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General Introduction 

INTRODUCTION 

The control of eukaryotic gene expression involves several steps in which 

specific sequences in pre-mRNA transcripts, as well as in small RNA molecules, are 

recognized by RNA-binding proteins, in this way forming ribonucleoprotein 

complexes (RNPs). These RNA-binding proteins mediate interactions in 

transcription, pre-mRNA processing (capping, splicing and З'-end formation), 

regulation of translation and the stability of mRNA (Burd and Dreyfuss, 1994). 

Furthermore, these R N P complexes are common targets for autoimmune responses, 

especially in individuals with systemic lupus erythematosus (SLE) (Van Venrooij 

and Maini, 1994). 

In this thesis the structural features of protein and RNA components of two 

different RNA-protein complexes are described. The first is the complex between 

the U1A protein and its own mRNA. The second one is in fact a group of RNA-

protein complexes, namely the cytoplasmic Ro RNP particles. The results are based 

on both experimental and computational approaches (modeling) and mainly focus 

on the structure of the RNA components of these RNA-protein complexes. Some 

results concerning structural features of the protein components are described as 

well. In this chapter, an introduction on RNA structure and its determination, and 

on RNA-binding proteins is given. 

RNA STRUCTURE 

Since the three-dimensional structure formed by RNA molecules is crucial to 

their biological function, knowledge of RNA structure is essential. Folded RNA 

molecules are stabilized by a variety of interactions, the most prevalent of which 

are stacking and hydrogen bonding between bases (Saenger, 1984). An RNA chain 

can fold back upon itself to form hydrogen-bonds between bases. Most commonly 

Watson-Crick base pairs (bp) between Α-U and G-C, which involve two and three 

hydrogen bonds, respectively, are formed. G-U pairs, containing two hydrogen 

bonds, also occur in RNA, and are approximately as stable as Α-U pairs (Chastain 

and Tinoco, 1991). The interactions found in a three-dimensional RNA structure 

can be divided in secondary and tertiary interactions. 
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Secondary structure elements 

Secondary interactions mostly involve duplex and loop regions and can be 

divided into different types (Chastain and Tinoco, 1991), depicted in Figure 1. 
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Figure 1. Secondary structure elements occurring in RNA. Also included is the definition of an 
RNA pseudoknot. 

Helix/duplex. Uninterrupted base pairs in RNA can form a right-handed double 

helix. This helix has Α-form geometry as opposed to the B-form of DNA duplexes. 

There are 11 base pairs per turn, the minor groove is wide and shallow while the 
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major groove is narrow and deep. The sugars have the З'-endo conformation and 

the base pairs are tilted with respect to the helix axis and displaced from it by 

about 4 À (Saenger, 1984). 

Single-stranded regions. Unpaired nucleotides form single-stranded regions and in 

the absence of secondary and tertiary interactions to constrain them they are 

assumed to be roughly ordered by base stacking in a helical geometry (Chastain and 

Tinoco, 1991). 

Hairpins/stemloops. Hairpins are the most predominant elements of RNA 

secondary structure (Varani, 1995). A hairpin consists of a duplex bridged by a loop 

of unpaired nucleotides. The smallest loop possible is thought to be three 

nucleotides; DNA and RNA loops containing 4 or 5 nucleotides are most stable 

(Chastain and Tinoco, 1991; Hilbers et al, 1994; Varani, 1995). In E.coli 16S rRNA 

50 % of all loops contain 4 unpaired bases, and about 70% of these tetraloops 

contain the loop sequences GNRA, UNCG or CUUG (N-A,C,G,U; R-A.G) 

(Gutell, 1993). These hairpins form unusually stable tetraloop conformations, and 

NMR studies of UUCG (Varani et al, 1991) and GAAA (Heus and Pardi, 1991) 

hairpins showed that the conformation of the sugar-phosphate backbone 

throughout the loop is very different from the Α-form geometry. Hairpin loops can 

be actively involved in the tertiary structure (as is seen in tRNA), they often are 

important sites for specific RNA-protein interactions (see below) and they can be 

nudeation sites for RNA folding (Varani, 1995). 

Bulge loops or bulges. Bulges are defined as unpaired nucleotides on one strand of 

a double-stranded region. Bulged nucleotides can be either looped out or stacked 

into the helix, creating a bend in the double helix. They affect the structure of the 

surrounding duplex for several base pairs and can open the major groove. NMR 

data of single-base bulges in DNA and RNA have shown that purines tend to stack 

between adjacent pairs, while pyrimidines are frequently excluded from the helix 

(Tang and Draper, 1990; Van den Hoogen, 1988). 

Internal loops or bubbles. A mismatch is formed by two opposed nucleotides that 

cannot form a Watson-Crick base pair (Saenger, 1984). For example, GA 

mismatches occur frequently in rRNA (Gutell, 1993). Internal loops can be formed 

when the helix is interrupted by nucleotides on both strands that are not Watson-

Crick - or GU-paired. The loops can be open or can be closed by the formation of 

non-Watson-Crick hydrogen bonds (non-canonical base pairs) (Santalucia et al., 

1991). Symmetric or asymmetric loops can be formed depending on whether an 

equal or an unequal number of nucleotides is on opposing strands, respectively 

(Chastain and Tinoco, 1991). In RNA it is known that asymmetric loops 
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destabilize a helix more than symmetric loops (Peritz et al., 1991). Most naturally 

occurring internal loops are rich in purines, especially adenosines (Chastain and 

Tinoco, 1991; Peritz et al., 1991). 

Junctions (three-way, four-stem). Junctions, or multibranched loops, contain three 

or more double helical regions with a variable number of unpaired nucleotides 

where the helical regions meet each other. Examples include tRNA, which contains 

a four-way junction, and 5S RNA and the hammerhead ribozyme, both with a 

three-way junction. Junction regions are important because helical regions can stack 

coaxially at these regions to form longer helical regions, a phenomenon which 

contributes to the structural stability of nucleic acid tertiary folds. 

Tertiary interactions 

Tertiary interactions in RNA bring together nucleotides in regions which are 

not close to each other in the primary or secondary structure. They also govern the 

characteristic three-dimensional fold of an RNA molecule, as is for example seen in 

tRNA. Several types of tertiary interactions have been identified so far: 

Loop-loop interactions. These are found in tRNA, RNase Ρ and 16S and 23S 

rRNA. Tertiary base pairing is also found in RNA pseudoknots, which involve 

intramolecular base pairing of bases in a hairpin loop with bases outside (but 

adjacent to) the stem of the loop to form a second stem and loop region (reviewed 

in Pleij, 1994) (see Figure 1). The second stem can be stacked upon the first to form 

a quasi-continuous coaxial helix. Many RNA pseudoknots exist, for example the 

phylogenetically proven pseudoknots in group I and Π introns and 16S rRNA 

0aeger et al, 1993). In ribosomal RNA they have a function in translation (Gutell, 

1993). In certain plant viruses the 3'UTRs of the mRNAs contain a pseudoknot, a 

so-called tRNA-like structure, which mimics the structure and function (it can be 

aminoacylated) of tRNA (Mans et al., 1991). 

Single-strand/helix interactions. One example is the intercalation of bases into a 

helix, like G57 in tRNA (between G18 and G19). Another example is a base triple 

which occurs when a Watson-Crick base pair has an interaction with a third 

nucleotide. This can occur in the major or the minor groove and can be formed by 

one or two hydrogen bonds or stacking. For example, tRNA contains three base 

triples, while in 5S rRNA one base triple is proposed (Brunei et al., 1991). In the 

recently determined X-ray structure of a hammerhead ribozyme (Pley et al, 1994) 

an intermolecular interaction is found between a GAAA tetraloop and a duplex 

from a different molecule in the asymmetric unit. 
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Helix/helix interactions. Helix-helix contacts can be formed between the grooves 

of different helices when RNA molecules fold into compact tertiary structures. The 

2 Ό Η group appears to play an important role in stabilizing helix-helix contacts, as 

is seen in the crystal structure of an RNA duplex (Chastain and Tinoco, 1991). 

RNA STRUCTURE DETERMINATION 

The first step toward predicting the three-dimensional structure of an RNA 

molecule is to predict its secondary structure. This secondary structure can usually 

be established to a large extent without considering tertiary interactions when it is 

assumed that the interactions between secondary structure motifs will be weaker 

than the interactions within these secondary structure motifs. This assumption is 

known to be true for tRNA (J a e 6 e r et <*¿> 1990). Two major approaches exist for 

the determination of RNA secondary structure, namely comparative sequence 

analysis and prediction of thermodynamic stability 0aeger et al., 1993). The 

combination of both methods is often most useful. 

Phylogenetic comparison or comparative sequence analysis 

In comparative sequence analysis (reviewed in Gutell, 1993) RNA sequences with 
identical function in different organisms are compared. The goal is to find 
structural features which have been conserved during evolution and can be formed 
by all sequences (Fox and Woese, 1975). Most often the nucleotide sequence of 
conserved helices will differ but changes in base composition at one side of a helix 
will be compensated for by matching changes in base composition at the opposite 
side of the same helix. A helix is usually considered to exist if at least two of such 
compensating base changes can be demonstrated (Chastain and Tinoco, 1991). 

The method critically depends on the choice of the sequences, which must be 
sufficiently different but not so much different that homologous residues cannot be 
aligned with confidence. Another limitation is that phylogeny cannot provide 
information about conserved regions and therefore might predict fewer helices than 
actually exist. Phylogeny is considered a very strong method for RNA secondary 
structure prediction and examples of predicted RNA secondary structures include 
5S rRNA (Fox and Woese, 1975), 16S rRNA (Noller and Woese, 1981), Group I 
introns (Michel and Westhof, 1990), U snRNAs (Guthrie, 1988) and the RNA 
moiety of RNase Ρ (Pace et al., 1989). 

For the prediction of tertiary interactions phylogeny has also been used for 
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example in the case of RNase P, 16S rRNA, and the base triples in tRNA (Jaeger et 

al., 1993). In many cases, the nature of the covarying bases can indicate the 

geometry of the base pair, thereby providing very valuable spatial constraints 

(Gautheret and Cedergren, 1993). For tertiary interactions, more sophisticated 

covariance analysis algorithms are used which correlate positions regardless of the 

type of pairing between nucleotides and independent of the surrounding structure 

(Gutell, 1993). 

Thermodynamic stability 

In the second approach for determining RNA secondary structure computer 

algorithms are used to predict Gibbs free energies (AG°) for the formation of 

particular RNA secondary structures Qaeger et al., 1993). In contrast to 

phylogenetic comparison, predictions are already possible when only one sequence 

is available. The secondary structure of lowest free energy is thought to dominate 

at equilibrium. However, structures with similar free energies (suboptimal 

structures) may exist in dynamic equilibrium and have to be considered as well 

(Jaeger et al., 1990). 

In the prediction algorithms, each base pair and each stacking interaction 

contributes an empirically determined free energy to the total free energy of the 

RNA. Stems will contribute negative (favorable) free energy while loops and other 

single-stranded nucleotides are assumed to destabilize the folded molecule and thus 

contribute positive free energy (Turner and Sugimoto, 1988). 

The most common method used to predict RNA secondary structures involves 

recursive (or dynamic) algorithms (reviewed in Turner and Sugimoto, 1988). 

Dynamic algorithms first find the lowest free energy secondary structure for all 

pentanucleotides, then for all hexanucleotides, and so on, until the final fragment 

encompasses the entire sequence. Computation of a new subfragment is performed 

by using the results from computations on smaller subfragments and the execution 

time is proportional to N ' - N4 (with N the number of nucleotides). The well-

known Zuker program MFOLD predicts 70% of the phylogenetically deduced 

helices correctly and the suboptimal structures which are predicted within 10% of 

the lowest free energy contain roughly 90% of phylogenetically known helices 

(Jaeger et al., 1989). The program also is able to force specific regions of the 

molecule to be either single-stranded or double-stranded if such information is 

available, for example from chemical modification data, and this greatly increases 

the significance of the results. 
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RNA folding programs make several simplifying assumptions. The first one is 
that the stability of a structural element in an RNA molecule is dependent only on 
the identity of adjacent base pairs (nearest neighbor model) (Turner and Sugimoto, 
1988). The rationale behind this is that the major interactions in RNA, stacking 
and hydrogen bonding, are short-range. Secondly, tertiary interactions will be 
weaker than secondary interactions. Thus, it is assumed that the sum of the free 
energies of component secondary structures is a reasonable approximation of total 
free energy. Finally, knots are not considered in most secondary structure 
prediction algorithms. 

The thermodynamic parameters (free energies) for secondary structure motifs are 
obtained by either varying the parameters until known RNA structures are 
predicted (Turner and Sugimoto, 1988) or by deriving them using absorbance-
versus-temperature melting curves for small RNA molecules containing one or 
more structural motifs. Parameters are known for all combinations of adjacent base 
pairs involving Watson-Crick or G-U base pairs (Freier et al, 1986; He et al., 1991), 
for unpaired terminal nucleotides (dangling ends) and terminal mismatches (Freier 
et al, 1986), for internal and hairpin loops 0aeger et al., 1993; Antao and Tinoco, 
1992; Jaeger et al., 1989). Junctions are implemented as well; their energy depends 
on the number of stems and the number of unpaired nucleotides within the 
junctions (Chastain and Tinoco, 1991). 

The assessment of the significance of a folded structure is difficult. If folding is 
performed with varying parameters or with successively overlapping pieces of the 
RNA sequence, motifs that appear in most or all of the structures may represent 
the more significant local structures. Another approach for assessing significance of 
locally optimal secondary structures uses a Monte-Carlo method which will not be 
further discussed here (Abrahams et al., 1990; Le et al, 1988). 

Several other approaches have been proposed for the prediction of RNA 
secondary structure. Combinatorial algorithms (Turner and Sugimoto, 1988; Jaeger 
et al., 1993) first develop a list of all helices that can be formed, and then determine 
the combination of these helices that gives the lowest free energy. The advantage is 
that they can include knotted structures and non-nearest-neighbor interactions. 
However, because the number of possible helix combinations grows exponentially 
the algorithm is only applicable for sequences up to 200 nucleotides (Turner and 
Sugimoto, 1988). Other algorithms (Abrahams et al., 1990; Martinez, 1984) consider 
the formation of secondary structure as a stepwise process, in which intermediate 
structures evolve into the native one by subsequent addition of stems. This 
approach is meant to simulate the folding process, and assumes that RNA folding 
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proceeds from "nucleation" centers which are focal points for local RNA folding. 
Finally, a combination of phylogenetic and thermodynamic methods is postulated, 
in which optimal and suboptimal secondary structures are predicted by energy 
minimization and structural comparison of these secondary structures is used to 
find conserved structures (Konings, 1989; Le and Zuker, 1991). 

The use of thermodynamic methods in predicting tertiary interactions is 
hampered by the fact that rules for forming tertiary interactions have not been 
established and that the free energies of most tertiary structures have not been 
determined Despite these difficulties, one algorithm has been proposed which can 
predict pseudoknots (Abrahams et al, 1990; Van Batenburg et al., 1995). 

Chemical and enzymatic reactivity 

The secondary structure of an RNA molecule can be established experimentally 
by using a variety of chemical and enzymatic probes that distinguish between base 
paired and single-stranded nucleotides in the RNA (reviewed in Ehresmann et al., 
1987; Krol and Carbon, 1989; Knapp, 1989). Each reagent has a distinct specificity; 
so the larger the number of probes applied, the more accurate the derived structure 
of the folded RNA will be. 

Ribonucleases that cleave the phosphodiester bond of a nucleotide in a single-
stranded configuration are RNase A, Tl, U2, T2 and nuclease SI (see Table Î). 
RNase VI can be used to detect double-stranded or stacked regions. The Watson-
Crick positions of the RNA bases and the N7 atoms of the purines can be 
modified with base specific chemicals (see Table I and Figure 2). All the Watson-
Crick positions of the atoms are unreactive when involved in base pairing, except 
for a G-U base pair, in which N2-G is accessible. For example, dimethylsulfate 
(DMS) modifies the N1 atom in adenosine, the N3 atom in cytosine and the N7 
atom in guanosine. 

The strategy to probe the RNA secondary structure is to bring the RNA under 
certain conditions in which it can be subjected to limited RNase hydrolysis or 
chemical modification. These conditions include native conditions (presence of 
magnesium and monovalent cations), semi-denaturing conditions (presence of 
EDTA) and denaturing conditions (high temperature, presence of EDTA). Tertiary 
interactions are generally less stable than Watson-Crick interactions and are 
expected to melt under semi-denaturing conditions (Krol and Carbon, 1989). Semi-
denaturing conditions also provide information about the stability of the different 
helical domains in an RNA molecule. The cleavages or modifications are 
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(#) DMS, (%) DEPC, (±) CMCT, (@) kelhoxal, (*) ENU 

Figure 2. Nucleotide bases and their modifying reagents. Dotted lines indicate the hydrogen bonds 
which are present when the bases are paired The indicated reagents can modify their target atoms 
only if they are accessible, that is if they are not hydrogen bonded or stacked. 

introduced at a level of on the average less than one hit per molecule (single-hit 

conditions). Control incubations, in which the reagent is omitted, are performed in 

parallel. After a certain incubation time, the products of the reaction are detected 

using one of two possible detection methods: direct detection when end-labeled 

RNA is used or detection by primer extension. 

End-labeled RNA can be used with enzymatic probing and with some chemical 

probes that induce cleavage of the RNA. The reaction products are analyzed on a 

denaturing polyacrylamide-urea gel. The size of the cleaved products, which is 

determined by running a sequence reaction on the same gel, indicates the cleavage 

site and in this way provides structure information. Dephosphorylated RNAs can 

be 5*-end-labehd using [γ-32Ρ]ΑΤΡ and T4 polynucleotide kinase while for З'-end-

labeling [32P]pCp and T4 RNA ligase are used (Ehresmann et al., 1987). An 

advantage of direct detection is that only picomole amounts of RNA are needed. 

Disadvantages are that it can only be applied to small RNA molecules (< 200 

nucleotides) due to the resolution of a sequencing gel, and that chemical probes 
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which do not induce cleavage cannot be used. 

In primer extension analysis, the unlabeled RNA is first subjected to enzymatic 

orchemical attack. After stopping the reaction, the RNA is hybridized with a 5'-

end-labeled oligodeoxyribonucleotide complementary to a chosen sequence in the 

RNA. Using reverse transcriptase (RT) the primer is elongated until a modified 

nucleotide causes the RT enzyme to stop at the nucleotide immediately 3' to the 

modification. The reverse transcriptase products are then analyzed on a denaturing 

gel. This method is very useful for longer RNA molecules, because the start of the 

RT reaction, i.e. the complementary sequence of the primer, can be varied. A 

disadvantage of the method is the fact that no information about the very 3'- end 

of the RNA molecule can be obtained. Other disadvantages are that pauses of RT 

(RT-stops) are found which reflect spontaneous pyrimidine-purine breaks (Krol and 

Carbon, 1989; Kwakman et al., 1990) and the tendency of RT to pause at particular 

structural elements in the RNA (Kwakman et al, 1990). 

Another means to study RNA structure and RNA-protein interactions is by 

using chemical nucleases (Huber, 1993), i.e. metal complexes that cleave nucleic 

acids with little or no dependency on the identity of the attached base. For 

example, Fe(ET)-EDTA is a versatile probe of RNA tertiary structure (Latham and 

Cech, 1989). In solution, Fe(II)-EDTA complexes generate hydroxyl radicals in the 

presence of hydrogen peroxide or molecular oxygen. Hydroxyl radicals attack 

solvent-exposed riboses to cause strand scission of the RNA and in this way 

discriminate between solvent-accessible and solvent-inaccessible regions. The small 

size of the hydroxyl radical, and its uniform reactivity make it an excellent probe. 

Information about tertiary structure is obtained by use of crosslinking to reveal 

the proximity of parts of the RNA widely separated in the sequence. Although 

crosslinking results cannot be directly interpreted in terms of secondary or tertiary 

interactions, they do provide distance constraints of great value for RNA modeling. 

The localization of the crosslink can be identified by partial hydrolysis of the RNA 

and identification of the reacting nucleotides. UV light can induce nucleic acid -

nucleic acid photocrosslinks by forming cyclobutane bridges between bases that are 

in direct contact (Hubbard and Hearst, 1991a). Psoralen can intercalate into helical 

regions of DNA and RNA and, upon ¡nidation, can covalently crosslink 

pyrimidines across the helix (Jaeger et al., 1993). Usually psoralen crosslinks are 

found in helical structures but other base stacking geometries can also be cross-

linked and may point to tertiary interactions (Hubbard and Hearst, 1991a). 

Another RNA crosslinking reagent is ¿ts-(2-chloroethyl)-methylamine ("nitrogen 

mustard") (Hubbard and Hearst, 1991b). 
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Optical Spectroscopy 

Absorbance-versus-melting curves can be used to measure the melting 

temperature Tm and therefore the stability of RNA molecules (Turner and 

Sugimoto, 1988). 

Circular dichroism (CD) is the difference in extinction for right and left 

circularly polarized light 0aeger et al, 1993). For nucleic acids the CD spectrum is 

mainly dependent on the sequence and stacking geometry of the bases and is often 

used as a qualitative measure of conformation (Jaeger et al, 1993). 

Information about the arrangement of secondary structure elements in three 

dimensions can also be obtained from fluorescence energy transfer experiments 

(Chastain and Tinoco, 1991). It has been used for example to study the 

conformation of a four-way junction in DNA (Chastain and Tinoco, 1991). When 

aromatic amino acids such as tryptophan, tyrosine and phenylalanine are involved 

in RNA-binding, it has been possible to detect binding by measuring the reduction 

in fluorescence (quenching) (Keene and Query, 1991). 

X-ray crystallography 

The experimental method providing the highest resolution in structure analysis 

is X-ray crystallography, which, however, suffers from the requirement of large 

amounts of highly purified material (milligrams of RNA) 0aeger et al, 1993). 

Unfortunately, only a few RNAs and RNA-protein complexes have yielded crystals 

able to diffract at high resolution. X-ray structures for several tRNAs and for two 

RNA duplexes have been published. Recently, also the structure of the 

hammerhead ribozyme was determined (Pley et al, 1994). In case of RNA-protein 

complexes, several complexes of tRNA and its cognate synthetase have been 

described, as well as the complex of the RNP motif of U1A stemloop II of U l 

snRNA. 

NMR 

Nuclear magnetic resonance (NMR) spectroscopy provides a means for 

determining the three-dimensional structure and conformational properties of 

nucleic acids in solution (reviewed in Van de Ven and Hilbers, 1988; Wijmenga et 

al., 1993). NMR techniques measure distances with through-space interactions 

(nuclear Overhauser effect or NOE) and dihedral angles using through-bond 
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interactions (J-coupling). NMR experiments are currently limited to 

oligoribonucleotides of about 40-50 nucleotides (Varani and Tinoco, 1991; Chastain 

and Tinoco, 1991), but the use of multi-dimensional heteronuclear NMR will allow 

NMR studies on larger RNA molecules (Chastain and Tinoco, 1991; Jaeger et al., 

1993). In N M R experiments, millimolar amounts of very pure RNA are needed, 

but these quantities can now be synthesized efficiently by either enzymatic or 

chemical methods (Varani and Tinoco, 1991). 

The structure of several RNA oligonucleotides containing sequences from 

functional or structural domains of larger RNAs have been determined by NMR. 

Two very stable hairpins with tetraloops U U C G (Varani et ai, 1991) and GAAA 

(Heus and Pardi, 1991) have been determined. Structures of helix I (White et al., 

1992) and loop E (Wimberly et al., 1993) of 5S rRNA, of a pseudoknot and of the 

bulged TAR R N A have been determined at medium-resolution 0aeger et al., 1993). 

RNA-BINDING PROTEINS: T H E RNP M O T I F 

The most widely found and best-characterized RNA binding motif is called the 

RNP motif (Burd and Dreyfuss, 1994; Birney et al., 1993) (alternative names: RRM 

(Keene and Query, 1991) and RNP80 motif (Scherly et al., 1989)). The RNP motif 

is a domain of about 90 amino acids present in one or more copies in proteins that 

bind, for example, pre-mRNA, mRNA, pre-ribosomal RNA or snRNA. The R N P 

family of proteins functions at several levels in RNA metabolism, including pre-

mRNA transcription, splicing, and possibly, stability and transport. Some members 

are involved in tissue-specific and in developmentally regulated gene expression. 

Animal, plant, fungal and bacterial cells contain RNP motif proteins in nearly 

all organelles in which RNA is present, suggesting that it is an ancient protein 

structure with an important function (Burd and Dreyfuss, 1994). Despite the strong 

homology between them they contain unique properties of recognition that allow 

them to distinguish between RNAs of diverse sequence and secondary structure. 

Table Π gives an overview of some R N P proteins and their substrates. Some R N P 

proteins recognize single-stranded RNA (ssRNA) (for example hnRNP Al and La) 

while others recognize RNA secondary structure elements (for example U1A and 

Ro60). Furthermore, members of this family span a spectrum of binding affinities 

(Kenan et al., 1991; Burd and Dreyfuss, 1994) ranging from high affinity (Kd- 1 0 " 

- 104 M in U2AF and U1A) to low affinity (Kd-10 7 - ΙΟ"6 M in the major hnRNP 

proteins and UP1). 
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The most conserved feature of the RNP motif is an octamer sequence RNP1. A 

less conserved hexamer sequence - RNP2 - is located approximately 30 amino acids 

amino terminal to RNP1. The RNP1 and RNP2 sequences contain aromatic and 

basic residues but there are many other conserved positions in the RNP motif that 

contain in particular Phe, Gly or Ala (Keene and Query, 1991), which constitute 

the hydrophobic core of the protein (Fukamikobayashi et al., 1993). 

Based on secondary structure predictions the fold of the RNP motif was 

predicted to be ßaßßaß (Ghetti et al., 1989) (a-alpha-helix, ß« beta-sheet), and 

Figure 3. The ßaßßaß structure of the RNP motif. Indicated are the numbers of the ß-strands and 
α-helices. The RNP1 and RNP2 sequences are the so-called consensus sequences of 8 and 6 amino 
acids, respectively. 

structural analyses by NMR spectroscopy and X-ray crystallography showed that 

for the U1A protein (Nagai et al., 1990; Hoffman et al., 1991), the hnRNP С 

protein (Wittekind et al., 1992), and the Drosophila sxl protein (Lee et al., 1994) this 

was indeed the case. The structure shows a four-stranded antiparallel ß-sheet, 

flanked on one side by two α-helices (see Figure 3). The conserved RNPl and 
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RNP2 segments are located in the two central ß-strands, ßl and ß3, respectively. 

Distinctive features are several solvent-exposed aromatics (Phe and Tyr) implicated 

in stacking interactions with nucleic acid bases. 

RNA-binding studies indicate that three distinct structural elements contact the 

RNA: the ß-sheet, the loops, and the N- and C-terminal regions of the RNP motif 

(Burd and Dreyfuss, 1994). UV-crosslinking experiments with radioactive oligo dT 

and the hnRNP Al protein showed that two Phe residues, one in RNP1 and the 

other in RNP2, could be crosslinked to the substrate, while in U1A protein a Tyr 

residue in RNP1 could be crosslinked to the second stem-loop of U l snRNA 

(Stump and Hall, 1995). Protein mutagenesis experiments with U1A protein 

showed that U l snRNA loop II binds to the surface of the four-stranded ß-sheet, as 

well as to loops at one edge of the sheet (Nagai et al., 1990). In the U1A protein, 

RNP1 is preceded by a stretch of amino acids, which form a loop and were shown 

to determine the RNA-binding specificity of the domain (Scherly et al., 1990). 

However, in the hnRNP С protein there is essentially no ß2-ß3 loop, but instead a 

tight turn is present (Wittekind et al., 1992). 

For two RNA-protein complexes detailed structural information is available. 

NMR experiments were performed on the complex between hnRNP С protein and 

rUj (Görlach et al., 1992) while for the complex of the N-terminal RNP motif of 

U1A and stemloop Π of U l snRNA NMR data (Howe et al, 1994; Hall, 1994) and 

also X-ray data (Oubridge et al, 1994) are available. In both complexes, the 

structure of the R N P motif when bound to RNA is nearly identical to the 

unbound structure. Amino acids in the ß-sheet and in the N- and C-termini are 

involved in RNA-binding while the α-helices are largely unaffected. Bound RNA 

remains relatively exposed and potentially accessible for interaction with other 

RNA sequences or RNA-binding proteins. 

When R N P protein sequences are analyzed there is a strong conservation of 

residues aligning with the hydrophobic core positions of U1A. It is thus believed 

that all R N P proteins share a common fold and a similar protein-RNA interface, 

and that non-conserved residues contribute additional contacts for sequence-specific 

RNA recognition (Kenan et al, 1991). Most of the R N P proteins need sequences 

nanking the R N P motif for RNA-binding, suggesting that the motif alone may not 

contain sufficient information to function as a sequence-specific RNA-binding 

domain. For example, U1A needs 6 amino acids C-terminal of the RNP motif 

(Scherly et al, 1989; Lutz-Freyermuth et al, 1990) while the minimal segment of 

U1-70K required for RNA-binding is 111 amino acids (Query et al., 1989). 

However, in case of the Ro60 protein, no mutations are allowed at the N- or C-
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terminus illustrating the diverse nature of the RNA binding domains concerning 

long-range intramolecular interactions that are involved (Pruijn et al., 1991). 

Many of the proteins with multiple RNP motifs (hnRNP A l , PABP, U2AF) 

require contiguous RNP motifs for wild-type RNA-binding specificity (Burd and 

Dreyfuss, 1994). The highly conserved organization of their RNP motifs implies 

that each motif has its own unique functional role. Indeed, each of the four 

domains of PABP has its own RNA-binding capacity and specificity 

(Fukamikobayashi et al., 1993). It has been postulated that the presence of multiple 

RNP motifs in a protein may allow bridging between two different RNA 

molecules and it was shown that the U1A protein, which contains 2 RNP motifs, 

may bind simultaneously to the U l snRNA and to the 3' UTR of mRNA 

sequences (Lutz and Alwine, 1994; but see also Lu and Hall, 1995). Proteins 

without discernible RNP motifs may contain analogous RNA-binding surfaces. 

Some ribosomal proteins possess a tertiary structure similar to the RNP fold 

(Hoffman et al., 1991), suggesting either an evolutionary relationship or a 

convergent RNA-binding strategy. Furthermore, an RNP1 sequence which forms 

the central strand of a three-stranded ß-sheet was found in the bacterial nucleic 

acid-binding cold shock protein (Csp) (Schindelin et al., 1993). 

Many RNP proteins are composed of conserved RNP motifs linked to divergent 

auxiliary domains characterized by monotonous repetitions of distinctive amino 

acids (Biamonti and Riva, 1994). Such a modular structure can account for a 

multiplicity of interactions and it is intriguing that they are often situated at the 

extremities of their respective proteins. Several auxiliary domains have been 

identified (see also Table Π). A glycine-rich domain is found (e.g., in basic hnRNP 

proteins and in nucleolin), which contains closely spaced RGG repeats 

(R-Arginine, G-Glycine), interspersed with other, often basic or aromatic amino 

acids. Another auxiliary domain identified is the SR domain found in splicing 

factors (SF2, SC35, U2AF), and in the splicing regulators tra and tra-2 of Drosopbila 

(Keene and Query, 1991). Auxiliary domains may be important functional 

constituents of the R N P proteins since various functions have been ascribed to 

them, including non-specific RNA-binding, annealing activity, interaction with 

other proteins and determinants of intracellular localization (Biamonti and Riva, 

1994). 
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RNA-PROTEIN INTERACTIONS 

General considerations 

Structural, biochemical and molecular-genetic studies have established two 

important determinants of sequence specificity in protein-nucleic acid interactions. 

The first one is direct hydrogen bonding and van der Waals interactions of protein 

side chain and main chain atoms with nucleic acid bases. The second source of 

sequence specificity is provided by the sequence-dependent bendability of nucleic 

acids. Binding may induce conformational changes in both proteins and nucleic 

acids. For example, a significant distortion of the tRNA structure is observed in the 

X-ray structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) 

(Rould et al., 1989). 

