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Chapter 1 

General Introduction 



P R E F A C E 

Since the isolation and characterization of corticotropin-releasing hormone (CRH) in 1981 by 

Vale and co-workers (1981) many studies have been performed to investigate the localization, 

function, and neuroanatomical characteristics of this neuropeptide. CRH occurs throughout 

the brain including areas such as the cortex, amygdala, bed nucleus of the stria terminalis, 

locus coeruleus, parabrachial nucleus and hypothalamic areas (Joseph and Knigge 1983, 

Swanson et al. 1983). The most prominent cluster of CRH neurons is located in the hypo

thalamic paraventricular nucleus (PVH). The majority of these neurons is involved in the 

activation of the hypothalamo-pituitary-adrenal axis (ΗΡΑ-axis) regulating the organism's 

response to stressful stimuli. 

8 This thesis describes neuroanatomical studies in the rat set up to gain more insight in the 

regulation and organization of the CRH neurons in the PVH. In this first chapter the 

following aspects of the CRH neurons will be discussed to provide a framework for the next 

chapters: 

- morphological structure of the PVH, including the localization of CRH in the PVH, 

- function of CRH in stress response, 

- origin and composition of afferent input, 

- interactions with the immune system, 

- the different animal models used. 

Finally, we will present the main goals and outline of this thesis. 

M O R P H O L O G Y OF T H E P V H 

The PVH is situated in the dorsal part of the hypothalamus and lies just adjacent to the third 

ventricle (Swanson 1992) (fig. 1). In transverse sections the PVH is visible as a triangularly 

shaped nucleus and can be easily distinguished from the surrounding hypothalamus by a 

relatively cell poor zone. The average total PVH volume on both sides of the brain is 

estimated to be 0.36 mm3 (Kiss et al. 1991). Estimations on the number of neurons in the 

PVH result in about 10,000 neurons on one side of the brain (Kiss et al. 1983, Swanson and 

Sawchenko 1983, Kiss et al. 1991). Most authors grossly divide the PVH in two divisions on 

the basis of neuronal size, the magnocellular and the parvocellular division. Kiss et al. (1991) 

distinguish also a third group, the mediocellular division, which has also been suggested 

previously by Swanson et al. (1986). These divisions have been further subdivided on the 

basis of chemoarchitectonic and morphometric criteria. In the next paragraphs a description 

will be given and a comparison will be made of the subdivisions as distinguished by 

Armstrong et al. (1980), Swanson and Kuypers (1980), Swanson et al. (1986) and Kiss et al. 

(1991). 

F I G U R E 1 Sagittal view of 

the rat brain illustrating the position 

of the PVH (asteriks) within the 

brain, cc » corpus callosum, ac = 

anterior commisure 



THE M A G N O C E L L U L A R S U B D I V I S I O N The magnocellular subdivision has 
been subdivided into three parts by Armstrong et al. (1980) on the basis of neuronal shape 
and staining intensity: the medial paraventricular nucleus (PVM), the lateral paraventricular 
nucleus (PVL) and the posterior subnucleus of the paraventricular nucleus (PVPO). 
Swanson and Kuypers (1980) and Swanson et al. (1986) distinguish also three parts in the 
magnocellular division, that are only slightly different from the subdivisions made by 
Armstrong et al. (1980). These are the medial magnocellular part (MM), a small unit that is 
situated in the rostral periventricular PVH and the posterior magnocellular part (PM), which 
is further subdivided on the basis of neurochemical criteria in a medial and lateral region. The 
first is a mainly oxytocinergic region, the latter a predominantly vasopressinergic region. The 
PM corresponds to the PVM and PVL of Armstrong et al. (1980). 

In contrast to the subdivisions in the magnocellular division described above Kiss et al. (1991) 9 
consider the magnocellular division as a single division on the basis of quantitative 
histological measurements, which show that all neurons in this part are of equal size. 
Furthermore, the cell-packing density was found to be homogenous throughout this sub
division. The magnocellular division as defined by Kiss et al. (1991) corresponds with the PM 
of Swanson and Kuypers (1980) and Swanson et al. (1986) and the PVM and PVL of 
Armstrong et al. (1980). 

THE P A R V O C E L L U L A R S U B D I V I S I O N Armstrong et al. (1980) distinguish 
only two parvocellular subdivisions. The first is the parvocellular subdivision of the para
ventricular nucleus (PVPA), which starts immediately rostral to the PVM and extends to the 
rostral pole of the PVPO. The parvocellular neurons in the PVPA have a smaller diameter 
than the magnocellular neurons. The second parvocellular subdivision is the dorsomedial cap 
(PVDC) which borders the dorsal surface of the PVH and extends to its caudal limit. The 
neurons in the PVDC are intermediate in size compared to the parvocellular and magno
cellular neurons. 

Swanson et al. (1986) divide the parvocellular division in six subdivisions based on cell size, 
cell density and projection. These subdivisions are the anterior parvocellular part (AP), the 
medial parvocellular part (MP) which has been subdivided in a dorsal and a medial region, the 
dorsal parvocellular part (DP), the lateral parvocellular part (LP) and the periventricular 
parvocellular part (PV). 

On the basis of quantitative measurements Kiss et al. (1991) distinguish a periventricular and 
a medial subdivision in the parvocellular division, which correspond to the PV of Swanson 
and Kuypers (1980) and Swanson et al. (1986) and the PVPA of Armstrong et al. (1980), 
respectively. The medial subdivision can be further subdivided in a anterior part (MAP), a 
lateral part (MLP) , a medial part (MMP) and a caudal part (MCP) on the basis of differences 
in cell density. The MAP is similar to the AP of Swanson and Kuypers (1980) and Swanson 
et al. (1986). The combined MLP, MMP and MCP are in agreement with the MP of Swanson 
and Kuypers (1980) and Swanson et al. (1986). 

THE M E D I O C E L L U L A R D I V I S I O N In contrast to the other authors Kiss et al. 
(1991) distinguish apart from the parvocellular and magnocellular division also a mediocellular 
division, located mediodorsally and caudally in the PVH. This mediocellular division contains 
neurons that are intermediate in size as compared to the magnocellular and parvocellular 



division and consists of two parts, a dorsal subdivision (d) and a posterior subdivision (p). 

The d corresponds to the PVDC described by Armstrong et al. (1980). The ρ is comparable 

with the PVPO of Armstrong et al. (1980) and the LP of Swanson et al. (1986). 

C Y T O A R C H I T E C T U R E OF THE PVH As is explained above, the PVH contains 

two major groups of neurons, i.e. magnocellular and parvocellular ones. The morphological 

characteristics of these neurons, such as neuronal size and shape as well as dendritic and 

axonal organization, have been described by several authors. 

The diameter of magnocellular neurons varies from 13 to 20 μπι, while the diameter of 

parvocellular neurons varies from 6 to 12 /im (Armstrong et al. 1980, Kiss et al. 1991). 

10 Magnocellular neurons typically have one or two primary dendrites regardless of their 

somatic orientation and location within a subdivision (Armstrong et al. 1980). Using Golgi-

like and intracellular labeling techniques for visualization, these dendrites are observed to 

branch occasionally (Armstrong et al. 1980, Rho and Swanson 1989). They are mostly 

restricted to the subdivision in which they are situated (Armstrong et al. 1980, Van den Pol 

1982) and tend to run parallel to the lateral border of the magnocellular division (Van den 

Pol 1982, Rho and Swanson 1989). The axons of the magnocellular neurons leave the PVH 

laterally or ventrolaterally, course above or below the fornix and then bend in the direction 

of the median eminence (Van den Pol 1982). Axon collaterals within the PVH have not been 

observed (Van den Pol 1982). Armstrong et al. (1980) also describe a separate group of 

magnocellular neurons in the caudal PVH, the PVPO. These neurons are more fusiform than 

the other magnocellular neurons and extend up to five dendrites which branch more often. 

The parvocellular neurons can be divided in different groups with respect to their 

morphological characteristics. Rho and Swanson (1989), who used intracellular labeling to 

visualize the PVH neurons, make a distinction between the parvocellular neurons that project 

to the spinal cord (descending cells), located more dorsal in the PVH and parvocellular 

neurons that project to the median eminence (neuroendocrine cells), located more medial in 

the PVH. The descending cells give rise to three major dendrites in a tripolar arrangement. 

These dendrites are thin and branch more often than dendrites of neuroendocrine cells. The 

latter typically have two thick dendrites that extend from opposite sites of the cell body. 

These dendrites were observed to branch only once. The dendrites of both groups of parvo

cellular neurons run along the border of the subdivision in which they lie. The dendritic 

length is similar in both groups. The description of parvocellular neurons as given by Rho 

and Swanson (1989) above is in agreement with the work of Armstrong et al. (1980) and Van 

den Pol (1982). However, the two latter studies do not make a distinction between 

descending and neuroendocrine parvocellular neurons. The axons of the parvocellular neurons 

are thin and varicose and extend laterally towards the fornix (neuroendocrine cells) or 

continue towards the lateral hypothalamic area (descending cells) (Van den Pol 1982, Rho and 

Swanson 1989). Axon collaterals can be observed frequently towards the parvocellular as well 

as the magnocellular subdivisions (Van den Pol 1982, Rho and Swanson 1989). 

L O C A L I Z A T I O N OF C R H N E U R O N S IN T H E P V H 

The most dense cluster of CRH neurons within the brain is found in the PVH. However, 

under normal conditions the peptide content of these neurons is too low to stain for CRH 



with current immunohistochemical techniques. Therefore, most authors have used an 

intracerebroventricular (icv) injection with colchicine, which interrupts axonal transport, to 

increase the peptide content in order to visualize all CRH neurons in the PVH. After an icv 

injection of colchicine about 2000 CRH neurons can be counted on each side of the brain 

(Swanson et al. 1983, Sawchenko and Swanson 1985). The majority of these neurons is 

located in the parvocellular division, but a smaller number can be found in the magnocellular 

division as well (Swanson et al. 1983). A small percentage of the CRH neurons projects to the 

spinal cord (descending CRH neurons). However, the largest portion of the CRH neurons in 

the PVH projects to the external zone of the median eminence (Swanson and Kuypers 1980, 

Kawano et al. 1988), where CRH is released into the portal pituitary vessels (neuroendocrine 

CRH neurons) and transported to the anterior pituitary where it stimulates the production of 

adrenocorticotropic hormone (ACTH) (Antoni 1989) according to the circadian rhythm and 11 

following stressful stimulation as will be explained below. 

F U N C T I O N OF C R H I N S T R E S S 

After a physiological or psychological stress the organism prepares itself for the so-called fight 

or flight response by activation of the sympathetic system, stimulating the release of 

adrenaline and noradrenaline from the adrenal medulla. In addition, there is an increased 

production of corticosteroids, i.e. glucocorticoids (corticosterone) as well as mineralo-

corticoids (aldosterone), from the adrenal cortex. Corticosteroids are responsible for 

increasing the availability of glucose from the blood, inhibition of immune functions and 

changes in cardiovascular tone (Dallman et al. 1987). The production of corticosteroids is 

regulated by ACTH. The production and secretion of ACTH is in turn predominantly under 

the control of CRH located in the PVH (Antoni 1989) and to a lesser extend of other 

peptides in the PVH, such as vasopressin (Rivier and Vale 1983a,b, Jones and Gillham 1988). 

This cascade following stressful stimulation is called the hypothalamo-pituitary-adrenal axis 

(ΗΡΑ-axis). Corticosteroids exert a negative feedback effect on the activity of the HPA-axis 

(fig. 2). This feedback effect of corticosteroids is exerted on different levels of the HPA-axis 

such as via a direct effect on CRH neurons in the PVH, via a direct effect on the ACTH-

releasing corticotropes in the anterior pituitary (Keller-Wood and Dallman 1984, Jingami et 

al. 1985, Kovacs et al. 1986, Almeida et al. 1992), or indirectly via other brain areas, such as 

the hippocampus (Herman et al. 1989). Since corticosteroids decrease CRH mRNA (fingami 

et al. 1985) as well as peptide content (Sawchenko 1987), removal of corticosteroids by 

adrenalectomy leads to an increase of CRH content in the parvocellular neurons in the PVH 

(Sawchenko 1987, Almeida et al. 1992). This inhibitory effect of corticosteroids is mediated 

through interaction with two different corticosteroid receptors, the mineralocorticoid and the 

glucocorticoid receptor (De Kloet and Reul 1987). The mineralocorticoid receptors have a 

higher affinity for corticosteroids than the glucocorticoid receptors and are thought to be 

involved in the basal regulation of the activity of the HPA-axis whereas the glucocorticoid 

receptors are thought to be involved in the stress-induced activity of the HPA-axis (Reul and 

De Kloet 1985, De Kloet and Reul 1987). 



O R C A D I A N R H Y T H M 

During basal conditions the plasma corticosteroid levels change from low levels in the 
morning to high levels in the evening, which is regulated by CRH (Watts and Swanson 
1989). The timing of this circadian rhythm is regulated by the suprachiasmatic nucleus, which 
projects to the PVH (Berk and Finkelstein 1981). 

A F F E R E N T I N P U T TO T H E P V H 

In addition to the feedback control of corticosteroids the activity of CRH neurons is also 
12 under the control of different brain structures, as is shown by physiological, functional and 

anatomical studies. The innervation of the PVH and the CRH neurons can be grossly sub
divided in four groups: limbic structures, nuclei in the brain stem, hypothalamic afférents and 
circumventricular organs (fig. 3). In the following paragraphs these groups will be discussed in 
some detail. 

HIPPOCAMPUS ARCUATE OVLT A1,A2 

ADRENAL CORTEX 

Corticosteroids 

IMMUNE 
SYSTEM 

A 

F I G U R E 2 Schematic diagram illustrating the ΗΡΑ-axis and some of its inputs. Thin lines with 
arrowheads represent inhibitory pathways, thick arrows represent stimulating pathways. A l , A2 = noradrenergic 
cell groups in ventrolateral medulla and nucleus of the solitary tract, ACTH - adrenocorticotropic hormone, 
arcuate = arcuate nucleus, BNST » bed nucleus of the stria terminalis, CRH - corticotropinreleasing hormone, 
NA = noradrenaline, NPY = neuropeptide Y, OVLT = Organum vasculosum of the lamina terminalis, PVH » hypo
thalamic paraventricular nucleus 



F I G U R E Э 
Schematic diagram illustrating the 
6 main groups of input to the CRH 
neurons in the PVH. 

LIMBIC Е Ж ^ > C R H < 0 ~ D BRAINSTEM 

IMMUNE SYSTEM CORTICOSTEROIDS 
L I M B I C S T R U C T U R E S Several limbic structures such as the hippocampus, amygdala 13 

and septum have been shown to be of influence on the activity of the CRH neurons. The 

hippocampus is thought to play a major role in the corticosteroid feedback mechanism 

(Herman et al. 1989) (fig. 2), since it contains a large amount of corticosteroid receptors (Reul 

and De Kloet 1985). Hippocampal influence is thought to be inhibitory, since lesions of the 

hippocampus lead to an increased level of CRH mRNA (Herman et al. 1989, Herman et al. 

1995), a rise in ACTH plasma levels (Feldman and Conforti 1980) and a hypersecretion of 

corticosteroids (Sapolsky et al. 1991). In addition, a corticosteroid receptor depletion in the 

hippocampus also evokes a corticosteroid hypersecretion (Sapolsky et al. 1984). 

In contrast to the hippocampal input amygdaloid influence on the CRH neurons in the PVH 

is thought to be excitatory. Lesions of the central nucleus of the amygdala decrease the 

response of ACTH to stressful conditions (Beaulieu et al. 1986) and lesions of medial and 

central parts of the amygdala block the CRH release from the median eminence following 

photic or acoustic stimuli (Feldman et al. 1994). Furthermore, electrical stimulation in the 

central nucleus of the amygdala induces Fos immunoreactivity in the PVH (Petrov et al. 

1994). 

The lateral septum is also thought to be involved in the stress-response, since swim stress 

induces Fos immunoreactivity not only in the PVH and amygdala but also in the lateral 

septum (Duncan et al. 1993, Duncan et al. 1996). Electrical stimulation of the lateral septum 

induces inhibition of the PVH neurons (Saphier and Feldman 1987). Therefore, the septal 

influence on the PVH is thought to be inhibitory. 

There is only limited evidence of direct axonal pathways from the above mentioned limbic 

structures to the PVH. Gray et al. (1989) found a small direct projection from the central 

nucleus of the amygdala to the PVH in the rat. In the cat Siegel and Tassoni (1971) found a 

limited projection from the dorsal hippocampus to the PVH. A small direct projection from 

the septal area to the PVH has also been shown (Oldfield et al. 1985). Therefore, it is thought 

that limbic structures exert their influence on the CRH neurons in the PVH via an indirect 

pathway, probably involving the bed nucleus of the stria terminalis (BNST) (fig. 2). Both the 

hippocampus and the amygdala have been shown to project to the BNST (Cullinan et al. 

1993, Cameras et al. 1995). In its turn, the BNST has been shown to have a large projection 

towards the PVH (Silverman et al. 1981, Sawchenko and Swanson 1983), probably via a 

GABA-ergic pathway (Cullinan et al. 1993). Lesions of the BNST induce changes in the CRH 

mRNA expression in the PVH (Herman et al. 1994). In addition, the hippocampal projection 

to the BNST has been shown to direct innervate the BNST neurons projecting to the PVH 

(Cullinan et al. 1993) and lesion studies in the amygdala have shown that the effects of the 

amygdala on the activity of the ΗΡΑ-axis are dependent on the BNST (Feldman et al. 1991). 

HYPOTHALAMUS CIRCUMVENTRICULAR 
ORGANS 



BRAIN STEM The PVH receives a dense catecholaminergic input. Neuroanatomical 

studies indicate that the majority of this input finds its origin in several cell groups in the 

caudal medulla and brain stem (Weiss and Hatton 1990b). These cell groups are the Al and 

CI group in the ventrolateral medulla (VLM), the A2 and C2 groups in the nucleus of the 

solitary tract (NTS) and the A6 or locus coeruleus. The Al, A2 and A6 are primarily 

noradrenergic, while the CI and C2 are primarily adrenergic. Sawchenko et al. (1985) showed 

that the catecholaminergic input to the PVH is often co-localized with neuropeptide Y. 

Electrical stimulation of the Al and A2 groups evokes excitatory responses from the majority 

of the neurons in the PVH, which indicates that the noradrenergic input is probably 

excitatory (Saphier 1989) (fig. 2). This is confirmed by Orliaguet et al. (1995) who reported a 

rise in CRH release following a noradrenaline injection in an in vitro hypothalamus 

14 perifusion experiment. In addition an injection of noradrenaline in the PVH induces a rise in 

CRH mRNA levels (Itoi et al. 1994). The adrenergic input is likely to be inhibitory as shown 

by electrical stimulation in the C2 group, which leads to a majority of inhibitory responses of 

the neurons in the PVH (Saphier 1989). This is in agreement with observations made in an in 

vitro superfusion experiment, where adrenaline failed to have an effect on CRH secretion 

(Orliaguet et al. 1995). 

Adrenergic as well as the noradrenergic fibers can be found for the largest part in the parvo-

cellular region of the PVH (McKellar and Loewy 1981, Cunningham et al. 1990). However, 

the Al group seems to innervate preferentially the vasopressin rich magnocellular region of 

the PVH (Cunningham and Sawchenko 1988). Electron microscopical investigation showed 

adrenergic synapses on CRH neurons (Liposits et al. 1986). 

HYPOTHALAMIC A F F E R E N T S The PVH receives sparse to moderate projections 

from a variety of hypothalamic sites, such as the lateral and anterior hypothalamic area (Saper 

et al. 1978), the preoptic area, the ventromedial hypothalamic area, the supramammilary 

nucleus (Sawchenko and Swanson 1983), the arcuate nucleus (Bai et al. 1985) and the 

suprachiasmatic nucleus (Berk and Finkelstein 1981). 

The different hypothalamic inputs each also have a different distribution over the PVH, 

which suggests that not all hypothalamic inputs are of influence to the CRH neurons. The 

lateral and anterior hypothalamic area project predominantly to the periventricular part of 

the PVH (Saper et al. 1978). The input of the periventricular part of the preoptic area is 

directed particularly at the parvocellular part of the PVH whereas the median preoptic 

nucleus has an equally distributed input over the whole PVH (Sawchenko and Swanson 

1983). The ventromedial nucleus projects to the periventricular part of the PVH and the 

medial part of the parvocellular part. The arcuate nucleus does have a stimulatory effect on 

the activity of the ΗΡΑ-axis (Wahlestedt et al. 1987) (fig. 2) and innervates directly the CRH 

neurons in the parvocellular part using neuropeptide Y as a neurotransmitter (Bai et al. 1985, 

Liposits et al. 1988). The suprachiasmatic nucleus, which regulates the circadian rhythm of 

the ΗΡΑ-axis (Cascio et al. 1987) via an inhibitory input (Berk and Finkelstein 1981, Buijs et 

al. 1991) has a projection to the dorsomedial parvocellular part. 

C I R C U M V E N T R I C U L A R ORGANS Of the circumventricular organs, the sub

fornical organ and the Organum vasculosum lamina terminalis (OVLT) both project to the 

PVH (Silverman et al. 1981, Sawchenko and Swanson 1983, Weiss and Hatton 1990a) (fig. 2). 



The subfornical organ has been suggested to play a role in the response of the PVH to 

hemorrhage (Tanaka et al. 1993). The OVLT seems to be involved in activation of the HPA-

axis by the immune system (Katsuura et al. 1990). 

I N T E R A C T I O N S W I T H T H E I M M U N E S Y S T E M 

The ΗΡΑ-axis interacts closely with the immune system. Corticosteroids have a negative 

effect on the immune system by, among others, inhibition of the release of interleukins (EL) 

from macrophages (Blalock 1994, Madden and Feiten 1995). The other way around, IL seems 

to have a stimulatory effect on the ΗΡΑ-axis, stimulating CRH release and increasing plasma 

ACTH and corticosteroid levels (Besedovsky et al. 1986, Berkenbosch et al. 1987, Rivest et al. 15 

1992, Kovacs and Elenkov 1995) (figs. 2 and 3). However, the precise mechanism by which 

the immune system stimulates the ΗΡΑ-axis remains unclear. 

Some papers indicate that EL has a direct stimulatory effect on the adrenal glands, stimulating 

directly the release of corticosteroids (Andreis et al. 1991, Gwosdow et al. 1992). On the 

other hand, it has been shown that EL also stimulates the CRH neurons in the PVH (Veening 

et al. 1993, Lee and Rivier 1994) and the release of CRH (Berkenbosch et al. 1987, Sapolsky 

et al. 1987). There is some disagreement in literature whether this rise in CRH neuron 

activity and CRH release is necessary for the observed ACTH plasma level increase. 

Berkenbosch et al. (1987) reported that immuno neutralization of CRH prevented the ACTH 

surge after EL injection. However, Kovacs and Elenkov (1995) showed that EL could increase 

the ACTH plasma levels without an increase in CRH release. Thus, it might well be possible 

that EL stimulate the ΗΡΑ-axis on different levels, in the hypothalamus, the pituitary and the 

adrenal glands. 

The pathways through which EL stimulates the CRH neurons in the PVH remains to be 

elucidated. The Organum vasculosum lamina terminalis has been thought to be involved in 

the stimulation of CRH in the PVH by EL (Katsuura 1990) but this is contradicted by other 

experiments, in which disruption of descending projections from circumventricular structures 

did not affect the EL-induced activation of the PVH (Ericsson et al. 1994). More likely 

candidates to serve as a relay for the activation mechanism of EL are the catecholaminergic 

groups in the medulla and brain stem (figs. 2 and 3). EL has been shown to induce Fos-like 

immunoreactivity in these cell groups, especially in the ventrolateral medulla and nucleus 

tractus solitarius, before the induction of Fos-like immunoreactivity in the PVH (Brady et al. 

1994, Ericsson et al. 1994). In addition, disruption of the catecholaminergic pathways to the 

PVH modulate the EL effect on CRH release (Barbanel et al. 1993, Ericsson et al. 1994), 

which indicates involvement of these cell groups in the EL induced activation of CRH 

neurons. 

A N I M A L M O D E L S 

In the present thesis we used two different animal models (fig. 4). The first one was used in 

particular to visualize the CRH neurons immunohistochemically. In normal untreated rats it 

is very difficult to study the CRH neurons in the PVH with immunohistochemical 

techniques since the amount of CRH is too low to obtain a good staining. Therefore we 

used, next to untreated rats, adrenalectomized (ADX) rats. As explained earlier, removal of 



F I G U R E 4 
Schematic diagram illustrating the 
different animal models used in this 
thesis. ADX » adrenalectomized, 
APO-SUS = apomorphine-susceptible 
rats, APO-UNSUS = apomorphine-
unsusceptible rats. 

the adrenal glands leads to removal of the negative feedback of corticosteroids which 

stimulates the activity of the CRH neurons and increases the level of CRH mRNA as well as 

the neuropeptidergic content of these neurons (Sawchenko 1987). ADX also induces other 

16 phenomena in the brain, such as an increase in the content of co-localized vasopressin in the 

CRH neurons (Whittnall et al. 1985), hippocampal cell death (Sloviter et al. 1989) and 

receptor changes in the PVH 0hanwar-Uniyal and Leibowitz 1986, Reul et al. 1987, Castren 

and Saavedra 1989). Therefore, it has to be kept in mind that ADX will not only directly 

influence the CRH content in the PVH, but that ADX might well change the HPA-axis 

response to stress at other levels. 

The second animal model we used consists of two lines of Wistar rats. These rats, which are 

thought to represent two extremes within a normal population, are pharmacogenetically 

selected on the basis of a gnawing test paradigm. After a similar subcutaneous injection with 

apomorphine one rat line shows a high gnawing response, the so-called apomorphine-

susceptible rats (APO-SUS), whereas the other shows a low gnawing response, the so-called 

apomorphine-unsusceptible rats (APO-UNSUS) (Cools et al. 1990). These rats also show 

behavioral differences as illustrated in the open field test where the APO-UNSUS rats show 

less locomotor activity and faster habituation than the APO-SUS rats (Cools et al. 1990). In 

the defeat test, in which the rats are confronted with a much larger rat, the APO-SUS rats 

exhibit fleeing behavior whereas the APO-UNSUS exhibit freezing (Cools et al. 1990). In 

addition, these rat lines show differences at several levels of the ΗΡΑ-axis. Under basal 

conditions the APO-SUS rats have a higher CRH mRNA level in the hypothalamus and 

higher plasma ACTH levels as compared to APO-UNSUS rats (Rots et al. 1995). In a novel 

environment and following a conditioned emotional stress the APO-SUS rats also show a 

higher and more prolonged ACTH and free corticosterone response than APO-UNSUS rats 

(Van Eekelen et al. 1992, Rots et al. 1995, Rots et al. 1996a). Furthermore, the hippocampal 

glucocorticoid receptor mRNA expression is higher in APO-SUS rats than in APO-UNSUS 

rats (Rots et al. 1996b). These differences in the stress response make the APO-SUS and 

APO-UNSUS rats an interesting model to study the neuroanatomical basis of the stress 

system. 

G O A L S A N D O U T L I N E OF T H I S T H E S I S 

In the preceding paragraphs the role of the CRH neurons in the PVH in the stress response 

has been discussed. It has been shown that CRH neurons constitute a major part of the 

ΗΡΑ-axis, a complex system which is capable of processing and integrating multiple inputs in 

order to regulate the organism's response to stressful conditions. The question arises how the 

CRH neurons, which are located in the PVH in-between other neuropeptidergic neurons, are 

organized in order to be able to differentiate between the various inputs. Are there different 

NORMAL WISTAR RAT Ш ^ » ^ > ADX RAT 
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subpopulations of CRH neurons responsive to different sources of input and do they show a 

preferential localization within the PVH? Is there a strict organization in terms of 

synaptology i.e. do CRH neurons reveal a specific pattern of synaptic input arising from 

different input structures and clearly distinguishable from other PVH neurons? 

To gain more insight in these issues dealing with the organization of the CRH neurons the 

present thesis investigated the neuroanatomical basis of the CRH mediated stress response. 

For this purpose emphasis was put on the following goals: 

- characterization of the CRH neurons by determining morphometric parameters in the 

PVH and distribution of CRH neurons following different activation mechanisms; 

- characterization of the input specific to the CRH neurons by investigation of the 

composition of the synaptic input as compared to other PVH neurons and the origin of this 

input; 17 

- determination of the significance of the activity of the CRH neurons to the HPA-axis. 

In chapter 2 the morphometric characteristics of the PVH are investigated. Both light 

microscopic (i.e. vascularity, neuronal size and neuronal density), as well as electron 

microscopic parameters (synaptic length and density) are quantified and compared in order to 

provide a general characterization of the PVH. These experiments are performed in APO-

SUS and APO-UNSUS rats, to be able to determine whether there is a neuroanatomical basis 

in the PVH for the differences observed in the stress response between the two rat lines. 

In chapter 3 the activation of the CRH neurons following a mild stressor is compared in 

APO-SUS and APO-UNSUS rats. For this purpose Fos-immunoreactivity is used as an 

marker of activity. 

Chapter 4 describes the distribution and number of CRH neurons in normal and different 

treated rats, involving ADX, anti-CRH and colchicine injections and interleukin treatments. 

By comparison of the differences in number and distribution of the CRH neurons within the 

PVH it was investigated whether different activation pathways innervate different sub-

populations of CRH neurons. 

Chapter 5 describes the BNST projection to the PVH, which is thought to play a major role 

as a relay for limbic information. Normal and ADX rats were used to investigate whether 

there is a preferential input from the BNST to the CRH-rich part of the PVH and whether 

ADX influences this projection. 

Chapter 6 describes the synaptic organization of the CRH neurons as compared to other 

PVH neurons. This is an electron microscopical quantitative study with particular emphasis 

on GABA as a neurotransmitter. 

