Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/145923

Please be advised that this information was generated on 2018-07-07 and may be subject to
change.

http://hdl.handle.net/2066/145923

Higher-Order Subtyping
with
Intersection Types

een wetenschappelijke proeve op het gebied van de
Wiskunde en Informatica

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Nijmegen,
volgens besluit van het College van Decanen
in het openbaar te verdedigen
op maandag 30 januari 1995,
des namiddags te 3.30 uur precies

door
ADRIANA BEATRIZ COMPAGNONI

geboren 23 december 1965 te Buenos Aires

Promotores: Professor M. Dezani-Ciancaglini,
Universit degli Studi di Torino, Turijn, Italie.
Professor dr. H. P. Barendregt.

Higher-Order Subtyping
with
Intersection Types

ADRIANA BEATRIZ COMPAGNONI

Cover design: David Aspinall and Adriana Compagnoni

CIP-DATA KONINKLUKE BIBLIOTHEEK, DEN HAAG
Compagnoni, Adriana Beatriz

Higher-order subtyping with intersection types
Adriana Beatriz Compagnoni. - [S.. : s.n.]. - I11.
Thesis Nijmegen. - With ref.

ISBN 90-9007860-6

Subject headings: lambda calculus.

A Susana y Mario

Acknowledgements

Mariangiola Dezani is the most encouraging and enthusiastic computer scientist |
have ever met. From her I learned to trust my intuition and follow it through to
the very end. This research would not have been possible without her technical
supervision and moral support. I would also like to thank my supervisor, Henk
Barendregt. His lucid lectures on A-calculus, his ability to hide irrelevant details,
the clarity of his explanations, and his elegant technical prose have been constant
guides.

I thank the people in the Netherlands, especially Erik Barendsen and Jan Ku-
per, for their help and [riendship, and Steffen van Bakel and Paula Severi, for their
comments on previous drafts of this thesis. Mieke Massink and Maria Fernindez
Ferreira started as colleagues and soon became two of my dearest friends.

I am grateful to Benjamin Pierce, who suggested the study of a M-calculus
combining higher-order polymorphism and intersection types. He and I defined
the system F', whose study is, by and large, the theme of this thesis; together we
wrote [CP93], from which chapters 5 and 6 arose. His fertile mind and his passion
for hard work make him inspiring company.

I am indebted to Rod Burstall, who opened to me the doors of the Laboratory
for Foundations of Computer Science. There I found a highly motivating research
environment where I developed most of the results in this thesis, and a handful
of friends who made my life in Edinburgh a beautifully rich experience. I enjoyed
technical discussions with Stuart Anderson, David Aspinall, Philippa Gardner,
Martin Hofmann, Stefan Kahrs, Zhaohui Luo, Savi Maharaj, James McKinna,
Randy Pollack, and Dilip Sequeira. My special thanks to Healfdene Goguen for
many helpful comments on draft versions of this thesis.

It has been an honour to have Jan Willem Klop, Giuseppe Longo, and Rob
Nederpelt as members of the manuscript commission.

From my water-color teacher, Joost van Moll, I learned a technique which
actually changed my way of doing research; it consists of carefully examining
what has been done, learning from the successful ideas, and being brave enough
to start over again regardless of the time invested in the previous try.

In the non-academic world, I want to thank my parents, Mario Compagnoni
and Susana Brunsch, for their unconditional love. I want to mention (in the order
in which they appeared in my life) Silvana Cantoni, Karin Gottschalk, Claudio
Massa, Maribel Fernandez, Javier Blanco, Cristina Abbate, Martin de Zuvirfa,
and Esther Gerrits, because life would not be the same without friends.

Edinburgh, 6% of December, 1994.

vil

viii

This research was supported by the Dutch organization for scientific research, NWO-
SION project Typed lambde calculus, 612-316-030, and by EPSRC GRANT, GR/G
55792. Constructive logic as a basis for program development.

Contents

1 Introduction
1.1 Typesand programs ¢ e v v v v v v n v een
1.2 Subtyping e e e e
1.3 Type inference and type checking
1.4 Background e
1.5 Results. o e

I Higher-Order Subtyping

2 The F; Calculus

21 Introduction e
22 Syntaxof FY e
221 Discussion e .
23 Confluence e,
2.3.1 The Church-Rosser theorem for —g,
2.3.2 The Church-Rosser theorem for —grs
2.4 Structural properties L oL
2.5 Strong normalizationof —gy

3 Decidability of Subtyping in F

3.1 Normal Subtyping L.
3.2 Structural propertiesof NF,
3.3 Equivalence of ordinary and normal subtyping

3.3.1 Least strictupperbound, ...

332 Example e
3.4 A subtype checking algorithm, AlgFY
3.5 Termination of subtype checking.
3.6 Our decidability proof and full F

4 Typing in F;

4.1 Type checking and typeinference
42 Minimaltyping
4.3 Decidability of type checking and type inference
44 Subjectreduction oL,

ix

5 A PER Model for Fy

5.1

5.2 Total combinatory algebras
5.3 Higher-order partial equivalence relations
5.4 HOPER interpretation of F,

6 Multiple Inheritance

6.1

6.2 An example of multiple inheritance
6.3 Encoding multiple inheritance

II First-Order Subtyping

7 Implicit and Explicit Subtyping

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8 Future research

A Summary of Definitions

A2

Introduction

Introduction

Introduction

The subtyping relation

Simply typed A-calculus
Ag, a system with implicit coercions
Ac, a system with explicit coercions
The relation between A¢ and A¢
Simply typed A-calculus and A¢
Confluence

Conclusions

A.1.1 Reduction rules for types
A.1.2 Reduction rules for terms
A.1.3 Context formation rules

A.1.4 Kinding rules
A.1.5 Subtyping rules
A.1.6 Typing rules
A.1.7 Subtype checking, AlgF, subtyping rules
A.1.8 Type inference
First order subtyping

Bibliography

CONTENTS

Chapter 1

Introduction

1.1 Types and programs

One of the basic ideas in programming is the notion of algorithm. An algorithm is
a description of the rules one must follow to accomplish a task. But for a machine
to be able to perform such a task, this description must be expressed in a formal
language, and in particular programming languages serve this purpose.

Alan Turing introduced a formal language for describing computable functions,
now called Turing machines, from which imperative programming arose. The
lambda calculus was invented by Alonso Church to define the notion of comput-
able functions [Chu36]. Since then a variety of lambda calculi have been defined
and used in the study of programming languages. Lambda calculi can be seen
as simple programming languages, since they are formal and describe computa-
tions. In that sense, a program is a term of the lambda calculus. From a differ-
ent perspective, lambda calculi constitute metalanguages for analyzing other pro-
gramming languages. Although A-calculi are particularly well-suited to studying
functional programming languages, they have also been used to study imperative
programming disciplines [Lan65].

Types are an important tool in programming languages and logic which serve
to classify terms according to basic properties, such as being a number or being
a function. For example, if we think of the integer number 5, the term is 5 and
its type is integer. The addition function has a type expressing that it takes two
integer numbers as arguments and returns an integer number as result, which we
write as follows.

+ € (integer X integer)—integer

One immediate advantage of types is that nonsensical expressions can be con-
sidered illegal. For example, the expression

3 + “good morning”

will not be part of the language because “good morning” is not an integer number,
but a string of characters. Although this is a rather coarse example, this sort of
mistake is very frequent in the development of programs.

2 CHAPTER 1. INTRODUCTION

Further in that direction, AUTOMATH [dB80], Martin-Lof Type Theory [Mar73],
Coquand and Huet’s Calculus of Constructions [CH88], and Luo’s Extended Cal-
culus of Constructions [Luo90] are rich type systems in which a type can not only
prevent the formation of nonsensical expressions but can also state properties of
terms. For example, in the case of a term corresponding to a sorting algorithm
for lists, the type can express the fact that the output is an ordered list.

Type structures help organizing ideas and structuring programs in such a way
that disciplines of prograrnming and type systems walk hand in hand. The de-
velopment of ideas about programming motivates the design of type systems that
encourage programming in a particular style. Ideally, one would like to have
tailor-made type systems for each particular style of programming, so that bad
programming style results in illegal terms.

We refer the reader to [Bar90, Mit90c] for a more detailed analysis of the
relation between lambda calculi and programming languages.

1.2 Subtyping

Subtyping is a primitive relation that uniformly captures concepts from diverse
areas of computer science. If S and T are sets, then S < T (S is a subtype of T)
means that elements of S are also elementsof 7. If § and T are specifications, then
elements satisfying specification S also satisfy T. In object-oriented programming,
if § and T are object descriptions, then S < T states that where an object with
interface T is expected, it is safe to use an object with interface S. When S and
T are module interfaces in a software system, an implementation of S is also an
implementation of 7. If S and T are theorems, then a proof of S is also a proof
of T. Understanding the essence, subtleties, and general properties of subtyping
illuminates a wide area.

The idea of subtypes appears quite naturally in programming languages. If we
think of types as sets, we can easily picture what a subtype could be. Informally,
we can say that a type S is a subtype of T if any element of S can be seen
as an element of T. We say can be seen as and not directly is because the act
of considering an element of type S as an element of type T might hide some
transformation. Consider for example the types integer and real of integers and
real numbers respectively. Usually, on a computer, integers are represented in a
different way than real numbers are; even if we might think of the integers as a
subset of the real numbers, there is a translation to be performed. The act of
considering an element of type S as an element of type T will be called coercion.
In other words, we say that an element of type S is coerced into an element of
type T. Somehow an element of type S has enough information to be seen as an
element of type T.

While dealing with coercions we can distinguish between an explicit style and
an implicit style. A style with explicit coercions means that coercions are explicitly
indicated and in an implicit style, as the name suggests, coercions are left unstated.
In systems including subtyping there is usually a rule for typing coerced terms,

1.3. TYPE INFERENCE AND TYPE CHECKING 3

in other words, a rule that provided ¢ has type S and S is a subtype of T allows
us to derive that ¢ can be coerced into 7. In an explicit style, the coercion rule
might look as follows.

teS SLT

Tesr<t>€T (CoErcioN)
Similarly, in an implicit style the corresponding rule is as follows.

teS S<T

T teT (SuBsuMPTION)

An implicit coercion is motivated by the fact that the same term can be con-
sidered as belonging to two different types without performing any change in the
term, as for example is the case when one of the types is included in the other
(with the intuitive idea of set inclusion), while an explicit coercion gives explicit
information about the transformation. We can think, for example, of a function
f with the real numbers as domain, and a (sub)set A of real numbers. If z is a
variable of type A, then we would like to use f on z as well, without performing
any extra calculation to apply f to z. But if instead f is used with the integer
number 3 as input and f happens to use the decimal part of its argument, then
3 should be mapped into 3.0 first. Therefore one can argue that the meaning of
f(3) is f(cint:gcr,real<3>)~

One of the first applications of subtyping in A-calculi was modeling the re-
finement of interfaces in object-oriented languages [Car88a]. The formal subtype
relation S < T models the assertion that the objects in some collection S provide
more services than those in T, so that it is safe to use a member of S in any
context where a member of T is expected.

1.3 Type inference and type checking

We can say that if a term has a type, it is, to a certain extent, correct. This
correctness can be as simple as guaranteeing that computations will not fail by
mismatch of the expected argument of a function, for example, and as elaborate
as ensuring that certain specification or property is satisfied. With these ideas
in mind, a first question one may ask is whether a given expression e is legal or
correct, which in our framework means whether there exists a type T such that
e € T. This problem is traditionally called type inference. A related question,
given a term e and a type T, is whether e € T, known as type checking. In the
presence of subtyping both problems, type checking and type inference, become
more complicated because typing is defined in terms of subtyping. It is clear in the
SussuMPTION and COERCION rules that in order to answer a question of the form
e € T we should be able to answer questions of the form S < T. This shows that
at the heart of the decidability of typing lies the question of whether the subtyping
relation is decidable. In a system with the SussuMpTION rule, each term may be
assigned more than one type. Then to answer the type checking and type inference
questions we need a way to identify all possible types: for example, by finding some

4 CHAPTER 1. INTRODUCTION

kind of representative of the types of each term. One plausible candidate is a
minimal type with respect to the subtyping relation. Then type inference consists
of finding a minimal type, and type checking whether e € T consists of finding a
minimal type S such that e € S and checking if S < T. Without the minimal type
property, type checking becomes algorithmically intractable. Imagine that instead
of having just one representative we have a (finite) set of them, say Sy, .., S» such
that for each type T of e there exists j such that S; < T. Imagine that e is an
application, say e e;: then, to find the set of representative types of e, we need to
match each representative of e, against each representative of e, which produces
a combinatorial explosion.

1.4 Background

The formal study of subtyping in programming languages was begun by Reyn-
olds [Rey80] and Cardelli [Car88a], who used a lambda-calculus with subtyping to
model the refinement of interfaces in object oriented languages. This led to a con-
siderable body of work, covering an increasing range of object-oriented features by
combining subtyping with other type-theoretic constructs, including polymorphic
functions [CW85, CGY92, BCGS91]; records with update and extension operat-
ors [Car88a, CM91]; recursive types [AC93, BM92], and higher-order polymorph-
ism [Car90, Mit90a).

Type systems with subtyping have also arisen from the study of lambda-calculi
with intersection types at the University of Torino [CD80, BCD83]. Most of this
work has been carried out in the setting of pure lambda-calculi, but it has also
been applied to programming language design by Reynolds [Rey88]. Some work
has begun on combining intersections with other typing features [Pie91, CDdL93).

The contribution of this thesis is to weave together these two threads by com-
bining higher-order subtyping, which forms the cornerstone of several recent mod-
els of typed object-oriented programming [CHC90, Bru94, PT94], with intersection
types, leading to an extended object model with multiple inheritance [CP93].

1.5 Results

This thesis is divided into two parts the first part consists of a detailed analysis
of the meta-theory of a typed lambda calculus combining higher order bounded
quantification and intersection types. Our research covers syntactic, semantic, and
pragmatic aspects.

e Chapter 2 contains the definition of the system FY and basic syntactic res-
ults.

— We define the typed lambda calculus FY, a natural generalization of
Girard’s system F“ with intersection types and bounded polymorph-
ism. A novel aspect of our presentation is the use of term rewriting

15. RESULTS 5

techniques to present intersection types, which clearly splits the com-
putational semantics (reduction rules) from the syntax (inference rules)
of the system.

— The reduction rules of F) can be divided into two main groups, re-
ductions on types (—pa) and reductions on terms (—ggr). Although
confluence is not a modular property in general, in our case it is pos-
sible to provide a modular proof of it. In section 2.3, we combine the
independent proofs of confluence for reductions on types and confluence
for reduction on terms towards a proof of confluence of the reduction
relation in the whole system.

— We prove the strong normalization property of —sa on well-formed
types.

e Chapter 3 carries the most important result of this thesis. Our main con-
tribution is the proof that subtyping in Fy is decidable. This yields as a
corollary a solution to the previously open problem of the decidability of
subtyping in F¢, its intersection free fragment, because F subtyping sys-
tem is a conservative extension of that of F%. Moreover, the decidability of
subtyping is essential for the decidability of type checking and type infer-
ence. Another original feature is the use of a choice operator to model the
behavior of variables during subtype checking. The proof of decidability is
divided into the following steps.

— We define an algorithmic presentation of the subtyping relation where
only types in normal form are considered.

— We prove that the algorithmic presentation is sound and complete with
respect to the definition of subtyping, which means that it constitutes
a deterministic procedure to check subtyping in FY.

— Finally, we prove that the algorithmic presentation describes a ter-
minating procedure. The proof of termination is reduced to the strong
normalization property of the reduction on types enriched with a choice
reduction which models the behavior of variables during subtype check-
ing.

e In chapter 4, we prove that F,' satisfies the minimal type property, and
we provide an algorithm for computing minimal types. We also prove that
type inference and type checking in F, are decidable. The minimal types
property is used to prove that F satisfies the subject reduction property.

o In chapter 5, we define a model based on partial equivalence relations, and
we prove that the subtyping relation and the type assignment system are
sound with respect to the model.

¢ Although F was defined to provide a model of object-oriented programming
with multiple inheritance, this thesis does not intend to provide an account

6 CHAPTER 1. INTRODUCTION

on the foundations of object-oriented programming. In chapter 6, we show
how to model multiple inheritance using intersection types. This is a con-
tinuation of the research on type-theoretic foundations of object-oriented
programming by Pierce and Turner [PT94] where muitiple inheritance is not
captured.

The second part of this thesis is devoted to the study of two different styles of
subtyping, subtyping with implicit coercions and subtyping with explicit coercions.
We define and study two alternative presentations of subtyping for simply typed
lambda calculus. The first one A¢, a system with implicit coercions, and the
second one A¢, a system with explicit coercions. We show that the system A¢ can
be translated into Az, and that Ac can be translated into A—. This means that
from a pragmatic point of view, implicit or explicit coercions are just a matter of
taste, and both disciplines can be compiled into the simply typed lambda calculus
without subtyping.

Part 1

Higher-Order Subtyping

Chapter 2
The FY Calculus

2.1 Introduction

The system F;’ was first introduced in [CP93], where it was shown to be rich
enough to provide a typed model of object oriented programming with multiple
inheritance. Fy is an extemsion of F*“ [Gir72] with bounded quantification and
intersection types, which can be seen as a natural generalization of the type discip-
lines present in the current literature, for example in [CG92, Pie91, PT94, CP94).
Systems including either subtyping or intersection types or both have been widely
studied for many years. What follows is not intended to be an exhaustive descrip-
tion, but a framework for the present work.

First-order type disciplines with intersection types have been investigated by
the group in Torino [CDC78, BCD83] and elsewhere (see [CC90] for background
and further references). A second-order A-calculus with intersection types was
studied in [Pie91]. Systems including subtyping were present in [CW85, Car88a).
Higher order generalizations of subtyping appear in [CCH*89, CHC90, Mit90a,
BM92]. F¢, a second-order A-calculus with bounded quantification, was studied
in {Ghe90], and in [Pie91] it was proved that subtyping in F< was undecidable and
that undecidability was caused by the subtyping rule for bounded quantification.

In [CP94] an alternative rule for subtyping quantified types was presented
and the decidability of subtyping was proved for an extension of system F with
bounded polymorphism, where all bounds appearing in S-ALL have the ground
kind , a main limitation of that system.

Allowing bounds of functional kind forces us to introduce a conversion rule to
have invariance of subtyping under SA-conversion of types. Therefore, our sub-
typing relation relates types of a more expressive type system than that presented
in [CP94]. In fact, treating the interaction between interface refinement and en-
capsulation of objects, in object oriented programming, has required higher-order
generalizations of subtyping-the F-bounded quantification of Canning, Cook, Hill,
Olthoff and Mitchell [CCH*89] or Cardelli and Mitchell’s system F¥ [Car90,
Mit90a, BM92]. -

Ghelli [Ghe94] remarked that the rule for subtyping between quantified types
presented in [CP94] led to a well-behaved subtyping relation but that the typing

10 CHAPTER 2. THE F;; CALCULUS

relation fails to satisfy the minimal type property. This failure introduces serious
problems in type checking and type inference, as we observed in chapter 1. At
the moment it is not clear how to solve them or, even more problematic, whether
the typing relation is decidable. A possible solution to overcome this problem
is to replace the subtyping rule between quantifiers by the corresponding rule of
Cardelli and Wegner’s kernel fun [CW85].

In chapter 3 we give a positive answer to the decidability of subtyping in the
presence of SA-convertible types. We prove that subtyping in F, is decidable,
which a fortiori gives the decidability of subtyping for the F¢ fragment because
the former is a conservative extension of the latter ~ namely, each subtyping
statement derivable in Fy containing no intersections other than the empty ones
is also derivable in F¢.

We present a definition of F that differs from the one introduced in {CP93]
in two ways. First, Castagna and Pierce’s quantifier rule has been replaced by
the Cardelli and Wegner rule. Second, we introduce a richer notion of reduction
on types, and thereby the four distributivity rules become particular cases of
the conversion rule. This new reduction is shown to be confluent and strongly
normalizing. The latter simplification was motivated by structural properties of
the former presentation. Furthermore, this new presentation provides a different
view of the system that is the key to proving the decidabilily of subtyping.

This new perspective suggests that to prove the decidability of subtyping it is
enough to concentrate on types in normal form. Note that the solution cannot be
as simple as to restrict the subtyping rules of F% to handle only types in normal
form and replace conversion by reflexivity. The following is a good example of the
problem to be solved. Consider ' = W:K, X < AY:K.Y:K—-K,Z < X:K—K.
Then I' + X(ZW) < W, which is not derivable without using conversion, i.e.
without performing any S-reduction, even when the conclusion is in normal form.

The subtyping rules of F}’ are not syntax directed, in the sense that the form
of a derivable subtyping statement does not uniquely determine the last rule of its
derivation (i.e. there might be more than one derivation of the same subtyping
judgement). To develop a deterministic decision procedure to check subtyping, we
need a new presentation of the subtyping relation that provides the foundations
for a subtype-checking deterministic algorithm.

Our solution is divided in two main steps. First, we develop a normal subtyp-
ing system, NFy, in which only types in normal form are considered. We prove
that derivations in NF, can be normalized by eliminating transitivity and sim-
plifying reflexivity. This simplification yields an algorithmic presentation, AlgF}, .
Moreover, we prove that AlgFy is indeed an alternative presentation of the Fy
subtyping relation, that is T § < T if and only if '™ F 4, $*% < T™ (proposition
3.4.3).

The second and last step towards the decidability of subtyping in Fy is to
prove that the algorithm described by AlgF) terminates, which is equivalent to
showing that the definition of the AlgFy is well-founded. We discuss this further
in section 3.5.

Checking whether I' b4, ST < Aisreduced to checkingif I' F 47 lubr(S T)"’ <

2.2. SYNTAX OF Fy 11

A, where lubp(S T) substitutes the leftmost innermost variable of ST by its bound
in T'. Such replacements may produce a term that is not in normal form, in which
case we normalize it afterwards. The main problem here is that the size of the
types to be examined in the recursive call does not decrease. This indicates that
the proof of termination of the algorithm is not immediate. In particular, the
proof of termination presented in [CP94] cannot be modified to serve our pur-
poses, because of the interaction between @A-reduction and the substitution of
type variables by their bqunds in our system. We discuss this further in section
3.5.

In this chapter we present the syntax of Fy, we prove structural properties of
the system, confluence, and the strong normalization property for the reduction
on types.

2.2 Syntax of Fy

We now present the rules for kinding, subtyping, and typing in F.. They are
organized as proof systems for four intcrdependent judgement forms:

'k ok well-formed context
I'T e K well-kinded type
FFS<T subtype

'teeT well-typed term.

We sometimes use the metavariable £ to range over statements (right-hand sides
of judgements) of any of these four forms.

Syntactic Categories

The kinds of F are those of F: the kind * of proper types and the kinds K; — K,
of functions on types (sometimes called type operators).

K = x types
K-K type operators

The language of types of F, is a straightforward higher-order extension of F,
Cardelli and Wegner’s second-order calculus of bounded quantification. Like F,
it includes type variables (written X), function types (T—T"'), and polymorphic
types (VX <T:K.T"'), in which the bound type variable X ranges over all subtypes
of the upper bound T'. Moreover, like F, we allow types to be abstracted on types
(AX:K.T) and applied to argument types (T' T"); in effect, these forms introduce
a simply typed A-calculus at the level of types. Finally, we allow arbitrary finite

12 CHAPTER 2. THE F; CALCULUS

intersections (AX [T1..T%)), where all the T,’s are members of the same kind K.

T := X type variable
T-T function type
VX<TK.T polymorphic type
AX:KT operator abstraction
TT operator application
AX[T.T] intersection at kind K

We use the abbreviation T¥ for nullary intersections and sometimes X:K for
X < TK.K.

™ &AM
X:K & x<7KK

We drop the maximal type Top of Fx, since its role is played here by the empty
intersection T*. For technical convenience, we provide kind annotations on bound
variables and intersections so that every type has an “obvious kind,” which can
be read off directly from its structure and the kind declarations in the context.

The language of terms includes the variables (z), applications (ee) , and func-
tional abstractions (Az:T.e) of the simply typed A-calculus, plus the type abstrac-
tion (AX<T:K.e) and application (eT) of F“. As in Fc, each type variable is
given an upper bound at the point where it is introduced.

Intersection types are introduced by expressions of the form “for(X€T)..T;,)e”,
which can be read as instructions to the type-checker to analyze the expression
e separately under the assumptions X =T), X = T3, ..., X = T,, and conjoin
the results. For example, if + € Int—Int—Int A Real=Real—Real, then we can
derive

for(X€lnt, Realj)Az:X.z+z € Int—Int A Real>Real.

e u= variable
Az:T.e abstraction
ee application
AX<TKe type abstraction
eT type application

for(X€T..T)e alternation

The operational semantics of F} is given by the following reduction rules on
types and terms.

DEFINITION 2.2.1 (Reduction rules for types)

1. (AX'KT])TQ —4A T][XHTQ]

2.2. SYNTAX OF F¥ 13

. 8§ = N[11.To) —pa A'[S-T .. S—T,)]

. VXSS KN DT =pa N'VX<S:K.T, .. VX<S:K.T,]
CAXK N [T, —oa AR AXCKGLT . AXCKG T
(NOTRTLT) U —pa AU . TWU)

- NTy - AR(S1.8n] .. Tl = A[T1 .. S1..8n .. T

(=]

The first rule is the usual B-reduction rule for types. Rules 2 through 5 express
the fact that intersections in positive positions distribute with respect to the other
type constructors. Rule 6 states that intersection is an associative operator. In
section 2.5 we consider the reduction defined by rules 1 through 5 as —4,- and
the one defined by 6 as —, (a comes from associativity). The left-hand side of
each reduction rule is a redez and the right-hand side its reduct. The relation —ga
is extended so as to become a compatible relation with respect to type formation,
—»ga is the transitive and reflexive closure of — g4, and =g, is the least equivalence
relation containing —pga. The capture-avoiding substitution of S for X in T is
written T[X«S]. Substitution is written similarly for terms, and is extended
point-wise to contexts. The SA-normal form of a type S is written S™, and is
extended point-wise to contexts.

DEFINITION 2.2.2 (Reduction rules for terms)

1. (Az:Ti.e1)ez —gpons €1[z—€2]

9. (AXST1:Ky1.€)T — pgors €[X T)

3. (for(X€eTy..T.)er)ea —pgors for{ X€T1..T3) (&1 €2)
4. for(XeTh..Th)e —ppom €, if X & FV(e)

Rules 1 and 2 are the A-reductions on terms. Rule 3 says that the for con-
structor can be pushed to the outermost level. We consider the reduction defined
by rules 1 through 3 as —gs, and the one defined by 4 as —, (s comes from
simplification). The left-hand side of each reduction rule is a redez and the right-
hand side its reduct. The relation — gy,r, is extended so as to become a compatible
relation with respect to term formation, —»gy,,, is the transitive reflexive closure
of —gfors, and =py,rs is the least equivalence relation containing — gfor,.

Contexts

A contezt T is a finite sequence of typing and subtyping assumptions for a set of
term and type variables.

14 CHAPTER 2. THE F) CALCULUS

The empty context is written #. Term variable bindings have the form z:T;
type variable bindings have the form X<T:K, where T is the upper bound of X
and K is the kind of T

' == @ empty context
T, z.T term variable declaration
I' X<T:K type variable declaration

When writing nonempty contexts, we omit the initial §. The domain of T is
written dom(I'). The functions FV(—) and FTV(—) give the sets of free term
variables and free type variables of a term, type, or context. Since we are careful
to ensure that no variable is bound more than once, we sometimes abuse notation
and consider contexts as finite functions: I'(X) yields the bound of X in T, where
X is implicitly asserted to be in dom(T).

Types, terms, contexts, statements, and derivations that differ only in the
names of bound variables are considered identical. The underlying idea is that
variables are de Bruijn indexes [dB72).

DEFINITION 2.2.3 (Closed)
1. A term e is closed with respect to a context I' if FV(e) UFTV(e) C dom(T’).
2. A type T is closed with respect to a context I' if FTV(T) C dom(I").

3. A typing statement I' - e € T is closed if e and T are closed with respect to
T.

4. A kinding statement I' - T' € K is closed if T is closed with respect to T

5. A subtyping statement I' - S < T is closed if S and T are closed with
respect to I'.

We consider only closed typing statements. Observe that in the limit case
of the rule T-MEET, when n = 0, not having the closure convention would allow
nonsensical terms to be typed. On the other hand, the free variable lemma (lemma
2.4.3) guarantees that kinding statements are closed and the well-kindedness of
subtyping (lemma 2.4.19) ensures that subtyping statements are closed as well.

Context Formation

The rules for well-formed contexts are the usual ones: a start rule for the empty
context and rules allowing a given well-formed context-to be extended with either
a term variable binding or a type variable binding.

@ F ok (C-EmPTY)
FFTex z¢dom(T)
T,zTF ok (C-Var)

I'rTek X ¢ dom(T)
', X<T:K | ok

(C-TVar)

2.2. SYNTAX OF Fy 15

Type Formation

For each type constructor, we give a rule specifying how it can be used to build
well-formed type expressions. The critical rules are K-OAss and K-OAPrp, which
form type abstractions and type applications (essentially as in a simply typed
A-calculus).

The well-formedness premise I' + ok in K-MEET (and in T-MEET below) is
required for the case where n = 0.

Fl? XST'K, I‘z}'Ok

T, X<T:K, T, F X€ K (TVan)
FFT;}E_;_)TI;;? € * (K-ARROW)
e
F+ok foreach i€{l.n}, TFT. € K (K-MEET)

THA¥T\.T.)e K

Subtyping

The rules defining the subtype relation are a natural extension of familiar calculi
of bounded quantification. Aside from some extra well-formedness conditions, the
rules S-TraNs, S-TVAR, and S-ARROW are the same as in the usual, second-order
case. Rules S-OABs and S-OApPr extend the subtype relation point-wise to kinds
other than %. The rule of type conversion in F*, that is,if’'Fe€ Fand T =5 T’
then T F e € T, is captured here as the subtyping rule S-Conv, which also gives
reflexivity as a special case. The rule S-ALr is the rule of Cardelli’s Fun language
[CW85] in which the bounds of the quantifiers are equal. Rules S-MEET-G and
S-MEET-LB specify that an intersection of a set of types is the set’s order-theoretic
greatest lower bound.

TFSEK TFTEK S=pT

TFS<T (5-Conv)
rLFsS<T rr7<U
TFS<U (S-TRANS)
Fl,XST:K, Fz"Ok S TV,
T, X<T-K,T,F X<T (S-TVar)
I‘I-Tlssl F}‘SQST: l‘l‘Sl—nS'zE*
(S-ArRrOW)

F l‘ Sl_’S2 S Tl—>T2

16 CHAPTER 2. THE F, CALCULUS

I'y X<U:KFSLT IF'FVX<U:K.5 €x

A
TFVX<UK.S <VX<U:KT (S-Act)
T, X:KFS<T con
TFAXKS < AXKT (S-OAss)
TFS<T TFSUEK
TF5U<TU (S-OAre)
for each i€{1..n}, TF S < T; F'SekK
= (S-MEET-G)
TS <A [N.Th]
THAXIT.T. e K
AMGECE) (S-MeeT-LB)

TFAY[M.T ST

Term Formation

Except for T-MEET and T-FoRr, the term formation rules are precisely those of the
second-order calculus of bounded quantification. T-FoR provides for type checking
under any of a set of alternate assumptions. For each S;, the type derived for the
instance of the body ¢ when X is replaced by S; is a valid type of the for expression
itself. The T-MEET rule can then be used to collect these separate typings into a
single intersection. Type-theoretically, T-MEET is the introduction rule for the A
constructor; the corresponding elimination rule need not be given explicitly, since
it follows from T-SuBsumpTiON and S-MEET-LB.
Iy, 22T, Ty + ok

T, eT.T,FzeT (T-Var)
F, I:Tl Fee Tg
TFizeTiec hoT, (T-Ass)
T+feTy»T; TracT,

TFfeeT, (T-Avp)

F,XSTIZKl"EETz T-TA
TFAX<Ty:K,.c € VX<T K, T, (T-TAss)

F""fEVXSTlﬁKl.Tz FI_SSTI

TF 75 € TX<S] (T-TArr)

The[X—S|eT S € {5:.5.) p
T+ for(X€5,..5,)e € T (T-For)

I'ok foreachie{l.n}, TkeeT;

(T-MEET)

TFee A'[T..T,)

F'kFee S THSLT

I'teeT
Most of the rules include premises which have two rather different sorts: structural
premises, which play an essential role in giving the rule its intended semantic force,

(T-SuBSUMPTION)

2.2. SYNTAX OF F} 17

and well-formedness premises, which ensure that the entities named in the rule are
of the expected sorts. In an algorithmic presentation of the system {on which an
implementation might be based), the well-formation premises would be replaced
by the meta-theoretic observation that “recursive calls” in the premises of all the
rules preserve the well-formedness of the “arguments” named in the conclusion.
In the interest of brevity, we omit well-formation premises that can be derived
from others. For example, in the rule S-ArRrow, we drop the premise I' - Ty —T; €
*, since it follows from I' b S;—S; € * using the properties proved in section 2.4.

2.2.1 Discussion

An equivalent presentation of intersection types uses binary intersections as in
[CDC78]. The intersection of S and T is then written S A T, and there is a
maximal element at each kind, w™. The rules of the system have to be modified
according to this alternative notation. In most cases, each of our rules about
intersection types has to be replaced by two rules, one for the binary case and
another for the maximal element. For example, the reduction rule

VXLS: K AT T.) =pa N'VXLS: KTy .. VXLS:K.T,)
is replaced by

VX<S:KTI AT, —pn YX<S:KT) AVXLS:K.T, and
VX<LS: Kot —ga W

Similar replacement takes place for rules 3 through 5 in definition 2.2.1. The term
formation rule K-MEET is replaced by the two following rules.

r''FSek '+rTek

TFSATEK (K-Int)
T F ok
TFof ek (K-Max)
The rule S-MEET-G is replaced by the following two rules.

THFS<Ty FrFS<T S.INT-G
TFS<TiAT; (§-In1-G)

T'tSekK
TFS<oX (5-Max)

In the A-cube [Bar92], F“corresponds to), the system defined by the rules
(*,%), {0O,%), and (0, 0). If K is a kind defined by the grammar K, then

I'ty, K eD.

The rule (0, 0) corresponds to the recursive step in the definition of IK; the rule
(*,%) corresponds to K-ArRow, and K-AtL is the parallel of rule (O, %) enriched
with subtyping.

18 CHAPTER 2. THE F; CALCULUS

2.3 Confluence

In this section, we show that the system F}’ is confluent. By that we mean that the
reduction —ggr, U — g4 defined by putting together the reduction on terms, — 4oy,
(definition 2.2.2), and the reduction on types, —g, (definition 2.2.1), satisfies the
Church-Rosser property. We use the Hindley-Rosen lemma (c.f. 3.3.5 [Bar84]) to
establish this result. This factors the proof into two parts:

1. proving that — gy, and —» g commute, and

2. proving that —gg,,, and — g, satisfy the Church-Rosser property, the results
of sections 2.3.1 and 2.3.2.

Remember that two binary relations —; and —3 commuteif the following diagram
commutes.

A T B
2 §z

;
C eoveennnn ~D

In order to prove that —»gf,,, and —g, commute we use the following lemma.

LEMMA 2.3.1 (3.3.6 [Bar84]) Let —; and —, be two binary relations on a set
X. Suppose

A N B
i
C evvnnnnnn e D

where —_, is the reflexive closure of —,. Hence —», and —; commute.

We need the following auxiliary result to prove that —»g, and —»gs,,, commute
using the previous lemma.

LEMMA 2.3.2 If T —4, T, then e[X «T] ~—»pa e[X <T"].

PROOF: By induction on the structure of T'. O
LEMMA 2.3.3
E Blors
BA éﬂl\
}
......... - H

23. CONFLUENCE 19

PROOF: By induction on the structure of E. Observe that if E is a type expression
(E€T) then there can be only SA-reductions starting from E, and the result holds
vacuously. Consequently, the meaningful cases are when E is a term (E€[E), and
of those the interesting cases are when FE is a ffors redex.