In B-DNA the major groove is wide enough to accommodate an α-helix and 

antiparallel ß-strands but the major groove of regular Α-form RNA is too narrow 

to allow insertion of protein secondary structure elements (Steitz, 1990). One might 

therefore expect proteins to discriminate between RNA sequences via interactions 

in the minor groove. In the complex of tRNA synthetase with its tRNA two 

sequence-specific contacts in the minor groove of tRNA were found (Rould et al., 

1989). However, there are fewer hydrogen bonding possibilities presented in the 

RNA minor groove (as compared with the major groove) that allow discrimination 

between the two base pairs and their two orientations. Fortunately, the major 

groove in R N A mostly is accessible in the neighbourhood of bulges, loops and 

non-Watson-Crick base pairs, which allows many opportunities for specific 

recognition. In fact, most of the protein binding sites characterized in RNA are 

loop regions: hairpins, bulges and internal loops, many of which undergo (gross) 

conformational changes upon protein binding. Hairpins form binding sites of 

several snRNP proteins to their cognate snRNAs. A purine bulge was shown to be 

involved in the binding of bacteriophage R17 coat protein to its RNA (Witherell et 

al., 1990). HIV tat protein binds specifically to a 3-nucleotide bulge in the TAR 

RNA stem-loop (Harper and Logsdon, 1991). Internal loops form the binding sites 

of U1A on U1A mRNA (Van Gelder et al., 1993) and of Rev, a regulatory RNA-

binding protein that facilitates the export of unspliced HIV pre-mRNAs, on the 

Rev Response Element (RRE) (Burd and Dreyfuss, 1994). 
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Figure 4. (A) The second stemloop of human U l snRNA. The boxed sequence is important for 
U1A protein binding. (B) The secondary structure of the conserved region of the 3' UTR of the 
human U1A mRNA The boxed regions, which are essential for U1A protein binding, show 
similarity to the single-stranded U l snRNA sequence in stem-loop Π (Data taken from Van Gelder 
et d., 1993). 

The U1A - U1A mRNA complex 

The removal of introns from the pre-messenger RNA, i.e. RNA splicing, is an 

important process in which several small ribonucleoprotein particles (snRNPs) 

participate (Sharp, 1994). One of them, Ul snRNP, interacts with the pre-mRNA 

by a mechanism that includes base pairing between the 5' end of Ul snRNA and 

the 5' splice site. Ul snRNP contains at least eight common proteins (B', B, Dl, 

D2, D3, E, F and G), which also occur in other U snRNPs, as well as three Ul 

specific proteins named U1-70K, UIC and U1A (Liihrmann et al., 1990). The UIA 
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protein binds directly to the second stemloop of U l snRNA (Scherly et al., 1989; 

Lutz-Freyermuth et al., 1990), but its function in splicing is unknown yet. Roles 

for the U1A protein (Lutz and Alwine, 1994) and for the U l snRNP (Wassarman 

and Steitz, 1993) have been suggested in the coupling of splicing and 

polyadenylation and in the coupling of polyadenylation and translation (Proudfoot, 

1994). 

The U1A protein contains two RNP motifs, of which the N-terminal copy is 

responsible for binding to U l snRNA (Scherly et al., 1989; Lutz-Freyermuth et al., 

1990). The structure of the R N P motif (Nagai et al., 1990; Hoffman et al., 1991) 

and of its complex with U l snRNA is known (Oubridge et al., 1994; Howe et αϊ, 

1994; Hall, 1994) and has been discussed above. The loop of the second hairpin of 

human U l snRNA contains 10 nucleotides (see Figure 4A). It has been shown that 

the first seven of them, which are highly conserved between species, are critically 

important for U1A protein binding, although the structural context of this 

sequence affects binding affinity (Scherly et al., 1989; Scherly et al., 1990; Tsai et al., 

1991). 

In the 3' UTR of vertebrate U1A pre-mRNA there is a conserved region 

(Boelens et al., 1993) which contains two stretches of seven nucleotides (called 

Boxes 1 and 2) similar to those of the second stemloop of U l snRNA. These Box 

sequences are located close to the polyadenylation signal (see Figure 4B). It has 

been demonstrated that two U1A proteins can bind to these Box regions (Boelens 

et al., 1993; Van Gelder et al., 1993) and in vitro and in vivo experiments showed 

that excess U I A protein specifically inhibits polyadenylation of its own pre-mRNA 

(Boelens et al., 1993). The mechanism of this regulation involving pre-mRNA 

binding and inhibition of polyadenylation has been further elucidated by in vitro 

studies. The inhibition of polyadenylation was shown to depend on a specific 

interaction of U1A protein with mammalian poly(A) polymerase in which the C-

termini of both proteins might be involved (Gunderson et al., 1994). 

The Ro RNPs 

The Y RNAs (or Ro RNAs) are small cytoplasmic RNAs which are components 

of the Ro (SS-Α) ribonudeoprotein complexes in eukaryotes (for a review see Van 

Venrooij et al., 1993). The Ro RNPs are recognized frequently by antibodies 

present in sera of patients with autoimmune diseases like Sjogren's syndrome or 

SLE. Despite their relative abundance (~ 1-5 χ 105 copies/cell) and evolutionary 
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conservation no function has as yet been ascribed to these complexes. Several 

functions in processes such as mRNA stability, mRNA localization or translation 

have been suggested (reviewed in Pruijn et al., 1990; Van Venrooij et al., 1993). 

The Ro RNPs consist of one Y RNA molecule and at least three proteins, Ro60, 

Ro52 and La (see Figure 5A). Within a cell, distinct subpopulations of the Ro 

RNPs with characteristic physicochemical properties can be distinguished and 

differences between cells within a species have also been observed (Pruijn et al, 

1990). 

In human cells four Y RNAs have been identified, called hYl, hY3, hY4 and 

hY5 R N A (hY2 appeared to be a degradation product of hYl), ranging in length 

from 84 to 112 nucleotides, while in other species two to four Y RNAs were found 

(Pruijn et al., 1993). The secondary structures of the hY RNAs show many 

similarities and are characterized by base pairing of the 5'- and 3'- termini (see 

Figure 5B). The stem structure formed in this way is the binding site for the Ro60 

protein, and contains a bulged C-residue which is very important for protein 

binding (Pruijn et al., 1991). 

Ro60 is the most common Ro protein (see Figure 5C) and contains an R N P 

motif. The human protein also contains a zinc finger structure, but this motif is 

not conserved in the Xenopus Ro60 protein. Deletion mutagenesis showed that in 

both Ro60 and La, the RNP motif alone is not sufficient for the association with 

hY RNAs (Pruijn et al., 1991), but that substantial parts of the proteins flanking 

the R N P motif are needed as well. 

The La (or SS-B) protein is a 47 kDa ubiquitous phosphoprotein which 

functions in RNA polymerase Ш transcription termination and is localized 

predominantly in the nucleus (Hendrick et al, 1981). It is (transiently) associated 

with R N A polymerase ΠΙ transcripts, including the Y RNAs, adenovirus VA 

RNAs, Epstein-Barr virus EBER RNAs, and precursor forms of tRNA and 5S 

rRNA. The common sequence motif present in these RNAs is the 3'-oligouridine 

stretch and this is also the site of interaction with the La protein (Stefano, 1984; 

Pruijn et al., 1991). The interaction of La with most of the RNA polymerase ΠΙ 

products is lost upon maturation of the transcripts. However, mature Y RNAs still 

contain a complete La binding site and a stable association with La has been 

demonstrated (Boire and Craft, 1990). Furthermore, most, if not all, hY RNA 

molecules in cultured cells appear to be associated with La (Peek et al., 1993). 

Besides a N-terminal RNP motif, a second R N P motif has recently been identified 

in the La protein (Birney et al., 1993; see Figure 5C). Furthermore, La contains 

three so-called PEST regions and a conserved ATP binding site, also found in ATP-
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Figure 5. (A) (left) Schematic drawing of hYl RNP Proteins La, Ro60 and Ro52 are indicated 
(Data taken from Van Venrooi) et al, 1993) (В) (left) The secondary structures of the human Y 
RNAs. (Data taken from Van Gelder et al., 1994b) (С) (above) Schematic overview of the 
functional domains contained in proteins La, Ro60 and Ro52 PEST region neh in Proline (P), 
Glutamic Acid (E), Senne (S) and Threonine ÇT) NLS Nuclear localization signal. PKR regions 
which show homology with the dsRNA dependent protein kinase PKR rfp-like region which 
shows homology with human transforming protein rfp. B-box Cys/His rich domain Leu Leucine 
zipper. (Modified from Van Venrooij et al., 1993). 

dependent DNA and RNA helicases (reviewed by Van Venrooij et al., 1993). In 

addition to the З'-oligouridine stretch, La may have some affinity for (an)other 

RNA structure^) since La binding to RNAs lacking a З'-oligouridine stretch has 

been observed as well (Van Venrooij et al., 1993). Recently it was shown that La 

can also bind and unwind dsRNA substrates (Xiao et al., 1994). 

The Ro52 protein (52 kD) contains a zinc finger-like motif, called the RING 

finger (Freemont et al., 1991), and a central leucine zipper domain (Chan et al, 

1991; Itoh et al, 1991). In contrast to the well-conserved La and Ro60 proteins, 

Ro52 can be detected imunologically in primate cells only (Slobbe et al, 1991). No 

direct interactions between Ro52 and the Ro RNAs could be identified, but the 

presence of Ro60 appears to be required for the Ro52 protein to bind to Ro RNPs, 

presumably via protein-protein interactions (Pruijn et al, 1991; Slobbe et al., 1992). 
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RNA MODELING 

The limited number of RNA structures determined by X-ray crystallography 

and NMR spectroscopy compels the use of theoretical methods to obtain 

information on RNA conformation. The goal of these methods is to produce 

models consistent with all available experimental data, and although such structures 

are approximations, they provide valuable information for the design and 

interpretation of experiments. 

RNA structure prediction is difficult because the flexibility of RNA is very 

large. There is extensive rotational freedom around seven intra- and internucleotide 

bonds per nucleotide and interactions between bases, phosphates, sugars, and 

solvent add even more complexity. Observations obtained by chemical 

modification, crosslinking and footprinting experiments can lead to constraints to 

restrict possible regions of the molecule in space. Mutational analyses can be useful 

in assessing the importance of specific residues and base pairs in the function of 

RNAs, although care must be taken in the interpretation of the results. Detailed 

analyses of RNA structure and function is possible by the substitution of specific 

functional groups in bases, sugars or phosphates. For example, involvement of 

phosphate oxygens can be monitored using phosphothioate analogs (Gautheret and 

Cedergren, 1993). One essential criterion for judging the validity of an RNA 

structure model is its generalization to RNAs belonging to the same class through 

biological evolution. All these RNA molecules should be able to form the same 

general fold in which insertions and deletions must be accommodated. 

Several approaches of RNA modeling have been described (reviewed in 

Gautheret and Cedergren, 1993). All of them use interactive graphics programs, 

such as SYBYL or Quanta/CHARMm, in one or more stages of the building 

process, for example for visualizing the structure built or for energy minimization 

during the procedure. 

Interactive modeling 

In interactive modeling (reviewed by Westhof, 1993), a valid RNA secondary 

structure, obtained from phylogenetic and/or probing data, is replaced by 

computer-generated structural elements, which are often taken from known RNA 

structures. Interactive graphics modeling is then used to dock the subunits 

manually and in this way a starting conformation can be generated, that agrees 

with known structural features of RNA and with all available experimental data. 
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The docking of the substructures into the whole structure is very often open to 

numerous possibilities, especially when the links are single-stranded regions. 

Therefore, the generation of this initial structure is a crucial step that defines most 

of the interactions. After this building process the structure can be energy-

minimized and successive cycles of loop modeling and docking of secondary 

elements can be tried until all available three-dimensional interactions are optimally 

dealt with. 

This interactive modeling approach has been used to construct structural models 

of 16S rRNAs (Brimacombe et al., 1988; Stem et αϊ, 1988), 5S rRNAs (Brunei et al, 

1991), tRNA pock-Bregeon et al., 1989), U i snRNA (Krol et al., 1990), the 

Tetrabymena group I intron (Michel and Westhof, 1990), Ml RNA (the catalytic 

RNA subunit of ribonuclease Ρ) (Westhof and Altman, 1994) and the hepatitis 

delta virus ribozyme (Tanner et al., 1994). 

Rules used in RNA modeling are based mostly on observations of available X-

ray and N M R structures and can be summarized as follows (Gautheret and 

Cedergren, 1993; Malhotra et al., 1994). 

- Stacking and hydrogen bonding are the main determinants for RNA structure 

(Gautheret and Cedergren, 1993). 

- Double-stranded regions are modeled as regular Α-form RNA helices with the 

bases in the anti conformation and the riboses in the З'-endo conformation 

(Gautheret and Cedergren, 1993). Sequence-dependent distortions of the A-helix 

are generally ignored during model building. Duplexes which are separated by 

less than 3 single-stranded nucleotides are assumed to stack colinearly (Kim and 

Cech, 1987). 

- In building single-stranded regions, energy parameters are useful to predict 

stacking disruption (Gautheret and Cedergren, 1993). 

- Base mismatches and internal loops are constructed by maintaining the integrity 

of the double helix while optimizing base pairing and stacking inside the loop. 

Non-Watson-Crick base pairs are allowed at the junction of two helices (Kim 

and Cech, 1987). 

- Bulges are placed either inside or outside the helix, depending on the 

experimental information and on stacking energy parameters. Often, single 

bulged nucleotides are stacked into the helix (Benedetti and Morosetti, 1991; 

Kim and Cech, 1987). 

- N o general rules are as yet available for hairpin loop modeling. RNA loops are 

characterized by extensive stacking and extension of the Α-form of the helix into 

the loop (Malhotra et al., 1994). Available information concerning known 
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structures such as tRNA hairpin loops and RNA tetraloops may guide the 

modeling process. 

- Multibranched loops cannot be modeled without considerable supplemental 

information on possible interactions between and among structural elements. If a 

base can stack on either of the two helices the stacking with the most favorable 

AG is chosen Qaeger et al, 1989). 

Computational techniques 

Molecular Mechanics and Dynamics techniques have also been used in RNA 

modeling. In Molecular Mechanics (MM) the potential energy of a molecule is 

described as a function (the force-field) of its atomic coordinates, and is the sum of 

the energy contribution of structural features such as bond lengths, bond angles, 

nonbonded interactions etc. (reviewed in Burkert and Allinger, 1982). Minimization 

of this function will lead to a low-energy structure but considering the numerous 

local energy minima of an RNA molecule, it is likely that only a local minimum is 

found, rather than the global energy minimum. Examples of RNA structures built 

via this method include histone mRNA loops (Gabb et al., 1992), tetraloops (Kajava 

and Ruterjans, 1993) and the Rev Response Element (Le et al., 1994). 

In Molecular Dynamics (MD) both the potential and kinetic energy of a 

molecule is calculated and in this way a part of the conformational space of the 

molecule can be sampled and energy minima over a larger range of conformations 

can be identified. During MD studies the ends of helices are often constrained, to 

avoid disrupture of the helix (Nilsson et al, 1990; Fritsch and Westhof, 1991). 

Examples of R N A structures built via this method are the helices of 5S RNA (Kim 

and Marshall, 1992) and the T4 self-splicing nrdB intron (Nilsson et al., 1990). 

There is a high computational cost for explicit consideration of solvent 

molecules and counterions in energy calculations. Both calculations with explicit 

solvent (Hausheer et al., 1990) and without solvent (Kim and Marshall, 1992) have 

been performed. In the latter case the screening effect of counterions and solvent 

can be modeled implicitly in two ways. A distance (r) dependent dielectric constant 

(ί) can be used for the calculation of electrostatic interactions between atoms and 

examples include e - r (Nilsson et al., 1990), e-4r (Veal and Wilson, 1991; Brahms et 

al., 1992) and a sigmoidal distance dependent function (Brahms et al., 1992). An 

alternative method is to use partially neutralized phosphates because it is known 

experimentally that nucleic acid polymers maintain a net partial charge per 

phosphate of 0.2e (Veal and Wilson, 1991). 
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Two systems that position helical elements instead of atoms have been 

described. Malhotra and coworkers described a modified MM approach in which 

nucleotides are replaced by pseudoatoms (reviewed in Malhotra et al., 1994). In this 

method a random construction mode produces widely varying conformen that are 

adjusted and evaluated by molecular mechanics techniques. In this way structures 

for 16S and 23S rRNAs and RNase Ρ were built (Malhotra et al., 1994; Harris et al., 

1994; Malhotra and Harvey, 1994). The second pseudoatom method treats the 

RNA molecule as a set of double-stranded helices linked by flexible single-strands 

of variable length. Tertiary distance constraints derived experimentally or by 

phylogeny are used to fold the molecule and distance geometry, developed 

primarily to solve NMR structures, is used for this purpose (Hubbard and Hearst, 

1991b). Models for tRNA and 16S rRNA were built using this method (Hubbard 

and Hearst, 1991b; Hubbard and Hearst, 1991a). 

Finally, a 'constraint satisfaction' algorithm was published, that automates the 

structure-building procedure (Major et al., 1991; Gautheret and Cedergren, 1993; 

Gautheret et al., 1993; Major et al., 1993). A unique search procedure quickly yields 

a family of structures all satisfying a predetermined set of three-dimensional 

constraints in a given discrete space. These structures can then be refined by 

techniques such as energy minimization. 

PROTEIN MODELING 

Determination of the three-dimensional structure of a protein is a major step 

towards the elucidation of its biological function. Although the number of protein 

structures determined by X-ray and NMR methods is increasing steadily, the total 

number of known three-dimensional structures is still several orders of magnitude 

lower than the number of proteins for which the sequence is known. Therefore 

there is much interest in the prediction of protein structures and for this computer 

modeling is an essential tool able to complement experimental methods. 

Molecular mechanics and dynamics simulations have many applications 

(reviewed in Karplus and Petsko, 1990; Van Gunsteren and Mark, 1992; Van 

Gunsteren et al., 1994) in the study of the conformation and flexibility of proteins 

and in the modeling of protein structures or protein-ligand complexes. One of the 

most successful methods is homology modeling, in which a three-dimensional 

model of the target protein is constructed from its amino acid sequence and the 

known X-ray or NMR structure of a homologous protein (reviewed in Johnson et 

al., 1994). 
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Furthermore, the MD method is used as a refinement technique in determining 

X-ray or NMR structures. MD calculations are also used to estimate the relative 

binding free energies of two related ligand molecules to an enzyme, or of an 

enzyme and mutant enzyme to a specific substrate (Reynolds et al., 1992). This 

technique is referred to as the free energy perturbation method and is based on 

thermodynamic cycles. 

OUTLINE OF THIS THESIS 

The aim of the work described in this thesis was to integrate both experimental 

and theoretical approaches in order to gain insight in structural aspects of the RNA 

and protein components of two different RNA-protein complexes. 

Chapter 2 describes a Molecular Dynamics approach used for the generation of 

complete protein coordinates from its Ca coordinates (Van Gelder et al, 1994a). 

This study was inspired by an attempt to build two RNP proteins, U1A and La, 

by homology modeling using a template structure. For these proteins, only the Ca 

coordinates of a template structure were available in the Brookhaven Protein 

Databank (Bernstein et al., Y)7~f). Our study shows that extensive MD calculations 

are promising for capturing details of the native protein conformation. They are 

generally applicable in protein structure prediction when limited coordinate 

information is available. The resulting protein structures can be used (within limits) 

with confidence to study the general structure of the protein involved, or as a basis 

for further model building of homologous protein structures. 

All available secondary structures for the hY RNAs were deduced from low-

energy structure predictions (with minor adaptations in some cases). We therefore 

investigated the conformation of human hYl and hY5 RNA using both chemical 

and enzymatic structure probing, while for hY3 and hY4 RNA some preliminary 

enzymatic probing was performed. The results, presented in Chapter 3, show that 

both for hYl and for hY5 RNA the secondary structure largely corresponds to the 

structures predicted by sequence alignment and computerized energy-minimization. 

However, some important deviations were observed, the most important of which 

is a yet unidentified tertiary interaction in hYl RNA, involving the pyrimidine-rich 

region (Van Gelder et al., 1994b). 

We have investigated the human U1A protein - U1A pre-mRNA complex and 

the relationship between its secondary structure and function in inhibition of 

polyadenylation in vitro (Chapter 4; Van Gelder et al., 1993). The secondary 

structure of the conserved region of the 3'UTR of U1A mRNA was determined by 
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a combination of theoretical predictions, phylogenetic sequence alignment, 

enzymatic structure probing and analyses of structure and function of mutant 

mRNAs. It was shown that the integrity of a large part of this structure is required 

for both high affinity binding to U1A protein and specific inhibition of 

polyadenylation m vitro. 

After this, detailed chemical probing of the U1A mRNA was performed, as well 

as footprinting experiments on the U1A-U1A mRNA complex. Additionally, we 

propose a possible tertiary structure model for this RNA-protein complex. These 

results are described in Chapter 5. 

In Chapter 6, a general discussion related to the work described in this thesis is 

presented. 
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ABSTRACT 

Generation of full protein coordinates from limited information, e.g., the Car 
coordinates, is an important step in protein homology modeling and structure 
determination, and molecular dynamics (MD) simulations may prove to be 
important in this task. We describe a new method, in which the protein 
backbone is built quickly in a rather crude way and then refined by 
minimization techniques. Subsequently, the side chains are positioned using 
extensive MD calculations. The method is tested on two proteins, and results 
compared to proteins constructed using two other MD-based methods. In the 
first method, we supplemented an existing backbone building method with a 
new procedure to add side chains. The second one largely consists of available 
methodology. The constructed proteins are compared to the corresponding X-
ray structures, which became available during this study, and they are in good 
agreement (backbone RMS values of 0.5-0.7 Á, and all-atom RMS values of 1.5-
1.9 A). This comparative study indicates that extensive MD simulations arc 
able, to some extent, to generate details of the native protein structure, and 
may contribute to the development of a standardized methodology to predict 
reliably (parts of) protein structures when only partial coordinate data are 
available. 

Key words: computer modeling, protein structure prediction, a-
carbons, structure evaluation, molecular dynamics 

Abbreviations CSB-MD, crude structure building followed by MD refining, CG, conjugate gradients, 
MD, molecular dynamics, RMS, root mean squares deviation, SD, steepest descents, SP, spare pans 
method, SP-MD, combined spare parts and molecular dynamics method 
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INTRODUCTION 

Determination of the three-dimensional structure of a protein is a major step in 

the elucidation of its biological function. Although the number of protein 

structures determined by X-ray and NMR methods is increasing steadily, the total 

number of known three-dimensional structures is still several orders of magnitude 

lower than the number of proteins for which the sequence is known. For this 

reason, much effort is being made to develop computational methodologies for the 

prediction of protein conformation. These methods will lead to an accumulation of 

our knowledge of protein structure, and the ultimate goal would be to generate a 

protein structure on the basis of its sequence only. 

However, the problem which has to be solved first is to predict reliably a 

protein structure when only limited coordinate information is available. One 

example of this problem is seen in homology modeling, where the known tertiary 

structure of a protein is used as a template to predict the strutture of an 

homologous (and preferably functionally related) protein.1 In most cases, the 

backbone coordinates are taken from the template, as are the side chains of 

identical amino acids in both proteins. Insertions (including loops) and deletions in 

the backbone, however, must be predicted, as must the side chains of nonidentical 

amino acids. In addition, crystallographers and NMR spectroscopists might find 

such predictive methodologies useful to create an approximate structure in the 

early stages of the strutture determination. 

A good test problem for methods which can extend an incomplete protein 

coordinate set consists of the prediction of complete protein structures from only 

Ca coordinates. This approach has in fact been used in many studies, including this 

one. In our case it was inspired by an attempt to build two proteins by homology. 

For both of these proteins, only the C a coordinates of a template structure were 

available in the Brookhaven Protein Databank.2 

Several approaches to generate backbone and/or side chain coordinates from C a 

coordinates have been described. For the generation of backbone coordinates, one 

promising method, the "spare parts" (SP) method,5"5 uses fragments from known 

protein structures to build a polyalanine backbone which fits the known X-ray Ca 

positions (within a preset RMS limit'). It is based upon the emerging idea, that 

protein structures contain several "supersecondary" folding motifs or domains, 

"The RMS value is the root mean squares deviation in atomic positions after optimal 
superimposition of two structures. 
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which may represent independent building blocks from which complete protein 

structures can be constructed.6,7 In test cases,3,8"10 good results (backbone RMS 

values between 0.35 and 0.6 A) were obtained. Correa" has developed a method to 

generate a complete protein structure from its Ca trace, which does not need a 

priori knowledge of protein structure. The method is solely based on the known 

Ca positions, the topology of the 20 amino acids, and the flat nature of the peptide 

bond. In this method, long MD calculations (at high temperature) are used, which 

could hamper its applicability. The advantages, however, are that little protein 

expertise is needed and that the procedure is rather straightforward. Backbones 

constructed by this method showed RMS values of 0.2-0.5 A. Recently, Bruccoleri12 

described a directed conformational search to generate backbone coordinates, which 

resulted in structures with backbone RMS values of 0.5-0.99 À. 

When the backbone coordinates are known, the side chain atoms can be built. 

Several approaches also exist for this task. The approach of Reid and Thornton' 

mainly consists of carefully and manually adjusting the χ torsion angles, after these 

were initially set at the preferred values, taken from the distribution of χ angles in 

known protein structures.13"15 The method, tested on the protein flavodoxin,' 

yielded an RMS value of 2.4 A for all the side chain atoms and an RMS of 1.7 A 

for all the nonhydrogen atoms in the protein, as compared to the X-ray structure. 

Correa's MD method, already mentioned above, is also able to construct protein 

side chain coordinates and test cases showed RMS values of 1.3-1.7 Â for all the 

heavy atoms.11 In the MaxSprout' program, Holm and Sander implemented a 

Monte Carlo procedure to optimize the side chain conformations. Their method 

has been tested on several proteins, resulting in average RMS values of 2.2 A for all 

side chain atoms.' Recently, an automatic segment matching protocol has been 

described which uses information from a database of known protein structures to 

position the side chain atoms.5 The resulting structures showed a side chain RMS 

of on average 1.87 A. 

As has been mentioned above, MD calculations seem promising in the 

prediction of protein strutture, both for backbone and side chain atoms.11 We have 

explored the MD approach further, evaluating the ability of extensive MD 

calculations to capture details of the native protein conformation, and to what level 

of precision. 

We present a method to build a complete protein structure from partial 

coordinate information, i.e., the Cot coordinates. In this CSB-MD method (crude 

structure building followed by MD refining), the protein backbone is generated in 

a fast and rather crude way; known protein structures are not needed, unlike the 
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SP method. Then, extensive MD calculations are applied to position the side chain 

atoms. Details of the CSB-MD approach will be discussed in the Methods section 

and results will be compared to the results of two other methods in which MD 

calculations play a major role. We supplemented the first of these, the existing (SP) 

method to build backbones, by a MD procedure to add side chains (combined SP-

MD approach). For the second one we used the MD method of Correa for which 

we suggest (and have applied) some minor modifications. 

All three methods were tested on two proteins, from our current research, for 

which only the C a coordinates were available. The first protein, yeast enolase, is a 

globular protein of 436 amino acids, which catalyzes the dehydration of 2-

phosphoglycerate to phosphoenolpyruvate in the glycolytic pathway. The structure 

of yeast enolase has been solved at 2.25 A resolution." The second protein is the 

RNA binding domain of the A protein, which is part of the U l small nuclear 

ribonudeoprotein particle (Ul snRNP). The U l snRNP panicle plays an 

important role in the removal of introns from pre-messenger RNA, the process 

known as splicing.17 A number of proteins which can bind RNA contain one or 

more copies of a conserved motif of about 80 amino acids, the so called RNP-80 

motif." The N-terminal part of the A protein which binds to U l snRNA contains 

an RNP-80 motif. Part of the protein (amino acids 1 to 95) was crystallized and the 

structure has been determined at a resolution of 2.8 A." Recently, full coordinate 

sets for both enolase and the RNP-80 motif have become available, thus allowing 

us to evaluate the precision of our constructed model structures. Some other 

validation criteria which can be used in the absence of complete coordinate sets are 

also discussed. 

METHODS 

Atomic coordinates 

C a coordinates of enolase were taken from the Brookhaven Protein Data Bank, 

PDB code 2ENL. The protein contains 436 amino acids arranged in a N-terminal 

domain (ca. 140 amino acids) and a main 8-fold barrel domain which contains the 

unusual topology ßßaa(ßa)6 ." Recently, complete sets of coordinates have become 

available; one of them (4ENL) was used for the evaluation of the constructed 

protein structures. Ca coordinates of amino acids 6-90 from the RNP-80 motif of 

the U l A protein were kindly provided by K. Nagai (MRC Laboratory of 

Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK). Amino acids 1-5 and 
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91-95 are poorly ordered in the electron density map and are not used in this 

study. The structure contains a four-stranded antiparallel ß-sheet and two α-helices 

arranged in the order ßaßßaß in the primary structure. The four ß strands lie in a 

plane with the two helices on the same side of the sheet. 

Model building 

Backbone building 
In our new CSB-MD method the GROMOS force field20 was used in all 

computations (see Table I for computational details). The procedure starts with a 

very crude backbone, which was created by positioning all intermittent backbone 

atoms (C, N) on one-third and two-third of the distance between Ca, and Ca1+1. 

Then carbonyl oxygen atoms and amide hydrogens were placed at idealized bond 

distances and with ω torsions of 180°, followed by a small random shift of all N 

and С atoms to avoid undefined Οα,-Ο-Ν-Οα,+ι backbone dihedrals. The resulting 

crude polyglycine chain was subjected to energy minimization using steepest 

descents (SD) to relieve the strain in the initial backbone, keeping all Ca atoms 

fixed to their X-ray coordinates. 

In our combined SP-MD approach, used for comparison with the CSB-MD 

method, the standard "construct backbone" option, as implemented in SYBYL,21 

was used to generate the protein backbone, from fragments of a protein database. 

The constructed backbone was then minimized briefly with SD (Ca atoms fixed). 

The third backbone building method applied comparatively was the one 

described by Correa," but with several specific adjustments. Using the CHARMm 

force field,22 we built the backbone chain using only Ala, Gly and Pro residues 

(Gly and Pro to account for greater and lesser flexibility, respectively, in the 

chain). Residues were built sequentially, and after each amino acid addition a short 

SD minimization was performed. During backbone building, a harmonic constraint 

was imposed on all Ca atoms and dihedral constraints were set on the ω torsion 

angles to keep the peptide bonds in the trans orientation {cis orientation for both 

«s-prolines in enolase). The resulting protein backbone was refined with MD 

calculations at 1000 K. 

Side chain building 

In the CSB-MD method, we add all side chain atoms both simultaneously and in 

an extended conformation to the constructed backbone. Direct optimization of the 
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resulting structure failed, because of obvious very short nonbonded interactions but 

this problem was easily overcome by SD minimization with a gradually increasing 

nonbonded cutoff distance, ranging from 0.01 A to 8 A (Ca atoms fixed). During 

further minimization the positional constraint was replaced by a harmonic 

constraint on the C a crystal structure coordinates. Subsequently, MD simulation at 

800 К was performed, with harmonic constraints on the C a positions. Long MD 

calculations are necessary because the building process is driven by the gradual 

formation of hydrogen bonds which takes considerable time. Since the α carbons 

are harmonically restrained, the temperature must be high in order to allow 

conformational changes (such as flips of peptide units). Dihedral constraints were 

applied to the ω torsions; for enolase, however, GROMOS could not cope with 

435 dihedral constraints, and the parameter set had to be adapted to contain a 

higher than usual force constant (12 instead of 8 kcal/mol) for this type of torsion 

angle. After cooling to 0 K, the structure was subjected to constrained SD and 

conjugate gradient (CG) minimizations, followed by an unconstrained 

minimization step until convergence (see also Table I for computational details). 