In the final chapter, summary and general discussion, the experiments are evaluated, the 

organization of the CRH neurons within the PVH is discussed in relation to the activity of 

the ΗΡΑ-axis and some ideas for future experiments are presented. 
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S U M M A R Y 

The present study evaluates the role of the hypothalamic paraventricular nucleus (PVH) in 

stress regulation by a morphometric comparison of the vascular, neuronal and synaptic 

properties of this nucleus in two lines of Wistar rats. It has been previously reported that 

these two lines of rats, indicated as APO-SUS (apomorphine-susceptible) and APO-UNSUS 

(apomorphine-unsusceptible) rats on the basis of their reactivity to a subcutaneous injection 

of apomorphine, display a variety of pharmacological and behavioral differences, including 

differences in their stress-coping mechanisms (Cools et al. 1993b). The results show a similar 

vascular and neuronal organization of the PVH in both lines, but distinct synaptic 

differences. The PVH (0.12 mm3 volume with about 15,000 neurons on one side) has an 

22 overall vascular density of 5.6%, with significant differences between subdivisions (parvo-

cellular central part: 8.3%, parvocellular dorsal/ventral/posterior part: 4.6-5.3%), which means 

that vascularity is a useful tool to delineate subdivisions in the parvocellular PVH. The 

neuronal density of 132 χ lOVmm' as found in the present study is two times higher than 

reponed in a previous study (Kiss et al. 1991). Possible reasons for this discrepancy are 

extensively discussed. The most significant finding of the present study is the observation that 

APO-SUS rats have a significantly higher synaptic density (158 χ lO'/mm3) in the PVH than 

APO-UNSUS rats (108 χ lOVmm3). It is discussed in which way this synaptic difference may 

be correlated with the different activity of the hypothalamo-pituitary-adrenal axis in both 

lines of Wistar rats. 

I N T R O D U C T I O N 

The hypothalamic paraventricular nucleus (PVH) plays an important role in the coordination 

of stress responses (Rivier et al. 1982, Bruhn et al. 1984). It contains a large number of 

corticotropin-releasing hormone (CRH) producing cells (Vale et al. 1981, Antoni et al. 1983, 

Swanson et al. 1983), which project to the neurohaemal zone of the median eminence 

(Lechan et al. 1980, Swanson and Kuypers 1980, Swanson et al. 1983, Whitnall et al. 1987), 

where CRH is released into the portal pituitary vessels. In the pituitary, CRH stimulates the 

secretion of ACTH, which in turn regulates the corticosteroid production in the adrenal 

cortex (Vale et al. 1981, Plotsky 1987). In this way the PVH stimulates the pituitary-

adrenocortical activity in response to a variety of stressful situations (Moldow et al. 1987, 

Haas and George 1988, Van Oers et al. 1992). 

A useful model to study the neuroanatomical basis of stress control is presented by two lines 

of Wistar rats with different stress responses (Sutanto et al. 1989, Cools et al. 1990, Cools et 

al. 1993a, Cools et al. 1993b). These two lines have been pharmacogenetically selected on the 

basis of their gnawing responses after a subcutaneous injection of apomorphine, and are 

indicated as APO-SUS (apomorphine-susceptible) and APO-UNSUS (apomorphine-

unsusceptible) rats, showing a high and a low gnawing response, respectively, after an 

identical dose of apomorphine (Cools et al. 1990). Other differences can be observed in an 

open field test situation, in which APO-SUS rats show more locomotor activity, slower 

habituation and more edge-hugging behavior than APO-UNSUS rats. In the so-called defeat 

test, in which the rat is confronted with a much larger rat, APO-SUS rats show fleeing 

behavior, whereas APO-UNSUS rats exhibit freezing (Cools et al. 1990). These interline 

differences are probably induced by different levels of circulating plasmacorticosteroids during 



the early postnatal period (Cools et al. 1990, Cools et al. 1993b), which might well cause 

differences in the PVH of both lines. The fact that the ACTH-response to exogenous CRH-

administration is more pronounced in APO-SUS than in APO-UNSUS rats (Van Eekelen et 

al. 1992), also suggests differences between the PVH of both lines. The aim of the present 

study is to investigate whether quantitative morphological parameters in the PVH differ 

between APO-SUS and APO-UNSUS rats. Knowledge of such differences may contribute to 

a better understanding of the mechanisms giving rise to the line differences in responses to 

stress. 

Previous morphometric studies of the PVH have been presented by Armstrong et al. (1980), 

Swanson and Kuypers (1980), Van den Pol (1982), Swanson et al. (1986) and Kiss et al. (1991). 

These authors have determined the numbers, sizes, shapes and densities of neurons in the 

different subdivisions of the PVH (Armstrong et al. 1980, Swanson and Kuypers 1980, 23 

Swanson et al. 1986, Kiss et al. 1991) or described the morphological and synaptic properties 

of PVH neurons qualitatively (Van den Pol 1982). Quantitative data on the synaptic 

organization of the different subdivisions are lacking, however. The present study extends the 

previous morphometric data to the synaptic level, and contributes to an evaluation of the 

significance of some of the morphometric characteristics of the PVH by comparing 

functionally different rat strains. 

M A T E R I A L S A N D M E T H O D S 

A N I M A L S The quantitative morphometric data presented in this study are based on three 

male APO-SUS (F8 generation) and three male APO-UNSUS rats (F9 generation) of 

200-250 g, bred in our Animal Laboratory. In addition, five normal Wistar rats were used to 

estimate the degree of tissue shrinkage involved in the present study. All rats were originally 

housed in groups of 2-3 animals per cage (36 χ 24 χ 25 cm) in a room with a constant 

temperature (20 ± 2°C) and a 6.00 am to 6.00 pm light period. Food and water were given 

ad libitum. Three days before the open field test APO-SUS and APO-UNSUS rats were 

isolated in single cages (36 χ 24 χ 25 cm) in the same conditions as mentioned above. 

T I S S U E P R O C E S S I N G After characterization in the open field test, the rats were 

deeply anaesthetized with pentobarbital (6 mg/100 g bodyweight) and transcardially perfused 

with 100 ml saline (0.9% sodium chloride) followed by 450 ml of a 2% paraformaldehyde/2% 

glutardialdehyde mixture in a 0.1 M phosphate buffer (PB, pH 7.3). Immediately after 

perfusion, the dorsal part of the skull was removed and the rats were placed in a stereotactic 

device to make a precisely transverse incision. This allowed for sectioning of all brains in the 

same transverse plane. 

After removal out of the skull, the brains were placed overnight in the perfusion fluid. Sub

sequently, sections of 100 or 75 μπι were cut on a vibratome in PBS (0.1 M phosphate 

buffered saline pH 7.3). After rinsing in the same buffer, the sections were osmicated for one 

hour in 1% osmium tetroxide dissolved in 0.1 M PB, rinsed in PB, dehydrated in a graded 

series of ethanol, embedded in epon 812 via propylene oxide and mounted in epon 812 

between a slide and coverslip coated with dimethyldichlorosilane solution (2% in 1,1,1-

trichloroethane). The latter allows for easy removal of slide and coverslip when necessary for 
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F I G U R E 1 A: Photomicrograph of semi-
thin (1 /um) section at the third level (see fig. 
2), stained with toluidine blue, at a magnifi
cation of 135x, showing different subdivisions. 
B: Detailed photomicrograph of the indicated 
rectangular area in figure 1A, stained with 
paraphenylene-diamine, showing the somata 
with nuclei and nucleoli at a magnification of 
340χ. CPZ = cell poor zone. MC = magno-
cellular part. PCc = central parvocellular part. 
PCd = dorsal parvocellular part. PCp = 
posterior parvocellular part. PCv = ventral 
parvocellular part. PV - periventricular part. 



further sectioning. 

After polymerization for two days at 60°C, the sections containing the left PVH were 

remounted on epon blocks for semithin and ultrathin sectioning. At intervals of 50 or 

37.5 /im (in 100 μπι and 75 μνη. vibratome sections respectively), 1 μπι thick semithin sections 

and adjacent 80 nm thick ultrathin sections were collected for morphometric analysis at the 

light and electron microscopic level, respectively. This procedure resulted in 10-12 PVH 

sample levels per animal. The semithin sections were stained with paraphenylene-diamine or 

toluidine blue and coverslipped with Entellan. The ultrathin sections were collected on 300 

mesh copper grids and contrasted with uranylacetate and lead citrate. 

L I G H T M I C R O S C O P I C A N A L Y S I S For quantitative analysis of blood vessels and 25 

neurons, the semithin sections were studied and drawn using a Zeiss light microscope and 

drawing tube. First, the contour of the PVH was determined on the basis of the surrounding 

cell-sparse zone at a magnification of 130x (fig. 1A). Next, the PVH was subdivided on the 

basis of differentiations in neuronal size and density as well as vascular density (see Results 

and figs. 1A, IB and 2). 

In each of the PVH subdivisions, blood vessels, nuclear profiles and somata containing a 

nucleus with a nucleolus were drawn at a magnification of 520 χ at each sample level, using 

the paraphenylene diamine sections (fig. IB). The adjacent toluidine blue stained sections 

(fig. 1A) were used to verify that exclusively neuronal profiles and no glial cells were drawn. 

The drawings obtained were used to determine the following parameters with the aid of a 

Kontron-Videoplan equipment: 1) the total surface area of the PVH and its different 

subdivisions, 2) the number, surface area and ellipticity of the nuclei sampled, and 3) the 

ellipticity and surface area of somata containing a nucleus with a visible nucleolus in the 

plane of sectioning. The latter was done to obtain a reliable neuronal diameter estimation 

(Peduzzi and Crossland 1983, Born et al. 1987, Albers et al. 1988, Kiss et al. 1991). From 

these data the volume of all PVH subdivisions and their average neuronal sizes, densities and 

numbers were calculated in a way that has been previously described by our group and others 

(Floderus 1944, Abercrombie 1946, Albers et al. 1988, Royet 1991, Aalders and Meek 1993). 

This method implies the following steps: 

The volume of each PVH subdivision (V) was calculated by means of the Cavalieri principle 

(Gundersen and Jensen 1987, Michel and Cruz-Orive 1988, Regeur and Pakkenberg 1989, 

Royet 1991), i.e. by multiplication of the mean surface area with the total length of each 

subdivision of the left PVH. At least 8 sample surfaces were measured for each subdivision, 

since this is a minimum for reliable estimations of V (Mayhew and Olsen 1991). 

The mean neuronal diameter (D) was calculated from the surface area of somata containing a 

nucleus with a visible nucleolus in the plane of sectioning (Albers et al. 1988) as the D-circle. 

This is the diameter of a circle with the same surface area as the neuron traced. 

Estimations of neuronal densities were based on nuclear tracings according to the formula 

presented by Floderus (1944) and Abercrombie (1946): 

N v - N A / D + t - 2h (see Royet 1991 for review) 

in which: 

N v - number of neurons per unit volume, 

N A - number of nuclei per unit test area -

D — the mean nuclear diameter, 

- N „ uple /A. Dple * 



t - the section thickness, 

h - the height of the smallest recognizable cap. 

To determine D and h, the following formulae were used (Smolen et al. 1983): 

D - d 1 (^)] 
in which: 

d - the mean profile diameter, 

t - see above. 

h - R - 7(R2 - O (Weibel 1979) 

26 in which: 

R - mean nucleus radius, 

r„ - the radius of the smallest visible profile. 

Neuronal numbers were calculated by multiplication of N v and V per subdivision. The mean 

ellipticity index (smallest diameter divided by the largest diameter) of the nuclei was measured 

to be 0.62 ± 0.01, a value which allows for reliable estimations of neuronal densities with the 

formulae just explained (Bolender 1983, Albers et al. 1988). 

Vascular densities were calculated by means of point counts (Weibel 1979, Royet 1991). A 

frame with points at 0.5 mm intervals was randomly positioned over the drawings made at a 

magnification of 520 χ and the points covering blood vessels as well as the total surface of 

each subdivision were counted. The volume fraction of blood vessels was calculated by divid

ing the number of points covering blood vessels by the number of points of the total area. 

ELECTRON M I C R O S C O P I C A N A L Y S I S For analysis of the ultrathin sections 

of the PVH, quantitative synaptic parameters were systematic randomly sampled in a Philips 

EM 301 electron microscope by taking photographs in every corner and center of each 300 

mesh grid square at a magnification of about 19,000x. A replica of 2,160 lines/mm was used 

to measure the precise magnification. This procedure yielded on average 18 photographs per 

subdivision per PVH, with a minimum of 12 photographs for the PCd. On average each 

electron micrograph showed 2 synaptic contacts. It was verified that this procedure yielded 

stable average values and standard errors of the synaptic parameters determined. The location 

of the electron micrographs in the PVH was determined by comparison of low magnification 

electron micrographs of the sections analysed with the adjacent semithin sections used for LM 

analysis. Each electron micrograph was covered by a square test frame and all synaptic 

contacts within this test frame and not touching the forbidden lines (Gundersen 1977, Royet 

1991) were traced on the Kontron-Videoplan equipment (fig. 3). 

From these measurements the mean synaptic contact trace length (L) per subdivision was 

calculated and other parameters were determined as follows: 

The synaptic contact diameter was estimated on the basis of the formula: D - (4/π) χ L 

(Mayhew 1979, Albers et al. 1990, Aalders and Meek 1993). 

The synaptic density (Nv) was determined with the formula: N v - N A /L (Collonier and 

Beaulieu 1985, Calverley et al. 1988, Albers et al. 1990), in which N A is the number of 

profiles per area. 

The synapse to neuron (S/N) ratio was determined as the ratio of synaptic and neuronal 

density: N v (synapse)/Nv (neuron). 
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S H R I N K A G E The tissue volume as well as neuronal and synaptic densities are influenced 
by shrinkage of the PVH, caused by fixation and other histological procedures. To be able to 
make corrections for shrinkage, this parameter was estimated as follows: Five male Wistar 
rats (200-250 g) were deeply anaesthetized with pentobarbital and placed in a stereotactic 



device where four small dorso-ventral holes were made at a transverse and sagittal distance of 

5 mm. Subsequently, these rats were perfused and fixed overnight in the same way as 

described above. After removal of the brain out off the skull and fixation overnight, the 

distance between the four holes made was measured to estimate the shrinkage caused by 

perfusion and postfixation. This appeared to be 8.5 ± 1.0% linearly. After vibratomy the 

dimensions of the vibratome sections were measured before and after the histological 

procedure applied as described above. The histological procedure caused a linear shrinkage of 

2.6 ± 0.3%. Thus, the total linear shrinkage in our material is 10.8 ± 1.1%, resulting in a 

three-dimensional shrinkage of 29 ± 2.8%. 

28 S T A T I S T I C S Statistical analysis of differences between the two lines (APO-SUS and 

APO-UNSUS rats) was performed with the Mann-Whitney U test. For statistical comparison 

of subdivisions, the Wilcoxon Matched-Pairs Signed-ranks test was used (Siegel 1956). 

R E S U L T S 

The results as obtained for the left PVH are summarized in table I, which presents values 

that are uncorrected for shrinkage. The effect of shrinkage will be discussed in the discussion 

section (table Π). A visualization of some of the light microscopic parameters determined is 

presented in figure 2. In this figure the blood vessels, neurons and subdivisions delineated in 

series of six representative semithin sections have been drawn separately. 

S U B D I V I S I O N S OF THE PVH In the semithin series of sections used for the 

present study the PVH could unequivocally be subdivided in six subdivisions on the basis of 

neuronal sizes and densities as well as vascular densities, as follows (see also figure 2): 

- The periventricular part (PV) is a cell-sparse zone with fusiform neurons and a minor 

vascularization, situated along the third ventricle. 

- The magnocellular part (MC) contains clearly larger neurons than the remaining part of the 

PVH. This subdivision extends laterally towards the fornix and is bordered on its lateral and 

ventral edges by the cell-sparse zone. The latter can easily be distinguished from the MC 

because of obvious difference in neuronal density and cytoarchitecture. 

- The parvocellular part (PC), lying between the PV and MC, can be subdivided into four 

subdivisions on the basis of differences in vascular density, to be quantified below. The 

central parvocellular part (PCc) is as richly vascularized as the MC. It is bordered at the 

dorsal side by the dorsal parvocellular part (PCd) and ventrally by the ventral parvocellular 

part (PCv), both less vascularized. Posterior to the PCc, the PCd and the PCv fuse into the 

sparsely vascularized posterior parvocellular part (PCp). 

V A S C U L A R I T Y The overall vascularity in the PVH, expressed as the percentage of 

volume occupied by blood vessels, is 5.6% (fig. 4). The PV is the least vascularized 

subdivision (3.2%, ρ < 0.05). The MC is significantly more vascularized than the other 

subdivisions (7.8%, ρ < 0.05) except for the PCc, which has an equally rich vascular density 

(8.3%). The intermediate vascular densities of the PCd (4.6%), the PCv (4.6%) and the PCp 
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T A B L E I I Morphometry parameters of the left PVH as corrected for 10.8% linear shrinkage 

Subdivision 

Overall 

PVH 
PV 
MC 
PCc 
PCd 
PCw 
PCp 

APO-UNSUS 

PVH 
PV 
MC 
PCc 
PCd 
PCv 
PCp 

APO SUS 

PVH 
PV 
MC 
PCc 
PCd 
PC» 
PCp 
Cell-sparse zone 

Volume 
(mmì 

.117 

.020 

.020 

.031 

.011 

.013 

.023 

.121 

.020 

.020 

.031 

.010 

.014 

.027 

.107 

.018 

.018 

.030 

.011 

.011 

.017 

Neuronal density 
1» Urtami 

131.6 
93.6 

125.5 

163.3 
131.9 

146.3 

128.2 

1211 

97.6 

111.6 

156.3 

116.5 

128.7 
121.0 

141.1 

89.7 

139.3 

170.3 

147.3 

163.9 
135.4 

Synaptic density 
(χ ΙΟΊπΜη") 

133 
131 
111 
144 
120 
153 
131 

108 
109 
92 

115 
86 

133 
104 

158 
152 
131 
173 
153 
173 
158 
166 

(5.3%) show no significant mutual differences, but are all significantly higher than the 

vascular density of the PV (p < 0.05) and lower than the vascular densities of the MC and 

PCc (p < 0.05). 

APO-SUS and APO-UNSUS rats showed no statistically significant differences in PVH 

vascularity except for the PV. This subdivision was slightly but significantly higher 

vascularized in APO-UNSUS rats (4.0%) than in APO-SUS rats (2.5%, ρ < 0.05, table I). 

N E U R O N A L S I Z E AND S H A P E The mean soma diameter in the PVH is 11.8 μπι, 

with the following differentiation between its subdivisions (table I): The PV contains on 

average the smallest neurons (9.6 μπι, ρ < 0.05). These have a fusiform shape as indicated by 

an ellipticity index (ell.ind.) of 0.53 (table I). The MC contains obviously the largest neurons 

of the PVH (14.4 /mi, ρ < 0.05), which are more rounded (ell.ind. 0.61, table I). The mean 

soma diameter of the fusiform neurons of the PCd (11.6 μχα, ell.ind. 0.55, table I) is slightly 

but significantly larger that of the PCc (10.7 /un, ρ < 0.05) and the PCv (11.0 μπι, 

ρ < 0.05). The neuronal sizes observed in the PCc, PCv and PCp show no significant mutual 

differences. There are no statistically significant differences in neuronal size or shape between 

APO-SUS and APO-UNSUS rats. 
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F I G U R E 3 Electron micrograph of a representative part of the PVH, showing synaptic contacts within 

(arrows) and outside (stars) the forbidden lines. Bar = 1 μτα. 

N E U R O N A L D E N S I T I E S AND N U M B E R S The overall neuronal density in the 

PVH is about 185 χ IO3 cells/mm3 (fig. 4). The neuronal density of the PV (132 χ lOVmm3) 

is significantly smaller (p < 0.05) than the neuronal density of the MC (177 χ lOVmm3), 

PCc (230 χ lOVmm3), PCd (186 χ lOVmm3) and PCv (206 χ lOVmm3). The neuronal 



density of the PCp (181 χ lOVmm3) 

is, although larger, not statistically 

different from that of the PV. 

However, the difference in neuronal 

density between the MC and the PCc 

is statistically significant (p < 0.05). 

Statistical comparison between APO-

UNSUS and APO-SUS rats yielded no 

significant differences in this respect. 

The number of neurons in the PVH 

and its subdivisions was estimated by 

32 multiplication of the neuronal densities 

with the tissue volumes calculated. On 

average, the left PVH occupies a 

volume of 0.083 mm3 and contains 

about 15,400 cells (table I). The PCc 

contains the largest amount of cells, 

about 5,000, which is 33% of the total 

population. The other subdivisions 

contribute between 12% and 19% to 

the total population in both APO-SUS 

and APO-UNSUS rats. 

Y N A P T I C C O N T A C T 

L E N G T H The average synaptic 

contact trace length in the PVH is 

368 nm (table I), which corresponds to 

an average synaptic contact diameter of 

469 nm. The synaptic contact size is 

basically similar in all subdivisions as 

well as in the cell-sparse zone around 

the PVH (table I). The only significant 

difference found between subdivisions 

is a slightly smaller contact length in 

the PCv (341 nm) compared with the 

MC (385 nm, ρ < 0.05). Comparison 

of APO-SUS and APO-UNSUS rats 

showed that the synaptic contact 

length in the PCp of APO-UNSUS 

rats (393 nm) is significantly larger 

than that of APO-SUS rats (353 nm, 

ρ < 0.05). 

PVH PV MC PCc PCd PCv PCp 

F I G U R E 4 Histograms of the vascular densities, 
neuronal densities and synaptic densities in the left PVH 
and its six subdivisions (mean ± SEM, π = 6). · -
significantly different from MC, PCc, PCd, PCv and PCp 
(p < 0.05). · · » significantly different from PV, PCd, 
PCv and PCp (p < 0.05). · · · - significantly different 
from PV, MC and PCc (p < 0.05). • - significantly 
different from MC, PCc, PCd and PCV (p < 0.05). * * -
significantly different from MC (ρ < 0.05). For 
abbreviations see figure 1. 



S Y N A P T I C D E N S I T I E S AND N U M B E R S The mean synaptic density in the 

PVH is 187 χ lOVmm3 without statistically significant differences between its subdivisions 

(fig. 4). In the cell-sparse zone surrounding the PVH a similar synaptic density was observed 

as well. It is somewhat higher than the synaptic density in the PVH (table I) but this 

difference is not statistically significant. However, the PVH of APO-SUS and APO-UNSUS 

rats showed a marked difference (fig. 5). APO-UNSUS rats have a significantly smaller overall 

synaptic density (152 χ lOYmm3) than APO-SUS rats (252 χ lOYmm3, ρ < 0.05). This 

difference is present in all subdivisions of the PVH (fig. 5) and was statistically significant in 

our sample for the PV, PCc and PCp (p < 0.05). No interline difference was found in the 

cell-sparse zone surrounding the PVH. 

Synapse numbers were estimated by multiplication of the volume of the PVH subdivisions 

with their synaptic density, resulting in a number of about 16 χ 10' synapses in the total left 

PVH. The PCc contains about 29% of these synapses, the PV 17%, the MC 14%, the PCd 

9%, the PCv 12% and the PCp 19%. The total number of synapses in the left PVH of APO-

SUS rats (17 χ 106) is considerably larger than in APO-UNSUS rats (13 x 106). However, 

this difference was not statistically significant in our sample, because of the large individual 

variations. 

33 

S Y N A P S E - T O - N E U R O N RATIOS The overall synapse-to-neuron (S/N) ratio in 

the PVH is 1009. This means that PVH neurons have around 1,000 synaptic contacts on their 

receptive surface, provided that they do not have dendrites outside the PVH, and that 

neurons outside the PVH do not have extensive dendrites within the PVH. The S/N ratio in 

the PV appears to be significantly higher (1454) than that in the MC (899) and PCc (913, 

table I). APO-SUS and APO-UNSUS rats are similar in this respect. 

SYNAPTIC DENSITY 

APO-SUS 
* 

APO-UNSUS 

I I 

I · I 

- . 1 1 . .IL· 

X 

_L_ 

PVH PV MC PCc PCd PCv PCp PVH PV MC PCc PCd PCv PCp 

F I G U R E 5 

Synaptic densities in APO-UNSUS (n - 3) 
and APO-SUS (n - 3) rats in the left 
PVH and its six subdivisions (median 
value ι highest and lowest value). · = 
significantly different (p < 0.05) from 
the corresponding subdivision in the 
APO-UNSUS rats. For abbreviations see 
figure 1. 



D I S C U S S I O N 

The goal of the present study is to compare the histological differentiation of the PVH of 

APO-SUS and APO-UNSUS rats, and to extend previous morphometric data with a 

quantitative characterization of the synaptic organization. In particular the latter has yielded 

new data showing marked differences between both rat lines. Before these differences can be 

evaluated in detail, a discussion on PVH subdivisions and neuronal morphometry is 

necessary, however, since for these aspects some striking differences with previous reports are 

present. 

34 D E L I N E A T I O N OF PVH S U B D I V I S I O N S In the present study the PVH has 

been subdivided into six parts on the basis of neuronal sizes and densities as well as vascular 

densities. Although the latter criterion has not been used in previous studies, the resulting 

subdivisions correspond well to previously described ones. 

All previous studies agree in the distinction of a parvocellular and a magnocellular PVH on 

the basis of average cell size. The laterally located magnocellular part has been further 

subdivided into three parts by Armstrong et al. (1980): an anterior commissural nucleus 

(ACN), a medial (PVM) and a lateral part (PVL). Swanson and Kuypers (1980) and Swanson 

et al. (1986) distinguished four magnocellular parts, only slightly different from the 

subdivisions made by Armstrong et al. (1980), i.e. an anterior (AM), a medial (MP) and a 

posterior part (PM) that is further subdivided in a medial oxytocinergic region and a lateral 

vasopressinergic region. In contrast, Kiss et al. (1991) considered the magnocellular section as 

a single entity because of the observed homogeneity in neuronal size and density. Our data 

are in line with the latter view (table I). 

In the parvocellular PVH, Armstrong et al. (1980) distinguished three regions: 1) the large 

anterior parvocellular portion (PVPA), starting immediately rostral to the PVM and 

projecting mainly to the median eminence, 2) the somewhat smaller dorsomedial cap 

(PVDC), which borders the dorsal surface of the PVH, and 3) the posterior subnucleus 

(PVPO), which extends dorsolaterally. In contrast to the PVPA, the latter two subdivisions 

contain large amounts of neurons that project to the brainstem and spinal cord (Armstrong et 

al. 1980). Swanson and Kuypers (1980) and Swanson et al. (1986) distinguished six parts in the 

parvocellular PVH on the basis of differential projections and cytoarchitectonical 

characteristics: an anterior (AP), dorsal (DP), lateral (LP), periventricular (PV) and a medial 

(MP) part, of which the latter is further subdivided in a dorsal and medial region. Kiss et al. 

(1991) have subdivided the parvocellular PVH on the basis of quantitative histological 

characteristics in a periventricular (pv) and a medial subdivision (mp), corresponding with the 

PV and MP of Swanson and Kuypers (1980) and Swanson et al. (1986) (table Ш). Within the 

medial subdivision they have delineated an anterior (map), a lateral (mlp), a medial (mmp) 

and a caudal part (mcp) on the basis of inhomogeneities in cell density. In addition, Kiss et al. 

(1991) have distinguished a mediocellular PVH subdivision with neurons of intermediate size, 

subdivided into a dorsal (d) and a posterior subdivision (p), the former corresponding with 

the PVDC of Armstrong et al. (1980) and DP of Swanson and Kuypers (1980) and Swanson 

et al. (1986), and the latter corresponding with the PVPO of Armstrong et al. (1980) and LP 

of Swanson and Kuypers (1980) and Swanson et al. (1986) (table Ш). 

The five parvocellular subdivisions that we distinguish in the present study, predominantly 

on the basis of differences in vascularity, correspond largely with the subdivisions just 



surveyed (table ΙΠ). Only the PCv has never been described as a distinct subdivision, but has 

always been regarded as a part of another subdivision. This means that the differentiation in 

vascular density in the PVH offers a well defined and reproducible basis for delineations 

within the parvocellular PVH, resulting in similar subdivisions as distinguished previously on 

the basis of the histochemical, cytoarchitectonic and connectional differentiation of the PVH 

(Armstrong et al. 1980, Swanson and Kuypers 1980, Swanson et al. 1986, Kiss et al. 1991). 

V A S C U L A R I T Y OF THE PVH Previous studies have shown that the blood supply 

to the PVH originates from the retrochiasmatic artery (Ambach and Palkovits 1974) and that 

the PVH is more richly vascularized than the surrounding hypothalamic region (Ambach and 

Palkovits 1974, Van den Pol 1982) with an overall vascular density of 3.0% (Van den Pol 35 

1982). In the present study we find an overall vascular density of 5.6%. This is about twice 

the value reported by Van den Pol (1982), who excluded the periventricular part in his 

analysis and used only transverse sections at the level of the magnocellular subdivision. A 

close comparison shows that the different values reported are not caused by the mean 

number of vessel profiles per section surface (Van den Pol (1982): approx. 8 per 10,000 μιη2, 

present study: approx. 9 per 10,000 /im2). This means that in particular different surface areas 

per vessel profile are the source of the difference between both studies, in spite of the fact 

that both studies used similar fixation and semithin section techniques to determine vascular 

densities. 

The vascularity of different subdivisions has never been quantified before. Only a few 

contradictory remarks on this subject may be found in the literature. According to Ambach 

and Palkovitz (1974), the magnocellular part is more densely vascularized than the parvo

cellular part, but Van den Pol (1982) claims that the magnocellular and parvocellular part are 

equally vascularized. Our results show that the PCc is equally vascularized as the MC, which 

is in accordance with Van den Pol (1982). The discrepancy with the study of Ambach and 

Palkovitz (1974) may be caused by the fact that the parvocellular part described by Ambach 

and Palkovitz (1974) is comparable with our combined PCc, PCd, PCv and PCp, which 

together indeed have a lower vascular density than the MC or the PCc separately. The low 

vascularity of the PV as reported in the present study, is in accordance with the observations 

T A B L E I I I Subdivisions ol the present study and the corresponding subdivisions of previous studies 

Present study 

PV 

MC 
PCc 

PCd 

PCv 

PCp 

Armstrong et el. (1980) 

PVM, PVL 

PVPA 

PVDC 

PVPA 

PVP0 

Swanson and Kuypers (1980) 

Swanson et el. (1986) 

PV 

PM 
AP. MP 

DP 
MP 

LP 

Kiss et el. (1991) 

pv 

m 

map, mlp, mmp, mcp 

d 

Ρ 

Ρ 

A B B R E V I A T I O N S A P - anterior parvocellular part, d - dorsal subdivision, DP - dorsal parvocellular part, LP - lateral 

parvocellular part, m - magnocellular subdivision, map - medial subdivision anterior part, mcp - medial subdivision caudal part, πνρ -

medial subdivision lateral part, mmp - medial subdivision medial part, MP - medial parvocellular part, ρ - posterior subdivision, PM -

posterior magnocetoilar part, PVfpv - periventricular part PVDC - dorsomedial cap ol the paraventricular nucleus, PVL - lateral para

ventricular nucleus, PVM - medial paraventricular nucleus, PVPA - parvocellular portion of the paraventricular nucleus, PVP0 - posterior 

portion of the paraventricular nucleus. 



of Van den Pol (1982). 

