simply adapting the proof for A\PRED
and AP. More importantly this case is not of real interest, because the systems
themselves are not of practical interest: They have just come up as a derivative
of the definition of the cube as a fine structure for CC. (\APREDw corresponds
to PRED", as it was defined in Definition 2.2.11. The systems PREDn" were
introduced there for reasons of the semantics that we wanted to treat.)

This leaves us with two cases, AP2 and AP. The first case is open and for
the second case the formulas-as-types embedding is complete. Let us first say
something about the embedding of second order predicate logic into AP2.

First remark that the proofs of incompleteness of the embedding for CC
(Proposition 6.5.3) also work for APn for any n > 2. So the formulas-as-types
embedding from nth order predicate logic into nth order dependent typed lambda
calculus is incomplete for n > 2. Further, if we allow empty domains in the logic,
the incompleteness is easily shown: Lemma 6.5.2 also holds for \PRED2 and AP2.
Although we have no proof, there are reasons to believe that the embedding H
from APRED2 into AP2 is also incomplete if we do not allow empty domains in
the logic. These reasons were provided by [Berardi 1990a] who suggests a proof
of incompleteness. To understand the i1dea, we think it is best to look at an
extension of APRED2 with polymorphic sets.

6.5.4. DEFINITION. The system of second order predicate logic on polymorphic
domains, APRED2P is defined by extending the system APRED2 with the rule
(Type®, Set) (i.e. extending APRED2 with polymorphic domains.) So APRED2?
is the following PTSg.

S = Prop,Set, TypeP, Type®,
A = Prop: TypeP, Set : Type®,
R = (Set,Set), (Type®, Set), (Set, Type?},
= (Prop, Prop), (Set, Prop), (Type?, Prop).

So now for example
Nat ‘= I[la:Set a—(a—a)—a

is a basic domain. Similarly all the definable data types of the polymorphic
lambda calculus are definable as sets 1n the system APRED2”.

The system APREDZ2P 15 still a logic 1n the sense that there is a separation
between domains, terms (among which are the propositions) and proofs. We can
prove a proposition similar to Proposition 4.3.6 for APRED2P, which states this
fact that the system is built up in stages.

6.5.5. PROPOSITION. In APRED?2? we have the follounng. IfT b M : A then
FD,FT,FP F M. A uth
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o I'p,I'r,['p 15 a permutation of T,
e I'p only conlains declarations of the form x : Set,
e ['r only contains declarations of the form z : A with Up + A : Set/Type?,
o I'p only contains declarations of the formz @ with T'p, It F ¢ : Prop,
o 1f A =Set/Type? , thenTp - M : A,

o 1f T+ A: Set/Type?, then I'p, It F M : A

The system APRED2 is a subsystem of APRED2? and the PTS-morphism H
is still an embedding from APRED2? into AP2. (Hence APRED2” is consistent
due to the consistency of AP2.) We have introduced APRED2? as a system in
between APRED2 and AP2, because our argument already holds for APRED2? |
which is more readily understood as AP2.

A straightforward semantics for APRED2? is given by an arbitrary model for
the polymorphic lambda calculus (to interpret the Set-part) with a second order
predicate logic on top of 1t (giving the Prop-part for example the Tarskian se-
mantics). An arbitrary model for the polymorphic lambda calculus has a lot of
specific structure and this may raise the question whether APRED2? is conser-
vative over APRED2. We don’t have a definite answer to this, but we do have
reasons to believe that the extension is not conservative. The idea comes from
[Berard: 1990a).

Look at the context

[:= A:Set,a,a’ A, z.a #4 a,

which describes a similarity type in the logic. In APRED2 this similanty type
has a finite model (without going into details about models, it will be clear that
if we take for A the two element set, for A— A the set-theoretic function space,
for A—Prop the set of subsets of A and so forth, this yields a model.) If we now
look at a model for the similarity type I' in APRED2?, we see that there are a
lot of new domains (types of type Set) which will have an interpretation in the
model as well. For example the domain Nat := Ila:Set.a—(a—a)—a. In case of
an empty similarity type, Nat could consistently be interpreted by a one element
set (because Z # SZ is not provable in APRED2? in the empty context). In
the similarity type I" however, the interpretation of Nat has to be an infinite set,
which makes it impossible for I" to have a finite model in APRED2P. The point is
that from a # a’ one can prove Z # SZ and hence S*(Z) # S™*!(Z) (for all n),
viz. Suppose Z = SZ, then ZAa(Az:A.a') =4 SZAa()z1:A.d') s0 a =4 a', quod
non.
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656 Fact (Berardi) The simlanty type (context)
[ =ASet,a,a' A,za#40
has a finite model i1n APRED2 but no finite model in APRED2?

We want to stress here that we don’t know how to use this fact (syntactically
or semantically) to show the non conservativity, 1t may still be possible that,
although T" has essentially only infinite models in APRED2P, 1t still doesn’t prove
more APRED2-propositions then those alraedy provable in APRED2 from I' It
1s easily seen though, that if APRED2? 1s not conservative over APRED?2, then
also the formulas-as-types embedding from second order predicate logic into AP2
15 incomplete

Now we want to show the completeness of the formulas-as-types embedding
from first order predicte logic (PRED) into AP We do this by showing complete-
ness of the PTS-morphism H from APRED to AP As remarked in Chapter 2 1,
the system PRED 1s on the one hand minimal (we only have D and V), but on the
other hand 1t has some extra features hike higher order functions and A-definable
predicates that do not belong to the realm of ‘standard’ first order predicate logic
that we have called PRED™/" in Defimtion 239 We are actually interested 1n
the completeness of the embedding of PRED~/" into AP That 1t 1s sufficient to
study the mapping H 1s shown by Proposition 2 3 8 and Corollary 2 3 11 that
establish the conservativity of PRED over PRED~/"

As has been pointed out already, the system PRED 1s too mimimal to be of
real interest for practical mathematics, also because a system like AP 1s usually
seen as a logical framework (like LF or AUT 68 that we discussed 1n Chapter 3 1)
However, the completeness result can be extended a Little bit to systems with a
bottom type We are then considering the formulas-as-types embedding from
PRED* to AP+, where PRED* 1s the system defined 1n 2 2 14 and AP* 15 AP
extended with a constant type L * and a constant term £, with an extra rule

'-M 1LTEHA «
r-r&MA A

The system PRED™" 1s more interesting because the full classical first order pred-
1cate logic 1s a subsystem of it More precisely, there 1s a faithful embedding of
classical first order predicate logic into PRED™ by a double negation translation
The embedding of classical first order predicate logic in to AP* wia the system
PRED" 1s now complete, due to the completeness of the embedding of PRED*
into APt

We now give the technical detauls of the proof of completeness of H APRED —
AP In [Barendsen and Geuvers 1989] this proof appears 1n a shghtly different
form The proof uses techniques developped 1n [Swaen 1989] to show complete-
ness of the formulas-as-types embedding from first order predicate logic into
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Martin-Lof’s intuitionistic theory of types A different proof of the same result
can be found 1n [Berard: 1990]

Following Proposition 6 5 5 (which also holds for A\PRED), we can write any
context I' of APRED 1in the format

Ip,I'r,TpF-M A

where

e I'p,['r,T'p 1s a permutation of T,

e I'p only contains declarations of the form z Set,

e ['r only contains declarations of the formz A with [pF A Set/Type?,

e I'p only contains declarations of the form z ¢ with I'p,I'r ¢ Prop
Then, f ' M A, we have

o if A=Set/Type” ,then [p+ M A4,

e if '+ A Set/Type”, then I'p, 't M A

We shall refer to I'p a set-conlezt, to 't as an object-context, to I'p as a proof-
contert and to the concatenation I'p, 't as a languaege context

The question of completeness 1s whether for any APRED-context I'p, I'r, T'p
and proposition ¢ with I'p,I'r ¢ Prop, if

H(p,I'r,Tp)E M H(p)n AP,
then there exists a term N with
I'p, 7, Tp+ N ¢in APRED
In the following we assume for any APRED context I" that
1 T=Tp,Ir,Te
2 T'p1s not empty,
3 all declared sets in ['p are nonempty

4 T'7 begins with a declaration 3 Prop and I'p begins with z 3

The third and fourth clause are added for convenience, we shall refer to the 3 Prop
with z 3 as True In case there are empty domains 1n the logic, the completeness
result would still hold with a shightly adapted argument If the second were not
satisfied we would 1n fact be working 1n propositional logic The clause has as a
consequence that we can always refer to ‘the first declaration of a set variable in
I For this set variable we choose a fixed name 0, so we may 1n the following
always assume that 0 Set 1s the first declaration of the APRED-context I'
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6.5.7. DEFINITION. For I'p,I'r a language-context and A a context of AP, we
say that A s an elementary eztension of H(I'p,I'r), notation H(I'p,I'r) € A
if A D H(I'p,I'r) and the extra declarations in A are all of the form z:¢ with
H(Tp,I't)F o :xin AP.

For example, H(I'p,'7,Tp) is always an elementary extension of H(I'p, ['r).
We now define a mapping | — |P from AP to the objevt language of APRED

6.5.8. DEFINITION. The mapping | — |P from terms of AP to terms of APRED is
defined as follows.

(1) | % [P .= Set,
(22) B = Type’,
(1) |z|P := 0, if £ is a vanable of type - —x,
(tv) |z|P := =z, for  another variable,
(v) |HOz:A.B|P = |B|Pif A, B:0O,
= [lz:|A|P.| B|P else,
() |Az:A.MP = |MJPif Aix, M:B:0, (for some B),
= Az:|A[]P.|B|? else,
(vi) |PM|P = |P]Pif M:A:x, P:B:0, (for some A, B),

= |P]P|M|P else
The definition extends immediately to contexts of AP, where a declaration of the
form z : - -+ — is removed.

That the mapping | — |P is indeed from AP to APRED is justified by the
following Proposition.

6.5.9. PROPOSITION.
AFM.A (mAP)= |APFE|M]P- AP
Proor. By induction on the derivation of AF M : A1n AP. K

6.5.10. FAcT. If T'p,T'7 F M : A(: Set), then |H(A)|P = A and |H(M)|P = M.
(Note that H is the identity on these kind of terms.)

6.5 11. COROLLARY. For A3 H(I'p,I'r), say A= H{I'p,I'r), A’ we have
A+ M:AG*) = Tp, T, AP |MP: |AP.
PROOF. Immediate by the fact that |H(I'p)|? = I'p and for a declaration z . A

in I'r, if A:Set, then |z:A|P = 1:A4 and if A:Type®, then |z|P = 0 (and in that case
this declaration doesn’t play a role anymore). X
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All this means that | — |? 15 a mapping back from terms of AP to the object-
language of APRED that does not change the terms that originated from the
object-language

Now we define a mapping back from AP to the proof-language of APRED,
so now types in AP will become propositions and objects will become proofs of
APRED

6512 DErFINITION Let A ® H(I'p,['7) The map Tr on constructors of AP 1n
A 18 defined as follows

(2) Tr(a) = True, if a Set € I'p,
(12) Tr(a) = a,ifa —Propelr,
() Trz AM) = Az |APTr(M),
(2v) Tr(Q1) = Te(@)IHlP,

(v) Tr(Ilz AB) = Iz |AJP Tr(4)—>Tr(B)

6513 ProposSITION for A3 H(Ip,I'r), say A = H(I'p,I't), A’ we have

AFC Tlz; A Nz, A, *» 1n AP
= Ip, 1, |APHT(C) |AP—  —|An|P—Prop in APRED

PRrooF By induction on the derivation Note that if A x 1n AP, then |A{? con
tains no object variables Furthermore, if A - M A( «), then I'p,I'r, |A'|P
[M|P |AJP by Corollary 6511 X

6 514 CoROLLARY For A3 H(I'p,T'7), say A = H(T'p, 1), A’ we have
AFA xwmm AP=Tp,7,|A'|PFTr(A) Prop in APRED
6515 LEMMA IfTpF A Set in \PRED, then
IM[Tp,T'+,TpF M True o Tr(A)] m APRED

(To be precise we would have to write Tr(H(A)) wn stead of Tr(A), but H 15 the
wdentity on terms of type Set )

PROOF Immediate from the defimtion of Tr ®

6516 LEMMA For A  H(I'p,I'7), say A= H{I'p,I'7), A, with A+ A/ B «
and A+t B we have
Tr(A)([t"/z] = Tr(A[t/z])

and if A =g A',then

AM[Tp,Tr, |A'P + M Tr(A) & Tr(4")] 1n APRED
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PROOF. The first is easily proved by induction on the structure of A. The second
follows from the fact that Tr(A4) =5 Tr(A’), which is justified by the first and the
Church-Rosser property. X

6.5.17. PROPOSITION. For each language-contezrt Up,I'r and ¢ withTp,I'r F ¢ :
Prop we have
IMCp, e M : 9« Te(H(p)).

(Note that H 1s the wdentity on expressioons of type Prop, so we can skip 1t.)

PROOF. By induction on the structure of ¢. By Lemma 6.5.16 we may assume
that ¢ is in normal form.

(base) If ¢ = at; - t, with a a variable, then Tr(¢) = ¢ by the fact that
[t.|P = t,. (Fact 6.5.10.)

