
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/146468

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/146468

H E R M A N GEUVERS

tri
•Ρ

>

о
w
С
<

in

η

ел

LOGICS AND TYPE SYSTEMS

. -

*< .-V

'

• *

•

Η

ел
сл

СЧ

Logics and Type Systems

een wetenschappelijke proeve op het gebied van de
wiskunde en informatica

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Nijmegen,

volgens besluit van het College van Decanen
in het openbaar te verdedigen
op dinsdag 14 september 1993,

des namiddags te 3.30 uur precies

door

JAN HERMAN GEUVERS

geboren 19 mei 1964 te Deventer

druk: Universiteitsdrukkenj Nijmegen

Promotor: Professor dr. H. P. Barendregt

Logics and Type Systems

HERMAN GEUVERS

Cover design Jean Bernard Koeman

C1P-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Geuvers, Jan Herman

Logics and type systems / Jan Herman Geuvers [S 1

s η] (Nijmegen Universiteitsdrukkerij Nijmegen)
Proefschrift Nijmegen Met ht opg ,reg
ISBN 90-9006352-8
Trefw logica voor de informatica

iv

Contents

1 Introduction 1

2 Natural Deduct ion Systems of Logic 7
2 1 Introduction 7
2 2 The Logics 8

2 2 1 Extensionality 15
2 2 2 Some useful variants of the systems 16

2 3 Some easy conservativity results 19
2 4 Conservativity between the logics 24

2 4 1 Truth table semantics for classical propositional logics 27
2 4 2 Algebraic semantics for intuitionistic propositional logics 32
2 4 3 Kripke semantics for intuitionistic propositional logics 38

3 Formulas-as-types 43
3 1 Introduction 43
3 2 The formulas-as-types notion à la Howard 44

3 2 1 Completeness of the embedding 52
3 2 2 Comparison with other embeddings 56
3 2 3 Reduction of derivations and extensions to higher orders 56

3 3 The formulas-as-types notion à la de Bruijn 60

4 Pure Type Systems 73
4 1 Introduction 73
4 2 Definitions 75
4 3 Examples of Pure Type Systems and morphisms 80

4 3 1 The cube of typed lambda calculi 80
4 3 2 Logics as Pure Type Systems 84
4 3 3 Morphisms between Pure Type Systems 88
4 3 4 Inconsistent Pure Type Systems 91

4 4 Meta theory of Pure Type Systems 93
4 4 1 Specifying the notions to be studied 94
4 4 2 Analyzing /3r/-equahty on the pseudoterms 94
4 4 3 A list of properties for Pure Type Systems 101

ν

VI CONTENTS

5 C R for βη 117
5 1 Introduction 117

5 2 The proof of C R ^ for normalizing systems 117
5 3 Discussion 123

6 The Calculus of Constructions 127
6 1 Introduction 127
6 2 The cube of typed lambda calculi and the logic cube 128
6 3 Some more meta-theory for CC 130
6 4 Intuitions behind the Calculus of Constructions 135
6 5 Formulas-as-types of logics into the cube 139

6 5 1 The formulas-as-types embedding into CC 140
6 5 2 The formulas as-types embedding into subsystems of CC 142

6 5 3 Conservativity relations inside the cube 150
6 6 Consistency of (contexts of) CC 155

6 7 Formulas about data-types in CC 160

7 SN for βη in C C 165
7 1 Introduction 165

7 2 Meta theory for CC with βη conversion 165
7 3 The proof of SN for βη in CC 167

7 3 1 Obtaining SNßn for CC from S N ^ for ¥ω 168
7 3 2 Strong Normalization for ,Ö7?-reduction in Fw 177

8 Discussion 185
8 1 Confluence and Normalization 185
8 2 Semantical version of the systems 187

Acknowledgements

First of all I would like to thank my supervisor Henk Barendregt, not only for
creating a stimulating research environment during the last four and a half years
but also for letting me find my own way in the jungle of interesting subjects of
research But maybe most of all I should thank him for sharing his knowledge
with me

I am also very grateful to all those other researchers that I have been able to
talk to and to listen to Especially the contact with (in reverse alphabetical order)
Benjamin Werner, Marco Swaen, Thomas Streicher, Randy Pollack, Christine
Paulin, Mark-Jan Nederhof, James McKinna, Zhaohui Luo, Bart Jacobs, Philippa
Gardner, Gilles Dowek, Thierry Coquand, Stefano Berardi, Bert van Benthem
Jutting, Erik Barendsen and Thorsten Altenkirch has been both very pleasant
and very fruitful In an earlier stage the contact with Wim Veldman has been very
important his lectures have guided me into the field of logic and have stimulated
my interest in foundational issues

In particular with respect to the contents of this thesis, I would furthermore
like to thank the manuscript committee, consisting of Rob Nederpelt, Jan-Willem
Klop and Thierry Coquand, for their judgement Special thanks to Rob Neder
pelt for his detailed comments on part of an earlier version of this work and to
James McKinna for his valuable comments on English, contents and typos Erik
Barendsen deserves a very special thanks without his knowledge of IATgX and
his willingness to always answer my technical questions, this thesis would not be
as it is now

A pleasant working environment is very valuable and almost a necessary con
dition for a good result I would therefore like to thank the people from our
faculty that have made work pleasant, especially those from the research groups
'foundations of computing science' and 'parallelism and computational models'

Last but not least I would like to thank Monique for her support during the
ups and the downs of the work on this thesis

vu

CONTENTS

Chapter 1

Introduction

In this thesis we are concerned with systems of logic, systems of types and the
relations between them The systems of types should be understood here as
systems of typed lambda calculus, so in fact this thesis takes up the study of the
relation between typed lambda calculus and logic This is not a new subject
a lot of research has been done, most of which is centered around the so called
'formulas-as-types embedding' from a logical system into a typed lambda calculus
This embedding will also be the main topic of this thesis

The first to describe the formulas-as-types embedding was Howard, who also
introduced the terminology 'formulas-as-types', [Howard 1980] The manuscript
of this paper goes back to 1968 and a lot of ideas behind the embedding go
back even further, especially to Curry (see [Curry and Feys 1958]), who was the
first to note the close connection between minimal proposition logic and combi
natory logic The article of Howard is mainly concerned with giving a formal
explanation of the intuitionistic connectives In this way it is an attempt to
formalize the Brouwer-Heyting-Kolmogorov (BHK) interpretation of the intu
itionistic connectives, as it can be found in the original work [Kolmogorov 1932]
and [Heyting 1934], but also in the recent book [Troelstra and Van Dalen 1988]
In that interpretation a connective is explained in terms of what it means to have
a proof of a sentence built up by that connective Howard gives a formal inter
pretation of proofs (and hence of connectives) in terms of typed lambda calculus,
by giving an interpretation to the introduction and elimination rule of the logic
For Э and V, the introduction rule corresponds to λ abstraction and the elimi
nation rule to application The ideas in [Howard 1980] were used and extended
further by Martin-Lof in his Intuitionistic Theory of Types [Martin-Lof 1975],
[Martin-Lof 1984] and by Girard who extended it to higher orders [Girard 1972],
[Girard 1986], [Girard et al 1989] All this work can be united under the heading
of 'proof-theory'

Another approach was taken in the research project Automath by de Bruijn
[de Bruijn 1980], who independently defined a kind of formulas-as-types embed
ding from logic into typed lambda calculus which is of a different nature and,

1

2 Introduction Ch 1

maybe more important, which has a different purpose The difference in nature
lies m the fact that the typed lambda calculus is not meant to represent one
particular system of logic as close as possible, but to serve as a framework for
mathematical reasoning in general The purpose of this work is to clarify and
formalize the underlying principles that all mathematicians use and agree on In
a sense this is an attempt to put on stage the part of mathematics that comes
'before logic', the part that every mathematician is informally aware of, such as
how to use and give definitions A practical off-shoot of this program is the pos
sibility of doing mathematics on a computer by implementing the formal system
of typed lambda calculus Let's point out here that the difference between the
two approaches is not always as sharp as this discussion might suggest It is very
well possible to use both approaches in one system

The most interesting part of the various embeddings is not that formulas are
interpreted as types, but that proofs are interpreted as terms (which obviously
comes as a consequence of 'formulas as-types', if we understand a type as a set in
some weak sense) This makes that the proofs become first class citizens in the
type system On the one hand this provides for a whole world of new options, like
the possibility to formalize meta-reasoning (reasoning about proofs) in the system
or the possibility to let terms depend on proofs (like a function that extracts from
a proof of an existential sentence a 'witnessing object' of the sentence) On the
other hand this requires a well-understood notion of what a proof is if we claim
that the terms of some typed lambda calculus represent proofs, this statement
implicitly contains a definition of the notion of proof A workable approximation
of the notion of proof is the notion of 'derivation' in a specific formal system of
logic

The formulas-as-types embedding described by Howard goes from first order
predicate logic in natural deduction style to an extension of the simply typed
lambda calculus It yields an isomorphism on the level of proofs (derivations), if
we identify derivations that only differ in some specific trivial way The systems
described by de Bruijn provide the possibility to embed a large variety of formal
logics, hence we can not expect to have an isomorphism on the level of deriva
tions only some of the proof-terms correspond to a derivation in the logic In
both systems, the interpretation of proofs-as-terms does provide an equivalence
relation on the proofs, signifying which derivations are to be understood as being
equal

We have already mentioned as a practical application of the formulas-as-types
embedding the possibility of doing mathematics on a computer This was one of
the main starting points for de Bruijn in setting up the Automath project In
Automath the computer was mainly used as a proof-checker the user types in a
proof (in the form of a λ-term) and the formula it is supposed to be proving (in
the form of a type) and the computer checks whether the proof proves the for
mula, that is whether the term is of the given type Later, other research groups
enlarged the job of the computer by developing interactive theorem provers The

3

pioneering work on LCF [Gordon et al 1976] has been very important here, be
cause it has lead to the interactive meta-language ML This language is very well
suited for implementing a typed lambda calculus that is to be used for interac
tive theorem proving, because it allows the user to program tactics for proof-
search Important developments in the field are the Calculus of Constructions
[Coquand 1985] [Coquand and Huet 1985], [Coquand and Huet 1988] and its re
cent extension Coq [Dowek et al 1991], which are implemented in a language
closely related to ML Further we want to mention the work in Edinburgh on
ECC (Extended Calculus of Constructions, [Luo 1989] and its implementation
in ML 'LEGO' [Luo and Pollack 1992] and the work at Cornell on the system
Nuprl [Constable et al 1986], which is an implementation of Martin-Lof's type
theory The work on LCF itself grew into the system HOL [Gordon 1988], a proof-
assistant for classical higher order logic, which does not use the formulas-as-types
embedding but implements Church's simple theory of types [Church 1940]

Another important practical application of the formulas-as-types embedding,
in particular the one described by Howard, is the possibility to extract programs
from proofs This conforms to the BHK-interpretation of connectives and proofs
in constructive mathematics, according to which, for example, a proof of the
sentence Vx e АЗу Ε Βφ(χ, у) contains a construction of an element ba E В
for every о E A such that φ(α, ba) holds for every о € A. In the formulas-
as-types interpretation of Howard, the proof-term contains an algorithm in the
form of a λ-term This was extended to higher order logic by Girard, who also
emphasized the consequence of this approach, namely that cut-elimination in the
logic corresponds to evaluation of a program As a calculus for typing the λ-terms
that were extracted from the proofs he introduced the systems Fn (n > 2) and Fc<;
[Girard 1972], which can be seen as very rudimentary programming languages.
Also Martin-Lof made contributions to the idea of extracting programs from
proofs, not by going to higher orders but by adding an inductive type forming
operator [Martin-Lof 1984]

The programs-from-proofs notion has been extended and refined a lot over the
years, notably by the Projet Formel group in Paris (Calculus of Constructions and
Coq, [Coquand and Huet 1985], [Coquand and Huet 1988], [Mohnng 1986] and
[Paulin 1989]), the Nuprl project at Cornell [Constable et al 1986], the Equipe
de Logique group in Pans [Knvine and Pangot 1990], [Pangot 1992] and the re
search group in Goteborg [Nordstrom et al 1990] The crucial feature of the
programs-from-proofs approach is that the proofs are preserved in the formal
system in some 'algorithmic' form If one just wants to do mathematics on a
computer this is less important, because it will often be sufficient to know that
a formula is provable Note however that also in the latter case it can be an
advantage to preserve proofs, for example if one wants to set up a library of
mathematics which is reproducible in book form

In this thesis we are mainly concerned with the formulas-as-types embedding
itself, with some emphasis on the Howard approach So we do not for example

4 Introduction Ch 1

discuss technical details of the programs-from-proofs notion, nor do we discuss
technical problems that arise when trying to set up a library of mathematics
The reader can find a detailed description of the logics that are subject to the
formulas-as-types interpretation These logics are chosen in such a way that we
can easily define a collection of typed lambda calculi for which the embedding
is an isomorphism on the derivations of the logic (modulo some easy equivalence
relation) Then we discuss the two approaches to formulas-as-types by studying
some examples Further we study and prove Strong Normalization and Conflu
ence of the reduction relation in the typed lambda calculi, which are important
properties for these systems Most of the typed lambda calculi that are looked
at in this thesis are instances of so called 'Pure Type Systems' This is a general
framework for describing typed lambda calculi that will be discussed in detail
here Most of the meta-theory that one would like to have for the typed lambda
calculi can be proved once and for all for the whole collection of Pure Type
Systems

An important issue of the formulas-as-types embedding is its completeness on
the level of provability even if there is no isomorphism on the level of derivations,
it would be really undesirable if the typed lambda calculus would prove more
sentences than the logic This issue will be discussed in detail for the Calculus of
Constructions On the one hand the embedding is not complete, but on the other
hand this is not so dramatic, because there is a completeness result for sentences
of a specific form

We give a short overview of each of the chapters

1 Chapter 2 describes the logics in a generic way, from first order predicate
logic to higher order predicate logic, and relates them to more standard
presentations of these logics The logics are minimal in the sense that
we only have Э and V Also the propositional variants will be described
We discuss the conservativity relations between these systems The most
interesting result in this Chapter is probably the proof of conservativity of
higher order propositional logic over second order propositional logic (both
classical and intuitionistic) The proof for the intuitionistic case is given by
describing a semantics in terms of complete Heyting algebras As far as we
know this is a new result

2 Chapter 3 discusses the formulas-as types embedding Here we distinguish
two approaches, one 'à la Howard' and one 'à la de Bruijn' We give a de
tailed description of the embedding of minimal first order predicate logic in
a typed lambda calculus (à la Howard) and show completeness on the level
of derivations This means that the embedding constitutes an isomorphism
between the derivations in the logic and the terms in the typed lambda cal
culus Then we discuss the formulas-as-types embedding (à la de Bruijn)
in Automath systems and in LF [Harper et al 1987]

5

3 Chapter 4 treats the notion of 'Pure Type System' We prove a list of
meta-theoretic properties and give examples of instances of Pure Type Sys
tems The properties we prove are the ones that are well- known from
[Geuvers and Nederhof 1991], but now extended to Pure Type Systems
with /^η-reduction

4 In Chapter 5 we give a proof of Confluence of βη reduction in normalizing
Pure Type Systems Confluence of /3-reduction is quite easy, but Confluence
of ^-reduct ion is remarkably complicated Confluence in fact states the
consistency of the type system as a calculus (in the sense that it shows
that two different values are indeed distinguished by the system) The
importance of this property lies further in the fact that it is one of the
main tools for proving decidability of equality and from that decidability
of typing (Under the formulas-as-types embedding, to decide whether a
term is of a certain type is the same as to decide whether a proof proves a
certain formula)

5 In Chapter 6 we discuss the Calculus of Constructions (CC) and its fine
structure in the form of the so called 'cube of typed lambda calculi' We
study the formulas-as types embedding from (subsystems of) higher order
predicate logic into (subsystems of) CC We also look at conservativity with
respect to provability between the type systems of the cube A new result
here is the conservativity of Fw over F, which comes as a Corollary of the
fact that higher order propositional logic is conservative over second order
prepositional logic, which result was proved m Chapter 2

6 In Chapter 7 we give a proof of Strong Normalization of /îrç-reduction in
CC (Strong) Normalization is the other main tool for proving decidability
of equality and from that decidability of typing It is also the main tool for
showing consistency of a type system as a logic (in the sense that not all
types are inhabited by a closed term) To be a bit more precise the con
sistency of CC itself is quite easy, but if one wants to show the consistency
of a context of CC, (Strong) Normalization comes in

7 In Chapter 8 we briefly discuss some issues that have been left and list some
open problems that may be of interest for further study

Some of the work reported in this thesis has already appeared somewhere
or will do so later, notably Chapters 4 and 7, which is can an extension of the
work in [Geuvers and Nederhof 1991] to the case that includes r?-reduction (In
[Geuvers and Nederhof 1991] we only considered /3-reduction) Chapter 6 has
appeared in a slightly different form (with some mistakes) as [Geuvers 1992] and
both Chapters 4 and 6 contain work that has also been reported in [Geuvers 1990]
and [Geuvers 199+]

6 Introduction Ch. 1

Chapter 2

Natural Deduction Systems of
Logic

2.1. Introduction

In this chapter we want to discuss the logical systems that will be used in the
context of the Curry-Howard isomorphism In the original paper by Howard
[Howard 1980] on this formulas-as-types isomorphism, there are interpretations
of all the standard connectives of intuitionistic logic As we are mainly inter
ested in second and higher order systems (in which cases all connectives can be
coded in terms of Э and V), we shall restrict our attention mainly to D and V
The Curry-Howard isomorphism gives an interpretation of derivations as lambda
terms in a typed lambda calculus, but it only does so for derivations in natu
ral deduction style (As already pointed out, the D- and V-introduction rules
correspond to λ abstraction and the D and V-ehmination rules correspond to
application) Consequently, the representation of our logical systems will also be
in natural deduction style

This doesn't yet settle the whole question of what the precise formulation of
the system should be If we would only be interested in provability the choice
for the formalization of the logic should be determined by the questions about
provability that we want to tackle In our case however, we are interested in
the formal proofs (derivations) themselves and it depends heavily on the formal
presentation that we have chosen, how many distinct derivations of a proposition
we have (This is also a reason for not choosing Gentzen's sequent calculus to
describe the formulas-as-types embedding, because in that system distinctions
between derivations are often due to an inessential difference in bookkeeping)
So our choice for the formal system of logic will be determined by the formulas-
as-types interpretations of the proofs in typed lambda calculus that we want to
do later

7

8 Natural Deduction Systems of Logic Ch. 2

2.2. T h e Logics

One issue that we want to stress here is the choice of the so called 'discharge
convention' that has to be made. This issue was drawn to our attention by the
book of [Troelstra and Van Dalen 1988], where the crude discharge convention,
CDC, is used throughout the book, except when it comes to the formulas-as-
types interpretation. Let's briefly state the problem by an example in minimal
implicational propositional logic PROP, which we shall describe in two formats,
to be called РЫОРд and PROPB, both natural deduction style. This example
also shows how our choice for the formalisation of the logic is determined by
the Curry-Howard isomorphism. In fact the isomorphism clearly visualizes the
differences between the formalizations.

2.2.1. DEFINITION. The systems PROPA and PROPB have as formulas the ele
ments of the set FORM, given in abstract syntax by

Form ::= Var | Form Э Form,

where Var is a countable set of variables.
The derivation rules of PROP¿ are the following. (In the rules, φ and ф are
formulas and Γ is a finite set of formulas).

(ax) P¡T^ if Ψ e Γ

(D.I) i l i — Ι (э-Е) -—
ГЬ φΌφ ТЬф

The derivation rules of P R O P B are the following, (φ and ф are formulas).

φ Э ф

The formula φ in the Э-І rule is said to be discharged (or cancelled). The [φ] does
not refer to one single occurrence of φ, but to arbitrary many (zero or more) tp's.
With the derivation rules one can form deduction trees, starting from a single
formula being the most basic form of a deduction tree. Then we say that Γ l· φ
is derivable if there is a derivation tree with root φ and all open formulas of the
tree in Γ. (A formula is open in a derivation tree if it occurs as a leaf in non
discharged form).
In practice the name of the rule will of course not be mentioned explicitly.

(> E)
φ D Φ ψ

Φ

Sec 2 2 The Logics 9

In the system PRC-Рд there is in general no canonical node in a derivation
tree to which a specific cancelled formula corresponds Look for example at the
following derivation

2 2 2 EXAMPLE

Ы

The discharging of φ can ambiguously either belong to the first or to the
second use of the O-I rule To make the proofs more readable this ambiguity is
often solved by writing a number on top of the discharged formula and writing the
same number besides the line where the discharging took place In that case the
derivation tree above in fact corresponds to two different derivation trees One
can also solve the ambiguity by using the so called crude discharge convention
(CDC), which says that at the Э-І rule in the definition of PROPB all open
occurrences of φ are discharged If we adopt CDC, the derivation tree above is
canonical φ is discharged at the first Э-І rule

In view of the Curry-Howard isomorphism, it is preferable to choose for
the discharge convention which attaches a number to the discharged formula-
occurrences and to the rule where the formula has been discharged This is not
for reasons of soundness but for the completeness of the Curry-Howard embed
ding The example above represents two proofs of φ D φ D φ λχφ \у* x (the
discharged φ corresponds to the second D-I) and \χ* \yv у (the discharged ψ
corresponds to the first D-I) If the formal logical system has CDC, only the
latter term can be obtained as the interpretation of a proof This is why, in
[Troelstra and Van Dalen 1988] CDC is dropped when discussing the formulas-
as-types isomorphism

The system РРіОРд already has a sequent-like notation that is familiar from
typed lambda calculi, but it is nevertheless more inconvenient then P R O P B for
describing the Curry-Howard isomorphism (And therefore it is even more re
markable that this is the kind of formalization that is often used for describing
the isomorphism) The problem lies partly in the fact that the judgements Γ h φ
are not really sequents in the sense of Gentzen, because in that case the Γ would
have to be a (ordered) sequence instead of a set We adopt the example above
to the formalism of PROP^ to see what the problem is

2 2 3 EXAMPLE

Μ Ι" Ψ
{φ} h φ э ψ

f- φ D (φ D φ)

10 Natural Deduction Systems of Logic Ch 2

The first application of the Э-І rule sort of 'splits' the assumption φ into two
copies of φ, reading {φ} as {φ} U {φ} It is impossible to recover the two possible
proofs of φ Э φ D φ (λχψ \y* χ and Χχφ \yv у in typed lambda calculus format)
from the derivation above one could say that the first version is obtained by
letting the ψ in the succèdent correspond to the 'right copy' of φ and the second
version by letting the succèdent correspond to the 'left copy' of φ, but this is the
type of forced solution (with no motivation at all in the logic) that we want to
avoid Note that replacing the Э-І rule by the two rules

Γ\-φ Γ\-ψ
(>Ιι) (>I 2) Г\- ipDi¡J Γ\{φ}l·φЭф

to solve this problem is not only very unpleasant but on the other hand doesn't
give the general solution So we conclude that presenting natural deduction in a
way similar to PROP^ is not what we are looking for

In the original paper by Howard [Howard 1980] the defects of РЯОРд do
not appear because there the format of the natural deduction system uses real
sequents, which are of the form Γ l· ψ with φ a formula and Γ a finite sequence of
formulas The rules of first order propositional logic (we call this version PROPc)
are then as follows

2 2 4 DEFINITION The formulas of the system PROPc are the same as for
PROP.4 and PROPB The derivation rules of PROP c are the following (In
the rules, ψ and ψ are formulas and Γ is a finite sequence of formulas, Γ, Δ is the
concatenation of Γ and Δ)

(ax)

(Э-І)

(weak)

гь/1^1

Γ,φ\-·φ

Γl·φ
Τ,φ\-ψ

(Э-Е)

(perm)

Г Ь φ Д Ь і ^ Э ^

Γ, Al· ф

Γ,φ,ф,Al·χ Γ,φ,φ,Al· χ

Γ,φ,φ,Α^Χ Γ > , Δ Η χ

It is clear how a derivation in the system PROPc corresponds to a lambda
term (construction in the terminology of [Howard 1980]) of the simply typed
lambda calculus The weakening rule amounts to an extension of the context
with one new declaration, the permutation rule does not change anything (the
contexts of the simply typed lambda calculus are a kind of 'multisets' of formu
las) and the contraction rule amounts to substituting in the lambda term one free
variable for another Now there are many more derivations then there are distinct
lambda terms of the corresponding type, due to the structural rules of weakening,
permutation and contraction So we can view the Curry-Howard embedding as

Sec 2 2 The Logics 11

splitting up the set of derivations in equivalence classes (Where two derivations

are equivalent if they are mapped onto the same image under the Curry-Howard

embedding) In fact the embedding only takes care of the 'computationally in

teresting' part of the derivation, it extracts the construction from the derivation

and in that sense it is a satisfying formal treatment of the BHK-interpretation

of proofs-as-constructions In our case, however, we do not just want to recover

the construction behind the proof, but also find a unique (up to certain trivial

changes) proof that corresponds to the construction For that purpose, PROPc

is not so convenient as the following example will illustrate

2 2 5 E X A M P L E Look at the following derivations of h φ D φ D φ in PROPc

φ h ψ φ h φ

l· φ D ψ φ,ψ\- φ
(1) — (2)

φ\- φ D φ φ h φ D φ

\- φΟ φ Э φ \- φ D φΌ φ

φ\- Ψ

φ,φ\-φ

ψ, ψ Υ- φ

(3) φ, φ Υ-φ (4) ψ,ψ,ψ\-φ

φ,φΥ-φ

φ\-ψ

φ, φ h ψ

ψ,φ\- ψ

φ Ь φ D φ

Ι- φ D φ D φ φ h φ D φ

\- φ D φ D φ

From the logical derivations it is not very obvious that the first and the third

derivation should be considered equivalent and distinct from the second deriva

tion The Curry-Howard embedding makes this apparent (1) and (3) correspond

to \χψ \ι/φ y, while (2) corresponds to \χφ Xy* χ The situation for derivation (4)

is even more complicated the lambda term it corresponds to depends on which

two occurrences of φ in the sequence φ, ψ, φ have been contracted in the appli

cation of the contraction rule So, disregarding completeness, even to make the

soundness of the embedding work we have to make the contraction rule more ex

plicit, either by annotating in the sequent the formulas that are being contracted

or by restricting the contraction to the last two formula occurrences

From the discussion above it may have become clear that we have a strong

preference for the format of the system РИОРд, with annotations to fix the
formula occurrences that are being discharged at a specific application of a rule

12 Natural Deduction Systems of Logic Ch 2

2 2 6 DEFINITION For η a natural number, the system of nth order predicate
logic, notation PREDn is defined by first giving the nth order language and then
describing the deduction rules for the nth order system as follows

1 The domains are given by

V =B\Pmp\ÇD-*T>),

where В is a specific set of baste domains
We let the brackets associate to the right, so Prop—»(Prop—»Prop) will
be denoted by Prop—»Prop—»Prop and so every domain can be written as
D\—> —*DP—*D, with D\, , Dp domains and D a basic domain or the
domain Prop

2 The order of a domain D, ord(D), is defined by

ord(B) = 1 for ß e ß,

ord(Prop) = 2,

ord(£>i-> -»Dp-»B) = max{ord(A) 11 < г < ρ}, if В 6 В,

ord(D,-» -»Dp—Prop) = maz{ord(Д) 11 < ι < ρ} + 1

Note that ord(£>() = 1 iff D does not contain Prop So the 'functional'
domains (like for example (B—*B)—*B) are of order 1, whereas one might
expect them to be of a higher order or not being part of any of the log
ics This use of the orders confirms however with the formulas-as-types
interpretation that will be studied in the following Chapters The orders
are defined in such a way that in n-th order logic one can quantify over
domains of order < η

3 For η a fixed positive natural number, the terms of the nth order language
are defined as follows (Each term is an element of a specific domain, which
relation is denoted by e)

• There are countably many variables of domain D for any D with
ord(D) < n,

• If M e D2, x a variable of domain D¡ and ord(Di—»£>2) < n, then
\xtDl Mt £>i-+£>2,

• If M € Di-»D2, N t Du then MN e D2,

• If φ e Prop, χ a variable of domain D with ord(D) < n, then VxeD ψ e
Prop

• If ψ t Prop and φ e Prop, then ψ Э Ψ с Prop

The system PREDI is a special case In addition to the rules above we
have as rules

Sec. 2.2 The Logies 13

• There are countably many variables of domain D if ord(D) = 2,

• If M e D2, χ a variable of domain D\ and ord(Di—»D2) = 2, then

\xcDl.M e Di^D2.

The first states that we have arbitrary many predicate symbols. The sec

ond allows the definition of predicates by λ-abstraction, e.g. \x e Β.φ e

ß—Prop.

4. On the terms we have the well-known notion of definitional equality by β-

conversion. This equality is denoted by =. The terms φ for which φ e Prop

are called formulas and Form denotes the set of formulas.

5. For η a specific positive natural number, we now describe the deduction
rules of the nth order predicate logic (in natural deduction style) that allow
us to build derivations. So in the following let φ and ф be formulas of the
nth order language.

(D-I) ; (3-Е)
ψ D ф φ

Φ φ
φ D φ

φ хеБ.ф
(-І) — - — (*) (V-E) iÏteD

ЧхеО.ф φ[ί/χ]

φ
(conv) — if φ = ф

Ψ

The formula occurrences that are between brackets ([—]) in the Э-І rule are
discharged. The superscript г in the D-I rule is taken from a countable set
of indices I. The index ι uniquely corresponds to one specific application
of the Э-І rule, so we do not allow one index to be used more than once.
The use of the indexes allows us to fix those formula occurrences that are
discharged at a specific application of the D-I rule.
(*): in the V-I rule we make the usual restriction that the variable χ may

not occur free in a non-discharged assumption of the derivation.

For Γ a set of formulas of PREDn and φ a formula of PREDn, we say

that φ is derivable from Γ in PREDn, notation Г Ьрн£ 0 п φ, if there is a

derivation with root φ and all non-discharged formulas in Γ.

The system of predicate logic of finite order, notation P R E D O J , is the union of all

PREDn. We follow the usual convention of not writing the number in case of a

first order system, so for PREDI we write PRED.

14 Natural Deduction Systems oí Logic Ch 2

2 2 7 R E M A R K The choice for the connectives Э and V may seem minimal
It is however a well-known fact that in second and higher order systems, the
intuitionistic connectives &, V, -• and 3 can be defined in terms of D and V as
follows (Let φ and ф be formulas)

φ & ф = VaeProp (φ D ф D α) D а,

φ V ф = VaeProp (ψ D α) D (ф D α) D α,

-L = VaeProp а,

^ψ = φ D -L,

3χ e Οφ = VaeProp ÇixtD φ Э a) D а

Similarly we can define an equality judgement (the /^-equality =, the definitional
equality of the language, is purely syntactical) by taking the so called Leibniz
equality for t,q e D,

t=Dq = VPe£>—Prop Pt Э Pq,

which says that two objects are equal if they satisfy the same properties (It is
not difficult to show that =p is symmetric)

It is not difficult to check that all the standard logical rules hold for &i
, V, _L, -ι, 3 and = In the following we shall freely use these symbols

2 2 8 R E M A R K In each PREDn (n > 2), the comprehension property is satis
fied That is, for all φ(χ) Prop with χ = xìt ,xp a sequence of free variables,
possibly occurring in φ (χ, e Д) , we have

3 P e Ζλ— Dp-+Prop 4xeD(<p ~ Pxx xp)

(Take Ρ = λχι e Di λχρ e Dp φ(χ))

The above definition has some peculiarities that we want to bring into the
spotlight We have allowed countably many variables of all domains of order
< 2, which includes for example countably many variables of domain Prop For
first order logic it may seem more natural to allow only variables of domains of
order 1, but the slight extension we give here doesn't do us any harm (It is
a conservative extension) We have also forced the possibility of forming new
predicates by λ-abstraction in first order predicate logic This is unusual (in
second and higher order cases this feature is called 'comprehension') and it has
only been added to make the formulas-as-types embedding complete on the level
of the proofs Finally we do not have constants, but only variables This may
seem strange but it confirms with the feature that we allow variables of domains
of order 2 in first order logic a binary relation on В is represented by a variable
of domain B—»ß-+Prop That we don't have constants is also related to the fact

Sec 2 2 The Logics 15

that in our presentation a logic is not introduced via a similarity type that fixes
the language (mainly by declaring of the constants) Instead what we described
above is more a general presentation of the logic that captures all of the logics-
with-similanty-type

In paragraph 2 3 we show some easy conservativity results to justify the choice
of our 'extended' systems

2.2.1. Extensionality

The definitional equality on the terms is /3-equahty There is no objection to
taking βη equality instead all the properties remain to hold In fact it would
make a lot of sense to do so, especially for predicates, where we tend to view
λ-abstraction as the necessary mechanism to make comprehension work (And
so both Ρ e ß—»Prop and \x e В Px describe the collection of elements ί of
domain В for which Pt holds)

This is related to the issue of extensionality terms of domain D—»Prop are to
be understood as predicates on D or also as subsets of D (an element t being in
the set Ρ t D—»Prop if Pt holds) But if we take this set theoretic understanding
serious, we have to identify predicates that are extensionally equal

(Vf f χ D gx & gx D fx) Э ƒ =D 9 (1)

Obviously, this formula is in general not provable However, in the standard
models where predicates are interpreted as real sets, the formula is satisfied, so it
is an important extension A difficulty is, that extensionality in the form of (1)
is in general not expressible in PREDn we can not express extensionality for ƒ
and g of domain D if ord(£>) = n, because ƒ =D g is not a formula of PREDn (it
uses a quantification over D—»Prop) This means that we shall have to express
extensionality by a schematic rule The most obvious choice is the following

Vx fx D gx Vx gx э f χ φ{/)

ψ{9)

where ƒ and g are arbitrary terms of the same domain Di—» —>£)„—»Prop and
v?(ƒ) stands for a formula φ with a specific marked occurrence of ƒ For reasons
to be discussed presently our choice for the scheme will be a different one, namely
the one given in the following definition

2 2 9 DEFINITION The extensionality scheme, (EXT), is

fx D gx gx D fx ψ{})
(EXT)^ , / (*)

where ƒ and g are arbitrary terms of the same domain D-y—* —*Dn—»Prop and
φ{}) stands for a formula φ with a specific marked occurrence of ƒ (*) signifies

16 Natural Deduction Systems of Logic Ch. 2

the usual restriction that the variables of £ may not occur free in a non-discharged

assumption of the derivations of f χ D дх and of gx D fx.
The extension of a system with the rule (EXT) will be denoted by adding the
prefix E-, so E-PREDn is extensional nth order predicate logic.

N O T A T I O N . For f,g e D = DÌ—* *Dn—»Prop, if quantification over D b . . , Dn

is allowed in the system we can compress the first two premises in the rule (EXT)
to Vx.fx D gx & gx D fx. For convenience this will also be denoted by ƒ ~ D g,
so

ƒ ~D g - Vf. f χ Э gx к gx Э f χ,

where the D will usually be omitted if it is clear from the context.

2.2.10. L E M M A . The extensionahty scheme for D = Prop is admissible in any of

the predicate or propositional logics, ι e.

φΟψ,ψΖ) φ,χ{φ) Η χ(ψ)

is always provable.

P R O O F . By an easy induction on the structure of χ. Η

Of course there is also a scheme for extensionlity of functions:

fx =в gx ¥?(ƒ) . .

Гл W

ΨΚ9)
where ƒ and g are arbitrary terms of the same domain D\—» >Dn—>B (B e В)

and further as in Definition 2.2.9. We shall not be working with this scheme and

hence not introduce it as a new definition. (Note that, if h fx = gx, then

ƒ =βη S)·

2.2.2. S o m e useful var iant s of t h e s y s t e m s

For the systems PREDn of Definition 2.2.6, the scheme (EXT) is equivalent to

the scheme that we gave just before Definition 2 2.9. The reason for taking the

more general scheme lies in the fact that for reasons of semantics we want to look

at slight extensions of the systems in which the two versions of the scheme are not

equivalent, these extensions come into consideration quite naturally when one

notices that the term language of each of the PREDn is a subsystem of the simply

typed lambda calculus, found by restricting to terms below a certain order. So

for an interpretation of the term language one is tempted to take a model of

the full simply typed lambda calculus. (The interpretation of the logic is then

given by describing a binary relation between sets of formulas and formulas.)

The syntactical analogue is to allow the term language to be the full simply

typed lambda calculus and to put the order-restriction only on quantifications.

Then we can show that there is no problem with this extension by establishing a

conservativity result between the two systems.

Sec 2 2 The Logics 17

2 2 11 DEFINITION For L one of our logical systems, say of order n, L based
on the full simply typed lambda calculus, notation LT, is obtained by taking as
description of the term language of Definition 2 2 6 the following

• There are countably many variables of domain D for any D € X>,

• There are countably many constants of domain D for any D € V,

• If M e D2, χ a variable of domain D\, then XxeD\ M e Di~*D2,

• If M e D^D2, N e Du then MN e D2,

• If φ e Prop, χ a variable of domain D with ord(£>) < n, then VxeZ) φ e Prop

• If φ e Prop and ф e Prop, then φ D φ e Prop

One can now do without the last two cases by taking (for D with ord(Z?) <
n) a special fixed constant д e (D—»Prop)—»Prop and similarly a special fixed
constant De Prop—»Prop—»Prop We do not feel that this is useful thing to do, so
we don't do it

By an easy restriction we define nth order propositional logic from nth order
predicate logic

2 2 12 D E F I N I T I O N For η a natural number, the nth order prepositional logic,

notation PROPn, is defined by removing in the definition of the nth order pred
icate logic, the set of basic domains В

2 2 13 L E M M A The rule (EXT) implies (convp^) in prepositional logic, ι e in

E-PROPn,

Ψ =βη Φ =>·" ψ Э Φ

P R O O F We only have to show that if φ —•,, ф, then l· φ D ф (This is so
because of CR for βη for the term language and the fact that φ = φ implies
h φ D ф Now let φ —», ф, say φ = C[\xeD Mx] — » , C[M] = ф Now
M e D—» —»Prop and Mx D (XxtD Mx)x and vice versa by the (conv) rule,
so h C\\xtD Mx] Э C[M] by (EXT) H

The first order predicate and propositional logics are very minimal they do
not have a connective for negation (The second order logics do not either but
in that case intuitiomstic negation can be defined by letting J. = VaeProp a and
-ιφ = φ D J.) This implies that we can not specialize PROP or PRED to a
classical variant Therefore, to define classical first order logic, we have to add
negation to the system (Because of the ideological completeness of { Э , ± } in
classical logic, this is sufficiënt for a treatment of the full classical proposition
and predicate logic For the intuitiomstic case, the extension with just J. is still
quite minimal)

18 Natural Deduction Systems of Logic Ch 2

2 2 14 D E F I N I T I O N First order prepositional and predicate logic with negation,

notation PROP· 1 and P R E D 1 are defined by adding to PROP and PRED the

following

1 A fixed constant -L e Prop,

2 The derivation rule
1

(-L) -
Ψ

The classical variants of the logics can be defined in several ways, by adding

a rule or an axiom We choose for a rule in the first order case and an axiom in

the higher order case

2 2 15 D E F I N I T I O N The classical systems of proposition and predicate logic are

defined by adding the following

1 For P R O P 1 and P R E D 1 by adding the rule

2 For the other systems PROPn and PREDn by adding the axiom

VaeProp -i-ία D a

N O T A T I O N the classical variants of the systems will be denoted by addin g a

subscript с So for example P R O P 1 , P R E D 1 , PROPn c and PREDn c They
also have extensional variants, which are defined by adding the scheme (EXT)
and which are denoted by adding the prefix E-

Just as in the first order case there is a faithful translation of the systems
of classical higher order logic into the systems of intuitionistic higher order
logic This extends the Godei translation The definition we give is the one
in [Coquand and Herbehn 1992], where it was described more generally in the
form of a so called 'A translation' in a typed lambda calculus framework

Let in the following L be one of the intuitionistic logics defined in Definitions
2 2 6, 2 2 12 and 2 2 14, but not one of the minimal systems PROP or PRED,
and let Lc be the classical variant of L, as defined in Definition 2 2 15

2 2 16 D E F I N I T I O N The Godei translation (-) " from the terms of L to itself is
defined inductively by

(i)" 1 = x, for χ a variable or the constant -L,

{PQT = (PUQT,
{XxeD Py = XxeD(Py,

(φ Э ФУ = -<->{<РУ Э ^{4>У,

{VxtD φ)" = V I E D -Н-.(> Г

This mapping extends straightforwardly to sets of formulas

Sec 2 3 Some easy conservativity results 19

So, for example in the higher order systems (±)" = Va -i->a, which is logically
equivalent to 1 In the first order systems we have (±) " = (J. D 1) D -L, which
is also logically equivalent to _L Further it is convenient to remark that (-і-к^)"
is logically equivalent to - |_ i(v?)^

2 2 17 L E M M A We have the following properties for (—)"" Let t and q be terms,
χ a variable and D a domain

1 teD=> {ty e D

2 (t[qlx)T = (tr[(qr/*)

3 t=0q=>(ty=0(qy

P R O O F The first two by an easy induction on the structure of terms The third

by showing the statement for a one step β reduction and applying the Church-

Rosser property Η

2 2 18 T H E O R E M For φ a formula of L,T a set of formulas of L,

г b L c ψ «*. -,-,(гг b L -.-.(г

PROOF From right to left is easy by the fact that (φ)~' is logically equivalent to

φ in classical logic

From left to right is by induction on the derivation, using Lemma 2 2 17 One

also uses the general facts

-i-i(v? Э ijj)\-L φ Э —·—1-0

and
-i-i(Vi£U φ) h/, WxeD -¡-¡φ

Further one has to note that the rule (->->) is sound in L for formulas of the form

->->() (if L is first order) and that (Va -i-ία Э a)"1 is provable in L (if L is
higher order) IS

2.3. Some easy conservativity results

This paragraph contains a number of syntactic proofs of conservativity results
The results are relatively easy and not surprising Most of the work therefore
lies in a precise formulation of the notions First we show that (E)-PREDnT (see
Definition 2 2 11) is conservative over (E)-PREDn. This means that the extension
of the logical language of order η to the full simply typed lambda calculus does

not affect the provability

Furthermore we show that our first order predicate logic with all function

domains is conservative over the system that has only function constants (which

20 Natural Deduction Systems of Logic Ch 2

is more standard) This system, in which it is still possible to define predicates
by λ abstraction, is again conservative over the 'standard' system, where one
has only basic predicates The proof of the latter result will only be outlined
In section 6 5 3 we give a precise proof m terms of typed lambda calculi, using
the formulas-as-types embedding In order to achieve our goals, we first have
to give some definitions, writing P R E D - ^ for PRED without function domains
and P R E D ~ ' r for PRED without function domains and definable predicates So
PRED~^ r is the standard minimal first order predicate logic, which has only
function constants and predicate constants

We first turn to the conservative of (E)-PREDnT over (E) - P R E D T I We
define a mapping from (E)-PREDrcT to (E)-PREDn which preserves provability

2 3 1 D E F I N I T I O N Let η e N The mapping (-)* on (E) PREDrT IS defined
by substituting in a term of (E)-PREDnT for all free variables and constants
of a domain D of order > η the fixed closed term do of domain D, where for
D = D\—» Dm—»Prop, dp is defined by

dD = \xitDl \xmtDm ±

The image of a term of (E)-PREDnT will only contain free variables and
constants of domains of order < η Furthermore, if t t D, then t' e D We now
want to take /3-normal forms and long-/37?-normal forms Recall that a long-a
normal form is obtained by first taking the /J-normal form and then doing all
^-expansions, where C[q] ^-expands to C[\xtD qx] if τ ^ FV(g) and this does
not create a /3-redex (This is well defined by normalization of β and the fact that
if C[q] η-expands to C[\xeD qx], we can not expand on q or XxeD qx anymore)
The long-/?77 normal form of M is denoted by long-/??? nf(M)

2 3 2 L E M M A If t e (E)-PREDn7" with 11 D and ord(D) <, then ß-nj{t') and
long-ßv-nf(t') are in (E)-PREDn

P R O O F By induction on the structure of /?-nf(i*), respectively the structure
of \ο^-βη-τι{(Γ) We only treat the proof of the statement that /3-nf(i*) is in

(E)-PREDn t' contains no free variables or constants of domains of order > η

So

/?-nf(H = XxltDi Ax m eD m pQx QT

with ρ a constant, a free variable or one of the i , Now, all the domains

Di, , Dm are of order < n, so the domain of ρ is of order < η By IH, the

terms Qi, , Qr are in (E)-PREDn, and hence /3-nf(i*) is И

2 3 3 P R O P O S I T I O N For η G N or n = ω we have the following

Г г - p R w V => /З-пт(Г) Ь Р Н Е О п /3-п%·),

Г r-E-pRED^ φ => long-βη-η^Γ') l - E . P R E D n long-βη-η^φ')

Sec 2 3 Some easy conservativity results 21

PROOF By induction on the derivation First remark that φ = ψ ^· ψ' = ψ*
and φ'[Ρ'/χ] = (φ[Ρ/χ])' Then all cases are easy except for the case when the
last rule is (EXT) So say we have

f χ D gx gxD f χ φ{/)

as the last step in the proof By IH we have

long-/3rç-nf(r) h \ong-ßV-n{({fx)') D long ßV-ni{{gx)'),

long-/?77-nf(r) h long-/?7;-ni((5£)*) Э long-^nf((/f)*),

long-/3r?-nf(r*) h long βη-ηί((φ{/))·)

Now we take a fresh variable ζ of the same domain as ƒ and g and replace ƒ by
ζ in φ(/) We look at the term φ*(ζ), which is the same as (φ{ζ))* except for
the possible substitution of a term for z, which is not performed Now

(\οηΕ-βη-η{(φ'(ζ)))[Γ/ζ} =βη φ*(ζ)[Γ/ζ] = (ψ{/)Υ =βη long-^nf((V(/))·)

So the third part of the IH can be read as

long-/?77-nf(r) h (long βη τιΐ(φ'(ζ)))[Γ/ζ]

and we are done if we prove

long-/fy-nf(P) l· (\οηζ-βη-τι{{φ'(ζ)))\9'/ζ]

All occurrences of ζ in tong-Z^-ní^^z)) are of the form zq\ qp with zq\ qp e
Prop We have extensionahty on the level of Prop (Lemma 2 2 10, so

fq^g'q g-qPfq ф(Гд)

Ф(д'д)

Now, for each occurrence of ζ in long βη ηΐ(φ*(ζ)), the first two premises of (1)
are satisfied by IH So all occurrences of ƒ* in (long-/37; nf(^*(z)))[/*/z] can be
replaced by g" by consecutive applications of rule (1) As conclusion we obtain
that (long-/?J7-nf(i¿*(2)))[$7z] holds El

234 COROLLARY For all n e N u {ω}, (E) PREDn7" is conservative over
(E)-PREDn

2 3 5 REMARK The Proposition and Corollary remain to hold if we replace
PRED by PROP everywhere

2 3 6 COROLLARY //(E)-PROP(n+l)T is conservative over(E)-PROPnT then
(E)-PROP(n+ 1) is conservative over (E)-PROPn

22 Natural Deduction Systems of Logic Ch 2

We now turn to the issue of the functional domains and define a subsystem
of first order predicate logic (PRED) that only has the simplest domains for
functions (Usually these domains are called 'first order' but this conflicts with
our terminology, so we shall refrain from using that term)

2 3 7 DEFINITION The language of the system P R E D - ƒ is defined as follows

1 The domains are given by

V = Б | Prop | Z>—̂ —2)-»Prop

So there are basic domains (the ones in B) and predicate domains (the ones
that contain Prop)

2 The functional domains are given by

(We assume every functional domain to be built up from at least two basic
domains) Note that Τ £ V

3 The order of a domain D, ord(D), is defined as it is done for PRED in 2 2 6
(So the functional domains have no order, which confirms with the intention
that m P R E D - ' there is no quantification over functional domains)

4 There are countably many function-constants cf for every function domain
F € Τ in P R E D " '

5 The terms of the language of P R E D - ' are described as follows

• There are countably many variables of each domain D,

• If c[is a function constant of domain F Ξ ÖI—> —»ßp+i and ί, e Вг

for 1 < г < ρ, then cf ίι, , tp с Bp+i,

• If t e Д>, χ a variable of domain Di and ord(Di—»ГЬ) = 2, then

XxeDx te D i - > £ 2 ,

• If t e Di—>D2, q e Di, then tq e D2,

• If φ e Prop, χ a variable of domain D with ord(£>) = 1, then VieD φ t

Prop

• If φ £ Prop and ф e Prop, then φ Э ф e Prop

The derivation rules of P R E D - ' are the same as for PRED, so the quantification
is restricted to the domains of order 1 (the D € B)

It is convenient to let PRED also have constants c^ for functional domains F,
because then P R E D " ' is formally a subsystem of PRED We have the following

Sec 2 3 Some easy conservativity results 23

2 3 8 P R O P O S I T I O N PRED is conservative over P R E D _ / , that is, for Г о set

of formulas and ψ a formula of PRED~f,

Γ b P R E D φ => Γ b p R E D - / φ

P R O O F The proof is by cut-elimination and normalization The notion of cut-

elimination will only be discussed in section 3 2 3, so we can only sketch this

proof One can show that, if Γ is a set of formulas and φ a formula of P R E D - ^

such that Γ HPRED ψ is derivable with derivation Θ, then the derivation Θ',

which is obtained from Θ by cut elimination and normalization of all first order

expressions, is a derivation of Γ l· φ in P R E D " ^ In section 6 5 3 we discuss

two typed lambda calculi that correspond to PRED respectively PRED --^ by the

formulas-as-types embedding The proof of Proposition 6 5 28 can therefore be

seen as a detailed proof of this Proposition И

This is not yet the end of the story in the usual first order system one can
not define predicates by λ-abstraction, so we want to show that this extension is

conservative too

2 3 9 D E F I N I T I O N The system P R E D " / r is P R E D _ / minus the clause

'If M e D2, χ a variable of domain D\ and ord(£>i—*D2) = 2, then XxeD^ Μ ε

in the term formation rules, and the clause

'If t e Di—>D2, q e Dlt then tq e D2\

replaced by

'If t e Di—• —>Dp—»Prop, q, t Д for 1 < ι < ρ, then <<?i qp e Prop'

In P R E D - · ^ there are no more λ-abstractions It is the 'usual' system of

minimal first order predicate logic the set of terms of the object language is

inductively defined from variables and constants by function application, and

the set of formulas is inductively defined from the basic formulas by applying

connectives (Where the basic formulas are of the form xDt\ tp, with U terms

of the object language, and allowing for ρ = 0) The conservativity of P R E D - ^

over P R E D - ' 1 " is now proved by normalizing out all λ-abstractions, just like we

normalized out all relevant λ-abstractions in the proof of conservativity of PRED

over P R E D _ /

2 3 10 P R O P O S I T I O N For Γ a set of formula and φ a formula of P R E D - / ,

r ' " P R E D - ' Ψ =>• П Л Г) !"PRED-^ пкч>)

P R O O F Easy induction on the derivation H

2 3 11 COROLLARY For Г a set of formulas and φ a formula of P R E D - ' r ,

Γ h P R E D - ' Ψ => Γ r - p R E D fr- ψ

P R O O F By the fact that for φ a formula of P R E D ~ / r , φ = ηΐ(φ) IS

24 Natural Deduction Systems of Logic Ch 2

2.4. Conservativity between the logics

Having justified the systems PREDn in relation to more standard presentations of
predicate logic, we now want to say something about the conservativity relations
between the systems themselves This gives a better understanding of the logics
while at the same time these results will be useful later for reference when we
discuss the conservativity relations between systems of typed lambda calculus in
Chapter 6 1 So this paragraph may be skipped for now if one is merely interested
in the typed lambda calculi The conservativity relations betweem the logics can
be collected in the following diagram

PROPw PROPw c PREDu; PREDuv

PROP3 • PROP3 c

PROP2 • PROP2 c

P R O P x • PROP:f

PRED3

PRED2

PRED3C

PRED2C

PRED-1- • PRED^

PROP PRED

where a dotted arrow depicts a non conservative inclusion and an ordinary arrow
depicts a conservative inclusion The (non-)conservativities between predicate
logic and prepositional logic follow by the fact that any predicate logic on the
right is conservative over its propositional variant on the left, and further by
transitivity of conservativity and the fact that if L2 is not conservative overLi
and Li С ¿3, then L3 is not conservative overig

We do not present this diagram as a theorem, because for some of the depicted
arrows we have no proof In this section, only a small part of the diagram above
will be proved formally One of the things we do not prove is the whole tower of

Sec 2 4 Conservativity between the logics 25

vertical arrows in the propositional part We only prove the conservativities for
extensional versions of the systems This implies the conservativity of PROPn
over PROP2 for any π > 2 (and similarly for the classical variants)

Also the vertical tower of arrows in the predicate part of the diagram will
not be proved For η > 2, we believe that non-conservativity can be proved by
looking at a structure for Arithmetic in each of the logics Then one obtains nth
order Heyting Arithmetic on the left side and nth order Peano Arithmetic on the
right side Then Godel's Second Incompleteness Theorem says that each of those
systems can not prove its own consistency Then the non-conservativity can be
established by showing that (n + l) th order Arithmetic can prove the consistency
of nth order Arithmetic