The whole building procedure was monitored using the Quanta molecular 

modeling package. 

In our combined SP-MD method, applied for comparison to the CSB-MD 

method, the existing SP method to build the backbone is supplemented with a new 

MD procedure to add side chains. As in the CSB-MD method, we added the side 

chains in their fully extended conformation. A conformational search with an 

increment of 30° was performed for all the χ torsion angles, in combination with a 

quick SD routine, to relieve initial bumps in the structures. The structure was then 

subjected to a short SD minimization (backbone atoms were kept fixed) to relieve 

further close contacts. For enolase, which contains two as-prolines, some additional 

manual building had to be done because the generated backbone contained all ω 

torsions in the trans orientation. Subsequently, the complete structure was 

minimized briefly with SD (no constraints) to generate a starting conformation for 

the MD simulations at 300 K. Due to software limitations of the SYBYL package, 

it was not possible to harmonically constrain the C a positions of the constructed 

backbone to the X-ray C a coordinates and, therefore, the C a coordinates had to 

be fixed during all the MD calculations. After cooling to 0 K, the structures were 

finally subjected to SD minimization without constraints on any atoms, until 

convergence. 

With the adapted Correa method, the second method which we applied for 

comparison, the side chains were built by sequential addition of (respectively) the 
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γ-, δ- , e-, and f-atoms. During this sequential building of levels of atoms, the side 

chains of the aromatic rings of Tyr and Phe were added in one step, to avoid 

undesirable effects of partially built rings. After addition of each level of side chain 

atoms, the resulting structure was refined with MD at 800 K. To achieve the final 

structure, all constraints were removed and the cooled structure (0 K) was 

minimized to convergence with the SD minimizer. For the globular enolase 

structure, charges on side chain atoms were scaled in the following way: charges of 

atoms between 0 an 12 A from the center of the molecule were not scaled; charges 

of atoms between 12 and 18 A were scaled by a factor 0.7; and charges of atoms 

between 18 and 40 A from the center were scaled by a factor of 0.3. This 

downscaling of charges near the surface of the protein is a way, in addition to the 

distance-dependent dielectric, to mimic solvent screening effects.11,23 Two model 

structures were built for RNP-80. The first one was built using unsealed atomic 

charges, because this structure deviates too much from an ideal, globular shape; 

moreover, since it is only part of a larger protein, not every part of the current 

structure will necessarily be part of the surface of the native protein structure. The 

second structure was built using charges scaled down by a factor two, which made 

it possible to evaluate the effect of the charges on the excessive backfolding of side 

chains on the backbone of the protein, a phenomenon that was found in an earlier 

study.11 

RESULTS A N D DISCUSSION 

Protein Structure Building 

The crude polyglycine backbones generated with the CSB-MD method showed 

C a RMS values of 0.50 Â for RNP-80 and 0.55 Â for enolase (abbreviated to 

0.50/0.55 Â in the following) as compared to their respective crystal structure 

coordinates. After addition of the side chains and energy minimization with 

increasing nonbonded cutoff distance, the resulting Ca RMS was 0.74/0.73 A. 

During the MD steps Ca RMS values were 0.8 À during heating, 0.6-0.7 A during 

simulation, and 0.4 Â during cooling. The difference between C a RMS values 

during the initial stages of protein building with the CSB-MD method vs. the 

adapted Correa method (see below) is remarkable. In the CSB-MD approach, the 

initial backbone is allowed to deviate considerably from the X-ray Ca coordinates, 

and the structure is pulled gradually towards these coordinates during the MD 
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simulation. In the Correa approach, however, the initial backbone fits very well to 

the C a X-ray coordinates, and during the modeling work the structure is allowed 

to deviate from the X-ray coordinates to find an optimal compromise between 

RMS-fit and protein structure. Some manual adjustments of the CSB-MD structures 

were necessary during the high temperature MD simulation, as it turned out that 

the GROMOS force field is considerably more sensitive than the CHARMm force 

field to these high temperatures. After unconstrained minimization of the cooled 

CSB-MD structures a C a RMS of 0.39 A was achieved for both enolase and the 

RNP-80 motif. 

In our combined SP-MD approach, applied for comparison to the CSB-MD 

method, the generated polyalanine backbone in the RNP-80 motif was built from 

18 fragments with an average length of 7.3 amino acids; the backbone of enolase 

was generated from 93 fragments with an average length of 7.6 amino acids. The 

C a RMS values were 0.38/0.36 A. The side chains were placed and, after an initial 

conformational scan, the structures were subjected to MD calculations (Ca 

positions fixed). After cooling down, unconstrained SD minimizations until 

convergence resulted in final structures with C a RMS values of 0.35/0.42 A. 

In our adapted Correa method, the first building step, in which Ala, Gly and 

Pro residues were added sequentially, yielded structures with C a RMS values of 

0.05/0.04 A. These low RMS values resulted from the very large force constant of 

the harmonic C a constraints (120 kcal/mol). The subsequent MD simulation (Ca 

constraint constants reduced to 10 kcal/mol), resulted in backbone structures with 

C a RMS values of 0.17/0.14 A. In the next step, all γ-level side chain atoms were 

added to the structures, which were then subjected to MD simulation at 800 K. 

Then the 6-, e- and f- atoms were added, respectively, and MD calculations were 

performed after each step. RMS values for the C a carbons were 0.35-0.4/0.35 A 

during these steps of the building procedures. SD minimization was performed on 

the final cooled structures, after removal of all constraints, resulting in final 

structures with RMS values of 0.30/0.20 A for the C a atoms with respect to the X-

ray C a coordinates. 

Evaluation of the Constructed Protein Structures 

Because X-ray coordinates for both of our test proteins became available during 

this study, these were used as a reference to judge the constructed model structures, 

thereby providing an implicit comparison of the construction methods. The quality 

of the backbone structures will be evaluated according to the following criteria: 
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1. the deviations in the φ and ψ torsion angles; 

2. the percentage and quality of backbone hydrogen bonds; 

3. the peptide flips that occur, and, of course; 

4. the RMS deviation from the X-ray structures. 

The quality of the side chain conformations will be evaluated by 

1. the deviations in side chain torsion angles; and 

2. the RMS values when compared to the X-ray structures. 

Because complete X-ray data to test the validity of constructed protein structures 

are not always available (and were not available when we started this study), some 

other criteria to judge model building quality will be discussed for the RNP-80 

model structure which we built by the adapted Correa method. Because it has been 

shown that criteria like total energy or total surface accessible area are not good 

discriminatory factors to distinguish between correctly folded and misfolded 

structures,2,< we have used, among others, relative surface accessibility of side chain 

atoms and the known distributions of side chain torsion angles in high resolution 

proteins. 

Quality of Backbone Conformation 

Deviations in backbone torsion angles 

The backbone conformation of the protein models constructed is generally in 

good agreement with the X-ray structures (average deviations in the φ and ψ 

torsion angles of 15° to 20° with the adapted Correa and the combined SP-MD 

methods and up to 25° with the CSB-MD method). The deviations of the φ and ψ 

torsion angles of the RNP-80 structure constructed with our CSB-MD method are 

shown in Figure 1. Although some large local deviations can be observed, these are 

nearly always located between or at the end of secondary structure elements. 

Furthermore, a correlation between the magnitude of deviations in ^(i) and φ(ι+ί) 

is almost always present. If both deviations are large and of opposite sign, this has 

no influence on the direction of the backbone and the Cß atoms.3,9 Regarding the 

prediction of positive ^values, which are rare except for glycines and, to a lesser 

extent, for asparagines, we found that with the adapted Correa, SP-MD and CSB-

MD methods respectively 78, 87, and 74% of the residues with positive ^values 

were predicted correctly. The percentage amino acids incorrectly built with φ > 0 is 
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Figure 1. Deviations in backbone torsion angles φ and ψ between the RNP-80 structure generated 

by our CSB-MD method and its X-ray structure The secondary structure elements are also shown. 
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ca. 2% in all three methods. 

Backbone hydrogen bonding 

In native proteins the percentage of residues which is involved in main chain 

hydrogen bonding is on the average larger than δΟ^ο.'·25 Our modeled structures 

showed 56 to 71% main chain hydrogen bonds, whereas the X-ray structures of 

RNP-80 and enolase showed 57 and 76%, respectively. Considering the backbone 

hydrogen bonds in α-helices and ß-sheets, our CSB-MD method shows results 

similar to the two methods used for comparison, while the adapted Correa method 

shows a somewhat better backbone hydrogen bonding pattern in turn regions than 

the two other methods. In all three methods, the created backbones contained most 

of the main chain hydrogen bonds in the α-helices and ß-sheets. During the MD 

calculations, the additional hydrogen bonds of the α-helices and ß-sheets were 

formed, as well as the majority of hydrogen bonds in the turn regions. The RNP-

80 structure that was built by using scaled charges (see Methods) showed lower Ca 

RMS values but in this structure not all of the main chain hydrogen bonds were 

formed correctly. 

Peptide flips 

A peptide flip is a badly oriented peptide unit present in the constructed 

structure, in comparison to the X-ray structure, and occurs when the angle 

between the X-ray carbonyl oxygen atom, the X-ray carbonyl carbon, and the 

model carbonyl oxygen atoms is larger than 900.8 In general, the number of flips 

reported in the literature for similar studies is less than 5%,3·8 and in most cases, 

peptide flips do not occur in regular a- and ß- regions, but rather in turn and coil 

regions of a protein. In particular the SP-MD method of backbone generation is 

expected to be sensitive to flips, because junctions between fragments can easily 

generate a peptide flip, but we did not observe such a sensitivity. From our 

modeled structures, only the CSB-MD structures showed a percentage peptide flips 

of 6-8% while the other two methods yielded structures with on average 4.4% 

peptide flips, the majority of which occurs inturn and coil regions. 

RMS values 

Several RMS values of the generated structures, as compared to their X-ray 

structures, are given in Table DA, while Table ША shows results of other recent 

model building studies. Both the CSB-MD method and the two comparatively 

applied methods generate structures with acceptable RMS values for the backbone 
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atoms and all three methods compare well to the values given by other authors. 

When discussing the magnitude of RMS values, it should be bom in mind that for 

independently determined high resolution structures (< 2 A) of the same protein 

in a different crystallographic environment (e.g., two unique molecules in an 

asymmetric unit, or the same proteins crystallized from different solvent 

conditions) generally RMS values of 0.3-0.6 A are found for heavy atoms in the 

secondary structure elements.26,27 Even higher values are reported for all heavy 

atoms. 

The extremely low Co¡ RMS values reported by Correa11 and Wendoloski10 are 

remarkable. It is questionable if it is correct to try to achieve such a low value 

regarding the low resolution of the X-ray data involved. In our application of the 

Correa method we therefore decreased the Ca harmonic constraint force constant 

during the initial building steps (from 120 kcal/mol to 10 kcal/mol), aiming at the 

often occurring situation in which structures of which only C a coordinates are 

known, are usually only poorly refined. 

Our application of Correa's method shows, on average, the lowest RMS values 

while the CSB-MD method shows the largest, although the differences are small. 

Furthermore, the distribution of RMS values (data not shown), and the deviations 

in backbone torsion angles (see Figure 1) are clearly related to the presence of 

secondary structure elements; the backbone RMS values are significantly lower for 

residues in secondary strutture motifs (α-helices and ß-sheets) than in other regions. 

This is to be expected, since hydrogen bonding patterns dominate these secondary 

structure elements and lower the conformational freedom of their atoms. As a 

consequence, the α-helices and ß-sheets are built more accurately than the less 

geometrically confined areas. Residues in the core of the protein also have 

restricted conformational freedom, compared to residues closer to the surface of the 

protein. Indeed, most structures show a somewhat lower C a RMS value for 

residues in the core. The relatively high RMS values of the backbone oxygen atoms 

can be explained by their longer distance to the main chain, as it takes only a 

minor shift in backbone atoms to move the oxygen atoms considerably. 

Quality of Side Chain Conformation 

RMS values 

The RMS deviations of the constructed side chains are given in Table ΠΒ and 

are compared with results from other recent model building studies in Table ША. 
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TABLE II. RMS Values of Constructed Protein Structures as Compared to Their 
X-Ray Coordinates 

RNP-80* Enolase' 

Λ. Backbone conformation 
C« RMS (A) 
Ca RMS (secondary structure**) (A) 
Ca RMS (core*) (A) 
Backbone RMS (A) 
Backbone RMS (secondary structure) (A) 
Backbone oxygen RMS (A) 

B. Side chain conformation 
RMS of side chains (A) 
RMS of side chains (core) (A) 

CSB-MD 

0 40 
0.30 
0.38 
0 70 
0.44 
1.11 

2.52 
2.22 
excl. 

(1.64 
Y860 

SP-MD 

0.35 
0 34 
0.31 
0.53 
0.51 
0.83 

2.52 
1.34 

Correa* 

0.30 
0.26 
0.28 
0.49 
0.32 
0.75 

2.53 
1.24 

CSB-MD SP-MD Correa* 

0.42/0.39» 0 42/0 37» 0.27/0.20« 
0.37 
0 42 
0.64 
0.49 
1.04 

2.49 
2.47 

0.33 
0.42 
0.64 
0.41 
0.96 

2.41 
2.10 

0.20 
0 24 
0.50 
0.30 
0 84 

2.14 
1.53 

*In the RNP-80 X-ray structure" several side chains on the surface of the molecule were placed 
arbitrarily, because the structure was disordered in those parts of the protein; these residues are not 
taken into account in the calculation of the RMS values. 
The model structures of enolase are compared to the protein 4ENL, which shows a Ca RMS 
value of 0.23 À when compared to 2ENL (used to build the enolase structures) and which also 
shows much lower thermal parameters Thus in the case of enolase the modeled structure is 
compared to the atomic coordinates of a further refined structure. 
The adaptations to the original method of Correa are described in the text. 
'Ca RMS values in comparison to 2ENL. 
**Secondary structure residues are defined as amino acids located in α-helices or in ß-sheets. 
^Core residues are defined as those residues with a side chain solvent accessible surface of less then 
15%, relative to the tnpeptide Gly-X-Gly, corresponding to ca. 40-50 % of the residues. 
Tyrosine 86 is particularly dl-placed in the RNP-80 CSB-MD structure and has a large influence 
on the total RMS; therefore also the RMS value without tyrosine 86 is given. 

The CSB-MD method generates structures with side chain RMS values (> 2 Â) 

comparable to those of the two methods we applied comparatively. In particular, 

side chains at the surface of the proteins appear difficult to predict correctly and 

often deviate rather far from the X-ray structure, as was found in an earlier study." 

Our side chain RMS values are slightly larger than those obtained in most other 

studies (see Table ША), despite the fact that we performed MD calculations on 

extended side chains (CSB-MD and SP-MD methods), and on gradually growing 

side chains (adapted Correa method), while Reid and Thornton used a careful 

building scheme' and Holm and Sander used a rotamer library and Monte Carlo 

procedure.8 
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TABLE III. Comparison to Other Studies*' 

A. RMS values 

Ca Backbone Side chain Side chain All 
RMS (A) RMS (A) RMS (A) RMS (A) RMS 

Correa" 

Ciaessens et al.3 

Holm and Sander8 

Reid and Thornton' 
Tuffery et al." 
Wendoloski and Salemme10 

Levitt5 

Bassolino-Klimas and Bruccoleri'2 

This study 
CSB-MD 

SP-MD 

Correa (adapted) 

0.02 
0.03 
0.3 
ca. 0.4 
0.1-0.2 
NR 
NA 
0.04 
NR 
0.ЭСЮ.87 

0.40 

0.42 
0.35 
0.44 
0.30 
0.27 

0.19 
0.49 
0.41 
0.58 
0.4-0.6 
0.57 
NA 
0.35 
0.42 
0.5-0.99 

0.70 

0.64 
0.53 
0.64 
0.49 
0.50 

NR 
NR 
NR 
NA 
2.21 
2.41 
1.69 
2.05 
1.78 
NA 

2.52 

2.49 
2.52 
2.41 
2.53 
2.14 

(core 

NR 
NR 
NR 
NA 
1.56 
NR 
1.54 
NR 
NR 
NA 

2.22 
(1.64 excl. 

2.47 
1.34 
2.10 
1.24 
1.53 

residues) (A) 

Y86) 

1.29 
1.68 
1.64 
NA 
1.57 
1.73 
NA 
1.41 
1.26 
NA 

1.86 

1.76 
1.83 
1.72 
1.83 
1.51 

B. Deviations in side chain torsion angles 

χΐ ± 20« X l ± 30° χΐ ±40° χΐ ± 60° Δ(χ1) 

Correa" 
Holm and Sander' 
Reid and Thornton' 
Wendoloski and Salemme'0 

Levitt5 

This study 
CSB-MD 

SP-MD 

Correa (adapted) 

(%) 

NR 
44 
40 
NR 
NR 

37 
44 
45 
49 
42 
53 

(%) 

NR 
54 (core 67) 

NR 
NR 
72 

50 
49 
51 
54 
49 
63 

(%) 

NR 
NR 
NR 
59 
NR 

58 
54 
63 
57 
53 
67 

(%) 

62 
NR 
NR 
NR 
NR 

67 
56 
68 
59 
59 
70 

(deg) 

75 
NR 
58 
NR 
NR 

52 
57 
48 
52 
56 
44 

*In most studies, several proteins were built and this table shows the average RMS values and 
the average χΐ deviations. NR, not reported; NA, not applicable (Claessens et al.3 and 
Tuffery et al.13 constructed only backbone and side chain conformation, respectively). 

In most cases the side chain RMS values of core residues are significantly lower 

although for some structures (e.g., the enolase CSB-MD structure) the RMS values 

in the core are comparable to the total side chain RMS, which was also found for 
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some of the proteins tested in an earlier study.' For the core residues, only the 

Correa and SP-MD methods show side chain RMS values which are similar to 

earlier studies, while the CSB-MD method performs worse. 

When comparing the three methods used in this study, our adapted Correa 

method gives the best results, although the total side chain RMS of the RNP-80 

motif is equal to that of the other methods. This may be due to the fact that, in a 

small protein like RNP-80, relatively many residues are on the surface of the 

molecule. Another reason could be the fact that in enolase charges towards the 

surface are scaled, which may yield better side chain conformations. In the RNP-80 

structure built with scaled charges, the side chain positioning was in fact better 

than in the RNP-80 built with the unsealed procedure, but there the backbone 

conformation was worse (data not shown). Our comparatively applied SP-MD 

calculations shows reasonable side chain RMS values but performs less well than 

the Correa method, especially in case of the enolase structure. Our CSB-MD 

method results in side chains with rather large side chain deviations which are 

evenly distributed over core and surface residues. In both our SP-MD and CSB-MD 

computations, MD calculations were performed on side chains added in extended 

fashion. The differences between the two methods consist of a quick 

conformational search before the MD simulation in the SP-MD method, the 

application of a different temperature for the MD calculations, and the use of a 

different force field. 

One might expect that for some amino acids, correct predicton of side chain 

conformation is more difficult than for others. For example, charged and aromatic 

amino acids are known to be very difficult to calculate correctly.11,13 Indeed, we 

find in the CSB-MD enolase structure, for example, that the highest deviations 

occur in the Arg, Lys, His, Trp and Tyr residues, i.e., amino acids with large 

and/or flexible side chains (data not shown). 

Figure 2 shows the RNP-80 structure generated by our application of Correa's 

method compared to the X-ray structure. Residues which are present in the RNP1 

and RNP2 regions (which are responsible for the interaction with U l RNA) are 

shown and agree very well with the X-ray data. 

Deviations in side chain torsion angles 

Deviations in the χΐ angles, with reference to X-ray coordinates are given in 

Table ШВ. This table also includes some data from other recent model building 

studies. The average deviations in the χΐ angles are comparable in all three methods 

tested and show similar levels of accuracy to other studies. The CSB-MD 
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Figure 2. Superposition of the X-ray structure and the structure of RNP-80 created with the 
adapted Correa method. Side chains on the RNA-binding surface of the RNP-80 motif are shown. 
Filled circles correspond to the X-ray structure while open circles correspond to the RNP-80 
model structure. 

method performs almost as well as the two comparatively applied calculations, 

predicting on average 56% of the χΐ angles correctly within 40°. The distribution 

of the deviations in χΐ angles for the enolase structure, constructed with our CSB-

MD and SP-MD methods, is shown in Figure 3. A similar distribution was found 

in the Correa method and in a earlier building study.' However, the CSB-MD and 

SP-MD structures show a regular distribution of misplaced side chains throughout 

the protein, whereas the adapted Correa method performs better, most misplaced 

side chains occurring in turn or coil regions. 

Structure Validation in the Absence of Complete X-ray Data 

Prior to the availability of the full enolase and RNP-80 protein X-ray structures, 

we had already assessed the reliability of the RNP-80 motif constructed in our 

application of the Correa method. As a first criterion, we used the accessible 

surface area of side chain atoms to a 1.4 A spherical probe (equivalent to the radius 

of a water molecule).'^ The relative surface accessibility is given as the ratio 

between the solvent accessible surface of a side chain of amino acid X in the model 

structure and the solvent accessible surface of a side chain X in the tripeptide Gly-

X-Gly (<e—139, i- 135, χΙ-120).' The distribution of these values in high 
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Figure 3. Angular deviation of the side chain torsion angle χΐ in the enolase structures computed 
by the CSB-MD and SP-MD methods. 

resolution protein structures was studied by Reid and Thornton.' With the aid of 

their data amino acids can be identified which may have adopted an unusual 

conformation. If the side chain conformation of an amino acid shows a relative 

surface accessibility value which occurs in less than 7% of the side chain 

conformations of that same amino acid in high resolution proteins, it might be 

badly placed. In our RNP-80 structure, built with unsealed charges, we could locate 

15 residues which were possibly ill-placed. A majority (10) of these residues is 

located at the end of secondary structure elements or in turn and coil regions. 

Subsequently, we compared side chain torsion angles to the statistical 

distribution of side chains in known protein structures, containing 106 rotamers of 

the 19 nonglycine amino acids.13 Our model structure showed that 8 of 85 amino 

acids are in an unusual conformation, of which 6 are present in turn or coil 

regions. 

Finally, as a last criterion for the validity of a predicted structure, we examined 

the placement of the side chains of the polar amino acids, looking for side chains 

which point into the core of the protein even though they are not hydrogen 

bonded.' In our RNP-80 structure, 7 polar side chains of amino acids were not 
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hydrogen bonded, but they all point into the solvent and not into the core of the 

protein. 

When the atomic coordinates of RNP-80 became available, we checked whether 

or not we could find a correlation between amino acids predicted to be unusual 

according to the above criteria and amino acids for which there was a large 

deviation in the χ angles between the modeled and the X-ray structure. Indeed, 

about 70% of the χΐ angles with a deviation of more than 90° from the X-ray 

structure were detected by one or more of the criteria mentioned above, showing 

that these criteria can, to a certain extent, assist to estimate the validity of a model 

structure in the absence of complete X-ray data. 

SUMMARY AND CONCLUSIONS 

Our study shows that a molecular dynamics approach to generate full protein 

model structures from only the Ca coordinates yields reasonable structures. 

To construct a protein backbone, the CSB-MD and two other MD based 

procedures applied for comparison all produced structures of comparable quality. 

Our CSB-MD and combined SP-MD methods both yield good backbone structures 

very quickly. The SP-MD method uses information from known protein structures 

whereas in the CSB-MD method the backbone atoms are initially placed without 

any prior knowledge. The adapted Correa method performs best, suggesting that 

building the backbone one amino acid at a time, followed by stepwise 

minimization and by long MD calculations yields the best structures. If sufficient 

computer resources are available, this might be preferred, but if computer time is 

limited, either the CSB-MD or the SP-MD method can be used to generate a 

reliable backbone quickly. 

To position the side chains, the results of the combined SP-MD method show 

that MD calculations (at 300 K) on side chains, initially placed in an extended 

conformation, followed by a quick conformational search to relieve initial bumps, 

give reasonable results, which are comparable to other studies. In the CSB-MD 

method, side chains are also added in extended fashion, but no initial 

conformational search is performed and the MD calculations are done at high 

temperatures (800 K). GROMOS appeared to be very sensitive to these high 

temperatures, and it is not yet clear whether it is the high temperature or the 

absence of an initial conformational search of the side chains that causes side chain 

conformations of lesser quality. MD calculations on extended side chains at high 

temperature should be avoided until it is clear whether this high temperature causes 
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the bad positioning of side chains in the CSB-MD method, or whether the 

GROMOS force field can not cope with these high temperatures. Again, the 

adapted Correa method performs best, suggesting that the MD calculations are 

most valuable when used on a gradually growing structure, in which every level of 

newly added atoms is given time to acommodate. This method is recommended for 

the construction of side chains, when computer time is not limited. 

The CSB-MD method is rather time consuming, as are the two methods applied 

for comparison. For the small RNP-80 structure, the CSB-MD method took 80 hr 

of CPU time on a Convex С120, while the SP-MD method consumed 95 hr of 

CPU time and the adapted Correa method about 250 hr of CPU time (both on a 

Silicon Graphics Iris 4D/70GT). However, using each method on currently 

available hardware, computation times would be drastically reduced. An advantage 

of the CSB-MD method and the two methods run for comparison is that they all 

apply standard molecular modeling sofware packages and need no special databases, 

special computational routines, or even expert protein structure knowledge to 

extend a limited coordinate set to a complete protein structure. 

It is evident that the CSB-MD method, as well as the two other ones, can be 

used in other, more complicated, modeling problems. For example, structure 

prediction in homology modeling could rely on framework structures to be refined 

by MD techniques. Our calculations were on low-resolution Co¡ coordinates but in 

all cases where an approximate outline of the protein backbone is available, this 

backbone could be extended to a full coordinate set. 

In conclusion, our study shows that extensive MD calculations are promising in 

capturing, to some extent, details of the native protein conformation. These MD-

based methods will be generally applicable in protein structure prediction and the 

resulting protein structures can be used (within limits) with confidence to study the 

general structure of the protein involved, or as a basis for further model building 

of homologous protein structures. 
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ABSTRACT 

The secondary structures of human hYl and hY5 RNAs were determined using 
both chemical modification techniques and enzymatic structure probing. The 
results indicate that both for hYl and for hY5 RNA the secondary structure 
largely corresponds to the structure predicted by sequence alignment and 
computerized energy-minimization. However, some important deviations were 
observed. In the case of hYl RNA, two regions forming a predicted helix 
appeared to be single-stranded. Furthermore, the pyrimidine-rich region of hYl 
RNA appeared to be very resistant to reagents under native conditions, 
although it was accessible to chemical reagents under semi-denaturing 
conditions. This may point to yet unidentified tertiary interactions for this 
region of hYl RNA. In the case of hY5 RNA, two neighbouring internal loops 
in the predicted structure appeared to form one large internal loop. 
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INTRODUCTION 

Ro ribonudeoprotein particles (Ro RNPs) are present in the cytoplasm of 

eukaryotic cells (1, 2). They consist of one RNA molecule (called Y RNA) and 

three common proteins, called Ro60, Ro52 and La. The function of these RNPs is 

not yet known. 

In human cells four Y RNAs, called hYl, hY3, hY4 and hY5 RNA (ranging in 

length from 84 to 112 nucleotides) have been identified, while in other species two 

to four Y RNAs were found (3, 4). Recently, four distinct Y RNAs from Xenopus 

laevis have been identified and sequenced (5), three of which appeared to be related 

to hY3, hY4 and hY5 RNA, respectively. The fourth Xenopus Y RNA (called χΥα) 

did not appear to be a homologue of a human Y RNA. 

The hY RNAs do not contain modified nucleotides (6, 7) and their sequences 

show mutual homology, especially in the 5' and 3' parts. They also exhibit 

similarity at the secondary structure level. The predicted base-pairing between the 

5-' and 3'-regions of the molecule yields a conserved stem structure interrupted by 

a bulged residue and an internal loop. Furthermore, all hY RNAs contain a 

pyrimidine-rich region which varies in size between the different hY RNAs. 

Ribonuclease protection experiments showed that the Ro proteins bind to the 

lower part of the conserved stem (8) and studies with RNA mutants clearly 

demonstrated the importance of the bulged nucleotide in this region for Ro60 

binding (9). The La protein binds to the З'-oligouridine stretch present in all hY 

RNAs (9, 10). 

All secondary structures published for the hY RNAs originated from low-energy 

structure predictions (with minor adaptations in some cases) (3, 7, 8, 11, 12). Only 

in one case (7) limited nuclease SI digestion data for hY5 RNA were used. We 

therefore decided to investigate the conformation of hYl and hY5 RNA in more 

detail, while for hY3 and hY4 RNA some preliminary structure probing 

experiments were performed. Several RNases were used to establish single-stranded 

regions in the RNA, while RNase VI was used to locate double-stranded or stacked 

regions. Furthermore, chemical modifications with DMS, CMCT and kethoxal 

were carried out to probe the Watson-Crick positions of all four bases. 
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MATERIALS AND METHODS 

Sequence alignment and secondary structure prediction 

The alignment of the hY RNA sequences was made with the program 

CLUSTAL, which is part of the Wisconsin Package V 7.0 (13), and adjusted 

manually. The programs FOLD and MFOLD (14, 15) were used to generate 

optimal and suboptimal foldings. 

Preparation of hY RNAs 

In vitro transcription by T7 RNA polymerase was carried out as described (16). 

The hY RNAs were cloned into the £coRI and Hindm sites of pGEM-3Zf(+) (9) 

resulting in hY transcripts with 10 additional nucleotides (nts) at the 5' end 

(GGGCGAAUUC) and 5 nucleotides at the 3' end (AAGCU) derived from the 

vector. For hYl RNA synthesis an additional construct was made in which the 

transcription start site was positioned exactly at the first nucleotide of the hYl 

RNA encoding sequence and in which a Dral site was positioned at the sequence 

corresponding to the 3' end of hYl RNA. Dral linearization followed by T7 RNA 

polymerase transcription of this construct resulted in the synthesis of hYl RNA 

lacking additional nucleotides. 

5-' and 3-' end-labeling 

For 5'-end-labeling the RNAs were dephosphorylated at their 5'-ends and then 

labeled using [γ-32Ρ]ΑΤΡ and T4 polynucleotide kinase (Boehringer) as described 

previously (17). For 3'-end-labeling, a 20 μ\ reaction, containing 20 pmol RNA, 40 

fiCi [J2P]pCp (specific activity -3000 Ci/mmol), 1 mM ATP, 50 mM Tris-HCl pH 

7.8, 10 mM MgCl2, 10 mM ß-mercaptoethanol, 40 U RNAsin, and 9 U of T4 

RNA ligase, was incubated overnight at 4°C. The labeled RNAs were run over a 

Sephadex G-50 coarse spin column and were further purified by electrophoresis in 

a 10% polyacrylamide/urea gel. The full-length RNA products were excised from 

the gel and eluted overnight at 4 °C in a buffer containing 0.5 M NH«Ac (pH 6.5), 

10 mM MgCl2 and 0.1 % SDS (18). The labeled RNAs were precipitated with 

ethanol and dissolved in water. In case of 5'-end-labeling of 

oligodeoxyribonucleotides 10 pmoles of each oligonucleotide were incubated with 

15 pmoles [7-32P]ATP (specific activity -3000 Ci/mmol) and 5 U of T4 
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polynucleotide kinase for 45 min at 37°C in a 50 μ\ reaction containing 50 mM 

Tris-HCl pH 7.6, 10 mM MgCl2, 5 mM DTE and 1 mM EDTA. The labeled 

oligonucleotides were run on a Sephadex G-25 coarse spincolumn, after which they 

were precipitated with ethanol and dissolved in water. 