The functional relevance of the higher vascularity of the PCc and MC is uncertain. It has 

been suggested by Van den Pol (1982) that cells in highly vascularized areas have a higher 

metabolic rate, correlated with the high quantities of peptides they produce and thus their 

higher demand for nutrients and oxygen. This would mean that the MC and PCc are the 

most active subdivisions of the PVH. 

N E U R O N A L P R O P E R T I E S The present results confirm that the MC contains the 

largest neurons of the PVH (14.4 /im) and the PV the smallest ones (9.5 μπι), while the other 

subdivisions consist of medium-sized neurons of about 11-12 μιη. This is largely in agreement 

36 with previous studies (Armstrong et al. 1980, Swanson and Kuypers 1980, Swanson et al. 

1986, Kiss et al. 1991). Apart from a magnocellular and a parvocellular part, Kiss et al. (1991) 

also distinguished a mediocellular region, comparable with our PCd, PCv and PCp. The cells 

in the PCd are indeed somewhat larger (11.6 μπι, ρ < 0.05) than in the other parvocellular 

subdivisions. However, the cells in the PCp and PCv, also included by Kiss et al. (1991) in 

the mediocellular subdivision, are not larger than those in other parvocellular subdivisions. 

The present data on neuronal densities show in fixed tissue an overall value of 185,000 cells/ 

mm3, with a highest neuronal density in the PCc (230,000/mmJ) and a lowest neuronal 

density in the PV (132,000/mm3, table I). For comparison with previous results, the present 

data on neuronal densities in the different subdivisions have to be corrected for shrinkage 

(estimated to be 10.8% linearly in our study). The results of such a correction are shown in 

table Π. Compared with Kiss et al. (1991), who reported a neuronal density in all regions of 

the PVH of around 60,000 cells/mm3, with the exception of the pv (40,000/mm3) and the 

mlp (86,000/mm3), the presently calculated densities as corrected for shrinkage are about 

twice as high (PVH: 132,000/mm3, PV: 94,000/mm3, PCc: 163,000/mm3, table Π). Several 

factors may be involved in this discrepancy. Kiss et al. (1991) quantified neuronal nuclei 

containing at least one nucleolus in 11 μπι thick sections, whereas we quantified neuronal 

nuclei in semithin (1 μπι) sections. However, both methods are based on the formulae of 

Floderus (1944) and Abercrombie (1946) and should yield reliable and comparable data 

(Bolender 1983, Smolen et al. 1983, Albers et al. 1988), unless a substantial portion of the 

PVH neurons would lack a distinct nucleolus. Such neurons would be incorporated in the 

present study, but would not have been counted by Kiss et al. (1991). We excluded the 

incorporation of glial cells in our counts by comparing every drawing of a paraphenylene-

diamine stained section with an adjacent toluidine blue stained section. 

A factor that might be correlated with the different neuronal densities calculated is the 

different PVH volume reported in both studies. Kiss et al. (1991) calculated an average 

volume of 0.18 mm3, whereas we calculated a volume 0.12 mm3. This might partly be the 

result of a different delineation of the PVH, resulting in inclusion of parts of the cell-sparse 

zone by Kiss et al. (1991). This would enlarge the PVH volume and reduce the overall 

neuronal density. However, this would also enlarge the number of neurons calculated in the 

PVH, which is not the case: Kiss et al. (1991) reported a substantially lower number of PVH 

neurons than the present study. Another factor influencing the determination of the volume 

as well as the neuronal density of the PVH is shrinkage. The shrinkage factor used by Kiss et 

al. (1991) (17% linearly, i.e. 43% three-dimensionally) is different from the presently used one 

(10.8% linearly, i.e. 29% three-dimensionally) but this relatively small difference cannot 

account for the large differences in calculated volumes and densities. Moreover, when the 



shrinkage factors applied would not represent the true values, such a deviation would not 

influence the neuronal numbers calculated in the PVH, which still are different in both 

studies. Nevertheless, delineation and shrinkage differences may still partially have their 

influence, since the neuronal density in the present study is two times higher, but the 

neuronal number is only 1.5 times higher compared with the study of Kiss et al. (1991). 

Differences in rat lines used might also be involved in the different neuronal densities and 

PVH volumes, since Kiss et al. (1991) used CFY rats, whereas we used Wistar rats. It is 

presently uncertain to what extent any of the factors enumerated are involved in the 

discrepancies just discussed. 

In spite of the differences in the estimated absolute values of the neuronal densities, the 

mutual differences between subdivisions as presented by Kiss et al. (1991) and the present 

study are similar. The PV has the lowest neuronal density, while the PCc, largely 37 

corresponding with the mlp of Kiss et al. (1991), has the highest neuronal density. The other 

subdivisions have intermediate neuronal densities. 

As is already mentioned above, previous estimates of the total number of cells in the PVH 

are considerably lower than the present results, due to the higher neuronal density observed 

in our study (Kiss et al. (1983): 9,000 cells, Swanson and Sawchenko (1983): 10,000 cells, Kiss 

et al. (1991): 10,750 cells, present study: 15,400 cells, one side). According to our results, the 

PV contains 12% of the total cell population, the MC 15.5%, the PCc 33% and the PCd 

9.5%. This percentive distribution is largely comparable with the results of Kiss et al. (1991), 

except for the PCv and PCp. These subdivisions together represent the posterior subdivision 

(p, table III) of Kiss et al. (1991) and contain 30% of the total cell population in our study, 

opposite to the 16% reported by Kiss et al. (1991). In the PCc, which contains an estimated 

total number of 5,000 cells, about 2,000 CRH cells have been observed (Swanson et al. 1983, 

Sawchenko and Swanson 1985). 

S Y N A P T I C C H A R A C T E R I S T I C S The present study is the first one giving quanti

tative data on the synaptic organization of the PVH. Previously reported quantitative EM 

data exclusively concerned the surface and number of presynaptic boutons (Kiss et al. 1983). 

The synaptic trace length observed in the PVH (368 ± 6 nm) is relatively large compared 

with other brain regions, such as the colliculus superior of rabbits (Vrensen and De Groot 

1977) (241-257 nm) and rats (Albers et al. 1990) (268 nm), the visual cortex (Sirevaagh and 

Greenough 1985) (276-310 nm), and the hypothalamic aggression region (Aalders and Meek 

1993) (267-355 nm) of rats, except for the cerebellum (Hillman and Chen 1985) (373 nm). 

Similar to the neuronal density, the synaptic density has to be corrected for shrinkage to have 

an estimate of the situation in normal, unfixed, living tissue (cf. tables I and Π). Our data 

show a similar overall synaptic density in the PVH (133 χ lOVmm3) and the surrounding 

cell-sparse zone (166 χ lOVmm3), without significant differences between PVH subdivisions. 

However, the synaptic density differs significantly between APO-SUS and APO-UNSUS rats, 

as will be discussed below. The overall synapse-to-neuron (S/N) ratio of 1009 is in agreement 

with the results of Kiss et al. (1983) who reported the presence of about 1,000 synaptic 

boutons per cell within the PVH. 

A P O - S U S V E R S U S A P O - U N S U S RATS The most significant finding of the 

present study is the difference in synaptic density between APO-SUS (158 χ lOVmm3) and 



APO-UNSUS rats (108 χ lOVmm3) (table Π). This is a quite specific result, since the 

synaptic density in the cell-sparse region surrounding the PVH is similar in both lines, as is 

the neuronal density in the PVH. The higher synaptic density in the PVH of APO-SUS rats 

compared to APO-UNSUS rats suggests the presence of a more elaborate micro-circuit in the 

PVH of APO-SUS rats compared to APO-UNSUS rats. This differentiation might be 

correlated with differences in circulating plasmacorticoid levels during early postnatal life, 

since it has been shown that treatment with corticosteroids retards synaptic genesis (De Kloet 

et al. 1988). This suggests, as is hypothesized before (Cools et al. 1990, Cools et al. 1993b), 

that APO-SUS rats are exposed to lower levels of corticosteroids than APO-UNSUS rats 

during early development. 

It is not clear whether the higher synaptic density in the PVH of APO-SUS rats is the result 

38 of a general enhancement of synaptic development or an enhancement of one or a few 

specific inputs to the PVH. It is not very likely that interneurons or recurrent collaterals are 

involved, since these only infrequently occur in the PVH (Van den Pol 1982, Rho and 

Swanson 1989). Previous experiments suggest a more active hypothalamo-pituitary-adrenal 

axis in adult APO-SUS rats compared to adult APO-UNSUS rats (Cools et al. 1993b), the 

latter showing a significantly lower basal plasma ACTH level and a lower mineralocorticoid 

receptor capacity in the pituitary than the APO-SUS rats. Furthermore, it has been found 

that a conditioned emotional stimulus induces a higher plasma ACTH level in APO-SUS rats 

compared with APO-UNSUS rats (Van Eekelen 1992). Consequently, the higher synaptic 

density in APO-SUS rats correlates well with a presumed higher activity of the PVH during 

stress regulation in APO-SUS rats. However, recent work in our laboratory showed that the 

PVH of APO-SUS rats contains significantly less Fos-immunoreactive cells than the PVH of 

APO-UNSUS rats (Mulders et al. 1993) after a stressful stimulus. This suggests a reduced 

activity of the PVH of APO-SUS rats compared to APO-UNSUS rats, which would mean 

that the increased synaptic density in the PVH evokes an increased inhibitory effect on the 

PVH. To evaluate these possibilities further, it is necessary to incorporate our Fos 

experiments in detail in the discussion, which will be done in the following paper (Mulders et 

al. 1995). 
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S U M M A R Y 

The present study investigates the role of corticotropin-releasing hormone (CRH) neurons in 

stress regulation by a comparison of stress induced Fos-immunoreactivity and CRH-immuno-

reactivity in the hypothalamic paraventricular nucleus (PVH) of APO-SUS (apomorphine-

susceptible), APO-UNSUS (apomorphine-unsusceptible), normal Wistar and adrenalectomized 

Wistar (ADX) rats. The first two types represent a good model to study the role of the PVH 

in stress regulation, since they show different stress responses and a differential synaptic 

organization of the PVH. After placement on an open field for 15 minutes all rats showed an 

increase in the number of Fos-immunoreactive nuclei compared to control handling. 

Interestingly, open field stress, but not control handling, induces significantly fewer Fos-

42 immunoreactive nuclei in the PVH of APO-SUS rats (1255 ± 49) compared to APO-UNSUS 

rats (1832 ± 201). Experiments with ADX rats revealed that 93% of the CRH-immuno-

reactive neurons contained a Fos-immunoreactive nucleus, which suggests that the differential 

Fos-expression in APO-SUS and APO-UNSUS rats represents a differential activation of the 

CRH neurons. This hypothesis is discussed in relation to reported differences in stress 

responses, stress-induced ACTH levels and synaptic organization of the PVH. 

I N T R O D U C T I O N 

The hypothalamic paraventricular nucleus (PVH) plays an important role in the regulation of 

stress responses. It contains corticotropin-releasing hormone (CRH) producing parvocellular 

neurons, which induce adrenocorticotropic hormone (ACTH) release from the corticotrope 

cells in the anterior pituitary (Antoni 1989). ACTH subsequently regulates corticosteroid 

production in the adrenal cortex (Whitnall 1993). Corticosteroids are involved in several 

stress reactions and exert a negative feedback on CRH and ACTH release (Keller-Wood and 

Dallman 1984). Consequently, removal of the circulating corticosteroids by adrenalectomy 

(ADX) induces an increase of CRH mRNA on the short term and an increase of CRH on 

the long term (Sawchenko 1987, Almeida et al. 1992). 

Several stimuli evoke stress responses, and for some of these the expression of c-fos mRNA 

or Fos-like immunoreactivity (Fos-ER) has been used to demonstrate the involvement of the 

PVH. C-fos mRNA or Fos are often used as activation markers (Sagar et al. 1988, Sheng and 

Greenberg 1990, Morgan and Curran 1991), since c-fos is responsible for the synthesis of the 

nuclear protein Fos, which, together with other factors, makes complexes with DNA at AP-1 

binding sites (Curran and Franza 1988) to regulate transcription (Morgan and Curran 1991, 

Schilling et al. 1991). Accordingly, the expression of c-fos and the accumulation of the 

protein Fos are associated with cell activation in response to a variety of stimuli (Doucet et 

al. 1990). Stressful stimuli that have been used to induce c-fos or Fos-Ш. in the PVH include 

intraperitoneal hypertonic saline injections (Sharp et al. 1991), immobilization stress 

(Ceccatelli et al. 1989, Imaki et al. 1992), pain (Senba et al. 1993) and swim stress (Duncan et 

al. 1993). 

A new model to study stress responses is presented by two lines of Wistar rats, which have 

been pharmacogenetically selected on the basis of their gnawing responses after an identical, 

subcutaneous dose of apomorphine (Cools et al. 1990, Cools et al. 1993a, Cools et al. 1993b). 

They are indicated as APO-SUS (apomorphine susceptible) and APO-UNSUS (apomorphine 

unsusceptible) rats, showing a high and low gnawing response, respectively (Cools et al. 



1990). Other interline differences can be observed on an open field, where APO-SUS rats 

show more locomotor activity and edge-hugging behavior than APO-UNSUS rats. In the so-

called defeat test, in which the rat is confronted with a much larger rat, APO-SUS rats show 

fleeing behavior, whereas APO-UNSUS rats exhibit freezing (Cools et al. 1990, Cools et al. 

1993b). Furthermore, a conditioned emotional stress stimulus evokes higher plasma ACTH 

levels in APO-SUS rats than in APO-UNSUS rats (Van Eekelen et al. 1992, Rots et al. 1995). 

The present paper investigates the stress induced expression of Fos-IR in the PVH of APO-

SUS and APO-UNSUS rats. For this purpose, we quantified Fos-IR in the PVH after a mild 

novelty stress in both APO-SUS and APO-UNSUS rats and compared this with Fos-ER in 

the PVH of normal Wistar rats after the same stress. Novelty-induced stress is known to 

modulate differentially the hippocampal content of dynorphine (Cools et al. 1993a) as well to 

affect differentially the release of ACTH and corticosteroids in APO-SUS and APO-UNSUS 43 

rats (Rots et al. 1995). We investigated whether the novelty-induced Fos-IR is expressed by 

the CRH-cell population using ADX rats, since untreated rats do not show distinct CRH-IR 

in the PVH. The differences in Fos-expression between APO-SUS and APO-UNSUS rats will 

be correlated with the reported differences in synaptic densities in the PVH (Mulders et al. 

1995) and differential stress induced ACTH levels in both types of rats (Van Eekelen et al. 

1992). 

M A T E R I A L S A N D M E T H O D S 

A N I M A L S The present study is based on 44 male Wistar rats (weighing 200-330 g), 

including 6 APO-SUS and 8 APO-UNSUS rats. All rats were bred in our Animal Laboratory 

and originally housed in groups of 2-3 animals per cage (36 χ 24 χ 25 cm) in a room with a 

constant temperature (20 ± 2°C) and a 6.00 am to 6.00 pm light period. Food and water 

were given ad libitum. All rats (except for 3 rats used for CRH-immunocytochemistry) were 

isolated in separate cages three days before the experimental procedure. Bilateral 

adrenalectomy (ADX) was performed in a number of rats under ether anaesthesia 4 weeks 

before the experimental procedure (rats weighing 170 ± 10 g at time of ADX). The ADX 

rats were given saline (0.9% sodium chloride in aqua dest) instead of water. 

E X P E R I M E N T A L P R O C E D U R E S In order to investigate whether Fos-immuno-

reactivity (Fos-IR) in the PVH shows interline variation between APO-SUS and APO-

UNSUS rats and whether this Fos-IR is expressed by the CRH-cell population, we applied 

different experimental procedures to 5 groups of rats. We investigated Fos-IR after open field 

stress in the PVH of normal Wistar rats (group A), as well as in the PVH of APO-SUS and 

APO-UNSUS rats (group B). The relation between Fos-IR and CRH-IR was studied in ADX 

rats, since untreated rats do not show distinct CRH-IR in the PVH. The PVH of ADX 

Wistar rats was stained for either Fos (group C) or CRH (group D), or double-stained for Fos 

and CRH (group E). In more detail the experimental groups were treated as follows: 

Group A: Three Wistar rats were placed for 15 minutes on an open field (open field stress; 

see Cools et al. 1990) and then returned to their home cages. 60 minutes later these 

experimental rats were perfused and processed for Fos-IR (see below). Three control Wistar 



rats were handled for 15 seconds, returned to their home cages for 15 minutes, handled again 

for 15 seconds and left in their home cages for the next 60 minutes. Subsequently, they were 

perfused and processed in the same way as group A. 

Group B: Three APO-SUS (F14 generation, 240-330 g) and five APO-UNSUS rats (F14 

generation, 200-330 g) were treated similarly as the experimental rats in group A. Three 

APO-SUS (F18 generation, 190-230 g) and three APO-UNSUS rats (F18 generation, 

220-250 g) control rats were treated similarly as the controls of group A. 

Group C: Three ADX rats were treated similarly as the experimental rats in group A, and 

three ADX rats were treated similarly as the control rats of group A. 

Group D: Three ADX rats were perfused and processed for CRH-IR (see below), without 

open field stress. 

Group E: Three ADX rats were treated similar as group C, but the sections obtained from 

the PVH were double-stained for Fos and CRH (see below). 

T I S S U E P R O C E S S I N G For perfusion, rats were deeply anaesthetized with pento

barbital (6 mg/100 g bodyweight) and transcardially perfused with 100 ml saline (0.9% 

sodium chloride) followed by 450 ml 4% paraformaldehyde (PF, group D and E) or 2% PF 

(group A, B, and C) in 0.1 M phosphate buffered saline (PBS, pH 7.3). Immediately after 

perfusion, they were decapitated, and the dorsal part of the skull was removed. The heads 

were placed in a stereotactic device, and a transverse incision was made to allow sectioning of 

all brains in the same transversal plane. After removal of the brains out of the skull, they 

were placed overnight in the same fixative as used for perfusion. 

The procedure just described resulted from comparing different fixation protocols after intra

peritoneal injections of a hypertonic salt solution (NaCl, 1.5 M, 1 ml/100 g bodyweight), a 

stimulus inducing intense Fos-IR in the PVH (Veening et al. 1993). For this purpose rats were 

perfused transcardially with 2% or 4% PF in 0.1 M PBS (pH 7.3), followed by a postfixation 

overnight (18 hours) or for 42 hours. Quantitative analysis showed that 2% PF with 18 hours 

postfixation yields 1876 ± 693 Fos-IR nuclei in the PVH, 2% PF with 42 hours postfixation 

1766 ± 292 Fos-IR nuclei, 4% PF with 18 hours postfixation 1057 ± 143 Fos-IR nuclei and 

4% PF with 42 hours postfixation only 735 ± 204 Fos-IR nuclei. Consequently, we decided 

to use 2% PF with a postfixation overnight, since a further increase of PF concentration as 

well as fixation time results in a reduction of Fos-IR. 

For visualization of Fos-ER, sections of 75 μτα were cut on a vibratome in PBS (pH 7.3). 

After rinsing (one hour in PBS), sections were pre-incubated with 5% normal horse serum, 

0.5% Triton X-100 and 0.1% bovine serum albumin (BSA) in PBS for one hour. Sub

sequently, the sections were incubated overnight at room temperature with a sheep 

polyclonal Fos antiserum, diluted 1:2,000 (Cambridge Research Biochemicals, Inc., 

Wilmington). After rinsing, sections were incubated for 90 minutes with a horse anti-sheep 

antibody (1:100 in PBS) and rinsed again. Next, the sections were treated for 90 minutes with 

sheep-peroxidase-anti-peroxidase (sh-PAP; Nordic) diluted 1:600 in PBS. After additional 

rinsing, sections were pre-incubated for 10 minutes in 0.02% 3,3'-diaminobensidine-4HCl 

(DAB, Sigma), 0.3% nickel ammonium sulphate in a 0.05 M Tris(hydroxymethyl)-

aminomethane solution (pH 7.6), followed by an incubation for 10 minutes in the same 

solution containing 25 μΐ H 2 0 2 (DAB reaction). Subsequently, the sections were mounted on 

gelatine coated slides, dried overnight in a stove of 37°C, dehydrated and coverslipped with 

Entellan. 



For visualization of CRH-IR, vibratome sections (75 /¿m) were pre-incubated with normal 
goat serum, 0.5% Triton X-100 and 0.1% BSA in PBS for 1 hour and subsequently incubated 
overnight at room temperature with a rabbit polyclonal CRH antiserum diluted 1:1,000 (for 
characterization see below). After rinsing, sections were incubated for 90 minutes with a goat 
anti-rabbit antibody (1:100 in PBS), rinsed again and treated for 90 minutes with rabbit-PAP 
diluted 1:600 in PBS. After rinsing, sections were treated for a DAB reaction. When double-
staining (Fos followed by CRH) was performed, the DAB solution for the CRH-staining did 
not contain nickel ammonium sulphate, which resulted in black nuclei and brown cytoplasm. 
After the DAB reaction, sections were mounted as described above. 

C H A R A C T E R I Z A T I O N OF THE C R H A N T I S E R U M The antiserum (8Bo) 45 
was raised in a rabbit against rCRH141 conjugated to thyroglobulin. For immunization 25 μg 

equivalent CRH (approx. 160 μί CRH-conjugate) plus 340 μί PBS was mixed with 500 μ\ 

Freunds complete adjuvant (FCA) and injected intramuscularly and subcutaneously. After 1 

month the rabbit received a boost injection with CRH-conjugate plus FCA as above. The 

antiserum was characterized by 'immunospotting' and immunocytochemistry. 

Immunospotting: r/hCRH M ) solutions of 10"' to 10"* M in distilled water were spotted (1 μ\) 

on nitrocellulose filter (pore size 0.45 μηι, Schleicher and Schuell). After drying (5 minutes) 

the filters were fixed in freshly prepared 4% PF in 0.1 M PB (pH 7.6). After washing (3x) in 

0.01 M PBS (pH 7.6) the filters were incubated for lh with 8Bo diluted 1/100 or 1/500 in 

PBS containing 0.5% BSA and 0.1% Tween 20 (incubation buffer). After washing (3x) in PBS 

with 0.1% Tween 20 (PBS-Tween), the filters were incubated for 30 minutes with goat anti-

rabbit antiserum (Nordic) in incubation buffer. The filters were washed (3 χ PBS-Tween) and 

incubated for 30 minutes with rabbit PAP-complex (DAKO) in incubation buffer, washed 

(2x PBS-Tween and l x 0.1 M Tris/HCl buffer) and subsequently stained with 0.1 M DAB 

in Tris/HCl containing 0.05% H 2 0 2 . All washes and incubations were performed at 

21°C ± 1). 8Bo showed an antibody-concentration dependent staining of CRH. Spots of 

CRH showed a concentration dependent staining from 10"' to 10"5 M CRH; staining of 

10"6 M CRH was completely abolished by preincubation of 8Bo with 10"6 M CRH (2h, 

37°C). No staining was observed with vasopressin, oxytocin or aMSH spots (up to 10"3 M). 

Immunocytochemistry: vibratome sections (50 (tm) of immersion or perfusion fixed tissues 

showed an excellent signal to background ratio with 8Bo dilutions of 1/400 to 1/800 

(incubations overnight at 4°C in a 0.1 M Tris buffer, pH 7.6, containing 0.2% BSA, 0.2% 

NGS, 0.1% NaN3 and 0.1% Triton X-100) and subsequent PAP/DAB procedures. After 

colchicine treatment (50 ;ug colchicine in 10 μί saline, injected i.c.v., survival 24h) strong 

CRH immunostaining was found in the PVH, the external layer of the median eminence 

(ZEME), the stria terminalis (ST) and the central amygdala (CA). Weak to moderate staining 

was observed in neurons of the nucleus supraopticus (SON), the periventricular nucleus (NP), 

the bed nucleus of the stria terminalis (BNST) and in some scattered cells in the lateral hypo

thalamic area (LHA). The observed staining patterns are similar to those reported for several 

other CRH antibodies (Cummings et al. 1983, Swanson et al. 1983, Sawchenko et al. 1993), 

and correlate well with reported distribution of CRH mRNA in hypothalamic nuclei (Beyer 

et al. 1988). All immunostaining is completely blocked by pre-incubation of 8Bo with 10"5 

r/hCRH H i (2h, 37°C), whereas no inhibition was seen after pre-incubation with up to ΙΟ"3 M 

vasopressin or aMSH. No immunostaining was found in control sections in which the first 

antibody was omitted. 



Q U A N T I T A T I V E AND S T A T I S T I C A N A L Y S I S All Fos-IR nuclei and 

CRH-IR neurons within the left PVH of the experimental and control animals were drawn 

with the aid of a Zeiss light microscope and drawing tube (magnification used for single 

stained sections: 125 X; for double stained sections: 312.5x). To determine their number and 

distribution within the PVH, the immunopositive cells were plotted in an atlas containing 8 

levels of the PVH (fig. 2). Subdivisions of the PVH were delineated on the basis of our 

previous morphometric results (Mulders et al. 1995). Since darkly as well as lightly stained 

Fos-IR nuclei and/or CRH-IR cells were plotted without distinction, the quantitative results 

reflect only the numbers of neurons and not the intensity of staining. Statistical analysis was 

performed using the Mann-Whitney U test. 

46 

R E S U L T S 

The numbers of Fos-Ш. nuclei and CRH-IR neurons observed in the left PVH of the different 

experimental and control groups are summarized in table I. Details on their distribution and 

intensity of staining are described in detail in the following paragraphs and are visualized in 

figures 1, 2 and 3. 

F O S - I R A F T E R OPEN F I E L D S T R E S S In normal Wistar rats that were 

exposed to open field stress, 1360 ± 21 Fos-Ш. nuclei were counted in the PVH (group A), 

whereas in the control group only 261 ± 74 Fos-Ш. nuclei were found. This statistically 

significant difference (p < 0.05) occurs in all subdivisions of the PVH with the exception of 

the ventral parvocellular part (PCv) (table I, fig. 1С; for delineation of PVH subdivisions, see 

Mulders et al. 1995). The Fos-IR nuclei are not homogeneously distributed over the different 

subdivisions in the PVH. The central parvocellular part (PCc) contains about 63% of the 

total number of Fos-Ш. nuclei, the periventricular part (PV) 10%, the magnocellular part 

(MC) 9%, the parvocellular dorsal part (PCd) 4%, the PCv 5% and the parvocellular posterior 

part (PCp) 9% (fig. 1С). The control group shows a somewhat different distribution: the PCc 

contains 42%, the PV and MC 17%, the PCd 6% and the PCv and PCp, respectively 5% and 

13% of the total number of Fos-Ш. nuclei (fig. 1С). 

Similar to normal Wistar rats, APO-SUS and APO-UNSUS rats show a statistically 

significant (p < 0.05) increase in the number of Fos-Ш. nuclei after open field stress (APO-

SUS: 1255 ± 49 versus 249 ± 62 in controls, APO-UNSUS: 1832 ± 201 versus 227 ± 39 in 

controls). This statistically significant difference is present in all subdivisions of the PVH 

(table I, figs. 1A and IB). Moreover, the PVH of APO-UNSUS rats contains significantly 

more Fos-Ш. nuclei after open field stress than the PVH of APO-SUS rats (p < 0.05; figs. 

1A, IB and 2), but not after control handling. The numerical difference of Fos-Ш. after open 

field stress is corroborated by the higher intensity of the Fos-Ш. in APO-UNSUS rats 

compared to APO-SUS rats (fig. 3). The difference in Fos-Ш. between APO-SUS and APO-

UNSUS rats finds its origin predominantly in the PCc (figs. 1A, IB, 2 and 3), the only 

subdivision of the PVH that shows a statistically significant difference in the number of 

Fos-Ш. nuclei between the two rat lines: It contains 1157 ± 152 Fos-ГО. nuclei in APO-

UNSUS rats but only 695 ± 37 Fos-Ш. nuclei in APO-SUS rats (p < 0.05), numbers 

representing 63% and 56% of the total number of Fos-ГО. nuclei in the PVH, respectively 

(figs. 1A and IB). 
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F I G U R E 1 Histograms of the number of Fos-IR nuclei in the left PVH and its six subdivisions after 
different experimental procedures: Fos-IR after open field stress in APO-UNSUS rats (A), APO-SUS rats (B), normal 
Wistar rats (C) and ADX rats (D); E: CRH IR after ADX and F: Fos-IR nuclei and double stained (CRH and Fos) 
neurons after an open field stress (median value ± highest and lowest value, η » 3 except for the APO-UNSUS 
group: η = 5). · = significantly different (p < O.OS) from the corresponding control group. * - significantly 
different from the corresponding APO-UNSUS open field group. PVH - hypothalamic paraventricular nucleus. 
PV - periventricular part. MC = magnocellular part. PCc = central parvocellular part. PCd = dorsal parvocellular 
part. PCv - ventral parvocellular part. PCp = posterior parvocellular part. 



F I G U R E 2 Drawings of two representative series 
of eight 75 /лп thick sections of the left PVH of an APO-
SUS and an APO-UNSUS rats, stained for Fos-IR. Each 
dot represents one Fos-IR nucleus. Magnification 5 2 x . 

APO-UNSUS 

The total number of Fos-IR nuclei in the PVH after open field stress and control handling of 

both APO-SUS as well as APO-UNSUS rats is not statistically significant from that of the 

overall population of Wistar rats (table I). Likewise, the distribution of Fos-IR nuclei over the 

different subdivisions of the PVH after open field stress and control handling is basically 

similar in normal Wistar rats and APO-UNSUS rats (cf. figs. 1A and 1С). In contrast, APO-

SUS rats show some statistically significant differences in the number of Fos-IR nuclei after 

open field stress compared to normal Wistar rats: The number of Fos-Ш. nuclei in their PCc 

is slightly but significantly smaller (APO-SUS: 695 ± 37; normal Wistar: 858 ± 50; ρ < 0.05) 

and in their PCp slightly but significantly larger (APO-SUS: 194 ± 18; normal Wistar: 

119 ± 18; ρ < 0.05). 

