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Chapter 1 

Introduction 

1.1 Types and programs 

One of the basic ideas in programming is the notion of algorithm. An algorithm is 

a description of the rules one must follow to accomplish a task. But for a machine 

to be able to perform such a task, this description must be expressed in a formal 

language, and in particular programming languages serve this purpose. 

Alan Turing introduced a formal language for describing computable functions, 

now called Turing machines, from which imperative programming arose. The 

lambda calculus was invented by Alonso Church to define the notion of comput­

able functions [Chu36]. Since then a variety of lambda calculi have been defined 

and used in the study of programming languages. Lambda calculi can be seen 

as simple programming languages, since they are formal and describe computa­

tions. In that sense, a program is a term of the lambda calculus. From a differ­

ent perspective, lambda calculi constitute metalanguages for analyzing other pro­

gramming languages. Although λ-calculi are particularly well-suited to studying 

functional programming languages, they have also been used to study imperative 

programming disciplines [Lan65]. 

Types are an important tool in programming languages and logic which serve 

to classify terms according to basic properties, such as being a number or being 

a function. For example, if we think of the integer number 5, the term is 5 and 

its type is integer. The addition function has a type expressing that it takes two 

integer numbers as arguments and returns an integer number as result, which we 

write as follows. 

-f e (integer x integer)—»integer 

One immediate advantage of types is that nonsensical expressions can be con­

sidered illegal. For example, the expression 

3 + "good morning" 

will not be part of the language because "good morning" is not an integer number, 

but a string of characters. Although this is a rather coarse example, this sort of 

mistake is very frequent in the development of programs. 

1 



2 CHAPTER 1. INTRODUCTION 

Further in that direction, AUTOMATH [dB80], Martin-Löf Type Theory [Mar73], 
Coquand and Huet's Calculus of Constructions [CH88], and Luo's Extended Cal­
culus of Constructions [Luo90] are rich type systems in which a type can not only 
prevent the formation of nonsensical expressions but can also state properties of 
terms. For example, in the case of a term corresponding to a sorting algorithm 
for lists, the type can express the fact that the output is an ordered list. 

Type structures help organizing ideas and structuring programs in such a way 
that disciplines of programming and type systems walk hand in hand. The de­
velopment of ideas about programming motivates the design of type systems that 
encourage programming in a particular style. Ideally, one would like to have 
tailor-made type systems for each particular style of programming, so that bad 
programming style results in illegal terms. 

We refer the reader to [Bar90, Mit90c] for a more detailed analysis of the 
relation between lambda calculi and programming languages. 

1.2 Subtyping 

Subtyping is a primitive relation that uniformly captures concepts from diverse 
areas of computer science. If S and Τ are sets, then S < Τ (S is a subtype of T) 

means that elements of S are also elements of T. If S and Τ are specifications, then 
elements satisfying specification S also satisfy T. In object-oriented programming, 
if S and Τ are object descriptions, then S < Τ states that where an object with 
interface Τ is expected, it is safe to use an object with interface S. When S and 
Τ are module interfaces in a software system, an implementation of S is also an 
implementation of T. If S and Τ are theorems, then a proof of S is also a proof 
of T. Understanding the essence, subtleties, and general properties of subtyping 
illuminates a wide area. 

The idea of subtypes appears quite naturally in programming languages. If we 
think of types as sets, we can easily picture what a subtype could be. Informally, 
we can say that a type S is a subtype of Γ if any element of 5" can be seen 
as an element of Γ. We say can be seen as and not directly is because the act 
of considering an element of type S as an element of type Τ might hide some 
transformation. Consider for example the types integer and real of integers and 
real numbers respectively. Usually, on a computer, integers are represented in a 
different way than real numbers are; even if we might think of the integers as a 
subset of the real numbers, there is a translation to be performed. The act of 
considering an element of type S as an element of type Τ will be called coercion. 

In other words, we say that an element of type S is coerced into an element of 
type T. Somehow an element of type S has enough information to be seen as an 
element of type T. 

While dealing with coercions we can distinguish between an explicit style and 
an implicit style. A style with explicit coercions means that coercions are explicitly 
indicated and in an implicit style, as the name suggests, coercions are left unstated. 
In systems including subtyping there is usually a rule for typing coerced terms, 
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in other words, a rule that provided t has type S and 5 is a subtype of Γ allows 

us to derive that t can be coerced into T. In an explicit style, the coercion rule 

might look as follows. 

teS S<T 
(COERCION) 

С5,Г<*> € T 

Similarly, in an implicit style the corresponding rule is as follows. 

tes S <T 
m (SUBSUMPTION) 

An implicit coercion is motivated by the fact that the same term can be con­
sidered as belonging to two different types without performing any change in the 
term, as for example is the case when one of the types is included in the other 
(with the intuitive idea of set inclusion), while an explicit coercion gives explicit 
information about the transformation. We can think, for example, of a function 
ƒ with the real numbers as domain, and a (sub)set A of real numbers. If χ is a 
variable of type A, then we would like to use ƒ on χ as well, without performing 
any extra calculation to apply ƒ to x. But if instead ƒ is used with the integer 
number 3 as input and ƒ happens to use the decimal part of its argument, then 
3 should be mapped into 3.0 first. Therefore one can argue that the meaning of 

/ ( 3 ) ÍS /(c,niCJ7er,re<.l<3>). 
One of the first applications of subtyping in λ-calculi was modeling the re­

finement of interfaces in object-oriented languages [Car88a]. The formal subtype 
relation S <T models the assertion that the objects in some collection 5 provide 
more services than those in Γ, so that it is safe to use a member of S in any 
context where a member of Τ is expected. 

1.3 Type inference and type checking 

We can say that if a term has a type, it is, to a certain extent, correct. This 
correctness can be as simple as guaranteeing that computations will not fail by 
mismatch of the expected argument of a function, for example, and as elaborate 
as ensuring that certain specification or property is satisfied. With these ideas 
in mind, a first question one may ask is whether a given expression e is legal or 
correct, which in our framework means whether there exists a type Γ such that 
e £ T. This problem is traditionally called type inference. A related question, 
given a term e and a type Γ, is whether e G Τ, known as type checking. In the 
presence of subtyping both problems, type checking and type inference, become 
more complicated because typing is defined in terms of subtyping. It is clear in the 
SUBSUMPTION and COERCION rules that in order to answer a question of the form 
e € Γ we should be able to answer questions of the form S < T. This shows that 
at the heart of the decidability of typing lies the question of whether the subtyping 
relation is decidable. In a system with the SUBSUMPTION rule, each term may be 
assigned more than one type. Then to answer the type checking and type inference 
questions we need a way to identify all possible types: for example, by finding some 
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kind of representative of the types of each term. One plausible candidate is a 
minimal type with respect to the subtyping relation. Then type inference consists 
of finding a minimal type, and type checking whether e € Γ consists of finding a 

minimal type S such that e £ 5 and checking if S < T. Without the minimal type 

property, type checking becomes algorithmically intractable. Imagine that instead 

of having just one representative we have a (finite) set of them, say Si,.., Sn such 

that for each type Τ of e there exists j such that Sj < T. Imagine that e is an 

application, say ti e-2' then, to find the set of representative types of e, we need to 

match each representative of ei against each representative of ег, which produces 
a combinatorial explosion. 

1.4 Background 

The formal study of subtyping in programming languages was begun by Reyn­
olds [Rey80] and Cardelli [Car88a], who used a lambda-calculus with subtyping to 
model the refinement of interfaces in object oriented languages. This led to a con­
siderable body of work, covering an increasing range of object-oriented features by 
combining subtyping with other type-theoretic constructs, including polymorphic 
functions [CW85, CG92, BCGS91]; records with update and extension operat­
ors [Car88a, CM91]; recursive types [AC93, BM92], and higher-order polymorph­
ism [Car90, Mit90a]. 

Type systems with subtyping have also arisen from the study of lambda-calculi 
with intersection types at the University of Torino [CD80, BCD83]. Most of this 
work has been carried out in the setting of pure lamb da-calculi, but it has also 
been applied to programming language design by Reynolds [Rey88]. Some work 
has begun on combining intersections with other typing features [Pie91, CDdL93]. 

The contribution of this thesis is to weave together these two threads by com­
bining higher-order subtyping, which forms the cornerstone of several recent mod­
els of typed object-oriented programming [CHC90, Bru94, PT94], with intersection 
types, leading to an extended object model with multiple inheritance [CP93]. 

1.5 Results 

This thesis is divided into two parts the first part consists of a detailed analysis 
of the meta-theory of a typed lambda calculus combining higher order bounded 
quantification and intersection types. Our research covers syntactic, semantic, and 
pragmatic aspects. 

• Chapter 2 contains the definition of the system F" and basic syntactic res­
ults. 

— We define the typed lambda calculus F", a natural generalization of 
Girard's system F " with intersection types and bounded polymorph­
ism. A novel aspect of our presentation is the use of term rewriting 
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techniques to present intersection types, which clearly splits the com­

putational semantics (reduction rules) from the syntax (inference rules) 

of the system. 

— The reduction rules of F" can be divided into two main groups, re­
ductions on types (—»0л) and reductions on terms (—*pjors)· Although 
confluence is not a modular property in general, in our case it is pos­
sible to provide a modular proof of it. In section 2.3, we combine the 
independent proofs of confluence for reductions on types and confluence 
for reduction on terms towards a proof of confluence of the reduction 
relation in the whole system. 

— We prove the strong normalization property of —>рл on well-formed 

types. 

• Chapter 3 carries the most important result of this thesis. Our main con­
tribution is the proof that subtyping in F " is decidable. This yields as a 
corollary a solution to the previously open problem of the decidability of 
subtyping in F", its intersection free fragment, because F" subtyping sys­
tem is a conservative extension of that of F<. Moreover, the decidability of 
subtyping is essential for the decidability of type checking and type infer­
ence. Another original feature is the use of a choice operator to model the 
behavior of variables during subtype checking. The proof of decidability is 
divided into the following steps. 

— We define an algorithmic presentation of the subtyping relation where 

only types in normal form are considered. 

— We prove that the algorithmic presentation is sound and complete with 
respect to the definition of subtyping, which means that it constitutes 
a deterministic procedure to check subtyping in F%. 

— Finally, we prove that the algorithmic presentation describes a ter­
minating procedure. The proof of termination is reduced to the strong 
normalization property of the reduction on types enriched with a choice 
reduction which models the behavior of variables during subtype check­
ing. 

• In chapter 4, we prove that F" satisfies the minimal type property, and 
we provide an algorithm for computing minimal types. We also prove that 
type inference and type checking in F" are decidable. The minimal types 
property is used to prove that F " satisfies the subject reduction property. 

• In chapter 5, we define a model based on partial equivalence relations, and 

we prove that the subtyping relation and the type assignment system are 

sound with respect to the model. 

• Although FX was defined to provide a model of object-oriented programming 

with multiple inheritance, this thesis does not intend to provide an account 
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on the foundations of object-oriented programming. In chapter 6, we show 
how to model multiple inheritance using intersection types. This is a con­
tinuation of the research on type-theoretic foundations of object-oriented 
programming by Pierce and Turner [PT94] where multiple inheritance is not 
captured. 

The second part of this thesis is devoted to the study of two different styles of 
subtyping, subtyping with implicit coercions and subtyping with explicit coercions. 
We define and study two alternative presentations of subtyping for simply typed 
lambda calculus. The first one A^, a system with implicit coercions, and the 
second one Ac, a system with explicit coercions. We show that the system A^ can 
be translated into Ac, and that Ac can be translated into A—». This means that 
from a pragmatic point of view, implicit or explicit coercions are just a matter of 
taste, and both disciplines can be compiled into the simply typed lambda calculus 
without subtyping. 



Part I 

Higher-Order Subtyping 





Chapter 2 

The F% Calculus 

2.1 Introduction 

The system F" was first introduced in [CP93], where it was shown to be rich 

enough to provide a typed model of object oriented programming with multiple 

inheritance. F% is an extension of Fu [Gir72] with bounded quantification and 

intersection types, which can be seen as a natural generalization of the type discip­

lines present in the current literature, for example in [CG92, Pie91, PT94, CP94]. 

Systems including either subtyping or intersection types or both have been widely 

studied for many years. What follows is not intended to be an exhaustive descrip­

tion, but a framework for the present work. 

First-order type disciplines with intersection types have been investigated by 

the group in Torino [CDC78, BCD83] and elsewhere (see [CC90] for background 

and further references). A second-order λ-calculus with intersection types was 

studied in [Pie91]. Systems including subtyping were present in [CW85, Car88a]. 

Higher order generalizations of subtyping appear in [CCH+89, CHC90, Mit90a, 

BM92]. F<, a second-order λ-calculus with bounded quantification, was studied 

in [Ghe90], and in [Pie91] it was proved that subtyping in F< was undecidable and 

that undecidability was caused by the subtyping rule for bounded quantification. 

In [CP94] an alternative rule for subtyping quantified types was presented 

and the decidability of subtyping was proved for an extension of system F with 

bounded polymorphism, where all bounds appearing in S-ALL have the ground 

kind *, a main limitation of that system. 

Allowing bounds of functional kind forces us to introduce a conversion rule to 

have invariance of subtyping under /M-conversion of types. Therefore, our sub-

typing relation relates types of a more expressive type system than that presented 

in [CP94]. In fact, treating the interaction between interface refinement and en­

capsulation of objects, in object oriented programming, has required higher-order 

generalizations of subtyping-the F-bounded quantification of Canning, Cook, Hill, 

Olthoff and Mitchell [CCH+89] or Cardelli and Mitchell's system F< [Car90, 

Mit90a, BM92]. 

Ghelli [Ghe94] remarked that the rule for subtyping between quantified types 

presented in [CP94] led to a well-behaved subtyping relation but that the typing 

9 
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relation fails to satisfy the minimal type property. This failure introduces serious 
problems in type checking and type inference, as we observed in chapter 1. At 
the moment it is not clear how to solve them or, even more problematic, whether 
the typing relation is decidable. A possible solution to overcome this problem 
is to replace the subtyping rule between quantifiers by the corresponding rule of 
Cardelli and Wegner's kernel fun [CW85]. 

In chapter 3 we give a positive answer to the decidability of subtyping in the 
presence of /?A-convertible types. We prove that subtyping in F" is decidable, 
which a fortiori gives the decidability of subtyping for the F< fragment because 
the former is a conservative extension of the latter - namely, each subtyping 
statement derivable in F" containing no intersections other than the empty ones 
is also derivable in F<. 

We present a definition of F" that differs from the one introduced in [CP93] 
in two ways. First, Castagna and Pierce's quantifier rule has been replaced by 
the Cardelli and Wegner rule. Second, we introduce a richer notion of reduction 
on types, and thereby the four distributivity rules become particular cases of 
the conversion rule. This new reduction is shown to be confluent and strongly 
normalizing. The latter simplification was motivated by structural properties of 
the former presentation. Furthermore, this new presentation provides a different 
view of the system that is the key to proving the decidability of subtyping. 

This new perspective suggests that to prove the decidability of subtyping it is 
enough to concentrate on types in normal form. Note that the solution cannot be 
as simple as to restrict the subtyping rules of F" to handle only types in normal 
form and replace conversion by reflexivity. The following is a good example of the 
problem to be solved. Consider Г = W:K,X < \Y:K.Y:K^K, Ζ < X.K^K. 

Then Γ l· X(ZW) < W, which is not derivable without using conversion, i.e. 

without performing any /3-reduction, even when the conclusion is in normal form. 

The subtyping rules of F" are not syntax directed, in the sense that the form 

of a derivable subtyping statement does not uniquely determine the last rule of its 

derivation (i.e. there might be more than one derivation of the same subtyping 

judgement). To develop a deterministic decision procedure to check subtyping, we 

need a new presentation of the subtyping relation that provides the foundations 

for a subtype-checking deterministic algorithm. 

Our solution is divided in two main steps. First, we develop a normal subtyp­

ing system, NF", in which only types in normal form are considered. We prove 

that derivations in NF" can be normalized by eliminating transitivity and sim­

plifying reflexivity. This simplification yields an algorithmic presentation, AlgF". 

Moreover, we prove that AlgF" is indeed an alternative presentation of the F" 

subtyping relation, that is Γ h S < Τ if and only if Γ η / \-Alg Snf < Tnf (proposition 

3.4.3). 

The second and last step towards the decidability of subtyping in F " is to 

prove that the algorithm described by AlgF" terminates, which is equivalent to 

showing that the definition of the AlgF" is well-founded. We discuss this further 

in section 3.5. 

Checking whether Г Ьд;5 ST < Ais reduced to checking if Г Ьдід hbr{S T)n' < 
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Л, where ¡ubr{ST) substitutes the leftmost innermost variable of ST by its bound 
in Г. Such replacements may produce a term that is not in normal form, in which 
case we normalize it afterwards. The main problem here is that the size of the 
types to be examined in the recursive call does not decrease. This indicates that 
the proof of termination of the algorithm is not immediate. In particular, the 
proof of termination presented in [CP94] cannot be modified to serve our pur­
poses, because of the interaction between /ЗЛ-reduction and the substitution of 
type variables by their bqunds in our system. We discuss this further in section 
3.5. 

In this chapter we present the syntax of F%, we prove structural properties of 
the system, confluence, and the strong normalization property for the reduction 
on types. 

2.2 Syntax of F " 

We now present the rules for kinding, subtyping, and typing in F%. They are 
organized as proof systems for four interdependent judgement forms: 

Г h ok well-formed context 

Г h Τ € К well-kinded type 

Г h S < Τ subtype 

Γ h e ε Γ well-typed term. 

We sometimes use the metavariable Σ to range over statements (right-hand sides 

of judgements) of any of these four forms. 

S y n t a c t i c C a t e g o r i e s 

The kinds of F" are those of F": the kind • of proper types and the kinds К\—*Кг 
of functions on types (sometimes called type operators). 

К ::— * types 

К—»К type operators 

The language of types of F" is a straightforward higher-order extension of F<, 
Cardelli and Wegner's second-order calculus of bounded quantification. Like F<, 
it includes type variables (written X), function types (Г—>T'), and polymorphic 
types (VX<T:K.T'), in which the bound type variable X ranges over all subtypes 
of the upper bound T. Moreover, like F " , we allow types to be abstracted on types 
(AX:K.T) and applied to argument types (TT1); in effect, these forms introduce 
a simply typed λ-calculus at the level of types. Finally, we allow arbitrary finite 
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intersections (/\κ[ΤΛ..Τη]), where all the T.'s are members of the same kind K. 

Τ : X 
T-»T 

ЛХТЖ.Т 
ΛΧ:ΚΤ 
TT 
ЛК[Т..Т] 

type variable 

function type 

polymorphic type 

operator abstraction 

operator application 

intersection at kind К 

We use the abbreviation Τ for nullary intersections and sometimes X\K for 

X <TK:K. 

TK 4 Λ * [ ] 

X-.K X < TK:K 

We drop the maximal type Top of F<, since its role is played here by the empty 

intersection T*. For technical convenience, we provide kind annotations on bound 

variables and intersections so that every type has an "obvious kind," which can 

be read off directly from its structure and the kind declarations in the context. 

The language of terms includes the variables (x), applications (e e) , and func­

tional abstractions (Xx:T.e) of the simply typed λ-calculus, plus the type abstrac­

tion (XX<T:K.e) and application (eT) of f , As in F<, each type variable is 

given an upper bound at the point where it is introduced. 

Intersection types are introduced by expressions of the form иіаг(Х£Ті..Тп)еп, 

which can be read as instructions to the type-checker to analyze the expression 
e separately under the assumptions X = Γι, X = Тг, . . . , Χ = Τη and conjoin 

the results. For example, if + 6 Int—»Int—»Int Λ Real—»Real—»Real, then we can 

derive 

for(X£lnt, Keal)Xx:X.x + χ E Int—»Int Λ Real—»Real. 

e : : = χ variable 

Лх:Т.е abstraction 

e e application 

AX<T:K.e type abstraction 

e Τ type application 

Ь>г(Л'еТ..Т)е alternation 

The operational semantics of F% is given by the following reduction rules on 

types and terms. 

DEFINITION 2.2.1 (Reduction rules for types) 

1. (ЛЛ-іА-.ВД-^дГ, !*«-^] 
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2. S -» Λ*ΡΊ..Τ«] - ^ Λ*[5-»ΙΊ .. 5^Г„] 

3. VJf <5:Х.Л*[Гі..Г„] -»/»л Л * ^ < 5 : ^ . Т ! .. VX<S:K.Tn] 

4. Л Х ^ . Л ^ р .Г,,] -»„л Λ*1"**2[Λ*:*ι.Γ1 .. КХ:К^.Тп) 

5. (Λ*1~*ΐΡΊ..τ„]) и -»flA Λ Κ Ϊ Ρ Ί Í/ .. τ„ιη 

6. Λ*ΡΊ - Λ*[&.·&].·. Γ„] - ^ Λ*Ρι - Sx..Sn .. Tm] 

The first rule is the usual /3-reduction rule for types. Rules 2 through 5 express 
the fact that intersections in positive positions distribute with respect to the other 
type constructors. Rule 6 states that intersection is an associative operator. In 
section 2.5 we consider the reduction defined by rules 1 through 5 as —>@л- and 
the one defined by 6 as —•„ (o comes from associativity). The left-hand side of 
each reduction rule is a redex and the right-hand side its reduct. The relation —>/jA 

is extended so as to become a compatible relation with respect to type formation, 
-»/JA is the transitive and reflexive closure of —>/эл, and = 0 Λ is the least equivalence 
relation containing —>дл. The capture-avoiding substitution of 5 for X in Τ is 
written T\X*—S]. Substitution is written similarly for terms, and is extended 
point-wise to contexts. The /ΐΛ-normal form of a type S is written S , and is 
extended point-wise to contexts. 

DEFINITION 2.2.2 (Reduction rules for terms) 

1. (Xx:Ti.ei)e2 -»/у„„ ei[x<-e2] 

2. {\X<Ti:Kl.e)T->pJtne[X+-T\ 

3. (for(XeT 1..T„)e 1)ej -»„*„ Іот{ХеТ,..Тп){е, e2) 

4. ίοτ(Χ€Ά..Τη)6 -*/,ƒ„„ e, if X ¿ FV(e) 

Rules 1 and 2 are the ̂ -reductions on terms. Rule 3 says that the for con­
structor can be pushed to the outermost level. We consider the reduction defined 
by rules 1 through 3 as —*pfor and the one defined by 4 as —•, (s comes from 
simplification). The left-hand side of each reduction rule is a redex and the right-
hand side its reduct. The relation —*g¡0T> is extended so as to become a compatible 
relation with respect to term formation, -»/з/ог« is the transitive reflexive closure 
of —>/}ƒ„„) and =/}/(,„ is the least equivalence relation containing —*ßf0T3. 

C o n t e x t s 

A context Γ is a finite sequence of typing and subtyping assumptions for a set of 
term and type variables. 
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The empty context is written 0. Term variable bindings have the form x:T; 

type variable bindings have the form X<T:K, where Τ is the upper bound of X 

and К is the kind of T. 

Г : : = 0 empty context 

Г, x:T term variable declaration 

Г, X<T:K type variable declaration 

When writing nonempty contexts, we omit the initial 0. The domain of Г is 
written d o m ( r ) . The functions FV(—) and FTV(—) give the sets of free term 
variables and free type variables of a term, type, or context. Since we are careful 
to ensure that no variable is bound more than once, we sometimes abuse notation 
and consider contexts as finite functions: T(X) yields the bound of X in Г, where 
X is implicitly asserted to be in dom(r) . 

Types, terms, contexts, statements, and derivations that differ only in the 
names of bound variables are considered identical. The underlying idea is that 
variables are de Bruijn indexes [dB72]. 

D E F I N I T I O N 2.2.3 (Closed) 

1. A term e is closed with respect to a context Г if FV(e) UFTV(e) С dom(r) . 

2. A type Τ is closed with respect to a context Γ if FTV(T) Ç dom(T). 

3. A typing statement Γ l· e Ε Τ is closed if e and Τ are closed with respect to 

Γ. 

4. A kinding statement Γ h Τ 6 К is closed if Τ is closed with respect to Γ. 

5. A subtyping statement Γ h S < Τ is closed if S and Γ are closed with 

respect to Γ. 

We consider only closed typing statements. Observe that in the limit case 

of the rule T - M E E T , when η = 0, not having the closure convention would allow 

nonsensical terms to be typed. On the other hand, the free variable lemma (lemma 

2.4.3) guarantees that kinding statements are closed and the well-kindedness of 

subtyping (lemma 2.4.19) ensures that subtyping statements are closed as well. 

C o n t e x t F o r m a t i o n 

The rules for well-formed contexts are the usual ones: a start rule for the empty 

context and rules allowing a given well-formed context'to be extended with either 

a term variable binding or a type variable binding. 

0 l· ok ( C - E M P T Y ) 

Γ h Τ € * χ & dom(r) 

Γ, χ:Τ h ok 

Γ h Τ € Κ Χ t dom(r) 

Γ, X<T:K h ok 

(C-VAR) 

( C - T V A R ) 
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Type Formation 

For each type constructor, we give a rule specifying how it can be used to build 
well-formed type expressions. The critical rules are K - O A B S and K - O A P P , which 
form type abstractions and type applications (essentially as in a simply typed 
A-calculus). 

The well-formedness premise Γ h ok in K - M E E T (and in T - M E E T below) is 
required for the case where η = 0. 

TUX<T:K, Tΐl·6k 

TUX<T:K,T2\-X e К 

Tl·Τ! e* г h r2 e * 
г h 7WT2 e * 

Г, Х<Тг-.К^Т2е* 

Т Чх<і\П(^Т* 
Г, X-.Kt l·T2£K2 

Tl· КХ:К^Т2еК^К2 

Tl· Se K^K2 Т l· Τ 6 ΑΊ 

ΤΎΊΓΓΊΓΚ2 

Γ I-ok for each іе{1.. η } , Γ h Τ, e К 

TTJ^JT^TK 

( K - T V A R ) 

(K-ARROW) 

( K - A L L ) 

( K - O A B S ) 

( K - O A P P ) 

( K - M E E T ) 

Subtyping 

The rules defining the subtype relation are a natural extension of familiar calculi 
of bounded quantification. Aside from some extra well-formedness conditions, the 
rules S-TRANS, S-TVAR, and S-ARROW are the same as in the usual, second-order 
case. Rules S-OABS and S - O A P P extend the subtype relation point-wise to kinds 
other than •. The rule of type conversion in F", that is, if Γ h e e У and Τ =p Τ' 

then Γ h e £ Τ', is captured here as the subtyping rule S-CONV, which also gives 

reflexivity as a special case. The rule S-ALL is the rule of Cardelli's Fun language 

[CW85] in which the bounds of the quantifiers are equal. Rules S - M E E T - G and 

S - M E E T - L B specify that an intersection of a set of types is the set's order-theoretic 

greatest lower bound. 

τl·Seκ τl·Teκ s =βΛτ 
Tl· S <τ 

Tl· S <T Tl·T <u 

Γl·S <u 

Ti,X<T:K, T2l·όk. 

Tl·T1<S1 Tl·S2<T2 Tl·S1->S2€* 

Γ h Si->S2 < T^T2 

(S-CONV) 

(S-TRANS) 

(S-TVAR) 

(S-ARROW) 
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T,X<U:Kl· S<T ThVX<U:K.S E* 

Γ h VX<U:K.S < VX<U:K.T 

T, X:K l· S <T 

Γ l· KX.K.S < AX-.K.T 

T h 5 < r ThSUçK 

r\-su <TU 
for each ¿e{l..n} , Γ h S <T¡ Τ l· S £ К 

τl·s<^κ[τ1..τл] 

τl·^κ[τ,..τn]ζκ 
г h л*Рі..г„] < Ti 

(S-ALL) 

( S - O A B S ) 

( S - O A P P ) 

( S - M E E T - G ) 

( S - M E E T - L B ) 

T e r m F o r m a t i o n 

Except for T - M E E T and T - F O R , the term formation rules are precisely those of the 
second-order calculus of bounded quantification. T-Foa provides for type checking 
under any of a set of alternate assumptions. For each Si, the type derived for the 
instance of the body e when X is replaced by 5,· is a valid type of the for expression 
itself. The T - M E E T rule can then be used to collect these separate typings into a 
single intersection. Type-theoretically, T - M E E T is the introduction rule for the Λ 

constructor; the corresponding elimination rule need not be given explicitly, since 

it follows from T-SUBSUMPTION and S - M E E T - L B . 

Tl,χ•.T,T2l·ok 

(T-VAR) 

( T - A B S ) 

( T - A P P ) 

( T - T A B S ) 

( T - T A P P ) 

( T - F O R ) 

( T - M E E T ) 

r ,_ e T (T-SUBSUMPTION) 

Most of the rules include premises which have two rather different sorts: structural 

premises, which play an essential role in giving the rule its intended semantic force, 

Γι, x:T, Γ2 h ι e Γ 

Γ, ζ:Γι l·eйT2 

Γ h ЛхіТі.е e Τλ-+Τ2 

Г Ь ƒ 6 Τ^Τ2 Tl·aeT1 

Tl· faeT2 

Γ, ΛΧΓ^ΑΊ Η e e Τ2 

г h λΛ"<τ,:ΑΊ.β e νχ<τ ι : ΑΊ.τ 2 

Γ h ƒ eVA^TVA^Tj Tl·S<T1 

Tl· f S £T2[X<-S] 

Tl·e[X+-S}eT 5e{5,..5„} 

Tl·foτ(XeSι..Sn)eeT 

Г hok for each ie{l..n}, Tl· e 6 T,· 

T h e e Λ*ΡΊ..τ„] 

T h e e S Tl· S<T 
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and well-formedness premises, which ensure that the entities named in the rule are 
of the expected sorts. In an algorithmic presentation of the system (on which an 
implementation might be based), the well-formation premises would be replaced 
by the meta-theoretic observation that "recursive calls" in the premises of all the 
rules preserve the well-formedness of the "arguments" named in the conclusion. 

In the interest of brevity, we omit well-formation premises that can be derived 
from others. For example, in the rule S-ARROW, we drop the premise Γ l· î\—>Γ2 E 

*, since it follows from Г l· S\—>5г € * using the properties proved in section 2.4. 

2.2.1 Discussion 

An equivalent presentation of intersection types uses binary intersections as in 
[CDC78]. The intersection of S and Г is then written SAT, and there is a 
maximal element at each kind, ω . The rules of the system have to be modified 
according to this alternative notation. In most cases, each of our rules about 
intersection types has to be replaced by two rules, one for the binary case and 
another for the maximal element. For example, the reduction rule 

VXKS-.KXITL.T»] - „ л Л*[ Х<5:А:.Гі .. 4X<S:K.Tn] 

is replaced by 

VXKS-.K.TiATi ->0л VXuS-.K.T^VXKS-.K.Ti and 

VX<S:K.u* ->0Λ ω*. 

Similar replacement takes place for rules 3 through 5 in definition 2.2.1. The term 

formation rule K - M E E T is replaced by the two following rules. 

ri-se к гl·τeκ 
( K - I N T ) 

( K - M A X ) 

( S - I N T - G ) 

Г Ь 5 < / ( S - M A X ) 

In the Α-cube [Bar92], Fwcorresponds to \ш, the system defined by the rules 
(*,*), (П,*) , and (Ü, D). If A" is a kind defined by the grammar K, then 

Г Ь Д е Ü. 

The rule (O, D) corresponds to the recursive step in the definition of K; the rule 
(*,*) corresponds to K-ARROW, and K-ALL is the parallel of rule (O,*) enriched 
with subtyping. 

r i - S A T e К 

Г г-ok 

Г h ωκ 6 К 

The rule S - M E E T - G is replaced by the following two rules. 

Г г - 5 < Г ! Tl· S<T2 

Г h S < Tj А Т2 

Γl·Sç К 
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2.3 Confluence 

In this section, we show that the system F% is confluent. By that we mean that the 
reduction -^pfoTs U —>/зл defined by putting together the reduction on terms, -^g¡0T¡ 
(definition 2.2.2), and the reduction on types, —>рл (definition 2.2.1), satisfies the 
Church-Rosser property. We use the Hindley-Rosen lemma (cf. 3.3.5 [Bar84]) to 
establish this result. This factors the proof into two parts: 

1. proving that -»ßj0T, and -»дл commute, and 

2. proving that —>/j/0„ and —>¿jA satisfy the Church-Rosser property, the results 
of sections 2.3.1 and 2.3.2. 

Remember that two binary relations —>i and —>2 commute if the following diagram 
commutes. 

A • • В 

. • D 

In order to prove that -»р/от, and -**βΛ commute we use the following lemma. 

LEMMA 2.3.1 (3.3.6 [Bar84]) Let —>i and —>2 be two binary relations on a set 
X. Suppose 

В 

•» D 

where —+=i is the reflexive closure of —>i. Hence —»i and —»2 commute. 

We need the following auxiliary result to prove that -»¿jA and -»/?ƒ»„ commute 
using the previous lemma. 

L E M M A 2.3.2 If Г - > „ л Г', then e[X*-T] -»βΛ е[Л"<-Т']. 

PROOF: By induction on the structure of T. • 

L E M M A 2.3.3 

E—л - F 

рл 

=ßf0TS 

.ßA 

i 
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PROOF: By induction on the structure of E. Observe that if E is a type expression 
( E E T ) then there can be only /ЗЛ-reductions starting from E, and the result holds 
vacuously. Consequently, the meaningful cases are when E is a term ( £ s E ) , and 
of those the interesting cases are when E is a ßiois redex. 

Ι. E = (Ах:Гі.еі)е2, 

F = e-i[x*-e2], 

G — (Ax:Tj.ei)e2, and 

2l —»0л Γ,. 

Choose H = F. Since (Ах:Г1'.е1)е2 —•/з/ог» ei [я«— е2], the result follows. 

2. E = (λΧ<Γι:ϋΓι.β)5, 

F = e[X«-S], 

G = (λΧ<Γι :ε . )5 ' , and 

S -»„л 5'. 

Choose H = e[X*—S']. Since (ΛΧ<Γι: ί ίΊ.6)5 ' —>ßf0Ta e[X*—S'], the result 
follows by lemma 2.3.2. 

3. E = ({от(ХеТ1..Т,..Тп)е1)е2, 

F = ior(XeTì..Tt..Tn)(e1e2), 

G = (for(X6r1..T,'..rn)e1)e2, and 

Τ, —>/зл Г,. 

Choose Я Ξ for ier i . .Г; . .Г п )( е і е 2 ) . 

Since (for(Xer1..T,'..rn)e1)e2 - > № „ Ьг(Л'е:Гі..Г1'..Гп)(еіе2) and 

for(^er1..r,..rn)(e1ea) ^ „ л &)г(^бГ1..Г1'..Гл)(е1еа) 

the result follows. 

4. Ε Ξ for(XeT1..r,..rn)e, 

F = e, 

G Ξ for(Xer 1..r;..rn)e, and 

τ, —»¿л г,. 

Choose Η = F. Since for(Xs7i..Tj'..T>l)e -*ßf0T, e, the result follows. G 

C O R O L L A R Y 2.3.4 -»д л and -»^¡0TS commute. 
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2.3.1 The Church-Rosser theorem for >ßr« 

In this section we prove the Church-Rosser property for the reduction defined in 
2.2.1. The strategy we use here is similar to the one used in chapter 11 section 1 
of [Bar84] to prove the corresponding result for —*ß in the type-free Л-calculus. 

In order to prove the Church-Rosser property for —>рл it is sufficient to show 
the following strip lemma. If S, ΤΊ, T-¡ in Tare such that S —>/зл 7\ and S -»^л TÍ, 
then there exists T3 such that 7\ -»¿jA T3 and T2 -»¡з* 2з. Graphically: 

0Л 

0Л 

•/5Л 

Ά 
ßh 

The idea of the proof is as follows. Let T\ be the result of replacing the redex R in 
S by its reduct R". If we keep track of what happens with R during the reduction 
S -»/зл T2, then we can find T3. To be able to trace R we define a new set of terms 
Τ where redexes can appear underlined. Consequently, if we underline R in S we 
only need to reduce all occurrences of the underlined R in T2 to obtain T3. 

DEFINITION 2.3.1.1 (Underlining) 

1. Tis the set of terms defined by the following abstract syntax. 

Τ ::= X\ T->T 
У*<Т:К J I \X-KJ 
ΤΤ|Λκ[Χ·ί) 
(ΛΧ:Κ J ) I | ΛΚ[1·. л к [Т-И ·· 1 
! - > л*[Т- Î 1 х<Т:Кд*[Т- ρ 

ЛХ:КЛК[Т-І] | Л к ^ к [ 1 - Ц 1 

Observe that only redexes are underlined. 

2. Underlined (one step) reduction —>/?л is defined starting with the rewriting 
rules 

(a) {КХ-.К.Т^Тг^^Т^Х^Тъ] 

(b) S - . Λ*[ΪΊ..Γ„] -+£л l\*[S^Tx .. 5->Γη] 

(c) VJf<5:A-.A*[ïi..r„] -»£л Л*ІУ^<5:*.Гі .. WX<S:K.Tn] 

(d) ΑΧ:Κχ.Ακ'[Τι..Τη] ^р^А^^АХ-.Кг.Тг .. \Х:Кг.Тп] 

(e) A^^Pi-.T»] Í/ -£л Л*яРі I/ ·· Γη f/] 

(f) Λ*[Γ, .. A*[Si..S»] .. Τη] -»„Α Λ*ΡΊ .. Л..5» .· rm] 

file:///X-KJ
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(g) (ΑΧ:Κ.Τ1)Τ2-+β*Τι[Χ^Τ2] 

(h) S -> Λ*Ρί..Γ„] - * ^ Λ*[5->Γ, .. S^T n] 

(i) νΛ·<5:Κ.Λ*Ρί..Γ„] -*£л A*IVX<S:íf.ri .. УХ<5:ЙГ.ТП] 

(j) ΛΧ:ϋΓι.Λ*'ΡΊ-·Γη] -»/>л Λ Χ ι ^ ' [ΛΧ:^ι .Τι ·· ΛΧ^,.Τ,,] 

(к) д^->^[Г і .,Гп]{/ - , ^ Λ"2[Γι ί/ ·· Τη U]. 

(1) Λ*ΡΊ ·· /f[Sr..Sn] .. Тт\ ^ Ακ[Гг .. 5ь.5 п .. Tm] 

—»̂ л is extended so as to become a compatible relation with respect to T, 
and -»0л is the reflexive and transitive closure of —*βΛ. 

3. If Τ Ε Τ, then \T\ £ Tis obtained from Τ by erasing all underlinings. 

4. The capture avoiding substitution for underlined terms is written as usual, 
T[X+-S\. 

DEFINITION 2.3.1.2 The map ψ : T-» Tis defined inductively as follows. 

1. ψ(Χ) = X; 

2. φ(Τχ -» T2) = φ{Τι) -» φ(Τ2); 

3. (УХ<Т1:К.ТІ) = \/Χ<φ(Τι):Κ.φ(Τ2); 

4. φ(ΑΧ:Κ.Τ) = ΑΧ:Κ.φ{Τ); 

5. ^ ( Τ Ί Γ ^ Ξ γ , ^ Μ Γ ζ ) ; 

6. (Л*[Γι..Τ„]) Η Λ*[*»№) .. (ГЯ)]; 

7. уЦАХгДГ.ГОГ,,) Ξ ^ ( Г г ) [ Х ^ ( Г 2 ) ] ; 

8. y>(S - Λ*[Γι··Γη]) Ξ ATMS - ΤΟ .. ν ( 5 -» Τη)]; 

9. ψ(νΧ<8:Κ1.Α*[Τ1..Τη}) = tffrÇrfXKSiIb.K) .. ^(νΧ<5:ΑΊ.Γ„)]; 

10. {АХ:Кг.А
к'[Тг..Тп]) = ^^^{ΑΧ-.Κ^.Τ,) .. ψ(ΑΧ:Κ1.Τη)}; 

11. V{A.K^Ka[Ti..Tn]S) = ΑΚΉΆ S) .. φ(Τη S)]; 

12. φ(Ακ[Тг .. A*[Si~S.] .· T J ) = Λ * Μ Τ , ) . . (5 г) .. <p(Sn) .. у.(Гт)]. 