A similar method should apply to the systems PRED2 and P R E D 1 , respec
tively PRED2C and P R E D 1 For the classical variants this is straightforward
P R E D 1 may seem minimal, but due to classical logic, all connectives can be
defined in terms of Э, V and ± Hence we can look at Robinson's system Q for
Arithmetic, for which Godel's Second Incompleteness Theorem already applies
The non-conservativity of PRED2 over P R E D 1 can then be derived from the
non-conservativity of PRED2C over P R E D 1 by applying a version of the Godel's
double negation translation This is a faithful mapping from PRED2 respectively
P R E D 1 to PRED2C respectively P R E D 1 (See section 6 5 3)

The conservativity of PROP2 over PROP and of PRED2 over PRED will be
discussed later when we look at typed lambda calculus versions of the systems
Then we shall describe mappings from the larger system to the smaller one that
also take into account the proofs From the conservativity of PROP2 over PROP
and of PRED2 over PRED it immediately follows that P R O P 1 is conservative
over PROP and that P R E D 1 is conservative over PRED

The non-conservativity of P R O P 1 over PROP is easy ((a—»/?)—»a)—»a is
provable in P R O P 1 , but not in PROP A derivation of it in P R O P 1 is

[Q Э β] (α D β) D a [^Q] [a]

a [-IQ] _L

-L β

^{аЭ β) aD β

_L

a

It can easily be seen that ((a—*ß)—*ct)—*a is not provable in PROP by notic
ing that there is no closed term of type ((a—>ƒ?)—»а)—»a in the simply typed
lambda calculus (which is saying the same as 'there exists no cut-free proof of
((a-+0)—*a)—*a in PROP') The example ((α—*β)—*a)—*a also applies for show

ing the non-conservativity of P R E D 1 over PRED

26 Natural Deduction Systems of Logic Ch 2

It is obvious that the conservativity of the classical version of the logic over
the intuitionistic version never holds, hence the dotted arrows from left to right
in the diagram

Note further that any predicate logic is conservative over its prepositional
version This is easily seen by defining a mapping [—] from formulas of the
predicate logic to the propositional logic that preserves denvabihty and is the
identity on the propositional logic It can be defined as follows

2 4 1 DEFINITION Let L2 be a system of predicate logic and L\ its propositional
variant The mapping [—] is defined on predicate domains of L2 (the ones of
the form —»Prop) by just removing all the basic domains, so for example
[(B—»Prop)—»Prop] = Prop—»Prop Then [-] Form(L2) —> Form(Li) is defined
as follows

kD]
[φ э]

[ixt Α ψ]

[XXÍA M]

[PM]

= x[D]

= МэМ,
= ІЕ[Л] [φ] if Л Ξ

= [φ] else,

= Xxe[A] [M] if Л Ξ

= [Μ] else,

= [P][M] if M A =

= [Ρ] else,

This map is very similar to the one in Definition 6 5 23, which shows the
conservativity of dependent typed lambda calculus over non-dependendent typed
lambda calculi

It is easily shown that this map satisfies the requirements
The proof of conservativity of extensional PROP(n + 1) over extensional

PROPn is given by semantical methods We give a notion of model in terms of
complete Heyting algebras that is sound and complete for each of the E-PROPn
We shall also describe a Kripke semantics for PROPn (non-extensional) We
had hoped to prove the conservativity of PROP(n + 1) over PROPn by using
this semantics However, although we have a sound and complete model notion
for each of the PROPn, we haven't been able to derive conservativity because a
Kripke model of PROPn is not immediately a Kripke model of PROP(n + 1)

The proof of conservativity of E PROP (η + l) c over E-PROPnc follows di
rectly from the proof of conservativity of E-PROP(n + 1) over E-PROPn (Just
add the axiom аа ->α everywhere) Nevertheless we also describe a truth table
semantics for E-PROPnc, because it is the basic semantics for classical proposi
tional logics Further it shows not only the conservativity of E-PROP(n+l)c over
E-PROPnc, but also the decidability of E-PROPnc (for any η > 2) This should
be contrasted with intuitionistic versions of propositional logic all the systems

Sec 2 4 Conservativity between the logics 27

PROPn (τι > 2), extensional or not, are undecidable This is a consequence

of the undecidabilty of PROP2, shown by [Lob 1976], and the conservativity of

(extensional) PROPn over PROP2 for all η > 2

2.4.1. Truth table semantics for classical propositional logics

The method of deciding the validity of a judgement Γ h φ in classical logic

by using truth tables immediately extends to the second order case by letting

the value of a vary through {0,1} in the interpretation of φ For higher orders

we have to be a bit more careful The straightforward thing to do is to let

for example the value of variables of domain Prop—»Prop vary through the set of

functions from {0,1} to {0,1} This, however, gives a model that is not complete,

because it is too extensional compared with the syntax, in the sense that e g for

all ƒ,5 e Prop-»Prop,

(VQíProp JaD да к да Э fa) D (ƒ =prop^Prop s)

is satisfied in it (The equality is the definable Leibniz' equality) We shall show
that the truth table model is complete for the extensional version of the logic

Extensionality is not derivable in any of the logics This can for example be
seen from the fact that if

I-PR0P4C V/, £eProp-»Prop (ƒ ~ g) D f = g,

then (for Ρ a variable of the appropriate domain)

P(Xa a D a D a), - ιΡ(λα a D a) r-pROp4= -L

by the fact that Xa a D a D a and Xa a D a satisfy the assumption for ƒ and g

m the extensionality Now by applying the Godel's -i-i-translation of Definition
2 2 16, we obtain

- ι - ι Ρ (λ α -i-iQ Э - I - I (- I - I Q Э - I - > Q)) , - ι Ρ (λ α -i-iα D ->-IQ) bP RoP4 -L

This, however can only be the case if λα -I-IQ Э -I-I(-I-IQ D -I-IQ) =β Xa —>—«α; D

-I-IQ, which is clearly not the case

2 4 2 D E F I N I T I O N For every domain D we define the set VD of possible values
for the terms of domain D as follows

^Prop = R i } ,

УЬі—D-Ì = VDJ —• V£)2,the set of functions from VDl to VQ2

The interpretation of terms as values (modulo a valuation of the free variables)
is now straightforward, given the following definitions

28 Natural Deduction Systems of Logic Ch 2

2 4 3 D E F I N I T I O N Any valuation υ that maps variables to values of the appro

priate set extends immediately to an interpretation υ on all terms as follows

v(\xtD P) = λα e VD v[x = o\(P),

v(PQ) = v(P)v(Q),

υ(φ Эф) = 0 if υ{φ) = 1 and (ф) = 0,

= 1 otherwise,

viyxtD φ) = 1 if for all а 6 Ь, v[x = α](φ) = 1,

= 0 otherwise

Here v[x = α] denotes the valuation with v[x = a](x) — a and v[x = a](y) =

v(y) \іхфу

As was to be expected, the value of a closed term does not depend on the
particular choice for υ and values are stable under /377-equality

2 4 4 D E F I N I T I O N For Γ a set of formulas and φ a formula of any of the propo-

sitional logics, we define

Γ (= φ = for all valuations ν, ν(Γ) = 1 => ν{φ) = 1,

where υ(Γ) = 1 if (ф) = 1 for all φ G Γ

We say that φ is true if f= φ

(The subscripts will usually be omitted)

2 4 5 P R O P O S I T I O N (Soundness) For Γ a set of formulas and φ a formula of

E-PROPn;,

Г Ь Е PRoPn; φ =*• Γ (= φ

P R O O F By an easy induction on the derivation Η

2 4 6 L E M M A For any domain D, all values ofVD are λ definable in E-PROPnJ

That is, for all F 6 Vp there is a closed term t of domain D m E-PROPnJ such

that

v(t) = F

(for any valuation v)

P R O O F By induction on the structure of D The proof uses the fact that, due

to the extensionahty, one can define a function by cases in the logic For example

the value in ({0,1} —» {0,1}) —> {0,1} that maps the identity and the swop

function to 0 and the two constant functions to 1 can be defined in the syntax by

Л/£Ргор-»Ргор (ƒ ~ λα α V ƒ ~ λα -·α) Э 1 & (ƒ ~ λα 1 V ƒ ~ λα Τ) D Τ

Sec. 2.4 Conservativity between the logies 29

In general, a function F : VDl—• >VDP—*{0,1} can be described in the format

Fv\, • · • Vp = 0 if vi = t\ and . . . and vp = tp,

= l i f · · . ,

where we just go through all the possible input values. By IH we know how to

Α-define all the elements of Volt..., ц>р, so we can translate the format for F
into a λ-term by replacing the i t by its defining element and = by ~, where χ ~ y

for χ and y of domain Dj—> • DJ—»Prop is defined by f\{xt'~ yt) with /\ the

finite generalised conjunction that lets t vary through the sequences of defining

elements of D i , . . . , DJ. В

For example 0 can be defined by J_ and 1 by T.
Due to the previous lemma we can internalize a valuation ν in the syntax.

This is done by substituting for the free variable χ the term that λ-defines v(x).

We introduce the following notation.

N O T A T I O N . For г> a valuation, the substitution that replaces a free variable χ by
the closed term that λ-defines v(x), will be denoted by Σ„. (So, for example, for
ν with u (a P r o p) = 0, Σ„ substitutes ± for a).

The lemma also states that any д can be summed up by closed terms, i.e. we
can always write VD = { {и), {іт)І • • •, *4<P)}, for some closed terms <i, Í2, · · · , i P ,
where υ is totally arbitrary. This fact can even be proved inside the logic.

2.4.7. L E M M A . In E-PROPn c, if ord(D) < η and VD = {w(ii), v{t2),..., v{lp)},

then

h V/eD. ƒ = Í! V ƒ = t2 V • · · V ƒ = tp.

P R O O F . By induction on the structure of D, by proving

f¿UDf¿t2D---Df¿ fp-i Df = tp.

The proof uses extensionality in the form of

ƒ φ U h 3x.(fx & ->t,x) V (-.ƒ£ & t,x)

which is provable from the extensionality axioms.

The reason that the lemma does not hold for all domains of the logic is simply

because for domains of order η the formula

l· VftD.f = ij V ƒ = t2 V · · · V ƒ = tp

is not in the language of E-PROPn c . Η

30 Natural Deduction Systems of Logic Ch. 2

The lemma says, among other things, that h VaeProp.(a = Τ V а = J.)
is provable in E-PROP3 c. Let's shortly digress on how one proves this fact as
an illustration of the proof. Extensionality in E-PROP3 c implies the following
axiom.

Va,/JeProp.(a~ β) D a = β

Now α l· α ~ Τ and ->Q l· α ~ J_, hence а V -ι α h a = T V a = l b y

extensionality, and so h VaeProp.(a = T V u = l) .

We have a version of Lemma 2.4 7 for domains of order η in E-PROPn c It

is strong enough for our purposes.

2.4.8. L E M M A . In E-PROPn c, ifVD = {v(U),... ,v(tp)}, then

VfeD.f ~ U V · · · V ƒ ~ tp.

P R O O F . For domains of order < η the lemma follows immediately from the

previous one (Lemma 2.4.7) For domains D of order η we have to do a case

analysis and use the previous Lemma. What one really proves is

I- WfeD.(3x.fx φ US) D • • • D {3S./S φ tp-iS) D (WS. f S = tpx)

which is sufficient. We give some details for the case of the domain Prop—»Prop

in E-PROP3 c . We have to prove

h V/eProp->Prop.(3a./a φ α) D (За./а φ -.a) D (За.f α φ Τ) Э (Va fa = _L).

This is easily done by deriving a contradiction from 3a.f α φ a, 3a.f α φ -ία,

За.f α φ Τ and (/Τ = Τ) V (ƒ ! = Τ). ΚΙ

2.4 9. P R O P O S I T I O N . In E-PROPn c, for ν a valuation,

υ(ψ) = 1 => 1 - Σ . Μ ,

υ(φ) = 0 => г--.Е„(>),

P R O O F . Simultaneously, by induction on the structure of the normal form of φ.

For φ = VxeD.ip we distinguish two subcases: ord(D) = η and ord(D) < n. We

treat both subcases for ν (φ) = 1.

Suppose viyxeD.-ф) = 1 and ord(I>) < n. Then v[x := F](ip) = 1 for all F € VD.
Say VD = {v(ti),..., v(tp)} (which is justified by Lemma 2.4.6). Then by IH

h Σν[χ := tt](i>)

for all t, (1 < ι < ρ). By Lemma 2.4.7 we know that

l· χ = U V · · · V χ = tp,

Sec 2 4 Conservativity between the logics 31

so we can do a case analysis to find

Now Σ„ does not substitute anything for x, so χ is still free in Συ(φ) We may
conclude

h E„(VieD φ)

Suppose now that г>(і t D φ) = 1 with ord(Z>) = η Then again v[x = F](ip) =

1 for all F eVD (Say VD = {ufo), ,v(tp)}) Again by IH

l·Συ[x =и](ф)

for all ί, (1 < г < ρ) By Lemma 2 4 8 we know that

h χ ~ <i V V i ~ i p

This is not as strong as what we had in the first case, but it still suffices because
we may assume that in φ all occurrences of χ appear in the form (xq\ qr) with
x<7i qT e Prop, ι e χ occurs only as a real function (If φ is not yet of this shape
we 77-expand it) We can do a case analysis to find

Again χ is free in Σ„(^) and we can conclude

h Е„(іб£> φ) Η

2 4 10 COROLLARY (Completeness) In E-PROPnc, for φ a formula

\= Ψ => Γ- φ

PROOF (= ψ means г> υ (φ) = 1, so by the Proposition h Σ,ν(φ) for any valuation
ν Hence h ψ because we can make all the necessary case distinctions by Lemma
2 4 7 and Lemma 2 4 8 Η

2 4 11 COROLLARY All E-PROPnc are decidable

PROOF Immediate from the previous Corollary and the Soundness (Proposition
2 4 5) by the fact that the validity of a formula can always be checked in a finite
part of the truth table model El

2 4 12 PROPOSITION E-PROP(n+l)c is conservative over E-PROPnc (η ф ω),
and hence E PROPa>c is conservative over each of the E-PROPnc

PROOF By the fact that the truth table model is a model for all the E-PROPnc

SI

2 4 13 COROLLARY PROPnc is conservative over PROP2c for each η

PROOF Immediate from the fact that PROP2c and E-PROP2c are the same
system (By Lemma 2 2 10) И

32 Naturai Deduction Systems of Logic Ch 2

2.4.2. Algebraic semantics for intuitionistic propositional logics

In this section we describe à semantics for our systems of intuitionistic propo
sitional logic in terms of Heyting algebras It is well-known how this is done
for the full first order propositional logic, giving rise to a completeness result
For second and higher order propositional logic we need to refine the notion of
Heyting algebra to also allow interpretations for the universal quantifier It is
easily seen that complete Heyting algebras are strong enough to satisfy our pur
pose complete Heyting algebras have arbitrary meets and joins, so for example
V/ e Prop—»Prop φ can be interpreted as Л{[]г/=FI I F € Л-+Л} It is how
ever not so easy to show the completeness of complete Heyting algebras over
E-PROPn (for any n), because the Lindenbaum algebra defined from E-PROPn
is not a complete Heyting algebra The way out was suggested by Theorem
13 6 13 of [Troelstra and Van Dalen 1988], stating that any Heyting algebra can
be embedded in a complete Heyting algebra such that Э, -L and all existing V
and Λ are preserved (and hence the ordering is preserved) The embedding ι that
is constructed in the proof is also faithful with respect to the ordering, that is,
if i(a) < г(6) in the image, then a < b in the original Heyting algebra All this
implies completeness of complete Heyting algebras with respect to E-PROPn, for
any η Hence we have conservativity of E-PROP(n + 1) over E-PROPn

In fact the argument that we use gives a completeness result for the systems
E-PROPnT, which is E-PROPn based on the language of the full simply typed
lambda calculus This is only done to make things slightly easier and it does not
have any effect on the results (See also Remark 2 3 5)

At this point we do not know how (if at all possible) to conclude the conser
vativity of PROP(n + 1) over PROPn from the conservativity of E PROP(n + 1)
over E-PROPn However, we do have the conservativity of PROPn over PROP2
for any n, because PROP2 and E PROP2 are the same system

It is obvious that extensionahty is required in the syntax because the model
notion is extensional if, for example, F, G A—*A (where A is the carrier set of
the algebra) and F(a) = G{a) for all α ζ A, then F = G

The method of showing conservativity by semantical means seems to be quite
essential here Most of the other conservativity proofs in this chapter use map
pings from the 'larger' system to the 'smaller' system that are the identity on the
smaller system These mappings also constitute a mapping from derivations to
derivations that is the identity on derivations of the smaller system For the case
of intuitionistic propositional logics, this method seems to be essentially impossi
ble there are formulas of PROP2 that have more and more cut-free derivations
when we go higher in the hierarchy of propositional logics

2 4 14 D E F I N I T I O N A Heyting algebra (or just Ha) is a tuple (Л,Л, , ± , Э)
such that {А, Л, V) is a lattice with least element _L and Э is a binary operation
with

a Ab < с •&• a < b Э с

Sec 2 4 Conservati vi ty between the logics 33

Remember that (А, A, V) is a lattice if the binary operations Λ and V satisfy
the following requirements

α Α α = α, O V Í = о,
a Ab = b Aa, o V 6 = 6Vo,

α Л (6 Л с) = (о ЛЬ) Л с, aV{bVc) = (α V Ь) V с,
о V (а Л 6) = а, а А (а V о) = α

Another way of defining the notion of lattice is by saying that it is a poset (A, <)
with the property that each pair of elements a, 6 € A has a least upperbound
(denoted by a V b) and a greatest lowerbound (denoted by α Λ 6) By defining
a < b = о Λ i = α we can then show the equivalence of the two definitions of
lattice

2 4 15 D E F I N I T I O N A complete Heyhng algebra (cHa) is a tuple (А, Д, V. -Ц Э)
such that (А, Л, V) is a complete lattice and (A, A, V, J_, э) is a Heyting algebra
(So V and Л are mappings from p{A) to A such that ΐοτ X С A, \l X is the
least upperbound of X and l\X \s the greatest lower bound of X The binary
operations Л and V are defined by (for a, b e A) a A b = /\{a,b} and a V b =
V{a,6})

An important feature of Heyting algebras which is forced upon by the presence
of the binary operation D, is that they satisfy the infmitary distributive law

(D) aA\JX = { а Л б | б € X } , if VA' exists

(The inclusion 2 holds in any lattice, for the inclusion Ç it is enough to show
that a Ac Ç V{a Л 6 | b 6 X} for any с Ç. X, due to the properties of Э)

Two other important facts are the following

2 4 16 F A C T 1 If a complete lattice satisfies the infinitary distributive law
(D), it can be turned into a cHa by defining

b 3 c =\/{d\dAb<c}

2 Any Heyting algebra is distributive, ι e any Ha satisfies

a A (b V с) = (о Л b) V (а Л с)

For the first statement one has to show that a A b < с <$ a < \/ {d\ d A b < c}
From left to right is easy, from right to left, notice that if a < \J{d \ d A b < c},
then оЛб < bA\/{d\ dAb < c} and the latter is (by D) equal to V{í>Ac¿| dAb < c},
which is just с The second is easily verified

We are now ready to give the algebraic semantics for the systems E-PROPnT

(A logical system LT is based on the full simply typed lambda calculus, see Def
inition 2 2 11) Let in the following (А, Д, V, -L, Э) be a cHa We shall freely use

34 Natural Deduction Systems of Logic Ch 2

the notions V and Λ, as they were given in Definition 2 4 15 The interpretation
of the terms of E-PROPn will be in A and its higher order function spaces We
therefore let [~—] be the mapping that associates the right function space to a
domain D, so

ГРгорІ = A,

Г£>і-»£>2І = ГОЛ - \D2],

where the second —• describes function space In the following we shall freely
speak of the 'interpretation of E-PROPnT in (А, Л, V, -Ц Э)\ where of course this
interpretation includes the mapping of higher order terms into the appropriate
higher order function space based on A

2 4 17 DEFINITION Let η e N U {ш} An algebraic model of E-PROPnT is a
pair (,С), with Θ a cHa and С a valuation of the constants in Θ such that, if с
is a constant of domain D, then C(c) € \D~\

2 4 18 DEFINITION The interpretation of E-PROPTIT in the algebraic model
((Д A,V>-L, Э),С), [—J, is defined modulo a valuation ρ for free variables that
maps variables of domain D into \D~\ So let ρ be a valuation Then [—] is
defined inductively as follows

ICL = £(c)> f°r c a constant,

ÎQL = P(Q)> f°r a a variable,

[PQh = [P]P[Q]P,

[Xx(DQ]p = Xte\D]lQJ^x=t),

[votf], = ІР]РЭ[Ф]Р,

№cD4>]p = Л{Нр(«-.)І*еГо1}

It is easily seen that [—] satisfies the usual substitution property and that
interpretations are stable under ¿fy-equality, ι e

and

P=ßvQ=> [P}„ = IQ}„

2 4 19 DEFINITION For Γ a finite set of formulas of E-PROPnT, φ a formula
of E-PROPnT and (Q,C) an algebraic model, φ is (Q,C)-vahd m Γ, notation
Γ \=(e,c) Ψ, if for all valuations p,

Л{М,І іКГ}<ы

If Γ is empty we say that φ is (,С)-valid if \=(,с) Ψ

Sec. 2.4 Conservativity between the logies 35

Note that A{(VJ,, ΙΦ € Γ} exists, beacuse Γ is finite. In the following we just
write [Γ]ρ for Λ { Μ , Ι ^ € Γ } .

Our definition is a bit different from the one in [Troelstra and Van Dalen 1988],
where Г (=(,с) Ψ is defined by

W>er[M, = T] => [φ]ρ = τ.

Our notion implies the one above, but not the other way around. However, they
are the same if Γ = 0 and they also yield the same consequence relation. One
disadvantage of our notion is that we have to restrict to finite Γ. This is easily
overcome by putting

Г И(,с) Ψ if for all finite Г' С Г, Г' \=(,с) ψ-

2.4.20. DEFINITION. Let Γ be a (finite) set of formulas of E-PROPnT and φ a
formula of E-PROPnT. We say that φ is a consequence ofT, notation Γ (= φ, if
Г (=(,с) Ψ for all algebraic models (0,C).

2.4.21. PROPOSITION (Soundness). For Γ a finite set of formulas of E-PROPnT

and ψ a formula of E-PROPnT,

Γ r-E-pROPr^ φ=> Γ \= φ.

PROOF. Let (Θ, С) be a model. By induction on the derivation of Г h φ we show
that for all valuations ρ, [Γ] < \φ\ . None of the six cases is difficult. We treat
the cases for the last rule being (Э -E) and (V-I).

(Э -E) Say φ has been derived from ф D φ and ф. Let ρ be valuation. Then by IH
ΪΠρ < Ш„ and [Г], < [φ D φ]ρ. The second implies [Л р Л [^ < M , ·
So, by [Г]р < [ф]р we conclude [Γ]ρ < [φ]ρ.

(V-I) Say φ = V/eD.V» and Г' С Γ is the finite set of non-discharged formulas
of the derivation with conclusion ψ. Then by IH, р[[Г'] < {Φ}.], so
VpVF e lD~\[[rjp < [Φΐρσ=Ρλ because / І FV(r'). This immediately
implies that [T\p < [V/ ε 0.φ]ρ. Kl

To show completeness we first construct the Lindenbaum algebra for E-PROPnT.
This is a Ha but not yet a cHa. The construction in [Troelstra and Van Dalen 1988]
tels us how to turn it into a cHa which has all the desired properties.

2.4.22. DEFINITION. For η € N U {ω}, we define the Lmdenbaum algebra for
E-PROPn, Cn. First we define the equivalence relation ~ on Sent(E-PROPrT)
by

φ ~ φ : = I-E-pRopnT φ Эф к ф D φ.

36 Natural Deduction Systems of Logic Ch. 2

We denote the equivalence class of φ under ~ by [φ]. Cn is now defined as the
На (Л,Л, V, J., D) where

A = (Sent(E-PROPnT))„.,

[φ]Α[φ] = [ψ к V],

[φ] У [Φ] = [φνψ],

[φ] D [φ] = [ψ D φ),

W = [-L].

Note that the &, V, Э and J- on the right of the = are the logical connectives:
D is basic and the others were defined in Remark 2.2.7 by

φ S¿ ф

φ V ψ

1

= VaeProp(<¿> Э ф D α) D а,

= VaeProp(</3 D et) D {φ D α) D а,

= VaePropa.

Each Cn is obviously a Ha: [ψ] < [φ] iff φ Ι"Ε-ρΗορητ ф. Further each Cn can
trivially be turned into a model by taking as valuation of the constants С the map
ping that associates to a constant its equivalence class. We shall not distinguish
between the Lindenbaum algebra £ n and the model (Cn,C).

2.4.23. LEMMA. For Γ α finite set of sentences of E-PROPnT and φ a sentence
O/E-PROPTT,

Γ bE-pRopn ' ψ ·» Γ <φ in £„).

PROOF. Immediate by the construction of Cn. Η

2.4.24. THEOREM ([Troelstra and Van Dalen 1988]). Each Ha Θ can be embed
ded into a cHa с such that Л, V, _L, Э and existing Λ o-nd V are preserved and
< is reflected.

PROOF. Let Θ = (Α, Λ, V, _L, Э) be a Ha. A complete ideal of θ , or just c-ideal,
is a subset I С A that satisfies the following properties.

1. 1 6 7,

2. I is downward closed (i.e. if b g I and a < b, then a € I),

3. I is closed under existing sups (i.e. if X С I and V^ exists, then V^ € /) .

Now define с to be the lattice of c-ideals, ordered by inclusion. Then с is a
complete lattice that satisfies the infinitary distributive law D, and hence с is
a cHa by defining

/ Э J:=\J{K\K/\I С J).

To verify this note the following.

Sec 2.4 Conservativity between the logics 37

• с has infs defined by /\q£QIq = fl,eg Iq

• с has sups defined by V?eQ^? = {V-̂ I X С Uge<? V V^ exists}, the set
{V^ I -^ С UJEQ Iq,\IX exists} is indeed a c-ideal and it is also the least
c-ideal containing all ƒ,

• Ι Π \¡4SQI4 = V{^ Π /, | q e Q} and so D holds

The embedding ι from Θ to с is now defined by

г(а) = {χ Ε Α Ι χ < α}

The embedding preserves J_, Э and all existing Д, V For the preserving of Vi
let X С A such that V-̂ exists in Θ We have to show that i(\/X) = \/xexi(x),
ι e show that

{yeA\y<\JX} = {\/Y\Yc (J t(i),V^exists}
ι ε χ

For the inclusion from left to right, note that X С {у € A \ 3x € X[y < x}} and
so X С Uiex г(х) This implies that V * € {VV I V С \JxeX г{х), V^exists} and
so we are done because the latter is а с ideal For the inclusion from right to left,
let ζ = \JY(¡ with Уо С U*ex г(х) Then ζ < \JX so we are done

Finally, the embedding ι reflects the ordering, ι e

г(а) С г(6) ^ а < 6 й

2 4 25 COROLLARY (Completeness) ForT α finite set of sentences o/E-PROPnT

and φ a sentence of E-PROPn1",

Γ |= φ =>• Г ЬЕ_РІЮрпт φ

PROOF Following the Theorem, we embed the Lindenbaum algebra of E-PROPnT,
Cn, in the cHa cCn This cHa cCn is then turned into an algebraic model of
E-PROPnT by taking as valuation of the constants, C, just the embedding of the
equivalence classes of constants in cCn This algebraic model (cCn,C) is com
plete with respect to the logic for Γ a finite set of sentences and φ a sentence of
E P R O P T T , we have

Γ \=(ccn ΟΨ => Γ < φ in Cn => Γ r-E-pRop„- φ В

2 4 26 COROLLARY (Conservativity) For any η > 2, E-PROP(n + l) is conser
vative over E-PROPn, and hence E-PROPo; is conservative over E-PROPn

38 Natural Deduction Systems of Logic Ch 2

PROOF By Corollary 2 3 6, it suffices to show the conservativity of E-PROP(n.+
1)T over E-PROPnT For Γ a finite set of sentences and φ a sentence of E-PROPnT,

Γ r-E PROP(n+i)r Ψ => Γ f= φ => Γ H E . P R op n T φ

by soundness and completeness of the algebraic models for any of the E-PROPnT

The conservativity of E-PROPu; over E-PROPn is now immediate any deriva
tion in E-PROPu; is a derivation in E-PROPm for some m G Ν Η

2 4 27 COROLLARY For any η e MU {ω}, PROPn is conservative over PROP2

PROOF By the fact that PROPn is a subsystem of E-PROPn and the fact that
PROP2 and E-PROP2 are the same system Η

2.4.3. Kripke semantics for intuitionistic propositional logics

In the previous section we saw an algebraic semantics for the systems E-PROPnT

(which is at the same time a semantics for the systems E PROPn) In this
paragraph we want to give a Kripke semantics for the systems PROPn, so without
extensionahty In fact this was our first starting point for the research into the
conservativity of PROP(n+1) over PROPn However, as it did not seem to work
for our purpose, we considered using an algebraic semantics instead This, as the
previous paragraph shows, works only for the extensional case So, although we do
not know how to use the Kripke semantics for solving the conservativity problem,
we do want to describe it here, because it gives a complete model notion for the
PROPn For convenience we describe the models as a semantics for PROPnT,
but we know that there is no problem in that slight extension

The exposition we give here owes much to [Smorynski 1973], where extensions
of Kripke models to higher orders are suggested

The basis of a Kripke model is a partial order, which is in practice usually a
well-founded tree, <K, Ç >, whose elements are called nodes There is a relation
II- between the set of nodes and the set of formulas of the propositional logic,
such that certain conditions are satisfied (Roughly that 'knowledge' grows with
the increasing of the order and that _1_ is not satisfied at any of the nodes) Now,
if one adds first order quantification to the logic, the partial order <K, С >
has to be extended with a function W that assigns to every node к a set W(k)
(the 'world' at node k) such that W is monotone (Our knowledge of the world
grows) The case for many-sorted logics is not really different, in that case we
have a number of monotone functions Wu as many as we have sorts in the logic

For second order propositional logic the situation is not very different from
that for first order predicate logic, except that now the domain of quantification is
the set of closed formulas, Sent, and so W К —* Sent Higher order propositional
logic can now just be treated in a 'many-sorted' way for every domain D in the
logic we have a function Wp К —» D, where D is in fact just obtained by

Sec 2 4 Conservati vi ty between the logics 39

replacing Prop by Sent everywhere in D So we see that the sets over which is
quantified in the model are just sets of syntactic objects of the same domain It
is a bit peculiar to let the sets that one quantifies over in the model only be a
subset of the set of all syntactic objects of the corresponding domain shouldn't
WproJk) be Sent for all к € К7 (All formulas are known to us at any specific
node) It turns out that this is the right choice it conforms with the Kripke
semantics for higher order predicate logic and, more importantly, this is the way
to get a notion of model that is sound and complete with respect to the logics

It is obvious that the kind of model that we get by this construction is very
syntactical Moreover it doesn't seem to use the partial order structure of the
Kripke model in an essential way One way to make it a bit less syntactical is by
letting the world not be Sent at any point but an arbitrary model of the language
of PROPrT, that is an arbitrary model of the simply typed lambda calculus We
shall not follow this possibility here because at the one hand it doesn't seem to
give us a lot of extras while at the other hand it will be quite obvious from our
definitions how to do it

2 4 28 DEFINITION To every domain D of PROP^ we associate a set of terms,
D, which is just {i|< e D, t is closed}

So, for example Prop = Sent The definition is very trivial, but we want to be
specific about this, because it is easy to confuse the object language of the logic
and the language of the model

2 4 29 DEFINITION A Kripke model for PROPrT is a triple <K, C,\l· >, where
<K, С > is a partial order and II· is a binary relation between elements of К and
sentences that satisfies

A; Ih φ к φ =β -ψ => к II· ψ,

к\і-іркІЭк => /II· φ,

к\УірЭф <S> il Ώ k[l II· φ => / II· ф],

k\VixDψ ο· it 6 ¿»[fclr-^í/i]],

where the I and к range over the nodes (the set Κ), φ and ф are formulas and
D is a domain over which quantification is allowed in PROPrT

Note that the V/ and Vi in the definition are in the meta-language of the
model

2 4 30 REMARK AS condition on the relation II· with respect to the V connective,
one usually finds

A: II· 4xDip & V/ 3 kit e D[l II· φ[ί/χ]],

but as the range of quantification in the model does not grow with the increasing
of the ordering Ç, this is equivalent to the second condition in Definition 2 4 29

40 Natura] Deduction Systems of Logic Ch 2

In some definitions of Kripke model (like the one in [van Dalen 1983]) the
relation Ih is between the nodes and the atomic formulas As the systems we are
considering are all impredicative this method does not work here

To interpret formulas we have to close them by substituting closed terms for

the free variables We denote such a substitution by * and we always assume that

for all variables it substitutes a closed term of the right domain

2 4 31 D E F I N I T I O N Let ψ be a formula of P R O P T T and Γ a set of formulas of

P R O P T T

1 For <K, E, Ih > a Kripke model for P R O P T T , we say that ψ is <K, Ç, II· >-

valid m Γ, notation Г \\-<ксп-> <Л if

for all substitutions *, VJfc € K[k Ih (Г)* => k Ih (φ)'],

where k II· (Γ)" obviously means that k Ih ф for all φ e (Γ)*

2 We say that φ is valid in Γ, notation Γ |= φ, if

Γ lh<A-,Cii-> ψ for all Kripke models <K, Ç,lh > of P R O P T T

2 4 32 P R O P O S I T I O N (Soundness) For Г о sei of formulas of P R O P n r and φ a

formula of PROPn T ,

Γ hpROPn^ ψ => Γ |= ψ

P R O O F Let <Κ, С, Ih > be a Kripke model for P R O P T T By induction on the

derivation of Γ hpR OPnT Ψ we prove

Γ hpRoPnT- φ => Γ lh<i f iç ii(.> φ

If the last rule is (conv), or if φ 6 Γ, we are immediately done

(D - I) Say φ Ξ χ Э ф Then by IH Γ, χ II· ф, ι e for all substitutions * we have

V/c e K[k Ih Γ*, χ* =ί> k Ih ψ·\ Now let * be a substitution and let / G К
with / Ih Г" and m Ώ I with m Ih χ' Then m Ih Γ', χ* and hence by IH

τη Ih φ', so we are done

(Э-Е) Say φ has been derived from ф D φ and ф, so we have as IH Γ Ih ф D φ

and Γ Ih ф Now let " be a substitution and let k 6 К with fc Ih Г* Then
by IH k Ih ф' and V/ Ώ k[l \l· φ* =ϊ l Ih ρ'] Because k 3 fc we find that

fc Ih (¿>* and we are done

(V-I) Say φ = VxeD ф, so we have as IH Γ Ih φ That is, for all substitutions *

we have V/c 6 K[k It- Γ" => A; Ih φ*] Now xD does not occur free in Γ, so

we know that for all substitutions * and all t e D, V/c 6 K[k Ih Γ* => k Ih

(# / *]) *] Hence Γ Ih VieD V

Sec 2 4 Conservativity between the logics 41

(V-Ε) Say ψ = φ[Ρ/χ], which has been derived from WxeD φ Then by IH Γ Ib
VieD φ Now let * be a substitution and к Ε К such that A; Ih Г* Then
for all t 6 b к Ih {φ[ί/χ})' and hence к Ih (φ[Ρ'/χ])', ι e A: Ih (^[Ρ/ι])*

2 4 33 PROPOSITION (Completeness) For Г a set of sentences of PROPnT and
φ a sentence of PROPnT,

Γ \=φ=> Γ hpnop^ ν?

PROOF The proof is by contraposition, so we suppose Γ I/PROP^ Ψ and construct
a Kripke model <K, C,lh > of PROPrT in which Γ Ι/ φ (Our construction of
the counter-model is a direct generalisation of the standard construction of a
counter-model for showing completeness of Kripke models with respect to first
order intuitionistic predicate logic, as it is given for example in [van Dalen 1983])
Before giving the model we introduce one extra notion for Δ a set of sentences,
we write Δ for the closure of Δ under denvabihty in PROPrT Now the model
is defined as follows

• Κ = Ν*, the set of finite sequences of natural numbers,

• ptlfh = 33\p*a = m], where • is the concatenation operation,

• For every m € Ν* we define a set of sentences of PROPnT, Σ(τη), by
induction on the length of m, as follows

- Σ (ο) = Γ,

- For E(m) defined, consider an enumeration of sentences ψο, ψ\, such
that Σ(πι) U {tpt} is consistent for all г Now define

Е(т*г) =Σ{τη)υ{φι)

The relation Ih is now defined by

m Ih ф =фе Σ{πι)(& Σ(τη) h ф)

We now only have to verify the following two facts

1 <N*, Ç, Ih > is a Kripke model of PROPrT,

2 In the model we have <> Ih Г, О Ι/ φ and hence Γ ψ ψ

The second follows immediately from the construction of the model The first is
slightly more work we have to check the four cases of Definition 2 4 29 The first
two cases are trivial, we give detailed proofs of the third and fourth case

42 Naturai Deduction Systems of Logic Ch 2

• m l h i p D i / i o V p D m\p Ih <£ =>· plh V] for (=*·), let ρ Ώ m, ρ Ih φ
Then Σ(ρ) h- <¿> and Σ (ρ) h ν? D V, so Σ(ρ) h V, so ρ Ih ψ For («=),
let m be a finite sequence From the assumption we know that Vp 3
то Σ(ρ) l· з̂ => Σ(ρ) h -0 We distinguish two cases according to whether
Σ(τη) U {φ} is consistent or not If Σ(τη) Ο {ψ} is inconsistent, then trivially
Σ(πι)ΐ){φ} h ψ and so Σ{τη) \- φ Э ψ and hence m Ih ψ D ψ If Σ(τη)υ{<^}
is consistent, then Σ(τπ) U {(̂ } = Σ(τη*ζ) for some г, and hence Σ(τη*ι) h ip
by the assumption But then Σ (τη * г) U {φ} h ψ, so Σ(τη) h p D t f and
hence m\l· φ Э ψ

• m Ih VXEZV <=> Vi 6 £>[m Ih <p[i/:r]] for =>, let ί 6 І) Now Σ(τπ) Η VieD^
and hence Σ(τπ) h >p[t/x} For ·<=, from the assumption we know that
m Ih <¿>[c/x] for all constants c, ι e Σ(τπ) h < [̂c/i] for all constants and so
Σ(πι) h Vieö ρ И

Technically, the reason that we can not get conservativity from this model
notion is that a model of PROPnT is in general not a model of PROP(n + 1)T

In less technical terms the reason seems to be that the model notion is too
syntactical, especially in the clause for the universal quantifier, where the ordering
Ç doesn't play any role at all

Chapter 3

The formulas-as-types
embedding

3.1. Introduction

The so called formulas-as-types embedding provides a formalization of the Brou-
wer-Heyting-Kolmogorov interpretation of proofs as constructions. The first de
tailed description is in [Howard 1980], where also the terminology 'formulas-as-
types' is first used. There it is shown how, in first order logic, types can be
associated with formulas and lambda terms with proofs in such a way that there
is a one-to-one correspondence between types and formulas and terms and proofs
and further that cut-elimination in the logic corresponds to reduction in the term
calculus. In view of the last point it would be correct also to associate Tait with
the formulas-as-types notion, as his [Tait 1965] 'discovery of the close correspon
dence between cut-elimination and reduction of lambda terms provided half of the
motivation' for [Howard 1980]. Also de Bruijn is often associated to the formulas-
as-types notion, because the Automath project which was founded by de Bruijn,
was the first to rigorously interpret mathematical structures and propositions as
types and objects and proofs as lambda terms. So, from a wider perspective it
is certainly justifiable to speak of the Curry-Howard-de Bruijn embedding (also
because the earliest developments in Automath took place independent of the
work of Howard). Having said this we want to point out that there are essential
differences between the two approaches. For example, in the Automath systems
the logic is coded into the system, so there is in general no reduction relation
in the term calculus that corresponds to cut-elimination. Automath systems are
intended to serve as a logical framework in which the user can work with any for
mal systems he or she desires. Application, A-abstraction and conversion serve
as tools for handling the basic mathematical manipulations like function applica
tion, function definition and substitution. It is appropriate to remark here that
some later systems of the Automath family do use the abstraction-application
features of the system to interpret logical connectives directly (and hence reduc-

43

44 Formulas-as types Ch 3

tion corresponds to cut-elimination) Later in this section we shall give some
examples of Automath systems to clarify these remarks

We do not go into great detail about the Brouwer Heyting Kolmogorov (BHK)
interpretation of proofs [Troelstra and Van Dalen 1988] is a good reference and
gives a thorough explanation of the idea Let's just discuss the connectives D
and V according to the BHK interpretation

1 A proof of φ D φ is a method for constructing a proof of ψ from a proof of

Ψ

2 A proof of Vi 6 Α φ{χ) is a method for constructing a proof of ψ{α) from
a proof of о 6 A

It is obvious (in retrospect) that the lambda calculus provides the necessary
mechanisms for turning the informal interpretations into a formal system For
minimal propositional logic this was already noticed by [Curry and Feys 1958]
For first order predicate logic, [Howard 1980] was the first to give a formalisation
of the BHK interpretation using typed lambda calculus Due to the work of
[Church 1940] it was already known that also the language of predicate logic can
be presented as a typed lambda calculus Over the years this has led to the
definition of various typed lambda calculi that incorporate the logical language
and proofs (in the form of lambda terms) in one system In this thesis we shall
see a variety of those systems

We do not claim to give an overview of all the possible approaches to the
formulas as-types embedding In fact we do not even attempt to do this For
example one of the main contributions to the field, the work in Martin-Lof's type
theory, will not be treated at all One of the reasons is that a PhD thesis is not the
place to give a detailed technical overview of such a broad field as Type Theory,
but another important reason is that the approach of Martin Lof does not really
fit with the framework of logics as we have set it up in the previous chapter
One of the main problems is that, due to the understanding of the existential
quantifier in terms of a strong Σ type, the logic of Martin-Lof is strictly first
order (in order to remain consistent) We do not feel that the forced lack of
Σ-types in our higher order logics is a big gap, but that is because we feel that
the strong Σ-type is not the right way to formalise the intuitionistic existential
quantifier (To be precise we do not mean to say that Σ types are not a valid
mathematical concept, but only that Σ should not be understood as 3)

Of course there is also a lot to say about systems that we do treat and we
shall do so at the appropriate places in the text

3.2. The formulas-as-types notion à la Howard

In this paragraph we look at an interpretation of formulas as types and proofs as
terms m the flavour of [Howard 1980], where the interpretation is given for full

Sec. 3.2 The formulas-as-types notion à ¡a Howard 45

first order predicate logic. Although in flavour the same, our treatment is quite
a bit different from Howard's, as has already been pointed out in the previous
chapter. As we are mainly concerned with logics that only use Э and V we shall
not treat the full first order predicate logic here but restrict to the system PRED.
First order logic based on just Э and V is quite minimal, but it is sufficient to make
the general idea sufficiently clear. In our formalisation the logical language will
also be presented in a typed lambda calculus manner. This idea of an 'all-in-one
presentation' is probably due to de Bruijn and his Automath project, although
we are not absolutely sure.

3.2.1. DEFINITION. 1. The set of functional types of APRED, Type', is de
scribed by the following abstract syntax.

Type' ::= \Іггіу | Type'—>Type',

with Var'" a countable set of type-variables. The set of predicate types of
APRED, Typep, consists of the expressions

σι-»σ2-» ^„-»Prop,

with η > 0 and all ot functional types.

2. The object-terms of the language of APRED form a subset of the set of
pseudoterms, T, which is generated by the following abstract syntax

Τ ::= Varob | TT | λ τ Type'Τ | Τ Э Τ | War^Type'.T,

with Var"6 a countable set of object-variables. An object-term is of a certain
type only under assumption of specific types (functional or predicative) for
the free variables that occur in the term. That the object-term t is of type
A if xt is of type Ax for 1 < г < n, is denoted by

xl:A1,x2:A2,... ,xn:An\- t : A.

Here i i , . . . , i n are different object-variables and A\,...,An are types. The
part Χχ.Αι,Χϊ.Αϊι... ,!„:/!„ is called an object-context. The rules for deriv-

46 Formuías-as- types Ch 3

ing these typing judgements are the following

(var)

(λ abs)

(app)

O)

(V)

„ . . if χ A in Γ
Γ I- χ A

T,xA\-t В

Г h λχ Α ί Α^Β

Γl·q Α^Β Γ h i Α

Thqt Β

Γ h φ Prop Γ h ф Prop

Γ h ψ D ф Prop

Γ, ι Л г-ν? Prop
if Л a function

Г h Vx Α φ Prop

3 The set of proof-terms is a subset of the set of pseudoproofs, P, generated
by the following abstract syntax

Ρ = агрт I PP I PT Ι λχ Type' Ρ | λχ Τ Ρ,

where Var*"" is the set of proof variables The rules for generating statements
of the form

χι Au ,xnAn,pi<pu ,Pfc¥>*r-M A,

where the χ A is as in 2, p\, pk are different proof-variables and

X\ A\, , xn An r- φχ Prop for 1 < ι < к,

Sec 3 2 The formulas-as-types notion à ia Howard 47

are the following (The part pi φι, ,pk φ^ is called the proof context as
opposed to the object-context)

(axiom) Γ ι Δ (_ ρ φ ιΐρφιηΑ,

Τ,Δ,ρφ\-Μ ф
(D -in)

(Э -el)

(V-in) ^ —» ' „ , # — if i $ FV(A), A a functional type,

(V-el)

(conv) ή ψ =3 ф
Γ, Δ h Μ φ

The intention of the system should be clear natural deduction proofs of
PRED are interpreted as typed lambda terms in APRED The language of PRED
is also a typed lambda calculus and also that part is formalised in APRED in a
typing judgement that is obtained via derivations Note that the functional types
correspond to domains of order 1 (the ones over which quantification is allowed)
and the predicative types correspond to domains of order 2 Before describing a
formal correspondence between derivations in PRED and proof-terms in APRED,
we give two examples

3 2 2 EXAMPLES 1 From the deduction

Vx A {Px DQ) VI A Px

PxDQ PX

Γ, Al· Χρφ Μ φΟ ф

Τ, Al· Μ φ Эф Γ, Δ h Ν φ

Γ, Al· Μ Ν φ

Γ, χ A, A h Μ φ

Γ,Al·\xAM 4χΑφ

Γ, Al· Μ Vi Αφ Yl·t Α

Γ, Δ h Mt φ[1/χ]

Τ, Al· Μ φ Tl· φ Prop

Q

we obtain the judgement

Ρ Л->Ргор,С> Prop, χ A,
Pi Vi A{PX D <5),p2Vx A Px l· pii(p 2 i) Q

Notice that the declaration of ι is essential here for the construction of
the proof (APRED explicitly takes care of the so called free logic, where
domains are allowed to be empty)

48 Formulas as types Ch 3

2 From the deduction

Vx A {Px Э (?) Vx Л Px

PXDQ PX

Q

хЛ Qx

we obtain the judgement

Ρ Л—Ргор,С Prop,
Pi Vx Л (Px D Q),p2 Vx Л Px l· XxApix{p2x) Vx Л Q

Now it is not needed for the construction of the proof to declare χ

We list some of the meta theoretical properties of APRED that we shall be
using later They are given without proof later we shall encounter other (more
complicated) typed lambda calculi for which these properties also hold and we
prefer to prove them once for all systems together

3 2 3 FACT Let Γ, Δ Ι- Μ φ be derivable in APRED We have the following
properties

1 Permutation if Γ' is a permutation of Γ and Δ' a permutation of Δ, then
Γ', Δ' l· Μ φ \ also derivable

2 Substitution if Γ contains χ A and Γ\ [χ A) l· ί Л then Г\(х Л), A[t/x] l·
M[t/x] tp[t/x] is also derivable

3 Thinning if Г' Э Г, Г' an object context and Δ' D A, A' a proof-context,
then Γ', Δ' l· Μ φ is also derivable

4 Closure or Subject-Reduction îlf M -»0 M', then Γ, Δ h Μ' φ is also
derivable

5 Stripping or Generation

Γ,ΔΙ-ρ ψ
(ρ a proof variable)
Τ,Α^ΧχΑΜ φ

(Л a type)
Γ, Δ r- λρ χ Μ φ

(χ a proposition)
Γ,Ah MN φ

(Ν a proof)
Γ, Δ h Mí ψ

(t an object)

=>

= > •

=s>

=>

=>

φ = ip with ρ ψ Ç A
for some ψ,

Γ, χ Л, Δ h M ip with ψ = Vx Л ф
for some ф,

Г, Δ, ρ χ Í- M ф with ψ = χ D ф
for some ф,

Γ, Al· Μ ν ο χ , Γ , Δ Ι - Λ Γ φ with ψ = χ
for some φ, χ,

Γ, Al· M Vx Л φ, Γ h t A with φ = f[t/x]
for some ф, A

Sec 3 2 The formulas as-types notion à la Howard 49

To a deduction of

V i . ,ψπ^Φ

in PRED, we are going to associate an object context Γ and a proof-term M such

that

Г,Рі і. ,ρηψη\-Μ φ

in APRED We want M to be a faithful representaton of the deduction in PRED

such that there is a one-to-one correspondence between deductions (in PRED)

and proof-terms (in APRED) To achieve this, Γ should assign types to all the

free term-variables in the deduction that are not bound by a V at any later stage

(What it means for variables to be 'bound by a V' will be explained later) From

the examples it will be clear that sometimes we have to declare a variable x,

even though this variable does not occur free in the conclusion or in any of the

premises of the derivation Before giving the translation we have to define two

operations on contexts that will be used

3 2 4 D E F I N I T I O N For Γι and Γ 2 object-context, the union ofT\ and Γ 2 , Γ ι υ Γ 2)

is Γι followed by Γ2, with the restriction that if χ is declared in both contexts,
say χ Л € Γι and χ В € Г2, then

Α Ξ В => χ В is left out, (so we leave only χ A

Α φ. В => both χ A and χ В are left out

For Δι and Δ 2 proof-context, the disjoint union of Δι and Δ 2 , Δι kí Δ 2 , is
Δι followed by Δ 2 , with the restriction that if ρ is declared in both contexts,
say ρ ψ 6 Δι and ρ ψ e Δ 2 , then the second ρ is renamed with a fresh
proof variable q So, for example

(P ψ)&(ρ ψ)=Ρ Ψ, Я Ψ

Note that Γι U Γ2 is always a correct object-context and that, if Δι and Δ 2

are corrects proof-contexts w r t Γ, then Δ χ 1+) Δ 2 is a correct proof-context w г t
Г

3 2 5 D E F I N I T I O N For every term t of the language of PRED we define a context
Г, such that r , h (D (in APRED) if t e D (in PRED), as follows

=
=
=
=
=

XD

XxeD M
MN

φ D φ
^ΧίΌψ

г(
Γ,

Γ,
Γ«

Γ«

= ΧΌ D,
= r M \ (i D) ,
= Гм U Tjv,
= Γ,,υΓψ,

= Γ , \ (ι ΰ)

50 Formulas-as-types Ch 3

We now define, by induction, for every deduction in PRED an object context

Γ, a proof context Δ and a term M such that

Γ , Δ Κ Μ </> (in APRED),

if φ is the conclusion of the deduction In fact this establishes a mapping from

deductions to λ terms In the following we shall denote deductions by the capital

Greek characters Σ and Θ To denote explicitly that φ is a conclusion of the

deduction ψ we shall often use the format

Σ

Ψ

(So when we write this down we mean that ψ is part of the deduction Σ) For

reasons of hygiene we shall assume that in a deduction all bound variables are

chosen distinct and different from the free ones

3 2 6 D E F I N I T I O N We inductively define the mapping ([-]) from deductions of

PRED to proof terms of APRED Together with the proof term we define an

object-context and a proof context in which the proof term is typable The double

horizontal lines on the right mean that the judgement below is being defined in

terms of the judgement above

Φ ι—• Г^,рфЬр φ,

Γ, Δ h ([Σ]) ф
Ы
Σ
Φ

<рЭф'

Σ Θ
φ Э φ φ

Φ

Σ

Φ

V x e D V

Σ

Vx e D φ

φ[ί/χ]

Σ

Φ if φ = φ

Ψ

ΓΌΓφ,Α\(ρφ)\-Χρφ([Σ^ ψ D ф

η , Δ , Η Σ β φρψ Га,ДаІ-Д Р φ

r i u r j . ^ w A j i - í E D í e í φ

Γ,ΔΚ([ΣΡ φ

Γ\(χ£»),ΔΙ-λι£)([Σ]) Vi Ώφ

Γι,ΔΙ-([Σ5 VxD ψ Γ2 h ί D

ι\ υ Γ2, Δ h flq)t Φ[ί/χ]

Γ, Δ h ([Σ]) φ Υφ\-ψ Prop

Γ U IV Δ h (И φ

Sec 3 2 The formuìas-as-types notion à /a Howard 51

The cases in the definition for the last rule being (Э-І) and (Э-Е) need some
extra clarification

(D-I) The [φ]1 on top of the deduction signifies a specific set of occurrences of the
formula ψ as leaves of the deduction tree As this set may also be empty
we have to take the union of Γ with Г^ What happens at an (Э-І) rule is
the following

1 Add a fresh declaration ρ φ to Δ

2 Remove the declarations ρ' φ that correspond to an occurrence of φ
that is being discharged

3 Substitute ρ for p' in ([Σ])

4 Abstract from the last declaration in Δ (which is ρ φ)

(Э-Е) In fact the ([]) is not exactly the ([Ц that is found by induction Possi
bly some of the free variables in ([]) are renamed What happens is the
following

1 Consider the proof-context Δι 1+) Δ 2 and especially the renaming of
the declared variables in Δ2 that has been caused by the operation 1+)

2 Rename the free proof-variables m ([Θ]) accordingly, obtaining say,

(I©'D

3 Apply Щ to j e ' j

(There will in practice be no confusion if we just write <[Q]¡ instead)

Of course the intended meaning is that the judgement below the double lines
is derivable if the judgement above the lines is This will be proved later in
Theorem 3 2 8 It should be clear at this point however that there is a one-to-one
correspondence between the occurrences of φ as a (non-discharged) premise in
the deduction and declarations ρ φ m Δ

NOTATION If for Σ a deduction in PRED, Γ, Δ h ([ΣΙ) φ is the judgement that
we obtain from Σ by Definition 3 2 6 above, we write Γ E for Γ and Δ^ for Δ

Let us state the following trivial facts about the definition

3 2 7 FACT 1 For Σ a deduction in PRED there is a one-to-one correspon
dence between occurrences of non-discharged formulas of Σ and declarations
of variables to the same formula in ΑΣ

2 In the case for the (V-I) rule the variable χ does not occur free in the
proof-context Δ

52 Formulas-as- typ es Ch. 3

3.2.8. T H E O R E M .

Σ in PRED => ΓΣ; Δ Σ h ([Σ]) : ψ is derivable m APRED

P R O O F . By induction on the deduction Σ. The proof follows easily by using the

meta-theoretical facts of APRED that were stated in 3.2.3. Kl

The proof-context Δ^ represents precisely the non-discharged assumptions of

Σ. The object-context Γ Σ declares precisely those object-variables that occur in

Σ and are not bound later by a V

Due to the conversion rule, the context ΓΕ is not minimal with respect to the

judgement

in the sense that there may be a smaller object-context Γ for which

Γ; Δ Ε h (И) : ψ

is derivable. (A proof of the statement 'all declared variables in Γ Σ occur free in

Δ Ε or ([Σ])' breaks down on the conversion rule.) A counterexample to minimality

of Γ Σ is given by the derivation

Ы

(\χ:Α.φ D ip)y

φΖ)ψ

We have Γ Σ = φ-Ρτορ,υ.:Α, Δ Ε = 0, ([Σ]) = Χρ·ψ ρ, whereas

<¿?:Prop; h \ρ:φ.ρ : φ D ψ.