(D) Say ¢ = ¢—x with ¢, x:Prop. Then Tr(p—vy) = Vz:|p|P.Tr(p) = Tr(¢).
Now we are done by IH The variable z will not occur free in p—1% and
one easily constructs the required derivation trees.

(V)  Sayp = Ilz:A.¢ with A: Set. Then Tr(TIz:A.¥) = Nz:|A|P.Tr(A) - Tr(¥).
Now by Fact 6.5.10 and Lemma 6.5.15, IIz:|A|P. Tr(A)— Tr(%) is equivalent
to [1z:A.Tr(), so we are done by IH. ®

6.5.18. DEFINITION. For A 3 H(I'p,T'r), say A = H(['p, 1), A', we define the
context TR(A) as
TR(A) :=Tp,I'r, |APP, Tr(A),

where Tr(A) is defined by replacing every declaration z:A4 in A’ by 2’ : Tr(A).
(We have to make sure that the declared variables in Tr(A) are different from the
ones in |AlP.)

6.5.19. PROPOSITION. Let A 3 T'p,I'r, then
AF M: A(:*)m AP= IN[TR(A)F N . Tr(A)] wn APRED.
ProoF. By induction on the derivation of A+ M : A in AP.

(var) M = r then either z:4 in I'r or in A’. In the first case Tr(A) — True
and in the second case z:Tr(A) € TR(A).

(app) Say
AFM:MIz:ABAFt: A
A+ Mt : Blt/z]

By IH, TR(A) + N : Tr(TIlz:A.B) = Iz:|A|P.Tr(A)—>Tr(B) and TR(A) +
Q : Tr(A). We also have TR(A) | [¢|? : | AP, by Corollary 6.5.11. So we
may conclude TR(A) F N|tPQ : Tr(B)[|tIP/z] = Tr(BJ[t/z]).
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A zBFM CAvrINzBC =
ArlzBM NIz BC

By IH, TR(A,z B)+ N Tr(C) TR(A,z B) = TR(A),z |B|?,z' Tr(B),
so we have

TR(A) F Az |BIP A’ Te(BY N Mz | Bl Tr(B)—-Tr(C) = Te(Ilz B C)

(conv) We are immediately done by Lemma 6 516 ®

6520 COROLLARY The embedding H from APRED into AP s complete, 1€ of
Ip, [t s a language-context with I'p, It - ¢ Prop and I'p e proof-context, then

H(Tp,Tr,Tp) - M H(p) m AP= IN[[p,T1,TpF N ¢ mn APRED

Proor H(T'p,I't,Tp)1s an elementary extension of I'p, I'r, so by the Proposi-
tion we have

FD, FT, IFPIP,TF(FP) FN Tr(go)

for some term N Now all declarationsin |T'p|P are of the formy B where B Set,
so we can substitute other terms for each of these variables Furthermore, for
every B for which ' B € Tr(I'p) we have IMT'p, T + M B « Tr(B) by
Proposition 6 517 So we can replace each y' Tr(B) by y" B, at the same time
substituting My” for ¢’ inside N (These variables do not occur in Tr(y) ) We
obtain a term N’ with

[p,I',TpEN o

By again applying Proposition6 5 17,we can transform this N’ into a N” with

[p,I'7,TpEN" o R

6.5.3. Comnservativity relations inside the cube

We now want to address the question of conservativity inside the cube of typed
lambda calculi and the logic cube We first look at the cube of typed lambda
calculi, because the situation for the logic cube 1s very similar There are four
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results that do the whole job, resulting 1n the following picture

Aw APw

A2 AP2

AW APw

A— AP

where an arrow denotes a conservative inclusion and a dotted arrow denotes
a non-conservative inclusion By transitivity of conservativity (if system 3 is
conservative over system 2 and system 2 1s conservative over system 1, then
system 3 1s conservative over system 1), 1t 1s no problem to fill in the picture
further (Draw the arrows between two non adjacent systems) We can collect all
this 1n the following Proposition

6521 PROPOSITION For S; and Sy two systems in the cube of typed lambda
calculy such that S; C S,

Sy 15 conservatve over S} & Sy # APw & 51 # AP2

Proor It suffices to prove the following four results

1 IfS; O 8;, 5; asystem of the lower plane in the cube, then S; 1s conservative
over S (Proposition 6 5 22)

2 If S; a system in the nght plane of the cube, S; the adjacent system in the
left plane, then S 1s conservative over S; (Proposition 6 5 25 )

3 MPw 15 not conservative over AP2,
4 )w 1s conservative over A2 (Corollary 24 27)

The fourth 1s a consequence of Corollary 2 4 27, saying that PROPw 1s conser-
vative over PROP2 and of the fact that PROPw and PROP2 are 1somorphic
to, respectively, Aw and A2 via the formulas as types embedding (See para-
graph 4 3 1 and especially Proposition 4 34 ) The third was verfied in detail by
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[Ruys 1991], following an idea from Berardi The 1dea 1s to look at a context T’
in AP2 that represents Arithmetic Then " with AP2 1s as strong as second order
Arnthmetic and T with APw 1s as strong as higher order Anithmetic Hence we
can use Godel's Second Incompleteness Theorem to show that in AP2 one can
not derive from I" that I" 1s consistent in AP2 On the other hand in APw one can
derive from I' that I 1s consistent in AP2 Hence the non conservativity X

We first prove the Proposition about conservativity of systems over systems
in the lower plane The Proposition was also proved in [Verschuren 1990] 1n a
shghtly different way

6522 PROPOSITION Let S; be a system of the lower plane and Sy be any system
of the cube such that S, C Sy Then

'Fg, B «
't M B )=>Ttg, M B
I’ and M wn normal form

Proor By induction on the structure of M
applic Say M =zP, P, ThenzIly,; C, D, €T, s0

F }_51 Cl *,
' ks, P G

Now by IH, T kg, PP Ci,s0 T bg, 2P, D[P /y1] We can now go
further with P, We know that D;[P,/y1] =5 [lys C, D, with

Ths, Cy «

Also
F '_52 P2 C?u

so again by IH kg, P, C, and hence I' kg, 2P P, Dy[Py/y:] Con-
tinuing in this way upto n we find that kg, 2P, P, Dy[P./yn] with
D.[P./y.) = B Now by one application of the conversion rule (using
I'ts, B x) we concludeI'+zP, P, B

abstr Say M =Mz AN Then B — [Iz A C (because A in normal form) So
gl AC xand ',z AFs, M C (by Stripping and the conversion
rule) We can apply IH to conclude I',z Abg, M C Now we are done
By one A-abstraction and one conversion we conclude I' g, Az AM B
X
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The side condition I 1n normal form has just been added for convenience (1n
giving the proof ) It 1s not essential and 1t may be dropped

We now prove the conservativity of the nght plane over the left plane The
1dea 15 to define a mapping that removes all type dependencies This mapping
will go from a system 1n the right plane to the adjacent system 1n the left plane
and 1s the identity on terms that are already well-typed 1n the left plane Hence
the conservativity The proof 1s ongnally independently due to [Paulin 1989]
and [Berard 1990] The first described the mapping from APw to Aw in the first
place to use 1t for program extraction, the second described the collection of four
mappings (which 15 a straightforward generalisation of the mapping from APw
to Aw) to give a conservativity proof The mappings are very much related to
similar mappings one can define from predicate logic to proposition logic to prove
conservativity of the first over the second

6 523 DEFINITION ([Paulin 1989] and [Berard: 1990]) Let S, be a system of
the night plane and S; the adjacent system in the left plane The mapping
[=] Term(S:) — Term(S,) 1s defined as follows

[D] = 0
(]
[z]

)

*,

z, for r a vanable,

(Iz A B} = [B]\f Ax,B0O,
= Tz [A] [B] else,
(M AM] = [M]:if A%, M B0, (for some B),

Az [A] [M] else,
[PM] = [P]if M Ax, P BO, (for some A, B),
= [P][M] else,

6524 REMARK The side conditions in the defintion are justified by the Clas-
sification Lemma (4 4 37) We could also have distinguished cases according to
the heart or the level of subterms (See Lemma 6 32 and Lemma 6 34 )

The mapping [—] extends straightforwardly to contexts The following jus-
tifies the statement in the definition that the mapping [—] goes from the right
plane to the left plane

6 525 PROPOSITION ([Paulin 1989],[Berardy 1990]) Let Sy be a system in the
right plane and S, the adjacent system in the left plane of the cube

[ks, M A= [[]Fs, [M] [A]

Proor By a straightforward induction on the denivationof 'Fg, M A B
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6 526 COROLLARY ([Paulin 1989],[Berardi 1990]) For S, a system in the Tight
plane and S, the adjacent system n the left plane of the cube we have

S, 1$ conservative over S,

PROOF The only thing to check 1s that for M € Term(S;), [M] =M This s
done by an easy induction on the structure of M ®

The conservativity relations in the logic cube (Definition 4 3 5) are as follows
(An arrow denotes a conservative extension, a dotted arrow a non-conservative
extension )

APROPw APREDw

APROP2 APRED?2

APROPw — APREDw

APROP APRED

6527 PROPOSITION For S; and S; two systems in the logic cube such that
S51C S

S, 18 conservative over S; < Sy # APREDw & S; # APRED2

ProoF Completely analoguous to the proof for the cube of typed lambda calculy,
of Proposition 6 521 ®

In Chapter 21 we also discussed first order predicate logic with (PRED)
and without (PRED~/) functional domains We stated a conservativity result of
PRED over PRED~/ in Proposition 238 In Chapter 4 1 we saw that APRED
corresponds to PRED and we also defined the system APRED~/ that corresponds
to PRED™/ (Defimtion 4 37) The conservativity of PRED over PRED™/ can
now easily be stated and proved 1n terms of typed lambda calculi Let therefore
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H' APRED~/ — APRED be the PTS-morphism defined by

H'(Set) = Set,

H'(Fun) = Set,

H'(Prop) = Prop,
H'(Type?) = Type?,

H'(Type') = Type’

It 1s easy to verify that H' 1s almost the identity for M a term of \PRED /| if
M # Fun, then H'(M) = M We have the following Compare with Proposition
238

6528 PROPOSITION For [ a contezt and o, Prop in APRED ™/,

TFprep M ¢ = nf(T) Fppgp-r nAM) nf(p)

So the embedding H' 1s complete with respect to provability and PRED 1s conser-
vatwe over PRED~f

ProOF By induction on the derivation &

6.6. Consistency of (contexts of) CC

As the embedding H from APREDw into CC 1s not complete (CC proves more
propositions than APREDw), one may wonder whether there are propositions
that CC can not prove, or to pose the question differently, 1s CC consistent?
That this 1s the case can be shown quite easily by giving a two-point model for
CC (See [Coquand 1990} ) The type * 1s interpreted as {8, {8}} (or {0,1} n
the language of ZF) and 1if H M A, the interpretation of M 1s 1n the set A
This model 1s also called the ‘proof irrelevance’ model (e g 1n [Coquand 1990])
because 1n the model all proofs of a proposition are mapped to the same element
0 So the model also umplies that

-IMFM a#xad for Fa,d A

The interpretation will be such that the proposition L( = Ila Prop a) 1s inter-
preted by 0, so
-IM[F M 1],

that 15, CC doesn’t prove L We shall make the model construction precise here
It 15 1n fact a model construction for Aw Using the mapping [~] of Defimition
6 5 23, we find that 1t 1s also a model for CC So the consistency of CC follows
from the consistency of higher order propositional logic and the conservativity
of CC over A\w (Proposition 6 521 ) It 1s not so easy to construct the model
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immediately for CC, a problem that 1s solved in [Coquand 1990] by describing
the model for a variant of CC Here we use the mapping [—] from CC to Aw for
this purpose

Before constructing the model we want to recall some properties of Aw that
will be used They have already been stated in Proposition 4 34 Furst, the set
of kinds of Aw (those terms A for which ' - A O for some I') can be described
by K, where

K =x|K-K
Second, no proposition-variables are subterms of propositions or constructors, 1 e
CTFM A Knd=T'FM A Kind,

where [ consists just of those declarations £ B in I" for which ' B Kind

These two properties imply that we can butld the interpretation in three stages
by first giving a meaning to the kinds, then to the types and constructors and
then to the objects Also recall that the variables are seperated into two sets, Var®
for object-variables and Var® for constructor-variables The first will be denoted
by Latin characters, the latter by Greek characters

In general, an interpretation of terms of Aw uses a valuation £ of constructor-
variables and a valuation p of proof-variables In our simple model all free object-
variables have the value 0, so we only need £ For convenience we think of
contexts of \w as being split up 1n a I'”, containing the declarations of constructor
variables, and a I'", containing the declarations of object varniables

661 DEFINITION (1) The valuation £ satisfies I'° (notation & | ') if for all
a A €T" £(a)isn the interpretation of A (A 0O, so A doesn’t contain any
free variables )

(n) The valuation £ satisfies I (notation £ |= ') 1if € satisfies ™ and for all
z A € T*, the interpretation of A under £ 1s not empty (A %, so A can only
contain free constructor-variables )