1. E = (AzTie)e,
F = efreey),
G = (An:Tj.e1)ey, and
T1 —gA Tll

Choose H = F. Since (Az:Ty.e1)e2 —gfors €1[T €3], the result follows.

2. E = (MX<LT1:K;.€)S,
F = e[X9),
G = (MX<Tie)S', and
S —8A S

Choose H = e[X«5"]. Since (AX<Ty:K;1.€)S" —pp0rs e[X5'], the result
follows by lemma 2.3.2.

3. E (fOl‘(XGT]..T,..Tn)el)Cz,
F = for(XeTy.T,.To)(ezes),
G = (for(XeT).T|..T;)es)eq, and
T, —8A T.I-
Choose H = for(X€T)..T,..T,)(er€2).
Since (for(X€Ti..T!.Tn)er)ea —ppors for(X€Ty..T!..Ty)(e1e2) and
for(XeTy..T,.To)(e1e2) —pa for(XeT1.TV.T,)(esez)

the result follows.

4. E = for(Xen.TI,.T,)e,
F = e
G = for(XeT..T,.T,)e, and
T, —pa T.'.

Choose H = F. Since for(XeTy..T!..T,)e —gfors €, the result follows. 0

COROLLARY 2.3.4 —»gs and —»gy,,, commute.

20 CHAPTER 2. THE F;; CALCULUS

2.3.1 The Church-Rosser theorem for — g,

In this section we prove the Church-Rosser property for the reduction defined in
2.2.1. The strategy we use here is similar to the one used in chapter 11 section 1
of [Bar84] to prove the corresponding result for —4 in the type-free A-calculus.

In order to prove the Church-Rosser property for — g4 it is sufficient 1o show
the following strip lemma. If S, Ty, T; in T are such that § —sa Ty and S —pa T4,
then there exists T3 such that Ty -3 T3 and Ty — g4 T3. Graphically:

§ e T,
pA B
;
Ty ceeernns o Ty
BA

The idea of the proof is as follows. Let T; be the result of replacing the redex R in
S by its reduct R'. If we keep track of what happens with R during the reduction
S —»ga Ty, then we can find T3. To be able to trace R we define a new set of terms
T where redexes can appear underlined. Consequently, if we underline R in S we
only need to reduce all occurrences of the underlined R in T, to obtain Ti.

DEFINITION 2.3.1.1 (Underlining)

1. Tis the set of terms defined by the following abstract syntax.

T == X |T-T
VX<TKT|Ax:KT
TT| AX[T.T)

T AT I VX<STKANT.. T)
AXCKAYT.)| A*T. T

|
|
| AXKDT|AT. AT 7.0
|
|

Observe that only redexes are underlined.

2. Underlined (one step) reduction — g, is defined starting with the rewriting
rules

(a) (AX:K.Th) Ty —pa Th[X <T7]

(b) S — A'[Th..Th) —gn NIS-T, .. S—T,]

(¢) VXSS KA T1..Ta] —pa N'VX<S:K.Ty . VX<S:K.T,]
(d) AX:K AT T) =pn AR AXCKL T . AX: KT
(€) AT T U —pa AT U .. T, U]

(£) A®[Th .. A¥[S1..5] .. Tr] = pa A¥[T1 .. $1..50 .. T

file:///X-KJ

2.3. CONFLUENCE 21

(8) (AX:K.T)Ts —pa Ti[X T3]

(h) § = AN [Th.Ta] —=pa N [S—Th .. §-T,)

(i) VX<S:K AT To] —pn N VX<S:K.Ty .. VX<S:K.T,)
() AX:Ky AT T] —pa ATFAXCKLT . AX:K)L T
(k) A RTL T U —pa AT U .. T V).

(1) A¥IT . A¥[S1..80] . T —a A¥[Th .. 5150 .. T

—ga is extended so as to become a compatible relation with respect to T,
and —»ga is the reflexive and transitive closure of —ga.

3. I T € T then |T| € T'is obtained from T by erasing all underlinings.

4. The capture avoiding substitution for underlined terms is wrilten as usual,
T[X«S].

DEFINITION 2.3.1.2 The map ¢ : T — T is defined inductively as follows.
. p(X)=X

- p(Th = T2) = (Th) — o(T2);

. o(VX<STyK.Ty) = VX <o(Ty):K.o(Ty);

e(AX:K.T)= AX:K.o(T);

(T T2) = o(T1) ¢(T2);

P(A¥[T1. T)) = A¥[e(Th) .. o(T));

e((AX:K.Th) Tz) = p(Ti)[X —¢(T2)};

p(§ = NN-Ta]) = Ae(S = Th) - (S — Ta);

(VXSS KL NTLTo)) = Np(VX<S:KLT) .. o(VX <S:K1.To)l;

e D A o o B

o

10. o(AX:Ki. N [T T,)) = A B p(AX: K. T)) .. o(AX:K,.T,)];

11 (AF =21y T,] S) = AK*[p(Ty S) .. (T S));
12. o(AF[T1 .. AK[51..8.] . Tw]) = A¥[@(T0) - ©(S1) - ©(S) - @(Tow)]-

Observe that ¢ reduces all underlined redexes.
Notation: |T'| = S and ¢(T) = S will be written:

T— . SandT

S.

22 CHAPTER 2. THE F; CALCULUS

LEMMA 2.3.1.3 If T, S € Tand T’ € T are such that [T’} = T and T —»4a S,
then there exists 5" € T such that T' —»gs " and [S'| = S. Graphically:

BA
PRrROOF: By induction on the definition of —»ga.

1. T —sa S (in one step). Since S is obtained by contracting a redex in T', S’
can be obtained by contracting the corresponding redex in 7”.

2. T »5nT. Take 8’ =T".

3. T —»ga U and U —»g, S. Finally, the result follows by the induction hypo-
thesis and the transitivity of —»ga. a

LEMMA 2.3.1.4 Let S, T, and U € T. Then

1. Suppose X #Y and X ¢ FV(U). Then
S[X<T)|[Y U] = S[Y V][X T [Y <U]].

2. @(SIXT]) = p(S)X —p(T)].
3. If S »pa S, then S[X U] »ga S'[X<U].
4. ¥ T, S € T are such that T —pa S, then o(T) »ga ¢(S). Graphically:

T TS S
[’ "
QT s 4(5)
A

PROOF:
1. By induction on the structure of S.

2. By induction on the structure of S using (1) in the cases § = (AX:K.$,) S
and § = (AX’(S]) Sz.

3. It is enough to show the result for —g4; the rest follows by induction. The
interesting cases are when S is a redex: if S is a f-redex, then the result
follows easily using (1); otherwise the result follows easily by the definition
of substitution.

2.3. CONFLUENCE 23

4. By induction on the generation of —ga, using (2). a
LEMMA 2.3.1.5 Let T € T. Then |T| —»ga (T). Graphically:
T
1-] \
A
[T| cevnevemmeeimennnnenns - o(T)
PROOF: By induction on the structure of T. u]

LEMMA 2.3.1.6 (Strip) Let S, Ty, and T2 € T. If S — 45 T1 and S -4 T3, then
there exists T3 € T such that T} —»ga T3 and T3 —»ga T3. Graphically:

S BA - ‘1.12
BA Eﬁ/\
7
T1 »> Ta
BA

PROOF: Suppose that Tj is obtained from S by replacing the occurrence redex
R by its reduct R. Then we can write § = S[R] and Ty = S[R]. Let S[R]
be obtained from S by replacing R by its underlined version B. Observe that
|S[R]| = S[R] and ¢(S[R]) = S[R']. Then, by lemma 2.3.1.3, there exists T}, by
lemma 2.3.1.4(4), S[R] = ga ¢(T;), and, by lemma 2.3.1.5, T =g ¢(T;), which
justify the following diagram.

S[R] on T,

o
BA S[R) <+-v--een A e S
;
S[R] ++veverenenennenncnn - go(T,')
To complete the proof, let T = ¢(T3). a

THEOREM 2.3.1.7 (Church-Rosser for —ga)
If S, T, and T; € T are such that S —»ss Tj and S —» g4 T, then there exists
Ts € T such that 7} —+ga T3 and Ty —»pa T3. Graphically:

S o T,
BA Bn
v
v
Ty eeeenns o T,

24 CHAPTER 2. THE F,;} CALCULUS

PRrOOF: By induction on the generation of S —»ga T3.
1. § =34 Th. By the strip lemma (2.3.1.6).
2. §= T]. Take T3 = Tz.

3. § —ga T{ and T} —»pa Ti. By the induction hypothesis, we can find first T
and then T3, such that T} s Ty, To —»ga T3, Ti ga T3, and Ty s Ts.
Hence the result follows by the transitivity of —»ga. O

2.3.2 The Church-Rosser theorem for — g,

In this section we prove the Church-Rosser property for the reduction defined in
definition 2.2.2. The idea of the proof is as follows. We prove that — g, and —,
are Church-Rosser; that —, reduction steps can be postponed (see lemma 2.3.2.2);
and that, if e, 1, and e; € IE are such that e —»apor €1 and e —», €2, there exists ez
such that e; —», e3 and e; —»gg,r €3 (se€ lemma 2.3.2.3).

Those four results allow us to prove the Church-Rosser theorem for — ... Let
e, €1, ez € B, such that e =gy, €1 and € g, €2. Then, by s-postponement,
there exist f; and f,; by Church-Rosser for — gy, there exists f3; and, by lemma
2.3.2.3, there exist f5 and f5, and finally, by Church-Rosser for —,, there exists
e3 which completes the following diagram.

¢ Bfor fl] €1
Bfor “Bfor Bfor

; i
fo reeeeens o> fy eeerens - fy
Bfor . s .
3 El El

! i

e -------- oy Tog s resvasa - e
2 aor ?

In order to prove the s-postponement property we need the following auxiliary
lemma. We will consider FV(e) as the set of free term and type variables of e.

LEMMA 2.3.2.1
1. €1 —gfors €2 implies FV(ey) € FV(ey).
2. ey —, e implies &1[X 5] —, eg[X S§].
3. ey —, e, implies ¢;[z—e] —, ex[ze].

4. e, =, e; implies e[ze;] -, e[z+e,)].

2.3. CONFLUENCE 25

€1 —gfor €2 implies e)[z—e] —gy,r e2[ze].

5.

6. e1 —gpr €3 implies e[z—e;1] g0, €[T—ey).

7. e1 », ez and f; —, f implies fi[z—e] =, fo[z—e,].
8.

€1 —pfor €2 and fy o, f2 implies fi[z—e1] S ppor f2[z—e2).

PROOF: Items 1 through 6 follow by induction on the structure of e;; item 7 is a
corollary of items 3 and 4, and item 8 is a corollary of items 5 and 6.]

LEMMA 2.3.2.2 (s-postponement) If e —, e; and e; — gy, €3, then there exists
ea such that e — gy, €3 and e3 —», €;.

Proor: By induction on the structure of e, using 2.3.2.1(1) for the case e =
for(X€T1..T2) f; 2.3.2.1(3) and (4) for the case e = (Az:T. f1) f2; and 2.3.2.1(2) for
the case e = (AX<T:K.f)S. a

LEMMA 2.3.2.3 Ife, e, and e; € [E are such that e —»g,, ¢; and e -», e, then
there exists e3 such that e; —», e3 and ez ~»gy,r €3. Graphically:

€ —» ¢
por !

In order to prove this lemma, we prove first the corresponding result for a one
step —gjor reduction.

LEMMA 2.3.2.4 Ife, e, and e; € [E are such that e —4j,, €; and e —», €3, then
there exists e3 such that e; —», e3 and ez =gy, €3. Graphically:

e — ¢
pfor !

PROOF of lemma 2.3.2.3: By induction on the derivation of e — gy, €1, using
lemma 2.3.2.4. o

We now prove the Church-Rosser property for —, using the Newman’s pro-
position 3.1.25 in [Bar84], by proving that —, is strongly normalizing and weak
Church-Rosser.

LEMMA 2.3.2.5 (Strong normalization for —,) Every s-reduction sequence start-
ing from a term e terminates.

26 CHAPTER 2. THE F; CALCULUS

PROOF: Straightforward, by induction on the number of symbols of the term
being reduced. a

LEMMA 2.3.2.6 (Weak Church-Rosser for —,) If e, e1, and e; € [E are such that
e —, e, and e —, ey, then there exists ez such that e; —, e3 and e; —», es.
Graphically:

———
€ 3 e
8| M
v
v
€y sereree - €3

PrOOF: By induction on the structure of e, using 2.3.2.1(1) for the case e =
for(XeTy.To)f. w]

COROLLARY 2.3.2.7 (Church-Rosser for —,) If ¢, e, and e; € [E are such that
e —», e; and e -», ey, then there exists e; such that e; —», ez and ez —», e3.
Graphically:

—————
€ . €

We now prove the Church-Rosser theorem for the — gy, reduction. This result
is obtained following a similar strategy to the one used to prove the corresponding
properties for —ga, the reduction on types, in section 2.3.1. In order to prove
the Church-Rosser property for — gy, it is sufficient to show the following strip
lemma. If e, fi, and f; in [E are such that e — g, fi and € — g, f2, then there
exists f; such that fi s, f5 and f2 =4, f3. Graphically:

e———.»fz

pfor
ot pfor
'
fl p/o» fa

The idea of the proof is as follows. Let f; be the result of replacing the redex R in
e by its reduct R'. If we keep track of what happens with R during the reduction
€ = gpor f2, then we can find f5. To be able to trace R we define a new set of terms
E where redexes can appear underlined. Then if we underline R in e we only need
to reduce all occurrences of the underlined R in f; to obtain fs.

DEFINITION 2.3.2.8 (Underlining)

2.3. CONFLUENCE 27

1. Eis the set of terms defined by the following abstract syntax.

E = =
| AzEE

| EE

| MX<TKE

| ET

| for(XeT.TE

| (z:T.BE

| AX<TKET

| (for(XeT.TBE

Observe that only redexes are underlined.

2. Underlined (one step) reduction — gy, is defined starting with the rewriting
rules
(a) (Az:Th.er)ez —ppor 1|6
(b) AX<Th:K1.e)T —ppor e[X T
(c) (for(X€Th..Tn)er)es —gfor for(XeTh..T,)er ez
(d) (Az:Th.)erer —ppor €1]T e
(e) AXSTh:K).e)T —ppr e[X T
(f) (for(X€Th..Ty)er)es —ppor for(X€Th..T5) (61 €2)

— sf0r is extended so as to become a compatible relation with respect to E
and —»gp,, is the transitive reflexive closure of — gy,,.

3. If e € E then |e| € Eis obtained from e by erasing all underlinings.

4. The capture-avoiding substitution for underlined terms is written as usual,
e[X S| and e[z f].

DEFINITION 2.3.2.9 The map ¢ : E— Eis defined inductively as follows.
1. p(z) =g;
2. p(Az:T.e) = Az:T.o(e);
3. p(e1e2) = p(e1)p(e2);
4. p(AX<T:K.€) = AX<T:K.p(e);
5. p(eiT) = p(es) T;
6. p(for(X€Ty..Ty)e) = for(X€Ty..T,)p(e);

28 CHAPTER 2. THE F; CALCULUS

7. p((Az:T.er)es) = pler)[z—p(es)];
8. ((AX<T:K.e)T) = p(e)[XT];
9. p(for(XeTh..T,))er)er) = for(XeTh.. T, (e e2).

Observe that ¢ reduces all underiined redexes.
Notation: |e1| = e; and ¢(e1) = e, will be written:

-1
eg ————+ e, and e

€3.

LEMMA 2.3.2.10 I e, f € Eand ¢ € E are such that || = € and e =4y, f,
then there exists f' € [£ such that e’ —» Bfor f" and |f'| = f. Graphically:

Bfor
PRrROOF: By induction on the definition of — g,

1. € =44, f (in one step). Then f is obtained by contracting a redex in e. f’
can be obtained by contracting the corresponding redex in e'.

2. e —+gg, €. Take ff=e.

3. e »gpr f1 and fi —gp, f. Hence the result follows by the induction hypo-
thesis and the transitivity of —» g, 0

LEMMA 2.3.2.11 Lete, f,and g € Eand S,T € T. Then
1. (a) Suppose z # y and = € FV(g). Then
e[z~flly—g] = ely—gllz—flyg]}.
(b) Suppose X #Y and X ¢ FV(S). Then
e[X —T|[Y 5] = e[Y «S][X «T[Y S]]

(c) Suppose X #Y. Then
efe—fl[X<T) = e[X Tz —f[X «T])-
2. (a) ple[z—f]) = p(e)[z—p(f)].
(b) (e[X <T]) = p(e)[X T
3. If e and f € E are such that e —gpor f, then <,a(e)' —gfor (f). Graphically:

|

ple) +::em gl()

2.3. CONFLUENCE 29

Proor:
1. By induction on the structure of e.
2. By induction on the structure of e, using (1).

3. By induction on the generation of —gfor, using (2). o

LEMMA 2.3.2.12 If e € E then || g5, ¢o(e). Graphically:

e
-1 \
Bfor
lel > (p(e)
PrOOF: By induction on the structure of e, using 2.3.2.1(8). a

LEMMA 2.3.2.13 (Strip) lf e, f1,and f € E are such that e —afr f1 and e = g5,
f2, then there exists f3 € Esuch that f; -4, fa and f; —»afor f3. Graphically:

e——»fz

Bfor
Bfo Sﬂ!or
v
fl Mor.. fa

PROOF: Suppose that f; is obtained from e by replacing the occurrence redex
R with its reduct R’. Then we can write ¢ = ¢[R] and fi = ¢[R]. Let ¢[R]
be obtained from e by replacing R by its underlined version B. Observe that
le[R]] = e[R] and ¢(e[R]) = ¢[R']. Then, by lemma 2.3.2.10, there exists f,; by
lemma 2.3.2.11(3), e[R'] = s5- ¢(f;), and, by lemma 2.3.2.12, fo —gpr @(f3),
which justify the following diagram.

e[R] blor f2
N
pfor
Bfor e[ﬂ] Eﬁfor e f;
R oeeennne o e ()

To complete the proof, let f3 = ¢(f3).]

30 CHAPTER 2. THE F;) CALCULUS

THEOREM 2.3.2.14 (Church-Rosser for — gj,,)
If e, f1, and f; € [E are such that e —»ptor J1 and e —» gy, f2, then there exists
f3 € Esuch that f; =44, f3 and f2 =+s4r f2. Graphically:

¢ 2

pfo Bfor

PROOF: By induction on the generation of e — g, f1.
1. e —gfr f1. By the strip lemma.
2. e= fl- Take f3 = fz.

3. e gpr f1 and f] »ppr f1. By the induction hypothesis we can find first f;

and then fs, such that fi =gpr f3, f2 »gor f3, f1 = ps0r f3, a0d fo >gp0r fo.
Hence the result follows by the transitivity of —» gg,.. @]

We have proved the confluence of the reduction —gjg,,, on terms.

THEOREM 2.3.2.15 (Church-Rosser for —gors)
Let e, fi, f2 € E If € 9 gy, f1 and € > gjors f2, then there exists f3 € E such
that fy g f3 and f2 g0, fa. Graphically:

e——>>f2

Bfors

Bfors| ﬂ fors

Finally, we can state and prove the confluence property for the reduction rela-
tion of Fy.

THEOREM 2.3.2.16 (Church-Rosser for —ggrs U —ga)
If E, F,and G € TUE are such that E —»gj,5upn F and E —gp,r,08a G, then
there exists H € TUEsuch that F —gsrs0pn H and G —ggorsupa H. Graphically:
E—an F

Bforsupa Bforsupa

Bforsufa

2.4. STRUCTURAL PROPERTIES 31

PrROOF: By the commutativity of —»gp, and —»gs (corollary 2.3.4) and the
Church-Rosser property of —gy,r, and —+ga (theorems 2.3.1.7 and 2.3.2.15). O

The Church-Rosser theorem has interesting corollaries that we will use in the
sequel.

COROLLARY 2.3.2.17 See chapter 3 [Bar84]. Let R be a reduction satisfying the
Church-Rosser property. Then

1. If T=RS, then there exists U such that T'—sz U and S —»x U.
2. If T is a normal form of S, then S —»x T.
3. Each term has at most one R-normal form.
Fact 2.3.2.18
1. VX<S:K.T =p, T* if and only if T =4, T*.
2. AX:K.T =5 T*if and only if T =g, T™.
3. 55T =po T*ifand only if T =5 T™.

4. TS =p5 T* if and only if T =g, T™.

2.4 Structural properties

This section establishes a number of structural properties of FY. Except where
noted, the proofs proceed by structural induction and are straightforward when
performed in the order in which they appear.

LEMMA 2.4.1 KT F X and I'; is a prefix of T, then I'; I ok as a subderivation.
Moreover, except for the case I') = I' and ¥ = ok, the subderivation is strictly
shorter.

LEMMA 2.4.2 (Syntax-directedness of context judgements)
1. If Ty, X<T:K, T, } ok, then Ty F T € K by a proper subderivation.
2. U Ty, «:T, T, F ok, then 'y - T € *x by a proper subderivation.
LEMMA 2.4.3 (Free variables)
1. T FT € K, then FTV(T) C dom(T).

2. If T F ok, then each variable or type variable in dom(I') is declared only
once.

LEMMA 2.4.4 (Weakening/Permutation) Let I and I" be contexts such that T’ C
I’ and I ok. Then I ¥ implies IV - £.

32 CHAPTER 2. THE F;! CALCULUS

PRrROOF: By induction on the length of a derivation of T .

K-OABSs We are given that T, X<TX:K; + T, € K,. Applying K-MEET to
I I ok we obtain I F T¥* € K;; we can assume, without loss of
generality, that X ¢ dom(I"). Then, by C-TVar, I, X<TKu:K; +
ok. By the induction hypothesis, I, X<T¥:K, I T; € K,, and the
result follows applying K-OAss.

T-ABs We are given that ', z:T} F ¢ € T,. By lemma 2.4.1 there exists
a proper subderivation of I', :T; F ok; by lemma 2.4.2, there is a
yet shorter subderivation of I' + T; € *. We can now apply the
induction hypothesis to obtain I'' I T} € x. As before, we can assume
z € dom(I"); by C-Var, IV, z:T} | ok. By the induction hypothesis,
we have I, z:T) + e € Ty, and applying T-Ass yields the desired
result.

Other cases If ¥ = ok there is nothing to prove. K-TVAR, S-TVar, T-MEET and
T-Var applying the corresponding rule to I'' F ok. S-OABs similar to
K-OABs. K-ALL, S-ALL T-TABss similar to T-As. All the other cases
follow by straightforward application of the induction hypothesis. O

LEMMA 2.4.5 (Context, kind, and term strengthening)
1. Ty, X<T:K, T3 F ok and X ¢ FTV(T;), then I';, I'; I ok.
2. If Ty, X<T:K, T2 F § € K' and X ¢ FTV(I';) UFTV(S), then T, T, +
SekK'.
3. IfI', z:T, T2+ £ and =z € FV(X), then Ty, T F X.

Moreover, the derivations of the conclusions are strictly shorter than the derivation
of the premises.

PROOF: We prove statements 1 and 2 by simultaneous induction on the length of
derivations, and statement 3 by induction on the derivation of 'y, z:T, T3 I X.

1. C-EMPTY Vacuously true.
C-VAR By part 2 of the induction hypothesis and C-VAR.

C-TVar T3 = 0. The result follows from lemma 2.4.1.
T, # 0. By part 2 of the induction hypothesis and C-TVar.

2. K-TVar By part 1 of the induction hypothesis and K-TVAr.
K-Arrow By part 2 of the induction hypothesis and K-Arrow,
K-ALL We are given that I'y, X<T:K, I3, Y<T1:KG F T, € x, and X ¢
FTV(I';) UFTV(V(Y<T1:K,)T3). In particular, X ¢ FTV(T;)U
FTV(T,) — {Y'}. Observe that, by lemma 2.4.3, X # Y. Then
X ¢ FTV(,, Y<Ti:K,) U FTV(T;). Applying part 2 of the
induction hypothesis and K-ALL the result follows.

2.4. STRUCTURAL PROPERTIES 33

K-OABs Similar to the case K-ALL.
K-OAPr By part 2 of the induction hypothesis and K-OApp.
K-MeeT By parts 1 and 2 of the induction hypothesis and K-OArp.

3. Except for the cases we consider below and the case for C-EMPTY, which is
trivially true, the result follows by straightforward application of the induc-
tion hypothesis and the corresponding rule in each case.

C-Var Ty = 0. The result follows by lemma 2.4.1.
I'; # §. By the induction hypothesis and C-Vag.

T-ABs Using lemma 2.4.3, the induction hypothesis, and T-Ass.

T-For Using that FV(for(X € Ti..T,)e) = FV(e) = FV(e[X«S]), the
induction hypothesis, and T-For. (=]

PROPOSITION 2.4.6 (Syntax-directedness of kinding/Generation for kinding)

1.TF X € K impliesT =TI'y, X<T:K, I'; for some I'y, T, and T;.
2. THFT1—=T; € K implies K =xand '+ T),T; € *.
3. THFVX<LT:K,.T; € K implies K =% and ', X<T1:K, F T; € *.

4. T+ A(X:K,)T; € K implies K = K;—K,; and T, X<TKUK| F T, € K,
for some K.

5. 'FST € K impliesT'F S € KoK and T+ T € K', for some K’.
6. Tk /\K[Tl..T,.,] € K' implies K = K' and T'F ok and T' T; € K for each 1.

Moreover, the proofs of the consequents are all strictly shorter than those of the
antecedents.

PROOF: In each case the antecedent uniquely determines the last rule of its de-
rivation. The proof follows by inspection of the rules. O

LEMMA 2.4.7 (Uniqueness of kinds) f T’ F T € K and T'+ T € K’', then K =
K'.

DEFINITION 2.4.8 (Size)

1. The size of a type expression T, size,(T), is defined as follows.
(a) sizey(X) =2,
(b) size,(S—T) = size(VX<S:K.T) = size,(ST) = size,(S) + sizee(T) + 1
(c) size(AX:K.T) = size,(T) + 3,
(d) size(A¥[Th..To]) = 2 + Eicicnsize(T)).

¥

34 CHAPTER 2. THE F, CALCULUS

2. The homomorphic extension to contexts, size.(I'), is defined as follows.
(a) size.(8) =0,
(b) size.(T', X £ T:K) = size.(T, ©:T) = size,(T) + size,(T).

3. The size of a subtyping, kinding, or ok judgement J, size,(J), is defined as
follows.

(a) size,(T F ok) = size,(T') +1,
(b) size,(TFT € K) = size, (') + size,(T).
(c) size,(TF S £ T) = size(T') + sizey(S) + sizey(T).

LEMMA 2.4.9 (Well-foundedness of context formation and kinding rules)

1. For every kinding or ok judgement J, size, (B - ok) < size,(J).
Ji.oJy

2. If is a kinding rule or a context formation rule, then size,(J;) <

J
size,(J) for cach i€{1..n}.
COROLLARY 2.4.10
1. For any context T it is decidable whether T |- ok.

2. For any context I', type expression 7', and kind K, it is decidable whether
I'-TekK.

PROOF: Lemma 2.4.2 and proposition 2.4.6 imply that context formation rules
and kinding rules determine an algorithm to check context judgements and kinding
judgements and lemma 2.4.9 implies that the algorithm terminates. o

LEMMA 2.4.11 (Type substitution) Let T'y F T € Ky. Then
1. BTy, X<U:Ky, I, + S € Kg, then Ty, I3[X T) F S[X T} € Ks.
2. If Ty, X<U:Ky, I'; I ok, then Ty, I'2[X T F ok.

PROOF: By simultaneous induction on derivations of the premises. The proof of
part 2 is straightforward using part 1 of the induction hypothesis. We consider
the details of the proof of 1. The cases K-Arrow, K-ALL, K-OABs, and K-OArp
follow by straightforward application of part 1 of the induction hypothesis and
the corresponding rule, while the case of K-MEET also uses part 2 of the induction
hypothesis. We examine the case of K-TVAR, where S = Y for some variable Y.
By proposition 2.4.6(1) Y<Ty:Ks € (I'1, X<U:Ky, I';) for some Ty. There are
three cases to consider.

Y<Ty:Ks€T, Then we also have Y<Ty:Ks € (I'y, I'2[X«T1]). By part
2 of the induction hypothesis, I'y, I's[X+T] I ok. Apply-
ing K-TVar, we get I', I2[X T} F Y € K.

2.4. STRUCTURAL PROPERTIES 35

Y<Ty:Ks = X<U:Ky We know that I, v T' € Ks = Ky. From the premise
of K-TVAr and part 2 of the induction hypothesis, we
have 'y, I3[X «T] F ok. The result follows by weakening
(lemma 2.4.4).

Y<Ty:Ksely Then we have Y<Ty[X«T]:Ks € (I'1, I'2[X<T]). By
part 2 of the induction hypothesis, Ty, I'2[X«T] I ok,
from which the result follows by K-TVAr. 0O

LEMMA 2.4.12 (Subject reduction for kinding judgements) If S o T and I' -
SecK,thenTHFT € K.

PROOF: In order to prove this result it is enough to prove the following statements
by simultaneous induction on the derivation of I' F S € K. The rest follows by
induction on the definition of —»za.

1. I'+ ok and T' -, I implies I - ok.
22.TFSeKand S —pa T impliesI'H T € K.
3.TFSeKandT —p, IV impliesI'+ S € K. o

In chapter 4 we prove that the subject reduction property also holds for typing
judgements.

THEOREM 2.4.13 (Kind invariance under type conversion) If T' - S € Ks and
T'FT € Kr, with § =5 T, then Ks = Kr.

ProoF: By the Church-Rosser theorem 2.3.1.7, there exists U such that § —ga U
and T —»ga U, and the result follows by subject reduction and unicity of kinds. O

LEMMA 2.4.14 Let T+ S, € K for each je{1..m}. Then if for every i€{l..n}
there exists je{1..m} such that T+ S, < T;, then '+ I [81..8m] < /\K[Tl..Tﬂ].

A particular case of the previous lemma is the following.

COROLLARY 2.4.15 Let I' ’S. € K for each i€{l.n}. Then T+ S, < T;, for
every i€{1..n}, implies T F AK[S,..5,] < A¥[T}..T,].

LEMMA 2.4.16 LetT+ S,T€ K. ThenT+ S < Tifand only if '+ ¥ < T,

PROOF: We shall consider only one part the other is similar.

=) By subject reduction, we have that I' - S¥c K, then, by S-Conv, T+ S¥ < S,
By similar reasoning we have I' F T < T™. The result follows by applying
S-TRrANs twice. 0

LEMMA 2.4.17 (Context modification) If Ty F U’ € K and T is either ok or
Te K', then Ty, X<U:K, T2+ ¥ implies T'y, X<U":K, T, F Z.

36 CHAPTER 2. THE F;} CALCULUS

LEMMA 2.4.18 Let I'F S, € K for every i€{l..n}. If for every j in {l.m}
there exists ¢ in {1..n} such that I'F S, < T,, then T' AF [51..54] £ NE(T..T).

PROPOSITION 2.4.19 (Well-kindedness of subtyping) HI' + S < T, then ' F
S€KandT'HT € K for some K.

PrOOF: By induction on the derivation of T'F S < T

S-Convy We are given that T+ S € K and '+ T € K' and § =5 T. By
lemma 2.4.13, K = K'.

S-TRANS By the induction hypothesis and uniqueness of kinds (lemma 2.4.7).

S-TVar We are given that [y, X<T:K, I'; ok. By K-TVar it follows that
I, X<T:K,T; - X € K. Moreover, by lemma 2.4.2, we have
I'+T € K, and by lemma 2.44, ', X<T:K, T, - T € K.

S-Arrow Wearegiven ' F T} < S and TH S, < T and T + 5§55, € *.
By proposition 2.4.6, I' F 5;,S; € . Further, by the induction
hypothesis together with uniqueness of kinds (lemma 2.4.7), we have
'+ 11, T; € . Finally, the result follows by applying K-ArRow.

S-ALL We are given that T') X<U:K; + S; < T; and ' F V(X <U:K,)S; €
*. By proposition 2.4.6, I', X<U:K, F S; € *. Then, applying the
induction hypothesis and lemma 2.4.7, we obtain I' F T} € K; and
T, X<TX'.K, I T; € *, from which the result follows by applying
K-ALL.

S-OABs By the induction hypothesis and K-OABss.
S-OArr Similar to S-ALL.
S-MEeeT-G Using the induction hypothesis, lemma 2.4.7, and K-MEET.

S-MEeT-LB We are given ' F AK[T}..T;] € K, which, by proposition 2.4.6, im-
pliesI' - T, € K for each 3. o

ProPOSITION 2.4.20 (Well-kindedness of typing) f '+ e € T, then ' F T € .

ProoF: By induction on the derivation of '+ e € T'.

T-Var We are given I'y, z:T, Ty I ok. The result follows by lemma 2.4.2 and
lemma 2.4.4.

T-ABs We are given T, z:T} I e € T,. By the induction hypothesis, I, z:T;
T, € x. By lemma 2.4.5, it follows that ' F T, € *. Furthermore,
by lemmas 2.4.1 and 2.4.2, I' + T} € x. Hence, K-ARRow yields I' I
Tl—PTg € *.

T-App By the induction hypothesis for T' F f € Ty—T and proposition 2.4.6.

2.5. STRONG NORMALIZATION OF —pa 37

T-TABs We are given I', X<Ty:K; F e € T,. By the induction hypothesis,
I X<T,:K; F T; € . We obtain T + V(X<T1:K,)T, € * by apply-
ing K-ALL .

T-TApp We know that T F f € V(X<T1:K,)T; and also ' - § < Ty. By the
induction hypothesis, I' - V(X <T}:K;)T; € * and, by proposition 2.4.6,
T, X<T\:K), + T, € x. By lemmas 2.4.1 and 2.4.2, there exists a deriv-
ation of I' F T} € K. By the well-kindedness of subtyping (proposition
2.4.19) and uniqueness of kinds (lemma 2.4.7), we have I' - S € K.
Then, by the type substitution lemma (lemma 2.4.11), T F T5[XS] € *.

T-For By the induction hypothesis.

T-MeeT We are given that I' ok and that I' b e € T, for each ¢. We have to
consider two cases.

n = 0. Applying K-MEET to I' - ok we obtain ' F T* € *.

n # 0. By the induction hypothesis, I' F T, € « for every ¢ and, then the
result follows by applying K-MEET.

T-Su By the induction hypothesis, proposition 2.4.19 and lemma 2.4.7. o

2.5 Strong normalization of —g,

We prove that every type that has a kind in Fy is strongly normalizing in three
steps. We first prove that —, and also —4,- are strongly normalizing. Then we
prove that both reductions commute, i.e. if T —, T and Ty —4,- T3, then there
exists § such that S —, T and T —»ﬁ,\—>° S(in at least one step). Finally, using
the previous two steps we prove that — g4 is strongly normalizing.

A type T is called strongly normalizing if and only if all reduction sequences start-
ing with T terminate. We write T for the set of all type expressions and SN for
the subset of T of strongly normalizing type expressions. If A and B are subsets
of T, then A — B denotes the following subset of T

A — B={F C T|for all acA FacB}.

LEMMA 2.5.1 —, is strongly normalizing.

PRrOOF: By induction on the number of intersection symbols of the type expression
being reduced. m]

To prove strong normalization of —4,- we use a model-theoretic argument
interpreting kinds as sets of normalizing terms, and the soundness of the model
gives, as a corollary, the strong normalization property. The interpretation of a
kind K, notation [KJ, is defined as follows.

[*1] = SN
[Ki—K.] = [K:] - [K]

38 CHAPTER 2. THE F; CALCULUS
DEFINITION 2.5.2 (Saturated set) S C SN is saturated if is satisfies the following
conditions:

1. If R;..R, € SN, then XR,..R, € S.

2. If Ry..R,,@ € SN, then

(a) if P[X~Q]R;..R. € S, then (AX:K.P)QR,..R, € S, for every K and

(b) if (/\K2 []lei’"i TmQ])Rh) R, € S,
then (ANK'=%2[Ty, .., T.])QR,, .., R. € S, for every K.