Observe that φ reduces all underlined redexes. 

Notation: |T | Ξ S and ψ(Τ) = S will be written: 

Τ bJ—, 5 a n d г 1 • 5. 



22 CHAPTER 2. THE F% CALCULUS 

LEMMA 2.3.1.3 If T, S 6 Tand Τ' G Tare such that \T'\ Ξ Γ and Г -»р л S, 
then there exists 5' S Τ such that Г' -*»/зл S' and |S"| Ξ S". Graphically: 

Τ' 
βΛ 

S' 

l-l 

/SA 

PROOF: By induction on the definition of -»^A· 

1. Τ —»дл 5 (in one step). Since 5 is obtained by contracting a redex in T, S 
can be obtained by contracting the corresponding redex in T'. 

2. Τ -»βΛ T. Take S' = Τ'. 

3. Τ -»/JA {ƒ and U -»0л 5. Finally, the result follows by the induction hypo­
thesis and the transitivity of -»^Λ· E 

LEMMA 2.3.1.4 Let S, T, and U G T. Then 

1. Suppose Χ φ Υ and Χ $ FV(Í/). Then 
5[*«-Г][У«-У] Ξ 5[Κ+-[/][Λ-<-Τ[Κ<-ί/]]. 

2. ¥>(5[Λ·«-Τ]) = <p(S)[X*-<p{T)]. 

3. If 5 —pA S', then 5[X<-Í/] _ ^ л s*[Jf•-£/]. 

4. If Г, 5 € Tare such that Τ -»ρ* S, then φ(Τ) -*0Λ tp(S). Graphically: 

Τ ~ S 
ßl·. 

ψ(Τ) ••••.-ν>(5) 
/5Λ 

PROOF: 

1. By induction on the structure of S. 

2. By induction on the structure of S using (1) in the cases 5 = (\X:K.S\) S2 
and S Ξ {AX:K.S,)S2. 

3. It is enough to show the result for —+/}Λ; the rest follows by induction. The 
interesting cases are when S is a redex: if 5 is a /?-redex, then the result 
follows easily using (1); otherwise the result follows easily by the definition 
of substitution. 
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4. By induction on the generation of -»0Λ ) using (2). 

LEMMA 2.3.1.5 Let Г б X Then | Г | -»„л φ(Τ). Graphically: 

Τ 

рл 
•\Т\ · ~φ(Τ) 

PROOF: By induction on the structure of T. 

LEMMA 2.3.1.6 (Strip) Let S, Γα, and Γ 2 e T. If S - ^ Τλ and S -* 
there exists Γ3 € Τ such that 7\ -»рл Гз and Г2 -»¿зл Гз. Graphically: 

5 τ — ~ Γ2 

D 

з̂л Î2, then 

0л 

0л 

/9Л 

0Л 
Тэ 

P R O O F : Suppose that Γι is obtained from S by replacing the occurrence redex 
R by its reduct R1. Then we can write S = S[R] and T\ = S[R!]. Let S[R] 
be obtained from S by replacing R by its underlined version R. Observe that 
\S[R]\ = S[R\ and <p(S[R]) = SIR1]. Then, by lemma 2.3.1.3, there exists Γ2', by 
lemma 2.3.1.4(4), S [ # ] -»„л ^(T^), and, by lemma 2.3.1.5, Г2 -»¿л ^(Т^), which 
justify the following diagram. 

To complete the proof, let T3 = ψ{Τ'2). G 

T H E O R E M 2.3.1.7 (Cburcb-Rosser for->рл) 
If S, Γι, and T2 G T a r e such that S -»/зл Γι and 5 -» / ¡ л Г2, then there exists 

Г3 e Τ such that Гі -»рл Гз and Г2 -»β* Гз. Graphically: 

S ——·» Г2 

/JA 

0Л 

'|9Л 

Γι -- Τ3 

рл 
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PROOF: By induction on the generation of S -»0Λ Γι. 

1. S —»дл Γι. By the strip lemma (2.3.1.6). 

2. 5 Ξ Гі. Т а к е Г 3 = Г 2. 

3. 5 -»/зл Г/ and Τ/ -»дл Γι. By the induction hypothesis, we can find first Г3 
and then Г3, such that T[ -»^л Г3, Гг -»дл Г^, Γι -»,3л Г3, and Г 3 -»β* Г3. 
Hence the result follows by the transitivity of -»/jA- n 

2.3.2 The Church-Rosser theorem for —•/?ƒ„„ 

In this section we prove the Church-Rosser property for the reduction defined in 
definition 2.2.2. The idea of the proof is as follows. We prove that —ypj„ and —», 
are Church-Rosser; that —», reduction steps can be postponed (see lemma 2.3.2.2); 
and that, if e, ei, and e2 € E are such that e -»¿з/ог ei and e -», e2, there exists e 3 

such that ei -», e 3 and e 2 -»ßfor 63 (see lemma 2.3.2.3). 
Those four results allow us to prove the Church-Rosser theorem for -+ßfor,. Let 

e, Ci, e2 6 E, such that e -»ßf0T, t\ and e -»дг„г» e 2. Then, by «-postponement, 
there exist /Ί and / 2; by Church-Rosser for —>ßf0T, there exists / 3 ; and, by lemma 
2.3.2.3, there exist /4 and / 5 , and finally, by Church-Rosser for —»„ there exists 
e3 which completes the following diagram. 

№' 

ßfor 

PfoT 

ßfor 

•»far 

— Λ 

ei 

•ΑΛ"· 

• - / 4 

• »«• e 3 

In order to prove the s-postponement property we need the following auxiliary 

lemma. We will consider FV(e) as the set of free term and type variables of e. 

L E M M A 2.3.2.1 

1. ei —>ßfoT, e2 implies FV(e2) Ç FV(ei). 

2. e.\ —», e2 implies ei[X*— S] —», е2[Л"<— S]. 

3. ei —», e 2 implies ei[x<—e] —», 62(1*— e]. 

4. ei —», e 2 implies e[a:«—βι] -», e[x*— e 2]. 
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5. ei -*β]οτ e 2 impl ies ei[x<—e] —*ßf0T e2[x<—e]. 

6. ei —>$}„ e2 implies e[x<— ei] -»/yor e[n—e2]. 

7. ei - » , e2 and ƒ1 - » , f2 implies /i[x<-ei] -», /2[x«-e2] . 

8. ei -»ßfor e2 and ƒ1 -»β/„τ h implies /i[x<-ei] -»p/or /2[z<-e2]. 

PROOF: Items 1 through 6 follow by induction on the structure of e\\ item 7 is a 
corollary of items 3 and 4, and item 8 is a corollary of items 5 and 6. • 

LEMMA 2.3.2.2 (s-postponement) If e —», e¡ and ei —*ßj„ e2, then there exists 
ез such that e —*ßf0T ез and ез -», e\. 

PROOF: By induction on the structure of e, using 2.3.2.1(1) for the case e = 
ίοΓ(Λ"67Ί..Γη)/; 2.3.2.1(3) and (4) for the case e = (Xx:T.fi)f2; and 2.3.2.1(2) for 
the case e ΞΞ (XX<T:K.f)S. • 

LEMMA 2.3.2.3 If e, ci, and e 2 E E are such that e -»д/ог ει and e -», e 2 then 
there exists ез such that t\ -», ез and e 2 -»ßfor ез- Graphically: 

e π — · * e i 

e 2 «* e 3 

/J/or 

In order to prove this lemma, we prove first the corresponding result for a one 

step —*ßjoT reduction. 

LEMMA 2.3.2.4 If e, ej , and e2 £ E are such that e —*0¡„ t\ and e - » , e2, then 
there exists ез such that ei -», ез and e 2 -»ßfor ^з- Graphically: 

e ; • ei 
ßfor , 

e2 -' e3 
ßlor 

PROOF of lemma 2.3.2.3: By induction on the derivation of e -+ßj0T ei, using 
lemma 2.3.2.4. D 

We now prove the Church-Rosser property for —>, using the Newman's pro­
position 3.1.25 in [Bar84], by proving that —», is strongly normalizing and weak 
Church-Rosser. 

LEMMA 2.3.2.5 (Strong normalization for —»,) Every s-reduction sequence start­
ing from a term e terminates. 



26 CHAPTER 2. THE F" CALCULUS 

PROOF: Straightforward, by induction on the number of symbols of the term 
being reduced. Ü 

L E M M A 2.3.2.6 (Weak Church-Rosser [or —»·,) If e, e b and ег 6 E a r e such that 
e —+, t\ and e —>4 ег, then there exists ез such that e\ -», ез and €% - » , ез. 
Graphically: 

— «1 

e2 
·•» e 3 

PROOF: By induction on the structure of e, using 2.3.2.1(1) for the case e = 

ί θ Γ ( *€Γ ι . . Γ η ) / . • 

COROLLARY 2.3.2.7 (Church-Rosser for —•,) If e, ei, and ег £ E a r e such that 
e -»j ei and e - » , ег, then there exists ез such that ei -», ез and ег -»« ез. 
Graphically: 

e2 

— e t 

e3 

We now prove the Church-Rosser theorem for the —>ßj„ reduction. This result 
is obtained following a similar strategy to the one used to prove the corresponding 
properties for —v^A, the reduction on types, in section 2.3.1. In order to prove 
the Church-Rosser property for —*ßf0T, it is sufficient to show the following strip 
lemma. If e, / i , and fi in E a r e such that e —*р/0т fi and e -»д^г ƒ2, then there 
exists /з such that /Ί -»ßf0r /з and fi -»/j/or /з- Graphically: 

ßfat 

ßfor 

ßfor 

h 

ßfor 

h 

The idea of the proof is as follows. Let f\ be the result of replacing the redex R in 
e by its reduct R1. If we keep track of what happens with R during the reduction 
e -»ßfor /г, then we can find /3. To be able to trace R we define a new set of terms 
E where redexes can appear underlined. Then if we underline Л in e we only need 
to reduce all occurrences of the underlined R in /2 to obtain /3. 

D E F I N I T I O N 2.3.2.8 (Underlining) 
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1. Eis the set of terms defined by the following abstract syntax. 

E ::= x 
| Az:EE 
I ЕЕ 
I AA:<TJK.E 

I ET 
| for(reT..T)E 
| (A:r:T.E)E 
| (ЛЛ-<Т:КЕ)Т 
I ( М Х е Т / Щ Е 

Observe that only redexes are underlined. 

2. Underlined (one step) reduction —*ßjor is defined starting with the rewriting 
rules 

(a) (Аі:Гі.сі)е2 -*0¡„ e1[x<-e2] 

(b) {\Χ<Τλ:Κ^)Τ ^^re[X^T] 

(c) (Ьг(Л"еГі..Тп)е,)е2 ->βμτ for(A,gTi..T„)e1 e2 

(d) (Ад:Гі.)еіе2 -+р/<,т ві[д*-е2] 

(e) (\Χ<Τλ:Κι.α)Τ - ^ е[Х*-Т] 

(f) (for(Xeri. .r n ) e i )e 2 -ypçr for(Jf€Γι..Τ.)(βι e2) 

—*ßfoT is extended so as to become a compatible relation with respect to E> 
and -»p/er is the transitive reflexive closure of —*β/πτ. 

3. If e G E then |e| € E is obtained from e by erasing all underlinings. 

4. The capture-avoiding substitution for underlined terms is written as usual, 
e[X<— S] and e[x<— ƒ]. 

DEFINITION 2.3.2.9 The map ψ : E-> Eis defined inductively as follows. 

1. ψ(χ) = χ; 

2. <p(\x:T.e) = λχ:Τ.φ(β); 

3. <f>(e!e2) Ξ }(е1) з(е2); 

4. ^(АЛЧГгКе) = ХХ<Т:К.<р{е); 

5. ( е і Г) = ^ ( е і ) Т ; 

6. ψ(ΐοτ{ΧΕΆ..Τη)ε) =Ьт(ХеТ1..Тп)<р{с); 
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7. φ{{λχ:Τ.61)ε2) Ξ <p{ei)[x*-<p(e2)]; 

8. <p({\X<T:K.t)T) = <p{e){X^T]\ 

9. φ(ΐοτ(Χ&Τ1..Τη))ε1)β2) Ξ {от(ХеТг..Тп) (еі е 2 ). 

Observe that φ reduces all underlined redexes. 

Notation: |e i | = e 2 and ^(ei) Ξ e 2 will be written: 

l-l -» e2 and t\ 

LEMMA 2.3.2.10 If e, ƒ e E and e' € E are such that |e'| = e and e -*β}„ ƒ, 
then there exists ƒ ' £ E such that e' -»/yor ƒ ' and | / ' | Ξ ƒ . Graphically: 

ƒ' 

l-l 

0/or 

Pfor J 

PROOF: By induction on the definition of -»ßf0T-

1. e —*0foT ƒ (in one step). Then ƒ is obtained by contracting a redex in e. ƒ ' 
can be obtained by contracting the corresponding redex in β'. 

2. e -»ßfor e. Take ƒ' Ξ e'. 

3. e -»д/or /ι and /ι -»/j/or ƒ. Hence the result follows by the induction hypo­

thesis and the transitivity of -»ßf0T· Π 

LEMMA 2.3.2.11 Let e, ƒ, and g e E a n d S,Τ e T. Then 

1. (a) Suppose χ ф y and χ ^ FV(y). Then 

e[x*-f][y<-g] = е[у«-0][а:«-Лу*-5]]. 

(b) Suppose X ^ У and X <jt FV(5). Then 

eLY«-r][y«-S] = е[У«-5][Х<-Г[У<-5]]. 

(c) Suppose Χ ф Y. Then 

е[х4-/][Л-*-Г] = e[X+-T][x^f[X+-T}}. 

2. (a) ν ( β [ χ ^ / ] ) Ξ ^ ( ε ) [ χ ^ ( / ) ] . 

(b) <p{e[X+-T]) = <р{е)[Х*-Т\. 

3. If e and ƒ e E are such that e -»^ о г ƒ , then φ{ε) -*>ßf„ ¥>(ƒ)· Graphically: 

#> - ƒ 

V(e) • · · · · - » ¥ > ( ƒ ) 
ßjor 
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P R O O F : 

1. By induction on the structure of e. 

2. By induction on the structure of e, using (1). 

3. By induction on the generation of -»ßf„> using (2). 

LEMMA 2.3.2.12 If e G E then |e| -*0}от<р(е). Graphically: 

D 

|e| ··' — V(e) 

PROOF: By induction on the structure of e, using 2.3.2.1(8). ü 

LEMMA 2.3.2.13 (Strip) If e, / Ί , and /2 (Ξ E a r e such that e —»д г̂ Л and e -»л/ог 

ƒ2, then there exists / 3 £ E such that fi -»ßfor /з and ƒ2 -»ßfor /з- Graphically: 

«•г 

/tfor 

'«or 

ßior 

PROOF: Suppose that Д is obtained from e by replacing the occurrence redex 
R with its reduct R1. Then we can write e = e[R] and /i = e ^ ] . Let e[R] 
be obtained from e by replacing Я by its underlined version R. Observe that 
\e[R]\ = e[R] and <£>(е[Я]) = eftf]. Then, by lemma 2.3.2.10, there exists f'2\ by 
lemma 2.3.2.11(3), e[R!} -»ßf„ ip(ft), and, by lemma 2.3.2.12, f2 -»pj„ φ{&), 
which justify the following diagram. 

e[R] 
ßjor 

ßfor е[й] 

ßfor 

ßfor 
\ßf0T ñ 

e[R'] ··"·'· -*>(£) 

То complete the proof, let f3 = ^(./^). 
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T H E O R E M 2.3.2.14 (Church-Rosser for ->/y»r) 
If e, f ι, and f2 E E are such that e -»pf0T Λ and e ~~"ßf°r f21 then there exists 

/з e E such that fi -*/з/ог /з and f2 -»pfor /3· Graphically: 

h 

ßfor 

h 

β/οτ 

ßfor 

ßfor 

h 

PROOF: By induction on the generation of e -»/?/0І· fi· 

1. e —-tßfor fi. By the strip lemma. 

2. e Ξ / L Take f3 Ξ ƒ, . 

3. e -»ßfor f[ and / j -*β/0τ fi· By the induction hypothesis we can find first f3 

and then / 3 , such that f[ -*>pfaT ƒ3, ƒ2 -»/з/ог /з\ Л -»«or /з, and ƒ3 -*»/?/<>r h-
Hence the result follows by the transitivity of -*pj„- D 

We have proved the confluence of the reduction —*ßft,r> on terms. 

THEOREM 2.3.2.15 (Church-Rosser for -*0for,) 
Let e, f 1, f2 (Ξ E If e -»β/0η fi and e -»β/0τ$ fi, then there exists f3 £ E such 

that /i -»0/„r. /з and f2 -»/?/„„ /3. Graphically: 

Λ 

ßfort 

PJoTt 

ßfors 

ßfori 

Finally, we can state and prove the confluence property for the reduction rela­
tion of F%. 

THEOREM 2.3.2.16 (Church-Rosser for ->£/„„ U ->/jA) 
If E, F, and G € T u E are such that E -»^„„и/зл F and Ε -»β/ο„υ0Λ G, then 

there exists H € T u E s u c h that F -»ßf0T*jßr\ H and G -*>/з/,,г«и/зл H. Graphically: 

ßfoTSUß/ί 

ßfoTSUßA 

G — 
ßfoTAJßh 

F 

•ßfoTSOßf·. 

i 
H 
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PROOF: By the commutativity of -»ßf0TS and -»^л (corollary 2.3.4) and the 
Church-Rosser property of —>0/οτί and —vpA (theorems 2.3.1.7 and 2.3.2.15). О 

The Church-Rosser theorem has interesting corollaries that we will use in the 
sequel. 

COROLLARY 2.3.2.17 See chapter 3 [Bar84]. Let R be a reduction satisfying the 

Church-Rosser property. Then 

1. If T=RS, then there exists U such that Τ —»д U and S —»я U. 

2. If Г is a normal form of S, then S —»R T. 

3. Each term has at most one η-normal form. 

F A C T 2.3.2.18 

1. VX<S:K.T =рл T* if and only if Τ =0Λ Τ*. 

2. λΧ-.Κ.Τ =0Л Τ* if and only if Τ =βΛ Τ*. 

3. S->T =βΛ Τ* if and only if Τ =0A T*. 

4. TS = 0 Л Τ* if and only if Γ =βΑ Τ*. 

2.4 Structural properties 

This section establishes a number of structural properties of F". Except where 

noted, the proofs proceed by structural induction and are straightforward when 

performed in the order in which they appear. 

LEMMA 2.4.1 If Γ h Σ and Γι is a prefix of Γ, then Γι l· ok as a subderivation. 

Moreover, except for the case Γι Ξ Γ and Σ = ok, the subderivation is strictly 

shorter. 

LEMMA 2.4.2 (Syntax-cfirectecmess of context judgements) 

1. If Γι, X<T:K, Γ2 Ь ok, then Γι l· Τ € К by a proper subderivation. 

2. If Γι, x:T, Γ2 l· ok, then Γι h T G * by a proper subderivation. 

LEMMA 2.4.3 (Free агіаЫея) 

1. if Γ l· Γ € A", then FTV(T) С <Ьш(Г). 

2. If Г h ok, then each variable or type variable in dom(r) is declared only 
once. 

LEMMA 2.4.4 ( Weakenj'ng/Permutation) Let Г and Г' be contexts such that Г Ç 
Г' and Г' h ok. Then Г h Σ implies Γ' h Σ. 
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By induction on the length of a derivation of Γ l· Σ. 

We are given that Γ, X<JKx:Kx h T2 £ A'2. Applying K - M E E T to 

Γ' h ok we obtain Γ' h Τ ' € K\\ we can assume, without loss of 
generality, that X 0 dom(r ' ) . Then, by C - T V A R , Γ', X<TKl:Kx r-

ok. By the induction hypothesis, Γ', X<TKi:Kx l· T2 £ K2, and the 

result follows applying K - O A B S . 

T - A B S We are given that Γ, x:7\ h e 6 T2. By lemma 2.4.1 there exists 

a proper subderivation of Γ, x:T\ h ok; by lemma 2.4.2, there is a 

yet shorter subderivation of Г h Γι £ *. We can now apply the 

induction hypothesis to obtain Γ' l· T\ £ +. As before, we can assume 

χ 0 dom(r ') ; by C-VAR, Γ', x:Tx h ok. By the induction hypothesis, 

we have Γ', x:Tx h e £ T2, and applying T - A B S yields the desired 

result. 

Other cases If Σ = ok there is nothing to prove. K-TVAR, S-TVAR, T - M E E T and 

T-VAR applying the corresponding rule to Γ' h ok. S-OABS similar to 

K - O A B S . K-ALL, S-ALL T - T A B S similar to T - A B S . All the other cases 

follow by straightforward application of the induction hypothesis. • 

LEMMA 2.4.5 (Context, kind, and term strengthening) 

1. If Г ь X<T:Ky Γ2 h ok and X £ F T V ( r 2 ) , then Г ь Г 2 H ок. 

2. If Γι, Χ<Τ:Κ, Γ2 h S £ Κ' and Л" g F T V ( r 2 ) U FTV(S), then Tu Г 2 h 
S£K'. 

3. If Г ь x:T, Г2 h Σ and χ g FV(E), then Γ,, Γ2 h Σ. 

Moreover, the derivations of the conclusions are strictly shorter than the derivation 

of the premises. 

PROOF: We prove statements 1 and 2 by simultaneous induction on the length of 

derivations, and statement 3 by induction on the derivation of Γι, x:T, Γ 2 h Σ. 

1. C - E M P T Y Vacuously true. 

C-VAR By part 2 of the induction hypothesis and C-VAR. 

C - T V A R Г2 = 0. The result follows from lemma 2.4.1. 

Γ 2 φ. 0. By part 2 of the induction hypothesis and C-TVAR. 

2. K - T V A R By part 1 of the induction hypothesis and K-TVAR. 

K-ARROW By part 2 of the induction hypothesis and K-ARROW. 

K-ALL We are given that Γ χ, X<T:K, Γ 2, Υ<Τι:Κχ h T2 £ *, and Χ <¿ 
FTV(r 2 ) U FTV(V(Y<Ti:ffi)T2). In particular, X <¿ FTV(7\) U 
FTV(r 2 ) - {Y}. Observe that, by lemma 2.4.3, Χ φ Y. Then 

Χ І F T V ( r 2 , Υ<Τλ:Κι) U FTV(T 2 ) . Applying part 2 of the 

induction hypothesis and K-ALL the result follows. 
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K - O A B S Similar to the case K-ALL. 

K - O A P P By part 2 of the induction hypothesis and K - O A P P . 

K - M E E T By parts 1 and 2 of the induction hypothesis and K - O A P P . 

3. Except for the cases we consider below and the case for C - E M P T Y , which is 
trivially true, the result follows by straightforward application of the induc­
tion hypothesis and the corresponding rule in each case. 

C-VAR Г2 = 0. The result follows by lemma 2.4.1. 

Γ2 φ 0. By the induction hypothesis and C-VAR. 

T - A B S Using lemma 2.4.3, the induction hypothesis, and T - A B S . 

T - F O R Using that FV(for(X e Τλ..Τη)ε) = FV(e) = FV(e[A"«-S]), the 

induction hypothesis, and T - F O R . О 

PROPOSITION 2.4.6 (Syntax-directedness oí kinding/Generation for kinding) 

1. Tl· X £ К implies Γ ΞΞ Г Ь Х<Т:К, Г2 for some Г ь Г, and Г 2 . 

2. Г h Тг->Т2 € К implies К = * and Г h Г ь Т2 € *. 

3. Г h Л"<Гі:ЛГі.Т2 e К implies К = * and Г, X<Ti:Kt h Г2 6 *. 

4. Г l· Κ(Χ:Κχ)Τ2 e Κ implies К Ξ КХ-^К2 and Г, Χ<ΎΚι:Κχ Ь Г2 e А"2, 
for some К2. 

5. Г l· ST e К implies Г h 5 e K'^K and Г h Г € К', for some К'. 

6. Г h АК[Т!..Тп] e К' implies Я ΞΞ A" and Г h ok and Г h Τ,· e A" for each ». 

Moreover, the proofs of the consequents are all strictly shorter than those of the 
antecedents. 

PROOF: In each case the antecedent uniquely determines the last rule of its de­
rivation. The proof follows by inspection of the rules. Q 

LEMMA 2.4.7 ( Uniqueness of kinds) If Γ h Γ € A" and Γ h Τ 6 A", then К = 
К'. 

D E F I N I T I O N 2.4.8 (Size) 

1. The size of a type expression T, sizti(T), is defined as follows. 

(a) sizet(X) = 2, 

(b) sizet{S->T) = sizet(VX<S:K.T) = sizet{ST) = sizet(S) + size,(T) + 1, 

(c) sizet{AX:K.T) = sizet(T) + 3, 

(d) sizet{/\K[Γι..ΓΒ]) = 2 + ^<І<Я8 І*{ТІ). 
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2. The homomorphic extension to contexts, sizec(T), is defined as follows. 

(a) sizec($) = 0, 

(b) sizec(T, X < T:K) = sizec(T, x:T) = sizec(T) + sizet(T). 

3. The size of a subtyping, kinding, or ok judgement J, size}(J), is defined as 

follows. 

(a) size3(Y l· ok) = sizec(T) + 1, 

(b) size}(T h Γ £ К) = sizec{T) + sizet(T). 

(c) size}(T h S < Τ) = sizec(T) + sizet(S) + sizet(T). 

L E M M A 2.4.9 (Weü-foundedness of context formation and kinding rules) 

1. For every kinding or ok judgement J, sizc3(ß> l· ok) < size3(J). 

2. If is a kinding rule or a context formation rule, then size3(Ji) < 
и 

size3(J) for each ίζ{1..η} . 

C O R O L L A R Y 2.4.10 

1. For any context Γ it is decidable whether Γ h ок. 

2. For any context Г, type expression T, and kind K, it is decidable whether 

ThTeK. 

PROOF: Lemma 2.4.2 and proposition 2.4.6 imply that context formation rules 
and kinding rules determine an algorithm to check context judgements and kinding 
judgements and lemma 2.4.9 implies that the algorithm terminates. О 

LEMMA 2.4.11 (Type substitution) Let Г, l· Τ £ Κυ. Then 

1. If Г ь X<U:Ku, T2bSe Ks, then Г ь T2[X*-T] h S[X<-T] e Ks. 

2. If Г ь X<U:Ku, Г 2 r- ok, then Г ь Г 2[Х«-Т] Ь ок. 

PROOF: By simultaneous induction on derivations of the premises. The proof of 
part 2 is straightforward using part 1 of the induction hypothesis. We consider 
the details of the proof of 1. The cases K-ARROW, K-ALL, K - O A B S , and K - O A P P 

follow by straightforward application of part 1 of the. induction hypothesis and 
the corresponding rule, while the case of K - M E E T also uses part 2 of the induction 
hypothesis. We examine the case of K-TVAR, where S = Y for some variable Y. 
By proposition 2.4.6(1) Y<TY:KS 6 ( Г ь X<U:KV, Г2) for some Τγ. There are 

three cases to consider. 

Y<TY:KseT1 Then we also have Y<TY:KS e (Γι, Γ2[Χ<-Τ}). By part 

2 of the induction hypothesis, Γι, T2[X*—T] h ok. Apply­

ing K-TVAR, we get Г ь Г2[Л"*-Г] h Y G Ks. 
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Y<TY:KS = X<U:Ku We know that Γ χ h Γ e A's Ξ Κυ. From the premise 

of K-TVAR and part 2 of the induction hypothesis, we 

have Γι, ^[X*— Γ] h ok. The result follows by weakening 

(lemma 2.4.4). 

Y<TY:Kser2 Then we have Y<TY[X<-T):KS € (Γι, T2[X<-T]). By 

part 2 of the induction hypothesis, Гі, Гг[А"<— Τ] h ok, 

from which the result follows by K-TVAR. Π 

L E M M A 2.4.12 (Subject reduction for kinding judgements) If S -»£Λ Τ and Γ h 

SeK, then TbT eK. 

PROOF: In order to prove this result it is enough to prove the following statements 

by simultaneous induction on the derivation of Г H S £ A. The rest follows by 

induction on the definition of -»p^. 

1. Γ H ok and Γ —>βΑ Γ' implies Γ' h ок. 

2. Г h S € К and S ->0A Τ implies Tl· Τ ζ К. 

3. Γ h 5 € Λ: and Γ -»„л Г' implies Τ'l· S e К. О 

In chapter 4 we prove that the subject reduction property also holds for typing 
judgements. 

THEOREM 2.4.13 (Kind invariance under type conversion) If Г h S G К s and 

Г l· Τ e Κτ, with S =0Λ Τ, then Ks = Κτ. 

PROOF: By the Church-Rosser theorem 2.3.1.7, there exists U such that S -*рл U 
and Τ -»дл U, and the result follows by subject reduction and unicity of kinds. • 

LEMMA 2.4.14 Let Г h S} e К for each je{l..m} . Then if for every ¿e{l. .n} 
there exists je{\..m) such that Г h S, < Г,·, then Г Ь hK[Si..Sm] < Ακ[Τν.Τη]. 

A particular case of the previous lemma is the following. 

C O R O L L A R Y 2.4.15 Let Г l· S, e К for each ¿ e { l . . n } . Then Г l· S, < T„ for 

every ¿e{l . .n} , implies Г h Л*[&••£.) < Λ*[ΪΊ..:Γ„]. 

L E M M A 2.4.16 Let Γ h 5, Γ € К. Then Г h 5 < Τ if and only if Γ h Snf < Tnf. 

PROOF: We shall consider only one part the other is similar. 

=>) By subject reduction, we have that Γ l· Sn/&K, then, by S-CONV, Γ h Snf < S. 

By similar reasoning we have Γ l· Τ < Τ . The result follows by applying 

S-TRANS twice. G 

LEMMA 2.4.17 (Context modification) lì Tl l· U' £ К and Σ is either ok or 

Τ e A", then Γχ, X<U:K, T2l·Σ implies Г ь X<U':K, Г 2 h Σ. 
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LEMMA 2.4.18 Let Γ h S, G К for every i€{l..n] . If for every j in {l..m} 
there exists t' in {l. .n} such that Г h S, < T„ then Г h /\,K[Si..Sn] < AK[TI-TJ\. 

PROPOSITION 2.4.19 (Weil-kindedness ofsubtyping) If Г h S < T, then Г h 

S 6 /f and Г h Г £ A- for some К. 

PROOF: By induction on the derivation of Г h 5 < T. 

S-CoNV We are given that Г l· S G К and Г h Τ G Κ' and 5 =„ Г. By 
lemma 2.4.13, К = К'. 

S-TRANS By the induction hypothesis and uniqueness of kinds (lemma 2.4.7). 

S-TVAR. We are given that Г ь X<T:K, Г2 h ok. By K - T V A R it follows that 
Γι, X<T:K, Γ2 h X G Ä\ Moreover, by lemma 2.4.2, we have 
I \ h Τ e A', and by lemma2.4.4, Γ,, X<T:K, Γ 2 h Г 6 /Г. 

S-ARROW We are given Г h Γι < 5i and Γ l· 5 2 < Γ2 and Г h u - ^ e * . 

By proposition 2.4.6, Г h Si,52 G *. Further, by the induction 
hypothesis together with uniqueness of kinds (lemma 2.4.7), we have 
Г l· Γ ι , Γ 2 G *. Finally, the result follows by applying K-ARROW. 

S-ALL We are given that Г, X<U:Ki h S2 < T2 and Г h V(X<U:h\)S2 e 

*. By proposition 2.4.6, Г, X<U:K\ h S2 6 *· Then, applying the 
induction hypothesis and lemma 2.4.7, we obtain Г h Γι G Κι and 

Γ, X<T ':ΑΊ h Γ 2 G *, from which the result follows by applying 

K-ALL. 

S - O A B S By the induction hypothesis and K - O A B S . 

S - O A P P Similar to S-ALL. 

S - M E E T - G Using the induction hypothesis, lemma 2.4.7, and K - M E E T . 

S - M E E T - L B We are given Г h /\κ[Ί\..Τη] G К, which, by proposition 2.4.6, im­

plies Г h Г, G К for each i. О 

P R O P O S I T I O N 2.4.20 (Well-kindedness of typing) If Г r- e G Г, then Г г- Г G *. 

PROOF: By induction on the derivation of Г l· e G Г. 

Τ-VAR We are given Γι, χ :Γ, Г 2 h ok. The result follows by lemma 2.4.2 and 
lemma 2.4.4. 

T - A B S We are given Γ, χ:Γι h e G Г2. By the induction hypothesis, Г, x:Ti h 

Г2 G *. By lemma 2.4.5, it follows that Г h Г2 G +. Furthermore, 

by lemmas 2.4.1 and 2.4.2, Γ Ι- Γι G *. Hence, К-ARROW yields Г h 

Γι->Γ 2 G *. 

Τ-A PP By the induction hypothesis for Γ h ƒ G T\—*T and proposition 2.4.6. 
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T - T A B S We are given Γ, Χ<Τλ:Κ\ h e € T2. By the induction hypothesis, 
Г, Χ<Τλ:Κλ h Г2 e *. We obtain Г h У{Х<Т^.Кх)Тг e * by apply­
ing K-ALL . 

Τ - T A P P We know that Γ h ƒ e 4(Χ<Τϊ.Κι)Τ2 and also Γ h S < Γ,. By the 
induction hypothesis, Γ h (Л'<Ті:А_і)Т2 € * and, by proposition 2.4.6, 
Г, X<Ti:Ki h T2 e *. By lemmas 2.4.1 and 2.4.2, there exists a deriv­
ation of Γ h Τι G K\. By the well-kindedness of subtyping (proposition 
2.4.19) and uniqueness of kinds (lemma 2.4.7), we have Γ l·- S € ΚΊ. 
Then, by the type substitution lemma (lemma2.4.11), Γ h Τ2[Χ<— 5] e *. 

T-FoR By the induction hypothesis. 

T - M E E T We are given that Γ h ok and that Γ h e e Τ, for each i. We have to 
consider two cases. 

η — 0. Applying K - M E E T to Γ Η ok we obtain Γ h Τ* e +. 

η ^ 0. By the induction hypothesis, Γ h Γ, ε + for every г and, then the 

result follows by applying K - M E E T . 

T - S U B By the induction hypothesis, proposition 2.4.19 and lemma 2.4.7. О 

2.5 Strong normalization of —*βΑ 

We prove that every type that has a kind in F" is strongly normalizing in three 

steps. We first prove that —•„ and also —>^л- are strongly normalizing. Then we 
prove that both reductions commute, i.e. if Τ —*a Τχ and T\ —*0K- T2, then there 

exists S such that 5 —•„ Î2 and Τ -*»^л-
>0 ¿'(in at least one step). Finally, using 

the previous two steps we prove that —*β\ is strongly normalizing. 

A type Τ is called strongly normalizing if and only if all reduction sequences start­

ing with Τ terminate. We write Τ for the set of all type expressions and SN for 

the subset of Τ of strongly normalizing type expressions. If A and В are subsets 
of T, then А—* В denotes the following subset of Τ 

Л - > В = {F С T | for all aÇAFaeB}. 

LEMMA 2.5.1 —>„ is strongly normalizing. 

PROOF: By induction on the number of intersection symbols of the type expression 
being reduced. D 

To prove strong normalization of —*βΑ- we use a model-theoretic argument 
interpreting kinds as sets of normalizing terms, and the soundness of the model 
gives, as a corollary, the strong normalization property. The interpretation of a 
kind K, notation \K\, is defined as follows. 

[+1 = SN 

\KX-*K2\ = [ffi]->[*,]. 
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DEFINITION 2.5.2 (Saturated set) S С SN is saturated if is satisfies the following 
conditions: 

1. If Ri..Rn £ SN, then XR.-.Rr, G S. 

2. If Äi..Än,Qe SN, then 

(a) if PiXi-QjR^.Rn e S, then {\X:K.P)QRl..Rn e S, for every К and 

(b) if (Л* а РіС, -, TnQ])Ru ... Д „ 6 5 , 
then ( Л * 1 - , * а Р і , .., Т т])СЯі, ., « „ e S , for every ^ . 

Intuitively, a set of strongly normalizing type expressions is saturated if it contains 
all type variables and is closed under expansion of expressions which may have a 
kind of the form ΚΊ—»Ä"2. 

LEMMA 2.5.3 

1. SN is saturated. 

2. If А, В are saturated, then A —> В is saturated. 

3. For any kind K, \K\ is saturated. 

DEFINITION 2.5.4 

1. A valuation ρ in Tis a mapping from type variables to types. 

2. The interpretation of a type with respect to ρ is 

Ρ Ί , = T[Xi «- р(Хг)..Хп «- p(Xn), 

where FV(r) = {Χχ..Χη}. 

3. Let /s be a valuation in T. Then ρ satisfies Τ € К, written ρ ^= Τ £ К, il 
Ρ Ί , € Ι^Ί a n d Ρ satisfies Χ<Τ:Κ, written /j |= X<T:K, ii p(X) G ¡KJ. We 
say that ρ satisfies a context Γ, ρ (= Γ, if ρ [= Χ < 5:/^ for all X < S:/f £ Г. 

4. A context Г satisfies Τ G К, written Γ ^= Τ £ К, if for every ρ such that 
ρ |= Γ, it follows that ρ \= Τ G К. 

LEMMA 2.5.5 

1. ткеЩ. 

2. If Ai€[K] for each te{l..n} , then /\κ[Αι..Αη]ε[Κ]. 

P R O O F : 

1. By induction on the structure of K. 



2.5. STRONG NORMALIZATION OF -*0A 
39 

A = + Τ* is in normal form. Hence, T*eSN = \K\. 

К = Κχ-^Ki By the induction hypothesis, ТКг€[A2J. Moreover, if B e [A,] 
then TK*~*K2BÇ.IK2I, by the saturation of [A2J, which means 
that τ * ^ * 2 6 [ [ Α ι — A 2 j | . 

2. By induction on the structure of K. 

К =-k Then, by definition of [A] , A.eSN for each ¿e{l. .n} . Since 

every reduction starting from Λ Иі. .Л„] is a reduction con­

sisting only of steps inside the A,'s, one has Д [A\..An]£SN = 

[Al-

Κ Ξ Кі->Кг Let β £ [ Α Ί ] . By the definition of -•, А,Ве|А"2]], for each 
t"6{l..n} . By the induction hypothesis, f\K2[AxB..AnB)ç.{K2\. 
Moreover, ^^^[А^.А^ВфЪ] by the saturation of [A"2J, 
which means that !\Кі~Кг[А1..Ап]€ІКх-4Кг\. • 

P R O P O S I T I O N 2.5.6 (Soundness) If Γ Ι- Г e A, then T\=T e K. 

PROOF: By induction on the derivation of Г h Г 6 A". 
We consider the case for K - M E E T . The other cases follow by similar reasoning. 

Let Τ = /\κ[Τι..Τη]. We have to consider two cases. 