Control ADX rats have a similar number and distribution of the Fos-IR nuclei in the PVH as 

control Wistar rats (ADX Wistar: 440 ± 169; intact Wistar: 261 ± 74). Likewise, ADX rats 

that have been subjected to open field stress (group C) show a similar Fos-Ш. in the PVH 

(1209 ± 178) as the normal Wistar rats (1360 ± 21) after open field stress. Apparently, the 

increase of Fos-Ш. in the PVH of ADX rats induced by open field stress (from 440 ± 169 to 

1209 ± 178), is similar to that induced in normal Wistar rats (cf. figs. 1С and ID). 
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С R H - I R A N D 

F O S - I R A F T E R 

A D X Four weeks after 

ADX a large number of 

darkly stained CRH-IR 

neurons can be observed in 

the PVH (846 ± 152; 

table I; group D). Most of 

these CRH-IR neurons 

(72%) are located in the PCc 

(605 ± 102; fig. IE). The 

PV, MC, PCd, PCv and 

PCp contain 32 ± 9 (4%), 

52 ± 9 (6%), 42 ± 10 (5%), 

36 ± 12 (4%) and 79 ± 34 

(9%) CRH-IR neurons, 

respectively. The total 

number of CRH-IR neurons 

in the PVH after ADX is 

significantly lower than the 

number of Fos-IR nuclei in 

ADX rats after an open 

field test (1209 ± 178; 

ρ < 0.05). However, their 

d i s t r ibut ion over the 

different subdivisions is 

similar (cf. figs. ID and IE). 

Double staining for Fos and 

CRH in the PVH of ADX 

rats after exposure to open 

field stress (group E), 

revealed 1661 ± 234 Fos-IR 

nuclei and 489 ± 70 CRH-

IR neurons of which 

457 ± 1 3 1 were double 

stained (table I, fig. IF). So, 

93% of the CRH-IR 

neurons contained a Fos-IR 

nucleus after double-

staining, but only 28% of 

the total number of Fos-IR 

nuclei was located in a 

F I G U R E 3 Photomicrographs of vibratome {75 μπι) sections of the left PVH showing Fos-IR of a control 

rat (A), and an ΑΡ0 SUS (В) as well as an APO-UNSUS rat (C) after open field stress. Magnification 89χ. 



CRH neuron. The most extensive double labeling was found in the PCc (38%) and PCd 

(38%). In the double-staining experimental group the total number of Fos-IR nuclei is 

substantially higher than in single stained ADX rats after open field stress, and the number of 

CRH-IR neurons is considerably lower than in the control ADX animals, although both not 

statistically significant. Most likely, technical aspects of the double-staining procedure are 

involved in these differences. 

D I S C U S S I O N 

The present study investigates the role of CRH neurons in stress regulation by a comparison 51 

of stress-induced Fos-Ш. and CRH-IR in the PVH of normal Wistar, APO-SUS, APO-

UNSUS and ADX rats. To evaluate the functional significance of the results, they will first 

be compared with previous studies that determined Fos-Ш. in the PVH after stressful stimuli 

and secondly with previous studies on the number and distribution of CRH cells in the 

PVH. Finally, the significance of the differences in Fos-Ш. between APO-SUS and APO-

UNSUS rats will be discussed in relation to the reported differences in stress responses, stress-

induced ACTH levels and the synaptic organization of the PVH. 

S T R E S S - I N D U C E D F O S - I R Open field stress proves to be an adequate stimulus to 

induce Fos-IR in the PVH of normal Wistar, APO-SUS and APO-UNSUS rats since a five-to-

eight-fold increase in Fos-Ш. nuclei was found compared to controls, yielding 1200-1800 

Fos-IR nuclei per PVH (table I). This response is stronger than observed previously after 

different stressful stimuli. Duncan et al. (1993) counted 840 Fos-ГО. cells in rats subjected to 

swim stress and 36 Fos-IR cells in controls. Other stimuli that have been applied to induce 

Fos-IR in the PVH are immobilization and painful stress, inducing 1093 and 958 Fos-IR cells, 

respectively, in the PVH (Senba et al. 1993). These numbers are lower than counted in the 

present study, which is surprising since an open field is considered to be a mild stressor 

compared to immobilization and painful stress. However, the differences with other studies 

are most probably due to histotechnical factors such as the use of different perfusion fluids 

and postfixation periods, which are known to influence immunohistochemical staining. We 

have shown that higher concentrations of paraformaldehyde and increased postfixation 

periods decrease the number of Fos-IR nuclei (see Materials and Methods). 

In all rats used in the present paper the majority of Fos-IR nuclei in the PVH is situated in 

the PCc, both after open field stress (63%) and after control handling (43%, fig. 1С). This 

agrees with previous studies, which report a majority of Fos-IR neurons in the dorsal medial 

parvocellular part after immobilization or pain stimulation (Ceccatelli et al. 1989, Senba et al. 

1993). This subdivision is comparable with our PCc (Mulders et al. 1995). 

To study the colocalization of Fos-IR and CRH-IR we used ADX rats, since untreated rats 

show little or no visible CRH-IR in the PVH. ADX rats show a similar response as normal 

Wistar rats with respect to the distribution of Fos-IR nuclei in the PVH both after control 

handling and after open field stress, (cf. figs. 1С and ID). This is in agreement with the study 

of Wintrip et al. (1993), who found induction of Fos-IR in the parvocellular part of the PVH 

4 hours after ADX, but little or no Fos-IR 24 hours after ADX. Jacobson et al. (1990) report 

that Fos-IR in the PVH is enlarged up to 7 days after ADX. 



C O M P A R I S O N OF F O S - I R AND C R H - I R Four weeks after ADX we found a 

similar number of CRH-IR neurons in the PVH (846 ± 152) as Swanson et al. (1983), who 

counted approximately 750 CRH neurons in the PVH of ADX rats. In agreement with 

previous studies (Swanson et al. 1983, Sawchenko 1987), we observed that the majority of 

CRH-IR neurons, about 72%, is localized in the PCc (table I; fig. IE). 

The present study shows that the distribution of CRH-IR neurons after ADX is similar to 

that of Fos-ER nuclei after an open field stress (cf. figs. 1С and ID). Most Fos-Ш. nuclei as 

well as CRH-IR neurons are observed in the PCc (63% and 72%, respectively) and only a 

minor portion in the other subdivisions. This suggests that the Fos-Ш. evoked in the PVH 

after open field stress is predominantly localized in the CRH-IR neurons, since other types of 

neurons (e.g. vasopressinergic, oxytocinergic etc.) have different distributions in the PVH 

52 (Lightman and Young 1987, Kiss 1988, Dohanics et al. 1990). Double-staining corroborated a 

relationship between Fos and CRH, since 93% of the CRH-IR neurons contained a Fos-IR 

nucleus (table I), which implies that almost all neurons that display CRH-IR after ADX are 

activated by open field stress. This agrees with previous studies showing colocalization of Fos 

and CRH, or c-fos mRNA and CRH mRNA after immobilization stress (Beyer et al. 1988, 

Imaki et al. 1992). 

In addition to the CRH neurons that are detectable after ADX, other neurons appear to be 

activated as well by open field stress, since after double-labeling only 28% of all Fos-Ш. nuclei 

in the PVH (and 38% in the PCc) is localized in a CRH-IR neuron and consequently 72% of 

all Fos-Ш. was observed in other neurons (fig. IF). It is presently uncertain whether these 

latter neurons represent CRH neurons not responding to ADX, or belong to other types of 

peptidergic or non-peptidergic PVH neurons. 

A P O - S U S V E R S U S A P O - U N S U S RATS The most remarkable finding of 

present study is that open field stress yields substantially fewer Fos-Ш. nuclei in the PVH of 

APO-SUS rats than in the PVH of APO-UNSUS rats (table I, figs. 2 and 3). This difference 

originates mainly from the PCc, the only subdivision that shows a significant difference 

(p < 0.05) between the APO-SUS (695 ± 37) and the APO-UNSUS rats (1157 ± 152) (figs. 

1A and IB). 

The reduced Fos activation in the PVH of APO-SUS rats is correlated with an increased 

synaptic density (Mulders et al. 1995), which suggests that this increased synaptic density has 

an increased (direct or indirect) inhibitory effect on CRH neurons. An important source of 

(indirect) inhibitory influences on the PVH is the hippocampus (Herman et al. 1989, 

Sapolsky et al. 1991, Cullinan et al. 1993). These influences are probably exerted via the bed 

nucleus of the stria terminalis (BNST), since the hippocampus projects to the GABA-ergic 

neurons in the BNST, which in turn are known to project to the PVH (Cullinan et al. 1993). 

So, the reduced Fos-Ш. in APO-SUS rats could point to an increased (inhibitory) 

hippocampal-BNST influence on the PVH in APO-SUS rats, compared with APO-UNSUS 

rats. The observation that the hippocampus of APO-SUS rats contains 50% more mineralo-

corticosteroid receptors than the hippocampus of APO-UNSUS rats (De Kloet et al. 1987, 

Sutanto et al. 1989, Cools et al. 1990, Cools et al. 1993b) is in line with this suggestion, but 

other structures and neurotransmitters may be involved as well. The PVH is known to 

receive an inhibitory input from serotonin-containing neurons in the midbrain raphe nuclei 

(Sawchenko et al. 1983, Saphier and Zhang 1993) and an important noradrenergic input 

(Swanson et al. 1981, Ginsberg et al. 1994), arising mainly from the brain stem (Saphier 1989). 



The influence of noradrenaline on the PVH may also be inhibitory (Suda et al. 1987), 
although stimulatory effects on the hypothalamo-pituitary-adrenal axis have also been 
described (Assenmacher et al. 1989). 
Remarkably, the reduced Fos-IR in the PVH of APO-SUS rats after open field stress is at 
variance with the observation that a conditioned emotional stimulus induces a higher plasma 
ACTH level in APO-SUS rats compared with APO-UNSUS rats (Van Eekelen et al. 1992, 
Rots et al. 1995), and with the higher responsiveness of the hypothalamo-pituitary-adrenal 
axis to stress in the APO-SUS rats (Cools et al. 1990, Cools et al. 1993b, Rots et al. 1995). So, 
stressed APO-SUS rats seem to combine a reduced activity of CRH neurons with an 
increased ACTH release compared with APO-UNSUS rats, which is surprising in view of the 
stimulatory effect of CRH on ACTH release. Several mechanisms may be involved in this 
discrepancy. E.g., in APO-SUS rats the negative feedback of corticosteroids on the ACTH 53 
release may be weaker than in APO-UNSUS rats, as may be due to differences in number 
and/or properties of hypophyseal corticosteroid receptors (Rots et al. 1995). Likewise, there 
may be a differential regulation of synthesis and release of CRH in APO-SUS and APO-
UNSUS rats. Increased synthesis, which is visualized by Fos-IR (Morgan and Curran 1991, 
Schilling et al. 1991), does not necessarily indicate a simultaneously increased release, as has 
been shown for several peptides (Hanley and Wellings 1985, Van Strien et al. 1993). Further 
research has to be carried out to investigate the differential stress regulation in APO-SUS and 
APO-UNSUS rats in more detail. 
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S U M M A R Y 

Corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus 

(PVH) play an important role in the stress response. They stimulate the release of adreno

corticotropic hormone (ACTH) from the pituitary and consequently regulate the production 

of corticosteroids in the adrenal glands. The activation of the CRH neurons is regulated by a 

variety of factors, including corticosteroid feedback, the immunesystem and afferent input 

from several brain structures. The present study compares the number and distribution of 

activated CRH neurons in the PVH following different experimental procedures likely to 

stimulate the CRH neurons. These procedures include adrenalectomy (ADX), colchicine 

injections, interleukin treatment and anti-CRH injection. In this way we tried to determine 

58 whether different regulation mechanisms activate different CRH neuron subpopulations. We 

showed that ADX results in a two-fold increase in the number of activated CRH neurons as 

compared to untreated rats. This CRH neuronal activation was particularly observed in sub

divisions which contain large amounts of neurons projecting to the median eminence. It 

appeared that anti-CRH mimics the effect of ADX. Colchicine treatment results in the 

visualization of again twice as much CRH neurons as ADX, probably staining all CRH 

neurons also that ones which are not involved in the stress regulation. We failed to show an 

effect of intracerebroventricular interleukin injection, but, remarkably, revealed a long-term 

inhibitory effect of intravenous interleukin injection on the activation of the CRH neurons. 

This inhibitory effect of IL seems to affect only part of the CRH neurons projecting to the 

median eminence. The mechanism of this effect remains to be elucidated. In conclusion, in 

our experiments we could detect at least two subpopulations of differentially regulated CRH 

neurons, one which projects to the median eminence, and is thus activated by ADX and anti-

CRH, and one which is not. In addition, our results suggest a third subpopulation under the 

influence of the immunesystem which is part of the CRH subpopulation projecting to the 

median eminence, since the long-term treatment of intravenous IL seems to inhibit the 

activity of only a part of the population of CRH neurons which can be activated by ADX 

and anti-CRH. 

I N T R O D U C T I O N 

The highest density of corticotropin-releasing hormone (CRH) neurons within the brain is 

found in the hypothalamic paraventricular nucleus (PVH) (Swanson et al. 1983). The largest 

portion of these neurons projects to the neurohemal zone of the median eminence (Lechan et 

al. 1980) whereas a small percentage projects to the brain stem (Swanson and Kuypers 1980). 

In the median eminence CRH is released into the portal pituitary vessels from where it 

reaches the anterior pituitary (Lennard et al. 1993). Within the pituitary gland CRH is the 

main regulator of the release of adrenocorticotropic hormone (ACTH) (Vale et al. 1981, 

Rivier et al. 1982), which in its turn regulates the production of corticosteroids in the 

adrenals (Van Oers et al. 1992). This cascade in the hypothalamo-pituitary-adrenal (ΗΡΑ) axis 

plays a major role in the organism's adaptation to stressful conditions (Moldow et al. 1987, 

Haas and George 1988). 

Corticosteroids have a negative feedback effect on the activity of the CRH neurons in the 

PVH (Sawchenko 1987b), but the ΗΡΑ-axis is by no means a closed loop system, since 

several other brain mechanisms have been suggested to be involved in the regulation of CRH 



neurons as well. These include limbic structures (Allen and Allen 1975, Dunn and Orr 1984, 

Gray et al. 1989, Herman et al. 1989) and catecholaminergic cell groups in the brain stem 

(McKellar and Loewy 1981, Cunningham and Sawchenko 1988, Cunningham et al. 1990). In 

addition, the ΗΡΑ-axis interacts closely with the immunesystem. One of the actions of 

corticosteroids is the suppression of immunefunctions, by, among others, the decrease of the 

interleukin (EL) production by macrophages (Madden and Feiten 1995). The other way 

around, IL has a potent release effect on ACTH and corticosteroids (Besedovsky et al. 1986), 

which may well be mediated by an activation of the CRH neurons in the PVH (Berkenbosch 

et al. 1987, Sapolsky et al. 1987, Veening et al. 1993). 

The study of CRH neurons is complicated by their low basal activity, which makes immuno-

histochemical staining of these neurons difficult. Therefore, several methods have been used 

to increase the immunoreactivity (ER) of CRH neurons, such as injections with colchicine, 59 

which non-specifically interrupts axonal transport (Sawchenko 1987a, Rho and Swanson, 

1989) and adrenalectomy (ADX), which removes the negative feedback of corticosteroids and 

in this way stimulates the production of CRH (Sawchenko 1987b). The latter results in an 

intense staining of the CRH neurons (Mulders et. al 1995, Mulders et al. submitted). 

Intravenous and intracerebroventricular injections with IL enhance the activity of CRH 

neurons as well (Berkenbosch et al. 1987, Sapolsky et al. 1987, Rivest et al. 1992, Veening et 

al. 1993). The question arises whether the CRH populations as made visible with these 

different techniques are similar, since they all interfere with different activation mechanisms. 

For instance, it is likely that ADX will not activate the CRH neurons which project to the 

brain stem, whereas colchicine will most likely affect all CRH neurons. Furthermore, it has 

previously been suggested that ADX visualizes two different subpopulations, one, which 

co-releases vasopressin (VP) and one, which does not (Whittnall 1988, Mulders et al. 

submitted). This observation also suggests that there are several different CRH populations 

present in the PVH. 

In the present study we investigated the distribution and number of activated CRH neurons 

following different experimental procedures, in order to determine what part of the CRH 

population is influenced as well as the potency of the different methods used in comparison 

to controls. In this way we want to gain more insight in the existence of different sub-

populations of CRH neurons in the PVH and their role in the activation of the HPA-axis. 

M A T E R I A L S A N D M E T H O D S 

A N I M A L S The present study is based on 33 male Wistar rats (weighing at time of 

perfusion 200-250 g). All rats were bred in our Animal Laboratory and originally housed in 

groups of 2-3 animals per cage (36 χ 24 χ 25 cm) in a room with a constant temperature 

(20 ± 2°C) and a 6.00 am to 6.00 pm light period. Food and water were given ad libitum. In 

6 rats bilateral adrenalectomy (ADX) was performed under ether anaesthesia 4 weeks before 

the perfusion (rats weighing 170 ± 10 g at time of ADX). These ADX rats were given saline 

(0.9% sodium chloride in aqua dest) instead of water. 

E X P E R I M E N T A L G R O U P S To investigate the effects of 5 different treatments, 

colchicine, ADX, EL icv and anti-CRH after 2 survival times, and 2 different CRH antibodies 



(5Bo and 8Во, gifts of Drs. Tilders and Schmidt, Amsterdam, The Netherlands, for character
ization of these antibodies see: Schmidt et al. 1995 and Mulders et al. 1995, respectively) with 
respect to the visualization of CRH neurons we formed 6 different experimental groups. 
Group 1 consisted of nine control rats which were perfused and processed for CRH immuno-
histochemistry with either 8BO (group ΙΑ, η - 6) or the 5Bo antibody (group IB, η - 3), 

respectively. 

Group 2 consisted of two groups of three rats that were adrenalectomized (ADX) and 

perfused four weeks later and processed with either 8Bo (group 2A) or the 5Bo antibody 

(group 2B). 

Group 3 consisted of three rats which received an intracerebroventricular (icv) injection of 

5 μ\ of colchicine solution (10 mg/ml), perfused 24 hours later and processed for CRH 

60 immunohistochemistry with the 8Bo antibody. 

Group 4 consisted of three rats which received an icv injection with a solution of 100 ng 

interleukin-lß in 10 μ\ saline (provided by Dr. D. Boraschi, Sciavo, Siena, Italy) and were 

perfused 4 hours later and processed in the same way as the groups above. 

Group 5 consisted of six rats which were cannulated in the jugular vein. Seven days later (at 

t - -90) three of these rats were injected intravenously with a monoclonal antibody against 

rat CRH (anti-CRH; PFU 83, batch 9102-A) (Van Oers et al. 1989) in a volume of 1.0 ml/rat 

(30 nmol/ml). The other three rats were injected with normal rat IgG (NRI) in the same 

volume. Subsequently, (t - 0) all rats received an iv injection with JL-lß (0.5 μξ in 300 μ\ 

saline). Blood samples were taken at t - 0, t - 15, t - 30, t - 60, t - 120 and t - 240 for 

measurement of plasma corticosterone (В) levels. (For a more extensive description of this 
procedure and results of the physiological measurements, see Van der Meer et al. 1996). Three 
days later these rats were perfused and processed in the same way as the groups above with 
the 8Bo antibody. 

Group 6 consisted of six rats which were treated similar to group 5, but were perfused ten 
days after the physiological experiments and processed in the same way as the groups above. 

T I S S U E P R O C E S S I N G For perfusion rats were deeply anaesthetized with pento
barbital (6 mg/100 g bodyweight) and transcardially perfused with 100 ml saline followed by 
450 ml 4% paraformaldehyde in phosphate buffered saline (PBS, pH 7.3). Following perfusion 
rats were decapitated, and the dorsal part of the skull was removed. The heads were placed in 
a stereotactic device, and a transverse incision was made which allowed sectioning of all 
brains in the same transverse plane. Subsequently, the brains were removed from the skull 
and placed overnight in the same fixative as used for perfusion. 

For visualization of CRH-immunoreactivity (CRH-IR) 75 μπι sections were cut on a Bio-Rad 

vibratome and rinsed in PBS. Rats were stained with either a PAP method or an ABC 

method. Comparison showed that both methods yield similar results with respect to number 

and distribution of activated CRH neurons, albeit with different antibody concentrations (as 

follows). For the PAP method sections were pre-incubated with normal goat serum, 0.5% 

Triton X-100 and 0.1% BSA in PBS for 1 hour and subsequently incubated overnight at room 

temperature with a rabbit polyclonal CRH antiserum diluted 1:1000 (8BO). After rinsing, 

sections were incubated for 90 minutes with a goat anti-rabbit antibody (1:100 in PBS), rinsed 

again and treated for 90 minutes with rabbit-PAP diluted 1:600 in PBS. After rinsing sections 

were preincubated for 10 mins. in 0.02% 3,3'-diaminobensidine.4HCl (DAB, Sigma), followed 

by an incubation for 10 mins. in the same solution containing 25 μ\ of H 2 0 2 (DAB reaction). 



After rinsing sections were mounted on gelatin coated slides, dried overnight in a stove of 

37°C, dehydrated in a graded series of ethanol and coverslipped with Entellan. 

For the ABC method, sections were incubated overnight with a rabbit polyclonal CRH 

antiserum diluted 1:5000 (8Bo) or 1:1000 (5Bo) in PBS containing 0.5% Triton-X and 0.1% 

BSA. Then sections were rinsed in PBS and incubated for 60 mins. with a biotin-conjugated 

donkey-anti-rabbit antibody 1:400 in PBS (Jackson Immunoresearch). After rinsing sections 

were incubated for two hours with the ABC complex (Vectastain ABC elite kit, Vector 

Laboratories) and rinsed again. Subsequently sections were treated with a DAB reaction and 

mounted on slides as described above. 

Q U A N T I T A T I V E A N D S T A T I S T I C A N A L Y S I S All CRH-IR neurons within 61 

the left PVH of each animal were plotted with the aid of a Zeiss light microscope and 

drawing tube (magnification 125χ) in an atlas containing 8 levels of the PVH (Mulders et al. 

1995) (fig. 1). On the basis of these plots we determined the number of neurons in the 

different subdivisions of the PVH in all experimental groups. Darkly as well as lightly stained 

CRH neurons were plotted without distinction, which means that our quantitative results 

present only the numbers of neurons, but not the intensity of staining. Our global 

impression is, however, that numbers and intensity are rather well correlated. Statistical 

comparison of CRH neuron number was performed using the Mann-Whitney U test. 

R E S U L T S 

GROUP 1: CONTROL ANIMALS In the control rats stained 

with the 8Bo antibody (group 1A) the sections show 

a smudged appearance resulting from a limited 

staining of the cell bodies. Dendrites are only 

vaguely visible and axons can hardly be traced 

(fig. 2). However, quantification of the cell bodies is 

possible due to the low background staining. The use 

of the 5Bo antibody in control rats (group IB) 

results in far more intense staining, including clearly 

identifiable dendrites and axons. The CRH somata 

are more clearly distinguishable than in group 1A 

(fig. 2) and can be counted easily. 

We counted 414 ± 33 neurons in the whole PVH of 

group 1A, and twice as much neurons (864 ± 136) in 

the PVH of group IB (table I). Statistical comparison 

F I G U R E 1 Drawings of level 1 (A), 3 (B). 5 (C) and 7 (D) 
of the standardized atlas of the PVH (Mulders et al. 1995) used 
for plotting of the CRH neurons. Level 5 (C) is the level as 
illustrated in the photographs in figure 2. MC = magnocellular 
part, PCc » central parvocellular part. PCd = dorsal parvo-
cellular part, PCv = ventral parvocellular part. PCp = posterior 
parvocellular part, PV = periventricular part. Bar indicates 
175 //m. 
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F I G U R E 2 Photomicro

graphs of 75 μτη vibratome 

sections of the PVH of 

untreated rats (A and C), 

ADX rats (B and D), 

colchicine treated rats (E), 

icv IL treated rats (F), NRIjlL 

lOd (G) and anti-CRH/IL 10d 

(H) either stained with a 8Bo 

(A,B,E,F,G,H) or 5Bo (C.D) 

antibody against CRH. All 

photomicrographs are taken 

at the same level of the PVH 

(level 5 see figure 1). Bar 

indicates 175 //m. 

of the 2 groups shows a significant increase in the number of visible CRH neurons after 

treatment with the 5Bo antibody (group IB) as compared to 8Bo (group 1A) in the overall 

PVH (p < 0.01), as well as in all subdivisions except for the posterior parvocellular part 

(PCp) (table I). 

GROUP 2: ADRENALECTOMIZED RATS Activated CRH neurons in ADX rats can be sharply delineated, 

both following staining with the 8Bo (group 2A) as well as the 5Bo antibody (group 2B). 

These neurons typically display two or three dendrites, while their axon can be followed over 

a long distance coursing in the direction of the fornix, with a substantial number of 

varicosities. Comparison of the treatments with either the 8Bo or 5Bo antibody after ADX 

show a similar difference as observed in controls (fig. 2), the use of 8Bo resulting in 

846 + 152 activated CRH neurons in the whole PVH as compared to 1383 ± 78 after 

treatment with 5Bo (p < 0.05). This statistically significant difference (p < 0.05) is also 

present in the PV (32 ± 9 versus 193 ± 24), PCc (605 ± 102 versus 935 ± 42) and PCv 

(36 + 12 versus 69 ± 1) (table I). 
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Comparison of the ADX treated animals with the appropriate controls (group 1A versus 

group 2A and group IB versus group 2B) shows that the number of activated CRH neurons 

is statistically significantly increased after ADX. After treatment with 8Bo this holds true for 

the overall PVH (p < 0.01) as well as all subdivisions except for the PV and the PCd, which 

show no mutual significant differences (table I, fig. 3). In the groups stained with the 5Bo 

antibody a significant increase in the number of activated CRH neurons after ADX can be 

observed in the overall PVH as well as in the PV, PCc and PCv (p < 0.05) (table I, fig. 3). 

GROUP 3: COLCHICINE TREATMENT The colchicine treated rats typically show a dilated third ventricle 

in comparison to the other experimental groups. The CRH neurons also appear more 

swollen than in the other groups and show frayed dendrites. Axons are only partly or not at 

64 all visible. Very darkly as well as lightly stained CRH neurons are observed, with a 

characteristic distribution over the PVH. Darkly stained neurons are observed especially in 

the PCc, whereas more lightly stained neurons show a preferential location in the MC, PCd 

and PCv (fig. 2). 

Quantitative comparison with the appropriate controls (group 1A) shows a significant 

increase in the number of activated CRH neurons in colchicine treated rats in the overall 

PVH (from 414 ± 33 to 1722 ± 143, ρ < 0.01), as well as in all subdivisions. In comparison 

to ADX rats (group 2A) colchicine treatment results in a significantly higher number of 

activated CRH neurons in the overall PVH, as well as in the PV, the PCc and the PCd 

(p < 0.05) (table I, fig. 3). 

GROUP 4: INTRACEREBROVENTRICULAR INTERLEUKIM (ICV II) INJECTION The overall view of the PVH sections 

obtained from the rats which received an icv Lb injection shows a similar result as the 

untreated control rats (group 1A). The PVH has a smudged appearance and cells can not be 

sharply outlined, whereas dendrites and axons are only faintly visible (fig. 2). In line with 

these qualitative observations the numbers of CRH neurons counted are similar to the ones 

for controls without statistical differences (table I, fig. 3). 

GROUP 5: INTRAVENOUS IL INJECTION WITH OR WITHOUT ANTI-CRH (3 DAYS) The PVH of rats treated with 

normal rat IgG in combination with interleukin and which were perfused 3 days later (NRI/ 

IL 3d), shows an image similar to the untreated rats (group 1A), whereas the PVH of the rats 

injected with anti-CRH and interleukin perfused after the same period (anti-CRH/IL 3d) 

shows more pronounced CRH staining with more apparent neurons. In agreement with these 

observations, we found a statistically significant increase in the number of activated CRH 

neurons in the anti-CRH/IL 3d (542 ± 18) compared to the NRI/IL 3d (295 ± 68), both 

with regard to the overall PVH as well as to the PV, PCc and PCd (p < 0.05) (table I, fig. 3) 

Quantitative comparison of the controls (group 1A) with the NRI/IL 3d rats shows a 

significant decrease in the latter group for the overall PVH (p < 0.02), as well as in the PV, 

PCc and PCv. On the other hand, the anti-CRH/IL 3d rats show a significant increase as 

compared to controls in the overall number of CRH neurons (p < 0.01), and in the PCc, 

PCd and the posterior parvocellular part (PCp) (p < 0.02). 

Comparison with the ADX rats (group 2A) shows a higher number of activated CRH 

neurons following ADX than after NRI/IL 3d both in the overall PVH as well as in all sub

divisions (p < 0.05), with an exception of the PV. Comparison of ADX rats with anti-CRH/ 

IL 3d rats shows that both treatments result in a similar high amount of activated CRH 

neurons. The only significant difference was observed in the PCc (p < 0.05) (table I). 



Р Н PV MC РСс PCd РС РСр Р Н Р MC РСс PCd PCï РСр 

PVH PV MC РСс PCd PCw РСр PVH Р MC РСс PCd PC» РСр 

PVH PV MC РСс PCd PC» PCp PVH PV MC PCc PCd PC» PCp 

F I G U R E 3 Histograms of the number of CRH neurons and SEM in the left PVH and its subdivisions after 
different experimental procedures: untreated rats versus ADX rats stained with the 8Bo antibody (A), untreated 
rats versus ADX rats stained with the 5Bo antibody (B), ADX rats versus colchicine treated rats (C), untreated 
versus icv IL treated rats (D), NRIfIL 3d rats versus anti-CRH/IL 3d rats (E) and NRIfIL lOd rats versus anti-CRHfIL 
10d rats (F). Grey bars represent first mentioned group, black bars represent secondly mentioned group in histo
grams. * = significantly different (p < 0.05). ** - significantly different (p < 0.01). For abbreviations see 
figure 1. 