The conversion rule is also the reason that the embedding ([]) is not really one-

to-one. The λ-term ([Σ]) that we obtain ignores all applications of (conv) in the

deduction Σ and, as is easily seen, applications of (conv) can be moved through

the tree Σ more or less freely. There is however a one-to-one correspondence

between equivalence classes of deductions and λ-terms if we let two deductions

be equivalent if one obtains the same tree after removing all applications of (conv).

We shall define this equivalence relation more precisely later.

3.2.1. Completeness of the embedding

We now define a mapping back from the proof-terms of APRED to deductions of

PRED.

Sec. 3.2 The formulas-as-types notion à ¡a Howard 53

3.2.9. DEFINITION. For any proof-terms M with Γ; Δ h M : φ we define by
induction on the structure of M a deduction Σ(Μ) as follows.

Γ ; Δ Κ ρ :

Δ Ι- \ρ:ψ N :

\ h Xx:A N

Γ;ΔΚ MN

Γ; Δ l· JVÍ

: V? ι — »

: </5 ι — >

: (ρ ι — »

: y > ι — •

: φ ι — •

Φ
- if ρ : φ € Δ

[ΦΥ
Σ(Ν)

χ

V» 3 χ *

ν

Σ(ΛΓ)

Vx:D.ip

Ψ

Σ(Μ) Σ{Ν)

Χ Э V" Χ

V

Σ(Ν)
Vx e Ό.φ

φ[ί/χ]

For every case, the final rule is always an application of (conv). This can be
vacuous if the conclusion that was obtained is already ψ.

The Definition is justified by Stripping, which says that the proposition ψ is
always equal to a proposition of the form we require.

3.2.10. PROPOSITION. If Γ;Δ h M : ψ m ÀPRED, then

1. the conclusion of Σ{Μ) is φ and all non-discharged assumptions of'Σ(Μ)
are declared in Δ,

2. (p(M)D = M and Г Е (М) С Γ, ΑΣ(Μ) Ç Δ.

PROOF. By induction on the structure of М.Й

54 Formulas-as-types Ch 3

To be more precise as to what extent there is a bijective correspondence be
tween deductions in PRED and proof-terms in APRED, we define an equivalence
relation on deductions of PRED

3 2 11 DEFINITION We define a stripping operation (-) from deduction trees
to labelled finite trees as follows

Ψ ι — • Ψ,

Ы
Σ

Φ _
φ^φ1

Σ Θ
φ D Φ φ

Φ

Σ

Φ

Ухе Όφ

Σ
Ухе Όφ

φ[ί/χ)

Σ

Φ if φ = φ

Ψ

~

—

—

-—

(Σ)

ι

<Σ) (Θ)

MP

<Σ)

χε D

{R
t

(Σ)

Remember that, when writing φ below Σ, we mean that φ is a part of the
deduction Σ So, the mapping () removes all formulas from the tree Σ, except for
the leaves In doing so it leaves just enough information behind to reconstruct
which rule has been applied and in which form (like which occurrences of a formula
have been discharged, which variable has been abstracted from and which term
has been substituted)

3 2 12 EXAMPLE

ірЭ^Эф [φ]1 φΟψΟφ [φ]1

φ Эф Μ ' MP [φ]'

Φ MP

φΌφ1

г

Sec. 3.2 The formulas-as-types notion à la Howard 55

3.2.13. DEFINITION. The equivalence relation ~ с я o n deductions of PRED is
defined by

Σ ~ c * Θ := (Σ) = (Θ).

The ~ с я equivalence classes will be denoted by [—]сн-

3.2.14. EXAMPLE. Let φ —>$ ф. The following deductions are equivalent under
~сн-

[ψ]1

— M ы
<pD<p'

and are different from

ψ

ψΏφ1

φ D φ

φ3φ'

ф D φ

Φ Эф'

Also in APRED there is a trivial variation on a proof-term that we want
to abstract from. The situation occurs already in the definition of ([]), which is
not fully fixed, due to the choices of renamings of proof-variables that we have
to make. So, what we want to do is consider pairs (Δ, M), where Δ is a proof-
context and M a proof-term, and an equivalence relation on these pairs such that
(Δι, Mi) and (Δ 2, M2) are equivalent if there is a substitution of proof-variables
for proof-variables α such that σ(Δι) = Δ 2 and σ(Μι) = M2. If this is the case
we call (A\,M\) and (Δ 2,Μ 2) equivalent modulo renaming of proof-variables.

3.2.15. PROPOSITION. Let θ and Θ' be deductions m PRED.

1. If Θ ~ся Θ', then (Δ©, ([Θ])) and (Δθ',ίΘ'Ι)) are equivalent modulo re
naming of proof-variables.

2 S(([0D) ~ c „ Θ.

PROOF. The first by induction on the structure of (Θ)(= (Θ')). The second by
induction on the structure of Θ. S

The following is now an obvious consequence of Proposition 3.2.15 and Propo
sition 3.2.10.

3.2 16. COROLLARY. The mappings Σ(—) and ([—]) constitute a bisection between
~cи -equivalence classes of deductions m PRED and pairs (Δ, M) modulo renam
ing of proof-variables.

56 Formulas-as types Ch 3

3.2.2. Comparison with other embeddings

In [Barendregt 1992] a different embedding of logic-in-natural-deduction-style

into typed lambda calculus is given For this system we have no completeness

on the level of derivations (and hence the embedding is not an isomorphism

on the level of derivations) In Chapter 2 1, paragraph 2 2, we have already

pointed out what the problem is the formalization of the logic is not good, it is

somewhere in between a sequent-formulation of natural deduction (as it is used

in [Howard 1980]) and a 'real' natural deduction formulation, (like the one in

[Prawitz 1965]) As a consequence the proof-terms λρ φ \q φ ρ and λρ φ Xq φ q

will always be mapped to the same derivation-tree of the original logic

The embedding that was described in [Barendregt 1992] has been studied

extensively in [Tonino anf Fujita 1992] for the case of higher order logic In this

paper a completeness result is stated which can not be right, namely Theorem

6 2, saying that the composition of, first the mapping from type system to logic

and then the mapping from logic to type system, constitutes the identity on the

level of proof terms The two proof terms of the formula φ D φ D ψ as given

above present a counter-example

It will be clear from these remarks that we feel a strong preference for the

embedding as described above there is a clear correspondence between derivation

trees and proof-terms Note also that in [Barendregt 1992] the embedding is

done in two steps first linearize the derivation trees and then embed these as

typed lambda terms m a calculus This calculus (APRED) is different from

our APRED, because it does not distinguish proof contexts and object-contexts

Our embedding is also done in two steps Above we have given the interpretation

of derivation trees as typed lambda terms in APRED In Chapter 6 1 it will

be shown that our system APRED is the same as the calculus APRED used

in [Barendregt 1992] We think that the way in which we have split up the

embedding is more natural and gives a better insight

3.2.3. Reduction of derivations and extensions to higher orders

It is well-known that cut-elimination in PRED corresponds to normalization of β-

reduction Let's make this precise by defining a reduction relation on deductions

of PRED

Sec 3 2 The formulas-as-types notion à Ja Howard 57

3 2 17 DEFINITION The reduction relation —>B on deductions of PRED is de
fined as follows

Ы
Σ
Φ

φθφχ

Φ'

Σ

t Σ[ί/ι]
Vi e D φ — > B φ^/χ]

Vi e D φ' φ'^/χ)

<p'[t/x]
The definition of Σ[ί/ι] will be clear and it is easy to check that Σ[ί/ι] is indeed
a deduction of φ[ί/χ]

The reduction relation —>д eliminates what is generally known as a 'cut'
a redundancy in a proof by first introducing a connective and then immediately
eliminating it

3 2 18 PROPOSITION There is α one-to-one correspondence between reduction
steps —*в l n а deduction Θ of PRED and β-reductions in the corresponding
proof-term <[&]) of APRED Hence we have

—>в г* (strongly) normalizing on deductions of PRED
Ό- β reduction is (strongly) normalizing on proof-terms of APRED

PROOF Immediate from the one-to-one correspondence between equivalence clas
ses of deductions and proof-terms modulo renaming of proof-variables, as it was
stated in Corollary 3 2 16 Η

In [Howard 1980] the formulas-as-types embedding is discussed for the full
intuitionistic first order predicate logic In APRED this amounts to the addition
of the connectives V,&,-i and 3 and the corresponding operators for the intro
duction and elimination rules Also these operators come together with reduction
rules that correspond to the rules for cut-elimination for the connectives in the full
first order predicate logic [Howard 1980] also discusses the extension to Heyting
Arithmetic which amounts to the addition of an induction operator We do not
give details of these extensions Our exposition for the case of PRED covers all
the basic difficulties that one encounters, so the extension is a straightforward

Θ

φ
Σ

Φ

Φ'

58 Formulas as-types Ch 3

one Moreover we are more interested in giving some details of the extension to

second and higher order systems, in which all the extra connectives and induction

can be defined

3 2 19 D E F I N I T I O N The systems APRED2 and APREDw are defined by extend

ing APRED in the following way

1 For APRED2, allow quantification over all types, ι e add the possibility

of quantification over predicate types (The distinction between functional

and predicate types is still meaningful, because we do not allow the forma

tion of object-terms by λ abstraction over predicate types)

2 For APREDtj, extend the types to

Type = Vari!/1 Prop | Type—»Type,

and allow quantification and A abstraction over all types (Then there is no

need to distinguish between functional and predicate types, but we may still

do so, a type being a functional type if it is of the form A\ —• —>An with

An a type-variable and a predicate type if it is of the form Αχ—> —»Prop)

The connectives V,&,-i and 3 can now be defined in terms of D and V in
both APRED2 and APREDu; The definitions have already been given in Re
mark 2 2 7 This means that there are closed proof terms that correspond to the
introduction and elimination rules for the connectives The correspondence is
even stronger in the sense that these closed terms satisfy part of the reduction
rules that correspond to cut-elimination It is not difficult to verify this and we
therefore just treat the cases for V and 3 as an example (The terms correspond
ing to introduction and elimination only satisfy part of the cut-elimination rules,
because m the full predicate logic there are also rules that combine an elimination
rule for one connective with a rule of another connective These are not satisfied
See e g [Girard et al 1989] for these type of rules)

3 2 20 E X A M P L E S We work in APRED2

1 The connective V is defined by φ\/φ = Va Prop(</? D a) D (ψ D a) D a and

we have the following combinators for V introduction and V elimination

(For reasons of readability we have omitted some type information)

V li φΌφνψ,

= Αι φ Xagh gx,

V-I2 -φ^φνψ,

= Αι ф Xagh hx,

V-Ε Va Prop φ V ф Э [φ D α) Э {Φ D α) Э α,

= λα \χ φ У φ \gh xagh

Sec 3 2 The formulas-аз-types notion à la Howard 59

These combinators satisfy the following reductions

ν-Εχ(ν-ΐ!ί)$/ι -*β gt,

\Z-Ex(V-l2t)gh ~»β ht

These reductions correspond in the obvious way to the rewriting of a part
of a deduction where we have done an V-introduction and then immediately
a V-ehmination

2 The connective 3 is defined by 3 ι Α φ = Va Prop (Vi Α φ D α) D α and
we have the following combinators for 3-mtroduction and 3-ehmination
(Again we have omitted some type information)

3-1 Vi Α (φ D 3x Α φ),

= Xx A Xh φ Xag gxh,

3-Е Va Prop (3x Α φ) Э (Vx Α φ D a) D a,

= Xahg hag

These combinators satisfy the following reduction

3-EX(3-lth)g -*p gth,

which corresponds to the rewriting of a part of a deduction where we have
done an 3-introduction and then immediately a 3-ehmination

In a similar way one can also interpret Heyting Arithmetic in APR.ED2 start
ing from a fixed type A and two objects 0 A and S A—>A (declared as variables
in the object-context, but in fact treated as constants), one would like to con
struct a proof-term of type

Ind = VP Л-*Ргор PO Э (V¡/ АРуЭ P{Sy)) Э (Vx A P i)

As it is stated now this is of course impossible nothing tells us that the objects
of type A are just the ones built up from 0 and S We can handle this by
relativization Let N A—»Prop be defined by

N = Ai A VP Л-Prop PO Э (Vi/ A Py D P(Sy)) D Px

So Nt is true if t is built up from 0 and S only, ι e
Nt is true if t is a numeral We have the following proof-terms

zero ./VO

= XP Л—»Prop Xhohi h0,

succ Vx A Nx Э N(Sx)

= Xx A Xq Nx XP Л—»Prop λ/ι0/ΐι hix(qPh0hi)

60 Formulas-as types Ch 3

We can now define induction as follows

Ind = VP Λ—Prop PO D (Vy A (Py & Ny) D P(Sy)) D (Vx A Nx D Px)

So Ind states induction for numerals We can now find a closed term

md Ind

that also satisfies the required equality rules (Compare for example with the
scheme for induction in [Howard 1980])

índPíoíiOzerò -»β í0 PO,

indPíoíi(5n)(succng) =β ¿in(indP<0iing) P(Sn)

3.3. The formulas-as-types notion à la de Bruijn

We now want to say something about the work of de Bruijn in the Automath
project in relation to the notion of formulas as types Presenting things in this
way suggests that there are two totally different approaches, which is not true
(For example in the Automath project many different systems have been intro
duced and some of them are quite close to systems that we have seen in the
previous section) The reason for separating the two is that both have their own
basic underlying ideas that we want to single out This is also the reason that
in this section we restrict our attention mainly to the system AUT 68, which
probably covers best those basic ideas of Automath that we want to talk about

We do not want to introduce AUT 68 in the original format, but in a format
close to the typed lambda calculus APRED that we have encountered in the
previous section The reason is twofold first it would take a lot of space to
explain AUT-68 in its original format (Something which has been done quite
succesfully in [van Daalen 1973]) Second we want to present it in a format which
is close to one that will be used later for describing typed lambda calculi This
means that we ignore some of the features that are inevitable for making the
system feasible for man-machine interaction but are inessential for our discussion
of formulas-as-types (Like the definition-mechanism of Automath)

Our definition of AUT-68 owes a lot to discussions with van Benthem Jutting
In fact it is a derivative of he description he has given of AUT-68 as a Pure Type
System

3 3 1 D E F I N I T I O N AUT-68 is a system for deriving judgements of the form

Γ\- M В

Here Г is a context, ι e a sequence of declarations, which are statements of the
form χ A, where χ is a variable and A a term The M and В are terms, which
are taken from the set of pseudoterms

Τ = Var I type | TT | λχ Τ Τ | Πχ Τ Τ,

Sec. 3.3 The formulas-as-types notion à ¡a de Bruijn 61

on which we have the usual notions of substitution, β- and 77-reduction etcetera.
The terms are singled out from the set Τ by the derivation rules that determine
which judgements Γ h M : В are derivable. The derivation rules are the following.

(base) 0 h

Г h A{: type)
(ctxt) if χ not in Г

Γ, χ:A h

rh
ax

Γ h type

ΓΗ
(proj) 'пх-.АеГ

Τ\-χ:Α

(ΠΙ)

(Π2)

(Π)

(λ)

(app)

r,x:type l· B(: type)

Г h ni:type.ß

Г,х:А\- В Tl· А : type

Г 1- Пх-.А.В

Г,х:А h В : type Г h А : type

Г h Пх-.А.В : type

Г,х:АЬМ:В Г h Пх:А.В(: type)

Г h λζ:ΑΜ : Пх:АВ

П - М : П : г : А В Г \- N : А

Г h MN : B[N/x]

Г h M : В Г h Л(: type)
(conv) .— A =я В

Tl· M: A
We use the convention of writing A—>B for Πχ-.Α.Β if ι ^ FV(S).

As people familiar with Automath may notice, we have not only changed the
presentation of the system, but also the system itself. For example the original
system does not contain Π-expressions: λ is used everywhere at places where we
have put а Π. We feel that the systems with us is more natural and it is certainly
more readily understood by people who are familiar with the actual developments
in typed lambda calculi. Moreover there is no real difference between the two
versions of the system: if we use the formalisation without Π we can always
'recognise' the Xs that should be 'read as' us. (This is not true for extensions

62 Formulas-as- types Ch 3

of AUT 68 like AUT-QE, where the identification of Π and λ really extends the
system)

Those not familiar with this kind of calculus may wonder what the use of this
system is We therefore give an example The general purpose of the system is
to provide a logical framework in which a user can work with a formal system of
his or her choice The situation is then that the language of the formal system is
declared in a context, which is then fixed (This part of the context is then used
as a kind of 'signature' and the variables declared in it act as constants)

3 3 2 EXAMPLE First Order Predicate Logic The idea is to interpret the do
mains of the logic as well as the formulas as types, a domain being understood as
the type of its elements and a formula being understood as the type of its proofs
Consider the following context

Γ = ± type, V type—>type-*type,

abs Πχ type J_—*x,

in! Πι, j/ typex->(x Vj/),in2 Ux,y type y->{x V y),

out Пх, y, ζ type (χ V ¡/)-»(x-»z)-»(y-»z)-».2:,
cl Πχ type χ V (χ—»J.)

Then, we have for example (abbreviating A—»± to ->A),

Γ h λχ type \y -i-ix outxi/2(clx)(Ap χ p){\q ->x ahsx(yq))

Πχ t y p e ((x—•-!-)—*!•)—>x

The universal quantifier is interpreted by the Π

Vx Α φ =Ux Α φ

and we can define the existential quantifier in terms of the universal one (classi
cally) by

Эх Α φ = -iVx A -up

The theory of natural numbers can now be developed by adding to Γ

TV type, 0 N,S N^N,+ N^>N->N,= N^>N->N,

comm Π χ , y N x + y = y + x, etc

One of the drawbacks of this kind of interpretation of first order predicate logic
is that domains of the logic and formulas are not only treated in the same manner
(as types), but even as if they were the same kind of things the system itself
can not distinguish between formulas and domains This was also recognised
by de Bruijn who especially emphasized this drawback m relation to so called

Sec 3 3 The formulas-as-types notion à ia de Bruijn 63

'proof-irrelevance' This becomes very apparent if we look at situations where
proof-terms are subexpressions of the object-terms, for example if we have

R type, pos R—»type.sqrt Πι R pos(x)—»R,

where R represents the real numbers, pos the predicate that decides whether a
number is non-negative and sqrt constructs the square root of a number if that
number is non-negative Although in general we may want to distinguish different
proofs of a formula, we obviously want sqrtrp only to depend on τ and on the
fact that τ is non-negative (not on the particular proof sqrtrp and sqrtrp' should
represent the same real number) Clearly there is no way to state proof-irelevance
in its most general form like 'for all formulas φ all terms of type φ are equal'

One of the extensions of AUT-68 that has been considered (and is also known
under the name AUT-68) is the one which splits type into type and prop So
for prop we have the same rules as type (but we can now easily make variants of
the system that handles type and prop differently), but we can specify different
axioms for prop in the context

There are some other drawbacks to the direct interpretation of formulas as
types Note that the system is essentially first order we can not quantify over
the collection of subsets of a domain To do this we would have to be able to
write down (ΠΡ A—»type φ) type, which is not allowed As a consequence we
also can not formalise induction in its most general form It would have to be
something like

TIP JV-»type Ρ0-»(Πχ N Px-»P(Sx))-»(ny N Py)

(Note that the fact that we have Πι type В (for В type) in the system does
not mean that the system is impredicative Ώχ type В itself is not of type type)
For the same reason we can not represent the (first order) intuitiomstic existential
quantifier Knowing that it can't be defined in terms of V, the only option is to
declare it in the context with its introduction and elimination rules

Ξ Πχ type (χ—»type)—»type,

but this is not allowed
To overcome the drawbacks that we just mentioned, yet another option has

been developed by the Automath community, which does not require a change of
the system but only a different use of it The idea is to not let formulas be types
themselves but to introduce a fixed type constant prop, representing the names
of the formulas, and a kind of lifting operator Τ prop—»type, which maps a
name of a formula to the type of its proofs Although the difference with the first
interpretation may seem small at first sight, this is a major improvement. First
the system is now really used as a framework in the previous interpretation some
features of the type system were used directly for the logic (like the Π which is

64 Formulas-as- types Ch 3

used as V and D), whereas now all the quantifiers have to be represented in a
context Further this interpretation gives much more flexibility, allowing one to
interpret for example second order and higher order logic in a similar way, but
also more exotic formal systems like typed lambda calculus itself Let's give an
example of a formalisation done according to this new point of view

3 3 3 E X A M P L E First Order Predicate Logic We adapt the example that we

gave before to the new interpretation

Γ = prop type, Τ prop—»type,

J. prop, V prop—»prop—»prop,

Э prop—»prop—»prop, V Π ι t y p e (x—»prop)—»prop,

abs Π ι prop T(_L)—»T(i),

Ш] Ux,y prop T (i) - » T (i Vj/),in2 Ux,y prop T{y)->T(x V y),

out Π ι , y, Ζ prop T(x V ¡ ,) _ (Т (і) - » Г (г)) - (Т (у) - . Г (г)) - » Т (г) ,

V Ι Π ι type UP ι—prop (Пг ι T{Pz))-*T(VxP),

V-E Π ι type UP i-»prop Т(і Р) - > П г ι T{Pz),

cl Π ι prop T(x) V T(x Э 1) ,

etcetera

(We have not stated the rules for Э) Again we have an M such that

Γ l· Μ Π ι prop T (((i З І) З І) Э і)

The intuitiomstic existential quantifier can now also be defined by letting

3 Π ι type (x—»prop)—»prop

and adding declarations for the intuitiomstic introduction and elimination rule
We can also add induction for the natural numbers by declaring

ind UP W - p r o p T{P0)^T(yN{\x N Px D P{Sx)))^T{VN(\y N Py))

The flexibility is really an enormous advantage of the system This was

also noticed by researchers in Edinburgh, who defined their system LF ('Log

ical Framework', [Harper et al 1987]) based on ideas from Automath We have

again been inspired by LF in the choice for our representation of AUT-68, which

is quite close to LF We shall say something more about LF later Now we want

to treat as an example higher order predicate logic (PREDu;) in AUT-68 As one

may have noticed in the previous example, the domains of the logic are still types,

which may be undesirable if one wants to allow operations on domains that are

not allowed on types in AUT-68 (For example cartesian products of domains)

In that case one would like to push the language of the logic one level lower by

introducing a type of names of domains 'dom' and an operator D dom—»type
that maps a name of a domain to the type of its elements Higher order predicate

logic is one example of a system where such an approach is appropriate

Sec 3 3 The formulas-as-types notion à la de Bruijn 65

334 EXAMPLE We interpret the system PREDw in AUT-68 by introducing the
following context

Γ = dom type, Û dom—»type,

=> dom—»dom—»dom, prop dom

= Tld dom Dd—*Dd—> type,

Ap Ud, e dom D(d=>e)-»£)ci-»De,

Abs Tld, e dom (Dd^>De)-»D(d=>e),

β Tld, e dom Π/ Dd-^De Tlx Dd Apde{Absdef)x=fx,

ξ Ud, e dom Π/, g Dd—>De (Tlx Dd fx=gx)-*(Absdef=Absdeg),

comp Πα!, e dom Π/, g D(d^-e) Ux, у Dd x=y^>f=g-+(Apfx=Apgy),

Τ Dprop-»type,

Э Dprop—»Dprop—»Dprop, V Tld dom (Dd—»Dprop)—»Dprop,

Э-І Πι, Ï/ Dprop T(i Э y)—>Tx—»Ту,

O-E Πι, j/ Dprop (Γι—»Ту)—»Т(і Э ¡/),

-І Па dom TIP Dd-»Dprop (Пг Dd T(P¿))-»T(VdP),

V-E Па dom ПР Dd-»Dprop T(VdP)-»n2 Dd T{Pz)

By pushing the domains one level lower, all of the higher order language is
now coded, but still the substitution and conversion mechanisms of the system
take care of substitution and α-conversion in the defined higher order language

Note that this is not the only possibility an alternative is to let the domains
still be types in which case one would have for example

Г = prop type, Г prop-»type,

Э prop—»prop—»prop, V Па type (d—»prop)—»prop,

Э-І Пі, у prop T(x О у)—»Γι—>Ty,

Э-Е Пі, у prop (Tx^Ty)^T(x D y),

V-I nd type TIP d^prop (Пг d T(Pz))->T(WP),

V-Ε nd type TIP d-»prop T(VdP)->Tlz d T(Pz),

etcetera

But this is exactly the same context as we had in Example 3 3 3'

3 3 5 REMARK The context of Example 3 3 3 represents higher order predicate
logic in AUT-68 The V quantifier that is declared in the context applies to all
types, so it applies to A, A—»prop, (A—»prop)—»prop etcetera

Obviously, less coding makes things easier to read and write However, there
is also an important advantage of the approach of Example 3 3 4, which is that

66 Formulas-as- types Ch 3

adequacy of the interpretation is easier to prove This issue has not received a
lot of attention in the Automath project, but which is of course very relevant
To which extent is the interpretation of the logic in AUT-68 adequate7 (Are
there sentences that are provable in the interpretation in AUT-68 that were not
provable in the original logic7) In the interpretation of higher order predicate
logic of Example 3 3 3, the V quantifier can range over any type, including types
of the form Τφ, with ψ prop Clearly this is not available in the logic so we
really have to do some work to show that this extra feature doesn't provide us
any ingenious proof of an unwanted theorem (like _L for example)

The problem of adequacy of encodings of formal systems has been taken very
seriously by those who defined the system LF See for example [Gardner 1992]
Let's introduce this system and sketch how adequacy proofs are given for the
system (There is no general theorem saying that a specific way of encoding
formal systems will always yield an adequate interpretation, but there is a general
proof procedure that will usually do the job of proving adequacy)

3 3 6 DEFINITION LF [Harper et al 1987]is a system for deriving judgements
of the form

Fl· Μ В

where Г is a context and M and В are terms, which are taken from the set of
pseudoterms

Τ = Var |type|kind|TT|AxTT|nxTT,

like in the definition of AUT-68 (Definition 3 3 1) The derivation rules are the
following (s ranges over {type, kind})

(base)

(ax)

(Π)

W

(conv)

0 b

ГЬ

Г 1- type kind

Γ,χ Ah β s Tl· A type

Г h Пх А В s

Γ,χ Al· Μ В Γl·UxAB s

Г h Xx A M YlxAB

Tl· M В Tl· A s
Α=βηΒ

Tl· M A

(ctxt)

(proj)

(app)

Tl·A s
if χ not in Γ

Γ,χ Al·

Tl·
if χ A e Γ

Tl·! A

Tl· M UxA В Tl· N A

Τ l· MN B[N/x]

Again we use the convention of writing A—*B for Пх A В if χ $ FV(ß)

Sec 3 3 The íormulas-as-types notion à la de Bruijn 67

In the definition we have ignored one feature of LF, which is the use of so
called 'signatures' These are special contexts in which constants are declared In
our definition a signature is part of the context, to be precise that part in which
the language of the formal system is fixed (like the Γ in 3 3 4)

Looking again at the example of higher order predicate logic, we see that
only the interpretation of Example 3 3 4 is possible in LF The second requires
a Π-abstraction over type, which is not allowed in LF Apart from conversion,
this is in fact the only difference between LF and AUT-68 (in the way it was
defined in Definition 3 3 1) If one reads the judgements of AUT-68 that are of
the form Γ h S as Γ Ι- β kind, the the systems have the same rules, except for
the гиІе(Пі), which is extra in AUT-68

The way to prove adequacy of the interpretation is by using so called 'long-
/îrç-normal forms' We already encountered this notion in the previous chapter
Recall that a long-/37?-normal form is obtained by first taking the /3-normal form
and then doing η expansion, where a term C[M] in 0 normal form η expands
to C[\x A Mx] only if χ £ FV(M), M Ux A В and C[\x A Mx] is again in
/3-normal form We write long-/?7?-nf(M) for the long /Jrç-normal form of the
term M The usefulness of this definition depends on the normalization and
confluence of βη reduction in LF The first property is relatively easy (shown
in [Harper et al 1987]), but the second is surprisingly complicated and was first
proved by [Salvesen 1989]

Now one can define an isomorphism between /Зту-equivalence classes of terms
of a specific type in Γ and terms of the corresponding domain in the higher order
predicate logic (It is of course allowed to extend Γ a little bit, but only with
variable declarations χ dom or χ D(d)) This is done by defining the isomorphism
on the long-/37?-normal forms, which form a complete set of représentants for the
/3r?-equivalence classes For example all the terms of type Dd correspond to terms
of the higher order predicate logic by first taking long-/Î7?-normal forms and then
defining the inductive mapping [—] by

И = xProp,

[φ Эф) = M Э [VI,
\Щ\х Dd M)] = Vi e И [M],

[ΑρΜΝ] = M A T] ,

[Abs(Az Dd M))] = \x e [d] [M],

where the correspondence [—] between terms of type dom and domains is obvious
In a similar way one defines a correspondence between terms of type Τφ in LF
and deductions of φ in PREDa;, establishing in this way the adequacy of the
interpretation

As pointed out already, LF can be seen as a subsystem of AUT-68, modulo
some small changes And, although the number of rules is limited, LF is very pow
erful in interpreting a wide variety of formal systems (See [Harper et al 1987],

68 Formulas-as-types Ch 3

[Avron et al 1987] or [Gardner 1992] for examples) It is however not minimal
yet We can do without a rule without weakening the power of the system This
is partly due to the way in which the system is being used (See the example
of higher order predicate logic, 3 3 4) Once the context Γ that represents the
formal system has been established, one is only interested in judgements of the
form

Γ h M A, with A a type

On the other hand there is no reason to let the context Γ not be in normal form

From these two principles we can show that half of the rule (λ) is superfluous

there is no need to be able to form \x Α Μ Π ι Л ß in case Π ι A В kind

3 3 7 D E F I N I T I O N In LF we split the rule (λ) in two, a (λ 0) and a (XP) rule

For convenience we attach a label to the abstraction that we introduce with the

rule, so
Y,x Al· Μ В Tl·XìxAB type

Tl·\0xAM UxAB

T,xAl· Μ В TbYix AB kind
(λρ)

Tl· XpxAM UxAB
The system LF without the rule (λρ) we call LF~, and we write h - for judgements

in LF~ On the terms of LF we now distinguish /^-reduction from /3p-reduction

in the obvious way

(XoxAM)N —-A M[N/x],

(XpxAM)N — > 0 P M[N/x]

Similarly we can now talk about βρ normal forms etcetera

We can show that a /?p-normal form of a relevant judgement contains no λρ

and that if a judgement contains no λρ, it can be derived without the rule (λρ)

3 3 8 P R O P O S I T I O N 1 If M t y p e or M A t y p e in LF, then ßP-nf{M)
contains no \p

2 IfTl· M Л, Γ, M and A contain no \ P l then Γ h " M A

P R O O F Both by induction on the derivation of Γ H M A Details can be found

in [Geuvers 1990] H

3 3 9 COROLLARY IfTl· M A(type) , all m βP -normal form, then Γ h " M

A{ type)

Sec 3 3 The formulas-as-types notion à ¡a, de Bruijn 69

If Γ is an LF context representing some system of logic and Л is a type that
represents some formula of this logic, then we can assume Г and A to be in 0p-
normal form Now, when looking for a proof of A in LF, one only has to look at
terms that do not contain a λρ the (λρ) rule can totally be ignored

The previous Proposition says that the only real need for Πι A В kind
is to be able to declare a variable in it Even this use is usually of the most
simple form where χ £ FV(ß) The standard application of it in both AUT-
68 and LF (certainly for logical systems) is the declaration of Τ prop—»type,
where prop type is another declaration In practice, this going hence and forth
between φ prop (the name of the formula) and Τφ type (the type of its proofs)
can be very inconvenient, as was already noticed by de Bruijn in [de Bruijn 1974]
This was one of the reasons for him to introduce the system AUT-4 In fact it
is a family of systems which are obtained by adding to an Automath system the
'fourth level' In terms of the system AUT-68, as we defined it in Definition 3 3 1,
this means that we add prop as a new constant of the language with the axiom

prop type

and all the rules for prop to make it into a logic For the set of rules one allows,
[de Bruijn 1974] suggests different possibilities We give here an extension of
AUT-68 to an AUT-4 like system where the set of rules for prop is rather minimal
but still interesting

3 3 10 DEFINITION We define the system AUT 68+ as an AUT-4 like extension
to AUT-68, by adding to AUT-68 (Definition 3 3 1) the constant prop with the
following rules (s stands for type or prop)

ΓΗ Γ h A prop
(ax') (ctxt') if χ not in Γ

Γ l· prop type Τ,χ AV-

Γ,χΑ^Β prop Γ I-Л s Τ,χΑ'τΜ В Γ Ι- Πι Α Β prop

ThTlxAB prop Г h λχ Α Μ Пх A В

The example of higher order predicate logic can now be done without any
coding at all, by taking type for the class of domains, prop for the class of
propositions and defining

φ Э ф = φ—*ψ for φ,φ e Prop,

Va; £ Α φ = ïlx Α φ for A a domain and φ e Prop

Then all introduction and elimination rules are obviously satisfied
We see that the formulas-as-types interpretation of PREDo; in the system

AUT-68+ is very 'Howard-like' in the sense that there is no coding and that

70 Form ulas-as- types Ch. 3

introduction rules correspond directly to λ-abstractions, elimination rules to ap
plications. We can make this correspondence formal by restricting the rules of
AUT-68+ and showing that the system obtained in this way is equivalent to
APREDo; as discussed in the previous section. The restriction of AUT-68+ is
easily defined; we just remove all rules that have no meaning in higher order
predicate logic.

3.3.11. DEFINITION. The system AUT-HOL (Automath for higher order predi
cate logic) is defined by removing from AUT-68+ the rules (Π1) and (Π2). So we
have the following rules, (s stands for type or prop.)

(base) 0 h (ctxt)

(ax) (ax')
Γ h type

ΓΗ
(proj) if x:A e Γ

T\-x.A
Γ, χ: A Η В : type Г H A : type

(Π) — — ^ — — (Π')

Γ Η Α(: s)

Γ,χ-.Al·

ΓΗ

Γ Η prop :

if χ not in Γ

type

г,

Г h Пх-.А.В : type

x:Ah M .В Г1-Пх:Л.В

ГНЛх:Л.М:

Г\- M : В Tl· А:

Пх-.А.В

prop

: s

-β В

(λ) -!— : — — — (арр)

г, x:A H В : prop Г H A

Г 1- Ux-.A.B :

Г г-Λ/ :Ux:A.B

: prop

ΓΗ Ν :

: s

: A

Γ h MN : B[N/x]

Fl· M : A
In the definition we have already anticipated towards its properties by re

stricting the (conv) rule to propositions. We can prove that, if Γ h M : A and A
contains a redex, then Γ h A : prop.

Due to the fact that we have removed the rules (Π1) and (Π2), the system
has a nice property that is sometimes called context separation. Notice first that
there are three ways of adding a variable to the context, namely by declaring
it as a variable of A where A : prop or A : type or neither of the two, in
which case A = type as is easily seen. So we can speak of proof-vanables (if
A : prop), object-variables (if A : type) and set-variables. The system has some
nice properties.

3.3.12. LEMMA. In the system AUT-HOL we have the following.

1. Strengthening: Г ь χ:В, Г2 H M : A with χ $ FV(T2, M, A), then
ГиГ2\-М:А.

Sec. 3.3 The formulas-as-types notion à la de Bruijn 71

2. Permutation: Γι,x:B,y:C, Γ2 h M : A with χ $ FV(C), then

Гі,у:С,х:В,Г2г- M : Α.

3. If Γ l· A : type, </ien A = Ai—> >Лп_і—>An with An = prop or An = χ
with i : type 6 Γ and all Аг of the same form as A (n > 0).

4 IfVrM: A{: type), then M contains no proof-variables (variables χ with

χ : φ(: prop) € Γ/

P R O O F . The proof is by induction on derivations. Η

3.3.13. COROLLARY. In AUT-HOL we can split up every context Γ into three dis

joint parts Гі, Г2, Гз, the first containing the set-variables, the second the object-
variables and the third the proof-variables such that

Γ\-Μ:Α =i> ГиГ2,Г3\- M : A with

Α Ξ type => Γι h M : type,

A : type => Γ ι , Γ 2 Η Μ : Α

As a consequence of the Lemma and the Corollary we find that AUT-HOL is
isomorphic to the system APREDai of Definition 3.2.19. The isomorphism from
AUT-HOL to APREDu; consists of a rearrangement of the context as suggested in
the Corollary and replacing set-variables by names for basic domains. Further we
have to write Vi e Α.φ for ΐΙχ:Α.φ if A:type and <^:prop and φ D ψ for φ—>ψ(=

Πζ:ψ.φ) if φ,ψ-.-ρτορ In the reverse direction we have similar replacements and
rewritings.

3.3.14. P R O P O S I T I O N . Let \-A denote denvabihty in AUT-HOL and h¿ denote
derwabihty m APREDo*. If В is a domain, then

Г l·A M : В О Г Ь Г 2 \-А M : В О Г2 r-L M : В.

If В a proposition, then

Г \-А M • В о Г Ь Г 2 , Г 3 \-АМ :В& Г 2 ,Г 3 \-L M : В.

72 Formulas-as-types Ch. 3

Chapter 4

Pure Type Systems

4.1. Introduction

The framework of Pure Type Systems (PTSs) provides a general discnption of a
large class of typed lambda calculi and makes it possible to derive a lot of meta
theoretic properties in a generic way We give a list of examples of systems in
the form of a PTS and then give a detailed study of the meta theory The notion
of a PTS first appears explicitly in [Geuvers and Nederhof 1991] under the name
GTS (Generalised Type System), where it is used to describe the so called 'cube
of typed lambda calculi' of Barendregt and its meta theory The typed lambda
calculi that belong to the class of Generalised Type Systems have only one type
constructor (the Π and hence the definable —>) and equality rule (just β), and
therefore the name 'Pure Type System' was suggested by Thierry Coquand and
has been widely adopted since The situation is that (almost) every typed lambda
calculus contains a core PTS, which does of course not mean that the core PTS
is in any respect the most essential part, but it gives a good starting point for
research

A notion very similar to that of PTS occurs already in the work of Ter-
louw ([Terlouw 1989a] and [Terlouw 1989b]), who describes (in Dutch) what he
calls a 'Generalised System for Terms and Types' It is also implicit in the
work of Berardi ([Berardi 1988]), who describes various examples of Pure Type
Systems without insisting on a general definition Both have been inspired
by the notion of the 'cube of typed lambda calculi', (see [Barendregt 1992]),
a first important step towards the notion of PTS The first coherent study of
the meta theory is [Geuvers and Nederhof 1991], which has strongly benefit
ted from suggestions in [Terlouw 1989a] The main meta-theoretic results of
[Geuvers and Nederhof 1991] can also be found in [Barendregt 1992]

In what follows we give a slight extension of the notion of PTS, with 77-equahty,
to be able to use it also for our study of the Church-Rosser property (CR) for
/?r?-reduction for the Calculus of Constructions with ^-conversion rule We also
do the meta theory for these extended PTSs

73

74 Pure Type Systems Ch. 4

It is well-known that the inclusion of η complicates things quite a bit, because
CR for βη on the set of pseudoterms is false We therefore describe a very weak
form of the Church-Rosser property for βη, which turns out to be provable for the
set of pseudoterms. This 'Key Lemma' will do the job in almost all cases where
we used CR in the study of the meta theory of PTSs with only /3-conversion in
[Geuvers and Nederhof 1991]. One important case is missing, which is Subject
Reduction for η (SR for η), saying that if Γ h M : A and Μ -»η Ν, then
Γ h Ν : Α. It seems that the proof can't be done without having first established
a proof of Strengthening.

Tx,x:A,T2\- M : В
хІ? {Т2,М,В) 1 =»Гі,Г 2г-М:Я.

In [Geuvers and Nederhof 1991] there is a proof of this rule for a certain subclass
of PTSs. The general proof for all PTSs is given in [van Benthem Jutting 199+]).
Both proofs use CR in an essential way, i.e. where the Key Lemma doesn't seem
to suffice.

The Calculus of Constructions is a relatively 'simple' system for which we
can prove Strengthening without having to rely on CR. This situation turns
out to occur more generally: We can describe a subclass of PTSs for which
Strengthening, and hence SR for η can be proved without having to rely on CR.
This will be discussed in Chapter 5.1, in Definition 5.2.7 and Lemma 5.2.10. It
will turn out that the Calculus of Constructions belongs to this class of systems,
so it satisfies SR for η.

Often the situation is more complicated and it is not clear how to show that
SR for η holds in general. This is even more worrying because a proof of the
Church-Rosser property on well-typed terms will certainly require SR. So we
have no proof of CR for βη and it seems we are in a deadlock situation. The way
out is suggested in the work of Salvesen ([Salvesenl991]) on proving CR for βη-
reduction for LF. The trick is to first add Strengthening as a rule to the system.
(This was also suggested in [Geuvers 1992] as an alternative; as things stand it
is not an alternative method but the only possible one.) Many problems then
vanish: The addition of a rule (strengthening) does not complicate the known
meta theory and allows to prove SR for η for the extended PTS notion. We can
use this, because the system without (strengthening) rule is a subsystem. This
does not yet mean that we can prove SR for η and CR for βη in general for
the system without the rule (strengthening). We only have a proof of these two
properties for normalizing systems. The general problem remains open.

We see that, for our study of PTSs with /3r?-conversion rule, it is useful to also
study the extension of the system with a rule (strengthening). We therefore define
three notions of Pure Type System: The original one with only /3-conversion, to
be denoted by PTS^, the one with /^-conversion, to be denoted by PTS^, and
the one with /3r/-conversion and strengthening rule, to be denoted by PTS^.

Sec 4 2 Definitions 75

4.2. Definitions

The Pure Type Systems are formal systems for deriving judgements of the form

Γ I-M Л,

where both M and A are in the set of so called pseudoterms, a set of expressions
from which the derivation rules select the ones that are typable The Γ is a finite
sequence of so called declarations, statements of the form χ В, where u s a
variable and β is a pseudoterm The idea is of course that a term M can only
be of type A (M A) relative to a typing of the free variables that occur in M
and A Before giving the precise definition of Pure Type Systems we define the
set of pseudoterms Τ over a base set S (The dependency of Τ on 5 is usually
ignored)

4 2 1 DEFINITION For S some set, the set of pseudoterms over 5, T, is defined

by
Τ = S I Var I (П аг Τ Τ) | (AVar Τ Τ) | TT,

where Var is a countable set of expressions, called variables Both Π and λ bind
variables and hence we have the usual notions of free variable and bound variable
We adopt the λ-calculus notation of writing FV(M) for the set of free variables
in the pseudoterm M
On Τ we have the usual notions of β and η reduction, generated from

(\x A M)P —>0 M[P/x],

where M[P/x] denotes the substitution of Ρ for χ in M (done with the usual
care to avoid capturing of free variables) and

Xx A Mx —•, M, if χ І FV(M)

and both compatible with application, A-abstraction and Π-abstraction We also
adopt from the untyped lambda calculus the conventions of denoting the transi
tive reflexive closure of —*¡¡ by -*β and the transitive symmetric closure of -»β
by =β (and similar for —•, and —*βη =—*p U —»,)

The typing of terms is done under the assumption of specific types for the
free variables that occur in the term

4 2 2 DEFINITION 1 A declaration is a statement of the form χ A, where
ж is a variable and A a pseudoterm,

2 A pseudocontext is a finite sequence of declarations such that, if χ A and
у В are different declarations of the same pseudocontext, then χ ^ y,

76 Pure Type Systems Ch 4

3 If Г = i i A¡, ,xn An is a pseudocontext, the domain ο/Γ, dom(r) is the
set {ii, , x„}, for i , 6 dom(r), the image of x, гп Γ, notation imr(z,), IS
the pseudoterm At

4 For Γ a pseudocontext, a variable y is T-fresh (or just fresh if it is clear
which Γ we are talking about) if y ^ dom(r)

5 For Γ and Γ' pseudocontexts, Γ' \ Γ is the pseudocontext which is obtained
by removing from Γ' all declarations χ A for which χ 6 dom(r)

4 2 3 DEFINITION A Pure Type System with β conversion (PTS^) is given by a
set 5, a set А С S χ S and a set TZ С S χ S χ S The PTS that is given by S,
A and TZ is denoted by \ß(S, A, TV) and is the typed lambda calculus with the
following deduction rules

(sort) h si s2 if (51.52) € A

(var)

(weak)

(Π) ^ "" "' " ' " " ' if (í b í 2 , a 3) e f c

(λ)

(app)

(conv^) A =0 В
Г h M 5

In the rules (var) and (weak) it is always assumed that the newly declared variable
is fresh, that is, it has not yet been declared in Γ If 52 = 53 in a triple (si, «2,53) €
TZ, we write (si,S2) € TZ The equality in the conversion rule (conv^) is the β-
equality on the set of pseudoterms Τ
The elements of S are called sorts, the elements of A (usually written as Si 52)
are called axioms and the elements of TZ are called rules
A Pure Type System with βη conversion (PTS^,,) is also given by a set S, a set
А С S χ S and zsetTZcSxSxS and now denoted by \βη(δ,Α,7Ζ) The

Tl· A s

Γ, χ A h i A

Fl · A s Fl· M

Υ,χΑΥ-Μ С

С

Τ\-Α si Τ,χΑ\-Β s2

Г\-ПхАВ 53

Г, χ Al·- M В Г І - П х Л В s

Г h λχ A M

Γ h M UxAB

UxA В

r h J V л

Γ h MN B[N/x]

Tl·- M A Th В s

Sec 4.2 Definitions 77

only difference with a PTS^ is that a PTS^, has a /^-conversion rule:

ч Fl· M : А Г Ь B:s
(conv^) Α =0η В

ΓΗ M : В
Again the /Jrç-equality m the side condition is an equality on the set of pseu-
doterms T.
A Pure Type System with βη-conversion and strengthening (PTS^) is also given
by a set S, a set А С S χ S and Ά set llcSxSxS and now denoted by
A^(5, A,11). The difference with a PTS^ is that a PTS^ has a strengthening
rule:

Гі,х-С,Г 2 І-М: A
(streng) ^ ,_ „ A I fx£FV(r 2 ,M,A)

Г Ь Г 2 h M • A

In the following, when we use the notion 'PTS' (without subscript), we arbi
trarily refer to one of the three notions above.

We see that there is no distinction between types and terms in the sense
that the types are formed first and then the terms are formed using the types.
The derivation rules above select the typable terms from the pseudoterms, a
pseudoterm A being typable if there is a context Γ and a pseudoterm В such that
Г l· A : В or Г h В . A is derivable. For practical reasons we make the following
definitions.

4.2.4. DEFINITION. Let \{S,A,Tl) be a PTS.

1. A pseudoterm A is typable in \{S,A,7l) if there is a pseudocontext Г and
a pseudoterm В such that Г h A : В от Г \- В : A is derivable. The set of
typable terms of \(S, A, TZ) is denoted by Jerm(X(S,A,TZ)) (or just Term
if the PTS is clear from the context.)

2. A pseudocontext Г is a context of \{S,A,TV) (Г e Context(A(iS, ,4,72,) or
just Г e Context if there is no ambiguity), if there are pseudoterms A and
В such that Г I- A : В is derivable,

3. For Г a context of X(S,A,TZ) and A a term, A is typable in Г (notation
A e Теггп(Г)) if Г I- A : В or Г h В : A for some B,

4. For Г a context, s a sort and A a term, A is an s-term in Г (notation
A e s-Term(r)) if Г I- A : s,

5. For Г a context, s a sort and A a term, A is an s-element m Г (notation
A e s-Elt(r)) if Г h A : В : s for some term B,

6. For s a sort, the set of s-terms (of λ(5, A,1t)) is defined by s-Term :=
Ureçontexts-Term(r) and the set of s -elements/ (of \(S,A, TZ)) is defined
by e-Elt := UreContextS-Elt(r).

78 Pure Type Systems Ch 4

A practical purpose for the use of the PTS framework is that many properties
can be proved once and for all for the whole class of PTSs In paragraph 4 4 we
list and prove the most important ones for the three versions of the Pure Type
Systems, PTS^, PTS/j, and PTS^ In order to do the meta theory for the latter
two versions, we first study the collection of pseudoterms Τ in a bit more detail
and prove a very weak form of Church-Rosser property for /^-reduction on T,
just enough to handle most of the cases where we used CR of /^-reduction in the
meta theory of PTS^ (as it was given in [Geuvers and Nederhof 1991]) We now
want to give some examples of type systems that fit in the PTS framework and
also say something about mappings between PTSs

The framework yields a nice tool for describing a specific class of mappings
between type systems that we call PTS-morphisms These PTS-morphisms will
be described as a subset of a general set of mappings between Pure Type Systems

4 2 5 DEFINITION Let X{S, А, 72) and λ(5', А', 72') be PTSs
A mapping from X(S, A, 72) to X(S', .4', 72') is a function that assigns pseudojudge-
ments of X{S', A', 72.') to derivable judgements of X(S, A, 72), a pseudojudgement
being a sequent Γ h Μ В with Г a pseudocontext and M, В pseudoterms
A morphism from X(S, A, 72) to X(S'', A', 72') is a mapping ƒ from S to S' that
preserves axioms and rules, that is

s i s ¡ e 5 =» / (s i) / (a 2) € S ' ,
(sus2,s3)en => (/(si) , / (s2) , / (s3))€72'

A PTS-morphism ƒ from X(S, A, 72) to X(S', A', 72') immediately extends to a
mapping from the pseudoterms of X(S, A, 72) to the pseudoterms of X(S', A', 72')
and hence to a mapping between the PTSs by induction on the structure of terms
This mapping preserves substitution and /3(i;)-equality and also denvabihty

4 2 6 LEMMA If ƒ is α PTS-morphism from ζ to ζ', then

Г Ь С М /1=>ЛГ)(- (-/(М) f (A)

There are certainly many other interesting mappings between Pure Type Sys
tems and we don't want to give the PTS-morphisms any priority However they
have some practical interest because they are easy to describe and share a lot of
desirable properties And of course the Pure Type Systems with the PTS mor
phisms form a category with products, coproducts and as terminal object the
system with Type Type, often referred to as λ*

S = Type,

A = Type Type,

72 = (Type, Type)

Sec. 4.2 Definitions 79

There are two subclasses of PTSs that have some special interest because
the systems belonging to those subclasses share some additional nice properties.
Also, most of the known examples of Pure Type Systems belong to both classes.