662 DEFINITION For I' M A we define the interpretation function [—]
Term(Aw) — Sets as follows
1 For types, [*] = 2 and [k, —k.] = [ki] — [ko] (for ki, ks € K), where the
latter arrow denotes set theoretic function space

2 For constructors, let £ be a valuation of constructor-variables such that
§ '= Flr
la]f = {(a),
[liz A Bj, 12f Va € [A)[Bly(z =y = 1],
Oelse, (for A O,B %),
{A- B, Al — [Bl,, (for A,B ),
[PQ]E = HP]ie[ngy
Pa APl = Xae€lA] [Pl

Il

=a)
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3 All objects are interpreted as 0

Here, Aa € U V(a) denotes a set-theoretic function Further we 1dentify all
singleton sets (like eg [A]; — [A]) with 1 and we use the fact that no proof-
variables occur 1n propositions

By induction on derivations one can prove the following property

663 PROPOSITION IfT' M A, then for all valuations § wath € =T, [M], €
(4],

It 1s good to realise here that for example for ' = z L(= lla * a), there 1s
no £ with £ =T, so 1n this case the conclusion of the proposition 1s vacuously
satisfled

664 COROLLARY JMw, and hence CC, 1s consistent

ProoF For all valuations , [1], = 0 All valuations satisfy the empty context,
soiff FM L, then0 €0, quod non B

One may wonder whether EXT' = Ila, 8 * (a—08) — (a =, 3), 1s consistent
in CC That this 1s the case can be seen by using the proof-irrelevance model of
Definition 6 6 2 The interpretation of EXT’ 1n the model 1s 1, so if CC would
prove EXT'— L, CC 1tself would be inconsistent, quod non The same argument
applies to show that CC with classical logic 1s consistent Define

CL =Ila xaV «a

Then
[CL] =1,

so z CL 1s a consistent context A more interesting example 1s the Axiom of
Choice Let

AC =1IIP A—»B—x (Ilz A3y B Pzy) — (3f A—B Iz A Pz(fz))
Applying the mapping of Definition 6 5 23 we obtain
[AC]=VP x (A—»B&P) — (A—B)&(A—P)

Now [AC] 15 inhabited by a closed term 1n Aw, so AC 1s not inconsistent in CC
(by the consistency of Aw ) Notice that 1n all these cases the proof of consistency
of an assumption 1s done by giving a model 1n which the assumption 1s satisfied,
for EXT and CL the proof-irrelevance model and for AC the system A\w

In some (quite trivial) cases 1t 1s even possible to use CC 1tself as model If
the context I' consists only of declarations z A with A Oor A =5 2t; ¢,
with z a vanable, then I' 1s consistent Contexts of this kind are called strongly
consistent 1n [Seldin 1990
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6 6 5 PROPOSITION ([Seldin 1990]) Strongly consistent contexts of CC are con
sistent

ProorF LetI' =z, A;, ,z. A, be astrongly consistent context and suppose
that ' M L for some M Now we consecutively substitute closed terms for
all free vanables that are declared in I, such that all the assumed propositions
become T(= [la a—a) It works as follows ifz, A, € T withT'+ A, O, then
A, =p 117 B *, (with FV(E) C{z, ,z.-1}) and we substitute AJ B* T for T,,
where the B* are the terms 1n which the substitution for z;, ,z,-; has already
been done Ifz 2t;  t,( *) with z a variable, we substitute z by Aa * Az a z,
which 18 of type T If we denote this substitution by *, we can conclude from
' M L and the Substitution Lemma that - M* 1 So I' 1s consistent by
the consistency of CC X

The techniques described above to show that a context 1s consistent are not
sufficient to handle the more interesting examples For mere proof theoretic
reasons 1t will for example not be possible to show the consistency of ['y 4 (defined
1n the second proof of Proposition 6 5 3) with these techniques This would give us
a first order consistency proof of higher order arithmetic These kind of contexts
have to be handled by a normalization argument Assuming the inconsistency of
I'ya, show that a proof of L 1n I'y4 can not be in normal form, and so there 1s
no such proof In [Seldin 1990] one can find a detailed proof of the consistency of
a context that represents Peano Arithmetic in a system that 15 a slight extension
of CC Coquand shows 1n [Coquand 1990] by a normalization argument that the
context

INF = AxaA fA-5A RA-A— x
21 Vz A (Rzz)— L, 2y Vz,y,2 A Rey— Ryz— Rzz, 23 Yz A Rz(fz)

1s consistent When contexts become larger, a consistency proof by the normal-
1zation argument can of course get very involved Semantics 1s then a very helpful
tool for showing consistency and in general to show the non-denivability of a for-
mula from a specific set of assumptions Of course one has to use more interesting
models then the one of 6 6 2 to estabhsh this In [Streicher 1991] there are some
examples of this technique using realisability semantics

Knowing that a certain context is consistent 1s of course not enough to use
1t safely for doing proofs Due to the incompleteness of the formulas as-types
embedding, a well-understood context that 15 beyond suspicion in higher order
predicate logic, may have unexpected side-effects when embedded 1n CC Further-
more, CC has a greater expressibility then higher order predicate logic so we may
also put 1n the context axioms that do have a meaning but can not be expressed in
the logic An example 1s given by the axiom of definite descriptions that makes a
generic statement about all domains It 1s described 1n [Pottinger 1989) as follows

DD =Va x VP a— x ¥z (z a Pz) P(taPz),
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where
Iz:a.Pr := (Iz:a.Pr)&(VI, y:0. Pz— Py— {2 =4 y))

and ¢ is a term of type Va:x .VP:a— x.(3!z:a. Pz)—a. (One can take some fixed
closed term for ¢ but also declare it as variable in the context.) We assume the
intended meaning of DD in PREDw to be clear. Together with classical logic,
the axiom of definite descriptions has an unexpected side-effect in CC.

6.6 6. PROPOSITION, [[Pottinger 1989]] ‘Classical logic’ and ‘definite descriptions’
yeld proof wrrelevance in CC

We have already encountered the semantical notion of proof irrelevance in the
discussion of the model in 6.6.2. It can also be expressed in purely syntactical
terms as the phenomenon that for all propositions ¢, all proofs of ¢ are Leibniz-
equal. It is then formalised in CC by the proposition

Pl:=Va: x Vz,y:a.(z =4 y).

Of course, PI holds in the proof-irrelevance model of 6.6.2 (the interpretation of
PI is 1), so PI doesn’t imply inconsistency. However, if we intend to use CC
for predicate logic it is clearly undesirable: if " proves PI, then any assumption
a # a' makes I inconsistent. We see that PI, which is a very useful principle for
proofs, is a very odd principle when applied to domain-objects. Because of the
treatment of domains and propositions at the same level, principles about (proofs
of) propositions have unwanted applications to the domains.

The proof of Proposition 6.6.6 in [Pottinger 1989] uses an adapted form of a
proof by Coquand ([Coquand 1990]), showing that CC with classical logic and a
derivation rule for a strong version of disjoint sum yields proof irrelevance. Let’s
also state this result, but not by adding a derivation rule but by adding an axiom,
which really amounts to the same as the rule used in [Coquand 1990]. (Using the
result by Reynolds that polymorphism is not set-theoretic, Berardi has proved
that in CC, classical logic with a stronger form of definite descriptions (replacing
the 3! by 3) implies PI. See [LEGO-examples] for details.)

6 6.7. PROPOSITION ([Coquand 1990]). ‘Classical logic’ with ‘disjunction prop-
erty for classical proofs’ implies proof wrrelevance i CC

Here we mean by ‘disjunction property for classical proofs’, that for ¢ : CL in
the context and ¢ : %, cp 15 in the smallest set of proofs of ¢ V =y that contains
all proofs that are obtained by V-introduction from a proof of ¢ or a proof of
—p. Put in syntactical terms this says that, for + and j the injections from A to
AV B, respectively from B to AV B, the proposition

VP:(AV B)—= x .(Y2:A.P(1z))—>(Vz:B.P(31))— P(cy)
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holds So proof irrelevance follows from the context
¢l CL,z Va % (a + ~a)(cla),
where for A, B *,
A+B =My AVBVYP(AV B)— x (Vz A P(ix))—(Vz B P(3z))— Py

In presence of CL also the reverse can be proved, so we can construct a proof p
with
cd CLFp PIe (Yax (a+ -a)(cda))

The implication from right to left 1s the most interesting In [Coquand 1990] 1t 1s
proved by using the fact that if in I" one can construct A *, £ A—x, e x—A
and a proof of YVa * a — E(ea), then I" proves L

6.7. Formulas about data-types in CC

Having seen the incompleteness of the formulas-as-types embedding of higher
order predicate logic 1n CC, we shall now see that the distance between CC and
PREDw 1s not so large when 1t comes to propositions about inductive data types
This follows from a recent result by Berardi, which we shall discuss here only for
what concerns the implications for the formulas-as-types embedding For details
and proofs we refer to [Berardi 199+] The point 1s that for purposes of deriving
programs from proofs, it doesn’t seem to make sense to declare a theory in the
context Instead one uses the definable impredicative data types and inductive
predicates on them, as is done 1n the examples of 6 4 3 This 1s not the place to
discuss 1n detail the topic of extracting programs from proofs in CC, for which we
refer to [Paulin 1989], but to get some flavor we treat the first example of 6 4 3
Roughly, the program extracted from the proof i1s the Aw-term obtained by the
mapping [—], as defined 1n Definition 6 5 23
Suppose ¢ 1s a proof of

HiList InNat ImNat'mel—-m<n'
in the context a Indy,; Then in Aw we have
allP * P—(Nat—P—P)—(Nat—P) t [{] List—(Nat x Nat—True;—True;),

where True, and True; are some trivially provable propositions Now [t] still
contains computationally irrelevant information, the real program to be extracted
should be something like Az Nat 7;([t]*z) List—Nat, where * substitutes some
closed term for a 1n {t] Of course 1t 1s not irrelevant what we substitute for a,
but the general picture should be clear From the proof of the specification one
can obtain the program that satisfies the specification In [Paulin 1989] it 1s also
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shown how to extract from the proof the logical content which is a proof that
the extracted program satisfies the specification. Some parts of the proof have
computational content while others don’t. Therefore, to mechanize the extraction
proces, in [Paulin 1989] the type « is divided in Prop, Data and Spec, the first
consisting of the propositions with purely logical content, the second consisting
of the propositions with purely computaional content and the third consisting of
propositions containing both logical and computaional content.

In view of the discussion of the example above it is an interesting question
whether CC proves more propositions about inductive data types then higher order
predicate logic does. It is clear that we have to be more precise if we want to have
a negative answer, because in general the answer will be positive. (E.g. in CC we
can still prove EXT — 3r:Nat.Sz =p,¢ T (see the second proof of Proposition
6.5.3) and Indn,1&(Z #Ngat SZ) — Iz, y:Nat.(Sz =N, SY)—(T =Nat V) (see
Example 6.4.2.)) First we have to consider only the strongest version of inductive
data types, called parametric data types in [Berardi 199+]. A parametric data
type is in set-theoretic terms the smallest set X closed under some fixed operators
(functions of type Aj—Ay— ... > A,—X, where n > 0 and each A, is X or an
already defined parametric data type.) If D is a parametric data type this implies
that the induction and uniqueness properties for D are satisfied. In algebraic
terms, a parametric data type is just a free (or initial) algebra. Further we have
to restrict ourselves to a specific class of propositions, what Berardi calls the
propositions on functional types. The functional types are the ones obtained by
putting arrows between the parametric data types, further there are the so called
logical types, which is the class of (higher order) predicate types on functional
types. The propositions on functional types are the propositions obtained from
the basic propositions by the usual logical connectives D, V,&,-, V. and 3.,
where L 1s a logical type The basic propositions are those propositions obtained
by applying an inductive predicate to the right number of terms (of the right
type), so this class is already quite big. (Inductive predicates are minimal subsets
among those closed under some fixed monotone constructors; they can be defined
in higher order predicate logic by the higher order quantification over all such
predicates. For example <C Nat x Nat and €C Nat x List of the Examples
in 6.4.3 are inductive predicates.) In [Berardi 199+4] all this is defined in set-
theoretic terms and then translated into CC. Following [Berardi 199+], we do
not denote this translation explcitly (but there are no ambigwities about this.)

The main result of [Berard: 199+4] is now saying that for ¢ a proposition in
the set Pos, if I'  M:p in CC for some term M, and I is satisfled in the model
PER, then ¢ is provable in Set theory. Here PER 1s some model based on the
interpretation of propositions of CC as partial equivalence relations on A (the
set of untyped lambda terms.) The model-construction is in [Berardi 199+]; we
will not go into it here but state the important facts that for all parametric
data type D, the interpretation of Indp 1n PER 1s not empty, which means that
z.Indp is satisfied. The set of propositions Pos consists of those propositions on
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functional types that are built up from the basic propositions using D,V, &, -
and Vz:D,3z:D (for D a parametric data type) with the restriction that a Vz:D
that is not bound may only occur in a positive place. (The Vz:Nat for example,
is bound 1f it appears as Vz'Nat.(< (z,n)— .).)