GROUP 6: ANTICRML AND NRI/1L (10 DAYS) TREATMENT Perfusion IO days after NRI/IL or anti-CRH/IL 
(NRI/IL lOd and anti-CRH/IL lOd) treatment yields similar results as perfusion 3 days after 
similar treatment as described above (figs. 2 and 3). The overall number of activated CRH 
neurons is substantially larger in the anti-CRH/IL lOd (10 days) (609 ± 10) as compared to 
the NRI/EL lOd (280 ± 37), an increase which can also be observed in the PCc, PCd, PCv 
and PCp (p < 0.05) (table I, fig. 3). Quantitative comparison with the controls (group 1A) 
shows a decrease in the overall number of activated CRH neurons in the NRI/IL lOd rats 
(p < 0.01) as well as in the PV (p < 0.02), PCc (p < 0.01) and PCv (p < 0.01), similar to 
group 5 (NRI/IL, 3 days). The anti-CRH/IL lOd rats, however, show an increased number of 
activated CRH neurons compared to the controls in the overall PVH (p < 0.01) as well as in 
the PV (p < 0.05), PCc (p < 0.01), PCd (p < 0.01) and PCp (p < 0.02). 

66 The ADX rats (group 2A) show a higher number of activated CRH neurons in the PVH 
compared to the NRI/IL lOd rats in the overall PVH and all subdivisions (p < 0.05). 
Compared to the anti-CRH/IL lOd rats ADX rats have an increased number of activated 
CRH neurons in the MC, PCv and PCp (p < 0.05), but not in the PV, PCc and PCd. 

D I S C U S S I O N 

In the present study we investigated the effects of different experimental procedures, known 
to stimulate the CRH neurons in the PVH, as well as the effects of two different CRH 
antibodies, by quantitative comparison of the number and distribution of activated CRH 
neurons in the PVH. In the first paragraph we will discuss the observed difference between 
the two antibodies used. In the following paragraphs we will discuss the effect of the different 
experimental conditions. 

E F F E C T S OF D I F F E R E N T CRH A N T I B O D I E S Since the number of CRH 
neurons is significantly increased in untreated rats with the use of the 5Bo antibody as 
compared to the use of the 8Bo antibody (group 1A versus group IB), the 5Bo antibody 
seems to have a greater potency than the 8Bo antibody in staining CRH neurons. In addition, 
staining of the activated CRH neurons in ADX rats with the 5Bo antibody (group 2B) also 
shows an increase in the overall PVH as well as in the PV, PCc and PCv, in comparison 
with 8Bo treatment after ADX (group 2A). This is remarkable in view of the fact that the 
number of activated CRH neurons as reported previously by us in the PVH and PCc with 
the use of the 8Bo antibody is similar to that reported previously by other authors (Swanson 
et al. 1983, Sawchenko 1987a). This suggests that the difference between the two antibodies is 
not due to the lack of potency of the 8Bo antibody to stain all CRH neurons activated 
following ADX. It might be possible that the 5Bo antibody is not exclusively binding to 
CRH but also to other antigens in the PVH. This would be in agreement with our 
observation that 5Bo also stains more neurons outside the PVH. However, it is contradicted 
by the observation that the distribution of activated CRH neurons in 5Bo and 8Bo treated 
rats is similar and by the fact that this antibody does not show cross-reactivity with oxytocin, 
CKMSH or vasopressin and by the fact that immunostaining can be prevented by pre
incubation with r/hCRH41 (Schmidt et al. 1995, Schmidt et al. 1996). Most likely, since the 
increase in the number of activated CRH neurons after ADX as compared to untreated rats is 
similar following 5Bo and 8Bo staining, 5Bo is a more sensitive antibody capable of staining 



not only the CRH neurons following ADX which are involved in the functioning of the 
HPA-axis, but also other CRH neurons. This would explain both the higher number of 
CRH neurons stained in untreated as well as ADX rats with the use of the 5Bo antibody and 
a similar increase following ADX. However, it should be noted that the use of the 5Bo 
antibody in the PVH of ADX rats did not result in a similar staining as 8Bo in the PVH of 
colchicine treated animals and therefore, it is not likely that 5Bo stains all CRH neurons 
present in the PVH. 

E F F E C T S OF A D R E N A L E C T O M Y In this and the following paragraphs only the 
results obtained with the use of the 8Bo antibody will be discussed and compared. Four 
weeks of ADX induces a two-fold increase in the number of activated CRH neurons in the 67 
PVH as compared to untreated rats, resulting in approximately 850 neurons (group 2A, see 
also Mulders et al. 1995). This observation is in agreement with previous studies showing an 
increase in CRH-IR following ADX (Swanson et al. 1983, Sawchenko 1987b). In addition, the 
intensity of staining is largely enhanced in ADX rats as compared to untreated rats. As we 
have reported in a previous paper (Mulders et al. 1995) approximately 70% of the CRH 
neurons in the PVH is located in the PCc after ADX. This subdivision is also known as the 
major source of hypophysiotropic CRH neurons, which project to the median eminence 
(Rho and Swanson 1989, Lennard et al. 1993). However, the results suggest that this sub
division is not the only source of CRH neurons which respond to changes in corticosteroid 
levels and are thus likely to be hypophysiotropic, since also in the MC, PCv and PCp the 
number of CRH neurons is significantly increased after ADX. On the other hand, the 
number of CRH neurons in the PV and PCd is unchanged after ADX, which suggests that 
the neurons in these subdivisions are not involved in the regulation of the HPA-axis. 

E F F E C T S OF C O L C H I C I N E Immunohistochemical staining clearly shows the 
destroying neuronal effect of colchicine, causing swelling of the somata, frayed dendrites and 
loss of axons. Nonetheless, the number of activated CRH neurons counted is similar to 
previous papers, resulting in about 2000 CRH neurons in one side of the brain (group 3 of 
the present results, Swanson and Sawchenko 1980, Sawchenko and Swanson 1985) and about 
1000 in the PCc (Sawchenko 1987b). Since colchicine is an unspecific inhibitor of axonal 
transport, these activated CRH neurons represent most likely the total population of CRH 
neurons in the PVH. 

In comparison to ADX colchicine induces an increase in the number of activated CRH 
neurons in the overall PVH as well as the PV, PCc and PCd. It is likely that the neurons 
activated by colchicine but not by ADX are not involved in the regulation of the HPA-axis 
and do not project to the median eminence. This means that about 50% of the total 
population of about 2000 CRH neurons does not project to the median eminence, but to 
other targets in the brain, since the increase after colchicine treatment is two-fold as 
compared to ADX. Our results indicate that the CRH neurons that do not project to the 
median eminence, originate mainly in the PV, PCc and PCd, since only in these subdivisions 
colchicine significantly increases the number of CRH neurons compared with ADX. Target 
structures of the CRH neurons besides the median eminence include nuclei in the 
dorsolateral medulla, such as the nucleus of the solitary tract, and in the spinal cord, as is 
shown previously by tracing experiments (Swanson and Kuypers 1980, Sawchenko 1987a). 



However, according to Sawchenko (1987a) only 5.5% of the CRH neurons is involved in 
these descending projections, so other targets of the CRH neurons must be present as well. 
CRH is also present in a subset of the oxytocin neurons, which project to the posterior 
pituitary (Sawchenko et al. 1984). These neurons are probably also visualized by the 
treatment with colchicine, although our results do not show a significant increase following 
colchicine treatment in the MC where the oxytocin neurons are predominantly located. 

E F F E C T S OF I N T R A C E R E B R O V E N T R I C U L A R I N T E R -
LEUKIN I N J E C T I O N (ICV IL) Our results show neither an increase in the 
number of CRH neurons, nor in the intensity of staining in the PVH following icv IL. This 

68 seems to be in conflict with other studies showing an increase in c-fos immunoreactivity in 
CRH neurons in the PVH following iv (Rivest et al. 1992, Veening et al. 1993, Ericsson et al. 
1994) or icv (Rivest et al. 1992) IL injection, which suggests an activation of the CRH 
neurons in response to IL. In addition, IL has been shown to stimulate release of CRH from 
superfused rat hypothalamo-neurohypophyseal complexes (Ohgo et al. 1991) and a similar icv 
dose of IL as used in the present study significantly increased CRH mRNA levels in the PVH 
(Lee and Rivier 1994). These studies all indicate an activation of the CRH neurons following 
IL treatment. 
The discrepancy between these studies and the present results may have several reasons. First 
of all, the time between the icv IL injection and perfusion (4 hours in the present study) 
might have been too limited to reveal significant differences. Lee and Rivier (1994) used a 
waiting period of 5 hours between the icv injection of IL and perfusion, but these authors do 
not mention whether this is a critical timespan. Secondly, the dose used in the present study 
may have been too low. However, a similar dose has been shown to be sufficient to increase 
plasma ACTH levels (Rivest et al. 1992) and to evoke an increase in the CRH mRNA in the 
PVH (Lee and Rivier 1994). Thirdly, when IL induces high synthesis as well as release of 
CRH, it might well be possible that immunohistochemical CRH staining is not enhanced in 
the PVH. In our opinion, this latter option is the most likely reason for the observed lack of 
an increased number of CRH neurons in this study, thus that the synthesis and release of 
CRH is equally enhanced after IL treatment which hampers immunohistochemical staining. 

E F F E C T S OF I N T R A V E N O U S IL I N J E C T I O N WITH OR W I T H O U T 
A N T I - C R H ( A N T I - C R H f l L AND N R I f I L ) In the rats injected with NRI/IL 
(group 5 and 6) Van der Meer et al. (1996) report a rise in plasma corticosteroids which 
declined again after 240 mins. This indicates a stimulatory effect of IL on the plasma cortico
steroid level, which disappears after 240 mins. The treatment with anti-CRH/IL resulted in a 
similar rise of plasma corticosteroids except for the first 15 mins. (Van der Meer et al. 1996), 
which suggests that the effect of IL on the corticosteroid level is probably only initially 
mediated via the PVH, since anti-CRH blocked the rise in corticosteroids only for the first 
15 mins. After these first 15 mins. the IL effect must be mediated by extrahypothalamic sites, 
such as a direct effect on the pituitary or adrenals, as has been suggested previously by 
different authors (Andreis et al. 1991, Gwosdow et al. 1992, Kovac and Elenkov 1995). 
Remarkably, we found a decrease in the number of activated CRH neurons in NRI/IL 
treated rats as compared to untreated rats both 3 and 10 days after treatment. This is 
surprising in view of the fact that the corticosteroid level already returned to normal after 



240 mins. and that the plasma corticosteroid level increasing effect of IL is probably only 

initially mediated via the PVH (Van der Meer et al. 1996). The present results suggest a long-

term downregulating effect of IL on the CRH neurons in the PVH. The mechanism of such 

an effect remains to be elucidated. It should be noted that two of the subdivisions (PCc and 

PCv) in which the decreased number of activated CRH neurons is found are similar to the 

subdivisions influenced by ADX. This suggests that at least part of the CRH neurons 

projecting to the median eminence is affected by long-term IL treatment. Different structures 

within the brain have been suggested to play a role in the regulation of CRH neurons by IL, 

such as the Organum vasculosum of the lamina terminalis and ascending catecholaminergic 

projections (Weidenfeld et al. 1989, Katsuura et al. 1990). The catecholaminergic projections 

seem to be particularly interesting in this respect, since Barbanel et al. (1993) have shown that 

lesions of the dorsal part of the ventral noradrenergic ascending bundle (VNAB), arising 69 

mainly from the A2/C2 medullary nuclei, inhibits the increase of ACTH after intraarterial 

IL injection, whereas the ventral part of the VNAB, arising from the ΑΙ/Cl medullary nuclei 

stimulates this increase in ACTH. This result shows a biphasic influence of the noradrenergic 

medullary nuclei, which might be involved in short-term and long-term effects of IL on the 

CRH neurons in the PVH. 

The anti-CRH/IL treated rats showed an increase in the number of activated CRH neurons 

as compared both to NRI/IL treated rats and untreated rats, showing a lasting effect of anti-

CRH treatment, which indicates a low clearance rate of the CRH antibody from the 

circulation. An intravenously injection with a CRH antibody, which removes CRH from the 

circulation and subsequently prevents ACTH release and corticosteroid responses, and 

removes the corticosteroid feedback effect, results in a comparable overall number of 

activated CRH neurons as ADX, with only small differences in some subdivisions. These 

small differences might be induced by a shorter survival time of 3 or 10 days for the anti-

CRH/IL treated rats as compared to the four weeks survival of ADX rats. It is likely that 

four weeks of CRH blockade with a CRH antibody would result in a similar number of 

CRH neurons as in ADX rats and our results suggest that both ADX and anti-CRH 

treatment interfere with the same mechanism of CRH activation. 

C O N C L U S I O N S In conclusion, we have shown an increase in the number of CRH 

neurons following ADX, resulting from a decreased inhibitory effect of corticosteroids. In 

addition, we showed that the use of a CRH antibody is a good alternative for ADX, resulting 

in a significant increase in the number of CRH neurons from three days post-treatment on. 

Colchicine visualizes twice as much CRH neurons by unspecific inhibition of axonal 

transport, but has large destroying effects on the neuronal morphology. We failed to show an 

effect of icv IL, which is most likely due to the fact that IL stimulates synthesis as well as 

release of CRH. We also found that IL might have a long-term inhibitory effect on the 

activation of part of the CRH neurons. In particular, our results suggest that part of the 

CRH neurons responsive to ADX and thus most likely projecting to the median eminence, is 

under the influence of the immunesystem. Therefore, our experimental set-up revealed two 

subpopulations within the PVH, one group of CRH neurons responsive to circulating 

corticosteroids and thus probably projecting to the median eminence, as illustrated by ADX 

and anti-CRH treatment and one unresponsive, as illustrated by colchicine treatment. The 

subpopulation of CRH neurons projecting to the median eminence is found to be located in 

the MC, PCc, PCv and PCp. In addition, our results suggest that there might be a third sub-



population which exists of part of the CRH neurons responsive to circulating corticosteroids 
and which is under the influence of the immunesystem as indicated by the inhibitory effect 
observed after long-term IL treatment. 
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S U M M A R Y 

The bed nucleus of the stria terminalis (BNST) is involved in the stress-regulating circuit by 

funneling limbic information to the hypothalamic paraventricular nucleus (PVH). Since 

adrenalectomy (ADX) influences both limbic structures (by inducing cell death in the 

hippocampus) and the PVH (by increased corticotropin-releasing hormone (CRH) synthesis), 

we investigated whether the BNST is also influenced by ADX. For this purpose, we analysed 

and compared the projection from the BNST to the PVH in normal and ADX rats by 

anterograde tracer injections in the BNST. Quantitative analysis of the fiber pattern in the 

PVH of normal rats revealed a homogeneous distribution of BNST fibers over the different 

subdivisions of the PVH. In ADX rats the absolute fiber density was significantly lower in all 

74 subdivisions of the PVH (1.17 ± 0.27 χ IO"3 ¿tm//tm3 in ADX rats versus 2.59 ± 0.24 χ 

ΙΟ"3 μπι/μπι3 in normal rats; ρ < 0.01). The largest decrease of fiber density was found in the 

CRH-rich part of the PVH (ADX rats: 0.602 ± 0.106, versus 1.095 ± 0.019 in normal rats, 

ρ < 0.01). These results show a loss of input from the BNST to the PVH, and particularly 

to the CRH neurons, following ADX. The data suggest that this part of the stress-regulating 

circuit is marked by a substantial plasticity of the synaptic organization in adult rats and may 

imply that human disorders associated with corticosteroid disbalance are allied to a changed 

synaptic circuitry in the brain. 

I N T R O D U C T I O N 

Parvocellular neurons in the hypothalamic paraventricular nucleus (PVH) produce 

corticotropin-releasing hormone (CRH), which is involved in stress-regulation (Antoni et al. 

1983, Swanson et al. 1983). After a stressful stimulus CRH is delivered to the portal vascular 

system of the median eminence (Antoni et al. 1983) and induces adrenocorticotropic hormone 

(ACTH) release from the anterior pituitary (Rivier et al. 1982, Rivier and Plotsky 1986, 

Antoni 1989), which, in turn, is responsible for the regulation of the corticosteroid 

production in the adrenal cortex (Whitnall 1993). Corticosteroids influence their own 

production by a negative feedback effect on CRH as well as ACTH release (Keller-Wood and 

Dallman 1984, Jingami et al. 1985, Spinedi et al. 1991). Consequently, removal of the adrenals 

by adrenalectomy (ADX) induces an increase of CRH mRNA as well as CRH levels 

(Sawchenko 1987). 

The CRH neurons of the PVH are influenced by several limbic structures, including the 

hippocampus (Feldman and Conforti 1980, Dunn and Orr 1984, Herman et al. 1989, 

Sapolsky et al. 1991b, Feldman and Weidenfeld 1993) and the amygdala (Liang et al. 1992, 

Swiergiel et al. 1993). Hippocampal influence is thought to be inhibitory, since hippocampal 

lesions increase the expression of CRH mRNA in the PVH (Herman et al. 1989), cause 

hypersecretion of glucocorticoids (Sapolsky et al. 1991b) and reduce the feedback effects of 

dexamethasone, a type Π glucocorticoid receptor agonist, on ACTH responses (Feldman and 

Conforti 1980). In addition, the hippocampus shows a large sensitivity to the level of 

circulating corticosteroids, resulting in granule cell death following ADX (Sloviter et al. 1989, 

Sapolsky et al. 1991a, Sloviter et al. 1993). Amygdaloid lesions block the effect of 

intracerebroventricular CRH (Liang et al. 1992) and cause a decrease of stress-induced plasma 

ACTH and corticosterone levels (Allen and Allen 1975, Beaulieu et al. 1986, Feldman et al. 

1994), indicating an excitatory role for the amygdala. However, inhibitory effects of the 



amygdala have been reported as well (Dunn and Whitener 1986). 

Axonal tracing studies have shown no or very limited direct projections from the 

hippocampus and amygdala to the PVH fTribollet and Dreifuss 1981, Oldfield et al. 1985, 

Oldfield and Silverman 1985, Gray et al. 1989). Consequently, these limbic structures have to 

exert their influence on the PVH via indirect connections. The bed nucleus of the stria 

terminalis (BNST) is thought to be of crucial importance in this respect. Tracing studies have 

shown that both the hippocampus and amygdala project to the BNST, which in turn projects 

to the PVH (Silverman et al. 1981, Sawchenko and Swanson 1983, McDonald 1988, Sun et al. 

1991, Cullinan et al. 1993, Thellier et al. 1994). Lesion studies have shown that the 

stimulatory effect of the amygdala is dependent on the BNST (Feldman et al. 1990), and 

tracer studies have shown that GABA-ergic neurons in the BNST, which are innervated by 

the ventral subiculum, project to the PVH (Cullinan et al. 1993). 75 

Since ADX influences both the hippocampus, by inducing granule cell death, as well as the 

PVH, by increasing the activity of CRH neurons, we were interested in the question whether 

other parts of the stress-regulating circuit are also influenced by ADX. We decided to 

investigate especially the BNST-PVH connection, since the BNST is an important relay for 

limbic information to the PVH. For this reason, we compared qualitatively and quantitatively 

the results of anterograde tracer experiments in the BNST of normal and ADX rats and 

combined tracer visualization with CRH immunocytochemistry. 

M A T E R I A L S A N D M E T H O D S 

A N I M A L S The present study is based on experiments with 41 male Wistar rats, weighing 

between 220 and 280 g. All rats were bred in our animal laboratory and housed two-three 

animals per cage (36 χ 24 χ 25 cm) in a room with a constant temperature (20 ± 2°C) and a 

6.00 am to 6.00 pm light period. Food and water were given ad libitum. Three-four weeks 

before neuroanatomies tracing 28 rats (at that moment weighing 170 ± 10 g) were bilaterally 

adrenalectomized under ether anaesthesia and were given saline (0.9% sodium chloride in aqua 

dest) instead of normal drinking water after recovery. 

E X P E R I M E N T A L P R O C E D U R E For neuroanatomies tracing we used 5% 

3,000 MW or 10,000 MW biotinylated dextran amine (BDA, Mol. Probes, Inc.), dissolved in 

0.01 M phosphate buffered saline (PBS, pH 7.3). For tracer injection, the rats were 

anaesthetized intraperitoneally with pentobarbital (5 mg/100 g bodyweight) and placed in a 

stereotactic device. Iontophoretic injections (5 μΑ, 7 seconds on/off) were made for 5 to 10 

minutes with glass micropipettes with a diameter between 32 and 65 μιη. Following injection, 

the pipette was left in place for 5 minutes and then removed in small steps (0.5 mm/30 sees.) 

to minimize leakage of the tracer along the pipette track. 

After three or seven days survival time (after injection with BDA 3,000 or 10,000 MW, 

respectively), the rats were deeply anaesthetized with pentobarbital (6 mg/100 g bodyweight) 

and transcardially perfused with 100 ml saline followed by 400 ml fixative containing 4% 

paraformaldehyde, 0.05% glutaraldehyde and 0.2% picrinic acid in 0.1 M phosphate buffer, 

pH 7.3. After perfusion the rats were decapitated and the dorsal part of the skull was 

removed. The heads were placed in a stereotactic device and a transverse incision was made to 



allow sectioning of all brains in the same transverse plane. Subsequently, the brains were 

removed from the skull and postfixed overnight at 4°C in the same fixative. 

T I S S U E P R O C E S S I N G 75 /un Sections were cut with a vibratome (Bio-Rad) and 

rinsed in phosphate buffered saline (PBS, pH 7.4). Alternate sections were used for light 

microscopical analysis, which resulted in 4 sections per PVH per rat to be processed. These 

sections were preincubated overnight in PBS containing 0.5% Triton X-100 and 0.1% bovine 

serum albumin (BSA). 

For visualization of BDA, a Vectastain ABC Elite kit (Vector laboratories) was used in a 

dilution of one drop of avidin and one drop of biotinylated horseradish peroxidase in 40 ml 

76 0.1 M PBS (pH 7.4). Sections were incubated for two hours in the ABC complex and rinsed 

three times in 0.1 M PBS. Subsequently, sections were pre-incubated for 10 minutes in 0.02% 

3,3'-diaminobenzidine-4HCl (DAB, Sigma), 0.3% nickel ammonium sulphate in a 0.05 M Tris 

(hydroxymethyl)-aminomethane solution (pH 7.6), followed by a 10 minutes incubation 

period in the same solution containing 20 μϊ H 2 0 2 (DAB reaction). After rinsing in PBS, 

sections not to be stained for CRH were mounted on gelatine coated slides, dried overnight 

in a stove at 37°C, dehydrated and coverslipped with Entellan. 

For visualization of CRH (after tracer visualization), sections of ADX rats were incubated 

overnight with a rabbit polyclonal CRH antiserum (Mulders et al. 1995b) diluted 1:10,000 in 

PBS containing 0.5% Triton X-100 and 0.1% BSA. After rinsing three times in PBS, sections 

were incubated for 60 minutes with a biotin-conjugated donkey-anti-rabbit antibody diluted 

1:400 in PBS (fackson ImmunoResearch) and rinsed again. This was followed by incubation 

for two hours with the ABC complex (see above). After rinsing, sections were treated with a 

DAB reaction as described above but without nickel ammonium sulphate, resulting in brown 

CRH neurons among black BDA fibers. After final rinsing, the sections were mounted as 

described above. 

M O R P H O L O G I C A L A N A L Y S I S The precise location of each injection was 

determined by plotting its distribution in the atlas of Swanson (1992). The distribution of 

BDA fibers and CRH neurons in the PVH was drawn (magnification 126x) in the atlas of 

the PVH presented by Mulders et al. (1995a,b), in which the central parvocellular part (PCc) 

was further subdivided into a CRH-rich part containing 50% of all CRH neurons of the 

PVH, and a remaining CRH-poor part, which appears to contain only about 21% of all CRH 

neurons in the PVH. The PVH can easily be distinguished from the surrounding 

hypothalamus by the higher neuronal and vascular density, which enables localization of this 

nucleus, even in unstained sections. 

For quantitative analysis we used 6 normal and 7 ADX rats with injection sites in the central 

pan of the BNST. Using a curvilinear test system (Merz 1967, Weibel 1979), we calculated 

the length density, i.e. the length of fibers (μτη) per volume unit (/im3), of labeled BNST 

fibers in the different subdivisions of the PVH. For this purpose, we superimposed the 

standardized atlas of the PVH on an image of hemicircles (Weibel 1979), put it under the 

drawing tube of our microscope (magnification 126x) and counted all crossings of the 

hemicircles with labeled fibers in the different subdidivions of the PVH. Subsequently, we 

used the formula in Weibel (1979) to determine the absolute fiber length density in the PVH 

and the different subdivisions. From these values the relative fiber density per PVH 



subdivision was determined by dividing the length density per subdivision by the average 

PVH fiber density per animal. So, this relative density relates the density of any subdivision 

to the overall PVH fiber density. Statistical analysis of the differences in fiber length density 

in the PVH of normal and ADX rats was performed by means of a two-tailed Student's 

t-test. 

R E S U L T S 

T H E O R I G I N O F B N S T P R O J E C T I O N S T O T H E P V H T h e 4 1 i o n t o 

phoretic tracer injections made in and around the BNST in normal and ADX rats are of 77 

small to large size, varying from 300 μτη to 800 /¿m in their transverse diameter, and from 
150 /im to 1 mm in rostral-caudal direction. Seventeen injections resulted in labeled fibers in 
the PVH and are therefore characterized as positive (fig. 1, Al-Dl). The remaining 24 
injections did not result in any fiber labeling in the PVH and are used as controls (fig. 1, 
A2-D2). The location of the control injections was subtracted from that of the positive ones 
to exclude regions that contain BDA deposit in positive injections but do not contribute to 
labeled fibers in the PVH. In this way we determined which subdivisions of the BNST really 
project to the PVH (fig. 1, A3-D3). This method showed that subdivisions located in the 
anterior division of the BNST and dorsal to the anterior commissure (i.e. the anterodorsal, 
the anterolateral, the oval and the juxtacapsular nuclei and the central core, see Swanson 
1992) do not project to the PVH (fig. 1, A3-D3). In contrast, the anteroventral, the 
dorsomedial, the fusiform and the rhomboid nuclei in the anterior division, which are all 
located ventral to the anterior commissure, project to the PVH (fig. 1, A3-D3). Our data in 
the posterior division of the BNST do not allow definite conclusions, since these are 
restricted to 1 control and 2 positive injections. The interfascicular and transverse nuclei in 
the posterior division of the BNST probably project to the PVH (fig. 1, D3), but other areas, 
such as the ventral nucleus and the medial parts of the principal and interfascicular nucleus, 
have remained uncharacterized by our experiments, since there were neither positive nor 
negative injectinos located in these nuclei (fig. 1, Dl and D2). The results as obtained from 
substraction of control injections from positive ones in the anterior BNST are corroborated 
by several small injections: we never find positive injections exclusively dorsal to the anterior 
commissure, whereas small injections restricted to the region ventral to the anterior 
commissure are always positive. 

T H E D I S T R I B U T I O N O F B N S T F I B E R S I N T H E P V H B N S T 
injections result both in normal and ADX rats in almost exclusively ipsilateral hypothalamic 
labeling. Labeled BNST fibers in the PVH are either very delicate and thin or thick up to 
1 μιη (figs. 2 en 4). All fibers show a large number of varicosities. The distribution of labeled 

fibers depends on the localization of injection in the BNST: injections in the anterior part of 

the BNST (fig. 1, Bl-Cl) result in labeled fibers that are almost exclusively restricted to the 

PVH, without labeling of the hypothalamic area surrounding the PVH (fig. 2B). However, 

injections in posterior divisions of the BNST, which also include parts of the substantia 

innominata and the lateral hypothalamic area (fig. 1, Dl), result in labeled fibers in the PVH 

as well as in the hypothalamic area surrounding the PVH (fig. 2A). 



F I G U R E 1 Rostrocaudal seríes of drawings of transverse sections through the BNST at four levels (A-D) 
with a summation of BOA injection-sites that resulted in labeled fibers in the PVH (positive injections, A1-D1); a 
summation of injection-sites that did not result in any labeled fibers in the PVH (negative injections, A2-D2), and a 
subtraction of the negative from the positive injection-sites showing the BNST regions that contribute to the PVH 
projections (A3-D3). (BNST subdivisions are according to the atlas of Swanson, 1992.) Magnification = 11 χ. 



Most of the labeled BNST fibers in the PVH are horizontally orientated, as is particularly 

obvious in the posterior PVH (fig. 2B). In normal rats the parvocellular and magnocellular 

part of the PVH are about equally innervated by the BNST (figs. 4 and 5), but in ADX rats 

the central parvocellular part, which contains the largest number of CRH neurons, shows 

relatively less labeling after positive injections in the BNST in comparison to the other 

subdivisions, as quantified in the next section. Double labeling of BDA and CRH in ADX 

rats seldomly shows varicosities in close apposition to CRH neurons. 

C O M P A R I S O N OF NORMAL AND ADX RATS 6 Normal and 7 ADX rats 

with comparable positive injections in the central part of the anterior division of the BNST 

were used for quantitative analysis of the fiber length density in the PVH and its 

subdivisions. All injections in these rats are of small to moderate size, except for two 

injections in ADX rats, which are substantially larger and extend into the posterior BNST 

(fig· 3). 

In ADX rats an overall length density of BNST fibers in the PVH of 1.17 χ IO-3 ± 0.27 χ 

ΙΟ"3 μπι/μπι3 was found, which is statistically significantly lower than the overall length 

density in the PVH of normal rats (2.59 χ IO"3 ± 0.24 χ ΙΟ"3 μπι/μπι3, ρ < 0.01). This 

difference holds for all subdivisions (table I, figs. 4 and 5). However, the relative fiber density 

was only significantly reduced in the CRH-rich part of the PVH of ADX rats, i.e. from 

1.095 ± 0.019 to 0.602 ± 0.106 (p < 0.01, table II). The other subdivisions of normal and 

ADX rats show no mutual statistically significant differences in relative fiber length density. 

The length density of BNST fibers in the PVH after injections situated in the posterior 

BNST were not quantitatively analyzed, because of the limited number of experiments 

available. 