4.2.7. DEFINITION. A PTS X(S, A, TZ) is functional if the relation Л is a partial
function from S to S and the relation TZ is a partial function from S χ 5 to S.
That is,

s : s', s : s" e A => s' = s",

(suS2,s3),(sus2,s'3) € TZ => s3 = s'3.

A PTS X(S, A, TZ) is mjective if it is functional and the functions A and TZ are
also injective. That is,

s' : s,s" :s Ç A => s' = s",

(s-i,S2,s3),{s'1,s'2,s3) 6 TZ =*· Si = si к s2 = s 2 .

In [Barendregt 1992], the notion of functional is called 'singly-sorted' and the
notion of injective is called 'singly-occupied'.

In [van Benthem Jutting et. al. 1992] there are more definitions of subclasses
of Pure Type Systems that are of interest. One of the purposes of that article is to
find different sets of rules that generate the same set of derivable judgements, but
have easier operational properties. This is especially important for proving the
completeness of type checking algorithms. We shall say something more about
this in Chapter 6.1. For now we want to describe two of the subclasses of Pure
Type Systems that are defined in [van Benthem Jutting et. al. 1992], because
they have some importance later in the text.

4.2.8. DEFINITION. 1. A PTS X{S,A,TZ) is full if

Vsbs2 6 S3s3 e 5[(si,52,s3) € тг].

2. A PTS X(S,A,TZ) is semi-full if

Vsi,s2,s2.
s3 € <5[(si,s2,S3) e 7г => 3s3[(si,s2,s'3) € TZ]}.

The importance of the notion of 'full' PTS lies in the fact that the second
premise of the (A) rule can be replaced by Vs 6 S[B ^ s] V 3s e S[B:s € A],
which is much easier to handle. The importance of the notion of 'semi-full' will
become clear when we study the Church-Rosser property for βη in PTS^.

To end this section we want to mention some subtle variant of the syntax
that has some practical use because it allows to prove a very nice meta property.
The idea is to devide up the variables in several disjoint countable subsets, one
subset for every sort s, which subset will be denoted by Vs. There are some small
alterations in the derivation rules given in the following definition.

80 Pure Type Systems Ch 4

(var)

(weak)

ΓΗ A

Γ, χ A h χ

Tl· A s

s

A

Γ, χ A h M

M

с

с

4 2 9 DEFINITION The syntax of Pure Type Systems with sorted variables has
the set of variables Var devided up into countable subsets Vars for every s ζ S
and the following (var) and (weak) rule

χ € Var"

χ € Vars

It will turn out that, if we use the syntax with sorted variables in an injective
PTS/3, the sets s-Term and s'-Term are disjoint for s ~ψ. s' (and similarly for
s-Elt and s'-Elt) The importance of this fact lies in the possibility of defining a
mapping on the well-typed terms of the PTS^ by induction on the structure of
terms, without having to mention a specific context in which the term is typed
One only has to distinguish cases according to the sorts that specific subterms
are terms or elements of

4.3. Examples of P u r e Type Systems and morphisms

4.3.1. The cube of typed lambda calculi

We first treat the so called 'cube of typed lambda calculi', as presented by Baren-
dregt in [Barendregt 1992] The cube includes well-known systems like the simply
typed and polymorphically typed lambda calculus To show that the two repre
sentations of these systems are in fact the same requires some technical but not
difficult work

4 3 1 DEFINITION (Barendregt) The cube of typed lambda calculi consists of the
eight PTS^s, all of them having as sorts the set 5 = {*, •} and as axiom A =
{* •} the rules for each system are as follows

λ -
A2
λΡ
Χω
Χω

λΡ2
ΧΡω
ΧΡω

(*.*)
(*,*)
(*,*)

(*.*)
(*.*)
(*,*)

(*.*)
(*>*)

(α,*)

(α,*)
(°.*)
(°.*)

(*.°)

(*.°)
(*.°)
(*.°)

(°,α)
(°,D)

(D.°)
(°.°)

Note that all systems of the cube are injective and hence functional, so they
enjoy all the nice properties that hold for these subclasses of PTSs It is convenient
to think of the set of variables Var as being split up into a set Var* and a set VarG,

Sec. 4.3 Examples of Pure Type Systems and morphisms 81

as was suggested in Definition 4.2.9. Te first type of variables will be referred to
as object-variables, the second as constructor-variables.

The systems λ—» and Λ2 are also known as the simply typed lambda calculus
and the polymorphically typed lambda calculus (due to Girard as system F and
Reynolds.) The system Χω is a higher order version of Λ2, also known as Girard's
system Έω. The presentation of these systems as a PTS is quite different from the
original one. If one is just interested in those systems alone it is in general more
convenient to study them in their original presentation. The PTS framework is
more convenient for systems with type dependency, that is the feature that a type
A:* may itself contain a term M with M:B;*. This situation only occurs in the
presence of the rule (*, O). In that case there is no other syntax for the systems
which is essentially more convenient then the PTS format. The system AP is
very close to LF, due to [Harper et al. 1987] (see Definition 3.3.6), in fact LF is
the PTS^ variant of AP. The system ΧΡω is the Calculus of Constructions, due
to [Coquand 1985]. (See also [Coquand and Huet 1988].) The system ΛΡ2 was
defined under the same name by [Longo and Moggi 1988].

Usually the eight systems of the cube are presented in a picture as follows

ΧΡω

-ΧΡω

where an arrow denotes inclusion of one system in another.
The use of the cube is to give a fine structure for the Calculus of Constructions

(ΧΡω), which is the largest system in the cube. It is now possible to understand
ΧΡω as built up from the basic constants * and Π by allowing three kinds of
dependencies, where dependency should be understood as the possibility to ab
stract over specific terms to form a term of another specific kind. For example if
we call the terms of type • types and the terms of type D kinds, then (•, *) means
that we can abstract over a type to define a term of a type (e.g. Χχ.σ.χ : σ—*σ)
and (О, •) means that we can abstract over a kind to define a term of a type (e.g.

82 Pure Type Systems Ch 4

Xa * Xx α χ Πα • α—»α) An extensive explanation of these dependencies is
given in [Barendregt 1992]

As we have already pointed out, the PTS format is not always the most
practical if one wants to study a specific system by itself It is however very
convenient if one wants to compare different systems Applications of this will be
given later when studying for example the Strong Normalization for the Calculus
of Constructions One of the features that can come in handy are the PTS
morphisms as defined in Definition 4 2 5 Obviously, all the inclusions inside the
cube are PTS-morphisms

Without a proof we now state the correspondence between the systems A—>,
A2 and Χω in their original presentation and the PTS-format Let's therefore
define these systems here again in a different format

4 3 2 DEFINITION The system Fw is defined as follows The set of kinds, К is
given in abstract syntax by

к = *\K->K

The constructors of Fu> are given by

1 There are countably many variables а* к for every к ζ K,

2 UM k!-*k2, N kuthen MN къ

3 If M k2, then Aaf1 M fci—Jfc2,

4 If σ * then Ilaf σ •,

5 If σ, r *, then σ—>r *

we have the usual notions of bound and free variables, substitution and β-
reduction on the set of constructors An object-context is a sequence of dec
larations i i σι, ,xn ση with all x, distinct Let Γ be an object-context The

Sec. 4.3 Examples of Рите Type Systems and morphisms 83

derivation rules of Έω are the following

(axiom)

(—in)

(—el)

Ш-іп1
V 1 1 l i l)

(Π-el)

(conv)

Г h χ : σ

Τ,χ:σ\- Μ :τ

Γ h Χχ-.σ.Μ : σ—>τ

Tl· Μ : σ - τ Γ h W :

Tl· MN : τ

Tl· Μ :σ

Tl·λαk.M :Пак.а

Tl· M: ΠοΛσ

Tl· Mt: a[t/a]

Tl· Μ :σ

Tl· Μ :τ

if χ:σ in Γ,

: a

if α JÉ FV(r),

if ¿Ж

if σ =β т.

We can define the order of a kind, ord(A:), just as we defined the order of domains
for predicate logic in Definition 2.2.6, as follows.

ord(*) = 2,

ord(fci—•... —>kp—»•) = max{orá(ki)\l <i <p} + 1.

Now define for η € N, Fn by restricting the set of kinds of Fn (and hence the
formation of constructors) to those of order < n. The system F2 will be called
F and the systems FO and Fl, which are the same, are just the simply typed
lambda calculus and will also be referred to as STA.

Just as we have defined the systems Fn for 3 < η as subsystems of Fw that
contain the system F, we can also define PTSs An for all 3 < η such that

Λ2 С A3 С · · · С Χω.

We shall not do it, because on the one hand it is quite clear what such systems
should look like (restrict the formation of kinds to a certain depth) while on
the other hand the definition is very involved and doesn't give any real insight.
To state the equivalence of Fw and Χω and of F and Λ2, we introduce some
notation. For Γ a context in Χω or Λ2, let Γπ be the subcontext that contains
only the declarations of constructor-variables, and let Г* be the subcontext that
contains only the declarations of object-variables.We have the following Lemma.
(Something similar would hold for the other systems An, if we would have defined
them.)

84 Pure Type Systems Ch 4

4 3 3 L E M M A In \ω and \2 we have

Γ l· Α α =>· Α ξ. К, and in λ2, A = *,

ΓΗ M /1(D) => r ° h M Л,

Г h M А{ *) => Г п , Г * г - М /1

P R O O F Immediately by induction on derivations H

Now, if M A with /1 a kind in Fa;, we have to introduce a context in \ω to

type M in We denote this context by YM For every free constructor variable in

M, Тм contains a declaration of this variable to the kind it has in M Similarly
for Μ Α * , Τ M A contains a declaration of each constructor variable that is

free in M or A

The other way around, if Γ h M A in \JJ, we denote by M + the term M

where each constructor variable is replaced by a variable of the kind that is given

for it in Γ

We now have the following proposition

4 3 4 P R O P O S I T I O N

Γ Η λ ω M /1(D) => M+ A{e К) m Fw,

Г Κλω M A{*) =>· Γ' \-Fu, M A,

and the other way around

M Л(е К) m Fw => Г м Ηλα, M А,

T\-FuM А{*) => TMAJ^XUM А

P R O O F By induction on derivations or the structure of terms, using the Lemma H

We shall go into more details about the Calculus of Constructions and other
systems of the cube later, in Chapter 6 1

4.3.2. Logics as Pure Type Systems

Other interesting example of PTSs were given by [Berardi 1988], who defined
logical systems as PTSs In Chapter 3 1 we encountered the typed lambda cal
culi APRED (Definition 3 2 1), APRED2 and APREDu; (Definition 3 2 19) that
correspond directly to the logical systems PRED, PRED2 and PREDw, as de
fined in 2 2 6 The correspondence was only verified in full detail for the case
of APRED and PRED (see Theorem 3 2 8 and Proposition 3 2 10), but it is not
very difficult to extend it to the other cases We also saw that the correspon
dence is very strong in the sense that there is a correspondence between proofs
and proof terms (See Proposition 3 2 15) The next step is now to define PTSs
that correspond to the systems APRED, APRED2 and APREDo; The systems
that we are looking for are precisely the systems that were defined by Berardi

Sec 4 3 Examples of Pure Type Systems and morpbsms 85

4 3 5 DEFINITION (Berardi) The cube of logical typed lambda calculi, also re
ferred to as the logic cube, consists of the following eight PTS^s Each of them
has

5 = {Prop, Set, Type", Type'},
A = Prop Type'', Set Type"

The rules of each of the systems is given by the following table

APROP

APROP2

APROPw

APROPw

(Prop, Prop)

(Prop, Prop)

(Prop, Prop)

(Prop, Prop)

(Type?, Prop)

(Type", Type")

(Type^.Type")
(Type", Prop)

APRED (Set, Set) (Set, Type")
(Prop, Prop) (Set, Prop)

APRED2 (Set, Set) (Set, Type")
(Prop, Prop) (Set, Prop) (Type", Prop)

APREDw (Set, Set) (Set, Type") (Type", Set) (Type", Type*)
(Prop, Prop) (Set, Prop)

APREDw (Set, Set) (Set, Type") (Type", Set) (Type", Type")
(Prop, Prop) (Set, Prop) (Type^Prop)

86 Pure Type Systems Ch 4

The systems are presented in a picture as follows

APROPu; APREDu;

APROP2 APRED2

APROPu; APREDu;

APROP APRED

where an arrow denotes inclusion of one system in another

Some intuition is required here, it is probably best to keep APRED and its
extensions in mind The sort Prop is to be understood as the class of propositions
The sorts Set and Type' together form the universe of domains Domains of the
form A\—> -^An—>a with α a variable are of type Set, the functional types,
while domains of the form Αχ—* —*An—»Prop are of type Typep(n > 0) the
predicate types The sort Type5 allows the introduction of variables of type Set,
and that is its only purpose This should be sufficient to understand the first
four rules of TZ in APREDu; The other three correspond to the logical rules in
the following sense

(Prop, Prop) ~» implication (φ D ψ),

(Set, Prop) ~» quantification over functional types (Vi Α φ, A Set)

(Type7", Prop) ~> quantification over predicate types (Vi Α ψ, A Typep)

The systems of first, second and higher order proposition logic are defined by
just removing the sorts Set and Type* Note that the systems APROP, APROP2
and APROPu; that we get in this way are just λ—», A2 and Χω The two systems
APREDu; and APROPu; have just been added to make the whole thing into a
cube analoguous to the cube of Defintion 4 3 1 They are in formulas-as-types
correspondence with two logical systems that we encountered in Definition 2 2 11,
namely APROPu; corresponds to PROP1" and APREDu; corresponds to PREDT

These are logics in which there is no order-restriction on the A-abstraction, but
only on the V-quantification, so the whole higher order language is available but
not the possibility to do higher order quantification

Sec. 4.3 Examples of Pure Type Systems and morphisms 87

It is not immediately obvious that we can still see the systems of 4.3.5 as
being built up in three stages. (First the domains, then the terms and finally
the proofs.) It could well be the case that an object expression contains a proof
expression or that a domain expression depends on a term. This is however not
the case: The systems APRED, APRED2 and APREDo; correspond to APRED,
APRED2 respectively APREDu; in the similar way as A2 and Χω correspond to F
and FU;. We are not going to state this correspondence explicitly, let alone prove
it. It is very similar to the work for A2 and Χω that we did before. Let's only
state the basic property that makes the whole correspondence work. (Compare
this Proposition with Lemma 4.3.3.)

4.3.6 PROPOSITION. In APREDu; we have the following. If Γ Ь M : A then
Гд,Г т ,Г я г- M : A with

• Γβ, ΓΥ,Γρ is a sound permutation o}T,

• Го only contains declarations of the form χ : Set,

• Γτ only contains declarations of the form χ : A with YD I" A : Set/Typep,

• Γρ only contains declarations of the form χ : φ with Гд, Γχ h ψ : Prop,

• if A = Set/TypeP , then TD\- M : A,

• if Γ h A • Set/TypeP, then ΓΩ, Г т h M : Α.

PROOF. By induction on the derivation.ІЯ

Similar Propositions hold for APRED and APRED2. They demistify these
PTSs enough to be able to verify the stated correspondences.

As was noticed by [Barendregt 1992], it is also possible to describe a PTS that
corresponds to the subsystem PRED -^ of PRED (Definition 2.3.7).

4.3.7. DEFINITION APRED_/ is the PTS with

5 Prop, Set, Fun, Typep,Typei,
A Prop : TypeP,, Set : Type",
П (Set, Set, Fun), (Set, Fun, Fun), (Set, TypeP),

(Prop, Prop), (Set, Prop)

The idea is that Set contains only basic domains (B of PRED - ') and Fun
contains the functional domains ((F of PRED - ') . Quantification is only possible
over types in Set. The system APRED - ' is not really a subsystem of APRED,
but only via the morphism that maps Set and Fun to Set. We have a Proposition
like 4.3.6 to prove in detail that the formulas-as-types embedding from PRED"'
to APRED - ' is an isomorphism.

88 Pure Type Systems Ch 4

We have seen that many of the logical systems of Chapter 2 1 are in one-to-one
correspondence with a PTS^ To show such a correspondence one has to make
two steps First define a typed λ calculus 'as close as possible' to the original
logic and formalize the formulas-as-types embedding à la Howard (This has been
done in detail for the system PRED in Chapter 3 1, where we defined APRED
and the formulas-as-types embedding from PRED to APRED) Then show that
the intermediate typed λ calculus is the same as the PTS/э that we want the logic
to correspond with (This has been done in detail for the intermediate systems F
and Ρω, that correspond to A2 (= APROP2), respectively Χω (= APROPw)) For
the systems PRED2, P R E D O J and PRED" ¡ , we have only given the corresponding
PTS/3 without detailed proof, which is very similar to the proof for the other cases
We can depict the correspondences in a picture as follows, where ~ denotes a
correspondence and f~] denotes a correspondence that we have verified in great
detail

PRED
PRED2
PREDu»

PROP
PROP2
PROPw

PRED_ /

\Ш1
л *

~
~

~
~
<^->

A P R E D
A P R E D 2
A P R E D w

STA
F

Fuj

l*V

<-̂

·***
'*<·'

\E\
1 ^

APRED"·'

APRED,
APRED2,
APREDu;,
A^(=APROP),
A2(=APROP2),
Χω (= APROPw)

For most of the other logical systems of Chapter 2 1 one can also define cor
responding PTS^s We have not done this here Most of the times the definition
becomes a hack without any intuitive meaning, so we don't see this as a very
useful operation

4.3.3. Morphisms between Pure Type Systems

The reason for introducing the cube of logical Pure Type Systems (Definition
4 3 5) is to formalise the embedding of logics into the typed lambda calculi of
the cube, and especially the Calculus of Constructions (ΧΡω) This was also the
original motive for Berardi to define these systems To formalise the practical
use of ΧΡω as a system of higher order predicate logic and to better understand
the use of ΑΡω as a higher order predicate logic We come to speak about ΧΡω

and its relation to PREDu; in more detail later At this point we just want
to treat the interpretation of logics in the systems of the Barendregt's cube by
defining a mapping of the cube of logical systems into the Barendregt's cube. This
mapping is sometimes referred to as the formulas-as-types embedding (or even
isomorphism), but we feel that it is more appropriate to use that terminology for
the transition from 'real' logical systems to typed lambda calculi

Sec 4 3 Examples of Pure Type Systems and morphisms 89

4 3 8 DEFINITION The collapsing mapping from the logic cube to the Baren-
dregt's cube is the PTS-morphism Я given by

Я(Ргор) = *,

H {Set) = *,

Я(Туре") = D,

Я(Туре') = D

It is easy to verify that for each corner of the cube, Я is a PTS-morphism
from the system in the logic cube to the system in the Barendregt's cube The
question arises whether the mapping is complete, especially with respect to the
inhabitation of propositions One of the nice things of doing logic in for example
λΡω, is that domains of the logic and propositions are treated in exactly the
same way This opens up a wide range of new possibilities (like the possibility
to define domains that represent inductive data types) On the other hand it is
not so obvious that all this is still sound We shall see that in the broadest sense
this operation is not sound, ι e the collapsing mapping is not complete, while in
a more narrow sense, things are not that bad More about this in Chapter 6 1

To end this section we want to give a different Pure Type System that cor
responds to PREDOJ that is more intuitive then ÀPREDw It can be seen as a
direct formulas-as-types formalisation of PREDw, using the fact that in PREDw
there is no reason to distinguish between functional types and predicate types,
as was done in APREDui (See also Definition 3 2 19) On the other hand this
alternative version can also be obtained by defining the system AUT-HOL in a
PTS format (AUT-HOL was defined in 3 3 11 by applying ideas from the Au-
tomath systems AUT-4 to the system AUT-68) We already pointed out the
correspondence between AUT-HOL and APREDu; in Proposition 3 3 14

4 3 9 DEFINITION The typed lambda calculus ÀHOPL is the PTS with

S = {Prop, Type, Type'},

A = Prop Type, Type Type',

П = (Type, Type),

(Prop, Prop), (Type, Prop)

The meaning of the components of the system should be clear from the in
tended correspondence with PREDu; Prop is the sort of formulas, Type is the
sort of domains and the sort Type' is just there to be able to introduce variables of
type Type (These variables are to be the basic domains of the logic) There is a
heavy overloading of symbols Ylx А В stands for logical implication (э) if A and
В are both propositions (of type Prop), for universal quantification (V¿) if Л is a
type and В a proposition {A Type, В Prop) and it stands for the domain A—*B
if both A and В are types (of type Type) Again it is not immediately obvious

90 Pure Type Systems Ch. 4

that AHOPL can be seen as being built up in three stages. (First the domains,
then the objects and finally the proofs.) That this is still the case is stated in
the following proposition, which is the AHOPL equivalent of Proposition 4.3.6

4.3.10. P R O P O S I T I O N . We work in AHOPL. If Γ h- M : A then Τ0,ΤΤιΓΡ l· M •

A with

• Γϋ,ΓΥ, Γρ is a sound permutation ofT,

• Гд only contains declarations of the form χ : Type,

• Γ7· only contains declarations of the form χ : A with TD h A : Type,

• Γρ only contains declarations of the form χ : φ with Γ^,Γ-τ l· ψ : Prop,

• if A = Type , then TD h M • A,

• if Tl· A: Type, then TD, TT l· M : A.

The Proposition states (among other things) that the domains (terms of type
Type) are just built up from domain-variables using Π, so no object- or proof-
variables occur as subterms, so the domains are as in AHOPL. Further it states
that the terms of the object-language are formed from the object-variables by
A-abstraction and application and (for terms of type Prop) by Π, so they don't
contain proof-variables: ίΙχ:φ.φ {φ, ψ : Prop) denotes ψ Э ψ, the logical implica
tion.

As an application of the notion of PTS-morphism and also to fully justify
the two systems AHOPL and A P R E D U J in terms of each other, we prove that
APREDüj and AHOPL are in a sense the same system.

4 3.11. P R O P O S I T I O N . There is a PTS-morphism G from APREDo; to AHOPL
and a denvability-preservmg map F from AHOPL to APREDw such that F о
G = Id and G o F = Id.

P R O O F . Take for G : APREDw -> AHOPL the PTSmorphism

G(Prop) = Prop,

G(Set) = Type,

С(Туре") = Type,

G(TypO = Type'.

and for F : AHOPL -» APREDo; first define the mapping F from Term(AHOPL)\
{Type'} to Term(APREDw) by

F(x) = 1,(1 a variable),

F(Prop) = Prop,

F(Type) = Set,

Sec 4 3 Examples of Pure Type Systems and morphisms 91

and further by induction on the structure of the terms G, being a PTS morphism,
preserves derivations F preserves substitution and /3-equality and F extends to
contexts straightforwardly by defining

F(i i Au ,xn An) =xx F(A{), ,xnF{An)

(The sort Type' does not appear in a context of AHOPL) Now we extend F to
derivable judgements of AHOPL by defining

F (r i - M A) = F{Γ)l·F(M) F(A), if A /Type, Type',

F (r Ι- M Type) = F(T) h F {M) Set, if Μ Ξ ->α, (α a variable),

F(T h M Type) = F(T) h F(M) Typ^, if M = -»Prop,

F(rhType Type') = F(T) h Set Type"

Now F is a PTS mapping in the sense of Definition 4 2 5 By easy induction one
proves that F preserves derivations Also F(G(T r- Μ A)) = Γ h M A and
G (F (r h M A)) = T\- M A И

We feel that the correspondence between PREDw and AHOPL is more intu
itive then the one between APREDw and PREDL; A disadvantage of presenting
higher order predicate logic as AHOPL is that we can not find e g second order
predicate logic as a subsystem by an easy restriction on the rules For the rules
there is no distinction between the basic domains and the domain Prop Further
AHOPL doesn't allow a straightforward syntactical description of the formulas-
as types embedding of higher order predicate logic into CC (APREDw does, as
we saw in Definition 4 3 8) In the following we therefore also look at the system
APREDCJ

4.3.4. Inconsistent Pure Type Systems

Inconsistency is not really a property of a PTS as such, but it depends on a
interpretation that has been given to the different parts of it One could say
that a PTS is inconsistent if all closed types of a specific sort that is intended
to be the sort of all formulas, are inhabited by a closed term, but that is not
always satisfying In [Coquand and Herbelm 1992], a restriction is made to so
called logical PTSs systems that have two specific sorts Prop and Type with the
oproperties that Prop Type is an axiom, (Type, Prop) is a rule, the system is
functional and there are no sorts of type Prop Usually it is obvious which sort is
to be understood as the sort of formulas, so we just speak of 'inconsistent PTSs'
One of the inconsistent PTSs we have seen is A* (which is not a logical PTS)
Other ones are the following

92 Pure Type Systems Ch 4

4 3 12 DEFINITION The system XU is defined as follows

S = Prop, Type, Type',

A = Prop Type, Type Type',

11 = (Type, Type), (Type', Type)

(Prop, Prop), (Type, Prop)

The system XU is defined by extending XU~ with the rule (Type', Prop)

In [Girard 1971] these systems are discussed as logics They are obtained
by extending PREDu with polymorphic domains (system U~) and with quan
tification over all domains (together with the polymorphic domains, this forms
the system U) As typed lambda calculi they are extensions of AHOPL AU" is
AHOPL with the rule (Type', Type) (polymorphic domains) and AU is AU" with
(Type, Prop) (quantification over all domains) For example in AU- one has do
mains like ПЛ Type A—>(A-+A)—>A (numerals) and UA Type (A—»Prop)—»Prop
In AU one can write down formulas like UA Type UP A—»Prop Пх A Px—*Px

It is not so difficult to see that the extension of higher order predicate logic
with just quantification over all domains is consistent and conservative over
PREDu

4 3 13 THEOREM Both \U~ and XU are inconsistent, ι e m both systems there
is a term M with

h M _L(= Πα Prop α)

PROOF For XU the proof is in [Girard 1972] A good explanation of it and a
discussion of applications of the proof to other type systems can be found in
[Coquand 1986] This fact has become known as Girard's paradox, especially
in its application to the system A* The proof for \U~ is in [Coquand 199+]
It internalises Reynold's argument that there are no set theoretic models of the
polymorphic lambda calculus И

Using the meta theory for Pure Type Systems, it is easy to see that in an in
consistent system there are terms that have no normal form So the normalization
property does not hold for At/, \U~ and A*

That XU is not such a strange system is shown by the fact that we can separate
contexts in the system, just like in AHOPL and other systems That is, we have
the following

4 3 14 PROPOSITION We work m XU If TV- M A then YDJT,YP h M A
with

• Γβ,Γχ,Γρ is a sound permutation ofT,

Sec. 4.4 Metà theory of Рите Type Systems 93

• YD only contains declarations of the form χ : Type,

• Γ7- only contains declarations of the form χ : A with Гд h A : Type,

• Гр only contains declarations of the form χ : φ with Гд, Г h φ : Prop,

• if A = Type , then TDl· M : A,

• if Γ h Л : Type, ¿Zien Γ σ , Γ τ Y- M : Α.

In Chapter 6.1 we shall see that, if we are a little bit more careful, it is possible
to extend higher order logic with polymorphic domains and still have a consistent
system.

4.4. Meta theory of Pure Type Systems

In this section we want to treat the meta theory for our different notions of
Pure Type System. For the PTS^s, most of the results that are listed here have
already been treated in [Geuvers and Nederhof 1991]. A lot of the proofs in that
paper can immediately be extended to the cases for PTS/j, and PTS^, but not
all. The essential problem is that the Church-Rosser property for /ÏTj-reduction
does not hold for Τ (the set of pseudoterms). This is very problematic, not only
because CR on Τ is the tool for proving Subject Reduction and Church-Rosser
for the typable terms, but also because it makes the whole system PTS^ quite
suspect: Think of the possibility that A and В are types with Α =ρη В, but
only by means of an expansion-reduction path which passes through the set of
non-typable terms. The conversion rule says that the types A and В still have
the same inhabitants, but that is of course not what we want.

Having realised ourselves how problematic the absence of the Church-Rosser
property for βη-reduction on Τ is, we are of course going to look for solutions.
It should be remarked here that the solutions given in this thesis have some
generality, but can not be the final answer The fact is that we did manage
to prove a general property of /?r/-equality on Τ that can in practical situations
replace CR. However, using this we only managed to prove CR for βη on well-
typed terms for a restricted class of PTS^s: The ones that are functional and
normalizing. So we have no proof of CR for βη for a system like λ*, although we
very strongly believe that it holds, even more so because there are other PTS^s
that are not normalizing, for which CR for βη can easily be proved. (So the lack
of normalization doesn't seem to be very essential.) It should be possible to find
a general proof which works for all PTS^s. Further, the dependency of CR for
βη on normalization implies that CR becomes essentially a higher order property
(for example for the Calculus of Constructions, for which a normalization proof
can not be done in higher order arithmetic.) We feel that this can not be the
case (also because for some non-normalizing PTS^s the proof of CR for βη can

94 Pure Type Systems Ch 4

be done in first order arithmetic) Having made all these negative comments on

the work, we want to stress that there is still enough generality in the proof,

especially the part that analyses βη equality on pseudoterms, that we think it

can be an important contribution to a general proof of CR for ^-reduction for

arbitrary Pure Type Systems

4.4.1. Specifying the notions to be studied

We now want to fix some notions and notations that will be studied in the rest

of this thesis

4 4 1 D E F I N I T I O N Let Λ' be a set of pseudoterms closed under /3(7/)-reduction

We say that X satisfies the Church-Rosser property for 0{η)-reduction, notation

X \= CR^(,), or just X satisfies CR^n), if

VM,N,P e Χ[Νβ{η)^ м -~0M p=>3Qe Χ[Ν ^0(η) QßM^P]]

We say that X satisfies Confluence for β(η)-reduction, notation X \= CON^,,),

or just X satisfies CONß^), if

VM, N e X[M =«„> N => 3Q e Χ [M -»« ч) Q m «- N\]

Obviously, for /9-reduction

X\=CR0<*X\= CON0,

But for /^-reduction this is not the case

4 4 2 D E F I N I T I O N Let X be a set of pseudoterms closed under /3(^-reduction
We say that X satisfies Strong Normalization for β (η) reduction, notation X (=

SN^(,), or just X satisfies SNg^), if there are no infinite /3(?y)-reduction sequences
in X

We could have formulated this property more positively, for example by saying

that for all M in X there is an η € N such that η is an upperbound to the length

of /3(?7)-reduction sequences starting from M We have not done so because the

first is a bit easier to work with Most of the proofs of Strong Normalization in

this thesis can be redone with the alternative definition

4.4.2. Analyzing /Зту-equality on the pseudoterms

In the proof of Church-Rosser we shall relate the /îrç-reduction on typed terms to
the reductions on untyped lambda terms Properties of reduction and equality on
the untyped terms will be used to obtain results about reduction and equality in
Τ We therefore define an erasure mapping from Τ to Λ and give some properties

Sec 4 4 Metà theory of Рите Type Systems 95

for it With this we can prove the so called Key Lemma about /3r/-equality in T,
which will enable us to prove the important meta theoretical properties like UT
(Uniqueness of Types) and SR/j for PTS^ and SR, for PTSJ, But first of all
we give a proof of postponement of 77-reduction in T, a well-known property of
/^-reduction in Л

Postponement of η-reduction

We prove the postponement of η-reduction for a set of pseudoterms Τ by an argu
ment similar to the one used in [Barendregt 1984] (Chapter 15) for the untyped
lambda calculus The idea is to mark 77-redexes as superscripts inside the terms
(as superscript we take the type of the abstracted variablem the r?-redex) In case
one is convinced of the fact that postponement of 77-reduction holds for T, this
paragraph may be skipped

4 4 3 DEFINITION The set of pseudoterms with markers, T + is defined by ab
stract syntax as

T + = 5 I Var I (П аг T + T+) | (Л аг T + T +) | T+T+ | T + T +

The reduction relation on T + is ß+, defined by the basic steps

(XxAP)Q ^ 0 + P[Q/x],

PAQ — * • PQ,

and further by induction on the structure of terms, such that it is compatible
with application, λ- and Π-abstraction and the superscript operation

The intended meaning of PAQ is (Ax A Px)Q, a /3-redex, so this should ïn-
deedreduce to PQ in T+ We define the two mappings | | л and φ from T + to
T, the first erasing the superscripts and the second inserting an η redex for a
superscript

4 4 4 DEFINITION 1 The mapping \\h T + —• Τ is defined by erasing all
superscripts,

2 The mapping φ T + —• Τ is defined by

φ{ΡΑ) = \x φ(Α) φ(Ρ)χ (for a fresh x)

and further by induction on the structure of the term

The following are now easily proved (by induction on the structure of terms)

44 5 LEMMA For M, NeJ+,

96 Pure Type Systems Ch.4

1. φ(Μ[Ν/χ}) = φ{Μ)[φ{Ν)Ιχ),

2. φ{Μ) -», \M\h.

The following lemma is a formal justification for the definition of/3+-reduction:
It shows that ψ preserves (/?+-)reductions and | \h reflects (/5+-) reductions.

4.4.6 LEMMA For P,QeT+, M,M' € Τ,

1. Ρ -^0+ Q =» φ(Ρ) —>„ φ{<ί),

2. p^\\h M —*β M' => 3P' € T[P -*0+ P' i-JI" M'].

PROOF. The proof of the first splits into two cases, depending on the type of
redex: Ρ = C[{Xx-A.B)C] or Ρ Ξ C[BAC). For both of them the required
property is easily proved, using for the first case Lemma 4.4.5(1). The proof
of the second is by imitating the reduction from M to M' in T+. Let M =
C[(Xx:A.Q)S], M' = C[Q[S/x]\. Then Ρ = C°[{{\x:B.R)°T)°], where ° denotes
a possible superscript and \B\h = A, \R\h = Q and \T\h = S. Now Ρ -*0+

C°[{{\x:A.R)T)0} —> 0 + C[R[T/x]]. So we are done by taking P' = C°[R[T/x}}.
И

4.4.7. LEMMA. For Q, Μ, M' e Τ,

Q —», Μ -»„ M' => 3Q' € T[<? -»/, Q' ->„ M'}

PROOF. Let's say that Q = C[Xx:A.Nx], M = C[N]. Now define Ρ := C[NA].
Then ψ{Ρ) = Q and \P\h = M, so, by Lemma 4.4.6(2) we find P' € T+ such
that Ρ -*β+ Ρ' κ-»11" M'. By Lemma 4.4.5(2) we find that also φ{Ρ') -», M'. By
Lemma 4.4.6(1) we find that (Q =)φ{Ρ) -»/з ψ{Ρ')-

We are now done by taking Q' = φ(Ρ') И

4.4.8. COROLLARY (Postponement of 77-reduction). For Μ, N e Τ,

M-*frN=*3Qe T[M -.„ Q -», TV].

PROOF. It suffices to prove the following property, which is a slight variation of
the Lemma: If Q -», M -*0 M', then 3Q' 6 J[Q -*0 Q' -»,, M']. This property
follows immediately from the Lemma itself. Kl

4.4.9. THEOREM. For X с Τ, X closed under β-reduction, if X \= SN0, then
J, X \= SN0n, where J. X denotes the closure of X under -*η.

PROOF. First remark that I AT is the same as 1 X by the postponement of
77. Now, an infinite /^-reduction in J. X yields an infinite /3-reduction in X by
postponement of η and the fact that there are no infinite ^-reductions. So we
are done by X \= SN0. (Note that, if we have an effective bound to the number
of/^-reduction steps to normal form in X, then we can also compute an effective
bound to the number of ^-reduction steps in | X.) IS

Sec. 4.4 Meta theory of Pure Type Systems 97

The Key Lemma for βη-reduction on Τ

The counterexample of [Nederpelt 1973] shows that, if one tries to prove C R ^ ,
there is a problem in the types of the λ-abstracted variables. We call these types
domains.

4.4.10. D E F I N I T I O N . Let M e T. A subterm A of M is a domain if it occurs as

\x:A in M. (So we are not concerned with Π-abstractions.)

The erasure map removes all domains.

4.4.11. D E F I N I T I O N . The erasure map \\ : Τ —• Λ π is defined by induction on

the structure of pseudoterms as follows.

| λ χ : Α Μ | := λ ι . | Μ | ,

\Ux:A.B\ := Π χ : | Α | . | β | ,

\MN\ := \M\\N\.

Неге, Λπ is Л extended with the extra variable binder Π and constants s for each
s e S.

4.4.12. R E M A R K All the well-known facts (like C R ^) about /^/-reduction in Λ

continue to hold for ^-reduct ion in Λπ. This can easily be seen by viewing

Π ι : | Α | . | β | as G|A|(Ax.|B|), with G some fixed constant.

If, for M,M' e Τ, \М\ = \M'\, then M and M' have the same 'structure',
apart from the domains that may be very different. We therefore give the follow
ing definition.

4.4.13. D E F I N I T I O N . Let M,M' e T. If \M\ = \M'\ and the respective domains
in M and M' are all /^η-equal, we say that M and M' are domain-equal, notation
M=dM'

We have the following proposition, relating reduction in Τ to reduction in Λπ.

4.4 14. P R O P O S I T I O N . For M and M' m Τ,

(1) M—>βΜ' =• \Μ\—^|М'| | М | = | М ' | ,

and similar for — * η and so for =βη. For M € Τ, Q € Λπ,

(2) \M\^ßQ =• 3N[M—>ßNk\N\ = \Q].

The latter doesn't hold m general for —•,,, but we do have (for с a variable or
sort)

(3) | M | - » , c => Μ^ησ.

98 Pure Type Systems Ch 4

P R O O F The first is trivial If the redex is erased by 11, then \M\ Ξ \M'\ and

otherwise the same redex can still be done in Λπ, so \M\ —• \M'\ The second

is almost trivial, as 11 only erases domains, a β redex in \M\ is also a β redex in

M, and by evaluating it we find N e Τ with M —*β N and |TV| = Q

That the second is not valid for η is shown by the taking M = Αχ σ y(Xz Px z)x

(This term can even be well-typed in e g the Calculus of Constructions Take

Ρ = \x σ τ, y (τ—»τ)-+σ—>σ In Lemma 5 2 3 we see that nevertheless, if M is

well-typed in a functional normalizing P T S ^ , and M is in βη nf, then \M\ is in

βη-ni)

The third is a corollary of the following more general lemma Η

4 4 15 L E M M A Let M and M' be in Τ

\M\ -»,, Q, Q contains no Xs ^ 3N[M -»η N к \N\ = Q]

P R O O F By induction on the number of As in \M\ First remark that, as Q
contains no As, all the As in \M\ become the A of an 7/-redex at some point in the
reduction \M\ -»v Q Further note that the only way in which an η-iedex can be

created m Л п is by Ax M(\y xy) —•,, \x Mx, which implies that the innermost
A in \M\ is always an 77-redex in \M\ If \M\ contains only one A we are easily
done Now suppose that \M\ contains n + 1 As and that we are already done
for terms containing n As Take the innermost η redex of \M\, say it is Ax \P\x,

coming from Ax A Px m M Then \P\ does not contain any A, for if it would this

A would have to be the A of a redex, which would make Ax \P\x not innermost

This implies that Ax A Px is also an 77-redex in M So we can apply IH to the

term obtained by contracting the 77-redex Ax A Px in M and we are done H

The following is an immediate corollary of the counterexample to C R ^ on Τ

4 4 16 L E M M A (Domain Lemma) If C[\x A M\ and В are m Τ (ι e С is a

pseudoterm with subterm Αχ A M), then

C[\x A M] =gv C[\x Β M]

P R O O F

C[Xy В (Ax A M)y]

where у is some variable not occurring free in A or M IS

Sec 4 4 Meta theory of Pure Type Systems 99

First some notation For D € Τ and M € Τ, MD € Τ is the pseudoterm
obtained by replacing all domains in M by D For D € Τ and t 6 Λπ, t+D € Τ
is the pseudoterm obtained by adding D as domain to every λ abstraction in t
(So for example (λι x)+D is Xx D χ)

4 4 17 COROLLARY For A and В pseudoterms,

\Α\=βη\Β\=>Α=βηΒ

PROOF Let \A\ =βη \B\, so by Church-Rosser |A| I |S | , say \A\ -*βη tßn «-

\B\ Take for D some closed pseudoterm (or fresh variable), then we have the
following diagram (The =βη are an immediate consequence of Lemma 4 4 16)

Α =0η Α Β =βη В

So Α=βη Β Η

4 4 18 LEMMA (Key Lemma) Let с be a variable or a sort

1 cP, _ Pn =0η Q =» Q ^ß XyÂcQl QnR, with Qx =βη Pt (1 < ι < η)
and R and у are of the same length with R ->•,, у

2 ПхР: P2 =βη Q =Φ Q -*β Xy Α (Πχ Qx Q2)R, with Рг =Sn Q, (г = 1,2)
and R and y are of the same length with R -», y

PROOF We only prove the first, since the proof of the second is totally similar
For reasons of readability we adapt here the convention to use capitals for pseu
doterms and small characters for elements of Лп

Let cP\ Pn and Q be as in the first case of the lemma By CR^ on Лп we find
<i, ,tn £ Лп withc|Pi| | P n | -»β„ ctx i„and |Q| -»^ cti t„ Usingpost-
ponement of ^-reduction, we find that |Q| -*β Ay cçi qnf'-», ct\ tn (Doing
as many /3-reductions as possible, ι e we /3-reduce all the 7/-redexes that overlap
with a /3-redexe More precisely, if (Xx Mx)N —*„ MN or Xx (Xz N)x —•,,
Xz N is one of the ^-reductions from Xy cq\ qnf to ct\ tnt then we do it al
ready as a /3-reduction step) So y and fare of the same length By 4 4 14 we find
a term Ay AcQ^ Qnñwith Q -*0 Xy A cQ-i QnR and \Xy A cQx QnR\ =

100 Pure Type Systems Ch 4

Xy cq\ qnr The situation is as follows

с Л P n r — > C | P , | \Pn\ \Q\< \Q

ß

XyAcQx QnR

Now R —>,, у follows from f -»η у and Proposition 4 4 14(3) We also have
|<?,| =βη \P,\ (for 1 < ι < n), so, by Corollary 4 4 17 we have Q, =βη Ρ, (1 < г <
η) and we are done Ή

There is a generalisation of the Key Lemma to include terms that begin with

a A abstraction We give it for technical completeness

4 4 19 L E M M A (General Key Lemma) Let с be a variable or a sort

1 \zi Ai Xzp Ap cPi P„ =enQ => Q -»/э Xz\ ΒΛ Xz„ B„ cQx Qm,

with η + q = m + ρ and Pi, ,Pn,zq, ,Z\andQi, ,Qm,zp, zi are

pazrwise βη-convertible

2 XzARxPiPi =βη Q => Q -*β Xz В Xy С {UuQlQ2)R, with Ρ, =0η

Qt {ι = 1,2) and R -», у

P R O O F The proof is quite similar to the proof of the Key Lemma Again we
only treat the first case because it is the most difficult one of the two Using
the properties of the untyped labda calculus we now get the following picture
(Notation z1 denotes z\, ,zp, z" denotes z\, ,zq)

X?A'cP1 Pn\ > A / c | P 1 | \Pn\ \Q\< i Q

ß

Xz" B" cQ

where ζ is z\, zs for some s < p,q First, we can conclude from this that

q — s = m — τ and ρ — s = n — r and hence n + q = m + ρ Further, this means

that for r < г < η, \Pt\ -*η 2 s + ,_ r and for τ < ι < m, \QZ\ -»»ч 2 í + 1_ r Just as in
the Key Lemma, we use Corollary 4 4 17 to conclude that Pi, , P„, zq, , Z\
and Qi, ,Qm,zP, Z\ are pairwise βη-eqaai and we are done S

'The Lemma can also be proved by induction on the length of the reduction-expansion path
from cP\ Pn to Q, as was suggested to us by В Werner This does not change the proof in
an essential way, we think that the proof above explains the idea better

CÍi í „ λ$ cqi qnf

βη

Xz ct\ í r - Xz" cq

Sec 4 4 Meta theory of Pure Type Systems 101

4.4.3. A list of properties for Pure Type Systems

At those points in the text where essential use of specific meta theory is being
made, we refer to the relevant lemmas and propositions, so this paragraph may
be skipped for now

In the following we let ζ = \(S, A, TZ) be an arbitrary PTS If we do not make
explicit reference to the PTS, we always refer to this generic system ζ If the
lemma or proposition only holds for a specific notion of PTSs or for a specific
subset of the class of all PTSs, this will be explicitly mentioned So, the generic
case is that a lemma or proposition holds for all three notions of PTS and also
that the given (sketched) proof works for all three cases

As remarked, we treat terms modulo α-equivalence, so, for example Xx Ay
and \z Ay are the same terms (for different x, y and z) This makes that, for
χ i FV(S),

χ А, у В h \x A y Ux А В

is derivable, whereas it is not without Q-conversion Also variables that are free
in a typable term are in a sense bound by a declaration in the context For those
variables we also have a notion of α-conversion that we call 'replacement' and
that is provable, as is shown by the following lemma

4 4 20 REPLACEMENT LEMMA For Г ь і А,Тг a context, M and В terms and
у a fresh variable that is not bound m M or fi,

Г і , і Д Г 2 Н М В =• ТъУА,Т2[уІх}УМ[уІх] В[у/х]

by a derivation with the same underlying tree,

where the underlying tree of a derivation is the labelled tree that is found by
removing from the derivation everything but the names of the applied rules (at
every node)

The lemma says that the names of the declared variables in the context really
don't matter and we may assume them to be different from any of the bound
variables The importance of this lemma is illustrated by the fact that now, if we
do some proof by induction on the derivation and we want to handle the case that
the last rule was (streng), we may take for the variable that has been removed
just any fresh variable (So the lemma implies that the name of the removed
variable doesn't matter)

PROOF By induction on the derivation of ΓΊ,χ Λ,Γ2 h Μ В The only in
teresting case is when the last rule is (streng) and the variable that has been
removed is y, say

ruxA,r2,yC,r3l· Μ В
— l^iL^J y φ FV(r3, Μ, В)

Г ь;г Α,Γ 2 ,Γ 3 Ι-Μ В

102 Pure Type Systems Ch. 4

Then by IH Гі,х:Л,Г 2 ,г :С,Гз h M : В is derivable with a derivation with
the same underlying tree (for г an arbitrary fresh variable.) So, again by IH,
Гі,у:А,Г2[у/х],г:С[у/х\,Г3[у/х] h M[y/x] : В[у/х] is derivable with a deriva
tion with the same underlying tree. Now we are done by one application of the
rule (streng) to remove the declaration z:C[y/x]. El

Another basic property, that is especially important and handy when it comes
to proving meta theory and which was first remarked by Randy Pollack is the
following.

4.4.21. L E M M A (Restricted Weakening). If Τ \- M : A is derivable, we may as

sume the derivation ofΤ h M : A to contain only applications of the rule (weak)

that are of the following form.

Tl· A:s T h e : ß
(weak) с a variable or a sort, χ fresh

r,x:Ahc:B

i.e. the weakening rule is only applied to typings of variables and sorts.

The proof of the property for PTS^ and PTS^,, is quite straightforward. We
give it below. For P T S ^ , the proof is more complicated. For that case the
property will be proved later, as a corollary to the more general Sublemma 4.4.25
(that also implies the Thinning Lemma 4.4.24.)

P R O O F . (For PTS^ and P T S ^) The proof is by induction on the derivation. All

cases except for the last rule being (weak) are easy. In case the last rule is (weak),

say
ΓΙ- A :s Tl· M :B

(weak) χ fresh
T,x:A\-M:B

we find by IH that Γ Ь A : s and Γ h M : В are provable with the restricted form
of weakening rule as described in the lemma. Now we are going to make some
small alterations in the derivation tree of Г h M . В to turn it into a derivation
tree of Г, x:A h M : В with restricted weakening rule. The alterations are as
follows: Go up in the tree to the place where the context Г is created. So, if
Γ Ξ Γ', y.C we go to the places where Γ' is extended to Γ. This is done by a (var)

rule or a restricted (weak) rule, so we have either

Γ' h С : s'
(var)

Г', y.Cl· y.C

or
Г' h С : s' Г h с : E

(weak)
Г.у.СЬс-.Е

Sec. 4.4 Meta theory of Pure Type Systems 103

In the first case we change the derivation by inserting

Γ' h С : s'

Г',y:C У-у : С ГУ-A: s

Г,х:АУ-у:С

and replacing Г by Г, x:A downwards. In the second case we change the derivation
by inserting

r'y-C-.s' ГУ-с-.Е

Г',у:С\-с:Е rhA-.s

Г,х:А\-с:Е

and replacing Г by Г, x:A downwards. It is easy to see that these alterations

satisfy the requirements. El

It is convenient to have some special notation for derivability in a system with
a restricted (weak) rule as in the lemma. We therefore introduce the following.

NOTATION. Г \-w M : A denotes the fact that Г h M : A is derivable with
a derivation tree with the weakening rule restricted to typings of variables and
sorts:

Г Н / 1 : І T h e i ß
(weak) с a variable or a sort, χ fresh

T,x:A\-c:B

Consequently, if we talk about a derivation of Γ \-w M : A, we refer to a derivation
tree with the restricted weakening rule.

4.4.22. LEMMA (Free variables). For Γ = Χχ.Αι,..., xn:An and Γ h M : В, then

1. FV(M,B)c{xu...,xn},

2- Vi,.j < η[χτ = χj =>• г = j].

PROOF. By easy induction on the length of the derivation of Г l· M : В. SI

4.4.23. LEMMA. For Г = x^.Ai,.. .,хп:Ап e Context,

1. Г h s : s' for all s:s' € S,

2. Г У- χτ : A, for all г < η,

3. Χι.Αχ,... ,і,_і:Лг_і h Л, : s for some s (Ξ S.

PROOF. All three by an easy induction on the length of the derivation that shows
that Γ is a context (i.e. a derivation of a sequent Г У- A : В for some A and B.)

104 Pure Type Systems Ch 4

4 4 24 THINNING LEMMA For Г and Г' contexts and M and В pseudoterms,

Г Э Г
гьм в ^ r ' h M B

The proof for PTS/э and PTS^,, is straightforward Due to the strengthening
rule, the proof is quite difficult for PTS^ It comes as an easy corollary of the
Sublemma 4 4 25, which is an induction loading to prove both Thinning and the
Lemma on the restricted use of the weakening rule (4 4 21)l

PROOF (For PTS^ and PTS^) The proof is by induction on the derivation We
treat the case of the last rule being the (П) rule, because it has some interest
(just as the case of the (λ) rule, which is similar)
Say

Γ I- Л ί Γ , ι ^ δ s'

ГЬПхАВ s"
and let Г '] Г We may assume that χ £ dom(r') (by Lemma 4 4 20) By IH
Γ' h A s and hence Γ', ι Л is a context By applying IH to the second premise
we find Γ', χ A h В s', so by the (П) rule Г' l· Ux A В s" and we are done H

4 4 25 SUBLEMMA For Г, Г' and A contexts and M and В terms we have the
following

г э г]
i e d o m (r ') n d o m (A) = > i m r (x) = imA(i) \ => Δ , Γ \ Δ Ρ" Μ В

Tl· M В J

The Sublemma is only interesting for the system PTS^ because it has as
consequences that Thinning and Restricted Weakening hold for PTS^ Moreover,
the Sublemma for PTS^ and PTS^, is a very easy consequence of Thinning and

'As was pointed out to us by J McKinna, it is also possible to prove Thinning and Substi
tution (Proposition 4 4 26) at once by proving the following Lemma

Г І м г) Ь Д к р (м) '(fl)'
where ρ is an arbitrary substitution of pseudoterms for variables, which is straightforwardly
extended to a mapping from Τ to T, and Δ I- p{T) means that Δ h p(x) p(A) for every
ι A S Γ This Lemma can easily be proved if one adapts the rule (streng) as follows

Г ь і С , Г 2 Ь М AVll·C s
(streng') — If ι І F V (r 2 l M, A)

Г Ь Г 2 І - М A

This rule is equivalent to (streng), as is easily shown by using Lemma 4 4 22

Sec. 4.4 Meta theory of Pure Type Systems 105

Restricted Weakening themselves (which have already been proved): The only
thing to do is to show that Δ, Γ' \ Δ in the statement of the Sublemma is indeed
a context.

PROOF. (For PTS^) By induction on the derivation of Γ l· M : В. We treat the
cases for the last rule being (var), (weak), (П) and (streng). (The case for (Л) is
similar to (П) and the cases for (sort), (app) and (conv) are easy, like the case
for (weak).)

(var) Say
T h A :s

T,x:A\-x:A

and Г' Э T,x:A and Δ are contexts satisfying the requirements of the
lemma. Now, Г' Э Γ, so we can apply IH to Γ h A : s to obtain
Δ, Γ' \ Δ \-w A : s. By an argument similar to the proof of the second
case of Lemma 4.4.23 one can show that in general, if Γ hw Ρ : С and
χ:A € Γ, then Γ h*° χ : A. Now, in the present situation we have
that x:A € Δ,Γ' \ Δ and Δ,Γ' \ Δ г-ш A : s, so we may conclude
Δ, Γ' \ Δ l·™ χ : A and we are done.