η ^ 0 We are given Γ Ь Γ, £ A for each ¿e{l . .n} , and, by the induction hypo­

thesis, Г \= T, e A. Let ρ be a valuation such that ρ \= Γ. Then [Г.^еІК*], 

for each ¿e{l . .n} . By lemma 2.5.5(2), ΛΧ[[ΤΊ],..[Τ»1 ρ]6[ίί]. 

n = 0 T = TK. Since [Τ* ! , , Ξ Τ * , the result follows by 2.5.5(1). Ρ 

THEOREM 2.5.7 (Strong normalization for -*βΛ-) Г h Г e A" implies that every 

(/3A~)-reduction sequence starting from Τ is finite. 

PROOF: By soundness, Τ \= Τ € K. Choose po such that po(X) = X- Observe 
that p0 (= Γ trivially. Hence Γ = [Т]]^ e [AT] Ç SN. О 

LEMMA 2.5.8 If Τ —>„ Γι and Γι -*0Λ- Γ2, then there exists 5 such that 

Τ -»βΛ-
>0 S and 5 —>„ Γ 2. 

PROOF: By induction on the structure of Г. О 

C O R O L L A R Y 2.5.9 If Τ -»„ Γι and Γι - » ί Λ - Γ2, then there exists 5 such that 

Г -»/зл-5,0 •? a n d 5 -»α Γ2. 

PROOF: By induction on the generation of Г -»»„ Г г . О 

Finally, we can prove strong normalization for —»-/м-

THEOREM 2.5.10 (Strong normalization for —>/?Λ) Γ h Γ e A' implies that every 

(/3A)-reduction sequence starting from Γ is finite. 
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PROOF: Let Γ I- Τ 6 К. We reason by contradiction. Assume that there is an 
infinite /M-reduction sequence starting from T. Then lemma 2.5.1 and theorem 
2.5.7 imply that there are infinitely many alternations of 
sequences. Graphically: 

Τ •• T j 

and */Зл- reduction 

βΛ~ 

-- i 3 

ßlK-

τ4 

By corollary 2.5.9, we can construct an infinite (ßA )-reduction which contradicts 
theorem 2.5.7. Graphically: 

D 



Chapter 3 

Decidability of Subtyping in F/( 

In this chapter we show that the subtyping relation of F% is decidable. The solu­

tion is divided into two main parts. First, we develop a normal subtyping system, 

NF", in which only types in normal form are considered. We prove that proofs 

in NF" can be normalized by eliminating transitivity and simplifying reflexivity. 

This simplification yields an algorithmic presentation, AlgF", whose rules are syn­

tax directed. Moreover, we prove that AlgF" is indeed an alternative presentation 

of the F% subtyping relation. Formally, Γ l· S < Τ if and only if Γ η / \-Mg Sn/ < Tn/ 

(proposition 3.4.3). 

In the solution for the second order lambda calculus presented in [Pie91], the 

distributivity rules for intersection types are not considered as rewrite rules. For 

that reason, new syntactic categories have to be defined (composite and individual 

canonical types) and an auxiliary mapping (flattening) transforms a type into a 

canonical type. Our solution does not need either new syntactic categories or 

elaborate auxiliary mappings, since the role played there by canonical types is 

performed here by types in normal form. 

Independently Steffen and Pierce proved a similar result for F< [SP94]. There 

are several differences between our work and the proof of decidability of subtyping 

in [SP94]. First, our result is for a stronger system which also includes intersection 

types. Our proof of termination has the novel idea of using a choice operator to 

model the behavior of type variables during subtype checking. A second major 

difference is the choice of the intermediate subtyping system. We define the normal 

system NF% which is not only the key to proving decidability of subtyping but 

helped understand the fine structure of subtyping, yielding the algorithm AlgF". 

In [SP94] the intermediate system, called a reducing system, leads to a much 

more complicated proof which involves dealing with several notions of reduction 

and further reformulation of the intermediate system. 

41 
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3.1 Normal Subtyping 

An important property of derivation systems is the information that a derivable 
judgement contains about its proofs. This information is essential to produce 
results which not only state properties about the subproofs, but also help identify 
ill formed judgements. 

In F" we can prove 

W:K,X < AY:K.Y:K-*K, Ζ < X:K^K h X(ZW) < W (3.1) 

This simple example already shows that S-TRANS erases information obtained 

by S-CONV that is not present in the conclusion any longer (see 3.3.2 for a de­

rivation). A first step towards an algorithm to check the subtyping relation is to 

design a set of rules in which the derivable judgements contain all the informa­

tion about their derivations. To this end we define a set of rules, NF", in which 

conversion is reduced to a minimum and, as we show in lemma 3.2.6, transitivity 

can be eliminated. Both results are proved with a standard cut-elimination argu­

ment. This yields a syntax directed subtyping relation, AlgF", which constitutes 

a decision procedure for the original system. 

In section 3.1, we present the subtyping system NF", which uses the context 

and type formation rules of F". We define rewriting rules for derivations in NF" 

(definitions 3.2.3 and 3.2.4), and describe a terminating procedure to normalize 

proofs, which gives, as a consequence, the generation for subtyping (proposition 

3.2.10) and an algorithmic presentation, AlgF" (see definition 3.4.1). 

Finally, in section 3.4, we show that there is an equivalence between subtyping 

in F " and subtyping in AlgF", which is essential to prove the decidability of 

subtyping in F". 

We now define the normal subtyping system, NF". Subtyping statements in 

NF" are written Γ h„ S < Τ, and S, Τ, and all types appearing in Γ are in 

/ЗЛ-normal form. 

NOTATION 3.1.1 A, B, and С range over types whose outermost constructor is 

not an intersection. 

REMARK 3.1.2 It is an immediate consequence of the /ЗЛ reduction rules that, 
if Τ is in ßf\ normal form, then Τ is either a variable X, S—*A, WX<S:K.A, 

AX:K.A, AS where A is not an abstraction, or Λ [-^Ι·-^Γ»]· We frequently use 

this notation as a reminder of the shape of types in normal form. Note that we do 

not fully use this convention in definition 3.1.4 in order to highlight the fact that 

N S - A R R O W , N S - A L L , and N S - O A B S have the same form as S-ARROW, S-ALL, and 

S - O A B S respectively. 

We now define lubr(S). We prove in lemma 3.3.1 and corollary 3.3.1.2, that, 

when defined, it is the smallest type beyond S with respect to Г. 

DEFINITION 3.1.3 (Least strict Upper Bound) 

lubr(X) = T(X), 

Mr{TS) = lubr{T)S. 
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DEFINITION 3.1.4 ( N F " subtyping rules) 

Tl· S £ К 

г К, 

τ К 

τ к 
s <т 

Г К, 

,s <s 
Г К, 

s < и 
, ЦХ) < А 

,т<и 

X ¿А 
Tl·nX <А 

гl·nτl<s, г к, s2 < г2 τl·sλ->s2e* 
Г l·» s\^s2 < т^т2 

г, χ<и-.к к, s < τ гl·чx<u•.κ.sε* 
Г h„ VX<U:K.S < 4X<U:K.T 

T,X<Tκ•.Kl·nS <т 

Г h„ AX-.K.S < KX-.K.T 

Tl·n{iubг{TS))Ά/<A τl·TSçK TS φ A 

v¿e{ 

ге{1. 

Tl·nTS <А 

•m}Tl·nA<Tl Tl· Α ζ К 

ΓΚ,Λ<Λ*[ϊν.:Γ,η] 

Зіе{1..п}ГІ-„5, < А Чk6{l..n}rl·Sk 

l..m}3je{l. 

Γ hn A
K[Sl..Sn] < А 

e κ 

.n}Tl·nSJ<T, Vkζ{l..n}Tl·Sk e κ 
Г К , Л * [ £ і . . £ , ] < Л к [ Г , . . Г т ] 

( N S - R E F L ) 

( N S - T R A N S ) 

( N S - T V A R ) 

( N S - A R R O W ) 

( N S - A L L ) 

( N S - O A H S ) 

( N S - O A P P ) 

(NS-V) 

(NS-3) 

(NS-V3) 

As we mentioned in the introduction, an important factor to develop this 
system was to consider the distributivity rules of the presentation of F" in [CP93] 
as reduction rules instead of subtyping rules. This new point of view suggested 
that an algorithmic system should, to a certain extent, concentrate on normal 
forms replacing the conversion rule by reflexivity. Consequently, a derivation of a 
subtyping statement should involve only types in normal form. But enlightened 
by the simple (counter)example (3.1) it is not possible to perform all reductions 
at once. In other words, the system does not satisfy an S-CONV postponement 
property. Without using S-CONV it is not possible to derive (3.1). Hence, the 
solution is not as simple as replacing S-CONV by N S - R E F L . 

In general, the interaction between S-TRANS and S-CONV can be analyzed 
as follows. In S-TRANS the metavariable Τ of the hypothesis is not present in 

the conclusion, but this is not a problem by itself (a similar situation appears 

in the simply typed lambda calculus in its application rule and the system is 

deterministic). The problem is that in the presence of S-CONV the vanishing Τ 

can be θΛ-convertible to either S or U or to both S and U. What example (3.1) 

shows is that S and U may be different normal forms, which means that searching 

for Τ is inherently nondeterministic. 
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We cannot eliminate transitivity completely, we still need it on type variables 
and on type applications. In F< [Ghe90] transitivity is eliminated and hidden in a 
richer variable rule in which deciding whether Γ h Χ < Τ when Τ φ Χ is reduced 
to deciding whether the bound of X is smaller than or equal to T. The bound of 
X has the particular property of being the least strict upper bound of X. This 
observation motivated the definition of our N S - O A P P rule, in which we reduce the 
decision of whether Γ h Τ S < A when Α ψ. Τ S, to check if the least strict upper 
bound of Γ 5 is smaller than or equal to A (See lemma 3.3.1 and corollary 3.3.1.2). 
lubjr(T S) is obtained from Τ S by replacing its leftmost innermost variable by the 
corresponding bound in Γ. Consequently, lubr(T S) may be other than a normal 
form. That is the reason we normalize it. The strength of the conversion rule that 
is not captured by reflexivity is hidden in this normalization step. Since Τ S is a 
well kinded type, by the free variables lemma (lemma 2.4.3), FTV(T S) Ç dom(T). 
Therefore, lubr(T S) is defined. By lemma 3.3.1(1), lubr(T S) is well-kinded, and 
since well-kinded types are strongly normalizing, its normal form exists. The rules 
S - M E E T - L B and S - M E E T - G are replaced by NS-3, NS-V, and NS-V3. 

3.2 Structural propert ies of NF" 

This section establishes a number of structural properties of NF". The proofs of 
lemmas 3.2.1 and 3.2.2 are similar to those of the corresponding properties for F". 

LEMMA 3.2.1 If Γ h„ S < Τ and Γι is a prefix of Γ, then Г г h ok as a subderiv-
ation. Moreover, the subderivation is strictly shorter. 

LEMMA 3.2.2 (Weakening/Permutation) Let Г and Г' be contexts such that Г Ç 
Г' and Г' h ok. Then Г r-n S < Τ implies Γ' h n S < T. 

We present rewriting rules on derivations to simplify instances of N S - R E F L 
and N S - T R A N S . We give a terminating strategy to transform a given derivation 
into a derivation with occurrences of N S - R E F L only applied to type variables or 
type applications and without occurrences of N S - T R A N S . To improve readability 
we omit kinding judgements in the transitivity elimination rules which appear as 
hypothesis in the redex or in a proper subderivation of the missing ones, as we 
proved in generation for kinding (proposition 2.4.6). The derivations of the kinding 
judgements of each reduct of the reflexivity rules are proper subderivations of the 
kinding judgements in its redex. 

DEFINITION 3.2.3 (Reflexivity simpliñcation rules) 

I r h S - > A e * 
1. NS-REFL 

Γ h„ S-+A < S->A 

r h i e * 

ΓΚ, s <s 
г κ, 

NS-REFL 
гь ле* 

Г К, А < А 

S - Л < S-+A 

NS-REFL 

— NS-ARBOW 
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2. 
Γ h VX<S:K.A e * 

Γ h„ 1X<S:K.A < 4X<S:K.A 
NS-REFL 

Γ, X<S:Kl· A € * 

T^KS-.KhnA < A 
- NS-REFL 

Γ hn 4X<S:K.A < VX<S:K.A 
• NS-ALL 

г h KX-.K.A e κ->κ' 

Γ hn KX-.K.A < KX-.K.A 
• NS-REFL 

=>R 

Г, X-.K l· AeK' 

Г, X-.K \-nA<A 
• NS-REFL 

Г К KX-.K.A < KX-.K.A 
• NS-OABS 

4. 
г к 

г ι- л'Иі 

A*[¿i .Λ„ 

•Λ.] e # 

< Λκ[Αι. •Λ] 
NS-REFL 

=>я г к 
Г I-Л, 

А, 

г h„ л* μ 

<А 

-Ап 

e А" 

гб{1 

1<Л* 

..п} 

[Аг. 

NS-

•Ап] 

REFL 

NS-va 

DEFINITION 3.2.4 (Transitivity elimination rules) 

ThS SK 

r \-n S < 5 

r h n 

-REFL 

5 < T 

5 < T 
NS-TRANS 

=>T Г h, 5 < τ 

2. Γ h, 

г ь т е А: 
S < Г τ к τ<т 

TKS <т 

NS-REFL 

NS-TRANS 
=>т Г hn S < Τ 

Τ К 

Tl· 

T(X) < А 

пХ<А 

гнп 

NS-TVAR 

X < В 

г К, А <В 
NS-TRANS 

=>т 

гь„ г(л:)< A Tl·» А <в 

Г Ь„ Т(Х) < в 

Г І - Д < 5 

NS-TRANS 
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Γ Κ Τ < S 

Γ Η η 5 ^ 

г к, 
Α<Ί 

Α< В 

->Β 

Γ К 

Г.'S-ARROW 

Г h„ U < Τ 

гі-.т-» 
S->A< U^C 

г к. 
в <u 

B<C 

^c 
NS-ARROW 

— NS-TRANS 

=>T 

г к [Г < T 

г к, 
ri-„ 

и <s 
τ <s 

ΓΚ, 

Γ К 

5->Л < U-+C 

A< В 

Г h . 

Γ h„ в < с 

А<С 
NS-TRANS 

— NS-ARROW 

гь„ 
T^^S-.Kl·» A<B 

VX<S:K.A < VX<S:K.B 

Γ, X<S:K h n В <C 

Γ h„ VX<S:K.B < 4X<S:K.C 

Г h„ 4X<S:K.A < VX<S:K.C 

NS-ALL 

=>T 

r, X<5:A- h r 

Г, 

A<BT, 

X^S-.Kl·, 

X<S:Khn В <C 

A<C 

Г h„ 4X<S:K.A < VX<U:K.C 

NS-TRANS 

6. 

Τ,ΧιΚΚ A<B 

Γ h„ AX-.K.A < AX-.K.B 

гк. 

Γ, X:K К В <C 

Г h„ AX-.K.B < AX-.K.C 

AX-.K.A < AX-.K.C 

NS-OABS 

— NS-TRANS 

=*T 

r, X:K\-n 

Г 

г К 

А<В Г 

*:ЛП-„ 

,Х:КК 

А<С 

В <С 

ЛХ:А'.Л < AX-.K.C 

NS-TRANS 

7. 

Г h n /ufer(A S)" ' < В 

Thn AS < В 

Tl·»AS<С 

г h. в<с 
NS-TRANS 

Г К, (Íu6r(i4 S))nf <В Г (-„ В < С 

ГЬ п Ы>г(А£)) п / <С 

Г К A S < С 

• NS-TRANS 

• N S - O A P P 

v¿e{i ..η} 

А < 

Г h , А < А, 
— NS-V 
АК[А,..Ап] 

Зіе{і 

г К, 
Т\-пА< В 

..η} Г h„ А 

Л*[А,..ІІ.] < я 
NS-3 

— NS-TRANS 

3je{l..n} Г hn Л < A, Г hn Л,- < В 
• NS-TRANS 
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9. ΓΚ. Л< В 

Г К 

іб{ 

Г h, 

л< 

..η) Γ Ь„ В < Α, 

« < Λ Κ Μ , Μη] 

Л"[/1і-И„] 

NS-V 

Ι KANS 

» 6 { 1 ..η] Г h 

V i e { i . . 

гь„ 

. л < в 

η} Г h„ 

и < Л л 

Г h„ В < л. 

л < л, 

[ И , . . / І „ ] 

NS 1 KANS 

- NS-V 

10. 

3je{ 

г h. 

..η} г h 

Лк[л,.. 

Γ Κ 

η /1 

/1„] 
NS-3 

< В Г 

ЛкИ,..и„ <л 
К в < л 

NS 1 HANS 

=>т 

3j6{l..Ti} Г К„ А, < В Г h n в < л 

3je{i..n} гь„ л, < л 

ГЬпА
к[Л1..Ап]<А 

NS- IRANS 

• NS-Э 

11. 

3je{i 

гн„ 

..m) Г h„ 

Λ*Η.··Λ 

г h, 

А,<А 

т]<А 

лки,. 

NS Э 

An] 

гб{ 

<ЛК[ 

Ι ..η} Γ К 

л < Л к 

в, ..д.] 

Λ < tí, 

ö,..ö„] 
NS-V 

— NS f l lANS 

=>т 

3j6{l ..τη} Г 

Vie{i. 

rh 

K A, < A 

.n}3je{i.. 

η/\Κ[Αι..Α 

v»e{i.. 

m} Г Ь П 

т ] < Л К 

га} 

Л 
[ö. 

' К 

<в 
:ВП 

А < В, 
N S Ί RANS 

12. 

Vte{i 

г К 

•ra}3je {\..т} Т\-

•Л-]< Л" 

г к, 

η >l j 

Л* 
•в»] 

[Л...Л 

Vfce{i 

г h. 

.г}3іб{1. 

ί\Κ[Βχ..Βη 

и]<Л*[с...с г] 

η) Fl· 

л* 
, я. 

[С, •CV] 
NS-V3 

- NS-l »ANS 

=>т 

Vifce{i..r} 3te{i..n} 3je{i..m} г h„ л, < в, 

VAe{l..r}3je{l..m}ri-T1HJ <ck 

гн,,л'гИі..>іт]<л,г[Сі..с,г] 

г ь„ tí, < C't 

13. 

Vie{i 

Γ Η . 

.n}3je 

Λ* μ. 

{l..m} 

../lm] < 

г к, л, 

Лк[й,· 

г к. л 

ön] 

*[и, 

з»е{ 
NS-V3 

Г К, 

•Лт] <с 

..η) F н„ я, 

..«„] < С ' 
NS э 

- NS KANS 

3je{i ..m} Зге{1. .7 і} Г h n Л, < Вг Г h„ В, < С 

3j6{l-m} Г h„ Лл <С 

гн„л"[и,..л т ]<с 

1 HANS 
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14. 

v¿e{i..n} г hn л < B¡ vfce{i..r} 3¿e{i..n} rhnBt^ ct 
NS-V NS-V3 

Г К A < /\K[B,..Bn] Г h n ί\κ[Βλ..Βη] < ^[C.Cr] 
NS-TRANS 

ThnA<AK[Cl..Cr] 

=>T 

Vifce{i. .r}3i S{l..n} 

Vfc6{l. 

r h 

Γ h n A < Ö, 

.г} Γ h„ A < Ct 

» A < ffiC^Cr 

гн„ в, <ck NS-TRANS 

A derivation of a subtyping statement is in refl-normal form if it has no re-
flexivity redexes and it is in trans-normal form if it has no transitivity redexes, 
and it is in normal form if it has neither reflexivity nor transitivity redexes. The 
elimination of N S - T R A N S , and the simplification of N S - R E F L follow a standard 
cut-elimination argument. 

LEMMA 3.2.5 (Reñexivity simplifìcation) Let Ζ) be a derivation of a subtyping 

statement with only one application of N S - R E F L . Then D has a refl-normal form. 

P R O O F : Same argument as in lemma 3.2.6. • 

L E M M A 3.2.6 (Transitivity elimination) Let D be a derivation of a subtyping 

statement with only one application of N S - T R A N S . Then D has a trans-normal 

form. 

PROOF: By induction on the size of D following a case analysis of the last rule 

of D. If the last rule is not N S - T R A N S , then the result follows by the induction 

hypothesis. Otherwise we consider all possible last rules of the derivations of 

the premises and note that each possible configuration determines a trans-redex. 

Finally, observe that each reduction yields either a derivation in normal form or 

shorter derivations with only one occurrence of NS-TRANS in which case the result 

follows by the induction hypothesis. • 

An immediate corollary of this last result is that transitivity elimination ter­

minates. Given a derivation D of Γ h n S < Τ, iterate the previous lemma on all 

subderivations of D that have only one NS-TRANS application. The number of 

times the lemma is applied is equal to the number of occurrences of N S - T R A N S 

in D. Furthermore, lemma 3.2.5 implies that reflexivity simplification terminates. 

The simplification rules are such that transitivity simplification rules do not create 

new reflexivity redexes. Therefore, we can reduce all instances of N S - R E F L first 

and then all instances of N S - T R A N S , which is a terminating procedure to normalize 

a derivation. Consequently, we have proved the following corollary. 

COROLLARY 3.2.7 (Existence of normal derivations) Given a derivation of Γ h n 

S <T. Then there exists a derivation in normal form of Γ h n S < T. 

L E M M A 3.2.8 
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1. A derivation in normal form whose last rule is N S - R E F L is either a proof of 

TbnX<X отГЬп AT < AT. 

2. If the last rule of a subtyping derivation D is N S - T R A N S , then D is not in 

normal form. 

P R O O F : 

1. According to the reflexivity elimination rules, any other possible N S - R E F L 

application is a redex. 

2. By case analysis of the last rules of the premises of the last rule of D. In 
each case the result follows either by the induction hypothesis or because the 
last rule of at least one of the derivations of the premises of D constitutes a 
redex. Ü 

We can summarise the previous results as follows. 

COROLLARY 3.2.9 If Г b n S < Τ, then there exists a proof of the same judge­

ment with no applications of NS-TRANS and in which N S - R E F L is only applied to 

type variables and type applications. 

A consequence of the normalization of proofs is the following generation result. 

PROPOSITION 3.2.10 (Generation for normal subtyping) 

1. Γ h , Χ < В implies Χ Ξ Β and Γ h Χ Ε Κ for some Κ, or Г h n T{X) < В. 

2. Г h n 5->Л < В implies В = Г-+С, Г Ь п Г < S, Г (-„ А < С, and 

Г h S->A G *. 

3. Г h n VX<S:K.A < В implies В = VX<S:K.C, Г, X<S:K h n A < C, and 
Г l· 4X<S:K.A € • . 

4. Г h n AX-.K.A < В implies Β Ξ AX:K.C and Γ, X<TK:K h n A < C. 

5. Γ h n A S < В implies В = A S, or Г h n {lubr( A S))n/ < B, and Г h A S € К. 

6· Г h n Л [Лі. .Л т ] < В implies that there exists jG{l. .m} such that Г h„ 

A, < В and V£e{l . .m} Г h Ak € К. 

7. Г h n A < hK[Bi..Bn] implies that for each ¿e{l. .n} Г l·» A < B, and 

г h A e к. 

8. Г h n /\K[Ai..Am] < f\K[B\..Bn) implies that for each г'е{1..п} there exists 
je{l..m) such that Г Н П Л , < В, and Vfce{l..m} Г l· Ak e К. 

Moreover, given a normal proof of any of the antecedents, the proofs of the con­

sequents are proper subderivations. 
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PROOF: In each case, given a proof of the antecedent, there is also a proof in 
normal form. Due to lemma 3.2.8(2), such a derivation cannot end with an ap­
plication of N S - T R A N S , and, because of lemma 3.2.8(1), if it ends with N S - R E F L , 
then it is a derivation of a subtyping statement between type variables or type 
applications. Finally, the result follows by inspection of the other rules. ü 

L E M M A 3.2.11 

1. Γ h n Τ < /\K[Ai..An] if and only if Γ h„ Γ < Ak for each fce{l..n} . 

2. Γ Κ Τ < ^[A^.An] if and only if Г h„ Τ < AK[Ak] for each ks{l..n} . 

3. Let Г Ь hK[Ai..An] e К. Then Г r-n Λ ^ Α ι - Λ ] < Τ if and only if 
Г К Ak < Τ for some k£ {l..n} . 

PROOF: By induction on derivations, using lemma 3.2.7 and generation. О 

3.3 Equivalence of ordinary and normal subtyp­
ing 

In this section, we show that a subtyping statement is derivable in F" if and only 
if the corresponding normalized statement is derivable in NF". This equivalence 
is proved in theorem 3.3.9. As usual, wc need some auxiliary properties and 
definitions, among which we can highlight propositions 3.3.2 and 3.3.8. 

LEMMA 3.3.1 Let lubr{S) be defined. Then 

1. Γ 1- S e К implies Г h lubr{S) € К. 

2. Г h S < hbr(S). 

PROOF: Item 1 follows by induction on derivations, while item 2 follows by in­
duction on the structure of S. Ü 

PROPOSITION 3.3.2 (Soundness) If Г h n S < Г, then Г h S < T. 

PROOF: By induction on the derivation of Г h n S < T. 

N S - R E F L By S-CONV. 

N S - T V A R By the induction hypothesis, S-TVAR and ¡Э-TRANS. 

N S - O A P P By the induction hypothesis, lemma 3.3.1(2), S-CONV and S-TRANS. 

NS-3 We are given that for each к in {l..n} Г h Ak £ A', and there is a j 

in {l. .n} such that Г h„ Л, < B. By K - M E E T , Г h Λ*[Λι··Λη] e К, 
and, by S - M E E T - L B Г h Λ [Λι··Λη] < Ak for each к, in particular for 
j . Hence the result follows by the induction hypothesis and S-TRANS. 
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NS-V We are given that Γ l· A € Ä", and for each t' in {l . .m} Γ h n A < B,. 

Hence the result follows by the induction hypothesis and S - M E E T - G . 

NS-V3 We are given that for each к in {l..n} Г h A\¡ G К, and for each i in 
{l..m} there is a j in {l..n} such that Г h n A3 < Bt. By K - M E E T , 

Г I- AK[A1..An] G K, and, by S - M E E T - L B , Г h Л К [А г . .Л п ] < Ak for 

each k. Hence the result follows by the induction hypothesis, S-TRANS 

and S - M E E T - G . 

Other cases By the induction hypothesis and the corresponding rule in the other 

system. Π 

The following lemma says that empty intersections, Τ , are maximal elements 

of the subtyping order. 

L E M M A 3.3.3 

1. Γ h Γ € Λ: implies Г h n Τ < Τκ. 

2. Γ h Γ G Κ implies Г h Г < Τ * . 

PROOF: Statement 1 follows by the cases m = 0 in NS-V and NS-V3. Statement 

2 is the case η = 0 in S - M E E T - G . Ü 

L E M M A 3.3.4 

1. Γ h ok implies Γ η / h ok. 

2. Γ h Τ £ К implies Γ η / h Τ e К. 

3. Г Ь 5 < Г implies Г 1 ' h S < T. 

4. Let Г ь Г 2 h ок. Then Г^, Г 2 г- Τ G К implies Г ь Г2 г- Τ e tf. 

5. Let Г ь Г2 h ok. Then Г?, Г 2 h S < Τ implies Г ь Г 2 h S < T. 

6. Let Г h 5, Г e К. Then Γη / h 5 n / < Г в / if and only if Г h S < T. 

PROOF: Statements 1 and 2 follow by simultaneous induction on the size of de­
rivations using lemma 2.4.17. Statement 3 follows by induction on the derivation 
of Г h S < Τ using part 1, part 2, and lemma 2.4.17. Statement 4 follows by 

induction on the derivation of Γ" , Γ2 h Τ G К. Item 5 follows by induction on 
the derivation of I j , Г 2 h S < Τ, using part 4. Item 6 is a corollary of part 3, 

part 5 and lemma 2.4.16. • 

In the last lemma, items 1, 2, and 3 show that well formation of contexts, 

kinding judgements, and subtyping judgements are invariant under normalization 

of contexts, while items 4 and 5 are the converse of 2 and 3 respectively. 

The following lemma states that S-TVAR is an admissible rule in NF%. 
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LEMMA 3.3.5 Let Γ be a context in normal form such that Γ h ok and KGdom(r). 

Then r h j < Γ(Υ). 

PROOF: Let Γ = Г ь Y < T:K, Г 2 . By lemma 2.4.2, Г г h Г e К. If Г is 
not an intersection, then, by N S - R E F L and N S - T V A R , we have Г h„ Y < T. If 
Τ = Λ [Bi..Bm], then by generation for kinding and unicity of kinds, Γ h В, Ç. К 
for each г and К = К'. By N S - R E F L , Г h n В, < В, for each i. Then, by NS-3 and 
N S - T V A R , it follows that Г h , Y < В, for each г', and, by NS-V, Г h n Y < T. a 

LEMMA 3.3.6 (Substitution) If Г h U Ε К and Г, X:K, Г' h„ S < Τ, then 

Γ, {T'[X<-U])nf h„ ( ^ « - l / ] ) " ' < (Г[Х<-1/])в /. 

PROOF: By induction on the derivation of Γ, X:K, Γ' l~n S < T. For the sake of 

clarity, we sometimes leave out kinding judgements and their justifications which 

follow easily from the structural properties in section 2.4. Let Γ" = Γ, X:K, Γ'. 

N S - R E F L By the type substitution lemma 2.4.11, lemma 3.3.4(2), subject re­

duction for kinds (lemma 2.4.12), and N S - R E F L . 

N S - T R A N S By the induction hypothesis and N S - T R A N S . 

N S - T V A R We are given Γ" h„ Г"(У) < A. We have to consider three cases. 

1. Y = X. By subject reduction, Γ h {ƒ"' £ К, and by lemma 
3.3.3(1), it follows that Г h n f/n/ < TK. By weakening, it follows 
that Г, {Y'[X<r-U)Y' l-n Unf < TK and, by the induction hypo­
thesis, it follows that Г, (r ' [X<-t/]) n / h n TK < {A[X<-U])nf. 
Finally, the result follows by N S - T R A N S . 

2. F e d o m ( r ) . By the free variables lemma, X & FV(I\Y)) and 
Χ φ Y. By lemmas 2.4.11, 3.3.4(1), and 3.3.5, it follows that 

Γ, (Γ'[Χ+-υ])η^η Y < Г(У), and, by the induction hypothesis, 
it follows that Г, (Г'[Л:<-//])П/ h n Γ(Υ) < [A{X^U\)n¡. Finally, 
the result follows by NS-TRANS. 

3. Kedom(r ' ) . By the induction hypothesis, it follows that 

Γ, (Γ'[Χ+-υ])"^η (Γ'{Υ)[Χ<-υ])ηί < (A[X<-U])nf. 

By lemmas 2.4.11, 3.3.4(1), and 3.3.5, 

Γ, ( Γ ' [ * ^ ί / ] ) η / Ι - η Y < (Γ, (T'[X^U])nJ)(Y). 

Furthermore, (Γ, (T'[X<-U])nf)(Y) = {Γ'{Y)[X<-υ])'',. Hence 

the result follows by N S - T R A N S . 

N S - A R R O W We are given that Γ" h n 7\ < 5Ί and Γ" h n S2 < T 2. By the induc­

tion hypothesis, it follows that Γ, (Γ'[Χ<-ί/])η / h n (Ti[X*-U})nf < 

(5,[A:^i/]) n / and Γ, (r'[X<-U])nf h n {S2[X^U])nf < {T2[X<-U\)nf. 

There are four cases to consider, since (T2[X<—U]) and (S2[X*—U]) 

may be intersections or not. We shall consider only two of them to 

illustrate the proof method. 
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1. (T2[X<-U])nf and (S 2 pf<-t/]) n / are not intersections. Then the 
result follows by applying NS-ARROW. 

2. (S2[X<-U])nf = A*[Ci..Cn] and {T2[X <-U])n} is not an intersec­

tion. Then we have that 

{{Тг^Т2)[Х<^и])п' = (Γ 1 [Χ*-ί/]) η / - > (Τ 2 [Χ < - ί/])^ and 

((S^SJiX^U})« 

= A*[(S1[X^U]yf^C1..(S1[X^U}rf^Cn]. 

By lemma 3.2.10, it follows that for some i Γ, (Γ[Χ<-ί/]) η / К 
Ci < {T2[X<-U])n/. Applying NS-ARROW, Г, {T'[X<-U])n} l·« 
{S,[X<-U})nJ^Ci < (Γ1[Χ<-£/])'' /-(Τ2[Χ<-ί/])η>. Finally, the 

result follows by NS-3. 

Other cases N S - O A P P is similar to the case for N S - T V A R using lemma 2.3.1.4(3) 

and uniqueness of normal forms. All other cases are similar to that 

of N S - A R R O W . D 

This substitution lemma is the key result we use in proving that S - O A P P has a 

corresponding admissible rule in NF". 

LEMMA 3.3.7 Г r- SU e К. Then ThnSKT implies Г h n (S U)nf < (Τ U)ni. 

PROOF: By induction on the derivation oîT l·n S <T, assuming a derivation in 
normal form. The cases for NS-ARROW and NS-ALL are impossible because of the 
assumption Γ h S U (Ξ К. 

N S - R E F L By subject reduction for kinds and N S - R E F L . 

N S - T V A R We are given Г Ь„ T(X) < A. By the induction hypothesis, Γ l·n 

(T(X)U)nf < (AU)nf. We have to consider two cases. 

(AU)ni=B By N S - O A P P . 

(AU)n} Ξ AK[A1..An] By lemma 3.2.11, Γ r-n (T(X)U)nf < Ak for 

each ifc in {l . .n}. By N S - O A P P , Γ К, XU < 
(Ak) for each fc, which, by NS-V, implies Г h n 

X U < [AU)71'. 

N S - O A B S We are given Г, X:K h„ Si < Τλ. By the substitution lemma 3.3.6, it 

follows that Γ К (Si[X+-U])ní < (Γ,[ΛΓ<-[/])η/. On the other hand, 

we have that {AX:K.SX)U ->0Λ S^Xi-U] and (AX-.K.T^U - ^ 

T\[X*— U\. Finally, the result follows by the uniqueness of normal 

forms. 

N S - O A P P Similar to case N S - T V A R . 

NS-V3 By the induction hypothesis and NS-V3, using generation for subtyp-
ing. 
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NS-3 and NS-V By the induction hypothesis, using lemma 3.2.11. ü 

P R O P O S I T I O N 3.3.8 (Completeness) If Г Ь S < Τ, then Γ η / h n S
nf < TnJ. 

PROOF: By induction on the derivation of Γ l· S < Τ, using lemma 3.3.7 for the 

case of S - O A P P . Ü 

THEOREM 3.3.9 (Equivalence of ordinary and normal subtyping) Let Γ l· S 6 

К and Г l· Τ 6 Κ. Then Г I- S < Τ if and only if Гп / К Sni < Г * . 

P R O O F : 

=>) By completeness (3.3.8). 

<=) By soundness (3.3.2), it follows that Γ η / h Sn} < Γ η / , and, by lemma 3.3.4(6), 

it follows that Γ h S < T. • 

3.3.1 Least strict upper bound 

So far we only used that lubr(S) is an upper bound of S in the context Γ (See 

lemma 3.3.1(2)). We can now give the final motivation of the name we chose, 

showing that if lubr(S) is defined and Τ фр^ S, then Γ h 5 < Τ implies 

Γ h lubr(S) < T. We first show that the corresponding property holds for the 

normalized system. 

LEMMA 3.3.1.1 Let lubr{S) be defined. Then 

1. If S -»¿JA S' and Γ -»0Λ Γ', then lubr(S) -»дл lubr>{S'). 

2. If Γ h„ S < Τ, then Γ h n /u6 r (5) n / < Τ or 5 = Г. 

P R O O F : 

1. By induction on the structure of S, observing that if lubr{S) is defined, so 

is lubri(S'). 

2. By induction on the derivation of Г b n 5 < T. It is immediate for the case 
N S - R E F L ; for NS-ARROW, N S - A L L , and N S - O A B S / И 6 Г ( 5 ) is not defined; for 

the other rules the result follows using the induction hypothesis. Π 

COROLLARY 3.3.1.2 Let lubr{S) be defined. Then Γ h 5 < Τ and Γ φβ„ S 

implies Γ h lubr(S) < T. 

PROOF: By completeness, it follows that Γ η / h n S
nf < Tnf. By lemma 3.3.1.1(2), 

Γ η ; Hn (lubrnf(Sni))ni < Tni, because Sn' φ Г Ч By soundness, it follows that 

Γ η / h (lubrnf(Sn/))"f < T n / , which is equivalent to Г h lubгn/(Sn,) < Τ by lemma 

3.3.4(6). Finally, (using lemmas 3.3.1(1) and 2.4.12, and proposition 2.4.19 to get 

the corresponding kinding judgements) it follows that Γ h lubr(S) < Τ by lemma 

3.3.1.1(1), S-CONV and S-TRANS. D 
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3.3.2 Example 

In this section, we give the derivations in F " and in NF% of the example(3.1) 
mentioned in the introduction and in section 3.1. 

Let Γ = X < AY:K.Y:K^K, Ζ < X:K->K. We present a proof of 

T\- X{ZW) < W 

and a proof of its translation in the normal system 

Tnf\-nX(ZW)nf <Wni. 

Observe that Γη / = Γ, 

{X(ZW))nf = X{ZW), and 

Wn' = W. 
For the sake of readability we omit kinding judgements. 
We have the following derivation in F " : 

Г bok 
• S-TVAR 

Γ h Χ < ΑΥ-.Κ.Υ (AY:K.Y)Z W=0AZW 
• S-ΟΛΡΡ S-CoNV 

Y\-X{ZW)<{\Y:K.Y)ZW (AY:K.Y)ZW < ZW 
S-TRANS 

TbX{ZW)<ZW 

Γ h ok Γ h ok 
• S-TVAR S-TVAR τ\-ζ<χ τ\-χ< ΑΥ-.κ.γ 

S-TRANS 

Γ h Ζ < (ΑΥ-.Κ.Υ) (AY:K.Y)W =βΑ W 
• S-OAPP S-CONV 

Tl· ZW < (AY:K.Y)W (AY:K.Y)W < W 
S-TRANS 

Tl· ZW <W 

Tl·X(ZW)<ZW Tl·ZW<W 
S-TRANS 

Tl·X(ZW)<W 

The corresponding derivation in normal form in NF" is substantially shorter: 

Tl·W e К 
• NS-REPL 

Г l·n ((AY:K.Y)W)n} < W 
NS-OAPP 

г i-„ X W < W 
N S - O A P P 

Г Ь„ {(AY:K.Y)(ZW))nl < W 
N S - O A P P 

Tl·nX(ZW)<W 
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3.4 A subtype checking algorithm, AlgF" 

As it stands, NF" as defined in section 3.1 is not a deterministic algorithm, be­
cause its rules are not syntax directed. Fortunately, we are not far away from an 
algorithmic presentation. In fact, corollary 3.2.9 is the bridge to the algorithmic 
presentation of the subtyping relation, AlgF", which states that transitivity steps 
can be eliminated and reflexivity steps can be simplified. AlgF" is obtained from 
NF% by removing NS-TRANS and restricting N S - R E F L to type variables and type 
applications. 