Intuitively, a set of strongly normalizing type expressions is saturated if it contains
all type variables and is closed under expansion of expressions which may have a
kind of the form K,—K,.

LEMMA 2.5.3
1. SN is saturated.
2. If A, B are saturated, then A — B is saturated.
3. For any kind K, [K] is saturated.

DEFINITION 2.5.4

1. A valuation p in Tis a mapping from type variables to types.

2. The interpretation of a type with respect to p is
[T], = T[X1 « p(X1)..- Xa « p(Xa),

where FV(T) = {X;..X,}.

3. Let p be a valuation in T. Then p satisfies T € K, written p = T € K, if
[T], € [K] and p satisfies X<T:K, written p |= X<T:K, if p(X) € [K]. We
say that p satisfiesacontext ', p =T, ifpE X < S:K forall X < S:K €T.

4. A context I satisfies T € K, written I' | T € K, if for every p such that
p ET, it follows that p =T € K.

LEMMA 2.5.5

1. T¥e[K].

2. If A;e[K] for each ic{1..n}, then AK[A,..4,]€[K].
PRrooOF:

1. By induction on the structure of K.

2.5. STRONG NORMALIZATION OF —ga 39

K=x T* is in normal form. Hence, T*€SN = [K].

K = K,—K, By the induction hypothesis, T¥2€[K,]. Moreover, if BE[K;]
then T¥17K2 Be[K,], by the saturation of [K>], which means
that THF~R2¢[K, 5 K]

2. By induction on the structure of K.

K=x Then, by definition of [K], A,€SN for each 7€{1..n}. Since
every reduction starting from A[A;..A,] is a reduction con-
sisting only of steps inside the A,’s, one has AX[A;..A4,]€SN =
&1

K = K,— K, Let Be[K;]. By the definition of —, A,Be[K,], for each
i€{1..n}. By the induction hypothesis, A¥?[4, B..A, B]€[K;].
Moreover, AK17¥2[A,.. A,] B€[K,] by the saturation of [K_],
which means that A¥1=%2[A,.. A,)€[K1— K;]. o

PROPOSITION 2.5.6 (Soundness) HT'FT € K,thenT =T € K.

PROOF: By induction on the derivation of ' F T € K.
We consider the case for K-MEET. The other cases follow by similar reasoning.
Let T = AX [Ty..T,]. We have to consider two cases.

n %0 We are given I' T, € K for each i€{1..n}, and, by the induction hypo-
thesis, ' |= T, € K. Let p be a valuation such that p }=T. Then [L.],€[K],

for each i€{1..n}. By lemma 2.5.5(2), A¥[[T1],..[T.],l€[K].
n=0T = TK. Since [[TKII,, = T¥, the result follows by 2.5.5(1). o

THEOREM 2.5.7 (Strong normalization for —4,-) T'+ T € K implies that every
(BA™)-reduction sequence starting from T is finite.

PROOF: By soundness, I' =T € K. Choose po such that po(X) = X. Observe
that po |= T trivially. Hence T = [T'], €[K] C SN. 0

LEMMA 2.5.8 I T —, T) and T —pa- T3, then there exists S such that
T "’a,\->o S and S —, Ts.

PROOF: By induction on the structure of T o

COROLLARY 2.5.9 If T —, Ty and Ty —»4,- T3, then there exists S such that
T '—»ﬁ,\—>0 Sand S —Hg Tz.

Proor: By induction on the generation of T —», T}. (]
Finally, we can prove strong normalization for —ga.

THEOREM 2.5.10 (Strong normalization for —g,) T' - T € K implies that every
(BAA)-reduction sequence starting from T is finite.

40 CHAPTER 2. THE F; CALCULUS

ProofF: Let ' F T' € K. We reason by contradiction. Assume that there is an
infinite SA-reduction sequence starting from T. Then lemma 2.5.1 and theorem
2.5.7 imply that there are infinitely many alternations of —, and —,- reduction
sequences. Graphically:

T — Ty
An~
T, - Ty
7%
Ty evvnees

By corollary 2.5.9, we can construct an infinite (8A™)-reduction which contradicts
theorem 2.5.7. Graphically:

T ~ '
A~ A
S - Ty - Ts
e BA™ A~
Ss . S, - Ty coveee

Chapter 3
Decidability of Subtyping in Fy

In this chapter we show that the subtyping relation of F} is decidable. The solu-
tion is divided into two main parts. First, we develop a normal subtyping system,
NF, in which only types in normal form are considered. We prove that proofs
in NF; can be normalized by eliminating transitivity and simplifying reflexivity.
This simplification yields an algorithmic presentation, AlgFy, whose rules are syn-
tax directed. Moreover, we prove that AlgF},’ is indeed an alternative presentation
of the F subtyping relation. Formally, T' S < T if and only if I |- 4, sY <
(proposition 3.4.3).

In the solution for the second order lambda calculus presented in [Pie91], the
distributivity rules for intersection types are not considered as rewrite rules. For
that reason, new syntactic categories have to be defined (composite and individual
canonical types) and an auxiliary mapping (flattening) transforms a type into a
canonical type. Our solution does not need either new syntactic categories or
elaborate auxiliary mappings, since the role played there by canonical types is
performed here by types in normal form.

Independently Steffen and Pierce proved a similar result for F¢ [SP94]. There
are several differences between our work and the proof of decidability of subtyping
in [SP94]. First, our result is for a stronger system which also includes intersection
types. Our proof of termination has the novel idea of using a choice operator to
model] the behavior of type variables during subtype checking. A second major
difference is the choice of the intermediate subtyping system. We define the normal
system NF, which is not only the key to proving decidability of subtyping but
helped understand the fine structure of subtyping, yielding the algorithm AlgFy .
In [SP94] the intermediate system, called a reducing system, leads to a much
more complicated proof which involves dealing with several notions of reduction
and further reformulation of the intermediate system.

41

42 CHAPTER 3. DECIDABILITY OF SUBTYPING IN Fy

3.1 Normal Subtyping

An important property of derivation systems is the information that a derivable
judgement contains about its proofs. This information is essential to produce
results which not only state properties about the subproofs, but also help identify
ill formed judgements.

In F, we can prove

W:K, X <AY:KY:K->K,Z< X:K—-KFX(ZW)<W (3.1)

This simple example already shows that S-TRrANs erases information obtained
by S-Conv that is not present in the conclusion any longer (see 3.3.2 for a de-
rivation). A first step towards an algorithm to check the subtyping relation is to
design a set of rules in which the derivable judgements contain all the informa-
tion about their derivations. To this end we define a set of rules, NF,, in which
conversion is reduced to a minimum and, as we show in lemma 3.2.6, transitivity
can be eliminated. Both results are proved with a standard cut-elimination argu-
ment. This yields a syntax directed subtyping relation, AlgFy, which constitutes
a decision procedure for the original system.

In section 3.1, we present the subtyping system NF,', which uses the context
and type formation rules of Fy. We define rewriting rules for derivations in NFy
(definitions 3.2.3 and 3.2.4), and describe a terminating procedure to normalize
proofs, which gives, as a consequence, the generation for subtyping (proposition
3.2.10) and an algorithmic presentation, AlgFy (see definition 3.4.1).

Finally, in section 3.4, we show that there is an equivalence between subtyping
in Fy and subtyping in AlgFy, which is essential to prove the decidability of
subtyping in F}.

We now define the normal subtyping system, NF,'. Subtyping statements in
NFY are written ' F, § < T, and S, T, and all types appearing in I' are in
BA-normal form.

NoTATION 3.1.1 A, B, and C range over types whose outermost constructor is
not an intersection.

REMARK 3.1.2 It is an immediate consequence of the A reduction rules that,
if T is in BA normal form, then T is either a variable X, S—A, VX<S.K. A,
AX:K.A, AS where A is not an abstraction, or /\K[Al..A,..]. We frequently use
this notation as a reminder of the shape of types in normal form. Note that we do
not fully use this convention in definition 3.1.4 in order to highlight the fact that
NS-Arrow, NS-ALL, and NS-OABs have the same form as S-ArrRow, S-ALL, and
S-OABs respectively.

We now define lubr(S). We prove in lemma 3.3.1 and corollary 3.3.1.2, that,
when defined, it is the smallest type beyond S with respect to I

DEFINITION 3.1.3 (Least strict Upper Bound)

Wwbr(X) = T(X),
Wb(T S) = Mubp(T)S.

3.1. NORMAL SUBTYPING 43

DEFINITION 3.1.4 (NF} subtyping rules)

THSek NS.Rer
Ir.5<5 (NS-ReFL)
TH,§<T THr,T<U NG
- s
Tr.S<U (RANS)
TH.T(X)<A X#A STV
TF.X<A (NS-TVAR)

I‘I—,,Tlgsl FF"SzSTz FFS]""S;E*
r }_n S|—'Sz S Tl—’Tz

N X<U:KF, ST FFYX<U:K.5€ex

(NS-ArrOW)

TF.VX<U:K.S <VX<UKT (NS-Avt)

[, X<t Kb, S<T NS.OA
TF, AXKS<AX:KT (NS-OAss)

Th, (Wb(TS)¥<A TFTSck TS#A

e (NS-OArp)
Vie{l.m}TH, A<T, TFAEK (NSY)

[Fn A < NS0T .
3je{l.n}Th, 5, <A Vke{l.n}TF S € K (NS-3)

Tk, A¥[S,.5.] < A)

Vie{l.m}3je{1.a}T k. S, <T. Vke{l.n)TF S € K

i€{1.m} Jje(1.n) Ty 5 (TS, N5

T ko A*[S1..5.] € A¥[T1. T

As we mentioned in the introduction, an important factor to develop this
system was to consider the distributivity rules of the presentation of F} in [CP93]
as reduction rules instead of subtyping rules. This new point of view suggested
that an algorithmic system should, to a certain extent, concentrate on normal
forms replacing the conversion rule by reflexivity. Consequently, a derivation of a
subtyping statement should involve only types in normal form. But enlightened
by the simple (counter)example (3.1) it is not possible to perform all reductions
at once. In other words, the system does not satisfy an S-Coxv postponement
property. Without using S-Conv it is not possible to derive (3.1). Hence, the
solution is not as simple as replacing S-Conv by NS-REFL.

In general, the interaction between S-TRANs and S-Conv can be analyzed
as follows. In S-Trans the metavariable T of the hypothesis is not present in
the conclusion, but this is not a problem by itself {(a similar situation appears
in the simply typed lambda calculus in its application rule and the system is
deterministic). The problem is that in the presence of S-Conv the vanishing T
can be AA-convertible to either S or U or to both S and U. What example (3.1)
shows is that S and U may be different normal forms, which means that searching
for T is inherently nondeterministic.

44 CHAPTER 3. DECIDABILITY OF SUBTYPING IN Fy

We cannot eliminate transitivity completely, we still need it on type variables
and on type applications. In F¢ [Ghe90] transitivity is eliminated and hidden in a
richer variable rule in which deciding whether [' - X < T when T # X is reduced
to deciding whether the bound of X is smaller than or equal to T'. The bound of
X has the particular property of being the least strict upper bound of X. This
observation motivated the definition of our NS-OArP rule, in which we reduce the
decision of whether I' TS < A when A # T S, to check if the least strict upper
bound of T' S is smaller than or equal to A (See lemma 3.3.1 and corollary 3.3.1.2).
lubr(T S) is obtained from T S by replacing its leftmost innermost variable by the
corresponding bound in I'. Consequently, lubr(T S) may be other than a normal
form. That is the reason we normalize it. The strength of the conversion rule that
is not captured by reflexivity is hidden in this normalization step. Since T'S is a
well kinded type, by the free variables lemma (lemma 2.4.3), FTV(T S) C dom(T).
Therefore, lubp(T S) is defined. By lemma 3.3.1(1), lubp(T S) is well-kinded, and
since well-kinded types are strongly normalizing, its normal form exists. The rules
S-MEET-LB and S-MEET-G are replaced by NS-3, NS-V, and NS-v3.

3.2 Structural properties of NF;

This section establishes a number of structural properties of NFy. The proofs of
lemmas 3.2.1 and 3.2.2 are similar to those of the corresponding properties for Fy .

LEMMA 3.2.1 IiTtF, S <T and T, is a prefix of T, then I'; } ok as a subderiv-
ation. Moreover, the subderivation is strictly shorter.

LEMMA 3.2.2 (Weakening/Permutation) Let I and I be contexts such that T’ C
I"and '+ ok. Then '+, S < T implies TV F, § < T.

We present rewriting rules on derivations to simplify instances of NS-REFL
and NS-Trans. We give a terminating strategy to transform a given derivation
into a derivation with occurrences of NS-REFL only applied to type variables or
type applications and without occurrences of NS-TraNs. To improve readability
we omit kinding judgements in the transitivity elimination rules which appear as
hypothesis in the redex or in a proper subderivation of the missing ones, as we
proved in generation for kinding (proposition 2.4.6). The derivations of the kinding
judgements of each reduct of the reflexivity rules are proper subderivations of the
kinding judgements in its redex.

DEFINITION 3.2.3 (Reflexivity simplification rules)

THFSSAex
1. NS-REePL
', §-A<5-A4

THSex THAex
———— NS-REFL ——————— NS-REFL
=pr| I'F,. 5§ TH, A< A

'k, §5A< 554

NS-ARROW

3.2. STRUCTURAL PROPERTIES OF NF}

IF'FVX<S:K.Ae*
I, VX<S:K.A<SVXLS:K.A

NS-REeFL

I X<S:KFAex
=>r| INX<SKFH, A<A
I, VX<S:K.ALVXLS:K.A

NS-REFL

NS-AuL

TFAX:K.Ae K—K'
'k AX:K.ASAX:K.A

NS-REFL

ILX:K+-AeK'
=R INX:KF, A<A
'k, AX:K.ASAX:K.A

NS-REFL

NS-OABs

r+A¥[A.A.) e K
[H, A¥[AL.AL] € AF[AL.AL)

THFA €K
=r 'k, A, < A Vie{l.n}
X NS-v3

[F. A¥[A1..44] < A¥[A1..4,]

NS-REFPL

NS-RerL

DEFINITION 3.2.4 (Transitivity elimination rules)

r'FSekK
——— NS-REFL
'+, <8 | Al R =>7|TH, ST
NS-TRANS
T, ST
THFTeK
—————— NS-REFL
', $<T TH,TLT =2r I, ST
NS-TRANS
L, S<T
I, T(X)< A
————————— NS-TVAR
HX<A T+, A<B
NS-TRANs
TH, X<B
TH,I(X)<ATH, A<B
NS-TRANS
=7 r-, (X)<B
NS-TVar
', X<B

45

46

CHAPTER 3. DECIDABILITY OF SUBTYPING IN F}

-, T<STH, ALB THULT ', BLC

NS-ARROW NS-ARROW

', 5-A<T-B ', T-BU-C

NS-TRANS

Mk, §2A<U-C

T+, ULTTFH.TXS rr,A<BTFH,BLC

Tk, §2A<U-C

NS-TRraNs NS-TRANS
=T ', v<s§ ', A<C

NS- ARROW

I X<S:K+, ALB I' X<S:K+,BLC
NS-ALL
TH,VX<S5:K.A<LVX<SK.B 'k, ¥YX<S5:K.B <VX<S5:K.C
FF, VX<S:K.A<SVX<LS:K.C

NS-ALL

NS-TRANS

I, X<S:K+F, A<BT,X<S$:K+, BLC
=T I X<S:KFH, ALC
Ik, VX<S:K.ALVX<U:K.C

NS-TraNs

NS-ALL

I X:K+, A<B IX:K+, B<C
S-OAns NS-OAps

N
ITF. AX:K.ALAX:K.B TH, AX:K.B<AX:K.C
', AX:K.ALAXKC

NS-TRANs

T,XKr,A<BT,X:KF,B<C
=7 T,X:KF, A<C
Tk, AX:K.A < AX:K.C

NS-TRANS

NS-OABs

TH, bp(AS)Y < B
NS-OAPP
T+, AS<B I+, B<C
T, AS<C

NS-TRaANS

Th, (lub(AS)¥<BTFH, BLC
=T Tk, wb(AS)Y < C
Th, ASSC

NS-TRANS

NS-OAPP

vie{l.n} TF, A< A, 3je{1.n}TH, A, <B
NS-¥
Tk, A< AX[A;..4,] Iy A¥[A).4.) < B
T+, A<B

N§-3

NS-TRANS

Jje{l.n} TH, A< A, TH, A; <B
=T NS-TRANS
', AL B

32, STRUCTURAL PROPERTIES OF NFY

12.

13.

', A< B TH, B<AR[A A

Vie{l.n} '+, B < A,

NS-v

NS- I 1tans

'k, A < AM[A). A

Vie{l.n) TF, A< H I'F, B < A,
Vie{l.n} 'k, A < A,
Fh, A <A AL

NS ‘) eans

NS-v

Fe{(l.n} Tha A, < B

X Ns-3
Lk, AT [A1 A< B Pk, B<A

NS [naNs

[, A¥[A1A) < A

=T

Je{l.n} T, A, <B 'F, B< A
He{t.n} TH, A, < A
IH, A¥[Ay.4L) < A

NS- TRANS

Ns-3

Jge{l.m}'t, A, <A Vie{l.n} Tk, A< B,

NS 3 NS-V¥
Mk, A¥[A1AR] < A L+, A< A¥[B..B.]

X P NS Trans
[k, A¥[ALAR] < AX(B)..BA]

Jje{l.m} 'k, A, < A Vie{l.n} ', A< B,
Vie{l.n}3ye{l.m} '+, A, < B,
I F. A¥[A1.AR] € A¥(B)..B,)

NS Thans

NS-v3

17

Vie{l.n} 3ge{l.m} [k, A, < B, Yke{l..r} he{l.n} 'k, B, < C,

r

Fo A¥[A1AR] S AR[BL.B)] TR AF[BL.BL) < AR[CH.CH

[F, A¥[AAR] € A¥(C .

NS-TrANS

Vke{l.r} he{l..n} ye{l.m} T+, A4, <B, e, B, <C,

Vee{l.r} Jpe{l.m}Tt, A, < C,

NS- TrANS

o Af[ArAR] < AR[CC)

N&-v3

Vie{l.n} 3e{l.m} T H, A, < B, Jic{l.n} '+, B, <C
i5-v

Tha A4 AR) < A8, B] e Af(BL.B) < C

NS 3

e AR AL <

NS Jrans

Fye{lm} Je{l.n} 'k, A, < B, I'F, B, <C
Jye{l.m}l'k, A, < C
' AR ALl < C

NS T HANs

NS-3

48 CHAPTER 3. DECIDABILITY OF SUBTYPING IN Fy

vic{l.n} Tk, A< B; Vke{l.r}Je{l.n} T+, Bi < C;
NS-¥ K
14. | TFr, A< A¥[B,..B,] T k., A¥[B,..B,] € A¥[C1..C]
X NS-TRANS
Tk, A< A¥[C..C
Vke{l.r}Jie{l.n} TH, A<B, T+, B <C,
NS-TRANS

=7 Vke{l.7} T+, AL C;

= NS-v

Tk, A < A¥[C..Cl

A derivation of a subtyping statement is in refl-normal form if it has no re-
flexivity redexes and it is in ¢rens-normal form if it has no transitivity redexes,
and it is in normal form if it has neither reflexivity nor transitivity redexes. The
elimination of NS-TraANs, and the simplification of NS-REFL follow a standard
cut-elimination argument.

LEMMA 3.2.5 (Reflexivity simplification) Let D be a derivation of a subtyping
statement with only one application of NS-REFL. Then D has a refl-normal form.

PROOF: Same argument as in lemma 3.2.6. o

LEMMA 3.2.6 (Transitivity elimination) Let D be a derivation of a subtyping
statement with only one application of NS-TrANs. Then D has a trans-normal
form.

PROOF; By induction on the size of D following a case analysis of the last rule
of D. If the last rule is not NS-TRANs, then the result follows by the induction
hypothesis. Otherwise we consider all possible last rules of the derivations of
the premises and note that each possible configuration determines a trans-redex.
Finally, observe that each reduction yields either a derivation in normal form or
shorter derivations with only one occurrence of NS-TRraNs in which case the result
follows by the induction hypothesis.]

An immediate corollary of this last result is that transitivity elimination ter-
minates. Given a derivation D of ' k-, S < T, iterate the previous lemma on all
subderivations of D that have only one NS-TraNs application. The number of
times the lemma is applied is equal to the number of occurrences of NS-TrANS
in D. Furthermore, lemma 3.2.5 implies that reflexivity simplification terminates.
The simplification rules are such that transitivity simplification rules do not create
new reflexivity redexes. Therefore, we can reduce all instances of NS-REFL first
and then all instances of NS-TrANs, which is a terminating procedure to normalize
a derivation. Consequently, we have proved the following corollary.

COROLLARY 3.2.7 (Existence of normal derivations) Given a derivation of T |-,
S < T. Then there exists a derivation in normal formof '+, S < T.

LEMMA 3.2.8

3.2. STRUCTURAL PROPERTIES OF NF, 49
1. A derivation in normal form whose last rule is NS-REFL is either a proof of
FFo X<XorT'H, AT S AT.

2. If the last rule of a subtyping derivation D is NS-TRraNs, then D is not in
normal form.

PROOF:

1. According to the reflexivity elimination rules, any other possible NS-REFL
application is a redex.

2. By case analysis of the last rules of the premises of the last rule of D. In
each case the result follows either by the induction hypothesis or because the
last rule of at least one of the derivations of the premises of D constitutes a
redex. u]

We can summarise the previous results as follows.

COROLLARY 3.2.9 IfT F, S < T, then there exists a proof of the same judge-
ment with no applications of NS-TrANs and in which NS-REFL is only applied to
type variables and type applications.

A consequence of the normalization of proofs is the following generation result.
PROPOSITION 3.2.10 (Generation for normal subtyping)

l.TH, X < BimpliessX = BandI'F X € K forsome K,orI' I, I'(X) < B.

2.+, S A< Bimplies B=T—-C, T+, T <S5 T't, A<C, and
FFS—Acx

3. T+, VX<S:K.A < B implies B=VX<S$S:K.C,T, X<S5:KF, A< C, and
THFVYX<S:K.A€E

4. TH,AX:K.A < B implies B= AX:K.C and T, x<TK.KF, A<C.
5. T+, AS< BimpliesB= AS,orT' I, (lubr(AS))"fs B,andT'F AS € K.

6. T k. A¥[A)..A,) < B implies that there exists j€{1..m} such that T},
A, < B and Yke{1.m} T+ Ar € K.

7. T Fn A < A¥[B,..B,) implies that for each i€{l.n} T , A < B, and
THAcK.

8. T k. A¥[A1..4,.] < AX[B,..B,) implies that for each i€{1..n} there exists
J€{l..m} such that T F, A, < B, and Vke{1l.m}TF A, € K.

Moreover, given a normal proof of any of the antecedents, the proofs of the con-
sequents are proper subderivations.

50 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F,

PRrOOF: In each case, given a proof of the antecedent, there is also a proof in
normal form. Due to lemma 3.2.8(2), such a derivation cannot end with an ap-
plication of NS-TRraNs, and, because of lemma 3.2.8(1), if it ends with NS-REFL,
then it is a derivation of a subtyping statement between type variables or type
applications. Finally, the result follows by inspection of the other rules. Qo

LEMMA 3.2.11
1. Tk, T < A¥[A)1..A,] if and only if Tk, T < A, for each ke{l..n}.
2.+, T< /\K[Al..A,,] ifand onlyif T'F, T < /\K[Ak] for each ke{l..n}.

3. Let T' F A¥X[A;..A)] € K. Then T F, A¥[A;..4,] < T if and only if
I'k, Ax < T for some k€ {1..n}.

PROOF: By induction on derivations, using lemma 3.2.7 and generation. o

3.3 Equivalence of ordinary and normal subtyp-
ing

In this section, we show that a subtyping statement is derivable in F, if and only
if the corresponding normalized statement is derivable in NF}. This equivalence
is proved in theorem 3.3.9. As usual, we need some auxiliary properties and
definitions, among which we can highlight propositions 3.3.2 and 3.3.8.

LEMMA 3.3.1 Let lubr(S) be defined. Then
l. '+ S € K implies I' + lubp(S) € K.
2. T+ S < lubp(S).

PROOF: Item 1 follows by induction on derivations, while item 2 follows by in-
duction on the structure of S. o

ProrosITION 3.3.2 (Soundness) T+, S < T, then TH S <T.

PROOF: By induction on the derivation of ', S < T.

NS-RerL By S-Conv.

NS-TVar By the induction hypothesis, S-TVAR and S-TRANS.

NS-OArr By the induction hypothesis, lemma 3.3.1(2), S-Conv and S-TRANs.

NS-3 We are given that for each k in {1..n} T I A, € K, and there is a j
in {l.n} such that '}, z‘}g < B. By K-Meet, T'F AX[4,..4,) € K,
and, by S-MEeeT-LB I' F A™[A;..A;] < Ay for each k, in particular for
Jj. Hence the result follows by the induction hypothesis and S-TrANs.

3.3. EQUIVALENCE OF ORDINARY AND NORMAL SUBTYPING 51
NS-v We are given that '+ A € K, and for each ¢ in {1.m} T k, A < B..
Hence the result follows by the induction hypothesis and S-MEET-G.

NS-v3 We are given that for each k in {1..n} T'+ Ax € K, and for each ¢ in
{1..m} thereis a § in {1..n} such that I' -, A, < B,. By K-MEET,
I - AX[A;..A,] € K, and, by S-MEeeT-LB, ' F A¥[A,..4,] < A for
each k. Hence the result follows by the induction hypothesis, S-TRANS
and S-MEET-G.

Other cases By the induction hypothesis and the corresponding rule in the other
system. o

The following lemma says that empty intersections, TK are maximal elements
of the subtyping order.

LEMMA 3.3.3

1.THT € K impliesT +, T < TX.
2.THT €K impliessTHT < T,

PROOF: Statement 1 follows by the cases m = 0 in NS-V and NS-V3. Statement
2 is the case n = 0 in S-MEET-G. o

LEMMA 3.3.4

1. T F ok implies '™ I- ok.

THFT e K implies™ T € K.

'S <TimpliesI™F S <T.

Let I'y, I'; F ok. Then F{'f, I'-Te KimpliesTh),, ', FT € K.
Let 'y, '3 F ok, Then l";'f, IMNES<TimpliesTy, T, F ST,

o o s W

LetTHS,T € K. Then T S¥ < T"if and only if T+ S < T.

PROOF: Statements 1 and 2 follow by simultaneous induction on the size of de-
rivations using lemma 2.4.17. Statement 3 follows by induction on the derivation
of T S < T using part 1, part 2, and lemma 2.4.17. Statement 4 follows by
induction on the derivation of l"{"', I' T € K. Item 5 follows by induction on
the desivation of I‘;‘f, I'; 8§ <T, using part 4. Item 6 is a corollary of part 3,
part 5 and lemma 2.4.16. o

In the last lemma, items 1, 2, and 3 show that well formation of contexts,
kinding judgements, and subtyping judgements are invariant under normalization
of contexts, while items 4 and 5 are the converse of 2 and 3 respectively.

The following lemma states that S-TVAR is an admissible rule in NF}.

52 CHAPTER 3. DECIDABILITY OF SUBTYPING IN Fy

LEMMA 3.3.5 Let T be a context in normal form such that T' I ok and Y €dom(T).
Then T, Y <T(Y).

Proor: Let ' =T1,,Y < T:K,T,. Bylemma 242, T F T € K. UT is
not an intersection, then, by NS-REFL and NS-TVAR, we have ', Y < T. If
T= /\KI[BI..B,,.], then by generation for kinding and unicity of kinds, '+ B, € K
for each : and K = K’. By NS-RerL, I' -, B, < B, for each i. Then, by N5-3 and
NS-TVAR, it follows that ', Y < B, for each 7, and, by NS-v, '+, Y <T. O

LEMMA 3.3.6 (Substitution) YT F U € K and T, X:K,T' F, § < T, then
I, (T X<UDY b, (S[X <UD < (T[X U™,

PRrROOF: By induction on the derivation of I', X:K, [V F, § < T. For the sake of
clarity, we sometimes leave out kinding judgements and their justifications which
follow easily from the structural properties in section 2.4. Let ' =T, X:K, I'.

NS-RErt By the type substitution lemma 2.4.11, lemma 3.3.4(2), subject re-
duction for kinds (lemma 2.4.12), and NS-REFL.

NS-TraNs By the induction hypothesis and NS-TRaANs.
NS-TVar We are given I I, T"(Y) < A. We have to consider three cases.

1. Y = X. By subject reduction, I' F U™ € K, and by lemma
3.3.3(1), it follows that T F, U™ < TX. By weakening, it follows
that T, (I'[X <U)™ F, U® < TX and, by the induction hypo-
thesis, it follows that T, (I"[X U™ F, T¥ < (A[X<U)Y.
Finally, the result follows by NS-TRANs.

2. Yedom(I'). By the free variables lemma, X ¢ FV(I'(Y)) and
X # Y. By lemmas 2.4.11, 3.3.4(1), and 3.3.5, it follows that
I, (XU, Y <I(Y), and, by the induction hypothesis,
it follows that T, (I"[X —U])™ -, T(Y) < (A[X <U])™. Finally,
the result follows by NS-TRrANs.

3. Yedom(I"). By the induction hypothesis, it follows that
T, (MX U Fe (M X <UD < (AX <UD,
By lemmas 2.4.11, 3.3.4(1), and 3.3.5,
T, (MX <UD, Y < (T, (MX <UD (Y).
Furthermore, (T, (I'[X+—U)¥)(Y) = (I'(Y)[X—U])™. Hence
the result follows by NS-TRANs.

NS-Arrow We are given that '+, T} < §; and T I, §; < Ty. By the induc-
tion hypothesis, it follows that T, (I'[X —U)"Y F, (T[X~UDY <
(Si[X<U)Y and T, (I'[X<U)™ b, (So[X <UDV < (To[X U™,
There are four cases to consider, since (T3[X —U])" and (S;[X ~U])™
may be intersections or not. We shall consider only two of them to
illustrate the proof method.

3.3. EQUIVALENCE OF ORDINARY AND NORMAL SUBTYPING 53

1. (T2[X U™ and (So[X —U])™ are not intersections. Then the
result follows by applying NS-Arrow.

2. (S| X <UN)™Y = A*[Ci..Cn] and (To[X «U])" is not an intersec-
tion. Then we have that

(T~ L)X <U)Y = (MX <U)Y~(To| X <U)Y and
= NS U)o (SX U]).

By lemma 3.2.10, it follows that for some i T, (I'[X <UD™ +,
Ci < (To[X~U)™. Applying NS-Arrow, T, (I'[XU I,
(Si[X<UNY¥=C; < (Ty[X <U))Y=(Ty[X «U})Y. Finally, the
result follows by NS-3.

Other cases NS-OAPP is similar to the case for NS-TVARr using lemma 2.3.1.4(3)

and uniqueness of normal forms. All other cases are similar to that
of NS-ARrRROW. D

This substitution lemma is the key result we use in proving that S-OAPP has a
corresponding admissible rule in NFy.

LEMMA 3.3.7 T+ SU € K. Then T+, § < T implies T' -, (SU)™ < (T U)™.

PRrOOF: By induction on the derivation of I' -, § < T, assuming a derivation in
normal form. The cases for NS-Arrow and NS-ALL are impossible because of the
assumption '+ SU € K.

NS-REFL

NS-TVar

NS-OABs

NS-OArPr
NS-v3

By subject reduction for kinds and NS-REFL.

We are given T' F, I'(X) < A. By the induction hypothesis, I' +,
(T(X)UYM < (AU)™. We have to consider two cases.

(A =B By NS-OAFPP.

(AUYY = N¥[A;..A,] By lemma 3.2.11, T F, (I(X)U)Y < A, for
each k in {l..n}. By N5-OArp, '}, XU <
(Ag) for each k, which, by NS-v, implies T |-,
XU < (A)™.

We are given I'; X:K F, S; € 7). By the substitution lemma 3.3.6, it
follows that T F, ($1{X«U)” < (Ty[X—~U])". On the other hand,
we have that (AX:K.51)U —ga Si{X U] and (AX:K.T7})U —p4
Ty[X+U). Finally, the result follows by the uniqueness of normal
forms.

Similar to case NS-TVAR.

By the induction hypothesis and NS-V3, using generation for subtyp-
ing.

54 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F

NS-3 and NS-V By the induction hypothesis, using lemma 3.2.11. o
PROPOSITION 3.3.8 (Completeness) If '+ S < T, then T I, ¥ < T™.

PrOOF: By induction on the derivation of ' - § < T, using lemma 3.3.7 for the
case of S-OAPr. a

THEOREM 3.3.9 (Equivalence of ordinary and normal subtyping) Let ' + S €
KandTTHFT € K. Then T+ S < T if and only if ™+, S¥ < TV,

PROOF:
=) By completeness (3.3.8).

<) By soundness (3.3.2), it follows that T™ S* < T, and, by lemma 3.3.4(6),
it follows that ' S < T. 0

3.3.1 Least strict upper bound

So far we only used that lubr(S) is an upper bound of S in the context I' (See
lemma 3.3.1(2)). We can now give the final motivation of the name we chose,
showing that if lubp(S) is defined and T #5 S, then T' - § < T implies
I' b lubr(S) € T. We first show that the corresponding property holds for the
normalized system.

LEMMA 3.3.1.1 Let lubp(S) be defined. Then
1. If S <5 S and I -»g, TV, then lubp(S) —»ga lubr(S’).
2. Tk, S<T,thenT F, lubp(S)¥ < Tor S=T.
PROOF:

1. By induction on the structure of S, observing that if lubr(S) is defined, so
is fubp:(S').

2. By induction on the derivation of T },, § < T. It is immediate for the case
NS-REFL; for NS-ArRROW, NS-ALL, and NS-OABSs lubr(S) is not defined; for
the other rules the result follows using the induction hypothesis. O

COROLLARY 3.3.1.2 Let lubr(S) be defined. Then F'FS<Tand T #s4 S
implies I' F fubr(S) < T.

Proor: By completeness it follows that I I, S™ < T™. By lemma 3.3.1.1(2),
™, (lubr,,f(S"f)) < T", because S # T™. By soundness, it follows that
™ (IUban(Snl)) < T"f, which is equivalent to T' F lubp..{(S™) < T by lemma
3.3.4(6). Finally, (using lemmas 3.3.1(1) and 2.4.12, and proposition 2.4.19 to get

the corresponding kinding judgements) it follows that I" + fubp(S) < T by lemma
3.3.1.1(1), S-Conv and S-TRANs. a

3.3. EQUIVALENCE OF ORDINARY AND NORMAL SUBTYPING 55

3.3.2 Example

In this section, we give the derivations in Fy and in NF; of the example(3.1)
mentioned in the introduction and in section 3.1.
Let '=X < AY:KY:K—K,Z < X:K—K. We present a proof of

FrFXZW)<WwW
and a proof of its translation in the normal system
™, X(ZW)M <w,

Observe that I'f =T,

(X(ZzW)™ = X(ZW), and

wr =w.
For the sake of readability we omit kinding judgements.
We have the following derivation in F}:

T'Fok
————————— S.TVaAR
THFX <AY:KY (AY:KY)ZW =pp ZW
S-OApPP S-Conv
THX(ZW)<(AY:K.Y)ZW (AY:K.Y)ZW < ZW
S-TRANS
rLX@zZw)<zw
T+ ok T'tok
——————— S-TVAR —————————— §-TVaR
T'FZ<X T'FX <AY:KY
S-TRANS
T+ Z < (AY:KY) (AY:KY)W =5, W
S-OArP S-Conv
TFZW <(AY:K.Y)W (AY:KY)W < W
S-TRANS
r-ZwW<w

THX(ZW)<ZW THZW<W
THX(ZW)<W

S-TRANS

The corresponding derivation in normal form in NF} is substantially shorter:

TFWeK
T, (AY:EY)W)Y < W N
TH,XW<W
Th, (AY:KY)YZW)Y < W
Th, X(ZW)< W

S-REFL

NS-OAPP

NS-OArP

NS-OAPP

56 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F}

3.4 A subtype checking algorithm, AlgF}

As it stands, NF; as defined in section 3.1 is not a deterministic algorithm, be-
cause its rules are not syntax directed. Fortunately, we are not far away from an
algorithmic presentation. In fact, corollary 3.2.9 is the bridge to the algorithmic
presentation of the subtyping relation, AlgFy’, which states that transitivity steps
can be eliminated and reflexivity steps can be simplified. AlgFy is obtained from
NF} by removing NS-TRANS and restricting NS-REFL to type variables and type
applications.