(weak) Say
ГЬ A :s Г\- M :B

Γ,χ:Α\- M : В

and Г' D Г, x:A and Δ are contexts satisfying the requirements of the
lemma. Now, because of Г' Э Γ we can apply IH to Γ h M : В to obtain
Δ, Γ' \ Δ Ρ" Μ : Β and we are done.

(Π) Say
Γ l· В : si Γ, ι : Bl· С : з2

Г h Пх:В.С : s3

and Г ' Э Г and Δ are contexts satisfying the requirements of the lemma.
Then by IH Δ,Γ' \ Δ г-ш В : slt so Δ,Γ' \ Δ,ι :Β is a context. Also
Δ,Γ' \ Δ,χ.Β Э Τ,χ.Β, so we can apply IH to Γ,χ:Β h С : s2 to obtain
Δ, Г' \ A,x:B Ьш С : S2 and we can conclude (by an application of (П))
that Δ , Γ ' \ Δ Η " Ux-.B.C :s3.

(streng) Say
Г ь і : Л , Г 2 Н М : В

Г Ь Г 2 | - M :B

and Г' Э Γι, Гг and Δ are contexts satisfying the requirements of the
lemma. Then by IH (using the fact that Γι,χ:Λ,Γ2 2 Гь^^іГг) we
get that П Д Г ь і Л Г з) \T' \-w M : В and hence that T\x:A is a

106 Pure Type Systems Ch 4

context Also Γ', χ A D Г ь χ А, Γ2, so we can apply IH again to obtain
A,(r,xA)\A\-w Μ В Now, x £ F V (M , ß) , so Δ, Γ'\ Δ Ρ " Μ В,
by one application of (streng) IS

As corollaries we find proofs of Restricted Weakening (Lemma 4 4 21) and
Thinning (Lemma 4 4 24) for P T S | 4 For the first take Δ = 0, Γ' = Γ and for
the second take Δ = 0

4 4 26 P R O P O S I T I O N (Substitution) For Г1гх А, Γ2 a. context, Μ, В and Ν

¿erms

Г , , х Д Г 2 Н М ß

P R O O F By induction on the length of the derivation of Гих Α,Γ2 Η Μ В,
assuming that Γι l· N A is derivable The only case that is really interesting
is, when the last rule is (streng), ι e when we are in the system P T S ^ We also
treat the case when the last rule is (app), because some attention has to be given
to the substitutions

(streng) Say

(Г , , і Д Г 2) » с Ь М В
(streng) — — y¿FV{A,M,B)

ГихА,Г2Ь-М В

where we use the notation {Г)уС to denote a context from which one
obtains the context Г by removing the declaration у С, and Δ is the tail
of the context (Γι,χ A, Гг) С , relative to the position oí у С Now, if
у С is a declaration to the right of χ A in (Гі,a; A, Гг) С , the required
consequence follows easily by applying IH to (Г ь х Л , Г 2) у С h Μ В
and Vil· Ν A, and then (streng) If the declaration у С is to the left
of χ A, then

(Γ Ί) * 0 ' , ! A , r 2 h M В
(streng) У-^-^ — yiFV(A,M,B)

Г ь і Л . Г г г - М В

The IH does not immediately apply, but by Thinning (Lemma 4 4 24),
w e m a y c o n d u d e t h a t (r 1) » c r - A T Л and hence by IH (r1)

yC,T2[N/x]l·
M[N/x] B[N/x] Note that у f FW (Ν), so we can apply (streng) to

get Г ь Γ 2[Λ7ι] h M[N/x] B[N/x] and we are done

(app) Say

ГихА,Т2\-М Пу В С Γι, ι Л,Г 2 г- Ρ В
(app)

Гі,хА,Га\-МР С[Р/у)

Sec 4 4 Meta theory of Pure Type Systems 107

Now by IH and (app), Γ,, Γ2[Ν/χ] h M[N/x]P[N/x\ C[N/x}[P[N/x}/y]
We may assume that y $ FV(ri, χ А, Γ2) (a precise justification of this
assumption may be found in the Replacement Lemma, 4 4 20) Hence
y i FV(7V) and so we can conclude C[N/x][P[N/x]/y] = {C[P/y])[N/x]
and we are done И

4 4 27 STRIPPING LEMMA For Г a context, Μ, N and R terms, we have the

following

(г) Г h s R, s e S => R = s' with s s' ζ A for some s' e S,
(ιι) Γ h ζ R, χ e Var =>· R = A with χ Л g Γ for some term A,

(m) ThüxMN R =>· Γ h M ί, ,Γ,ιΜΙ-JV s2 and R = s3

with (si, S2, «a) 6 TZ for some si, s2, «з € 5,
For PTS^,)

{ιυ) Γ\-ΧχΜΝ R =• Γ,χΜΙ-JV Α , Γ Κ Π ι Μ Β 5 and
Д = Πι Μ В for some term В and s 6 5,

{υ) Γ h MW Л =• Т\- M Пх AB,Tl· N A with R = B[N/x]
for some terms A and S,

For PTSJ,,
(ги') Г h λ ι M У Л ^ Γ', χ M h ΛΓ S, Γ'Ι- Πι M В s and

R = Ux M В іот some S, s € S and Г' Э Г,
(г/) Г h M/V Д => Γ'Ι- M Π ι / Ι β , Γ Ί - J V Л with R = В[У /і]

for some terms A and S and context Г ' Э Г

In fact the case (iv') can be strengthened to (îv) for PTS^, so (îv) holds
generally for all three notions of PTS But we are only in the position to prove
this fact after we have proved the Subject Reduction property for /^-reduction
(Lemma 4 4 30), which in turn uses Stripping (in the weaker version given in the
Lemma above)

PROOF For PTS^ and PTS/э, the proof is easy If Г h Ρ Л, we may assume the
derivation tree of this judgement to have the restricted form of the weakening
rule We can go up in this derivation tree until we reach the point where the
term Ρ has been formed In doing this we only pass through applications of the
conversion rule (so the context Γ remains the same, only the type R is replaced
by a convertible one) At the point where the term Ρ has been formed we dis
tinguish the five different cases above, according to the form of P, and we easily
check that the conclusions are satisfied
For PTS£ the proof is more complicated because, in going up through the deriva
tion tree of a judgement Γ hw Ρ R, we also pass through applications of (streng),
which will extend the context Γ to a context Γ' So the proofs of (iv'), (v') and
(ι) are easy The method described above, going up in the derivation tree until
we reach at the point where the term is formed, works for each of the three cases

108 Pure Type Systems Ch 4

For the proof of (n) we can apply the same method to arrive at a context Г' Э Г
whose last declaration is χ A with A = R The context Г is obtained from
Г' by removing declarations, but χ A can of course not be one of them, so
χ Л € Γ and we are done For the proof of (in) we apply the method to arrive
at a context Γ' D Γ for which Γ' h M suT',xMl· N s2 and Γ'l· Ux Μ N s3

with 33 = R Now the domain of Γ' may be larger than that of Γ, but none of
the extra variables occurs free in Πι Μ N (and we may assume all of them to be
different from x), so we can conclude that Γ (- M si and Γ, χ M h N s2 and
we are done E3

4 4 28 CORRECTNESS OF TYPES LEMMA For Г a context, M and A terms,

Г h M A => 3s e S[A = s V Г h A s]

PROOF The proof can be given by analysing the derivation tree of Г \-w M A,
like in the proof of 4 4 27, but also by induction on the derivation of Г l· M A
We follow the second option, which gives the shortest proof The only two cases
that have some interest are when the last rule is (app) or (streng)

(app)
Г Ь Р Пх AB Fl· N А

ГІ-РЛГ B[N/x]

Then Г h Πι A В s by IH and hence by Stripping (Lemma 4 4 27),
T,x A l· В s' for some s' e S Now by Substitution (Proposition
4 4 26), we conclude that Г h B[N/x] s'

(streng)
Г і , х Д Г 2 К М В

Г ь Г 2 г - М В
Then by IH Β Ξ s or Γι, χ Л,Гг Ь В s for some s 6 S, so by one
application of (streng), В = s or Г ь Г2 H В s for some s € »S H

4 4 29 UNIQUENESS OF TYPES LEMMA For functional PTSs, if Г is a context,
M, С and C' are terms we have

ThM с ƒ ^ c - c

PROOF By induction on the structure of the term M, using Stripping In case
M is a sort or a Π-term, we use the functionality The only interesting cases
are when M is an application term or when we are in a PTS^ and M is a λ-
abstraction or an application We do the latter case, because it covers all the

Sec 4 4 Meta theory of Pure Type Systems 109

interesting cases So let M = PN Then we find by Stripping terms A, A', В
and B' and contexts Г' Э Г and Г" Э Г such that

Г' h Ρ ПхАВ,

Г" h Ρ UxA'B',

with С =βη Β[Ν/χ], С' =βη Β'[Ν/χ] By the Replacement Lemma we may
assume that dom(r' \ Γ) Π dom(r" \ Γ) = 0 So we can take Δ to be the union of
Γ' and Γ" and we have

Δ h Ρ ПхАВ,

Δ h Ρ ПхА'В'

Now we can apply IH to conclude that Πι Α Β =βη Ux А' В' By the Key Lemma
we may conclude from this that Β =βη В' and hence B[N/x] =βη B'[N/x] and
we are done S

4 4 30 SUBJECT REDUCTION LEMMA FOR BETA (SR^) For Γ, Γ' contexts, Ρ, P'

and D terms,

Γ h Ρ DL· Ρ —>ß Ρ' =• Γ l· Ρ' D,

Tl· Ρ DkT —>0 Γ' =• Γ' l· Ρ D

PROOF We do the proof for PTSJ , for PTS^ and РТБ/з the proof is slightly
easier because of the stronger version of the Stripping Lemma 4 4 27 The proof
of the two statements is done simultaneously, by induction on the derivation of
Г h Ρ D, distinguishing cases according to the last rule
Proof of (ι) All cases except for the last rule being (app) are immediate, some
times by using IH (For (Π) and (λ), use IH on (n)) If the last rule is (app), we
distinguish subcases according to where the reduction takes place

Subcase 1
Γ h M nxACΓl·N A

Γ h MN C[N/x]

with Ρ = MN and the reduction is inside Μ от N Then we are
immediately done by IH

Subcase 2
Г І - Л х Л М Пх BC Tl· Ν В

Г h {\х A M)N C[N/x]

ПО Риге Туре Systems Ch 4

with Ρ = (λχ A Μ)Ν and Ρ' = Μ[Ν/χ] Then by applying Stripping
(4 4 27) to the first premise, we find

Г,хАУ-М С (1)
Г'h Πι Л С" s{&S)

ПхАС' = ПхВС
with Г' D Г

So, again by Stripping

T'l· A Si (2)
Γ',ζΛΙ-C" s2

for some Si, S2 6 «5

By applying Thinning (4 4 24) to the second premise we find

T'l· Ν В (3)

By the Key Lemma (4 4 18), we conclude from Пт AC' = Пі В С
that

A = В (4)
С' = C (5)

So, applying (conv) to (2) and (3), using (4), we get

ГУ- N A (6)

Applying Substitution (Proposition 4 4 26) to (6) and (1) we get

Г' h M[N/x] C'[N/x] (7)

By applying Correctness of Types (Lemma 4 4 28) to the first premise,
we find Г У- Пх ВС s' for some s' e S, hence Г' h ïlx ВС s' and
hence by Stripping

Г,хВУ-С s'2(eS) (8)

Now apply Substitution to (3) and (8) to get

T'y-C[N/x] s'2 (9)

Apply (conv) to (7) and (9) (using (5)) to conclude

Γ\-Μ[Ν/χ] C[N/x]

The variables that are in the set аот(Г') \ аот(Г) are not free in
M[N/x], C[N/x] or Г, so they can be removed by consecutive appli
cations of (streng) to obtain

T\-M[N/x] C[N/x]

and we are done

Sec 4 4 Metà theory of Pure Type Systems 111

Proof of (и) All cases can be handled easily by applying IH In case the last rule
is (var) or (weak), also use IH on (ι) В

4 4 31 COROLLARY

Г I- M С, С -*ß С' =» Г h M С'

P R O O F Immediate, using Correctness of Types (4 4 28) 13

4 4 32 S U B J E C T R E D U C T I O N L E M M A FOR ETA (SR, for PTS^ and P T S ^) For

Г, Г' contexts, P, P' and D terms,

Г h Ρ DkP —•,, Ρ' =>· Tl· P' D

Tl· P DkT —>„ Γ' => Γ' h Ρ D

P R O O F We do the prove for PTS^, The proof for PTS^ is slightly simpler and
follows the same lines (It uses the fact that (streng) is a derived rule, which
will only be shown in 4 4 35) Simultaneously by induction on the derivation of
Γ h Ρ D We treat the proof for P T S ^ , because it is the most complicated
The only interesting case is when the last rule is the (lambda) rule and we are in
the following situation

Y,x A\- Mx В Гг-Пх A В s

Г h Αι Л M i Пх A В

with χ $ FW (M) Then by Stripping (4 4 27) we find

(Г , і Л) ' h M YlyCE

[Τ, χ А)' г- ι С

E[x/y] = В

with (Г, χ A)1 D Г, χ A We may conclude that A = С and hence that Π ι А В =
UyCE So

(Г,хА)'\-М ПхАВ,

and by some applications of (streng) we find

Г h M Xìx AB

and we are done

For all other cases the proof follows exactly the proof of SR^ SI

4 4 33 COROLLARY FOT PTS^ and PTS^ we have

Г h M С, С - н , С' =>• Г h M С'

112 Pure Type Systems Ch 4

PROOF Immediate, using Correctness of Types (4 4 28) В

4 4 34 SUBLEMMA (for proving that (streng) is a derived rule for PTS^j For
PTS^, if Γι, χ Α,Γ2 is a context and M and В are terms, then

Although the property seems to be obviously correct, the proof for the general
case is remarkably complicated and requires the introduction of many new notions
and definitions For that reason and because the proof is not ours, we omit it
here and refer to [van Benthem Jutting 199+] for details (which is the original
source) The idea of using the above Sublemma to prove that (streng) is a derived
rule, first appeared in [Luo 1989], who used it for the system ECC The author
and Nederhof used it (in the joint paper [Geuvers and Nederhof 1991]) to give
the proof for functional PTS^s (For this case the situation is easier because we
have Uniqueness of Types) We shortly repeat that proof here

PROOF of the Sublemma for functional PTS/js
The proof is by induction on the derivation of Γι, χ A, Γ2 \~ Μ В, distinguishing
cases according to the last rule The only interesting cases are when the last rule
is (λ), (app) or (conv), so we treat those

(λ) Say M = Xy С Ν, В = Пу С D and

ТихА,Гг,уС\- N D Г h Пу С D s

ruxA,r2\-XyCN ÎlyCD

Then by IH Г ь Г2,у С h N D' for some D' with D -*0 D'
Also, Γ!, χ А, Гг Ь С s-¡ is a conclusion of a subdenvation of the deriva
tion with conclusion Г ь і А,Г2, у С l· N D, so by IH Г Ь Г 2 г- С s¡
By Correctness of Types we find that Гі,Г2,у С h D' s2 or D' = s € S
In the second case too there is an s2 such that D'(= s) s2, because for
D there is such s2 and we have SR^
Now, by functionality, the Si and s2 are such that {s\, s2, s) GlZ ((si, s2, s)
is the rule that justified the formation of Uy С D), so we can apply (П)
to conclude Гі, Г2Г-П3/CD' s and hence Γ:, Г2 h Xy С N Пу С D'

(app) Say M = NP, В = D[P/y] and

ruxA,r2r-N UyCD Г h Ρ С

Г ь *Л,Г 2 г-Л/Р D[P/y]

Then by IH, Γι,Γ2 h N Uy С' D' and Г Ь Г 2 h N С" with С -*β

С', С" and D -»β D' By Church-Rosser we find a term C " such that
C',C" -»0 C " and hence (by Corollary 4 4 31) Γ,,Γ2 h N îlyC" D'
a n d r b r 2 r - P C" We may now conclude that Г Ь Г 2 h NP D'[P/y]
and we are done

Sec 4 4 Meta theory of Pure Type Systems 113

(conv) Say
ГихА,Г2\-М С r\-D s

С = D
Г , , і Л , Г 2 Н М D

Then by IH Г Ь Г 2 V- M С' for some С' with С -*ß С' By Church-
Rosser there is a C" such that C', D -*ß С" Now Г ь Г2 h M С" and
we are done H

The statement of the Sublemma can be weakened a bit by requiring the B' to
be convertible with В (and not necessarily a reduct) This trivializes the case for
the last ruel being (conv), but doesn't make the whole proof really easier We still
need Church-Rosser, functionality and the case for the last rule being (λ) becomes
a bit more involved Moreover it is slightly more work to get Strengthening from
the Sublemma

4 4 35 STRENGTHENING LEMMA FOR PTS^ For Гьа; A,T2 a context and M

and В terms,
Г і , і Д Г 2 Ь М В

x ¿ F V (r 2 , M , B) f -Γ, ,Γ ϊΓ-Λί В

PROOF By the Sublemma we find a B' such that Β -»β В' and

Г Ь Г 2 Ь М В'

By Correctness of Types there are two possibilities, Г ь і A,Y2 \~ В s or В =
s 6 S In the second case we are immediately done, because В = В' In the first
case we can once again apply the Sublemma to

Г ь ι A,r2l· В s

to find that
Г ь Г 2 г - В s

Now we are done by one application of (conv) И

4 4 36 STRONG PERMUTATION LEMMA FOR PTSfl AND PTS^

For Γι,χ А,у B,T2 a context, M and С terms, with χ £ FV(B),

rltxA,y Β,Γ2*- M С =>Гиу Β,χ А,Г2\- M С

PROOF The only thing to do is to show that Гі,у Β, χ Α,Γ2 is a legal context
ιΐ Γι,χ A,y ß ,Γ 2 is (Then we are done by Thinning, 4 4 24) By Lemma 4 4 23
we know that

ГихАг-В s

114 Pure Type Systems Ch 4

for some s G S By Strengthening for PTS^ (Lemma 4 4 35) or by the rule
(streng) for PTS^, we conclude that

r , h S s

and hence that T¡,y В is a legal context So, by one again using Lemma 4 4 23
and Thinning we derive that Гі, у Β, χ A is a legal context We can repeat this
operation of applying Lemma 4 4 23 and Thinning for all declarations in Г2 and
finally conclude that Гі, у Β,χ Α,Γ2 is a legal context Η

A weak form of the Permutation Lemma, which holds for all notions of Pure
Type System is the following

TuxA,yB,r2l· M С \
Г \-В s I иУ ' ' 2

The proof is the same as for the proof of the Strong Permutation Lemma, except
for the fact that one doesn't need Strengthening because of the second assumption
in the statement

Finally we want to prove two properties that use the syntax with sorted vari
ables as it was described in Definition 4 2 9 We prove the Lemmas for injective
PTS^s, which is an unpractical restriction, not so much because of the restriction
to mjectivity but especially because we don't have the Lemma for PTS^ There
fore we shall look into this matter again in detail when we study the Calculus of
Constructions with /îrç-conversion Let us remark here that the following Lemmas
are not true if we drop the restriction to injective systems, a counterexample can
be found in [Geuvers and Nederhof 1991]

4 4 37 CLASSIFICATION LEMMA FOR INJECTIVE SYSTEMS For s,s' sorts, s ^
s',

s Term Π б'-Term = 0,

s-Eltns'-Elt = 0

PROOF For the first it suffices to prove the following

Γ r- M s, Γ' h M s' => s Ξ s'

For the second it suffices to prove the following

Γ h M В s, Fl· M В' s' => s Ξ s'

We prove these two statements simultaneously by induction on the structure of
terms, using the Church-Rosser property, SR^ and Uniqueness of Types The
proof is not really difficult but still a bit tricky and we therefore give it in quite
some detail

Sec 4 4 Meta theory of Pure Type Systems 115

var If Γ l· χ s, Γ' I- χ s' and χ 6 Var*0 then χ Л € Γ with Α -»β s and

χ A' € Γ' with A' -»g s' for some A, A' Furthermore Γ l· A s0 and

Γ l· A' So and hence s So and s' So are axioms Now by injectivity,

s = s' For the second statement it suffices to show that, if Γ l· χ В s
with χ e Vars°, then s = s0 Now, if Г l· χ В, then χ A e Γ with

Γ h A SQ and A =β В Hence by Church-Rosser, SR^ and Uniqueness
of Types, s Ξ s 0

Π-abstr If Γ I- Пх А В s and Г' h Пх А В s', then Tl· A Sl and Γ, χ A l· В
S2 with (ai, S2, s) ζ TZ and at the same time Γ' h A s[and Γ', χ A l· В
s 2 with (s'n s2, s') 6 72. Now, by IH s\ Ξ S'J and s2 = ^2 a n c ^ hence s = s'

because 1Z Ç (5 x <S) χ <S is a function For the second statement we are
now easily done, because if Γ h Пх А В С s and Г' h Пх A В С' s',
then С and С" reduce both to the same fixed SQ e S (which is found by
the argument for the first statement) Hence s = s' by the fact that A
is a function

A-abstr The first statement is trivially satisfied by the fact that a Л-abstraction
can not be an s-Term For the second statement suppose that Г h
\x AM В s and Г' h Xx Α Μ В' s' Then В = Пх А С with
Tl· А sl,Γ,xAl·M С s7 a.nd Τ \-Пх А С s3 ((sus2,s3) S TZ)
and at the same time B' = Пх A C' with Г' l· A s\, Γ',χ A h M С' s 2

and Г' h Пх Λ С" s'3 ({s'us2, s'3) e П) Now, by IH si = s\ and s2 = s'2

and hence s3 = S3 Further, by Church-Rosser, SR^ and Uniqueness of
Types, s Ξ S3 and s' = s3 and so s = s'

applic We first prove the second statement, so let Γ h MN D s and Γ' h

MN D' s' Then Γ h M Пх А В s3¡ Г h N A s,, Г h
B[N/x] s2 and B[N/x] =g D ({si,s2,s3) € TZ) and at the same time

s'i, Г' l· B'[N/x] s'2 and
by IH si Ξ s[and S3 = s3

, by Church-Rosser, SR^ and
Uniqueness of Types, s = s2 and s' Ξ S 2 and so s = s' For the first
statement, if Γ h MN s and Γ' h MN s', then we find by the
argument for the second statement a fixed sort so such that s so and
s' So So, by injectivity, s Ξ S' H

We can specialize this Lemma a bit further by noticing that in a lot of cases

the sort s for which A e s-Elt only depends on the 'innermost symbol' of A,

which is always a sort or a variable Let us first define this notion, we call the

innermost symbol of A the heart of the term A, notation h(A)

Γ'

B'

an

h M

'[Ν/χ] =

id hence

Пх
D1

s2

A' В

((í'l

I

s2,

by

«3, Г'
s'3) e
inject

h TV

тг)
ìvity

Л'
Now,
Also

116 Pure Type Systems Ch. 4

4.4.38. DEFINITION. The heart of a pseusdoterm A, h(A), is defined by induction
on the structure of terms as follows.

h(s)

h(x)

п(Пх:В.С)

h{\x:B.M)

h{MN)

= s, for s 6 S,

= x, for χ € Var,

= h(C),
= h(M),

= h(M).

4.4.39. LEMMA. For an injective PTS^ with all rules of the form (si,S2) (i.e.
(•si,S2,S3) € TZ => 32 = S3) we have

M e s-Elt <£> b(M) = χ 6 Vars V

h(M) = s" шгЙ s" : 5' : s 6 Л /or some s' € 5,

M e s-Term =• h[M) = χ e Vars' ωιί/ι s:s' € As/

h(M) = 5' with s':s £ A.

PROOF. By induction on the structure of M. For the first part of the Lemma:
The reverse implication uses the Classification Lemma in case M = x. All other
cases follow straightforward from IH and the restrictions on the rules and ax
ioms. For the second part of the Lemma, all cases follow easily from IH and the
restrictions, except when M is an application term, in which case we need the
first part of the Lemma. We do this case in detail.
M = PN, say Γ h PN : s with Γ h Ρ : Yly.B.C : s3 and Г l· Ν : В. Then
C[N/y] =p s and hence s:s3 € A. Now we can apply the first part of the Lemma
to the term PN to find that either h(PN) = x G Var*3 or h(PN) = s" with
s":s':s3 for some s'. By the restrictions on the rules and the fact that s : s3, we
find that either h{PN) = χ e Var"3 with s.s3 G A or h{PN) = s" with s".s 6 A
and we are done. H

Chapter 5

The Church-Rosser property for
^-reduct ion

5.1. Introduction

In this chapter we want to treat the proof of the Church-Rosser property for
/37?-reduction in functional normalizing Pure Type Systems By the restriction to
functional normalizing systems we don't mean that the general property is false
At this moment this is still an open question, but we strongly believe that CR^,
holds in general for all Pure Type Systems At the end of this section we shall
make some comments on this and also on the proof, which we believe has some
deficits

In giving the proof we roughly follow [Geuvers 1992] In fact the proof we
give here is an expanded and updated version of the one that was given in there
We have changed the order of the lemmas a bit to stress which properties are
general and which ones are specific properties of functional normalizing PTSs

5.2. The proof of CR^, for normalizing systems

Before giving the proof we want to fix some terminology and highlight some
properties that come in handy for the proofs

NOTATION Suppose Γ h M Л is a derivable judgement in a functional PTS
If Ρ is a subterm of M, we can speak of the type of Ρ in the derivation of
Γ h M A In fact this type is unique up to /^η-equality, due to the uniqueness of
type property (Lemma 4 4 29) We therefore introduce the notation ty(P), which
depends on Γ, M and A (but this dependency will usually not be mentioned
explicitly) and is unique up to =βη We also want to fix the notion of a variable
χ being free in ty(P) or not As ty(f) is unique up to =βη we shall usually be
interested to know whether we can find a type for Ρ in which χ is not free We

117

118 CRforßn Ch 5

therefore introduce the notation χ fa ty(P) to denote that there is a type В oí Ρ

such that χ £ FV(ß) (Note that all this is still relative to Γ, M and A)

5 2 1 R E M A R K 1 For terms that have a sort as type, the Key Lemma 4 4 18,
gives in practice more specific information If Πχ Αι Αι =gv С and С s for
s e S, then С -»»/з Π ι C I C 2 with С, =βη Аг Similarly if xP\ Pn =gv С
and С s for s € 5 , then С -»β xQ\ Qn with Рг =ρη Qt This is true
because С can not be a λ-abstraction

2 For well-typed terms (in an arbitrary PTS) that are /îrç-equal to a sort, the
Key Lemma 4 4 18, also gives some extra information If A € Term(() and
Α -*βη s(€ S), then A -»^ 5 (This is easily verified by noticing that,
if Α =ρη s, then Α -»β Xy A sR -», s (see Proposition 4 4 14) and that

Xy A sR can only be well typed if y is empty)

We first list some lemmas that are valid in all PTS (not just the functional
normalizing ones) We have not listed them under the general meta theory for
Pure Type Systems because all the properties are about terms being (equal to a
term) in normal form, so for systems that are not normalizing these properties
loose their interest

5 2 2 L E M M A

ThAs •

A in βη nf , „.., ..
Α -βη tí

xïFV(BS) ì

P R O O F The proof is by induction on the structure of A For A a sort or a variable
it's trivial For A = Π ι A0 A\, we are done by induction hypothesis Suppose
now that A is an application term Then χ can only be free in domains of A (Note
that \B\ =βη \A\ -»,, nf(|/4|), and in untyped lambda calculus 77-reductions do not
remove any free variables, so χ £ PV(|J4 |)) Say С is the leftmost domain of A
in which χ occurs free, say in the subterm zR\ Rq{\y\ Εχ Xyp Ep Xy С Ρ)

Then χ fa ty(z), because ζ is declared in the context or ζ is abstracted inside A

to the left of С This implies that also χ fa iy(zRi Rq) Now ty(zRi R4) =

П<7 (Пуі Εχ Пур Ep Uy С D) F and hence С =βη E, for some E with χ $

FV(£) Now we can apply IH because С in /?-nf and χ І FV(£) So, χ $ FV(C)

and there is no leftmost domain in A in which χ occurs free Si

5 2 3 P R O P O S I T I O N For M e Term, if M in βη-nf, then \M\ m βη-nf

P R O O F Suppose M in/îrç nf and \M\ not in/?7;-nf Then \M\ is in /3-nf by Propo
sition 4 4 14 So there is an η-redex in \M\, which is not an 77-redex in M, say
Xx \N\x is the left most such Then χ e FV(jV) while χ £ FV(|7V|), so χ occurs

Sec. 5.2 The proof of CR0r) for normalizing systems 119

only free in domains of N. We now follow roughly the same method as in the proof
of Lemma 5.2.2: Say С is the leftmost domain in which χ is free, say С occurs in
the subterm zR\ • • • Rq{Xyi\E\. • • • Xyp:Ep.Xy:C.P). Again χ fa ty(z). (If ζ is de
clared in the context or abstracted left from the abstraction over x, then χ fa ty(¿)
by the convention that all bound variables are different and different from the
free ones. If ζ is abstracted right from x, then χ fa ty(z) by the assumption that
С is the leftmost domain containing x.) This implies that χ fa ty(zRi • • · Rq) and
by the fact that ty {zRi • • • Rq) = Щ-Щуі.Ех. • •-Y[yp:Ep.I\.y:C.D).F we find that
С =0η E, for some E with χ І FV(£). Now, by Lemma 5.2.2, χ $. FV(C), so
there is no leftmost domain in M in which χ occurs free. Hence \M\ is in βη-τιί.

5.2.4. LEMMA.
Γ I- M:A

Γ h M'-.A'
Α =βη A'

\M\ = \M'\
M, M' in ß-nf

M =dM'

(The equality =¿, was defined in Definition 4-4-13:
all corresponding domains are βη-equal.)

M =d M' if M =d M' and

PROOF. M and M' have the same structure (apart from the domains) and we
have to show that all respective domains in M and M' are pairwise /ΐη-equal. Say
M = λχι-.Αι.... Xxn:An.N and M' = Xxi'.A^ Xxn:A'n.N', with N and N' not
abstractions. Then Α =βη Пх^Лі Wxn.An.B =βη Пхі:А[... Uxn:A'nB' =0η

A', for some В and B' by Stripping, so Аг =ρη A[. Now compare from left to
right all domains in N and N'.
Say С occurs as zR\-• • R4{Xyi.Ei Xyp:Ep.Xx:C.P) in N and C' occurs as
zR[• • • Кч{Ху1.Е\.... Xyp:E'p.Xx:C'P) in N' and for all domains to the left of С
(respectively C') we are already done by induction. So Rt =βη R[for all ι and
Et =βη E[for all ι and hence ty(zñi • · · Rq) = ty{zR[• • • R'q). This implies that

tyCAî/nÊ!.... Xyp:Ep Xx:C.P) = іу{ХУі E[. .Xyp:E'p.Xx:C'P')

and so Β =βη В'. И

The following Lemma collects the results of the previous Lemmas, establishing
the confluence of /fry-equality for types in normalizing PTS^.

5.2.5. LEMMA. Let s,s' e S.

T l · A:s
Г h B-.s'
Α=0ηΒ

Α, Β in βη-nf

В.

120 CR for βη Ch 5

P R O O F By induction on the structure of A, using the Key Lemma, 5 2 4 and
5 2 3

If Л Ξ Π ι Αχ Α2, then Β =βη Π ι Βλ Β2 with Αι =ρη Βι and Α2 =βη Β2 By
induction hypothesis Αι = Βχ and Α2 = Β2

If Α = χΡι Pn, then Β Ξ xQi Qn with Pt =βη Qt (by Key Lemma) Now,
ty{xPi Pn) = ty(xQi Qn), and so s = s' Further, хРг P n and xQi Qn

are in βη-ní, so, by 5 2 3, \xPi Pn\ and \xQi Qn\ are, so \xPi Pn\ =
\xQ\ Qn\ We can apply 5 2 4 and conclude that all respective domains in
χΡι Pn and xQi Qn are /îrç-equal By induction hypothesis (comparing the
domains in χΡι Pn and xQi Qn from left to right) we conclude that all
respective domains in χΡι Pn and xQi Qn are syntactically equal,that is
χΡι Pn = xQi Qn И

5 2 6 T H E O R E M (C O N ^ for normalizing functional P T S ^)

ΓΗ M A

ΓΗ M' A

Μ =βη M'

P R O O F Define У = nf(M), N' = nf(M') We prove N = N' and we are done
By SR/3 and SR,, we find Γ h N A and Γ h Ν' A By 5 2 3, |TV| and |JV'| are
in normal form, so |JV| = \N'\ By 5 2 4, all respective domains in N and N'

are /377-equal We now compare all respective domains in N and N', from left
to right By Lemma 5 2 5 all respective domains in N and N' are syntactically
equal (=), so N = Ν' H

Obviously, the normalization is essential for the proof Note however that
also the restriction to PTS¿4 is essential, because in PTS^, we don't know how to
prove SR,, Of course we are still interested in proving CR^, for P T S ^ (functional
and normalizing) Somewhat surprisingly maybe, that is easy now Using the
work on PTS¿4 that has been done in this section, we can show that (streng) is
a derived rule in a functional normalizing PTS/j, and hence that Theorem 5 2 6
holds for any functional normalizing P T S ^ In fact, everything that is required is
a simple corollary of Lemma 5 2 5 Then the proof of the denvedness of (streng)
in functional normalizing PTS^, can be found by redoing the proof of denvedness
of (streng) in PTS^s (Sublemma 4 4 34 and Lemma 4 4 35)

The property that proves strengthening and hence SR, is interesting enough
to give it a name and treat it as a specific feature on its own This is because
in practice it holds quite generally for functional systems, even if they are not
normalizing (like λ*), or if we do not yet have a proof of normalization (as is the
case for CC^,, at this point in the text)

ML· M'

Sec 5 2 The proof of CRpv for normalizing systems 121

5 2 7 DEFINITION We say that a PTS^ or PTS^ satisfies βη-preservation of
sorts, if

TV- A s\
Tl· В s' \ => s Ξ s'
л =Sn в J

Obviously, there are non-functional PTS that do not satisfy /^-preservation
of sorts (because Uniqueness of Types doesn't hold) It should also be clear
that we strongly believe the property to hold for all functional PTS It comes as
an immediate consequence of Confluence, Subject Reduction and Uniqueness of
Types The Corollary of Lemma 5 2 5 that we are interested in in the present
context is that all functional normalizing PTS^ satisfy /3r?-preservation of sorts
The reason to highlight this property here as a special definition is twofold First,
this is the specific feature we need to make the proof of strengthening and hence
SR,, work Second, the ^-preservation of sorts is quite easily proved for other
systems like CC^, and λ*

5 2 8 COROLLARY (of Lemma 5 2 5) A functional, normalizing PTS/з,, satisfies
βη-preservation of sorts

PROOF Suppose Γ l· A s and Γ h S s' m a functional normalizing system
without (streng) Then also Γ h Л s and Г h В s' in the extension of the
system with the rule (streng) Now A and В both normalize, so, by SR^ and SR,
in the extended system, Г h nf(,A) s and Г h nf(ö) s' (still in the extended
system) By Lemma 5 2 5, this implies nf(A) Ξ nf(B), so by Uniqueness of Types,

Trivially, the Corollary also holds for functional normalizing PTS^

5 2 9 SUBLEMMA If a PTS^ satisfies βη-preservation of sorts, then

Г ь і Д Г 2 І - М В
xtFV(r2,M) Г - Э В ' [В = ^ ' & Г Ь Г 2 Ь М В']

PROOF The proof is by induction on the derivation of Γι, χ Α, Γ2 h Μ В,
distinguishing cases according to the last rule The only interesting cases are
when the last rule is (λ) or (app), so we treat those (The other cases sometimes
use the Remark 5 2 1)

(λ) Say M = \y С Ν, В = Uy С D and

ГихА,Г2,уСг- N D r1}xA,r2\-UyCD s3

ri,xA,r2\-\yCN UyCD

Then by IH Г ь T2,y С h N D' for some D' with D =βη D'
Also, Γι,χ А, Γ2 l· С Si and Y\,x A,T2,y С \- D s2 are conclusions

122 CR for βη Ch. 5

of subderivations (with (si,s2,S3) £ Tty, so by IH Γι,Γ2 h С : E with
Ε =βη Si and hence Γ], Γ2 h С : si by 5.2.1 and SR¿j.
By Correctness of Types we find that Г ь Г2, y.C h D' : s'2 or D' = s € <S.
In the second case we have D -»β s and s:s2 6 A. So ΓΊ, Гг г- Щ/:С.а : s3

and hence Г ь Г2 l· Xy.C.N : Uy.C.s with Uy.C D =ßn Uy.C.s.
In the first case we have by βη-preservation of sorts that 52 = s'2. So
Γχ,Γ2 r- Uy.C.D' : s3 and hence Г Ь Г 2 H Àt/:C./V : Yly.C.D' with
Щ/:С.£> = ^ Uy.C.D'.

(app) Say Μ Ξ NP, Β Ξ D[P/y] and

ГьХ:Л,Г2 Η Af : Пу:С.£> Гьа::Л,Г2 h Ρ : С

" Г ь і : Л , Г 2 Ь ; Р:0[Р/2/]

Then by IH, Гь Г2 h Ν : E and ГиГ2 l· Ν : F with Uy.C.D =3η E and
F =βη С. By the Key Lemma we find that Ε -*β Uy.C.D' with С =θη С
and £>' =a, D. So, by Corollary 4.4.31, Г Ь Г 2 h Ν : Uy.C.D'. We can
apply (conv^) to Γι, Γ2 Ь Ρ : F and F =βη С to conclude Г ь Г2 Ь Ρ : С
and hence Г Ь Г 2 l· У Р : ö'[7V/y], where D'[N/x] =0η D[N/x]. В

5.2.10. LEMMA. If a PTS^ satisfies βη-preservation of sorts, then it satisfies
strengthening, that is

Гих:А,Г2\-М:В 1
x * F V (r 2 , M , S) І ^ Г ь Г а г - M . ß .

PROOF. By the Sublemma we find a B' such that

Г Ь Г 2 Ь М : S'and Β =0ηΒ'.

By Correctness of Types there are two possibilities, Г ь і : Л , Г 2 h В : s or В =
s ζ S. In the second case we are immediately done by SR¿j, because B' -»β s. In
the first case we have

Гі, і :Л,Г 2 г-й : s

and by once again applying the Sublemma we find that

Г Ь Г 2 h В : Ε =βη s.

Now we are done by the fact that E -»^ s, SKß and one application of (conv). El

5.2.11. COROLLARY (^-preservation of sorts implies SR,,). A PTS^ that satis
fies βη-preservation of sorts, satisfies SR,,.

Sec 5 3 Discussion 123

PROOF The proof is exactly the same as for Lemma 4 4 30, so one proves simul
taneously the following

Tl· Ρ DhP —>,, Ρ' => Tl· Ρ' D,

Tl· Ρ DkT —>η Γ' => Γ' Ь Ρ Ό

The proof uses the fact that we have strengthening, which was stated in the
Lemma Η

5 2 12 REMARK In fact we can do with less then /^-preservation of sorts to
prove strengthening and hence SR,, The specific property that we need in the
proof of strengthening is the following

Γ h Л s2 ì
Г h В s'2

Α=βηΒ
(si,s2,s3) e Tl .

is'3[(sus2,s'3)çn]

(This is used in the case of the (λ) rule)
If the system satisfies /^-preservation of sorts, the above property is obviously

satisfied But there are more Pure Type Systems that satisfy the above property,
for example the semi-full ones Remember that a PTS is semi-full if

(β!, 52, лз) e П & 4 6 5 => 3a3[(ai, 4 . 'з) e Щ

It is easy to verify that the above mentioned property holds Consequently, all
semi-full PTS^,, satisfy strengthening and hence all semi-full PTS^ satisfy SR^

5 2 13 THEOREM (CON^ for normalizing functional PTS^)

Tl· M A]
Tl·M'A U M I M'

Μ =βη M' J

PROOF The Theorem follows immediately from Theorem 5 2 6 by the fact that
in any functional normalizing PTS^, the rule (streng) is satisfied, which again
follows immediately from Corollary 5 2 8 and Lemma 5 2 10 H

5.3. Discussion

We have proved CON^ for terms in a fixed context of a fixed type, but only for
functional normalizing PTS^4 This immediately implies CR/з,, on Term, because
we have SR^ and SR,, for these systems Confluence for well-typed terms of
different types doesn't hold Just consider the well-known counterexample The

124 CR for βη Ch 5

same can be said for well-typed terms in different contexts Take Α ф07) В and
Г and Г' such that

Г l· x(Xy Ay) * and Г' I- x(\y By)*

Then x(Xy A y) =0η x{\y В у), but not x{\y А у) | x(Xy В у)

We think that, using the work of [van Benthem Jutting 199+], who gives
an analysis of typing in PTSs, these results can be extended to arbitrary nor
malizing type systems The most interesting extension, however, is the one to
non-normalizing type systems like A* First because the proof given here relies
very heavily on the normalization Second, and maybe even more important,
because from C O N ^ on Тегт(Г, A) in λ* (with (conv^,)) we hope to get C O N ^
on Тегт(Г, A) for an arbitrary PTS^,,, by imitating the reduction steps in λ* in
the other PTS/э,,, using the terminally of λ* in the category PTS/j,,

Let's now prove a general statement along these lines, ι e describe a PTS^,, ζ
such that, if С f= CONg,, then C O N ^ holds for any P T S a , Note Remark 5 2 12,
saying that SR, holds for any semi-full PTS^,

5 3 1 D E F I N I T I O N The PTSÖ7, AN is the system X(S, A, 11) with

S = Ν,

A = Ν χ Ν,

7г = Ν χ Ν χ Ν

So AN is full (and hence semi-full), which implies that AN satisfies SR, (See
Remark 5 2 12) We now have the following Proposition

5 3 2 P R O P O S I T I O N If AN satisfies CONßl, then all P T S ^ satisfy CON0n

P R O O F Suppose AN satisfies CONÖJJ and let ζ be an arbitrary PTS/j,, with Γ r-ç
Μ, Ν A and Μ =βη Ν We have to show that M \ N Now let - be a

mapping from the sorts of (to N that is injective on the set of sorts of (that

occur in Γ, M or A AN is full, so the map — is a PTS-morphism, so

ThXNM,Ñ Ä

Now, M I N and due to the local injectivity of —, the reduction paths from

M, resp N can be faithfully translated back to reduction paths from M, resp
N, and s o M I У H

Because of the restriction to normalizing systems, we need to prove normal
ization of /?7?-reduction without using the Church-Rosser property This may
look problematic but in practice it isn't For example for the Calculus of Con
structions, the strong normalization proof in [Geuvers and Nederhof 1991] for the

Sec 5 3 Discussion 125

system with (conv^) can quite easily be adapted to a proof of strong normaliza
tion for the system with (conv^) We conjecture here the general theorem that,
if a PTS/j is (strongly) normalizing, then the PTS^, is

That the proof of CR^ for non-normalizing systems need not be very com
plicated is shown by the example of XU This is the system defined in Definition
4 3 12 for which normalization does not hold If we extend the system by re
placing the conversion rule with the (conv^) rule, the separation of contexts
(Proposition 4 3 14) still holds Due to this property, the proof of CR^, is easy
It works as follows

1 Note that, if Γ h A Type', then A contains no redexes

2 Hence, if Γ l· Μ, N A(Type), then the domains in M and N contain no
redexes

3 Conclude that CON^, holds for such M and N

4 Note that, if Γ H M A{ Prop), then the domains of M are terms В with
Г h В Type or Г h S Prop(Type)

5 Hence, for these domains CON^ already holds

6 Hence CON^ holds for M and N with Γ h M, JV Л(Prop)

If we look at the Church-Rosser property from a point of view as to how
to compute the common reduct, we see that the situation is really a bit more
complicated then for untyped lambda calculus In untyped lambda calculus, if
Μ -*βη Μι and Μ -*βη Μ2, a common reduct of M: and M2 can be found using
complete developments (See [Barendregt 1984]) Here one has to do something
more, namely reduce the domains Consider again M = Xx A (Xy В y)x, M\ =
Xx Α χ and Мг = Xy В у There are no residuals of the ß-теаех in M2, nor are
there any residuals of the η redex in M\, so we have a complete development of
the set of both redexes, but Μλ φ M2 (They would have been in the untyped
case) We still have to unify A and В

126 CR for 3η Ch. 5

Chapter 6

The Calculus of Constructions
and its fine structure

6.1. Introduction

In pragraph 4 3 1 we encountered the Calculus of Constructions (CC) as an ex
ample of a Pure Type System, where it was also called ХРш In this chapter
we want to study this system in more detail This will be done in various ways
First we say something about the practical meaning of the system in terms of
logic and data types If we want to see the Calculus of Constructions as a logic
we have to study the formulas as-types embedding from higher order predicate
logic into CC We have already defined this embedding in Chapter 4 1 (paragraph
4 3 1) as an embedding from the system ÀPREDu; to CC As we have already
convinced ourselves of the fact that APREDw and P R E D O J are isomorphic sys
tems via the formulas-as-types analogy we shall only be studying the embedding
from APREDu; into CC In paragraph 4 3 1 we also encountered the so called
cube of typed lambda calculi, which gives a fine structure for CC We shall also
study the other systems of this cube, especially in relation to the formulas-as-
types embedding The central question for each of these systems will be whether
the formulas as-types embedding is complete As we are mainly concerned with
the cube from a point of view of logic, it is also interesting to see to which extent
the systems of the cube are conservative over one another

Two of the more complicated issues regarding CC are not treated in this
Chapter, namely the strong normalization and the Church Rosser property for
/Jrç-reduction on terms of CC Strong normalization will be dealt with in Chap
ter 7 1 We discussed the Church-Rosser property in Chapter 5 1 From the
normalization it follows by the techniques developed in Chapter 5 1 that the
Church-Rosser property holds for ^-reduct ion in CC

127

128 The Calculus of Constructions Ch 6

6.2. The cube of typed lambda calculi and the logic cube

We recall some definitions of previous chapters First remember that the Baren-
dregt's cube of typed lambda calculi (Definition 4 3 1) consists of eight PTS^s
Each of them has

The rules for each system arc

λ -
λ2
λΡ
\ω

λω
λΡ2
λΡω
\Ρω

S

Λ

as gì

,,
!)
!)
* 1 *)

* 1 *)

!)
* > • *)

!)

= {*,°},
= {* °)

ven in the following table

(π,*,

(*.°)

(°.*)
(D,*) (*,D)

(*.a)
(D,*) (*,D)

(π,ο)
(°.D)

(°,°)
(°.°)

The system APw is the Calculus of Constructions, sometimes called the Pure
Calculus of Constructions to distinguish it from its variants and extensions We
shall refer to it as CC The systems of the cube are usually presented as follows

ΧΡω (= CC)

λΡω

where an arrow denotes inclusion of one system in another
Remember that we also defined the logic cube (Definition 4 3 5), following

[Berardi 1990] as follows It consists of eight PTS^s, each of them having

S = Prop, Set, Type'', Type',

Λ = Prop TypepSet Type'

Sec. 6.2 The cube of typed lambda, calculi and the logic cube 129

and the rules of each of the systems as given by the following table

ÀPROP

APROP2

APROPu;

APROPw

(Prop, Prop

(Prop, Prop

(Prop, Prop

(Prop, Prop

APRED (Set, Set)
(Prop, Prop

APRED2 (Set, Set)
(Prop, Prop

APREDÜ; (Set, Set)

(Prop, Prop

APREDo; (Set, Set)
(Prop, Prop

(Type", Prop)

(Type7, Prop)

(Type", Type"),

(Type", Type*)

(Set, Type11)
(Set, Prop)

(Set, Type")
(Set, Prop) (Type*, Prop)

(Set, Type") (Type", Set) (Type?, Type")
(Set, Prop)

(Set, Type") (Type', Set) (Type", Type*)
(Set, Prop) (Type', Prop)

The systems are presented in a picture as follows.

APROPw APREDu;

APROP2 APRED2

APROPw • APREDü)

APRED APROP
where an arrow denotes inclusion of one system in another.

130 The Calculus of Constructions Ch 6

Because we have convinced ourselves of the fact that the formulas-as-types
embedding of a logic into the corresponding system of the logic cube is in fact an
isomorphism, we can restrict our study of the formulas as types embedding into
the systems of the Barendregt's cube to the study of the collapsing mapping H
Remember that H is defined as the family of PTS-morphisms from logic cube to
Barendregt's cube given by

tf(Prop) = *,

Я (Set) = *,

Я(Турер) = D,

tf(Types) = D

6.3. Some more meta-theory for CC

Before going into studying the systems, we want to make some further definitions
This will also be necessary for the proof of strong normalization that will be
given in a later chapter In the rest of this chapter we always assume that we
are working in a system with sorted variables, so e g for the cube we have two
sets of variables VarD and Var* See Definition 4 2 9 for details about the sorted
variables

6 3 1 D E F I N I T I O N For ζ a system of the cube we define the sets of kinds, types,

constructors and objects as follows

Kmd(C) = O-Term,

Type(Ç) = *-Term,

Constr(C) = a-Elt,

Obj(C) = *-Elt

Usually ζ will be clear from the context, in which case we omit it Note that

Type(C) С Constr(C)

Now we can apply Lemma 4 4 37 to conclude that

Kind Π Type = 0,

Constr Π Obj = 0

This will be very useful when defining mappings on terms of a system of the

cube A related property that is useful for defining mappings is given by Lemma

4 4 39, which allows to distinguish cases according to the 'heart' of a term (See

Definition 4 4 38) In the cube, the heart of a term A, h(A), is a variable, * or

• From Lemma 4 4 39 we derive the following

Sec 6 3 Some more meta-theory for CC 131

6 3 2 LEMMA For A α well-typed term of the cube we have

A e Kind о h(A) = *,

A 6 Type =» h(A)eVarQ,

A 6 Constr о h(A) e Varn,

л e Obj о п(Д) e Var*

In [Barendregt 1992], mappings on (subsets of the) well-typed terms of the
cube are often defined on a specific subset of the pseudoterms T, and the case
distinction in the definition is then made according to the level of terms This
notion of 'level' is very close to our notion of 'heart', and in fact all the mappings
in [Barendregt 1992] can be defined similarly by using case distinctions according
to the heart of subterms We try to refrain from defining mappings on the
pseudoterms, and instead define mappings only on the well-typed terms as much
as possible, because we feel that this is more intuitive For completeness we define
the notion of level though, and give the main property that one would want for
it

6 3 3 DEFINITION For M a pseudoterm of the cube, the level of M, j(M), is
the natural number defined as follows

h(M) = χ € Var* => І(М) = 0,

h(M) = χ € VarD => B(M) = 1,

h(M) = * =» |t(M) = 2,
h(M) = О =• it(M) = 3

The notion of level is closely related to the Automath notion of 'degree'
(In Automath the numbering is reversed) The main property for levels is the
following

6 3 4 LEMMA In a system of the cube,

Г\-М A =• i(M) + 1 = І(А)

PROOF Immediate consequence of Lemma 6 3 2 H

One important mapping from the well typed terms to the untyped lambda
terms we have already encountered The map |-| that erases all domains (ι e
types in a λ-abstraction) This is a very syntactical mapping, which leaves in
a lot of type information that is of no importance for the underlying algorithm
that the λ-term represents We therefore define a mapping |-|' that erases all
type information

132 The Calculus of Constructions Ch 6

63 5 DEFIMTION The mapping |-|' from the objects of a system of the cube to
the untyped lambda calculus is defined as follows

|x| = x,

\\x A M\ = Xx \M\, if Л is a type,

\XaAM\ = |M|, if A is a kind,

\MN\ = \M\\N\, if N is an object,

\MN\ = \M\, if N is a constructor

6 3 6 DEFINITION The λ-abstractions in a well-typed term of CC (but the defi
nition immediately extends to pseudoterms of CC) are split into four classes, the
0-, 2-, P- and ω-abstractions, as follows

1 λ ι A M is a Q-abstraction if M is an object, A a type,

2 Xa A M is a 2-abstraction if M is an object, A a kind,

3 λχ A M is a Ρ abstraction if M is a constructor, A a type,

4 λα A M is a ω abstraction if M is a constructor, A a kind

We can decorate the Xs correspondingly, so we can speak of the λ0β λ„ of a term
etc We now also define the notions of /3(r/)°-reduction, /?(r;)2-reduction, β(η)ρ-
reduction and /3(7y)"-reduction by just restricting reduction to the redexes with
the appropriate subscript attached to the λ We use an arrow with a superscript
above it to denote these restricted reductions, so —"#,, etcetera

We want to state two of the most important properties of CC

63 7 THEOREM CC IS strongly normalizing (All β reduction sequences starting
from an M e Term (CC) are finite)

PROOF A detailed proof is given in Chapter 7 1 H

A first proof of normalization can be found in [Coquand 1985], but the proof
contained a bug as was remarked by Jutting Coquand repaired his own proof
in [Coquand 1986] and together with Gallier he gave a (different) proof of strong
normalization in [Coquand and Gallier 1990] There are various other versions of
(strong) normalization proofs for CC in the literature All of them use a higher
order variant of the 'candidat de réducibilité' method as developped by Girard for
proving strong normalisation for his system F and Fw (See [Girard et al 1989]
for the proof for system F) The idea is to define a kind of reahsabihty model
in which propositions are interpreted as sets of lambda terms (the reahsers) A
detailed explanation of the method can be found in [Gallier 1990] The proof of
strong normalization in Chapter 7 1 is given by defining a reduction preserving

Sec. 6.3 Some more meta-theory for CC 133

mapping from CC to ¥ω. Then SN for CC follows from SN for Fix). This makes
things slightly easier because we don't have to bother about type dependency.
(Fa; is easier to handle than CC.) A complicating matter of Chapter 7.1 is that
the proof is given for CC with a (conv^,,) rule. (That is, the P T S ^ CC.) The
Strong Normalization of this system was an open problem up to now.