One of the obvious examples where the result applies is the first of 6.4.3.
Berardi shows that also the statement of Girard’s normalization theorem, saying
that all typable terms in system F are strongly normalizable, is in Pos. It is of
the form

[t:Te.lTA:Ty.O fi(t, A) D In:Nat.Il¢'-Te.llm:Nat. Redd(¢,t',m) D m < n,

where the type of pseudoterms T'e and the type of types T'y are parametric data
types and Oft C Te x Ty and Redd C Te x Te x Nat are inductive predicates
with Oft(t, A) 1f t is of type A in F, Redd(t,t',m) if ¢ reduces to ¢’ in m steps.
We see that the restrictions on the form of the propositions 1s not very serious; a
specification will usually be of the form IIz.D.3y.D'. P(z,y) with P(z,y) € Pos.
Further the result is very general, as there are no restrictions at all on the shape
of ' or M. So T’ may even contain assumptions that can not be expressed 1n set-
theoretical terms: As long as the assumptions are satisfied in PER, the conclusion
1s valid

It would be interesting to see whether the result discussed above can be
rephrased syntactically by extending APREDw with inductive data types and de-
scribing a formulas-as-types embedding from the extended higher order predicate
logic to CC. This extension of APREDw can be defined by adding a scheme for
inductive types (by allowing a kind of least fixed point construction for positive
type constructors), but also by extending APREDw with polymorphic domains
As we know how to define inductive data types in polymorphic lambda calculus
and the formulas-as-types embedding from APREDw to CC immediately extends
to APREDw with polymorphic domains, we want to say a bit more about the
latter possibility. Let APREDw? be the following Pure Type System.

S = Prop,Set, Type?, Type®,
A = Prop: TypePSet : Type®,
R = (Set,Set), (Type’, Set), (Type?, Set)
= (Set, Type?), (Type®, Type®),
= (Prop, Prop), (Set, Prop), (Type?, Prop).

So this is APREDw with (Type®, Set): a higher order predicate logic built on the
polymorphic lambda calculus in stead of the simple theory of types. Note the
similarity with Definition 6.5.4. In view of the description of parametric data
types in the beginning of this section it is natural to leave the rule (TypeF, Set)
out of the system to eliminate things like Ila:Set.(a—«)—a : Set. This is an
option that we want to leave open.
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The formulas-as-types embedding from APREDw? into CC 1s now induced by
the formulas-as-types embedding from APREDw into CC of Defimition 3 2 6, so
1t 1s the PTS-morphism H with

H(*) = %,
H(Set) = x,
H(Type?) = 0,
H(Type’) = O

This immediately shows that APREDw? 1s consistent (In fact the mapping
H shows that all extensions of APREDw with rules of the form (s,s'), 5,8’ €
{Prop, Set, Type?, Type’}, are consistent ) The embedding H 1s not complete, the
same counterexamples as for \APREDw do the job (See the proof of Proposition
653 ) However, 1f we restrict ourselves to propositions in the set Pos, we may
still be able to prove that if

z1Indp,, ,z.Indp,,aIndnyt,bZ #Nay SZFM pan CC,
then there 15 a proof P in APREDw? with
z1Indp,, ,z,Indp,,alndn,;,b0 Z #Nat SZE P o,

where Dy, , D, are the parametric data types that occur in ¢ (We omit the
mapping H for reasons of readability ) In view of the proof of the oniginal result
1n [Berard: 1994], we have a strong feeling that this adapted completeness of the
formulas-as-types embedding from APREDw? into CC holds However, 1t 1s not
as general as the original result, one would like to allow more assumptions then
Just those stating the parametricity of the data types Still the matter could
be interesting for further investigations, because 1t may give a more syntactical
handle as to which propositions about data types are provable in CC

Let’s end this section with the remark that, just like for the system APRED27,
1t 15 an open question whether APREDWP 1s conservative over \PREDw The same
reasons for believing that APRED2P 1s not conservative over APRED2, apply to
APREDw? A possible non-conservativity result does, however, not affect the
use of the system APREDw? when the use 1s restricted to proving the kind of
propositions about parametric data types that we discussed above
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Chapter 7

Strong Normalization for gn in
the Calculus of Constructions

7.1. Introduction

In this Chapter we prove the strong Normahization for CC with 81 conversion
rule We shall denote this system by CCg,, to distingwsh 1t from CCg, which
1s the onginal Calculus of Constructions, with only # conversion Similarly we
have Fuwg, and Fuwg,

One of the main problems with proving SNg, for CCpg, 1s that we do not know
whether Term(CCg,) 15 closed under 7-reduction We know that SR, holds for
CCj, (Lemma 4 4 32), but that doesn’t immediately imply SR, for CCs, One
thing to do 1s to prove SNy, for CC,, which immediately imphes SNg, for CCg,
(because the set of terms of the latter 1s a subset of the set of terms of the first)
We choose to prove first SR, for CCg, and then SNg, for CCg, directly On the
one hand this 1s more natural and on the other hand we have found in Chapter
51 a simple cniterion for SR, to hold, which also applies to CCpg,

7.2. Meta-theory for CC with (n-conversion

In the section where we studied the meta theory for general Pure Type Systems
we have seen some properties that we could only prove for PTSs, whereas we
would like to have them also for the other notions PTSg, and PTS;, In fact
this was one of the reasons for introducing PTSj, 1n the first place We couldn’t
prove SR, for PTSgs,, so we introduced PTS;, One of the properties that we
were unable to prove for both PTSg, and PTSj, 1s the Classification Lemma,
4437 As this Lemma 1s very important for defining mappings on the set of
typable terms 1n an easy way, we shall show that the Lemma does hold for CCg,,
So, 1n the following we use the syntax with sorted variables, as 1t was descnibed
i Definition 4 2 9

165
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7.2.1. SUBLEMMA The system CCg, has the follounrng (ezpected) properties.
1. If M € Term(CCg,), M =5, O, then M = 0.

2. There are no terms of the form Mu:A.Q 1n CCay,.

Proor. 1. If M =g, O, then M —»5 O by the Key Lemma 4.4.18. We can
not have the situation that ' = M : A, because this implies (using the
Stripping Lemma 4 4.27 and the Key Lemma 4.4.18) that there must be an
axiom (O : s) among the axioms of CCg,. So there is an 3 € {x, O} with
M = s. It is easily seen that the s can only be O.

2. Suppose ITu:A O € Term(CCp,). Then I' - [Tw:A.0 : B for some I" and B.
SoT',uAF O: s for some sort s, which 1s not the case. ®

72.2. LEMMA. CCg, satisfies On-preservation of sorts (Definition 5.2.7). That
15, for A and A' terms of CCs,, T’ and IV contezts of CCp, and s,s' € {», 0},

FFA-s
I'FA:s )=>s=4
A =g, A'
Proor. By induction on the structure of A we show
A" € Term(I)
r-A:0 ,=>r'r4A 0
A=p, A

Then we are done because, by Uniqueness of Types (Lemma 4.4.29), a term can
not at the same time be a type and a kind. We distinguish cases according to
the possible structure of A.

e A= AA;. ThenI' - A;:TIu:C.0, which 1s not possible. (Sublemma 7.2.1.)

e A = u:A;.A;. Then A can not be of type O by the Stripping Lemma
4.4.27.

o A=Tlu:A;.A;. Then A" 4 [u:A]. A with (among other things) Az =g,
Ay and I, 1:A; F A, : O. We are now done by induction hypothesis.

o A= Then A' =g, x, hence [' - A’ : O and we are done. ®
7.2.3. CorROLLARY (Classification in CCg,). In CCg, we have

Kind N Type
Constr N Ob;j

2,
2.

il
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PrOOF Note that, just as in the proof of the Classification Lemma 4 4 37, 1t
suffices to prove the following two statements (let 5,8’ € {x,0} )

'4A s, THFA & = s=4g,
TFM A s, TFM A & = s=4

These follow 1mmediately from Lemma 7 2.2, using Uniqueness of Types X

I

724 COROLLARY C(Cy, satisfies strengthening and SH,

ProoF In Chapter 5 1 we have shown that a PTSg, that satisfies §7-preservation
of sorts satisfies strengthening (Lemma 5 2 10) and SR, (Corollary 5211 ) ®

7.3. The proof of SN for 87 in CC

We now turn to the proof of strong normalization for Sn-reduction 1n the Calculus
of Constructions with fn-conversion This 1s the most general property about
normalization 1n versions of CC that one would want It implies SN for 3(n)-
reduction for CC with 3(n)-conversion The proof we give here 1s a generalisation
of the proof of SNy for CCg, given 1n [Geuvers and Nederhof 1991]

Before giving the proof we want to see why SNg, for CCg, does not follow
immediately from SNg for CCs by a ‘postponement of 7-reduction’ argument
(That 15, we strongly believe that there should be some ‘easy’ combinatorial
argument deriving one from the other, but we haven’t been able to find 1t ) The
postponement of 7 still works, as was shown 1n paragraph 442 From 1t we
get that SNy for CCp 1mplies SNg, for CC3 Now the problem 1s that the set of
typable terms of CCgy, 15 larger then the set of typable terms of CCs An example
1s given by the term

Az P(Ay A My)— x Az PM z2

which can be typed 1n CCpg,, but not in CCg1f y ¢ FV(M)
We do have the following, which says that it 1s enough to prove strong nor-
malization for B-reduction on CCpg,

731 PROPOSITION
CCpy b= SNg = CCpy = SNp,
PrOOF The proof follows immediately from Theorem 4 4 9, which says that

X ESNg = L,X E SN, if X 15 a set of pseudoterms closed under 3-reduction

Note that Term(CCg,) 15 closed under § and n (The first by SRy for arbitrary
PTSs, the second by Corollary 724 ) So Term(CCg,) = inTerm(CCg,,) and we

are done X

Although the Proposition says that 1t 1s sufficient to study (-reduction, we
prove SNg, for CCg,, because the proof of SNg for CCg, would be exactly the
same
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7.3.1. Obtaining SNy, for CC from SNy, for Fw

We define a reduction preserving mapping from CCg, to Fwg, The mapping 1s
the same as the one in [Geuvers and Nederhof 1991], where 1t was defined as a
mapping from CCgs to Fwy to prove the strong normalization property for CCg
The problem with the extension to CCg, 1s that we don’t have all the meta theory
for CCpg, that was used n [Geuvers and Nederhof 1991] for the CCg case In the
following we verify that the whole argument can still go through

The original intuition of the mapping 1s due to [Harper et al 1987] who define
a fn-reduction preserving mapping from LF to A— to prove the strong normal-
1zation of LF The map [—] that will be used can be seen as a higher order version
of the map defined by [Harper et al 1987], although things get quite a bit more
complicated here It’s also possible to restrict the map [—] to Term(AP2), to
derive the result A2 = SNg, = AP2 |= SNy,

The map [-] doesn’t work uniformly on the terms of CCg, That 1s, we can't
define [-] such that for all ', M and A,

Lrec,, M A= [T Fro,, (M] {A]

To show that [—] really maps terms of CCpg, on terms of Fwpg,, one has to define
another map 7 from types and kinds and sorts of CC to types and kinds and
sorts of Fwg, such that

r I_CCB., M A= T(r) '-F“"Bn [M]] T(A)

In order to get a feeling for the mappings [—] and 7 we give some heunstics
(following [Geuvers and Nederhof 1991] )

The 1dea of the mappings in [Harper et al 1987] 1s to replace redexes that use
type dependency by A—-redexes We follow this 1dea, so let for example A be a

type such that
r l-CCﬂ,, F A-xT FCCﬁn t A

I‘}_CCB,, Ft *

then [—] and 7 must erase all type dependencies such that

(L) F Fug, [F] 7(A)=x 17(T) Fpy,, [t 7(A)
I Fro, [Ft] 7(x)

1s sound This 1s solved for LF by taking [Ft] = [F]It], 7(A—x%) = 7(A)—=0
and 7(x) = 0, where 0 1s a fixed type variable A redex that 1s obtained by type
dependency, say (Az A M)t, with A a type, M a constructor and ¢ an object, 1s
replaced by (Az 0 Az 7(A) [M])[A][t], where z 15 a fresh variable This term 1s
then typable in the system without type dependency and also the possible redexes
in A are preserved by the abstraction over z 0 and the application to [A]
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If we add polymorphism the situation gets more complicated Let for example

r }_CCE,, F lla x a—a T }_CCg., g *

[kec,, Fo o—0

then
(L) Frug, [F] T(lla x a—a) 7(T) Fpo,, [o] 0

T'Fpup, [Fo] T(0—0)
must be sound This means that taking 7(Ila * a—a) = 0—7(a—a), [Fo] =
[F][e] doesn’t work (The application 1s not sound ) But also the optlon taking

r(lla * a—a) = la x a—a, [Fo] = [F]r(o) doesn’t seem right, because the
possible reductions 1n ¢ are not preserved The solution 1s to do both and take

T(lla * a—a) = la x 0—a—a,
[Fol = [Flr(o)lo]

This implies that a higher order abstraction should have a different interpretation
too For example the interpretation of F Ila * a—a now has to be apphed to
two arguments The solution for the case F' = Aa *x Az a £ 1s to take something
like Aa * Az 0 Az o z, but the general picture 15 of course quite a bit more
complicated because kinds can have much more structure (and have objects as
subexpresions) then in Fwg, Therefore we define a mapping p which provides a
type for the image of 7 (so we have I b¢g,, A B = 7([) Frpo,, 7(A) p(B)
for A a type constructor or a kind)