79 

F I G U R E 2 Photomicrographs illustrating BNST fiber patterns in and/or around the PVH following an 

injection in the BNSTp (A, ADX rat), and an injection in the BNSTa (B, normal rat). Scale bar = 170 /лл. 



D I S С U S S I ON 

80 

The present study shows a significant change in the projection from the BNST to the PVH 

after ADX, which suggests an important effect of the corticosteroid plasma level on the 

synaptic organization of the stress-regulating circuit in adult rats. To evaluate our results in 

detail we will first compare our data with previous tracer studies and discuss possible 

technical artefacts involved in the differences between normal and ADX rats. Next, we will 

discuss possible mechanisms involved in the presently reported plasticity. The last part of the 

discussion will focus on the functional significance and possible clinical relevance of the 

present findings. 

THE B N S T - P V H P R O J E C T I O N Previous studies dealing with the projections from 

the BNST to the PVH predominantly used retrograde tracing techniques (Silverman et al. 

1981, Sawchenko and Swanson 1983, Cullinan et al. 1993, Moga and Saper 1994, Thellier et 

al. 1994). All these studies have shown that the subdivisions ventral to the anterior 

commissure in the anterior division of the BNST (BNSTa) project to the PVH, since large 

amounts of retrogradely labeled neurons are found in this region following tracer injection in 

NORMAL 

A1 A2 

B2 

F I G U R E 3 Rostrocaudal series of drawings of transverse sections of the central BNST (1-4) illustrating a 
summation of BDA injections used for quantitative analysis of BNST projections to the PVH in normal (Al A4) and 
ADX rats (B1-B4). Magnification « 17x. 



F I G U R E 4 Photomicrographs of BDA labeled BNST fiber patterns (Α-E) and CRH neuron distribution (C) in 
the PVH (AC: rostral PVH; D,E: caudal PVH). A and D: normal rats. В, С and E: ADX rats. Scale bar = 85 //m. 

the PVH. Likewise, most studies agree that the region dorsal to the anterior commissure in 

the BNSTa is not involved in the projection to the PVH, since no or only few scattered 

neurons are detected following identical injections. However, Cullinan et al. (1993) found a 

considerable amount of labeled neurons in this dorsal region. Our results do not confirm the 

latter, but are in agreement with the above mentioned studies showing that there is a rather 

specific projection to the PVH from the ventral part of the BNSTa, without an important 

contribution of the dorsal part. 

With respect to the PVH projection from the posterior BNST (BNSTp) there are some 

discrepancies in the literature. Silverman et al. (1981) have found no labeled cell bodies in the 

BNSTp after retrograde tracing injection in the PVH. However, Sawchenko and Swanson 

(1983), Moga and Saper (1994) and Thellier et al. (1994) describe some labeling in this region, 

whereas Cullinan et al. (1993) have found a large amount of labeled neurons in the posterior 

subdivision. Given the limited number of BNSTp injections it can not be definitely 

concluded that the BNSTp or certain BNSTp subdivisions project to the PVH and areas 

surrounding the PVH. 

Our study shows a more or less random distribution of labeled BNSTa fibers in the different 

subdivisions of the PVH in normal rats, without preference for the parvocellular or magno-

cellular part. Therefore, our results do not suggest a specific relation between the BNST and 

the CRH neurons, which are particularly situated in the central parvocellular part (PCc) of 



F I G U R E 5 Seríes of representative drawings of four levels of the PVH (distance about 150 μπα rostral to 
caudal level from bottom to top) illustrating BNST fiber patterns in a normal rat (left row) and an ADX rat 
(middle row), and the CRH-neuron distribution in the same ADX rat (right row). Magnification = 63χ. 

the PVH (Mulders et al. 1995a,b). This is corroborated by the fact that in all subdivisions 

fibers show a large amount of varicosities which probably represent axon terminals (Wouter-

lood and Groenewegen 1985). However, other tracer studies suggest a higher innervation of 

the parvocellular part compared with the magnocellular part of the PVH (Sawchenko and 

Swanson 1983, Thellier et al. 1994) which is in contrast with the present results. The reason 

for this discrepancy is not clear. 

C O M P A R I S O N OF N O R M A L AND ADX R A T S An interesting result of the 

present study is the statistically significant decrease in BNST fiber density in the PVH of 

ADX rats (1.17 χ ΙΟ"3 μπι/μπι3) compared to normal rats (2.59 χ ΙΟ"3 μπι/μπι3, table I). This 

difference holds for all subdivisions of the PVH. However, the relative length density, which 

relates the density of any subdivision to the overall PVH fiber density, is particularly reduced 

in the CRH-rich part of the PCc of ADX rats (0.602 versus 1.095 in controls, table II). This 

means that the innervation of the CRH-rich part of the PVH by BNST fibers is far more 

reduced after ADX than the innervation of the other subdivisions, which suggests a specific 

effect of ADX and corticosteroids on the relationship between BNST and CRH neurons. 

A first aspect to be discussed is whether the reduced BNST fiber density after ADX 

represents a technical artefact or a real changed input. Several technical factors might cause a 



T A B L E I Mean fiber length density (10"* /ліЦртп' ± SEMI In the PVH end its subdivisions in normal In » 6) and ADX 

rats (n = 7). * = statistically significantly different (p < 0.05) compared to normal Wistar rat " = statistically significantly 

different Ip < 0.011 compared to normal Wistar rat 

Normal Wistar 

Mean 

SEM 

ADX 
Mean 

SEM 

PVH 

2.59 

0.24 

1.17" 

0.27 

PV 

2.14 

0.29 

1.12* 

0.22 

MC 

2.51 

0.25 

1.27* 

0.38 

PCe 

2.74 

0.22 

1.05" 

0.25 

CRH+ 

2.85 

0.78 

0.75" 

0.21 

CRH-

167 
0.19 

1.25" 

0.30 

PCd 

118 
0.29 

1.18* 

0.32 

PCv 

119 
0.22 

1.16* 

0.25 

PCp 

3.13 

0.47 

1.34* 

0.41 

differential labeling, such as the site and size of injections, different tracer uptake by BNST 

cell bodies after ADX, or a decreasing speed or total absence of axonal tracer transport in the 

BNST neurons following ADX. We selected injections of normal and ADX rats which were 

largely comparable with regard to their size and location. The injections of ADX rats were in 

some cases even larger than that of normal rats but still resulted in a reduced labeling of the 

PVH with a particular 'empty' CRH-rich part (figs. 4 and 5). So, injection site and size are 

probably not involved in the observed differences in fiber density. To our knowledge, 

mechanisms such as reduced tracer uptake or transport after ADX have never been described, 

and even when they would play a role in our observation, they only might influence the 

absolute, overall decrease in density of labeled fibers, but not the specific reduction in 

innervation of the CRH-rich subdivision of the PVH. Therefore, we conclude that the 

difference in fiber density reflects a reduced BNST innervation of the PVH, especially of its 

CRH-rich part, after ADX. This means that ADX causes a loss of input from the BNST to 

the PVH and in particular to the CRH neurons. 

At present it is not known whether the loss of input is a reversible process. To solve this 

question we have planned additional experiments involving glucocorticoid replacement after 

ADX. Nonetheless, our results indicate that hormonal disbalances can induce substantial 

synaptic changes in the adult rat brain. A comparable phenomenon has been described in 

female rats where the preovulatory estrogen surge causes a 30-50% decrease in the number of 

synapses in the arcuate nucleus (Garcia-Segura et al. 1986, Leedom et al. 1994). Likewise, in 

the brain of adult canaries the changing of seasons is accompanied by a alternating loss and 

formation of dendritic segments and synapses in song control nuclei (Nottebohm 1981, 

Alvarez-Buylla and Nottebohm 1988). 

M E C H A N I S M S I N V O L V E D IN S Y N A P T I C C H A N G E S The presently 

reported loss of input might be evoked by anterograde or retrograde mechanisms. 

Anterograde mechanisms could start in a limbic structure such as the hippocampus, where 

ADX is known to induce granule cell death (Sloviter et al. 1989, Sapolsky et al. 1991a, 

Sloviter et al. 1993). In turn, this cell loss might influence the BNST by inducing cell death 

or axon retraction, thus changing the hippocampal influence on the PVH. Another possible 

structure involved is the amygdala, since electrophysiological experiments have shown that 

ADX changes the réponse of BNST neurons to amygdala stimulation (Sánchez et al. 1995), 
which suggests an altered amygdala-BNST pathway. To result in a specific reduction of input 
to CRH cells such anterograde mechanisms would require a very specific anatomical pathway 
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T A B L E I I Relative fiber length density (± SEM) per subdivision of the PVH in normal (n = 6) and ADX rats (л - 7). 

" · statistically significantly different (p < 0.01) compared to normal Wistar rot 
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Normal Wistar 

Mean 

SEM 

ADX 
Mean 

SEM 

PV 

0.822 

0.095 

1.033 

0.104 

MC 

0.973 

0.070 

1.029 

0.103 

PCc 

1.062 

0.018 

0.893 

0.116 

CRH+ 

1.095 

0.019 

0.602· 

0.106 

CRH-

1.042 

0.037 

1.085 

0.128 

PCd 

0.835 

0.093 

0.878 

0.150 

PCv 

0.846 

0.031 

1.174 

0.207 

PCp 

1.194 

0.103 

1.164 

0.179 

from these limbic structures via the BNST to the parvocellular PVH. However, tracing 
experiments have shown the opposite: The hippocampus has a rather widespread projection 
to the BNST via the ventral subiculum, and also projects to parts which do not project to the 
PVH (Cullinan et al. 1993, present results). Likewise, the medial amygdala has an abundant 
projection to all parts of the BNST as well (Cameras et al. 1995), which renders it rather 
unlikely that anterograde mechanisms are involved in the reduction of BNST input to the 
PVH. 
In our opinion, the loss of BNST input after ADX is most likely evoked by a retrograde 
mechanism, such as presynaptic feedback (O'Dell et al. 1991), since loss of input is especially 
present in the CRH-rich region of the PVH, where CRH neurons might induce this plastic 
phenomenon. Apart from an increased CRH content in the PVH ADX causes an increase in 
binding capacity of type II glucocorticoid receptors in the PVH (Reul et al. 1987), a decreased 
number of angiotensin receptors on CRH neurons (Castren and Saavedra 1989, Aguilera et al. 
1995) and a decrease in the number of o¡2"norad r ene rgic receptors in the PVH Qhanwar-
Uniyal and Leibowitz 1986). These receptor changes - and possibly other effects of ADX -
might well induce withdrawal of BNST fibers by presynaptic feedback of CRH neurons via a 
retrograde messenger to their pre-synaptic elements. 

F U N C T I O N A L S I G N I F I C A N C E In general, it is thought that hormonal balance is 
very important for the development of the synaptic organization of brain but that it does not 
influence the structure of the adult brain (Muglia et al. 1995, Zhou et al. 1995). However, the 
presently reported reduction of input from the BNST to the PVH following ADX implies 
that hormones are capable to induce synaptic changes in the adult mammalian brain. To 
evaluate the function of this plasticity one has to consider that ADX increases the activity of 
CRH neurons (Kiss et al. 1984, Sawchenko et al. 1984, Whitnall et al. 1985, Sawchenko 1987) 
and that BNST input evoked by the hippocampus is probably partly GABA-ergic and thus 
inhibitory (Cullinan et al. 1993). Therefore, loss of this input would implicate a reduction of 
inhibition, which would be helpful to keep the CRH neurons in a highly activated state after 
ADX. This would imply that the withdrawal of BNST fibers is most likely a mechanism to 
decrease the inhibitory influence of the hippocampal input to the CRH neurons. However, 
several lesion and stimulation studies have shown that the BNST input does not only have 
inhibitory effects on the PVH but sometimes also excitatory effects (Dunn 1987, Feldman et 
al. 1990, Herman et al. 1994). Thus, the precise functional significance of the reduced BNST 
input to the CRH neurons has to be elucidated by future results. 



It is clear that ADX is not a physiological condition. In normal circumstances the opposite 
situation, i.e. a high level of corticosteroids during chronic stress is more likely to occur. In 
view of the present results, it is tempting to hypothesize that the plasticity of the BNST-PVH 
projection is a reversible mechanism counteracting disturbances in the corticosteroid plasma 
level. This might well have implications for disorders which are associated with a hypo- or 
hyperactivity of the hypothalamo-pituitary-adrenal axis. Several examples of such disorders 
are known, such as Cushing disease, Addison disease, depression, anorexia and multiple 
sclerosis (Gold et al. 1987, Reus 1987, Owens and Nemeroff 1993, Von Werder and Müller 
1993, Erkut et al. 1995). The present results indicate that these disorders might well be allied 
to a changed synaptic circuitry in the brain compared to the normal situation. 
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L I S T OF A B B R E V I A T I O N S 

ac 
ACTH 

ad 

ADX 
al 

av 
BNST 

cc 
CRH 

BDA 

dl 

dm 

fu 

fx 

if 

ju 
LV 

anterior commissure 

adrenocorticotropic hormone 

anterodorsal area, BNST 

adrenalectomy 

anterolateral nucleus, BNST 

anteroventral area, BNST 

bed nucleus of stria terminalis 

central core, BNST 

corticotropin-releasing hormone 

biotinylated dextran amine 

dorsal lateral division, BNST 

dorsomedial nucleus, BNST 

fusiform nucleus, BNST 

fornix 

interfascicular nucleus, BNST 

juxtacapsular nucleus, BNST 

lateral ventricle 

MC 

mg 

och 

opt 
ov 

PCc 
PCd 

PCp 

PCv 

pr 
PV 

PVH 
rh 

sm 

tr 

V 

3V 

magnocelhilar part, PVH 

magnocellular nucleus, BNST 

optic chiasm 

optic tract 

oval nucleus, BNST 

central parvocellular part, PVH 

dorsal parvocellular part, PVH 

posterior parvocellular part, PVH 

ventral parvocellular part, PVH 

principal nucleus, BNST 

periventricular part, PVH 

hypothalamic paraventricular nucleus 

rhomboid nucleus, BNST 

stria medullaris 

transverse nucleus, BNST 

ventral nucleus, BNST 

third ventricle 
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S U M M A R Y 

The corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular 

nucleus (PVH) play an important role in the stress-regulating circuit. To elucidate their 

synaptic organization we studied electron microscopical sections of adrenalectomized rats, 

since these allow for a reliable identification of CRH neurons. By means of pre-embedding 

immunohistochemistry and serial section reconstructions we determined that the synaptic 

density of CRH somata varies from 0.067 to 0.314 per μπι2 with an average of 0.150 per /zm2 

and that their synaptic number varies from 34 to 109 with an average of 63. By means of 

post-embedding immunohistochemistry and quantitative analysis of serial sections we 

determined that approximately 62% of the synaptic input of CRH neurons is GABA-ergic, 

92 without differences between the CRH neurons with or without co-localized vasopressin. 

CRH immunonegative parvocellular neurons receive a similar degree of GABA-ergic input 

(68%). However, magnocellular vasopressinergic as well as non-vasopressinergic neurons 

receive a statistically significantly lower percentage of GABA-ergic input (43% and 42%, 

respectively). Our results suggest that the synaptic organization of PVH neurons is not very 

strictly regulated and that the location of neurons within a certain subdivision of the PVH is 

more important in the determination of their synaptic input than their neurochemical 

properties. 

I N T R O D U C T I O N 

The hypothalamic paraventricular nucleus (PVH) plays an important role in behavioral and 
autonomic functions, such as maternal (Numan and Corodimas 1985, Insel and Harbaugh 
1989), sexual (Hughes et al. 1987, Pfaus et al. 1993) and eating behavior (Flanagan et al. 1992, 
Atrens and Menéndez 1993), the regulation of body temperature (De Luca et al. 1989, Horn 
et al. 1994) and cardiovascular regulation (Kannan and Yamashita 1985, Gelsema et al. 1989, 
Harland et al. 1989). These multiple functions are predominantly subserved by large 
populations of oxytocin, vasopressin and corticotropin-releasing hormone (CRH) neurons 
(Rhodes et al. 1981, Swanson et al. 1983), which are densely innervated by adrenergic 
(Cunningham et al. 1990), noradrenergic (Cunningham and Sawchenko 1988), neuropeptide Y 
(Liposits et al. 1988), GABA (Decavel et al. 1989) and galanin immunoreactive fibers 
(Sawchenko and Pfeiffer 1988). Inputs to the PVH arise mainly from catecholaminergic cell 
groups in the medulla (Weiss and Hatton 1990), from the limbic system, via the bed nucleus 
of the stria terminalis (Cullinan et al. 1993, Mulders et al. submitted) and from different 
hypothalamic cell groups (Simerly and Swanson 1988, Vrang et al. 1995). Efferents of the 
PVH project predominantly to the median eminence (Lechan et al. 1980) and to 
preganglionic neurons of the autonomic system in the brain stem and spinal cord (Swanson 
and Kuypers 1980). It is obvious that the PVH needs a refined structural organization with 
specific input-output relations to subserve its different functions. However, the precise 
morphological and synaptic basis of this organization is only partly known. 
At the light microscopical level the morphology of the PVH is well documented. It consists 
of a parvocellular and a magnocellular part, which can be further subdivided in 5 to 10 sub
divisions on the basis of cytoarchitectonic or neurochemical criteria (Armstrong et al. 1980, 
Swanson and Kuypers 1980, Kiss et al. 1991, Mulders et al. 1995a). Remarkably, the 
distribution of immunocytochemical characterized cell groups does not show a strict 



correlation with cytoarchitectonic subdivisions. For example, CRH neurons are 
predominantly located (about 70%) in the central parvocellular part, but occur in lower 
densities in all other subdivisions as well (Swanson et al. 1983, Mulders et al. 1995b). The 
same holds for oxytocin and vasopressin, which are predominantly located in the magno-
cellular division but can be found in lower amounts in the parvocellular part as well (Rhodes 
et al. 1981). A similar 'mismatch' is observed with respect to the distribution of afférents over 
different subdivisions. For example, brain stem and medullary afférents terminate mainly in 
the central parvocellular part, but also contact magnocellular neurons (McKellar and Loewy 
1981, Cunningham et al. 1990). So, the PVH does not seem to be very strictly organized with 
respect to the compartmentalization of distinct sets of neurons and afférents. 
At the synaptic level, the PVH does equally not show much differentiation. The overall 
synaptic density is about 200 χ lOVmm3 and the synaptic contact length about 370 nm, 93 
without significant differences between the various subdivisions (Kiss et al. 1983, Mulders et 
al. 1995a). In addition, Decavel et al. (1987) describe a homogeneous dopaminergic 
innervation of the parvocellular and magnocellular PVH. The GABA-ergic innervation seems 
to be homogeneous throughout the PVH as well, since in both the parvo- and magnocellular 
part 50% of the synaptic input is GABA-ergic (Decavel et al. 1989, Decavel and Van den Pol 
1990). Some differentiation can be found in the distribution of noradrenergic input, which 
seems to innervate mainly the parvocellular part and the vasopressinergic area of the magno
cellular part (Decavel et al. 1987). In spite of this preference, noradrenergic terminals in the 
magnocellular part account for only 1-2% of the total input of vasopressin neurons (Nakada 
and Nakai 1985, Silverman et al. 1985). Other neurotransmitters showing a non-homogeneous 
distribution in the PVH are neuropeptide Y and galanin, which both occur in higher 
densities in the parvocellular part than in the magnocellular part (Sawchenko and Pfeiffer 
1988). 

To evaluate to which degree specific synaptic contact patterns between afférents and neurons 
are involved in the complex multifunctional organization of the PVH, quantitative immuno-
EM studies are necessary. The present study is our first approach in this respect, focussing on 
a quantitative characterization of the synaptic input of CRH neurons. These are of specific 
interest to us (Mulders et al. 1995a,b, Mulders et al. submitted), since they play an important 
role in the stress-regulating circuit (Rivier et al. 1982, Antoni et al. 1983, Swanson et al. 
1983). For visualization of CRH we used adrenalectomized (ADX) rats since it is hardly 
possible to show CRH in normal rats with current immunohistochemical techniques. By 
means of quantitative analysis of the synaptic input of CRH neurons and comparison with 
other PVH neurons we will try to elucidate 1) to which degree the synaptic input of 
individual CRH neurons is specific or variable with respect to number, distribution and 
immunohistochemical characterization; 2) to which degree the synaptic input of CRH 
neurons that contain co-localized vasopressin or not following ADX is different; and 3) to 
which degree the synaptic input of CRH neurons differs from other parvocellular neurons 
that are co-distributed in the parvocellular region as well as from magnocellular neurons, 
which might indicate whether the immunohistochemical properties or the location of 
neurons primarily determines their synaptic input in the PVH. For these purposes, we 
quantified the synaptic density on reconstructed CRH neurons and compared the percentage 
of GABA-ergic and non-GABA-ergic input on reconstructed CRH and/or vasopressin 
immunoreactive neurons. 



M A T E R I A L S A N D M E T H O D S 

A N I M A L S For the present study we used 6 adrenalectomized (ADX) Wistar rats to 

optimize the immunohistochemical procedures to be described. Brain slices of two of these 

rats were selected for serial section reconstruction and quantification. All rats were bred in 

our Animal Laboratory. ADX was performed under ether anaesthesia four weeks before 

perfusion (rats at that time weighing 170 ± 10 g). Rats were housed two-three animals per 

cage in a room with a constant temperature (20 ± 2°C) and a 12 hours light period. Food 

and saline (0.9% sodium chloride in distilled water), which replaced the drinking water, were 

available continuously. The rat used for quantification of the results obtained by pre-

94 embedding immunohistochemistry received three days before perfusion an anterograde tracer 

injection of biotinylated dextran amine in the bed nucleus of the stria terminalis. This 

injection did not result in biotinylated dextran amine labeled fibers among the CRH neurons 

(Mulders et al. submitted) and consequently does not interfere with the present analysis. 

T I S S U E F I X A T I O N The rats were deeply anaesthetized with pentobarbital (6 mg/ 

100 g bodyweight) and transcardially perfused with 100 ml saline which was followed by 

400 ml of a mixture of 4% paraformaldehyde, 0.05% glutaraldehyde and 0.2% picrinic acid in 

0.1 M phosphate buffer (pH 7.4, PB) for pre-embedding immunohistochemistry or by a 

mixture of 2% paraformaldehyde and 2% glutaraldehyde in PB for post-embedding immuno

histochemistry. Subsequently, the dorsal part of the skull was removed and the rats were 

placed in a stereotactic device to make a transverse incision which allowed sectioning of all 

brains in the same transverse plane. Next, the brains were removed from the skull and post-

fixed at 4°C in the same fixative as used for perfusion. The next day a vibratome (Bio-Rad) 

was used to cut 75 μπι sections, which were collected and rinsed in phosphate buffered saline 

(PBS, pH 7.4). 

I M M U N O H I S T O C H E M I S T R Y 

PRE-EMBEDDING IMMUNOHISTOCHEMISTRY For electron microscopical demonstration of CRH by 

means of pre-embedding immunohistochemistry selected sections were incubated overnight 

with rabbit polyclonal CRH antiserum (8Bo, gift from Dr. Tilders, Amsterdam, The 

Netherlands) diluted 1:10,000 in PBS containing 0.1% bovine serum albumin (for 

characterization and specification of this antibody, see: Mulders et al. 1995b). After rinsing in 

PBS, sections were incubated for 60 minutes in a biotin-conjugated donkey-anti-rabbit 

antibody (Jackson ImmunoResearch), diluted 1:400 in PBS and rinsed again in PBS. Sub

sequently, they were incubated for two hours in a solution of one drop avidin and one drop 

biotinylated horseradish peroxidase in 40 ml PBS (pH 7.4, Vectastain ABC Elite kit: Vector 

Laboratories). After rinsing sections were pre-incubated for 10 minutes in 0.02% 3,3'-diamino-

benzidine-4HCl (DAB; Sigma) and 0.3% nickel ammonium sulphate in a 0.05 M 

Tris(hydroxymethyl)-aminomethane solution (pH 7.6), followed by a 10 minutes incubation 

in the same solution containing 20 μΐ H 2 0 2 . 

After immunostaining sections were rinsed in 0.1 M PB, osmicated for one hour in 1% 

osmium tetroxide dissolved in distilled water and rinsed again in PB. Next, sections were 

dehydrated in a graded series of ethanol, embedded in Epon 812 via propylene oxide and 

mounted in Epon 812 between a slide and coverslip coated with dimethyldichlorosilane 



solution (2% in 1,1,1-trichloroethane). The latter ensures easy removal of the sections from 

the slide and coverslip. After polymerization for two days in a stove at 60°C one section of 

the central PVH was selected (fig. 1) and remounted on an Epon block for ultrathin 

sectioning. A Reichert Ultracut-E was used to cut a continuous series of about 100 thin 

sections (85 nm), which were mounted on formvar coated one-hole copper grids. 

POST-EMBEDDING IMMUNOHISTOCHEMISTRY For preparation of ultrathin sections suitable for post-

embedding immunohistochemistry selected vibratome sections of the PVH were cryo-

protected in increasing concentrations of glycerol (10-20-30%) in PB, 30 minutes for each 

concentration. Subsequently, the parts containing the PVH were cut out, oriented on pieces 

of Thermanox (LAB-ТЕК DIV., Miles Laboratories Inc., Naperville) and frozen rapidly by 

plunging in liquid propane (-190°C) with the use of a rapid freezing apparatus (KF 80, 95 

Reichert-Jung, Germany). The propane was cooled with liquid nitrogen. After freezing the 

pieces were transferred to the precooled chamber (-90°C) of a CS auto freeze substitution 

apparatus (Reichert-Jung, Germany), in which freeze substitution was performed as described 

by Müller et al. (1980). The tissue was immersed overnight at -90°C in anhydrous methanol 
containing 0.5% uranyl acetate as fixing agent. The temperature was raised in small steps with 
4°C per hour to -45°C. The samples were washed several times with anhydrous methanol to 
remove water and excessive uranyl acetate, prior to infiltration with Lowicryl HM20 resin 
(Bio-Rad Richmond, California). The embedding process was carried out at -45°C in three 
stages, with a progressively increasing ratio of resin to methanol. Diffuse UV-radiation 
(360 nm) was used to catalyze polymerization first at -45°C overnight and then at room 
temperature for one day. One section of the central PVH (fig. 2) was selected to cut a series 
of about 150 ultrathin sections (85 nm) on a Reichert Ultracut-E which were mounted on 
formvar coated one-hole copper grids. 

For visualization of CRH, vasopressin and GABA by immunogold labeling ultrathin sections 
were washed for one hour in PBS containing 0.1% sodium borohydrate and 50 шМ glycine 

(this step was omitted for GABA) followed by 10 minutes in PBS containing 0.5% BSA and 

0.5% cold fish skin gelatine (PBG) and then incubated overnight at 4°C in drops of PBG 

containing a CRH antibody (8Bo, similar to pre-embedding immunohistochemical procedure) 

diluted 1:100, a vasopressin antibody (a gift from Dr. Van Leeuwen, Amsterdam, The 

Netherlands) diluted 1:100 or a GABA antibody (a gift from Dr. Buijs, Amsterdam, The 

Netherlands) diluted 1:6000. The sections were washed for 20 mins. in PBG and incubated in 

gold-labelled goat anti-rabbit immunoglobulin G (IgG) (10 nm, Ammersham, Den Bosch, The 

Netherlands). After the incubation sections were washed 3 χ 10 minutes in PBS and post-

fixed with 2.5% glutaraldehyde in PBS for 5 mins. to minimize loss of gold label during sub

sequent washing with distilled water and contrasting with a saturated solution of uranyl 

acetate. The way in which sections were selected for either CRH, vasopressin or GABA 

immunohistochemistry will be described below. 

E L E C T R O N M I C R O S C O P I C A N A L Y S I S For the analysis of the sections 

prepared according to the pre-embedding immunohistochemical procedure described above we 

photographed all detectable CRH neurons at a magnification of 5,000 χ in every fifth section 

of our series using a Jeol 1010 electron microscope. For the recognition of individual CRH 

neurons in subsequent sections we used their location with respect to each other and to the 

blood vessels in the PVH (fig. 1). A replica of 2,160 lines/mm was used to determine the 
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F I G U R E 1 Schematic drawings of the location of 
the section (A) and neurons (B) used for quantitative EM 
analysis of the PVH after a pre-embedding immunohisto-
chemical procedure to visualize CRH. Subdivisions were 
distinguished on the basis of previously described criteria 
(Mulders et al. 1995a). Scale bar represents 75 /лп. 
Arrows indicate corresponding corners. Black dots 
indicate CRH+ neurons and asterisks indicate CRH-
neurons. White areas indicate blood vessels. 
Abbreviations: MC - magnocellular part, PCc - central 
parvocellular part, Pcd = dorsal parvocellular part, 
PCv = ventral parvocellular part PV = periventricular 
part, V3 - third ventricle. 

precise magnification. Subsequently, the total 

length of the perimeter of every CRH profile 

was determined with the help of a Kontron-

Videoplan equipment and all synapses on these 

profiles were counted. With these data and the 

average synaptic contact length in the central 

parvocellular part as previously determined 

(Mulders et al. 1995a) we calculated the 

synaptic density per neuronal surface area (Ns) 

for every analyzed neuron, by use of the 

formula of Colonnier and Beaulieu (1985), as 

adapted by Albers et al. (1990), reading: 

N . -
Ν, 

L . ЕВ . (4/т) 

in which: 

N a — number of synapses counted on an identified cell membrane in a certain reference 

volume 

L = mean trace length of synaptic contacts (364 nm, Mulders et al. 1995a) 

ΣΒ - the trace length of total measured boundary of a certain cell. 

To gain more insight in the distribution of synapses all CRH neurons analyzed as described 

above were reconstructed. Some of the resulting reconstructions are shown in figure 3. For a 

caudal view of the reconstructed cells the contours and synaptic contacts of subsequent 

photographs of each neuron were superimposed, starting from the most caudal photograph, 

with omission of contours hidden by more caudal ones. For a dorsal view the width of each 

neuron and the position of the synaptic contacts were plotted. After addition of 

reconstructed height lines, which depict changes of 0.85 /tin in height, the resulting dorsal 

view of the reconstructed neurons was obtained. From 11 neurons which were most 

completely present in the reconstructions we calculated the diameter (2.r) and perimeter 

(27ГГ2), in order to estimate the approximate total number of synapses on these cell bodies 

(47ГГ2 χ N , ) . 