Intuituively it is clear that the hard part (proof-theoretically speaking) of a
proof of SN for CC should be the normalization of λ0 redexes. For one thing,
it can be observed that this is the case for Fa;. In the proof of Chapter 7.1 this
becomes also clear- The whole problem of SN for CC is reduced to the problem
of SN for erased terms in Fa; (in which case we have only the 0-redexes left.) In
[Coquand and Huet 1988], a version of CC is discussed in which the conversion
rule is restricted to performing ßp- and ^-reductions. There it is called the
restricted Calculus of Constructions.

6.3.8. DEFINITION. The restricted Calculus of Constructions is the system CC
with the (conv) rule restricted to /3pw-equality.

Let us show that for that restricted case, SN is relatively easy (like in the
simply typed lambda calculus.)

Recall the definitions of /^-redex and /3p-redex of Definition 6.3.6: A /3-redex
is a /J^-redex if it is of the form (\a:A.B)P with A a kind and В a constructor.
A /9-redex is a /?p-redex if it is of the form (\x:A.B)t with A a type and В a
constructor. We write — ^ and —*ß for the corresponding reductions. In the
following we show that /3Pw-reduction is normalizing.

6.3.9 P R O P O S I T I O N . The combination of β-reduction of Ρ -redexes andoj-redexes,

βΡω -reduction, is normalizing in CC.

P R O O F . The proof is in flavour and complexity quite close to the normalization
proof for A—•. We assign to every term M of CC a pair (d,n), where d is the
maximum of the depths of all /3PlJ-redexes in M and η is the number of βΡω-
redexes of maximal depth Then we proceed by contracting an innermost redex
of maximal depth. That this procedure yields the /3Pl"-normal form is then shown
by induction on the lexicographical ordering on the pairs (d, n). Before giving
the definition of depth, let us remind us of the fact that there are the following
three ways in which new /9-redexes can be created by a /^-reduction.

{\x:A x)(\y:B M)Q ^ g (\y:B.M)Q, (1)

(Xx-A.C[xQ]){\y:B.M) —»0 C[{\y:B.M)Q], (2)
{\x:A\y:B.M)PQ — ^ (Xy:B[P/x}.M[P/x})Q, (3)

where the last possibility can at the same time be an example of the second.
Further there is one way in which existing redexes can be duplicated by a β-

reduction:

{\x:A.M)C[{\y:B.P)Q] —>p M[C[{\y:B.P)Q}/x],

134 The Calculus of Constructions Ch 6

with χ having more then one free occurrence in M Now we define the depth of
a ßp- or /^-redex by

depth((Au A M)Q) = rank(type of \u A M),

where the rank of a kind (the type of \Px A M от \ша A M is always a kind) is
defined by

rank(*) = 1,

rank(IT:r AB) = 1 + rank(B), if Л is a type,

гапк(Па A B) = rank(A) + rank(B), if A is a kind

All this is well-defined by the Uniqueness of Types property for CC (Lemma
4 4 29) and the fact that if two kinds are β equal, their ranks are the same
The normalization procedure is now by contracting each time an innermost ßPw-
redex of maximal depth If we define for any term M its complexity c(M) as
the pair (d, n) with d the maximal depth of all /^-redexes and η the number
of βΡω redexes of depth d in Μ, the normalization procedure as given above
reduces the complexity of terms (in the lexicographical ordering) We show this
by distinguishing the three different possibilities for creating new redexes that
are mentioned above (The duplication of redexes can only happen with redexes
of rank smaller then r, so duplication is no problem)

• Note that, in the first case the contracted redex can not be a /?p-redex
Further, if in the second case the contracted redex is a /?p-redex, the created
redex is not a ßp"-redex

• If, m the first two cases, the contracted redex is a /3w-redex of depth d (with
as type of the λ-part Πα А В so d = гапк(Па A B)), the depth of the new
redex is rank(>4), so the number of redexes of depth d is reduced by one

• If, in the third case, the contracted redex is of depth d (with as type of
the λ-part Пи А В so d = гапк(Па A B)), the depth of the new redex is
rank(S), so the number of redexes of depth d is reduced by one (This uses
the fact that the rank of a kind is stable under substitution) S

The restricted Calculus of Constructions is of limited interest, because it is
not possible to first ßPw normalize and then perform only β02 steps to obtain the
/3-normal form This is because e g a β2 reduction can create a /5p-redex (and a
Дэ-reduction can again create β2 redexes) An example is

(λ2<2 α-> * Qy){\px a r) — % (XPx a r)y

The importance of the (strong) normalisation property lies in the fact that it
gives a handle on the number of proofs of a proposition (One can for example

Sec. 6.4 Intuitions behind the Calculus of Constructions 135

show that every closed term of type Nat is /3-equal to a numeral (i.e. a term
of the form S(... S(Z)...).) Further, by using normalization one can prove the
decidability of typing.

6.3.10 THEOREM. In CC, given α context Г and a pseudoterm M, it is decidable
whether there exists a term A with Г h M : A. If such a term A exists, it can be
computed effectively.

The proof is prooftheoretically hard beacuse it depends on normalization.
Note therefore that type checking in the restricted calculus is much easier, due
to the 'easy' normalization proof.

Some hints towards a proof can be found in [Coquand and Huet 1988] and
more details in [Coquand 1985] and especially in [Martin-Löf 1971]. See also
[Harper and Pollack 1991] for an exposition on the decidability of typing for an
extended version of CC, which also describes an algorithm for computing a type.

6.4. Intuitions behind the Calculus of Constructions

Let's first make some remarks about the impredicative coding of data types in
(higher order) polymorphic lambda calculus. We feel this is necessary for a
good understanding of CC. For this purpose it doesn't matter if we consider
the versions that we called F and Fa; or the PTS/3-versions that we called Λ2 and
Χω. Details of the encoding can be found in [Böhm and Berarducci 1985] and
[Girard et al. 1989]. We just treat three examples

6.4.1. EXAMPLES. 1. The natural numbers in À2 and λα; are defined by the
type

Nat := Πα : Prop.α—>(α—>α)—>α

and we find zero and succesor by taking Ζ •= Ла:Ргор.Ах:а.А/:а—>α χ
and S := An:Nat.Aa-Prop.Ax:a.A/:a—>a.f(naxf). Now it is easy to define
functions by iteration on Nat, by taking for c:a, g:a—>σ, Itc<?:Nat—>σ as
Itcp := \x:N3,t.xacg. It is also possible to define functions by primitive
recursion, but this is a bit more involved and also inefficient.

2. For σ a type, the type of list over σ is defined by the type

List(tf) := Па:Ргор.а—>(σ—·α->α)—>α)

and we find the constructors Nil := Ла:Ргор.Ат:а.А/:σ—>α—»α.ι and Cons :=
\t:al:\Àst(a).\aProp.\x:a.\f :σ—»α—>a.ft(laxf). Again function (like 'head'
and 'tail') can be defined by iteration and primitive recursion over lists.

136 The Calculus of Constructions Ch 6

3 Also coinductive dat types can be defined in Λ2 and λω, which can be
understood as greatest fixed points in a domain (the inductive data types
correspond to smallest fixed points) As an example we treat the type of
streams (infinite lists) of natural numbers

Str(Nat) = За (a-»Nat)&(a-»a)&a

For convenience we write

(f>9<x) (a~»Nat)&(a—>a)&¿a

if ƒ a—>Nat, g a—*a and χ a, with projections πι, жі and π 3 Then we have
destructors
Head Str(Nat)-»Nat and Tail Str(Nat)-»Str(Nat) defined by

Head = \s Str(Nat) sNat(Aaz (ж ̂ ζ) (π 3 z),

Tail = As Str(Nat) sStr(Nat)(Aaz \0k ka(niz)(Kiz){n2z(v3z))

It is possible to define function to Str(Nat) by coiteration and corecursion

The impredicative data types of A2 and λω have a lot of structure already
(Girard has shown that in λω one can define on the type Nat all recursive func
tions that are provably total in higher order arithmetic) It seems a good idea to
use them for the domains of the logic So now we view λω not as higher order
proposition logic, but as a term calculus in which one can construct functions (as
λ terms) Then, because we want to do predicate logic, we have to add to λα;
the possibility of defining predicates on these new domains by adding the rule
(*, D) to 7Z The kind A—•* then represents the type of predicates on A and
we can declare variables of type A—** in the context This is the Calculus of
Constructions, CC, the Pure Type System with

S = * , α ,

A = * D,

П = (*,*),(*,D),(G,D),(D,*)

Using our understanding of higher order predicate logic, the sort * is the
universe of both propositions and domains in which a whole range of (closed)
data types is present There is however another way to see things This is to
understand * just as the universe of propositions (refraining from understanding
the propositions as domains), in which case a type like φ—>* (φ *) can be
understood as the type of predicates on proofs of φ For practical purposes
this latter approach doesn't seem to be so fruitful For example one can not
distinguish between proofs that are cut-free and proofs that are not This is
because lambda terms that are /3-equal (proofs that are equal via cut-elimination)

Sec 6 4 Intuitions behind the Calculus of Constructions 137

are identified If Pt is provable and t =p t', then also Pt' is provable If one is
looking for these kind of applications, it is much more promising to use the
'coding' of a logic in a relatively weak framework like Automath or LF There is
however also the possibility to restrict the conversion rule of CC, such that only
some convertible propositions are identified (A system like this is described in
[Coquand and Huet 1988])

It should be clear that in any of the two approaches the distinction between
domains, objects and proofs is blurred propositions may contain proofs and
there is no a prion distinction between domains and propositions On the other
hand it does take the formulas-as-types approach very seriously in the sense that
formulas are not only treated m the same way as the types (domains) but just as
if they were types, putting them in the same universe Because of this mixing of
formulas and domains, the Curry-Howard embedding from higher order predicate
logic into CC is not complete The embedding from higher order propositional
logic into CC (ι e if one refrains from understanding the propositions as domains)
is complete

We want to treat some examples to get the flavour of the system In these
examples, the impredicative coding of data types will be used as described in
6 4 1 First we want to discuss induction over the terms of type Nat and see to
which extent Nat represents the free algebra of natural numbers Then we treat
two formulas that represent specifications of programs This touches upon one of
the most interesting aspects of CC To use it as a higher order constructive logic
in which one can represent specifications as formulas (about data types) From a
proof of the formula the constructive content can then be extracted as a program
(more precisely a lambda term typable in Χω) A lot of work on this subject has
been done in [Paulin 1989], we shall say a little bit more about this in paragraph
67

6 4 2 EXAMPLE We know from the normalization property that m CC each
closed term of type Nat is /?-equal to a term of the form

Xa * Xx a Xf a—»a ƒ((fx))

That is, modulo 0 equality the closed terms of type Nat are precisely the ones
formed by S out of Ζ This induction property can be expressed in CC, but is
not provable inside it To be precise, if we define

I n d N a t = VP Nat-» * PZ—(Vi Nat P i — P (S i) H (V i Nat P i) ,

then IndNat l s n°t provable If we assume Indj^j., we still can't prove that the
type Nat is the free structure generated by Ζ and S To establish this we have to
add the premises Ζ T^jd $Z and Vi, y Nat (Si = Sy)—*{x = y) None of these
two propositions is provable in CC In higher order predicate logic (working in the
natural numbers-signature (N,Z,S)) these three assumptions are independent,

138 The Calculus of Constructions Ch 6

so we would have to add all three of them to obtain the free algebra of natural
numbers In CC this is not so Due to the specific structure of the type Nat, the
assumptions Ind¡\ia^ and Ζ ^^faj SZ suffice to prove the freeness of Nat (This
is so because one can define Ρ Nat—»Nat with Indj\jat h Vx Nat P(Sx) =jy[at x

in CC)

6 4 3 E X A M P L E S 1 Abbreviate List(Nat) to List The proposition stating
that for every finite list of numbers there is a number that majorizes all its
elements can be expressed by

V/ List 3n Nat Vm Nat m € I —> m < n,

where m € I stands for

VP List-»* (Vfc List P(Consmfc)) — Vfc ListVr Nat (Pk^P{Consrk)) -» PI

and m < η stands for

Д Nat-»Nat-» * (Vi Nat Л І І) - » (І , y Nat Rxy->Rx(Sy))->Rmn

A proof of this proposition constructs for every list I a number η and a
proof of the fact that η majorizes I From it one can extract a program of
type List—»Nat that satisfies this specification

2 Abbreviate Str(Nat) to Str The proposition that every (infinite) stream
that is majonzable has a maximal element can be expressed by

Vs Str (3n Nat Vm Nat m £ s —» m < η)—»(3η Nat 'η is maximum of s'),

where m S s now stands for

3p Nat Head(pStrTails) = m,

and 'n is maximum of s' stands for

(n e s)&c(Vm Nat m € s —» m < n)

From a proof of this formula one would like to be able to extract a term
of type Str—»Nat that computes the maximum of a stream, if it exists
This means that we want to extract a partial function (the maximum may
not exist), which is not possible, because in CC all functions are total
(Due to the normalization) In practice this is no problem, because the
extracted function will produce an 'arbitrary' number in case there is no
maximum This corresponds to the fact that in the proof of the formula, if
s has no maximum we can take any number η to satisfy the conclusion 'n
is maximum of s' It will be clear that the construction in the proof (and
hence the algorithm) depends heavily on the proof of the premise that s is
majonzable

Sec 6 5 Formulas-as-types of logics into the cube 139

6.5. Formulas-as-types of logics into the cube

The Curry-Howard embedding from logics into the typed lambd calculi of the
cube makes an essential distinction between on the one hand basic and functional
domains (including the definable data types) and on the other hand predicate
domains like A—»Prop The basic domains are interpreted as variables of type •,
the functional domains as implicational formulas and the definable data types via
the embedding of data types in system F The predicate domains are interpreted
as kinds, e g A—>* D Using the logic cube we have described the formulas-as-
types embedding as a PTS-morphism In fact this was the reason for introducing
the logic cube in the first place In this section we study the completeness of the
formulas-as-types embedding into the different systems of the cube by studying
the PTS-morphism Я from the logic cube into the cube Although the main
concern of this Chapter is the Calculus of Constructions, we also look at the
embedding into the other systems

In fact there are other ways of interpreting PREDCJ in CC, but the one we
describe here is what the înventor(s) of CC aim at (see [Coquand 1985] and
[Coquand and Huet 1988]), and which is sometimes called the 'canonical embed
ding' of higher order predicate logic into CC The same holds for the system AP2
From [Longo and Moggi 1988] it becomes clear that the intention of the system is
the formulas-as-types embedding of PRED2 into it in the way we have described
it by the mapping Я In our setting the canonicity is partly forced upon by the
syntax and therefore it is worthwile to also understand the embedding from a
more semantical point of view

It is well-known by now that the embedding into CC is not complete, ι e
there are sentences that are not provable in PREDo; that become provable when
mapped into CC We shall treat some examples of those sentences This incom
pleteness result is sometimes referred to as the 'non-conservativity of CC over
higher order predicate logic', but this terminology is a bit ambiguous because
(non)conservativity actually only applies if a system is a subsystem of the other
Therefore we shall use the more correct terminology of '(m)completeness of the
embedding' here For the embedding into ЛР2 the question is still open, although
there are reasons to believe that the embedding is not complete This was ex
plained to us by [Berardi 1990a] and we shall discuss these reasons briefly later
The embedding of PRED into AP is complete, as was shown independently by
[Berardi 1988] and [Barendsen and Geuvers 1989] We shall give the proof of the
latter, which uses a method developped by [Swaen 1989] to show completeness
of the formulas-as-types embedding of full first order pedicate logic into Martin-
Lof's intuitionistic theory of types Although the completeness of the embedding
into ΛΡ is quite non-trivial, the result is not very interesting from a practical
point of view The logic PRED is too minimal to be of practical mathematical
interest There is no notion of negation in it

140 The Calculus of Constructions Ch 6

6.5.1. The formulas-as-types embedding into C C

Let's first remark that there are terms of type •, typable in CC in a context
that comes from A P R E D U J , that do not have an intuitive meaning in higher order
predicate logic, like α Prop, Ρ α—»Prop, t o r Px—»a Prop (Is Px—>a a domain
or a proposition in APREDo>?)

As has been pointed out already.one can refrain from predicate logic and
view CC as a higher order propositional logic with propositions about (proofs of)
propositions The typed lambda calculus corresponding to higher order proposi
tional logic is APROPoi, which is exactly the same systems as λω So to under
stand the embedding from P R O P O J into CC we just have to look at the inclusion
of λω in CC Then all kind of rather exotic types can be understood as meta
propositions about higher order propositional logic For example

a * , P a - + * , i a l - P i - t Q *

states that for α a proposition and χ a proof of a, if Ρ holds for x, then a holds

We can go to arbitrary high levels of meta-reasoning, for example

a *, Ρ α—•+, χ a,Q Pi—»*, у Px\- Px-^Qy *

but also
Ρ Πα • α—**, φ *, χ φ, у Ρψχ h P(Pipx)y *

It is well-known that the inclusion of λω into CC is complete, ι e CC is conserva
tive over λω This was proved independently by [Paulin 1989] and [Berardi 1989],
we give the proof in paragraph 6 5 3 It is quite similar to the proof of conserva
tivity of PREDn over PROPn that we gave in Chapter 2 1

As already pointed out, the formulas-as-types embedding from higher order
predicate logic in CC is not complete We now want to discuss some examples of
sentences that are not provable in the logic but become inhabited when mapped
into CC At the same time one obtains a better understanding of the logical
merits of CC First we show that if one allows empty domains in the logic, the
incompleteness is quite easy

6 5 1 R E M A R K In CC, the existential quantifier has a first projection, similar

to Martin-Lof's understanding of the existential quantifier as a strong Σ-type

(See e g [Martin-Lof 1984]) Remember that

Эх Α φ = Πα • (Πι Α φ—>α)—>α

in ÀPREDu; Now, in CC there is a projection function

ρ (Эх Α φ)-*Α

for Α,φ* Take

ρ = \z (Эх Α ψ) zA{\x A\y φ x)

Sec 6 5 FormuJas-as-types of logics into the cube 141

So, if 3x Α φ is provable one immediately obtains a closed term of type A by

applying ρ In general there is no second projection, so the 3 is not a strong Σ

(If, for example, Эх Α φ is assumed in the context, say by ζ Эх Α ψ, then ψ\ρζ/χ]

is not provable) Obviously, in APREDo» the existential quantifier has no first

projection The expression (Эх Α φ)—*A can not even be formed if A Set, φ Prop

6 5 2 LEMMA In APREDw, for χ i FV(tp),

A Set, Ρ A—Prop, φ Prop \f (Эх A Px) D (Vx Α φ) D φ,

but m CC there is a term M with

Λ *, Ρ A—*, (¿> * h M (Эх A Px)—(Α—φ)-+φ

PROOF Because the APREDu-context doesn't contain a declaration of a variable

to A, we can't construct a term of type A, so we have no proof In CC, take

M = Xz (Эх A Px) Xy (Α—*φ) y(px), with ρ as m Remark 6 5 1 H

Even without using empty domains the embedding is not complete, as was
first independently shown by [Berardi 1989] and [Geuvers 1989] We treat both
counterexamples, starting with the latter as it is very short (but syntactic) Both
proofs give a counterexample already for the completeness of the embedding of
third order predicate logic in so called third order dependent typed lambda cal
culus (In this terminology, CC is higher order dependent typed lambda calculus
and the system ΛΡ2 is second order dependent typed lambda calculus) The coun
terexample with empty domains above already works for second order dependent
typed lambda calculus, it is not known whether one can find a counterexample
without allowing empty domains

6 5 3 P R O P O S I T I O N The formulas-as-types embedding of higher order predicate

logic into CC is not complete

P R O O F ([Geuvers 1989]) We use the fact that if χ g FV(<¿>), then Vx Α φ and

A D φ can not be distinguished in CC (In APREDu they are distinguished by

A Set or A Prop) Take

Γ = A Set, αΑ,φ Prop, Ρ Prop—Prop, ζ Р(Пх Α φ),

and we try to find a proof t of 3β Prop Ρ(β—*φ) As no extensionahty has been
assumed in the context, such t can't be found (Supposing there is such t, one
easily shows that it can't be in normal form) However, in CC one can take the
type A for β because sets and propositions are not distinguished More precisely,
in Γ' = A *, α Α, φ *, Ρ -к -ν*, ζ P(Ux Α φ),

Γ' h λ 7 * Xh (Uß * Ρ{η-+φ)-+β) hAz 3β * Ρ{β-+φ) И

142 The Calculus of Constructions Ch 6

P R O O F ([Berardi 1989]) Define

EXT = Πα, β Prop [α~β) - (α = β),

where α«-»/? denotes (α—»/?)&(/?—»α) and = denotes the Leibniz equality on Prop,
α =Prop Ρ = VP Prop—>Prop Ρα—*Ρβ This Έ Χ Τ ' is the extensionahty axiom

for propositions Let's denote the CC-version of EXT by EXT', so

EXT' = Πα,/? * (α->β) -> (α = /?)

In CC this axiom has some unexpected consequences If we take A Set nonempty,

then in CC

aA\-M A^(A^A)

for some M so from EXT' it follows that all generic properties that hold for A,

hold for A—*A and vice versa This can be used to construct in CC a proof ρ

with

A *, α Α, ζ EXT' h ρ Л is a λ-model,

where

A is a λ-model = ЗА (A->A)-*A ЗАрр A-^A-^A

App ο Λ = Ид—д&

Λ о App = Ид

This implies (among other things) that every term of type A-*A has a fixed
point Of course, in higher order predicate logic, from EXT it doesn't follow that
every function on a non-empty domain has a fixed point

If we look for example at a context for Heyting arithmetic,

Гяд = N*,QN,SN->N,

z\ Vtx N (Sx =N Sy)^(x =N y),

zi SO φΝ 0,

z3 ПР N^ * Р0^{Пу N Py^P{Sy))^(Uy N Py),

then there is a term t in CC with

Гяд, 2 E X T ' h i 1 Η

6.5.2. The formulas-as-types embedding into subsystems of CC

The formulas-as-types embedding into the systems in the left plane of the cube is

certainly complete We have shown in chapter 3 1 that the embedding is even an

isomorphism This leaves us with the other three systems of the right plane We

do not treat the case of the embedding of APREDö; into λΡω, because we believe

Sec. 6.5 Formulas-as-types of logies into the cube 143

that a conservativity proof can be given by simply adapting the proof for APRED
and AP. More importantly this case is not of real interest, because the systems
themselves are not of practical interest: They have just come up as a derivative
of the definition of the cube as a fine structure for CC. (APREDuJ corresponds
to PRED T , as it was defined in Definition 2.2.11. The systems PREDn T were
introduced there for reasons of the semantics that we wanted to treat.)

This leaves us with two cases, AP2 and AP. The first case is open and for
the second case the formulas-as-types embedding is complete. Let us first say
something about the embedding of second order predicate logic into AP2.

First remark that the proofs of incompleteness of the embedding for CC
(Proposition 6.5.3) also work for APn for any η > 2. So the formulas-as-types
embedding from nth order predicate logic into nth order dependent typed lambda
calculus is incomplete for η > 2. Further, if we allow empty domains in the logic,
the incompleteness is easily shown: Lemma 6.5.2 also holds for APRED2 and AP2.
Although we have no proof, there are reasons to believe that the embedding Η

from APRED2 into AP2 is also incomplete if we do not allow empty domains in
the logic. These reasons were provided by [Berardi 1990a] who suggests a proof
of incompleteness. To understand the idea, we think it is best to look at an
extension of APRED2 with polymorphic sets.

6.5.4. D E F I N I T I O N . The system of second order predicate logic on polymorphic
domains, APRED2P is defined by extending the system APRED2 with the rule
(Types,Set) (i.e. extending APRED2 with polymorphic domains.) So APRED2P

is the following PTS^.

<S = Prop, Set, Typep,Types,

A = Prop : Typep, Set : Type',

Tl = (Set, Set), (Types, Set), (Set, Type"),

= (Prop, Prop), (Set, Prop), (Type", Prop).

So now for example

Nat ·= ÜQ:Set a—*(a—>a)—>a

is a basic domain. Similarly all the definable data types of the polymorphic
lambda calculus are definable as sets in the system APRED2P.

The system APRED2P is still a logic in the sense that there is a separation
between domains, terms (among which are the propositions) and proofs. We can
prove a proposition similar to Proposition 4.3.6 for APRED2P, which states this
fact that the system is built up in stages.

6.5.5. PROPOSITION, in APRED2P we have the following. If Г h M : A then
Го, Г г , Г Р h M . A with

144 The Calculus of Constructions Ch. 6

• Γβ,Γτ-,Γρ is α permutation ofГ',

• rD only contains declarations of the form χ : Set,

• Γ7- only contains declarations of the form χ : A with Гд l· A : Set/Typep,

• Гр only contains declarations of the form χ φ with Гд, Y-pl· ψ : Prop,

• if A = Set/Type* , then TDl· M : A,

• if Tl· A: Set/Type?, then TD,rTl· M :A

The system APRED2 is a subsystem of APRED2P and the PTS-morphism H
is still an embedding from APRED2P into ΛΡ2. (Hence APRED2P is consistent
due to the consistency of AP2.) We have introduced APRED2P as a system in
between APRED2 and ΛΡ2, because our argument already holds for APRED2P ,
which is more readily understood as AP2.

A straightforward semantics for APRED2P is given by an arbitrary model for
the polymorphic lambda calculus (to interpret the Set-part) with a second order
predicate logic on top of it (giving the Prop-part for example the Tarskian se
mantics). An arbitrary model for the polymorphic lambda calculus has a lot of
specific structure and this may raise the question whether APRED2P is conser
vative over APRED2. We don't have a definite answer to this, but we do have
reasons to believe that the extension is not conservative. The idea comes from
[Berardi 1990a].

Look at the context

Γ := ASet, a, a'.A, z.a ФА a',

which describes a similarity type in the logic. In APRED2 this similarity type
has a finite model (without going into details about models, it will be clear that
if we take for A the two element set, for A—*A the set-theoretic function space,
for A—»Prop the set of subsets of A and so forth, this yields a model.) If we now
look at a model for the similarity type Γ in APRED2P, we see that there are a
lot of new domains (types of type Set) which will have an interpretation in the
model as well. For example the domain Nat := IIa:Set.a—»(a—»a)—»a. In case of
an empty similarity type, Nat could consistently be interpreted by a one element
set (because Ζ Φ SZ is not provable in APRED2P in the empty context). In
the similarity type Γ however, the interpretation of Nat has to be an infinite set,
which makes it impossible for Γ to have a finite model in APRED2P. The point is
that from а фа' one can prove Ζ Φ SZ and hence Sn{Z) ф Sn+l(Z) (for all n),
viz. Suppose Ζ = SZ, then ΖΑα(λχ-.Α.α') =A SZAa(Xx:A.a') so α =¿ α', quod
non.

Sec 6 5 Formulas-as-types of logics into the cube 145

6 5 6 FACT (Berardi) The similarity type (context)

Γ = A Set, α, a' A, ζ а фА a'

has a finite model in APRED2 but no finite model in APRED2P

We want to stress here that we don't know how to use this fact (syntactically
or semantically) to show the non conservativity, it may still be possible that,
although Γ has essentially only infinite models in APRED2P, it still doesn't prove
more APRED2-propositions then those alraedy provable in APRED2 from Γ It
is easily seen though, that if APRED2P is not conservative over APRED2, then
also the formulas-as-types embedding from second order predicate logic into AP2
is incomplete

Now we want to show the completeness of the formulas-as-types embedding
from first order predicte logic (PRED) into AP We do this by showing complete
ness of the PTS-morphism Η from APRED to AP As remarked in Chapter 2 1,
the system PRED is on the one hand minimal (we only have Э and V), but on the
other hand it has some extra features like higher order functions and λ-definable
predicates that do not belong to the realm of 'standard' first order predicate logic
that we have called PRED~' r in Definition 2 3 9 We are actually interested in
the completeness of the embedding of P R E D " ^ into ΛΡ That it is sufficient to
study the mapping Η is shown by Proposition 2 3 8 and Corollary 2 3 11 that
establish the conservativity of PRED over P R E D - ^

As has been pointed out already, the system PRED is too minimal to be of
real interest for practical mathematics, also because a system like AP is usually
seen as a logical framework (like LF or AUT 68 that we discussed in Chapter 3 1)
However, the completeness result can be extended a little bit to systems with a
bottom type We are then considering the formulas-as-types embedding from
PRED 1 to AP1, where PRED1 is the system defined in 2 2 14 and AP1 is AP
extended with a constant type J_ * and a constant term £i with an extra rule

Г Ь M i r h A *

T\-ELMA A

The system PRED 1 is more interesting because the full classical first order pred
icate logic is a subsystem of it More precisely, there is a faithful embedding of
classical first order predicate logic into PRED 1 by a double negation translation
The embedding of classical first order predicate logic in to AP1 via the system
PRED 1 is now complete, due to the completeness of the embedding of PREDX

into AP1

We now give the technical details of the proof of completeness of H APRED —>
AP In [Barendsen and Geuvers 1989] this proof appears in a slightly different
form The proof uses techniques developped in [Swaen 1989] to show complete
ness of the formulas-as-types embedding from first order predicate logic into

146 The Calculus of Constructions Ch 6

Martin-Lof's mtuitiomstic theory of types A different proof of the same result

can be found in [Berardi 1990]

Following Proposition 6 5 5 (which also holds for APRED), we can write any

context Γ of APRED in the format

Г о , Г т , Г р І - М A

where

• Го, Γτ, Гр is a permutation of Г,

• Го only contains declarations of the form χ Set,

• Γτ only contains declarations of the form χ A with Γ β l· A Set/Typep,

• Гр only contains declarations of the form χ φ with Гд, Γ τ h φ Prop

Then, if Γ h M A, we have

• if A = Set/Type' , then TDl· M A,

• if Γ h Л Set/Type?, then YD, Г т h M A

We shall refer to Гд a set-context, to Г г as an object-context, to Γ ρ as a proof-

context and to the concatenation TDST as a language context

The question of completeness is whether for any APRED-context Γ β , Γ τ , Γ ρ

and proposition φ with Γχ>, Γτ Ι- φ Prop, if

H{TD, TT, Tp) h Μ Η{ψ) in АР,

then there exists a term N with

TD,TT,Yp\-N ψ in APRED

In the following we assume for any APRED context Γ that

1 Г = Г д , Г т , Г р

2 Го is not empty,

3 all declared sets in Гд are nonempty

4 Tj- begins with a declaration β Prop and Γρ begins with ζ β

The third and fourth clause are added for convenience, we shall refer to the/? Prop

with ζ β as True In case there are empty domains in the logic, the completeness

result would still hold with a slightly adapted argument If the second were not

satisfied we would in fact be working in propositional logic The clause has as a

consequence that we can always refer to 'the first declaration of a set variable in

Γ' For this set variable we choose a fixed name 0, so we may in the following

always assume that 0 Set is the first declaration of the APRED-context Γ

Sec. 6.5 Formulas-as-typ es of logies into the cube 147

6.5.7. D E F I N I T I O N . For Γβ,Γτ a language-context and Δ a context of AP, we
say that Δ is an elementary extension of H(TD,^T), notation Я(Гд,Гт) <g Δ
if Δ Э H(TD,TT) and the extra declarations in Δ are all of the form χ:σ with
H(TD, Γ τ) h σ : * in λΡ.

For example, Я(Гд, Γτ, Γρ) is always an elementary extension of Я(Гд, Γτ)·
We now define a mapping | - | p from AP to the objevt language of APRED

6.5.8. D E F I N I T I O N . The mapping | - | p from terms of AP to terms of APRED is

defined as follows.
(0 l* l p ·= Set,

(«) l D l p

{in) \x\p

(iv) \x\p

(υ) \Пх:А.В\р

Types,
0, if χ is a variable of type •*,
x, for χ another variable,

:= | B | p i f A:*, 5:D,
:= Пх:\А\Р.\В\р else,

(w) \Xx:A.M\p = \M\"iî A:*, M:B:D, (for some B),

= \X:\A\P.\B\P else,
(vii) \PM\P = |P |" i f M:A:*,P:B:D, (for some A,B),

= |P | P |M| P else
The definition extends immediately to contexts of AP, where a declaration of the
form χ : • • • —Hr is removed.

That the mapping | — | p is indeed from AP to APRED is justified by the
following Proposition.

6.5.9. P R O P O S I T I O N .

Δ h M . A (m XP) => | Δ | Ρ h \M\P • \A\P.

P R O O F . By induction on the derivation of Δ h M : A in АР. И

6.5.10. F A C T . If Г д , Г т l· M : A(: Set), then | Я (Л) | Р = A and | Я (М) | Р = M.
(Note that Я is the identity on these kind of terms.)

6.5 11. COROLLARY. For Δ Э Я (Г 0 , Г т) , say Δ Ξ # (r D , Γ τ) , Δ ' we have

Δ h M : A(: *) => rD, TT, | Δ ' | Ρ h | M | P : \A\P.

P R O O F . Immediate by the fact that | Я (Г д) | р = Γβ and for a declaration χ . A

in Γτ, if ASet, then \x:A\p = x:A and if УІ:Турер, then | z | p Ξ 0 (and in that case
this declaration doesn't play a role anymore). И

file:///PM/p

148 The Calculus of Constructions Ch 6

All this means that | — | p is a mapping back from terms of ΛΡ to the object-
language of APRED that does not change the terms that originated from the
object-language

Now we define a mapping back from AP to the proof-language of APRED,
so now types in AP will become propositions and objects will become proofs of
APRED

6 5 12 DEFINITION Let Δ Э # (Г 0 , Г7) The map Tr on constructors of AP in
Δ is defined as follows

(г) Tr(a) = True, if a Set € VD,
(n) Tr(a) = a, if a —»Prop € Г7-,

{in) Tr(Ax AM) = Ах|Л|рТг(М),
(tv) Tr(Qt) = Tr(Q)|t|p,
(v) Тг(Пі AB) = Πι | Л | Р Тг(Л)-»Тг(Я)

6 5 13 PROPOSITION For Δ ш> H(FD, Г т), say Δ = Н(Г0, Г т), A' we have

Δ l· С Πΐ! Αι Пхп Αη * in XP

=> rDt Гт, |Δ' |Ρ h Tr(C) |Лі|р-> -*|/ln|
p-»Prop гп APRED

PROOF By induction on the derivation Note that if A * m AP, then \A\P con
tains no object variables Furthermore, if Δ F- M A(*), then Γο,Γτ, |Δ' |Ρ r-
|M| P И | р by Corollary 6 5 11 И

6 5 14 COROLLARY For Δ э> #(Γ 0,Γτ·), saj/ Δ = Η(ΓΩ,ΓΤ),Α' we have

Al· A + ιn\P^ΓD,Γτ,\A'\rl·Tr{A) Prop m APRED

6 5 15 LEMMA IfTD\- A Set m APRED, ¿Леп

3M[TD, Гт, Г Р г- M True <-» Тг(Л)] гп APRED

(7o 6e precise we would have to write Tr(H(A)) in stead ofTr(A), but H is the
identity on terms of type Set)

PROOF Immediate from the definition of Tr H

6 5 16 LEMMA For А з> H{TD,TT), say A = Η{Γ0,ΤΤ),Δ', with A l· А, В *
and A l· t В we have

Tr(A)[|i|p/x] Ξ Tr(A[t/x})

and if A =0 A', then

3M[TD, ΓΥ, \A'\" l· M Tr(A) <-• Тг(Л')] in APRED

Sec. 6.5 Formulas-as-types of logics into the cube 149

PROOF. The first is easily proved by induction on the structure of A. The second
follows from the fact that Тг(Л) =ß Tr(A'), which is justified by the first and the
Church-Rosser property. H

6.5.17. PROPOSITION. For each language-context Гд, Γ χ and φ with Г^, Гг Ь φ :
Prop we have

ЗМ[ГВ,ГТ h M : ¥ H Тг(Я(р)).

(Note that Η is the identity on expressioons of type Prop, so we can skip it.)

PROOF. By induction on the structure of ψ. By Lemma 6.5.16 we may assume
that φ is in normal form.

(base) If φ = at\ • • • tn with a a variable, then Tr(ip) = φ by the fact that
|<,|P = <,. (Fact 6.5.10.)

(Э) Say φ = Φ^χ with φ,χ.Ρτορ. Then Тг(р-»^) = Vx:|(¿>|p.Tr(y?)-»Tr(^).
Now we are done by IH The variable χ will not occur free in φ—up and
one easily constructs the required derivation trees.

(V) Say φ = Пх.А.ф with A : Set. Then Тг(Пх:А.ф) = Пх:\А\г.Тг(А)-^Тг{ф).
Now by Fact 6.5.10 and Lemma 6.5.15, Па::|Л|р.Тг(/1)-»Тг(>) is equivalent
to Пх:Л.Тг(>), so we are done by IH. И

6.5.18. DEFINITION. For Δ э> Я(Г 0 ,Г Т) , say Δ = Я(Го,Г т),Д', we define the
context TR(A) as

TR(A) :=r D , r T , |A | p ,Tr(A) ,

where Тг(Д) is defined by replacing every declaration z:A in Δ' by z' : Tr(A).
(We have to make sure that the declared variables in Тг(Д) are different from the
ones in |Δ|Ρ.)

6.5.19. PROPOSITION. Let Δ э> r D , r T , then

Δ h M : A{: *) m λΡ=> 3W[TR(A) h Ν . Tr(A)] m ÀPRED.

PROOF. By induction on the derivation of Δ h M : A in AP.

(var) M = χ then either χ:A in Г^ or in Δ'. In the first case Tr(A) <-> True
and in the second case і:Тг(Л) e TR(A).

(app) Say
Δ h M : Пх-.А.В Δ h t : A

A \- Mt : B[t/x]

By IH, TR(A) h N : Тг(Пі:АЯ) ΞΞ ПХ:|Л|Р.ТГ(Л)—Tr(ß) and TR(A) h
Q : Jr(A). We also have TR(A) h |Í|P : \A\>, by Corollary 6.5.11. So we
may conclude TR(A) l· N\t*Q : ТГ(Я)[|<|Р/І] = Jr{B[t/x\).

150 The Calculus of Constructions Ch 6

(λ) Say

Δ , ι Β Κ Μ С AhYlx ВС *

А Ь Xx В M Пх ВС

By IH, TR(A,xB) г- N Tr(C) TR{A,x B) =TR{A),x \B\?,x'Tr(B),
so we have

TR(A) I- \x \B\P Xx' Ъ{В) N Пх \B\P T r (ö) - T r (C) ΞΞ ΤΓ(ΠΖ В С)

(conv) We are immediately done by Lemma 6 5 16 S

6 5 20 COROLLARY The embedding H from APRED into XP is complete, ι e if

Γ £>, Γτ is α language-context with Гд, Tj \- φ Prop and Τ ρ a proof-context, then

H{TD,rT,rP)l· Μ Η{φ) inXP^3N[TD,rT,Tpl· Ν φ m ÀPRED

P R O O F H{YD, ΓΤ, Γρ) is an elementary extension of Γο, Γτ, so by the Proposi

tion we have

Г 0 , Г т , | Г р | * , Т г (Г Р) Ь Я Tr(v)

for some term N Now all declarations in |Гр | р are of the form у В where В Set,
so we can substitute other terms for each of these variables Furthermore, for
every В for which у' В € Тг(ГР) we have 3MTD,TT \- Μ В *-> Jr{B) by
Proposition 6 5 17 So we can replace each y' Tr(ß) by у" B, at the same time
substituting My" for y' inside У (These variables do not occur in Тг(і/з)) We
obtain a term N' with

Г о , Г т , Г р І - І ' φ

By again applying Proposition6 5 17,we can transform this N' into a N" with

Г0,Гт,Гр\- Ν" φ Η

6.5.3. Conservativity relations inside the cube

We now want to address the question of conservativity inside the cube of typed

lambda calculi and the logic cube We first look at the cube of typed lambda

calculi, because the situation for the logic cube is very similar There are four

Sec 6 5 Formulas-as-types of logics iato the cube 151

results that do the whole job, resulting in the following picture

Χω λΡω

ΧΡω

where an arrow denotes a conservative inclusion and a dotted arrow denotes
a non-conservative inclusion By transitivity of conservativity (if system 3 is
conservative over system 2 and system 2 is conservative over system 1, then
system 3 is conservative over system 1), it is no problem to fill in the picture
further (Draw the arrows between two non adjacent systems) We can collect all
this in the following Proposition

6 5 21 PROPOSITION For Si and 5г two systems in the cube of typed lambda
calcuh such that Si Ç £2

S2 is conservative over S\ О 5г φ ΧΡω &¿ Si φ XP2

PROOF It suffices to prove the following four results

1 If S2 D Si, 5Ί a system of the lower plane in the cube, then S2 is conservative
over Si (Proposition 6 5 22)

2 If S2 a system in the right plane of the cube, Si the adjacent system in the
left plane, then S2 is conservative over St (Proposition 6 5 25)

3 ΧΡω is not conservative over AP2,

4 Χω is conservative over A2 (Corollary 2 4 27)

The fourth is a consequence of Corollary 2 4 27, saying that PROPo) is conser
vative over PROP2 and of the fact that PROPw and PROP2 are isomorphic
to, respectively, Χω and X2 via the formulas as types embedding (See para
graph 4 3 1 and especially Proposition 4 3 4) The third was verfied in detail by

152 The Calculus of Constructions Ch 6

[Ruys 1991], following an idea from Berardi The idea is to look at a context Γ
in ΛΡ2 that represents Arithmetic Then Γ with ΛΡ2 is as strong as second order
Arithmetic and Γ with ΧΡω is as strong as higher order Arithmetic Hence we
can use Godel's Second Incompleteness Theorem to show that in λΡ2 one can
not derive from Γ that Γ is consistent in AP2 On the other hand in ΧΡω one can
derive from Γ that Γ is consistent in ΛΡ2 Hence the non conservativity В

We first prove the Proposition about conservativity of systems over systems
m the lower plane The Proposition was also proved in [Verschuren 1990] in a
slightly different way

6 5 22 PROPOSITION Let 5Ί be α system of the lower plane and S2 be any system
of the cube such that 5j Ç S2 Then

Г h S l В * 1
Г hS 2 M В \ =>· Г h S l M в

Г and M in normal form J

PROOF By induction on the structure of M

applic Say M = xPx Pn Then χ Uyl C\ D\ 6 Γ, so

Γ 1-5, d *,

Γ hs2 fi d

Now by IH, Γ h-s, Λ Cu so Γ h S l χΡλ D^PJy^] We can now go
further with P2 We know that Оі[Р\/у\] -»β Пу2 С? Di with

r h S l c 2 *

Also
Гг-52Р2 C2,

so again by IH Г \~sì P2 C2 and hence Г h S l xPiP? ^[^г/Уг] Con
tinuing in this way upto η we find that Γ l·^ χ Pi Pn Dn[Pn/yn] with
Dn[Pn/yn] = В Now by one application of the conversion rule (using
Г h S l В *) we conclude Г l· xP¡ Pn В

abstr Say M = Xx A N Then В —>β Их AC (because A in normal form) So
Г h S l Пі А С -к and Γ, χ A hs2 M С (by Stripping and the conversion
rule) We can apply IH to conclude Y,x A h S l M С Now we are done
By one λ-abstraction and one conversion we conclude Г r-Sl Xx AM В
El

Sec 6 5 Formulas-as-types of logics into the cube 153

The side condition Γ in normal form has just been added for convenience (in
giving the proof) It is not essential and it may be dropped

We now prove the conservativity of the right plane over the left plane The
idea is to define a mapping that removes all type dependencies This mapping
will go from a system in the right plane to the adjacent system in the left plane
and is the identity on terms that are already well-typed in the left plane Hence
the conservativity The proof is originally independently due to [Paulin 1989]
and [Berardi 1990] The first described the mapping from ΧΡω to λω in the first
place to use it for program extraction, the second described the collection of four
mappings (which is a straightforward generalisation of the mapping from ΧΡω
to Χω) to give a conservativity proof The mappings are very much related to
similar mappings one can define from predicate logic to proposition logic to prove
conservativity of the first over the second

6 5 23 DEFINITION ([Paulin 1989] and [Berardi 1990]) Let S2 be a system of
the right plane and S\ the adjacent system in the left plane The mapping
[-] Тегт(5г) —» Term(Si) is defined as follows

[G] = D,

[*] = *.
[i] = i, for χ a variable,

[Πι AB] = [В] if А*, В D,

= Πι [Α] [Β] else,

[ХхАМ] = [M] if A*, MB D, (for some B),

= Xx [A] [M] else,

[PM] = [P] if Μ Α*, Ρ В d, (for some A, В),

= [P][M] else,

6 5 24 REMARK The side conditions in the defintion are justified by the Clas
sification Lemma (4 4 37) We could also have distinguished cases according to
the heart or the level of subterms (See Lemma 6 3 2 and Lemma 6 3 4)

The mapping [—] extends straightforwardly to contexts The following jus
tifies the statement in the definition that the mapping [—] goes from the right
plane to the left plane

6 5 25 PROPOSITION ([Paulin 1989],[Berardi 1990]) Let S2 be a system in the
right plane and S\ the adjacent system in the left plane of the cube

r h S 2 M A=>\T\\-Sl[M] [A]

PROOF By a straightforward induction on the derivation of Г hs2 Л/ Л H

154 The Calculus of Constructions Ch 6

6 5 26 COROLLARY ([Paulin 1989],[Berardi 1990]) For S2 a system in the right
plane and S^ the adjacent system m the left plane of the cube we have

S2 is conservative over S\

P R O O F The only thing to check is that for M 6 T e r m ^) , [M] = M This is
done by an easy induction on the structure of M И

The conservativity relations in the logic cube (Definition 4 3 5) are as follows
(An arrow denotes a conservative extension, a dotted arrow a non-conservative
extension)

APROPo; APREDw

APROP2 APRED2

APROPw -APREDû

APROP -APRED

6 5 27 P R O P O S I T I O N For S\ and S2 two systems m the logic cube such that

Si Ç S2

S2 is conservative over 5] О S2 φ APREDo; h S\ φ APRED2

P R O O F Completely analoguous to the proof for the cube of typed lambda calculi,

of Proposition 6 5 21 IS

In Chapter 2 1 we also discussed first order predicate logic with (PRED)

and without (PRED - ^) functional domains We stated a conservativity result of

PRED over P R E D _ / in Proposition 2 3 8 In Chapter 4 1 we saw that APRED

corresponds to PRED and we also defined the system APRED - ^ that corresponds

to P R E D _ / (Definition 4 3 7) The conservativity of PRED over P R E D _ / can

now easily be stated and proved in terms of typed lambda calculi Let therefore

Sec 6 6 Consistency of (contexts of) CC 155

Я' APRED - ' — APRED be the PTS-morphism defined by

tf'(Set) = Set,

tf'(Fun) = Set,

Я'(Ргор) = Prop,

Я'(Туре*) = Type",

Я'(Туре') = Type*

It is easy to verify that H' is almost the identity for M a term of APRED - ', if
Μ φ Fun, then H'(M) = M We have the following Compare with Proposition
238

6 5 28 PROPOSITION For Г о context and σ, Prop m APRED_/,

Γ r-pRED Μ φ => nfiX) r-pRED-/ nf{M) η]{φ)

So the embedding H' is complete with respect to provability and PRED is conser
vative over P R E D - '

PROOF By induction on the derivation S

6.6. Consistency of (contexts of) CC

As the embedding Я from APREDLJ into CC is not complete (CC proves more
propositions than APREDu;), one may wonder whether there are propositions
that CC can not prove, or to pose the question differently, is CC consistent7

That this is the case can be shown quite easily by giving a two-point model for
CC (See [Coquand 1990]) The type * is interpreted as {0,{0}} (or {0,1} in
the language of ZF) and if h M A, the interpretation of M is in the set A
This model is also called the 'proof irrelevance' model (e g in [Coquand 1990])
because in the model all proofs of a proposition are mapped to the same element
0 So the model also implies that

-нЭМр- M афА a for h ο, α' А]

The interpretation will be such that the proposition ±(= Ua Prop a) is inter
preted by 0, so

- 3 M [h M _L],

that is, CC doesn't prove J. We shall make the model construction precise here
It is in fact a model construction for Χω Using the mapping [—] of Definition
6 5 23, we find that it is also a model for CC So the consistency of CC follows
from the consistency of higher order propositional logic and the conservativity
of CC over Χω (Proposition 6 5 21) It is not so easy to construct the model

156 The Calculus of Constructions Ch 6

immediately for CC, a problem that is solved in [Coquand 1990] by describing
the model for a variant of CC Here we use the mapping [—] from CC to Χω for
this purpose

Before constructing the model we want to recall some properties of Χω that
will be used They have already been stated in Proposition 4 3 4 First, the set
of kinds of Χω (those terms A for which Γ h Л • for some Г) can be described
by K, where

К =+,\K^K

Second, no proposition-variables are subterms of propositions or constructors, ι e

Г h M A Kind => Г' h M A Kind,

where Г' consists just of those declarations χ В in Г for which Г l· В Kind
These two properties imply that we can build the interpretation in three stages

by first giving a meaning to the kinds, then to the types and constructors and
then to the objects Also recall that the variables are seperated into two sets, Var*
for object-variables and VarD for constructor-variables The first will be denoted
by Latin characters, the latter by Greek characters

In general, an interpretation of terms of λω uses a valuation ξ of constructor-
variables and a valuation ρ of proof-variables In our simple model all free object-
variables have the value 0, so we only need ξ For convenience we think of
contexts of λω as being split up in а Γ°, containing the declarations of constructor
variables, and а Г*, containing the declarations of object variables

6 6 1 D E F I N I T I O N (I) The valuation ξ satisfies Γ° (notation ξ \= Va) if for all
a A 6 Γ α , ξ[α) is in the interpretation of A (A •, so A doesn't contain any
free variables)

(и) The valuation ζ satisfies Γ (notation ξ (= Γ) if ξ satisfies Γ° and for all
χ A 6 Г*, the interpretation of A under ξ is not empty (A *, so A can only
contain free constructor-variables)

6 6 2 D E F I N I T I O N For Γ H M A we define the interpretation function [-]

Τβιτη(λω) —• Sets as follows

1 For types, [•] = 2 and [/cx—>A:2]| = Щ -* [k2] (for ku k2 € K), where the
latter arrow denotes set theoretic function space

2 For constructors, let ξ be a valuation of constructor-variables such that

е и г ь

[ПхАВ](= l i f V a 6 H [[B] e (l = o) = l],

= 0 else, (for Α Ο,Β *) ,

μ-Β] { = И] е - [я] { , (for л, в *),
[PQ\ = IP]([Q]V

[XaAP](= Χα€[Α]([Ρ\ΐ(χ=α)

Sec 6 6 Consistency of (contexts of) CC 157

3 All objects are interpreted as 0

Here, λα € U V(a) denotes a set-theoretic function Further we identify all
singleton sets (like e g [A], -» [>1]{) with 1 and we use the fact that no proof-
variables occur in propositions

By induction on derivations one can prove the following property

6 6 3 PROPOSITION If Г l· M A, then for all valuations ξ with ξ\=Τ, [M]^ 6

Hit

It is good to realise here that for example for Γ = χ _L(= Πα * α), there is
no ξ with ξ \= Γ, so in this case the conclusion of the proposition is vacuously
satisfied

6 6 4 COROLLARY Χω, and hence CC, is consistent

PROOF For all valuations ξ, [J.L = 0 All valuations satisfy the empty context,
so if h M J., then 0 € 0, quod non В

One may wonder whether EXT' = Πα,/? • (α«-»/?) —» (α = , β), is consistent
in CC That this is the case can be seen by using the proof-irrelevance model of
Definition 6 6 2 The interpretation of EXT' in the model is 1, so if CC would
prove EXT'—»J., CC itself would be inconsistent, quod non The same argument
applies to show that CC with classical logic is consistent Define

CL = Πα * α V -ία

Then
[CL] = 1,

so ζ CL is a consistent context A more interesting example is the Axiom of
Choice Let

AC = ПР Л — Я - * (Пі А Зу В Pxy) -> (3/ A-^B Πι A Px(fx))

Applying the mapping of Definition 6 5 23 we obtain

[AC] = VP * (Л-В&Р) -> (А->5)&(Л-Р)

Now [AC] is inhabited by a closed term in Χω, so AC is not inconsistent in CC
(by the consistency of Χω) Notice that in all these cases the proof of consistency
of an assumption is done by giving a model in which the assumption is satisfied,
for EXT and CL the proof-irrelevance model and for AC the system Χω

In some (quite trivial) cases it is even possible to use CC itself as model If
the context Γ consists only of declarations ι A with A D or Α =ρ zt\ tv

with ζ a variable, then Γ is consistent Contexts of this kind are called strongly
consistent in [Seldin 1990]

158 The Calculus of Constructions Ch 6

6 6 5 P R O P O S I T I O N ([Seldin 1990]) Strongly consistent contexts of CC are con

sistent

P R O O F Let Γ = x\ A\, ,xn An be a strongly consistent context and suppose

that Γ h M -L for some M Now we consecutively substitute closed terms for

all free variables that are declared in Γ, such that all the assumed propositions

become T (= Πα α—>a) It works as follows if хг Л, € Г with Г l· Л, •, then
At =0 Uy В *, (with FV(ß) С { х ь , x,-i}) and we substitute \y Β* Τ for xt,

where the B' are the terms in which the substitution for x b , x,-i has already

been done If χ zt\ tp(•) with ζ a variable, we substitute χ by λα * Αχ α χ,

which is of type Τ If we denote this substitution by *, we can conclude from

Γ h M _L and the Substitution Lemma that l· M* _L So Γ is consistent by

the consistency of CC И

The techniques described above to show that a context is consistent are not
sufficient to handle the more interesting examples For mere proof theoretic
reasons it will for example not be possible to show the consistency of Y HA (defined
in the second proof of Proposition 6 5 3) with these techniques This would give us
a first order consistency proof of higher order arithmetic These kind of contexts
have to be handled by a normalization argument Assuming the inconsistency of
Γ HA, show that a proof of J. in THA can not be in normal form, and so there is

no such proof In [Seldin 1990] one can find a detailed proof of the consistency of

a context that represents Peano Arithmetic in a system that is a slight extension

of CC Coquand shows in [Coquand 1990] by a normalization argument that the

context

INF = Л * , а Л , / Л - М , Я Л — Л - > *

z\ Vx A (Rxx)—>J_, z2 Vx, y, ζ A Rxy^Ryz—*Rxz, z$ Vx A Rx(fx)

is consistent When contexts become larger, a consistency proof by the normal

ization argument can of course get very involved Semantics is then a very helpful

tool for showing consistency and in general to show the non-denvabihty of a for

mula from a specific set of assumptions Of course one has to use more interesting

models then the one of 6 6 2 to establish this In [Streicher 1991] there are some

examples of this technique using reahsabihty semantics

Knowing that a certain context is consistent is of course not enough to use

it safely for doing proofs Due to the incompleteness of the formulas as-types

embedding, a well-understood context that is beyond suspicion in higher order

predicate logic, may have unexpected side-effects when embedded in CC Further

more, CC has a greater expressibihty then higher order predicate logic so we may

also put in the context axioms that do have a meaning but can not be expressed in

the logic An example is given by the axiom of definite descriptions that makes a

generic statement about all domains It is described in [Pottinger 1989] as follows

DD = Va * VP a - * г (3·χ α Ρ χ) Ρ(ιαΡζ),

Sec. 6.6 Consistency of (contexts of) CC 159

where
3\x:a.Px := (3x:a.Px)&¿{Vx,y:a.Px->Py->[χ =a y))

and ι is a term of type Va: * .ЧР:а—> * .(3\x:a.Px)—»a. (One сап take some fixed
closed term for ι but also declare it as variable in the context.) We assume the
intended meaning of DD in PREDw to be clear. Together with classical logic,
the axiom of definite descriptions has an unexpected side-effect in CC.