The mapping p 1n fact just takes what 1s usually called the ‘order’ of a kind,
in terms of the underlying Fwg, kind The definition 1s as follows

732 DEFINITION The map p {0} UKind(CCp,) — Kind(Fwg,) 1s defined by
1 p(x) = p(0) = *,
2 p(lla A B) = p(A)—p(B)1f A1s a kind,
3 p(llz A B) = p(B) 1f A1s a type

Note that the case distinction in the Definition 1s allnght in CCg,, As the
mapping p removes all type dependencies and all variables we have the following
easy properties (Also use the fact that for A and B typable terms, if A =5, B,
then A1s a kind if and only B 1s This was proved 1n Lemma 72 2)

733 FACT For A, B kinds of CCg,, u a vanable and M a term,
1 p(A[M/[u] = p(A) = p(A)[M /4],
2 A=p, B= p(A) =p(B)
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We now want to devote some attention to the interpretation of types and kinds
under [—], before giving the definition of 7 For example, if I k¢g,, A * and
I'ya Atcge,, B 0O, then we want 7(T') kp,, [[Iz A B] 7(O) The intended
interpretation of « under 7 was 0 (some fixed type vanable ) This leaves us with
the possibility to also take 7(0O) = 0 and to take [IIz A B] = c[A][B][¢'/z], with
¢ some term of type 0—0—0 and ¢’ some term of type 7(A)

So 1t will be required that we have fixed terms of every type and every kind
in Fwg, However, not every type in Fuwg, 1s inhabited by a closed term and
therefore 1t seems necessary to extend the syntax with a possibility of having
(closed) constants of all types However, this becomes a very complicated system
(what 1f we substitute a term 1n a constant of a not-closed type?) and 1t turns
out that we can stay away from these kind of atrocities The solution 1s to work
in a fixed context 0 ,d L (L =TIla * a)n Fug, and define a fixed term c4 A
for every type or kind A

We give the definition of r, reflecting the intuitions about preservation of
reductions etc

734 DerINITION Themapr {D}UKind(CCg,)UConstr(CCg,) — Term(Fuwg,)

1s inductively defined by
7(x) = 7(0)=0,

T(a) = «q
7(Ila A B) = Ia p(A) 7(A)—7(B) 1if Aisa kind,
7(llz A B) = Iz 7(A) r(B) if A 1s a type,
T(Ada A M) = lap(A) r(M) if A1sa kind,
Az AM) = 7(M) if A 1s a type,
r(MN) = 7(M)T(N) if N 1s a constructor,
T(MN) = (M) if N 1s an object

The definition by cases 1s correct by Classification for CCg,, Corollary 72 3
That the range of 7 1s indeed a subset of Term(Fwg,) will be stated in Lemma
739 The mapping 7 deletes object variables and therefore type dependency,
and 1s compatible with substitution and reduction, as 1s stated by the following
fact (Proofs are by induction on the structure of the terms, using the Stripping
Lemma 4 4 27 and Fact 73 3)

735 Fact For A, B kinds of CCg,, £ an object variable, a a constructor vari-
able, @ a constructor and M an object of CCpg,,

1 7(A) does not contain free object varniables and r(A[{M/z]) = r(A),
2 7(AlQ/a]) = 7(A)[7(Q)/q],

3 A—j3 B=1(A) —p 7(B) or 7(A) =7(B),

4 A—, B=>r1(A) —,1(B)
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Using the mapping 7 we now define the mapping of contexts of CCg, onto
contexts of Fwg, This mapping will be called 7 too, although 1t 1s not defined
straightforwardly by applying 7 to all types and kinds in the context The reason
for this 1s that constructor variables have to be ‘split’ in a constructor variable
and an object vanable, replacing @ A in the context by @ p(A),z, T(A),
where z, 15 some fresh object variable connected with @ This sphtting has to
be done because a II- or A-abstraction over a constructor varable 1s replaced by
two abstractions

To make this splitting precise we assume an injection of = Var® — Var*
such that Var* \ o(Var®) 1s countable, consisting of those object vanables that
are used 1n the derivations in CCg, (so an object vanable :(a) 1s always ‘fresh’ )
Notationally we don’t work with the injection : but write z, for :(a) So for
every variable a € Var® we have a fresh vanable z,

736 DEFINITION The mapping 7 on declarations and contexts 1s defined as
follows

1 For A a type in CCpg,, z an object vanable,

(z A) =z 7(4),

2 For A alind in CCg,, a a constructor variable,

Tla A) =a p(A),za T(A),

3 ForT'=wu; Ay us A2, ,u. An a context in CCg,,

T(F) =0 *, d —LlT(ul Al),T(UQ A2)1 7T(un Aﬂ)

The 0 % 1n the context serves as the image of x and O under 7 Further 1t
1s used as the canonical inhabitant of * and canonical inhabitans for the other
kinds of Fwg, are bult from 1t In fact we could have left 1t out and used any
closed Fwg,-type for1t The d L 1n the context 1s necessary to have a canonical
inhabitant for every type It 1s essential for the construction of the reduction
preserving mapping [-]

737 DEFINITION Canonical inhabitants of types and kinds wn 7(T'), denoted by
c? for A a type or kind, are defined as follows

(2) ¢ = 0,
(1) A8 Aa A cB, for A—B a kind,
(1) ch dA, for A a type
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Note that cB[N/u] = cPI"/ for all kinds and types B, variables u and terms
N Further note that the inhabitant ¢* of A 1s independent of the context in
which A 15 typed (1t only depends on the specific choice of the variables 0 and d,
which are constants relative to our exposition ) Before showing the soundness of

r
I'Fec,y M A= 7(T) Fry,, (M) p(A), for M not an object,

we treat some examples of the application of the mapping 7 to a CCg,-term

738 ExaMPLES These examples are also meant to show the connection (at
least computationally) between 7 and the Mohring-Berardi mapping from CCg
to F'b when 1t comes to constructors

1 7(lla * a—a—a) =1la x 0—a—a,
2 1(lla * a—a—a—x) =lla x 0—a—a—0,
3 7(Ada x \za P a—x Pz)=Xda » AP = P
739 LEMMA For M € Term(CCg,), M not an object,
M'Fecy, M A= 7(T) Fry,, (M) p(A)

PROOF The proof 1s the same as 1n [Geuvers and Nederhof 1991) for CCp, so by
induction on the derivation We treat the case that the last rule was (app) and
the case that the last rule was (A) (In the proof we omit the subscript under
the turnstile as 1t will always be clear from the context whether we are working
i CCg, or 1n Fug, )

(app) Say M = PQandTHFM NuBC,T+FN B, A=C[P/u] Now PQ 1s
a constructor, and hence P 1s We distingumish subcases between @ being
a constructor or an object
If @ 15 a constructor, we find by induction hypothesis that 7(T') F 7(P)
p(Itu B C)(= p(B)—p(C)) and 7(T')F 7(Q) p(B) By one (app) we find
r([)F 7(P)r(Q) p(C) and we are done because 7(P)7(Q) = 7(PQ) and
p(C) = p(ClQ/4])
If @ 15 an object, we find by induction hypothesis that 7(I') + r(P)
p{(Tlu B C)(= p(C)) We are done because 7(P)7(Q) = 7(P) and p(C) =

p(ClQ/ul)

(A) SayM=MBNandTLbuBFN C,THIIuBC /0 We distinguish
subcases between B being a type or a kind
If B 1s a type, we have 7(Au B N) = 7(N), p(Ilu B C) = p(C) and further
by tnduction hypothesis 7(T'),u 7(B) F 7(N) p(C) By substituting ¢™(®
for u we find 7(I") F 7(N) p(C)
If Bisakind, then 7(Au B N) = Au p(B) 7(N), p(Ilu B C) = p(B)—p(C)
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and further by induction hypothesis 7(I'), u p(B), z, 7(B) F 7(N) p(C)
By substituting ¢"® for z,, we find 7(I'),u p(B) F 7(N) p(C) Now also
7([) F p(B)—p(C) O, and hence 7(I') F Au p(B) 7(N) p(B)—p(C) X

7310 DEFINITION The map [—] from Term(CCpg,) \ {0} to Term(Fuwpg,) 1s de-
fined inductively by

[x] = ¢,
[z} = = if z € Var”,
[a] = z. if a € Var®,
[liz AB] = O °0L4][B][c"/z] if A a type,
[lla AB] = 0°[4][B][c"M/a,c™M/z,] 1f A a kind,
Pz AM] = (A20 Az r(A4) IMDIA] if A a type,
PDaAM] = (Az0Aap(A) Az, 7(A) IM])[A], 1if A a kund,
[MN] = [M][N], if N an object,
[MN]) = [M]r(N)[N], if N a constructor

Here z 1s always assumed to be a fresh object vanable

The defimtion by cases 1s allnght by the Classification for CCg,, Corollary
723 It 1s not very difficult to venfy that the mapping preserves - and 7-
reductions, which will be stated in 7316 That the image of the mapping [~}
1s indeed a subset of Term(Fwg,) 1s stated by the following lemma It 1s only
in the proof of this lemma that we really have to add something to the proof of
strong normalization for § in CCg (apart from the quite non-trivial venfication
of a lot of meta-theoretical facts for CCgy, of course, but this has already been
done 1in Chapter 4 1 ) What we have to do extra here 1s to verify that for A and
B types in CCpg,, if A =4, B then 7(A) =4, 7(B) For CCs this problem was
easily settled by the Church Rosser property, which we lack here This turns out
to be not so easy We can not just redo the reduction expansion path from A to
B to get 7(A) =g, 7(B), because 7 removes abstractions (and hence redexes )
Also constructors can be gn-equal to objects, ke in Aa * a =g, Az L z, and
although objects are not in the domain of 7, this may have an effect on the G-
conversion An example where the equality between A and Bis really established
in a different manner then the equality between 7(A) and 7(B) 1s the following

Aa Lo x Ar L az =g, Aa x> x Af * af,
and
T(Ada L—ox Az L az) = da x a =g, ha x—=x AF x aff = 7(ha x—* A\J * aff)

In this case the two images are still 8n-equal, but one could imagine that there
are dirtier tricks That there are however no dirtier tricks 1s shown 1n Lemma
7 313 For the proof of that Lemma 1t 1s convenient to modify the mapping 7 a
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bit to a mapping 7' from the erased terms to erased terms (Here we mean the
erasure | — | that removes only the domains, 1t was defined 1n Definition 44 11)
We then define 7' by induction on the structure of terms, distinguishing cases
according to the heart of specific subterms (The notion of ‘heart’ of a term A,
h(A), 1s defined in Definition 4 4 38 )

7311 DEFINITION Consider the set E which 1s obtained from the set {0} U
Kind(CCg,) U Constr(CCg,) by first applying the erasure mapping | — | and then
closing down under —»4, On this set E we define the mapping 7' by induction

on the structure of terms as follows
() = (@) =0

(a) = ¢
(lla AB) = Ta p(A) 7'(A)—7'(B) if a € Var®,
r'(llz AB) = Iz 7'(A)7(B) if £ € Var”,
(Aa M) = da7(M) if a € Var®,
Az M) = 7'(M) if T € Var”,
T(MN) = 7' (M)T(N) if h(N) € Var®,
T'(MN) = 7'(M) if h(N) € Var”

The definition 1s justified by Lemma 4 4 39
7312 Fact If A € {0} UKind(CCpg,) U Constr(CCyg,), then
Ir(4) = 7'(|A])
7313 LEMMA For A, B terms of CCg,, not objects,
A =g, B = 7(A)=p,7(B)
ProOOF Immediately from the following

AzﬁnB = |A| =ﬁ17|B|
= 71'(IA]) =g, 7'(|B|)
= |(A)l =py |IT(B)] = 7(A)=p,7(B)

The first 1s a standard property of |—|, the third 1s justified by the fact that we just
stated and the last step 1s also a standard property of |[—| (See Corollary 4 4 17)
This leaves us with the second step Suppose |A| =g, |B|, say |A| =4, Q gy« |B|
Then we can copy all the reduction steps from |A| to @ and from |B| to @ in
the 7"-image A precise proof of this fact can be given by venfying that the
properties of 73 5 also hold for 7', 1e for z an object variable (z € Var*) and a
a constructor variable (a € Var®)

1 7'(A) does not contain free object vanables and 7'(A[M/z]) = 7'(A),
2 T(AlQ/a]) = T(A)[T(Q)/al,
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3 A—j3 B=1'(A) —47'(B)or 7(A) = 7'(B),
4 A—,B=>1(A)—,7(B) B
73 14 LEMMA
[Feey, M A= 7(T) bru,, [M] T(A)

Proor By induction on the structure of terms as in [Geuvers and Nederhof 1991],
using Lemma 7 3 13 and the Stripping Lemma 4 4 27 We treat the cases for M
being a [T-abstraction, a A-abstraction or an applicatiomn