D E F I N I T I O N 3.4.1 (AlgF% subtyping rules) 

Г Нд„ χ < χ 

ThTSeк 

rhA,,TS<TS 

Г Ы Г(Х) < А ХфА 

Г \-А„ Ti < 5, 

Г \-Ml Х<А 

г к,,, s2 < т2 г (- Si->s2 e * 

Г \~Alg Sr->S2 < Τχ-*Τ2 

T,X<U:Kl·A,¡S <Т Г l· 4X<U:K.S e * 

Г \-A,t VX<U:K.S < VX<U:K.T 

T,X<TK:K\-AÌ3S<T 

Г hA I, KX-.K.S < KX-.K.T 

Y\-Ali{lubr{TS)Y' < A ThTStK TS φ A 

T\-A„TS<A 

Vie{l..m} Γ hAll А<Т, Tl· A e к 

Г h,,,, А < Л*[7\..Тт] 

3je{i..n} г \-л1, s,<A VAe{i..n} г h s* e к 

(ALGS-TVARREFL) 

(ALGS-OAPPREFL) 

(ALGS-TVAR) 

(ALGS-ARROW) 

(ALGS-ALL) 

( A L G S - O A B S ) 

( A L G S - O A P P ) 

(ALGS-V) 

( A L G S - 3 ) 

( A L G S - З ) 

Γl·A,!,h
κ{S1..Sn}<A 

іЕ{1..т}Эіе{1..п}ГІ-д,, S, < T, V*e{l..n} Г h Sk 6 к 

L E M M A 3.4.2 (Equivalence of norma] and algorithmic subtyping) 
Let Г h 5, Г e К. Then Г h„ S < Τ if and only if Γ l·^ S <T. 

PROOF: (=>) By corollary 3.2.9. (<=) Immediate. D 
We have thereby proved that AlgF" is indeed a sound and complete algorithm 

to compute F"'s subtyping relation. We conclude the proof of decidability of 
subtyping in F" by establishing in section 3.5 that AlgF" always terminates. 

file:///~Alg
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PROPOSITION 3.4.3 (Equivalence of ordinary and algorithmic subtyping) 

Let Γ I- S e К and Г h Τ e К. Then Г h S < Τ if and only if Г ' Ь Л ; 3 5 n / < 
rpnj 

PROOF: By the equivalence of ordinary and normal subtyping (theorem 3.3.9) 
and the equivalence of normal and algorithmic subtyping (lemma 3.4.2). D 

3.5 Termination of subtype checking 

The last step in proving the decidability of the subtyping relation of F" is proving 
the termination or well-foundedness of the relation defined by the AlgF" subtyping 
rules. We show this by reducing the well-foundedness of AlgF" to the strong 
normalization property of the —*βΛ+ relation. 

We begin by extending the language of types with the constructor + as follows. 

T + : : = X type variable 

T + - + T + function type 

V ( X < T + : K ) T + polymorphic type 

Λ(Χ:Κ)ΤΓ+ operator abstraction 

T + T + operator application 

Л К [ T + . . T + ] intersection at kind К 

T + + T + choice 

Since we have enriched the language of types with a new type constructor, we 
need to extend our kinding judgements (section 2.2) with the following kinding 
rule. 

Π - . S e A - Г К. Г € # 

Г Н + 5 + Т Е / Г < K - P L U S > 

—*0л+ is obtained from —+/зл by adding the reductions associated with the choice 
operator +, S + Τ —+/зл+ S and S + Τ —>/зл+ Т. We also need the corresponding 
kinding rule saying that Г h S + Τ e Κ whenever Г l· S, Τ e К. As far as we are 
aware, choice operators have not been used before to analyze subtyping. 

NOTATION 3.5.1 We write + modulo commutativity and associativity. 

We now define a new reduction —>/м+· 

D E F I N I T I O N 3.5.2 (—>/jA+) The reduction on types —>^л+ is obtained from —*βΑ 

(definition 2.2.1) by adding the following two rules: 

1. S + Τ —*рл+ 5, and 

2. S + Τ - » ί Λ + Τ. 

We also write —•+ to refer to these two new reduction rules. 
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As usual, —У0Л+ is extended to become a compatible relation with respect to type 
formation, -»/зл+ is the reflexive, transitive closure of —>0Л+, and =дл+ is the 
reflexive, symmetric, and transitive closure of —>ρΛ+· 

PROPOSITION 3.5.3 (Strong normalization for -+/jA+) If Г Ь+ Τ e К, then every 
/3A+-reduction sequence starting from Τ is finite. 

PROOF: The result follows using the strategy used to prove that the reduction 

—>βΛ is strongly normalizing on well kinded types (see theorem 2.5.10). We only 

need to modify the definition of saturated sets by adding the following closure 

condition: 

if T, U, Ri.-RnGSN*, then TR^.I^eS and URi.^eS imply (r+t/)Äi..&,eS. 
Π 

Next, we define a measure for subtyping statements such that, given a subtyp-

ing rule, the measure of each hypothesis is smaller than that of the conclusion. 

Most measures for showing the well-foundedness of a relation defined by a set 

of inference rules involve a clever assignment of weights to judgements, often in­

volving the number of symbols. We need a more sophisticated measure, since in 

A L G S - O A P P it is not necessarily the case that the size of the hypothesis is smaller 

than the size of the conclusion. 

We introduce a new mapping from types to types in the extended language in 

order to define a new measure on subtyping statements. To motivate the definition 

of this new measure, we analyze the behavior of type variables during subtype 

checking. Assume that we want to check if Γ l·^ S < T, where S is a variable 

or a type application. It can be the case that the judgement is obtained with an 

application of ALGS-TVAR or A L G S - O A P P , in which case we have to consider a 

new statement Г Ьді5 S' < Τ, where S' is obtained from S by replacing a variable 

by its bound (and eventually normalizing). However, we do not replace every 

variable by its bound, as this would constitute an unsound operation with respect 

to subtyping. 

EXAMPLE 3.5.4 Two unrelated variables may have the same bound. 

X<T*:+, r < T * : * \/X <Y, but 

X<T*:+, Y<T*:* l· T* < T*. 

Our new mapping, plus, includes in each type expression this nondeterministic 

behavior of its type variables. 

D E F I N I T I O N 3.5.5 (plus) 

The mapping p/usr : T—+T+ is defined as follows. 

2. р/и5г(Г—>5) — plusr(T)—*plusr(S), 

3. plusr(VX<T:K.S) = VX<p/us r(T):A'.p/us r^<T : Ä :(5), 
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4. plusr(AX:K.S) = AX:K.plusrX:K(S), 

5. plusr(ST) = plusr(S)plusr(T), 

6. р/наг(Л*[Si-.S'»]) = Л*[p/«s r(5i)..p/tís r(5„)]. 

EXAMPLE 3.5.6 p S < T 4 y < b | , g J 2 ) = Ζ + У + Χ + Τ*. 

We need to show that plus is well defined on well kinded arguments. 

LEMMA 3.5.7 (Wei/-foundedness of plus) 

IfThTeK, then plusr(T) is defined. 

PROOF: Observe that the sizej of the kinding judgements of the arguments strictly 

decreases in each recursive call. Consider 

rank(plusr(S)) = sizej(T h 5 e kind(T, S)), 

where sizt¡{Y h S Ç К) is the size of the derivation of the kinding judgement 
(see definition 2.4.8). The function kind can be defined straightforwardly using 
proposition 2.4.6, such that kind(T, S) = К if Г h S ζ AT, and gives a constant 

NoKind otherwise. Moreover, lemma 2.4.9 implies that the function kind is total. 

Given that Γ h S €Ξ К, by lemmas 2.4.2(1) and 2.4.6, the rank decreases in each 
recursive call and the least value is that of size(l· T E A " ) . О 

LEMMA 3.5.8 If Г Ь Τ e # , then Г Ь+ plu^iT) e К. 

PROOF: By induction on the derivation of Г h Г £ К, observing that Г h Τ ε К 
implies Г H + Г € К. It is straightforward to verify that r-+ satisfies weakening 
(see lemma 2.4.4). We consider here the case for K-TVAR, the rest follows by 
straightforward induction. We are given, Γι, X < T:K, Γ 2 h ok. By lemma 2.4.2, 

there is a proper subderivation of Γι l· Τ € К. Finally, the result follows by the 
induction hypothesis, weakening, and K - P L U S . D 

L E M M A 3.5.9 (Strengthening for plus) 

1. Let X І FTV(r2) U FTV(S). Then 

Γι, Χ<Τχ:Κχ, Γ 2 h 5 G К implies р/««г,,х<т х:лгл,г2(5) = Ρ ί Μ δΓι,Γ 2(£). 

2. Γι, χ:Τ, Γ 2 h S € Κ implies ρΙν^τί<χ:τ,Γ2(^) = Ρ ' ^ Γ , , Γ Ϊ ^ ) · 

P R O O F : 

1. By lemma 3.5.7, plusriX<Ty.Kx^(S) is defined, therefore we can reason by 

induction on the number of unfolding steps of plus. We proceed by case 

analysis on the form of S. 

S = Y. We have to consider two cases. 
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(a) Γχ = Δ ι , Υ<Τχ:Κι, Δ 2 . Then, by definition, 

Plusrux<Tx Kx,rÁY) = Y + Р' М а д,(Гі). 
On the other hand, also by the definition of plus, 

pluarurt(Y) = Y + рІш^іЪ). 

(b) Г 2 = Д ь Κ<Γι:ΑΓι, Δ 2 . By the definition of plus, 

PlusruX<Tx ΚΧ,Γ2{
Υ) = У + Р1изГг,Х<Тх Α·χ,Δ,(Γΐ)· 

By lemma 2.4.1, 

TUX<TX:KX,T2 hok, 

and, by lemma 2.4.2(1), 

Г ь X<TX:KX, Δ , l· 7\ G Kx. 

Moreover, since X $ F T V ( r 2 ) , it follows that X <£ FTV(Ai) U 

FTV(Ti). Then, applying the induction hypothesis we obtain 

Y + plusriiX<Tx Α-χ,Δ ι(7\) = Y + р/ивгьдДГі), 

and the result follows by the definition of plus. 

S Ξ ΥΥ<ΤΛ:Κλ.Τ2. By the definition of plus, 

РІ"*Гі.х<тхкх.г,<УУ<Ті*і-Т2) 

= VY<plusru<Tx Kx,r2{Ti)--Ki.plusruX<Tx ΚχιΓίιΥ<τ, Kl{
Ti)-

By generation for kinding (proposition 2.4.6), 

Г ь X<TX:KX, Γ 2, Υ<ΤΧ:ΚΎ h Γ2 e *, 

and, since Χ $ F T V ( r 2 , Υ<7\: ί ίΊ) U FTV(T 2 ), by the induction hy­

pothesis, 

У < р / и « Г ь < Т х Kx,ri{Ti)-Ki-PlusruX<Tx ΚΧ,Γ2,Υ<Ά * , № ) 

= Г<р/і і5 Г і > < Т х Κχ,κίΤιΥ-Κι-Ρ^ι,Γι.ΥίΆ * , № ) • 

By lemma 2.4.1, 

Ги Χ<Τχ:Κχ,Τ2,Υ<Τν.Κ^ ok, 

by syntax directedness of context judgements (lemma 2.4.2(1)), 

I \ , X<TX:KX, Γ 2 h Τι e KL 

Since X g F T V ( r 2 ) U FTV(Tj), by the induction hypothesis, 

VY<plusrliiTx кх,гг(
т&-Кі-рІ™ГиГ2у<Ті K¡(T2) 

= У<р/іи Г і і Г 2 (Гі) :/Г, .р/и5 Г і і Г 2 і у< Т і Kl{T2) 

= р'«иГ і.г,( К < Г 1 : ^ 1 . Т 2 ) . 

For all the other cases, the result follows by straightforward application of 
the induction hypothesis, using generation for kinding (proposition 2.4.6). 
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2. the definition of plus does not depend on the assumptions of term variables. 
D 

LEMMA 3.5.10 ( Weakening for plus) If Γ' h ok, Γ Ç Γ', and Г Ь S £ К, then 
plusr(S) = plusT,(S). 

PROOF: The assumptions ensure that plusr(S) is defined, so we can proceed by 
induction on the number of unfolding steps of the definition of plus. We proceed 
by case analysis on the form of S. 

S = X. By generation for kinding (proposition 2.4.6) and the fact that Г С Г', 

Т = ГиХ<Т:К,Т2 and 

Г' ΞΕ ΓΙ, Χ<Τ:Κ, Γ'2. 

There are two cases to consider. 

1. If Γι Ξ Γ'1; then the result follows by the definition of plus. 

2. If Γι φ ΓΊ, then Г! С ΓΙ U Г'3. 

By the definition of plus, 

plusr(X) = X + р/ш5Гі(Г). 

By lemmas 2.4.1 and 2.4.2(1), it follows that Γι h Г e A'. Hence, by 
the induction hypothesis, 

X + plusri(T) = X + plusr,(T). 

Since Г' h ok, from lemma 2.4.2(1), it follows that Г[ h Г € К. Con­
sequently, {{X) U Р Т (Гг)) Π FTV(T) = 0 by the free variables lemma 

(lemma 2.4.3). Hence, starting from the last declaration in Γ'2) we can 

iterate the strengthening lemma for plus (lemma 3.5.9 items 1 and 2) to 

obtain 

X + phsr,(T) = X + р1ияц(Т) = plusr,{X). 

S Ξ WX<Ti:Ki.T2- By the definition of plus, 

ρ/ΐί5Γ(νΧ<Γχ:ΑΊ.Τ2) = VX <plusT(Tì):Ki.plusVtX^Ti.Ki(Tì). 

By generation for kinding (proposition 2.4.6) and lemmas 2.4.1 and 2.4.2(1), 
it follows that Γ h J\ £ K\. Then, by the induction hypothesis, 

^ < р / г і 5 г ( Г 1 ) : А ' 1 . р / Щ А Г г А - < Т і : К і ( Г 2 ) = Х<р/і« г , (Г 1 ) : А' 1 .р^г ,л :<т 1 :К 1 №). 

By generation for kinding, Г, X<T-L\K\ l· T 2 € • . By weakening for kinding 

(lemma 2.4.4), Г' h Γι e Ku and, by C-TVAR, Γ', Χ<Τλ:Κλ h ok. Apply­
ing again the induction hypothesis, it follows that 

VA' <plusr, (Γι ) :Äi .plu^ x <Tl .Kl (Γ2) 

= VX^plusr^TiY.Ki.plusr^x^.^ (Г2) 

= phsr^VXKTf.Kì.n). 
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S Ξ AX:K.T. By the definition of plus, 

plusr(\X:K.T) = ΑΧ:Κ.ρΙωτιΧίΚ(Τ). 

By K-MEET, it follows that Γ' l· T K e К, and, by C-TVAR, Г', X<TK:K h 
ok. Finally, the result follows by the induction hypothesis. 

In all other cases, the proof follows by straightforward application of the induction 
hypothesis. • 

The operation plus does not have the usual properties under substitution; as 
following example shows, the equality 

PlvSr1,x<S:K1,r2(
T2)[X<-pl™r1(Tl)] = P i u sr,,r l[x-T1](7M-x '<- ri]) 

does not hold in general. 

EXAMPLE 3.5.11 Consider the case where 
Γι = У<Т*:*, Γ2 = 0, S = Υ, Τι = Y, and T2 = Χ. 
Then 

P1USY<T**,X<YJX)[X^P1USY<T*JY)Ì = (Χ + Υ + τ*)[χ^(Υ + τη\ 
= У + Τ* + У + Τ*. 

On the other hand, 
plusY^T*.JX[X+-Y}) = plus^JY) = Y + T*. 

We therefore need a lemma which says that the well-typed types are well-
behaved under substitution with respect to the plus operation. 

LEMMA 3.5.12 (Substitution for plus) If Г ь X<S:KU Г2 h Г2 € K2 and Γι Ь 
Τχ 6 K\, then 

P /»"r 1 , j f<s: /c l lr 2( 7 ,2)[ J f <- í ' í , í Sr i ( r i ) ] -w^+pi«s r i i r a [ x_T l ](r2[A'«-7 ,
1]) . 

PROOF: By induction on the size of the derivation of Γι, X<S:Ki, Γ2 h T2 £ A"2. 
We proceed by case analysis on the form of T2. 

T2 Ξ Y. By the free variables lemma (lemma 2.4.3), Y£dom(ri, X<S:K\, Γ2). 
Then there are three cases to consider. 

yedomírO. Let Tj = Au Y<U:K, Δ 2 . Then 

P ^ r 1 , A - < S : K ' 1 , r 2 ( ^ ) [ ^ < - p ' l t s r 1 ( r i ) ] . 
by the definitions of plus and substitution, 

= Y + (plua&1(U)[X*-plu8ri{T1)]) 

since X <¿ FTV(Í/) U FTV(Ai),X $ FTV{plusAi(U)). 

= Y + plusAi(U), 

= Р'и*г„г,[х.-т1](*'[*«-?,

1]). 
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Y = X. Then 

Р' 1 «г 1 .х<лк-,,Гг( А ' )[ л ' < -Р / ' "г 1 (Гі)], 

by the definitions of plus and substitution, 

= pinard) + (pluSbiUÏÏXt-phtSr^Ti)]), 

On the other hand, 

- Ρ'Μ8Γι,Γ,[Χ-Τι](Γΐ)> 

since FTV(Ti) U а о т ( Г і ) , by strengthening for pfas(3.5.9), 

= p/us r i (Ti). 

K e d o m ( r 2 ) . Let Γ2 = Д ь У ^ / Г , Δ 2 . Then 

Ρ ^ , Χ ί ί ^ , Γ ΐ ^ ^ ^ - Ρ ^ ι ί 7 ! ) ] ' 

by the definitions of plus and substitution, 

= Y + (plusritX<s.J(ub1(U)[X+-plusri(T1)]), 

by generation (2.4.6) and the induction hypothesis, 

-»0Λ+ У + Ρ ^ Γ , , Δ ^ - Τ , ] ^ * ^ l D i 

= P' u s r 1 ,r 2 [A-<-r I ]( y [^ < - T i ]) · 

T2 = Vr<S i :i:.5a· Let Γ = Г ь X<S:KU Г2. Then 

plusr(YY<S1:K.S2)[X^-plusri (Ά)}, 

by the definitions of plus and substitution, 

= yiY<plusr(S1)[X*-plusri(Ti)]:K.plusrtY^Si:K(Si)[X*-plusri(T1)], 

by generation (proposition 2.4.6) and the induction hypothesis, 

-»^л+ У < р / и ^ . 1 і Г а [ ^ ^ Г і ] ( 5 1 [ : »-Г1]):А'. 

P'usr,,ra[X<-T,],y<5i(X^-Ti]:K-(^2[-X'<—?l]) 

by the definitions of plus and substitution, 

= P^r1,r2[x^T1]((Vr<51:^.52)[X^T1]). 

Other cases. All the other cases are similar to the case T2 Ξ VY<Sy:K.S2· Π 

LEMMA 3.5.13 (Monotonicity of plus with respect to —*βΛ) If Γ h Τ € К, then 

1. Г —>/зл Г' implies plusr(T) -»/зл+ р/мАр<(Т). 

2. Τ ->0Л Г ' implies p/wsr(T) -*0л+>о ρ^(Τ'). 

PROOF: By simultaneous induction on the size of the derivation of Γ l· Τ £ К. 

We proceed by case analysis on the form of T. 

1. г ^ д Г'. 

Τ = Χ. Let Γ = Γι, X<S:Ki, Γ 2 . Then we have to consider three cases. 
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(a) ΓΊ -*ßA Γ',. Then 

plusr{X) = X + plusr¡(S) 

by lemma 2.4.2 and part (1) of the induction hypothesis, 

-*0л X + p/itsr. (S) = plusr, (Χ). 

(b) S —*0л S'. By lemma 2.4.2 and part (2) of the induction hypo­
thesis. 

(c) Г2 —»/JA Г 2. By the definition of plus. 

Τ = VX<Ti:Ki.T2. By generation for kinds (proposition 2.4.6), there are 
proper subderivations of Γ h 7\ € ΑΊ and Γ, X<T\:K\ l· T 2 G •. 
Then, by part (1) of the induction hypothesis, it follows that 

plusr(Ti) -»0Λ plusr,(Ti), and 

The result follows by the definitions of plus and -»0л· 

Other cases. The rest of the cases are similar to the case Τ = V-Y<Ti:Ä\.T2, 
using generation for kinding (proposition 2.4.6) and part 1 of the in­
duction hypothesis. 

2. Τ -»„A Τ'. 

Τ = VX<T\:KI.TÌ. We have to consider three cases. 

(a) T\ —>βΛ T[. By generation for kinding (proposition 2.4.6), there are 
proper subderivations of Γ h 7\ £ K\ and Γ, Χ<Τ\:Κχ l· T2 € *. 
Then, by parts (2) and (1) of the induction hypothesis respectively, 
it follows that 

p/us r(Ti) -»0л> о plusr{T\)i a n d 

plusrx<Tl.Ki(T2) -*рл pfosr .xçr , ' :* : ,^) · 

The result follows by the definitions of plus and -»0Λ· 

(b) T 2 —*β/\ T 2 . By part (2) of the induction hypothesis. 

(c) VA-<T1:tf,.A*[S,..S'tl] -+ß*WX<Tl:K1.Sl..VX<Tl:KM 

pZiMt.(VJf<T,:íf1.A*[51..5»]) 

= VX<plusr(Ti):K.A*[plusr¡x<Ti:Ki (Si)..plusriX<Ti:K¡ (S„)] 

->/зл+ A*[VA'<^Msr(r1):A'.pbsrJf<Ti.A- i(Si).. 

..VX^p/uariTO^.p/uAr^^^^S,,)] 

= phur{tf[*X<T1:Kl.Si..VX<T1:kl.Sn]) 

Τ = Γι T2. We have to consider four cases. 

(a) Ti ^ „ л Tí, 

(b) Г2 -4„A Г2', 

(c) Τ = Л*[5,..5П] and Л Ч ^ - З Д -» в А Λ*[5ι Γ 2 . .5 η Г2]. 

(d) Τ = \X:K.Si and (AX:A:.5,)r 2 -*0Λ Si[X*-T2] 
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Cases 2a, 2b, and 2c follow using similar arguments to those used for 

the case Τ = ЧХ<Т\:К\.Т2. Consider case 2d. 

plusriiKX-.K.S^Ti) 

= (AX-.K.plus^^xJS^plusriTi) 

-»¿JA phsr χ < τ κ K(Si)[X<-plusr(T2)]y 

by lemma 3.5.12, 

-»0Л+ plusr(Si[X<-T2]). 

Other cases. The rest of the cases follows using a similar argument to the 

one used in the case Г = VX<T\\K\.T2. • 

LEMMA 3.5.14 Let Mr(S) be defined and Г h S e К. Then plusr(S) -*+>0 

plusr(lubr{S)). 

PROOF: By induction on the structure of S. Since lubr{S) is defined, it is enough 

to consider the following two cases. 

S = X. Let Γ Ξ Γι, Χ < Τ:Κ, Γ 2. 

plusr{X) = Χ + plusri (Γ) 

= Χ + plu^T) by weakening (lemma 3.5.10), 

- + plusr(T) 

= plusr(lubr(X)) 

S = AT. By the induction hypothesis. О 

Our measure to show the well-foundedness of AlgF" considers the /?A+-reduction 
paths of the plus versions of the types in the subtyping judgements. As we men­
tioned before, in ALGS-TVAR and A L G S - O A P P the types appearing in the hypo­
thesis may be larger than those in their conclusions. Therefore, the well foun-
dedness of the AlgF" relation is not immediate. The next corollary gathers the 
previous results to serve our purposes. 

COROLLARY 3.5.15 

1. If Г l· X G К, then pluariX) -»0л+ > о plusr(T(X)). 

2. If Г h AT £ К then plusr{AT) -»/5Л+

>° plusr{hbr(AT)nf). 

PROOF: Item 1 is a particular case of the previous lemma (lemma 3.5.14), and 
item 2 is a consequence of lemma 3.5.14 and the monotonicity of plus with respect 
to ->0 Л + (3.5.13(2)). D 

Finally, we can define our measure. 

D E F I N I T I O N 3.5.16 (Weight) 
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1. weight(T \-^ι9 S < Τ) = <max-red(p/us r(5')) + max-red(p/us r(T),s¿zej(r h 
S<T))>, 

2. weight(T h Τ e К) = < 0 , 0 > , 

where max-red(5) is the length of a maximal /3A+-reduction path starting from 
5, and siztj is defined in definition 2.4.8. 

Pairs are ordered lexicographically. Note that < 0 , 0 > is the least weight. 

P R O P O S I T I O N 3.5.17 ( Wetf-ibundedness of AlgFX) If 1 " " is an AlgFX rule, 

then weight(Ji) < weight(J), for each ¿£{l. .n} . 

PROOF: By inspection of the rules of AlgFX. • 
Finally, we can state our main result. 

T H E O R E M 3.5.18 (Decidability of subtyplng in F%) 
For any context Г and for any two types S and Г, it is decidable whether 

Г h S < T. 

3.6 Our decidability proof and full F< 

In the introduction to chapter 2 we mentioned that subtyping in F<, a second-
order λ-calculus with bounded quantification defined by Curien and Ghelli in 1989, 

is undecidable. A question that comes to mind is: if we try to apply our proof of 

the decidability of subtyping in F" to F<, where will it fail? 

If we consider the algorithm for the subtyping relation in [Ghe90], the place 

where our proof does not go through is when we try to prove that the algorithm 

terminates by calculating the maximal length of the plus versions of the types in 

the rule for subtyping quantified types. Remember that the subtyping rule for 

quantified types in full F< is: 

Г h Γι < Si Γ, Χ<Τλ \-S2<T2 

г h- v*<S!. s2 < vjf<TL T2

 ( F Î " S " A L L ) 

Consider now the following case. 

Г = Y4<T\ Y3<Y4, Y2<Y3,Y1<Yi, 

Ά = Yu 
Sx = Τ*, 

T2 = Χ—*Χ, and 

S2 = Χ-*Χ. 



3.6. OUR DECIDABILITY PROOF AND FULL F< 67 

The plus versions of the types in the subtyping statements of this example are as 
follows. 

P^r,x<Yl C&) = (X + Yi + Yt + Y3 + η + T M * + Y1 + Y2 + Y3 + Yt + Τ*) 

pi™?, x<Yt № ) = (χ + у + γ2 + Уз + γ4 + T * ) - » ( * + у + у2 + у, + у4 + τ*) 

pb¡er(VX<Si. Si) = VX<T\ (Χ + Τ*)->(Χ + Τ*) 

рІиягСІХ<Ті. Га) Ξ ЛХУ + Υ2 + Υ3 + Υ* + Τ*. 

{Χ + Υ! + Υ, + Υ3 + Υ* + Τ*)-»(Χ + Уі + У2 + Уз + У4 + Τ*) 

The length of a maximal 4-reduction in each case is: 

max-Tea(plusr<x<Yi(S2)) = 10 

max-red(p/u«r jr<y (Tj)) = 10 

max-ied(plusr(VX<Si. S2)) = 2 

max-red(p/usr(VX<2\. T2)) = 14. 

The weight of the conclusion Г h WX<Si. S2 < VX<T\. T2, as defined in defin­
ition 3.5.16, is smaller than the weight of the hypothesis Г, X<T\ l· S2 < T2, 
because the maximal length of a +-reduction starting from the plus version of the 
conclusion is shorter than the maximal length of a +-reduction starting from the 
plus version of that hypothesis. To be more precise, 

max-red(p/usr(VA"<Si. S2)) + max-red(p/iisr(VX<7i. T2)) 

< 

max-red(plusrx<Yi (S2)) + ma.x-ied(plusrx<Yi (T2)). 
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Chapter 4 

Typing in F. Λ 

4.1 Type checking and type inference 

Given a context Γ, a term e, and a type T, type checking consists of analyzing 
whether the judgement Γ h e £ Γ is derivable from a given set of inference 
rules. Type checking algorithms for lambda calculi, unless they are formulated 
using Gentzen's sequent calculus style, involve guessing the type of subterms. For 
example, when e is ex e2, the type of e2 is not necessarily a subexpression of T, 
and in order to corroborate or to refute the assertion Γ l· e 6 Γ we need to infer 

a type for e2. 

In this section, we present an algorithm for inferring minimal types in F " . 
Given Γ and e, the type S constructed by the algorithm is a subtype of every Τ 

such that Γ h e £ Г. In this way, we reduce the problem of whether Г h e G Г to 
that of inferring a type S such that Г h e G 5 and Г h S < T. Solving this problem 
involves not only the typing rules but all the inference rules of F " : the rule T-
SUBSUMPTION depends on a subtyping judgement, the rule T-VAR depends on an ok 
judgement, and the ok judgements depend on kinding judgements. Consequently, 
type checking uses the full power of the F " system. 

As an example, consider type checking the following judgement: 

Г, X < TWr2, f:X, а:Тг h f a e T2. 

The application fa can only be formed if ƒ has an arrow type. Using T-VAR we 
can assign type X to ƒ, which means that in order to obtain an arrow type for ƒ 
we have to replace X by its bound, which has the right form. Observe how this 
replacement is performed by T-SUBSUMPTION in the following derivation. 

Г, X < T^T2, f:X, a-.T^ h ok Γ, Χ < T^T2, f:X, α:Τχ h ok 

Γ, Χ < Τ^Τ2, f:X, α·Τλ h ƒ e Χ Τ,Χ < Γ ι - Γ 2 , f:X, αιΤΊ l· Χ < Τ^Τ2 
• T-SuB 

Γ, Χ < Τ^Τ2, f:X, α:Τ, h f e Τ^Τ, 

Τ,Χ< Τχ-+Τ2, f:X, α·Τχ h ok 

Γ, Χ < Τ^Τ2, f:X, α-.Τ, h ƒ e Τ^Τ2 Τ,Χ< Τ^Τ2, f:X, α:Γ, Ι- ο e Τ, 
Τ-ΑΡΡ 

Γ, Χ < Τ^Τ2, f:X, ο:Γ, h ƒ α e Τ2 

69 
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Note that, in the presence of T-SUBSUMPTION, we may actually perform the ap­
plication when the type of о is a subtype of T\. Namely, if 

r, X <Ti-•+Ά, f:X, 

Г 

a:U\ Ι- о 

,Χ<Ά-

e l/t 

-г„/ 
г, χ < г, 

X, a:U\ У- а 

-т„ 
er, 

ƒ : * , a:U¡ hUi <Ά 

Moreover, we may want to check whether 

Γ, X < Т,->Г 2, f:X, a:Ux l· f a € U2, 

where T2 is a subtype of U2. 

The situation gets more complicated if ƒ has an intersection type. Suppose 
that 

Γ, X < 7i-»Ta, Y < S^S2, f-Χ Λ Υ Λ VZ<VnK. V2, a-.Ut l· faeU2, 

where U\ is a subtype of Γι and 5Ί· An algorithm should not consider the type 

\/Z<Vi'.K.V2 for ƒ since, in this case, ƒ is applied to a term and not to a type. 

Then it has to replace X and Y by their bounds, Γχ—>T2 and S\—yS2- Moreover, 

given that the type of a, t/χ, is a subtype of both Si and Γχ, it should check 

whether S2 Λ T2 is a subtype of U2. 

Another source of problems in the search for an algorithmic presentation of 

the typing rules is that types may not be in normal form. Consider the judgement 

Γ, X < Ά->Τ2, Ζ < AY:*.Y, f:ZX, α:Τι h fa e T 2, (4.1) 

In order to type the application, ƒ should be assigned type T\—>T2. To do that, Ζ 

should be replaced by its bound in Ζ X. This replacement produces a type which 

is not in normal form, so AY: * .Υ X has to be normalised to obtain X. Finally, 

X is replaced by its bound and then the application can be typed. 

The main new source of difficulty is the interaction between the need for nor­

malization and the presence of intersection types. 

An algorithm to infer types should proceed structurally on the form of the term 

whose type is to be inferred. This requires us to remove the rules which make our 

typing rules non-deterministic: we should eliminate T-SUBSUMPTION and T - M E E T 

from the original presentation, and modify the other rules in such a way that we 

can still type the same set of terms. 

We give some preliminary definitions and results before presenting the rules of 

our new system: 

• We define the mapping flub, which performs the "replacements" which we 

motivated with the previous examples. 

• We define the function arrows, to filter arrow types in order to deal with 

term application. 

• We define the function alls to filter polymorphic types to deal with type 

application. 
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The function lub (definition 3.1.3) is a partial function which is only defined 
for type variables and type applications. Here, we extend the definition of /м6 
to intersection types in such a way that it is defined if the least upper bound is 
defined for at least one of the types in the intersection. 

DEFINITION 4.1.1 (НототогрЫс extension of lub to intersections, lub') 

lubì(X) = Г(Х), 
lub'r(ST) = lub'r{S)T, 

M'^ITL.T^) = l\K[T[..T'n], if 3¿e{l..n} such that /uóf(T,)i, 

where T„' is lub^(Ti), if lub'r(T,)l, and Tt otherwise. 

LEMMA 4.1.2 If lub"r(T) is defined, then Г h Τ < /u6f (Γ). 

PROOF: By induction on the complexity of Τ, using corollary 2.4.15. Π 

LEMMA 4.1.3 Let lub}~(T) be defined and Г l· Τ e К. Then pluspiT) -*0Л+ 

plusrilub'riT)). 

>o 

PROOF: The proof follows by induction on the structure of Т. If Τ = X or 
Τ = ST, then the argument is the same as in lemma 3.5.14. The case remaining 
to be checked is when Τ = Д [7Ί..Τη]. Then 

plusri^iTL.TJ) = Λ^[ρ^Γ(Γι)..ρ/«5Γ(Τη)] 

ρ^(Μ,Γ(Λ*[Γ:..Γ η])) = AK[plusr(T[)..plusr(T^}, 

where T[ = T, or T[ — /u6f(T,). Since /u6p(T) is defined, there exists j€{l. .n} 
such that lubr(Tj) is defined. Now, for every к such that /ubp(Tfc) is defined, by 
the induction hypothesis, we have that 

р/ш»г(Т|ь) -»,зл+>0 pfosr(íiibr(Tjt)). 

Hence, 

p / u s ^ m . . ^ ] ) - ^ л +

> 0 рІчзг(Ы*г(/\К[Ά..τη})). a 

We define the mapping flub which given a type Γ (and a context Γ) finds the 
smallest type larger than Τ (with respect to the subtype relation) having structural 
information to perform an application. 

DEFINITION 4.1.4 (functionaJ Least Upper Bound) The functional least upper 
bound of a type T, in a context Г, АиЬ^(Т) is defined as follows. 

fluUT) = { А*Ъг(Щ(Тп% if lub'AT^i; 
J TV ) γτη/^ otherwise.1 
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The intuition behind the definition of the function flub is to find Ti—>Тг starting 
form ZX in the example 4.1 above. In other words, flubr(Z X) = T\—»TV For 
simplicity we assume T\—>Гг in normal form. Step by step, 

flubr(ZX) = flubrilub'riZ X)) 

= flubr{(\Y:K.Y)X) 

= flubr(lub*r(((\Y:K.Y)X)nf)) 

= flubr(lub*r(X)) 

= flvbriT^Ti) 

= 2 W Ï 2 . 

More generally, flub climbs the subtyping hierarchy until it finds an arrow, a 
quantifier, or an intersection of these two. To show that flub is well-defined we use 
a similar argument to that used in section 3.5 to show that the relation defined by 
AlgF" is well-founded. We show in lemma 4.1.5 that a maximal /3A+-reduction 
path of the plus version of the argument of flub is strictly longer than a maximal 
/ЗЛ-г-reduction path of the plus version of the argument of its recursive call. 

LEMMA 4.1.5 (WeU-foundedness of flub) 

If Γ I- Τ € AT, then flubr(T) is defined. 

PROOF: If lub^(Tn^) is undefined, flub terminates because —>/?A is strongly nor­
malizing on well kinded types. Otherwise, define 

weight(flubr(T)) = max-red(piusr(T)), 
where max-red(S) is the length of a maximal /ЗЛ-1-reduction path starting from S. 
Lemma 3.5.8 and the strong normalization property of —»/jA+ imply that weight is 
well defined and always positive on well kinded types. Since lub^(Tn^ is defined, 

plusr(T) -»0Л + plusr(Tn}), by lemma 3.5.13(2), 

-»0л+> О plusr(lub^.(Tn^), by lemma 4.1.3. 

Then the weight of the arguments of flub reduces in each recursive call, which 

proves that flub is well-founded. О 

LEMMA 4.1.6 Let Г l· S,T e * and S =βΛ T. Then flubr(S) = flubT{T). 

D E F I N I T I O N 4.1.7 (arrows and alls) 

1. arrows (Γι ->T2) = { T W r 2 } , 

оггои»(Л*[Гі..Г„]) = Uie{i..n} arrows (Ti), 

arrows(T) = 0, ϊ ί Γ ^ Γ ι - > Τ 2 & η α Γ ^ Λ * [ ΐ ι . . Γ „ ] . 

This step can be optimised in an implementation of the type checking algorithm, allowing 
us to avoid the normalization of Τ when Τ is either an arrow type or a quantified type. 
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2. аШ{ Х<Тг:К.Тг) = {VX<Ti.K.T2}, 

αΗί(Λ*ΡΊ..Τη]) = U,€{1..n}eZb(T,), 

alb(T) = 0, if Τ φ ^Х<ТХ:К.Т2 and Τ φ f\*[Tx..Tn). 

The situation here is significantly more complex than in [Pie91] for F A , an 
extension of the second order λ-calculus. There it is enough to recursively search 
for arrows or polymorphic types in the context, because in FA there is no reduction 
on types. The information to be searched for is explicit in the context, so the job 
done here by flub is simply an extra case in the definition of arrows and alls. 
Namely, 

arrows(X) = arrows (T(X)) and 

аШ(Х) = alls{T{X)). 

Moreover, to prove that flub is well-founded is similar for us in complexity to 
proving termination of subtype checking. The similarity comes from the fact that 
computing flub involves replacing variables by their bounds in a given context and 
normalizing with respect to — ^ л , as in lemma 4.1.5. In contrast, in [Pie91] it 
is enough to observe that well-formed contexts cannot contain cycles of variable 
references. 

NOTATION 4.1.8 We introduce a new notation for intersection types. We write 
Λ [Τ Ι Φ(Τ)], meaning the intersection of all types Τ such that φ(Τ) holds. Note 
that this is an alternative notation to Д [Ti..T„] such that φ(Τ,) holds if and only 
if ¿e{l..n}. 

We can now define a type inference algorithm for F". 

DEFINITION 4.1.9 (A type inference algorithm, inf) 

Γι, x:T, Γ2 h ok 

Тих:Т,Т2Ь,п{хеТ 

Γ, χ:Τι h.n/ee T2 

fT~jJ^TU£T\^T2 

Th^feT rbm}aes 

(AT-VAR) 

(AT-ABS) 

(AT-APP) 

(AT-TABS) 

Г \-1п/ f a £ Л*[Г, | S,-+T, e arrowsiflubriT)) and Г h S < 5,] 

Г h i n / ХХКТцКгл 6 νΧ<Γ ι :ΑΊ.Γ 2 

гкя //ег 
Г !-,„ƒƒ S e A*[T,[X<r-S] \VX<St:K.Ti e albiflvhriT)) and Г h S < S,] 

(АТ-ТАРР) 

for all ¿e{1..η} Γ \-m¡ e[X+-S,} e Tt 

T\-nífor(X€S1..Sn)e£tf[Tl..Tn] (AT-FOR) 
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The algorithmic information of rule A T - A P P is that in order to find a type for 

fa in Γ, we need to infer a type S for a and a type Γ for ƒ, and to take the 

intersection of all the Tts such that T,—*S, € arrows (flubr(T)) and Γ l· 5 < S,. 

4.2 Minimal typing 

In this section we show that F% satisfies the minimal typing property (theorem 

4.2.11). We first prove that the algorithm in/is sound with respect to F%: if 

Γ Kn/ e G Τ, then Γ l· e 6 Τ (proposition 4.2.4). We then prove that every closed 

term is typeable using either set of typing rules (lemma 4.2.8). Finally, we prove 

that inf computes minimal types for F% terms (proposition 4.2.10). 

L E M M A 4.2.1 Let Γ h Γ e •. Then Γ h Γ < / Ы ^ Т ) . 