6.6 6. PROPOSITION. [{Pottinger 1989]] 'Classical logic' and 'definite descriptions'
yield proof irrelevance in CC

We have already encountered the semantical notion of proof irrelevance in the
discussion of the model in 6.6.2. It can also be expressed in purely syntactical
terms as the phenomenon that for all propositions φ, all proofs of ψ are Leibniz-
equal. It is then formalised in CC by the proposition

PI := VQ: * Sx, y:a.(x =a y).

Of course, PI holds in the proof-irrelevance model of 6.6.2 (the interpretation of
PI is 1), so PI doesn't imply inconsistency. However, if we intend to use CC
for predicate logic it is clearly undesirable: if Γ proves PI, then any assumption
α Φ a' makes Γ inconsistent. We see that PI, which is a very useful principle for
proofs, is a very odd principle when applied to domain-objects. Because of the
treatment of domains and propositions at the same level, principles about (proofs
of) propositions have unwanted applications to the domains.

The proof of Proposition 6.6.6 in [Pottinger 1989] uses an adapted form of a
proof by Coquand ([Coquand 1990]), showing that CC with classical logic and a
derivation rule for a strong version of disjoint sum yields proof irrelevance. Let's
also state this result, but not by adding a derivation rule but by adding an axiom,
which really amounts to the same as the rule used in [Coquand 1990]. (Using the
result by Reynolds that polymorphism is not set-theoretic, Berardi has proved
that in CC, classical logic with a stronger form of definite descriptions (replacing
the 3! by 3) implies PI. See [LEGO-examples] for details.)

6 6.7. PROPOSITION ([Coquand 1990]). 'Classical logic' with 'disjunction prop
erty for classical proofs ' implies proof irrelevance in CC

Here we mean by 'disjunction property for classical proofs', that for с : CL in
the context and φ : •, αφ is in the smallest set of proofs of φ V -<φ that contains
all proofs that are obtained by V-introduction from a proof of φ or a proof of
->φ. Put in syntactical terms this says that, for г and j the injections from A to
AM B, respectively from В to A V B, the proposition

4P:{A V B)^ * .(і:Л.Р(гх))-(х:5.Р(;х))->Р(с (р)

160 The Calculus of Constructions Ch 6

holds So proof irrelevance follows from the context

cl CL, zVa • (a + -IQ)(C/Q),

where for A, В *,

Л + В = Xy A V В VP (Л V ß) - * (Vi Л Р(гх)Н(х В P{jx))->Py

In presence of CL also the reverse can be proved, so we can construct a proof ρ
with

c/CLbp PI <-> (Va * (а +->a)(cla))

The implication from right to left is the most interesting In [Coquand 1990] it is
proved by using the fact that if in Γ one can construct A •, Ε Α—**, ε *^>A
and a proof of Va * a <-» £(ea), then Γ proves J_

6.7. Formulas about data-types in CC

Having seen the incompleteness of the formulas-as-types embedding of higher
order predicate logic in CC, we shall now see that the distance between CC and
PREDu; is not so large when it comes to propositions about inductive data types
This follows from a recent result by Berardi, which we shall discuss here only for
what concerns the implications for the formulas-as-types embedding For details
and proofs we refer to [Berardi 199+] The point is that for purposes of deriving
programs from proofs, it doesn't seem to make sense to declare a theory in the
context Instead one uses the definable impredicative data types and inductive
predicates on them, as is done in the examples of 6 4 3 This is not the place to
discuss in detail the topic of extracting programs from proofs in CC, for which we
refer to [Paulin 1989], but to get some flavor we treat the first example of 6 4 3
Roughly, the program extracted from the proof is the λω-term obtained by the
mapping [—], as defined in Definition 6 5 23

Suppose t is a proof of

Ш List 3n Nat lim Nat 'm 6 / —» m < η'

m the context α Indj^at Then in Χω we have

α ΠΡ * P->(Nat->P->P)->(Nat-»P) h [<] List->(Nat χ Nat—Truei-»True2),

where Truei and Тгиег are some trivially provable propositions Now [i] still
contains computationally irrelevant information, the real program to be extracted
should be something like Xx Nat ^([f.]*!) List—»Nat, where * substitutes some
closed term for α in [t] Of course it is not irrelevant what we substitute for a,
but the general picture should be clear From the proof of the specification one
can obtain the program that satisfies the specification In [Paulin 1989] it is also

Sec. 6.7 Formulas about data-types in CC 161

shown how to extract from the proof the logical content which is a proof that
the extracted program satisfies the specification. Some parts of the proof have
computational content while others don't. Therefore, to mechanize the extraction
proces, in [Paulin 1989] the type * is divided in Prop, Data and Spec, the first
consisting of the propositions with purely logical content, the second consisting
of the propositions with purely computaional content and the third consisting of
propositions containing both logical and computaional content.

In view of the discussion of the example above it is an interesting question
whether CC proves more propositions about inductive data types then higher order
predicate logic does. It is clear that we have to be more precise if we want to have
a negative answer, because in general the answer will be positive. (E.g. in CC we
can still prove EXT —• 3x:Nat.Sx = N a t x (s e e ' п е second proof of Proposition
6.5.3) and Indj\ja t&(Z ^ N a t SZ) -» Пх,y:Nat.(Sz =jsj a t Sy)->(x = N a t y) (see
Example 6.4.2.)) First we have to consider only the strongest version of inductive
data types, called parametric data types in [Berardi 199+]. A parametric data
type is in set-theoretic terms the smallest set X closed under some fixed operators
(functions of type A¡—>A2—>... —*An—>X, where η > 0 and each At is X or an
already defined parametric data type.) If D is a parametric data type this implies
that the induction and uniqueness properties for D are satisfied. In algebraic
terms, a parametric data type is just a free (or initial) algebra. Further we have
to restrict ourselves to a specific class of propositions, what Berardi calls the
propositions on functional types. The functional types are the ones obtained by
putting arrows between the parametric data types, further there are the so called
logical types, which is the class of (higher order) predicate types on functional
types. The propositions on functional types are the propositions obtained from
the basic propositions by the usual logical connectives D, V,&, -i, V¿, and 3¿,
where L is a logical type The basic propositions are those propositions obtained
by applying an inductive predicate to the right number of terms (of the right
type), so this class is already quite big. (Inductive predicates are minimal subsets
among those closed under some fixed monotone constructors; they can be defined
in higher order predicate logic by the higher order quantification over all such
predicates. For example <C Nat χ Nat and G С Nat χ List of the Examples
in 6.4.3 are inductive predicates.) In [Berardi 199+] all this is defined in set-
theoretic terms and then translated into CC. Following [Berardi 199+], we do
not denote this translation explicitly (but there are no ambiguities about this.)

The main result of [Berardi 199+] is now saying that for ψ a proposition in
the set Pos, if Γ h Μ:φ in CC for some term M, and Γ is satisfied in the model
PER, then φ is provable in Set theory. Here PER is some model based on the
interpretation of propositions of CC as partial equivalence relations on Λ (the
set of untyped lambda terms.) The model-construction is in [Berardi 199+]; we
will not go into it here but state the important facts that for all parametric
data type D, the interpretation of Indo in PER is not empty, which means that
г.Indo is satisfied. The set of propositions Pos consists of those propositions on

162 The Calculus of Constructions Ch. 6

functional types that are built up from the basic propositions using Э, ,&,-і
and Vx:D, 3x:D (for D a parametric data type) with the restriction that a Vx:D
that is not bound may only occur in a positive place. (The Vi:Nat for example,
is bound if it appears as Vi 'Nat.(< (x,n)—» .).)

One of the obvious examples where the result applies is the first of 6.4.3.
Berardi shows that also the statement of Girard's normalization theorem, saying
that all typable terms in system F are strongly normalizable, is in Pos. It is of
the form

m:Te.UA:Ty.Oft{t,A) D 3n:Na.t.m'-Te.nm:Na.t.Redd(t,t',m) Dm<n,

where the type of pseudoterms Te and the type of types Ту are parametric data
types and Oft С Те χ Ту and Redd С Те χ Те χ Nat are inductive predicates
with Oft(t, A) if ί is of type A m F, Redd(t,t',m) if t reduces to t' in m steps.
We see that the restrictions on the form of the propositions is not very serious; a
specification will usually be of the form Ylx.D3y.D'.P(x,y) with P(x,y) G Pos.
Further the result is very general, as there are no restrictions at all on the shape
of Γ or M. So Γ may even contain assumptions that can not be expressed in set-
theoretical terms: As long as the assumptions are satisfied in PER, the conclusion
is valid

It would be interesting to see whether the result discussed above can be
rephrased syntactically by extending APREDo; with inductive data types and de
scribing a formulas-as-types embedding from the extended higher order predicate
logic to CC. This extension of APREDo; can be defined by adding a scheme for
inductive types (by allowing a kind of least fixed point construction for positive
type constructors), but also by extending APREDo) with polymorphic domains
As we know how to define inductive data types in polymorphic lambda calculus
and the formulas-as-types embedding from APREDo; to CC immediately extends
to APREDo; with polymorphic domains, we want to say a bit more about the
latter possibility. Let APREDo;? be the following Pure Type System.

S = Prop, Set, Type'', Type',

A = Prop : TypepSet : Type",

П = (Set, Set), (Type', Set), (Type*, Set)

= (Set, Type*), (Type?, Typep),

= (Prop, Prop), (Set, Prop), (Type*, Prop).

So this is APREDo; with (Type8, Set): a higher order predicate logic built on the
polymorphic lambda calculus in stead of the simple theory of types. Note the
similarity with Definition 6.5.4. In view of the description of parametric data
types in the beginning of this section it is natural to leave the rule (Typep, Set)
out of the system to eliminate things like ria:Set.(a—>*)—>a : Set. This is an
option that we want to leave open.

Sec 6 7 Formulas about data-types m CC 163

The formulas-as-types embedding from A P R E D Ü ; P into CC is now induced by
the formulas-as-types embedding from APREDw into CC of Definition 3 2 6, so
it is the PTS-morphism H with

H(*) = *,

H (Set) = * ,

ЩТуре") = D,

Я (Type8) = D

This immediately shows that APREDwp is consistent (In fact the mapping
Я shows that all extensions of A P R E D C J with rules of the form (s,s'), s,s' 6
{Prop, Set,Typep, Type5}, are consistent) The embedding Я is not complete, the
same counterexamples as for A P R E D U J do the job (See the proof of Proposition
6 5 3) However, if we restrict ourselves to propositions in the set Pos, we may
still be able to prove that if

z\ Indo,, ,г п Ind D „,a Indj^[at,6 Ζ ^jy[at 5 Z Ь Μ φ in CC,

then there is a proof Ρ in A P R E D Q J P with

Z\ Indpj, ,zn Indß n ,a Indjya t ,ò Ζ / j^ a t S Ζ l· Ρ φ,

where D\, ,Dn are the parametric data types that occur in φ (We omit the
mapping Η for reasons of readability) In view of the proof of the original result
in [Berardi 199+], we have a strong feeling that this adapted completeness of the
formulas-as-types embedding from ÀPREDOJ P into CC holds However, it is not
as general as the original result, one would like to allow more assumptions then
just those stating the parametricity of the data types Still the matter could
be interesting for further investigations, because it may give a more syntactical
handle as to which propositions about data types are provable in CC

Let's end this section with the remark that, just like for the system APRED2P,
it is an open question whether APREDo;p is conservative over APREDLJ The same
reasons for believing that APRED2P is not conservative over APRED2, apply to
APREDo>p A possible non-conservativity result does, however, not affect the
use of the system APREDu>p when the use is restricted to proving the kind of
propositions about parametric data types that we discussed above

164 The Calculus of Constructions Ch 6

Chapter 7

Strong Normalization for βη in
the Calculus of Constructions

7.1. Introduction

In this Chapter we prove the strong Normalization for CC with βη conversion

rule We shall denote this system by СС/з,, to distinguish it from CC^, which
is the original Calculus of Constructions, with only 0 conversion Similarly we
have Fw^, and Fu^,,

One of the main problems with proving SN^, for CC^,, is that we do not know
whether Term(CC^) is closed under 77-reduction We know that SR, holds for
CCJ (Lemma 4 4 32), but that doesn't immediately imply SR,, for CC^, One
thing to do is to prove S N ^ for C C ^ , which immediately implies S N ^ for C C ^
(because the set of terms of the latter is a subset of the set of terms of the first)
We choose to prove first SR,, for CC^,, and then SN^, for CC^, directly On the
one hand this is more natural and on the other hand we have found in Chapter
5 1 a simple criterion for SR, to hold, which also applies to СС^,

7.2. Meta-theory for CC with /^-conversion

In the section where we studied the meta theory for general Pure Type Systems
we have seen some properties that we could only prove for PTS^, whereas we
would like to have them also for the other notions PTS^,, and P T S ^ In fact
this was one of the reasons for introducing PTS^, in the first place We couldn't
prove SR, for PTS/3,, so we introduced P T S ^ One of the properties that we
were unable to prove for both PTS^, and PTSj^, is the Classification Lemma,
4 4 37 As this Lemma is very important for defining mappings on the set of
typable terms in an easy way, we shall show that the Lemma does hold for C C ^
So, in the following we use the syntax with sorted variables, as it was described
in Definition 4 2 9

165

166 SN for βη m CC Ch. 7

7.2.1. S U B L E M M A The system CCß^ has the following (expected) properties.

1. If M e Term(CCßri), Μ =βη О, then M = D.

2. There are no terms of the form Пи:Л.О m CCßv.

P R O O F . 1. If Μ =βη • , then Μ -»β О by the Key Lemma 4.4.18. We can
not have the situation that Г h M : A, because this implies (using the
Stripping Lemma 4 4.27 and the Key Lemma 4.4.18) that there must be an
axiom (• : s) among the axioms of C C ^ . So there is an θ € {*, Π} with
M = s. It is easily seen that the s can only be •.

2. Suppose Uu:A D e Term(CC^). Then Γ Η Πω: А О : В for some Г and В.
So Г, и' A h • : s for some sort s, which is not the case. И

7 2.2. L E M M A . CCßv satisfies /3^-preservation of sorts (Definition 5.2.7). That
is, for A and A' terms of CCßv, Г and Г' contexts of CCßv and s, s' G {*, О},

Г Ь A -s)
Г' h А' : s' L => s = s'

A =βη A' J

P R O O F . By induction on the structure of A we show

A' e Тегт(Г') ì
Г h A : a \ =* Г' h A' П.

A =ßv A' J

Then we are done because, by Uniqueness of Types (Lemma 4.4.29), a term can
not at the same time be a type and a kind. We distinguish cases according to
the possible structure of A.

• A = AiA2. Then Г h А^.Пи-.С.О, which is not possible. (Sublemma 7.2.1.)

• A = \u:Ai.A2. Then A can not be of type О by the Stripping Lemma
4.4.27.

• Α Ξ Uu:Ai.A2. Then A' -»ß Tlu:A[.A'2 with (among other things) A2 =βη

A2 and Γ,χ:Αι h A2 : •. We are now done by induction hypothesis.

• A = *. Then Α' -»βη •, hence Г' Ь A' : • and we are done. S

7.2.3. COROLLARY (Classification in С С ^) . In ΰΰβη we have

Kind Π Type = 0,

Constr Π Obj = 0.

Sec 7 3 The proof of SN for βη m CC 167

P R O O F Note that, just as in the proof of the Classification Lemma 4 4 37, it

suffices to prove the following two statements (let s, s' € {*, • })

Γ h A s, ΓΗ A s' => s Ξ s',

Γ h M A s, ΓΗ M A' s' => s = s'

These follow immediately from Lemma 7 2.2, using Uniqueness of Types IS

7 2 4 COROLLARY CCßv satisfies strengthening and SR^

P R O O F In Chapter 5 1 we have shown that a P T S ^ that satisfies /^-preservation
of sorts satisfies strengthening (Lemma 5 2 10) and SR,, (Corollary 5 2 11) H

7.3. The proof of SN for βη in CC

We now turn to the proof of strong normalization for /3r?-reduction in the Calculus
of Constructions with /Jrç-conversion This is the most general property about
normalization in versions of CC that one would want It implies SN for β(η)-
reduction for CC with /3(7/)-conversion The proof we give here is a generalisation
of the proof of SN/3 for CC^, given m [Geuvers and Nederhof 1991]

Before giving the proof we want to see why S N ^ for C C ^ does not follow
immediately from SN^ for CC^ by a 'postponement of 77-reduction' argument
(That is, we strongly believe that there should be some 'easy' combinatorial
argument deriving one from the other, but we haven't been able to find it) The
postponement of η still works, as was shown m paragraph 4 4 2 From it we
get that SN^ for CC^ implies S N ^ for CC^ Now the problem is that the set of
typable terms of C C ^ is larger then the set of typable terms of CC^ An example
is given by the term

\x P(Xy A My)-* * \z Ρ M xz

which can be typed in CC^,, but not in CC/3 if y £ FV(M)
We do have the following, which says that it is enough to prove strong nor

malization for /3-reduction on CC^,

7 3 1 P R O P O S I T I O N

CCßn И SN0 =• CCß„ И SNßv

P R O O F The proof follows immediately from Theorem 4 4 9, which says that

X \= SN^ =>· J. X \= SN^,, if A- is a set of pseudoterms closed under /3-reduction

Note that Term(CC^^) is closed under β and η (The first by SR^ for arbitrary

PTSs, the second by Corollary 7 2 4) So Term(CC^) = | Term(CC^) and we

are done В

Although the Proposition says that it is sufficient to study /3-reduction, we
prove S N ^ for СС/з,,, because the proof of SN^ for ϋΟβη would be exactly the
same

168 SN for βη m CC Ch 7

7.3.1. Obtaining S N ^ for CC from S N ^ for ¥ω

We define a reduction preserving mapping from C C ^ to ¥wßn The mapping is
the same as the one in [Geuvers and Nederhof 1991], where it was defined as a
mapping from CC^ to Fw¿j to prove the strong normalization property for CCß
The problem with the extension to C C ^ is that we don't have all the meta theory
for CCg1 that was used in [Geuvers and Nederhof 1991] for the CC/j case In the
following we verify that the whole argument can still go through

The original intuition of the mapping is due to [Harper et al 1987] who define
a /^-reduction preserving mapping from LF to λ-+ to prove the strong normal
ization of LF The map ¡—J that will be used can be seen as a higher order version
of the map defined by [Harper et al 1987], although things get quite a bit more
complicated here It's also possible to restrict the map [—] to Term(AP2), to
derive the result A2 |= SN^ =>• λΡ2 (= SNur,

The map [—] doesn't work uniformly on the terms of C C ^ That is, we can't
define [—] such that for all Γ, M and A,

Гг-сс , M Л 4 [Г] Н Г ч , [М] [A]

To show that [—] really maps terms of CC^, on terms of Fu^rj, one has to define
another map r from types and kinds and sorts of CC to types and kinds and
sorts of FbJßn such that

T\-ccBv M А=>т{Т)ЬГш0ч[М] τ(Α)

In order to get a feeling for the mappings [—] and τ we give some heuristics
(following [Geuvers and Nederhof 1991])

The idea of the mappings in [Harper et al 1987] is to replace redexes that use
type dependency by λ—»-redexes We follow this idea, so let for example Л be a
type such that

Г Нес,, F А^ * Г hCCßv i А

r\-ccertFt *

then [—] and τ must erase all type dependencies such that

r(T) \-Рщвч ІП τ(Α)^* Т(Г) bFußv M r{A)

Γ Γ - F ^ I F Í] т(*)

is sound This is solved for LF by taking [Ft] = [F][t], т(Д-+*) = т(Л)—0
and т(*) = 0, where 0 is a fixed type variable A redex that is obtained by type
dependency, say (λχ A M)t, with A a type, M a constructor and t an object, is
replaced by (λζ 0 Да: т(А) [М\)[А\Щ, where г is a fresh variable This term is
then typable in the system without type dependency and also the possible redexes
in A are preserved by the abstraction over ζ 0 and the application to [A]

Sec 7 3 The proof of SN for βη ¡π CC 169

If we add polymorphism the situation gets more complicated Let for example

Г Н с с > т і F П о * α->α Γ hCC/3ri σ *

Γ I-CÇJ, F a σ _ > σ

then
τ(Γ) h ^ „ [Fl τ(Πα * o - α) τ(Γ) h f w „ [α] О

Γ I-F«,, [Μ τ (σ ^ σ)
must be sound This means that taking τ(Πα * α—»α) = 0—»τ(α—>α), [Fa] =
[FJ[a] doesn't work (The application is not sound) But also the option taking
τ(Πα * α—>a) = Πα * α—»α, [Fa] = [F]r(a) doesn't seem right, because the
possible reductions in α are not preserved The solution is to do both and take

τ(Πα * α—»α) = Πα • 0—>α—>α,

¡Fa] = [F]r(a)H

This implies that a higher order abstraction should have a different interpretation
too For example the interpretation of F Πα * α—»α now has to be applied to
two arguments The solution for the case F Ξ λα * λχ α χ is to take something
like λα * λζ 0 λχ α χ, but the general picture is of course quite a bit more
complicated because kinds can have much more structure (and have objects as
subexpresions) then in Fo;^ Therefore we define a mapping ρ which provides a
type for the image of τ (so we have Γ ^ccßTI А В => г(Г) г-г-;?ш/, т(Л) р{В)
for A a type constructor or a kind)

The mapping ρ in fact just takes what is usually called the 'order' of a kind,
in terms of the underlying Fu^,, kind The definition is as follows

7 3 2 DEFINITION The map ρ {ü} и Kind(CC^) -» Kmd(F^T,) is defined by

1 p(*) = p(D) = *,

2 ρ(Πα AB) = p{A)^p(B) if Л is a kind,

3 р(Пх A B) = p(B) if Л is a type

Note that the case distinction in the Definition is allright in CC^,, As the
mapping ρ removes all type dependencies and all variables we have the following
easy properties (Also use the fact that for A and В typable terms, if Α =ρη В,
then Л is a kind if and only В is This was proved in Lemma 7 2 2)

7 3 3 FACT For А, В kinds of CC^,, и a variable and M a term,

1 p(A[M/u] = p(A) Ξ p(A)[M/u],

2 A =/*, В => p{A) = p(B)

170 SN for βη m CC Ch 7

We now want to devote some attention to the interpretation of types and kinds
under [—], before giving the definition of τ For example, if Γ b~ccßri A * and
Γ,α A hccB, В D, then we want т(Г) \-Flllßii [Πι A B\ τ (Π) The intended
interpretation of * under τ was 0 (some fixed type variable) This leaves us with
the possibility to also take r (P) = 0 and to take [Πι A Bj = c[A][B][c'/x], with
с some term of type 0—>0—»0 and c' some term of type т(А)

So it will be required that we have fixed terms of every type and every kind
in Fujßv However, not every type in Fuißv is inhabited by a closed term and
therefore it seems necessary to extend the syntax with a possibility of having
(closed) constants of all types However, this becomes a very complicated system
(what if we substitute a term in a constant of a not-closed type7) and it turns
out that we can stay away from these kind of atrocities The solution is to work
in a fixed context 0 *, d J_ (J. = Πα * α) in FCJ^, and define a fixed term cA A
for every type or kind A

We give the definition of τ, reflecting the intuitions about preservation of
reductions etc

7 3 4 D E F I N I T I O N The map r {D}uKind(CC^)uConstr(CC^„) -» TermtFw/j,)
is inductively defined by

r (*)

τ(α)
τ(Πα A В)
т(Пх А В)
τ{\αΑ M)

т(ХхАМ)
τ{ΜΝ)

Τ\ΜΝ)

=

=
=
=
=
=
=
=

r(D) = 0,

о,
П а р (Л) т (Л) - т (5)
Пхт(А)т(В)
\ар{А)т{М)
т(М)
τ{Μ)τ{Ν)
т(М)

if Л is a kind,
if Л is a type,
if Л is a kind,
if Л is a type,
if N is a constructor,
if TV is an object

The definition by cases is correct by Classification for CC/3ÏÏ, Corollary 7 2 3
That the range of r is indeed a subset of TerrT^Fu^,,) will be stated in Lemma
7 3 9 The mapping τ deletes object variables and therefore type dependency,
and is compatible with substitution and reduction, as is stated by the following
fact (Proofs are by induction on the structure of the terms, using the Stripping
Lemma 4 4 27 and Fact 7 3 3)

7 3 5 F A C T For Л, В kinds of C C ^ , χ an object variable, a a constructor vari
able, <5 a constructor and M an object of C C ^ ,

1 T{A) does not contain free object variables and τ(Α[Μ/χ]) = τ{Α),

2 T(A[Q/a}) = T(A){r(Q)/a},

3 A —>0 В =• т{А) — * 0 τ(Β) or T(A) = T(B),

4 Л —•„ В =* т{А) — „ т{В)

Sec 7 3 The proof of SN for βη m CC 171

Using the mapping τ we now define the mapping of contexts of CC^,, onto
contexts of ¥ωρη This mapping will be called τ too, although it is not defined
straightforwardly by applying τ to all types and kinds in the context The reason
for this is that constructor variables have to be 'split' in a constructor variable
and an object variable, replacing a Am the context by α p(A),xa τ(Α),
where xa is some fresh object variable connected with a This splitting has to
be done because a Π- or λ-abstraction over a constructor variable is replaced by
two abstractions

To make this splitting precise we assume an injection of г Var •-• Var*
such that Var* \ i(VarD) is countable, consisting of those object variables that
are used in the derivations in C C ^ (so an object variable г(а) is always 'fresh')
Notationally we don't work with the injection г but write xa for г(а) So for
every variable α 6 VarD we have a fresh variable xa

7 3 6 DEFINITION The mapping τ on declarations and contexts is defined as
follows

1 For A a type in CC^, χ an object variable,

T(X A) = χ T(A),

2 For A a kind in CC^,,, α a constructor variable,

τ{α A) =a ρ{Α),χα τ {A),

3 For Γ = Ui A\,U2 Αι, , un An a context in CC^,,,

τ(Γ) = 0 *,d ±,т(щ Аі),т(и2 A2), ,т(ипАп)

The 0 * in the context serves as the image of • and • under r Further it
is used as the canonical inhabitant of * and canonical inhabitans for the other
kinds of Ρωβη are built from it In fact we could have left it out and used any
closed Fu^-type for it The d J. in the context is necessary to have a canonical
inhabitant for every type It is essential for the construction of the reduction
preserving mapping [—]

7 3 7 DEFINITION Canonical inhabitants of types and kinds in г(Г), denoted by
cA for A a type or kind, are defined as follows

(г) с* = О,
(и) сл~в = Xa А с в , for А^В a kind,

(ггг) сА = dA, for A a type

172 SN for βη m CC Ch 7

Note that cB[N/u) = cB^N/^ for all kinds and types B, variables и and terms
N Further note that the inhabitant cA of A is independent of the context in
which A is typed (it only depends on the specific choice of the variables 0 and d,
which are constants relative to our exposition) Before showing the soundness of

τ

Γ l·CC|¡r| M A=> τ(Γ) \~Fvßv т{М) p{A), for M not an object,

we treat some examples of the application of the mapping τ to a CC^-term

7 3 8 E X A M P L E S These examples are also meant to show the connection (at

least computationally) between r and the Mohnng-Berardi mapping from CC^

to Fb when it comes to constructors

1 τ(Πα * α—»α—>Û) = Па • 0—»α->α,

2 τ(Πα * α—>α—»α—••) = Πα • 0—»α—»α-+0,

3 τ(λα • Αχ α XP α-* * Ρ χ) = λα • \Ρ * Ρ

7 3 9 L E M M A For Μ e Term(CC/3,), M not an object,

rhcc^M A^T(T)hFu0vT(M) p(A)

P R O O F The proof is the same as in [Geuvers and Nederhof 1991] for CÇa, so by
induction on the derivation We treat the case that the last rule was (app) and
the case that the last rule was (λ) (In the proof we omit the subscript under
the turnstile as it will always be clear from the context whether we are working
in CC^, or in Fu>ßn)

(app) Say M = PQ and Γ h M Uu В С, Tl· Ν Β,Α = C[P/u] Now PQ is

a constructor, and hence Ρ is We distinguish subcases between Q being

a constructor or an object

If Q is a constructor, we find by induction hypothesis that τ(Γ) l· r(P)

p{TluBC)(=p(B)•^p(C))Άndτ(Γ)l·τ(Q) p(B) By one (app) we find

т(Г) h T{P)T(Q) p{C) and we are done because T{P)T(Q) = r{PQ) and

p(C) = p(C[Q/u})
If Q is an object, we find by induction hypothesis that т(Г) l· т(Р)
p(Uu В C) (= p{C)) We are done because T(P)T{Q) = т{Р) and p(C) =
p{C[Qlu))

(λ) Say Μ Ξ Au В N and Г, и В l· N С, Г h Пи В С * / D We distinguish
subcases between В being a type or a kind
If ß is a type, we have т(\и Β Ν) = T(N), p{Uu В С) = р(С) and further
by induction hypothesis т(Г),и т(В) l· r(N) p(C) By substituting с т (в)

for и we find т(Г) l· τ{Ν) p{C)

If В is a kind, then τ (Au Β Ν) = Xu ρ(Β) τ{Ν), р(Пи В С) = р{В)^р(С)

Sec 7 3 The proof of SN for βη m CC 173

and further by induction hypothesis т(Г),и p(B),xu т(В) h τ(Ν) p(C)

By substituting c T (f l) for xu we find т(Г),и p(B) \- τ{Ν) p(C) Now also

τ(Γ) h p(B)-»p(C) D, and hence т(Г) l· Xu p{B) r{N) p{B)->p(C) В

7 3 10 DEFINITION The map [-] from Term(CC^) \ {O} to Term(Fu)0Tt) is de
fined inductively by

M
M
[α]

[Πι А В]

[Πα А В]

[λχ А М]
[λα А М]

[ΜΝ]

[ΜΝ]

=
=

=

=

=

=

=
=

=

с°,
X

ха

с°-°-°И][Я][с^)/х]
(Ρ^^°ΐΑ]ΐΒ][εή^/α,α^/χα]
(\zOXxr(A)[M])[Al
(λζ 0 λα р(А) Хха т(А) [M])IA],
[M][N],
[Μ]τ(Ν)[Ν],

if χ € Var*,
i faeVarD ,
if Л a type,

if A a kind,

if A a type,
if Л a kind,
if N an object,
ή N a. constructor

Here ζ is always assumed to be a fresh object variable

The definition by cases is allright by the Classification for CQj,,, Corollary

7 2 3 It is not very difficult to verify that the mapping preserves β- and ψ

reductions, which will be stated in 7 3 16 That the image of the mapping [—]
is indeed a subset of TeriT^Fu^,,) is stated by the following lemma It is only
in the proof of this lemma that we really have to add something to the proof of
strong normalization for β in CC^ (apart from the quite non-trivial verification
of a lot of meta-theoretical facts for CC^,, of course, but this has already been
done in Chapter 4 1) What we have to do extra here is to verify that for A and

8 types in CCßr,, if Α =ρη В then τ(Α) =βη r(B) For ССд this problem was
easily settled by the Church Rosser property, which we lack here This turns out
to be not so easy We can not just redo the reduction expansion path from A to
В to get τ{Α) =βη τ(Β), because τ removes abstractions (and hence redexes)
Also constructors can be /ÎTj-equal to objects, like in λα * α =βη Xx J. χ, and
although objects are not in the domain of r, this may have an effect on the βη-

conversion An example where the equality between A and Bis really established
in a different manner then the equality between τ{Α) and τ{Β) is the following

λα ±—> * λχ ± αχ =βη λα * —> • λβ * αβ,

and

τ(\α -L—>* λχ ± αχ) = λα * α =βη λα *—>* λβ * αβ = τ(λα *—>* λβ * αβ)

In this case the two images are still ^-equa l , but one could imagine that there

are dirtier tricks That there are however no dirtier tricks is shown in Lemma

7 3 13 For the proof of that Lemma it is convenient to modify the mapping r a

174 SN for βη m CC Ch 7

bit to a mapping τ' from the erased terms to erased terms (Here we mean the
erasure | — | that removes only the domains, it was defined in Definition 4 4 11)
We then define r' by induction on the structure of terms, distinguishing cases
according to the heart of specific subterms (The notion of 'heart' of a term A,
b(A), is defined in Definition 4 4 38)

7 3 11 DEFINITION Consider the set E which is obtained from the set {ü} U
Κιηά(00/3,,) U Constr(CCy3T;) by first applying the erasure mapping | — | and then
closing down under -»βη On this set E we define the mapping r' by induction
on the structure of terms as follows

T'(*)

Λ<*)
τ'(Ώα А В)

τ'(Ώχ А В)

τ'(Χα M)
τ'(Χχ M)

r'(Mh)

τ'(M Ν)

=

=

=

=
=

=
=

=

τ'(α) = ο,
û ,

Па р(А) т'(А)->-
Пх т'(А) т'(В)

Ха т'(М)
т'(М)
τ'(Μ)τ'(Ν)

т'(М)

т'(В) if α 6 Var0,

if χ e Var*,

if a e VarD,

if ι £ Var*,

if h(N) e Varn,

if h(/v) € Var*

The definition is justified by Lemma 4 4 39

7 3 12 FACT If Л 6 {Π} и KindtCC^) U Const^CC^), then

\т(А)\=Л\А\)

7 3 13 LEMMA For А, В terms of CCpv, not objects,

Α=0ηΒ^ τ(Α) =0η τ(Β)

PROOF Immediately from the following

Α=0ηΒ => \Α\=βη\Β\

=> τ'(\Α\)=0ητ'(\Β\)
=> \τ(Α)\=βη\τ(Β)\ => τ(Α)=βητ(Β)

The first is a standard property of | —|, the third is justified by the fact that we just
stated and the last step is also a standard property of | —| (See Corollary 4 4 17)
This leaves us with the second step Suppose \A\ =βη |ß|,say |Л| -»ßv Qβη«- \B\
Then we can copy all the reduction steps from |Л| to Q and from | S | to Q in
the r'-image A precise proof of this fact can be given by verifying that the
properties of 7 3 5 also hold for τ', ι e for χ an object variable (x e Var*) and a
a constructor variable (a 6 VarD)

1 T'(A) does not contain free object variables and τ'(Α[Μ/χ]) = τ'(Α),

2 r'(A[Q/a\) = T'(A)[r'(Q)la],

Sec 7 3 The proof of SN for βη in CC 175

3 A — ^ В => т'(А) ^0 r ' (ß) or т'{А) = т'{В),

4 А —», В => т'(А) —», r '(ß) И

7 3 14 LEMMA

Thee» M A => τ(Γ) h ^ „[M] г(Л)

PROOF By induction on the structure of terms as in [Geuvers and Nederhof 1991],
using Lemma 7 3 13 and the Stripping Lemma 4 4 27 We treat the cases for M
being a Π-abstraction, a λ-abstraction or an apphcatioin

Π-abstr Say M = Пи В С and note that A can only be * or Ρ By induction
hypothesis we obtain that τ(Γ) I- [ß] 0 and τ(Γ,ιιΑ) h С 0 Now
we distinguish cases according to whether В is a type or a kind
If ß is a type, т(Г, и В) = т(Г),ит(В), so by substituting с т (в) for и
and applying c°-°~0 to [B] and [C][cT<-B)/u\ we conclude that т(Г) h
c0-*0^°[ß|[C][cT(flVu] 0 and we are done
If ß is a kind, т(Г, и В) = г(Г), и p(ß), і ц т(В), so by substituting c ' (B)

for и, cT for xu and applying c ° ^ ° to [ß] and lC][c"^/u,cT^/xu}
we conclude that т(Г) h ^ " ^ " [В Ц С І ^ ^ и . ^ ^ ^и] 0 and we are
done

λ-abstr Say M = Xu Β Ρ and note that (by the Stripping Lemma 4 4 27)
A =£,, Пи В С with Г, и S h Ρ С By induction hypothesis we obtain
that т{Г,иВ) \- [P] T{C) and т(Г) h [В] 0 Now we distinguish
cases according to whether ß is a type or a kind
If ß is a type, т (Г> ß) = т(Г),и r (ß) Now τ {В) and т(С) are both
types, so we can do a λ-abstraction and we obtain т(Г) h Au r (ß) [PJ
Пи τ(β) т(С) From this we easily conclude that
τ(Γ) I- (Xz OXu r(B) [Pl)[ß] Пи r (ß) г (С) Now we are done because
from Пи ß С =βη A it follows by Lemma 7 3 13 that Пи r (ß) т(С) =0η

τ (A) and we can apply the conversion rule to obtain what was to be
proved

If β is a kind, т(Г, и В) = τ (Г), и p(ß), хи т(В) Now r (ß) is a type
and p{B) is a kind, so we can do two λ-abstractions to obtain т(Г) h
Xu p(B) Xxu т(В) IP] Пи p(B) т(В)-*т{С) From this we easily con
clude that
т-(Г) h (Лг ОЛи p(ß) Лхи τ(β) [P])[ß] Пи p(ß) т(В)->т(С) Now
again we are done because from Пи В С =ρη A it follows by Lemma
7 3 13 that Пи т(В) т{С) =βη τ(Α)

apphc Say M = PQ with Γ h Ρ Пи ß С, Г h Q ß such that А =0п C[Q/u]
By induction hypothesis we find that т(Г) h [Ρ] т(Пи ß С) and

176 SN for βη m CC Ch 7

τ (Γ) l· [Q] τ(Β) We distinguish subcases according to whether Ρ
is an object or a constructor
If Q is an object then В is a type, so [PQ\ = [P][Q] and т(Пи В С) =
Пи т{В) т{С) We can conclude that т(Г) h [PQ] r(C)[IQ]/u] and
we are done by the fact that T(C)[[Q]/U] = r(C) =0η τ(Α) (by Lemma
7 3 13)
If Q is a constructor then В is a kind, so [PQ] = [P]r(Q)inteQ and
T(UUBC) = Uu p(B) т(В)^>т(С) We can conclude that т(Г) l·
[PQ] T(C)[T{Q)/V] and we are done by the fact that T{C)[T(Q)/U] Ξ

T(C[Q/U]) =0η τ (A) (by Lemma 7 3 13) Η

7 3 15 LEMMA For M e Term(CCßv), χ € Var*, Q € VarD, jV an oijecí and Q
a constructor,

1 [M[N/x]] = [M[[N]/x]],

2 [M[Q/x]] = [M][T{Q)/a,[Q}/xa]

PROOF Both by induction on the structure of M, using the fact that a term
p(A) does not contain any free variables and that a term τ(Α) does not contain
any free object variables Further one needs some (easy) substitution properties
for the canonical inhabitants of types and kinds like

cT{A)[{N]/x] = cTiAWx»,

c"(A)[[W]/x] = c*AW'i\

c^[r(B)/a,lB]/xa] = cTW°»,

ср{А)[г(В)/а,1В]/ха] = (f^81^ И

7 3 16 THEOREM FOT M, M' e Term(CC^),

Μ ^ 0 η M' => [M] -~γη [M1]

PROOF By induction on the structure of M The only interesting cases are
when the reduced 0- or 77-redex is M itself, which are handled by distinguishing
subcases according to the domain of the lambda abstraction We only treat the
cases for which the domain is a kind (The cases for which the domain is a type
are similar but easier)

• M = (Xa A N)Q with A a kind Then

[M] = (Xz 0 Xa p(A) Xxa r(A) [N])[A]r(Q)[Q]

= [N[Q/a]\ = [M]

Sec 7 3 The proof of SN for βη m CC 177

• M = \a A Na with A a kind Then

[M] = (Xz Ο λα p(A) Xxa т{А) 1Щаха)[А]

7 3 17 THEOREM

Fun h SNfb, => CC0ri \= SN0ri

PROOF An infinite /3r;-reduction sequence in C C ^ yields an infinite /^-reduction
sequence in ¥ωρη by the mapping [—] Η

One can be a bit more careful in the last proof and use the positive formulation
of Strong Normalization for every term M there is an upperbound to the length
of all reduction sequences starting from M Then one can show that, from an
upperbound to the length of /îrç-reductions starting from [MJ, one can compute
an upperbound to the length of βη reductions starting from M

7.3.2. Strong Normalization for /Зту-reduction in Fu

The proof of Fujßn |= SN^, will be done by first proving that βω- reduction is
strongly normalizing and that the combination /?2l"-reduction is strongly normal
izing Using this, we then show that, if /3°-reduction is strongly normalizing on
the erased terms (the erasure here is the 'typed' erasure defined in 6 3 5, different
from the one defined in 4 4 11, which is totally syntactical), then /3-reduction is
strongly normalizing In this way we avoid the need to define the so called 'candi
dats de réducibihté' as typed sets, as is done for example in [Girard et al 1989]
This makes the exposition more perspicious and clearly points out where the
proof is essentially complex (in proof-theoretical terms) This idea of proving
strong normalization (reducing the problem to the set of underlying type-free
terms) is applied to the polymorphic lambda calculus in [Mitchell 1986] (see also
[Scedrov 1990])

7 3 18 PROPOSITION

Fup,, И SN/*,.

PROOF We only have to consider the constructors, because an infinite βηω-
reduction in a term of Fa;/}, will always be due to an infinite /J^-reduction in a
subterm that is a constructor
The proof is now by defining a /?7/-reduction preserving mapping [—] from the
constructors of ¥<j}ßn to the objects of λ—» such that a constructor M к becomes
an object [M] [k], where [k] is defined inductively as follows

[*] = 0,

178 SN for βη m CC Ch 7

where O is some fixed type variable to be declared in the context The reduction
preserving mapping [—] on constructors is

[a] = a,

[Xlaka] = Hc^/a],

[\a kP] = Xa [к] [Ρ],

[PQ] = [P][Q],

where for к a kind of Φωβη, the fixed object c'*l of type [k] is defined induc
tively by taking c° as a fixed variable of type 0 in the context and defining

c*i—*2 _ χχ [/¡.J С[*2І \ye t h e n j , a v e for ρ a context containing only declarations
of constructor variables,

Г (-л,,, Ρ к=>0*,<?0,[Г]Ьх^[Р] [к],

where the extension of [—] to contexts is the straightforward one El

7 3 19 LEMMA For M, M' ξ Теггт^Я^), objects,

#{X2s in M) = #(A2s in M') - 1,
#(λ 2 ί m M) = # (λ 2 ί m M'),

|М| ' = |М' | '

PROOF The only way in which the number of As of a certain form can increase
by a reduction step is when the λ of this particular form occurs in Q and

(λι A N)Q —* N[Q/x],

with χ free in N more then once So we look for each case of the lemma at a
/3-redex of the above form in the premise and check the conclusion

1 (λ2α К N)Q —>2 N[Q/a] Then Q is a constructor, so it does not contain
any objects as subexpressions, so it certainly contains no A2s So the number
of A2s is reduced with one

2 (Хша К N)Q —^+¡3 N[Q/a] Then Q is a constructor again and so it contains
no A2s The number of A2s in the term remains the same

3 By the definition of the erasure | — |', which removes all type information
A /^-reduction step will always be inside a type of the object M, so
\M* = |M'|' A/^-reduction step inside M is of the form (λ2α К N)Q —> 2

N[Q/a] After applying | - | ' the first becomes \N\' and so does the second

(г)
(и)

(ггг) M 2
— > 0 1 M'

M
M

or M

ι
*ßt

ω
— * ß n

>βτ)

M'
M'

M'

Sec 7 3 The proof of SN for βη m CC 179

7 3 20 LEMMA

PROOF Suppose we have an infinite reduction sequence

Μλ - % „ M2 - % 4 M3 - % ,

in Fuißv By Proposition 7 3 18 we know that all the M, must be objects and that
this infinite reduction can not have a tail

Λίη >βη Λ^π+1 >βη Mn+2 * βη

So the infinite /^""-reduction sequence contains infinitely many /^-contractions
By Lemma 7 3 19 this is not possible a βη2 contraction reduces the number of
A2s by one and a /^""-contraction does not change the number of A2s So there
can be no infinite /^"-reduction in Fw^ И

7 3 21 PROPOSITION

MM € 0Ь|(^,,)[5У (|М|') =• SN(M)]

PROOF Let M be an object such that SN(|M|') holds Suppose we have an
infinite reduction sequence

M — > β η Μλ — > 0 η Μ2 —*fh,

in ¥ωβη Then all Ml are objects of Υωβη By Lemma 7 3 20, only finitely
many /?7/2u,-contractions are performed after one another, so the sequence contains
infinitely many /^-contractions Now we can apply | —|' to obtain an infinite βη-
reduction sequence starting from |M| ' (using Lemma 7 3 19) This contradicts
SN(|M|'), so there is no infinite βη reduction sequence starting from M SI

The Proposition is telling us that we only have to check that the set of erasures
of objects of Ρωβη satisfies SN/з,, in order to prove

¥ωβη \= S N 3 T J

This will be done by extending the well known method of computabihty pred
icates to the higher order case This method can be seen as the building of a
model of ¥ωβη inside the untyped lambda calculus, where types become sets of
strongly normalizing terms and the interpretation (modulo a valuation ρ that
assigns untyped terms to the free variables) of a term M of type σ is an untyped
term in the set that is represented by σ The Strong Normalization property then
follows from the fact that one can take the identity for the valuation p, in which
case the interpretation of M becomes |M| ', which is then Strongly Normalizing
by the construction of the model

Let in the following SN С Λ be the set of untyped lambda terms that is
Strongly Normalizing under /^-reduction (By posponement of ^-reduction and
the fact that η-reduction itself is Strongly Normalizing on Λ, this is the same as
the set of terms that is Strongly Normalizing under β reduction)

180 SN for βη m CC Ch 7

7 3 22 DEFINITION A set of untyped lambda terms X is saturated if

1 XcSN,

2 VQ 6 SNVx e Var[iQ e X],

3 VQ, M,Pe SU[M[P/x]Q e X => (Xx M)PQ e X]

Note that SN is itself saturated and that all saturated sets are nonempty
The types of Fwpn will be interpreted as saturated sets This requires some

closure properties for the set of saturated sets which will be proved in Lemma
7 3 24 The kinds of Fu^,, will be interpreted as the set-theoretic function spaces
except for the kind * which will be interpreted as the set of all saturated sets
Recall that

Κ\πά(¥ω0η) = Κ =*\K^K

7 3 23 DEFINITION For к € Kind(Fu;/j,,), the set of computabihty predicates for
k, CP(fc), is defined inductively as follows

CP(*) = {X I X С Л is saturated},

СРГА-»*2) = {f\f CP(k,)^CP(k2)}

The interpretation of a kind к in the intended model will now be by taking CP(fc)

7 3 24 LEMMA The set of saturated sets is closed under arbitary intersections
and taking function spaces That is,

1 for I a set and Χτ saturated for all ι € /,

Г\геІХ1 is saturated

2 for X and Y saturated,

X^Y = {M e A | WN e X[MN € Y}} is saturated

PROOF The closure under arbitrary intersections is easy to prove For the clo
sure under function spaces, let X and Y be saturated sets and take X—>Y as in
the lemma It is easy to see that all M e X—*Y are SN Further, for χ a variable
and Q G SN, we have that for all N e X, xQN e Y, because N is SN and У is a
saturated set Finally, for Q,M,P e SN with M[P/x]Q € X-*Y, we know that
VJV e X[M[P/x}QN € Y] So VJV e X[(Xx M)PQN € Y] by the saturatedness
of Y, so (Xx M)PQ e X->Y H

One may wonder why we need the saturated sets (a specific class of subsets
of SN) and can not just interpret all the types by the set SN itself However, this
breaks down on the fact that SN—>SN φ SN (For example, λχ xx $ SN-+SN)

Sec. 7.3 The proof of SN for βη in CC 181

7.3.25. DEFINITION. For Γ a context of Fo^,,, a constructor valuation of Γ (no
tation ξ \=a Γ) is a map ξ : VarD —> \JkeKCP{k) such that

a : к € Г => ξ(α) € CP(Jfc).

7.3.26. DEFINITION. For Γ a context of Fw^ and ξ a constructor valuation of Γ,
the interpretation function

[-] [: r - C o n s t r (F ^ ,) ^ UkeK CP(fc)

is defined inductively as follows.

Η
I^][

[λα k.Q]¡

[σ~*τ]Γ

(

|[Πα:Α;.σ][

= ξ(α),

= ¡PiÜQ]T
(:

= \feCP(k).[Q]\la=I),

= Mt
r-Me

r,
= п/еСР(к)Ы((а=/)-

In most situations the Г will be clear from the context, and will therefore not be
mentioned explicitly.

The definition is justified by the Stripping Lemma 4.4.27 and the following
Lemma, which states that the interpretations of the constructors are elements of
the right computability predicate.

7.3 27. LEMMA. For Г a context of Fwßn, Q,k 6 Term(Fuipv) and ξ =̂o Γ,

Γ h Q : fc(:0) => [Q] { G CP(fc).