[-abstr Say M = Ilu B C and note that A can only be x or O By induction
hypothesis we obtain that 7(I') = [B] 0 and 7(T,u B) - C 0 Now
we distinguish cases according to whether B 1s a type or a kind
If B 1s a type, 7(T',u B) = 7(I'),u 7(B), so by substituting ¢"® for u
and applying =%~ to [B] and [C][c"®/u] we conclude that 7(T') F
*0~°[BJ[C][c"®/u] 0 and we are done
If Bisakind, 7(I',u B) = ('), u p( B), . 7(B), so by substituting c*5
for u, ¢"® for z,, and applying % to [B] and [C][c”® /u, " ®) [z,]
we conclude that 7(T) F ®~0~°[B}[C][c"® [u,c®)/z,] 0 and we are
done

A-abstr Sa.y M = Xu B P and note that (by the Stripping Lemma 4 4 27)
A=, Tlu BCwithT,u B+ P C By induction hypothesis we obtain

that 7(T',u B) F [P} 7(C) and 7(T') - [B] 0 Now we distinguish
cases according to whether B 1s a type or a kind
If Bisatype, 7(I'u B) = 7(I'),u 7(B) Now 7(B) and 7(C) are both
types, so we can do a A-abstraction and we obtain 7(I') - Au 7(B) [P]
[Mu 7(B) 7(C) From this we easily conclude that
7([) = (Az 0w 7(B) [PN[B] Tu r(B) 7(C) Now we are done because
from Mu B C =g, A1t follows by Lemma 7 3 13 that [Tu 7(B) 7(C) =3,
7(A) and we can apply the conversion rule to obtain what was to be
proved
If Bisaknd, 7(l,u B) = 7(I"),u p(B),z, 7(B) Now 7(B) 1s a type
and p(B) 1s a kind, so we can do two A-abstractions to obtain 7(I') F
up(B) Az, 7(B) [P] Nu p(B) 7(B)—7(C) From this we easily con-
clude that
() F (Az 0hu p(B) Az, 7(B) [PD)[B] Hu p(B) 7(B)—7(C) Now
again we are done because from Ilu B C =g, A 1t follows by Lemma
7 313 that Mu 7(B) 7(C) =g, 7(A)

appic Say M = PQwith['F P Mu B C,THQ B suchthat A =5, C(Q/y]
By induction hypothesis we find that 7(I') F [P] ~(Ilu B C) and
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I+ Q] 7(B) We distinguish subcases according to whether P
1s an object or a constructor
If @ 15 an object then B 1s a type, so [PQ] = [P][Q] and 7(Ilu BC) =
[u 7(B) 7(C) We can conclude that 7(T') F [PQ] 7(C)[[Q]})/] and
we are done by the fact that 7(C)[[Q)/u] = 7(C) =4, T7(A) (by Lemma
7313)
If @ 1s a constructor then B 1s a kind, so [PQ] = [P]r(Q)nteQ and
r(llu BC) = Mup(B) 7(B)—71(C) We can conclude that 7(I') F
[PQ] (O)[r(Q /u] and we are done by the fact that 7(C)[r(Q)/u] =
7(C|Q/u]) =p; 7(A) (by Lemma 7313 ) ®

7315 LEMMA For M € Term(CCp,), T € Var*, a € Var”, N an object and Q
a constructor,

1 [M[N/z]} = [M[[N]/=]},
2 [M[Q/z]] = [M][7(Q)/a, [Q)/z.]

Proor Both by induction on the structure of M, using the fact that a term
p(A) does not contain any free variables and that a term 7(A) does not contain
any free object variables Further one needs some (easy) substitution properties
for the canonical inhabitants of types and kinds like

cA[[N]/z) = cANED,

CP(A)[[N]/I] = (PlAlN/=)
W[r(B)/a,[Bl/za] = cAB/RD,
“4(r(B)/a,[Bl/za] = A1) R

7316 THEOREM For M, M' € Term(CCjg,),
M —p, M = [M] 3 [M]

Proor By induction on the structure of M The only interesting cases are
when the reduced 8- or n-redex 1s M 1tself, which are handled by distinguishing
subcases according to the domain of the lambda abstraction We only treat the
cases for which the domain 1s a kind (The cases for which the domain 1s a type
are similar but easter )

o M = (A AN)Q with A a kind Then
(Az 0 X p(A) Aza 7(A) [IND[AI7(Q)[Q]

° INI7(Q)/e [QY/za]
iNiQ/e]} = [M]

[MB

i “ I
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o M =XaANawth Aakind Then

M] = (Az0Xap(A) Az, T(A) [N]az.)[A]
-3 [Nl=[M1®

7317 THEOREM
Fupy b= SNgy = CCpy |= SNg,

ProOF An infimte 3n-reduction sequence in CCg, y1elds an infinite n-reduction
sequence 1n Fwg, by the mapping [-] ®

One can be a bit more careful 1n the last proof and use the positive formulation
of Strong Normalization for every term M there 1s an upperbound to the length
of all reduction sequences starting from M Then one can show that, from an
upperbound to the length of Gn-reductions starting from [M], one can compute
an upperbound to the length of G7 reductions starting from M

7.3.2. Strong Normalization for G7n-reduction in Fw

The proof of Fwg, = SNg, will be done by first proving that 3“-reduction 1s
strongly normalizing and that the combination 3%*-reduction 1s strongly normal-
1zing  Using this, we then show that, if 3% reduction 1s strongly normalizing on
the erased terms (the erasure here 1s the ‘typed’ erasure defined 1n 6 3 5, different
from the one defined in 4 4 11, which 1s totally syntactical), then 8-reduction 1s
strongly normalizing In this way we avoid the need to define the so called ‘candi-
dats de réducibilité’ as typed sets, as 15 done for example in [Girard et al 1989]
This makes the exposition more perspicious and clearly points out where the
proof 1s essentially complex (in proof-theoretical terms ) This idea of proving
strong normalization (reducing the problem to the set of underlying type-free
terms) 1s applied to the polymorphic lambda calculus 1n [Mitchell 1986] (see also
[Scedrov 1990])

7318 PROPOSITION
Fugy = SNgge

PrOOF We only have to consider the constructors, because an infinite fn*-
reduction in a term of Fuwg, will always be due to an infimte Gn“-reduction 1n a
subterm that 1s a constructor

The proof 1s now by defining a Bn-reduction preserving mapping (-] from the
constructors of Fwg, to the objects of A— such that a constructor M k becomes
an object [M] [k], where [] 1s defined inductively as follows

[*] =0,
[k1—k)] (k1] = k2],

I
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where 0 15 some fixed type vanable to be declared in the context The reduction
preserving mapping [—] on constructors 1s

[a] = aq
[o=7] = 7 %o](r),
Mako] = [o]c/a],
Ak P] = Xaik][P],
(PQ] = [P]IQl,

where for k a kind of Fuwpg,, the fixed object c¥! of type [k] 15 defined induc-
tively by taking ¢® as a fixed vanable of type 0 in the context and defining
c*1~k2 = \z [k;] cl*?] We then have for T a context containing only declarations
of constructor variables,

I brpu,, P k= 0x%,0,[[ k. [P] [K],
where the extension of [—] to contexts is the straightforward one X

7319 LEMMA For M, M' € Term(Fuwg,), objects,
(1) M5 M = #0gsm M) =#(0ps in M) -1,
(22) M S5 M = #(gsm M) =#(\s m M'),
() M S5, M or M S, M' = |M|t=|M

ProoF The only way in which the number of As of a certain form can increase
by a reduction step 1s when the A of this particular form occurs 1n @ and

(Az AN)Q — N[Q/z],

with = free :in N more then once So we look for each case of the lemma at a
[B-redex of the above form in the premise and check the conclusion

1 (Ma K N)Q — N[Q/a) Then Q 1s a constructor, so it does not contain
any objects as subexpressions, so 1t certainly contains no Ags So the number
of A8 15 reduced with one

2 (Moa K N)Q —=;5 N[Q/a) Then Q 1s a constructor again and so 1t contains
no A;s The number of Ays 1n the term remains the same

3 By the defimtion of the erasure |—|*, which removes all type information
A [“-reduction step will always be mside a type of the object M, so
|M|' = |[M'|* A [%reduction step inside M 1s of the form (A0 K N)@ —,
N[Q/a] After applying |—|' the first becomes |N|* and so does the second
b
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7320 LEMMA
Fugy = SNpyas

PROOF Suppose we have an infinite reduction sequence
2w 2w 2w
My —Spy My —pq My —p,

mn Fwg, By Proposition 7 3 18 we know that all the M, must be objects and that
this infinite reduction can not have a tail

Mn _‘U’Bn Mn+1 _W',Bn Mn+2 _w’ﬂn

So the infinite An?-reduction sequence contains infinitely many 3n%-contractions
By Lemma 7 3 19 this is not possible a An? contraction reduces the number of
Azs by one and a [n“-contraction does not change the number of A;s So there
can be no infinite fn**-reduction 1n Fug, &

7321 PROPOSITION
VM € Obj(FuJﬁ,,)[SN(lMlt) = SN(M)]

PRooF Let M be an object such that SN(|M|*) holds Suppose we have an
infinite reduction sequence

M —py My —opy My —5,

m Fwg, Then all M, are objects of Fwg, By Lemma 7320, only finitely
many 3n®“-contractions are performed after one another, so the sequence contains
infinitely many 8n°-contractions Now we can apply |—[® to obtain an infinite 87-
reduction sequence starting from |M|* (using Lemma 7 319 ) This contradicts
SN(|M|*), so there 1s no infinite On reduction sequence starting from M X

The Proposition 1s telling us that we only have to check that the set of erasures
of objects of Fwg, satisfies SNg, 1n order to prove

Fuwg, = SNg,

This will be done by extending the well known method of computability pred-
1cates to the higher order case This method can be seen as the building of a
model of Fwg, nside the untyped lambda calculus, where types become sets of
strongly normalizing terms and the interpretation (modulo a valuation p that
assigns untyped terms to the free variables) of a term M of type o 1s an untyped
term 1n the set that 1s represented by 0 The Strong Normalization property then
follows from the fact that one can take the 1dentity for the valuation p, in which
case the interpretation of M becomes |M|?, which 1s then Strongly Normahzing
by the construction of the model

Let 1n the following SN C A be the set of untyped lambda terms that is
Strongly Normahzing under 37n-reduction (By posponement of 7-reduction and
the fact that n-reduction 1itself 1s Strongly Normalizing on A, this 1s the same as
the set of terms that i1s Strongly Normalizing under 3 reduction )
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7 322 DEFINITION A set of untyped lambda terms X 1s saturated if
1 X CSN,
2 V@ € SNVz € Var[z§ € X],
3 V@,M,P e SN[M[P/z]@ € X = (A\z M)P§ € X]

Note that SN 1s 1tself saturated and that all saturated sets are nonempty
The types of Fwg, will be interpreted as saturated sets This requires some
closure properties for the set of saturated sets which will be proved in Lemma
7324 The kinds of Fwg, will be interpreted as the set-theoretic function spaces
except for the kind * which will be interpreted as the set of all saturated sets
Recall that
Kind(Fwg,) = K =x|K—=K

7323 DEFINITION For k € Kind(Fwg,), the set of computability predicates for
k, CP(k), 1s defined inductively as follows

CP(x)
CP(kl—'kz)

{X| X C A s saturated},
{f1f CP(ki)—CP(k2)}

The interpretation of a kind & 1n the intended model will now be by taking CP(k)

7324 LEMMA The set of saturated sets s closed under arbitary intersections
and taking function spaces That 1s,

1 for I a set and X, saturated for all1 € I,

Nyer X, 15 saturated

2 for X andY saturated,
X—=Y ={M € A|VN € X[MN €Y1} s saturated

PRrRoOOF The closure under arbitrary intersections 1s easy to prove For the clo-
sure under function spaces, let X and Y be saturated sets and take X—Y as in
the lemma It 1s easy to see that all M € X—Y are SN Further, for z a vanable
and @ € SN, we have that forall N € X, zQN € Y, because NisSNand Y 1s a
saturated set Finally, for §, M, P € SN with M[P/z]@ € X—Y, we know that
VN € X[M[P/z]gN € Y] So VN € X[(Az M)PGN € Y] by the saturatedness
of Y,s0 Az M)P@ € X—Y R

One may wonder why we need the saturated sets (a specific class of subsets
of SN) and can not just interpret all the types by the set SN 1tself However, this
breaks down on the fact that SN—SN # SN (For example, Az zz ¢ SN—SN )
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7.3.25. DEFINITION. For I' a context of Fuwpg,, a constructor valuation of I' (no-
tation € =g T) is a map £ : Var® — UkexCP(k) such that

a:k €T = &(a) € CP(k).

7.3.26. DEFINITION. For I a context of Fwg, and £ a constructor valuation of I',
the interpretation function

[-1; : T-Constr(Fwg,)— Urex CP(k)
is defined inductively as follows.
lof; = &),
[Pl = [PLIQI,
DekQly = Af € CP(K)Qla—p)
lo—-rle = [~
[[l'la:k.a]g = nfECP(k)[U:I]?(Q=f)'

In most situations the I' will be clear from the context, and will therefore not be
mentioned explicitly.

The definition is justified by the Stripping Lemma 4.4.27 and the following
Lemma, which states that the interpretations of the constructors are elements of
the right computability predicate.