For the electron microscopical analysis of the series of 150 lowicryl embedded ultrathin 

sections we selected an area in the PVH for detailed analysis that included the central parvo-



cellular part (PCc) almost completely and adjacent parts of the magnocellular part (MC), the 

dorsal parvocellular part (PCd) and the ventral parvocellular part (PCv) (fig. 2). Subsequently, 

we stained every 15th section for CRH, yielding 10 stained sections, and investigated the 

CRH immunoreactivity of all neurons and terminals in the selected area. For quantification, 

we selected 61 neurons which showed a nucleus in the central section of the series, since 

these neurons were most likely to continue throughout the whole series of sections. In these 

neurons, granules were classified as CRH-immunoreactive when they contained at least three 

gold particles. Neurons were classified as CRH-positive (CRH+) when they contained two or 

more immunoreactive granules in the cytoplasm in at least 9 from the 10 sections and as non-

CRH neurons (CRH-) when they did not show any CRH immunoreactive granules in at 

least 9 out of the 10 sections analyzed. This method resulted in the distinction of 20 CRH+ 

neurons and 20 CRH- neurons. The remaining 21 neurons were treated as unidentified, since 

these neurons did not meet the criteria as mentioned above. 

On 10 ultrathin sections adjacent to the sections stained for CRH we applied an immunogold 

vasopressin (VP) labeling and investigated which of the CRH+ and CRH- neurons could be 

classified as vasopressinergic (VP+) or non-vasopressinergic (VP-). We also checked whether 

there were VP-positive synapses present on the CRH+ and CRH- neurons. This was done in 

a similar way as described for CRH classification: granules were considered VP+ if they 

contained three or more gold particles and 

CRH- neurons were considered VP+ when 

they contained two or more immunoreactive 

granules in at least 9 out of 10 sections. 

However, we developed different criteria for 

classification of CRH+ as VP+ or VP-, since 

these neurons showed a different degree of VP 

labeling. CRH+ neurons were considered VP+ 

when they contained at least two immuno

reactive granules in at least two sections. 

On 10 other ultrathin sections adjacent to the 

sections stained for CRH we applied an 

immunogold GABA labeling. These sections 

were used to count all synapses on the selected 

neurons and to classify these synapses as either 

GABA-positive (GABA+) or GABA-negative 

(GABA-). 
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F I G U R E 2 Schematic drawings of the location of 
the section (A) and neurons (B) used for quantitative EM 
analysis of the PVH after a post-embedding immunohisto-
chemical procedure to visualize CRH, VP and GABA. For 
abbreviations of subdivisions: see figure 1. Scale bar 
represents 75 /лп. Arrow indicates corresponding corner. 
Large black dots indicate CRH+ neurons. Black stars 
indicate VP+ neurons. Open stars indicate CRH-/VP-
neurons. Open circles indicate investigated but 
unidentified neurons. Small black dots = non-investigated 
neurons. White areas » blood vessels. 
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F I G U R E 3 Drawings of 6 reconstructed CRH neurons and their synaptic contacts. The left drawing of 
each pair shows a caudal view and the right drawing shows a dorsal view of the reconstructions. The midline of 
the brain is at the left side of the drawings. In the caudal views lines represent the cellular contours as present 
in the different transverse sections used. In the dorsal views lines represent reconstructed heights lines. Black 
dots indicate synapses on the viewed surface and open circles indicate synapses on the backside of the 
reconstructed cells. Shaded areas indicate the end of the series of sections investigated. Scale bar represents 
4 μ τ η . 



S T A T I S T I C S Statistical analysis of the differences in GABA+/GABA- ratio between 

CRH+ and CRH- and other populations of neurons was performed by means of a two-tailed 

Student's t-test. 

R E S U L T S 

T H E O V E R A L L S Y N A P T I C O R G A N I Z A T I O N OF C R H N E U R O N S 

In the series of ultrathin sections treated according to the pre-embedding histochemical 

procedure for CRH we identified 22 CRH neurons (fig. 1). In these neurons the DAB nickel 

precipitate is distributed throughout the cytoplasm. The CRH neurons are round to oval 

shaped and often have an indented nucleus (fig. 4). They have a moderate to low density of 

synaptic contacts on their somatic and proximal dendritic surface, and symmetrical as well as 

asymmetrical synapses contact the CRH neurons (fig. 4). Synapses contain clear vesicles and, 

occasionally, dense core vesicles. 

A number of CRH neuron reconstructions are shown in figure 3. From these reconstructions 

it appears that the synaptic density varies largely between the CRH neurons; some are rather 

richly innervated (e.g. ЗА, 3B and 3C) but others moderately to poorly (e.g. 3D, 3E and 3F). 

The synapses are not equally distributed over the cell body, since clustering of synaptic 

contacts occurs to a greater or less extend on all neurons. The synapse clusters do not show a 

preference for specific areas such as the origin of dendrites. None of the synapses contacting 

the CRH neurons contain DAB precipitate, so none of them is probably CRH immuno-

reactive. 

The synaptic density (Ns) per CRH cell body varies from 0.067 to 0.314 per μπι2 with an 

average of 0.150 ± 0.014 per μπι2 (table I). The 11 neurons that were most completely 

present in the reconstructed sections have diameters between 10 and 13 μπι, which implies a 

surface varying from 328 to 508 μπι2. Multiplication of these surfaces with the synaptic 

densities reveals that the estimated number of synapses per cell body varies from 34 to 109 

with an average of 63 ± 7.8 synapses per cell body (table I). 

THE L O C A L I Z A T I O N OF CRH AND VP In sections treated by means of post-

embedding immunohistochemistry, the immunogold labeling indicating the presence of CRH 

or VP is confined to neurosecretory granules. CRH immunogold labeling was only detected 

in rather electron lucent granules in the cytoplasm which are generally located close to the 

cell membrane. By far not all granules within a CRH immunopositive neuron contain gold 

particles. On average we could detect 3 to 5 immunoreactive granules per neuron per section 

between a large number of unlabeled granules (fig. 5). In contrast, VP immunohistochemistry 

revealed that magnocellular neurons contain large amounts of heavily labeled electron-dense 

VP+ granules. However, smaller VP+ neurons contain only small amounts of VP+ granules, 

i.e. only 2 to 3 VP+ granules per section, similar to the CRH distribution. These small VP + 

neurons were always CRH+ as well. 

After electron microscopical analysis of a total of 61 neurons in the CRH and VP immuno

gold labeled sections we were able to distinguish the following 5 different neuropeptidergic 

groups of neurons; CRH immunopositive but VP immunonegative neurons (CRH+/VP-, 

η - 8), CRH as well as VP immunopositive neurons (CRH+/VP + , η - 12), CRH as well as 

VP immunonegative neurons (CRH-/VP-, η - 12), VP immunopositive but CRH immuno-
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F I G U R E 4 Electron micrographs of two PVH neurons treated with pre-embedding CRH ¡mmunohisto-
chemistry, illustrating the difference of staining intensity at a similar depth from the vibratome section surface (A 
and С). В and D show synaptic contacts on a darkely and a lightly stained CRH neuron, respectively. Calibration 
bars: 5 μνη (A, also applies to C) and 1 μπ\ (В, also applies to D). 



T A B L E I The synaptic density (per μαη and estimated number of synapses as determined for the reconstructed CRH 

cell bodies in the PVH 

Neurons 
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84 

64 

40 
64 

55 
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37 

51 
34 

48 

103 

63 

25.8 

7.8 

negative neurons (VP + /CRH-, η - 8) and a group of not clearly immunohistochemically 

identifiable neurons (n - 21) (fig. 2). Of the 8 CRH+/VP- neurons 6 were located in the 

PCc, 1 in the MC and 1 in the PCd. The CRH+/VP+ neurons were all located in the PCc 

where they were intermingled with the CRH+/VP- neurons. Of the 8 VP+/CRH- neurons 

6 were located in the MC and 2 in the PCc. The 12 CRH-/VP- neurons were distributed 

over the MC (3), the PCc (6) and the PCv (3). The CRH-/VP- neurons in the MC seem to 

be larger than the CRH-/VP- neurons observed in the other subdivisions and also larger 

than the CRH+ neurons, regardless whether the latter are VP+ or VP-. 

In line with the results of the pre-embedding immunohistochemical procedure CRH+ 

synapses or terminals were not observed on the CRH+ neurons. Equally, we did not find 

CRH+ synapses or VP+ terminals on any other type of neuron. 

THE D I S T R I B U T I O N OF GABA In sections treated for post-embedding GABA 

immunogold labeling gold particles appear to be distributed throughout the terminals and not 

confined to their clear vesicles. To compare the distribution of the GABA positive (GABA+) 

and GABA negative (GABA-) synapses of the different neurons as characterized above we 

counted the number of GABA+ and GABA- synapses per profile and summated these 

numbers per neuron, after which the GABA+/GABA- synapse ratio per neuron was 

calculated. The results are summarized in table Π. In line with the results of the pre-
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F I G U R E 5 Electron micrographs of PVH sections treated for post-embedding immunohistochemistry, 

illustrating the presence of goidparticles on electron lucent CRH-immunoreactive granules (A and B) and on 

electron dense VPimmunoreactiwe granules (C). D and E show GABA positive synapses on a VP+jCRH- neuron 

and a CRH + /VP- neuron, respectively. F shows the convergence of a GABA positive (black star) and a GABA 

negative (empty star) synapse on an unidentified dendritic profile. Calibration bars: 0.5 //m (A, also applies to B) 

and 1 μια (С and F, the latter also applies to D and E). 



a t o i A c o i f l N e » 

я 

*- о о 

О) П UI N ІЛ Г\ О 

t— w- гм 

N O O I 

α» «7 

o c o Q i n c o o o n 
о о і л о г * ч с э о и ? р э 

і л о і с о с ч ю ^ с ч г о 

—. —. - . -.-.--. —. —. —. -. **ϊ τ 

t - a o ) f - ^ t - f f l ( D ( M O > o i a 

і * * е о о с 0 і л і л е * г г о с » ) О ) т г * η 

Ν ^ d f j 

Я N Я * N 

· * σ» г*» г . » 

embedding h i s t o c h e m i c a l 
procedure we found a large inter-
neuronal variation in the number 
of synapses. On CRH+/VP-
neurons the number of synapses 
observed on the 10 profiles 
analysed per cell varies from 19 to 
34 with an average number of 28 
and on CRH+/VP+ neurons this 
synapse number varies from 12 to 
29 with an average of 22. The 
GABA+/GABA- ratio is 1.62 ± 
0.12 for the CRH+ neurons 
without significant differences 
between the CRH+/VP- (1.69 ± 
0.22) and CRH+/VP+ neurons 
(1.57 ± 0.14). On magnocellular 
VP+/CRH- neurons the number 
of synapses as counted on 10 
profiles per cell varies from 20 to 
42 with an average of 30, which is 
comparable with the synapse 
numbers on the CRH+ neurons. 
However, the GABA+/GABA-
ratio of these VP + /CRH-
neurons is statistically significantly 
lower than that of the other 
neurons (0.76 ± 0.08, ρ < 0.04). 

The CRH-/VP- neurons show a 

larger variation in the number of 

synapses than the CRH+ neurons 

since on these neurons the 

synapse number per 10 profiles 

varies from 5 to 46 with an 

average number of 21. Nonethe

less, these neurons show a similar 

GABA+/GABA- synapse ratio 

(1.75 ± 0.41) as the CRH+ 

neurons. They can be further sub

divided in two subgroups on the 

basis of location in the PVH, i.e. 

a parvocellular group (n - 9) 

with a GABA+/GABA- ratio of 

2.09 ± 0.50 and a magnocellular 

group (n - 3) with a GABA+/ 

GABA- ratio of 0.72 ± 0.09. 

Statistical comparison shows that 



the magnocellular CRH-/VP- group is statistically significantly different from the parvo-

cellular CRH+/VP- (p < 0.01) and CRH+/VP+ neurons (p < 0.02), but not from the 

magnocellular VP+/CRH- neurons. In contrast, the parvocellular group of CRH-/VP-

neurons is statistically significantly different from the magnocellular VP+/CRH- neurons 

(ρ < 0.01) but not from the parvocellular CRH+ neurons. 

D I S C U S S I O N 

In the present study we have established that the number of synapses contacting the somata 

of CRH neurons in the PVH may vary from 34 to 109, with an average of 63. 

Approximately 62% of these synapses is GABA-ergic without differences between CRH+ 

neurons with or without co-localized VP-immunoreactivity (-IR). In contrast, magnocellular 

VP+ as well as VP- neurons have a statistically significantly lower GABA+/GABA- synapse 

ratio (only 42% is GABA-ergic) than the parvocellular CRH+ as well as CRH-/VP- neurons 

(68% is GABA-ergic). To evaluate these results we will first discuss the consequences of 

ADX, and then compare our results with previous light and electron microscopical data 

concerning input and function of CRH+ and CRH- neurons. 

C O N S E Q U E N C E S OF ADX In normal rats the neurochemical content of CRH in 

the parvocellular neurons of the PVH is too low to visualize these neurons with current 

immunohistochemical techniques, especially in the electron microscope. To overcome this 

problem we used adrenalectomized (ADX) rats to have a tool to differentiate between neuro-

chemically and thus probably also functionally different PVH neurons. Removal of the 

negative feedback of plasma corticosteroids by ADX increases the CRH content in the parvo

cellular neurons substantially (Sawchenko 1987). However, ADX does not only introduce a 

higher CRH content in CRH neurons, but also a number of other changes in the central 

nervous system, including hippocampal cell death (Sloviter et al. 1989, Sapolsky et al. 1991), 

increased production of vasopressin by the CRH neurons (Whitnall et al. 1985) and receptor 

changes in the PVH (fhanwar-Uniyal and Leibowitz 1986, Reul et al. 1987, Castren and 

Saavedra 1989). In addition, ADX induces a reduction of input from the bed nucleus of the 

stria terminalis (BNST) to the CRH neurons in the PVH (Mulders et al. submitted). The 

latter is important in view of the present results, since it indicates that ADX might induce 

changes in the synaptic organization of the PVH and especially in the synaptic input of its 

CRH neurons. Therefore, one should be careful extrapolating the present results to the 

normal situation since input to CRH neurons in ADX rats might differ from similar data in 

untreated rats, both with respect to the synaptic density and the immunohistochemical 

composition. In spite of these possible changes, ADX rats are still well suited to reveal 

constraints and variability in the synaptic organization of distinct populations of neurons in 

the PVH and the use of ADX rats is presently the only way to study the questions put 

forward in the introduction. To investigate the precise impact of ADX on the synaptic 

organization of the PVH, more sensitive immunohistochemical methods, allowing for the 

reliable distinction of CRH neurons in electron microscopical sections of normal rats, have to 

become available. 



C H A R A C T E R I Z A T I O N OF S Y N A P T I C I N P U T TO P V H N E U R O N S 

This study is the first one describing the number of synapses on CRH somata, which is 

found to be 63 ± 7.8. In a previous morphometric study we calculated the overall synapse-

neuron ratio of different PVH subdivisions, which appeared to be approximately 900 in the 

central parvocellular part (PCc) (Mulders et al. 1995a). Since the majority of the CRH 

neurons is situated in the PCc (Swanson et al. 1983, Mulders et al. 1995b) and most dendrites 

of PVH neurons are confined to the subdivision in which the parent cell bodies are situated 

(Armstrong et al. 1980, Van den Pol 1982), this means that about 7% of the synapses on 

CRH neurons is axo-somatic. This percentage is comparable with the results of Decavel and 

Van den Pol (1990) who found 4% of all synapses in the parvocellular part of the PVH to be 

axo-somatic. As is visible in table I the interneuronal variability in synaptic density per 

neuronal surface (Ν,) and the number of synapses between CRH neurons is large. Both the 105 
N s and synapse number show a large variation, varying from 0.067 to 0.314 per μπι2 and 

from 34 to 109, respectively. These data suggest that the synaptic input to CRH neurons is 

not very strictly organized or hard-wired, but instead rather variable. The large interneuronal 

variation might well point to a plasticity at the synaptic level allowing for adaptation to 

physical and/or environmental changes. This is in line with our previous experiments which 

indicated plasticity of the input from the BNST to the CRH neurons (Mulders et al. 

submitted). 

We did not find any CRH-IR synapses on CRH+ neurons, neither in the sections treated 

according to the pre-embedding immunohistochemical procedure nor in the sections treated 

according to the post-embedding immunohistochemical procedure. The latter procedure also 

revealed that CRH-ГО. synapses did not contact CRH- neurons. This suggests that CRH is 
not involved as a neurotransmitter in the regulation of PVH neurons. However, previous EM 
studies indicated that CRH axon collaterals establish synaptic contacts with CRH+ as well as 
CRH- neurons, suggesting a local influence of CRH neurons (Liposits et al. 1985, Silverman 
et al. 1989, Hisano et al. 1992). The discrepancy with the present result might partly be due 
to methodological differences and partly to the use of different rat strains. Liposits et al. 
(1985) studied ADX Wistar rats using a silver intensification method and describe that CRH-
IR synaptic contacts on CRH somata occur occasionally, without a further quantification. 
Our results do not exclude the occasional occurrence of such contacts, but suggest that these 
are very infrequent. 

Silverman et al. (1989) used Fischer 344 rats in which CRH staining can be obtained without 
ADX. They found numerous CRH synapses, particularly in the periventricular zone (PV). 
The largest portion of these synapses is axo-dendritic, but axo-somatic contacts were also 
observed: 10% of the synapses investigated contacted CRH+ neuronal cell bodies and 17% 
CRH- neuronal cell bodies. Fischer 344 rats seem to have a different mechanism for 
activation of the CRH neurons, enabling visualization even in untreated rats. Thus, it is well 
possible that these rats have a different synaptic organization of the CRH neurons than 
Wistar rats, which might explain the differences with the present results. Moreover, 
Silverman et al. (1989) describe in particular the synaptic organization in the PV which was 
not included in the present study. Hisano et al. (1992) used Sprague-Dawley rats treated with 
colchicine and combined DAB and silver-gold particle methods. They investigated especially 
the oxytocin-rich area of the magnocellular PVH. In this subdivision they occasionally 
observed CRH synapses on magnocellular as well as on smaller neurons. However, they did 
not investigate the parvocellular part of the PVH, as was done in the present study. 
We could not detect any VP+ synapses on the neurons analyzed, suggesting a limited role for 



VP as a neurotransmitter in the MC, PCc, PCd and PCv of the PVH. In literature there is 

some disagreement on the presence of VP axon collaterals and VP terminals in the PVH. 

According to a morphological study of Van de Pol (1982) axon collaterals of magnocellular 

neurons do not occur in the PVH, whereas axon collaterals of parvocellular neurons do 

occur. In contrast, Choudhury and Ray (1990) and Ray and Choudhury (1990) did find 

VP-IR axon collaterals in the PVH, although their number was limited. These authors and 

others also describe Р-ГО. terminals in contact with VP+ somata (Nakada and Nakai 1985, 

Choudhury and Ray 1990, Ray and Choudhury 1990). This is in contrast with the results of 

the present study as well as of Piekut (1983) who describes an absence of Р-Ш. terminals on 

VP+ neurons. The lack of VP synapses on VP- neurons as found in the present study is in 

agreement with the results of Nakada and Nakai (1985) who equally did not find VP synapses 

on VP- neurons. 

D I S T R I B U T I O N OF G A B A - E R G I C I N P U T We investigated the GABA-ergic 

innervation of the somata of the different types of neurons, i.e. parvocellular CRH-ГО. but 

not Р-Ж neurons (CRH+/VP-), parvocellular CRH-Ж as well as VP-IR neurons 

(CRH+/VP+), magnocellular VP-IR but not CRH-Ш. neurons (VP+/CRH-), and finally the 

magnocellular as well as parvocellular neither CRH-Ш. nor VP-IR neurons (CRH-/VP-), by 

comparison of the GABA + /GABA- ratio. The predominant location of the VP + /CRH-

neurons in the MC is in agreement with previous studies describing the distribution of 

magnocellular VP neurons (Rhodes et al. 1981). The VP-IR granules observed in a portion of 

the CRH+ neurons were never present in the same amount as observed in magnocellular 

CRH- neurons. Co-localization of VP and CRH is likely to be a result of ADX, since it has 

been shown that ADX enhances VP-IR in a subgroup of the CRH+ neurons (Whitnall et al. 

1985, Whitnall 1990), which co-release VP together with CRH to potentiate the release of 

ACTH (Gillies et al. 1982, Whitnall 1988). 

Interestingly, immunohistochemically distinct groups of parvocellular neurons show no 

mutual differences in GABA-ergic innervation. The same holds for magnocellular neurons, 

whether they are VP+ or VP-. However, the parvocellular types all differ significantly from 

the magnocellular types with respect to their GABA-ergic synaptic input. These data strongly 

suggest that the distribution of GABA-ergic input in the PVH is primarily determined by the 

location of neurons within the PVH and not by the neurochemical content of these neurons. 

This idea is in line with the results of Meister et al. (1988) who describe a dense network of 

glutamic acid decarboxylase-fibers (GAD, the GABA-synthesizing enzyme) in the parvo

cellular part and a less dense network in the magnocellular part, which also suggests a 

specificity of input for distinct subdivisions. Since GABA-ergic input is inhibitory (Calogero 

et al. 1988), our results suggest that inhibitory input is less important in the magnocellular 

PVH than in the parvocellular PVH. 

The large GABA-ergic input to the CRH neurons is somewhat unexpected in view of our 

previous tracer studies in which we found a reduced innervation of the CRH-rich part of the 

PVH from the BNST after ADX (Mulders et al. submitted). Since the input from the BNST 

to the PVH is probably GABA-ergic (Cullinan et al. 1993), we hypothesized that the GABA-

ergic input to the CRH neurons following ADX would be significantly diminished compared 

with controls. This suggests that the GABA-ergic innervation of CRH neurons in normal rats 

may even higher than that observed in the present study for ADX rats. However, the relative 

contribution of GABA-ergic input from the BNST might be relatively small compared to the 



GABA-ergic input from hypothalamic GABA-ergic cell groups (Tappaz 1982, Tappaz et al. 

1983, Tasker and Dudek 1993) and thus a decrease in input from the BNST might induce 

only a minor change in synaptic organization. 

The transmitters used by the 40-60% GABA- synapses on PVH neurons have not yet been 

characterized, but many other neurotransmitters than GABA have been shown to be 

involved in the synaptic organization of the PVH. One major type of input is 

catecholaminergic, both in the parvocellular as well as the magnocellular PVH (Nakada and 

Nakai 1985, Silverman et al. 1985, Decavel et al. 1987). Also neuropeptide Y, co-localized 

with catecholamines, seems to play a major role in the PVH (Kagotani et al. 1989a) making a 

large amount of synaptic contacts in the parvocellular (Sawchenko and Pfeiffer 1988) as well 

as in the magnocellular PVH (Kagotani et al. 1989b). Galanin (Sawchenko and Pfeiffer 1988), 

ACTH and substance Ρ (Heike et al. 1986, Liposits et al. 1988) also seem to play a role. The 107 

precise distribution of these neurotransmitters on distinct cell types of the PVH neurons 

remains to be determined with additional quantitative electron microscopical analyses in the 

future. 
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Chapter 7 

General discussion and summary 



P R E F A C E 

In this thesis we investigated morphological and functional characteristics of the CRH 

neurons in the PVH, in order to gain more insight in the organization of these neurons. The 

PVH contains besides CRH a variety of other neuropeptides which all subserve different 

functions. Therefore, it seems logical that all these peptides must be differentially regulated. 

This implies that the PVH receives large amounts of different inputs which must all be 

organized in such a way that they can innervate a particular type of neuron and thus affect a 

particular function. Consequently, we expected a rather rigid organization of the PVH and its 

CRH neurons, which means an univocal and predetermined correlation between different 

morphological aspects, as distribution of neurons, immunohistochemistry and synaptology, as 

well as inputs and also function of the different neurons. 

However, the different experimental set ups, as used in this thesis, show that several 

characteristics of the CRH population are considerably variable between rat lines and under 

different hormonal conditions. In addition, the synaptic arrangement does not seem to be 

strictly organized according to neuropeptidergic contents of neurons, e.g. according to 

function, but more according to location of neurons within the PVH. Finally, the pathway 

of activation of the CRH neurons does not seem to make much difference as to which CRH 

neurons are activated. 

In the following paragraphs we will summarize our results from chapter 2 till 6 and discuss 

the different observations in view of CRH function and argue that the observed lack of a 

strict organization is important in maintaining plasticity and adaptation possibilities in the 

ΗΡΑ-axis. At the end, we will present some general ideas for future experiments designed to 

shed more light on questions raised following the experiments performed in this thesis. 

S U M M A R Y OF R E S U L T S 

In chapter 2 we compared the morphometric characteristics of the PVH in two Wistar rat 

lines which are pharmacogenetically selected on the basis of their susceptibility for 

apomorphine, the APO-SUS and APO-UNSUS rats. These rats, which represent two 

extremes of a normal Wistar population and have been shown to display different stress 

responses (Cools et al. 1990, Van Eekelen et al. 1992, Rots et al. 1995, Rots et al. 1996), show 

a similar organization of the PVH within different subdivisions as appears from light micro

scopical criteria such as neuron size and neuronal density (chapter 2). However, these rat 

lines do show a different organization at the electron microscopical level as appears from the 

statistically significant different synaptic densities in the PVH of both rat lines. The 

APO-SUS rats have a higher synaptic density in the overall PVH as well as in the PV, PCc 

and PCp as compared to the APO-UNSUS rats. This observation implicates that even within 

one strain of rats the micro-organization of the PVH is variable. The question arises whether 

this observed synaptic density difference correlates in any way with the results obtained in 

chapter 3. 

In chapter 3 we found, after a mild stressful stimulus, an open field paradigm, less activated 

CRH neurons in the PVH of APO-SUS rats as compared to APO-UNSUS rats. Since the 

differences in synaptic density between the two rat lines were found in the PV, PCc and PCp 

and since these subdivisions are also the major source of the hypophysiotropic CRH neurons, 

projecting to the median eminence (Swanson and Kuypers 1980, chapter 4), we think that 



this difference in the number of activated CRH neurons might well be associated with the 

different synaptic densities in both rats. If the lower number of activated CRH neurons 

following a mild stressor is correlated with the higher synaptic density in APO-SUS rats, 

while the higher number of activated CRH neurons after the same stressor is correlated with 

a lower synaptic density in APO-UNSUS rats, then this would indicate a larger inhibitory 

input to CRH neurons in APO-SUS rats. 

A major inhibitory neurotransmitter in the PVH is GABA, which is found in large amounts 

in all subdivisions of the PVH and also in direct contact with CRH neurons (Decavel et al. 

1989, Decavel and Van den Pol 1990). One source of GABA in the PVH is the bed nucleus 

of the stria terminalis (BNST). The BNST is thought to play an important role in funneling 

limbic information from the hippocampus and amygdala to the PVH (Feldman et al. 1991, 

Cullinan et al. 1993, Canteras et al. 1995). With respect to the results obtained in chapter 2 113 

and 3 the hippocampus seems to be of major importance since this structure is thought to 

play a role in the feedback mechanism of corticosteroids. Our results suggest an increased 

activity of the hippocampal-BNST-PVH pathway in APO-SUS rats. Rots and coworkers 

showed a higher corticosteroid response in APO-SUS rats after stressful stimulation (Rots et 

al. 1995, Rots et al. 1996). The corticosteroids then activate the hippocampus, which, in its 

turn, inhibits the activity of the CRH neurons via the BNST. An increased GABA-ergic 

pathway from the BNST to the PVH in APO-SUS rats, as suggested by the results of chapter 

2 and 3 might enhance this inhibition, leading to a low number of activated CRH neurons in 

the PVH following a mild stressor in APO-SUS rats. An increased influence from the 

hippocampus is in agreement with the work of Sutanto et al. (1989) who found a higher in 

vivo binding of corticosteroids to the mineralocorticoid receptor in the hippocampus of 

APO-SUS rats than in APO-UNSUS rats. A higher binding of corticosteroids in the 

hippocampus of APO-SUS rats would also enhance the inhibiting capacity of the 

hippocampus on the activity of the ΗΡΑ-axis. The lower number of activated CRH neurons 

seems to be in conflict with the higher ACTH and corticosteroid response as reported by 

Rots et al. (1995, 1996). However, these authors also found a higher basal level of CRH 

mRNA in APO-SUS rats (Rots et al. 1995). It is possible that this basal CRH mRNA is used 

after a stress stimulus to increase the ACTH levels which makes immediate activation of the 

CRH neurons unnecessary. On the other hand, it could be possible that the pituitary in 

APO-SUS rats has a higher sensitivity to CRH, which would explain the higher ACTH and 

subsequent corticosteroid response even after a low release of CRH. Since the pituitary 

contains a large amount of CRH receptors (Grigoriadis et al. 1993), the number and/or 

binding capacities might well be enhanced in APO-SUS rats as compared to APO-UNSUS 

rats, leading to a higher sensitivity for CRH. In conclusion, our results and the work of Rots 

et al. (1995, 1996) clearly show that the APO-SUS and APO-UNSUS rats show differences at 

several levels of the ΗΡΑ-axis. Further studies will be necessary to elucidate the precise 

functioning of this system in the two rat lines. 