PROOF: Since flub is well-founded, we can proceed by induction on the number 

of unfolding steps in flubr(T). If flubr(T) = Tnf, the result follows by S-CONV. 

Otherwise, flubr(T) = flubr(Iub^(T^)). By S-CONV, 

Г h Г < Γ η / . 

By lemma 4.1.2, 

Γ l· Τηί < lub'r(Tnf). 

By the induction hypothesis, 

Γ Η lub*r(Tni) <flubr(lub*r(Tnf)). 

Finally, by S-TRANS, the result follows. • 

LEMMA 4.2.2 Let Γ h Γ e *. Then 

1. Γ h Γ < /\*[S Ι S e arrows(flubr(T))}. 

2. Γ h Γ < Λ*[51 S e alls [flu^T))}. 

P R O O F : 

1. Using lemma 4.2.1, we reduce our problem to proving that 

Г Ь Г < Л * [ 5 | 5 е в г г о ш в ( Г ) ] , 

which follows by induction on the structure of T.· 

2. Similar to 1. ü 

L E M M A 4.2.3 

1. If Г l· Τ < Ti-*T2, then Γ h /\*[S \ SearrowsiflubriT))] < 7Ί-»Γ 2. 

2. If Γ h Τ < VX<TX:K.T2, then Г h f^[S\Sç.alls{flubT{T))] < ^Χ<Τλ:Κ.Τ2. 
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P R O O F : 

1. By induction on the derivation of Γ h Τ < T\—>Τ2. The last rule of a 
derivation of this subtyping statement can only be S-CONV, S-TVAR, S-
TRANS, or S-MEET-LB. The first three cases use similar arguments, therefore 
we consider here only the cases for S-CONV and S-MEET-LB. 

S-CONV We are given that Г =pA Γι-+Γ2. By lemma 4.1.6 and the definition 
of flub, we 'have that 

arrows (угибг(Г)) = arrows (flu^T^Ti)), 

= arrows ((Γι-»Γ2)
η/) 

We now have two cases to analyze. 

(a) If (Γι->Γ 2) ν = T'f-*T^, then the result follows by S-MEET-LB 
and S-CONV. 

(b) Otherwise, let (Ti-»T2)
4' = tf[T?-+Ui..T?^Un], where Γ2

η/ = 
A*[tfi..C„]. Then, 

arrows (уг«&г(Г)) = {T^-*Ui..T^Un}. 

Consequently, 

A*[S\S e arrowsiflubriT))} = (T1-»Ta)
V, 

and the result follows by S-CONV. 

S-MEET-LB We are given that 

Γ h tf[S1..Tl-*Tì..Sn] < г ^ г 2 . 

By the definition of flub, 

/foW[&.-ri-*T 2 . .s n ]) 

= ^[....T^A^.T^A^...], 

пи/ _ 
where Г2 = Д*Иі..Л т] or 

pltj 

Now, 
Г2 = Л1 

arrows (^иіг(Л*[5і..Гі-*Г2..5„])) 

Then, if Γ2

η/ = Л*[А!..Ат], by lemma 2.4.18; and, if Γ2

η/ = Au by 
S-MEET-LB, we have that 

Γ h /\*{S\S G аггоИ!5(ЛиЬг(Л*[5і..Г1-^Г2..>?п]))] < (Γα^Γ2)
η>. 

Finally, the result follows by S-CONV. 

2. Similar to previous item. О 

PROPOSITION 4.2.4 (Soundness of inf) If Г r-,v e e Г, then Г h e e Г. 
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PROOF: By induction on the derivation of Γ h i r l/ e £ T. The interesting cases are 

when the last applied rule is either A T - A P P and A T - T A P P . 

A T - A P P We are given that 

Γ h „ / ƒ о € /\*[T, 1S,- Г, e arrows(flubr(T)) and Г h S < S,} 

is derived from Г (-,„ƒ ƒ G Τ and Γ \-m¡ a e S. 

If Λ*[Γ, 15,->T, e a r r o t o s ( ^ ^ ( T ) ) and Г h 5 < 5,] =/?л Τ*, then the 

result follows immediately using T - M E E T . Otherwise, by the induction 

hypothesis, we have that Γ I- ƒ £ T. By lemma 4.2.2(1), S-MEET-

LB, S-TRANS, and T-SUBSUMPTION, Γ l· ƒ € S,—*T,. By the induction 
hypothesis and T-SUBSUMPTION, Γ h о € S,. By Т - А Р Р , Г h ƒ α e Г,. 
Finally, by T - M E E T , 

Γ Η ƒ о e Л*[Г, I 5,-^Г, e arrows (^ибг(Г)) and Г h 5 < 5,]. 

A T - T A P P We are given that 

Л*[Г,[А"<-5] І Х ^ . ^ . Г , e a H s C M r ( r ) ) and Γ h S < St] 

is derived from Γ Кя/ ƒ Ç T. 

If Λ*[Γ, Ι 5,-»Γ, Ε arrows(flubriT)) and Г Ь S < S,} =0Λ Τ*, then the 
result follows immediately, using T - M E E T . Otherwise, assume 

allsiflubriT)) = A*yX<Si:K.T!..WX<Sn:K.Tn]. 

By the induction hypothesis, we have that, Γ h ƒ £ Г. By lemma 
4.2.2(2), S - M E E T - L B , S-TRANS, and T-SUBSUMPTION, it follows that 

Г h ƒ e VX<S,:K.T,. Since Г h 5 < S„ by Т - А Р Р , Г h ƒ 5 e 
T,[X*-5]. Finally, by T - M E E T , 

A*[T,[Jf«-5] | VJf<5,: /f .r , 6 allsiflubriT)) and Г h 5 < S,]. О 

L E M M A 4.2.5 (Term application) 

If Г h Λ*[5ι-»Γι..5η-»Γ„] < S->T and Γ h U < S, 

then Г Ь ЛЧТ., IГ Ь t / < S,] < Г. 

PROOF: There are two cases to be considered according to the normal form of 
S—*T. The case when (5—•Τ)"·' = S"1'—»Τ"' is similar to but simpler than the one 

we consider here. Assume 

(S-*T)« = Λ*[5 , ,-»Λι..5 4 '-»ΛΜ], where Γ η ' = Л * Ц і . Л » ] · 
By the equivalence of ordinary and normal subtyping (theorem 3.3.9), 

r ' к A*[s^B1

1..s^Bk

1

i..s^B1

n..s^Bk

n"] < tfisr'-Ab.srf^An], 

where Т:'=\В1;Ы . , i f [ t i s I 

* \ Л Ч В , 1 · ^ ' ] , otherwi 

not an intersection; 
otherwise. 



4.2. MINIMAL TYPING 77 

By generation for normal subtyping (proposition 3.2.10), for each ¿e{l..m} there 
exist j£{l..n} and ljE{i..k}} such that 

Γη/ \-n Sf-*B\' < S n / -A, 

Again, by generation for normal subtyping (proposition 3.2.10), for each i€{l..m} 
there exist jG{l..n} and l3c{i..k3} such that 

Γη /K, S"*'< S;' and 

Γ"' h n B) < A, 

By NS-TRANS and the equivalence of ordinary and normal subtyping (theorem 
3.3.9), for each ¿E{l..m} there exist j 'e{l..n} and /,€{»..fcj} such that 

ThU <S, and 

By NS-3, for each ¿6{l..m} there exist jç{\..n} such that 

Γ I- U < S, and 

TnlKN*[B)..Bk

3>\<A,. 

By the equivalence of ordinary and normal subtyping (theorem 3.3.9), for each 
ig{l..m} there exist j£{l..n} suchthat 

ThU<S, and 

T\-T}< A,. 

By lemma 2.4.14, S-CONV, and S-TRANS, 

Г І - Л * [ Г , | Г г - і / < 5 , ] < Т . • 

LEMMA 4.2.6 (Substitution for subtyping) 
If Tx h Si < Γι and Г ь Х<Ту.Къ Г2 h S2 < T2, then Гг, Y2[X<-Si] Ь 

S2[X*-Si] < T2[X<-Si]. 

P R O O F : By straightforward induction on the derivation of Γι, Χ<Τι:Κι, Τ2 h 
S2 < Τ2, using the weakening lemma (lemma 2.4.4), the type substitution lemma 
(lemma 2.4.11), and lemma 2.3.1.4(3). G 

LEMMA 4.2.7 (Type application) 

If Γ h A*ftX<Si-.Ki.Ti..VX<Sn:Kn.Tn] < WX<S:K.T and Γ h U < S, 
then Γ I- h*[T}[X*-U) ΙΓ h U < S,] < Т[Х*-Щ. 
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PROOF: There are two cases to be considered according to the normal form of 
VX<S:K.T. The case when {VX<S:K.T)ni = VX<Snf:K.Tnf is similar to but 
simpler than the one we consider here. Assume 

(4X<S:K.T)n/ = A*[VA'<54/:Ä'.A1..VA"<S4':Ä'.An] 

where Tn' Ξ /\*[Ai..Am]. By the equivalence of ordinary and normal subtyping 
(theorem 3.3.9), 

Γη /Ι-η A*[VX<51
n/:A'i.ß^.VX<5r/:Ä'1.ßi1..VAr<S^:Ä'n.Bi..VA:<5^:A:n.ß*"] 

< 

KWXKS^-.K.Aï.XXKS^-.K.An), 

, mnf ί В}, if it is not an intersection; 
where Tt = | л ; [ я , д Ч o t h e r w i s e 

By generation for normal subtyping (proposition 3.2.10), for each г€{1..т} there 
exist js{l..n) and l]£{i--k}} such that 

TnI r-„ ^X<S^:K,.Bl
}' < VX<Snf:K.A, 

Again, by generation for normal subtyping (proposition 3.2.10), for each іб{1..т} 
there exist jg{l..n} and l}£{i..kj} such that 

К = Кj, 

S"'=S;f, and 

Γη/, X<Sf:K \-n В\' < At. 

By NS-V3, for each iç{\..m) there exist jç{l..n] such that 

г', x<s*f:K κ τ;' < A,. 

By the equivalence of ordinary and normal subtyping (theorem 3.3.9), for each 
i£{l..m} there exist js{l..n} suchthat 

Γ, X<S3:K l· T, < A,. 

Furthermore, by S-CONV and S-TRANS, 

г h υ < s3. 

Then, by the substitution lemma for subtyping (lemma 4.2.6), for each ¿€{l..m} 
there exist jG{l..n} such that 

Γ I- T,[X<-U] < A,[Xi-U]. 

By NS-V3, 

Γ h Λ * № « - ί / ] |Γ h U<S,]< A*[A1[X+-U]..Am[X+-U}}. 

By the definition of substitution, 

Г r- /\*[T,[X*-U] | Г h U < Sj] < Tn'[X^U). 
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Finally, by lemma 2.3.1.4(3), S-CONV, and S-TRANS, 

Γ h A*[T3[X<-U] | Γ l· U < S}] < T[X<-U], Ρ 

Usually, the next step to prove the accuracy of an algorithm, inf in our case, 

would be to prove a completeness result: if the term e has type Γ with respect to 

the context Γ in the the typing system F" then the algorithm inf finds a type T' 

for e in Γ. In the present situation this result is not strong enough, since every 

closed term is typeable in both systems. One easily proves that 

L E M M A 4.2.8 

1. If e is closed in Γ, then there exists Τ such that Г Ь e G T. 

2. If e is closed in Г, then there exists Τ such that Γ h,„y e G T. 

We use the fact that inf is deterministic, which means that the rules are in-

vertible, to prove the important property that it finds a minimal type. 

P R O P O S I T I O N 4.2.9 (Generation for inf) 

1. If Γ blnf ж G T, then Τ = T(x). 

2. If Γ !-,„ƒ \х:Тх.е G Г, then Г Ξ T I - > T 2 , where Γ, χ:Τλ H l n / e G T2 as a sub-

derivation. 

3. If Г І - 1 п / / а С Г , then 

Τ = Λ*[Γ, I S,->T, G arrows(flubriU)) and Г h S < S,}, 

where Г h,„/ ƒ G U and Г Ь,„/ α G 5 as subderivations. 

4. If Г !-,„ƒ АЛХГьА^.е G Τ, then 

where Γ, X<T\:Ki h l n / e G Tj as a subderivation. 

5. If r i - i n / / 5 G r , then 

Τ = A*[Tt[X<-S] \VX<S,:K.Tt G alls(flu^U)) and Γ h S < S,], 

where Γ h l n / ƒ G U as a subderivation. 

6. If Γ h^ïoriXeS!.^ G Τ, then Г = Л*[Ті..Гп], where Г h , v e[X<-S,} G 

Г,, for each íG{l..n} , as subdemations. 

PROOF: The form of the term in the antecedent uniquely determines the last rule 

of its derivation. 

P R O P O S I T I O N 4.2.10 (Minimal typing) 
If Γ h e G Γ and Г Ь,п/ e G Τ', then Γ h Τ' < T. 
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PROOF: By induction on the derivation of Γ h e € T. 

Τ-VAR By generation for mf (proposition 4.2.9), T' = T, and then the result 
follows by S-CONV. 

T-ABS We are given that 

e = Хх:Т\.е2> 

Τ = Т^Тг, and 

Г, х:Т\ h е2 € T2. 

By generation for inf (proposition 4.2.9), 

Γ' = Τι->Γ2 and 

Г, x:T] !-,„ƒ e2 6 T2. 

By the induction hypothesis, Г, x:T\ h T2 < Г2, and by strengthening 
(lemma 2.4.5), Г h T'2 < Г2, from which it follows that Г h Г' < T. 

T-APP We are given that 

e = ƒ«, 
Г h ƒ 6 -»Г, and 

Г l· α € V. 

By generation for inf (proposition 4.2.9), 

Γ !-,„ƒ a e S, and 

Τ' = Λ*[Τ, I S,->r, e аггомвУ&ібгСІО) and Г h 5 < S,]. 

By the induction hypothesis, 

Г h f/ < y->T, and 

Г г- 5 < V. 

By lemma 4.2.3(1), 

Г l· A*[S,-*T, 15,-»Г, € <итои»(/Ыг(І/))] < V—Г. 

Finally, by the term application lemma (lemma 4.2.5), it follows that 

Г I- A*[T, | Г h S < S,} < Τ, 

where S,—*Tt € arrows (finali)). 

In other words, 

Γ h Λ*[Γ, Ι S,-*T, e arrows(flu^U))] < T. 
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Τ-TABS We are given that 

с = \X<T\\K\.z2, 

Τ = VX<Ti-.Ki.T2, and 

Γ, Χ<Τι:Κλ h e e Γ2. 

By generation for inf (proposition 4.2.9), 

Г = WX<Ti:Ki.r2 and 

Г.ХКТ Кг^е^Т^. 

By the induction hypothesis, Г, X < Τλ:Κ\ ЪТ'2< T2. Then, by S-ALL 
it follows that Γ h Τ' < T. 

Τ-TA Ρ Ρ We are given that 

e = fS, 

Τ = T2[X*-S\T l· ƒ e ЧХ<ТХ:К.Т2, and 

Γ I- S < TL 

By generation for inf (proposition 4.2.9), 

T' = /\*[U, \VX<S,:K,.U, G alkiflubriU)) and Г Ь S < S,}, and 

T\-,nffeU. 

By the induction hypothesis, Г h U < VX<TX:K.T2. By lemma 4.2.3(2), 

Г I- /\*[4X<St:Kt.U, \VX<S,:Kt.Ut G alb(flubr([/))] < VX<1\:K.T2. 

Then, by the type application lemma (lemma 4.2.7), it follows that 

Г h Л * № < - 5 ] IГ l· S < S,] < T2[X^S], 

where VX < S,: AT,, l/, e аШС/Ы^І/)). 

Namely, 

Г l· Λ*[^.[^*-5Ί IVA^S.^ . Í / , € allsiflubriU)) and Γ h S < S,] 

< T2[X<-S]. 

Τ-FOR We are given that 

e = Í0T(XeSi..Sn)e2 

Γ h e2[X<-S] 6 Γ, and 

5 e {S,..S„}. 
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By generation for inf (proposition 4.2.9), 

T' = A'PV.TJ, and 

Γ hj„/ ei\X*— S] ε Ti for each i in {l..m} . 

By the induction hypothesis, S - M E E T - L B , and S-TRANS, we have that 

Γ (- А*[Тг..Тт] < T. 

T - M E E T By the induction hypothesis and S - M E E T - G . 

T - S U B By the induction hypothesis and S-TRANS. О 

Finally, we have proved the following result. 

THEOREM 4.2.11 (Minima/ typing for F") Given a term e and a context Г, there 
exists Τ such that for every T', if Γ h e e Γ', then Γ h Γ < Τ'. 

4.3 Decidability of type checking and type infer­
ence 

In the previous section we proved that the algorithm inf is sound and computes 

minimal types for the F" typing system. The next step is to prove that the 

algorithm inf always terminates. This result completes the proof of decidability 

of type checking and type inference in F". 

We first define a measure for terms such that the type information inside the 

terms is considered to have constant value. The intuition behind the definition is 

to find a measure on terms which is invariant under type substitution (see lemma 

4.3.2). 

D E F I N I T I O N 4.3.1 (size | | - | | ) 

INI = i, 
| |Лх:Г.е|| = 1 + | |e | | , 

lkie2|| = IMI + INI, 
\\XX<T:K.e\\ = 1 + | |e | | , 

Ікгц = 1 + iMi, 

\\ίοτ(Χ^Ά..Τη)ε\\ = l + | |e | | . 

LEMMA 4.3.2 | | e | | = | |е[Л"«-Т]||. 

P R O P O S I T I O N 4 3.3 ( Well-foundedness of inf) 

The inference rules for inf define a terminating algorithm. 
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PROOF: In the case of AT-VAR, the termination follows from the decidability of 
ok judgements (see corollary 2.4.10(1)). Furthermore, for each rule R of inf, if 
Γ h e g Τ is a hypothesis and Γ h e' E Τ' is the conclusion of R, then | |e | | < | |e ' | | . 
Moreover, in the cases for A T - A P P and A T - T A P P , Γ h ƒ 6 Γ by the soundness 

of inf (proposition 4.2.4), Γ h Τ E * by well-kindedness of typing (proposition 
2.4.20). Hence yïu6r(T') is defined by lemma 4.1.5. Furthermore, arrows and alls 
define finite sets, and, as we proved in section 3.5, subtyping is decidable. Hence, 
the algorithm inf always terminates. ü 

We can now state and prove that type checking in F " is decidable. 

THEOREM 4.3.4 (Decidability of type checking in F " ) 
For any context Γ, and for any term e and type Γ closed in Γ, it is decidable 

whether Γ Η e e Г. 

P R O O F : Infer a minimal type T' for e in Г using inf, which is decidable by 
proposition 4.3.3, and check whether Г l· T' < T, which is also decidable by 
theorem 3.5.18. D 

Every term e closed in a context Г has type T*. We are interested in finding 
types other than T*, namely non-trivial types. Since inf computes minimal types 
and T* is the largest type (modulo = д л ) , if a term has a non trivial type in a 
given context, then the algorithm inf finds it. 

THEOREM 4.3.5 (Decidability of type inference in F " ) 
For any context Г and for any term e closed in Г, it is decidable whether there 

exists a type Τ such that Γ h e g Γ and Τ фр^ Τ*. 

PROOF: Infer a minimal type Τ for e in Γ using inf, which is decidable by pro­

position 4.3.3, and reduce Τ to normal form which is decidable because —>дл is 
strongly normalising (see theorem 2.5.10). Finally, check whether Tnt = T*. D 

4.4 Subject reduction 

The F% system is layered in three syntactic categories: kinds, types, and terms. 
Since terms do not appear in either types or kinds, reductions in type expressions 
can be studied independently from the reductions of terms. In section 2.2, we 
proved that reduction on types preserves kinding properties: the sub-language of 
types and kinds satisfies the subject reduction property (lemma 2.4.12): 

if T\- Se К and 5 -»„л Τ, then Г Ь Г <Е К. 

In this section, we show the subject reduction property for typing judgements 
(proposition 4.4.7): 

if Г h e G T and e -*0¡OT e', then Γ h e' € Г. 

In other words, reductions on terms are also safe. 
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L E M M A 4.4 .1 If Y <¿ FV(5) , then 

1. e[Y*-T][X*-S] = c[X*-S][Y*-T[X*-S]] 

2. U\Y*-T][X*-S] = U[X*-S]\Y*-T[X+-S\] 

PROOF: By induction on the structure of e and U respectively. Π 

LEMMA 4.4.2 (Substitution for typing) 

1. If Γι l· t\ € S\ and Γι, x:S\, Γ2 l· «2 € S2 , then Γι, Γ2 Η e2[a:<—ei] € 5 2 . 

2. If Г, h 5<ΑΊ and Г ь X < S i : # i , Г2 г- е2 € S2, then Г ь Г2[Л"<-5] h 

е 2[л:^-5] e S3[X*-S\. 

P R O O F : 

1. By induction on the derivation of Γι, x:S\, Γ 2 l· e 2 G 5 2 . 

2. By induction on the derivation of Γχ, X<Si-.Ki, Γ2 Η e 2 € S2, using the 
type substitution lemma (lemma 2.4.11) in the T-VAR and T - M E E T cases; 
the substitution lemma for subtyping (lemma 4.2.6) and lemma 4.4.1 in the 
case for T - T A P P ; lemma4.4.1 in the T - F O R case, and the substitution lemma 
for subtyping (lemma 4.2.6) in the T-SUBSUMPTION case. • 

LEMMA 4.4.3 Γ l· Τ* < Τ if and only if Τ =βΛ Τ* and Γ h Τ e *. 

P R O O F : If Τ -β/κ Τ*, then the result follows by S-CONV. Otherwise, if Γ h 
Τ* < Τ, by the well-kindedness of subtyping (proposition 2.4.19), T - M E E T , and 
uniqueness of kinds (lemma 2.4.7), Γ h Τ ζ *. By the equivalence of ordinary and 
algorithmic subtyping (proposition 3.4.3), Г"' г-д^ Τ* < Τ , which can only be 
derived using ALGS-V3 where Tnf is the empty intersection. ü 

Given Γ h S < Τ, generation for normal subtyping (proposition 3.2.10) and the 
equivalence of ordinary and normal subtyping (theorem 3.3.9) provide subtyping 
information about the normal forms of S and T. We can also show that subtyping 
is structural for arrow types, quantified types and type operators, without redu­
cing the terms in the subtyping relation to normal form. An implementation of a 
subtyping algorithm for F " could take advantage of this fact by delaying normal­
izing steps, which might result in having to consider fewer recursive calls or calls 
with smaller arguments. 

LEMMA 4.4.4 (Generation for ordinary subtyping) 

1. Γ h Γι->Γ 2 < Si-tSi and S2 ¿pA T* if and only if Γ l· Sl < Γι and 
Γ h T2 < S2 

2. Tl· \/Х<Тг:Кт.Т2 < VX^Si-.Ks.Si and S2 φ0„ Τ* if and only if Ks = KT, 

Τλ =0A S u and Γ, X<TX:KT l· T2 < S2. 
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3. Γ h ΑΧ:ΚΤ.Τ2 < \X:KS.S2 and S2 φβΑ Τ* if and only if Γ, X:KS h T2 < 
S2 and KT = Ks-

PROOF: The three statements are proved using a similar argument. We consider 
here the proof of part 2. If Ks = Κτ, Ά =βΛ Sly and Γ, Х<Тг:Кт l· T2 < S2, 
then, by S-ALL and S-CONV, Γ h Х<Тг:Кт.Т2 < VX<Sy.Ks.S2. Conversely, let 

ThVXKTv.KT.TiKVXKSv.Ks.Si and S2 φβΛ Τ*. 

Lemma 4.4.3 implies that T2 φρ^ Τ*. Then we have to consider four cases 
according to whether S2 and T2 are intersection types or not. We illustrate the 
proof argument considering just one case. Let 

(УХ^ТцКт.Тз)* = VX<T!ní:KT.T2
nf, and 

(VXKSi-.Ks.Stff = /\*\VX<S1*
i:Ks.A1.XX<S1*

/:Ks.An], 

where S2 Ξ Д * [ Л І . . Л П ] . By the equivalence of ordinary and normal subtyping 
(theorem 3.3.9) and generation for normal subtyping (proposition 3.2.10), for each 
¿€{l..n} 

Γη/ h n VX<TS}:KT.T? < VXKS^-.Ks.Ai 

and, again generation for normal subtyping (proposition 3.2.10) implies that 

Γη/, X<T?':KT Γ-„ Γ2

η/ < Ai, and 

Τ? = S?. 

By NS-V, 

Гя/, Х<Т?:Кт ь п T2

n/ < s;f 

and, by the equivalence of ordinary and normal subtyping (theorem 3.3.9), 

r,X<Ti:KT\-T2<S2. α 

LEMMA 4.4.5 (Generation for typing) 

1. If Γ h \x:Si.e £ S, then there exists S2 such that Γ, x:S\ H e (Ξ S2 and 
Γ h Si->S2 < S. 

2. If Γ h \X<S\:Ki.e Ç. S, then there exists S2 such that Γ, X<S\:K\ h e (= S2 

a n d n - V X < S i : t f i . S 2 < S . 

3. If Γ b ίοτ(Χ£{Ui..Un})e Ε Τ, then there exist ΤΊ..Τη such that, for each i 
in {l..n} , Γ h e[X*-U¡] e Ti and Γ h Λ*ΡΊ..Γ„] < Г. 

PROOF: Each statement is proved by induction on the derivation of the typing 
statement in the antecedent. We exhibit here the proof of part 3. We proceed by 
case analysis on the last rule of the derivation of Г h for(A"g{(/i..[/n})e € Г. 
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T-FOR We are given that Γ h e[X*-U\ € Τ for some Ue{Ui..Un}. Since every 
closed term has a type, we have that, for each г in {l..n} , Г h e[X*— U,\ Ç. 
T„ and, by S-MEET-LB, Г h Λ*ΡΊ..Τ..Γη] < T. 

T-MEET Let Τ = /\*[Si..Sk]. We are given that, 

Γ l· ok and 

Γ l· for(Xe{i/i..C/n})e e S}, for each j in {L.Jfc} . 

By the induction hypothesis, for each j£{l..fc} and each ¿6{l..n} , there 
exist T3> such that 

Т\-е[Х*-и,]сТ3„ and 
ΓΗΛ*[Τ ; ι . .Γ ; η ]<5,, 

and, by the minimal type property (theorem 4.2.11), there exist T\..Tn 

such that 

rhe[Xbi/,]eT„ and 

ΓΙ-Γ, < Γ Λ > 

by lemma 2.4.18, it follows that Г h Λ*ΡΊ..7'η] < Λ*[ΓΛ..Τίη], and by 
S-TRANS, Γ h Λ*[2ι..Τη] < S,. Finally, by S-MEET-G, it follows that 
Γ 1- Λ*Ρι..Γη] < A*[5!..5t]. 

Τ-Su в We are given that 

Г I- îm(Xç{Ui..Un})e 6 5, and 

Г h S < T. 

The result follows by the induction hypothesis and S-TRANS. Ü 

Since terms cannot occur in types, subject reduction for terms does not need 
to consider reductions in contexts. 

PROPOSITION 4.4.6 (One step subject reduction for typing judgements) 
If Г h e e Г and e -*β}„ e', then Γ h e' 6 T. 

PROOF: Since every term has type T*, the interesting case is when Τ φβ^ Τ*. 
This proposition follows by induction on the derivation of Γ h e 6 Г. We consider 
the cases where e is a redex; the other cases follow by straightforward application 
of the induction hypothesis. 

T-APP There are two possibilities for e to be a redex. 
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1. e Ξ (Ax:Si.ei) e2, e' = e\\x<— e2], and Τ = T2 . We are given that 

Г h Ax:5i.ei e Ti->T2 and Г h e2 G Г ь 

By the generation lemma for typing (lemma 4.4.5), there exists S2 

such that, 

Г, x:Si h ex € S2 and Г h Sl-*S2 < Γα->Γ2. 

Since Г2 ^ Λ Τ*, by the generation lemma for ordinary subtyping 
(lemma 4.4.4), 

Γ h 7\ < Si and Γ h S2 < T2. 

Then, by T-SUBSUMPTION, it follows that 

Γ, x:Si l· ei e Γ2 and Γ |- e2 S Sx. 

Finally, by the substitution lemma for typing (lemma 4.4.2(1)), 

Γ h ejx«— e2] e T2. 

2. e Ξ (for(X€t/i..í/n)e2)ei, e' = for(XeC/1..[/n)(e2 d ) , and Τ = T2. 
We are given that 

Γ h for(Xeí/i..í/»)ej e Ti-+T2 and Γ h ex £ Тг. 

By the generation lemma for typing (lemma 4.4.5), there exist Vi..K, 
such that 

Г h e2[X<— U,] £ К for each ¿ε{1..η} , and 

Γ h А*[ г.. п] < Гг->Г2. 

We write V, = Л,,, if it is not an intersection, 

V,n/ Ξ A * K " A J , otherwise. 

Note that A*[Vi..V„]4' Ξ Л*[Аі,..Лиі»і4Пі..Л„кп]. By the equival­
ence of ordinary and normal subtyping (theorem 3.3.9), 

Γ " К K[Au..A4i..Ani..AnJ < (T^T2f. 

We have to consider two cases according to the form of (7i—•T2)"''. 

(a) (Γι—>Гг) Ξ Τι —>Γ2¡ . By generation for normal subtyping 
(proposition 3.2.10), there exist Ιζ{1..η} and je{l..fei} such 
that 

Γη/ h n A,, < T?-*T?, 

and, by NS-3 or NS-REFL, 

by NS-TRANS, 
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and, by the equivalence of ordinary and normal subtyping (the­

orem 3.3.9), 

Γ l· V, < Ti-»T a. 

Then, by T-SUBSUMPTION, 

Γ h e2[X*-U,] e 2Ί-»Γ 3 . 

By T - A P P , 

гьых*-и,])еіет2, 
and since X is not a free variable of e\ we have that, 

rhe 2 e, [^ i/ , ]eT 2 . 
Finally, applying T - F O R , we have that 

ri-for(JfeI/i..I/»)eaCi6ra. 
(b) (Т 1 -»7 а ) ч / = A*[T1

nf-^B1..T1

nf^BT], where T2

nf = tf[Bi..Br]. 

By generation for normal subtyping (proposition 3.2.10), for 

every s€{ l . . r} there exist Ιζ{1..η} and j&{l..k¡} such that 

Г*КА,г<Т?^В„ 

and, by NS-3 or N S - R E F L , 

T»J\-nVt

nf<Ah, 

by N S - T R A N S , for every л€{1..г} there exists l£{l..n} such 

that 

Γ η / h n Vt

nf < T^B,, 

and, by the equivalence of ordinary and normal subtyping (the­

orem 3.3.9), 

Γ l· Ц < T,-*Ba. 

By T-SUBSUMPTION, for every s€{ l . . r} there exists /e{l . .n} 

Γ l· e2[X^-S,} € Ϊ Ί - » £ , . 

By T - A P P , for every s€{ l . . r} there exists l£{l..n} 

rr-(e2[X^5,])e1eß J , 
and since X is not a free variable of e\ we have that, for every 

s€{ l . . r} there exis ts /€{l . .n} 

Г 1 - е а е і [ Х 4 - 5 | ] б В . . 

Applying T - F O R , we get that for every S€{1 . .T ·} 

ri-fbr(Xel/1..ü»)eaei6ß., 
by T-MEET, 

ГЬІот(Х£и1..ип)е2е1еТ2

п/. 
Finally, by S-CONV and T-SUBSUMPTION, 

ri-for(A'et/1..i/„)e2e16r2. 

There are two possibilities for e to be a redex. The case when e = 
(foi(X(zU\..Un)t2) S follows a similar argument to the one used for the 
case e = {{oi(XeUi..Un)e2) et) in T - A P P . 
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If e Ξ {XX<Si:Ks.e2) S e! = e¡[X*-S\t and Τ = T2[X—S\, we have 

that Γ h XXKS^.Ks.et 6 4Χ<Τλ:Κτ.Τ2 and Γ h S < Г ь By the gener­
ation lemma for typing (lemma 4.4.5), there exists S2 such that 

Г, X<S\:Ks H e 2 € S2 and 

Г h 4X<SX\KS.S2 < \/Х<ТцКт.Т2. 

Since Гг[Х<—5] фр^ Τ*, lemma 2.3.1.4(3) implies that T2 фв^ Τ*. Then, 
by the generation lemma for ordinary subtyping (lemma 4.4.4), 

T,X<Sv.KsYSi<Ti, Si=ß*Tu and Ks = KT. 

By T-SUBSUMPTION, Γ, X<Si:Ks r- e2 € T2, and, by S-TRANS and S-

CONV, Γ h S < Si. Finally, by the substitution lemmafor typing (lemma 

4.4.2(2)), Г h e2[X^S] e T2[X<-S\. 

T - F O R Let e = for(A"et/i. . í /n)eb where X £ FTV(e,) and e' Ξ e,. We are given 

that Γ h ел\Х<-и] 6 Г, with Уб{£/г..1/„}. Since e, Ξ е^Л" <-(/], the 
result holds. • 

We now have all the results needed in order to prove that reduction on terms 
preserves typing. The following proposition, the subject reduction property for 
F% terms, is a consequence of the previous one. 

PROPOSITION 4.4.7 (Subject reduction for typing judgements) 

If Γ h e e Γ and e -*0f„ e', then Г h e' G Г. 

PROOF: By induction on the derivation of e -»/?/0r e', using proposition 4.4.6. • 
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Chapter 5 

A P E R Model for F\ 

5.1 Introduction 

This chapter is based on [CP93]. The differences come from having replaced the 

distributivity subtyping rules by reduction rules. Among simplest models for typed 

Α-calculi are those based on partial equivalence relations (PERs). A model in this 

style is essentially untyped: terms are interpreted by erasing all type information 

and interpreting the resulting pure λ-term as an element of the model. A type, 

in this setting, is just a subset of the model along with an appropriate notion of 

equivalence of elements. Coercions between types are interpreted as inclusion of 

PERs. 

Our P E R model for F% extends the model of F A given in [Pie91], which is 

based on Bruce and Longo's model for F< [BL90]. The usual interpretation of a 

quantified type VX.Tin a PER model is the PER-indexed intersection of all pos­

sible instances of T. Bruce and Longo refined this definition to interpret Л"<£.Т 
as the intersection of all the instances of Γ where X is interpreted as a sub-PER of 

the interpretation of S. This intuition also serves for intersection types: Д*[Гі-.Гп] 
is interpreted as the intersection of the PERs interpreting each of the Xi's. We 
generalize this model to ω-order polymorphism (and subtyping) by interpreting 

type operators as functions over PERs. 

To deal correctly with intersection types, we need to make one significant 

technical departure here from PER models of ordinary bounded quantification: 

instead of allowing the elements of our PERs to be drawn from the carrier of an 

arbitrary partial combinatory algebra V, we require that V be a total combinatory 

algebra. This restriction is needed to validate instances of S-CoNV, which have 

the form Γ h Τ* < S —» Τ*. For example, let S = Τ*. The empty intersection T* 

is interpreted by the everywhere-defined PER, i.e., [T*] relates every m to itself. 

To validate the distributivity law, it must therefore be the case that | T * —* T*] 

relates every element to itself. But this will only be true if the application of any 

element to any other element is defined. This observation is due to QingMing Ma. 

Cardelli and Longo [CL91] and Bruce and Mitchell [BM92] have given related 

models for variants of F" including subtyping, but without intersections. 

The notation and fundamental definitions used here are based on papers of 

91 
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Bruce and Longo [BL90], Freyd, Mulry, Rosolini, and Scott [FMRS90], and others. 
A helpful basic reference for PER models of second-order Л-calculi is [Mit90b]; also 
see [BMM90] for more general discussion of second-order models and [Bar84, HS86] 
for general discussion of combinatory models. 

5.2 Total combinatory algebras 

A total combinatory algebra is a tuple T> = (D, ·, k, s) comprising a set D of 

elements, an application function · with type D —* (D —• D), and distinguished 

elements к, s 6 D such that, for all d\, d2, d3 E D, 

к • di · di = ui 

a · di • ¿2 · ¿з = (¿ι * dì) • (d2 · d3). 

Throughout this section, we work with a fixed, but unspecified, total combinatory 
algebra V. (C.f. [Sco76] for examples.) 

The set of pure X-terms is defined by the following grammar: 

M ::= χ | X(x)M | Мг M2 

The set of combinator terms is: 

С : := χ | Ci C2 \ К \ S 

The bracket abstraction of a combinator term С with respect to a variable x, 

written fun* (x) C, is defined as follows: 

fun*(x)C = КС when χ £ FV(C) 

fun*(x)x = S К К 

fun* (χ) Ci d = S (fun* (χ) Ci) (fun* (χ) C 2 ) when xeFV(C, C2) 

The combinator translation of a pure Л-term M, written \M\, is defined as follows: 

|x | = χ 

| λ ( χ ) Μ | = fun*(x) |M| 

| M i M 2 | = | M , | | M 2 | 

A term environment η is a finite function from term variables to elements of 

D. When χ £ dom(77), we write η[χ*— d] for the environment that maps χ to d and 

agrees with η everywhere else. We write η\χ for the environment like η except 

that η(χ) is undefined; тДГ is like η but undefined on all the variables in dom(r) . 

We say that η extends η when dom(r;) Ç dom(7/ ) and η and η agree on dom(r/). 

Let С be a combinator term and η a term environment such that FV(C) Ç 
dom(7/). Then the interpretation of С under η, written [ C ^ , is defined as follows: 

M„ = Φ) 

m„ = к 
IS], = s. 
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LEMMA 5.2.1 

1. If η' extends η and FV(C) Ç dom(rç), then [C], = [CI,,. 

2. р ц п * ( х ) С 1 , . т = [ С ] , [ _ т ] . 

P R O O F : Standard. G 

5.3 Higher-order partial equivalence relations 

A partial equivalence relation (PER) on a combinatory algebra Ρ is a symmetric 
and transitive relation A on D. We write m {A} n when A relates m and n. The 
domain of A, written dom(A), is the set {n | n {A} n}. (Note that m {A} n 
implies m e dom(j4).) We write P E R for the class of all PERs. 

If A and В are relations, then A —» В is the relation where то {Л —» В} n iff, 
for all ρ, <?G.D, ρ {Л} ç m-p {В} n-q. It is not hard to show that A —* В is a PER 
when A and В are PERs, and that the intersection of any set of PERs is a PER. 
To interpret type operators, we need to consider not only PERs, but arbitrary 
function spaces built on PER. An element of such a function space (including, as 
a special case, an element of PER itself), is called a higher-order PER (HOPER). 
The interpretation of a kind К is a suitable space of HOPERs: 

| * 1 = P E R and 

ІКг-ьКі] = [ t f i ] - » № ] . 

We generalize the familiar graph-inclusion of relations to HOPERs as follows: 

AC* В iff A, Be [* I and 

m {A} n implies m {В} n for all m,nçD\ 

A ÇKl~K> В iff А, В e ΙΚι->Κ2] and 

АРСКг ß Ρ for all Pe {Kij. 

Let {A, G fK]}teI be a set of HOPERs indexed by a set I. Then Γ&ιΑ, is 
the HOPER defined by 

m {ПГе/·^·} n 'ff f ° r е е г У *i m {A,} n 

VfèrK'A. = APe[ t f i ] .n£ ,A.P 

LEMMA 5.3.1 

1. Each Ç is transitive. 

2. If A, e \K\ for each jel, then Γ&ιΑ, e Щ. 

3. If A Ск В, for each j , then A CK ffeI В,. 
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4. П ^ ; A, CK A3 for each j . 