7.327. LEMMA. For T a contezt of Fwgn, @,k € Term(Fuwg,) and £ =a T,
't Q: k(:0) = [Q], € CP(k).
Proor. Easy induction over the structure of Q. B

7.3.28. LEMMA. For T a contest of Fwa,, @, P € T-Constr(Fug,), a € Var® and
Fal,

(1) [[Q[P/a]]]e = [[Q]]c(a =[P],)

(1) Q=g P = [[Q]]E = [[P]]E

PROOF. The first by an easy induction over the structure of @. For the second
it is sufficient to prove

Q—pm P> [[Q]f = [[Plgv

which is easily done, by induction over the structure of @. That this is sufficient
follows from the fact that the Church-Rosser property for #n-reduction and Sub-
ject Reduction for Bn-reduction hold for Fwg,. The first is easy by the separation
of contexts in Fw. (See Proposition 4.3.4. In the discussion that ends Chapter
5.1 we have pointed out how to prove CRg, for such a system.) SR, for Fuwg, is
a consequence of Corollary 7.2.4 (but there are easier ways to obtain this result).
=
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7329 DEFINITION For I" a context of Fwg, and £ |=p I', an object valuation of
I wath respect to £ (notation p,§ ET')1sa map p Var® — A such that

z o€l =p(z)€|o],

7330 DEFINITION For I' a context of Fwg, and p and £ valuations such that
0,€ E T, the interpretation function

[-1} T-ObyFwg,)—A

P

1s defined inductively as follows

[z, = o),
EPQ]E = [P]EEQ]E, if Q 15 an object,
[[PQLF, = [P]g, if @ 1s a constructor,
[Azo Q]E = Az HQ]E(, =zp 015 a type,
[ha k Q]E = EQ]]Z, if k15 a kind

In most situations the I' will be clear from the context, and will therefore not be
mentioned explicitly

The interpretation of objects of Fwg, does not use the valuation for the con-
structor variables at all We could therefore have given the previous definition
without mentioning the £, letting p be an arbitrary mapping from Var* to A We
put the restriction on the p because on the one hand 1t 1s the natural restriction
to make for an interpretation function and on the other hand 1t will be needed
for the theorem we are to be proving

The fact that the interpretation of objects does not depend on the interpre-
tation of the types 1s also expressed by the following fact

7331 Fact For M an object, p a valuation as in the defimition and £ the vector
of free vanables iIn M,

[M], = IM['p(2)/3],
where p(Z) 1s the vector obtained by consecutively applying p to Z

73 32 DEFINITION ForT acontext, M an object and o a type of Fwg,, I' models
M of type o, notation I' = M o 15 defioned by

CEM o =Yoo T = [M], € o]
7333 THEOREM fForT a context, M an object and o a type of Fug,,

'-M o=>TEMo
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PRrRoOOF. By induction on the structure of M we prove that if p,€ = T, then
M], € [o];. So let p and £ be valuations such that p,& = T.

e M =z € Var'. Then z:7 € T with 7 =g, 0. So [M], = p(z) € [r]; and
[r]; = lo); and we are done.

e M = Az:7.Q with 7 a type. Then I''z:7 - Q : p for some u with o =g,
T—u. By IH [Q] ..., € 1], for all p € [r], so [Az:7. Ql,p € [u]; for all
p € [r],, so [M\z:7.Q], € [r].—[pl; = [o].

o M = Aa:k.@, with k a kind. Then I',a:k - @ : 7 for some 7 with ¢ =g,
Ha:k.r. By H [Q], € {r];(.p) for all f € CP(k), and so [Aa:k.Q], =
[Qﬂp € nfeCP(k)[[Tﬂe(a:/) = ‘7]5'

e M = PQ, with Q an object. Then '+ P : 7»pand '+ @ : 7 for
some 7 and p with u =g, 0. By IH [P] € [7],—[x], and [@Q], € [7],, so
[PQ], = [PLIQ], € (k) = [o],-

o M = PQ, with Q a constructor. Then ' + P : Ilazkrand T F Q : k
for some 7 with 7[Q/a] =p, 0. By IH [P], € [7],—[u]; and [Q], € [7];,
so [PQ], = [P],[Q]), € [1]; = [o];- By Induction Hypothesis [P], €
ﬂfecp(k)llT w=y) Further we know that [Q]; € CP(k), so in any case
I[PQ , € |[T]|€(a:=Q). ®

7.3.34. THEOREM.

I4

VM € Obj(Fug,)[SN(IM]")].

ProoF. Let M be an object of Fwg,, say that I" and ¢ are a context and a type
such that T M : 0. Then I' = M : o by the previous theorem.
Now we define canonical elements c* in the sets CP(k) as follows.

¢ = SN,
1Tk = Nf € CP(ky).c*

For the constructor valuation for I' we take £ with {(a) = ¢* if a:k € I (and £(a)
arbitrary otherwise), and for the object valuation for ' with respect to this £ we
take p with p(z) =

Now p, & |= T and so {M], € [o],. Thisimplies that |M|* is Strongly Normalising,
because [M], = |M|* and [¢], C SN. ®
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Chapter 8

Discussion

At the end of this thesis we want to make some remarks about points that deserve
some extra attention We first try to make the situation around the proof of
SNg, and CONg;, for CCg, clear In the middle of all the general Lemmas and
Propositions it may have become a bit obscure what exactly 1s required for these
proofs Then we compare the PTS- syntax with a different formahzation of Pure
Type Systems which has a more ‘semantical’ nature

8.1. Confluence and Normalization

811 REMARK If one wants to study the confluence of 3n-reduction 1n a Pure
Type System, one should be looking at the property CONg,, 1 e

T+MN Aw1thM=g,,N=7>MiﬂnN,

because CONg, 1s not a consequence of CRg, on the well typed terms This
because a Gn-reduction-expansion path from M to N can contain terms that are
not typable (M =g, N means that they are equal as pseudoterms ) For these
non-typable terms, CRg, on the well-typed terms does not apply

The proof of CONg, for CCg, in this thesis is done in the following steps
1 Prove the Key Lemma 4 4 18

2 Prove SRg (Lemma 4 4 30) This 1s relatively easy, by induction on deriva-
tions, using the Key Lemma

3 Prove SR, This follows quite easily from the fact that CCpg, satisfies Gn-
preservation of sorts (See Defimtion 527, Lemma 72 2 and Corollary
724)

4 Prove Fwg, | CONg, This s easy, by the fact that contexts in Fuwpg,
can be separated (See paragraph 5 3 for a proof of CONg, of a calculus
containing Fuwg, )
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5. Prove Fwg, = SNg,. This is hard; the proof in paragraph 7.3.2 is done by
first showing that it is sufficient to prove SNg, for erased terms. The proof
uses Fwg, = CONg,.

6. Prove CCp, = SNg,. This is hard. It is done by defining a reduction
preserving mapping from CCg, to Fuwpg,, so the proof uses Fwg, |= SNg,,.

7. Prove CCg, = CONg,. This is hard; it requires CCg, = WNjg,, so it uses
CCpy = SNgy. The proof in Chapter 5.1 is for a more general case. For
CCpy it suffices to prove Lemmas 5.2.2, 5.2.4, 5.2.5, Proposition 5.2.3 and
Theorem 5.2.6.

Obviously, the fourth, fifth and sixth item can be compressed to one, namely
to prove CCg, = SNg,. Up to now there is however no other proof of this fact
then the one given in this thesis along the lines sketched above.

Some issues immediately come up here. First that we prove Strong Normal-
ization whereas we only need Weak Normalization (usually this property is just
called Normalization) for the proof of CRg,. Also in other situations, Weak Nor-
malization often suffices. (For example to prove consistency of a context.) This
raises the following conjecture.

8.1.2. CONJECTURE. For all Pure Type Systems (,

¢ }= WNﬁ(n) = }= SNﬁ(n)'

Another thing that we do not know is if Strong Normalization for a system
with (convg) implies Strong Normalization for the system with (convg,). The
problem is that if we extend the conversion rule with 7, there are more well-
typed terms. (See the discussion in the beginning of section 7.3.) Our intuition
says that this extension can not affect the normalization, so we have the following
conjecture.

8.1.3. CONJECTURE. For all Pure Type Systems (,
¢ with (convg) = SNpy) = ( with (convg, ) = SNa(y).

Finally we still have the open problem whether CONg, holds for all Pure Type
Systems. We strongly believe that this is so and raise the following conjecture.
(Motivated by Proposition 5.3.2.)

8.1.4. CONJECTURE. In all Pure Type Systems,
' MA
'-M:A Y= M lﬂn M.
M =g, M'
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For each of these questions, a counter-example showing that the property does
not hold would probably be much more interesting then a proof. (Which makes
it unlikely that they will soon be proved, unless there are ‘easy’ proofs.)

There are reasons to believe that Conjecture 8.1.4 is false. It was shown
to us by Werner that Confluence of gn-reduction conflicts with a fixed point
combinator. Let us state this precisely for the system A with (convg,) rule. A
fixed point combinator in Ax is a term

Y : Ha: x.(a—a)—a

such that
YoF =5, F(YoF)

foro:xand F: 0—0.

8.1.5. FACT. [Werner 1993] If A has a fixed point combinator then Ax [ CONg,
and A« £ CRg,

The proof 1s more general and applies to all PTSs that have a sort x for which
(%, ) is a rule and for which there is a sort s such that (s,*) is a rule and % : s is
an axiom. Hence we have the following Corollary by the fact that AU |= CONg,,.
(A proof of this fact was sketched in section 5.3 )

8.1.6. COROLLARY. [In the system AU there 1s no fized point combinator.

Up to now it is not known whether there exists a fixed point combinator
in Ax. Our conviction that CONg, holds has led us to believe that there is
no fixed point combinator. (There is a so called ‘looping’ combinator, which is
a family of combinators Yp, Yy, Ys,. .., all of type la: x .(a—a)—a, such that
Y,0F =5 F(Y,;10F). See for example [Coquand and Herbelin 1992).)

8.2. Semantical version of the systems

In fact the Confluence property (Conjecture 8.1.4) is the one that justifies the
use of Pure Type Systems with (convg,) in the first place.

If one wants to give a semantics to a Pure Type System, one only wants to
assign a meaning to the well-typed terms. The pseudoterms are just introduced
because they make meta-theory easier, being so closely related to the untyped
lambda calculus. Even those who are just interested in syntax will agree with the
point of view that only the well-typed terms have a meaning. This point of view
implies that if two well-typed terms are equal, but only via a path that passes
through the non-typable terms, then these terms should not really be considered
as being equal.

Because pseudoterms do not have a semantics, a ‘semantical’ presentation
of Pure Type Systems would not contain a conversion rule of the form that we
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have The side-condition in the conversion rule would be stated by an equality
Judgement of the form ' F M = N A 1n stead of an equality condition on
the set of pseudoterms This equality judgement would then be axiomatised 1n
such a way that ' W M = N A holds only if there 1s a reduction-expansion
path from M to N that passes through the set of well typed terms of type A 1n
I' Obviously, this 1s also the intended meaning of the equality in the conversion
rule of a Pure Type System If '+ A, B Type and A =g, B, then 1t should be
the case that the equality of A and B can be established via a path that passes
through the set of [-types only However, when we consider Gn-equality 1t 1s
not clear that this intended meaning 1s also the actual meaning (If one only
considers [-equality this 1s obviously the case, due to CRy on the pseudoterms )

821 DEFINITION The semantical version of a Pure Type System A(S, A, R))
has the following rules The typing rules are (sort), (weak), (var), (II), (A), and
(app) as for ordinary PTSs (To denote that we are in a semantical version we
write F_ i the rules ) The conversion rule s

'--M A T'H.A=B s
'--M B

(convg,)

The judgement ' F_ A = B s 1s generated by

TF_MAM TzCD TH.N C
T+ (A\z A M)N = M[N/z] D|N/1]

(8)

'—M IlzAB
F'F_dyAMy=M llzAB

(n)

FF-M A
(axiom) —————
Fr'F-M=M A
F'k-M=N A

(sym) —M ————
F'F-N=M A

T'F-M=N ATF._.N=Q A
TH-M=Q A

(trans)
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'~ A=A4" sy T\TAF_B=B" g
(Tl-eq) if (81, 82,83) € R,
' NIz AB=IIz A’ B’ s;

'te A=A sT)zAF_M=M BTF_TIzAB s

(A-eq) —
T'Fe A AM=XMAM IlzAB
CH_M=M TNIzAB 'F_N=N" A
(app eq) —
T+- MN = M'N' B[N/z]
't M=M A TF_A=B s
(conv-eq)

r-eM=M B

We would like to be able to show the equivalence of our version of the syntax
of Pure Type Systems and the semantical version 1n the sense that, f (15 a PTS4,
and (- the semantical version of ¢, then the following holds

T M A
TN A}eaTh_ M=N A
M =5, N

Now, the method for proving this 1s by showing that CONg, holds for { as 1t
was expressed 1n Conjecture 8 14

THc M A
PhM' A b= M| M
M =g, M’