Enzymatic structure probing 

All enzymatic probing experiments were performed under native (N) and 

denaturing (D) conditions and were repeated at least three times to obtain 

consistent data, while preliminary data under semi-denaturing (SD) conditions were 

obtained. The amount of enzyme added was optimized to obtain single hit 

conditions. 5'-end-labeled RNA (2 χ IO4 cpm) was supplemented with 4 μ% of total 

yeast RNA as carrier. Digestions with RNase T l (0.1 U), RNase A (1x10* U), 

RNase T2 (0.1 U), RNase U2 (0.1 U), or RNase VI (0.08 U) were performed at 

room temperature for 10 minutes (N and SD), or at 50°C for 5 minutes (D). Buffer 

N contained 10 mM Tris-HCl pH 7.5, 10 mM MgCl2 and 50 mM KCl; Buffer SD 

contained 10 mM Tris-HCl pH 7.5, 50 mM KCl and 1 mM EDTA. Buffer D 

contained 7 M urea, 1 mM EDTA and 25 mM sodiumacetate. Nuclease SI 

reactions at pH 7.5 were performed with buffer N supplemented with 2.5 mM 

ZnCl2, and nuclease SI reactions at pH 4.5 were performed in a buffer containing 

50 mM sodiumacetate, pH 4.5, 10 mM MgCl2, 50 mM KCl and 1 mM ZnCl2. 

Chemical modification 

All chemical modification experiments were performed at least three times to 

obtain consistent data. Concentrations of chemicals were optimized to obtain single 

hit conditions. Chemical modifications were performed on 3'-end-labeled, 5'-end-

labeled, and on unlabeled RNA. The RNAs were modified under native, semi-

denaturing and denaturing conditions. Modification reactions were essentially 

carried out as described (18). In the primer-extension method, chemical 

modifications were performed using 0.3-0.5 /ig unlabeled RNA, while in the 

reactions with end-labeled RNAs 3 χ IO4 cpm was used 

Buffers: Buffer 1: 200 mM HEPES p H 8.0, 10 mM MgCl2, 50 mM KCl. Buffer Π: 

200 mM HEPES pH 8.0, 1 mM EDTA. Buffer Ш: 50 mM Na-borate pH 8.0, 10 

mM MgCl2, 50 mM KCl. Buffer Г : 50 mM Na-borate p H - 8 . 0 , 1 mM EDTA. 

Buffer V: 80 mM cacodylate pH 7.0, 100 mM KCl, 10 mM MgCl2. Buffer VI: 80 
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mM cacodylate pH 7.0, 1 mM EDTA. 

Dimetbylsulfate (DMS) treatment: 0.5 - 2 μί DMS was added to the sample in 200 

μί of Buffer I (native conditions) or Buffer Π (semi-denaturing conditions); 

incubation 5 min at 30CC. Under denaturing conditions 0.5-2.0 μί DMS was used 

in 300 μ\ Buffer Π; incubation 1 min at 90°C. Reactions were stopped by ethanol 

precipitation with 10 μg carrier tRNA. For modification of N3-C using end-labeled 

hYl RNA different amounts of DMS were added to 2xl04 cpm of hYl RNA in 

200 μ\ of Buffer I (N) of Buffer Π (SD, D); incubation for 5 min at 30°C, after 

which the reaction was stopped by ethanol precipitation. After this, a hydrazine-

aniline treatment was carried out (18) to produce strand scission at the site of the 

modification. 

CMCT treatment: A 42 mg/ml solution of CMCT (l-cyclohexyl-3-(2-morpholino 

ethyl)-carbodiimide metho-p-toluene sulfonate; Merck) was used. Under N and SD 

conditions, 50 μί CMCT was added to the sample in 150 μί Buffer ΠΙ (N) or Г 

(SD) for a number of different incubation times at 30°C. Under D conditions, 5-25 

μ\ CMCT was added to the sample in 150 μί of Buffer IV; incubation 1 min 90°C. 

Reactions were stopped by ethanol precipitation. 

Kethoxal treatment: A solution of kethoxal (20 mg/ml in 20% ethanol) was used 

and 1-5 /il of this solution was added to the sample in 50 μ\ Buffer V (N) or VI 

(SD); incubation 10 min at 30°C; under D conditions 0.5-2 μί kethoxal was added 

to the sample in 50 μί Buffer VI and incubated for 1 min at 90°C. 

Primer extension analysis 

Primer extension was carried out essentially as described (18). 

Oligodeoxyribonucleotide primers 5'- CTAAGCTTAAAAGACTAGTCAAGTG-

CAGT-3' and 5'-CTAAGCTTAAAACACGAAGCTAGTCAA-3', complementary 

to nucleotides 93-112 and 66-84 in hYl and hY5 RNA, respectively, were 5'-end-

labeled. Annealing was performed by dissolving the modified RNA template in 2 

μί H 2 0 containing 10 μg tRNA and 5xl04 cpm of labeled primer, heating at 90°C 

for 1 min, incubating on ice for 1 min and returning to room temperature for 10 

min. Extensions were achieved by adding 3 μί of a reverse transcription mix 

containing one unit of AMV reverse transcriptase (Boehringer) in 5 mM Tris-HCl, 

pH 8.0, 7 mM MgCl2, 50 mM KCl, 5 mM DTT, 170 μΜ dNTPs and incubation at 



82 Chapter 3 

37°C for 45 min. Reactions were stopped by adding 20 μ\ stopbuffer (50 mM Tris-

HC1 p H 8.3, 75 mM EDTA, 0.5% SDS). The RNA was hydrolyzed by adding 3 μ\ 

3M К О Н , followed by incubation at 90°C (3 min) and 37°C (1 hr). Then 6 /tl 

concentrated acetic acid was added and the D N A fragments were ethanol 

precipitated. 

Sequencing ladders of unmodified RNA were prepared by adding a 

dideoxynucleotide:deoxynucleotide mix (in a 1:10 ratio) to four different reverse 

transcriptase reactions. For obtaining a RNase T l ladder a reaction was performed 

as described under enzymatic probing, followed by primer extension. 

Reverse transcripts were analyzed on 10% denaturing Polyacrylamide gels. 

RESULTS 

Sequence alignment and secondary structure prediction 

Secondary structures for the hY RNAs were predicted with the programs 

FOLD and MFOLD (which also computes suboptimal foldings) (14, 15). 

Furthermore, a sequence alignment of the human Y RNAs was performed which is 

shown in Figure 1. Combination of the predicted structures and the sequence 

alignment resulted in structural models for the hY RNAs, which were 

subsequently tested experimentally. 

Figure 4 (see page 94) shows the secondary structure models for hYl and hY5 

RNA resulting from our studies and also the proposed nomenclature for the 

different stems and loops. The most prominent feature of the structures obtained is 

the sequence conservation of the 5' and 3' terminal regions of the hY RNAs, 

which are proposed to base-pair and form the characteristic stem of the hY RNAs 

(stems 1 and 2 in Figure 4), with the bulged cytidine at the 9th position from the 

5' end (C9; a C8-bulge is equally favourable from an energetic point of view; see 

below). Conservation also exists at the secondary structure level, showing 

covariation of paired residues, such that the conserved stems 1 and 2 can be formed 

in all hY RNAs. In this conserved part of the structure an asymmetrical internal 

loop with 1 nucleotide on the 5' part and 4 nucleotides on the 3' part is possible in 

all four hY RNAs. 
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Stem 1 Stem 2 

10 20 30 40 50 во 

hY1 [GGCÜGGÜCCG^AGJGOÄGÜGAäjUAUCUCAAUUGAUUGUUCACAGUCAGUUACAGAUCGAA 
hY3 GGCUGGUCCGAGUGCAGUG-GLIGUUUACAACUAAUUGAUCACAACCAGUUACAGAUU 
hY4 GGCUGGUCCGAUGGUAGUGGGIIUAUCAGAACUUAUUA---ACA-UIJAGUGUC- ACUAAA 
hY5 |AGUUGGUCCGA|GU|GUUGUGGG|UUAUU GUUA AGUU---GAUUUAA 

* ******** * * * * ** * * * * * * * 

Stem 2 Stem 1 
70 во о loo no 

hYi CUCCUUGUUCUACUCUUUCCCCCCUJC1JCA^UA^GCAC)ÜUG7CÜAGÍSL)UU 
hY3 -UCUUUGUUCC UUCUCCACUC С-CACUGC JUCAC UUGACUAGCC JUU 
hY4 - --GUUGGUAUACA ACCCCCCACUGCJAAAUUUGACUGGCUJ 
hY5 - -CAUUG UCUCC- - -gCCCACAAcIcGCGgUUGACUAGCuluGCUGUUUU 

*** * *** * ****** * * 

Figure 1. Sequence alignment of the human h Y RNAs. Conserved nucleotides are indicated with 
asterisks, while the sequences forming stem 1 and 2, are outlined The indicated numbering is from 
hYl RNA. 

Structure probing strategy 

For in vitro transcription of hYl and hY5 RNA constructs were used (see 

Materials and Methods) which resulted in some additional nucleotides at the 5'- and 

З'-ends of the molecules. These nucleotides, however, did not influence the 

predicted secondary structure, nor eliminated the binding of the Ro and La 

proteins (9). For hYl RNA only, a second construct was prepared which allows 

the production of hYl RNA without any additional nucleotides. HYl RNA from 

both constructs behaved similarly in the enzymatic probing experiments and only 

the hYl RNA without extensions was used in the chemical probing experiments. 

Two RNAs, hYl and hY5 RNA, were extensively probed both by enzymes and 

by chemical reagents. The enzymatic probing was performed with several RNases. 

Enzymes that cleave RNA when it is single-stranded are RNases A, Tl, U2, T2 

and nuclease Si. RNase Tl cleaves GpN bonds, RNase U2 ApN bonds, RNase A 

(Py)pN bonds while RNase T2 and Nuclease SI do not exhibit known sequence 

specificities (19). However, for RNase U2, the sequence specificity is limited at 

physiological pH (19, 20), and we did not succeed in obtaining satisfactory cleavage 

with this RNase under native conditions. RNase VI was used to detect double-

stranded or stacked regions. 
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In the chemical probing experiments, the Watson-Crick positions of the bases in 

hYl and hY5 RNA were modified with three base-specific chemicals, DMS, CMCT 

and kethoxal. DMS modifies the N1 atom in adenosines (Nl-A) and (more slowly) 

N3-C, CMCT reacts with N3-U and (more slowly) with Nl-G, and kethoxal reacts 

with Nl-G and N2-G (both N1 and N2 are required for the kethoxal reaction). All 

these positions are unreactive when base-pairing involving the atoms at Watson-

Crick positions occurs, except in the case of a G-U base-pair, where N2-G is 

accessible. 

Both the enzymatic and chemical probing experiments were performed under 

native conditions (N) (in the presence of magnesium), semi-denaturing conditions 

(SD) (in the presence of EDTA) and denaturing conditions (D) (high temperature, 

in the presence of EDTA). Tertiary interactions are generally less stable than 

Watson-Crick interactions and are expected to melt under semi-denaturing 

conditions (18). Semi-denaturing conditions also give information about the 

stability of the different helical domains in an RNA molecule. 

Chemically modified nucleotides were detected by primer extension analysis: a 

modified nucleotide causes reverse transcriptase (RT) to stop at the nucleotide 

immediately 3' to the modification and the reverse transcriptase products are 

subsequently analyzed on a denaturing Polyacrylamide gel. Furthermore, the N3 

positions of cytosines in hYl RNA were also probed with DMS using end-labeled 

RNA, in this way allowing direct detection of the modifications. 

Control incubations, in which the reagent was omitted, were always performed 

in parallel to detect spontaneous pyrimidine-purine breaks - which easily occur in 

RNA (18, 21), and, in the case of the primer extension method, to detect stops of 

RT. RT-stops reflect the tendency of RT to stop or pause at particular structural 

elements in the RNA (21). 

The structure of hYl RNA 

Figures 2A through 2D show examples of the enzymatic and chemical probing 

results for hYl RNA, while Figure 4A summarizes the results of several 

independent probing experiments. 

Stems 1 and 2 and internal loop 1. The formation of the (conserved) stems 1 and 2 

is clearly substantiated by RNase VI cleavages (see Figure 2A) and by the chemical 

probing data, although the region around nucleotide 88 to 90 may be somewhat 

less stable. The bulged C9 was moderately cleaved by single-strand-specific RNase 
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Figure 2. Structure probing of hYl RNA. (A) Enzymatic probing of hYl RNA. С: control lanes, 
in which no enzyme was added. Denaturing conditions: lanes 1 to 4. Lane 2: RNase A (6 χ 10* 

U). Lane 3: RNase Tl (0.13 U). Lane 4: RNase U2 (0.08 U). Native conditions: lanes 5 to 11. 

Lanes 6 and 7: RNase A (1.5 χ 10s and 4.5 χ IO5 U). Lanes 8 and 9: RNase Tl (0.13 and 0.5 U). 

Lanes 10 and 11: RNase VI (0.08 and 0.3 U). Note that products of RNase VI digestion run one 

base more slowly than those in the other lanes due to the absence of a 3' phosphate (33,34). (B) 

Enzymatic probing of hYl RNA. Native conditions: lanes 1 to 6. Lane 2: RNase A (6 χ IO6 U). 

Lane 3: RNase Tl (0.5 U). Lanes 4 and 5: RNase T2 (0.1 and 0.05 U). Lane 6: RNase VI (0.08 U). 

(Figure continued on next page). 
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Figure 2 (continued) (С) Chemical probing of hYl RNA with DMS and CMCT DMS 
modifications are shown in lanes 1 to 6 and CMCT modifications in lanes 9 to 17 Samples in lanes 
1, 4, 7, 9, 12, 15 are control incubations where reagent was omitted. The reaction conditions are 
indicated above the figures- N (native conditions), SD (semi-denatunng conditions), D (denatunng 
conditions). Lanes 2 and 5: 5 μΐ DMS incubated for IS minutes Lanes 3 and 6: 10 μΐ DMS 
incubated for 15 minutes. Lanes 10, 11, 13 and 14: 50 μ\ CMCT incubated for 20, 30, 5 and 10 
minutes, respectively. Lanes 16 and 17: 10 and 25 /il CMCT, incubated for 1 minute Lane 8. 
kethoxal modification under D conditions to generate a sequence ladder. U,G: dideoxy sequencing 
lanes, indicated nucleotides are converted into hYl RNA sequence (D) Chemical probing of hYl 
RNA with CMCT. Samples in lanes 1, 4 and 7 are control incubations where reagent was omitted. 
Lanes 2, 3, 5 and 6. 50 μ\ CMCT incubated for 20, 30, 5 and 10 minutes, respectively. Lanes 8 and 
9. 10 and 25 μ\ CMCT, incubated for 1 minute. U,G dideoxy sequencing lanes 

A, while also some RNase VI cleavage was found in this region. Both by primer 

extension (Figure 2C) and by using end-labeled hYl RNA (data not shown) the 

N3-C position of C9 was shown to be accessible to DMS under native conditions. 

Moderate C8 modification was only detected using end-labeled RNA (data not 

shown), which suggests an equilibrium between C9-G102 and C8-G102 pairing, 

with C8-G102 pairing in the majority of the molecules. A12, located in internal 

loop 1, and A l l , located in an Α-U pair bordering this loop, both show an 

accessible N1 atom (see Figure 2C). Nucleotides 96-99 were shown to be single-

stranded, consistent with their localization in internal loop 1 (see Figure 2B). 

The 3' oligo-U stretch, the binding site of the La protein, was found single-

stranded since RNase T2 efficiently trimmed the full-length hYl RNA to a length 

corresponding to 109 nucleotides (Figure 2B). Because we used 5'-end-labeled RNA 

in this experiment the RNA must have lost the oligo-U stretch at the 3' end 

confirming that the oligo-U stretch of hYl RNA is single-stranded. 

Stem-loops 3 and 4. The formation of stem 3 was confirmed by both enzymatic 

(Figure 2A and 2B) and chemical probing (Figure 2C), although this stem appeared 

to be breathing. It contains mainly Α-U and G-U pairs, and thus is less stable than 

G-C rich stems. Indeed, several bases in this region were reactive under semi-

denaturing conditions and some even under native conditions. Stem 4 appeared to 

be even less stable than stem 3, with sometimes weak RNase VI cleavages at 

nucleotides 58 and 59. The chemical probing results also indicate that stem 4 exists, 

but is relatively unstable. 

Loop 3 and loop 4 were clearly single-stranded, as shown by the absence of 

RNase VI cleavages, the presence of RNase A and T2 cleavages (Figure 2A and 

2B) and by the chemical probing data (Figures 2C and 2D). 
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Internal loop 2. Loop 2a (see Figure 4A), which was in a former secondary-

structure model predicted to form a stem (base-pairing of nts 24-27 with nts 53-56), 

was efficiently cleaved by the single-strand specific enzymes (Figure 2B). 

Furthermore, the chemical modification data show that almost all bases were fully 

reactive at their Watson-Crick positions under native conditions (Figure 2C). 

Therefore, it can be concluded that this part of the structure is single-stranded 

under the conditions used for probing and is part of a large internal loop (loop 2), 

as is shown in Figure 4A. In some experiments, weak RNase VI cleavage was 

found between nt G21 and U22. These cleavages are probably due to base stacking 

in this region of the loop. 

Remarkably, the large pyrimidine-rich region in hYl RNA (loop 2b) could not 

be cleaved at all by the enzymes (see Figures 2A and 2B), not even under 

denaturing conditions (urea and 50°C), although in some experiments this region 

did show a smear under semi-denaturing conditions (data not shown). Reactions 

with nuclease SI at low (pH = 4.5) and neutral pH (pH=»7.5), did not result in 

cleavages in the pyrimidine-rich region (data not shown). In the chemical 

modification reactions with DMS and CMCT, most of the nucleotides in the 

pyrimidine-rich loop could be modified under SD conditions, but not under native 

conditions. In Figure 2D this is shown for the CMCT reaction. The behaviour of 

the pyrimidine-rich region may point to the existence of long-range interactions in 

the tertiary structure of the molecule (see Discussion). Many RT-stops in this 

pyrimidine-rich region were reproducibly found, but DMS modifications on end-

labeled hYl RNA (data not shown), allowing the probing of N3-C positions, 

facilitated the deduction of information on these cytosines. 

The structure of hY5 RNA 

Figures ЗА through 3D show examples of the enzymatic and chemical probing 

results for hY5 RNA, while Figure 4B summarizes the results of several 

independent experiments. 

Stems 1 and 2 and internal loop 1. The formation of the conserved stem 1 was 

confirmed both by the chemical and enzymatic probing data. Strong RNase VI 

cuts were only found near residues C9 and G10 (Figure ЗА), probably indicating 

that C9 is stacked in the helix, whereas weak RNase VI cleavages were found in 

other parts of stem 1. As in hYl RNA, a weak RNase A cleavage was found at C9. 

Because the primer extension method showed an RT-stop at C9, no definite 
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Figure 3. Structure probing of hY5 RNA. (A) Enzymatic probing of hY5 RNA. С: control lane, 
in which no enzyme was added. Denaturing conditions: lanes 1 to 4. Lane 2: RNase A (6 χ 10* U). 
Lane 3: RNase Tl (0.13 U). Lane 4: RNase U2 (0.08 U). Native conditions: lanes 5 to 11. Lanes 6 
and 7: RNase Tl (0.15 and 0.05 U). Lanes 8 and 9: RNase A (5 χ 10* and 2 χ 10* U). Lanes 10 
and 11: RNase VI (0.06 U). (B) Chemical probing of hY5 RNA with CMCT. Lanes 1 and 5: 
control lanes. The reaction conditions are indicated above the figures. Lanes 2, 3 and 4: 50 μ\ 
CMCT incubated for 10, 20 and 30 minutes, respectively. Lanes 6, 7 and 8: 10, 25 and 40 μ\ 
CMCT incubated for 1 minute. (Figure continued on next page). 



90 Chapter 3 

С Kethoxal 
N SD D TI TI 

^m mm. w#. ЩШ0 шш Щ00 <MP 

1 i l i 
Stem 2 

G19 

Loop 3 

-G27 

-G32 

-G35 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Figure 3 (Continued) (С) Chemical probing of hY5 RNA with kethoxal. Lanes 1, 5, 8: control 
lanes. The reaction conditions are indicated above the figures. Lanes 2, 3 and 4: 1, 2 and 5 μΐ 

kethoxal, incubated for 10 minutes. Lanes 6 and 7: 1 and 2 μΐ kethoxal incubated for 10 minutes. 

Lanes 9, 10 and 11: 0.5, 1 and 2 μ\ kethoxal, incubated for 1 minute. Lanes 12 and 13: RNase Tl 

ladder. (Figure continued on next page). 

conclusion can be drawn whether C9 is looping out or is stacked inside the helix. 

The reactivity of the G's in stem 1 under SD conditions was only seen in the 

kethoxal and not in CMCT experiments (Figure 3C; see also Discussion). 

Stem 2 contained RNase VI cleavages, confirming its double-stranded nature, 

although the lower part of this stem appeared to be breathing. U13 is accessible to 

CMCT (Figure 3B), which is comparable to the situation in hYl RNA where A12 

is accessible to DMS. G12 and G14 are accessible to CMCT under native 

conditions (see Figure 3B) and the base-pairing of G10 through G12 with C65 

through U67 appeared to be of intermediate stability. In comparison with the low-

energy secondary structure predictions, our probing data indicated that loop 1 is 

located at a different position (nucleotides 13 and 61-64 rather than nucleotides 16 
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Figure 3 (Continued) (D) Chemical probing of hY5 RNA with DMS. Lanes 1, 5, 9: control lanes. 
The reaction conditions are indicated above the figures. Lanes 2, 3 and 4: 0.5, 1 and 2 μ\ DMS 
incubated for 10 minutes. Lanes 6, 7 and 8: 0.5, 1 and 2 μ\ DMS incubated for 10 minutes. Lanes 
10, 11 and '2: 0.5, 1 and 2 μ\ DMS incubated for 1 minute. 

and 58-61), which also is in better agreement with the alignment data (Figure 1). 

Regarding the 3' oligo-U stretch, the binding site of the La protein, always two 

bands were seen in the enzymatic probing experiments; one with a length 

corresponding to the full-length hY5 RNA, the other containing some additional 

nucleotides (see Figure ЗА) as described in the Material and Methods section. This 

probably indicates that the additional nucleotides are not stable and are probably 

removed during the incubation, even in the absence of any enzyme. Several 

phosphodiester bonds in the 3' oligo-U stretch are cleaved by single-strand-specific 

RNases corroborating the notion that it is single-stranded. 

Stem-loop 3. The hairpin formed by stem 3 and loop 3 was shown to exist in 

solution by both enzymatic and chemical probing. However, the stem consists 

almost completely of Α-U base-pairs and appears to be not very stable. Most of the 

adenosines are moderately reactive with DMS under native conditions, while the 

complementary uridines were reactive to CMCT only under semi-denaturing and 
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denaturing conditions (Figures 3B and 3D). This difference is probably related to 

the fact that the Nl-A is modified by the relatively small DMS reagent (M r-126), 

while the N3-U on the opposite strand cannot be modified by the more bulky 

CMCT reagent (M r-423). A similar phenomenon has been observed frequently in 

other RNAs (18, 21-23). 

The nucleotides of loop 3 are accessible under native conditions for both single-

strand-specific enzymes and chemical reagents (Figures ЗА through 3D). A 

differential reactivity was observed for G32 and G35 which were modified by 

kethoxal but not by CMCT (see Discussion). 

Internal loop 2. In the predicted secondary structure in this region, two base-pairs 

exist, U23-G46 and A24-U45, which separate the asymmetrical internal loop 2 into 

a smaller internal loop and a mismatch U25-U44. However, both the enzymatic 

and chemical probing data show that only one 'large' internal loop is present, of 

which nearly all the nucleotides are accessible at their Watson-Crick positions. See 

for example the CMCT probing results in Figure 3B. In contrast to the large 

pyrimidine-rich region in hYl RNA, the pyrimidine-rich region in hY5 RNA is 

fully accessible. Some RNase VI cleavages were detected at nucleotides 43-45, 

probably due to stacking tertiary interactions of these bases (see Discussion). 

DISCUSSION 

The utilization of structure-specific probes allowed us to map the hY RNA 

conformation in detail and provided experimental evidence for the secondary 

structures of hYl and hY5 RNA. The secondary structures obtained largely 

correspond to the structures predicted by combining free-energy minimizations and 

alignment data, although some important deviations could be observed. 

Secondary Structure 

The conserved stems 1 and 2 do exist, both in hYl and hY5 RNA. The internal 

loop 1 containing one nucleotide in the 5' part and four nucleotides in the 3' part 

is present in both RNAs at the position predicted after combining alignment data 

and low-energy predictions. U13 in hY5 RNA and A12 in hYl RNA are located 

outside the helix and the bordering nucleotides (G12 and G14 in hY5 RNA and 

A l l in hYl RNA) showed enhanced reactivities, which agrees with their location 

at the end of helical regions bordering an internal loop. 
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The bulged nucleotide C9 in both hYl and hY5 RNA showed some RNase VI 

reactivity, which might result from stacking of the cytosine in the helix, but also 

some RNase A cleavage was observed. In the chemical modifications the N3 

position of C9 could be shown to be modified by DMS in hYl RNA. Taken 

together, the behaviour of C9 indicates that the base is probably looping out in the 

majority of the molecules, while in a small percentage of the molecules base-pairing 

of C9-G102 occurs and C8 is bulging out. Similar equilibria, although not 

involving G-C pairs, have been observed in other RNAs as well (24, 25). Previous 

experiments have demonstrated that the identity of the base at position 9 is 

important for the recognition by Ro60 (9). Possibly Ro60 selects one of the 

alternative structures in this region and stabilizes its conformation during binding. 

Our results also suggest that the base-pairs which separate C9 and the internal 

loop 1 are not very stable. This may point to the existence of an equilibrium 

between two structures, one in which there is a bulge and an internal loop (loop 1) 

and a second structure in which there is a larger internal loop. Both alternatives are 

also possible when thermodynamic data are considered. 

The La-binding site, the 3' oligo-U stretch, is single-stranded, as was expected 

because the La protein can bind to both Y RNA constructs (9). 

A pyrimidine-rich region of different length is present in internal loop 2 of both 

hYl and hY5 RNA. In hYl RNA the structure of this region was difficult to 

assess. Attempts to demonstrate that the loop 2b region in hYl RNA is single-

stranded by hybridization with an antisense oligonucleotide followed by RNase H 

cleavage were not successful (data not shown). However, the pyrimidine-rich region 

was accessible to modifying reagents under SD conditions, which indicates that it is 

single-stranded under these conditions but not under native conditions (see also 

below). 

In contrast, in hY5 RNA, the pyrimidine-rich region is clearly single-stranded 

under native conditions. A differential reactivity with kethoxal on one hand and 

CMCT on the other hand was found for several guanosines in hY5 RNA. For 

example, G46 was reactive with kethoxal but not with CMCT. This may be 

explained by stacking of these bases, but alternative explanations could be that 

CMCT reacts more slowly with G's than kethoxal or the fact that CMCT is larger 

than kethoxal and therefore cannot approach the nucleotide. Similar differences in 

reactivity of a single base with CMCT and kethoxal have been observed before (26, 

27). 

Stem 3 and 4 in hYl RNA and stem 3 in hY5 RNA are formed but in all cases 

these stems are relatively unstable and are breathing. 
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Figure 4. Summary of the structure probing of hYl and hY5 RNA (A) Reactivities of nucleotides 
in hYl RNA towards chemical and enzymatic probes Reactivity towards chemical probes. 
Reactivity under native conditions is indicated by bold (strong reactivity) and light (moderate 
reactivity) circles around the nucleotides Nucleotides which are unreactive under native conditions 
but reactive under semi-denaturing conditions are indicated by bold (strong reactivity) and light 
(moderate reactivity) squares around the nucleotide Asterisks indicate natural stops of reverse 
transcriptase. Reactivity towards single-strand-specific RNases (Tl, A, T2) under native conditions 
is indicated by small solid circle (strong reactivity) and small open circle (moderate reactivity). 
RNase VI cleavage is shown with solid (strong reactivity) and open (moderate reactivity) triangles, 
respectively (B) (opposite page) Reactivities of nucleotides m hY5 RNA towards chemical and 
enzymatic probes. Symbols are identical to those in (A). 
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Comparison with other Y RNA structures 

In Figure 5, the secondary structures of all four hY RNAs are shown. For hY3 

and hY4 RNAs we also performed some preliminary enzymatic probing 

experiments (unpublished data), and the data obtained support the structures 

depicted in Figure 5. However, in both hY3 and hY4 RNA the pyrimidine-rich 

regions, which form the 3' part of an internal loop, could not be efficiently probed 

by enzymes, analogous to the situation in hYl RNA. The 5' part of the internal 

loop showed both single-stranded behaviour and reactivity with RNase VI, which 

is similar to what was observed for hYl RNA. 
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Figure 5. Secondary structure models for the human Y RNAs obtained by combining predicted 
structures and the obtained probing results. 

Recently, Xenopus laevts Y RNAs were isolated and sequenced (5). Xenopus Uevts 

cells contain four distinct Y RNAs, three of which (xY3, xY4 and xY5 RNA) show 

sequence similarity to hY3, hY4 and hY5 RNA, respectively. Surprisingly, no 

homologue for hYl RNA was found. Instead another Y RNA (called χΥα) was 

characterized, which does not appear to represent the Xenopus laevts counterpart of 

one of the hY RNAs. All the Xenopus Y RNAs are predicted to form a secondary 

structure similar to that of the h Y RNAs (Figure 5). In all χ Y RNAs stem 1, 

including a bulged C9 residue, can be formed. In the conserved stem 2, there is a 

mismatch in xY4 and a bulged residue in χΥα, while the other two xY RNAs 

apparently contain a 'perfect' stem 2. All xY RNAs also contain a pyrimidine-rich 

region, predicted to be located in an internal loop, as has been found for the hY 

RNAs. 

Possible tertiary interactions 

Bases that are reactive with chemical reagents under semi-denaturing conditions 

but protected under native conditions are most likely involved in tertiary 

interactions. An alternative explanation is that these nucleotides are stacked under 

native conditions. Nucleotides in interhelical regions (like internal loops) in RNAs 

are known to show all kinds of behaviour in structure probing experiments, 
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ranging from high reactivity to complete protection (28). Examples of this type of 

behaviour are found in the adenovirus-associated RNAs (VA RNAs) and Epstein-

Barr virus RNAs (EBER RNAs) (29, 30). These RNAs show secondary structure 

similarity to the hY RNAs, and can also bind the La protein. EBER-2 RNA 

contains an internal loop of 20 nucleotides (22), most of which are accessible for 

modification under native conditions. However, in the case of VA I RNA, several 

nucleotides in a large internal loop, called the central domain, are resistant to 

single-strand-specific RNases. This region, which is important for the recognition 

of VA RNA by the double-stranded RNA dependent protein kinase PKR (29), 

shows some RNase VI cleavages, and is believed to contain an alternative structure 

in which tertiary interactions play a significant role. Another example is mouse 

RNase MRP RNA, which contains a large single-stranded loop of which only one 

third of the nucleotides are accessible at their Watson-Crick positions under native 

conditions (31). 

In hYl RNA, the behaviour of the nucleotides in the pyrimidine-rich region 

suggests that either tertiary interactions under native conditions block accessibility 

or that this region under native conditions adopts a strange, yet unidentified, 

structure, in which Watson-Crick positions are inaccessible. Furthermore, RNase 

VI cleavage in the 5' part of loop 2 was observed which may also be explained by 

tertiary interactions in this region or alternatively by base stacking. In conclusion, 

our results suggest that an intrinsic tertiary structure involving loop 2 is present in 

hYl RNA. It is possible that this tertiary folding is determined by non-Watson-

Crick interactions. Examples of such interactions have been described in 5S rRNA, 

and in the Rev Responsive Element (RRE) of НГ -1 RNAs (32), where in both 

cases these unusual regions form the binding site of a protein. 

In contrast to the situation in hYl RNA, the pyrimidine-rich region in hY5 

RNA appeared to be fully accessible at the Watson-Crick positions. Under native 

conditions some RNase VI cleavages were found (nt 43-45), suggesting that to some 

extent base-pairing or stacking occurs. Base-pairing of U23 and A24 with G46 and 

U45, respectively, as was the case in the predicted secondary structure for hY5 

RNA, would explain these cleavages and thus might be present temporarily or in a 

subset of the molecules. 