5. Г£еіА-+В, Ç*A-»aV B . · 
6· П*е/ Прскд В, С* ΓίρςΑ-л ΠΓεί β · · 

7. а 1 λΡ6[^ι]. Β. Ρ С* 1 -* ' ЛРе[Яі1. П& Β, Ρ, if each £?, e [ Α Ί - ^ Ι · 

8. rte/ β . ¿ Я*' (Г№ГК' 5 · ) ^. w h e r e Аф^]. 

Indeed, in cases 4 through 8 the inclusions are equalities. 

PROOF: Straightforward. О 

Each collection [A"J of HOPERs has a maximal element under the ordering 

QK. This element is written Τ and can be calculated as follows: T* is the total 

relation on V and TKi~h'2 = λ Ρ ε [ Α Ί ] . Τ Κ ι . 

F A C T 5.3.2 Let A e [Kj. Then: 

1. A QK TK. 

2. TK CK A implies A = TK. 

5.4 H O P E R i n t e r p r e t a t i o n of F% 

An environment τ; is a finite function from type variables to HOPERs and from 

term variables to elements of D. The notations for environment extension, re­

striction, and agreement are carried over from term environments. By an abuse 

of notation, type environments are used in place of term environments from now 

on. 

The erasure of an F% term e, written erase(e), is the pure λ-term defined as 

follows: 

erase(a;) = χ 

erase(Az:T.e) = A(i)erase(e) 

erase(ei e2) = erase(ei) e r a s e ^ ) 

erase(\X<T:K.e) = erase(e) 

erase(e Γ) = erase(e) 

erase(for(XeTi..7 ,

n)e) = erase(e). 

Let η be a term environment and e an expression such that FV(e) Ç dom(j/). 
Then the interpretation of e under η, written [e] , is [|erase(e)|] . 
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If η is an environment and Τ a type expression such that FTV(T) Ç dom(r/), 
then the interpretation of Τ under η, written [Τ] , is the HOPER defined as 
follows: 

m 4 = ·)№ 

P W T j , - ΡΊΙ,-» РЧ, 

[ЛА'[Ті..гп]!„ = nf<,<nP,i 

ΙΑΧ:Κ.Τ}η = XP£lKUnn[x^P] 

We say that an environment η satisfies a context Γ, written η (= Γ, if dom(7/) = 
dom(r) and 

1. Γ Ξ 0; or 

2. Γ Ξ Γι, χ:Τ, where η\χ satisfies Γι and either IJTJL^Î or η(χ) € dom([TJ . ); 
or 

3. Γ Ξ Γ,, Χ<Τ:Κ, where η\Χ satisfies Γι and either |[Г]ч ХТ or η{Χ) ÇK 

in,\x-
Iterating the definition immediately yields that either [T] . r <x1 or [Т]> г . x £ 
IK}, whenever η (= Г ь X<T:K, Г2. Also, note that if τ?' extends τ/ and FTV(T) С 
dom(7/), then either [TJ^T and [Т],Д, or else both are defined and JTJ^ = [2']^,. 

LEMMA 5.4.1 Let Г be a type, Г a context, and η an environment such that 
FTV(T) С dom(77) and η μ Г. If Г Ь Г e AT, then [Г]Ц and f r ] , e [Ä"]|. 

PROOF: We need to check the desired result together with an additional fact: 

1. If Г h Τ e К, then [Т]ч is defined and [T],, e [Ä-]. 

2. If Г ь X<T:K, Г2 h ok, then [ T ] ^ ^ and [ Г ] ^ * G [К]. 

The two are proved by simultaneous induction on derivations. We give only the 
interesting cases; the rest follow by straightforward use of the induction hypothesis 
and simple properties of HOPERs. 

1. K-TVAR We are given that Г = Г ь X<T:K, Г2 and that Г h ok. By part 
2 of the induction hypothesis, [T]L r i ^ j . By the definition of 

satisfaction, (η\Ϊ2)(Χ) Q [Î1] >r \X, which implies in particular 
that η(Χ) £ \K~\. By the definition of interpretation, \X\ = 

η(Χ) e [К]. 
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K-ALL We are given that К = * and Τ Ξ \/Χ<ΤΛ:Κλ.Τ2, and that 

Γ, Χ<Τι:Κι h T2 G +. By lemma 2.4.1, there exists a shorter 

derivation of Γ, Χ<Ί\:Κ\ h ok, and, by part 2 of the induc­

tion hypothesis, we have that [7Ί] J. and [7Ί] € \Κχ\. Now, 

suppose Ρ <ΖΚλ [Tij . Then the definition of satisfaction yields 

η\Χ*— Ρ] |= Г, X<T\:K\. By part 1 of the induction hypothesis, 

I-^ltjNVt-pii a n c l РЗІТІГЛ^РІ £ [ * J · Since PER is closed under 

intersections, [TJ4 = Прс *i ргл, Ρΐΐι,μτ-ρ] e 1*1· 

K - O A B S Similar. 

2. C-VAR We are given that Γ Ξ Γ', x:S, where Γ' = Г ь X<T:K, Г^ and 
that Г' Ь S e *. By lemma 2.4.1, Г' г- ok. By the definition of 
satisfaction, тДх (= Г'. By the induction hypothesis, the result 
follows. 

C - T V A R The case where Гг ^ 0 is similar to the previous case. When 
Г 2 = 0, we are given that Γ Ξ Γ Ι , X<T:K and that Г , Ь Г е К. 
By the definition of satisfaction, η\Χ \= Γ'. By the induction 

hypothesis, the result follows. Ü 

In order to prove the soundness of subtyping we need some technical results 
about substitution and /3-conversion. 

L E M M A 5.4.2 

Let 77 be an environment with X $ dom(?;) and such that FTV(5[X«—T]) Ç 
dom(7?) and [ 5 ] ч [ ^ _ т > ) ] ! . Then І5[Л"<-Г]]Ч = Щ„[х^[τ]η]. 

P R O O F : By induction on the structure of S. О 

LEMMA 5.4.3 Let η be an environment such that FTV(S) С dom(7;). If 5 =p* Τ 

and [SJ„ | , then [S]„ = [1%. 

PROOF: By induction on the definition of /ЗЛ-conversion, it is easy to see that it 
suffices to show the statement for a one-step reduction S —*βΛ T. This is proved 

by induction on the structure of 5. The only interesting cases are when S is a 

/ЗЛ-redex and Τ its reduct. Let 5 Ξ {ΚΧ-.Κ.Τ^Τχ and Τ = Τλ[Χ^-Τ2). Then 

1(АХ:К.Т2ТгІ = ( А Р е І А І Р У ^ ^ И Г , ] , by definition of [ - ]„ 

= Ргічіхчт. і , ] 

= P M * « - ^ ] ] , , by lemma 5.4.2. 

For the other redexes the result follows from lemma 5.3.1 given that for items 4 

through 8 the inclusions are equalities. • 

Our main semantic results are the soundness of subtyping and typing. 

THEOREM 5.4.4 (Soundness of subtyping) If Г h S < Τ and Γ h S G К, and if 

η \= Γ, then [ S ] , C A ' [ Γ ] , . 
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PROOF: The proof proceeds by induction on the structure of a derivation of 

Γ h S < T. For the sake of readability, we often make implicit use of the fact that 

if Γ h S < Τ and Γ l·- S € К, then, by proposition 2.4.19 and lemmas 2.4.7 and 
5.4.1, [ 5 ] η and [TJ^ are defined and belong to [AT] whenever η \= Γ. 

S-CONV We are given that S =βΛ T. Then, by lemma 5.4.3, [5Ц,, = [T]^ 

S-TRANS By the induction hypothesis and the transitivity of Ç (lemma5.3.1). 

S -TVAR We are given Г ь X<T:K, T2 l· ok. Now, {Χ}η = η(Χ) Ск Щ^х, 
because η (= Γ and, as η extends η\Χ, [Τ] ,χ = [TJ . 

S-ARROW We are given Γ h Γι < Si and Γ h S2 < T2, with Γ Η 5i-»S 2 ε *. 

By the uniqueness of kinds (lemma 2.4.7), К = +. Now by the well-
kindedness of subtyping (proposition 2.4.19) and syntax directedness 
of kinds (proposition 2.4.6) we have Г h S2,Ti E *. By the induc­
tion hypothesis, [ S J , Ç* [Г 2 1 ч and p \ ] 4 Ç* [Sil,. Hence, by the 
covariance on the right and contravari ance on the left of the func­
tion space constructor on PERs (easily verified from its definition), 
Ï5i]n-[5J„ Ç* ΡΊΙ,-рЧ,,, i.e. [Si^S2l Ç* [Γ,-r j , . 

S-ALL We are given that 

Γ, X<U:Ki h S2 < T2 and 

T\-4X<U:Ki.S2e*. 

By proposition 2.4.6, Γ, X<U:Ki h S2 € *. Let Ρ 6 [ ( / ^ . Then, 

by the definition of satisfaction, η[Χ<— Ρ] (= Γ, X<U:Ki. Now, by 

the induction hypothesis, it follows that I ^ L r ^ ^ p i Q* P ^ L M ^ M · 

Hence, Пясхі[и]ч [ & ] ч [ х _ р ] Ç* П р с л ц и ^ 1Г2Іч[*,-р]· Consequently, 

|VJf<y:Xr.52] 4 Ç* ^X<U:Ki.T2î. 

S - O A B S We are given Г, Х<ТКі:Кг h 5 < Γ and Γ h AX:Ki.S 6 К. By the 

syntax-directedness of kinding, К = K\—*K2 and Γ, X<T ' :ΛΊ l· 

5 € K2 for some /f2. If Ρ G [Kijv then »/[Λ"«-Ρ] И Γ, Х<ТКі:Кг. 

Now by the induction hypothesis, {¿І^р^ет Q R î
 І ^ Х І Я ^ Р ] · Then 

XP G [tf i] . [Sl„[**-fl Ç* 1 "** №[ΚΙΙΛ4ΑΧ~ΡΙ· Consequently, 

lAX:Ki.S\ CK*-K' ¡λΧ:Κι.Τ]η. 

S - O A P P By induction hypothesis, using the syntax-directedness of kinding. 

S - M E E T - G By the induction hypothesis and lemma 5.3.1(3). 

S - M E E T - L B By lemma 5.3.1(4). Π 

The type context Γ ¡TV obtained from a context Γ is defined in the obvious 
way: 

0/TV = 0, 

(Γ, x:T)¡TV = T¡TV, 

(Γ, X<T:K)¡TV = r/TV,X<T:K. 



98 CHAPTER 5. A PER MODEL FOR F% 

THEOREM 5.4.5 Let щ\=Г and η2 \= Γ, such that щ/Т = η2/Τν and, for all 

i e d o m ( r ) , Vl{x) { [ Ι » ] , } η2(χ), where η = щ/Т . Then [ c ] m {\T\} \t\^. 

PROOF; From Γ I- e G Γ it follows by the well-kindedness of typing (proposition 

2.4.20) that Γ l· Τ G +. Note that FTV(T) С dom(r/TV); then, by strengthen­
ing (lemma 2.4.5), Г/Т h Τ G *. Note also that η f= Г/Т ; by lemma 5.4.1, 
[ Г ] ч is defined and in [ * ] . We often use this fact implicitly in the following. The 
proof now proceeds by induction on a derivation of Г Ь e G T. 

Τ-VAR From the assumption that for every χ in dom(T). η\(χ) {[Г(а;)]] } т?г(^)· 

T - A B S We are given that Г, x:T\ h e G T2. Suppose that ρ G D and q G D 

are such that ρ { p i ] } q. Then 7/ι[χ<—ρ] |= Γ, i :Ti and т?2[х<—я] \= 
Г, x:2\. By the induction hypothesis, I e ] 7 ; i [ l _ ) ) ] {[Г 2 ^} [ e j ^ ^ , that 
is, Ц е г м ф ) ! ] . , , { [ T 2 ] J [|erase(e)|] , , _ . . From lemma 5.2.1(2) 
it follows that t fun*( i) |erase(e) | ] 4 1 .p {[Га],} [fun* (x) |erase(e) |] 4 2 . q, 
that is, [Ax.-Ti.e] .p { p s ] } [Αχ:ΤΊ.ε| .9. Since ρ and q were chosen 

freely, we have Ш і ф х ^ . е ] ] ^ {р і ] ч -»[Г 2 І„} [ A x ^ . e ] ^ , in other words 
І Л х ^ ь е ^ {[Τ,-Γ,],,} [Ax^.e],,,. 

T - A P P By the induction hypothesis, using the fact that [/a] = [ƒ]],,W,,· 

T - T A B S We are given that Г, Х<Т^КХ h e e Г2. Suppose that Ρ С * 1 [Гі] ч . 

Then it follows that щ[Х*-Р] \= Γ, Χ<Τλ:Κλ and that η2[Χ^Ρ] \= 

Γ, Χ < Τ ι : Α Ί . Since [ej = [ej nr«_pi, we have by the induction hypo­

thesis that [е]Ч ] {р2І,,гк,_р]} í e jL· Since Ρ was chosen freely, we have 

that [e] 4 i {Π*Ρς
κ4Τ,]η ίΤΑη[χ*-ρ]} Ит, 2 · N o w t n e r e s u l t follows from the 

definition [ — J 4 and the fact that lXX<Ti:Ki.el = [e j 4 = І е 1 ч [х^л-

T - T A P P We are given that Γ h ƒ e Х<Тх:Кг.Т2 and that Γ h 5 < Tx. By 

the induction hypothesis, | / J {\ІХ<Т\\К\.\} I/]L> which means 
t h a t , [ƒ]„ {Прск, [ T j ] , ^ ^ } 1 [ƒ!„• ВУ the well-kindedness of typ­

ing, syntax directedness of kinds, and well-kindedness of subtyping, Γ h 

S e K\, and, by soundness of subtyping, [5J 4 Ç · [7Ί] . So we have 

Ш Ч 1 {p2^[x<-[s] ]} W w , which, by lemma 5.4.2 and the fact that 

Ι Λ , = USI for any , , is i/S]m {¡T2[X+-S]]V} {fS^. 

T - F O R Immediate from the induction hypothesis, because erase(e[X+- S]) = 

erase(e). 

T - M E E T We are given that Γ h ok and also Γ l· e € Τ,· for each i in {1 .. n). The 

result follows by the induction hypothesis and the definitions of f"|* and 

[-1,-
T - S U B We are given that Γ l· e e 5 and that Γ h S < T. By the induction 

hypothesis, [е] ч і {[5] n } [е] т а - By well-kindedness of typing Γ h S G *, 

and by the soundness of subtyping [ 5 ] ч С* [ Г ] ч . Hence, [е]Ч і {[T] } 

bL·- G 



5.4. HOPER INTERPRETATION OF F% 99 

COROLLARY 5.4.6 (Soundness of typing) Let η be an environment such that η |= 
Γ. Then Γ h e £ Γ implies IeJ4edom(|[r]n). 

PROOF: Take щ = η2 = η. π 
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Chapter 6 

Multiple Inheritance 

6.1 Introduction 

This chapter is extracted from [CP93]. The reader is invited to read [Bru94, FM94, 

PT94] for a complete account on the foundations of object-oriented programming. 

Here we intend to illustrate how the concept of multiple inheritance is captured 

by intersection types. We use records and record types which are not part of the 

syntax of F". The reader is referred to [Car92] for an implementation of records 

in a typed lambda calculus. 

Informally, in class based object-oriented programming there are entities called 

objects which are organised in classes, and each class of objects is associated with 

a set of functions or methods. This set of methods is known as the interface of 

the objects of a class. The use of a method of the interface to access an object is 

called message passing. A suitable type theory for an object-oriented programming 

discipline should prevent access to objects other than through the corresponding 

interface. This protection against illegal access is known as encapsulation. 

Existing classes may be used to create new ones. In this way, classes are organ­

ised in a hierarchy or genealogy, where ancestors are super-classes and descendants 

are subclasses. The mechanism through which a subclass of objects use methods 

of a superclass is known as inheritance. So far we used the word class as a syn­

onym of collection. In the sequel the word class is used formally to refer to a term 

of the F" language. 

The common goal of studies in this area is to prove the safety of a type system 

describing a set of high-level syntactic constructs for object encapsulation, mes­

sage passing, and inheritance. Our approach consists of translating the high-level 

syntax into a more conventional Α-calculus, whose own type-safety is established 

separately; the soundness of the typing rules for the object features then follows 

from the soundness of the target system. So, for example, the keyword new, which 

by itself does not represent any entity in an object-oriented programming lan­

guage, is interpreted as a term which given suitable arguments creates an object. 

One advantage of this style is that we can verify type safety automatically using 

a type checker for the underlying Л-calculus. 

The object model of Pierce and Turner [PT94], on which the present study 

101 
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is based, encodes objects as expressions of F%, an extension of Girard's System 
F" [Gir72] with bounded quantification. Given a description M of a public inter­
face — the names and types of a set of methods — the type Object(M) denotes 
the type of objects satisfying this description. Technically, object interfaces are 
type operators of kind *—»*, maps from types to types, and Objectg (*—**) —• * 
is a higher-order constructor. See sections 6.2 and 6.3 for details and [PT94] for a 
longer discussion. For example, if PointM describes the interface of one-dimensional 
point objects responding to the messages setX and getX then Object (PointM) is 
the type of points. Associated with each such collection of objects is a group of 
functions for sending messages, with types like: 

Point ' se tX A1KM < PointM) 
Object(M) -> Int -> Object(M) 

The bounded quantifier All(M<PointM) expresses the fact that the message setX 
can actually be sent to any object whose interface refines the interface of points. 
Given such an object and an integer representing its new x-coordinate, Point 'setX 
returns a new object with an appropriately updated position. The foregoing ac­
counts for the fundamental features of object encapsulation and interface refine­
ment (and correctly handles their interaction; this is the difficult part) . But it 
omits some characteristic features of popular object-oriented languages, notably 
inheritance. 

In general terms, inheritance is a mechanism allowing the implementations of 
different sorts of objects that share some of their behavior to be factored so that 
the common behavior is written just once. 

In our framework a class is a term containing the type of the internal rep­
resentation of objects its objects, a default value for the private data and an 
implementation of the methods. Therefore, a class can be used in two ways: as 
a template for creating new objects, because it has a default value and the set of 
methods which is all that is needed to create an object, and as the basis for de­
fining subclasses by incremental extension of the set of methods. If M is an object 
interface, then Class (M) is the type of classes that can be used to create objects 
of type Object(M). The polymorphic function new maps a class into a new object: 

new : All(M:*->*) Class(M) -> Object(M) 

Another function, extend, takes an existing class and a description of some new 
methods and constructs a new class combining the old and new behaviors: 

extend : All(SuperM:*->*) 
All(SelfM<SuperM) 

Class(SuperM) -> . . . -> Clase(SelfM) 

(The details hidden here by . . . are revealed in the following section and sec­
tion 6.3.) The bounded quantifier All (Self M<SuperM) ensures that the inter­
face of the new class refines that of the old: Object (Self M) is a subtype of 
Object(SuperM). 
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To handle multiple inheritance in this setting, we must enrich the extend func­
tion to take two or more superclasses as arguments. Consider the case where the 
new class inherits methods from two superclasses. This version — call it extend2 
(there will be an analogous one for each n) •— should have a type like: 

extend2 : All(SuperHl:*->*) X the in ter face of one superclass 
All(SuperM2:*->*) Й t h e in ter face of the other superclass 
All (Self M<???) 'I, t h e in ter face of t h e c lass being b u i l t 

Class (SuperHl) '/, the f i r s t superclass 
-> Class (SuperM2) '/, the second superclass 
-> . . . '/, (how t o bui ld the new class) 
-> Class (Self И) '/, the new c lass i t s e l f 

But the upper bound of Self И presents a problem: we must ensure that Self M is 
a subtype of both SuperHl and SuperH2, which falls outside the expressive scope of 
our target λ-calculus F<. 

Intuitively, what we want to write is 

extend2 : All(SuperHl:*->*) All(SuperH2:*->*) 
All(SelfH < SuperHl "and" SuperH2) 

Class(SuperHl) 
-> Class(SuperH2) 
-> . . . 
-> Class(SelfH) 

where, informally, "and" forms the conjunction of the two superclass specifications. 

Fortunately, a type constructor with exactly this meaning has already appeared 

in the literature. First-order type systems with intersection types have been in­

vestigated by the group in Torino [CDC78, BCD83] and elsewhere. (See [CC90] 

for background and further references.) A second-order λ-calculus with intersec­

tion types was studied by Pierce [Pie91]. The calculus needed here is the ω-order 

extension of this system. 

A type system combining intersection types with a powerful form of poly­

morphism is of independent interest. Reynolds [Rey88] has argued that inter­

section types can form the basis of elegant language designs. But his Forsythe 

language has only a first-order type system, and thus lacks some of the expressive 

possibilities of polymorphic languages like ML. Our work represents a step toward 

a synthesis of these styles of language design. 

The following section shows some examples of multiple inheritance using a 

simple high-level syntax, and section 6.3 develops an implementation of inheritance 

in this setting. 

6.2 An example of multiple inheritance 

We begin by recalling the encodings of some basic concepts of object-oriented 

programming in F< and showing a simple example of multiple inheritance in this 

setting. 
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In this setting, an object interface specification is modelled as a function from 

types to types, describing the behaviors of a collection of methods as transforma­

tions on the object's internal state. For example, the interface of one-dimensional 

point objects supporting the messages getX, setX, and bump is captured by the 

type operator 

# PointM = Fun(RepHI satX: Rep->Int->Rap, 
# getX: Rep->Int, 
# bump: Rap->Rep | } ; 

PointM : *->* 

which expresses the fact that the getX method of a point interrogates its internal 

state and returns an integer, that the se t method transforms the internal state 

and a new position into an updated internal state, and that bump, which increases 

the position by one, maps one internal state to another. (The # in the left-hand 

margin indicates that this expression has been checked by our implementation; the 

typechecker's response follows.) The abstraction over the type Rep of the internal 

state hides the actual internal state from outside view. Concretely, a point whose 

internal state type is { | x : I n t | } — a one-field record containing an integer — will 

contain a record of methods with types 

•CI setX: { | x : I n t | } -> Int -> { | χ : Ι η ΐ | > , 
getX: { | x : I n t | } -> I n t . 
bump: { | x : I n t | } -> { | x : I n t | } | } 

while a point whose internal state type is richer, say -Clx:Int,y : I n t | } , will have 

correspondingly richer concrete types for its methods: 

•CI setX: { | x : I n t , y : I n t | } -> I n t -> { | x : I n t , y : I n t l > , 
gatX: { | x : I n t , y : I n t | } -> I n t , 
bump: i l x : I n t , y : I n t | } -> { | x : I n t , y : I n t 1 } 1} 

Externally, we expect the difference between these two to be invisible; thus, the 

public interface to the methods, PointM, abstracts away from any particular rep­

resentation type. Both point objects are elements of the type Object (PointM). 

(For present purposes, it is not important how Object itself is defined. Cf. [PT94, 

HP95].) 

New objects are created by applying the polymorphic function new to a class. 

Given an interface M and a class for this interface — that is, a class whose instances 

are objects with interface M — new creates and returns such an object. New classes, 

in turn, are created by applying the polymorphic function extend to an existing 

class along with a specification of an incremental change to its behavior: 

extend = <val> 
: All(SuperM) 

All(SelfM<SuperM) 
All(SelfDiffR) 

(Class SuperM) 
-> SelfDiffR 
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-> (All(FinalR) 
(Extractor FinalR SelfDiffR) 

->(SuperM FinalR) 
->(SelfM FinalR) 
-> (SelfM FinalR)) 

-> (Class SelfM) 

In detail, the arguments expected by extend comprise: 

• The interface SuperM of the existing class. 

• The interface SelfM of the new class that will be returned by extend. 

• The type SelfDiffR, which describes the difference between the representa­
tion of the superclass (whatever it may be) and the representation of the new 
class. In conventional terminology, this is the set of new instance variables 
introduced by the subclass. 

• The superclass itself— an element of Class(SuperH) (our typechecker prints 
it as Class SuperM). 

• An initial value — an element of SelfDiffR — for the new part of the state. 

• A polymorphic "method builder" function. 

Given all these, extend returns a class for the interface SelfM. 

The method builder function, which does the work of constructing the vec­
tor of methods to be used in instances of the new class, must itself take several 
parameters: 

• The "final" representation type FinalR, which is fixed at the moment when 
new is applied to a class. 

• An "extractor," which provides a mapping back and forth between the final 
representation type and the local representation type, allowing the local 
methods to access the part of the state that interests them. 

• The "super methods" of the existing class. 

• The "self methods" of the new class, which are used to model the charac­
teristic object-oriented feature of "sending a message to self." 

Given these, the method builder must return a collection of methods for the new 
object. 

For uniformity, let us assume that there is just one base class — the class of 
"things," whose instances are objects with no behavior at all: 

# ThingM - Fun(Rep) {I I} ; 
ThingM : *->* 
thingClass = <val> : Class ThingM 
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To build a class of points extending thingClass, we first choose the "local" part 
of the representation of points. 

# PointDiffR = ÍI x : In t | } ; 
PointDiffR : * 

Now we create pointClass by applying extend as follows (see section 6.3 for more 
details). 

pointClass = 
extend 
ThingH '/, superclass in te r face 
Po in t M У, in ter face for new c lass 
PointDiffR 'I, loca l s t a t e type 
thingClass '/. the superclass i t s e l f 
·{ χ = О У 'I, i n i t i a l value for loca l s t a t e 
(fun(FinalR) '/, "method bui lder" f u n c t i o n . . . 
fun(e: Extractor FinalR PointDiffR) '/, mapping a " s t a t e ex t ractor" 
fun(super: ThingM FinalR) '/, and the "super methods" 
funCself : PointM FinalR) '/ and the "sel f methods" 

•CgetX = fun(s:FinalR) У. t o a getX method 
(e .get s ) . x , X t h a t r e t u r n s 

'/, the loca l χ f i e l d 
setX = fun(s:FinalR) '/, and a setX method 

f u n ( i : I n t ) e.put s íx=i}, ' / , t ha t overwrites 
'/, the χ f i e l d 

bump - fun(s:FinalR) '/, and a bump method 
sel f .setX s '/, t h a t c a l l s setX on sel f 

(plus (sel f .getX s) 1) '/, t o se t χ t o one more 
} ) ; % than self .getX 

pointClass = <val> : Class PointM 

Of course, this definition of pointClass is quite verbose. It is not hard to design 
higher-level syntax for objects, message passing, and class extension that looks 
like ordinary object-oriented source code, but since we are building a foundational 
model here, we prefer the low-level notation. 

Similarly, we can define the interface for "colored objects" — objects support­

ing the messages setC and getC — as follows: 

# ColoredH • Fun(Rep) <| setC: Rep->Color->Rep, getC: Rep->Color I}; 
ColoredM : *->* 

Again, one instance variable suffices to represent the color of a colored object: 

# ColoredDiffR » {I с¡Color |>; 
ColoredDiffR : * 

A class of colored objects can now be created by extending thingClass as we did 
to build pointClass: 
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coloredClass = 

extend ThingM ColoredM ColoredDiffR thingClass 

{ с = black } 

(fun(FinalR) 

fun(e: Extractor FinalR ColoredDiffR) 

fun(super: ThingM FinalR) 

fun(self: ColoredM FinalR) 

{getC = fun(s:FinalR) (e.get з).с, 

setC » fun(s:FinalR) fun(newc:Color) e.put s {c=newc} 

»; 
coloredClass = <val> : Class ColoredM 

Now we have reached the point where we can use multiple inheritance to com­

bine the classes of point objects and colored objects, yielding a new class of colored 

points. The interface of colored points contains all the messages of both super­

classes: 

CPointM = Fun(Rep) {I setX: Rep->Int->Rep, 
getX: Rep->Int, 
bump: Rep->Rep, 
setC: Rep->Color->Rep, 
getC: Rep->Color | } ; 

CPointM : *->* 

For this simple implementation, no additional instance variables are needed: we 

can set CPointDiffR = {| I}. 

To make the example more interesting, we take the methods getX, setC, and 

getC unchanged from the superclasses, while overriding the definition of setX so 

that, in addition to setting the χ coordinate as usual, it also sets the color to, say, 

blue: 

cpointClass = 

extend2 PointM ColoredM CPointM 

CPointDiffR pointClass coloredClass { } 

(fun(FinalR) 

fun(e: Extractor FinalR CPointDiffR) 

fun(superl: PointM FinalR) 

fun(super2: ColoredM FinalR) 

fun(self: CPointM FinalR) 

{setX = fun(s :FinalR) fun(i:Int)'/
(
 the new setX method: 

let si = superl.setX s i in 1, use pointClass's setX 

'/, to set position 

let s2 = super2.setC si blue '/, and coloredClass's setC 

У, to set color 

in s2 end end, 

getX • superi.getX, '/, copy all the remaining 

bump = superi.bump, '/, methods from the 

setC = super2.setC, '/, appropriate superclass 

getC - super2.getC 
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# } ) ; 
cpointClass = <val> : Class CPointM 

Here, the low level at which we are working is reflected in the fact that the old 

methods getX, bump, setC, and getC must be copied explicitly from the superclasses 

to the new class. Introducing high-level syntax for multiple inheritance would, of 

course, raise all the usual questions (must each inherited method appear in only 

one of the superclasses? if it appears in more than one, which should be copied 

to the subclass? etc.), for which the usual solutions will apply. 

To test what we have done, let's build a colored point and send it some mes­

sages: 

# ρ = neu CPointM cpointClass; 
ρ = <val> : Object CPointM 
# Colored'getC CPointM p; 
black : Color 
# pi = Point'bump CPointM p; 
pi = <val> : Object CPointM 
# Point 'getX CPointM p i ; 
1 : Int 
# Colored'getC CPointM p i ; 
blue : Color 

Note that sending our colored point the bump method has the effect of changing 

its color to blue: the overridden behavior of the setX method is observable in the 

behavior of bump method, even though bump was not redefined in the subclass. 

6.3 Encoding multiple inheritance 

We close with a full implementation of the extend2 function, generalising the 

extend function in section 7 of [PT94]. As we suggested in the introduction, 

an intersection type must be used at one point (marked *** in the definition of 

extend) to obtain a sound typing; the rest is straightforward. 

This implementation of classes and inheritance makes the local state of each 

class inaccessible both to clients of objects and to methods defined in subclasses. 

Other variations are possible; we chose this one to simplify the presentation of 

section 6.2. 

If M is an object interface — an operator of kind *->* — then Class (M) is the set 

of classes whose instances have type Object(M). Each such class consists of a local 

representation type MyR (whose identity is hidden by an existential quantifier), an 

element initstate6MyR that is used as the initial value of the state in new objects 

created from this class, and a function buildM that can be used to construct the 

methods of the new objects: 

# Class = 
# Fun(M:*->*) 
# Some(R) 
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# i l i n i t s t a t e : R, 

# buildM: ClassMethods M R | } ; 
Class : (*->*)->* 

To cope with different representations of local state in subclasses, the method-

building function is abstracted on two parameters: a type FinalR representing 

the "full" state of an eventual subclass, and an "extractor" giving access to the 

components of interest to the methods being built. The method builder is also 

abstracted on a collection of self-methods of the same types as its own methods. 

Given these, it yields a concrete collection of methods specialized to work properly 

in an object with representation type FinalR: 

# ClassMethods = 

# FunCMyM:*->*) 

# Fun(MyR) 

t All(FinalR) 
# (Extractor FinalR MyR) -> 

# (MyM(FinalR)) -> 
# (MyH(FinalR)); 
ClassMethods : (*->*)->*->* 

Finally, an extractor is just a pair of maps, get and put. 

# Extractor = Fun(SS) Fun(TT) {| g e t : SS-VTT, p u t : SS->TT->SS |> ; 
Extractor : *->*->* 

Intuitively, get extracts the "superclass part" of an element of a subclass's state, 

while put overwrites the superclass part, yielding a new subclass state. 

For example, the point class of section 6.2 can be defined directly (rather than 

as an extension of thingClass) as follows: 

# pointClass = 
# < { | x : I n t | > , 

# { i n i t s t a t e = {x=0l·, 
# buildM = fun(FinalR) 
# fun(e: Extractor FinalR {|x:Int|}) 

# fun(self: PointM FinalR) 

# {getX = fun(s:FinalR) (e.get s).x, 

# setX = fun(s:FinalR) fun(i:Int) a.put s {x=i}, 

# bump = fun(s:FinalR) e.put s {i = plus 1 (e.get s).x> 

# }} 

# > : Class PointM; 

pointClass » <val> : Class PointM 

(We use the ascii syntax "<R,b> :T" for introducing elements of existential types: R 

is the hidden witness type, b is the body, and Τ is the existential type where the res­

ult is to live. The corresponding elimination form is written "open e as <R,x> in 

b.") 

A class with two superclasses generates objects whose internal states have 

three parts: one for each superclass and one for the new components local to 
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the class itself. For example, an instance of cpointClass contains a point state 

of type { | x : I n t | } , a colored-object state of type {|c:Colorl>, and an empty 

local state. The extend2 function takes two classes, an initial local state, and a 

function for incrementally building a collection of new methods from the old ones, 

and constructs a subclass of this form. 

extend2 = 

fun(SuperMl: *->*) 

fun(SuperM2: *->*) 

funCMyM < SuperMl/\SuperM2) '/.*** 

fun(MyLocalR: *) 

fun(superClassl: Class SuperMl) 

fun(superClass2: Class SuperM2) 

fun(myinitstate: MyLocalR) 

fun(mymethods : 

All(FinalR) 

(Extractor FinalR MyLocalR) -> 

(SuperMl(FinalR)) 

(SuperM2(FinalR)) 

(MyM(FinalR)) -> 

(MyM(FinalR))) 

open superclass 1 

as <SuperRl,superDatal> in 

open superClass2 

as <SuperR2,superData2> in 

let MyR = 

Triple SuperRl SuperR2 MyLocalR in 

< 

MyR, 

{initstate = 

triple SuperRl SuperR2 MyLocalR 

(superDatal.initstate) 

'/.Arguments : 

'/.first superclass interface 

'/.second superclass interface 

'/.new subclass interface 

'/.local state type 

'/.first superclass 

'/.second superclass 

y.initial local state 

'/.incr method extension fun 

'/with arguments 

'/.a final rep type 

'/.an extractor 

'/.for the local s t a t e 
'/.the f i r s t superc las s ' s 
'/.methods 
'/.the second superc lass ' s 
'/.methods 

'/.the self-methods 

'/.returning the new methods 

'/.open the first superclass 

(superData2.initstate) 

myinitstate, 

buildM 

fun(FinalR) 

fun(e: Extractor FinalR MyR) 

fun(self: MyM(FinalR)) 

let eself = 

composeExtractors 

FinalR MyR MyLocalR e 

'/.open the second superclass 

'/.define the new state type 

'/.(a triple) 

'/.Result: a new class 

'/.with state type MyR 

'/.and initial state 

'/.a triple of 

'/.first super's 

' / . in i t ia l s t a t e 
'/.second super ' s 
^initial state 

'/.local initial state 

'/.and method-builder, 

'/.a fun with args 

'/.a final rep type 

'/.an extractor 

'/and a collection 

'/.of self-methods. . . 
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# (extract3of3 SuperRl SuperR2 MyLocalR) in 

# let зир гі = 

β composeExtractors 

# FinalR HyR SuperRl β 

# (extractlof3 SuperRl SuperR2 MyLocalR) in 

# let esuper2 = 

# composeExtractors 

# FinalR MyR SuperR2 e 

# (extract2of3 SuperRl SuperR2 MyLocalR) in 

# mymethods FinalR eself '/returning 

# '/.methods built by mymethods 

i (superDatal.buildM FinalR esuperl self)'/.when applied to 

t '/.concrete methods 

t (superData2.buildM FinalR esuper2 self)7,of the superclasses 

# self '/.and the self-methods 

# end end end} 

# > : Class MyM 

# end end end; 

extend2 = <val> 

: All(SuperMl) 

All(SuperM2) 

All(MyM<SuperMl/\SuperM2) 

All(MyLocalR) 

(Class SuperMl) 

-> (Class SuperM2) 

-> MyLocalR 

-> (All(FinalR) 

(Extractor FinalR MyLocalR) 

->(SuperMl FinalR) 

->(SuperM2 FinalR) 

-XMyM FinalR) 

->(MyM FinalR)) 

-> (Class MyM) 

This definition uses a utility function for composing extractors in the obvious way: 

# composeExtractors • 

# fun(Tl) fun(T2) fun(T3) 

# fun(el: Extractor TI T2) 

# fun(e2: Extractor T2 T3) 

t iget = fun(tl:Tl) e2.get (el.get tl), 

# put = fun(tl:Tl) fun(t3:T3) 

# el.put tl (e2.put (el.get tl) t3)}; 

composeExtractors » <val> 

: All(Tl) 

A1KT2) 

A1KT3) 

(Extractor TI T2) 

-> (Extractor T2 T3) 
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-> { |get:Tl->T3, put:Tl->T3->Tl|} 

For forming triples, we use the type abbreviation 

# Tr ip le = Fun(Tl) Fun(T2) Fun(T3) {I f s t : T l , snd:T2, thd:T3 I} ; 
Tr ip le : *->*->*->* 

with the constructor 

# triple " 

# fun(Tl) fun(T2) fun(T3) 

# fun(tl:Tl) fun(t2:T2) fun(t3:T3) 

# {fst=tl, snd=t2, thd=t3}; 

triple = <val> 

: All(Tl) 

A1KT2) 

A1KT3) 

Tl -> T2 -> T3 -> < | f s t : T l , snd:T2, t h d : T 3 | } 

and the projections 

# extract lof3 = 

# fun(Tl) fun(T2) fun(T3) 

# iget = fun(p: Triple Tl T2 T3) p.fst, 

# put «= fun(p: Triple Tl T2 T3) 

# f u n ( t : T l ) 
# { f s t=t , snd=p.snd, thd=p.thd} }; 
e x t r a c t l o f 3 = <val> 

: All(Tl) 
A1KT2) 
A11CT3) 
{Iget : (Triple Tl T2 T3)->T1, 

p u t : (Triple Tl T2 T3)->Tl->{ | f s t :Tl, snd:T2, t h d : T 3 | > | } 

and extract2of 3 and extract3of 3, which are defined similarly. 

A slightly different formulation of the extend2 function provides an alternative 

perspective on its behavior. The original extend2 is parametric on three class 

interfaces, SuperMl, SuperM2, and MyM, where MyM is constrained to refine both 

SuperMl and SuperM2. The type of the following function extend2' emphasizes 

the fact that MyM is typically formed by adding some new methods to those given 

by SuperMl and SuperM2: it is parameterized on SuperMl, SuperM2, and a "partial 

interface" MyOVnM, which is conjoined with the other two to form MyM: 

# extend2' = 

# fun(SuperMl: *->*) X first superclass interface 

# fun(SuperM2: *->*) Ί. second superclass interface 
# fun(MyOvnM: *->*) X new methods specification 

# let MyM = SuperMl/\SuperM2/\My0wnM in '/, nes class interface 

# % ...(the rest, as before)... 

extend2' = <val> 
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: All(SuperMl) 
All(SuperM2) 
All(MyOwnM) 
All(MyLocalR) 

(Class SuperMl) 
-> (Class SuperM2) 
-> MyLocalR 
-> (All(FinalR) 

(Extractor FinalR MyLocalR) 
->(SuperMl FinalR) 
->(SuperM2 FinalR) 
->(SuperMl/\(SuperM2/\My0roM) FinalR) 
->(SuperMl/\(SuperM2/\My0wnM) FinalR)) 

-> (Class (SuperMl/\(SuperM2/\My0wnM))) 

Note that all of the quantifiers in this version are unbounded: bounded quantific­
ation has been replaced by unbounded quantification and intersection. 
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Part II 

First-Order Subtyping 





Chapter 7 

Implicit and Explicit Subtyping 

7.1 Introduction 

In the analysis of Α-calculi we can distinguish between two main groups of systems, 
namely, explicitly typed systems, usually called à la Church and implicitly typed 
systems also called à la Curry. In the implicitly typed systems type free lambda 
terms are assigned a type and this is why these calculi à la Curry are sometimes 
called systems of type assignment. On the other hand, in the explicitly typed 
systems the terms are not terms of the type-free Α-calculus but terms themselves 
containing type information. To illustrate the difference we write the canonical 
example of typing the corresponding identity term in both styles. 