PROOF. Easy induction over the structure of Q. H

7.3.28. LEMMA. For Γ a context of Fwßr,, Q,P e T-Const^F^,,), α 6 VarD and

(г) [Q[P/a]\t = [Q]([a„lPÌ(),
(„) Q=ßlP => IQÌ(={P\

PROOF. The first by an easy induction over the structure of Q. For the second
it is sufficient to prove

Q —»*, Ρ => IQ\(= ¡P]v

which is easily done, by induction over the structure of Q. That this is sufficient
follows from the fact that the Church-Rosser property for /Jrç-reduction and Sub
ject Reduction for /?r?-reduction hold for Foi^,. The first is easy by the separation
of contexts in Fu;. (See Proposition 4.3.4. In the discussion that ends Chapter
5.1 we have pointed out how to prove CR^ for such a system.) SR^ for Fu^, is
a consequence of Corollary 7.2.4 (but there are easier ways to obtain this result).
И

182 SN for βη m CC Ch 7

7 3 29 DEFINITION For Γ a context of FtLî and ξ (=• Γ, an object valuation of
Γ with respect to ξ (notation ρ, ξ \= Γ) is a map ρ Var* —» Λ such that

χ σ e Γ =¡- ρ(ι) € [σ]£

7 3 30 DEFINITION For Γ a context of Fu;̂ ,, and ρ and ξ valuations such that
ρ, ξ f= Γ, the interpretation function

[- β r - O b j (F ^) - A

is defined inductively as follows

Η = Pix),

[PQìl = lñr
plQÍP, i fg is an object,

{PQfp = [P]^, if <3 is a constructor,

{Xx σ Qfp = \x lQ]r

plx = I) , if σ is a type,

[\akQ]r

p = [Qfp, if к is a kind

In most situations the Г will be clear from the context, and will therefore not be
mentioned explicitly

The interpretation of objects of ¥шрп does not use the valuation for the con
structor variables at all We could therefore have given the previous definition
without mentioning the ξ, letting ρ be an arbitrary mapping from Var* to Λ We
put the restriction on the ρ because on the one hand it is the natural restriction
to make for an interpretation function and on the other hand it will be needed
for the theorem we are to be proving

The fact that the interpretation of objects does not depend on the interpre
tation of the types is also expressed by the following fact

7 3 31 FACT For M an object, ρ a valuation as in the definition and χ the vector
of free variables m M,

[M]p = \M\4p[S)/í\,

where p(x) is the vector obtained by consecutively applying ρ to χ

7 3 32 DEFINITION For Γ a context, M an object and σ a type of Fu^,, Γ models
M of type σ, notation Γ (= Μ σ is defioned by

Γ μ M a = νΡ,ξ\ρ,ξ И Г =* [М]р 6 И {]

7 3 33 THEOREM For Г о context, M an object and σ a type of Fußn,

Fl· Μ σ = » Γ | = Λ ί σ

Sec. 7.3 The proof of SN for 0η in CC 183

PROOF. By induction on the structure of M we prove that if ρ, ξ [= Γ, then
[M] 6 [σ]£. So let ρ and ξ be valuations such that ρ, ξ \= Γ.

• M = χ € Var*. Then χ:τ e Γ with τ =0η σ. So {Μ\ρ = ρ(χ) 6 [TJ£ and
[τ], = [σ]£ and we are done.

• Μ Ξ XX:T.Q with τ a type. Then Γ,χ:τ h Q : μ for some μ with σ =ρη

τ^μ. By IH [QJ„(l.=p) e [μ]£ for all ρ e [τ] {) so [Ax:r.Q]pp e {μ\ for all
ρ € [r]{, so [Ax:r.Q], e [r\^\p\ = \σ\.

• Μ Ξ Ла:/с.С>, with fc a kind. Then Г, œ.k h Q : τ for some r with σ = ^
Паі .т . By IH [Q]p e [т]„„. = л for all ƒ G CP(fc), and so [\a:k.Q]p =

[СЬеп / б С Р (л) [г1 4 (а : . л = И { ·
• M = PQ, with Q an object. Then Г h Ρ : τ->μ and Γ h Q : r for

some τ and μ with μ = / 3, σ. By IH [P] p 6 [τ]£-ν[μ]£ and [Q]p € [r]£, so

[PQ\P = ¡PllQl e Mi = M{.

• M = PQ, with Q a constructor. Then Γ h Ρ : Па.к.т and Г h Ç : к
for some r with r[Q/a] =βτ) σ. By IH [P]p e [т]4-»ДОе and [Q], e [r]£)

so [PQ]p = [P]P[QÌP e [μ]£ = И £ . By Induction Hypothesis [P]p €
n/6CP(fc)[r]ç(a=/)· Further we know that [<5]£ € CP(fc), so in any case

IPQ]P = ПС И«а:-в)· H

7.3.34. THEOREM.

VM 6 ObKflj/jOlÄVflAil')].

PROOF. Let M be an object of ¥ωβη, say that Г and σ are a context and a type
such that Γ Ь M : σ. Then Γ f= M : σ by the previous theorem.
Now we define canonical elements ck in the sets CP(fc) as follows.

e := SN,

с*'-*' := λ/ € СР^О-сЧ

For the constructor valuation for Г we take ξ with ξ(α) = ck if a:fc € Γ (and ξ(α)
arbitrary otherwise), and for the object valuation for Γ with respect to this ξ we
take ρ with p(x) = x.
Now ρ, ξ |= Γ and so (Ai] e ¡σ]£. This implies that |M| ' is Strongly Normalising,
because [M] = |M| ' and [σ]£ С SN. Η

184 SN for 0η in CC Ch. 7

Chapter 8

Discussion

At the end of this thesis we want to make some remarks about points that deserve
some extra attention We first try to make the situation around the proof of
SN^, and ΌΟΝβη for C C ^ clear In the middle of all the general Lemmas and
Propositions it may have become a bit obscure what exactly is required for these
proofs Then we compare the PTS- syntax with a different formalization of Pure
Type Systems which has a more 'semantical' nature

8.1. Confluence and Normalization

8 11 R E M A R K If one wants to study the confluence of /îrç-reduction in a Pure
Type System, one should be looking at the property CON^, ι e

Γ h M, N A with M =0nN 4 M 1 N,

because C O N ^ is not a consequence of CR^, on the well typed terms This
because a /Î7/-reduction-expansion path from M to N can contain terms that are
not typable (Μ =βν N means that they are equal as pseudoterms) For these
non-typable terms, CR/з,, on the well-typed terms does not apply

The proof of CON/34 for СС/э,, in this thesis is done in the following steps

1 Prove the Key Lemma 4 4 18

2 Prove SR^ (Lemma 4 4 30) This is relatively easy, by induction on deriva
tions, using the Key Lemma

3 Prove SR, This follows quite easily from the fact that CC^, satisfies βη-
preservation of sorts (See Definition 5 2 7, Lemma 7 2 2 and Corollary
7 2 4)

4 Prove Fui0V |= CON^, This is easy, by the fact that contexts in Fo^,,
can be separated (See paragraph 5 3 for a proof of CON^,, of a calculus
containing Fu/βη)

185

186 Discussion Ch. 8

5. Prove Fu)ßv =̂ SNßv. This is hard; the proof in paragraph 7.3.2 is done by
first showing that it is sufficiënt to prove SN^ for erased terms. The proof
uses Φωβη \= CON^.

6. Prove CC/3, |= SN^. This is hard. It is done by defining a reduction
preserving mapping from ΟΟβη to Fuiß,,, so the proof uses Fu^,, f= SN^.

7. Prove СС/з̂ |= CON^. This is hard; it requires C C ^ =̂ WNÍ4, so it uses
СС^, |= 5Νβη. The proof in Chapter 5.1 is for a more general case. For
CQj,, it suffices to prove Lemmas 5.2.2, 5.2.4, 5.2.5, Proposition 5.2.3 and
Theorem 5.2.6.

Obviously, the fourth, fifth and sixth item can be compressed to one, namely
to prove CC/3,, \= SNpv. Up to now there is however no other proof of this fact
then the one given in this thesis along the lines sketched above.

Some issues immediately come up here. First that we prove Strong Normal
ization whereas we only need Weak Normalization (usually this property is just
called Normalization) for the proof of CR^. Also in other situations, Weak Nor
malization often suffices. (For example to prove consistency of a context.) This
raises the following conjecture.

8.1.2. CONJECTURE. For all Pure Type Systems ζ,

ζ μ WNßM =• с h SN0M.

Another thing that we do not know is if Strong Normalization for a system
with (conv^) implies Strong Normalization for the system with (conv^,,). The
problem is that if we extend the conversion rule with η, there are more well-
typed terms. (See the discussion in the beginning of section 7.3.) Our intuition
says that this extension can not affect the normalization, so we have the following
conjecture.

8.1.3. CONJECTURE. For all Pure Type Systems ζ,

ζ with (conVß) \= SNß(v) => ζ with (convßr)) (= SNp^).

Finally we still have the open problem whether CON/j,, holds for all Pure Type
Systems. We strongly believe that this is so and raise the following conjecture.
(Motivated by Proposition 5.3.2.)

8.1.4. CONJECTURE. In all Рите Type Systems,

Г h M:A
Г h M': A

M =0„ M'
M \ M'

Sec. 8.2 Semantical version of the systems 187

For each of these questions, a counter-example showing that the property does
not hold would probably be much more interesting then a proof. (Which makes
it unlikely that they will soon be proved, unless there are 'easy' proofs.)

There are reasons to believe that Conjecture 8.1.4 is false. It was shown
to us by Werner that Confluence of /flrç-reduction conflicts with a fixed point
combinator. Let us state this precisely for the system λ* with (conv^) rule. A
fixed point combinator in λ* is a term

Y : Πα: * .(α—»α)—»α

such that
YaF =βη F{YaF)

for σ : * and F : σ—>σ.

8.1.5. FACT. [Werner 1993] If λ* has a fixed point combinator then λ* ^ C O N ^
and λ* ^ CR/J,,

The proof is more general and applies to all PTSs that have a sort * for which
(•,•) is a rule and for which there is a sort s such that (s,*) is a rule and * : s is
an axiom. Hence we have the following Corollary by the fact that XU \= C O N ^ .
(A proof of this fact was sketched in section 5.3)

8.1.6. COROLLARY. In the system \U there is no fixed point combinator.

Up to now it is not known whether there exists a fixed point combinator
in λ*. Our conviction that C O N ^ holds has led us to believe that there is
no fixed point combinator. (There is a so called 'looping' combinator, which is
a family of combinatore Y0, ΥΊ, У2,..., all of type Πα: * .(α—>α)—>Q, such that
YnaF =β F(Yn+ioF). See for example [Coquand and Herbelm 1992].)

8.2. Semantical version of the systems

In fact the Confluence property (Conjecture 8.1.4) is the one that justifies the
use of Pure Type Systems with (conv/j,,) in the first place.

If one wants to give a semantics to a Pure Type System, one only wants to
assign a meaning to the well-typed terms. The pseudoterms are just introduced
because they make meta-theory easier, being so closely related to the untyped
lambda calculus. Even those who are just interested in syntax will agree with the
point of view that only the well-typed terms have a meaning. This point of view
implies that if two well-typed terms are equal, but only via a path that passes
through the non-typable terms, then these terms should not really be considered
as being equal.

Because pseudoterms do not have a semantics, a 'semantical' presentation
of Pure Type Systems would not contain a conversion rule of the form that we

188 Discussion СЬ 8

have The side-condition in the conversion rule would be stated by an equality
judgement of the form Г h M = N Л in stead of an equality condition on
the set of pseudoterms This equality judgement would then be axiomatised in
such a way that Γ Ι- M = N A holds only if there is a reduction-expansion
path from M to N that passes through the set of well typed terms of type A in
Г Obviously, this is also the intended meaning of the equality in the conversion
rule of a Pure Type System If Г (- А, В Type and A =pv B, then it should be
the case that the equality of A and В can be established via a path that passes
through the set of Г-types only However, when we consider ^-equality it is
not clear that this intended meaning is also the actual meaning (If one only
considers /3-equahty this is obviously the case, due to CR^ on the pseudoterms)

8 2 1 DEFINITION The semantical version of a Pure Type System X(S,A, TV¡)
has the following rules The typing rules are (sort), (weak), (var), (Π), (λ), and
(app) as for ordinary PTSs (To denote that we are in a semantical version we
write h_ in the rules) The conversion rule is

(conv^)
Γ h = M A T\-=A = В

Г Ь = M В

The judgement Г h = A = В s is generated by

Г h = Xx Α Μ Πι С O Th=N С
(β)

(ν)

(axiom)

(sym)

(trans)

Γ h = (λι A M)N = M[N/x] D[N/x]

Γ h = M ПхАВ

Г h = Xy A My = M UxAB

Г Ь = М A

T\-=M = M A

Г h = M = N A

Th=N = M A

ГЬ=М = Ν Α Γ\-=Ν = Q A

Y\-=M = Q A

Sec 8 2 Semantical version of the systems 189

Γ h = A = A' sx Γ, χ A h = В = В' s2
(Π-eq) — if (а,,а2,аз) €7г,

ГЬ=Пх AB = Пх А' В' s3

Г h = А = A' s Γ,xAl·= M = Μ' В Γl·=UxAB s
(λ-eq) !

Г h= Ai A M = \x A' M' Ux A В

Г\-= M = M' Πι AB Γ h = Ν = Ν' A
(app eq)

(conv-eq)

Γ\-=ΜΝ = M'N' B[N/x]

Γ l·= M = M' A Γ h = A = В s

Г h= M = M' ß

We would like to be able to show the equivalence of our version of the syntax
of Pure Type Systems and the semantical version in the sense that, if ζ is a PTS^,,
and (= the semantical version of ζ, then the following holds

Γ \-ζ M A ì
Γ h c N A \ ο Γ Ι-ζ_ M = Ν A

Μ=0ηΝ J

Now, the method for proving this is by showing that CON^, holds for С as it
was expressed in Conjecture 8 14

Γ\-ζ M A)
Г к с М ' Л \=>M\M'
Μ = 0 η M' J

Let us focus on a possible proof of the equivalence of ζ and ζ= to see why CONg,,
is so essential The implication from right to left should be relatively straightfor
ward by showing that, if Γ h í= M = Ν A, then Μ =βη Ν as pseudoterms and
Γ h í= Л/ Л It is obvious from the rules of ζ- that the first holds The second
is by induction on the derivation of Γ ĥ _ M = N A

The implication from left to right is more interesting It implies the following
statement

(l)If M and N are two terms that are typable with the same type in a context,
then they are equal via a /?7?-reduction-expansion path
through the well-typed terms

It is even impossible to imagine that one could prove the implication (=>) without
having first proved (1) Obviously, the way to prove (1) is by proving CON^,

This stresses the importance of the final open problem (8 1 4) that we raised

190 Discussion Сл. 8

Bibliography

[Avron et al 1987] A Avron, F Honsell and I Mason, Using typed lambda
calculus to implement formal systems on a machine, Report 87-31, LFCS
Edingurgh, UK

[Barendregt 1984] Η Ρ Barendregt, The lambda calculus its syntax and
semantics, revised edition Studies in Logic and the Foundations of
Mathematics, North Holland

[Barendregt 1992] Η Ρ Barendregt, Typed lambda calculi In Handbook of
Logic in Computer Science, eds Abramski et al, Oxford Univ Press

[Barendsen 1989] E Barendsen, Representation of logic, data types and
recursive functions in typed lambda calculi, Master's thesis, University of
Nijmegen, Netherlands, March 1989

[Barendsen and Geuvers 1989] E Barendsen and Η Geuvers, ΛΡ is
conservative over first order predicate logic, Manuscript, Faculty of
Mathematics and Computer Science, University of Nijmegen, Netherlands,

[van Benthem Jutting 1977] L S van Benthem Jutting, Checking Landau's
"Grundlagen" in the Automath system, Ph D thesis, Eindhoven University
of Technology, Netherlands, 1977

[van Benthem Jutting 199+] L S van Benthem Jutting, Typing in Pure Type
Systems To appear in Information and Computation

[van Benthem Jutting et al 1992] L S van Benthem Jutting, J McKinna and
R Pollack, Checking Algorithms for Pure Type Systems, Manuscript

[Berardi 1988] S Berardi, Towards a mathematical analysis of the
Coquand-Huet calculus of constructions and the other systems in
Barendregt's cube Dept Computer Science, Carnegie-Mellon University
and Dipartimento Matematica, Universita di Tonno, Italy

[Berardi 1989] S Berardi, Talk given at the 'Jumelage meeting on typed
lambda calculus', Edinburgh, September 1989

191

192 Bibliography

[Berardi 1990] S. Berardi, Type dependence and constructive mathematics,
Ph.D. thesis, Università di Torino, Italy.

[Berardi 1990a] S. Berardi, Private Communication.

[Berardi 199+] S. Berardi, Encoding of data types in Pure Construction
Calculus: a semantic justification. To appear in the Proceedings of the
second BRA meeting on Logical Frameworks, Edinburgh, May 1991.

[Böhm and Berarducci 1985] C. Böhm and A. Berarducci, Automatic synthesis
of typed Л-programs on term algebras Theor. Comput. Science, 39, pp
135-154.

[Boyer and Moore 1988] R.S. Boyer and J.S. Moore, A Computational Logic
Handbook. Academic Press, Boston.

[de Bruijn 1974] N.G. de Bruijn, Some extensions of AUTOMATH: The AUT-4
family, Internal Report, University of Technology, Eindhoven, Netherlands.

[de Bruijn 1980] N.G. de Bruijn, A survey of the project Automath, In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
eds. J.P. Seidin, J.R. Hindley, Academic Press, New York, pp 580-606.

[CC-documentation] The Calculus of Constructions, documentation and users
guide, version 4.10, Technical report, INRIA, August 1989.

[Church 1940] A. Church, A formulation of the simple theory of types J.
Symbolic Logic, 5, pp 56-68.

[Constable et.al. 1986] R.L. Constable et.al., Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall.

[Coquand 1985] Th. Coquand, Une theorie des constructions, Thèse de
troisième cycle, Université Paris VII, France, January 1985.

[Coquand 1986] Th. Coquand, An analysis of Girard's paradox, Proceedings of
the first symposium on Logic in Computer Science, Cambridge Mass.,
IEEE, pp 227-236.

[Coquand 1986a] Th. Coquand, A Calculus of Constructions, Manuscript,
INRIA, France.

[Coquand 1990] Th. Coquand, Metamathematical investigations of a calculus of
constructions. In Logic and Computer Science, ed. P.G. Odifreddi, APIC
series, vol. 31, Academic Press, pp 91-122.

Bibliography 193

[Coquand 1991] Th Coquand, An algorithm for testing conversion in type
theory In Huet and Plotkin (eds), Logical Frameworks, Cambridge Umv
Press

[Coquand 199+] Th Coquand, A new paradox in type theory, to appear in
Proceedings of the 9th International Congress of Logic, Methodology and
Philosophy of Science, Uppsala, Sweden 1991

[Coquand and Gallier 1990] Th Coquand and J Gallier, A proof of strong
normalization for the Theory of Constructions using a Knpke-hke
interpretation, Informal Proceedings of the BRA-Logical Frameworks
meeting, Antibes 1990, pp 479-497

[Coquand and Herbehn 1992] Th Coquand and H Herbelm, An Application of
Л-translation to the existence of families of looping combinatore in
inconsistent Type Systems, to appear in Journal of Functional
Programming

[Coquand and Huet 1988] Th Coquand and G Huet, The calculus of
constructions, Information and Computation, 76, pp 95-120

[Coquand and Huet 1985] Th Coquand and G Huet, Constructions a higher
order proof system for mechanizing mathematics Proceedings of
EU ROC AL '85, Lim, LNCS 203

[Coquand and Mohnng 1990] Th Coquand and Ch Pauhn-Mohnng
Inductively defined types, In Ρ Martin-Lof and G Mints editors
COLOG-88 International conference on computer logic, LNCS 417

[Curry and Feys 1958] Η В Curry and R Feys, Combinatory Logic, Vol 1
North-Holland

[van Daalen 1973] D van Daalen, A description of AUTOMATH and some
aspects of its language theory, In Ρ Braffort, ed Proceedings of the
symposium on A PL, Pans

[van Daalen 1980] D van Daalen, The language theory of AUTOMATH, Ph D
thesis, Eindhoven Technological University, The Netherlands, Februari
1980

[van Dalen 1983] D van Dalen, Logic and Structure, second edition Springer
Verlag

[Dowek et al 1991] G Dowek, A Felty, H Herbelm, G Huet, Ch
Paulin-Mohnng, В Werner, The Coq proof assistant version 5 6, user's
guide INRIA Rocquencourt - CNRS ENS Lyon

194 Bibliography

[Gallier 1990] J. Gallier, On Girard's "Candidats de Reductibilité" In Logic
and Computer Science, ed. P.G. Odifreddi, APIC series, vol. 31, Academic
Press, pp 123-204.

[Gardner 1992] P. Gardner, Representing logics in type theory, Ph.D. thesis,
University of Edinburgh, UK, January 1992.

[Geuvers 1988] H. Geuvers, The interpretation of logics in type systems,
Master's thesis, University of Nijmegen, Netherlands, August 1988.

[Geuvers 1989] J.H. Geuvers, Talk given at the 'Jumelage meeting on typed
lambda calculus', Edinburgh, September 1989.

[Geuvers 1990] J.H. Geuvers, Type systems for higher order predicate logic,
Manuscript, University of Nijmegen, Netherlands, May 1990.

[Geuvers and Nederhof 1991] J.H. Geuvers and M.J. Nederhof, A modular
proof of strong normalisation for the calculus of constructions. Journal of
Functional Programming, vol 1 (2), pp 155-189.

[Geuvers 1992] J.H. Geuvers, The Church-Rosser property for ^-reduction in
typed lambda calculi In Proceedings of the seventh annual symposium on
Logic in Computer Science, Santa Cruz, Cai, IEEE, pp 453-460.

[Geuvers 199+] J.H. Geuvers, The Calculus of Constructions and higher order
logic, to appear in The Curry-Howard isomorphism, Sème volume des
cahiers du Centre de Logique de l'Université Catholique de Louvain, eds.
M. Crabbe and Ph. de Groóte.

[Girard 1971] J.-Y Girard, Une extension de l'interprétation fonctionnelle de
Godei à l'analyse et son application à l'élimination des coupures dans
l'analyse et la théorie des types. Proceedings of the Second Scandinavian
Logic Symposium, ed. J.E. Fenstad, North-Holland.

[Girard 1972] J.-Y. Girard, Interprétation fonctionelle et élimination des
coupures dans l'arithmétique d'ordre supérieur. Ph.D. thesis, Université
Paris VII, France.

[Girard 1986] J.-Y. Girard, The system F of variable types, fifteen years later.
TCS 45, pp 159-192.

[Girard et al. 1989] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and types,
Camb. Tracts in Theoretical Computer Science 7, Cambridge University
Press.

[Gordon et al 1976] M.J. Gordon, A.J. Milner, A.P. Wadsworth, Edinburgh
LCF, LNCS 89.

Bibliography 195

[Gordon 1988] M.J. Gordon, HOL: a proof generating system for higher-order
logic. VLSI spécification, Verification and Synthesis, Eds. G. Birtwistle and
P.A. Subrahmanyam, Kluwer, Dordrecht, pp 73-128.

[Harper et al. 1987] R. Harper, F. Honsell and G. Plotkin, A framework for
defining logics. Proceedings Second Symposium on Logic in Computer
Science, (Ithaca, N Y.), IEEE, Washington DC, pp 194-204.

[Harper and Pollack 1991] R. Harper and R. Pollack, Type checking with
universes, TCS 89, pp 107-136.

[Heyting 1934] A. Heyting, Mathematische Grundlagenforschung.
Intuitionismus. Beweistheorie, Springer, Berlin. Reprinted 1974.

[Howard 1980] W.A. Howard, The formulas-as-types notion of construction. In
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, eds. J.P. Seldin, J.R. Hindley, Academic Press, New York, pp
479-490.

[Hyland and Pitts 1988] M. Hyland and A. Pitts, The theory of constructions:
categorical semantics and topos-theoretic models. In Categories in
computer science and logic, Proc. of the A MS Research Conference,
Boulder, Col., eds. J.W. Gray and A.S. Scedrov, Contemporary Math., vol
92, AMS, pp 137-199.

[Kolmogorov 1932] A.N. Kolmogorov, Zur Deutung der Intuitionistischen
Logik, Math. Z. 35, pp 58-65.

[Krivine and Parigot 1990] J.-L. Krivine and M. Parigot, Programming with
proofs, J. Inf. Process. Cybern. EIK 26 3, pp 149-167.

[Lambek and Scott 1986] J. Lambek and P.J. Scott, Introduction to higher
order Categorical Logic, Cambridge studies in advanced mathematics 7,
Camb. Univ.Press.

[Läuchli 1970] H. Lauchli, An abstract notion of realizability for which
intuitionistic predicate calculus is complete. In Intuitionism and Proof
Theory, Proceedings of the Summer School Conference at Buffalo, New
York, eds. G. Myhill, A. Kino and R. Vesley, North-Holland, pp 227-234.

[Longo and Moggi 1988] G. Longo and E. Moggi, Constructive Natural
Deduction and its "Modest" Interpretation. Report CMU-CS-88-131.

[LEGO-examples] R. Pollack et al., Examples of proofs formalised in LEGO,
Edinburgh.

196 Bibliography

[Lób 1976] M. Lob, Embedding first order predicate logic in fragments of
intuitionistic logic, J. Symbolic Logic vol 41, 4 pp. 705-719.

[Luo 1989] Z. Luo, ECC: An extended Calculus of Constructions. Proc. of the
fourth ann. symp. on Logic in Сотр. Science, Asilomar, Cal. IEEE, pp
386-395.

[Luo and Pollack 1992] Z. Luo, R. Pollack, Lego proof development system:
User's Manual, Dept. of Computer Science, University of Edinburgh, April
1992.

[Martin-Löf 1971] P. Martin-Lóf, A theory of types, manuscript, October 1971.

[Martin-Löf 1975] P. Martin-Lóf, An intuitionistic theory of types: predicative
part. Logic Colloquium '73, North-Holland 1975, pp 73-118.

[Martin-Löf 1982] P. Martin-Lóf, Constructive mathematics and computer
programming. Sixth International Congress for Logic, Methodology, and
Philosophy of Science VI, 1979, North-Holland 1982, pp 153-175.

[Martin-Löf 1984] P. Martin-Lof, Intuitionistic Type Theory, Studies in Proof
theory, Bibliopolis, Napoli.

[Mendier 1987] N.P. Mendier, Inductive types and type constraints in
second-order lambda calculus. Proceedings of the Second Symposium of
Logic m Computer Science. Ithaca, N.Y., IEEE, pp 30-36.

[Mitchell 1986] J. Mitchell, A type-inference approach to reduction properties
and semantics of polymorphic expressions. In Proceedings of 1986 ACM
Symposium on LISP and Functional Programming, ACM New York, pp
308-319,

[Mohring 1986] Ch. Mohring, Algorithm development in the calculus of
constructions. In Proceedings of the first symposium on Logic in Computer
Science, Cambridge, Mass. IEEE, pp 84-91

[Nederpelt 1973] R.P. Nederpelt, Strong normalization in a typed lambda
calculus with lambda structured types. Ph.D. thesis, Eindhoven
Technological University, The Netherlands, June 1973.

[Nordström et al. 1990] В. Nordström, К. Petersson, J.M. Smith, Programming
in Martin-Löf's Type Theory. Oxford University Press.

[Paulin 1989] Ch. Paulin-Mohring, Extraction des programmes dans le calcul
des constructions, Thèse, Université Paris VII, France.

Bibliography 197

[Paulson 1987] L.C. Paulson, Logic and Computation. Cambridge Tracts in
Theoretical Computer Science 2, Cambridge University Press.

[Parigot 1992] M. Parigot, Recursive programming with proofs. Theor. Сотр.
Science 94, pp 335-356.

[Pollack 1989] R. Pollack, Talk given at the 'Jumelage meeting on typed
lambda calculus', Edinburgh, September 1989.

[Pottinger 1989] G. Pottinger, Definite descriptions and excluded middle in the
theory of constructions, TYPES network, November 1989.

[Prawitz 1965] D. Prawitz, Natural Deduction, Almqvist and Wiksell,
Stockholm.

[Reynolds 1974] J .С Reynolds, Towards a theory of type structure.
Proceedings, Colloque sur la Programmation, LNCS 19, pp 408-425.

[Ruys 1991] M. Ruys, ΧΡω is not conservative over λΡ2, Master's thesis,
University of Nijmegen, Netherlands, November 1991.

[Salvesen 1989] A. Salvesen, The Church-Rosser Theorem for LF with η
reduction. Notes of a talk presented at the BRA-Logical Frameworks
meeting, Antibes 1990.

[Salvesenl991] A. Salvesen, The Church-Rosser property for /ΐη-reduction,
manuscript

[Scedrov 1990] A. Scedrov, A guide to polymorphic types. In Logic and
Computer Science, ed. P.G. Odifreddi, APIC series, vol. 31, Academic
Press, pp 387-420

[Seldin 1990] J. Seldin, Excluded middle without definite descriptions in the
theory of constructions, TYPES network, September 1990.

[Schutte 1977] К. Schutte, Proof Theory, Grundlehren der mathematischen
Wissenschaften 225, Springer-Verlag.

[Smorynski 1973] C. Smorynski, Applications of Kripke models, in
Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
ed. A. Troelstra, LNM 344, pp 324-391.

[Streicher 1988] T. Streicher, Correctness and completeness of a categorical
semantics of the calculus of constructions, Ph.D. Thesis, Passau University,
Germany.

198 Bibliography

[Streicher 1991] Τ Streicher, Independence of the induction principle and the
axiom of choice in the pure calculus of constructions, TCS 103(2), pp 395 -
409

[Swaen 1989] Weak and strong sum-elimination in intuitionistic type theory,
Ph D thesis, Faculty of Mathematics and Computer Science, University of
Amsterdam, Netherlands, September 1989

[Tait 1965] W W Tait, Infinitely long terms of transfinite type In Formal
Systems and Recursive Functions, eds J N Crossley and M A E
Dummett, North-Holland

[Tait 1975] W W Tait, A realizabihty interpretation of the theory of species In
Proceedings of Logic Colloquium, ed R Pankh, LNM 453, pp 240-251

[Takeuti 1975] G Takeuti, Proof Theory, Studies in Logic, vol 81,
North Holland

[Terlouw 1989a] J Terlouw, Een nadere bewijstheoretische analyse van GSTT's
(inci appendix), Manuscript, Faculty of Mathematics and Computer
Science, University of Nijmegen, Netherlands, March, April 1989 (In
Dutch)

[Terlouw 1989b] J Terlouw, Sterke normaliszatie in С á la Tait, Notes of atalk
held at the Intercity Seminar on Typed Lambda Calculus, Nijmegen,
Netherlands, April 1989 (In Dutch)

[Tonmo anf Fujita 1992] H Tonino and К -E Fujita, On the adequacy of
representing higher order intuitionistic logic as a pure type system, Annals
of Pure and Applied Logic 57, pp 251-276

[Troelstra and Van Dalen 1988] A Troelstra and D van Dalen, Constructivism
in mathematics, an introduction, Volume I/II, Studies in logic and the
foundations of mathematics, vol 121 and volume 123, North-Holland

[Verschuren 1990] E Verschuren, Conservativity in Barendregt's cube, Master's
thesis, University of Nijmegen, Netherlands, December 1990

[Werner 1993] В Werner, Private Communication

Index

(-Γ. I»
(D), 33
(Θ,С), 34
(0,C)-valid, 34
(conv«,), 77
(streng), 77
O-abstraction, 132
2-abstraction, 132
H, 89
Я (Г в , Г т) ё Д , 147
К, 82
LT, 17
M =d M', 97
P-abstraction, 132
f/, 92
f/-, 92
Vs, 79
Vb, 27
Χ μ CR«,,, 94
Χ \= SN«,,, 94
Χ И CON«,,, 94
M , 36
H , 153
&, 14
СС з̂, 165
СС/з,, 165
Constr(C), 130
ΔιΙ±)Δ2, 49
E-PREDn, 16
F u ^ , 165
Form, 8

Г (=(,о V, 34
Γ Ν ν», 28
Γ r-PREDn φ, 13

Γ h «Λ 35

Γ Ρ" Μ : Л, 103
Γ°,83
Γ*, 83
Γι U Γ2, 49
ΓΜ,84
Γ(, 49
Γ Μ, Α, 84
Kind(C), 130
Cn, 35

APRED2, 58
APREDw, 58
APRED, 45
Obj(C), 130
PREDw, 13
PRED _ / r , 20, 23
PRED _ / , 20
PREDn, 12
PREDnc, 18
PRED - ƒ, 22
PRED^", 18
PROPn, 17
PROPnc, 18
PROP^-, 18
PTS-morphisms, 78
Σ(Μ), 53
E„, 29
T+,95
Type', 89
Type(C), 130
Type?, 85
Type', 85
VarD, 80
Var*, 80
Var0*, 45

агрт, 46

199

200 Index

Var'", 45
/3(7?)°-reduction,
/3(77)2-reduction,
/?(r;)p-reduction,
/^^"-reduction,
/îrç-preservation
1 , 14, 32

L ' 9 6

3, 14
h(A), 116
D, 32

[-] , . 34
[-] , 168, 173

H p . 182
[-] , 156

λ*, 78
XU, 92

λί/", 92
APRED2P, 143

APROPw, 85
APROPö, 85

Xn, 83
AN, 124
λ-definable, 28

AHOPL, 89
APRED2, 85
APREDu;, 85

APREDw, 85

APRED, 85

APROP2, 85
APROP, 85

A0, 132

A2, 132
Xp, 132

yßv(S,A,TZ),71
AP, 80
AP2, 80
ΑΡω, 80
A2, 80

λω, 80
ΑΡω, 80

Χω, 80

132
132

132

132

of sorts, 121

λ->,80

CON/jo,), 94
CR«,), 94
S N №) , 94

- , 1 4
ω-abstraction, 132

—»в, 57
ρ, 169

ρ, f h Γ, 182

(Η), 50
Ü(M), 131
~ , 35

~D, 16
~ с н і 55
(-) . 54
г, 168, 170, 171
τ', ПА
ty(-), 117
H-34
V, 14, 32
Л 32

ξ 1= Г, 156
ξ | = Γ α , 156

ξ \=D Γ, 181
ξ satisfies Γ, 156
ξ satisfies Γ 0 , 156
cA, 171
s-element, 77
s-term, 77

s-Elt(r), 77
з-Тегт(Г), 77
υ, 28
χ £, ty(P), 118
xa, 171

(П'), 69
(П1),61
(П2), 61
(Π), 61, 66, 70

(Π'), 70
(V), 46
(V-el), 47
(V-in), 47

O), 46

Index

(Э-el), 47
(>in), 47
(λ), 61, 66, 70
(λ-abs), 46
(λ'), 69
(λ0), 68
(λ0) rule, 68
(λρ), 68
(EXT), 15
(app), 46, 61, 66, 70
(ax'), 69, 70
(ax), 61, 66, 70
(axiom), 47
(conv), 47, 61, 66, 70
(ctxf), 69
(ctxt), 61, 66, 70
(proj), 61, 66, 70
(var), 46, 80
(weak), 80
CP{k), 180
Context, 77
D, 12, 22
Form, 13
PRED, 13
PROP 1, 18
PTS, 73, 77
PTS^, 77
Prop, 85
P, 46
Set, 85
T, 45
V, 33
Λ, 33
V, 33
Λ, 33
Type', 92
F, 22

P R O P B , 8

AC, 157
algebraic model, 34
algebraic semantics, 32

201

AUT-4, 69
AUT-68, 60
AUT-68+, 69
AUT-HOL, 70
axiom, 76

basic domains, 12

c-i deal, 36
Calculus of Constructions with βη-

conversion, 73
cancel, 8
candidat de réducibilité, 132
canonical inhabitants, 171
cHa, 33
Church-Rosser property, 73
Church-Rosser property for/?(r;)-reduction,

94
CL, 157
classical logic, 18
Classification for injective systems, 114
collapsing mapping from the logic cube

to the Barendregt's cube, 89
complete Heyting algebra, 32, 33
complete ideal, 36
complete lattice, 33
completeness, 31, 37, 146
comprehension, 14
computability predicate, 180
Confluence for /3(77)-reduction, 94
consequence relation, 35
conservativity, 24
constructor, 82
constructor valuation, 181
constructor-variable, 81
constructors, 130
context, 60, 77
context separation, 70
Correctness of Types, 108
CR, 73

crude discharge convention, 8
cube, 81
cube of logical typed lambda calculi,

85

202 Index

cube of typed lambda calculi, 73, 80
cut, 57
cut-elimination, 56

DD, 158
decidability of typing, 135
declaration, 60
deduction tree, 8
definitional equality, 14
depth, 133
derivable, 13
discharge, 8, 13
disjoint union, 49
domain equal, 97
domains, 12, 22

elementary extension, 147
equivalent modulo renaming, 55
erasure, 94, 97
EXT, 142
EXT', 142
extensionahty, 15
extensionahty scheme, 15

F, 81
Fw, 81
Fri, 83
first order logic with negation, 18
fixed point combinator, 187
formula, 13
free logic, 47
Free variables, 103

full, 79
functional, 79
functional domains, 22
functional types, 45

heart of a pseusdoterm, 116

Heyting algebra, 32

inconsistent PTS, 91
INF, 158

infinitary distributive law, 33

injective, 79

Key Lemma, 74
kinds, 82, 130
Kripke semantics, 38

language-context, 146
lattice, 32
level of M, 131
LF, 66, 81
Lmdenbaum algebra, 35
logic based on the full simply typed

lambda calculus, 17
logic cube, 85
logical PTS, 91
looping combinator, 187

mapping from X(S, А, П) to \(S', A', W),

78
morphism from \{S, А, К) to \{S', A, W),

78

object valuation, 182

object-context, 45, 82, 146
object term, 45
object variable, 45, 70, 81
objects, 130
open formula, 8
order of a domain, 12, 22

PI, 159
polymorphically typed lambda calcu

lus, 81
PRED-S 18
predicate logic of finite order, 13
predicate logic of order n, 12
predicate types, 45
preserve axioms and rules, 78
proof-context, 47, 146
proof-irrelevance, 155

Godei translation, 18
Generalised System for Terms and Types,

73
Generalised Type System, 73
GTS, 73

Index 203

proof-terms, 46

proof-variable, 70

PROP,,, 8

PROPc, 10

propositional logic, 17

pseudojudgements, 78

pseudoproofs, 46

pseudoterms, 45

pseudoterms with markers, 95

Pure Calculus of Constructions, 128

Pure Type System, 73

Pure Type System with /?7?-conversion

and strengthening, 77

Pure Type Systems with sorted vari

ables, 80

rank, 134

Replacement, 101

restricted Calculus of Constructions,

133

Restricted Weakening, 102

rule, 76

saturated, 180

second order predicate logic on poly

morphic domains, 143

semantical version of a PTS, 188

semi-full, 79

set-context, 146

set-variable, 70

simply typed lambda calculus, 81

singly-occupied, 79

singly-sorted, 79

sort, 76

soundness, 35

Strengthening, 74, 113

Stripping, 107

Strong Normalization for /fl(^)-reduction,

94

Strong Permutation, 113

strongly consistent context, 157

Subject Reduction for beta, 109

Subject Reduction for eta, 111

Substitution, 106

terms of the nth order language, 12

Thinning, 104

truth tables, 27

typable, 77

type of Ρ in the derivation of Γ h M

Л, 117
type-variable, 45
types, 130

union, 49

Uniqueness of Types, 108

valuation, 28

204 Index

Samenvatting

Dit proefschrift behandelt het verband tussen logica's en getypeerde lambd-
calculi, in het bijzonder door bestudering van de zogenaamde 'formules-als-types'
inbedding Deze inbedding geeft een betekenis aan logische bewijzen (het ware
misschien beter te spreken van 'afleidingen') in termen van getypeerde lambda
termen Een belangrijk gevolg hiervan is dat de bewijzen een getrouwe lineaire
representatie krijgen in een formeel systeem Dit heeft aanleiding gegeven tot
belangrijke toepassingen, allen gebaseerd op de mogelijkheid tot het manipuleren
van bewijzen binnen een formeel systeem Men denke hierbij aan de computer-
venficatie van bewijzen en aan de mogelijkheid om uit een bewijs van een uit
spraak van de vorm Vx 3y φ(χ, y) een algoritme te extraheren dat voor iedere χ
een y berekent waarvoor φ(χ, y) geldt In dit proefschrift wordt met name gekeken
naar de formules-als-types inbedding zelf en tevens worden de bijbehorende sys
temen van getypeerde lambda calculus uitgebreid bestudeerd Slechts zijdelings
wordt in de hoofdstukken 3 1 en 6 1 enige aandacht besteed aan de toepassingen

De formules-als-types inbedding werd voor het eerst formeel beschreven in
[Howard 1980], die ook de eerste was die de terminology 'formulas-as-types' ge
bruikte Het manuscript van dit artikel dateert al uit 1968 en veel van de
ideeën uit dit werk zijn nog ouder en gaan terug tot Curry (zie bijvoorbeeld
[Curry and Feys 1958]) Howard stelt zich met name tot doel een interpretatie
te geven van de intuitionistische logische voegtekens volgens de zogenaamde
Brouwer Heyting-Kolmogorov (BHK) interpretatie Volgens deze BHK inter
pretatie (zie bijvoorbeeld [Troelstra and Van Dalen 1988]) wordt een voegteken
verklaard door te zeggen wanneer iets een bewijs is van een uitspraak die opge
bouwd is met behulp van dat voegteken Howard geeft een formele semantiek van
intuitionistische bewijzen in termen van een getypeerde lambda calculus door een
interpretatie te geven van de introductie en eliminatie regels van de voegtekens
De introductie regels voor Э en V corresponderen bijvoorbeeld met λ-abstractie
en de eliminatie regels voor Э en V met applicatie Het werk van Howard is later
verfijnd en uitgebreid door onder andere Martin-Lof en Girard

Een andere benadering werd gekozen door de Bruijn in het Automath project
[de Bruijn 1980], die onafhankelijk van Howard een soort van formules-als-types
inbedding definieerde Deze inbedding heeft een andere vorm, met name vanwege
het feit dat de Bruijn niet gericht was op bewijstheoretische bespiegelingen maar

205

206 Samenvatting·

op een veel praktischer doel het formaliseren van wiskundig redeneren op een
computer Het verschil in vorm zit hem erin dat men niet zoekt naar getypeerde
lambda calculi die getrouw met logische systemen corresponderen, maar dat men
een systeem probeert te vinden dat kan dienen als raamwerk (logical framework)
voor wiskundig redeneren Dit raamwerk zal dus vrij 'kaal' zijn en alleen die
onderliggende principes bevatten waar alle wiskundigen het over eens zijn In de
eerste plaats is de Bruijns werk dus een poging om deze onderliggende principes
boven tafel te krijgen, met als mogelijk gevolg dat, zodra deze principes gefor
maliseerd zijn, deze geïmplementeerd kunnen worden als een programma voor
verificatie van wiskundige redeneringen

Uiteraard kunnen ook de lambda-calculi a la Howard geïmplementeerd wor
den Met name voor de toepassing van het extraheren van algoritmen uit bewijzen
blijken deze systemen het meest geschikt te zijn Het is uiteraard ook mogelijk
om beide benaderingen te gebruiken binnen een systeem

Het voornaamste deel van dit proefschrift is gewijd aan de formules-als-types
inbedding a la Howard Interessante vragen hierbij zijn of de inbedding volledig is
en in hoeverre zij een isomorfisme is Volledigheid van de inbedding betekent hier
dat voor alle formules φ uit de logica, als er een term is van type φ in de getypeerde
lambda calculus, dan is φ bewijsbaar in de logica Isomorphie wil zeggen dat de
inbedding een structuur behoudende bijectie op het niveau van bewijzen is Het is
ook van belang eigenschappen van de getypeerde lambda-calcuh zelf af te leiden
In de eerste plaats om met behulp van die eigenschappen iets over de formules-
als-types interpretatie te zeggen, maar verder zijn deze eigenschappen ook van
belang voor de implementatie van de calculus Tot slot hebben zij vaak ook
belangrijke corollana in de logica's

De twee belangrijkste van deze eigenschappen zijn confluence en normalisatie
Zowel in de logische taal (zeker als die hogere orde is) als op de bewijzen is er
een notie van reductie en een daaruit voortvloeiende notie van gelijkheid In de
logische taal worden deze meestal gerepresenteerd door de β- (of /37)-)reductie en
gelijkheid Deze wordt vaak de definitionele gelijkheid van de taal genoemd De
gelijkheid op afleidingen komt voort uit de reductie-relatie die bestaat uit het
elimineren van sneden Nu is het zo dat in de bijbehorende getypeerde lambda
calculi zowel de definitionele gelijkheid als de gelijkheid op afleidingen gerepre
senteerd worden door β of βη gelijkheid (afhankelijk van wat men precies als
definitionele gelijkheid in de taal neemt en hoe men precies de notie van snede
definieert) De confluentie eigenschap (die zegt dat twee termen die gelijk zijn
ook een gemeenschappelijk reduct hebben) is van vitaal belang om te laten zien
dat met alle termen aan elkaar gelijk zijn De normalisatie eigenschap (die zegt
dat iedere term reduceert naar een term in normaal vorm, ι e een term die niet
verder gereduceerd kan worden) is van vitaal belang om de consistentie van een
(logische) theorie te laten zien

Dit proefschrift is opgebouwd uit de volgende componenten
Hoofdstuk 2 geeft een overzicht van logische systemen, van eerste orde proposi-

Samenvatting 207

tielogica tot en met hogere orde predicatenlogica, m de klassieke en ïntuitionis-
tische varianten We beschrijven en bewijzen eigenschappen en verbanden zoals
beslisbaarheid en conservativiteit

Hoofdstuk 3 geeft een gedetailleerde bescnjvmg van de formules-als-types
inbedding, zowel die à la Howard als die à la de Bruijn We geven een gedetailleerd
bewijs van de isomorfie van eerste orde predicatenlogica en een corresponderende
getypeerde lambda calculus

In Hoofdstuk 4 bestuderen we een algemeen raamwerk voor de beschrijving
van getypeerde lambda-calculi, de zogenaamde 'Pure Type Systems' We bewi
jzen een reeks eigenschappen voor deze systemen en geven voorbeelden van Pure
Type Systems die corresponderen met logica's uit Hoofdstuk 1

In Hoofdstuk 5 bestuderen we de confluence van /377-reductie in getypeerde
lambda calculi Confluentie van /3-reductie is relatief eenvoudig, maar voor βη is
het algemene probleem verrassend moeilijk Het algemene resultaat dat we hier
bewijzen is dat confluentie geldt voor βη als het Pure Type System normahzerend
is

Hoofdstuk 6 gaat over de Calculus of Constructions (CC), een getypeerde
lambda-calculus gedefinieerd door Coquand en Huet waarin de hogere orde log
ica ingebed kan worden door middel van de formules-als-types inbedding We
bestuderen CC en zijn fijnstructuur en de inbedding van logica m (subsystemen
van) CC

Hoofdstuk 7 geeft een gedetailleerd bewijs van sterke normalisatie van βη-
reductie in CC (Sterke normalisatie betekent dat er geen oneindige reductie
paden zijn)

Tenslotte bespreken we in Hoofdstuk 8 nog een aantal vermoedens die naar
voren komen naar aanleiding van de bewijzen van confluentie en normalisatie

208 Samen vai ting

Curriculum Vitae

Ik ben geboren op 19 mei 1964 te Deventer, alwaar ik van zomer 1976 tot zomer
1978 de brugklas en de tweede klas van het Gymnasium volgde op de Alexan
der Hegius Scholengemeenschap. Van zomer 1978 tot zomer 1982 volgde ik de
overige vier klassen van het Gymnasium (later OVWO) op het Stedelijk Lyceum
te Zutphen en bekroonde dit met een diploma.

Van september 1982 tot en met augustus 1988 heb ik Wiskunde gestudeerd
aan de KUN. Mijn afstudeerrichting was Grondslagen van de Wiskunde en ik heb
mijn afstudeerwerk verricht bij Professor H.P. Barendregt. Hoewel ik m diezelfde
periode nog zitting heb gehad in de onderwijscommissie, de sectieraad en het
sectiebestuur van de vakgroep Wiskunde en in de faculteitsraad van de faculteit
Wiskunde en Natuurwetenschappen, werden zowel het propedeutisch als het doc
toraal examen met lof behaald. Verder zijn uit deze periode nog vermeldenswaard
de studentassistentschappen bij Wiskunde voor Chemici, Wiskunde voor Biolo
gen en Statistiek en Kansrekening, Inleiding in de Wiskunde en Logica, alle drie
voor Informatici.

Na mijn afstuderen ben ik van september 1988 tot en met december 1988
uitgezonden geweest naar het Dipartimento di Informatica van de Universiteit
van Pisa om te werken onder Professor G. Longo. Deze uitzending vond plaats in
het kader van het 'Jumelage project getypeerde lambda calculus'. Daarna ben ik
van 1 maart 89 tot 1 maart 1993 Assistent in Opleiding geweest bij de vakgroep
Informatica van de KUN. Onder supervisie van Professor H.P. Barendregt en
gefinancierd door het TLI netwerk deed ik daar onderzoek op het gebied van
de getypeerde lambda calculus. In deze periode heb ik het college Grondslagen
van de Informatica 2 gegeven en de helft van het college Theorie 1. Tevens heb
ik geassisteerd bij het oriëntatiecollege Grondslagen van de Informatica en bij
Grondslagen van de Informatica 3. Van 1 maart 93 tot 1 augustus 93 ben ik
Toegevoegd Onderzoeker bij dezelfde vakgroep Informatica geweest in het kader
van het ESPRIT BRA project 'Types for Proofs and Programs'. Vanaf 1 augustus
93 ben ik Universitair Docent bij de vakgroep Theoretische Informatica van de
TUE. Tevens blijf ik voor één dag in de week Toegevoegd Onderzoeker bij de
vakgroep Informatica van de KUN bij het voornoemde ESPRIT BRA project

209

Stellingen

Definieer de afbeelding [—] van de volle één-soortige eerste orde predica-
tenlogica naar de hogere orde propositielogica als volgt

[x] = I ,

[Rh tn] = R\ti\ [t„],

[φ 3ψ] = [φ] Э [Φ],

[<pL·*] = [<р]кЩ,

[φνψ] = И [4

Ь] = ι[φ],
[ix φ] = Vi M,

[3ι φ] = Эх [φ]

Dus bijvoorbeeld [Vx Px э Px] = Vx Px Э Px (De χ aan de linkerzijde
is een objectvanabele, de χ aan de rechterzijde een propositievariabele
Evenzo is de R aan de linkerzijde een relatiesymbool, de R aan de rechter
zijde een hogere orde variabele) In feite is het bereik van de afbeelding
[-] een zeer kleine uitbreiding van de tweede orde propositielogica
De afbeelding [—] is getrouw maar niet volledig

Er is geen fixed point combinator in het Pure Type System XU. (Met
dank aan Benjamin Werner)

De hogere orde propositielogica (PROPu>) is een conservatieve uitbrei
ding van de tweede orde propositielogica (PROP2) Het bewijs maakt
gebruik van het feit dat complete Heyting algebra's een getrouw en vol
ledig model voor PROP2 vormen
Als Δ een verzameling formules en φ een formule van PROP2 is en
Δ ЬряоРи; φ met afleiding Θ, dan is het in het algemeen niet waar dat
de normaal vorm van Θ, verkregen door middel van snede-ehminatie,
een afleiding van Δ HPROP2 Ψ is

In getypeerde lambda-calculus komt dit overeen met de volgende twee
feiten Laat Γ een context en σ een type van A2 zijn Dan

Τ\-ΧωΜ σ ф rh A 2 nf(i t f) σ,

Γ \-Χω Μ • σ => 37 [Г h A 2 Ν σ]

Het is daarom niet verwonderlijk dat er tot nu toe geen zuiver syntactisch
bewijs van de conservativiteit van PROPu over PROP2 is gevonden

De beperking van de getypeerde lambda-calculus met recursieve typen
λμ tot de calculus Αμ+, waar alleen μ-abstracties over positieve type
schema's zijn toegestaan, is geen echte beperking Voor ieder type σ van
λμ kan een type σ' van λμ + geconstrueerd worden zodat σ « σ' Daaruit
volgt dat alle lambda termen getypeerd kunnen worden in λμ+

1

5 Het bewijs van Corollaxium 15 1 5 in [Baxendregt 1984] is met volledig
Het onderdeel (=>·) dat zegt

M heeft een /3-nf => M heeft een βη-ηί

is inderdaad triviaal, maar het is niet waar dat η contracties geen nieuwe
redexen kunnen creëren

6 Het is bekend dat het m de Calculus of Constructions met mogelijk is
0 / 1 te bewijzen (0 en 1 zijn hier de polymorfe Church numerals)
In de inconsistente systemen λ*, \U~ en XU kan 0 ^ 1 natuurlijk wel
bewezen worden, maar zelfs met een bewijs in normaalvorm

7 Zij AN het Pure Type System met βη conversie gedefinieerd door

S = Ν,

A = Ν χ Ν,

П = Ν χ Ν χ Ν

Als voor AN de Church Rosser eigenschap voor /3^-reductie (CR^4) geldt,
dan geldt CR^,, voor alle Pure Type Systems

8 De relatie -»¿ met

t -»¿ и als t -»β t' en и is een domem van t' voor zekere i',

is in het algemeen met welgefundeerd op de verzameling van welgety-
peerde termen van een Pure Type System (Een domein van t' is een
term die in t' voorkomt als het type van een A-abstractie)
Dit is problematisch voor een mogelijk bewijs van confluentie van βη-
reductie m Pure Type Systems die met normaliserend zijn

9 Naast het verschil m inkomen is het belangrijkste verschil tussen AIO's
en oude-stijl promovendi dat de eerste, naast de taken van de oude stijl
promovendi, ook nog de verplichting hebben onderwijs te volgen De
AIO's moeten niet van de universiteiten eisen dat ze onderwijscursussen
verzorgen ter compensatie van het financiële offer In plaats daarvan
moeten ze proberen de onderwijsverplichtingen zo laag mogelijk te hou
den

10 Het hebben van een ervaring van diep inzicht is niet hetzelfde als het
hebben van diep inzicht Het eerste kan op diverse manieren bereikt
worden, het tweede alleen door middel van serieuze studie

2