Nearly all the human and Xenopus Y RNAs have limited base-pairing 

possibilities (ranging from 2 to 4 base-pairs, mostly G-U and Α-U) between the 5' 

part and 3' part of the large internal loop. It is possible that these potential 

interactions, which may be stabilized by protein binding, are present when the Y 

RNAs exert their yet unknown function, while at another time the internal loop is 
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open. 

Knowledge about the structure of the Y RNAs is an important step towards 

understanding more about the function of the Y RNAs and Ro RNPs. Structure 

probing experiments performed on the Ro RNP particles are required to determine 

if the RNA structure changes when the RNA is bound by protein and to 

determine exactly which nucleotides are involved in protein binding 
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The human U1A protein-UlA pre-mRNA complex and the relationship 
between its structure and function in inhibition of polyadenylation in vitro 
were investigated. Two molecules of U1A protein were shown to bind to a 
conserved region in the 3' untranslated region of U1A pre-mRNA. The 
secondary structure of this region was determined by a combination of 
theoretical prediction, phylogenetic sequence alignment, enzymatic structure 
probing and molecular genetics. The U1A binding sites form (part of) a 
complex secondary structure which is significantly different from the binding 
site of U1A protein on Ul snRNA. Studies with mutant pre-mRNAs showed 
that the integrity of much of this structure is required for both high affinity 
binding to U1A protein and specific inhibition of polyadenylation in vitro. In 
particular, binding of a single molecule of U1A protein to U1A pre-mRNA is 
not sufficient to produce efficient inhibition of polyadenylation. 
Key words: polyadenylation/RNA-protein interaction/RNA structure/Ul snRNP/ 
U1A protein 
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INTRODUCTION 

The removal of introns from pre-messenger RNA, known as splicing, is an 

important process in which several small ribonucleoprotein particles (snRNPs) 

participate. One of them, U l snRNP, interaas with the pre-mRNA by а 

mechanism that includes pairing between bases at the 5' end of U l snRNA and 

sequences located at the 5' splice site. U l snRNPs contain at least eight proteins 

(B', B, D l , D2, D3, E, F and G), which also occur in other U snRNPs, and three 

Ul-specific proteins named 70K, U I C and U1A (Liihrmann et al., 1990). The UIA 

protein binds directly to the second stem-loop of U l snRNA (Scherly et al., 1989; 

Lutz-Freyermuth et al., 1990). The protein contains two R N P motifs, of which the 

N-terminal copy is responsible for binding to U l snRNA (Scherly et al., 1989; 

Lutz-Freyermuth et al, 1990; Nagai et al., 1990; Jessen et al., 1991; Hall and Stump, 

1992). The structure of this domain of the U I A protein has been determined by X-

ray crystallography and NMR studies (Nagai et al., 1990; Hoffman et al., 1991) and 

consists of a four-stranded antiparallel ß-sheet with two α-helices lying on the same 

side of the sheet. 

The loop of the hairpin to which U1A binds has the sequence 

A U U G C A C U C C . It has been shown that the first seven nucleotides, AUUGCAC, 

which are highly conserved between U l snRNAs from various species, are critical 

for specific U1A protein binding, while the structural context of this sequence 

affects binding affinity (Scherly et al., 1989, 1990; Bentley and Keene, 1991; Tsai et 

al., 1991). If the loop sequence of stem-loop Π of U l snRNA is present in the 

absence of a stable stem, the affinity for the U1A protein drops (Scherly et al., 

1989; Tsai et al., 1991). Quantitative mobility shift assays of the loop sequence of 

stem-loop Π, present either in a linear structural context or in a hairpin structure 

with a loop larger than that found in U l snRNA, showed an — 100-fold reduction 

in binding affinity for the U1A protein relative to the wild type stem-loop Π (Tsai 

et al., 1991). RNase protection experiments on U l snRNP particles showed that 

both the loop sequence and — 5 bp of the stem are protected by the U1A protein 

(Bach et al., 1990). Bound U I A protein also protects several 5' stem phosphates, as 

well as some loop phosphates, against ethylation by ethylnitrosourea ([essen et al., 

1991). 

Recently it has been shown that the 3' untranslated region (UTR) of the U1A 

pre-mRNA contains a region which has been conserved between vertebrate species 

(Boelens et al., 1993). This region contains two stretches of seven nucleotides, one 

of which is identical to the seven nucleotides of the U l snRNA loop mentioned 
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above, while the other is the same in six out of seven positions. These sequences 

will be referred to as Box 1 and Box 2 respectively in this paper, with Box 1 being 

the more 5' of the two. Boxes 1 and 2 are located in close proximity to the 

cleavage and polyadenylation signal. The distance between the two boxes is 

conserved, as is the distance from Box 2 to the polyadenylation signal. 

It was demonstrated that binding of U1A protein to this region of the U1A pre-

mRNA, which depends upon these Ul snRNA-like sequences, causes inhibition of 

polyadenylation of the U1A pre-mRNA (Boelens et al, 1993). Although it was not 

determined how many molecules of U1A protein were bound to each pre-mRNA, 

the number was shown to be greater than one. 

In the experiments reported here, the structure of the UlA-binding region of 

the pre-mRNA was investigated by a variety of techniques and the number of 

protein molecules bound was determined. Further, the structural characteristics of 

the U1A protein - U1A pre-mRNA complex were examined in relation to its 

function in inhibition of polyadenylation. The Ul snRNA-like sequences are 

shown to form parts of two asymmetric internal loops present in a complex 

secondary structure. This part of the U1A pre-mRNA is compared with stem-loop 

Π of Ul snRNA, the other RNA structure to which U1A protein is known to 

bind specifically. 

RESULTS 

Two molecules of U1A protein bind to the pre-mRNA 

It was previously shown (Boelens et al., 1993) that more than one molecule of 

U1A protein is able to bind to each U1A pre-mRNA. To determine the exact 

number of bound protein molecules, we adapted an assay often used to examine 

DNA-protein complexes (Hope and Struhl, 1987). Two differently sized U1A 

protein derivatives that bind to Ul snRNA with similar affinity (Lutz-Freyermuth 

et al., 1990; Nagai et al., 1990) were produced in, and purified from, Escherichia coli. 

These were full-length U1A (Awt) protein and a fragment of U1A containing the 

N-terminal 101 amino acids (A101). The two proteins were allowed to bind to a 

region of the U1A pre-mRNA (the Ag fragment) shown to be necessary and 

sufficient for U1A binding (Boelens et al., 1993) and the resultant complexes 

analyzed by native gel electrophoresis. The Ag fragment contains the human U1A 

pre-mRNA sequences shown in Figure 2A plus 33 nt of 3' flanking sequence from 

the U1A gene and 8 nt of 5' flanking sequence derived from the cloning vector. 
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The position of unbound Ag RNA after native gel electrophoresis is shown in 

lane 1 of Figure 1. Addition of either A101 or Awt protein (represented by empty 

and filled squares respectively) results in the appearance of two retarded complexes 

(lanes 2 and 4) suggestive of binding of either one or two proteins to the RNA. 

The differential requirement for Awt and A101 protein in complex formation was 

probably due to the fact that much of the Awt protein in this particular 

preparation was not competent in RNA binding, since other preparations of Awt 

exhibited greater RNA binding capacity (data not shown). No additional 

intermediate complexes were seen when less protein was added (data not shown) 

while increasing the amount of either protein resulted in disappearance of both free 

RNA and the lower of the two RNA-protein complexes with a concomitant 

increase in the upper complex (lanes 3 and 5). Next, the two U1A derivatives were 

mixed before RNA binding (lanes 6 and 7). In addition to the two previously 

Awt ng 
A101 ng -

. 
.5 1 

80 160 80 160 
- - .5 1 

1 2 3 4 5 6 7 

Figure 1. Two molecules of U1A protein bind to each pre-mRNA. "P-labelled Agwt RNA was 
incubated without U1A protein (lane 1), with A101 protein (lanes 2-3), with UlAwt protein (lanes 
4-5) or with a mixture of A101 and UlAwt (lanes 6-7). The amount of protein added is indicated 
above the lanes. The boxes on the right represent the protein components of the complexes. Filled 
boxes are UlAwt and empty boxes A101. 
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detected, slowly migrating complexes (cf. lanes 3 and 5) a single additional complex 

of intermediate mobility was seen. The lack of additional intermediate complexes 

indicates that two, and not more, molecules of U1A bind to each RNA. 

Sequence alignment and structure prediction 

While the entire 3' UTRs of human and mouse U1A mRNAs are very similar 

(79% identical), the only region of high conservation of both with the Xenopus 

U1A mRNA sequence starts ~ 55 nt upstream of the A(A/U)UAAA cleavage and 

polyadenylation signals (Figure 2A) (Sillekens et al., 1987; Scherly et ai, 1991; M. 

Bennett and J. Craft, personal communication). The entire region encompassing 

Boxes 1 and 2 and the cleavage and polyadenylation signal (Figure 2A) is 73% 

identical between human and Xenopus and 93% identical between human and 

mouse. The spacing between Box 2 and the polyadenylation signal is also identical 

for the three sequences. This localized sequence conservation and the fact that the 

Ag fragment has an affinity for U1A protein indistinguishable from that of the 

entire U1A pre-mRNA (see below), led us to expect that the Ag fragment would 

fold similarly either alone or in the context of the complete pre-mRNA. 

Optimal and suboptimal foldings were calculated for the complete human and 

Xenopus U1A pre-mRNAs, for the 3' UTR sequences of the cDNAs and for 

segments of these 3 ' UTRs, using the FOLD and MFOLD programs (Jaeger et al., 

1990; Zuker et ai, 1991). In the majority of the predicted low-energy structures the 

Box 1 and 2 sequences are partially or completely single-stranded and are separated 

by a phylogenetically conserved stem-loop. Several possible structures exist for the 

sequences flanking the boxes, especially for the region which contains the cleavage 

and polyadenylation signal. 

Secondary structure models were derived by combining phylogenetic and free 

energy data. The version in Figure 2B is that for the human U1A mRNA. The 

model consists of two distinct parts. The 5' part contains three stems (numbered 1, 

2 and 3), separated by two asymmetric internal loops containing the Box 1 and 2 

sequences. A single unpaired nucleotide is present on the strand opposite each box 

sequence. 

Comparison with the Xenopus U1A mRNA sequence provides support for the 

5' part of the model between AIO and U53 (Figure 3B; the conserved region lies 

between the large arrows). All non-conserved nucleotides in this region are at 
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Figure 2. (A) Sequence alignment of the conserved part of the 3'UTR sequences of human, mouse 
and Xenopus laevis U1A pre-mRNAs Nucleotides that are identical in all three sequences are 
marked and the Box 1, Box 2 and polyadenylation sequences are indicated No sequences 3' to 
those shown are available from either U1A cDNAs or the U1A gene of Xenopus (B) Proposed 
secondary structure of the 3'UTR of the human U1A pre-mRNA The Box 1 and 2 sequences, the 
cleavage and polyadenylation signal and stems 1, 2, 3 and 4 are indicated 
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unpaired positions with the exception of the A35 to G change, but this difference 

replaces an Α-U pair with G-U. The extra nucleotide that is inserted in the Xenopus 

sequence is located in the terminal loop. Outside of this region phylogenetic 

support for the model is weak. Stem 1 in the Xenopus sequence is only 3 bp long. 

Further, although it is possible to draw hairpin structures in which the cleavage 

and polyadenylation signals are in loops, these are not well conserved with respect 

to the human structure in either the Xenopus or mouse U1A pre-mRNAs. One 

interesting aspect of the Xenopus sequence is that the non-conserved nucleotides in 

the two boxes are reversed in position (Figure 3B). 

Enzymatic structure probing 

To test the proposed structure, RNase digestions of 5' end-labelled Ag fragments 

were carried out under native and denaturing conditions using RNases A, U2, Tl, 

T2 and VI. A typical example of the results is shown in Figure ЗА, while Figure 

3B summarizes the results of several independent experiments. It can be seen that 

the central three nucleotides of the Box 1 and Box 2 sequences [nt 15-17 (UGU) in 

Box 1 and nt 41-43 (UGC) in Box 2] are cleaved efficiently by the enzymes TI, A 

and T2, which are known to cut 3' of nucleotides present in single-stranded 

regions. In some experiments RNase T2 also appears to cut between other 

nucleotides in Boxes 1 and 2, but these cleavages were less reproducible. The 

terminal loop (nt 30-33) was almost never cut under native conditions, suggesting 

that its structure is very compact. 

RNase VI cuts, which indicate double-stranded or stacked bases, were clearly 

seen in the regions of stems 2 and 3 and, less reproducibly, in stem 1. In the latter 

stem, some positions were also cut by RNases A and Tl. Therefore stem 1, if it 

exists, does not seem to be very stable under these conditions. RNase VI cuts were 

found in the 5' part of Box 2, which could point to some base stacking. The 

bulged nucleotides A24 and C50 were never cut under native conditions and are 

therefore probably located inside the helix. The polyadenylation signal is clearly 

single-stranded (RNase T2 cuts), flanked by double-stranded regions (RNase VI 

cuts). The region between the 5' and 3' parts of the structure was efficiently 

cleaved by RNase T2, although in a few experiments weak VI cuts were also 

found. 
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Figure 3. (A) Enzymatic digestions of the Ag RNA under denaturing (sequence) and native 
(structure probing) conditions. RNA samples were treated as described in Materials and methods. 
The samples in lanes 1 and 5 are control reactions, to which no enzyme was added. Lanes 2-4 
contain reactions under denaturing conditions (the enzymes used are indicated) while lanes 6-11 
designate reactions under native conditions (two concentrations were used for RNases VI and T2). 
The positions of guanosines cleaved by RNase Tl under denaturing conditions are indicated on the 
left. (Figure continued on next page). 



UIA regulatory site 111 

В 

GCi 
~UA>G 
HCG^ 

UÀ. . „ 

PcVu 
/ A U IL · 

A G 

WAí\j 
«^UAO \ »A A^ 
G С so A A 70 

^ U M » /*A G G^ 
Ui?¿CG 1GU 

• C G 
Î O C G 

GC~ 
V ^ A L r ^ U A Ì - G U l J l 

J I A L T , ^ 6 I C G -
! P < £ . . . GC" 
^ » ι «•« О 0 H / M rt С С AC 

Figure 3 (continued). (В) The secondary structure of the human Ag RNA sequence. Consensus 
data from several independent experiments (only strong cuts) are shown. RNase VI cleavage is 
indicated by closed triangles, RNase A/T1/T2 cleavage with open mangles. For the most 
conserved part of the structure (nt 10-53, indicated with large arrows), the nucleotide changes in 
the corresponding Xenopus RNA are indicated (small arrows). 

RNA mutants 

To test the 5' part of the structure more thoroughly and to obtain more 

information on the less conserved regions we next constructed mutants in the 

human Ag fragment. Single mutants (called 1A, IB, 2A, 2B and ЗА) were designed 

to disrupt each of the three 5' stem structures by mutating individual strands of 

each putative helix (see Table I for mutant sequences). In the double mutants (1AB, 

2AB and ЗАВ), which were designed to maintain complementarity and the putative 

structure, the sequences of both strands of each stem were interchanged. Further, 

mutant 3CTD was constructed, in which stem 3 and the terminal loop were 

replaced by CGGCGCUUCGGCGCCG. This sequence is predicted to form a 

stem composed of six GC base pairs with a highly stable tetraloop (Tuerk et al., 
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Table I. 

A. Stem 

Agwt 

ЗАВ 

3CTD 

2A 

2B 

2AB 

IA 

IB 

ÏAB 

4A 

4B 

4AB 

В. Loop 

Binding assays of 3' 

mutants 

Sequences 

„GUCUG 
GUCUG„ 

KCAGAG 
GUCUC^ 
see text 

J 0CCAG 
CCAG«, 

»GGUC 
GGUC« 

„GGUC 
CCAG« 

8ACAGC 
UCAGCS I 

SAGUCG 
UGUCG 5 1 

(AGUCG 
UCAGC5 1 

5 J C J A C J A C J 

UCGGU 7 J 

UUCU 7 1 
J J C J A C J A Í J 

uucuu72 

mutants 

UTR mutants 

Direct/indirect 
assay (150 mM) 

+ 
+ 

+ 

N.D. 

+ 

+ 

+ 

+ 

+ 

+ 

+ * 

+ * 

+ * 

Direct/indirect 
assay (500 mM) 

+ 

+ 

+ 

-

-
+ 

-
+ 

+ 

N.D. 

N.D. 

N.D. 

Inhibition of 
polyadenylation 

+ 

+ 

+ 

-

-
+ 

-
+ 

+ 

+ 

+ 

+ 

Sequences Direct assay Direct assay 
(150 mM) (500 mM) 

Indirect assay Inhibition of 
(150 or 500 mM) polyadenylation 

Agwt 
ΔΒ2 
ДВ1 
ΔΒ1/Β2 

3,GGAUCCC45 

,,GGAUCCC„ 

N D., not determined 
"Binding properties of stem 4 mutants were established by using bandshift assays. 

1988). If the model were correct, this mutation should not disturb the U1A 

binding sites. 

Enzymatic digestions, as described above, were performed on most of these 

mutant RNAs. The single mutants 2A and ЗА clearly showed a distortion of the 

structure in the mutated region while the double mutants 2AB and ЗАВ had 

digestion patterns similar to the Agwt fragment (data not shown). The results with 

the stem 1 mutants were less easy interpretable; there was no clear difference 

between mutants IB and 1AB, and, as with Agwt, both VI and single-strand-
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specific enzymes cut in the stem 1 region of both these mutants. 

Two single mutants and one double one were prepared in stem 4. In 4A and 4B 

the individual strands of the stem were mutated singly to disrupt the potential 

pairing and in 4AB the mutations were combined to restore pairing (see Table I). 

Nuclease digestion of mutant 4A suggested that this mutation disrupted stem 4. 

However, in the double mutant 4AB, in which stem 4 should reform, VI cleavage 

was only partially restored (data not shown). 

From these experiments we conclude that much of the proposed structure is 

likely to be correct although there is doubt about the existence, or at least the 

stability, of stem 1. The mutants could therefore be used to test the structural 

requirements for U1A protein binding and inhibition of polyadenylation. In 

addition to the mutants described above we also used the ΔΒ1, ΔΒ2 and ΔΒ1/2 

mutants in which the sequences of Box 1 and 2 were altered individually or in 

combination (Boelens et αϊ, 1993; see Table IB). 

Binding of U1A protein to the mutants 

Two assays that can detect the binding of U1A protein to an RNA have been 

described previously (Boelens et al., 1993). In the direct assay 35S-labelled U1A 

protein is incubated with biotinylated RNA. Proteins that bind the RNA can be 

recovered via precipitation by Streptavidin-agarose and analysed by SDS-PAGE. In 

the indirect assay, which gives positive results only when at least two molecules of 

U1A protein are bound to each RNA, the 35S-labelled U1A is precipitated via non­

radioactive biotinylated U1A protein. 

We tested the mutant AgRNAs in these assays. As reported (Boelens et al., 

1993), both ΔΒ1 and ΔΒ2 can still bind U1A in the direct assay in the presence of 

150 mM KCl, while ΔΒ1/2 cannot (Figure 4A, left panel). However, if the KCl 

concentration is increased to 500 mM, binding to the ΔΒ2 mutant, which only 

retains Box 1 and thus an imperfect match to the U l snRNA sequence, is 

undetectable (Figure 4A, right panel). Previously, it was shown that ΔΒ1 and ΔΒ2 

bind maximally one molecule of U1A protein (Boelens et al., 1993). 

To characterize further the binding to these mutants, and to define better the 

reduction in affinity of the ΔΒ2 mutant, the dissociation constants (KD) of their 

binding to U1A protein were determined. First, the KD of the complex between 

U l snRNA and the U1A protein was established. Under the conditions used (see 

Materials and methods) the KD of this complex was 5(± 3) χ IO1 1 M (Table II). 

This value is very similar to that (2x10" M) determined by Hall and Stump (1992), 
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who also assayed binding with a nitrocellulose filter binding assay, but used a much 

shorter RNA substrate and different buffer conditions. Both of these values are 

considerably (~103-fold) lower (i.e. indicative of tighter binding) than KDs 

determined for similar complexes measured by native gel electrophoresis 

(Lutz-Freyermuth et al, 1990; Jessen et al, 1991). 
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Figure 4. (A) Binding of "S-labelled UIA protein (lane 1, 10% of the input protein per assay) to 
various RNA substrates at 150 mM KCl (left panel) and 500 mM KCl (right panel). The RNAs 
used were Ag wt RNA (lane 2), mutant ΔΒ1 (lane 3), mutant ΔΒ2 (lane 4) and mutant ΔΒ1/Β2 
(lane 5). The mutants are from Boelens et ai. (1993). (В) Binding assays for stem 2 and stem 3 
mutants. Left panels: direct binding assay as described in panel A at either 150 mM (upper) or 500 
mM (lower) KCl. Right panels: indirect binding assay. Precipitation of 35S-labelled U1A protein via 
biotinylated U1A protein in the presence of various RNA substrates, as indicated above the lanes. 
(C) Binding assays for stem 1 mutants. Indirect binding assays carried out at 150 mM (left panel) or 
500 mM (right panel) KCl. 
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Table II. Dissociation constants of various RNA-U1A 

protein complexes 

RNA KD (Μ) η 

Ul RNA 5 (±3) χ IO11 4 

UIA pre-mRNA 10 (±6) χ IO11 4 

Ag 6 χ IO11 1 

ДВ1 30 (±10) χ IO11 3 

ΔΒ2 800 (± 100) χ 10" 2 

η, number of independent determinations. 

In our assay the human U1A pre-mRNA-UlA protein complex has a KD of 

10(±6) χ 10" M. Taking into account the measured variation in the KD-values, Ul 

snRNA and the U1A pre-mRNA therefore exhibit comparable binding affinity. 

Note, however, that the KD measured for the U1A pre-mRNA is complex since 

two U1A protein molecules bind to the pre-mRNA, and, in this assay, only one 

molecule has to be bound to score positive. In the single experiment carried out 

with the Ag fragment, the KD was indistinguishable from those of either the pre-

mRNA or Ul snRNA (Table Π). The ΔΒ1 mutant showed an -3-fold lower 

binding affinity [KD-30(±10)xl0"M] than the wildtype (wt) pre-mRNA. In the 

case of the ΔΒ2 mutant, which only contains the imperfect Box 1 binding 

sequence, the binding affinity decreased by a factor of -80 [KD-800(±100)xlO" 

"M]. The affinity of the wt pre-mRNA is higher than the additive affinities of the 

two single-site mutants, indicating that there might be some cooperativity in the 

binding of the two U1A protein molecules. This conclusion was supported by 

electrophoretic mobility shift assays where, at protein concentrations at which low 

binding site saturation was achieved, the amount of U1A required to occupy both 

sites on an RNA was 2- to 4-fold greater than that required to occupy a single site 

(data not shown). The KDs of the two individual sites (Table Π) would predict that, 

without cooperativity, — 30-fold more protein should be required. 

Mutants affecting stems 1-3 of the structural model (Figure 2B) were next tested 

in the direct and indirect assays. Unexpectedly, mutants 2A, 2B and ЗА, in which 

stems 2 or 3 were disrupted, could still bind U1A protein at 150 mM KCl in both 

the direct and indirect assays (Figure 4B, upper panels, lanes 4 and 6 and data not 
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shown). Thus, disruption of either of the stems did not prevent interaction with 

U1A protein. When the assays were carried out at 500 mM KCl, however, it was 

evident that the affinity of the single mutants for U1A protein was reduced. 

Mutants 2A, 2B and ЗА were incapable of interaction with even one molecule of 

U1A protein in these conditions (Figure 4B, lower panels, lanes 4 and 6 and data 

not shown). Restoration of stems 2 and 3 in the 2AB and ЗАВ double mutants 

restored U1A protein binding in both assays (Figure 4B, lanes 5 and 7). The 3CTD 

mutant, which contains a more stable terminal stem-loop, showed U1A protein 

binding comparable to that of wt U1A pre-mRNA (data not shown), providing 

further support for the presence of stem 3. 

In case of the stem 1 mutants, a less clear-cut result was obtained. At high, but 

not at low, salt concentration one of the single mutants 1A, failed to bind U1A 

protein (Figure 4C, left and right panels, lane 5), suggesting that stem 1 might be 

needed for protein binding. Mutant 1A showed wt behaviour in the direct assay at 

150 mM salt, but did not detectably bind U1A protein in this assay at 500 mM salt 

(data not shown). The other single mutant (IB), on the other hand, as well as the 

double mutant (1AB), both showed behaviour comparable to that of wt pre-mRNA 

(Figure 4C, lanes 2, 4 and 6). One explanation for this behaviour might be that 

some of the base positions mutated in mutant 1A (nt 51-54) are necessary for U1A 

protein binding in the absence of a stem structure. It is, however, also possible that 

the 1A mutation causes changes in the structure to occur in high salt and thus 

affects U1A protein binding in a less direct way. 

Both the single and double mutants of stem 4 bound U1A protein like the wt 

RNA (data not shown), indicating that this part of the structure is not necessary 

for U1A protein binding. Taken together, these results support the structural data 

summarized earlier, since they indicate that the highly conserved and stable stems 2 

and 3 are important for high affinity U1A binding. The less conserved and less 

stable stem 1 is not required for U1A binding, as is shown by mutant IB, but the 

phenotype of the 1A mutant suggests that the stem might stabilize binding in some 

circumstances. Stem 4 is not needed for U1A protein binding. 

Inhibition of polyadenylation 

One functional consequence of U1A protein binding is inhibition of U1A pre-

mRNA polyadenylation (Boelens et al., 1993). The effects of the various mutations 

were therefore tested in an in vitro cleavage and polyadenylation assay. U l A 

protein addition to these assays results in specific inhibition of polyadenylation of 
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the UIA wt substrate (Figure 5A, left panel). Considerably more U1A protein is 

required to inhibition polyadenylation of the double mutant ΔΒ1/Β2, which 

cannot bind U1A specifically (Figure 5A, right panel). Polyadenylation of the two 

single mutants, ΔΒ1 and ΔΒ2 (Figure 5A, middle panels), is inhibited at a level of 

U1A protein only —4-fold lower than that required for non-specific inhibition. 

This indicates that for efficient inhibition of the cleavage and polyadenylation 

reaction, it is crucial that two molecules of U1A protein can bind to the U1A pre-

mRNA substrate. 

The behaviour of the stem mutants in the polyadenylation inhibition assay 

closely mirrored their ability to bind U1A protein in 500 mM KCl in the binding 

assays described above. In the case of stems 2 and 3, the 2A and ЗА single mutants, 

which are defective in U1A binding at high salt, behaved similarly to the ΔΒ1/2 

double mutant (Figure 5B) while the 2AB and ЗАВ double mutants, in which stems 

2 and 3 are restored, behaved similarly to the wt pre-mRNA. The 3CTD mutant 

also showed wt behaviour in polyadenylation inhibition (data not shown). The 

behaviour of the stem 1 mutants was also in agreement with the results of U1A 

protein binding at high salt. Mutants IB and 1AB showed inhibition of 

polyadenylation comparable to the wt pre-mRNA (Figure 5C), while the 1A 

mutant showed no inhibition of polyadenylation. 

As mentioned above, the existence of stem 4 in the human U1A pre-mRNA is 

supported by the nuclease digestion data but the stem has not been strongly 

conserved in evolution. To examine directly a possible functional role for this 

structure we tested the three mutants 4A, 4B and 4AB. All three mutants behaved 

similarly to the wt pre-mRNA in the polyadenylation inhibition assay (Figure 6). 

Thus, even if stem 4 does form, its existence does not seem to be important for the 

inhibition of polyadenylation by U1A protein. 

DISCUSSION 

Structure of the 3' UTR of U1A (pre-)mRNA 

The structure of the region of the U1A pre-mRNA responsible for binding to 

the UlA protein and thus for mediating autoregulatory inhibition of 

polyadenylation has been examined. Various lines of evidence suggest that the 

structure is complex. From top to bottom it starts with a tetraloop bounded by a 

stem of 5 bp (stem 3). Stem 3 is followed by an asymmetric internal loop, 

containing on one strand a 7 nt sequence required for UlA protein binding. On 
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Figure 5 (opposite page). Effect of U1A protein on in vitro polyadenylation of Agwt RNA and 
the 3'UTR mutants. (A) Loop mutants. Recombinant, highly purified U1A protein was 
preincubated with the labelled RNA substrate for 5 min at room temperature. The 3' processing 
reaction was initiated by addition of the reaction buffers and nuclear extract. The labelled RNA 
assayed is indicated above each panel. The first lane of each panel is the input precursor RNA in 
the absence of nuclear extract or U1A protein. The second lane of each panel is polyadenylation in 
the absence of exogenously added U1A protein. The remaining lanes of each panel show the effect 
of addition of increasing amounts of exogenous U1A protein with the amounts indicated above 
each lane. The lane on the extreme right is a 32P end-labelled Mspl digest of pBR322. (B) Stem 2 
and 3 mutants. The type of labelled RNA used is indicated above each panel. The lanes of each 
panel are the same as described in panel A, except that the amounts of exogenously added U1A 
protein are different (ranging from 10 to 100 ng) as indicated above the panel. The lane on the 
extreme right is a "P end-labelled Mspl digest of pBR322. (C) Stem 1 mutants. The labelled RNA 
assayed is indicated above each panel. The lanes of each panel are the same as described in panel A, 
except that the amounts of exogenously added U1A protein are different (ranging from 10 to 100 
ng) as indicated above the panel. 

AgWT Ag4A Ag4B Ag4AB 

Figure 6. Effect of the U1A protein on the in vitro polyadenylation of the Agwt RNA and the 
stem 4 mutants. The labelled RNA assayed is indicated above each panel. The lanes of each panel 
are the same as described in Figure 5A, except that the amounts of exogenously added U1A 
protein are different (ranging from 1 to 500 ng) as indicated above the panel. The lane on the 
extreme right is a 32P end-labelled Mspl digest of pBR322. 
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the other strand a single unpaired nucleotide is found, which probably stacks into 

the helix since it is inaccessible to nucleases. A second stem of four base pairs (stem 

2) separates this internal loop from a second asymmetric internal loop, similar to 

the first, which may, or may not, be bounded by a further short helix (stem 1). 

Apart from stem 1, all the secondary structure elements in the 5' part of the 

structure were shown to be required for optimal binding to U1A protein and for 

function in polyadenylation inhibition. In the case of stem 1, the evolutionary 

conservation of the potential to form at least a short stem at this position suggests 

that the stem, though metastable, may exist. The effects of mutations in this 

putative stem on U1A protein binding were diverse. The results obtained with 

mutant IB, however, established that the potential to form stem 1 is not essential 

for U1A protein binding. 

The second structural element in the conserved region of human UlA pre-

mRNA is a stem-loop with the AUUAAA cleavage and polyadenylation signal 

forming most of the loop. This structural feature is unnecessary for UlA protein 

binding and for inhibition of polyadenylation and, in addition, is not well 

conserved in evolution. Thus, even if this part of the structure does form in vivo it 

is unlikely to have any relevance for autoregulation. 

What might be the reason for the complexity of the proven part of the 

structure, the region to which U l A protein binds? First, the data presented indicate 

that efficient inhibition of polyadenylation is only possible when two molecules of 

U l A protein can bind to the pre-mRNA. Second, the binding studies show that 

the two protein molecules bind cooperatively. An attractive aspect of the structure 

from this point of view is that the two asymmetric internal loops are spaced 

approximately half a helical turn apart (if standard RNA geometry is applicable). 

Although it can be assumed that the internal loops will induce a distortion or a 

kink in the helix (Chastain and Tinoco, 1991), the U l A binding sites may therefore 

lie side by side on one face of the helix, favouring interaction between the two 

protein molecules during binding. Note, however, that we do not know whether 

the observed cooperativity of binding is due to protein-protein interaction or to 

changes induced in the pre-mRNA structure on binding the first molecule of U l A 

protein. 