In chapter 4 we compared the distribution of activated CRH neurons under different 

experimental conditions. Comparison between colchicine treated and ADX rats illustrated 

that only a part of the CRH neurons is involved in the regulation of the ΗΡΑ-axis and is 

under the control of circulating corticosteroids, confirming earlier studies (Swanson and 

Kuypers 1980, Kawano et al. 1988, Rho and Swanson 1989). This observation was confirmed 

by treatment with anti-CRH, which resulted in a similar distribution of activated CRH 

neurons as ADX. Anti-CRH removes CRH from the circulation, preventing ACTH release 

and in this way keeps the level of circulating corticosteroids low. Therefore, the use of anti-



CRH would be a good alternative to ADX. The most remarkable finding in this chapter is 
the observed effect of IL. Although we failed to show an excitatory effect of IL on the short 
term by icv injection, as we expected on the basis of previous studies (Berkenbosch et al. 
1987, Sapolsky et al. 1987, Veening et al. 1993, Lee and Rivier 1994), we did observe an 
inhibitory effect on the long term. Three and ten days after a single iv injection with IL we 
counted less activated CRH neurons in the PVH as compared to control rats. To our 
knowledge such an inhibitory effect of IL has not been shown previously and further studies 
are necessary to gain more insight in the mechanism underlying this phenomenon. 
Since chapter 2 and 3 suggested that inhibitory pathways to the PVH, and possibly in 
particular the input from the hippocampus via the BNST, play an important role in the 
CRH regulation, we investigated the BNST-PVH pathway in more detail in chapter 5. With 
the use of an anterograde tracer we observed a large projection from the BNST to all sub
divisions of the PVH, in agreement with earlier studies (Silverman et al. 1981, Sawchenko 
and Swanson 1983). Remarkably, in ADX rats, after similar injections in the BNST as in 
normal rats, we observed a significantly decreased input to all subdivisions of the PVH and 
specifically to the CRH-rich part. This result indicates that ADX evokes changes in the 
pathway from the BNST to the PVH and especially to its CRH neurons and thus changes in 
the synaptic organization. When evaluating this result several aspects must be considered and 
different questions arise. First of all, what is the function of this loss of input? Input from the 
BNST is thought to be GABA-ergic (Cullinan et al. 1993) and thus inhibitory. ADX evokes a 
constant activation of the CRH neurons, which leaves inhibitory input useless and even 
unwanted. Removal of the inhibitory GABA-ergic input might be a mechanism to facilitate 
the chronic activated state of the CRH neurons following ADX. Secondly, and closely 
correlated with the functional aspect of the decreased input, one must note that ADX is not a 
physiological condition. This means that under normal circumstances a loss of corticosteroids 
is unlikely to occur. However, the opposite, an elevated corticosteroid level, will be present 
during chronic stressful conditions. The question arises whether a long-term rise of cortico
steroid levels will induce the opposite of the observed phenomenon, i.e. an increased input 
from the BNST to the PVH? Thirdly, how does this phenomenon of decreased input occur? 
Is the loss of axons evoked by cell death in the BNST or do the axons actively retract from 
their target neurons? This question is closely associated with the following question. What is 
the underlying mechanism of this decreased input from the BNST to the PVH? In our view 
there are two possibilities, an anterograde or retrograde mechanism. An anterograde 
mechanism might finds its origin in the hippocampus. ADX is known to induce cell death in 
the hippocampus (Sloviter et al. 1989, Sapolsky et al. 1991), which might lead to reduced 
input from the hippocampus to the BNST which, in its turn, might be responsible for the 
reduced input to the PVH by cell death in the BNST. A retrograde effect might be evoked in 
the PVH itself. ADX is known to induce receptor changes in the PVH (fhanwar-Uniyal and 
Leibowitz 1986, Reul et al. 1987, Castren and Saavedra 1989), which might evoke retraction 
of certain axonal inputs by a presynaptic feedback mechanism. Finally, it would be 
interesting to find out whether this decreased input from the BNST to the PVH is a 
reversible phenomenon. When this is the case then plasticity of this BNST-PVH pathway and 
thus changes in the synaptic organization might well be a mechanism for the organism to 
cope with extreme changes in corticosteroid levels. 

In relation to the apparent plasticity in synaptic organization observed in chapter 5 we 
investigated in more detail the synaptic organization of the PVH and in particular the 
GABA-ergic innervation of CRH and non-CRH neurons in chapter 6. We performed this 



experiment on ADX rats only to obtain a reliable CRH staining. We found that about 7% of 
the synapses in the PVH is axo-somatic. In CRH neurons, with or without co-localized vaso
pressin, about 65% of these axo-somatic synapses is GABA-ergic. The CRH immunonegative 
parvocellular neurons receive a similar degree of GABA-ergic input, whereas magnocellular 
neurons, vasopressinergic and non-vasopressinergic, receive a statistically significantly lower 
percentage of GABA-ergic input of about 42%. These results suggest that the synaptic 
organization of the GABA-ergic input to the PVH is not very strict and that the position of 
neurons within the PVH is more important than their immunohistochemical content. It was 
surprising that we found such a high GABA-ergic input to CRH neurons in these ADX rats. 
We expected a lower input of GABA in agreement with the results of chapter 5. However, 
since also hypothalamic GABA-ergic groups are known to project to the PVH (Tappaz et al. 
1982, Tappaz et al. 1983, Tasker and Dudek 1993), it might well be that the relative 115 
contribution of BNST GABA-ergic fibers is small as compared to these hypothalamic GABA-
ergic inputs. 

C O N C L U S I O N S 

M O R P H O L O G I C A L AND M O R P H O M E T R Y O B S E R V A T I O N S In this 
thesis we investigated the CRH neurons in the PVH by looking into morphological and 
functional aspects of these neurons in order to elucidate their organization structure. The 
experiments of chapter 2 and 4 were designed to gain more insight in this organization at 
different levels by determination of morphometric and immunohistochemical characteristics. 
Looking into the morphometric characteristics of the PVH reveals 6 subdivisions on the basis 
of neuronal size, density and vascularity (chapter 2), which are partly in agreement with the 
subdivisions made by other authors (Armstrong et al. 1980, Swanson and Kuypers 1980, Kiss 
et al. 1991). However, there is no rigid separation between these subdivision in the sense that 
magnocellular neurons do occur in the parvocellular part and, also the other way around, 
that parvocellular neurons do occur in the magnocellular part. A similar lack of a strict 
organization is illustrated by the electron microscopical morphometric characteristics of the 
PVH such as synaptic density (chapter 2). All subdivisions in the PVH show a similar 
synaptic density, which indicates that all subdivisions receive a similar degree of input. 
Although the composition and origin of this synaptic input is not determined in this 
experiment and might well differ between the subdivisions, these electron microscopical 
results, similar to the light microscopical observations, fail to show an obvious organization 
of the PVH and its subdivisions. In this view the results of chapter 5 are noteworthy, 
showing an uniform distribution of BNST fibers in the PVH, supporting the morphometric 
observations in chapter 2. 

Investigations after the distribution of the CRH neurons in the PVH over the 6 subdivisions 
showed a preferential location of CRH neurons in the PCc (chapter 3 and 4). However, these 
neurons were all found in the other subdivisions as well. Using different treatments to 
activate the CRH neurons (chapter 4) we tried to gain more insight in to how the different 
CRH neurons are distributed over the PVH. We did find a subdivision of the CRH neurons 
in two major groups, one responsive to ADX and thus responsive to disruptions of the HPA-
axis and one not responsive to ADX. These two subgroups seem to correlate to the CRH 
neurons shown to project to the median eminence and the ones projecting to the spinal cord, 



as reported in previous studies (chapter 4, Swanson and Kuypers 1980, Rho and Swanson 

1989). Although these functional subgroups have a preferential location within the PVH, the 

different CRH neurons are also intermingled within the different morphometrically 

determined subdivisions involved (chapter 4, Swanson and Kuypers 1980). In agreement, the 

same is shown to hold true for other neuropeptidergic neurons in the PVH, such as vaso

pressin and oxytocin, as is shown by other authors (Rhodes et al. 1981, Coolen et al. 

submitted). These latter two types of neurons are predominantly found in the magnocellular 

part but can be found in the parvocellular part as well. 

When we summarize the results of the chapters discussed above we can conclude that none of 

the experiments revealed a very strict or rigid organization of the PVH. Not as far as general 

morphometric parameters are concerned, nor in the distribution of the CRH neurons. The 

question thus still remains how the paraventricular nucleus is regulated, since it is involved in 

a variety of functions, involving different neuropeptides. 

A C T I V A T I O N OF CRH N E U R O N S In chapter 3 and 4 we used different 

activation mechanisms to stimulate the CRH neurons and different detection methods to 

determine neuronal activation. In chapter 3 we used an open field paradigm as a mild stressful 

stimulus for two Wistar rat lines, APO-SUS and APO-UNSUS rats and used a Fos immuno-

staining to measure activation of neurons in the PVH. Since the distribution of Fos positive 

nuclei was similar to the distribution of CRH neurons following ADX and double staining 

revealed large amounts of double stained Fos/CRH neurons, we hypothesized that the Fos 

nuclei visualized in the PVH following an open field paradigm represent activated CRH 

neurons. This is in line with previous observations showing co-localization of Fos and CRH 

and c-fos and CRH mRNA after different stressors (Beyer et al. 1988, Imaki et al. 1992). 

In chapter 4 we used CRH immunohistochemistry to reveal activated CRH neurons. Control 

rats show a very low intensity of CRH immunostaining as well as a low number of visible 

CRH neurons and CRH immunostaining is thought to be a useful tool to visualize activated 

CRH neurons. From these experiments we confirmed earlier studies that ADX and anti-CRH 

treatment and thus disruption of the ΗΡΑ-axis, only activates a part of the CRH neurons in 

the PVH (Swanson et al. 1983, Sawchenko 1987). 

Since we failed to show an effect of icv IL on the CRH neurons (chapter 4) we cannot 

exclude the possibility that IL activates a specific subgroup of CRH neurons. It has been 

shown previously that ADX induces co-localization of vasopressin in a subgroup of the CRH 

neurons (Whitnall et al. 1985) and it is possible that IL influences specifically these CRH 

neurons or an other yet to be determined subgroup. Nonetheless, similar to the 

morphometric experiments in chapter 2 we could again not detect a strict organization within 

the PVH of the CRH neurons with respect to their activation mechanism and localization. 

The fact that we could not find an increase in the number of CRH neurons as compared to 

controls after icv IL seems to be in conflict with earlier studies investigating the effects of icv 

IL (Rivest et al. 1992), since these studies did report a rise in Fos immunostaining after IL icv. 

Does this mean that there is no correlation between the Fos staining and CRH neuron 

activation as hypothesized in chapter 3? In my opinion this is not the case. Several studies 

have shown a correlation between Fos and CRH (Beyer et al. 1988, Imaki et al. 1992). The 

discrepancy might be that there is a high release rate after icv IL which prevents stacking of 

CRH in the PVH neurons and thus might prevent CRH immunostaining. This would also 

explain a measurable Fos and CRH mRNA level in the PVH following IL treatment (Rivest 



et al. 1992, Lee and Rivier 1994), but an absence of detectable CRH peptide staining since 

measurement of mRNA is more sensitive than immunostaining of the CRH peptide. 

The most remarkable observation in chapter 4 was the apparent inhibition of CRH neurons 

after long-term IL treatment. Since this inhibition was notably only in the PCc and PCv, two 

of the subdivisions influenced by ADX or anti-CRH treatment, this means that only part of 

the CRH neurons involved in the ΗΡΑ-axis is responsive to long-term IL treatment. This 

may indicate the existence of a third subgroup of CRH neurons. 

I N P U T S AND S Y N A P T O L O G Y In chapter 2, 5 and 6 we looked deeper into the 

synaptic organization and input of the PVH and its subdivisions. As already discussed above 

the synaptic density in the PVH did not reveal a strict organization between subdivisions. All 

subdivisions received a similar amount of input. A similar result was observed in chapter 5 

where tracer experiments in the BNST showed that all subdivisions received a similar amount 

of fibers from the BNST. It must be noted that other authors observed a larger innervation 

of the parvocellular part of the PVH as compared to the magnocellular part from the BNST 

(Sawchenko and Swanson 1983, Thellier et al. 1994). Nonetheless, our experiments failed 

again to show a strict organization of the PVH in the sense that we did not find a univocal 

correlation between subdivisions and synaptic input. 

The immunocytochemical study at the electron microscopical level (chapter 6) also failed to 

reveal a strict organization of the CRH neurons in the PVH as compared to other neurons. 

We showed that the GABA-ergic innervation of the PVH neurons does not depend on the 

neurochemical identity of the paraventricular neurons but on their localization within the 

PVH. Magnocellular neurons, whether vasopressinergic or not, receive a similar degree of 

GABA-ergic input. The same holds true for the parvocellular CRH or non-CRH neurons, 

whether they co-localize vasopressin or not. It cannot be excluded that other 

neurotransmitters do show a more specific organization by a preference for certain 

neuropeptidergic neurons in the PVH. Previous studies have shown that noradrenergic input 

innervates mainly the magnocellular part (Decavel et al. 1987), whereas neurotransmitters as 

neuropeptide Y and galanin are found predominantly in the parvocellular part (Sawchenko 

and Pfeiffer 1988). Further research has to be carried out to elucidate whether these inputs 

are distributed according to the anatomical subdivisions within the PVH or according to the 

neuropeptidergic content of paraventricular neurons. As far as our results stand we can state 

that the synaptic GABA-ergic innervation of the PVH and its CRH neurons does not show a 

very strict organization. Apparently, the efferent connections of the PVH must be organized 

in such a way that they can innervate a particular group of neuropeptidergic neurons in the 

PVH but in our experiments we could not find any sign of such a organization at the level of 

the PVH. 

V A R I A B I L I T Y OF THE CRH N E U R O N S IN THE PVH As follows from 

the obtained knowledge on the organization of the CRH neurons in the PVH or rather the 

lack of organization, the present thesis provides information on the variability and plasticity 

of the CRH neurons in the PVH. The results of chapter 2 and 3 illustrate that even within 

one strain of Wistar rats variability in neuroanatomical characteristics can be observed. The 

two rat lines investigated, the APO-SUS and APO-UNSUS rats, show differences at the level 

of synaptic organization as well as on the functioning of the ΗΡΑ-axis by a differential 



responsiveness of CRH neurons to a mild stressor. The differences between both rat lines are 

thought to be evoked by a higher level of circulating corticosteroids in the early postnatal 

period (Cools et al. 1990). Remarkably, the results of chapter 6 indicate that circulating 

corticosteroids are also capable of inducing large changes in the organization of the brain in 

adult rats. Loss of corticosteroids by ADX evokes a loss of interConnectivity and thus 

information transfer between the BNST and the PVH in mature rats. We hypothesized that 

this loss of information serves as a mechanism to cope with changes in the organism's 

environment. We were not the first ones describing anatomical changes following hormonal 

disturbances, since ADX has also been shown to evoke receptor changes in the PVH 

fJhanwar-Uniyal and Leibowitz 1986, Reul et al. 1987, Castren and Saavedra 1989). 

As a conclusion, our results suggest that the ΗΡΑ-axis is a very plastic system capable of 

adaptation to changes in the hormonal balance of an organism in young and adult stages, at 

least at the level of the PVH. It is important to note that although we use the term plasticity 

we have not actually shown that the changes observed are reversible. Further research has to 

be carried out to determine whether these changes are reversible or are a form of 

unrepairable damage as holds for the apoptotic processes in the hippocampus following ADX 

(Sloviter et al. 1989, Sapolsky et al. 1991). 

In our view, the lack of organization in the PVH, thus the lack of an univocal relation 

between morphological criteria and function, and the apparent ability of the PVH to adapt to 

environmental or hormonal changes might well be correlated. To be precise, the capability of 

the PVH to adjust so rigorously to hormonal changes might well find its origin in the lack of 

organization in this nucleus. A loose, not univocal and not predetermined organization is 

likely to result in more flexibility of the system, in comparison to a rigid organization. In a 

very strict and rigid organized arrangement changes will disrupt the whole system whereas in 

a loosely organized system changes can be more easily compensated for. 

The apparent plastic and variable characteristics of the PVH should lead to caution in inter

pretation of results when studying this hypothalamic nucleus and the functioning of the 

ΗΡΑ-axis. Since disruption of hormonal balance seems to be able to induce large changes in 

neuroanatomical criteria, using ADX animals or stressing the laboratory animals while using 

them for long-term experiments might well influence not only neuroanatomical observations 

but also biochemical, functional and behavioral data. 

As a final remark in this concluding paragraphs we want to compare the data on ADX rats 

with the data on APO-SUS and APO-UNSUS rats. When looking at the PVH and the input 

from the hippocampus via the BNST, which part of the stress system has most prominently 

come to our attention in this thesis, it seems that this connection is particularly sensitive to 

hormonal changes. We hypothesized that the BNST-PVH pathway is different in the 

APO-SUS and APO-UNSUS rats due to hormonal changes in the early postnatal period. 

Since we then showed a change in this pathway following ADX, we can conclude that the 

input from the BNST to the PVH is indeed under the influence of corticosteroids. This 

conclusion adds strong arguments to our hypothesis regarding the observations made in two 

rat lines in that the PVH of APO-SUS rats receives an increased GABA-ergic input from the 

BNST as compared to APO-UNSUS rats. Looking at the different data, our results suggest 

that the situation in APO-SUS rats is the opposite of the situation observed in ADX rats, 

thus showing an increased input from the BNST to the PVH. 



T H E F U T U R E 

The experiments in this thesis raised several questions and in this way create opportunities 
for further research. Although it is beyond the scope of these final paragraphs to describe in 
detail all the possible relevant experiments we want to describe in a general way some new 
ideas for future experiments. 
With respect to the APO-SUS and APO-UNSUS rats the first question to be solved is how 
the low number of activated CRH neurons after a mild stressor in APO-SUS rats correlates 
with the high level of ACTH and corticosteroids in this rat line observed by other authors. 
We hypothesized that this discrepancy may be due to a higher sensitivity of the pituitary in 
APO-SUS rats. Therefore, a CRH receptor binding study in the pituitary of both APO-SUS 
and APO-UNSUS rats would be useful. Secondly, with regard to the higher synaptic density 119 
in APO-SUS rats it would be interesting to find out which neurotransmitter^) is(are) more 
abundantly present in these rats as compared to the APO-UNSUS rats. In our opinion, 
GABA would be a likely candidate, but others may be involved as well. Closely related to 
this experiment would be to answer the question where this input comes from. The BNST 
seems to be a good choice to start this investigation with, especially in view of the results in 
chapter 5. 

In view of the results of chapter 4, it would be necessary to study the unexpected long-term 
effect of IL on the activation of the CRH neurons with in situ hybridization techniques. 
These techniques are more sensitive than immunohistochemical techniques and a 
confirmation of our results with these techniques will exclude the possibility of an artifact in 
our results and will be helpful by determining the timespan over which this phenomenon 
takes place. 

The results of chapter 5 raised most questions and therefore open up a whole line of new 
research. The observed loss of input from the BNST to the PVH caused by corticosteroids in 
adult rats may be an advanced mechanism of the PVH to cope with disturbances at the 
hormonal level but further research is necessary to confirm this hypothesis. Two sets of 
experiments would elucidate many of our questions raised. First of all the reversibility of this 
phenomenon has to be investigated. This can be done by corticosteroid replacement studies 
in ADX rats in combination with a tracer study. Such an experiment would also shed more 
light on the question whether the loss of input is evoked by cell death in the BNST or 
retraction of axons, since only the latter option would be reversible. Secondly, which 
structures provide input to the BNST subdivisions projecting to the PVH? Is the 
hippocampus, and especially that parts of this structure sensitive to corticosteroids, involved? 
These question would be solved accurately by using a combination of retrograde and 
anterograde tracers in the BNST. 

The electron microscopical experiment in chapter 6 did not reveal a very strict organization 
of GABA-ergic input in the PVH of ADX rats. In view of the large effects of ADX we think 
it is necessary to repeat this experiment in normal rats. This approach needs the availability 
of in situ hybridization techniques, which enables visualization of CRH even in normal rats 
or a very sensitive CRH antibody. In this respect the 5Bo antibody, as used in chapter 4, 
would be a good candidate. Unfortunately, this antibody became available only at the end of 
the Ph.D. period spend on this thesis. Finally, also the organization of other 
neurotransmitters, such as catecholamines, neuropeptide Y, galanin, serotonin and others 
should be investigated with a similar quantitative electron microscopical study to gain more 
insight in the until now apparently loosely organized PVH and its CRH neurons. 
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S A M E N V A T T I N G 

De parvocellulaire corticotropin-releasing hormoon (CRH) neuronen in de nucleus para-
ventricularis van de hypothalamus (PVH) spelen een grote rol in de stress reactie. Na een 
stressvolle gebeurtenis stimuleert CRH, via de afgifte van adrenocorticotrope hormoon 
(ACTH) uit de hypofyse, de afgifte van corticosteroiden uit de bijnierschors. Deze cascade 
wordt ook wel hypothalamus-hypofyse-bijnier-as (HHB-as) genoemd. Corticosteroiden zijn 
onder meer verantwoordelijk voor het vergroten van de beschikbaarheid van glucose uit het 
bloed en het remmen van immuunfuncties. Corticosteroiden hebben ook een inhiberend 
effect op de activiteit van de CRH neuronen. 

In dit proefschrift zijn morfologische en functionele aspecten van de CRH neuronen in de 
PVH bestudeerd om meer inzicht te krijgen in de organisatie van deze neuronen. De PVH 123 
bevat, naast CRH, ook nog vele andere neuropeptiden, welke allemaal betrokken zijn bij 
verschillende functies. Het lijkt daarom logisch te veronderstellen dat al deze neuronen 
verschillend gereguleerd worden. De PVH ontvangt informatie vanuit een verscheidenheid 
van andere hersengebieden via vezelstromen en deze zogenoemde input in de PVH moet zo 
georganiseerd zijn dat een bepaald type neuron kan worden geinnerveerd en dus ook een 
bepaalde functie kan worden beïnvloed. Dus werd een strakke organisatie van de PVH en de 
CRH neuronen verwacht, in de zin van rechtlijnige en vastgelegde verbanden tussen de 
distributie van neuronen, peptiderge inhoud, synaptologie, input vanuit de verschillende 
hersengebieden en functie van neuronen. 

Teneinde meer inzicht te krijgen in de daadwerkelijke organisatie van de CRH neuronen zijn 
in dit proefschrift de volgende doelen gesteld: karakterisatie van de CRH neuronen via het 
bepalen van morfometrische parameters in de PVH en de distributie van de geactiveerde 
CRH neuronen in de PVH na verschillende manipulaties; karakterisatie van de input welke 
specifiek is voor de CRH neuronen door het bestuderen van de samenstelling alsmede de 
oorsprong van de synaptische input; bepaling van het belang van de activatie van de CRH 
neuronen voor de stress reactie. 

In hoofdstuk 2 zijn een aantal morfometrische waarden in de PVH bepaald in twee Wistar 
rattenlijnen welke genetisch zijn geselecteerd op basis van hun gevoeligheid voor apomorfine. 
Dit zijn de zogenoemde APO-SUS (apomorphine-susceptible/apomorfine-gevoelige) en APO-
UNSUS (apomorphine-unsusceptible/apomorfine-ongevoelige) ratten. Deze ratten komen 
beide voor in een normale populatie maar vertonen onder meer verschillende stress reacties. 
Op de basis van morfologische criteria (vascularisatie, neuron grootte en neuron dichtheid) 
werd de PVH onderverdeeld in 6 subgebieden. De lichtmicroscopische waarden, zoals neuron 
dichtheid en neuron grootte, vertonen geen verschillen tussen beide rattenlijnen. Echter, de 
APO-SUS ratten hebben een significant hogere synaptische dichtheid (een electron-
microscopisch bepaalde waarde) in vergelijking met de APO-UNSUS ratten, zowel in de 
totale PVH als in enkele van de subgebieden. Deze observatie impliceert dat zelfs binnen één 
rattenpopulatie de organisatie van de PVH variabel is. 

In hoofdstuk 3 is een stress experiment beschreven dat is uitgevoerd met de APO-SUS en 
APO-UNSUS ratten. Na een milde stress stimulus, een open veld test, werden minder 
geactiveerde CRH neuronen gevonden in de PVH van APO-SUS ratten dan in de PVH van 
APO-UNSUS ratten. Daar de distributie van deze geactiveerde neuronen overeenkomt met de 
distributie van de CRH neuronen welke betrokken zijn bij de activatie van de HHB-as 
(hoofdstuk 3 en 4) en met de distributie van subgebieden waar de verschillen in synaptische 
dichtheid werden gevonden (hoofdstuk 2), lijkt het zeer wel mogelijk dat het verschil in 



activatie van CRH neuronen gecorreleerd is met verschillen in de synaptische dichtheid. Dus, 
als inderdaad het lage aantal geactiveerde CRH neuronen na een milde stress gecorreleerd is 
met een hoge synaptische dichtheid in APO-SUS ratten, en omgekeerd, d.w.z. het hoge aantal 
geactiveerde CRH neuronen is na eenzelfde stress stimulus gecorreleerd met een lage 
synaptische dichtheid in APO-UNSUS ratten, dan betekent dit een grotere inhiberende input 
voor de CRH neuronen in APO-SUS ratten. 
Een belangrijke inhiberende neurotransmitter in de PVH is GABA, welke een directe 
synaptische verbinding met de CRH neuronen vertoont. Een bron van GABA in de PVH is 
de bed nucleus van de stria terminalis (BNST). De BNST wordt gedacht een rol te spelen bij 
het doorsluizen van limbische informatie (van amygdala en hippocampus) naar de PVH. Met 
het oog op de resultaten van hoofdstuk 2 en 3 lijkt de hippocampus belangrijk te zijn, daar 
deze struktuur een rol speelt in de inhiberende invloed van corticosteroiden op de CRH 
neuronen. Onze resultaten suggereren een verhoogde activiteit van het hippocampus-BNST-
PVH traject in APO-SUS ratten; dus een grotere inhibitie van de CRH neuronen na stress. 
In hoofdstuk 4 is de distributie van geactiveerde CRH neuronen onderzocht na verschillende 
manipulaties. De totale populatie van CRH neuronen werd zichtbaar gemaakt door een 
injectie met colchicine, een aspecifieke axonale transport blokker. Door het weghalen van de 
bijnieren (adrenalectomy - ADX) en daardoor het verwijderen van corticosteroiden uit de 
bloedcirculatie, werd een gedeelte van de CRH neuronen geactiveerd en dus zichtbaar 
gemaakt. Een zelfde resultaat werd bereikt door het injecteren van een antilichaam tegen 
CRH in de circulatie. Een onverwacht resultaat werd behaald met interleukine. Dit eiwit 
wordt geproduceerd door het immuunsysteem en wordt verondersteld de CRH neuronen te 
stimuleren. Echter, met een acute intracerebroventriculaire injectie met interleukine werd 
geen activatie van de CRH neuronen geobserveerd. Een interesssante observatie werd gedaan 
3 en 10 dagen na een intraveneuze injectie met interleukine: er werden minder geactiveerde 
CRH neuronen aangetroffen dan in de controle ratten. Dit wijst op een inhiberend effect van 
interleukine dat lange tijd aanwezig blijft. Het mechanisme dat aan dit fenomeen ten 
grondslag ligt, moet nog opgehelderd worden. 

Daar hoofdstuk 2 en 3 suggereren dat de invloed van de hippocampus via de BNST een 
belangrijke rol speelt bij de regulatie van de CRH neuronen, werd het BNST-PVH traject 
nader onderzocht in hoofdstuk 5. Met gebruik van een anterograde tracer injectie werd een 
grote projectie van de BNST naar alle subgebieden van de PVH gevonden. Opmerkelijk was 
dat in ADX ratten, na overeenkomstige injecties, een significant verminderde projectie werd 
gevonden naar het CRH-rijke deel van de PVH. Dit resultaat impliceert dat ADX 
veranderingen veroorzaakt in het BNST-PVH traject en in het bijzonder in de projectie naar 
de CRH neuronen en dus veranderingen in de synaptische organisatie. Deze observatie levert 
een grote hoeveelheid vragen op zoals: Wat is de functie van dit verlies van projectie? Is de 
inhiberende invloed van de hippocampus-BNST na ADX overbodig? En wat gebeurt er bij 
een omgekeerde situatie, dus bij een verhoogd niveau van corticosteroiden? Is deze 
verandering plastisch, d.w.z. is dit een omkeerbaar proces? En ook, wat veroorzaakt deze 
verandering? Zijn er veranderingen in de hippocampus die dit fenomeen oproepen of vinden 
er veranderingen plaats in de PVH die hiervoor verantwoordelijk zijn? Nader onderzoek is 
vereist om een antwoord op deze boeiende vragen te geven. 

In verband met de geobserveerde plasticiteit in synaptische organisatie (hoofdstuk 5), is in 
hoofdstuk 6 de organisatie van de GABA-erge input van CRH en niet-CRH neuronen 
onderzocht. Dit experiment werd uitgevoerd bij ADX ratten, omdat een immunokleuring 
van CRH op electronmicroscopisch niveau bij normale ratten moeilijk is. Zeven procent van 



de Synapsen in de PVH is axo-somatisch. Bij CRH neurons, met en zonder gecolokaliseerd 
Vasopressine, is 65 % van deze Synapsen GABA positief. De parvocellulaire niet-CRH 
neuronen vertonen eenzelfde percentage GABA-positieve input. Magnocellulaire neuronen, 
Vasopressine positief of negatief, hebben een GABA-positief percentage van 42%. Deze 
resultaten impliceren dat de synaptische organisatie van GABA niet is gereguleerd volgens 
peptiderge inhoud en dus functie van neuronen, maar volgens locatie in de PVH. Het hoge 
percentage GABA-positieve Synapsen op de CRH neuronen in de ADX ratten was verrassend 
in het licht van de resultaten van hoofdstuk 5. Dit kan betekenen dat in normale ratten het 
percentage GABA-positieve Synapsen nog hoger is of dat er ook nog andere GABA-erge input 
is, of dat de daling GABA-erge Synapsen na ADX alleen zichtbaar is bij de axo-dendritische 
Synapsen. 
In dit proefschrift zijn verschillende aanwijzingen gevonden voor variabiliteit en plasticiteit in 
de PVH. De experimenten met de APO-SUS en APO-UNSUS ratten, die beschreven zijn in 
hoofdstuk 2 en 3 hebben laten zien dat zelfs binnen één rattenpopulatie verschillen in 
synaptische organizatie en een daarmee gepaard gaande verschillende stress respons kunnen 
worden gevonden. Verder is duidelijk geworden dat corticosteroiden grote anatomische 
veranderingen kunnen veroorzaken in het volwassen brein (hoofdstuk 6). Als conclusie kan 
gesteld worden dat de resultaten in dit proefschrift suggereren dat de HHB-as een plastisch 
systeem is, hetgeen het mogelijk maakt zich aan te passen aan veranderingen in de omgeving 
en hormonale schommelingen. Er zijn geen aanwijzingen gevonden voor een strakke 
organisatie van de PVH en de CRH neuronen, dus geen rechtlijnige correlatie tussen de 
verschillende morfologische karakteristieken en functie. Het lijkt zeer wel mogelijk dat dit 
gebrek aan een strakke organisatie ten grondslag ligt aan de plasticiteit en flexibiliteit van dit 
systeem. 
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