DEFINITION 3.4.1 (AlgF}} subiyping rules)
'rXek
Thap X <X
TFTSeK
Tra, TS<TS
T, T(X)SA X#A4
TFay X <A

(ALGS-TVARREFL)

(ALGS-OAPPREFL)

(ALGS-TVar)
I‘I—Agg T1 SSI I‘I—Alg SzSTz rl‘Sl—hS‘zE*
Ik 5125 £T1-T,

[,X<U:Kbu ST TFYXSU:K.S€ex%
T'lay VX<U:K.§ <VXLU:K.T

T, X<TX:Kba, ST
T Fay AX:K.S < AX:K.T

Tha, (Wbr(TS)Y<A TFTSeK TS#A
Tray TS<A

Vie{l.m}T ka, ALT, THAEK

(ALGS-ArROW)

(ALGS-ALL)

(ALGS-OAns)

(ALGS-OAPP)

ALGS-Y
Tk, A< A[T.Ty) (Ares9)
3je{l.n}T kg, 5, <A VEE{l.n}TF S e K
jE{l.n}T Fay 8, < - {1..n} k (ALGS-3)
l" "',ﬂg /\ [S]Sn] S A
Vie{l.m}3je{l.n}T Fu, S, <T, VYke{l.n}TF S e K
4 { m} 7 { n’} KAlg PR — { n} k (ALGS-VB)
T tag A7 (8180 S A (T1..Tiw]
LEMMA 3.4.2 (Equivalence of normal and algorithmic subtyping)
Let THS,TeK. ThenT'H, S<Tifandonly if 'y, S <T.

PRrOOF: (=) By corollary 3.2.9. («) Immediate. o

We have thereby proved that AlgF,’ is indeed a sound and complete algorithm
to compute F’s subtyping relation. We conclude the proof of decidability of
subtyping in F,Y by establishing in section 3.5 that AlgFy always terminates.

file:///~Alg

3.5. TERMINATION OF SUBTYPE CHECKING 57

PROPOSITION 3.4.3 (Equivalence of ordinary and algorithmic subtyping)
Let THSeKandTHT e K. Then T F § < T if and only if [I 4, S™ <
™.

PROOF: By the equivalence of ordinary and normal subtyping (theorem 3.3.9)
and the equivalence of normal and algorithmic subtyping (lemma 3.4.2).]

3.5 Termination of subtype checking

The last step in proving the decidability of the subtyping relation of Fy is proving
the termination or well-foundedness of the relation defined by the AlgFy subtyping
rules. We show this by reducing the well-foundedness of AlgFy’ to the strong
normalization property of the —ga4 relation.

We begin by extending the language of types with the constructor + as follows.

T+ == X type variable
| T*-T* function type
| WY(XLTH*K)T* polymorphic type
| AXK)TH operator abstraction
| T+T* operator application
| A¥[T*.TH) intersection at kind K
| T++T* choice

Since we have enriched the language of types with a new type constructor, we
need to extend our kinding judgements (section 2.2) with the following kinding
rule.

T, SeK T+, TekK
TF,S+TeK

—+ga4 is obtained from — g, by adding the reductions associated with the choice
operator +, S+ T —ga4 S and S+ T —pa4 T. We also need the corresponding
kinding rule saying that ' F S+ T € K whenever I' - S,T € K. As far as we are

aware, choice operators have not been used before to analyze subtyping.

(K-PLus)

NOTATION 3.5.1 We write + modulo commutativity and associativity.

We now define a new reduction —gay.

DEFINITION 3.5.2 (—ga4) The reduction on types —gay is obtained from — g,
(definition 2.2.1) by adding the following two rules:

1. §+T —pat S, and
2. 54T —pas T

We also write —, to refer to these two new reduction rules.

58 CHAPTER 3. DECIDABILITY OF SUBTYPING IN Fy

As usual, — a4 is extended to become a compatible relation with respect to type
formation, —»ga+ is the reflexive, transitive closure of —ga4, and =gay is the
reflexive, symmetric, and transitive closure of —gay.

PROPOSITION 3.5.3 (Strong normalization for —a4) T 4 T € K, then every
BA+-reduction sequence starting from T is finite.

PROOF: The result follows using the strategy used to prove that the reduction
—ga is strongly normalizing on well kinded types (see theorem 2.5.10). We only
need to modify the definition of saturated sets by adding the following closure
condition:

if T,U, Ry..R.€SN*, then TR;..R,€S and UR,..R,€S imply (T+U)R;..R,€S.
a

Next, we define a measure for subtyping statements such that, given a subtyp-
ing rule, the measure of each hypothesis is smaller than that of the conclusion.
Most measures for showing the well-foundedness of a relation defined by a set
of inference rules involve a clever assignment of weights to judgements, often in-
volving the number of symbols. We need a more sophisticated measure, since in
ALGS-OAPP it is not necessarily the case that the size of the hypothesis is smaller
than the size of the conclusion.

We introduce a2 new mapping from types to types in the extended language in
order to define a new measure on subtyping statements. To motivate the definition
of this new measure, we analyze the behavior of type variables during subtype
checking. Assume that we want to check if I' b4y S < T, where S is a variable
or a type application. It can be the case that the judgement is obtained with an
application of ALGS-TVAR or ALGS-OAPP, in which case we have to consider a
new statement I' 4, S’ < T', where S’ is obtained from S by replacing a variable
by its bound (and eventually normalizing). However, we do not replace every
variable by its bound, as this would constitute an unsound operation with respect
to subtyping.

EXAMPLE 3.5.4 Two unrelated variables may have the same bound.
X<T" %, Y<T*"*x/ X <Y, but
X<Tro, YT % F T" < T

Our new mapping, plus, includes in each type expression this nondeterministic
behavior of its type variables.

DEFINITION 3.5.5 (plus)
The mapping plusy : T—T* is defined as follows.

L. plusp, x<r:k,r,(X) = X + plusp, (T),
2. plusp(T—S) = plusp(T)—plusp(5),
3. plusp(VX<T:K.S) = VX <plusp(T):K.plusy x <7.x(S5),

3.5. TERMINATION OF SUBTYPE CHECKING 59

4. PI“SF(AX:K.S) = A.X:K.pluSr'x:K(S),
5. plusp(ST) = plusp(S) plusp(T),
6. plusr(/\K[Sl..Sn]) = /\K[plusr(Sl)..plusr(S,,)].

EXAMPLE 3.5.6 plus

XST*:*.YSX:t, ZSY:*(Z) =Z+Y+X+T"

We need to show that plus is well defined on well kinded arguments.

LEMMA 3.5.7 (Well-foundedness of plus)
If '+ T € K, then plusp(T) is defined.

PROOF: Observe that the size; of the kinding judgements of the arguments strictly
decreases in each recursive call. Consider

rank(plusp(S)) = size;(T + S € kind(T, S)),

where size,(I' F S € K) is the size of the derivation of the kinding judgement
(see definition 2.4.8). The function kind can be defined straightforwardly using
proposition 2.4.6, such that kind(T',S) = K if T+ S € K, and gives a constant
NoKind otherwise. Moreover, lemma 2.4.9 implies that the function kind is total.
Given that T F S € K, by lemmas 2.4.2(1) and 2.4.6, the rank decreases in each
recursive call and the least value is that of size(- T¥ € K). Q

LEMMA 3.5.8 T+ T € K, then T plus(T) € K.

PROOF: By induction on the derivation of I' - T € K, observing that ' T € K
implies I' . T € K. It is straightforward to verify that k. satisfies weakening
(see lemma 2.4.4). We consider here the case for K-TVaR, the rest follows by
straightforward induction. We are given, I'1, X < T:K, I'; + ok. By lemma 2.4.2,
there is a proper subderivation of I'; F T € K. Finally, the result follows by the
induction hypothesis, weakening, and K-PLus. a

LEMMA 3.5.9 (Strengthening for plus)

1. Let X € FTV(T';) UFTV(S). Then
I', X<Tx:Kx, T2+ S € K implies plusr, x<1:x5,1,(S) = plusr, r,(5)

2. T, z:T, T, + § € K implies plusy, .1 r,(S) = plusy, r,(S).
PRroOOF:

1. By lemma 3.5.7, plusp, x<r1y.ky,r,(5) is defined, therefore we can reason by
induction on the number of unfolding steps of plus. We proceed by case
analysis on the form of S.

S =Y. We have to consider two cases.

60 CHAPTER 3 DECIDABILITY OF SUBTYPING IN F}

(a) Fl = A], YSTllKl, Az. Then, by deﬁnition,

Pluse, x ety kx, 13 (Y) = Y + plusa, (Th).
On the other hand, also by the defimition of plus,

plusp, r,(Y) =Y + plus, (Th).
(b) Ty = Ay, Y<T1:K,, Az. By the definition of plus,

plust, x <ty kx,12(Y) =Y + pluspe, x <1y k.8, (T1)-
By lemma 2.4.1,
I'y, X<Tx:Kx, Tz } ok,
and, by lemma 2.4.2(1),
Ty, X<Tx:Kx, A+ Th € K.
Moreover, since X ¢ FTV(T;), it follows that X ¢ FTV(A;) U
FTV(T)). Then, applying the induction hypothesis we obtain

Y + plusp, x<1y kx,a,(T1) =Y + plusp, 4, (Th),
and the result follows by the definition of plus.

S = VY <Ty:K;.T,. By the definition of plus,
plusF],XSTx KX'FZ(VYSTI:KI'Tz)
= VY <plusy,, <1y k03 (T1):K1-plust, x <1y kx,Ta, v <y Ky (T2)-
By generation for kinding (proposition 2.4.6),
Fl, XSTXZKx, Fz, YST]ZK] F Tg € *,

and, since X ¢ FTV(T,, Y<T1:K1) U FTV(T3), by the induction hy-
pothesis,

VY <plusr,, <1y Ky, 05 (T1)-K1-Plusr,, x <y kT2, v <7y K, (12)
= VY <plusr,, <1y Ky, 1, (T1):K1-plusr, v, v<r, 1, (T2)-

By lemma 2.4.1,
Ty, X<Tx:Kx, T3, Y<Ty:K; F ok,

by syntax directedness of context judgements (lemma 2.4.2(1)),
Ty, X<Tx:Kx, T2+ T, € K.

Since X € FTV(I';) UFTV(Ty), by the induction hypothesis,
VY <plusr, <1, Kx.r,(T1)3K1-P’usr,,r;.yg. K (T2)

= VYSPIUSFI'FZ (Tl):Kl'Plusn,F;,Yng K, (Tz)
= plusn'n(VYSTI:Kl.Tz).

For all the other cases, the result follows by straightforward application of
the induction hypothesis, using generation for kinding (proposition 2.4.6).

3.5. TERMINATION OF SUBTYPE CHECKING 61

2. the definition of plus does not depend on the assumptions of term variables.
(m}

LEMMA 3.5.10 (Weakening for plus) HI'+ ok, T C IV, and T + S € K, then
plusp(S) = plusp(S).

PRrooF: The assumptions ensure that plusp(S) is defined, so we can proceed by
induction on the number of unfolding steps of the definition of plus. We proceed
by case analysis on the form of S.

S = X. By generation for kinding (proposition 2.4.6) and the fact that I' C I",

I'= Fl, XSTK, Fg and
I' =T, X<T:K, T}.

There are two cases to consider.

1. If T'y = T, then the result follows by the definition of plus.
2. T, #T, then T, CT;UT,.
By the definition of plus,
plusp(X) = X + plusp (T).
By lemmas 2.4.1 and 2.4.2(1), it follows that 'y F T € K. Hence, by
the induction hypothesis,
X + plusp (T) = X + plusp(T).

Since I'" I ok, from lemma 2.4.2(1), it follows that I'; F T € K. Con-
sequently, ({X}UFTV(I,))NFTV(T) = B by the free variables lemma
(lemma 2.4.3). Hence, starting from the last declaration in I'j, we can
iterate the strengthening lemma for plus (lemma 3.5.9 items 1 and 2) to
obtain

X + plusp(T) = X + pluspy (T) = plusr.(X).
S =VX<T:K,.T;. By the definition of plus,
plusp (VX <Ty:K,.T3) = VXSplusr(Tl):Kl.plusrl)(STl:Kl (T2).
By generation for kinding (proposition 2.4.6) and lemmas 2.4.1 and 2.4.2(1),
it follows that I' F 7 € K;. Then, by the induction hypothesis,
VX <plusp(Th):Ki1.plusy, x <7, .5, (T2) = VX <plusp(Th): Ky .plusy, x 1,1, (T2)-
By generation for kinding, T', X<Ty:K; F T; € x. By weakening for kinding

(lemma 2.4.4), T+ T, € K;, and, by C-TVar, I', X<Ty:K; F ok. Apply-
ing again the induction hypothesis, it follows that

VX <plusp.(Th):K1.plusr, x <1,.x, (T2)

= VXSplusr,(Tl):Kl.plusr,'XSTl Ky (T';)
= PI’([S[V(VXST]ZK].T;).

62 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F;

S = AX:K.T. By the definition of plus,
plust(AX:K.T) = AX:K.plusy x g(T).
By K-MEET, it follows that I' - T € K, and, by C-TVar, I, X<TR:KF
ok. Finally, the result follows by the induction hypothesis.

In all other cases, the proof follows by straightforward application of the induction
hypothesis. o

The operation plus does not have the usual properties under substitution; as
following example shows, the equality

plusr, x<s:ky,r (T2)[X —plusr, (T)] = plus, ,r;[x.—T,](T2[X <T))
does not hold in general.

EXAMPLE 3.5.11 Consider the case where
=Y<T"%, =0, S=Y, Th=Y, and T, =X.
Then

plusyST*.*,ng:*(X)[X‘_Ph‘SYST*»(Y)]

(X+Y+THX—(Y +T)
Y4+T+Y + T

On the other hand,
plusYST*:*(X[Xc—Y]) = plus‘,ST*:*(Y) = Y+T.

We therefore need a lemma which says that the well-typed types are well-
behaved under substitution with respect to the plus operation.

LEMMA 3.5.12 (Substitution for plus) If I'y, X<S:K,, I, + T, € K; and Iy
Tl € K], then

Plusr,,xgs:Kl,r,(Tz)[X ‘—Plusrl (T1)] s+ PI“SFI,I‘z[XhTI](T2[X <T)).

PROOF: By induction on the size of the derivation of 'y, X<S:K;, I F T; € K.
We proceed by case analysis on the form of T5.

T, =Y. By the free variables lemma (lemma 2.4.3), Y€dom(I'1, X<S:K,, I';).

Then there are three cases to consider.

Yedom(Ty). Let Ty = Ay, Y<U:K, A,. Then

plusr,, X<S:K,, T (Y)[X‘_Plusr, (1),
by the definitions of plus and substitution,
=Y + (plusa, (U)[X —plusp, (T1)))
since X ¢ FTV(U) UFTV(A,), X & FTV(plus,, (U)).
=Y+ pl"’sAl (U)1
= PI“SF,,r,[x.-T,](Y[X‘_TI])-

3.5. TERMINATION OF SUBTYPE CHECKING

Y = X. Then
P’"sn, X<S:K,Ty (X)X «—plusl—l (1)),
by the definitions of plus and substitution,
= plus, (T3) + (plusa, (U)X —plusg, (T1)]),
4 plusp, (Th).
On the other hand,
plusy, ryx 1) (X[X <Th])
= PI"sn,r,[x_T,](Tl)v

since FTV(T;) U dom(T';), by strengthening for plus(3.5.9),

= plusy, (Th).
Yedom(T;). Let I', = Ay, Y<U:K, A,. Then
plust, x<s.k,,T, (Y)[X —plusr, (T1)],
by the definitions of plus and substitution,
=Y + (plusr,, x<s:ky, a, (U)X —plus, (Th)]),
by generation (2.4.6) and the induction hypothesis,
—oa+ Y + pluse a,xry) (U[X <Th)),
= Plusn,r,[x.-Tl](Y[X‘—Tl])-

T, =VY<S51:K.S,. Let T =T, X<5:K,, T';. Then

plusp (VY <51:K.85)[X plusy. (Th)),
by the definitions of plus and substitution,
= VY <plusp(51)[X —plusr, (Tl)]IK-I’I"«SF,Vgsl Kk (S2)[X —plusr, (T1))],
by generation (proposition 2.4.6) and the induction hypothesis,
—pn+ VY Splusy, pyixeqy) (S1[X <Th]):K.
plusy, ryx 1), y<si(x 1o (S X <Th))
by the definitions of plus and substitution,
= plusrl‘rz[x,_Tl]((VYS_Sl:K.Sg)[X4—T1]).

Other cases. All the other cases are similar to the case T; = VY <S5;:K.S5;.

63

w]

LEMMA 3.5.13 (Monotonicity of plus with respect to —5,) HT' + T € K, then

1. T =g I implies plusp(T) —»gay plusp(T).
2. T —ga T' implies plusp(T) —»pas”° plusp(T").

PROOF: By simultaneous induction on the size of the derivation of T + T € K.

We proceed by case analysis on the form of T'.

1. P —’ﬁ/\ F,.

T=X. Let I' =T, X<8:K;, I';. Then we have to consider three cases.

64 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F}

(a) T'1 —pa I}. Then
pluse(X) = X + plusr, (5)
by lemma 2.4.2 and part (1) of the induction hypothesis,
—»gn X + pluspy (S) = plusp, (X).
(b) S —sn S'. By lemma 2.4.2 and part (2) of the induction hypo-
thesis.
(¢) Tz —pa 3. By the definition of plus.

T = VX<T1:K;.T;. By generation for kinds (proposition 2.4.6), there are
proper subderivations of ' + T} € K; and T, X<T1:K, b T, € *.
Then, by part (1) of the induction hypothesis, it follows that

plusp(Th) —»pa plusp(T1), and
pluse xerr, (T2) g Plusp x etk (T2)-
The result follows by the definitions of plus and —»ga.
Other cases. The rest of the cases are similar to the case T = VX <T1:K,.T;,

using generation for kinding (proposition 2.4.6) and part 1 of the in-
duction hypothesis.

2. T —)ﬁ/\ T'.

T = VX<T\:K,.T,. We have to consider three cases.

(a) T1 —pa T|. By generation for kinding (proposition 2.4.6), there are
proper subderivations of THF Ty € K; and T, X<T1:K; + T; € *.
Then, by parts (2) and (1) of the induction hypothesis respectively,
it follows that

plusp(Ty) ~»pa>° plusp(Ty), and
Plusr,xgn:x.(T2) oA Plusr,xg'r,':x,(T2)-
The result follows by the definitions of plus and —ga.
(b) T2 —pa T;. By part (2) of the induction hypothesis.
(C) VXST]K]/*[SIS,J —8A A‘IVXST]!K].S]..VXST]IK].S,.].

plusp (VX <Ty: Ky . A*[S1..50))
= VX <plusp(T1): K. A"[plusr, x <1y, (S1) - Plusr, x <11, (Sa)]
—pa+ N VX <plusp(T1):K.plusr, x <1,:x, (51)--
VX <plusp(Th): K. plusp, x <1,.1,(Sn)]
= plusp (A VX <Ty:K1.81. VX <T:K1.5,))

T = T, T;. We have to consider four cases.
(a) T —5A T1,1
(b) Tz —pa T,
(C) T= A*[S1..Sn] and A*[Sl..SH]Tg —aA /*[Sl Tz..Sn Tz]
(d) T= AXKS] and (AXKS]) Tz —3A 51[X4—T2]

3.5. TERMINATION OF SUBTYPE CHECKING 65

Cases 2a, 2b, and 2c¢ follow using similar arguments to those used for
the case T = VX <Ty:K,.T». Consider case 2d.

plusp ((AX:K.$1) Ty)

= (AX:K.pIusF‘XSTK:K(Sl))plusr(Tg)

—ga plusr,x<TK:K(Sl)[X(_pluSF(T2)]’

by lemma 3.5.12,
—»gas plusp(S1[X «T3)).
Other cases. The rest of the cases follows using a similar argument to the
one used in the case T = VX <T1:K,.T5. 0

LEMMA 3.5.14 Let lubp(S) be defined and T' + § € K. Then plusp(S) —»4>°
plusp(lubr(S)).

PROOF: By induction on the structure of S. Since lubp(S) is defined, it is enough
to consider the following two cases.

S=X. LetT'=T4, X <T:K, T,.

plus(X)

X + plusp, (T)

= X + plusp(T) by weakening (lemma 3.5.10),
—4+ plusp(T)

= plusp(lubp(X))

S = AT. By the induction hypothesis. w]

Our measure to show the well-foundedness of AlgFy’ considers the SA+-reduction
paths of the plus versions of the types in the subtyping judgements. As we men-
tioned before, in ALGS-TVARr and ALGS-OAPrP the types appearing in the hypo-
thesis may be larger than those in their conclusions. Therefore, the well foun-
dedness of the AlgFy relation is not immediate. The next corollary gathers the
previous results to serve our purposes.

COROLLARY 3.5.15

1. T F X € K, then plusp(X) —gas”° plusp(T(X)).
2. KT F AT € K then plusp(AT) —pas>° pluse(lubr(AT)™).

PRoOOF: Item 1 is a particular case of the previous lemma (lemma 3.5.14), and
item 2 is a consequence of lemma 3.5.14 and the monotonicity of plus with respect
to —GA+ (3.5.13(2)). w]

Finally, we can define our measure.

DEFINITION 3.5.16 (Weight)

66 CHAPTER 3. DECIDABILITY OF SUBTYPING IN F};
1. weight(T' b4, S € T') = <max-red(plusp(S)) + max-red(plusp(T), size;(T F
S <T))>,
2. weight(l' T € K) = <0,0>,

where max-red(S) is the length of a maximal SA+-reduction path starting from
S, and size; is defined in definition 2.4.8.

Pairs are ordered lexicographically. Note that <0,0> is the least weight.

1 Jn

PRroOPOSITION 3.5.17 (Well-foundedness of AlgFy) If
then weight(J;) < weight(J), for each :€{1..n}.

is an AlgF} rule,

PRrRoOF: By inspection of the rules of AlgFy. o
Finally, we can state our main result.

THEOREM 3.5.18 (Decidability of subtyping in F})
For any context I' and for any two types S and 7, it is decidable whether
rES<T.

3.6 Our decidability proof and full F¢

In the introduction to chapter 2 we mentioned that subtyping in Fc, a second-
order A-calculus with bounded quantification defined by Curien and Ghelli in 1989,
is undecidable. A question that comes to mind is: if we try to apply our proof of
the decidability of subtyping in F, to F¢, where will it fail?

If we consider the algorithm for the subtyping relation in [Ghe90], the place
where our proof does not go through is when we try to prove that the algorithm
terminates by calculating the maximal length of the plus versions of the types in
the rule for subtyping quantified types. Remember that the subtyping rule for
quantified types in full F¢ is:

FFTI <S5 IMX<T1F 5 <T
FEVX<LS. 5 VXL T,
Consider now the following case.

(Fs- S-ALL)

I' = Yi<T, 15<Y,, Yo<Y,, Vi),
Ty = N,

S = T

T, = X—=X, and

S = X—X.

3.6. OUR DECIDABILITY PROOF AND FULL F¢ 67

The plus versions of the types in the subtyping statements of this example are as
follows.

Plusr x<r,($2) = (X +Y1+ Y2+ Y2+ Y+ T)»(X +Yi+ e+ Ya+ Yo+ T%)
plust x <y, () = (X +Y1+ 124 Y54 Y+ T) (X + Y1+ 2+ Y3+ Yo+ TY)
plusp(VX K51, S) = VXSTS (X + T){(X+T%)
plusf(VX<T1.) = VX<V + YV, + Y+ Yo+ T

X+ 4%+ Y54+ Y%+T) (X +Yi+Hh+ Y+ Y+ TY)

The length of a maximal +-reduction in each case is:

max-red(plusr, y ¢y, (S2)) = 10
max-red(plusy, x<w (T2)) 10
max-red(plusp(VX<S5;. S2)) = 2

max-red(plusp(VX<T1. T3)) = 14.

The weight of the conclusion ' F VX<5,. §; < VX<T;. T3, as defined in defin-
ition 3.5.16, is smaller than the weight of the hypothesis I', X<T; F §; < T3,
because the maximal length of a +-reduction starting from the plus version of the
conclusion is shorter than the maximal length of a +-reduction starting from the
plus version of that hypothesis. To be more precise,

max-red(plusp(VX £851. 53)) + max-red(plusp (VX <T;. T3))
<
max-red(plusy, x <y, (S2)) + max-red(plusr, x <y, (T2))-

68

CHAPTER 3. DECIDABILITY OF SUBTYPING IN FY

Chapter 4

Typing in FY

4.1 Type checking and type inference

Given a context I', a term e, and a type T, type checking consists of analyzing
whether the judgement I' - e € T is derivable from a given set of inference
rules. Type checking algorithms for lambda calculi, unless they are formulated
using Gentzen'’s sequent calculus style, involve guessing the type of subterms. For
example, when e is €; e;, the type of e; is not necessarily a subexpression of T',
and in order to corroborate or to refute the assertion I' F ¢ € T we need to infer
a type for e,.

In this section, we present an algorithm for inferring minimal types in F}.
Given I' and e, the type S constructed by the algorithm is a subtype of every T
such that T'F e € T. In this way, we reduce the problem of whether ' e € T to
that of inferring a type Ssuchthat ' F e € Sand I' F § < T'. Solving this problem
involves not only the typing rules but all the inference rules of F}: the rule T-
SussuMPTION depends on a subtyping judgement, the rule T-Var depends on an ok
judgement, and the ok judgements depend on kinding judgements. Consequently,
type checking uses the full power of the F} system.

As an example, consider type checking the following judgement:

T, X <T\»T, f:X, T+ fae D

The application fa can only be formed if f has an arrow type. Using T-VAR we
can assign type X to f, which means that in order to obtain an arrow type for f
we have to replace X by its bound, which has the right form. Observe how this
replacement is performed by T-SussuMpTION in the following derivation.

T, X <T1-T,, f:X, a:T) - ok I' X <T\-T,, f:X,aT F ok
F, X < T1—>T2, f:X, G:Tl F l f eXx I‘, X < Tl—PTz, f:X, a:T1 FX S T1—>T2

T-Sup
I‘, X S Tl—PTz, f:X, a:T1 + f € T1—>T2|
I X<T)-T, [:X,aT; ok
I", X S Tl—’Tz, f:X, a:Tl F f € T1—>T2 I‘, X S Tl_'TZ) fZX, a:T1 lac T]
T-ApP

L, X<T\»T, : X,aT) - faeT,

69

70 CHAPTER 4. TYPING IN Fy
Note that, in the presence of T-SUBSUMPTION, we may actually perform the ap-
plication when the type of a is a subtype of T;. Namely, if

T, X <T,—Ts, f:X,l— aelU; I, X<T,-»T, fX,aUFU, <T,

T, X <T,-Ty, f:X, a:Uy F[a € T

Moreover, we may want to check whether

T-Sus

I' X <11, :X,aUrF faeU,,

where T3 is a subtype of U,.
The situation gets more complicated if f has an intersection type. Suppose
that

F, X S Tl—DTz, Y S Sl—)Sz, f’X/\ YAVZS‘/IKVQ, a:Ul F fa € Uz,

where U, is a subtype of T; and S;. An algorithm should not consider the type
VZ<Vi:K.V; for f since, in this case, f is applied to a term and not to a type.
Then it has to replace X and Y by their bounds, 73—T and S,—S;. Moreover,
given that the type of a, Uj, is a subtype of both S; and T, it should check
whether S; A T3 is a subtype of Us.

Another source of problems in the search for an algorithmic presentation of
the typing rules is that types may not be in normal form. Consider the judgement

[, X <Ti=Ts, Z<AY: %Y, f:ZX,aTit fa€ Ty, (4.1)

In order to type the application, f should be assigned type T3 —T5. To do that, Z
should be replaced by its bound in Z X. This replacement produces a type which
is not in normal form, so AY:*.Y X has to be normalised to obtain X. Finally,
X is replaced by its bound and then the application can be typed.

The main new source of difficulty is the interaction between the need for nor-
malization and the presence of intersection types.

An algorithm to infer types should proceed structurally on the form of the term
whose type is to be inferred. This requires us to remove the rules which make our
typing rules non-deterministic: we should eliminate T-SuBsumpTION and T-MEET
from the original presentation, and modify the other rules in such a way that we
can still type the same set of terms.

We give some preliminary definitions and results before presenting the rules of
our new system:

o We define the mapping flub, which performs the “replacements” which we
motivated with the previous examples.

e We define the function arrows, to filter arrow types in order to deal with
term application.

o We define the function alls to filter polymorphic types to deal with type
application.

4.1. TYPE CHECKING AND TYPE INFERENCE 71

The function lub (definition 3.1.3) is a partial function which is only defined
for type variables and type applications. Here, we extend the definition of lub
to intersection types in such a way that it is defined if the least upper bound is
defined for at least one of the types in the intersection.

DEFINITION 4.1.1 (Homomorphic extension of lub to intersections, lub")
Wbi(X) = T(X),
lubi(ST) lubr(S) T,
b (A [Ty..To)) A¥ITI.T!], if 3ie{l..n} such that lb}(T))],

where T, is lubf(T3), if lubp(T,)|, and T; otherwise.
LEMMA 4.1.2 If lubp(T) is defined, then I' F T' < lubp(T).
PRrOOF: By induction on the complexity of T, using corollary 2.4.15. a

LEMMA 4.1.3 Let Iub(T) be defined and T + T € K. Then plusp(T) —»pas™°
pluse (lub(T).

ProoF: The proof follows by induction on the structure of T. If T = X or
T = ST, then the argument is the same as in lemma 3.5.14. The case remaining
to be checked is when T = A¥[T}..T,]. Then
plust(AK[TV.To)) = AX[plusp(Th)..plusp(T)]

plusp(Ribp (A [T Tal)) = A% [plusp(T})..plusp(T3)),
where T{ = T, or T, = lubp(T.). Since lub(T') is defined, there exists j€{1..n}
such that lubl.(T,) is defined. Now, for every k such that lubp(T%) is defined, by
the induction hypothesis, we have that

plus(T) »pas”" plusp(lubp(Th)).

Hence,
plusp(AK[T1..T,]) v pas”>° plusp (lubp (AKX [Ty..T0))). o

We define the mapping flub which given a type T (and a context I') finds the
smallest type larger than T (with respect to the subtype relation) having structural
information to perform an application.

DEFINITION 4.1.4 (Functional Least Upper Bound) The functional least upper
bound of a type T, in a context T', flub.(T') is defined as follows.

Aubp(T) = {ﬁ"br(lubP(T”’)), if lubp(T™)];

T, otherwise.’

72 CHAPTER 4. TYPINGIN Fy

The intuition behind the definition of the function flub is to find Ty —7; starting
form ZX in the example 4.1 above. In other words, flubr(Z X) = T1—T,. For
simplicity we assume T7—7T; in normal form. Step by step,

Mubp(ZX) = flubp(lubp(Z X))

= flub((AY:K.Y) X)
Slubr(lubp (((AY:K.Y) X)™))
Slubp(lubp (X))
= flubp(T1—T3)
= T)—T,.

More generally, flub climbs the subtyping hierarchy until it finds an arrow, a
quantifier, or an intersection of these two. To show that flub is well-defined we use
a similar argument to that used in section 3.5 to show that the relation defined by
AlgFY is well-founded. We show in lemma 4.1.5 that a maximal §A+-reduction
path of the plus version of the argument of flub is strictly longer than a maximal
BA+-reduction path of the plus version of the argument of its recursive call.

LEMMA 4.1.5 (Well-foundedness of flub)
I+ T e K, then flubr(T) is defined.

PRrOOF: If lubj(T™) is undefined, flub terminates because —p, is strongly nor-
malizing on well kinded types. Otherwise, define

weight(flubp(T)) = maz-red(plusp(T)),
where maz-red(S) is the length of a maximal fA+-reduction path starting from S.
Lemma 3.5.8 and the strong normalization property of —ga+ imply that weight is
well defined and always positive on well kinded types. Since lubf(T™) is defined,

plusp(T) —»pay pluse(T™), by lemma 3.5.13(2),
»gas>0 plusp(lubp(T™)), by lemma 4.1.3.

Then the weight of the arguments of flub reduces in each recursive call, which
proves that flub is well-founded. u]

LEMMA 4.1.6 Let T'F S,T € « and S =go T. Then flubp(S) = flubp(T).

DEFINITION 4.1.7 (arrows and alls)

1. arrows(T1—T13) = {T1-T:},
arrows(A*[T1..To]) = Uieqr.ny arrows(T3),
arrows(T) =0, fT#£TN1-T:and T £ AN[Th..Tn]

1This step can be optimised in an implementation of the type checking algorithm, allowing
us to avoid the normalization of T when T is either an arrow type or a quantified type.

4.1. TYPE CHECKING AND TYPE INFERENCE 73

2. alls (VX_<_T1KT2)
alls (A*[T1..T.))
alls(T)

{VXST]KTz},
UlE{l..n} alls (71)1
0, ifT #VX<T:K.Tand T £ A[Th.Th).

The situation here is significantly more complex than in [Pied1] for Fa, an
extension of the second order A-calculus. There it is enough to recursively search
for arrows or polymorphic types in the context, because in F, there is no reduction
on types. The information to be searched for is explicit in the context, so the job
done here by flub is simply an extra case in the definition of arrows and alls.
Namely,

arrows(X) = arrows(T'(X)) and
alls(X) alls (T'(X)).

i

Moreover, to prove that flub is well-founded is similar for us in complexity to
proving termination of subtype checking. The similarity comes from the fact that
computing flub involves replacing variables by their bounds in a given context and
normalizing with respect to —ga, as in lemma 4.1.5. In contrast, in [Pie91] it
is enough to observe that well-formed contexts cannot contain cycles of variable
references.

NOTATION 4.1.8 We introduce a new notation for intersection types. We write
A¥[T | ¢(T)], meaning the intersection of all types T such that ¢(T) holds. Note
that this is an alternative notation to A¥[T}..T,,] such that ¢(T,) holds if and only
ifie{l..n}.

We can now define a type inference algorithm for F.

DEFINITION 4.1.9 (A type inference algorithm, inf)
Iy, 2T, 2 F ok

Ty zT, TsFugz €T (AT-Var)
P, .’E:Tl }_mf eE Tz
T Foy A Toe € ToTh (AT-ABs)
PbtagfeT Fkyppa€ s
- (AT-Arp)
'tk fa€ N1] S,—T, € arrows(flubp(T)) and T+ S < §)]

F, XST]ZKI l—,,,fe €T, TA

T Foy AX<Ty K16 € VX<T K1 T (AT-TAss)
IF'hnyfeT
Thu S € N[T[X<—S)|VX<S:K.T; € alls (Aubp(T)) and T+ § < 5]
(AT-TApP)
for all te{1.. Fhure[X<S] €T,

or all i€{1..n} s e[X —85.] (AT-Fon)

T '-mj fOI‘(XES]..Sn)C € /*[Tl..T"]

74 CHAPTER 4. TYPINGIN Fy

The algorithmic information of rule AT-App is that in order to find a type for
fa in T, we need to infer a type S for a and a type T for f, and to take the
intersection of all the T's such that T,—S, € arrows (Aubp(T)) and TH S L S,

4.2 Minimal typing

In this section we show that F satisfies the minimal typing property (theorem
4.2.11). We first prove that the algorithm inf is sound with respect to Fy: if
Frse€T,thenT e €T (proposition 4.2.4). We then prove that every closed
term is typeable using either set of typing rules (lemma 4.2.8). Finally, we prove
that inf computes minimal types for Fy terms (proposition 4.2.10).