Comparison of two U l A binding sites 

The KDs of the two physiologically relevant U lA protein-RNA complexes 

studied to date, those involving U l snRNA and U l A pre-mRNA, are very similar 
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and indicative of very high affinity binding. The tight binding to U l snRNA is 

perhaps explicable since U1A protein in the free state would turn off its own 

production via autoregulation and, presumably, U l snRNA without U1A might be 

non-functional (Hamm et al., 1990; but see Liao et aL, 1993). There seems not to be 

an obvious rationale for such a strong interaction between U1A protein and its 

pre-mRNA. 

Given the high affinity of both RNAs for U1A protein it is interesting to 

compare them. The U1A binding site on U l snRNA is stem-loop Π or В (Scherly 

et al., 1989; Lutz-Freyermuth et al., 1990). Parts of the 10 nt loop sequence and the 

presence of stable stem, but apparently not the detailed structure of the stem, are 

critical for tight binding (Scherly et al., 1989, 1990; Lutz-Freyermuth et aL, 1990; 

Bentley and Keene, 1991; Jessen et al., 1991; Tsai et al., 1991; Hall and Stump, 

1992). A model for the U1A-U1 snRNA interaction has been proposed 0essen et 

ai, 1991) in which most of the protein-RNA contacts are with the phosphates of 

the R N A backbone and the loop sequence is proposed to be mainly required to 

generate the correct backbone conformation. 

The structural context of the most U l snRNA-like sequence in the U1A pre-

mRNA (Box 2) as a 7 nt unpaired strand in an asymmetric loop sandwiched 

between two stems, would appear to be rather different from its context in U l 

stem-loop П. Given the conformational flexibility of RNA it is premature to say 

that the structure of the two tight binding sites will be different, but further 

examination of the role of the single-stranded bases in protein binding as well as 

high resolution studies of the two RNAs to reveal similarities and differences in 

their structures would be particularly interesting areas of study. 

Inhibition of polyadenylation 

The major conclusions of this study with regard to polyadenylation inhibition 

are that structural changes in U1A pre-mRNA that result in either a reduction in 

affinity for U1A protein or in the loss of the capacity to bind two molecules of 

U1A protein alleviate the inhibitory effects of U1A protein on cleavage and 

polyadenylation reactions in vitro. 

The requirement for two bound protein molecules for inhibition might be most 

easily compatible with a simple model in which U1A protein sterically hinders 

interaction of one of the multiple cleavage and polyadenylation factors (see Wähle 

and Keller, 1992 for a review) with the U1A pre-mRNA. However, more complex 

models involving specific interaction between U1A protein or a particular structure 
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in UIA рге-mRNA induced by U1A binding and one or more of the processing 

factors are not ruled out. These possibilities can now be tested. 

MATERIALS AND METHODS 

Sequence alignment and secondary structure prediction 
The alignment of the three U1A sequences was made with the program PILEUP, which is part 

of the University of Wisconsin GCG Package ν 70 (Devereux et al, 1984), and was adjusted 
manually The programs FOLD and MFOLD (Zuker a al., 1991) were used to generate optimal 
and suboptimal foldings of different regions of the three RNA sequences 

Enzymatic structure probing 
The Ag and mutant RNAs used in this study were dephosphorylated at their 5' ends and then 

radioactively labelled using [7-J!P]ATP and T4 polynucleotide kinase according to Ehresmann et al 
(1987) The labelled RNAs were purified by electrophoresis on a 10% polyacrylamide-urea 
denaturing gel The full-length RNA products were cut out of the gel and eluted overnight at 4°C 
in a buffer containing 0 5 M NrLAc (pH 6 5), 10 mM MgCl2 and 0 1 % SDS (Krol and Carbon, 
1989) The RNA was precipitated with ethanol and resuspended in water 

Labelled RNA (2-3x10' с ρ m ) was supplemented with 4 μ% of total yeast RNA as earner 
Digestion with RNase Tl (0 01 U), T2 (0 005 U), Ш (0 2 U, only m buffer D), A (1x10* U) or VI 
(0 06 U, only m buffer N) were performed at room temperature for 10 mm in buffer N or at 
50°C for 5 mm in buffer D Buffer N (native conditions) contained 10 mM Tns p H - 7 5, 10 mM 
MgCl} and 50 mM KCl Buffer D (denaturing conditions) contained 7 M urea, 1 mM EDTA and 
25 mM sodium acetate 

Preparation of mutants 
The Ag sequence was inserted as an ЕсоКІ-НтсІШ fragment into the pGEM-3z(+) vector 

Single-stranded DNA was produced with the helper phage M13 K07 and mutations were 
introduced using the oligonucleotide-directed mutagenesis kit from Amersham All mutants were 
checked by DNA sequencing 

Binding and polyadenylation assays 
RNA and biotinylated RNA transcription by T7 RNA polymerase, production of 35S-labelled 

U1A protein in wheat germ extract, production of recombinant U1A protein from E coli, its 
biotinylation, the direct and indirect RNA-protein binding assays and in vitro polyadenylation 
reactions were all carried out as described by Boelens et al (1993) The nucleotide sequence of the 
Ag fragment of U1A extends from position 842 to position 951 in the sequence (Nehssen et al, 
1991) and include 8 nt at the 5' end derived from the vector plasmid Since U1A protein loses 
polyadenylation inhibition activity when stored, the amount required to inhibit polyadenylation of 
the wt pre-mRNA was determined empirically for each experiment 

For the electrophoretic mobility shift experiment, "P-labelled RNA was heated at 95°C for 3 
mm and quenched on ice for 1 mm 2 χ IO4 с ρ m were added to the protein m a 10 μ\ reaction 
containing 10 mM Na-HEPES (pH 7 4), 50 mM KCl, 1 mM MgCl2 and 200 ng of competitor 
tRNA at room temperature The reaction was immediately loaded on a 7% native acrylamide gel 
(60 1 acrylamide bisacrylamide), containing 10 mM Tns-borate pH 8 3, 1 mM EDTA and 0 1% 
Tnton X-100 The gel was autoradiographed for 2-12 h at -80°C 
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Filter binding assay 
To determine the dissociation constants for the interaction between U1A protein and RNA 

substrates a nitrocellulose filter binding assay was used A constant concentration of U1A protein 
in 10 μΐ buffer 1 containing 100 mM KCl, 2 mM MgClj, 20 mM HEPES-KOH pH 7.9, 5% 
glycerol, 0.5 mM DTE and 0.5 mg/ml BSA was muted with 90 μ\ buffer 2 containing 10 mM Tns-
HC1 pH 7.5, 100 mM KCl, 2 mM MgCl2, 0.1 mM EGTA, 0.5 mM DTE, 0.1 Mg/̂ l tRNA and 
varying concentrations of 32P-labelled TINA substrates. After equilibration at 20°C for 120 min, 
samples were filtered through pre-soaked Schleicher and Schuell BA85 0.45 pm nitrocellulose filters 
using a dot blot manifold (Schleicher and Schuell SRC96). The samples were subsequently washed 
twice with 200 μΐ buffer 2 without tRNA. The filters were dried and the amount of MP-labelled 
RNA bound to the filter was quantified by scintillation counting. The KDs were determined by 
Scatchard plot analysis. 
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ABSTRACT 

The structure of the conserved region of the U1A pre-mRNA and its 
complex with U1A protein was investigated. The secondary structure of the 
U1A mRNA was determined using chemical modification techniques, while the 
RNA-protein complex was investigated by footprinting analyses using both 
ribonucleases and hydroxyl radicals. 

The secondary structure of U1A mRNA deduced from the chemical probing 
largely corresponds to the structure predicted previously, which was based on 
enzymatic probing and analysis of structure and function of mutant mRNAs. 
However, some important additional information was obtained. All nucleotides 
in the conserved Box regions are fully accessible, as arc the two unpaired 
nucleotides A24 and C50. Interestingly, the behavior of the two Box regions 
appears not to be completely identical, neither in the naked RNA nor in the 
RNA-protein complex. For the UCCC tctraloop, which could not be cleaved by 
RNascs, chemical probing shows that three of the four bases in the loop are 
accessible. 

Concerning the RNA-protein complex, the protection experiments show that 
the Box 1 and Box 2 regions are largely protected when the U1A protein is 
present. All stem regions in the 5' part of the structure seem protected against 
ribonucleases, while protection against the smaller hydroxyl probe is limited 
primarily to nucleotides in the Box regions. Interestingly, the nucleotides of 
the tctraloop become accessible to RNases in the RNA-protein complex. This 
result indicates that this loop undergoes a conformational change upon U1A 
protein binding. The 3' part of the structure, containing the polyadenylation 
signal in a hairpin, shows hardly any protection, a finding that agrees with the 
fact that U1A does not interfere with the binding of the cleavage 
polyadenylation specificity factor (CPSF) to the polyadenylation signal during 
polyadenylation. 
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INTRODUCTION 

The removal of introns from the pre-messenger RNA, known as splicing, is an 

important process in which several small ribonucleoprotein particles (snRNPs) 

participate. One of them, U l snRNP, contains a Ul snRNA molecule, at least 

eight Sm proteins also present in other U snRNPs, and three Ul-specific proteins 

named U1-70K, U I C and U1A (1). 

The U1A protein binds directly to the second stemloop of U l snRNA (2, 3). 

The protein contains two RNP motifs, of which the N-terminal copy is responsible 

for binding to U l snRNA (2-6). The structure of this RNA-binding domain of the 

U1A protein has been determined by X-ray crystallography and NMR studies (4, 7) 

and consists of a four stranded antiparallel ß-sheet with two α-helices both lying on 

the same side of the sheet. The loop of the second hairpin of human U l snRNA 

contains 10 nucleotides. It has been shown that the first seven of them (with the 

highly conserved sequence AUUGCAC), are critical for U1A protein binding, 

although the structural context of this sequence affects binding affinity (2, 8-10). 

Recently, the complex between the N-terminal RNP motif of U1A and the second 

stemloop of U l snRNA have been studied by NMR (11, 12) and cross-linking 

studies (13). The ß-sheet of U1A was shown to form the recognition surface and 

protein-RNA contacts mainly occur at the loop of the RNA hairpin. Furthermore, 

the crystal structure of this RNA-protein complex has been determined (14), 

revealing detailed information on the interaction of U l snRNA with the U1A 

protein. 

It has been shown that the 3' UTR of the U1A pre-mRNA contains a region 

which has been conserved among vertebrates (15). This region contains two 

stretches of seven nucleotides (called Boxes 1 and 2) having a sequence similar to 

that contained in the second, U1A binding stemloop of Ul snRNA and located in 

close proximity to the polyadenylation signal. It has been demonstrated that two 

human U1A proteins can bind to these two Box regions (15, 16) and in vitro and 

in vivo experiments have shown that the binding of two U1A proteins to this 

region specifically inhibits polyadenylation of the pre-mRNA (15). Thus, U1A 

protein regulates the production of its own mRNA via a mechanism that involves 

pre-mRNA binding and inhibition of polyadenylation. The mechanism of this 

regulation has been elucidated by in vitro studies where U1A protein was shown to 

inhibit both specific and nonspecific polyadenylation by poly(A) polymerase (PAP) 

(17). Furthermore, this inhibition was shown to depend on a specific interaction of 

U1A protein with mammalian PAP in which the C-termini of both proteins seem 
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to be involved (17). 

Recently the human U1A protein - U1A pre-mRNA complex and the 

relationship between its structure and function in inhibition of polyadenylation in 

vitro was investigated (16). The secondary structure of the conserved region of the 

3'UTR (Ag RNA) was determined by a combination of theoretical predictions, 

phylogenetic sequence alignment, enzymatic structure probing and analysis of 

structure and function of mutant mRNAs (16). The structure shows both Box 

sequences as single stranded regions in two asymmetric internal loops which are 

flanked by two essential stem structures, and appears to be different from the 

binding site of U1A protein on Ul snRNA. The integrity of much of this 

structure is required for both high affinity binding to U1A protein and specific 

inhibition of polyadenylation in vitro (16). 

Here a more detailed analysis of the U1A pre-mRNA and its complex with U1A 

protein is reported. Chemical probing was performed on the U1A mRNA both at 

room temperature and at zero degrees, which gave us a better understanding of 

some structural features which were not perfectly clear from the enzymatic probing 

experiments. The behavior of both the Watson-Crick positions and the N7 atoms 

of the purines was analyzed. Furthermore, the complex of U1A mRNA with U1A 

protein was studied by using ribonuclease and Fe(D)EDTA footprinting analyses. 

MATERIALS AND METHODS 

In vitro transcription of RNAs and purification of recombinant U1A protein 

In vitro transcription by T7 RNA polymerase was carried out as described (16). 

The conserved region of the 3' UTR of the U1A mRNA is called Ag RNA and 

was cloned into the EcoRI and НіпсШі sites of pGEM-3Zf(+) resulting in Ag 

transcripts. The nucleotide sequence of the Ag fragment of U1A extends from VI-

842 to VI-951 in the sequence (18) and includes 8 nucleotides at the 5' end derived 

from the vector plasmid. Production of recombinant U1A protein from E,coli was 

carried out as described (15). 

5-' and 3-' end-labeling 

For 5'-end-labeling the dephosphorylated RNAs or oligodeoxynucleotides were 

labeled using [γ-32Ρ]ΑΤΡ and T4 polynucleotide kinase (Boehringer) as described 

previously (16). For 3'-end-labeling, the RNAs were labeled using [32P]pCp and T4 
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RNA ligase as described (19). The labeled molecules were separated by 

electrophoresis in a 10% denaturing polyacrylamide/8 M urea gel. The full-length 

labeled products were excised and eluted from the gel (19), after which they were 

precipitated with ethanol and stored at -20°C. Just before use they were dissolved 

in water. 

Chemical Modification 

All chemical modification experiments were performed at least three times to 

obtain consistent data. Concentrations of chemicals were optimized to obtain 

'single hit' conditions. Control incubations, in which the reagent was omitted, were 

always performed in parallel to detect spontaneous pyrimidine-purine breaks, which 

easily occur in R N A (20, 21), and, in the case of the primer extension method, to 

detect spontaneous stops of reverse transcriptase (RT). Chemical modifications were 

performed both on unlabeled RNA (0.3-0.5 /ug) and on З'-end-labeled (3 χ IO4 cpm), 

which was always renatured before use. The RNAs were modified under native 

conditions (N) (presence of magnesium), semi-denaturing conditions (SD) (presence 

of EDTA) and denaturing conditions (D) (high temperature, presence of EDTA). 

Native and semi-denaturing reactions were conducted both at 20°C and at 0°C. 

Modification reactions were essentially carried out as described (19). Chemically 

modified nucleotides were detected either by primer extension analysis or by using 

З'-end-labeled RNA (in the case of N7-G, N7-A and N3-C). 

Buffer solutions: Buffer I: 200 mM HEPES pH 8.0, 10 mM MgCl2, 50 mM KCl. 

Buffer Π: 200 mM HEPES pH 8.0, 1 mM EDTA. Buffer Ш: 50 mM Na-borate pH 

8.0, 10 mM MgCl2> 50 mM KCl. Buffer IV: 50 mM Na-borate pH 8.0, 1 mM 

EDTA. 

DMS treatment: 0.5 - 2 μί DMS (dimethylsulfate) was added to the sample in 200 

μί of Buffer I (native conditions) or Buffer Π (semi-denaturing conditions) and 

incubated for 5 min at 20°C or 0 e C. Under denaturing conditions, 0.5-2.0 μί DMS 

was used in 300 μί Buffer Π and incubation was for 1 min at 90°C. Reactions were 

stopped by ethanol precipitation after addition of 10 μg carrier tRNA. The RNA 

was then subjected to primer extension to probe N3-C and Nl-A positions. In case 

of probing the N7-G positions, the RNA pellets were resuspended in 300 mM 

sodium acetate and reprecipitated with ethanol. RNA pellets were dried and 

«dissolved in 10 μί of 1 M Tris-HCl, pH 8.0, after which 10 μ\ of fresh 200 mM 

NaBH 4 was added. After an incubation on ice, in the dark for 20 min, 200 μί of 

cold 0.6 M HAc/NaAc (pH 4.5) was added, and the RNA was precipitated by 
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adding 600 μί of cold ethanol. The pellets were resuspended in 5 μί of H 2 0 after 

which 20 μΐ of 9% aniline-acetate buffer, pH 4.5, was added, followed by an 

incubation for 15 min at 60°C in the dark. The RNA was again precipitated with 

ethanol and, either analysed on denaturing gels (in case of end-labeled RNA) or 

subjected to primer extension. For modification of N3-C using 3 '-end-labeled RNA 

different amounts of DMS were added to 2xl04 cpm of Ag RNA in 200 μΐ of 

Buffer I (N) or Buffer Π (SD, D). Incubations were for 5 min at 20°C or 0°C, after 

which the reaction was stopped by ethanol precipitation. Hydrazine-aniline 

treatment (20) was carried out to produce strand scission at the site of the 

modification. 

CMCT treatment: A freshly prepared 42 mg/ml H 2 0 of CMCT (l-cyclohexyl-3-

(2-morpholino ethyl)-carbodiimide metho-p-toluene sulfonate; Merck) was used. 

Under N and SD conditions, 50 μ\ CMCT was added to the sample in 150 μί 

Buffer Ш (N) or IV (SD) for several different incubation times at 20°C or 0°C. 

Under D conditions, 5-25 μί CMCT was added to the sample in 150 μ\ of Buffer 

Г ; incubation was for 1 min at 90°C. Reactions were stopped by ethanol 

precipitation. 

DEPC treatment· Ten to sixty μ\ DEPC (diethylpyrocarbonate) was added to the 

sample in 200 μί Buffer I (N) or Π (SD); incubation was for 1 hr at 20°C. For D 

conditions, 3-10 μί DEPC was added to 200 μί Buffer Π and incubated for 7 min at 

90°C. Reactions were stopped by ethanol precipitation. An aniline step was 

performed to produce strand scission at the site of the modification (20). 

Primer extension analysis 

Primer extension was carried out essentially as described (19). 

Oligodeoxynucleotide primers 5'-GCTTAACAGCGCCAGG-3' and 5'-

GATTGTGAAAAACCAAACCTC-3', complementary to nucleotides 45-60 and 

81-101 in Ag RNA, respectively, were 5'-end-labeled. Annealing was performed by 

dissolving the modified RNA template in 2 μί H 2 0 containing 10 μg tRNA and 

5xl04 cpm of labeled primer, heating it at 90CC for 1 min, followed by an 

incubation on ice for 1 min and returning to room temperature for 10 min. 

Extensions were achieved by adding 3 μί of a reverse transcription mix containing 

one unit of AMV reverse transcriptase (Boehringer) in 5 mM Tris-HCl (pH 8.0), 7 

mM MgCl2, 50 mM KCl, 5 mM DTT, 170 μΜ dNTPs and an incubation at 37°C 

for 45 min. Reactions were stopped by adding 20 μί stopbuffer (50 mM Tris-HCl 

pH 8.3, 75 mM EDTA, 0.5% SDS). The RNA was hydrolyzed by adding 3 μί of 
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freshly prepared 3M K O H , followed by incubation at 90°C (3 min) and 37°C (1 

hr). Then 6 μΐ concentrated acetic acid was added and the D N A fragments were 

ethanol precipitated. Reverse transcripts were analyzed on 10% denaturing 

Polyacrylamide gels. 

Enzymatic footprinting 

All enzymatic footprinting experiments were repeated at least three times to 

obtain consistent data. In this type of experiment, renatured 5'-end-labeled Ag 

R N A (3 χ IO4 cpm, final concentration ~ 6 nM) was always used. Renaturation 

was achieved by heating the RNA at 65 e C for 1-2 min followed by slow cooling to 

room temperature. Subsequently the specified amount of U1A wt protein (150 -

300 fold excess) or A101, containing the N-terminal 101 amino acids of U1A, was 

added (final volume: 20 μ]). Buffer conditions were 10 mM Tris-HCl pH 7.5, 5 mM 

MgCl2 and 50 mM KCl. The complex was allowed to form for 30 min at room 

temperature after which the probing reactions were performed with RNase T l 

(0.15 U; U1A wt only), RNase A (lxlO5 U; U1A wt only), RNase T2 (0.005 U), or 

RNase VI (0.06 U) at room temperature for 10 min. The reactions were stopped by 

phenol extraction and the samples were analysed on a 10% denaturing gel. To 

establish cleavage positions in the Ag RNA, digestions were performed with RNase 

T l and A, under denaturing conditions, at 50°C for 5 min in a buffer containing 7 

M urea, 1 mM EDTA and 25 mM sodiumacetate. 

Fe(II)EDTA footprinting 

Cleavage reactions were carried out essentially as described by Darsillo et al. (22). 

In all experiments 5'-end-labeled Ag RNA (5 χ 10ч cpm) was used. The specified 

amount of U1A protein was added an the complex was allowed to form for 30 min 

at room temperature after which the probing reactions were performed at room 

temperature for 10 min (or for 30 min at 0°C). All reagents, freshly prepared, were 

placed on the rim of the tube and mixed subsequently by centrifugation. Final 

concentrations (final volume 10 μ\) were 100 μΜ for Fe(If) (Fe fNHJ^SO^.óHP) 

and EDTA, 1.5 mM for ascorbate and 0.0015-0.006% for H 2 0 2 . Buffer conditions 

were 20 mM Tris-HCl pH 7.5, 5 mM MgCl2and 50 mM NaCl. Yeast tRNA (5 μς) 

was added as carrier. The reactions were stopped by adding thiourea (20 μ\ of a 0.1 

M solution), which serves to quench the free-radical reaction, followed by a phenol 

extraction and ethanol precipitation. The samples were analysed on a 10% 
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denaturing gel. Fe(D)EDTA eliminates nucleoside moieties from the RNA to 

generate products with both 5' and З'-phosphorylated termini. Consequently, the 

fragments produced migrate faster relative to corresponding fragments in the Τ1 

lane (22, 23). 

RESULTS 

Structure probing of U1A mRNA 

A previously proposed secondary structure of the conserved region of the 3' 

UTR of the U1A mRNA, called Ag RNA, is shown in Figure 1 and consists of 

two distinct parts which are separated by only two nucleotides, U56 and A57 (16). 

The 5' part, which has a very symmetric structure, contains three stems (numbered 

1, 2, and 3), separated by two asymmetrical internal loops containing the Box 1 and 

2 sequences, which are required for U1A binding. Two single unpaired nucleotides, 

A24 and C50, are present on the strand opposite Box 2 and Box 1, respectively. 

The 3' part of the structure is a stemloop with the AUUAAA polyadenylation 

signal occupying most of the loop. 

Enzymatic structure probing experiments (16) clearly showed that the central 

three nucleotides in Box 1 and 2, and also the polyadenylation signal (loop 4) are 

single-stranded. The presence of the highly conserved stems 2 and 3, which are 

needed for U1A protein binding, was clearly established by RNase VI cleavage and 

by analyses of structure and function of mutant mRNAs (16). However, the 

behavior of a few other parts of the structure was less easy interpretable. Stems 1 

and 4 showed cleavage both by RNase VI and by single-stranded-specific 

ribonucleases. This indicates that these two stems, which have not been strongly 

conserved in evolution, and which seem not important for either U1A protein 

binding or inhibition of polyadenylation by the U1A protein, are of weak stability 

or may not exist at all in solution (16). Furthermore, the tetraloop of stem 3 

(nucleotides 30-33) was hardly cleaved by ribonucleases under native conditions, 

suggesting that its structure might be very compart. A similar behavior was found 

for the unpaired nucleotides A24 and C50. This could arise either from the fact 

that these two nucleotides are located inside the helix or from the fact that 

ribonucleases, because of their bulky size, are very sensitive to steric hindrance. In 

contrast, chemical probes, which are of small size, are not very sensitive to steric 

hindrance and therefore can provide more detailed insight in the mRNA structure 

at the atomic level. 
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Figure 1. Secondary structure and nomenclature of the Ag RNA, the conserved region of the 
3'UTR of the human U1A pre-mRNA (taken from (16)). The Box sequences, the polyadenylation 
signal and stems 1, 2, 3 and 4 are indicated. 

The four bases were monitored at their Watson-Crick base-pairing positions by 

dimethylsulfate pMS) at Nl-A and N3-C and by carbodiimide (CMCT) at N3-U 

and Nl-G. Position N7 of guanine and adenine residues was probed by DMS and 

diethylpyrocarbonate (DEPC), respectively. The experiments were performed under 

native conditions (N), semi-denaturing conditions (SD) and denaturing conditions 

(D). Tertiary interactions are generally less stable than Watson-Crick interactions 

and are expected to melt under semi-denaturing conditions (20). Experiments under 

such conditions will also give information about the stability of the different helical 

domains. Ag RNA was probed both at 20°C and at 0°C. The latter temperature 

was used to minimize the breathing in this relatively small RNA molecule, a 

phenomenon observed at 20°C (see below). 

Figures 2A through 2E show examples of the chemical probing results for Ag 

RNA, while Figure 3 summarizes the results of several independent probing 

experiments both at 20°C (Figures ЗА, 3B) and at 0°C (Figure 3C). 
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Stem regions 

Stems 2 and 3. At 20°C the presence of stems 2 and 3 is clearly supported by the 

chemical modification data, since many nucleotides are only reattive under 

denaturing conditions. This is shown, for example, for nucleotides U26 and U28 in 

stem 3 in Figure 2B (lane 9) for the CMCT reaction. Their counterparts in stem 3, 

A37 and A35, respectively, are reactive with DMS (data not shown), as is A22 in 

stem 2 (see Figure 2A, lane 3). This difference in reactivity between adenosines and 

uridines in Α-U base pairs has also been observed in helical regions of other RNAs 

(19, 20, 24) and is probably related to the fart that the Nl-A can be modified by 

the relatively small DMS molecule (M r-126), while the N3-U on the opposite 

strand cannot be modified by the more bulky CMCT reagent (M r-423). 

Concerning the N 7 positions of the purines in stems 2 and 3, the guanosines are 

on the average more reactive towards DMS than the adenosines towards DEPC (see 

Figures 3B and 3C for a summary). This difference occurs because DEPC is larger 

than DMS, and in this way more sensitive to stacking (25, 26), and is, in our case 

most clearly visible in the zero degrees experiments. At this low temperature many 

N7-G positions in stems 2 and 3 are still accessible, although their reactivity is 

clearly reduced as compared to 20°C (Figure 2D, lanes 3 and 6), while N 7 atoms of 

A35 and A37 are no longer available for modification (Figure 2E, lanes 3 and 6). 

Guanosines 23, 25, 49 and 51 are bordering the two internal loops where they are 

likely to be more accessible, a behavior also found in other RNA internal loops 

(19). 

Stems 1 and 4. In agreement with the enzymatic probing (16), the chemical probing 

experiments show that stems 1 and 4 are of weak stability and are breathing at 

20°C. In stem 1, many nucleotides are reactive at the Watson-Crick positions at 

this temperature (See Figure 2A, lane 3, for nucleotides 6-10), and the same is true 

for the N7-positions of G51 and G54 in stem 1 (see Figure 2D, lane 6). When we 

lower the temperature to 0°C, the Watson-Crick positions of nucleotides 6-10 can 

no longer be modified by DMS (Figure 2A, lane 5). Only U55 can still react with 

CMCT (data not shown), but this nucleotide is located at the end of stem 1, and 

thus is likely to be more reactive. Also the reactivity of the N7-atoms of the 

purines was diminished at 0°C. In stem 4 several nucleotides show reactivity at 

20°C, both at their Watson-Crick and N 7 -positions (see Figure 3 for a summary), 

but when the temperature is lowered the nucleotides can no longer be modified, or 

show much less reactivity. Taken together, these results suggest that stem 1 and 4 



136 Chapter 5 

DMS В 

N O ° C 

Stem 1 

Box 1 

• A6 

- A10 

- A13 

- A18 

- C19 

- A22 

- A24 

U 1 4 . 
U17 

U 2 6 -

U 3 0 -

U 4 0 -
U41 -

Box 1 

DEPC 

G48 
G51 
G54 

388 

Q62 

N 0-C N 20-C D 

ЯЯГЯ 
*m m щрі 

' • • • I f 

Α'.ΐ 

A2? 

A35 
A37 
АЭ9 

• < 

1 2 3 4 5 6 

i s il 
л.··-
· , Γ Ί 
A70 

1 2 3 4 5 6 7 8 9 



Structure of Ag RNA and its complex with U1A 137 

D M S 
N 2 0 " C N O C SD D 

Box 2 

Polyadenylation 
Signal 

1 2 3 4 5 6 7 8 9 10 11 12 

Figure 2. Structure probing of Ag RNA. (A) (opposite page) Chemical probing of Ag RNA with 
DMS at room temperature and at 0 °C. Detection of modifications was done by primer extension. 
Samples in lanes 1 and 4 are control incubations in which reagent was omitted. The reaction 
conditions are indicated: N (native conditions, 20°C) and N 0°C (native conditons, 0°C). Lane 2: 
0.5 μϊ DMS incubated for 15 min. Lanes 3 and 5: 1.5 μϊ DMS incubated for 15 min. (В) (opposite 
page) Chemical probing of Ag RNA with CMCT. Detection of modifications was by primer 
extension. Samples in lanes 1, 4 and 7 are control incubations in which reagent was omitted. Lanes 
2, 3, 5 and 6: 50 μϊ CMCT incubated at room temperature for 20, 30, 5 and 10 min, respectively. 
Lanes 8 and 9: 10 and 25 μϊ CMCT, incubated for 1 min at 90°C. (C) (above) Chemical probing of 
Ag RNA with DMS at room temperature and at 0°C. Detection of modifications was by primer 
extension. Samples in lanes 1, 4, 7, 10 are control incubations in which reagent was omitted. The 
reaction conditions are indicated: N (native conditions), SD (semi-denaturing conditions), D 
(denaturing conditions). Lanes 2 and 5: 0.5 μϊ DMS incubated for 7 min. Lanes 3 and 6: 1.5 μϊ 
DMS incubated for 7 min. Lanes 11 and 12: 0.5 and 1 μϊ DMS incubated for 30 s at 90°C. (D) 
(opposite page) Chemical probing of N7-G positions of 3'-end-labeled Ag RNA with DMS. The 
reaction conditions are indicated at the top of the figures. Samples in lanes 1, 4 are control 
incubations in which reagent was omitted. Lanes 2 and 5: 1 μϊ DMS incubated for 10 min. Lanes 3 
and 6: 2 μϊ DMS incubated for 10 min. (E) (opposite page) Chemical probing of N7-A positions of 
З'-end-labeled Ag RNA with DEPC. Samples in lanes 1, 4, 7 are control incubations in which 
reagent was omitted. The reaction conditions are indicated at the top of the figures: N (native 
conditions), D (denaturing conditions). Lanes 2 and 3: 10 and 20 μϊ DEPC incubated for 1 hr at 
0°C. Lanes 5 and 6: 10 and 20 μϊ DEPC incubated for 50 min at room temperature. Lanes 8 and 9: 
2 and 4 μϊ DEPC incubated for 4 min at 90°C. 
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Reactivity of Watson-Crick positions 
of nucleotides at room temperature 

Figure 3. Summary of the chemical structure probing of the 3' UTR of U1A mRNA (A) 
Reactivities of Watson-Crick positions of nucleotides in Ag RNA towards chemical probes at 
20°C. Consensus data from several independent experiments using both primer extension and end-
labeled detection are shown. Reactivity towards the chemical probes is indicated with symbols 
which are explained in the Figure. Nucleotides for which no reactivity is indicated show RT-stops 
in the primer extension reactions. (Figure continued on next page). 

indeed can be formed, although they are of weak stability at 20 °C. 