Let us focus on a possible proof of the equivalence of { and (= to see why CONg,
15 so essential The implication from right to left should be relatively straightfor-
ward by showing that, if T'-.. M =N A, then M =g, N as pseudoterms and
F'ke. M A 1t 1s obvious from the rules of (- that the first holds The second
1s by induction on the dervationof 'F._. M =N A

The implication from left to right 1s more interesting It implies the following
statement

(1)If M and N are two terms that are typable with the same type 1n a context,
then they are equal via a #n-reduction-expansion path
through the well-typed terms

It 1s even 1mpossible to imagine that one could prove the implication (=) without
having first proved (1) Obviously, the way to prove (1) i1s by proving CONg,
This stresses the importance of the final open problem (8 1 4) that we raised
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Samenvatting

D1t proefschnft behandelt het verband tussen logica’s en getypeerde lambd-
calcull, 1n het biyzonder door bestudering van de zogenaamde ‘formules-als-types’
inbedding Deze inbedding geeft een betekenis aan logische bewyzen (het ware
musschien beter te spreken van ‘afleidingen’) in termen van getypeerde lambda
termen Een belangrijk gevolg hiervan 1s dat de bewijzen een getrouwe lineaire
representatie kriygen in een formeel systeem Dit heeft aanleiding gegeven tot
belangrijke toepassingen, allen gebaseerd op de mogelijkheid tot het mampuleren
van bewijzen binnen een formeel systeem Men denke hierbiy aan de computer-
verificatie van bewizen en aan de mogeljjkherd om uit een bewys van een uit
spraak van de vorm Vz 3y ¢(z,y) een algontme te extraheren dat voor iedere z
een y berekent waarvoor ¢(z,y) geldt In dit proefschrift wordt met name gekeken
naar de formules-als-types inbedding zelf en tevens worden de bybehorende sys-
temen van getypeerde lambda calculus uitgebreid bestudeerd Slechts zidelings
wordt 1n de hoofdstukken 3 1 en 6 1 enige aandacht besteed aan de toepassingen

De formules-als-types inbedding werd voor het eerst formeel beschreven in
[Howard 1980], die ook de eerste was die de terminology ‘formulas-as-types' ge-
brukte Het manuscript van dit artikel dateert al wit 1968 en veel van de
ideeen uit dit werk zyn nog ouder en gaan terug tot Curry (zie biyvoorbeeld
[Curry and Feys 1958]) Howard stelt zich met name tot doel een interpretatie
te geven van de intuitiomstische logische voegtekens volgens de zogenaamde
Brouwer Heyting-Kolmogorov (BHK) interpretatie  Volgens deze BHK inter
pretatie (zie byvoorbeeld [Troelstra and Van Dalen 1988]) wordt een voegteken
verklaard door te zeggen wanneer lets een bewijs 1s van een uitspraak die opge-
bouwd 1s met behulp van dat voegteken Howard geeft een formele semantiek van
inturtionistische bewiyzen 1n termen van een getypeerde lambda calculus door een
interpretatie te geven van de introductie en eliminatie regels van de voegtekens
De introductie regels voor D en ¥ corresponderen bijvoorbeeld met A-abstractie
en de eliminatie regels voor D en V met applicatie Het werk van Howard 1s later
verfiynd en uitgebreid door onder andere Martin-Lof en Girard

Een andere benadering werd gekozen door de Bruyyn in het Automath project
[de Bruyn 1980], die onafhankelijk van Howard een soort van formules-als-types
inbedding definieerde Deze inbedding heeft een andere vorm, met name vanwege
het feit dat de Bruyn niet gericht was op bewyjstheoretische bespiegelingen maar
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op een veel praktischer doel het formaliseren van wiskundig redeneren op een
computer Het verschil in vorm zit hem erin dat men miet zoekt naar getypeerde
lambda calculi die getrouw met logische systemen corresponderen, maar dat men
een systeem probeert te vinden dat kan dienen als raamwerk (logical framework)
voor wiskundig redeneren Dit raamwerk zal dus vry ‘kaal’ ziyn en alleen die
onderliggende principes bevatten waar alle wiskundigen het over eens zyn In de
eerste plaats 1s de Bruyns werk dus een poging om deze onderliggende principes
boven tafel te kriygen, met als mogeljk gevolg dat, zodra deze principes gefor-
maliseerd z1n, deze geimplementeerd kunnen worden als een programma voor
verificatie van wiskundige redeneringen

Uiteraard kunnen ook de lambda-calculi a la Howard geimplementeerd wor-
den Met name voor de toepassing van het extraheren van algoritmen uit bewyjzen
blijken deze systemen het meest geschikt te zyyn Het 1s uiteraard ook mogelijk
om beide benaderingen te gebruitken binnen een systeem

Het voornaamste deel van dit proefschrift 1s gewyd aan de formules-als-types
inbedding a la Howard Interessante vragen hierby) zijn of de inbedding volledig 1s
en 1n hoeverre z1j een 1somorfisme 1s  Volledigheid van de inbedding betekent hier
dat voor alle formules ¢ uit de logica, als er een term 1s van type @ in de getypeerde
lambda calculus, dan is  bewysbaar in de logica Isomorphie wil zeggen dat de
inbedding een structuur behoudende bijectie op het niveau van bewijzen 1s Het 18
ook van belang eigenschappen van de getypeerde lambda-calculi zelf af te leiden
In de eerste plaats om met behulp van die eigenschappen 1ets over de formules-
als-types interpretatie te zeggen, maar verder zin deze eigenschappen ook van
belang voor de implementatie van de calculus Tot slot hebben z1) vaak ook
belangrijke corollana 1n de logica’s

De twee belangrijkste van deze eigenschappen ziyn confluentie en normalisatie
Zowel 1n de logische taal (zeker als die hogere orde 1s) als op de bewjzen 1s er
een notie van reductie en een daaruit voortvloeiende notie van gelykheid In de
logische taal worden deze meestal gerepresenteerd door de 3- (of S7-)reductie en
gelykheid Deze wordt vaak de definitionele gelijkheid van de taal genoemd De
gelykheid op afleidingen komt voort wit de reductie-relatie die bestaat uit het
ehmineren van sneden Nu s het zo dat in de bybehorende getypeerde lambda
calculi zowel de definitionele gelykheid als de gelyjkheid op afleidingen gerepre
senteerd worden door 3 of (7 gelykheid (afhankelijk van wat men precies als
definitionele gelyykheid in de taal neemt en hoe men precies de notie van snede
definieert ) De confluentie eigenschap (die zegt dat twee termen die gelyk zyn
ook een gemeenschappelyk reduct hebben) 1s van vitaal belang om te laten zien
dat niet alle termen aan elkaar gelijk zyn  De normalisatie eigenschap (die zegt
dat 1edere term reduceert naar een term in normaal vorm, 1 e een term die niet
verder gereduceerd kan worden) 1s van vitaal belang om de consistentie van een
(logische) theorie te laten zien

D1t proefschnft 1s opgebouwd uit de volgende componenten

Hoofdstuk 2 geeft een overzicht van logische systemen, van eerste orde proposi-
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tielogica tot en met hogere orde predicatenlogica, in de klassieke en intuitionis-
tische varianten We beschrijven en bewijzen eigenschappen en verbanden zoals
beslisbaarheid en conservativiteit

Hoofdstuk 3 geeft een gedetailleerde bescrijving van de formules-als-types
inbedding, zowel die a la Howard als die & la. de Bruiyjn  We geven een gedetailleerd
bew1s van de 1somorfie van eerste orde predicatenlogica en een corresponderende
getypeerde lambda calculus

In Hoofdstuk 4 bestuderen we een algemeen raamwerk voor de beschriyving
van getypeerde lambda-calculi, de zogenaamde ‘Pure Type Systems’ We bewi-
jzen een reeks eigenschappen voor deze systemen en geven voorbeelden van Pure
Type Systems die corresponderen met logica's uit Hoofdstuk 1

In Hoofdstuk 5 bestuderen we de confluentie van Orn-reductie in getypeerde
lambda calculh Confluentie van §-reductie 1s relatief eenvoudig, maar voor g7 1s
het algemene probleem verrassend moeilyk Het algemene resultaat dat we hier
bewijzen 1s dat confluentie geldt voor A7 als het Pure Type System normalizerend
18

Hoofdstuk 6 gaat over de Calculus of Constructions (CC), een getypeerde
lambda-calculus gedefinieerd door Coquand en Huet waarin de hogere orde log-
1ca 1ngebed kan worden door middel van de formules-als-types inbedding We
bestuderen CC en zyn fiynstructuur en de inbedding van logica in (subsystemen
van) CC

Hoofdstuk 7 geeft een gedetailleerd bewys van sterke normalisatie van (B7-
reductie in CC (Sterke normalisatie betekent dat er geen oneindige reductie
paden zin )

Tenslotte bespreken we in Hoofdstuk 8 nog een aantal vermoedens die naar
voren komen naar aanleiding van de bewyzen van confluentie en normalisatie
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Stellingen

1 Definieer de afbeelding [—] van de volle één-soortige eerste orde predica-
tenlogica naar de hogere orde propositielogica als volgt

[I] = I,

[Rt1  ta] = R[] [tal,
beoy] = [o]D[¥]
p&y] = [o] &[¥],
vyl = [o]V[¥],

o] = -],
Mz o] = Vz g,
Bz ] = 3z(y

Dus byvoorbeeld [Vz Pr O Pzr] =Vz Pz D Pz (De z aan de linkerzyjde
15 een objectvariabele, de £ aan de rechterzide een propositievariabele
Evenzo 1s de R aan de linkerzijde een relatiesymbool, de R aan de rechter-
21)de een hogere orde variabele ) In feite 1s het beretk van de afbeelding
[~] een zeer kleine uitbreiding van de tweede orde propositielogica

De afbeelding {—] 1s getrouw maar met volledig

2 Er 1s geen fixed point combinator in het Pure Type System AU. (Met
dank aan Benjamin Werner )

3 De hogere orde propositielogica (PROPw) 1s een conservatieve witbrei-
ding van de tweede orde propositielogica (PROP2) Het bewys maakt
gebruik van het feit dat complete Heyting algebra's een getrouw en vol-
ledig model voor PROP2 vormen
Als A een verzameling formules en  een formule van PROP2 15 en
A Fpropw ¢ met afleiding ©, dan 1s het 1n het algemeen niet waar dat
de normaal vorm van ©, verkregen door middel van snede-eliminatie,
een afleiding van A Fprop2 ¢ 18
In getypeerde lambda-calculus komt dit overeen met de volgende twee
feiten Laat ' een context en o een type van A2 zyn Dan

Tk M o # Thkynf(M) o,
F}—,\WM‘O' = HN[F}",\QN 0]

Het 1s daarom niet verwonderlyk dat er tot nu toe geen zuiver syntactisch
bewy)s van de conservativiteit van PROPw over PROP2 1s gevonden

4 De beperking van de getypeerde lambda-calculus met recursieve typen
Au tot de calculus Ap*, waar alleen p-abstracties over positieve type
schema’s zi)n toegestaan, 1s geen echte beperking Voor 1eder type o van
A kan een type o’ van Aut geconstrueerd worden zodat 0 & ¢’ Daaruit
volgt dat alle lambda termen getypeerd kunnen worden in Aut
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Het bewys van Corollarium 15 1 5 1n [Barendregt 1984] 1s miet volledig
Het onderdeel (=) dat zegt

M heeft een §-nf = M heeft een G7-nf

1s inderdaad triviaal, maar het 1s niet waar dat 7 contracties geen nieuwe
redexen kunnen creeren

Het 1s bekend dat het in de Calculus of Constructions niet mogelyk 1s
0 # 1 te bewyzen (0 en 1 zyn hier de polymorfe Church numerals )
In de inconsistente systemen Ax, AU~ en AU kan 0 # 1 natuurlyk wel
bewezen worden, maar zelfs met een bewys 1n normaalvorm

Zy; AN het Pure Type System met G7 conversie gedefinieerd door

S = N,
A N x N,
R = NxNxN

Als voor AN de Church Rosser eigenschap voor Gn-reductie (CRg,) geldt,
dan geldt CRg, voor alle Pure Type Systems

De relatie —»4 met
t =4 u als t »gt' en u1s een domein van t' voor zekere t',

1s 1n het algemeen niet welgefundeerd op de verzameling van welgety-
peerde termen van een Pure Type System (Een domewn van t' 1s een
term die 1n t' voorkomt als het type van een A-abstractie )
Dit 1s problematisch voor een mogelyjk bewys van confluentie van 37-
reductie 1n Pure Type Systems die niet normaliserend zijn

Naast het verschil in inkomen 1s het belangrijkste verschil tussen AIO’s
en oude-styl promovend1 dat de eerste, naast de taken van de oude stil
promovend), ook nog de verphichting hebben onderwys te volgen De
AIO’s moeten met van de universiteiten eisen dat ze onderwijscursussen
verzorgen ter compensatie van het financiele offer In plaats daarvan
moeten ze proberen de onderwijsverplichtingen zo laag mogelijk te hou-
den

Het hebben van een ervaring van diep inzicht 1s niet hetzelfde als het
hebben van diep inzicht Het eerste kan op diverse manieren bereikt
worden, het tweede alleen door middel van serieuze studie