LEMMA 4.2.1 Let TFT €% ThenT F T < flubp(T).

PRroOOF: Since flub is well-founded, we can proceed by induction on the number
of unfolding steps in flubn(T). If flubn(T) = T, the result follows by S-Conv.
Otherwise, flubp(T) = flub-(luby-(T™)). By S-Conv,

r+T<Tv
By lemma 4.1.2,
r'+T < bp(T™).
By the induction hypothesis,
T+ lubp(T™) < flubp(lubp(T™)).
Finally, by S-TraANs, the result follows. o
LEMMA 4.2.2 Let ' T € ». Then
1. TET S A'[S|S € arrows(flubp(T))].
2. THFT < A*[S|S € alls(flubp(T))].
PROOF:

1. Using lemma 4.2.1, we reduce our problem to proving that
FET S AY[S|S € arrows(T),

which follows by induction on the structure of T

2. Similar to 1. a
LEMMA 4.2.3

1. T+ T < T1-T,, then T' - AY[S | S€arrows (flubp (T))] < T1-Ts.
2. HT T < VX<LTi:K.T;, then T+ A*[S| S€alls (lubp(T))] < VX LT1:K.Ts.

4.2. MINIMAL TYPING 75

PROOF:

1. By induction on the derivation of ' F T < T1—T;. The last rule of a
derivation of this subtyping statement can only be S-Conv, S-TVAar, S-
Trans, or S-MEET-LB. The first three cases use similar arguments, therefore
we consider here only the cases for S-Conv and S-MEET-LB.

S-Conv We are given that T' =, Ty —T,. By lemma 4.1.6 and the definition
of flub, we have that

arrows (flub-(T)) arrows (flubp(T1—Tz)),

arrows ((Ty—T3)™)

We now have two cases to analyze.

(a) I (T1—=T2)” = T ~T}’, then the result follows by S-MEeET-LB
and S-Conv.
(b) Otherwise, let (T3 —T2)™ = A* [T —U,. . TY-U,), where Ty =
A*[Uh..Uys). Then,
arrows (flubp(T)) = {TM-U,..TV-U,}.
Consequently,
A*[S|S € arrows(flube(T))] = (T1—T3)Y,
and the result follows by S-Conv,
S-MEeeT-LB We are given that

't A*[Sl..Tl—*Tz..S"] S Tl—PTz.
By the definition of flub,

_ﬁ'(lb‘r(/\ir [Sl ..Tl —~)Tzsﬂ])
= AL T AL T - A,

where T3 = A*[A1..A] or
Y = A

Now,

arrows (flubp (A*[S1..T1—=T3..5,)))
2 {TY— AT AL)

Then, if T = A*[A1..An], by lemma 2.4.18; and, if T} = A,, by
S-MEET-LB, we have that

T'F A*[S|S € arrows(fAubp(A*[S1..T1—>T2..5,)))] < (T1=T2)™.
Finally, the result follows by S-Conv.

2. Similar to previous item. o

PROPOSITION 4.2.4 (Soundness of inf) T Fipe € T, thenTFe € T.

76 CHAPTER 4. TYPINGIN F;

PrOOF: By induction on the derivation of I' -,,s e € T'. The interesting cases are
when the last applied rule is either AT-App and AT-TArr.

AT-Aprp We are given that
['Fug fa € AT | S,—T, € arrows(flubp(T)) and T+ S < S}
is derived from Tl f €T and Th,pa€S.

If A*[T,|S,—T, € arrows(flubp(T)) and T+ § < 8,] =g T, then the
result follows immediately using T-MegT. Otherwise, by the induction
hypothesis, we have that T' + f € T. By lemma 4.2.2(1), S-MEET-
LB, S-TraANs, and T-SussuMmpTion, I' F f € §,—T,. By the induction
hypothesis and T-SubsumepTiON, ' a € S,. By T-Arp, 'l fa e T..
Finally, by T-MEET,

T'F fa € A[T.| S,—T, € arrows(fAubp(T)) and T+ S < S,).

AT-TAprp We are given that

ThafSe

NL[X—=S)IVX<S,:K.T, € alls (flubp(T))and T+ § < §)]
is derived from ' b,y f € T.
If A*[T.|S\—T, € arrows(flubp(T)) and '+ S £ S,] =pa T7, then the
result follows immediately, using T-MEET. Otherwise, assume

alls (flubp(T)) = N VX LS K. T1.VX<S5.: K. T,).

By the induction hypothesis, we have that, ' F f € T. By lemma
4.2.2(2), S-MEeT-LB, S-TRrANS, and T-SUBSUMPTION, it follows that
Tk f e VXSS:K.T, SinceT F § <S5, by T-App, T F f§ €
T,[X «S]. Finally, by T-MEET,

' fSe
N[L[X—=S]|VX<LS5:K.T, € alls(flubr(T)) and T+ § < S,]. O

LEMMA 4.2.5 (Term application)
I 'FA[S—T..5—T]) < ST and THU £ S,
then ' A*[T,|TFU L ST

PROOF: There are two cases to be considered according to the normal form of
S—T. The case when (S—T)™ = S¥—-T" is similar to but simpler than the one
we consider here. Assume

(§—T) = A [S¥—A1..8¥ > A,), where TY = A*[A;..A,].
By the equivalence of ordinary and normal subtyping (theorem 3.3.9),

™ o A [SY—BL..SP— B §¥ BL.SY B*] < A [SY—A1..SY > An),

B! if it is not an intersection:
where T™ = M] !
' N'[B!..B¥], otherwise.

4.2. MINIMAL TYPING i
By generation for normal subtyping (proposition 3.2.10), for each :€{1..m} there
exist j€{1..n} and l,€{¢..k,} such that

™, SYBy < S¥-4,
Again, by generation for normal subtyping (proposition 3.2.10), for each i€{1..m}
there exist j€{1..n} and [,€{:..k,} such that

Ik, S¥<8Y and

I+, BY < 4,
By NS-TraNs and the equivalence of ordinary and normal subtyping (theorem
3.3.9), for each 1€{1..m} there exist j€{1..n} and l,€{s..k;} such that

FrFUKLS, and
I+, B! < A,

By NS-3, for each ¢€{1..m} there exist j€{l..n} such that

TFU<S, and
™ b, AY[BL.B] < A,.

By the equivalence of ordinary and normal subtyping (theorem 3.3.9), for each
ie{1..m} there exist je{l..n} such that

TFU<S, and
THT, < A,

By lemma 2.4.14, S-Conv, and S-TrANS,
THFAYT,|ITHU <S5, LT. m}

LEMMA 4.2.6 (Substitution for subtyping)
If Fl [Sl S T1 and Fl, XST]ZK], Fz F Sz S Tz, then F], I‘Z[X<—.5'1] F
So[X<S51) < TR[X 5]

Proor: By straightforward induction on the derivation of I'y, X<T71:K;, I’y
S3 £ T, using the weakening lemma (lemma 2.4.4), the type substitution lemma
(lemma 2.4.11), and lemma 2.3.1.4(3). a

LEMMA 4.2.7 (Type application)
I TEANVX<S:K,.Th.VX<5:K,,. T, SVXLS:KTandTTHU < S,
then I' F A*[T,[X<U]|ITFU < S,] < T[XU)

78 CHAPTER 4. TYPINGIN F

PROOF: There are two cases to be considered according to the normal form of
VX<S:K.T. The case when (YX<S:K.T)"¥ = VX<S™:K.T" is similar to but
simpler than the one we consider here. Assume

(VX<S:K.TYY = \"VX<S™:K.A.YX<S™:K.A,,]

where T = A*[A;..An). By the equivalence of ordinary and normal subtyping
(theorem 3.3.9),
™, AVX<SY.K,.Bl.VX<SY.K\.BR VX<SMK, B:.NX<SY:K,.Bf

<
N VXSSV KA. VX <S™:K.A,),
«_ | B, if it is not an intersection;
where I, = {/*[B,l..B,k'], otherwise.

By generation for normal subtyping (proposition 3.2.10), for each :€{1..m} there
exist j€{l..n} and l,€{s..k,} such that

TV k. VX<SMK,.B) <VX<SY:K.A,

Again, by generation for normal subtyping (proposition 3.2.10), for each i€ {1..m}
there exist j€{1..n} and l,€{i..k,} such that

K=K,
sV = SJ"!, and
™, X<SMK b, B < A..

By NS-v3, for each i€{1..m} there exist j€{1..n} such that
™, X<SY:K+, TV < A..

By the equivalence of ordinary and normal subtyping (theorem 3.3.9), for each
1€{1..m} there exist je{1..n} such that

T, X<$;KFT, <A,
Furthermore, by S-Conv and S-TRaNs,
kU LS,

Then, by the substitution lemma for subtyping (lemma 4.2.6), for each i€{1..m}
there exist je{1..n} such that

Tk T,[X U] < A[X U]
By NS-v3,

T'F AT, XU} T FU < 8] < A [A1[X <U).. An[X <U]).
By the definition of substitution,

TH AT, X<U]|TFU < 8] < TY[X U]

4.2. MINIMAL TYPING 79

Finally, by lemma 2.3.1.4(3), S-Conv, and S-TRaANs,
T'F A[T[X<U]ITFU LS S TIXU), a

Usually, the next step to prove the accuracy of an algorithm, inf in our case,
would be to prove a completeness result: if the term e has type T with respect to
the context I in the the typing system F¥ then the algorithm inf finds a type T"
for e in . In the present situation this result is not strong enough, since every
closed term is typeable in both systems. One easily proves that

LEMMA 4.2.8

1. If e is closed in T, then there exists T such that ' e € T.

2. If e is closed in T', then there exists T such that T'F,pe € T

We use the fact that inf is deterministic, which means that the rules are in-
vertible, to prove the important property that it finds a minimal type.

PROPOSITION 4.2.9 (Generation for inf)
1. T Fpx €T, then T = T'(z).

2. T FapAz:Ti.e € T, then T = Ty =Ty, where T, z:Ty binpe € T as a sub-
derivation.

3. fT'typpfaeT, then
T = A*[T,| S.—T. € arrows(flubp(U)) and T F § < 5],
where ' Fys f € U and T Fppa € S as subderivations.
4. IT Fupy AXLTy:K;.€ €T, then
T =VX<Ti:K,.T;,
where I', X <T1:K; b, € € T, as a subderivation.
5. UT by fS €T, then
T = NI XS] |IVXLS:K.T, € alls(flubr(U)) and T+ S < S},
where I' by f € U as a subderivation.

6. If I bpp for(X€S51..Su)e € T, then T = A*[T1..T,.], where I' b,y e[XS] €
T,, for each :€{1..n}, as subdeinnations.

ProOF: The form of the term in the antecedent uniquely determines the last rule
of its derivation.

PROPOSITION 4.2.10 (Minimal typing)
flteeTandTFype€ T, then THT' < T.

80

CHAPTER 4. TYPING IN F}

PROOF: By induction on the derivationof '+ e € T

T-Var By generation for wnf (proposition 4.2.9), 7' = T, and then the result

T-ABs

T-AprpP

follows by S-Conv.

We are given that

e = dz:Th.eq,
T = Tl—)TQ, and
[,zT1 F e €T

By generation for inf (proposition 4.2.9),

T' =T—»T, and
| I Y I_mf e; € T2I

By the induction hypothesis, T', z:Ty + T; < T, and by strengthening

(lemma 2.4.5), T' + T, < T3, from which it follows that T+ T' < T.

We are given that

e=fa,
'rfeV->T, and
FtaeV.

By generation for inf (proposition 4.2.9),

r l_lﬂff € U1
F'kpa€eS, and
T' = N*[T,| S:—T, € arrows(flubp(U)) and T F § <).

By the induction hypothesis,

U LV->T, and
rES<Vv

By lemma 4.2.3(1),
Tk N[S-T.| $:—T, € arrows(Aubr(U))] < V-T.

Finally, by the term application lemma (lemma 4.2.5), it follows that
THFATITFS<S)LT,

where S,—T, € arrows(flubp(U)).

In other words,

'k AT =T, € arrows(flubp(U))] < T.

4.2. MINIMAL TYPING 81

T-TABs We are given that

e= /\XSTllKl.Ez,
T EVXSTIZKl.Tz, and
F, XSTliKl e € Tz.

By generation for inf (proposition 4.2.9),

T' =VX<Ti:K,.T, and
F, X <Ti:K; }_mf €y € Tzl

By the induction hypothesis, I, X < Ty:K; + T; < T3. Then, by S-ALL
it follows that T H 71" < T.
T-TApp We are given that
e=fS,

T=TX~Sl't fe VX<T:K.T;, and
'+S<m.

By generation for inf (proposition 4.2.9),

T = AU, |VX<S,:K,.U, € alls(flubp(U)) and T+ S < S,], and
T ".,.ff e U.

By the induction hypothesis, I' F U < VX <Ty:K.T;. By lemma 4.2.3(2),
' A* VX<S,:K,.U, |VX<S,:K,.U, € als (flub(U))] < VX<T:K.T.
Then, by the type application lemma (lemma 4.2.7), it follows that

Ik AU[X<S]|TF S < 8] < Ty[X 8],

where VX <S,:K,.U, € alls (flubp(U)).

Namely,

TF A'U[X<S]|VX<S,:K,.U, € alls(flubr(U)) and T I § £ 5]
< T[X<S).

T-For We are given that
e =for(X€S5,..5,)ex

I'kejX—SleT, and
S € {S1..Sn}-

82 CHAPTER 4. TYPINGIN F}

By generation for inf (proposition 4.2.9),

T' = [Ty, Tn], and
I'Fiyes]X—S] €T; foreachiin {l.m}.

By the induction hypothesis, S-MEeT-LB, and S-TrANs, we have that
THA[N.Ta) < T.

T-MEET By the induction hypothesis and S-MEET-G.
T-Sus By the induction hypothesis and S-TrANs. O

Finally, we have proved the following result.

THEOREM 4.2.11 (Minimal typing for FY} Given a term e and a context ', there
exists T such that for every T/, if '+ e€ T/, then T F T < T".

4.3 Decidability of type checking and type infer-
ence

In the previous section we proved that the algorithm inf is sound and computes
minimal types for the F, typing system. The next step is to prove that the
algorithm inf always terminates. This result completes the proof of decidability
of type checking and type inference in Fy.

We first define a measure for terms such that the type information inside the
terms is considered to have constant value. The intuition behind the definition is

to find a measure on terms which is invariant under type substitution (see lemma
4.3.2).

DEFINITION 4.3.1 (size ||—||)

4] =1

IAz:T.e]| = 14|,

llex ez| = |lexl} + llez]l,
PXSTKel = 1+l

lle T = 1+el,

i

for(XeTy..To)ell = 1+ |lell.
LEMMA 4.3.2 |le]| = [le[X<T]]-

ProposITION 4 3.3 (Well-foundedness of inf)
The inference rules for inf define a terminating algorithm.

4.4. SUBJECT REDUCTION 83

PrOOF: In the case of AT-VAR, the termination follows from the decidability of
ok judgements (see corollary 2.4.10(1)). Furthermore, for each rule R of inf, if
I'F e €T is a hypothesis and T' I ¢’ € T is the conclusion of R, then ||e]| < ||¢'|-
Moreover, in the cases for AT-Arp and AT-TAPp, T' I f € T by the soundness
of inf (proposition 4.2.4), T' T' € * by well-kindedness of typing (proposition
2.4.20). Hence flub-(T') is defined by lemma 4.1.5. Furthermore, arrows and alls
define finite sets, and, as we proved in section 3.5, subtyping is decidable. Hence,
the algorithm inf always terminates. o
We can now state and prove that type checking in F, is decidable.

THEOREM 4.3.4 (Decidability of type checking in F}!)
For any context T', and for any term e and type T closed in I, it is decidable
whether '+ e T.

PROOF: Infer a minimal type T' for e in T' using nf, which is decidable by
proposition 4.3.3, and check whether I' T < T, which is also decidable by
theorem 3.5.18. O

Every term e closed in a context I' has type T*. We are interested in finding
types other than T*, namely non-trivial types. Since inf computes minimal types
and T* is the largest type (modulo =g,) , if a term has a non trivial type in a
given context, then the algorithm inf finds it.

THEOREM 4.3.5 (Decidability of type inference in Fy)
For any context I' and for any term e closed in T, it is decidable whether there
exists a type T such that ' e € T and T # T™.

Proor: Infer a minimal type T for e in " using inf, which is decidable by pro-
position 4.3.3, and reduce T to normal form which is decidable because — g, is
strongly normalising (see theorem 2.5.10). Finally, check whether 7% = T*. O

4.4 Subject reduction

The F, system is layered in three syntactic categories: kinds, types, and terms.
Since terms do not appear in either types or kinds, reductions in type expressions
can be studied independently from the reductions of terms. In section 2.2, we
proved that reduction on types preserves kinding properties: the sub-language of
types and kinds satisfies the subject reduction property (lemma 2.4.12):

if TFSeK and S-—»3.T, then THFT€K.

In this section, we show the subject reduction property for typing judgements
(proposition 4.4.7):

if TheeT and e-wgp.e, then THe eT.

In other words, reductions on terms are also safe.

84 CHAPTER 4. TYPINGIN F;

LEMMA 4.4.1 Y ¢ FV(S), then

L. e[Y«T)|[X«S] = e[X S][Y <T[X S]]

2. UlY «T)|[XS] = U[XS|[Y<T[X 9]
PROOF: By induction on the structure of e and U respectively. o
LEMMA 4.4.2 (Substitution for typing)

1. T F ey €8 and Ty, 2:51, T2 F €2 € Sz, then Ty, Ty e[ze—e;] € Sh.

2. If F] F SSS] and Fl, XSSllKl, Fg + ey € Sz, then Fl, FQ[X(—S] +
e[X 8] € S,[XS5].

PROOF:
1. By induction on the derivation of T'y, 2:5, s - e; € 55.

2. By induction on the derivation of 'y, X<51:K, ;s F ez € Sz, using the
type substitution lemma (lemma 2.4.11) in the T-VAR and T-MEET cases;
the substitution lemma for subtyping (lemma 4.2.6) and lemma 4.4.1 in the
case for T-TArP; lemma4.4.1 in the T-For case, and the substitution lemma
for subtyping (lemma 4.2.6) in the T-SUBSUMPTION case. O

LEMMA 443 TFHT*<Tifand only if T =go» T and ' F T € .

Proor: If T =g. T%, then the result follows by S-Conv. Otherwise, if ' F
T* < T, by the well-kindedness of subtyping (proposition 2.4.19), T-MEET, and
uniqueness of kinds (lemma 2.4.7), I' - T € x. By the equivalence of ordinary and
algorithmic subtyping (proposition 3.4.3), I'™ k4, T* < T™, which can only be
derived using ALGS-¥3 where T™ is the empty intersection. (m]

GivenT'F S < T, generation for normal subtyping (proposition 3.2.10) and the
equivalence of ordinary and normal subtyping (theorem 3.3.9) provide subtyping
information about the normal forms of S and T. We can also show that subtyping
is structural for arrow types, quantified types and type operators, without redu-
cing the terms in the subtyping relation to normal form. An implementation of a
subtyping algorithm for Fy could take advantage of this fact by delaying normal-
izing steps, which might result in having to consider fewer recursive calls or calls
with smaller arguments.

LEMMA 4.4.4 (Generation for ordinary subtyping)

I.TF -1, < §1—S; and S; #s4 T ifand only if T + S < T3 and
rCk1,<8,

2. VX <T1:K7.T; £ VX<51:K5.5; and S; #g. T* if and only if Ks = Kr,
T] =pA Sl, a.nd F, XST]!KT F Tz S Sg.

4.4. SUBJECT REDUCTION 85

3. THFAX:K7.T; < AX:Ks5.5; and S; #ga T ifand only if T, X:Ks F T, <
S; and Kr = K.

PROOF: The three statements are proved using a similar argument. We consider
here the proof of part 2. If K¢ = K7, T} =ga S1, and T, X<T1:K7 F T < 53,
then, by S-ALL and S-Conv, ' F VX <T):K7.T: < VX<51:K5.5,. Conversely, let

TFVX<Ty:Kr.T; <VX<S$:Ks.S; and Sp #pa T

Lemma 4.4.3 implies that T #;, T*. Then we have to consider four cases

according to whether S}’ and T} are intersection types or not. We illustrate the
proof argument considering just one case. Let

(VX<Ty:Kr.To)Y = VX<TyV:Kr.TY, and
(VX <S1:Ks.5:)™ = N VX <S Y K. A Y X <5 Y K. A,),

where S¥ = A*[A;1..A;). By the equivalence of ordinary and normal subtyping
(theorem 3.3.9) and generation for normal subtyping (proposition 3.2.10), for each
ie{l..n}

™ b, VX<T\V:Kr.TY <VX<5™:Ks.A;
and, again generation for normal subtyping (proposition 3.2.10) implies that

™, X<TM:Kr+, T¥ < A;, and
T{'f = S{" .

By NS-v,

™, X<Ty:Kr b, T < S
and, by the equivalence of ordinary and normal subtyping (theorem 3.3.9),

[, X<Ty:KrF T, £ S, O
LEMMA 4.4.5 (Generation for typing)

1. T F Az:S).e € S, then there exists S, such that T, z:5; + ¢ € S, and
F " Sl—)Sg S S.

2. T F AX<5;:K,.e € S, then there exists S; such that I', X<S5:K; F e € 5,
and Tt VXSSﬁK].Sg § S.

3. UT F for(Xe{U,..Un})e € T, then there exist Ty..T,, such that, for each ¢
in{l.n}, Tk eXeU;]€T;and T+ A*[T1..T,] < T.

PRrRoOF: Each statement is proved by induction on the derivation of the typing
statement in the antecedent. We exhibit here the proof of part 3. We proceed by
case analysis on the last rule of the derivation of I' } for(X€{U,..U,})e € T.

86 CHAPTER 4. TYPINGIN FY

T-For We are given that I' + e[X«U] € T for some Uc{U;..U,}. Since every
closed term has a type, we have that, for each z in {l..n} , ' F e[X U] €
T., and, by S-MEeeT-LB, ' F A*[T..T..T,] < T.

T-MEET Let T = A*[S;..Sk]. We are given that,

I'Fok and
T'Ffor(Xe{lh.U,})e € S,, for each j in {1..k}.

By the induction hypothesis, for each j€{1..k} and each i€{l..n}, there
exist T), such that

I'te[X<U]€eT,, and
T+ AT, T, <8,

and, by the minimal type property (theorem 4.2.11), there exist Ty..T,
such that

T'keX<U]€T, and
I'kT, LT,

by lemma 2.4.18, it follows that I' F A*[T1..T%) < A*[T},..T}.), and by
S-Trans, T F A*[T1..Ty] £ S,. Finally, by S-MEET-G, it follows that
'+ AT Th] < A[S1--Sk)-

T-Sus We are given that
T+ for(Xe{U;.U.})e € S, and
r-S<rT.
The result follows by the induction hypothesis and S-TraNs. O

Since terms cannot occur in types, subject reduction for terms does not need
to consider reductions in contexts.

PROPOSITION 4.4.6 (One step subject reduction for typing judgements)
IfTFe€eT and e oppr e, then'He' €T.

PROOF: Since every term has type T*, the interesting case is when T #ga T*.
This proposition follows by induction on the derivation of I' - e € T. We consider
the cases where e is a redex; the other cases follow by straightforward application
of the induction hypothesis.

T-App There are two possibilities for e to be a redex.

4.4. SUBJECT REDUCTION 87

1. e = (Az:51.61) €2, € = €y[ze;), and T = T; . We are given that
'k Az:S51.e€T1—T;, and ThreeTh.

By the generation lemma for typing (lemma 4.4.5), there exists S,
such that,

I'a:S1Fe€S; and TH 5155, <T1—-Ts.

Since Tz #pa T, by the generation lemma for ordinary subtyping
(lemma 4.4.4),

FTFT1 <S5 and TFS<Ts.

Then, by T-SuBsSUMPTION, it follows that
I'z:S1Fe €T and The € 5.

Finally, by the substitution lemma for typing (lemma 4.4.2(1)),
Tt e[z—ey) € To.

2. e = (for(Xely..Uy)ex) eq, € = for(Xely..Us)(ez 1), and T' = To.
We are given that

Itk for(XelU;..Uy)es € Ti—=T; and TFe €Th.

By the generation lemma for typing (lemma 4.4.5), there exist V;..V,
such that

T'heX<U}eV, foreachie{l..n}, and

Tk /*[%Vn] S Tl—-)Tz.

We write V¥ = A,, if it is not an intersection,
vy o= A*[A,-A,], otherwise.

Note that AY[Vi..V,]" = N[Ar, .- Ay, - Aq, . Aq,] By the equival-
ence of ordinary and normal subtyping (theorem 3.3.9),

T™ bu A" AL, Ay, - Ang-An,) S (G- T2)Y

We have to consider two cases according to the form of (T} —T3)Y.

(a) (Ti—>T2)" = TW/-Ty. By generation for normal subtyping
(proposition 3.2.10), there exist l€{l..n} and j€{l..k} such
that
I, A < TY-TY,

and, by NS-3 or NS-REFL,
™. W< a,

by NS-TRANS,
™ Fn Vlﬂ! < Tln‘f—szn!

b

88

CHAPTER 4. TYPING IN F}

and, by the equivalence of ordinary and normal subtyping (the-
orem 3.3.9),

'k Vi <T1—-Ts.
Then, by T-SuBSUMPTION,
T'F e[XU € 1 -T.
By T-Arp,
'k (e;[XC—-UI]) e; € Ty,
and since X is not a free variable of e¢; we have that,
Tk eealX<U]€eT,.
Finally, applying T-For, we have that
'k for(Xely..Uy)es ey € To.

(b) (Ti1»T)™ = A [TM—B,..TM—B,], where T} = A*[B:..B,].

By generation for normal subtyping (proposition 3.2.10), for
every s€{1..r} there exist le{1l..n} and j€{1..k;} such that

I+, A, < TY-B,,
and, by NS-3 or NS-REFL,
™, VY < A,
by NS-Trans, for every s€{l..r} there exists l€{1l..n} such
that
™, v < 17> 8,
and, by the equivalence of ordinary and normal subtyping (the-
orem 3.3.9),
' Vi< Th—B,.
By T-SuesuMpTiON, for every s€{1..r} there exists l€{1..n}
Tk e[XS] € Th—B,.
By T-Arp, for every s€{l..r} there exists l[€{1..n}
I't (e2[X<Si]) e, € B,,
and since X is not a free variable of e; we have that, for every
s€{l..r} there exists l€{1..n}
Tt e;ei[X S € B,.
Applying T-FoRr, we get that for every s€{l..r}
I'F for(X€U1..Un)es €1 € By,
by T-MEET,
T+ for(X€Uy..Uy)ez e € TV
Finally, by S-Conv and T-SuBSuMPTION,
I'Ffor(XeU;.Up)es €1 € Ts.

T-TArp There are two possibilities for e to be a redex. The case when e =

(for(X €Uy..Uy,)ea) S follows a similar argument to the one used for the
case e = (for(XelU,..Uy,)ez) 1) in T-App.

4.4. SUBJECT REDUCTION 89

T-For

If e=(AX<S1:Ks.62)S € =e3[XS5], and T = T3[X 5], we have
that ' AX<S5:Ks.¢) € VX<T\:Kr.T; and T S < T). By the gener-
ation lemma for typing (lemma 4.4.5), there exists S; such that

I, X<S5:Kste €S, and

[FVX<S:Ks.5; SVX<T1:K7.Ts.
Since To[X —S)] #sa T*, lemma 2.3.1.4(3) implies that T; #5x T*. Then,
by the generation lemma for ordinary subtyping (lemma 4.4.4),

F, XSS]ZKS"SzS_Tz, S] =8A T], and KSEKT.

By T-SussumpTioN, I, X<51:Ks } e; € T3, and, by S-TraNS and S-
Conv, ' § <€ 5;. Finally, by the substitution lemma for typing (lemma
4.4.2(2)), Tk e3[X 8] € To[X S].

Let e = for(X€U,..U,)e1, where X & FTV(ey) and ¢’ = e;. We are given
that T | e[X U] € T, with Ue{U1..U,}. Since e; = e,[X U], the
result holds.]

We now have all the results needed in order to prove that reduction on terms
preserves typing. The following proposition, the subject reduction property for
F} terms, is a consequence of the previous one.

PROPOSITION 4.4.7 (Subject reduction for typing judgements)
IfT'te€T and e »gpre,then T Fe €T,

PROOF: By induction on the derivation of e —» gy, €/, using proposition 4.4.6. O

90

CHAPTER 4. TYPINGIN F!

Chapter 5
A PER Model for FY

5.1 Introduction

This chapter is based on [CP93]. The differences come from having replaced the
distributivity subtyping rules by reduction rules. Among simplest models for typed
A-calculi are those based on partial equivalence relations (PERs). A model in this
style is essentially untyped: terras are interpreted by erasing all type information
and interpreting the resulting pure A-term as an element of the model. A type,
in this setting, is just a subset of the model along with an appropriate notion of
equivalence of elements. Coercions between types are interpreted as inclusion of
PERs.

Our PER model for F extends the model of F, given in [Pie91], which is
based on Bruce and Longo’s model for F¢ [BL90]. The usual interpretation of a
quantified type VX.T in a PER model is the PER-indexed intersection of all pos-
sible instances of T'. Bruce and Longo refined this definition to interpret VX <S.T
as the intersection of all the instances of T where X is interpreted as a sub-PER of
the interpretation of S. This intuition also serves for intersection types: A*[T;..T5]
is interpreted as the intersection of the PERs interpreting each of the T}’s. We
generalize this model to w-order polymorphism (and subtyping) by interpreting
type operators as functions over PERs.

To deal correctly with intersection types, we need to make one significant
technical departure here from PER models of ordinary bounded quantification:
instead of allowing the elements of our PERs to be drawn from the carrier of an
arbitrary partial combinatory algebra D, we require that D be a total combinatory
algebra. This restriction is needed to validate instances of S-Conv, which have
the form '+ T* < 8§ — T*. For example, let S = T*. The empty intersection T*
is interpreted by the everywhere-defined PER, i.e., [T*] relates every m to itself.
‘To validate the distributivity law, it must therefore be the case that [T* — T*]
relates every element to itself. But this will only be true if the application of any
element to any other element is defined. This observation is due to QingMing Ma.

Cardelli and Longo [CL91] and Bruce and Mitchell [BM92] have given related
models for variants of F including subtyping, but without intersections.

The notation and fundamental definitions used here are based on papers of

91

92 CHAPTER 5. A PER MODEL FOR F;

Bruce and Longo [BL90], Freyd, Mulry, Rosolini, and Scott [FMRS90], and others.
A helpful basic reference for PER models of second-order A-calculi is [Mit90b]; also
see [BMMO90] for more general discussion of second-order models and [Bar84, HS86]
for general discussion of combinatory models.

5.2 Total combinatory algebras

A total combinatory algebra is a tuple D = (D, +, k, 8) comprising a set D of
elements, an application function - with type D — (D — D), and distinguished
elements k, s € D such that, for all dy, d;, d3 € D,

k . d1 . dz = dl

S'dl 'dg'd3=(d1 'd3)'(d2'd3).
Throughout this section, we work with a fixed, but unspecified, total combinatory
algebra D. (C.I. [Sco76] for examples.)

The set of pure A-terms is defined by the following grammar:

M=z | MM | My M,
The set of combinator terms is:

C:=z|CiC:| K|S

The bracket abstraction of a combinator term C with respect to a variable z,
written fun* (z) C, is defined as follows:

fun™ (z) C = KC when z € FV(C)
fun* (z) z = SKK
fun* () C1C; = S(fun*()C;)(fun*(z)C;) when z€FV(C, C;)
The combinator translation of a pure A-term M, written [M|, is defined as follows:
|zl =z
M@)M| = fun* @) M|
|Mi Ma| = |My] | My

A term environment 7 is a finite function from term variables to elements of
D. When z ¢ dom(n), we write n{z«d] for the environment that maps z to d and
agrees with 7 everywhere else. We write n\z for the environment like 7 except
that 5(z) is undefined; n\T is like but undefined on all the variables in dom(T').
We say that n' eztends n when dom(n) C dom(n’) and 5 and 7" agree on dom(7).

Let C be a combinator term and 7 a term environment such that FV(C) C
dom(n). Then the interpretation of C under 7, written [C],, is defined as follows:

Izl, = ()

(G Ca], [Gi], - [Ca],
(X1, = k

51,

S.

5.3. HIGHER-ORDER PARTIAL EQUIVALENCE RELATIONS 93

LEMMA 5.2.1
1. If 5 extends n and FV(C) € dom(y), then [C], = [C],,-
2. ffun* @) C], - m = [Cl)

PROOF: Standard.]

5.3 Higher-order partial equivalence relations

A partial equivalence relation (PER) on a combinatory algebra D is a symmetric
and transitive relation A on D. We write m {A} n when A relates m and n. The
domawn of A, written dom(A), is the set {n | n {A} n}. (Note that m {A} n
implies m € dom(A4).} We write PER for the class of all PERs.

If A and B are relations, then A — B is the relation where m {A — B} n iff,
for all p,qeD, p {A} g m«p {B} n-q. It is not hard to show that A — B is a PER
when A and B are PERs, and that the intersection of any set of PERs is a PER.
To interpret type operators, we need to consider not only PERs, but arbitrary
function spaces built on PER. An element of such a function space (including, as
a special case, an element of PER itself), is called a higher-order PER (HOPER).
The interpretation of a kind K is a suitable space of HOPERs:

[*] PER and
[Ki—K] = [Ki] — [Ka].

We generalize the familiar graph-inclusion of relations to HOPERs as follows:

AC'B iff A,Be([*]and

m {A} n implies m {B} n for all m,n€D;
AcK—K2 p if A Be[K,—K;]and

AP CX* BP forall P e [K].

Let {A, € [K]}:er be a set of HOPERs indexed by a set I. Then NK; A, is
the HOPER defined by

m {Mie; A} n iff for every i, m {A,} n
Ner A, = APe[Ki). NG AP
LEMMA 5.3.1
1. Each C¥ is transitive.
2. If A, € [K] for each €1, then NX; A, € [K].
3. If A C¥ B, for each j, then A C¥ NK, B,.

94 CHAPTER 5. A PER MODEL FOR Fy

4. ﬂf‘él A, CF A, for each j.
5. Mier A= B, ©° A — Nie; B..
6. MerNpcxa Bi € Npcxa Mier B
7. NE*2 aPe[Ky]. B, P cf %1 \Pe[Ki]. 0Ky B, P, if each B, € [K1— K.}
8. N&3 B, A €™ (N&%2 B,) A, where A€[K\].
Indeed, in cases 4 through 8 the inclusions are equalities.

PROOF: Straightforward. o

Each collection [K] of HOPERs has a maximal element under the ordering
CX. This element is written TX and can be calculated as follows: T* is the total
relation on D and TX17K2 =)\ Pe[K,}. T2

Fact 5.3.2 Let A € [K]. Then:
1. ACK TK,

2. TK cX A implies A = TX,

5.4 HOPER interpretation of Fy

An environment 7 is a finite function from type variables to HOPERs and from
term variables to elements of D. The notations for environment extension, re-
striction, and agreement are carried over from term environments. By an abuse
of notation, type environments are used in place of term environments from now
on.

The erasure of an F; term e, written erase(e), is the pure A-term defined as
follows:

erase(z) =z

erase(Az:T.e) = A(z)erase(e)
erase(e; ;) = erase(e;) erase(e;)
erase(AX<T:K.e) = erase(e)

erase(e T') = erase(e)
erase(for(X€T..T,)e) = erase(e).

Let 7 be a term environment and e an expression such that FV(e) C dom(n).
Then the interpretation of e under 7, written [e],, is [lerase(e)|], .