Loop regions and linker region 

Box 1 and Box 2 regions. All nucleotides in the Box 1 and 2 sequences are 

accessible at their Watson-Crick positions at 20°C (see Figure ЗА for a summary of 

the data). Figure 2A (lane 3) shows accessibility to DMS of A13, A18 and C19 in 

Box 1 and Figure 2C (lane 3) of A39, C43, A44 and C45 in Box 2. Figure 2B (lane 

3) shows the accessibility to CMCT of U14 to U17 in Box 1, and of U40 to G42 

in Box 2. At 0°C a few nucleotides at the 5' part of Box 2 become inaccessible at 

their Watson-Crick positions (Figures 2C, compare lanes 3 and 6). In Box 1 the N1 
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Figure 3 (continued). (В) Reactivities of N7-positions of punnes in Ag RNA towards chemical 
probes at 20 eC. Consensus data from several independent experiments using З'-end-labeled U1A 
mRNA are shown. Symbols are identical to those used in Figure ЗА. (Figure continued on the next 

atom of A13 is no longer accessible while A18 and C19 show reduced accessibility 

(Figure 2A, lane 5). This behavior is probably due to stacking of the bases and this 

agrees with the RNase VI cleavage found at the 5' parts of both Box sequences 

(16). It must be noted, however, that both Box sequences do not behave exactly the 

same at 0°C (see Discussion). 

Although RNases were unable to cleave the unpaired nucleotides A24 and C50, 

our chemical probing results show that C50 is strongly reactive and that the N1 

atom of A24 (Figure 2A, lane 3) is moderately reactive at 20°C. For C50 this had 

to be deduced from reactions with З'-end-labeled RNA (data not shown) due to the 

occurrence of a natural stop of reverse transcriptase at C50 in the primer extension 

reactions. Note that in A24 also the N7 atom is also available for modification 

(Figure 2E, lane 6). At 0°C, N1 of A24 is no longer accessible (Figure 2A, lane 5), 

probably due to stacking, but the N7-atom of A24 still can be modified (Figure 2E, 
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Figure 3 (continued). (C) Reactivities of Watson-Crick and N7-positions of nucleotides in Ag 
RNA towards chemical probes at 0°C. Consensus data from several independent experiments using 
both primer extension and end-labeled detection are shown. Reactivity towards the chemical 
probes is indicated with symbols which are explained in the Figure. 

lane 3). 

Tetraloop. Nucleotide U30 in the tetraloop is moderately reactive towards 
CMCT while the reactivity of cytosines 31-33 toward DMS is more difficult to 
evaluate due to the presence of RT-stops, especially at positions 33 and 34. By using 
3'-end-labeled RNA, however, it was found that nucleotides 32 and 33 are 
moderately reactive at their N3 position, while N3 of C31 is only reactive at 
denaturing conditions (data not shown). 

Loop 4 and linker region, In full agreement with the enzymatic probing, loop 4 is 
completely accessible at the Watson-Crick positions at native conditions (see Figure 
2C, lane 3, for DMS results) with the exception of U67 which becomes accesible to 
CMCT only under SD conditions (data not shown). The N7 positions of the 
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purines (see Figure 2D and 2E, lanes 6) are accessible and A68 through A70 seem 
more strongly modified than A64 and A65. At 0°C most of the nucleotides are still 
moderately accessible at both Watson-Crick and N7 positions, but the reactivity is 
clearly reduced as compared to 20°C (see Figures 2C lane 6, and 2D and 2E, lanes 

3). 
The linker region, which connects the 5' part with the 3' part of the structure, 

is formed by two nucleotides U56 and A57. Both nucleotides are fully accessible at 
room temperature (see Figure 2C, lane 3 for A57). At 0°C, U56 can no longer be 
modified but A57 is still accessible, both at N7 (Figure 2E, lane 3) and at N1 (see 
Figure 3C). 

Analysis of the complex of U1A mRNA with U1A protein 

To obtain information on the complex of U1A mRNA and U1A protein, 
footprinting experiments were performed using both various ribonucleases and 
Fe(D)EDTA. In these experiments 5'-end-labeled Ag RNA was incubated with an 
excess of U1A protein. The resulting RNP complexes were probed with RNases A, 
Tl, T2, VI or Fe(D)EDTA. Examples of RNase footprinting are shown in Figure 
4A (RNase T2), Figure 4B (RNase A) and Figure 4C (RNase VI), while Figure 4D 
summarizes the results obtained by ribonuclease protection. 

As might be expected, the Box 1 and 2 regions are almost completely protected 
by the U1A protein (compare lanes 2 and 3 in Figure 4A). The phosphodiester 
bond between C43 and A44 is a very sensitive spot in both RNA and RNP, which 
obscures clear interpretation of the protection pattern at that position. Such 
intrinsic fragility, especially for pyrimidine-adenosine bonds, is well known in 
RNA molecules (26). Nucleotide A13 in Box 1 becomes a hypersensitive site in the 
RNP complex (lane 3). The single-strand-specific RNases also cleave some 
nucleotides in the stem regions in the naked RNA, for instance nucleotides 26-28 in 
stem 3 and nucleotides in both stem halves of stem 1. These cleavages are absent or 
much weaker in the RNP complex (Figure 4A, compare lanes 2 and 3; see also 
Discussion). 

The protection pattern obtained by RNase VI in the presence of U1A wt 
protein (Figure 4C) shows that the stem regions in the 5' part of the RNA (stems 
1, 2 and 3) become protected in the RNA-protein complex, while the 3' part 
remains unprotected (compare lanes 3 and 4). Footprinting experiments with RNase 
VI and T2 in the presence of A101 (containing the N-terminal 101 amino acids of 
U1A) did not show significant differences in the protection patterns (data not 
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Figure 4. Enzymatic and chemical probing of the U1A - Ag RNA complex. (A) (opposite page) 
Enzymatic footprinting of the U1A-Ag RNA complex using 5'-end-labeled Ag RNA and single-
strand-specific RNase T2: Lane 1: Control incubation where U1A protein and RNase T2 are 
omitted; Lane 2: RNA probed at room temperature for 10 min with RNase T2 (5 χ 10"' U); Lanes 
3 and 4: RNA incubated with respectively 150 and 300 molar excess of U1A protein, probed with 
RNase T2 (5 χ 10'3 U); Lanes 5 and 6: RNA probed under denaturing conditions with RNases A 
and Tl, to obtain a sequence ladder for Ü/C and G, respectively. (B) (above) Enzymatic 
footprinting of the U1A-Ag RNA complex using 5'-end-labeled Ag RNA and single-strand-specific 
RNase A: The region around the tetraloop is shown. Lane 1: Control incubation in which U1A 
protein and RNase A are omitted; Lane 2: Control incubation in which both U1A mRNA and 
U1A protein (300-fold molar excess) are present but RNase A is omitted; Lane 3: RNA probed 
with RNase A (2 χ 10"5 U) for 10 min at room temperature; Lanes 4 and 5: RNA with 150- and 
300-fold excess of U1A protein, respectively, probed with RNase A as in lane 3. Note the 
accessibility of nucleotides U30, C31, C32 and C33. (C) (opposite page) Enzymatic footprinting of 
the U1A-Ag RNA complex using 5'-end-labeled Ag RNA and RNase VI. Lane 1: Control 
incubation in which U1A protein and RNase VI are omitted; Lane 2: Control incubation in which 
both Ag RNA and U1A protein are present but RNase VI is omitted; Lane 3: RNA probed at 
room temperature for 10 min with RNase VI (0.06 U); Lanes 4, 5 and 6: RNA incubated with 
respectively 150, 300 and 500 molar excess of U1A protein, probed with RNase VI; Lane 7: RNA 
probed under denaturing conditions with RNase Tl, to obtain a sequence ladder. (Figure continued 
on next page). 
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Figure 4 (continued, opposite page). (D) Summary of RNase data obtained for both the naked Ag 
RNA and the U1A-Ag RNA complex. On the left the digestion pattern of the RNA is shown 
(adapted from (16)), while on the right the digestion partem of the U1A-Ag RNA complex is 
shown. Strong cleavages are indicated by solid arrows and weak cleavages by open arrows. The 
enzymes which do cut are indicated next to the arrows. In case of RNases VI and T2, the data are 
both for U1A wt and for A101, while for experiments with RNases A and Tl only U1A wt was 
used. (Figure continued ση next page). 

shown). At the 3' side of stem 1 (nts 51-55) protection is found until nucleotide 53, 

while one VI cleavage, between nucleotides 53-54, becomes stronger in the RNP as 

compared to the naked RNA. 

Because nucleotides of the tetraloop in the naked RNA were not cleaved by 

RNases (see above and (16)) information about protection of this region was not 

expected to be obtained. Interestingly, however, the tetraloop becomes accessible to 

RNases in the RNP complex (see Figure 4B, compare lanes 3 and 5), indicating a 

structural change in this part of the RNA upon protein binding. 

The 3' part of the structure (stem 4 and loop 4) does not show much protection 

(see Figure 4A), so this region appears to be accessible in the RNP complex. Only 

the 5' side of the polyadenylation signal (nucleotides 64-65) shows partial 

protection (compare lanes 2 and 4). 

Next to using ribonucleases, RNA-protein interactions can also be analyzed by 

chemical nucleases (27), i.e. metal complexes that cleave nucleic acids with little or 

no dependence on the identity of the attached base. For example, Fe(II)EDTA 

complexes generate hydroxyl radicals in the presence of hydrogen peroxide or 

molecular oxygen. Hydroxyl radicals attack solvent-exposed riboses inducing strand 

scission of the RNA and in this way are able to discriminate between solvent-

accessible and solvent-inaccessible (i.e. protected) regions. Furthermore, Fe(II)EDTA 

can be used to probe the conformation of naked RNA. It appears to act 

independently of the secondary structure, but can be used to analyze the tertiary 

folding of RNAs. In some cases, for example tRNA, ribose residues in the interior 

of an RNA molecule are protected from strand scission, while for example in 5S 

rRNA, only minor modulation in cleavage intensity along the molecule is found, 

indicating that this RNA possesses very little, if any, tertiary structure (22). 

Results of Fe(D)EDTA probing of the U1A mRNA-UlA complex are 

summarized in Figure 4E while an example of a densitometer scan of the gel is 

shown in Figure 4F. The data obtained so far concern only nucleotides 10-50 and 

largely agree with the enzymatic protection data. The RNA lanes in our 

Fe(n)EDTA experiments in general show little modulation in intensity (data not 

shown), which indicates a lack of tertiary structure. This is in agreement with the 
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Figure 4 (continued). (E) Summary of Fe(II)EDTA footpnnting of nucleotides 10-50 of the U1A-
Ag RNA complex using 5'-end-labeled Ag RNA. The U1A wt protein is present in 150 fold excess 
and nucleotides which are protected against cleavage by hydroxyl radicals are shown in bold 
(strong protection) and light ardes (weak protection). (Figure continued on next page). 

results of the chemical probing of Ag RNA. In the RNA-protein complex, the 

majority of the nucleotides in Boxes 1 and 2 are protected against hydroxyl 

radicals. Nucleotides G16 and G42, which are positioned symmetrically in the 

structure, are not protected. This agrees with the enzymatic data, which show 

accessibility of the 5'phosphates of these two guanosines in the RNP complex (see 

Figure 4C). However, the behaviour of the loop nucleotides is not completely 

symmetrical. In Box 1, the nucleotides at the 5' side of the Box (A13 and U14) are 

more accessible to radicals than the corresponding nucleotides in Box 2 (A39 and 

U40). Some protection is found in stem 2 but stem 3 shows almost no protection 

as is the case with the 5' side of stem 1 (for the 3' side of stem 1 no data are 

available yet). 
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Figure 4 (continued). (F) Imaging densitometer scans of hydroxyl radical footprints of the U1A-
Ag RNA complex. Data are shown for both 150 (RNP150) and 300-fold (RNP300) excess of U1A 
wt protein. The region of the Ag RNA shown is nucleotides 10-21. Box 1 is located between 
nucleotides 13 and 19. 

DISCUSSION 

Secondary structure of U1A mRNA 

We probed the conserved region of the 3'UTR of U1A mRNA at nucleotide 
resolution by the utilization of structure-specific probes. The secondary structure 
obtained is in accord with the structure predicted previously which was based upon 
enzymatic probing and analysis of structure and function of mutant RNAs (16), 
but contains a number of additional features. 

At 20°C, the highly conserved stems 2 and 3 are indeed present while stems 1 
and 4 also exist but these are not very stable and probably breathing. At 0°C, all 
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four stems clearly exist in the structure. 
At 20eC all nucleotides in the Box 1 and 2 regions are fully accessible at both 

their Watson-Crick positions and at the N7-atoms of the purines. This behavior 
excludes the presence of tertiary interactions between these nucleotides and other 
parts of the RNA. At 0°C, several nucleotides in the Box regions are no longer 
accessible, probably because of stacking. Interestingly, the behavior of the two Box 
regions at 0°C is identical. Box 1 shows more reactivity of both Watson-Crick and 
N7-positions at its 5' end, while Box 2 shows most reactivity at the 3' end. A 
(somewhat) different structure of the two Boxes could be expected because the two 
sequences, although almost identical in sequence, have a different structural context 
in the U1A pre-mRNA and also differ in UlA binding capacity. Box 2 forms a 
much stronger (—30 fold) binding place for UlA protein than Box 1 (16). 

The two unpaired nucleotides A24 and C50 are clearly accessible at 20°C. 
Whether the accessibility of A24 and C50 results from looping out of the helix or 
from the fact that the structure of the RNA is more open at the internal loops is 
not known. The fact that N7 of G25 also can be modified supports the possibility 
that A24 is not stacked in the helix. 

Cleavage in the tetraloop by RNases was not observed (16), but chemical 
probing showed that in the RNA three of the four tetraloop nucleotides are 
moderately accessible at 20 °C. N3 of C31 was only reactive at denaturing 
conditions, which could either indicate stacking or point to an involvement in a 
tertiary interaction under native conditions. 

The chemical probing results clearly indicate the presence of stemloop 4. In the 
loop containing the AUUAAA polyadenylation signal, it can be seen that all 
adenosines are reactive at both the N1 and the N7 position, and this behavior 
persists at 0°C. 

In conclusion, the probing studies provide a secondary structure for the Ag 
RNA as shown in Figure 3. Both the chemical probing and the Fe(D)EDTA results 
suggest that there are hardly any tertiary interactions present between different 
domains of the Ag RNA, which is reminiscent of the behavior of 5S rRNA 
towards chemical and enzymatic probes (28) and hydroxyl radicals (22). 

The UlA mRNA - UlA protein complex 

Footprinting experiments have been performed on the complex of UlA mRNA 
and the UlA protein. In the first set of experiments, several ribonudeases were 
used. Inhibition of reactivity at certain nucleotides can be inferred as a direct 
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protection (and hence contact) of the RNA by the protein at that site. However, 

reduced reactivity can also be caused by conformational changes in the RNA chain 

brought about by the addition of the protein, and it is not easy or impossible to 

distinguish between these two modes of protection. Furthermore, since RNases are 

large molecules, steric hindrance may significantly enlarge the protected regions. 

For this latter reason, a probe with small size, the hydroxyl radical, has been used 

in a second set of experiments. Cleavage of RNA with Fe(ÏÏ)EDTA appears 

relatively independent of the secondary structure, and its uniform reactivity makes 

it an excellent probe (22). However, the technique is tedious and not always as 

reproducible as one would like. 

Both the ribonudease and Fe(D)EDTA protection experiments show that the 

Box 1 and Box 2 regions, as might be expected, are largely protected when the 

U1A protein is present. Clearly, these sequences, which have been shown to be 

important for U1A binding to U1A mRNA (15), are in contact with the U1A 

protein. Only some nucleotides, located at the 5'-side of both Boxes, can be 

attacked by ribonucleases (A13, U15, A39 and U41) and hydroxyl radicals. 

Surprisingly, nucleotides G16 and G42, both localized at the center of a Box 

sequence, show no protection against the small hydroxyl radical. This lack of 

protection of G16 and G42 possibly reflects the fact that the loop turns sharply 

there, resulting in an exposed ribose. 

All nucleotides in stems 1, 2 and 3 show complete or partial protection against 

ribonucleases in the presence of U1A protein, and also in the presence of A101, 

which contains only the N-terminal RNP motif of U1A. Around nucleotide 54 

RNase VI cleavage is enhanced when U1A protein is added. This might indicate 

that stem 1 becomes more stable as a result of U1A binding. Alternatively it could 

indicate a stacking of stems 1 and 4 onto each other. The reduction of cleavages by 

single-strand-specific RNases in stem 1 and 3 could indicate protection of these 

regions by the U1A protein, but could also be the result of a further stabilization 

of the double-stranded region upon binding of U1A protein. Footprinting of the 

complex of stem-loop Π of Ul snRNA and U1A protein has been performed with 

both RNase VI and ethylnitrosourea (5). However, in that case only one of the 

stem halves ·οί stem-loop Π appeared to be protected against the probes. This 

difference in behaviour of Ul snRNA (5) as compared to U1A mRNA (our results) 

can be due to the difference in size of the RNA substrates or to the presence of 

two rather bulky U1A proteins in the latter case, instead of one in case of Ul 

snRNA. 

Interestingly, in the RNP complex the nucleotides in the tetraloop (loop 3) seem 
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to become accessible. This may indicate that this loop undergoes a conformational 

change upon U1A protein binding. It appears that the loop opens up, with its 

nucleotides becoming available to the probes. Such behaviour is also found in 

bacteriophage R17 where a hairpin tetraloop structure is becoming more open 

upon R17 coat protein binding (29). 

The 3' part of the structure is formed by stem-loop 4 and this part shows, as 

expected, no protection, except for some limited changes at the 5' side of the loop. 

This means that this region is accessible in the RNP complex, a finding which is in 

complete agreement with the finding that U1A does not interfere with the binding 

of the cleavage polyadenylation specificity factor (CPSF) to the polyadenylation 

signal during polyadenylation of the mRNA (17). 

In conclusion, we have obtained detailed information concerning the structure of 

Ag RNA and its complex with U1A protein. This information allowed us to build 

a three-dimensional model for the conserved region of U1A mRNA and a possible 

tertiary structure model for this particular RNA-protein complex. Such a model 

will be discussed in the addendum of this chapter. 
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Addendum: Towards a three-dimensional model of the complex 
of Ag RNA with U1A protein 
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University of Nijmegen, Department of Biochemistry, PO Box 9101, 6500 HB Nijmegen, 
The Netherlands 

ABSTRACT 

With the help of the structure probing data of Ul A mRNA and of its complex 
with Ul A protein, we started with the construction of a three-dimensional model 
of this RNA-protein complex using computer modeling techniques. First, a model 
of the interaction of one of the UlA-binding regions of U1A mRNA with one 
RNP motif of Ul A was created. This interaction is most probably similar as found 
in the complex of U1A protein with Ul snRNA stemloop II. We then postulated 
that the second U1A binding region of the mRNA is positioned in the same way 
on the N-terminal RNP motif of the second U1A protein. 

After this, a possible orientation of the two UlA-binding sites in U1A mRNA, 
and therefore of the two U1A proteins, is discussed in the light of the currently 
available experimental data. At this stage of the modeling, the working model still 
is very crude. Further experiments are needed to test and refine it, and to 
determine the precise orientation of the two U1A proteins. 
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INTRODUCTION 

In the two preceding chapters of this thesis, investigations concerning the structure 

of the conserved region of the U1A mRNA (Ag RNA) have been described. 

Furthermore, the complex of the U1A pre-mRNA was investigated by footprinting 

analyses using both ribonucleases and hydroxyl radicals. With this information an 

attempt can be made to postulate a three-dimensional model for Ag RNA and its 

complex with U1A protein. 

The U1A protein contains two so-called RNP motifs (1), of which the N-terminal 

copy is responsible for binding to U l snRNA (2, 3), and to U1A mRNA (4). The 

function of the C-terminal RNP motif of U1A is not known yet, but this domain 

does not appear to bind RNA (5). As described earlier in this thesis, the RNP motif 

contains a ß a ß ß a ß fold, in which а ß-sheet formed by four antiparallel ß-strands is 

flanked at one side by two α-helices. The conserved R N P l and RNP2 segments are 

located in the two central ß-strands (ßl and ß3). In the U1A protein a Tyr residue in 

RNP2 could be crosslinked to a nucleotide in the second stemloop of U l snRNA (6) 

and mutagenesis experiments showed that U l snRNA stemloop Π binds to the surface 

of the four-stranded ß-sheet, as well as to loops at one edge of the sheet (7). All these 

data agree with recent results of NMR experiments performed on the complex 

between hnRNP С protein and rU 8 (8, 9) and on the complex of the N-terminal R N P 

motif of U1A and stemloop Π of U l snRNA (10, 11). In the latter complex, the U l 

snRNA hairpin loop, which is largely disorded in the absence of protein, becomes 

ordered upon protein binding (11). Most recently, a co-crystal structure has been 

described of the complex between the N-terminal RNP motif of U1A and an RNA 

substrate containing 21 nucleotides of stemloop Π of U l snRNA (12). 

MATERIALS A N D METHODS 

Probing data of RNA and RNP 

The chemical and enzymatic probing data for Ag RNA and for the U1A-Ag RNA 

complex are taken from Chapters 4 (13) and 5 of this thesis. 

U1A protein coordinates 

For U1A protein the X-ray structure of its N-terminal R N P motif was solved at 

2.8 Â (7). Only the C a coordinates of this structure are available in the Brookhaven 

Protein Databank (14). Full coordinates for U1A have been generated as described in 

Chapter 2 of this thesis (15). 
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RNA model building 

The RNA secondary structure was divided into elementary motifs (helices, loops), 

which were assembled into a three-dimensional structure by using a computer graphics 

station and SYBYL software (16). The following principles were observed. First, the 

major interaction stabilizing RNA structure is base stacking, which is short-range and 

controlled by the nearest neighbors, followed by hydrogen bonding between 

complementary or non-canonical bases. Secondly, the sugar-phosphate backbone 

preferentially adopts right-handed helical conformations with the bases in the anti 

conformation and the ribose sugar in the СУ-endo pucker. Thirdly, the model must 

be consistent with the results obtained by enzymatic and chemical probing of the 

RNA and the R N P complex. 

RESULTS A N D DISCUSSION 

Secondary structure of Ag RNA and protection data of the Ag RNA-U1A complex 

Figure 1A shows the secondary structure of Ag RNA as deduced from our previous 

studies (Chapters 4 (13) and 5). The 5' part of the structure is involved in U1A protein 

binding, and the Box 1 and 2 sequences are the main determinants for this (4). In 

Figure IB, the second stemloop of U l snRNA is shown, which is the other substrate 

to which U1A protein binds. The first seven nucleotides of this loop, AUUGCAC, 

are critical for U1A protein binding (2, 17), while the three nucleotides at the 3' side 

of the loop are functioning as a kind of spacer and can be replaced by non-nucleotide 

linkers without disturbing complex formation (Dr. K. Hall, pers. communication). 

Furthermore, the loop sequence of 10 nucleotides has to be constrained by a stem of 

which the sequence does not seem important (5, 11). In Ag RNA, the Box 2 region, 

which contains a sequence identical to the UlA-binding region of U l snRNA, can 

bind U1A protein with high affinity, while Box 1, which contains a sequence in which 

6 out of 7 nucleotides are identical to the U1A binding sequence, shows a 30-fold 

lower affinity for U1A protein (13). 

Nucleotides which are protected by ribonucleases or by hydroxyl radicals in the Ag 

RNA-U1A protein complex are shown in Figures 4D and 4E of Chapter 5. It was 

shown that the Box 1 and 2 regions are almost completely protected against 

ribonucleases by the U1A protein. It must be noted that the secondary structure of 

the 5' part of the conserved region of Ag RNA shows an approximate two-fold 

symmetry axis and this axis is depicted in Figure 1A. Furthermore, this symmetry is 

also found in the protection behaviour of some of the nucleotides. For example, the 
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Figure 1. (A) The secondary structure of the conserved region of the 3' UTR of the human Ag RNA 
The boxed regions are important for U1A protein binding The nomenclature for the loop and stem 
regions is shown, as is the location of the two-fold symmetry axis ( § ) (see text). (B) The second 
stemloop of human U l snRNA The boxed region is important for U1A binding. Numbering of 
nucleotides is according to wt Ul snRNA sequence 

riboses of the symmetrically positioned G16 and G42 are not protected against 

hydroxyl radicals, and also stem 2 shows symmetrical behaviour toward hydroxyl 

radicals (Figure 4E of Chapter 5). The ribonuclease protection data of the RNP 

complex indicate that in stem 2 the only VI cleavages are found between C20-C21 and 

C46-U47, which are positioned symmetrically in the RNA (Chapter 5, Figure 4D, 

right panel). In the Box regions RNases can moderately cleave A39 and U41, as well 

as А1Э and U15, which are positioned symmetrically. In stems 1 and 3, both stem 
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sides show protection against ribonucleases in the RNP complex, although the 5' side 

of stem 1 (nts 8-12) more than the corresponding side of stem 3 (nts 34-38). 

Towards a three-dimensional model of the UlA-mRNA complex 

Model building strategy 

Taking into account the similarities between the two substrates of U1A protein, U l 

snRNA and U1A mRNA, we started by creating one UlA-binding site of the Ag 

RNA similar to the U l snRNA hairpin loop found in the X-ray structure of the 

complex of the N-terminal RNP motif of U1A protein with this U l snRNA loop 

(12). The N-terminal R N P motif of the U1A protein was positioned on the partial Ag 

RNA structure. It is known that the structure of the RNP motif bound to RNA is 

nearly identical to the unbound protein structure (8, 10), so the reconstructed U1A 

structure (15), which is based on the protein crystal Car-coordinates (7), can be used 

with confidence in the building of the RNA-protein complex. The second UlA-

binding place of Ag RNA was assumed to be identical to the first, so the 

conformation of this first UlA-binding region of Ag RNA was copied. After this, 

possible relative orientations of the two protein binding sites in the mRNA were 

explored. 

Complex of one U1A binding site with one U1A RNP motif 

Our working model of the complex of an RNA molecule containing Box 2 and 

stemloop 3 with the N-terminal RNP motif of U1A is shown in Figure 2. The 

full-coordinate reconstruction of U1A (15) contains coordinates for amino acids 1-90. 

Amino acids 91 and 92 were added to the C-terminal end of the RNP motif and the 

structure of amino acid 90 was adjusted (it was disordered in (7)) to resemble the 

co-crystal (12). 

Regarding the Ag RNA, we constructed stem 3 containing the tetraloop. At this 

stage of the modeling, the tetraloop was constructed in agreement with the N3-C 

modification data of the naked RNA (Figure ЗА, Chapter 5). In the presence of U1A 

the structure of the loop will change to adopt a more exposed conformation because 

the bases are accessible to ribonucleases in the RNP complex but not in the RNA (see 

Chapter 5, Figure 4D). To position stem 3 on the RNP motif of U1A we used the 

Arg 52, Lys 20 and Lys 22 side chains. Base pair C38-G25 is thought to resemble the 

C65-G76 base pair in the U l snRNA stem of stemloop II (Figure IB), which has 

contact with Arg 52 in the co-crystal (12). Nucleotides 34-38 in Ag R N A are oriented 

towards the side chains of lysines 20 and 22. After this, the Box 2 nucleotides were 
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Figure 2. Model structure for one UIA binding region of Ag RNA with the N-terminal RNP motif 
of U1A. The Box 2 region is shown, as well as stem 3 and the tetraloop. For the N-termmal RNP 
motif of U1A only a ribbon representation is shown, as well as the side chains of some important 
amino acids (Arg 52, Туг 13, Phe 56 and Gin 54). The nucleotides in Box 2 are labeled as well as some 
amino acid side chains. In stem 2, base pair G23-C46 is shown in black while the other 3 base pairs 
are shown in grey. 
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positioned. At the 5' side of Box 2, nucleotides A39 and U40 stack on the preceding 

stem 3. At the 3' side of Box 2, A44 and C45 are stacked on Phe 56. For nucleotides 

U41 and C43 a 2'-endo sugar pucker was chosen as starting conformation, in 

agreement with the pucker of the corresponding nucleotides in the co-crystal (12). G42 

is located between the side chains of Asn 16 in /31 and Gin 54 in /33, and it was 

constructed with an exposed ribose, because this nucleotide is not protected against 

hydroxyl radicals in the RNP complex. C43 is stacked on the Tyr 13 side chain. This 

is in agreement with the co-crystal structure (12) and also with the fact that Tyr 13 can 

be crosslinked to the corresponding nucleotide - C70 - in U l snRNA (6). Other 

examples of such contacts are the interactions of U40 with the side chain of Glu 19 

and of U41 with the side chain atoms of Arg 83, Lys 80 and Asn 16. In fact, almost 

all stacking and hydrogen bonding contacts between the RNA and protein main chain 

and side chain atoms which have been described for U l snRNA stemloop Π can 

readily be made in our model. This further underscores that the tertiary reconstruction 

of U1A protein made by us previously (15) shows good agreement with the crystal 

structure (12). 

Nucleotides C46, G23 and A24 in Ag RNA are thought to resemble nucleotides 73-

75 in U l snRNA. In the co-crystal, these 3 nucleotides do not contact the RNA (12). 

Concerning the conformation of A24, it was constructed as looping out with an 

accesssible N7-atom, in agreement with the chemical probing of the naked RNA 

(Chapter 5). However, the final positioning of A24 in the R N P can be made only 

when DMS data for the RNP complex providing information about the behaviour of 

the N 1 and N7 atoms of A24, have been obtained. 

Finally, the four base pairs of stem 2 were constructed. Because their position can 

not be determined at the moment, only base pair G23-C46 is colored black to indicate 

that they are at similar positions as U73 and C74 in U l snRNA. The other 3 base 

pairs of stem 2 are colored grey in Figure 2 and their position will be the determining 

factor in the relative orientation of Box 1 and Box 2 in the Ag RNA (see also below). 

To create a conformation for the second UlA-binding site of Ag RNA (Box 1 and 

stem 1), the conformation of the first UlA-binding site was copied (not shown). Stems 

1 and 4 were constructed and stacked on each other. The linker between the two 

stems is only two nucleotides long and in RNA modeling, helices separated by less 

than three nucleotides are often assumed to stack (18). Furthermore, stacking could 

agree well with the enhanced RNase VI cleavage as found in the RNP at the bottom 

of stem 1 (Chapter 5). 

At this stage of the modeling we did not consider possible differences between the 

behaviour of the two Box regions in our protection experiments. However, a perfect 
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identity can not be expected, given the differences in U1A binding of Box 1 and Box 

2. C70 (in U l snRNA (12)) and C43 (in Box 2) are stacked on Туг 13. U17, the 

altered nucleotide in the U1A binding site of Box 1 can also be stacked on Tyr 13 but 

uracil is known to be a weaker "stacker" than cytosine (19). Three hydrogen bonds 

are found for positions N3 and N4-H of C70 in U l snRNA with side chain and main 

chain atoms of U1A (12). Since in uracil the positions of the hydrogen bonding 

donors and acceptors is opposite as compared to cytosine (N3-C vs. N3H-U and N4H-

C vs. 04-U), none of these three hydrogen bonds can be formed in Box 1 if the U17 

adopts the exact same position as C43 in Box 2. This may explain the loss of binding 

affinity found for Box 1. In contrast to this, however, is the observation that when 

G o U mutations were made for all the nucleotides in the hairpin loop of a U l 

snRNA-like substrate, no significant effect on U1A protein binding in vitro could be 

measured (22). 

The 3' part of the structure (stem 4 and the polyadenylation loop) were built 

pointing away from the 5' part (data not shown), since hardly no protection by U1A 

was found, indicating that there is no contact with the N-terminal R N P motif of 

U1A. 

Structure of U1A protein 

In the crystal structure of the U1A protein dimer, two N-terminally located RNP 

motifs are present in the asymmetric unit and they are related to each other by a 

non-crystallographic dyad axis (Figure 3) (7). Many hydrophobic amino acids are found 

in this interface which suggests that the dimer is not an artefact of crystallization, but 

that the R N P domain can form such dimers with either itself or with an RNP domain 

in other proteins (7). 

U1A is known to exist as a monomer in solution (20, 21) and to bind U l snRNA 

as a monomer. However, two U1A proteins (and not more than two) bind specifically 

to the 3' UTR of U1A mRNA (13). A dimer of U1A could not be demonstrated in 

solution using crosslinking methods in the absence of RNA, but the two proteins can 

be crosslinked with dithio-bis(succinimidylpropionate) (DSP) when U1A mRNA is 

present (W. Boelens, unpublished results). The crosslink was found with two U1A wt 

proteins, and does not prove an orientation as in the crystal dimer, but does not 

exclude it either. If one looks at the interface between the N-terminal R N P motifs of 

the two U l A proteins in the dimer (7) it can be seen that most lysines are located near 

or at the interface. 