I-Curry λ χ . χ £ σ—νσ 

^chMTch λχ:σ.χ G σ—>σ. 

Observe that the Church style term has extra typing information, namely ':σ'. 
This explicit mention of types in a term makes it easier to decide whether a term 
has a certain type. For some systems à la Curry this question is undecidable. See 
[Bar92] for some examples. In these systems the problem of finding a type for 
a given term involves solving sets of equations. (See [Wan87] for an elegant and 
concise algorithm of type inference for simply typed λ-calculus à la Curry). 

The idea of subtype appears quite naturally in programming languages. If we 
think of types as sets, we can easily picture what a subtype could be. Informally, 
we can say that a type σ is a subtype of τ (σ < τ) if any element of σ can be 
seen as an element of т. We say can be seen as and not directly is because the 
act of considering an element of type σ as an element of type r might hide some 
transformation. Consider for example the types Int and Real of integers and real 
numbers respectively. Usually, on a computer, integer numbers are represented in 
a different way than real numbers are; even if we might think of the integers as a 
subset of the real numbers, there is a translation going on. The act of considering 
an element of type σ as an element of type г will be called coercion. In other 
words, we say that an element of type σ is coerced into an element of type r . 
Somehow an element of type σ has enough information to be seen as an element 
of type т. 

117 
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While dealing with coercions we can again distinguish between an explicit 
style and an implicit style. A style with explicit coercions means that coercions 
are explicitly indicated and in an implicit style, as the name suggests, coercions 
are left implicit. In systems including subtyping there is usually a rule for typing 
coerced terms. Then, in an explicit style the coercion rule might look as follows. 

Г Ь Μ£σ σ<τ 
— — — (COERCION) 

Similarly, in an implicit style the corresponding rule is as follows. 

Tl· M 6 σ σ<τ 
— — — (SUBSUMPTION) 
Γ h Μ e τ 

From the previous discussion it follows that we can split subtyping systems into 
four main groups combining implicit or explicit typing with implicit or explicit 
coercions. Explicit coercions have been used as a way of giving semantics to 
systems with implicit coercions in [CG92]. In [CL91], PER models for Quest, 
a higher order lambda calculus with subsumption, and Queste?, a higher order 
lambda calculus with coercion, are studied. 

An implicit coercion is motivated by the fact that the same term can be con­
sidered as belonging to two different types without performing any change in the 
term, as for example is the case when one of the types is included in the other 
(with the intuitive idea of set inclusion), while an explicit coercion wishes to state 
explicitly that there is a transformation going on. We can think, for example, of 
a function ƒ with the real numbers as domain, and a (sub)set A of real numbers. 
If a; is a variable of type A, then we would like to use ƒ on χ as well, without 
performing any extra calculation to apply ƒ to x. 

The system A^ (lambda sub), an extension of the simply typed λ-calculus 
à la Church with subtyping, is presented in section 7.4. The extension consists of 
adding the previously mentioned SUBSUMPTION rule, in other words, coercions are 
left implicit. The subtyping relation mentioned in the rule is based on a finite set of 
subtyping axioms, closed under reflexivity and transitivity, and extended to arrow 
types in the standard way. We show that A^ satisfies the minimal types property, 
and we exhibit an algorithm to compute minimal types (AlgXç). Moreover, we 
show that type checking and type inference are decidable. 

The subtyping relation is studied in section 7.2, where a method to establish 
whether two types are in the subtype relation is given and proven sound and 
complete with respect to the definition of the subtyping relation. The decidability 
of the predicate σ < τ was already stated in [Mit84]. Types in the subtype relation 
are looked at through the magnifying glass to establish the relation between the 
structure of σ and r when σ is less than or equal to r . 

In section 7.5, Xc (lambda coerce), another extension of the simply typed 
lambda calculus with subtyping, is introduced. This time the rule added is the 
previously mentioned COERCION rule. Basic properties of this system are estab­
lished, and, in section 7.6 we show that the "invisible" coercions in a A^ typing 
statement can be uniformly reconstructed producing a legal statement of Xc- The 
fact that we translate typing statements instead of typing derivations as in [CG92] 
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and [BCGS91], avoids coherence problems. 

Finally, in section 7.7, a translation of \c into the simply typed lambda cal­

culus A—» is developed. This means that a system with two different kinds of 

judgements, typing judgements and subtyping judgements, is translated into a 

system without subtyping. The idea is to mimic \c inside λ—». The translation of 

the typing system is straightforward; the COERCION rule is omitted. The transla­

tion of the subtyping statements is as follows: the subtyping axioms are collected 

as a so called environment (like a signature in ELF [AH87]), and the subtyping 

rules are perfectly captured by computational properties of the Α-calculus. A proof 

of a subtyping statement is then a λ—v-term containing constants of the environ­

ment. This translation together with the translation from A^ into Ac, imply that 

subtyping can be coded into a system without subtyping. 

The A—* that we define in section 7.7 is not exactly the one presented in 

[Bar92]. We prefer a formulation in which constants are syntactically difFerent 

from variables, the rules prevent abstraction over constants, and there is a typing 

rule for constants, so that nothing that is ilegal can be derived from the rules 

without extra proviso in the metalanguage. 

CONVENTION 7.1.1 Throughout this chapter the metavariables a,ß,j and δ will 

range over type variables, σ, τ, and ρ will range over types, M, І , and Ρ will range 

over terms, x, y, and ζ over term variables, Γ will range over contexts, and Σ over 

environments. 

7.2 The subtyping relation 

T h e r e l a t i o n ^c· 

In the present section we define the subtyping relation, ^c> and an algorithm, 

Subtype, to check whether two types are in the subtyping relation. In proposi­

tion 7.2.7, we prove the correctness of the algorithm Subtype with respect to the 

definition of ^ σ · 

Let V be a set of type variables, Τ a set of types defined by 

T : : = V | T-»T, 

and let С С V x V a finite set of subtyping axioms, where if (α,ß)C.C then α,β 

are different variables. 

We will restrict our attention to the particular case when С С V χ V, given 

that the more general case when С С Τ χ Τ could allow typing non-terminating 

terms like for example (Χχ:σ.χχ)(\χ:σ.χχ). 

DEFINITION 7.2.1 (Subtyping) The relation < c С T x T i s the smallest relation 
closed under the following rules. 

(of,/J)eC =• a^cß S-INCL, 

σ < c o S-REFL, 

c ^ c f , T ^ C C => с ^ c p S-TRANS, 

σ ^ с <г ) τ ^c τ => σ'—*τ' ^c σ—>τ S-ARROW. 
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The S-ARROW rule deserves a close look. If we consider the relation S^c as an 

ordering, then —• is monotonie in the second argument and antimonotonic in the 

first argument. Intuitively, if every value of type σ can be treated as a value of 

type σ , then every function which maps σ' to r also maps σ to т. 

In what follows we define the algorithm Subtype, which is a decision procedure 
for the ^ c relation; as it is shown in proposition 7.2.7. But first we need the 
following definition. 

DEFINITION 7.2.2 (Transitive Closure ofC) 

1. (a, ß)eC => (α, ß)e Trans(C), 

(α, β) and (β, 7 ) e Trans(C) => (α, 7 ) e Trans{C). 

2. trans{c,T,C) = true if and only if (σ, τ) belongs to Trans(C). 

We can now write down the algorithm. 

D E F I N I T I O N 7.2.3 (Subtype) Subtype : T x T x 2 v* v ->ßoo/ 

Subtype(a, т, С) = 
if σ = τ 

then true 

else if σ and τ are variables 

then trans(a, r, C) 

else if σ = σ^σ-ι and r = Ti—>Тг 

then Subtype(Ti,a\,C) and Subtype(ff2,T2,C) 
ehe false 

Where = is the syntactic equality. 

Since С is finite, Trans(C) is also finite. Consequently, trans(a, т, С) is decid-
able. Moreover, the recursive calls have arguments of strictly smaller size. Hence, 
the algorithm Subtype always terminates. 

DEFINITION 7.2.4 The Shadow of a type is defined as follows. 

Shadow(a) — · if o/g V 

Shadow(a —* τ) — —» 

/ \ 

Shadow^) Shadouir) 

The difference between the usual underlying tree structure and the shadow of 

a type expression is that different type variables have different underlying trees 

but the same shadow. Then two type expressions that only differ in their atomic 

subexpressions (type variables), have the same shadow. 

LEMMA 7.2.5 Let a,/3eVand σ , τ ε Τ . Then, 



7.2. THE SUBTYPING RELATION 121 

1. If trans(a, β, С ) , then α < c β. 

2. If σ $5c τ , then Shadoiv(&) — Shadow(r). 

3. If α ^ c ßi then iraras(a, /3, C) or a = /?. 

P R O O F : 

1. By induction on the definition of Trans(C). 

2. By induction on the derivation of σ $$c т. 

3. By induction on the derivation of a ^c β- E 

LEMMA 7.2.6 Let а ь а 2 , г ь and т 2 е Т . Then 

σ\—*σ2 ^с Ті—^Ъ if and only if т^ ^c " Ί and σ2 ^ с тг· 

PROOF: From right to left, it is just the S-ARROW rule. From left to right, the 
proof follows by induction on the derivation of σι—*σ2 ^c ΤΊ—*τ2 . Since С only 
contains pairs of type variables, the S-INCL rule could not have been the last rule 
of the derivation. 

S-REFL σ\—>σ2 Ξ ΤΊ—*τ 2 and this means that τχ = σ\ and σ2 = τ 2 . Hence, by 

S-REFL, it follows that TÍ ^ C O\ and σ2 ^ с τ 2 . 

S-TRANS We are in the case that for some ρ, σι —>σ2 5jc ρ and ρ ^c ΤΊ—*Τ2. 

By lemma 7.2.5(2), ρ is of the form pi—*p2. Then, by the induction 

hypothesis, pi ^ c σι, σ2 ζ σ p2, П ^c Pu and p2 ^с т2. Then, by 

S-TRANS, we conclude that T\ S^c &\ and σ2 ^с Тг-

S-ARROW If the last rule was S-ARROW, then the only possibility for the hypothesis 

is τ\ 4 σ σι and σ 2 < c τ2. О 

We can now show that the algorithm Subtype is correct with respect to defin­
ition 7.2.1. The correctness is split into two parts, usually called soundness and 
completeness. Soundness means that if Subtype(a, т, С) = true, then it is the case 
that σ ^с т. Conversely, completeness means that if σ ^с τ, then the algorithm 

outputs true when called with arguments σ, τ and С. 

P R O P O S I T I O N 7.2.7 (Soundness and completeness of Subtype) 

Subtype^, r, C) = true if and only if σ ^с т. 

P R O O F : 

=Φ·) By induction on the complexity of σ and r . 

Case 1. σ, r g V . Then we have to consider the following two cases. 

Case la. If σ Ξ r, then, by S-REFL, σ ^ с т. 
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Case lb. If trans{a, т, С) = true, then, by lemma 7.2.5(1), we know 
that σ íJc т. 

If either σ or τ is a variable and the other one is not, then the al­

gorithm never yields true. 

Neither σ nor τ is a variable. Again we have to consider two cases. 

σ = т. Then, by S-REFL, σ ^с т. 

σ φ т. Say σ Ξ σ\—»σ2 and τ = TÍ—»τ2. Then it is the case that 

Subty-pe{rx,c\, C) = true and Subtype(ai, т2, С) = true. 
By the induction hypothesis, Tj ^ C Οχ and σ2 ^c Ti· Hence, 

due to the S-ARROW rule, σ\—>·σ2 ^с т"і—»тг-

Φ=) By induction on the complexity of σ. 

σ € V. Then, by lemma 7.2.5(2), τ is also a variable. By lemma 7.2.5(3), 

it follows that trans(a, т, С) = true or σ = τ, and in both cases 
we have that Subtype(a, т, С) — true. 

σ = σχ-+σ2. Then, by lemma 7.2.5(2), τ is of the form Τχ—+τ2, and, because 
of lemma 7.2.6, we know that T\ ^c o\ and σ 2 ^ с τ 2 . Then 
Suhtyipt{T\,oi,C) = true and Subtype(a2,T2,C) = true, by the 
induction hypothesis. Hence, Subtype(a, r, C) = true. Ü 

A closer look at the algorithm uncovers some proof theoretic properties of 
the subtyping relation ^ c · Observe that in the algorithm the S-TRANS rule is 
considered only at the level of variables, in other words, the S-TRANS rule is never 
used as the last rule of a proof of a statement of the form σ\—>σ2 ^ c Τι~>Τ2· 

The corollary is then, that, if there exists a proof of σ ^ c r> then there exists 

also a proof of σ ^c· f in which the applications of the S-TRANS rule are only on 

statements of the form a ^c β and β ^c 7> where α, β, and 7 are type variables. 

This fact can be read as follows: the system in which the S-TRANS rule is replaced 

by 

S-TRANS' Q ^ C β, β <ζσ 7 => " ^ c 7, where α, β, j ë ¥ . 

can prove the same subtyping statements as the original system defined in 7.2.1. 
From the proof theoretic point of view there is another possible refinement 

that consists of restricting the application of the S-REFL rule to type variables. In 
other words, we could replace S-REFL by 

S-REFL' α ιζσ <* for all a e V . 

But, from an algorithmic point of view, this is not a very satisfactory choice, 
because the proofs with the S-REFL rule can be shorter. The use of the S-REFL 
rule instead of the S-REFL' rule avoids superfluous recursive calls. For example, 
to prove a—»(/?—»a) ^c α—*(β—*α) requires two applications of the S-ARROW rule 
and three applications of the S-REFL' rule, while it can be proved in one step with 
the original S-REFL rule. 

Case 2. 

Case 3. 
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About the sets { т е Т | τ ^ σ er} and { T E T | σ < c τ} 

In this section we focus our attention on the sets of types which are smaller 

and bigger than a given type with respect to ^c- We define simultaneously the 

functions after and before that, given a type, retrieve the set of bigger and smaller 

types respectively, as we prove in lemma 7.2.9(3). 

D E F I N I T I O N 7.2.8 after,before : T - > 2 T . 

before(a) = {<*} U {ßeV\ trans(ß, α, С) = true}, if a g V . 

after(a) = {a} U {βζV | trans(a, β, С) = true}, if aeV. 

before(a—>τ) = {σ —>τ € |T | σ £after[ff) and τ Çbefore(r)}. 

after[a—>τ) = {σ —*T'GT| a£before(a) and г'£о/і!ег(т)}. 

L E M M A 7.2.9 Let σ,ι-eT. 

1. ŒÇ:before(a) and a£after(a). 

2. cÇbefore(r) Ό- rÇafter[a) 

3. σ ^ с τ -Ф̂  a£before(r). 

4. { т б Т | г ^(7 f } and { T G T | σ ^<? τ} are finite sets. 

P R O O F : 

1. Straightforward. 

2. By induction on the structure of σ 

3. =*-) By induction on the structure of σ using proposition 7.2.7 and 1. 

<=) By induction on the structure of σ. 

4. By items 2 and 3, we know that 

{ T E T | Τ ^С С] — before(a), and 
{ r e T J σ ιζ0τ} = after[a), 

Since С is finite, before(a) and after(a) are finite sets. •. 

About the form of types in the ^ c relation 

In order to study types in the subtyping relation it is useful fo have a language 
which enables us to refer to a specific subexpresion of a given type. Having in mind 
the underlying tree structure of a type, say σ, we define the notion of binary code. 

Each binary code uniquely determines a subtree of the underlying tree of <r, which 

in its turn, is linked to a subexpresion of σ. 

D E F I N I T I O N 7.2.10 
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1. A binary code is a possibly empty sequence of zeros and ones. 

2. A positive binary code is a binary code with an even number of ones. 

3. A negative binary code is a binary code with an odd number of ones. 

DEFINITION 7.2.11 The subexpression of code 6 in the type expression σ, nota­

tion Sub(b, σ), is defined as follows. Sub : {0,1}* xT—> Τ 

Sub(J\,a) = σ 

Sub(lb, σ—>τ) = Sub(b, σ) 

Su&(06,ff->r) = Sub(b,r) 

Observe that Sub is a partial function; not every binary code indicates a subex­

pression of a given type. For example, Sub(lQ,a) with a e V i s undefined. 

NOTATION 7.2.12 we will write b(a) instead of Sub(b, σ). We frequently use code 

instead of binary code. 

D E F I N I T I O N 7.2.13 

1. 6 is called a code in σ if 6(σ) is defined. 

2. b is called a binary leaf code in σ if 6(а)б . 

Intuitively, a binary code in a type σ is a path starting from the root of the 

underlying tree of σ, where left is indicated with 1, and right with 0. Note that 

each code in σ uniquely determines a subexpression of σ. Then we can say that 

a subexpression is positive if it has a positive code, and negative otherwise. Note 

that then in the path from the root of the underlying tree of σ to the root of a 

positive (respectively negative) subexpression we have chosen an even (respectively 

odd) number of times the left branch of an arrow node. 

LEMMA 7.2.14 Shadow(a) = Shadow^r) if and only if every leaf code of σ is a 

leaf code of т. 

PROOF: From left to right, the result follows by straightforward induction on the 
structure of σ. From right to left. By induction on the structure of σ. 

<тё . [] is the only (leaf) code of σ. Since [] is also a leaf code of r , it 

follows that τ is a variable. Hence, Shadow(a) = Shadow(T). 

σ = σ\—*σί. The leaf codes of σ are of the form loi and Obj, for every leaf code 

bi of σι and for every leaf code 62 of σ^. Since Ibi and Obj are also 

leaf codes of r, r is of the form τ\—>τ2. Then δι is a leaf code of TJ 

and 62 of τ2· Then by the induction hypothesis and the definition of 

Shadow, it follows that Shadow(o) = Shadow(T). 
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P R O P O S I T I O N 7.2.15 

If for every positive leaf code 6 in σ, 6(σ) ^с Ь(т), 

and for every negative leaf code 6 in σ, Ь(т) ̂ с b(c), then σ ^ с т. 

PROOF: By induction on the complexity of σ. 

σ € V. Then the only code in σ is the empty code, and as the empty code 

is positive, we have that (](σ)^σ [](r), but [](σ) is σ and [](τ) is r. 

σ = σι—>σ2. Then the codes in σ are of the form l&i and 062, where &i is a code 

in σι and 62 is a code in σ2. 

Since b is a leaf code of σ, 6(σ) is a variable, and since 6(σ) ^ с Κ τ ) ι 

by the correctness of the algorithm Subtype, b(r) is also a vari­

able. Hence, ό is a leaf code of r . By lemma 7.2.14, it follows that 

8Καάονι{σ) = Shadowij). Then we know that τ is of the form ΤΊ—»τ2. 

Our goal is to prove that σι—*σ2 ζ α Т\—•TÍ. For that, it is enough 
to show that τχ ^с <J\ and σ2 ^ с т2. 

• Let 61 be a negative leaf code in σ\. By the definition of code, 

b\(p\) = 1£>ι(σ), and by assumption, since I61 is a positive code, 

also 16ι(σ) Sic 1ί>ι(τ)> and, as 1ί>ι(τ) = 6 Ι ( Τ Ί ) , we conclude 

bi(o-i) ^с Ьі(тх). 

• Let &i be a positive leaf code in σι. By definition of code, 

bi{&i) — 1Ьі(<т), then as lb\ is a negative code in σ, 1&і(т) ^ с 
16ι(σ), and, as 1ί>ι(τ) = Ьі(ті), we have that 6і(ті) ^ с ¿>ι(σι). 

We conclude that т\ ^с ΟΊ by the induction hypothesis. Similarly, 
it follows that σ2 ^ с r 2 . D 

LEMMA 7.2.16 Suppose σ ^с т. Then, 

6 is a code in σ if and only if & is a code in т. 

PROOF: By induction on the complexity of σ. 

σ e V. Then, by lemma 7.2.5(2), r is also a variable. Then the only possible 

code is the empty code, and [] is a code in every element of T. 

σ = σι—»σ2. Then, by lemma 7.2.5(2), τ is of the form τχ—>τ2. By lemma 7.2.6, 

τι ^c o\ and σ 2 ^с Τ2· 

=>) Let 6 be a code in σ, then the following cases have to be con­

sidered. 

Case 1. b = Ob' with 6' a code in σ2. Then, by the induction 

hypothesis, b' is also a code in r 2 , but this means that 

Ob' is a code in т. 
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Case 2. 6 = 1 6 ' with 6' a code in σχ. By the induction hypothesis, 

6' is a code in τχ. Hence, 16' is a code in т. 

Ф=) Similar to the proof of =>·), interchanging the roles of σ and т. 
D 

PROPOSITION 7.2.17 Suppose σ ^ с т. Then, for every leaf code 6 in σ 

if 6 is positive, then δ(σ) ^ с 6(τ) and 

if 6 is negative, then 6(r) ^ c δ(σ). 

PROOF: By induction on the complexity of σ. 

σ e V. This means that the only code in σ is the empty code. Hence 6(σ) 

is σ and 6(τ) is т. The empty code is positive and, by hypothesis, 

σ ^ c τ , so there is nothing else to prove. 

σ = σχ—*σ2. Then, by lemma 7.2.5(2), r is of the form τχ —>τ2. By lemma 7.2.6, 

f\ ^ c <J\ and σ2 ^с τ2. We are in the case that 6 =. db' with d = 1 

and 6' a code in σχ, or d = 0 and 6' a code in σ2. According to the 

possible codes in σ we have to consider the following two cases. 

• 6 is positive. 

Case 1. d = 0 and 6' positive. As 6' is a code in σ2, by the induc­

tion hypothesis, b'(c2) ^с Ь'(т2), what, by definition of 

code, can be read as 06'(σ) ^ с 06'(τ). 

Case 2. d = 1 and 6' negative. By lemma 7.2.16, 6' is also a code 

in Τχ and, by the induction hypothesis, 6 (σι) ^ с Ь'(тх), 

what, by definition of code, is 16'(σ) ^с 1Ь'(т). 

• 6 is negative. 

Case 1. d = 0 and δ' negative. By the induction hypothesis, 

Ь'(т2) ^с Ь\а2), what means that 06'(τ) ίξ σ Οδ'(σ). 

Case 2. d = 1 and δ' positive. Lemma 7.2.16 implies that 6' is 

also a code in τχ. Then, by the induction hypothesis, 

δ(ΐ"ι) ^c δ'(<7ι). Finally, by the definition of code, it 

follows that 16'(r) < σ 16'(σ). О 

T H E O R E M 7.2.18 

<т ^ c τ if and only if for every leaf code 6 in σ 

if δ is positive, then δ(σ) ^ с 6(τ) and 

if δ is negative, then 6(т) ^ c δ(σ). 

P R O O F : By propositions 7.2.15 and 7.2.17. G 

This theorem suggests yet another way to check whether σ ^с τ> by only 

looking at the leaves of the underlying trees of σ and т. 



7.3. SIMPLY TYPED X-CALCULUS 127 

7.3 Simply typed λ-calculus 

We use a slightly different version of A—> than the one in [Bar92], the difference 

being that our version contains constants as pseudo-terms that are syntactically 

different from variables. Constants are assigned a type in an environment as in 

[AH87], and there is a rule for typing constants. 

DEFINITION 7.3.1 The typed λ-calculus, A->, is defined as follows. 

1. The set of pseudo-terms Λ = Λ(λ—•) is defined by the following syntax. 

A::=V | К | А ЛГ.Л | ЛЛ, 

where У is a set of (term) variables and A" is a set of constants such that V 

and К are disjoint sets. 

2. An environment is a set of statements with only distinct constants as sub­

jects. The symbol Σ is used for environments. 

The set of types Τ and the concepts of statement, typing assumption, sub­

ject, context, derivable statement and legal term are as in definition 7.4.1. 

D E F I N I T I O N 7.3.2 (Typing rules) 

n-j j fcef f , iîk-.σζΣ ( T - C O N S ) 

Γ Ь Е χ e σ, if χ:σ£Γ (Τ-VAR) 

Γ, χ:σ h Ε Μ £ τ 

Γ Ь Е λχ:σ.Μ £ σ—УТ 

Γ 1-Е Μ £ σ-ут Γ Γ-Ε Ν £ σ 

Γ Γ-Ε Μ Ν £ τ 

Basic p r o p e r t i e s of A—> 

( T - A B S ) 

( T - A P P ) 

Let us mention the following properties of A—> without giving their proofs. The 

interested reader can find more about these results in [Bar92]. There the A—>-

system presented does not have constants, but the proofs of the propositions below 

are straightforward extensions of the proofs given in [Bar92]; nevertheless the 

strong normalization property deserves a more careful examination. Let us use h 

for derivability in the A—»-system presented in [Bar92] where we consider К U V 
as the set of variables. Note that if Г Ь Е Μ ε σ then Σ, Γ h M 6 σ. Then the 

strong normalization property for the system in which our constants are treated 

as free variables implies the corresponding result for the system with constants. 

Let FV(M) denote, as usual, the set of free variables of M and Dom(T) the 

domain of Γ, i.e. the set of subjects of Γ. 

L E M M A 7.3.3 

1. (Free Variable) If Γ ΗΣ M e σ, then FV(M) С £ о т ( Г ) . 
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2. (Weakening for A-+) 
Let Γ and Γ' be contexts such that ГСГ'. Then if Γ hj; Μ € σ, then 
r ' h E M e σ. 

P R O P O S I T I O N 7.3.4 

1. (Generation for Λ—•) 

(a) If Γ h Σ к € σ, then JfcraeE. 

(b) If Г Ь Е ι e σ, then χ:σ£Γ. 

(c) If Г hj; M Af e <т, then there exists τ such that Г Ь Е M G τ—>σ and 

Γ h E ЛГ G т. 

(d) If Г Ь Е \χ:σ.Μ ζ ρ, then there exists τ such that /> = σ—*τ and 

Γ, χ:σ h E Μ e г. 

2. (Unicity of types for λ-»·) If Г r-E M € σ and Γ h E M e σ', then σ = σ'. 

3. (Strong normalization for λ—y) If Γ hj; M 6 σ, then Μ is strongly normal­
izing. 

7.4 A 0 a system with implicit coercions 

We define the system A^ (lambda sub), an extension of the simply typed λ-calculus 
with subtyping. The difference between the simply typed λ-calculus and λ^ is the 
following rule. 

Γ Κ Μ € σ σ ^ σ τ 
— — — (T-SUBSUMPTION) 

Г Ь M ET K ' 
An immediate consequence of the addition of this rule is the loss of the unicity 

of types property. Fortunately, the system has instead the minimal type property. 
Namely, if Г h M € σ, then there exists r such that Γ h M g τ and τ ^с <?• That 
property is relevant in the design of type checking and type inference algorithms. 
Consider the case of type checking. Knowing that if a term is typeable, then it 
has a minimal type, we try to identify a fragment of the system in which every 
typeable term is assigned a minimal type. In our case, we define a subsystem of 
Χ-ζ, AlgXç, which has the unicity of types property and is syntax directed, in such 
a way that that AlgX^ defines an algorithm to compute minimal types in A^. 

We give now the formal definition of a simply typed Α-calculus with implicit 
coercions, A^. 

DEFINITION 7.4.1 The typed λ-calculus with implicit coercions, A^, is defined 
as follows. 

1. The set of types T = Type(A^) is defined by 

Τ ::= V|T-T, 

where V i s a set of (type) variables. 
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2. The set of pseudo-terms Λ = Λ(Α^) is defined as follows. 

A::=V | XV:J.\ | ЛЛ, 

where V is a set of (term) variables. 

3. A statement is of the form M £ σ (M is of type σ) with M£\ and σ ζ Τ . 

The term M is called the subject of the statement. A typing assumption is 

an expression of the form χ:σ. The variable χ is called the subject of the 

typing assumption. 

4. A context is a set of typing assumptions with distinct variables as subjects. 

D E F I N I T I O N 7.4.2 (Typing rules) 

Г г-л< χ £ σ ifx:aer 

Τ,χ:σ h A < M £ τ 

Γ r-A< Χχ:σ.Μ £ σ-*τ 

ГЬХ<М £ <τ->τ Γ h 4 JV £ σ 

Γ h A < MJV £ τ 

Γ h A < Μ £σ σ < α τ 

DEFINITION 7.4.3 A statement Μ £ σ is derivable from the context Γ, we write 

Γ Ь А < М Е С - Г yields M of type σ -, if Γ ΚΑ ΐ M £ σ can be obtained using the 

rules T-VAR, T - A B S , T - A P P , and T-SUBSUMPTION in definition 7.4.2. A A^-term 

M is legal, if there exist Γ and σ such that Г H A < M £ σ, In other words, a legal 

term is the subject of a derivable statements. 

The typing rules in definition 7.4.2, are not syntax directed. In order to describe 

a type inference algorithm, we need an alternative presentation of the typing rules 

in which the term to be typed uniquely determines the last rule of the derivation 

of its typing statement. In the next section, we define AlgX^, an algorithmic 

presentation of A^. This presentation has the property of finding a minimal type 

for A^. 

DEFINITION 7.4.4 (A type inference algorithm) 

Г Ь л , г А < χ £σ if χ:σ£Γ 

Γ , ι : σ Κ „ Α < Μ £τ 

Γ ЬД І д А < ; Χχ-.σ.Μ £ σ-+τ 

Γ \-Μ,4 Μ £ σ->τ Γ Ь „ А $ Ν £ ρ ρζσσ 

Γ h 4 l s A < ΜΝ£τ 

P R O P O S I T I O N 7.4.5 (Generation for AlgA^) 

(T-VAR) 

( T - A B S ) 

( T - A P P ) 

(T-SUBSUMPTION) 

(T-VAR) 

( T - A B S ) 

( T - A P P ^ ) 
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1. If Γ \-Aig\. χ g σ, then χ:σ£Γ. 

2. If Γ ^Άι,\ζ λχ:τ.Μ Ç σ, then there exists ρ such that Г, x:r \-Atg\¿ M £ ρ and 
σ = r—ν/). 

3. If Г Ьді̂ л^ JWW S σ, then there exist ρ and p' such that Г Ь ^ д . M € ρ—»σ, 

ρ' < c Ρ, and Γ Γ-,,Ι(|Α< Ν e /э'. 

PROOF: Since the system is syntax directed, the form of each judgement uniquely 

determines the last rule of its derivation. О 

P R O P O S I T I O N 7.4.6 ( Unicity of types for AlgA^) If Г \-A,ìXs, M e σ and 

Γ Ι^,,Ας M £ σ', then σ = er'. 

PROOF: By induction on the complexity of M, using that the system is syntax 

directed. О 

LEMMA 7.4.7 ( WeJi-foundecmess of AlgA<j) The AlgX^ rules (7.4.4) define a ter­

minating algorithm. 

PROOF: Since Г is finite T-VAR cannot cause non-termination. In rules T - A P P ^ 
and T - A B S , the size of the subject in each of the premises is strictly smaller than 
the size of the subject in the corresponding conclusion. Moreover, the relation 
^ c is decidable because the algorithm Subtype, which is sound and complete with 
respect to ^c, always terminates. О 

PROPOSITION 7.4.8 (Decidability of type inference for AlgA^) For any Г and M 
it is decidable whether there exists σ such that Γ Vм,\* M S σ. 

PROOF: By the well-foundedness of AlgX^. 

P R O P O S I T I O N 7.4.9 (Decidability of type checking for AlgA^) 

Given Γ, AÍ, and σ, it is decidable whether Γ ΗΛ,,Λ< M € σ. 

PROOF: Because of the unicity of types property of AlgX-ç, the decidability of 
type inference (7.4.8) implies the decidability of type checking. 

To prove the strong normalization property for AlgX^ we use the corresponding 
result for λ—• in section 7.3. We first provide some definitions that allow us to 

relate yl/^A^-terms to λ—+-terms in such a way that ^-reductions are preserved. 

DEFINITION 7.4.10 Let £0eT(A-+). J° : Т ( І 4 ^ ) - » Т ( Л - » ) . 

α° = δ0 ifaeV. 

(σ^τ)6" = σ ί ο - > τ ί ο 

The homomorphic extension to contexts is defined as follows. 

{ } * = {} 
( Γ υ Η / 1 = Γίο U {χ:σι°} 
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D E F I N I T I O N 7.4.11 . J. :A(AlgX^)^>A{X-^) 

χ i = X 

(Χχ:σ.Μ) i = λχ:σδο.Μ i 

{MN) i = MINI 

The choice of 60 is irrelevant, the essential feature is that it is fixed. 

LEMMA 7.4.12 Let σ , τ ε Τ . If Shadow(a) = Shadow(r), then σ$° = τδ°. 

LEMMA 7.4.13 Let MeA(AlgX^). If Γ l·^ Μ£σ, then Γ ί ο h E Μ Ι Ε σ8\ 

PROOF: By induction on the derivation of Γ \~M,X¿ M € σ. Consider the case of 
the T-APPJJ rule. Then the situation is as follows. 

Г г - д | ^ PN e σ, 

where M = PN. By the induction hypothesis, the definition of _s°, and lemmas 

7.2.5(2) and 7.4.12, we have that 

TSo h E Ρ ¿ e /°—<τ ί ο and Τδο I-E N | e τ ί ο . 

Finally, by T - A P P and the definition of _ | , it follows that Γ*0 г-Е PN | € σ*°. О 

LEMMA 7.4.14 (Substitution) Let M,N in A(AlgX^). Then, 

(M[x:=N])i = Mi[x:=N | ] . 

PROOF: By induction on the complexity of M. • 

LEMMA 7.4.15 (Reduction preservation) 

Let M, N in A(AlgXç). If M ->0 N, then M | ->0 N | . 

PROOF: The proof is by straightforward induction on the complexity of M. In 
particular, the case when M is a redex is a consequence of lemma 7.4.14. Ü 

P R O P O S I T I O N 7.4.16 (Strong norma/ization for AlgA^) If Г г-И1,л< M e σ, then 
M is strongly normalizing. 

PROOF: The result follows from lemmas 7.4.13 and 7.4.15, using a similar argu­
ment as in theorem 7.7.12. ü 

The system AlgXç does not satisfy the subject reduction property. Consider 
the following simple example. 

Let a ^c 7, then z:a ^Άι,χ^ {Xx:j.x)z £ 7 and (Χχ:η.χ)ζ —*β ζ, but z:a¥M,\¿ ζ:η. 

This example illustrates the fact that a step of /3-reduction of a term may reduce 
its original type. The reason being that, in order to type (Xx:y.x)z, a ^c 7 is 
used, and such information can only be used by the application rule, Т - А Р Р ^ . 
The /9-reduction step "erases" the application. Therefore the subtyping inform­
ation cannot be used any longer. Nevertheless, the following monotonie subject 
reduction property holds. The following result is necessary to prove proposition 
7.4.18. 
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LEMMA 7.4.17 If Γ,χ:σ \-A{,\^ M e τ, Τ г-л,,А< Ν G σ', and σ' ^ c σ, then there 

exists τ' such that Γ \~Ats\¿ M[x:=N] G τ' and τ ' íJc т. 

PROOF: By induction on the complexity of Μ. О 

PROPOSITION 7.4.18 (Monotonie subject reduction) 
If Г \~A<)\¿ Μ ζ σ and Λί —*ρ Μ', then there exists τ such that Г Н ^ д , M G τ 

and г ^ с σ. 

PROOF: By straightforward induction on the complexity of M, using lemma 

7.4.17. Let us consider the case when M is a redex and M' its reduct, that is 

the only case that demands some work. Then the situation is as follows. 

ΓΚ,,,λ,- (\χ:ρ.Μι)Μ2 G σ. 

By generation (proposition 7.4.5), we have that 

Γ, x:p \-AI)\ç Μι G σ, Γ Γ-„,,Α < Λ/2 e // and ρ' ζσ Ρ-

By lemma 7.4.17, there exists σ such that Γ ^AI,\¿ Μι[χ :=Μ 2 ] £ σ' and σ' ^ с σ. 

D 

Observe that because of the unicity of types property M' cannot have type σ 

as well. 

Here we show that AlgX^ describes an effective procedure to compute minimal 

types in Л^. 

P R O P O S I T I O N 7.4.19 

1. (Soundness) If Γ \-λΙί\ M G σ, then Γ l·\< M G σ. 

2. (Completeness and minimal typing) If Г b A < M £ τ, then there exists σ 

such that σ ζ ρ τ and Γ \~M,\¿ Μ ζ σ. 

P R O O F : 

1. By induction on the derivation of Г Ьл,,д. M G σ. 

2. By induction on the derivation of Г Ьд,- M G σ. We consider the case for 

T - A P P , the other cases follow with similar or simpler arguments. We are 

given that 

М = Мг M2, 
Γ | - A < Mi e τ—κχ, and 

Γ Ι- λ < Μ 2 € т. 

By the induction hypothesis, there exist p\ and p 2 such that 

Г \-АУ,\^ Mx e pi where pi < σ τ->σ, and 

Γ r-,,,,λ^ M 2 G p 2 where p 2 ¡ξσ т. 

By the correctness of the algorithm Subtype (7.2.3), we know that pi = 
τχ—>σχ, and by lemma 7.2.6, we have that τ ^ с f\ and σ\ ^ ^ σ. By S-
TRANS, pi ^ С П· Finally, by T - A P P ^ , we have that Γ hA,,\^ Μι M 2 G σι. 
D 
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The last proposition says that A^ and AlgXç type the same set of terms, in 
other words, the set of legal terms of A^ is equal to that of AlgX^. The difference 
is that they may assign different types to the same term. Note that item 1 says 
that AIgXç -typing statements are also A^ -typing statements, the converse is not 
true. Consider the following simple example. 

Let С = {(α, β)}. Then x:a Нд χ Ε β, but χ:α \~Aigx¿ ζ Ε β is not a derivable 
statement. 

Observe that the typing information present in the A^ terms is essential for the 
minimal type property. Consider the following example in the system presented 
in [Mit84], i.e. a simply typed Α-calculus à la Curry with implicit coercions to 
see that it might be the case that neither the unicity of types property nor the 
minimal type property are satisfied. 

Let С = {(α, β)} and let α, β, and η be different type variables. Then the 
identity function, Xx.x, has as type scheme σ—>τ where a ^с т. In particular we 
have that 

Г h Χχ.χ:α—*β and Γ l· Χχ.χ:η-^η, 

but there is no type ρ such that 

Γ h \χ.χ:ρ, ρ ^c α—>β, and ρ ^c 7~>7· 

Unlike the system AlgX^ the system A^ satisfies the subject reduction property. 

P R O P O S I T I O N 7.4.20 (Subject reduction for A^) 

If Γ h A < M e σ and Μ ->β Μ', then Г Ь л < M ' Ε σ. 

PROOF: By lemma 7.4.19(2), we know that there exists τ such that Г НЛІ1,> MET 
and τ ^с о. By monotonie subject reduction (7.4.18), Г VA^\¿ M Ε τ ' , for some 

τ' ^с т. Then, by lemma 7.4.19(1), it follows that Г h A < M e τ ' . Finally, since 

τ ' ^ σ σ, by T-SuBSUMPTioN, it follows that Γ l·χ< Μ' Ε σ. G 

7.5 Ac, a system with explicit coercions 

DEFINITION 7.5.1 The typed Α-calculus with explicit coercions, Ac, is defined as 

follows. The set of pseudo-terms Λ = Л(Ас) is defined by the following grammar. 