5.4. HOPER INTERPRETATION OF F} 95

If 5 is an environment and T a type expression such that FTV(T) C dom(n),
then the interpretation of T' under 5, written [T] , is the HOPER defined as
follows:

x1, = n(X)

7 - T3], = [I], - [T,
[VX<T:Ki. T2}, = Npcrny, [Nlixcp
AT T, = N [T,

[sTI, = [91, [7],
[AX:K.T], = APE[K]. [T],

We say that an environment 5 setisfies a context ', written g |= T, if dom(n) =
dom(T") and

1.T=0;0r

2. I =T, ©:T, where 1)\ z satisfies 'y and either [T],, T or 7(z) € dom([T1,\,);
or

3. I' = I, X<T:K, where n\X satisfies I'1 and either [T], T or n(X) c¥
Iterating the definition immediately yields that either [T'],\r,\xT or [T]\r,\x €

[K], whenever 5 = Ty, X<T:K, T',. Also, note that if 5’ extends g and FTV(T) C
dom(n), then either [T'] T and [T],,1, or else both are defined and [T], = {77,

LEMMA 5.4.1 Let T be a type, I' a context, and 5 an environment such that
FTV(T) Cdom(p) and p =T. T+ T € K, then [T, | and [T}, € [K].

PROOF: We need to check the desired result together with an additional fact:
1L IfT'+ T € K, then [T}, is defined and [T], € [K].
2. If T, X<T:K, T3 F ok, then [T],\r,\ x} and [T],\r,\x € [K]

The two are proved by simultaneous induction on derivations. We give only the
interesting cases; the rest follow by straightforward use of the induction hypothesis
and simple properties of HOPERs.

1. K-TVar We are given that I' = ', X<T:K, I'; and that T' I ok. By part
2 of the induction hypothesis, IIT]]n\r,\xl- By the definition of
satisfaction, (7\I';)(X) €¥ [71,\r,\x> which implies in particular
that 7(X) € [K]. By the definition of interpretation, [X], =
7(X) € [K].

96 CHAPTER 5. A PER MODEL FOR Fy

K-ALL We are given that K = « and T = VX<T1:K;.T>, and that
I, X<Ty:K, v T, € x. By lemma 2.4.1, there exists a shorter
derivation of I', X<Ty:K; F ok, and, by part 2 of the induc-
tion hypothesis, we have that [T1],] and [T\], € [Ki]. Now,
suppose P C¥: [T1],- Then the definition of satisfaction yields
n[X«P] E ', X<Ti:K;. By part | of the induction hypothesis,
[T2],ix -l and [T2],x. p; € [*] Since PER is closed under
intersections, [T'], = Npcr 1, (] x—p € [*]

K-OABs Similar.

2. C-VarR We are given that T = I, 1:S, where I = T}, X<T:K, I}, and
that I' S € . By lemma 2.4.1, T' + ok. By the definition of
satisfaction, p\z | I'. By the induction hypothesis, the result
follows.

C-TVaRr The case where T'; # 0 is similar to the previous case. When
I'; = 0, we are given that T =Ty, X<T:K and that ') F T € K.
By the definition of satisfaction, n\X }= I'. By the induction
hypothesis, the result follows. o

In order to prove the soundness of subtyping we need some technical results
about substitution and 3-conversion.

LEMMA 5.4.2
Let 7 be an environment with X ¢ dom(n) and such that FTV(S[X<T]) C

dom(n) and [[S]]n[)(h[T],,]l' Then [S[X<T]], = [[Snn[X‘—[T],,]'
PROOF: By induction on the structure of S. a

LEMMA 5.4.3 Let n be an environment such that FTV(S) C dom(n). If S =gA T
and [S], 1, then [S], = [T1],.

PROOF: By induction on the definition of 3A-conversion, it is easy to see that it
suffices to show the statement for a one-step reduction S — s, T. This is proved

by induction on the structure of S. The only interesting cases are when S is a
BA-redex and T its reduct. Let S = (AX:K.T;T and T = T1[X «T3). Then

[(AX:K.T:Th], = (APe[K].[T2],x_p)ITa), by definition of [-],

[Tdix qma,
[T2[X<Th]}, by lemma 5.4.2.

For the other redexes the result follows from lemma 5.3.1 given that for items 4
through 8 the inclusions are equalities. o
Our main semantic results are the soundness of subtyping and typing.

THEOREM 5.4.4 (Soundness of subtyping) f ' S < T and '+ § € K, and if
7 =T, then [5], ck 7,

5.4. HOPER INTERPRETATION OF F, 97

PROOF: The proof proceeds by induction on the structure of a derivation of
'+ § < T. For the sake of readability, we often make implicit use of the fact that
ifTFS<Tand 't S € K, then, by proposition 2.4.19 and lemmas 2.4.7 and
5.4.1, [S], and [T], are defined and belong to [K] whenever 5 |=T.

S-Conv

S-TRANS

S-TVaRr

S-ARROW

S-ALL

S-OABs

S-OArp

We are given that S = T. Then, by lemma 5.4.3, [S], = [T,
By the induction hypothesis and the transitivity of C¥ (lemma5.3.1).

We are given I'y, X<T:K, T2 F ok. Now, [X], = n(X) C¥ [T], x,
because |=T and, as 5 extends)\ X, [T1],, x = [T,

Wearegiven ' F T3 € Sy and T+ §; < T, with T' - 5,552 € *.
By the uniqueness of kinds (lemma 2.4.7), K = *. Now by the well-
kindedness of subtyping (proposition 2.4.19) and syntax directedness
of kinds (proposition 2.4.6) we have I' S;,T; € *. By the induc-
tion hypothesis, [S;], C* [T2], and [T3], €* [Si],- Hence, by the
covariance on the right and contravariance on the left of the func-

tion space constructor on PERs (easily verified from its definition),
[5:1,—~[8:], € [],~[72],, ie. [5:—8:], € [11—-T3),.
We are given that

' X<U:K;+ 5, <T; and

'k VXSUK]SQ € *.
By proposition 2.4.6, ', X<U:K; F §; € . Let P € [U],. Then,
by the definition of satisfaction, y[X—P] =T, X<U:K,. Now, by
the induition hypothesis, it fojloivs that ‘Isz]]n[Xo—P] c* HTZ]]n[L—P]'
Hence, Npcx w, ﬂSZI]n[Xo—P] € Npcx 1, [T, AlX—P]" Consequently,
HVXSU:Kl.SQIln Q* [[VXSU:I{I-TZII,,-

We are given I, X<THuK/F §<TandTF AX:K,.S€ K. By the
syntax-directedness of kinding, K = K;—K; and T, X<TFuK, |+
§ € K; for some K. If P € [Ki], then n[X«P] |= T, X<TR K.
Now by the induction hypothesis, [S], x_p cke [7],x—p- Then
AP € [Ki]-[S]x cKimke APe[K1]. [T}, x.p;- Consequently,
[AX:K,.S], €5 ~F [AX:K,.T,

By induction hypothesis, using the syntax-directedness of kinding.

S-MEeeT-G By the induction hypothesis and lemma 5.3.1(3).

S-MEeeT-LB By lemma 5.3.1(4).]

The type contezt T'/TV obtained from a contert T is defined in the obvious

way:

0/TV = 9,

(T, zT)/TV = T[TV,

(T, X<T:K)/TV = T/TV, X<T:K.

98 CHAPTER 5. A PER MODEL FOR F}

THEOREM 5.4.5 Let 5 ET and 5, T, such that ,/TV = 2/TV and, for all
redom(T), m(2) {IT(2)]} m(z), where 1 = n1/TV. Then [el,, {IT],} [d],,

PROOF: From I' e € T it follows by the well-kindedness of typing (proposition
2.4.20) that ' F T € *. Note that FTV(T) C dom(['/TV); then, by strengthen-
ing (lemma 2.4.5), I'/TV F T € %. Note also that 5 = T'/TV; by lemma 5.4.1,
[T], is defined and in [*]. We often use this fact implicitly in the following. The
proof now proceeds by induction on a derivation of ' e € T.

T-VAr From the assumption that for every z in dom(T). m(z) {{I'(2)],} n2(z)-

T-Aps We are given that T', z:7) e € T;. Suppose that p € D and ¢ € D
are such that p {[T1],} ¢. Then m[z—p] I T, z:Ty and nafze—q]
T, z:T;. By the mductlon hypothesis, [[e]]m[:w—p] {[T2],} [e]]nz[z,_q], that
is, [lerase(e)[],, = {[T>],} [lerase(e)l] From lemma 5.2. 1(2)
it follows that [fun*(z) lera.se N, -p { qi [fun*) erase(e)|],.- .
that is, [Az:T.e], .p {[T2],} [z T1 el,,-9- Smce p and g were chosen
freely, we have that[Az:Ty.e], {[[T1]H—>{T2ﬂn} [Az:Ty.€],,, in other words
a:Th.e], {[Ti—T2],} [Ae:Th.e],,

72

T-App By the induction hypothesis, using the fact that [fa], = [f],[a],,

T-TABs We are given that I', X<Ty:K; I e € T;. Suppose that P CK1 [TI]]n'
Then it follows that (X —P] | T', X<T;:K) and that 53[X—P] |
I, X<Ti:K;. Since [e], = [e], x.p); we have by the induction hypo-
thesxs that [e], {|[T2]In[X~—P]} [e]] Since P was chosen freely, we have
that [e], {ﬂpcx, i, ﬁTzll,,[x._P]} [[e] Now the result follows from the

deﬁmtlon [-1, and the fact that |IAX<T1:K1.e]|,7 = [e}, = [edix—p)-

T-TApp We are givén that T F f € VX<T:K;.T; and that T - § < T;. By
the induction hypothesis, {f], {[VX<Ti:Ki.],} [f],,, which means
that, [f],, {Npcx: [T ixp} [f],,- By the well-kindedness of typ-
ing, syntax directedness of kinds, and well-kindedness of subtyping, I' -
S € Ki, and, by soundness of subtyping, [S], ck [71],. So we have
(1, {[[72]],“,_[5.] 1} 1f1,,, which, by lemma 5.4.2 and the fact that

[/}, = [fS], for any n, is [f S}, {IT2[X <S]},} {£51,,.

T-For Immediate from the induction hypothesis, because erase(e[X «S]) =
erase(e).

T-MeeT We are given that I' - ok and also I' - e € T; for each z in {1 .. n}. The
result follows by the induction hypothesis and the definitions of (}* and

[-]q'

T-SuB We are given that ' F e € § and that T F § < T. By the induction
hypothesis, [e], {{S],} fel,,- By well-kindedness of typing T F § € x,
and by the soundness of subtyping [S], C* [T],. Hence, [e], {[T],}
[el,.- 0

5.4. HOPER INTERPRETATION OF F? 99

COROLLARY 5.4.6 (Soundness of typing) Let n be an environment such that 7 |=
T. Then I'F e € T implies fe], €dom([T],).

Proor: Take g, =92 = 7. 8]

100 CHAPTER 5. A PER MODEL FOR Fy

Chapter 6

Multiple Inheritance

6.1 Introduction

This chapter is extracted from [CP93]. The reader is invited to read [Bru94, FM94,
PT94] for a complete account on the foundations of object-oriented programming,.
Here we intend to illustrate how the concept of multiple inheritance is captured
by intersection types. We use records and record types which are not part of the
syntax of FY. The reader is referred to [Car92] for an implementation of records
in a typed lambda calculus.

Informally, in class based object-oriented programming there are entities called
objects which are organised in classes, and each class of objects is associated with
a set of functions or methods. This set of methods is known as the interface of
the objects of a class. The use of a method of the interface to access an object is
called message passing. A suitable type theory for an object-oriented programming
discipline should prevent access to objects other than through the corresponding
interface. This protection against illegal access is known as encapsulation.

Existing classes may be used to create new ones. In this way, classes are organ-
ised in a hierarchy or genealogy, where ancestors are super-classes and descendants
are subclasses. The mechanism through which a subclass of objects use methods
of a superclass is known as inheritance. So far we used the word class as a syn-
onym of colleclion. In the sequel the word class is used formally to refer to a term
of the F language.

The common goal of studies in this area is to prove the safety of a type system
describing a set of high-level syntactic constructs for object encapsulation, mes-
sage passing, and inheritance. Qur approach consists of translating the high-level
syntax into a more conventional A-calculus, whose own type-safety is established
separately; the soundness of the typing rules for the object features then follows
from the soundness of the target system. So, for example, the keyword new, which
by itself does not represent any entity in an object-oriented programming lan-
guage, is interpreted as a term which given suitable arguments creates an object.
One advantage of this style is that we can verify type safety automatically using
a type checker for the underlying A-calculus.

The object model of Pierce and Turner [PT94], on which the present study

101

102 CHAPTER 6. MULTIPLE INHERITANCE

is based, encodes objects as expressions of FZ, an extension of Girard’s System
F* [Gir72) with bounded quantification. Given a description M of a public inter-
face — the names and types of a set of methods — the type Object(M) denotes
the type of objects satisfying this description. Technically, object interfaces are
type operators of kind x—%, maps from types to types, and Object€ (x—x) — *
is a higher-order constructor. See sections 6.2 and 6.3 for details and [PT94] for a
longer discussion. For example, if PointM describes the interface of one-dimensional
point objects responding to the messages setX and getX then Dbject(PointM) is
the type of points. Associated with each such collection of objects is a group of
functions for sending messages, with types like:

Point’setX : Al1(M < PointM)
Object(M) -> Int -> Object(M)

The bounded quantifier A11(M<PointM) expresses the fact that the message satX
can actually be sent to any object whose interface refines the interface of points.
Given such an object and an integer representing its new x-coordinate, Point’setX
returns a new object with an appropriately updated position. The foregoing ac-
counts for the fundamental features of cbject encapsulation and interface refine-
ment (and correctly handles their interaction; this is the difficult part). But it
omits some characteristic features of popular object-oriented languages, notably
inheritance.

In general terms, inheritance is a mechanism allowing the implementations of
different sorts of objects that share some of their behavior to be factored so that
the common behavior is written just once.

In our framework a class is a term containing the type of the internal rep-
resentation of objects its objects, a default value for the private data and an
implementation of the methods. Therefore, a class can be used in two ways: as
a template for creating new objects, because it has a default value and the set of
methods which is all that is needed to create an object, and as the basis for de-
fining subclasses by incremental extension of the set of methods. If M is an object
interface, then Class(M) is the type of classes that can be used to create objects
of type Object(M). The polymorphic function new maps a class into a new object:

new : All(M:*->x) Class(M) -> Object(M)

Another function, extend, takes an existing class and a description of some new
methods and constructs a new class combining the old and new behaviors:

extend : All(SuperM:*->x)
Al1(SelfM<SuperM)
Class(SuperM) -> ... -> Class(SelfM)

(The details hidden here by ... are revealed in the following section and sec-
tion 6.3.) The bounded quantifier A11(SelfM<SuperM) ensures that the inter-
face of the new class refines that of the old: Object(SelfM) is a subtype of
Object (SuperM).

6.2. AN EXAMPLE OF MULTIPLE INHERITANCE 103

To handle multiple inheritance in this setting, we must enrich the extend func-
tion to take two or more superclasses as arguments. Consider the case where the
new class inherits methods from two superclasses. This version — call it extend2
(there will be an analogous one for each n) — should have a type like:

extend2 : All(SuperMi:x->%) % the interface of one superclass
Al1(SuperM2:*->*) % the interface of the other superclass
Al11(SelfM<?7?) % the interface of the class being built

Class(SuperM1) ¥ the first superclass
-> Class(SuperM2) Y% the second superclass
> ... % (how to build the new class)
-> Class(SelfM) % the new class itself

But the upper bound of SelfM presents a problem: we must ensure that SelfM is
a subtype of both SuperM1 and SuperM2, which falls outside the expressive scope of
our target A-calculus F¢.

Intuitively, what we want to write is

extend2 : All(SuperMi:*->#) All(SuperM2:#*->%)
A11(SelfM < SuperMi "and" SuperM2)
Class(SuperM1)
-> Class(SuperM2)
-> ...
-> Class(SelfM)

where, informally, "and" forms the conjunction of the two superclass specifications.
Fortunately, a type constructor with exactly this meaning has already appeared
in the literature. First-order type systems with intersection types have been in-
vestigated by the group in Torino [CDCT78, BCD83] and elsewhere. (See [CC90]
for background and further references.) A second-order A-calculus with intersec-
tion types was studied by Pierce [Pie91]. The calculus needed here is the w-order
extension of this system.

A type system combining intersection types with a powerful form of poly-
morphism is of independent interest. Reynolds [Rey88] has argued that inter-
section types can form the basis of elegant language designs. But his Forsythe
language has only a first-order type system, and thus lacks some of the expressive
possibilities of polymorphic languages like ML. Qur work represents a step toward
a synthesis of these styles of language design.

The following section shows some examples of multiple inheritance using a
sirmple high-level syntax, and section 6.3 develops an implementation of inheritance
in this setting.

6.2 An example of multiple inheritance
We begin by recalling the encodings of some basic concepts of object-oriented

programming in F¢ and showing a simple example of multiple inheritance in this
setting. h

104 CHAPTER 6. MULTIPLE INHERITANCE

In this setting, an object interface specification is modelled as a function from
types to types, describing the behaviors of a collection of methods as transforma-
tions on the object’s internal state. For example, the interface of one-dimensional
point objects supporting the messages getX, setX, and bump is captured by the
type operator

PointM = Fun(Rep){| setX: Rep->Int->Rep,
* getX: Rep->Int,

bump: Rep->Rep |};
PointM : *->»

which expresses the fact that the getX method of a point interrogates its internal
state and returns an integer, that the set method transforms the internal state
and a new position into an updated internal state, and that bump, which increases
the position by one, maps one internal state to another. (The # in the left-hand
margin indicates that this expression has been checked by our implementation; the
typechecker’s response follows.) The abstraction over the type Rep of the internal
state hides the actual internal state from outside view. Concretely, a point whose
internal state type is {Ix:Int|} — a one-field record containing an integer — will
contain a record of methods with types

{1 setX: {Ix:Intl} -> Int -> {Ix:Intl|},
getX: {Ix:Int|} -> Int,
bump: {Ix:Intl} -> {lx:Int|} 1}

while a point whose internal state type is richer, say {|x:Int,y:Int|}, will have
correspondingly richer concrete types for its methods:

{l setX: {Ix:Int,y:Int|} -> Int -> {|x:Int,y:Intl|},
gotX: {Ix:Int,y:Intl|} -> Int,
bump: {Ilx:Int,y:Int|} -> {Ix:Int,y:Intl} 1>

Externally, we expect the difference between these two to be invisible; thus, the
public interface to the methods, PointM, abstracts away from any particular rep-
resentation type. Both point objects are elements of the type Object (PointM).
(For present purposes, it is not important how Object itself is defined. C.f. [PT94,
HP95].)

New objects are created by applying the polymorphic function new to a class.
Given an interface M and a class for this interface — that is, a class whose instances
are objects with interface M — new creates and returns such an object. New classes,
in turn, are created by applying the polymorphic function extend to an existing
class along with a specification of an incremental change to its behavior:

extend = <val>
: Al1(SuperM)
Al1(SelfM<SuperM)
Al11(SelfDiffR)
(Class SuperM)
-> SelfDiffR

6.2. AN EXAMPLE OF MULTIPLE INHERITANCE 105

-> (A11(FinalR)
(Extractor FinalR SelfDiffR)
=>(SuperM FinalR)
~>(SelfM FinalR)
->(SelfM FinalR))
-> (Class SelfM)

In detail, the arguments expected by extend comprise:
o The interface SuperM of the existing class.
e The interface SelfM of the new class that will be returned by extend.

¢ The type SelfDiffR, which describes the difference between the representa-
tion of the superclass (whatever it may be) and the representation of the new
class. In conventional terminology, this is the set of new instance variables
introduced by the subclass.

e The superclass itself — an element of Class(SuperM) (our typechecker prints
it as Class SuperM).

e An initial value — an element of SelfDiffR — for the new part of the state.
e A polymorphic “method builder” function.

Given all these, extend returns a class for the interface SelfM.

The method builder function, which does the work of constructing the vec-
tor of methods to be used in instances of the new class, must itself take several
parameters:

o The “final” representation type FinalR, which is fixed at the moment when
new is applied to a class.

e An “extractor,” which provides a mapping back and forth between the final
representation type and the local representation type, allowing the local
methods to access the part of the state that interests them.

e The “super methods” of the existing class.

o The “self methods” of the new class, which are used to model the charac-
teristic object-oriented feature of “sending a message to self.”

Given these, the method builder must return a collection of methods for the new
object.

For uniformity, let us assume that there is just one base class — the class of
“things,” whose instances are objects with no behavior at all:

ThingM = Fun(Rep) {| |};
ThingM : *=>%
thingClass = <val> : Class ThingM

106 CHAPTER 6. MULTIPLE INHERITANCE

To build a class of points extending thingClass, we first choose the “local” part
of the representation of points.

PointDiffR = {| x:Int |};
PointDiffR : *

Now we create pointClass by applying extend as follows (see section 6.3 for more
details).

pointClass =

extend

ThingM % superclass interface

PointM % interface for new class

PointDiffR % local state type

thingClass % the superclass itself

{x=0} % initial value for local state
(fun(FinalR) % "method builder" function...
% fun(e: Extractor FinalR PointDiffR)) mapping a "state extractor"
fun(super: ThingM FinalR) % and the '"super methods"

8 fun(self: PointM FinalR) % and the "self methods"

] {getX = fun(s:FinalR) % to a getX method

* (e.get 8).x, % that returns

% the local x field

setX = fun(s:FinalR) % and a setX method

fun(i:Int) e.put s {x=i},) that overwrites

* % the x field

bump = fun(s:FinalR) % and a bump method

* self.setX s % that calls setX on self
(plus (self.getX s) 1) ¥ to set x to one more

* b % than self.getX

pointClass = <val> : Class PointM

Of course, this definition of pointClass is quite verbose. It is not hard to design
higher-level syntax for objects, message passing, and class extension that looks
like ordinary object-oriented source code, but since we are building a foundational
model here, we prefer the low-level notation.

Similarly, we can define the interface for “colored objects” — objects support-
ing the messages setC and getC — as follows:

ColoredM = Fun(Rep) {| setC: Rep->Color->Rep, getC: Rep->Color |};
ColoredM : *->*

Again, one instance variable suffices to represent the color of a colored ohject:

ColoredDiffR = {| c:Color |};
ColoredDiffR : =*

A class of colored objects can now be created by extending thingClass as we did
to build pointClass:

6.2. AN EXAMPLE OF MULTIPLE INHERITANCE 107

coloredClass =
extend ThingM ColoredM ColoredDiffR thingClass
{ ¢ = black }
(fun(FinalR)
fun(e: Extractor FinalR ColoredDiffR)
fun(super: ThingM FinalR)
fun(self: ColoredM FinalR)
{getC = fun(s:FinalR) (e.get s).c,
setC = fun(s:FinalR) fun(newc:Color) e.put s {c=newc}
»;
coloredClass = <val> : Class ColoredM

% % % W % B % B %

Now we have reached the point where we can use multiple inheritance to com-
bine the classes of point objects and colored objects, yielding a new class of colored
points. The interface of colored points contains all the messages of both super-
classes:

CPointM = Fun(Rep) {| setX: Rep->Int->Rep,

* goetX: Rep->Int,

bump: Rep->Rep,

L setC: Rep->Color->Rep,
getC: Rep->Color |};

CPointM : *->x

For this simple implementation, no additional instance variables are needed: we
can set CPointDiffR = {| I}.

To make the example more interesting, we take the methods getX, setC, and
getC unchanged from the superclasses, while overriding the definition of setX so

that, in addition to setting the x coordinate as usual, it also sets the color to, say,
blue:

cpointClass =

extend2 PointM ColoredM CPointM

* CPointDiffR pointClass coloredClass { }
(fun(FinalR)

fun(e: Extractor FinalR CPointDiffR)

* fun(super1: PointM FinalR)

fun(super2: ColoredM FinalR)

fun(self: CPointM FinalR)

* {setX = fun(s:FinalR) fun(i:Int)% the new setX method:
* let 81 = superl.setX s i in) use pointClass's setX
% to set position

let s2 = super2.setC sl blue ¥ and coloredClass’s setC
* % to set coloer

in 82 end end,

* getX = superl.getX, % copy all the remaining
bump = superi.bump, % methods from the

2 setC = super2.setC, % appropriate superclass
* getC = super2.getC

108 CHAPTER 6. MULTIPLE INHERITANCE

1)
cpointClass = <val> : Class CPointM

Here, the low level at which we are working is reflected in the fact that the old
methods getX, bump, setC, and getC must be copied explicitly from the superclasses
to the new class. Introducing high-level syntax for multiple inheritance would, of
course, raise all the usual questions (must each inherited method appear in only
one of the superclasses? if it appears in more than one, which should be copied
to the subclass? etc.), for which the usual solutions will apply.

To test what we have done, let’s build a colored point and send it some mes-
sages:

p = new CPointM cpeintClass;
P = <val> : Object CPointM

Colored’getC CPointM p;
black : Color

pl = Point’bump CPointM p;
pl = <val> : Object CPointM

Point’getX CPointM pi;

1 : Int

Colored’getC CPointM pi;
blue : Color

Note that sending our colored point the bump method has the effect of changing
its color to blue: the overridden behavior of the setX method is observable in the
behavior of bump method, even though bump was not redefined in the subclass.

6.3 Encoding multiple inheritance

We close with a full implementation of the extend2 function, generalising the
extend function in section 7 of [PT94]. As we suggested in the introduction,
an intersection type must be used at one point (marked *** in the definition of
extend) to oblain a sound typing; the rest is straightforward.

This implementation of classes and inheritance makes the local state of each
class inaccessible both to clients of objects and to methods defined in subclasses.
Other variations are possible; we chose this one to simplify the presentation of
section 6.2.

If M is an object interface — an operator of kind *~>* — then Class (M) is the set
of classes whose instances have type Object(M). Each such class consists of a local
representation type MyR (whose identity is hidden by an existential quantifier), an
element initstate€MyR that is used as the initial value of the state in new objects
created from this class, and a function buildM that can be used to construct the
methods of the new objects:

Class =
Fun(M:*->%)
Some(R)

6.3. ENCODING MULTIPLE INHERITANCE 109

{l initstate: R,
buildM: ClassMethods M R I};
Class : (*->%)->%

To cope with different representations of local state in subclasses, the method-
building function is abstracted on two parameters: a type FinalR representing
the “full” state of an eventual subclass, and an “extractor” giving access to the
components of interest to the methods being built. The method builder is also
abstracted on a collection of self-methods of the same types as its own methods.
Given these, 1t yields a concrete collection of methods specialized to work properly
in an object with representation type FinalR:

ClassMethods =
Fun(MyM:%->x)
Fun(MyR)

All(FinalR)
t (Extractor FinalR MyR) ->
» (MyM(FinalR)) ->

] (MyM(FinalR));
ClassMethods : (x=>%)=>k->%

Finally, an extractor is just a pair of maps, get and put.

Extractor = Fun(SS) Fun(TT) {| get: SS->TT, put: SS->TT->SS |};
Extractor : *->%->%

Intuitively, get extracts the “superclass part” of an element of a subclass’s state,
while put overwrites the superclass part, yielding a new subclass state.

For example, the point class of section 6.2 can be defined directly (rather than
as an extension of thingClass) as follows:

pointClass =
¢ < {lx:Intl},

{initstate = {x=0},

buildM = fun(FinalR)

#* fun(e: Extractor FinalR {|xz:Intl|})

¥ fun(self: PointM FinalR)

{getX = fun(s:FinalR) (e.get 8).x,

setX = fun(s:FinalR) fun(i:Int) e.put s {x=i},

L bump = fun(s:FinalR) e.put 8 {x = plus 1 (e.get 8).x}
* 1}

#* > : Class PointM;

pointClass = <val> : Class PointM

{We use the ascii syntax “<R,b>:T” for introducing elements of existential types: R
is the hidden witness type, b is the body, and T is the existential type where the res-
ult is to live. The corresponding elimination form is written “open e as <R,x> in
b.”)

A class with two superclasses generates objects whose internal states have
three parts: one for each superclass and one for the new components local to

110

CHAPTER 6. MULTIPLE INHERITANCE

the class itself. For example, an instance of cpointClass contains a point state
of type {Ix:Intl}, a colored-object state of type {lc:Colorl}, and an empty
local state. The extend2 function takes two classes, an initial local state, and a
function for incrementally building a collection of new methods from the old ones,
and constructs a subclass of this form.

]
#
#
#
 J
#
#
#
#
#
*
#
#
#
*
#
#
#
*
#
#
#
#
#
#
3
L
L
*
¥
¥
#
#
#
#
#
#
¥
#
#
8
#

extend2 =

JArguments:

fun(SuperMi: *->x)
fun(SuperM2: *->x)

fun(MyM <

SuperM1/\SuperM2) haexn

fun(MyLocalR: *)
fun(superClassi: Class SuperM1)
fun(superClass2: Class SuperM2)
fun(myinitstate: MyLocalR)
fun(mymethods:

Al11(FinalR)

(Extractor FinalR MyLocalR) ->
(SuperMi(FinalR)) ->
(SuperM2(FinalR)) ->

(MyM(FinalR})) ->
(MyM(FinalR)))

open superClassl

as <SuperR1,superDatal> in
open superClass?2

as <SuperR2,superData2> in

let MyR =

Triple SuperR1 SuperR2 MylocalR in
%Result: a new class

<

MyR,

{initstate =

triple SuperRi SuperR2 MyLocalR
(superDatal.initstate)
(superData2.initstate)
myinitstate,
buildM =

fun(FinalR)
fun(e: Extractor FinalR MyR)

fun(s

elf: MyM(FinalR))

let eself =
composeExtractors

FinalR MyR MyLocalR e

%first superclass interface
%second superclass interface
Jnew subclass interface
%local state type
%first superclass
%second superclass
%initial local state
%incr method extension fun
%with arguments
%a final rep type
/an extractor
%#for the local state
%the first superclass’s
Jmethods
%the second superclass’s
Jmethods
%the self-methods
Jreturning the new methods

Y%open the first superclass
P P

%open the second superclass
%define the new state type
%(a triple)

Jwith state type MyR
%and initial state
%a triple of
%first super’s
4initial state
%second super’s
%initial state
%local initial state
%and method-builder,
%a fun with args
%a final rep type
%an extractor
%and a collection
%of self-methods...

6.3. ENCODING MULTIPLE INHERITANCE 11

(extract3of3 SuperR1 SuperR2 MyLocalR) in
* let esuperi =
composeExtractors
FinalR MyR Superfi e
(extractlof3 SuperR1 SuperR2 MyLocalR) in
let esuper2 =
L composeExtractors
* FinalR MyR SuperR2 e
(extract2o0f3 SuperR1 SuperR2 MyLocalR) in
mymethods FinalR eself Yreturning
* Jmethods built by mymethods
(superDatal.buildM FinalR esuperl self))when applied to
® %concrete methods
L (superData2.buildM FinalR esuper2 self)’of the superclasses
* self %and the self-methods
* end end end}
> : Class MyM
% end end end;
extend2 = <val>
: All(SuperMi)

Al1(SuperM2)

A11(MyM<SuperM1/\SuperM2)

All(MyLocalR)

(Class SuperM1)
~> (Class SuperM2)
<> MyLocalR
-> (Al1(FinalR)
(Extractor FinalR MyLocalR)
->(SuperM1 FinalR)
->(SuperM2 FinalR)
->(MyM FinalR)
->(MyM FinalR))
-> (Class MyM)

This definition uses a utility function for composing extractors in the obvious way:

composeExtractors =
fun(T1) fun(T2) fun(T3)
fun(el: Extractor T1i T2)
fun(e2: Extractor T2 T3)
& {get = fun(t1:T1) e2.get (el.get t1),
* put = fun(t1:T1) fun(t3:T3)
el.put t1 (e2.put (el.get t1) t3)};
compogeExtractors = <val>
: A11(T1)
A11(T2)
A11(T3)
(Extractor T1 T2)
-> (Extractor T2 T3)

112 CHAPTER 6. MULTIPLE INHERITANCE

-> {lget:T1->T3, put:T1->T3->T1|}
For forming triples, we use the type abbreviation

Triple = Fun(T1) Fun(T2) Fun(T3) {l| fst:T1, snd:T2, thd:T3 |};
Triple : #®->%->k->x%

with the constructor

triple =
fun(T1) fun(T2) fun(T3)
fun(t1:T1) fun(t2:T2) fun(t3:T3)

{fst=t1, snd=t2, thd=t3};
triple = <val>
: ALL(T1)
A11(T2)
A11(T3)

T1 -> T2 -> T3 -> {Ifst:T1, snd:T2, thd:T3|}
and the projections

extractlof3 =
fun(T1) fun(T2) fun(T3)
{get = fun(p: Triple T1 T2 T3) p.fst,
put = fun(p: Triple T1 T2 T3)
fun(t:T1)
{fst=t, snd=p.snd, thd=p.thd} };
extractiof3d = <val>
: A11(T1)
A11(T2)
A11(T3)
{Iget: (Triple Ti T2 T3)->Ti,
put: (Triple T1 T2 T3)->T1->{|fst:T1, snd:T2, thd:T3|}|}

and extract20f3 and extract3of3, which are defined similarly.

A slightly different formulation of the extend2 function provides an alternative
perspective on its behavior. The original extend2 is parametric on three class
interfaces, SuperM1, SuperM2, and MyM, where MyM is constrained to refine both
SuperM1 and SuperM2. The type of the following function extend2’ emphasizes
the fact that MyM is typically formed by adding some new methods to those given
by SuperM1 and SuperM2: it is parameterized on SuperM1, SuperM2, and a “partial
interface” MyOwnM, which is conjoined with the other two to form MyM:

extend2’ =

fun(SuperMi: *->x) % first superclass interface
fun(SuperM2: *->#) % second superclass interface
fun(MyOwnM: %->¥) % new methods specification

let MyM = SuperMi/\SuperM2/\MyOwnM in J, new class interface

 § % ...(the rest, as before)...

extend2’ = <val>

6.3. ENCODING MULTIPLE INHERITANCE 113

: A11(SuperMi)
A11(SuperM2)
A11 (MyOwnM)
Al11(MyLocalR)
(Class SuperM1)
-> (Class SuperM2)
=> MyLocalR
-> (Al1(FinalR)
(Extractor FinalR MyLocalR)
->(SuperM1 FinalR)
->(SuperM2 FinalR)
->(SuperMi/\ (SuperM2/\MyOwnM) FinalR)
->(SuperM1/\ (SuperM2/\MyOwnM) FinalR))
-> (Class (SuperMi/\(SuperM2/\MyOwnM}))

Note that all of the quantifiers in this version are unbounded: bounded quantific-
ation has been replaced by unbounded quantification and intersection.

114 CHAPTER 6. MULTIPLE INHERITANCE

Part 11

First-Order Subtyping

Chapter 7

Implicit and Explicit Subtyping

7.1 Introduction

In the analysis of A-calculi we can distinguish between two main groups of systems,
namely, explicitly typed systems, usually called @ la Church and implicitly typed
systems also called ¢ la Curry. In the implicitly typed systems type free lambda
terms are assigned a type and this is why these calculi @ lo Curry are sometimes
called systems of type assignment. On the other hand, in the explicitly typed
systems the terms are not terms of the type-free A-calculus but terms themselves
containing type information. To illustrate the difference we write the canonical
example of typing the corresponding identity term in both styles.

Fourry AL.T € 00
Fehuren AT:0.Z € 0—0.

Observe that the Church style term has extra typing information, namely ’:0’.
This explicit mention of types in a term makes it easier to decide whether a term
has a certain type. For some systems & la Curry this question is undecidable. See
[Bar92] for some examples. In these systems the problem of finding a type for
a given term involves solving sets of equations. (See [Wan87] for an elegant and
concise algorithm of type inference for simply typed A-calculus & la Curry).