NMR results obtained for the U1A-U1 snRNA interaction (10, 11) and for the 

hnRNP C- r(U)g interaction (8) showed that the α-helices of the R N P motif do not 
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Figure 3. Stereopicture of the Co-coordinates of the X-ray structure of the N-terminal RNP motif of 
the U1A protein dimer (7). The view is looking down the non-crystallographic dyad axis. 

make conta« with the RNA but are free in the strutture and potentially available for 

protein-protein interactions. If one assumes that the same holds for U1A bound to 

U1A mRNA this would mean that the α-helices of the R N P motif are available for 

interaction with another protein domain, either from the same protein or from a 

different protein. 

Considering the size of the U1A protein (282 amino acids) and the proximity of the 

two U1A binding sites on the RNA to each other, it can be expected that the two 

U1A proteins interact with each other. When the dissociation constants for the two 

single mutants (each missing one of the two Box sequences) are compared to that of 

wt Ag RNA, it seems apparent that there is some cooperativity between the two 

proteins (13). Furthermore, it appears that the U1A protein which binds to the weaker 

Box 1 needs sequences outside its R N P motif to bind the mRNA, which could mean 

that protein-protein interactions are necessary for the second U l A protein to bind (our 
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unpublished data). Further support for cooperativity can be extracted from 

experiments with RNA mutants. Mutant ΔΒ2, in which only the weaker Box 1 is 

available can not bind U1A in the presence of 500 mM of salt, while if Box 2 is also 

present, two U1A proteins bind at these conditions (13). Further data on possible 

protein-protein interactions come from an U1A mRNA mutated in the Box 1 

sequence, which still was able to (weakly) bind two U1A proteins (our unpublished 

data). 

Recently, RNA mutants in which an increasing number of base pairs was added to 

stem 2, i.e. to increase the distance between Box 1 and Box 2, were tested in mobility 

shift assays (S. Gunderson, personal communication). When one base pair is added to 

stem 2, there is still a complex visible of Ag RNA with two U1A proteins, although 

already in much reduced amount as compared to wt Ag RNA. However, if two or 

more base pairs are added to stem 2, only the complex of Ag RNA with one U1A 

protein can be found, even at high U1A protein concentrations. This suggests that 

contact(s) between the two proteins is necessary for the second protein to bind to Box 

1. 

All these data point to an interaction between the two U1A proteins. However, it 

must be realized that the results described above were obtained in experiments with 

the full-length U1A protein, while the only structural information available for U1A 

protein is its N-terminal RNP motif. Two molecules of A101, containing only the N-

terminal R N P motif, can bind to the U1A mRNA (13). Our ribonuclease protection 

data have been determined for U1A wt and for A101, while for Fe(D)EDTA 

footprinting only U1A wt was used so far (Chapter 5). In case of RNase VI, the 

protection experiments showed no difference between U1A wt and A101. Further 

studies are underway to determine the protection of A101- Ag RNA complexes for 

RNase T2 and Fe(IT)EDTA. However, a problem with A101 is that two A101 domains 

do not bind strongly to the RNA and that the resulting complex is not a functional 

one (that is, it does not affect polyadenylation). In case of the complex of U1A with 

U l snRNA not much difference in protection against RNase VI and ethylnitrosourea 

(ENU) was found for U1A wt or A96 (amino acids 1-96 of U1A) (22). 

All these data still leave several possibilities. The two U1A proteins interact via 

sequences outside the N-terminal motif or via their N-terminal RNP motifs or perhaps 

via both. In case of interacting R N P motifs, we think it most likely that the 

interaction between them occurs as is found in the X-ray strutture (7). 

"UIA dimer possibility' 

We decided to start the modeling with the simplifying assumption that in the Ag 
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RNA - U I A complex the N-terminal R N P motifs of the two U1A proteins are 

positioned as seen in the X-ray structure of U l A (7), and to investigate this possibility 

in relation to the available experimental data. 

Both R N P motifs of U1A were positioned as in the protein dimer (7), in which 

their relative orientation is determined by the non-crystallographic dyad axis. When 

the constructed Box 2 with stemloop 3, as well as Box 1 with stem 1 are positioned, 

each on one R N P motif, this twofold symmetry is conserved. 

Nucleotides A24, C50 and the base pairs of stem 2 must then be positioned to 

connect the two RNA parts (not shown). Stem 2 contains only four base pairs, but 

should be able to bridge the required distance if one postulates a rather sharp bending 

of the RNA. Nucleotides A24 and C50 are single-stranded nucleotides, which can span 

a length of 6-7 A (23). The stacking interactions of A44 with C45 will have to be 

released, and stem 3 and stem 1 will have to be rotated somewhat to make a 

connection between the two UlA-binding sites possible. 

In such a structure of two RNP motifs with Ag RNA the major groove of stem 2 

would be protected, while the shallow groove would not. However, the Fe(II)EDTA 

data of U1A wt indicate that the shallow groove is protected, but because this 

experiment has been performed with U1A wt this protection could be caused by other 

regions of the U1A protein. Therefore, the Fe(D)EDTA data can correspond with a 

positioning as described above. Fe(H)EDTA experiments for the complex of A101 with 

Ag R N A will give a more precise answer. 

RNase VI, which recognizes the phosphates of nucleotides in a helical 

conformation (24), shows protection at both sides of stem 2, both in the presence of 

U1A wt or A101. This means that parts of the two R N P motifs must be positioned 

between the Box 1 and 2 regions, which indeed is the case in the postulated model. 

The protection against VI can be explained by the model since the phosphates of stem 

2 are not accessible from all directions. 

Concerning stem 3 we hardly find any protection of the riboses. This is in 

agreement with the fact that the major groove is oriented towards the protein. 

Hydroxyl radicals are thought to attack C4' and/or С Г of the riboses (25), which are 

located in the shallow groove. The ribonudease protection data found for both sides 

of stem 1 and 3 is not so easy to explain. It is found both with U1A wt and A101, 

which means that only the two R N P motifs are responsible for this protection. When 

a Box region is positioned on the R N P motif as is the U l snRNA loop in the co-

crystal (12), such protection is not conceivable. This suggests that most likely other 

parts of the Ag R N A are located in these areas, sterically hindering the ribonucleases 

to attack. 
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It is interesting to compare our model structure with the structure of the 

interaction between the second stemloop of Ul snRNA and U1A protein (12). The 

ribonuclease protection patterns for stems 1 and 3 are more extensive than those of 

the RNA stem in the U1A - Ul snRNA complex (22). In that case only one side of 

the stem (nucleotides 59-63 in Figure IB), is protected against RNase VI. This 

discrepancy could be explained by taking into account the different size of the RNA 

substrate. 

In U l snRNA the phosphates of C59 to C64 in the stem are protected against 

ENU, indicating that they are oriented towards the protein (22). In our model 

structure, the corresponding phosphates of stem 3 are also oriented towards the 

protein. 

In U l snRNA, the three 3' nucleotides of the loop (nts 73 to 75) do not contact 

the RNP motif of U1A (12). In the Ag RNA- UIA model structure the corresponding 

bases of A24 and C50 are also accessible, but the base pairs G23-C46 and C20-G49 in 

stem 2 are located close to the U1A protein. This can be explained by the fact that 

their structural context is very different, since in U l snRNA the corresponding 

nucleotides (74 and 75) are located in a single-stranded loop, while in Ag RNA they 

form a base pair and also are part of the stem linking the two U1A binding regions. 

Concerning the AUUG(C/U)AC sequences, also a difference in protection 

behaviour is found between the Box regions on the one hand and the U l snRNA loop 

on the other hand (22). Firstly, however, it must be noted that the ENU data found 

for the U l snRNA loop (protection of C70 to G76) (22) do not seem to correspond 

with the U l snRNA - U1A co-crystal structure, where all the phosphates of this 

sequence seem accessible (12). This indicates that the relation between the behaviour 

of nucleotides towards probing agents in solution and their position in a crystal 

structure is not so evident. This complicates also the interpretation of our Fe(II)EDTA 

data for the Box 1 and 2 regions. In particular we find better protection against 

hydroxyl radicals in the region around A39, U40 and C45, as compared to the 

corresponding nucleotides in U l snRNA. This may indicate a different or tighter 

binding of these nucleotides to U1A protein. 

Conclusions 

We have attempted the building of a possible three-dimensional structure for the 

complex of Ag RNA with U1A. First, a working model of the complex containing 

one U1A protein binding site of Ag RNA and one U1A RNP motif was built. We 

then speculated about possible orientations of the two UlA-binding sites relative to 
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each other. Only one possibility is discussed here, in which the symmetry present 

both in the U1A protein dimer crystal structure and in the Ag RNA, is maintained 

in the Ul A-Ag RNA complex. However, the experimental data obtained so far are not 

sufficient to distinguish between this model and other possible models in which the 

two U1A proteins are not positioned as found in the crystal dimer. 

Suggestions for further experiments would include crosslinking of two A101 

proteins to try to obtain evidence for the dimer orientation, and DMS and kethoxal 

probing of the RNP to distinguish between major and minor groove accessibility of 

the nucleotides, in particular in the stem regions. The role of A24 and C50 can be 

tested by deleting or mutating them, and nucleotides in Box 1 and 2 can be mutated 

to test for important interactions, comparable to the studies performed on Ul snRNA 

(6, 22). Furthermore, mutants of U1A can be tested for RNA binding to further 

identify important amino acids. 
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General Discussion 

Introduction 

The past decade has seen a rapid increase in our understanding of the role of 
RNA-protein complexes in biological processes such as translation, transcription, 
RNA processing and translocation of proteins. However, little is known about the 
details of sequence-specific recognition between RNA and protein components of 
these RNA-protein complexes. For this reason, much effort is being made to 
investigate their secondary and tertiary structures. In this thesis the structural 
features of RNA and protein components of two RNA-protein complexes have 
been described: the U1A-U1A mRNA complex and the Ro RNPs. 

The U1A protein and the U1A-U1A mRNA complex 

The U1A protein is a well-characterized protein, of which the structure and 
mode of Ul snRNA binding have been studied in great detail, while data on U1A 
mRNA binding are beginning to emerge. However, the function of the U1A 
protein in splicing has not yet been established, although it is known that 
recognition of the 5' splice site by Ul snRNP requires both Ul snRNA and Ul-
specific proteins (1). A possible role in the link-up between splicing and 
polyadenylation has been postulated for Ul snRNP, since anti-Ul snRNP 
antibodies specifically block cleavage and polyadenylation in nuclear extracts (2, 3), 
and immunoprecipitation of poly(A) polymerase results in specific co-precipitation 
of Ul snRNA, but not of other snRNAs (4). Furthermore, Ul snRNA can be 
crosslinked to pre-mRNAs in the region of the polyadenylation signal in a manner 
that is influenced by the presence of a 3' splice site on the RNAs (5). The finding 
that U1A protein can also bind to its own (pre-)mRNA strenghtened this idea of 
coupling between splicing and polyadenylation and both positive and negative 
regulating effects of U1A on polyadenylation have been found. U1A protein can 
inhibit polyadenylation of its pre-mRNA by binding to a specific region of the 3' 
U IK of this mRNA (6). However, U1A may also positively regulate 
polyadenylation efficiency by interacting with the upstream efficiency element of 
the SV40 late polyadenylation signal (7). This latter interaction has been proposed 
to occur via the second RNP motif of U1A. Unfortunately, these results could not 
be confirmed by Mattaj and Keller (personal communication) and by Lu and Hall 
(8). 
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From the above it is clear that despite the fact that much is known about the 

U1A protein, its precise function in mRNA processing still has to be discovered. 

The same holds for the specific recognition of the RNA substrates by both the N-

terminal and the C-terminal RNP motifs of U1A. The studies described in this 

thesis have contributed significant information about the U1A mRNA as substrate 

for U1A. The structure of the conserved region of U1A mRNA has been 

thoroughly investigated, and the secondary structure has now been established ((9) 

and Chapter 5). Furthermore, a working model has been proposed for the structure 

of the U1A-U1A mRNA complex (addendum of Chapter 5). At this stage of the 

modeling, and with the limited amount of data available at present, the working 

model still is very crude. Further experimental studies are esssential for further 

refinement of the model. Mutations can be made in both the U1A mRNA and the 

U1A protein to identify important nucleotides and amino acids, respectively, and 

crosslinking techniques can be used to locate contact sites in the RNA-protein 

complex. 

The Ro RNPs 

Much less data are available on the Ro RNPs, as compared to the U RNPs. In 

fact, structural features of these complexes are just beginning to be unraveled. 

Although the Ro RNPs are conserved in a variety of vertebrate and invertebrate 

cells, and present in relatively abundant quantities, the function of these complexes 

in the cell is still unknown. However, possible function(s) in processes such as 

mRNA stability, mRNA localization or translation have been suggested (10, 11). 

Recently, it was discovered that the Ro60 protein could be involved in a novel 

quality control or discard pathway for 5S rRNA in the nucleus (12). 

When the investigations on the structures of the Y RNAs were started, only the 

human sequences were known next to secondary structure predictions based on 

RNA folding algorithms. The secondary structure of the human hY RNAs was 

determined biochemically using chemical and enzymatic probing, and some 

interesting features were discovered (13). First, in hYl RNA, the pyrimidine-rich 

region in the large internal loop appears to be involved in tertiary interactions (13). 

The behaviour of the N7-atoms of several adenosines in this loop also seem to 

point to stacking interactions or (tertiary) base pairing (our unpublished data). A 

second interesting feature is the finding that in nearly all Y RNA sequences base 

pairing between several nucleotides in a hairpin loop and nucleotides in the large 

internal loop appears possible (our unpublished data). Although the probing of hYl 
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and hY5 RNA at 30°C showed these regions to be fully single-stranded, it will be 

interesting to test whether these nucleotides become inaccessible at a lower 

temperature. 

During our studies the Y RNA sequences of Xenopus laevis became available (14) 

and recently the Y3 and Y4 RNAs of iguana (15) as well as the single Y RNA of 

С. elegans (16) were characterized. The proposed structures of all these RNAs are in 

good agreement with the consensus secondary structures of the human Y RNAs 

proposed by us (13). With more Y RNA sequences becoming available, 

phylogenetic comparison can now be performed in search for conserved secondary 

and tertiary interactions. Such data will be very helpful in complementing the 

structure probing data. 

Regarding the Ro60 and La proteins, not much structural information is 

available. In both proteins large regions outside the RNP motifs are needed to 

achieve RNA binding which hampers studies on the structures of these proteins 

and their interaction with RNA. In case of La, some information is available 

concerning the requirements of its RNA substrates. The recognition site on the 

protein can accommodate up to 4 uridylate groups with preference for a 3' OH-

terminus (17). By using protein homology modeling with the U1A protein 

structure (Chapter 2) as a template, the RNP motif of the La protein was built (our 

unpublished data), and this model can be of use in future studies regarding the 

binding of La to the Y RNAs. 

In principle, it is possible to build the RNP motif of Ro60 by protein homology 

modeling, but practically no structural information is available for the important 

regions flanking this domain. Several epitopes of Ro60 are known (18, 19), and 

since these regions probably are located on the outside of the protein, epitope data 

can be of some help. It is, however, obvious that more studies are needed to 

characterize the Ro60 protein and its RNA binding properties in more structural 

detail. 

The Ro52 protein, the function of which is also not known, does not bind the 

Y RNAs directly, but presumably via protein-protein interactions (20, 21), since it 

contains zinc finger and leucine zipper motifs. Interestingly, Ro52 was shown 

recently to bind DNA, and striking similarities were found between the nucleic 

acid-binding motifs of Ro52 and a family of zinc finger proteins which bind DNA 

or regulate gene expression (22). These findings seem to indicate that Ro52 belongs 

structurally and functionally in this family and this interesting possibility certainly 

will initiate additional research leading to more (structural) information about 

Ro52. 
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A future line of Ro RNP research will be the probing of the RNA when present 

in the RNP particle (footprinting). Such an approach might identify protein 

binding sites and elements of the RNA which are not involved in protein binding. 

One interesting feature in this respect is the limited base pairing possibilities 

(ranging from 2 to 4 base-pain) between the 5' part and 3' part of the large internal 

loop, present in nearly all known Y RNA sequences. It is possible that these 

potential interactions, possibly stabilized by protein(s), are only present when the 

Y RNAs exert their as yet unknown function. 

Other options to study the structures of the Ro RNPs are RNA-RNA and 

RNA-protein crosslinking experiments and further use of RNA mutants. 

Interesting mutants could for instance include RNAs in which some of the 

cytosines in the pyrimidine-rich region of hYl RNA are replaced by other 

nucleosides. It will be interesting to see at what conditions the folded loop turns 

into a "simple" single-stranded-region, that is, whether the presumed tertiary 

interactions will be broken. When nucleotides around the bulged C9 and interior 

loop 1 are systematically changed, further information concerning Ro60 binding 

might be obtained. Such studies would be even more interesting when the function 

of the Ro RNPs could be established, because then direct structure-function studies 

are feasible. 

Considerations about RNA, protein and RNP structures 

Methods of RNA secondary structure prediction have greatly improved in the 

last few years. Prediction of optimal and suboptimal structures and the 

determination of better en more free energy parameters, in particular for junctions 

and internal loops, have led to closer agreements with available models of RNAs, 

which were established independently by phylogenetic and experimental studies. 

There are no rules available yet for reliable prediction of tertiary interactions, like 

the one found in hYl RNA. However, some progress has been made in the 

identification of tertiary motifs in RNA, deduced from sequence information (28, 

29). 

When dealing with RNA structures it is important to realize that a biological 

RNA molecule mostly does not form a single structure but instead, may have 

several alternative conformations in equilibrium. Furthermore, the lowest free 

energy structure and the biologically important structures are not necessarily the 

same; a conformational switch can occur between alternative configurations of an 

RNA during its functioning, as, for example, has been shown for the 7SL RNA 
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molecule during the signal recognition particle cycle (23). 

Finally, it should be realized that the structure of an RNA molecule present in 

an RNA-protein complex can be different from that of the naked RNA. For Ul 

snRNA it was found that the loop of hairpin Π is flexible in the RNA but 

becomes more structured after binding of the U1A protein (24, 25). In case of the 

U1A mRNA, a change in the structural behaviour of the tetraloop is found in the 

presence of the U1A protein (Chapter 5). However, structural data obtained by 

experimental studies on RNAs in both free and protein-bound form often largely 

agree, indicating that global changes in the RNA backbone structure after 

association with protein mostly do not occur (26, 27). 

The protein components of RNA-protein complexes are also not static entities. 

Their structure is flexible, although perhaps less so than that of the RNA 

components, and their structures may also change when association with the RNA 

takes place. In case of the RNP motif, however, it is known that the global protein 

structure does not change much during RNA binding (24, 25, 30). 

All three protein constituents of the RNA-complexes described in this thesis, i.e. 

U1A, Ro60 and La, contain an RNP motif. However, the cognate RNA substrates 

differ considerably in sequence and in structure. In case of U1A the two substrates 

Ul snRNA and U1A mRNA, contain an RNA stem-loop and an internal loop, 

respectively, as binding sites for the protein. In case of Ro60 an RNA stem is the 

binding site, while for La a single-stranded oligo-U stretch appears sufficient. 

Another difference is that in case of U1A, the RNP motif can bind independently 

to RNA, while in case of both Ro60 and La sequences outside the RNP motif are 

necessary. In the latter two cases it is likely that these sequences stabilize the 

correct conformation of the RNP motif for RNA binding. However, their direct 

involvement in RNA binding in La and Ro60 cannot be excluded and needs further 

investigation. 

The integration of experimental and theoretical approaches 

High resolution structural techniques such as X-ray crystallography and NMR 

are presently not capable of handling systems of the size of most RNA-protein 

complexes, although progress is being made. For this reason, our understanding of 

the three-dimensional structure of RNAs is lagging behind that of other 

macromolecular systems. However, there is a wealth of low-resolution structural 

data available for several RNAs and RNPs. These include results from secondary 

(and sometimes tertiary) structure predictions based on phylogenetic studies, 
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crosslinking and footpnntmg experiments, chemical accessibility, electron 

miscroscopy, mutational studies, etcetera, which all contribute valuable information 

useful for building tertiary structure models of RNA 

With more data, both about protein and RNA components, becoming 

avallábale, an attempt can be made to integrate them in a possible three-dimensional 

structure by using RNA and protein modeling methods. Structural models of 

several RNAs are now availabe (31-33) It must be realized, however, that the 

usefulness of such a modeling process does not reside in its current level of 

precision. The strength lies in the prediction of the global folding of the RNA, a 

3D hypothesis destined to be subjected to experimental verification The model can 

be tested, for instance by using RNA mutants. Depending on the experimental 

results, the model will be adapted and tested again, and so on. 

In conclusion, the integration of both experimental and theoretical tools for 

studying structural features of RNA and protein molecules and their interaction, 

will be very valuable in gaining msights into functionally important RNA 

structures and contributes to our understanding of experimentally observed 

phenomena concerning RNA molecules. Application and further development of 

such theoretical tools will be of considerable importance in future studies in 

molecular biology 

The work described in this thesis has contributed to a better understanding of 

the secondary structures of the RNAs being studied and of the tertiary structure of 

the RNP motif Furthermore, in case of the UlA-mRNA complex a 3D-model has 

been obtained, which can now be tested and further refined In case of the Ro 

RNPs, the results obtained for the secondary structures of the hY RNAs have 

created possibilities for studies on possible tertiary interactions in the RNA and the 

RNA-protem complex. These studies will eventually lead to a three-dimensional 

structural model of the Ro RNPs 
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Summary 

RNA-binding proteins as well as ribonucleoprotein complexes (RNPs) mediate 

interactions in pre-mRNA processing events (capping, splicing and 

polyadenylation), are involved in the regulation of translation and for the stability 

of mRNA. Furthermore, RNP complexes are common targets for autoimmune 

responses, especially in individuals with systemic lupus erythematosus (SLE). 

Many RNA binding proteins contain a conserved RNA binding domain, the so-

called RNP motif, which is present in one or more copies in proteins that bind 

pre-mRNA, mRNA, pre-ribosomal RNA or small nuclear RNAs (snRNAs). All 

these RNAs have their own unique structure, and since the three-dimensional 

structure formed by an RNA molecule contained in an RNP is crucial to its 

biological function, knowledge of such structures is essential for our understanding 

of the complex biochemical processes in which they participate. 

In this thesis experimental and theoretical (computational chemistry) methods 

are combined to investigate structural aspects of the RNA and protein components 

of two different RNA-protein complexes. The first one is the complex between the 

U1A protein and its own mRNA. The other RNP complexes described are the 

cytoplasmic Ro RNP particles, particles consisting of one Y RNA and the proteins 

R06O, La and Ro52. 

Chapter 1 provides an introduction to RNA secondary and tertiary structure 

and describes methods that can be used to determine such structures. The RNP 

motif, present in the U1A, La and R06O proteins, is described as well, together 

with what is known about its structure and its interaction with RNA substrates. 

Some methods used in this thesis are also introduced in Chapter 1, among them an 

experimental approach in which a variety of chemical and enzymatic reagents is 

used to distinguish between base paired and single-stranded nucleotides in an RNA 

molecule. Furthermore, theoretical approaches concerning RNA secondary 

structure prediction and RNA and protein tertiary structure modeling are discussed. 

Chapter 2 describes a Molecular Dynamics (MD) method which can be used for 

the generation of complete protein coordinates when only limited coordinate data, 

e.g. Ca coordinates, are available. This study was inspired by an attempt to build 

the structure of the RNP motifs of the U1A and La proteins by protein homology 

modeling, while only the Ca coordinates of a template structure were available in 

the Brookhaven Protein Databank. The study shows that extensive MD 

calculations are useful, to some extent, in capturing details of the native protein 

conformation and as such they appear to be generally applicable in protein 
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structure prediction. The resulting protein structures can be used (within limits) 

with confidence to study the general structure of the protein involved, or as a basis 

for further model building of homologous protein structures. 

Chapter 3 describes structural studies on the Y RNAs, small cytoplasmic RNAs 

which are components of the Ro (SS-Α) ribonucleoprotein complexes. The Ro 

RNPs are frequently recognized by autoantibodies present in autoimmune sera of 

patients with Sjogren's syndrome or SLE. Until recently, the secondary structures 

proposed for the hY RNAs originated from low-energy structure predictions only. 

We investigated the conformation of human hYl and hY5 RNA, using both 

chemical and enzymatic structure probing. The results indicate that both for hYl 

and hY5 RNA the secondary structure largely corresponds to the structure 

predicted by sequence alignment and RNA folding algorithms. However, some 

interesting deviations could be observed, one being an as yet unidentified tertiary 

interaction in hYl RNA, involving the pyrimidine-rich region. 

Chapter 4 concerns the U1A protein, a protein present in the Ul snRNP 

complex in which it is bound to the second stemloop of Ul snRNA. However, the 

U1A protein can also bind to a conserved region in the 3' UTR of its own pre-

mRNA and in this way inhibits polyadenylation of this рге-mRNA. The secondary 

structure of the conserved region of the pre-mRNA able to bind the U1A protein 

has been determined by a combination of theoretical predictions, phylogenetic 

sequence alignment, enzymatic structure probing and analyses of structure and 

function of mutant mRNAs. The results show that the integrity of a large part of 

this structure is required for both high affinity binding of U1A and subsequent 

specific inhibition of polyadenylation in vitro. 

Chapter 5 describes the chemical structure probing of the conserved region of 

U1A mRNA, which yielded structural information about the RNA at nucleotide 

resolution. Footprinting experiments on the U1A-U1A mRNA complex were 

performed as well. The experimental data obtained allowed us to propose a three-

dimensional model for the conserved region of U1A mRNA, and for the complex 

between this mRNA and U1A protein. This model is discussed in the Addendum 

of Chapter 5. 

In Chapter 6 a general discussion about the results described in this thesis is 

presented. Special attention has been paid to the powerful benefits of an integration 

of both experimental and theoretical methods to approach the analysis of RNA, 

protein and RNP structures. 
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Samenvatting 

Zowel RNA-bindende eiwitten als RNA-eiwit complexen (RNP's) spelen een rol 

bij de processing (capping, splicing en polyadenylering) van boodschapper RNA 

(mRNA), bij de regulatie van translatie en bij de stabiliteit van mRNA. Ook zijn 

RNP complexen vaak het doelwit van autoimmuunreacties, met name bij patiënten 

met systemische lupus erythematodes (SLE). 

Veel RNA-bindende eiwitten bevatten een geconserveerd RNA-bindings motief, 

het RNP-motief, dat in één of meer kopieën aanwezig is in eiwitten die pre-

mRNA, mRNA, pre-ribosomaal RNA of snRNA (small nuclear RNA) binden. Al 

deze RNA's hebben hun eigen, unieke structuur, en aangezien de driedimensionale 

structuur van een RNA molecuul in een RNP-complex cruciaal is voor zijn 

biologische functie, is kennis over zulke structuren essentieel voor het doorgronden 

van de complexe biochemische processen waarin ze een rol spelen. 

In dit proefschrift zijn zowel experimentele als theoretische ("computerchemie") 

methoden beschreven waarmee de structurele aspecten van de RNA- en eiwit-

onderdelen van twee verschillende RNA-eiwit-complexen onderzocht zijn. Het 

eerste complex is dat tussen het UIA eiwit en zijn mRNA; het andere RNP 

complex is het cytoplasmatische Ro RNP, dat bestaat uit één Y RNA (of Ro RNA) 

en de eiwitten R06O, La en Ro52. 

Hoofdstuk 1 geeft een inleiding over verschillende aspecten van de secundaire en 

tertiaire structuur van RNA en beschrijft methoden die gebruikt kunnen worden 

om zulke structuren te bepalen. Het RNP-motief, dat aanwezig is in eiwitten als 

UIA, La en R06O, wordt beschreven wat betreft zijn structuur en zijn interactie 

met RNA-substraten. Ook worden in Hoofdstuk 1 enkele technieken 

geïntroduceerd die gebruikt zijn in dit proefschrift, o.a. een experimentele methode 

waarmee, gebruikmakend van een scala aan chemische en enzymatische reagentia, 

enkelstrengs- en dubbelstrengs-gebieden in een RNA-molecuul onderscheiden 

kunnen worden. Tenslotte worden theoretische methoden beschreven om 

secundaire structuren van RNA en tertiaire structuren van zowel RNA- als 

eiwitmoleculen te voorspellen. 

Hoofdstuk 2 beschrijft een Moleculaire Dynamica (MD) methode die gebruikt 

kan worden om de volledige coordinatenset te voorspellen voor een eiwit als men 

alleen de beschikking heeft over een onvolledige set, bijvoorbeeld de Ca-

coordinaten. Deze studie kwam voort uit een poging om de structuur van het 

RNP-motief van de eiwitten UIA en La te voorspellen met behulp van 

eiwithomologie modelling, terwijl alleen de Ca-coordinaten van een 
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voorbeeldstructuur beschikbaar waren. De studie laat zien dat uitgebreide MD-

berekeningen gebruikt kunnen worden om, tot op zekere hoogte, details van 

eiwitconformatie weer te geven. De gevolgde methode lijkt algemeen toepasbaar bij 

het voorspellen van eiwitstructuren en de gegenereerde eiwitstructuren kunnen op 

hun beurt weer als basis dienen voor structuurvoorspelling van andere, homologe 

eiwitten. 

Hoofdstuk 3 bevat een studie naar de structuur van de Y RNA's, kleine 

cytoplasmatische RNA's die voorkomen in Ro RNP complexen. De Ro RNP's 

worden vaak herkend door autoantistoffen van patiënten met Sjogren's syndroom 

of SLE. Tot voor kort waren de voorgestelde secundaire structuren van de hY 

RNA's slechts gebaseerd op computervoorspellingen. Wij hebben de conformatie 

van hYl en hY5 RNA onderzocht met behulp van chemische en enzymatische 

methoden. De resultaten tonen aan dat zowel voor hYl als voor hY5 RNA de 

secundaire structuren grotendeels overeenkomen met de door de computer 

voorspelde structuren. Niettemin werden ook een aantal interessante verschillen 

gevonden, waarvan de nog niet nader geïdentificeerde tertiaire interactie in het 

pyrimidine-rijke gebied van hYl de belangrijkste is. 

Hoofdstuk 4 gaat over het UIA eiwit, dat aanwezig is in het UI snRNP 

complex waarin het gebonden is aan de tweede stamloop van UI snRNA. 

Bovendien kan het UIA eiwit ook binden aan een geconserveerd gebied in de 3' 

UTR van zijn pre-mRNA. De secundaire structuur van dit gebied werd bepaald 

met behulp van theoretische voorspellingen en fylogenetische vergelijkingen, via 

enzymatische structuur-analyse en door bestudering van de structuur en functie van 

mutant mRNA's. De resultaten tonen aan dat een aanzienlijk deel van de structuur 

gevormd moet worden wil het UIA eiwit met hoge affiniteit binden en op deze 

manier polyadenylering kunnen remmen. 

Hoofdstuk 5 beschrijft de chemische structuur-analyse van het UIA mRNA, een 

methode die zeer gedetailleerde structuur-informatie opleverde (resolutie op 

nucleotide-niveau). Er werden ook z.g. "footprinting" analyses uitgevoerd met het 

complex van UIA en zijn mRNA. De verkregen experimentele gegevens hebben 

geleid tot een driedimensionaal model voor het geconserveerde deel van UIA 

mRNA, en voor het complex met het UIA eiwit. Dit model is beschreven in het 

Addendum van Hoofdstuk 5. 

Hoofdstuk 6 bevat een afsluitende discussie over de resultaten die beschreven 

staan in dit proefschrift. In deze discussie wordt de integratie van experimentele en 

theoretische methoden ter bepaling van RNA-, eiwit- en RNP-structuren nogmaals 

benadrukt. 
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