Л::= | XV-.JA | ΛΛ | Q < A > , 

where V is a set of (term) variables and Q is a set of constants with ca¡TEQ if and 
only if σ ^ с т. 

The set of types T a n d the concepts of statement, typing assumption, subject, 
context, derivable statement, and legal term are as in definition 7.4.1. 

D E F I N I T I O N 7.5.2 

Tl·χcxE σ, if χ-.σΕΤ (Τ-VAR) 
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Г і , : , І " ^ 6 Т (Τ-ABS) 
Г Ь с \χ:σ.Μ £ σ->τ 

Г^сМеа^т T^NGa ( χ Α ρ ρ ) 

п-АСмт ет 
Г Ь с M g σ g ^ с г 

Г Ь А с С , Т < М > e г 
( T - C O E R C E ) 

The standard notions of reduction and substitution are extended with the 

following rules. 

1. If Μ -*β M', then c„>T<M> -*β с„,т<М'>. 

2. c,T<N>[x:=M] = c„<T<N[x:=M}>. 

L E M M A 7.5.3 (Weakening for Xc) Let Γ and Γ' be contexts such that Г С Г'. 

Then, if Г Ь с M e σ, then Γ' h A c M G σ. 

PROOF: By induction on the derivation of Г І-дс Μ Ε σ. • 

P R O P O S I T I O N 7.5.4 (Generation for λ σ ) 

1. If Γ Ι-λ ί 7 χ€σ, χ:σ£Τ. 

2. If Γ l-A c MN e σ, there exists τ such that Г Ь с М е г - к г and Г h A c N e т. 

3. If Г h A c Хх:р.М e er, there exists τ suchthat σ = ρ—>τ and Γ,χ:σ h A c M € т. 

4. If Г Ь с с„<т<М> Ε σ, Г Ь с Л/ e ρ,τ = σ, and ρ ^ с т. 

PROOF: Since the system is syntax directed, the form of the subject uniquely 

determines the last rule of the derivation of the typing statement. Π 

L E M M A 7.5.5 Let ΑίεΛ(Α σ ). 

If Γ, X:T b c M £ σ and Γl·χc N e τ , then Г Ь с Μ[χ:=Ν] € σ. 

PROOF: By induction on the complexity of Μ. Π 

P R O P O S I T I O N 7.5.6 (Subject reduction for Xc) 

If Γ |-AC M 6 σ and M -»„ M', then Г h A c Ai' € σ. 

PROOF: By induction on the complexity of M. Let us consider the case when 

M is an application and in particular a redex. Then, Μ = (Χχ:τ.Ρ)Ν and 

M' = P[x:=N]. By generation, we have that Γ, χ:τ l·χc Ρ e σ and Γ г-дс Ν Er. 

Finally, due to lemma 7.5.5, we get Γ h A c P[x:=N] € σ. О 

It is instructive to compare these last two results with lemma 7.4.17 and pro­
position 7.4.18, the corresponding results for AlgX^. 
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7.6 The relation between λ̂  and Ac 

If we go back to the discussion in the introduction, the T-COER.CE rule is more 

than what we actually need to be able to apply a function to an argument of a 

type smaller than its domain type. On the other hand, the T - A P P ^ rule fits per­

fectly in our requirements. In the introduction we mention the difference between 

implicit and explicit coercions; in this framework AlgXç has implicit coercions and 
furthermore, given a (legal) term M in Л(Л/рА^), there is a uniform way to find 
a term M in A(Ac) that is the explicitly coerced version of M, as will be defined 
in definition 7.6.3. This can be read as: there is no need to write the coercions 
because they can be automatically recovered. 

DEFINITION 7.6.1 (The implicitly coerced version of M) 

| _ | : Α(λ σ ) -» А( 4 / ^ ) . 

\x\ = χ, 

|λχ :σ .Μ| = Αχ:σ.|Μ|, 

\MN\ = \M\\N\, 

\ca,r<M>\ = \M\. 

L E M M A 7.6.2 If Г Ь А с M e σ, then there exists r such that Γ r-AlgX< \M\ Ε τ 

and τ ^с er. 

PROOF: By induction on the derivation of Г r-Ac M £ σ. ü 
This lemma says that the implicitly coerced version of a (legal) λσ-term is a 

(legal) AlgX^-term. 

D E F I N I T I O N 7.6.3 dec: ContextxA(AlgX^)-^A(Xc) 

decr(x) — χ 

decr(\x:ff.M) = Xx:a.decriX-.0(M) 

decr{MN) = decr(M)cPt„<decr(N)> 

where Γ r-A,íX< Nep 

and Г Ьм,хс M G σ-ут 

dec stands for decoration. 

Observe that dec is a partial mapping given that there may not be such ρ or σ—>r 

in the application case, and that it may not be the case that ρ ^с °~, in which 
case there is no сРі<т constant. On the other hand, the next result shows that dec 
is total on the subset of legal AZi/A^-terms. 

LEMMA 7.6.4 Let MçA(AlgXç). then 
Γ r-AljA< M G σ if and only if Γ h A c decT(M) 6 σ. 

P R O O F : 

http://T-Coer.ce
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•ί=) By induction on the complexity of M. 

=>) By induction on the derivation of Г \~л,яу Μ E er. Let us consider the case of 

the Τ-ΑρΡζ rule. Then, the situation is as follows. 

Γ ΗΛΙ#λ< Ρ e τ-*σ Γ l·^ Nep ρ <c г 

Γ \-ΑΙίλ< PN e σ 

where M = P N . 

By the induction hypothesis Г Ндс decr(P) e τ—>σ and Г г-дс rfecr(-/V) 6 /> 
and by the T-COER.CE rule Г Ь\с cPiT<decr(N)> e т. Finally, by the T - A P P 
rule, it follows that Г b\c decr(P)c^T<decr{N)> € σ and, by proposition 

7.4.6, we conclude decr(PN) = decr(P)cp,T<decr{N)>. • 

L E M M A 7.6.5 

Г Ьл 4 M £ σ if and only if there exists τ, such that Г Ьд с cT<a<dec\~{M)> 6 σ. 

P R O O F : 

1. If Γ l·χc CriV<decr{M)> e σ, by generation for Ac (proposition 7.5.4), 

Γ I~AC ¿ecr(M) € r and г ^ c f-

By lemma 7.6.4, Γ \~AI9X¿ Мет, and, by the soundness of AlgX^ (7.4.19), 
Γ Κ λ < Мет. Finally, the result follows by T-SUBSUMPTION. D 

2. If Г г-д^ Мет, then, by the completeness of AlgXç (7.4.19), there exists τ 

such that 

Γ \-Λ&ς Мет, and 
τ ^ с σ. 

Then, by lemma 7.6.4, it follows that Γ h\c decr(M) e т. Finally, the result 

follows by Т-COERCE. • 

This last lemma says that A^ can be translated into Ac- Moreover, together 
with theorem 7.7.9, implies that A^ can be translated into A—». 

We could compare the systems AlgX^ and Ac using an auxiliary system, call it 
Ac", obtained by replacing the rules T - A P P and T - C O E R C E of Ac by the following 
rule. 

Г r-A c- M g σ-*τ Γ h A c - Nep ρ^ασ 

г і - Л с - М с „ „ < і > е т ( Т - А р Р с ) 

It is easy to check that Ac" satisfies the unicity of types property. Unfortu­
nately, the system A c - is not sufficiently well-behaved to be of independent in­
terest. For example, it does not satisfy the subject reduction property. The failure 
is such that ^-reductions on well typed terms can yield illegal terms. For example, 
if С = {{β, a)}, then y.ß h A c - (Xx:a.x)cßiC,<y> e a, but y.ß hXc- c0¡a<y> G α 

is not a derivable statement. 

The following lemma shows that A c - is an intermediate step between AlgX^ 

and Ac. 

http://T-Coer.ce
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LEMMA 7.6.6 1. If Γ r-Ac- Μ e σ then Γ Ь с M e σ. 

2. If Γ h x c M £ σ then there exists r such that τ ^c <* and Г r->c- M £ т. 

3. If Г Ь Л с - M 6 σ then Γ г-д|,А<; |Λ/| e σ. 

4. If Γ І-Д І,Л < Μ e σ then Γ Ь А с - <fecr(M) 6 σ. 

5. If Γ hXc- Μ£σ then <¿ecr(|M|) = M. 

6. If Г Ь „ л < M 6 σ then |áec r(AÍ) | = M. 

Observe that lemma 7.6.2 is now a consequence of items 2 and 3 of the last 
lemma; and the last four items say that AlgXç and Xc~ are equivalent in the sense 
that every term that can be typed in AlgX^ has its explicitly coerced version in 
Ac - , and every term that can be typed in Xc~ has its implicitly coerced version 
in AlgX^. Furthermore, the translation between the two systems does not cause 
any loss of information as long as no reduction is involved. 

7.7 Simply typed λ-calculus and Ac 

In this section we show how to translate Xc into X—>. The first step of this 
translation consists of representing subtyping statements as λ—»-terms. For this 
we define an environment in which there is a typing statement for each subtyping 
axiom of С as follows. 

DEFINITION 7.7.1 The environment E ç . Let ^αι,/ϊι·"^αη,/9„ be different constants 
of K. Then, 

Σσ - {kc,1,ß1:oti-*ßu—>kan,ßn:an-+ßn}, 

such that (α,·, ßi)cC if and only if А; а і дбЕс. 

Observe that fca,,/ï, is just a mnemonic name for a constant. Next we define the 
function find that finds a term that performs the coercion from σ to τ if σ ^с τ · 
For that we use the following auxiliary definition. 

D E F I N I T I O N 7.7.2 (Typed composition) 

foag = Xx-.a.f(gx). 

For the sake of readability we use simply o. 

If we look at С as a directed graph, there may be more than one path between 
two variables of C, and that is the reason why a choice is involved. An example 
of such situation is the following. 
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EXAMPLE 7.7.3 Suposse С = {(α,β); {β,η); (α, δ); (δ,-у)}. Then there are two 
non-convertible terms that perform the coercion from a to 7, namely 

k/3,-r ° kaß and kg^ о k0i£. 

Therefore, we assume a choice function choose so that find is well defined. 

D E F I N I T I O N 7.7.4 find: Τ χ T x 2 х - > Л ( А - ) . 

find(a, σ, С) — Χχ:σ.χ, 

find(a, β, С) = choose{fe^_ll7h о ... о fc^ |-γ0 = а, 

7η = β and (7.,7.+i)eC, for every ¿€{l..n} }, 

find(ai-+a2,T\—*T2,C) = \χ:σ\—KTj.find(a2,T2, С) ο χ ο find{T\^\, С). 

where α φ β, σ\ φ Τχ and σ2 φ τ2. 

Observe that find is a partial mapping, given that choose may fail, and it is 

only defined when the first and second arguments are in the ^ c relation. Note 

that if we impose the restriction that С must be transitively closed, then we can 

simplify the function find and redefine the second clause as 

find(a,ß,C) = kaß. 

The next lemma states that if σ ^ с τ , then findfc, τ, С) is a codification of a 
subtyping statement in the simply typed lambda calculus without subtyping. 

L E M M A 7.7.5 If σ ^ c τ , then h E c find(a, т, С) e σ->τ. 

PROOF: By induction on the complexity of σ. 

Case 1. σ is a variable. Then, by lemma 7.2.5(2), τ is also a variable. According 

to lemma 7.2.5(3), we can distinguish two cases. 

Case la. σ = т. Then, by definition, find(a,r,C) = \χ:σ.χ. Further­

more, it holds that h j ; c \χ\σ.χ G σ—*σ. 

Case lb. trans(a,т, С). Then, as \-\c к1іП] € f,—yy}, by the definition of 
Ec , we have that b-£c &·,„_,,-,„ о ... o k~,am £ σ—>т. 

Case 2. σ = σ\—>σ2. Then, by lemma 7.2.5(2), r = т\—УТ2. If σ = τ, the result 

follows as in Case la. Otherwise, by lemma 7.2.6, T\ ^с °~ι and σ2 ^с τ2· 

By the induction hypothesis, we have 

г"Ес find(ri,a-i,C) G τι—*σχ and 
r-E c find(a2,r2,C) € σ 2 ->τ 2 . 

Hence, h j ; c λχισχ—*a2.find(a2,r2, С) ο χ оβηά(τ^,σι,0)σ—*т G . Π 

Observe that, actually, this result could be obtained as a corollary of these two 

facts: 
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• If σ ^c τ, then βηά(σ, τ, С) is defined, and 

• If find(a, τ, C) is defined, then Ь Е С find(a, т, С) G σ—>τ. 

With the following definition we can relate the system Xc with A—•. 

D E F I N I T I O N 7.7.6 M - " (The A-> version of Μ). _~*:Λ(λσ) -» Λ(λ->). 

a;-* = χ , 

(λχισ.Μ) - * = Аж:а.М~\ 

(MN)"* = Μ" Ν", 

(са>т<М>У = find{a,T,C)M^. 

Then, M - * is obtained from M by replacing the coercion constants by terms that 

will perform the corresponding coercion. 

Note that _~* is a total function because the existence of cu>T implies σ ^ с т. 

P R O P O S I T I O N 7.7.7 Let M in Λ(λ σ ) . Then, 

If Γ h A c M G σ, then Γ r-E c М^ G σ. 

PROOF: By induction on the derivation of Γ l·χc M G σ. 

Τ-VAR Let M = χ. Then χ:σ£Τ. As χ" = χ, using the Τ-VAR rule in λ—• we 

get Г Ь Е С X~* G σ. 

T - A B S Let M = Xx:p.N and σ = р—ут. Then Г Ьд с Xx:p.N G ρ—>τ follows 

from Γ,χ'.ρ \-\c Ν ζ т. By the induction hypothesis, it follows that 
Г, x:p l·Σc N~* G r. By T - A B S , we conclude Г r-S c Xx:p.N~* G р-*т, 

and, by the definition of _"*, Г h j ; c (Xx:p.N)~* G ρ—»т. 

Τ - Α Ρ Ρ Μ Ξ ./VP, and Г Ьд с N P G σ follows from the statements Tl·χc Ρ £τ 

and Γ h\c N G τ—>σ for some т. By the induction hypothesis, the T-
A P P rule of λ—•>, and the definition of _~*, the result follows. 

T - C O E R C E M is cT,(T<iV> and Γ h A c cT^<N> G σ follows from Γ Y\c N £ τ and 

r iJc σ. By the induction hypothesis, Γ h j ; c N~* G τ , and due to 

lemma 7.7.5, Н Е С find(r, σ, С) G τ—>σ. Finally, using the weakening 

lemma together with the T - A P P rule of A—•, and the definition of _~", 

we get Γ h E c (cT,(r<7V>)~'' G σ. О 

P R O P O S I T I O N 7.7.8 Let Л/ in Α ( λ σ ) . Then 

Γ h E c Af* G σ =» Г Ь А с M G σ. 

P R O O F : By induction on the complexity of M. 

Case Ι. M = x&V. Then Λ/-1, Ξ I . By the free variable lemma of A—+, we can 

conclude that χ:σΕΓ, and, by T-VAR Г І~АС Χ G σ. 
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Case 2. M = PQ. Then M~* = P~~Q~*. By generation, there exists τ such that 

Γ \-EC P~ e τ-*·? and Г Ь Е с CT e г. 

By the induction hypothesis, 

Γ Η λ ( 7 Ρ ε τ - к г and Г Ь с Q € г. 

By T - A P P , we get Г h> c P Q e σ. 

Case 3. M = \χ:τ.Ν. Then M~* = Χχιτ.Ν-'. By generation, it follows that 

Γ, X:T l·•Σc N~* ε ρ and σ = r—>/j. We now can apply the induction hy­

pothesis and we get Г, х:т Ьд с Ν £ ρ, and to that we only have to apply 

the T - A B S rule to get Г к Л с Χχ-.τ.Ν € σ. 

Case 4. M = cTtCr<N>. Then, M~* = find(r^,C)N~>. Recall that the constant 

cT<„ exists if and only if τ ^ c о-. Then using lemma 7.7.5, we know that 
| -£ с find(r, σ, С) £ τ—>σ. By generation, the unicity of types lemma, and 

the weakening lemma, it follows that Г l-£c -AT-* £ т. By the induction 
hypothesis, we have Г Нлс Ν £ т. Finally, by applying T-COERCE, it 
follows that Г bXc cT^<N> e σ. О 

Putting together the last two propositions we can state the following theorem. 

T H E O R E M 7.7.9 Let M in \{XC). Then, 

гl·χc Mea & г ь Е с м-* e<χ. 

This last result can be read as follows. The simply typed λ-calculus without 

subtyping is an appropriate model for the simply typed λ-calculus with subtyping. 

We can also extract from it the conclusion that the simply typed Α-calculus with 

explicit subtyping is a conservative extension of the Α-calculus without subtyping, 

because if M is a λ—• term then M~* = M. 

M e t a t h e o r y of Xc 

The system Xc is of independent interest. The previous theorem and the fact that 

M~* is always defined, imply that the type checking and type inference problems 

are decidable given that the corresponding problems in λ—» are (see [Bar92]). 

Recall that a pseudoterm M is called strongly normalizing if there is no infinite 

reduction chain starting from M. We reduce the strong normalization property of 

Xc to the strong normalization result for λ—» (see [Bar92]). 

First, we prove some auxiliary results first. 

LEMMA 7.7.10 (Substitution lemma) Let M,N in A(Xc) and xEV. Then 

(M[x:=N])-* = М ^ [ х : = Л Г ] 
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PROOF: By induction on the complexity of M. We consider here only two cases, 

the missing ones are proven in a similar way. 

• M = χ. 

(x[x:=N})~' = T V by definition of [:=]. 

= x[x:=N~>] by definition of [:=]. 

= x~*[x:=N~*] by definition of _""*. 

• M = c„<T<P>. 

(c„<T<P>[x:=N]y = c„<T<P[x:=N}>~ by definition of [:=]. 

= Αηά(σ,τ,0)(Ρ[χ:=Ν])~' by definition of _~\ 

= find(a, τ, C)(P~*[x:=N^]) by the induction 

hypothesis. 

= {find(a,T,C)P~)[x:=N~} 

= (ca>T<P>)~'[x:=N~t] by definition of _~\ 

Observe that find(a, т, С) is a closed term. О 

LEMMA 7.7.11 (ßeduetion preservation) Let Μ, N in Λ(λ σ ) . Then, if M ->p N, 

then Μ - * -*β N~*. 

P R O O F : By induction on the complexity of M. 

Case 1. If MÇ.V the result is vacuously true. 

Case 2. Μ = Χχ:σ.Μ\. Then N is of the form Χχ-.σ.Νι, where Mi —># JVi. By the 

induction hypothesis and the definition of _"*, the result holds. 

Case 3. M = M\M2. Then we have the following three cases. 

1. Ν = ΝχΜ2, where Mx -># N\, 

2. N = MiNi, where M2 ->/? N2 and, 

3. M = (Χχ:σ.Ρ)Μ2 and N = P[x:=M2]. 

The first two cases follow from the induction hypothesis and the definition 

of S* and the third is a consequence of the substitution lemma. 

Case 4. M = οσ<τ<Μχ>. The result follows from the induction hypothesis and 

the definition of _"*. D 

THEOREM 7.7.12 (Strong normalization for Xc) 

If Г Ьд с M £ σ, then Μ is strongly normalizing. 
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PROOF: Suppose, towards a contradiction, that M is not strongly normalizing. 

This means that there exists an infinite reduction chain starting from M. By the 

reduction preservation lemma (7.7.11), we know that there is also an infinite chain 

of reductions starting from M - " , and using proposition 7.7.7, we know that 

Γ r-j;c M ~ e σ. 

But, we also know that λ—> has the strong normalization property which yields a 

contradiction. Hence, M is strongly normalizing. D 

7.8 Confluence 

Using the results about confluence of orthogonal combinatory reduction systems 

(CRSs) in [vR92], we can state that the systems Xc and Xç are confluent as a 
consequence of what we have already proven in this chapter. The sets of pseudo-
terms Л(Ас) with the /3-reduction rule and Л(А^) with the /3-reduction rule are, 
according to the definitions of [vR92], two orthogonal CRSs. The subject reduction 
property of Xc (7.5.6) and of λ^ (7.4.20), imply that the corresponding sets of legal 

terms are two substructures of A(Xc) and Λ(λ^) respectively. Since substructures 

of orthogonal CRSs are also orthogonal, it follows that the systems Xc and Л^ are 
confluent. 

7.9 Conclusions 

In this chapter we analyze two different styles of subtyping, subtyping with im­
plicit coercions and subtyping with explicit coercions. We define and study two 
alternative presentations of subtyping for simply typed lambda calculus. The first 
one Л^, a system with implicit coercions, and the second one Xc, a system with 
explicit coercions. We show that the system λ^ can be translated into Xc, and, 

in its turn, Xc can be translated into Λ—>. In other words, both disciplines can be 

compiled into the simply typed lambda calculus without subtyping. 



Chapter 8 

Future research 

The study of the meta-theory of a rich typed lambda-calculus such as F" has 
drawn our attention towards open and challenging problems such as the ones 
listed below. 

A normalizing fragment of F" 

Although the reduction on types —>ß\ is strongly normalizing on well-kinded types, 
the reductions on terms are not strongly normalizing for the simple reason that 
every closed term can be assigned a type. Therefore we would like to characterize 
a normalizing subset of the language of terms. A similar situation arises for the 
intersection type discipline à la Curry studied by the group in Torino. In their 
framework, a term e is strongly normalizing if and only if there exists a derivation 
of a typing statement with e as subject which does not contain the maximal type 
ω. In our case, this statement is not true. A very simple counterexample is the 
term 

\x\T*.x, 

which is in normal form and all whose derivations contain the maximal type T*. 
This problem is subject of current research by Mariangiola Dezani and the author 
of this thesis. 

Bounded operator abstraction 

In F" and also in F<, abstraction on types is of the form AX:K.T, and its asso­

ciated formation rule is 

Γ, Χ<ΎΚι:Κι h T2 e K2 

п-АХ-.Кг.ъек^к,. ( K - 0 A B S ) 

A natural enrichment of the theory would replace AX:K.T by \X<S:K.T, 
using the following formation rule. 

Г, X<S:K! \-T2€K2 

Γ h AX<S:K.T 6 ν Χ < 5 : Α Ί . λ ν 
( K - B O U N D E D - O A B S ) 

143 
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This means that we need to modify the language of kinds because 5 , the bound 
of X, is required in order to assign a kind to a type operator application. Then 
the formation rule is as follows. 

T\-T£VX<S:KX.K2 T\-S'<S 
r h r f f e J r i [ M (K-BOUNDED-OAPP) 

Consequently, the kind inference and kind checking algorithms become more 
complicated, since they involve checking a subtyping judgement. The meta-theory 
and applications of this extension are the subject of current research by Paula 
Severi and the author of this thesis. 

Subtyping dependent types 

The type-theoretic foundations of proof development systems include the AUTO-
MATH family of calculi [dB80], the Edinburgh Logical Framework [HHP92], the 
Calculus of Constructions [CH88], Extended Calculus of Constructions [Luo90], 
and Martin-Löf type theory [SNP90]. Implementations of these theories have been 
used in a number of proof development systems (AUTOMATH at Eindhoven, C O Q 
at INR1A, LEGO at the LFCS, and A L F at Göteborg). A common feature of these 
systems is their heavy reliance on dependent types, and the consequent difficulty 
of their meta-theoretic analysis. 

The interaction of subtyping with dependent types seems to be the principal 
obstacle to its integration in proof development systems. Some work in this area 
has been started by Cardelli [Car87, Car88b], who gives basic definitions and some 
ideas about type checking algorithms, and by Pfenning [Pfe93], who has proposed 
variants of the Logical Framework and the Calculus of Constructions with re­
finement types, a simple form of intersection types whose interaction with type 
conversion and dependency is strictly controlled. Aside from these preliminary 
efforts, the area remains unexplored. 

The system \P is an extension of the simply typed lambda calculus with 
dependent types [Bar92]. The meta-theory of XP<, an extension of XP with sub-
typing, is being developed by David Aspinall and the author of this thesis. 



Appendix A 

S u m m a r y of Definitions 

A.l FZ 

A. 1.1 Reduction rules for types 

1. (АХ:К.Тг)Т2 ^ßA Тг[Х<-Т2] 

2. S -» Л*[Гі»Г„] ->„л А -*^ .. S->Tn) 

3. WX<S:K.A*[Ti..Tn] -> f lA Λ ^ Χ ^ Α Γ . Γ χ .. ЛГ<5:А:.ГП] 

4. ΛΑΊ^-Λ^ΡΊ-Γ»] -* /,ΛΛκ ,-*Κ ϊ[Λ^:ΑΊ.ΪΊ .. ΑΧι^.Γ,,] 

5. ΑΚι-κψι..Τη} U -»„A Л* а Рі Ι/ - Γη £/] 

6· ΑΚ[Ά •• hK[Si.:S*].. Tm] -40л Ак[Тг .. 5,..5Я .. Tm] 

Α.1.2 Reduction rules for terms 

1. (Лх:Т!.еі)е2 -*ßfm ei[x«-e2] 

2. {ХХКТ^КглуГ -+ßJor,e[X+-T] 

3. (for(A"Gr1..rn)e1)e2 -*ßfm for(XeTi..Tn)e1 e2 

4. for(Xer1..r„)e -+ßh„ e,ÜX¿ FV(e) 

A.1.3 Context formation rules 

01-ok 

Г h Г e * χ g dom(r) 

Γ, x:T h ok 

TbTeK Xi dom(r) 

Г, ЛГ<Т:Л: h ok 

(C-EMPTY) 

(C-VAR) 

(C-TVAR) 

145 
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K i n d i n g ru les 

Г ь X<T:K, Γ21- ok 

Г ь X<T:K, Γ2 l· X e к 
Г h Γι 6 * г ι- r 2 e * 

г h Гі->г2 e * 

Γ,X<T1•.K1l·T2£ + 
Tl·V{X<Tl•.K1)T2€* 

Г,Х<Тк':КгЬТ2&К2 

Г h \(X:KX)T2 e ΑΊ-Λ'2 

Γ h 5 6 Κι->Κ2 Γ h Γ e Kr 
Tl· ST e κ2 

Γ h ok for each i, Г h T¿ £ A" 

5 Subtyping rules 

r h s e í í г h г e A' s = д л г 
r h s < r 

ΓΗ S < T r h T < í/ 

Γι, Χ<Τ:Κ, Γ2 Ь ok 

Г ь Х ^ Г : ^ , Г 2 Ь Л Г < Г 

Г h Γι < Si Tl· S2<T2 Γ h S^S2 6 * 

Γ I- Si^Si < Γι->Γ2 

Γ, jy<(7:A: h S < Γ ΓΗ VX<U:K.S e * 

Γ h VX<U:K.S < VX<U:K.T 

Γ, X<TK:Kl· S<T 

Γ h AX-.K.S < AX-.K.T 

Tl·S<T Tl·SU£K 

Tl·SU <TU 

for each i, Γ h S < Γ, Tl· Sç К 

гТ^Тл^ІМУ 
г h лк[Гі-Г„] e A' 

Г l· л*ΡΊ..τ„] < Г, 

(Κ-Τ VAR) 

(K-ARROW) 

(K-ALL) 

(K-OABS) 

(K-OAPP) 

(K-MEET) 

(S-CONV) 

(S-TRANS) 

(S-TVAR) 

(S-ARROW) 

(S-ALL) 

(S-OABS) 

(S-OAPP) 

(S-MEET-G) 

(S-MEET-LB) 



FX 147 

6 T y p i n g rules 

Г1( x:T, Г2 Ь ok 

Г ь х:Т, Г2 h χ € Τ 

Г, х:Ті Ь e G Г2 

Г h Xx:Ti.e € 7\->Г2 

Г h ƒ E Τι-*Τ2 r t - а е Г , 
Г Ь / о б Г 2 

Γ, Χ<ΤΧ:ΚΧ h e e Γ2 

Γ h Α Χ ^ Τ , ^ . ε € 4Χ<Τχ:Κλ.Τ2 

Tl· ƒ e Х<Г і :А'і.Г2 Γ h S < 7\ 

ri-/5eT2[Xf-sì 
Γ h e[X«-S] e Г 5 e {Si..Sn} 

Г h for(A'e5,i..5„)e € Τ 

Γ h ok for each i, Γ h e 6 Ti 

T h e e Λ*ΡΊ..Γη] 

Г Ь е е 5 Tl· s <τ 

Г І - е е Г 

7 S u b t y p e checking, AlgF% s u b t y p i n g ru les 

(T-VAR) 

(T-ABS) 

(T-APP) 

(T-TABS) 

( T - T A P P ) 

(T-FOR) 

(T-MEET) 

(T-SUBSUMPTION) 

Tl· X Ç К 

Г h « , Χ < Χ 

Tl·TS£K 

Tl·AlaTS<TS 

Τ l·м9 ЦХ) <Α ΧφΑ 

Τ Ьд,3 Χ < Α 

Τ l·^ 7\ < S, Τ \-A,g S2 < Γ2 Г h Si-* 

г, 

Г l·^ Si->S2 < Γι-^Γ2 

X<U:K \-Мд S<T Tl· VX<U:K.S 

Τ l·^ VX<U:K.S < VX<U:K.T 

Γ, X<TK:K [-Μ, S<T 

•s2e* 

e * 

Γ \-jug AX-.K.S < AX-.K.T 

Tl·Aιg(lubг(TS))n,<A Tl·TSeK TS φ A 

Γ h u , T S < Λ 

Vi6{l..m} Γ Мя A<T¡ Τ l· A e К 

Г Ъм, А < І\к[Тъ.Тт] 

3j6{l..n} Г \-м, S}<A VJbe{l..n} Г l· Sk e к 

Г h « , Λχ[5ι..5η] < А 

(ALGS-TVARREFL) 

(ALGS-OAPPREFL) 

(ALGS-TVAR) 

(ALGS-ARROW) 

(ALGS-ALL) 

(ALGS-OABS) 

(ALGS-OAPP) 

(ALGS-V) 

(ALGS-3) 

file:///-jug
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Vt€{l..m} 3je{l..n} Γ \-Alg S} < T. Vfc€{l..n} Γ l· Sk g К 

Г \-лі, Л*[Si..5„] < Л*Pi-T«] ( L G " J 

A.1.8 Type inference 

DEFINITION [Homomorphic extension of lub to intersections, lub*] 

ІиЬ'г(Х) = г(л-), 

íu^ íST) = lub'r(S)T, 

ІиЬ-г(Ак[Тъ.Тп}) = Л*Р?»ЭД, if 5¿e{l..n} such that/ttòf(T,)l, 

where T[ is /u6p(T,), if lub^(T,)l, and T, otherwise. 

DEFINITION [Functional Least Upper Bound] The functional least upper bound 
of a type T, in a context Γ, flubr(T) is defined as follows. 

flubr(T) = ƒ / t o r ( t o r ( T V ) ) , if lub-r(T»')l; 
1 4 ' \Г П / , otherwise.1 

DEFINITION [arrows and alb] 

1. Or7OU)s(Tl—*T2) = {Ti—>T2}, 
вггешв(Л*[Гі..Гп]) = U,e{i.n}orrews(r,), 
arrows(T) = 0, 

if Γ £ Τ,->Γ2 and Τ φ Λ*ΡΊ·-Γ»]. 

2. oZfo(VX<ri:A:.r2) = { Х^ТьАГ.Г,}, 
αΗβ(Λ*[ΪΊ..Γη]) = и, е { 1..п }аШ(Г,), 
alb (Τ) = 0, 

if Γ φ 4Χ<Τλ:Κ.Τ2 and Γ =έ Λ*[Γ,..Γη]. 

Type inference rules 

r t , x:T, Γ2 h ok 

Г , , і : Г , Г а К і е Г 

Γ, χ:Τι Н,я/ e g Γ2 

ΓΓ-^Αι:Γ,.βεΓι-»Γ 2 

гь , п / /ег гь,п /ае5 

(AT-VAR) 

(AT-ABS) 

(AT-A PP) 

(AT-TABS) 

Γ I",„ƒ ƒ а £ Л*[Г, I St->T, G аггоииС/Ы^Г)) and Г h S < S,} 

Г h,,/ А Я ^ Т ^ . е e VX^Ti^.Ta 

гк я / /ет 
Г l- i n / /5 e Л*[Г,[*«-5] | Х<5,:А:.Г, € alb(flubr{T)) and Г h S < St\ 

(АТ-ТАРР) 

for all t'e{l..n} Г l-,n/ е[Л"<-5,]еГ, 

Г !-,„ƒ for(XeS,..Sn)e e л*[гг..гп] 
(AT-FOR) 
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Α. 2 F i r s t o r d e r s u b t y p i n g 

A.2.1 λ< 

A.2.2 \ c 

Г Ьд^ χ € σ if χ·.σζΤ 

Γ,χ:σΚΛ<; Μ € τ 

Γ |- λ < Χχχσ.Μ 6 σ->τ 

Γ Ь л < Μ € σ->τ Γ ΗΛ< Ν € σ 

г ι-Α< MN ε τ 

Γ h A < M g σ і т $ с т 

Г Ь м е т 

(T-VAR) 

(T-ABS) 

( T - A P P ) 

(T-SUBSUMPTION) 

Г Ь\с χ € σ, if χ:σ€Τ 

T^-.al·^ Μ £τ 

Г h A c Χχ:σ.Μ e σ—>τ 

Γ l-Ac Μ Ε σ-»τ Γ Ьдс Ν e σ 

г ь А с MN e τ 

Tbxc Μ £σ σ ^с τ 
T U . ,. ^ Л/Г^ с ~ (Τ 

(T-VAR) 

(T-ABS) 

(T-APP) 

-COERCE) 
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Samenvatting 

Subtypering is een primitieve relatie waarmee op een uniforme wijze begrippen uit di­
verse gebieden van de informatica kunnen worden beschreven. In het geval dat S en 
Γ verzamelingen zijn, betekent S < Τ (S is een subtype van Τ): elementen van S zijn 
ook elementen van T. Als 5 en Τ specificaties zijn, dan voldoen elementen die aan 
de specificatie S voldoen, ook aan T. Als 5 en Τ objectbeschrijvingen zijn in object-
georiënteerd programmeren, dan betekent S < Τ dat het op plaatsen waar een object 
met interface Τ wordt verwacht, ook een object met interface S gebruikt mag worden. 
Wanneer 5 en Τ module interfaces zijn in een software systeem, dan is een implementatie 
van S ook een implementatie van T. Als 5 en Τ stellingen zijn, dan is een bewijs van 
S ook een bewijs van T. Het begrijpen van de essentie, de subtiliteiten, en de algemene 
eigenschapen van subtypering, werpt licht op een omvangrijk gebied. 

Dit proefschift bevat twee delen. Het eerste deel geeft een gedetailleerde analyse van 
de meta-theorie van een getypeerde lambda calculus waarin intersectietypes en hogere-
orde begrensde quantificatie worden gecombineerd. Ons onderzoek betreft syntactische, 
semantische en pragmatische aspecten. 

• In hoofdstuk 2 definiëren we het systeem f^, en bewijzen we een aantal ele­
mentaire eigenschappen. 

- We definëren de getypeerde lambda calculus F%, een natuurlijke generalisa­
tie van Girard's systeem F" met intersectietypes en begrensd polymorfisme. 
Een nieuw aspect van onze presentatie is het gebruik van termherschrijf-
technieken om intersectietypes te definiëren, waardoor de computationele 
semantiek (reductieregels) duidelijk van de syntax (inferentieregels) van het 
systeem wordt gescheiden. 

- De reductieregels van F¡¡ kunnen gesplitst worden in twee hoofdgroepen: 
reductie van types (—>рл) en reductie van termen (—*ßj0T>)· Hoewel conflu­
ence in het algemeen niet een modulaire eigenschap is, is het in ons geval 
wel mogelijk om een modulair bewijs te geven. In sectie 2.3, combineren 
we de onafhankelijke bewijzen van confluentie voor reductie van types en 
confiuentie voor reductie van termen, tot een bewijs van confluentie van de 
reductierelatie van het gehele systeem. 

- We bewijzen de sterke normalisatie eigenschap van —*βΛ op goedgevormde 
types. 

• Hoofdstuk 3 bevat het meest belangrijke resultaat van dit proefschrift. Onze 
voornaamste bijdrage is het bewijs van het feit dat subtypering in F% beslisbaar 
is. Dit resultaat heeft een oplossing tot gevolg voor het tot nu toe open prob­
leem van de beslisbaarheid van subtypering in F%, het intersectie-vrije deel van 
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F%, omdat het subtyperinssysteem van F% een conservatieve uitbreiding van de 
subtyperingsrelatie van F% is. Verder is de beslisbaarheid van subtypering es­
sentieel voor de beslisbaarheid van type checking en type inferentie. Een andere 
oorspronkelijke bijdrage is het gebruik van een keuzeoperator om het gedrag van 
variabelen tijdens subtype checking te modelleren. Het bewijs van de beslisbaar­
heid wordt opgesplitst in de volgende stappen. 

- We definiëren een algoritmische presentatie van de subtyperingsrelatie, waar­
bij we alleen types in normaalvorm beschouwen. 

- We bewijzen dat deze algoritmische presentatie sound en complete is met 
betrekking tot de definitie van subtypering, dat wil zeggen dat hij een de­
terministische procedure bepaalt voor het checken van subtypering in f^. 

- Tenslotte bewijzen we dat de door de algoritmische presentatie beschreven 
procedure termineert. Het bewijs van terminatie wordt herleid tot de sterke 
normalisatie-eigenschap van reductie op types, uitgebreid met een keuze­
reductie die het gedrag van variabelen tijdens het checken van subtypering 
modelleert. 

• In hoofdstuk 4 bewijzen we dat F% de minimale type-eigenschap heeft, en we 
beschrijven een algoritme voor het berekenen van de minimale types. Bovendien 
bewijzen we dat type inferentie en type checking in F% beslisbaar zijn. De mini­
male type-eigenschap wordt gebruikt om te bewijzen dat F¿ de subject reductie­
eigenschap heeft. 

• In hoofdstuk 5 definiëren we een model gebaseerd op partiële equivalentierelaties, 
en we bewijzen dat de subtyperingsrelatie sound is met betrekking tot dit model. 

• Hoewel F% gedefinieerd was om een model te creëren voor object georiënteerd 
programmeren met multiple inheritance, is het niet de bedoeling van dit proef­
schrift om de grondslagen van object georiënteerd programmeren te behandelen. 
In hoofdstuk 6, laten we zien hoe multiple inheritance met behulp van subtyper­
ing gemodelleerd kan worden. Dit is een voortzetting van het onderzoek naar de 
type-theoretische grondslagen van object georiënteerd programmeren door Pierce 
en Turner [PT94], die multiple inheritance buiten beschouwing laten. 

In het tweede deel van dit proefschrift worden twee verschillende stijlen van sub-
typering bestudeerd: sub typering met impliciete coërcies en subtypering met expliciete 
coërcies. We definiëren en bestuderen twee alternatieve presentaties van subtypering 
voor de simpel getypeerde lambda calculus. De eerste, λ^, is een systeem met implici­
ete coërcies, en de tweede, Xe, is een systeem met expliciete coërcies. We laten zien 
dat het systeem λ^ vertaald kan worden in λ^, en dat \c vertaald kan worden in λ—• . 
Vanuit een pragmatische invalshoek betekent dat, dat impliciete of expliciete coërcies 
slechts een kwestie van smaak zijn, en dat beide benaderingen vertaald kunnen worden 
in de simpel getypeerde lambda calculus zonder subtypering. 

Translated by Jan Kuper 
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