The idea of subtype appears quite naturally in programming languages. If we
think of types as sets, we can easily picture what a subtype could be. Informally,
we can say that a type o is a subtype of 7 (¢ < 7) if any element of o can be
seen as an element of 7. We say can be seen as and not directly is because the
act of considering an element of type o as an element of type 7 might hide some
transformation. Consider for example the types Int and Real of integers and real
numbers respectively. Usually, on a computer, integer numbers are represented in
a different way than real numbers are; even if we might think of the integers as a
subset of the real numbers, there is a translation going on. The act of considering
an element of type o as an element of type 7 will be called coercion. In other
words, we say that an element of type o is coerced into an element of type 7.
Somehow an element of type ¢ has enough information to be seen as an element
of type 7.

117

118 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

While dealing with coercions we can again distinguish between an explicit
style and an implicit style. A style with explicit coercions means that coercions
are explicitly indicated and in an implicit style, as the name suggests, coercions
are left implicit. In systems including subtyping there is usually a rule for typing
coerced terms. Then, in an explicit style the coercion rule might look as follows.

'+Meo c<rT

CoERCION
Pk epr<M>€T ()
Similarly, in an implicit style the corresponding rule is as follows.
T'FrMeao c<rt
(SuBsuMPTION)

I'tMer

From the previous discussion it follows that we can split sublyping systems into
four main groups combining implicit or explicit typing with implicit or explicit
coercions. Explicit coercions have been used as a way of giving semantics to
systems with implicit coercions in [CG92]. In [CL91], PER models for Quest,
a higher order lambda calculus with subsumption, and Questc, a higher order
lambda calculus with coercion, are studied.

An implicit coercion is motivated by the fact that the same term can be con-
sidered as belonging to two different types without performing any change in the
term, as for example is the case when one of the types is included in the other
(with the intuitive idea of set inclusion), while an explicit coercion wishes to state
explicitly that there is a transformation going on. We can think, for example, of
a function f with the real numbers as domain, and a (sub)set A of real numbers.
If z is a variable of type A, then we would like to use f on z as well, without
performing any extra calculation to apply f to z.

The system A¢ (lambda sub), an extension of the simply typed A-calculus
@ la Church with subtyping, is presented in section 7.4. The extension consists of
adding the previously mentioned SussuMpPTION rule, in other words, coercions are
left implicit. The subtyping relation mentioned in the rule is based on a finite set of
subtyping axioms, closed under reflexivity and transitivity, and extended to arrow
types in the standard way. We show that A¢ satisfies the minimal types property,
and we exhibit an algorithm to compute minimal types (Alghg). Moreover, we
show that type checking and type inference are decidable.

The subtyping relation is studied in section 7.2, where a method to estzblish
whether two types are in the subtype relation is given and proven sound and
complete with respect to the definition of the subtyping relation. The decidability
of the predicate ¢ < 7 was already stated in [Mit84]. Types in the subtype relation
are looked at through the magnifying glass to establish the relation between the
structure of o and 7 when o is less than or equal to 7.

In section 7.5, A¢ (lambda coerce), another extension of the simply typed
lambda calculus with subtyping, is introduced. This time the rule added is the
previously mentioned CoEercion rule. Basic properties of this system are estab-
lished, and, in section 7.6 we show that the “invisible” coercions in a A¢ typing
statement can be uniformly reconstructed producing a legal statement of Ac. The
fact that we translate typing statements instead of typing derivations as in [CG92]

7.2. THE SUBTYPING RELATION 119

and [BCGS91], avoids coherence problems.

Finally, in section 7.7, a translation of Ag into the simply typed lambda cal-
culus A— is developed. This means that a system with two different kinds of
judgements, typing judgements and subtyping judgements, is translated into a
system without subtyping. The idea is to mimic A¢ inside A—. The translation of
the typing system is straightforward; the CoErcion rule is omitted. The transla-
tion of the subtyping statements is as follows: the subtyping axioms are collected
as a so called environment (like a signature in ELF [AH87)), and the subtyping
rules are perfectly captured by computational properties of the A-calculus. A proof
of a subtyping statement is then a A—-term containing constants of the environ-
ment. This translation together with the translation from A¢ into Ag, imply that
subtyping can be coded into a system without subtyping.

The A— that we define in section 7.7 is not exactly the one presented in
{Bar92]. We prefer a formulation in which constants are syntactically different
from variables, the rules prevent abstraction over constants, and there is a typing
rule for constants, so that nothing that is ilegal can be derived from the rules
without extra proviso in the metalanguage.

CONVENTION 7.1.1 Throughout this chapter the metavariables a, 4, and & will
range over type variables, o, 7, and p will range over types, M, N, and P will range
over terms, ,y, and z over term variables, I" will range over contexts, and ¥ over
environments.

7.2 The subtyping relation

The relation <¢

In the present section we define the subtyping relation, ¢, and an algorithm,
Subtype, to check whether two types are in the subtyping relation. In proposi-
tion 7.2.7, we prove the correctness of the algorithm Subtype with respect to the
definition of <¢.

Let Vbe a set of type variables, T a set of types defined by

T:.=V| T-T,

and let C C Vx Va finite set of subtyping axioms, where if (o, 8)€C then o, 8
are different variables.

We will restrict our attention to the particular case when C C ¥V x V, given

that the more general case when C C T x T could allow typing non-terminating
terms like for example (Az:o.zz)(Az:0.22).

DEFINITION 7.2.1 (Subtyping) The relation €¢ C T x T is the smallest relation
closed under the following rules.

(,f)€C = a<cP S-Inci,
c<Lco S-REFL,
OScT, TScp = O0Kcp S-TRrANS,

7 7
o€co,7"<cr = o> <co—r S-Arrow.

120 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

The S-Arrow rule deserves a close look. If we consider the relation <¢ as an
ordering, then — is monotonic in the second argument and antimonotonic in the
first argument. Intuitively, if every value of type o can be treated as a value of
type o', then every function which maps ¢’ to T also maps o to 7.

In what follows we define the algorithm Subtype, which is a decision procedure
for the ¢ relation; as it is shown in proposition 7.2.7. But first we need the
following definition.

DEFINITION 7.2.2 (Transitive Closure of C)

1. (a,B)eC = (a,)€ Trans(C),
(o, B)and (B, 7)€ Trans{C) = (e,7)€ Trans(C).

2. trans(o,r,C) = true if and only if (o, 7) belongs to Trans(C).

We can now write down the algorithm.

DEFINITION 7.2.3 (Subtype) Subtype: T x T x 2Y*V— Bool

Subtype(o,7,C) =
ifo=71
then true
else if o and T are variables
then trans(o,7,C)
else ifo = oy—o; and 7 = 1y—72
then Subtype(n,01,C) and Subtype(oz, 72, C)
else false

Where = is the syntactic equality.

Since C is finite, Trans(C) is also finite. Consequently, trans(s, 7, C) is decid-
able. Moreover, the recursive calls have arguments of strictly smaller size. Hence,
the algorithm Subtype always terminates.

DEFINITION 7.2.4 The Shadow of a type is defined as follows.

Shadow(a) = . if eV
Shadow(o — 1) = -

7\
Shedow(c) Shadow(T)

The difference between the usual underlying tree structure and the shadow of
a type expression is that different type variables have different underlying trees
but the same shadow. Then two type expressions that only differ in their atomic
subexpressions (type variables), have the same shadow.

LEMMA 7.2.5 Let a,4€V and o, 7€T. Then,

7.2. THE SUBTYPING RELATION 121

1. If trens(a, B, C). then a <¢ 6.

2. If o ¢ 7, then Shadow(o) = Shadow(r).

3. If a ¢ B, then trans(a,B,C) or a = .
PROOF:

1. By induction on the definition of Trans(C).

2. By induction on the derivation of o ¢ 7.

3. By induction on the derivation of a <¢ 8.]

LEMMA 7.2.6 Let 0y,02,71, and 72€T. Then
o1—0; $<¢c n—7; ifand only if 7y €¢ o1 and 03 ¢ 7.

PROOF: From right to left, it is just the S-ArRrRow rule. From left to right, the
proof follows by induction on the derivation of 61—o2 <¢ T1—72 . Since C only
contains pairs of type variables, the S-Inct rule could not have been the last rule
of the derivation.

S-REFL, o0y—0; = m—7; and this means that 7, = 0y and o2 = 7. Hence, by
S-REFL, it follows that 7 <¢ oy and o3 <¢ 2.

S-Trans We are in the case that for some p, o1—>02 <¢ p and p ¢ —72-
By lemma 7.2.5(2), p is of the form p;—p;. Then, by the induction
hypothesis, p1 <¢ 01, 02 <c p2, 1 <¢ M, and p2 ¢ 72. Then, by
S-TraNs, we conclude that 7 <¢ 01 and o3 <¢ 2.

S-Arrow If thelast rule was S-Arrow, then the only possibility for the hypothesis
is 11 €¢ 01 and o3 <¢ 7.]

We can now show that the algorithm Subtype is correct with respect to defin-
ition 7.2.1. The correctness is split into two parts, usually called soundness and
completeness. Soundness means that if Subtype(a, 7, C) = true, then it is the case
that o £¢ 7. Conversely, completeness means that if ¢ <¢ 7, then the algorithm
outputs true when called with arguments o, 7 and C.

PROPOSITION 7.2.7 (Soundness and completeness of Subtype)
Subtype(o,7,C) = true if and only if o <¢ 7.

Proor:

=) By induction on the complexity of ¢ and 7.

Case 1. o,7€V. Then we have to consider the following two cases.

Case la. If ¢ = 7, then, by S-REFL, 0 <¢ 7.

122 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

Case 1b. If trans(o,7,C) = true, then, by lemma 7.2.5(1), we know
that o <¢ 7.

Case 2. If either o or 7 is a variable and the other one is not, then the al-
gorithm never yields true.

Case 3. Neither o nor 7 is a variable. Again we have to consider two cases.
o = 1. Then, by S-REFL, 0 ¢ 7.
o #7. Say 0 = 0y—0; and 7 = m—1;. Then it is the case that
Subtype(1, 01, C) = true and Subtype(oz, 72, C) = true.
By the induction hypothesis, 1 €¢ 01 and o2 <¢ 7. Hence,
due to the S-Arrow rule, 01— 03 ¢ 1 —T.

<) By induction on the complexity of &.

ceV. Then, by lemma 7.2.5(2), 7 is also a variable. By lemma 7.2.5(3),
it follows that trans(o,r,C) = true or ¢ = 7, and in both cases
we have that Subtype(o,r,C) = true.

¢ = 01—03. Then, by lemma 7.2.5(2), 7 is of the form 7;—7,, and, because
of lemma 7.2.6, we know that ; <¢ o, and o, <¢ 7. Then
Subtype(r1,01,C) = true and Subtype(o,, 75,C) = true, by the
induction hypothesis. Hence, Subtype(o, 7, C) = true. a

A closer look at the algorithm uncovers some proof theoretic properties of
the subtyping relation €¢. Observe that in the algorithm the S-Trans rule is
considered only at the level of variables, in other words, the S-TrANs rule is never
used as the last rule of a proof of a statement of the form oy—0; <o o 7.
The corollary is then, that, if there exists a proof of & ¢ 7, then there exists
also a proof of & <¢ 7 in which the applications of the S-TraNs rule are only on
statements of the form o <¢ 8 and 3 <¢ v, where a, 8, and ¥ are type variables.

This fact can be read as follows: the system in which the S-TraANs rule is replaced
by

S-Trans’ a<c B, f<c7 = a<c7, wherea,gB,veV.

can prove the same subtyping statements as the original system defined in 7.2.1.

From the proof theoretic point of view there is another possible refinement
that consists of restricting the application of the S-REFL rule to type variables. In
other words, we could replace S-REFL by

S-REFL a ¢ a for all aeV.

But, from an algorithmic point of view, this is not a very satisfactory choice,
because the proofs with the S-REFL rule can be shorter. The use of the S-REFL
rule instead of the S-REFL’ rule avoids superfluous recursive calls. For example,
to prove a—(f—a) <¢ a—(f—a) requires two applications of the S-ArRrow rule
and three applications of the S-REFL’ rule, while it can be proved in one step with
the original S-REFL rule.

7.2. THE SUBTYPING RELATION 123

About the sets {r€T | r <¢ ¢} and {r€T| o <c 7}

In this section we focus our attention on the sets of types which are smaller
and bigger than a given type with respect to <c. We define simultaneously the
functions after and before that, given a type, retrieve the set of bigger and smaller
types respectively, as we prove in lemma 7.2.9(3).

DEFINITION 7.2.8 after,before : T — 2T,

before(e) = {a}U{BeV| trans(B,a, C) = true}, if aeV.

after(a) = {a}U{BeV| trans(a,s,C) = true}, if aeV.
before(c—1) = {o'=7'€T| o’cafter(o) and 7' €before(r)}.
after(c—71) = {o'>7'€T| o'chefore(c) and '€ after(r)}.

LEMMA 7.2.9 Let o,7¢T.

1. o€before(a) and o€after{s).

2. ocbefore(r) & Teafter(o)

3. 0 <o T & oE€before(r).

4. {r€T|r <c 0} and {7€T'| o K¢ 7} are finite sets.
PROOF:

1. Straightforward.

2. By induction on the structure of o

3. =) By induction on the structure of ¢ using proposition 7.2.7 and 1.

<) By induction on the structure of o.

4. By items 2 and 3, we know that

{r€T| r <c o} = before(o), and
{r€T| o <c 7} = after(a),

Since C is finite, before{c) and after(a) are finite sets. a.

About the form of types in the <¢ relation

In order to study types in the subtyping relation it is useful fo have a language
which enables us to refer to a specific subexpresion of a given type. Having in mind
the underlying tree structure of a type, say o, we define the notion of birary code.
Each binary code uniquely determines a subtree of the underlying tree of o, which
in its turn, is linked to a subexpresion of o.

DerFINITION 7.2.10

124 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

1. A binary code is a possibly empty sequence of zeros and ones.
2. A positive binary code is a binary code with an even number of ones.

3. A negative binary code is a binary code with an odd number of ones.

DEFINITION 7.2.11 The subexpression of code b in the type expression ¢, nota-
tion Sub(b,), is defined as follows. Sub: {0,1}*xT - T

Sub(fl,0) = &
Sub(1b,0—7) Sub(b, o)
Sub(0b,0—7) = Sub(b,7)

Observe that Sub is a partial function; not every binary code indicates a subex-
pression of a given type. For example, Sub(10,a) with o€V is undefined.

NOTATION 7.2.12 we will write b(c) instead of Sub(b, o). We frequently use code
instead of binary code.

DEFINITION 7.2.13

1. bis called a code in o if b(c) is defined.
2. bis called a binary leaf code in o if b(c)€V.

Intuitively, a binary code in a type o is a path starting from the root of the
underlying tree of o, where left is indicated with 1, and right with 0. Note that
each code in ¢ uniquely determines a subexpression of . Then we can say that
a subexpression is positive if it has a positive code, and negative otherwise. Note
that then in the path from the root of the underlying tree of o to the root of a
positive (respectively negative) subexpression we have chosen an even (respectively
odd) number of times the left branch of an arrow node.

LEMMA 7.2.14 Shadow(o) = Shadow(r) if and only if every leaf code of o is a
leaf code of 7.

PROOF: From left to right, the result follows by straightforward induction on the
structure of o. From right to left. By induction on the structure of o.

oeV. (] is the only (leaf) code of o. Since [] is also a leaf code of 7, it
follows that 7 is a variable. Hence, Shadow(s) = Shadow(r).

o = 0,—03. The leaf codes of o are of the form 15; and 0b;, for every leaf code
b, of oy and for every leaf code b, of o;. Since 15, and 0b; are also
leaf codes of 7, 7 is of the form 1y—7;. Then b, is a leaf code of 7
and b, of 2. Then by the induction hypothesis and the definition of
Shadow, it follows that Shadow(c) = Shadou(r).

7.2. THE SUBTYPING RELATION 125

PROPOSITION 7.2.15

If for every positive leaf code b in o, b(o) <¢ b(7),
and for every negative leaf code bin o, b(r) <c b(c), then o ¢ .

PROOF: By induction on the complexity of o.

ceV. Then the only code in ¢ is the empty code, and as the empty code
is positive, we have that [|(¢)<c [J(7), but [J(¢) is o and [|(7) is .

0 = 0,—03. Then the codes in o are of the form 15; and 0b;, where b, is a code
in oy and b; is a code in o3.

Since b is a leaf code of o, b(c) is a variable, and since b(e) <c¢ b(7),
by the correctness of the algorithm Subtype, b(7) is also a vari-
able. Hence, b is a leaf code of 7. By lemma 7.2.14, it follows that
Shadow(o) = Shadow(r). Then we know that 7 is of the form n— ;.
Our goal is to prove that o1y —02 ¢ 71— 72. For that, it is enough
to show that m <¢ o and o2 <o 7.

e Let b, be a negative leaf code in 0y. By the definition of code,
bi(o1) = 1b(o), and by assumption, since 1b; is a positive code,
also 14 (¢) <c¢ 1bi(7), and, as 1b(7) = bi(n1), we conclude
bi(01) <e bi(m).

e Let b, be a positive leaf code in ¢;. By definition of code,
bi(c1) = 1by(o), then as 1, is a negative code in o, 1b,(7) <¢
151(o), and, as 1b,(7) = bi(71), we have that by(n) <¢ bi(o1)-

We conclude that ; €¢ o, by the induction hypothesis. Similarly,
it follows that o, <¢ m.]

LEMMA 7.2.16 Suppose o <¢ 7. Then,

bis a code in o if and only if b is a code in 7.

ProOF: By induction on the complexity of o.

ceV. Then, by lemma 7.2.5(2), 7 is also a variable. Then the only possible
code is the empty code, and [] is a code in every element of T.

o = 01—0;. Then, by lemma 7.2.5(2), 7 is of the form 7, —7,. By lemma 7.2.6,
71 Lc 01 and 03 K¢ T2

=>) Let b be a code in &, then the following cases have to be con-
sidered.

Case 1. b = Ob with &' a code in 0;. Then, by the induction
hypothesis, b’ is also a code in 73, but this means that
0b is a code in T.

126 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

Case 2. b= 1} with ¥’ a code in ;. By the induction hypothesis,
b is a code in 7. Hence, 1% is a code in 7.

<) Similar to the proof of =), interchanging the roles of o and .
0

PROPOSITION 7.2.17 Suppose o ¢ 7. Then, for every leaf code b in &

if b is positive, then b(c) ¢ b(r) and
if b is negative, then b(7) ¢ b(o).

ProoFr: By induction on the complexity of o.

ceV. This means that the only code in ¢ is the empty code. Hence b(o)
is o and b(r) is 7. The empty code is positive and, by hypothesis,
o ¢ T, so there is nothing else to prove.

o = 01—0,. Then, by lemma 7.2.5(2), 7 is of the form 71—7,. By lemma 7.2.6,
11 €¢ 01 and o3 €¢ 72. We are in the case that b= db’ with d =1
and b’ a code in 0y, or d = 0 and &' a code in &;. According to the
possible codes in o we have to consider the following two cases.

e b is positive.
Case 1. d = 0 and ¥’ positive. As b’ is a code in g3, by the induc-
tion hypothesis, '(o2) <c¢ ¥'(72), what, by definition of
code, can be read as 0b'(¢) <c 00'(7).
Case 2. d = 1 and b negative. By lemma 7.2.16, b’ is also a code
in 7; and, by the induction hypothesis, (o) <¢ (1),
what, by definition of code, is 15'(s) <¢ 16(7).

e b is negative.

Case 1. d = 0 and b negative. By the induction hypothesis,
V' (r2) <c b'(02), what means that 06'(t) <c 08'(o).

Case 2. d =1 and ¥ positive. Lemma 7.2.16 implies that b’ is
also a code in 7y. Then, by the induction hypothesis,
¥'(m) <c bV(o1). Finally, by the definition of code, it
follows that 1b'(7) <¢ 1¥'(0). D

THEOREM 7.2.18

o &£c 7 ifand only if for every leaf code bin &
if b is positive, then b(c) <¢ b(7) and
if b is negative, then b(t) <¢ b(o).
PROOF: By propositions 7.2.15 and 7.2.17. u|

This theorem suggests yet another way to check whether ¢ <¢ 7, by only
looking at the leaves of the underlying trees of & and 7.

7.3. SIMPLY TYPED A-CALCULUS 127

7.3 Simply typed A-calculus

We use a slightly different version of A— than the one in [Bar92], the difference
being that our version contains constants as pseudo-terms that are syntactically
different from variables. Constants are assigned a type in an environment as in
[AH87], and there is a rule for typing constants.

DEFINITION 7.3.1 The typed A-calculus, A—, is defined as follows.

1. The set of pseudo-terms A = A(A—) is defined by the following syntax.
A=V | K | AV:T.A| AA,

where V' is a set of (term) variables and K is a set of constants such that V
and K are disjoint sets.

2. An environment is a set of statements with only distinct constants as sub-
jects. The symbol X is used for environments.

The set of types T and the concepts of statement, typing assumption, sub-
ject, context, derivable statement and legal term are as in definition 7.4.1.

DEFINITION 7.3.2 (Typing rules)

Thgkeo, ifkiocel (T-Cons)

F'txzeo, ifziocel {T-Var)
I'Nziebs Mer

I'bkg Az:o. M € 0o 71 (T-Ass)

I'ks M eoor 't Neeo (TAPP)

'k MNer

Basic properties of A—

Let us mention the following properties of A— without giving their proofs. The
interested reader can find more about these results in [Bar92]. There the A—-
system presented does not have constants, but the proofs of the propositions below
are straightforward extensions of the proofs given in [Bar92]; nevertheless the
strong normalization property deserves a more careful examination. Let us use
for derivability in the A—-system presented in [Bar92) where we consider K UV
as the set of variables. Note that if 'tz M € o then X, F M € o. Then the
strong normalization property for the system in which our constants are treated
as free variables implies the corresponding result for the system with constants.

Let FV(M) denote, as usual, the set of free variables of M and Dom(T') the
domain of T', i.e. the set of subjects of T'.

LEMMA 7.3.3

1. (Free Variable) If T3 M € o, then FV(M) C Dom(T).

128 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

2. (Weakening for A—)
Let T and I be contexts such that 'CI'. Then if 'y M € o, then
I’ Fs M € 0.

PROPOSITION 7.3.4

1. (Generation for A—)

(a) UT kg k € o, then k:g€X.
(b) U I'tg z € o, then z:0€l.

(¢) fI'Fg MN € o, then there exists 7 such that 'ty M € r—0 and
FteNer.

(d) If T g Az:0.M € p, then there exists 7 such that p = o—r and
I'ziobs M er.

2. (Unicity of types for A=) HTtgx M € o and kg M € ¢/, then o =o',

3. (Strong normalization for A—) If I' Fz M € o, then M is strongly normal-
izing.

7.4), a system with implicit coercions

We define the system A¢ (lambda sub), an extension of the simply typed A-calculus
with subtyping. The difference between the simply typed A-calculus and A is the
following rule.

'FMeo oc<cT

'-Mer
An immediate consequence of the addition of this rule is the loss of the unicity
of types property. Fortunately, the system has instead the minimal type property.
Namely, if ' F M € o, then there exists r such that ' - M € 7 and 7 <¢ o. That
property is relevant in the design of type checking and type inference algorithms.
Consider the case of type checking. Knowing that if a term is typeable, then it
has a minimal type, we try to identify a fragment of the system in which every
typeable term is assigned a minimal type. In our case, we define a subsystem of
Ag» Alghg, which has the unicity of types property and is syntax directed, in such
a way that that Algh¢ defines an algorithm to compute minimal types in Ag.
We give now the formal definition of a simply typed A-calculus with implicit
coercions, Ag.

(T-SupsuMPTION)

DEFINITION 7.4.1 The typed A-calculus with implicit coercions, A, is defined
as follows.

1. The set of types T = Type()) is defined by
T == V| T-T,

where Vis a set of (type) variables.

7.4. A¢, ASYSTEM WITH IMPLICIT COERCIONS 129

2. The set of pseudo-terms A = A(\g) is defined as follows.
A=V | AV T.A | AA,

where V is a set of (term) variables.

3. A statement is of the form M € o (M is of type o) with M€A and o€T.
The term M is called the subject of the statement. A typing assumption is
an expression of the form z:0. The variable z is called the subject of the
typing assumption.

4. A contezt is a set of typing assumptions with distinct variables as subjects.

DEFINITION 7.4.2 (Typing rules)
Fryz €0 if zio€l (T-Var)

Tziohy MerT

T-A
Fhy Azio.M € 07 (Bs)
Fl‘,\<M€0‘—)T Fl‘,\gNGO’
Thy,MNer (T-Arr)
Th. Me <
A‘P l‘,\:;k’ = : cr (T-SUBSUMPTION)

DEFINITION 7.4.3 A statement M € o is derivable from the context I', we write
T I-,\< M € o - T yields M of type o -, if T l-,\(M € o can be obtained using the
rules T-VAR, T-ABs, T-App, and T-SUuBSUMPTION in definition 7.4.2. A A¢-term
M is legal, if there exist ' and o such that I' by M € o, In other words, a legal
term is the subject of a derivable statements.

The typing rules in definition 7.4.2, are not syntax directed. In order to describe
a type inference algorithm, we need an alternative presentation of the typing rules
in which the term to be typed uniquely determines the last rule of the derivation
of its typing statement. In the next section, we define Alghg, an algorithmic
presentation of A¢. This presentation has the property of finding a minimal type
for Ag.

DEFINITION 7.4.4 (A type inference algorithm)

Fhupgz €0 if zio€l (T-Var)
T,z.0 I-A,x,,\s Mer (T-Aps)
T Fang Az:o.M € o=
r }_""\S Meco—or r f‘A,,,\< Ne p psco (T-APP<)

TFup MN €7

PROPOSITION 7.4.5 (Generation for Algig)

130 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

1. T h"ﬁk z € o, then r:0€l.

2. T h'ﬂ*s Az:T.M € o, then there exists p such that T, z:7 Fawrg M € pand
o= T—p.

3. KT I-A,,A‘ MN € o, then there exist p and p’ such that T }-A,,,\< M € p—o,
P <cp,andT Fang N € 0.

PROOF: Since the system is syntax directed, the form of each judgement uniquely
determines the last rule of its derivation. |

PROPOSITION 7.4.6 (Unicity of types for Algh¢) If T Fyn M € o and
Fhape M€ o', then 0 = ¢’'.

Proor: By induction on the complexity of M, using that the system is syntax
directed. o

LEMMA 7.4.7 (Well-foundedness of Algh¢) The Alghg rules (7.4.4) define a ter-

minating algorithm.

PROOF: Since T is finite T-VAR cannot cause non-termination. In rules T-APpg
and T-ABS, the size of the subject in each of the premises is strictly smaller than
the size of the subject in the corresponding conclusion. Moreover, the relation
K¢ is decidable because the algorithm Subtype, which is sound and complete with
respect to <¢, always terminates. a

PROPOSITION 7.4.8 (Decidability of type inference for Algh¢) For any I' and M
it is decidable whether there exists & such that T’ Fapg M E 0.

PROOF: By the well-foundedness of Alghg.

PROPOSITION 7.4.9 (Decidability of type checking for Alghg)
Given I'; M, and o, it is decidable whether T I—A,,A‘ M eo.

PROOF: Because of the unicity of types property of Alghg, the decidability of
type inference (7.4.8) implies the decidability of type checking.

To prove the strong normalization property for Algh¢ we use the corresponding
result for A— in section 7.3. We first provide some definitions that allow us to
relate Algh¢-terms to A—-terms in such a way that B-reductions are preserved.

DEFINITION 7.4.10 Let 6, T(A—). % : T(AlpA¢)»T(A—).

a® = & if acV.

(a—>7)6° = ghoar®

The homomorphic extension to contexts is defined as follows.

" = {
(TU {z:a})®* = T U {z:0%)

7.4. A¢, ASYSTEM WITH IMPLICIT COERCIONS 131

DEFINITION 7.4.11 _ | :A(Alghg)—A(A—)
z| =«
(Az:0. M) | Az:o® M |
(MN)|l = MIN|

I

The choice of &g is irrelevant, the essential feature is that it is fixed.

LEMMA 7.4.12 Let o, 7€T. If Shadow(c) = Shadow(r), then ¢® = r%.
LEMMA 7.4.13 Let MeA(Alghg). KT Fyp M € o, then I b5 M | € o%.

PROOF: By induction on the derivation of I' Fun M € 0. Consider the case of
the T-APpg rule. Then the situation is as follows.
r I-A,,,\< Per—o ThypN€p p<cT

F }-Alg/\< PN e 0',

where M = PN. By the induction hypothesis, the definition of %, and lemmas
7.2.5(2) and 7.4.12, we have that

I kg P le ®—>0® and T by N € 7%
Finally, by T-App and the definition of _ |, it follows that I Fy PN e ¢%. D
LEMMA 7.4.14 (Substitution) Let M, N in A(Alghg). Then,

(Mlz:=N])| = M|[z:=N 1]
PRrOOF: By induction on the complexity of M. o

LEMMA 7.4.15 (Reduction preservation)
Let M, N in A(Algh¢). If M =3 N, then M | =5 N |.

ProoF: The proof is by straightforward induction on the complexity of M. In
particular, the case when M is a redex is a consequence of lemma 7.4.14. (]

PROPOSITION 7.4.16 (Strong normalization for Alghg) If T Farg M € o, then
M is strongly normalizing.

PROOF: The result follows from lemmas 7.4.13 and 7.4.15, using a similar argu-
ment as in theorem 7.7.12. 0
The system Algh¢ does not satisfy the subject reduction property. Consider
the following simple example.
Let @ ¢ v, then zia by (Az:7.2)2 € v and (Az:7.7)z —p 2, but zia K 2:7.
This example illustrates the fact that a step of 8-reduction of a term may reduce
its original type. The reason being that, in order to type (Az:y.z)z, @ <¢ 7 is
used, and such information can only be used by the application rule, T-Appg.
The f-reduction step “erases” the application. Therefore the subtyping inform-
ation cannot be used any longer. Nevertheless, the following monotonic subject
reduction property holds. The following result is necessary to prove proposition
7.4.18.

132 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

LEMMA 7.4.17 T, ziobyp M €T, THhun N € o', and o' €¢ o, then there
exists 7’ such that T Famrg Mlz:=N]e ' and 7’ ¢ 7.

PROOF: By induction on the complexity of M. O
PROPOSITION 7.4.18 (Monotonic subject reduction)

Ifr l—,,,,\(Meoand M —4 M’, then there exists 7 such that T I-A,,A‘ Mer
and T <c 0.

PROOF: By straightforward induction on the complexity of M, using lemma
7.4.17. Let us consider the case when M is a redex and M’ its reduct, that is
the only case that demands some work. Then the situation is as follows.

T Fapg (Az:p. M1)M, € 0.
By generation (proposition 7.4.5), we have that
T,z:p '_A'v*s Myeo T I-A,,,\< M, e p' and o' <c p.

By lemma 7.4.17, there exists ¢’ such that T’ Fang Milz:=M,] € o' and o' <¢ 0.
[m]
Observe that because of the unicity of types property M’ cannot have type o
as well.
Here we show that Algh¢ describes an effective procedure to compute minimal
types in Ag.

PROPOSITION 7.4.19
1. (Soundness) If T’ l-‘,,,\< Meo, then T I—,\< Meo.

2. (Completeness and minimal typing) If T' Fy, M € 7, then there exists o
such that o g7 and T l—,,,,)“ Meo.

PROOF:

1. By induction on the derivation of I' }"41,,\< Meo.

2. By induction on the derivation of T' l-,\‘ M € 0. We consider the case for
T-APp, the other cases follow with similar or simpler arguments. We are
given that

M= M] Mg,
r I-A‘ M; € T—0, and
Thy My

By the induction hypothesis, there exist p; and p; such that

r hlg,\< M, € p; where p; ¢ 7—0, and
T Fapg Mz € p; where p; <c 7.

By the correctness of the algorithm Subtype (7.2.3), we know that p, =
T1—0y, and by lemma 7.2.6, we have that 1 <¢ 7 and oy <¢ 0. By §-
TRANS, p2 €c 7y. Finally, by T-App¢, we have that T h'!k MM, € o,.
O

7.5. Ac. A SYSTEM WITH EXPLICIT COERCIONS 133

The last proposition says that A¢ and Alghg type the same set of terms, in
other words, the set of legal terms of A¢ is equal to that of Algh¢. The difference
is that they may assign different types to the same term. Note that item 1 says
that Algh¢-typing statements are also A¢-typing statements, the converse is not
true. Consider the following simple example.

Let C = {(a, §)}. Then z:a by z € B, but z:a Fypr T € A is not a derivable
statement.

Observe that the typing information present in the A¢ terms is essential for the
minimal type property. Consider the following example in the system presented
in [Mit84], i.e. a simply typed A-calculus & la Curry with implicit coercions to
see that it might be the case that neither the unicity of types property nor the
minimal type property are satisfied.

Let C = {(e,8)} and let a, 3, and 4 be different type variables. Then the
identity function, Az.x, has as type scheme o—7 where o <¢ 7. In particular we
have that

Pk Az.z:a— P and I F dz.z:y—y,
but there is no type p such that
'k Az.z:p, p €c a—f, and p <o y—7-
Unlike the system Algh¢ the system A¢ satisfies the subject reduction property.

PROPOSITION 7.4.20 (Subject reduction for Ag)
ETFy ME€oand M —p M', then T Fag M eo.

PROOF: By lemma 7.4.19(2), we know that there exists 7 such that T' o0 M € 7
and 7 €¢ o. By monotonic subject reduction (7.4.18), T I—A,,Ag M € 7', for some
7' €c 7. Then, by lemma 7.4.19(1), it follows that ' by M € 7. Finally, since
7' ¢ o, by T-SUBSUMPTION, it follows that T' k) M’ € 0. 0

7.5)¢, a system with explicit coercions

DEFINITION 7.5.1 The typed A-calculus with explicit coercions, A¢, is defined as
follows. The set of pseudo-terms A = A()¢) is defined by the following grammar.

A=V | AV:T.A| AN | Q<A>,

where V is a set of (term) variables and @ is a set of constants with ¢, ,€Q if and
only if 0 <o 7.

The set of types T and the concepts of statement, typing assumption, subject,
context, derivable statement, and legal term are as in definition 7.4.1.

DEFINITION 7.5.2
by, z€0, if zioel (T-Var)

134 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

lzwoky, Mer

[ki, Azio.M € 0—>1 (T-Ass)
Fl"‘,\cMEa'—b-r F"ACNEO’
r l‘,\c MNeger (T-APP)
Py, M <
Ao €o o< T (T_COERCE)

IF'ky, Cor<M> €T

The standard notions of reduction and substitution are extended with the
following rules.

1. If M — M', then c,, <M> —g ¢, <M'>.
2. o <N>[z:=M] = ¢, <N[z:=M]>.

LEMMA 7.5.3 (Weakening for A¢) Let T and I’ be contexts such that I' C I".
Then, if [+, M € o, then "), M € o.

PROOF: By induction on the derivation of ' k), M € o. m]

PROPOSITION 7.5.4 (Generation for A¢)

1. HT by, z € 0, z:0€l.
2. T k), MN € o, thereexists 7 suchthatI' -y, M € r—oand 'y N € 7.
3. IfT k), Az:p.M € o, thereexists 7 such that 0 = p—randI'z:o0 k), M € 7.

4 UTky cpr<M>€o0,TH Mep,7=0,and p<c 7.

PROOF: Since the system is syntax directed, the form of the subject uniquely
determines the last rule of the derivation of the typing statement. a

LEMMA 7.5.5 Let MeA()e).
UT,zitrby, M €oand T k), N €7, then ' k), M[z:=N] € 0.

PROOF: By induction on the complexity of M. m]

PROPOSITION 7.5.6 (Subject reduction for A¢)
flky, Mc€oand M 55 M', thenT k), M’ € 0.

Proor: By induction on the complexity of M. Let us consider the case when
M is an application and in particular a redex. Then, M = (Az:7.P)N and
M' = P[z:=N|. By generation, we have that I'z:7+y, P€cand k), N € 7.
Finally, due to lemma 7.5.5, we get I), P[z:=N] € o. Q

It is instructive to compare these last two results with lemma 7.4.17 and pro-
position 7.4.18, the corresponding results for Algl¢.

7.6. THE RELATION BETWEEN A¢ AND)¢ 135

7.6 The relation between A\, and A\¢

If we go back to the discussion in the introduction, the T-CoERCE rule is more
than what we actually need to be able to apply a function to an argument of a
type smaller than its domain type. On the other hand, the T-Arpr¢ rule fits per-
fectly in our requirements. In the introduction we mention the diflerence between
implicit and explicit coercions; in this framework Algh¢ has implicit coercions and
furthermore, given a (legal) term M in A(Alghg), there is a uniform way to find
aterm M’ in A(\¢) that is the explicitly coerced version of M, as will be defined
in definition 7.6.3. This can be read as: there is no need to write the coercions
because they can be automatically recovered.

DEFINITION 7.6.1 (The implicitly coerced version of M)
[-]: A(Ae) — A(Alghg).

lz] = =,
Az:0.M| = MAz:0|M]|,
IMN| = |M]||N],
[cor<M>] = |M]|.

LEMMA 7.6.2 If T'Fy, M € o, then there exists 7 such that T I-,,,s,,\S (M| er
and 7 <¢ 0.

PROOF: By induction on the derivation of 'y, M € o. o
This lemma says that the implicitly coerced version of a (legal} A¢-term is a
(legal) Algh¢-term.

DEFINITION 7.6.3 dec : ContextxA(Algh¢)—A(Ae)

decr(z) = =
decr(Azio.M) = Az:o.decr .0(M)
decr(MN) = decr(M)c,,<decr(N)>
where ' Fyp N €p
and I I-A,,A‘ M€ oot

dec stands for decoration.

Observe that dec is a partial mapping given that there may not be such p or o—7
in the application case, and that it may not be the case that p <¢ o, in which
case there is no c,, constant. On the other hand, the next result shows that dec
is total on the subset of legal Algh¢-terms.

LEMMA 7.6.4 Let MeA(Alghg). then
I'Faupg M € oif and only if T' by, decr(M € 0.

PROOF:

http://T-Coer.ce

136 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

<) By induction on the complexity of M.

=) By induction on the derivation of I' l—mx‘ M € 0. Let us consider the case of
the T-Arpg¢ rule. Then, the situation is as follows.

Fhupg PET—0 Thup N€p p<c
F'Fupg PNEO

where M = PN.

By the induction hypothesis T k. decr(P) € r—o and I' Fy_ decp(N) € p
and by the T-CoercE rule I' k5 ¢, ,<decr(N)> € 7. Finally, by the T-Arp
rule, it follows that I' k5, decr(P)c,,<decr(N)> € o and, by proposition
7.4.6, we conclude decr(PN) = decr(P)c,<decr(N)>. o

LEMMA 7.6.5
r l—,\< M € o if and only if there exists 7, such that I' by ¢, ,<decr(M)> € 0.

PROOF:

1. T by, erpo<decr(M)> € o, by generation for A¢ (proposition 7.5.4),
'k deer(M) € 7 and 7 ¢ 0.
By lemma 7.6.4, T Fapn M € 7, and, by the soundness of Alghg (7.4.19),

['ka¢ M € 7. Finally, the result follows by T-SuBsuMPTION. m]
2. ET kx M € o, then, by the completeness of Algh¢ (7.4.19), there exists 7
such that
FFape M €7, and
T <0 0.
Then, by lemma 7.6.4, it follows that I' ., decr(M) € 7. Finally, the result
follows by T-CoERck. a

This last lemma says that A¢ can be translated into Ag. Moreover, together
with theorem 7.7.9, implies that A¢ can be translated into A—.

We could compare the systems Algh¢ and A¢ using an auxiliary system, call it
Ac~, obtained by replacing the rules T-App and T-CoERcE of A¢ by the following
rule.

FFy-MEo—r 'ky-Ne€p p<co
Phy-Mc ,<N>er

It is easy to check that Ac~ satisfies the unicity of types property. Unfortu-
nately, the system Mg~ is not sufficiently well-behaved to be of independent in-
terest. For example, it does not satisfy the subject reduction property. The failure
is such that g-reductions on well typed terms can yield illegal terms. For example,
if C = {{8,a)}, then y:8 k), - (Az:a.z)cpa<y> € a, but y:f b, - cpa<y> € a
is not a derivable statement.

The following lemma shows that Ac™ is an intermediate step between Algh¢
and Ac.

(T-Appc)

http://T-Coer.ce

7.7. SIMPLY TYPED MA-CALCULUS AND ¢ 137

LEMMA 7.6.6 LTk, -M¢€othen'ky, M€o.
2. If I'kx, M € o then there exists T such that T <ccand 'k, - M €.
3. 'k~ M € o then Tk M| € 0.
4. T Fupe M € o then Tk, - decr(M) € o.
5. IfI'Fy - M € o then decr(|M]) = M.
6. If T Fapng M € o then [decr(M)| = M.

Observe that lemma 7.6.2 is now a consequence of items 2 and 3 of the last
lemma; and the last four items say that Algh¢ and Ac™ are equivalent in the sense
that every term that can be typed in Algh¢ has its explicitly coerced version in
Ac~, and every lerm that can be typed in A¢~ has its implicitly coerced version
in Alghg. Furthermore, the translation between the two systems does not cause
any loss of information as long as no reduction is involved.

7.7 Simply typed A-calculus and \¢

In this section we show how to translate Ac into A—. The first step of this
translation consists of representing subtyping statements as A—-terms. For this
we define an environment in which there is a typing statement for each subtyping
axiom of C as follows.

DEFINITION 7.7.1 Theenvironment X¢. Let ky, g,...kan g, be different constants
of K. Then,

Yo = {kay p:01—=01, ey kap pn:0n—n},
such that (a;, 8;)€C if and only if k4, 5,€Xc-

Observe that kg, g, is just a mnemonic name for a constant. Next we define the
function find that finds a term that performs the coercion from o to 7 if 0 ¢ 7.
For that we use the following auxiliary definition.

DEFINITION 7.7.2 (Typed composition)
f o, g = Az:0.f(gz).
For the sake of readability we use simply o.
If we look at C as a directed graph, there may be more than one path between

two variables of C', and that is the reason why a choice is involved. An example
of such situation is the following.

138 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

EXAMPLE 7.7.3 Suposse C = {(a, 3);(8,7); (a,6);(8,7)}. Then there are two
non-convertible terms that perform the coercion from «a to v, namely

kg 0 kop and ks 0 K-
Therefore, we assume a choice function choose so that find is well defined.

DEFINITION 7.7.4 find: Tx Tx 2V*VoA(A-).
find(e,0,C) = MAzio.z,
find(a, 8,C) choose{ky,_, yp © ... 0 kg |70 = @,

w = P and (4, %4+1)€C, for every ie{l..n} },
find(o1—02,1—72,C) = Azi01—07.find(0,, 72, C) 0 z 0 find(11,01,C).

where a # 3, 01 # 11 and o3 # 7.

Observe that find is a partial mapping, given that choose may fail, and it is
only defined when the first and second arguments are in the €¢ relation. Note
that if we impose the restriction that C must be transitively closed, then we can
simplify the function find and redefine the second clause as

find(a, 8,C) = kap.

The next lemma states that if o ¢ 7, then find(o,7,C) is a codification of a
subtyping statement in the simply typed lambda calculus without subtyping.

LEMMA 7.7.5 lf o ¢ 7, then kg, find(o,7,C) € o—7.
PRrROOF: By induction on the complexity of .

Case 1. o is a variable. Then, by lemma 7.2.5(2), 7 is also a variable. According
to lemma 7.2.5(3), we can distinguish two cases.

Case la. ¢ = 7. Then, by definition, find(o,7,C) = Az:0.z. Further-
more, it holds that kg, Az:o.z € 0—0.
Case 1b. trans(o,7,C). Then, as by, k,, 5, € %=, by the definition of

E¢, we have that by Ky, qn 000 0 kg € 057,

Case 2. ¢ = 01—03. Then, by lemma 7.2.5(2), 7 = nn—m. If 0 = 7, the result
follows as in Case la. Otherwise, by lemma 7.2.6, 1 <¢ 0y and 03 <¢ 72.
By the induction hypothesis, we have

Fgc find(my,01,C) € 11— 0, and
Fxc find(oz,72,C) € 03—y,

Hence, Fg, Az:01—0;.find(02,72,C) 0 2 0 find(ry,01,C)o—7 € . a

Observe that, actually, this result could be obtained as a corollary of these two
facts:

7.7. SIMPLY TYPED A-CALCULUS AND)¢ 139

o If 0 ¢ 7, then find(o,7,C) is defined, and
o If find(o, 7, C) is defined, then by, find(o,7,C) € 0—7.
With the following definition we can relate the system Ag with A—.

DEFINITION 7.7.6 M~ (The A— version of M). _":A(Ag) — A(A—).

—

" = =z,
(Az:o.M)™ = AdzioM™,
(MN)™ = MTN7,

(cor<M>)" = find(o,7,C)M™.

Then, M~ is obtained from M by replacing the coercion constants by terms that
will perform the corresponding coercion.

Note that _™ is a total function because the existence of ¢, . implies 0 <¢ 7.

ProOPOSITION 7.7.7 Let M in A(Ac). Then,
by, M€o,thenT ks, M™ € 0.

ProoF: By induction on the derivation of I' 3, M € 0.

T-VAR Let M = z. Then z:0€l". As 2™ = z, using the T-Var rule in A— we
get 'y, 27 €0,

T-ABs Let M = Az:p.N and ¢ = p—7. Then I' k. Az:p.N € p—o1 follows
from I',z:p k5, N € 7. By the induction hypothesis, it follows that
[,z:pbg, N €. By T-Ass, we conclude I' by, Az:p. N™ € p—or,
and, by the definition of 7, ' kg, (Az:p.N)™ € p—o7.

T-App M = NP,andT), NP € o follows from the statementsI' b5, P € 7
and T+, N € 7—0o for some 7. By the induction hypothesis, the T-
Arp rule of A—, and the definition of .7, the result follows.

T-CoERCE M is ¢, o <N> and I' by, ¢,,<N> € o follows from I' Fy, N € 7 and
7 ¢ o. By the induction hypothesis, I' 5, N~ € 7, and due to
lemma 7.7.5, by, find(r,0,C) € T—0o. Finally, using the weakening
lemma together with the T-AprP rule of A—, and the definition of -7,
we get I' by, (cr0<N>)" € 0. 0

ProPosITION 7.7.8 Let M in A(A¢). Then
Tkg, M~ €0 = Th,Meco.
Proor: By induction on the complexity of M.

Case 1. M = z€V. Then M~ = z. By the free variable lemma of A—, we can
conclude that z:0€T, and, by T-VAR '}y, z € 0.

140 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

Case 2. M = PQ). Then M~ = P~ Q™. By generation, there exists 7 such that
[tg, P er—oand Ty, Q7 €.
By the induction hypothesis,
'k, PeEr—ooandThHy, Qer.

By T-Arp, we get ' k), PQ € 0.

Case 3. M = Az:r.N. Then M™ = lz:r.N™. By generation, it follows that
Iyz:t kg, N7 € p and 0 = r—p. We now can apply the induction hy-
pothesis and we get T', z:7 k5, N € p, and to that we only have to apply
the T-Aps rule to get ' -, Az:7.N € 0.

Case 4. M = ¢,,<N>. Then, M~ = find(r,0,C)N™. Recall that the constant
¢r o exists if and only if 7 €¢ 0. Then using lemma 7.7.5, we know that
Fx. find(r,0,C) € T—0o. By generation, the unicity of types lemma, and
the weakening lemma, it follows that I' by, N~ € 7. By the induction
hypothesis, we have I' by, N € r. Finally, by applying T-CoERCE, it
follows that I'), ¢, <N> € 0. 0

Putting together the last two propositions we can state the following theorem.
THEOREM 7.7.9 Let M in A(A¢). Then,
F}",\CMEO' < F}_Ec M~ €eo.

This last result can be read as follows. The simply typed A-calculus without
subtyping is an appropriate model for the simply typed A-calculus with subtyping.
We can also extract from it the conclusion that the simply typed A-calculus with
explicit subtyping is a conservative extension of the A-calculus without subtyping,
because if M is a A— term then M~ = M.

Metatheory of A¢

The system A¢ is of independent interest. The previous theorem and the fact that
M™ is always defined, imply that the tvpe checking and type inference problems
are decidable given that the corresponding problems in A— are (see [Bar92]).
Recall that a pseudoterm M is called strongly normalizing if there is no infinite
reduction chain starting from M. We reduce the strong normalization property of
Ac to the strong normalization result for A— (see [Bar92}).

First, we prove some auxiliary results first.

LEMMA 7.7.10 (Substitution lemma) Let M, N in A(\¢) and z€V. Then
(M[z:=N])" = M [z:=N""]

7.7. SIMPLY TYPED A-CALCULUS AND X¢ 141

ProoF: By induction on the complexity of M. We consider here only two cases,
the missing ones are proven in a similar way.

o M=z

(z[z:=N))~ N~ by definition of {:=].
z(z:=N"] by definition of [:=].

z7[z:=N"] by definition of .

¢ M =c,,<P>.

(cor<P>[z:=N])" Cor<P[z:=N]>" by definition of [:=].
find(o,7,C)(P[z:=N])" by definition of _~.

= find(o,7,C)(P"[z:=N"]) by the induction

hypothesis.
= (find(e,7,C)P7)[z:=N"]
= (¢ r<P>)"[z:=N"] by definition of .
Observe that find(o,7,C) is a closed term. o

LEMMA 7.7.11 (Reduction preservation) Let M, N in A(Ag). Then,if M —5 N,
then M~ -3 N~

ProoF: By induction on the complexity of M.

Case 1. If M€V the result is vacuously true.

Case 2. M = Az:0.M;. Then N is of the form Az:0.N;, where M; —4 N;. By the
induction hypothesis and the definition of _™, the result holds.

Case 3. M = M; M,. Then we have the following three cases.
1. N = N M,, where M; —5 Ny,

2. N = M| N,, where M; —5 N, and,
3. M =(\z:0.P)M; and N = Plz:=M,)].

The first two cases follow from the induction hypothesis and the definition
of .~ and the third is a consequence of the substitution lemma.

Case 4. M = ¢,,<M;>. The result follows from the induction hypothesis and
the definition of . (]

THEOREM 7.7.12 (Strong normalization for A¢)
HT Fy, M € o, then M is strongly normalizing.

142 CHAPTER 7. IMPLICIT AND EXPLICIT SUBTYPING

PROOF: Suppose, towards a contradiction, that M is not strongly normalizing.
This means that there exists an infinite reduction chain starting from M. By the
reduction preservation lemma (7.7.11), we know that there is also an infinite chain
of reductions starting from M ™, and using proposition 7.7.7, we know that

F}‘gc M~ eo.

But, we also know that A— has the strong normalization property which yields a
contradiction. Hence, M is strongly normalizing. m]

7.8 Confluence

Using the results about confluence of orthogonal combinatory reduction systems
(CRSs) in [vR92], we can state that the systems A¢ and A¢ are confluent as a
consequence of what we have already proven in this chapter. The sets of pseudo-
terms A(A¢) with the G-reduction rule and A(Ag) with the S-reduction rule are,
according to the definitions of [vR92], two orthogonal CRSs. The subject reduction
property of Ac (7.5.6) and of A¢ (7.4.20), imply that the corresponding sets of legal
terms are two substructures of A(A¢) and A(Ag) respectively. Since substructures
of orthogonal CRSs are also orthogonal, it follows that the systems Ac and A¢ are
confluent.

7.9 Conclusions

In this chapter we analyze two different styles of subtyping, subtyping with im-
plicit coercions and subtyping with explicit coercions. We define and study two
alternative presentations of subtyping for simply typed lambda calculus. The first
one Ag, a system with implicit coercions, and the second one Ag, a system with
explicit coercions. We show that the system A¢ can be translated into A¢, and,
in its turn, A¢ can be translated into A—. In other words, both disciplines can be
compiled into the simply typed lambda calculus without subtyping.

Chapter 8

Future research

The study of the meta-theory of a rich typed lambda-calculus such as F, has
drawn our attention towards open and challenging problems such as the ones
listed below.

A normalizing fragment of F;

Although the reduction on types — 4, is strongly normalizing on well-kinded types,
the reductions on terms are not strongly normalizing for the simple reason that
every closed term can be assigned a type. Therefore we would like to characterize
a normalizing subset of the language of terms. A similar situation arises for the
intersection type discipline & la Curry studied by the group in Torino. In their
framework, a term e is strongly normalizing if and only if there exists a derivation
of a typing statement with e as subject which does not contain the maximal type
w. In our case, this statement is not true. A very simple counterexample is the
term

Az T .z,

which is in normal form and all whose derivations contain the maximal type T*.
This problem is subject of current research by Mariangiola Dezani and the author
of this thesis.

Bounded operator abstraction

In Fy and also in F¢, abstraction on types is of the form AX:K.T, and its asso-
ciated formation rule is

I, X<T¥uK\FTh € K,

'+ AX:K,.T; € K;—K;.

A natural enrichment of the theory would replace AX:K.T by AX<S:K.T,
using the following formation rule.

I X<S:K)1 +T € K,
'k AX<S:K.T e VX<S5:K,.K,.

(K-OABs)

(K-BouNDED-OABS)

143

144 CHAPTER 8. FUTURE RESEARCH

This means that we need to modify the language of kinds because S, the bound
of X, is required in order to assign a kind to a type operator application. Then
the formation rule is as follows.

I'FT e VX<S:K,.K, rHs'<s
I'F TS e K[X5

Consequently, the kind inference and kind checking algorithms become more
complicated, since they involve checking a subtyping judgement. The meta-theory
and applications of this extension are the subject of current research by Paula
Severi and the author of this thesis.

(K-BounDED-OAPP)

Subtyping dependent types

The type-theoretic foundations of proof development systems include the AuToO-
MATH family of calculi [dB80], the Edinburgh Logical Framework [HHP92|, the
Calculus of Constructions [CH88], Extended Calculus of Constructions [Luo90],
and Martin-L&f type theory [SNP90]. Implementations of these theories have been
used in a number of proof development systems (AUTOMATH at Eindhoven, CoqQ
at INRIA, LEGO at the LFCS, and ALF at Goteborg). A common feature of these
systems is their heavy reliance on dependent types, and the consequent difficulty
of their meta-theoretic analysis.

The interaction of subtyping with dependent types seems to be the principal
obstacle to its integration in proof development systems. Some work in this area
has been started by Cardelli [Car87, Car88b], who gives basic definitions and some
ideas about type checking algorithms, and by Pfenning [Pfe93], who has proposed
variants of the Logical Framework and the Calculus of Constructions with re-
finement types, a simple form of intersection types whose interaction with type
conversion and dependency is strictly controlled. Aside from these preliminary
efforts, the area remains unexplored.

The system AP is an extension of the simply typed lambda calculus with
dependent types [Bar92]. The meta-theory of APc, an extension of AP with sub-
typing, is being developed by David Aspinall and the author of this thesis.

Appendix A

Summary of Definitions

Al F¢

A.1.1 Reduction rules for types
1. (AXKTl)Tz —p8A Tl[Xi—Tz]

[N]

. 8§ = AT Th) =pa A [S-Ty .. S—Th)
3. VXSS KN [Th.Th] =pn N VXSS:K.Ty . VX<S:K.T,]

'

. AX:KL N T T —an AR [AXCKG.T . AXCK, T

[

. NOR T T U s A [MVU .. T, U
6. AX[Ty .. AK[51.:50] .. Tn] —=5a AX[TY .. $1..50 .. T

A.1.2 Reduction rules for terms
1. (Az:Ty.e1)e2 = ppom €1]T—e3)
2. (AX<LTi:K1.€)T —pgors €[X T
3. (for(X€T1..Tn)er)es —ppors for(X €Ty Th)er 3
4. for(X€Ty..Tn)e —ppoms €, if X g FV(e)

A.1.3 Context formation rules

B+ ok (C-EMPTY)
'FTex z¢dom(l)
T, z:T F ok (C-Var)
'rTeK X ¢dom(l)
T, X<T:K F ok (C-TVar)

145

146 APPENDIX A. SUMMARY OF DEFINITIONS

A.1.4 Kinding rules

Iy, X<T:K, Ty F ok
I, X<T:K, T, F Xe K
I'rThex TFThex

TFT-T; €x
I X<Tv:K; + T, ex
T'FVY(X<Ty:K\)T; € *

I X<TKuK F T, e K,
THA(X:K)T: € K,-K,
r-SekKi,»K, TFTeK,
T-FSTeK,

I''+ ok foreach:, '+T; € K
CHA[T.T.) e K

A.1.5 Subtyping rules

''SekK 'kFTek S=p.T
res<r
resS<rT r-T<U
FrEsS<vu

Iy, X<T:K, T, F ok
[, X<T:K,T,F X<T
TFT1<S, TFS<T, TFS§-oSex
Tk 515, < T1—T;
‘T, X<U:KFS<T TFVX<SU:K.Sex
THYX<U:K.S <VX<U:K.T
[, X<TK:KFS<T
THAX:K.S<AX:K.T
TFS<T TFSUEK
TFSU<TU
for each i, TF S <T; 'rSekK
CF S < AR[T..T)
THFAX[N.T) ek
TFAMMLT) ST

(K-TVAR)
(K-Arrow)
(K-Avy)
(K-OABs)
(K-OArp)

(K-MEET)

(S-Conv)
(S-TRANS)
(S-TVAR)
(S-ArROW)
(8-Arv)
(S-OABs)
(S-OArp)
(S-MEET-G)

(S-MEeET-LB)

Al F¥

A.1.6 Typing rules

Iy, z.T, [ok
I,zT,T3tzeT
DeThteeT,
F'FAz:Ti.e € TY-T,

'k feh-T, F'taeTy
Tk faeT,

I X<Th:K,FeeT,
I'FAX<LT:K,.e e VX<T:K1. T,
't fevVX<T\:K,.T; FES<T
THfS e TXS5)
I'te[lXSleT Se€{5..5:}
T+ for(X€S;..S.)eeT
T'F ok foreach:, 't eeT;
T'tee A [Th..Tn)
'teecS res<rT
T'teeT

147

(T-VaR)
(T-Ass)
(T-Arp)

(T-TAps)

(T-TAPP)
(T-Fon)

(T-MeeT)

(T-SuBSUMPTION)

A.1.7 Subtype checking, AlgF, subtyping rules

'+ XekK
I‘l—A,gXSX
I'tTSeK
Phay, TSLTS
Tha, T(X) <A X#A
TFa, X< A
FFa, i £5 Thag 52 £ T2 'k S-S5 ¢ex
['Fay $1—285: < Th-T,

T, X<U:K +Fp, S<T THFVYXSU:K.S€x
Tk, VX<U:K.S <VX<U:K.T
[, X<TK:K b4, ST
T g AX:K.S <AX:K.T
Tha, (Wbr(TSH)¥<A TFTSeK TS#A

Ty TS<A
Vie{l.m}TFa, AST; 'FAe K
I Fay A< AN T.T,)
3je{l.n}Tha, S, <A Vke{l.n}T+ S c K
Tk A¥[S1..5.) < A

(ALGS-TVARREFL)

(ALGS-OAPPREFL)

(ALGS-TVaRr)
(ALcS-ArROW)
(ALGS-ArL)
(ALGS-OABs)
(ALcS-OAPrP)
(ALGS-v)

(ALGS-3)

file:///-jug

148 APPENDIX A. SUMMARY OF DEFINITIONS

Vie{l.m}3je{l.n}Tkay, S, <T. Vke{l.n}TF S e K
T kg A¥[S1..50]) < AR [T T
A.1.8 Type inference

DEFINITION [Homomorphic extension of fub to intersections, lub®]

hbr(X) = T(X),
Wb (ST) = Wbi(S)T,
lubp (A [Th..To)) AK[T}..T!), if 3ie{1..n} such that lub}(T})],

where T/ is lub}(T,), if lwbl.(T.)|, and T, otherwise.

(ALGS-v3)

DEFINITION [Functional Least Upper Bound] The functional least upper bound
of a type T, in a context I, flubp(T') is defined as follows.

nf » nf
I

DEFINITION [arrows and alls]

1. arrows(T1—T3) = {-T:},
arrows (A*{T1..T5.)) Useqa .ny arrows(Th),
arrows(T)

if T2 Ty—T; and T # A™[T1..T,)-

{VXST]ZK.TQ},
Ute{l..n} alls (TI)1

2. alls(VX<Ty:K.T)

alls (N*[T1..T))
alls(T)

I

if T #VX<T:K.T; and T # N(T0..T,).

Type inference rules
Fl, .’BZT, Fg F ok

Iy, 2T, T bz €T (AT-Var)
F? z:Th |_mf ecTh
T by Az:The € 1T (AT-Ass)
Fl_"'ffET Fl‘mJGGS

r l_mf fa € A*[]" IS'—)I“ € arrows(ﬂubr(T)) andTF S S S.] (AT-APP)

F7 XsTl:Kl }_mf ec Tz
T'Fo AX<T1:Ki.e e VX<T1:K,.T: (AT-TABS)

r |-mff € T
Tbus fS € N[T[X S| IVX<S,:K.T, € alls (flubr(T)) and T+ S < S]

(AT-TAPrP)
for all i€{l..n} T kyye[XS|eT, (AT-For)

T by for(X€5:..8,)e € A [T1.Tn]

A.2. FIRST ORDER SUBTYPING

A.2 First order subtyping
A02.1 As

Fkyz€o ifzioel
Fzob, Mer
I‘I—,\< Az:oM € o1
Fl‘)‘gMEO’—)T FI“A‘NEU
Fl‘,\(MNer
'HMeo o<oT
Fi‘,\(MET

A22)¢

'y, z €0, ifzi0el
Tzoky Mer
F'ky, Azio M € 0o
'k M €o—or I'beNego
'k, MNer
I'kx, Meo oc<cT
'k, Gor<M> €T

149

(T-Var)

(T-Aps)

(T-App)

(T-SuBSUMPTION)

(T-Var)

(T-Abs)
(T-Arp)

(T-CoEkrcE)

150 APPENDIX A. SUMMARY OF DEFINITIONS

Bibliography

[AC93]

[AH87]

[Bar84]

[Bar90]

[Bar92]

[BCDS3)

[BCGS91)

[BL90]

[BM92]

[BMMO90]

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575-631, 1993.
A preliminary version appeared in POPL 91 (pp. 104-118), and as DEC
Systems Research Center Research Report number 62, August 1990.

A. Avron and 1. Honsell, F.and Mason. Using typed lambda calculus to
implement formal systems on a machine. Technical Report ECS-LFCS-87-
31, LFCS, University of Edinburgh, July 1987.

H. P. Barendregt. The Lambda Calculus. North Holland, revised edition,
1984.

Henk P. Barendregt. Functional programming and lambda calculus. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, chapter 7, pages 323-363. Elsevier Science
Publishers B. V. (North-Holland), 1990.

H. Barendregt. Lambda calculi with types. In T. S. E. Maibaum S. Abramsky,
Dov M. Gabbay, editor, Handbook of Login in Computer Science, volume 2,
pages 117 -309. Clarendon Press. Oxford, 1992.

H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. Journal of Symbolic Logic,
48(4):931-940, 1983.

Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov.
Inheritance as implicit coercion. Information and Computation, 93:172-221,
1991.

Kim B. Bruce and Giuseppe Longo. A modest model of records, inherit-
ance, and bounded quantification. Information and Computation, 87:196—
240, 1990. Also in [GM94]. An earlier version appeared in the proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

Kim Bruce and John Mitchell. PER models of subtyping, recursive types
and higher-order polymorphism. In Proceedings of the Nineteenth ACM Sym-
posium on Principles of Programming Lenguages, Albequerque, NM, January
1992.

Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of
second-order lambda calculus. In Huet [Hue90], pages 213-272. Also ap-
peared in Information and Computation 84, 1 (January 1990).

151

152

[Brud4]

[Car87]

[Car88a)

[Car88b]

[Car90]
[Car92]

[CC90]

[CCH*89]

[CD80)

[CDC78]
[CDAL93]

[CG92)

[CH8S]

[CHC90)

BIBLIOGRAPHY

Kim B. Bruce. A paradigmatic object-oriented programming language:
Design, static typing and semantics. Journal of Functional Programming,
4(2), April 1994. A preliminary version appeared in POPL 1993 under the
title “Safe Type Checking in a Statically Typed Object-Oriented Program-
ming Language”.

Luca Cardelli. Typechecking dependent types and subtypes. In Proc. of the
Workshop on Foundations of Logic and Functional Programming, Trento,
Italy, December 1987.

Luca Cardelli. A semantics of multiple inheritance. Information and Com-
putation, 76:138-164, 1988. Preliminary version in Semantics of Data Types,
Kahn, MacQueen, and Plotkin, eds., Springer-Verlag LNCS 173, 1984.

Luca Cardelli. Structural subtyping and the notion of power type. In Proceed-
ings of the 15th ACM Symposium on Principles of Programming Languages,
pages 70-79, San Diego, CA, January 1988.

Luca Cardelli. Notes about F . Unpublished manuscript, October 1990.

Luca Cardelli. Extensible records in a pure calculus of subtyping. Research
report 81, DEC Systems Research Center, January 1992. Also in [GM94].

Felice Cardone and Mario Coppo. Two extensions of Curry’s type inference
system. In Piergiorgio Odifreddi, editor, Logic and Computer Science, num-
ber 31 in APIC Studies in Data Processing, pages 19-76. Academic Press,
1990.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John
Mitchell. F-bounded quantification for object-oriented programming. In
Fourth International Conference on Functional Programming Languages and
Computer Architecture, pages 273-280, September 1989.

M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the A-calculus. Notre-Dame Journal of Formal Logic, 21(4):685-
693, October 1980.

M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for A-terms.
Archiv. Math. Logik, 19:139-156, 1978.

Felice Cardone, Mariangiola Dezani-Ciancaglini, and Ugo de’ Liguoro. Com-
bining type disciplines, 1993. Manuscript.

Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption: Mir-
imum typing and type-checking in F<. Mathematical Structures in Computer
Science, 2:55-91, 1992. Also in [GM94].

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Inform-
ation and Computation, 76(2/3):95-120, February/March 1988.

William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not
subtyping. In Seventeenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 125-135, San Francisco, CA, January 1990. Also
in [GM94].

BIBLIOGRAPHY 153

(Chu3s6]
[Chu41]

[CL91]

[cM91]

[Com94)

[CP93]

[CP94]

[CWS8S5)]

[dB72]

[dB80]

[FM94]

[FMRS90]

[Ghe90]

Alonzo Church. An unsolvable problem of elementary number theory. Amer.
J. Math, 58:354-363, 1936.

Alonzo Church. The Calculi of Lambda Conversion. Princeton University
Press, 1941,

Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of
Functional Programming, 1(4):417-458, October 1991. Preliminary version
in ACM Conference on Lisp and Functional Programming, June 1990. Also
available as DEC SRC Research Report 55, Feb. 1990.

Luca Cardelli and John Mitchell. Operations on records. Mathematical Struc-
tures in Computer Science, 1:3-48, 1991. Also in [GM94], and available as
DEC Systems Research Center Research Report #48, August, 1989, and in
the proceedings of MFPS ’89, Springer LNCS volume 442,

Adriana B. Compagnoni. Subtyping in Fy is decidable. Technical Report
ECS-LFCS-94-281, LFCS, University of Edinburgh, January 1994. Presented
at Computer Science Logic, September 1994, under the title “Decidability of
Higher-Order Subtyping with Intersection Types”.

Adriana B. Compagnoni and Benjamin C. Pierce. Multiple inheritance via
intersection types. Technical Report ECS-LFCS-93-275, LFCS, University
of Edinburgh, August 1993. Also available as Catholic University Nijmegen
computer science technical report 93-18.

Giuseppe Castagna and Benjamin Pierce. Decidable bounded quantification.
In Proceedings of Twenty-First Annual ACM Symposium on Principles of
Programming Languages, Portland, OR. ACM, January 1994.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17(4), December 1985.

Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies:
a tool for automatic formula manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381-392, 1972.

Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic,
Lambda Calculus, and Formalism, pages 589-606. Academic Press, 1980.

Kathleen Fisher and John Mitchell. Notes on typed object-oriented program-
ming. In Proceedings of Theoretical Aspects of Computer Software, Sendai,
Japan, pages 844-885. Springer-Verlag, April 1994. LNCS 789.

P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. In Fifth
Annual Symposium on Logic in Computer Science (Philadelphia, PA), pages
346-354. IEEE Computer Society Press, June 1990.

Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System Integ-
rating Inclusion and Parametric Polymorphism. PhD thesis, Universitad di
Pisa, March 1990. Technical report TD-6/90, Dipartimento di Informatica,
Universita di Pisa.

154

[Ghe94]
[Gir72}

[GM94]

[HHP92)

[HP95)

[HS86]

[Hue90]

[Lan65]

{Luo90]

[Mar73]

[Mit84]

[Mit90a]

[Mit90b)

[Mit90c]

BIBLIOGRAPHY

Giorgio Ghelli, January 1994. Message to the Types mailing list.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
Varithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. The MIT Press,
1994.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, 1992. Preliminary version in
LICS’87.

Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework
for objects. Journal of Functional Programming, 1995. To appear. Previous
versions appeared in the Symposium on Theoretical Aspects of Computer
Science, 1994, and, under the title “An Abstract View of Objects and Sub-
typing (Preliminary Report),” as University of Edinburgh, LFCS technical
report ECS-LFCS-92-226, 1992.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
A-Calculus, volume 1 of London Mathematical Society Student Tezts. Cam-
bridge University Press, 1986.

Gérard Huet, editor. Logical Foundations of Functional Programming. Uni-
versity of Texas at Austin Year of Programming Series. Addison-Wesley,
1990.

P. J. Landin. A correspondence between ALGOL-60 and Church's lambda
notation. Communications of the ACM, 8:89-101, 1965.

Zhaohui Luo. An Eztended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990.

Per Martin-Lof. An intuitionistic theory of types: predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloguium, ’73, pages 73 118,
Amsterdam, 1973. North Holland.

J. C. Mitchell. Lambda Calculus Models of Typed Programming Languages.
PhD thesis, Massachusetts Institute of Technology, 1984.

John C. Mitchell. Toward a typed foundation for method specialization and
inheritance. In Proceedings of the 17th ACM Symposium on Principles of
Programming Languages, pages 109-124, January 1990. Also in in [GM94].

John C. Mitchell. A type-inference approach to reduction properties and
semantics of polymorphic expressions. In Huet [Hue90}, pages 195-212.

John C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, chapter 8, pages 365-458. Elsevier Science
Publishers B. V. (North-Holland), 1990.

BIBLIOGRAPHY 155

[Pfe93]

[Pie91]

[PT94]

[Rey80]

[Rey88]

[Sco76]

[SNP90]

[SP94]

[vR92]

[Wan87]

Frank Pfenning. Refinement types for logical frameworks. In Informal Pro-
ceedings of the 1993 Workshop on Types for Proofs and Programs, pages
315-328, May 1993.

Benjamin C. Pierce. Programming with Intersection Types and Bounded
Polymorphism. PhD thesis, Carnegie Mellon University, December 1991.
Available as School of Computer Science technical report CMU-CS-91-205.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic founda-
tions for object-oriented programming. Journal of Functional Programming,
4(2):207-247, April 1994. A preliminary version appeared in Principles of
Programming Languages, 1993, and as University of Edinburgh technical
report ECS-LFCS-92-225, under the title “Object-Oriented Programming
Without Recursive Types”.

John Reynolds. Using category theory to design implicit conversions and
generic operators. In N. D. Jones, editor, Proceedings of the Aarhus Workshop
on Semantics-Directed Compiler Generation, number 94 in Lecture Notes in
Computer Science. Springer-Verlag, January 1980. Also in [GM94].

John C. Reynolds. Preliminary design of the programming language For-
sythe. Technical Report CMU-CS-88-159, Carnegie Mellon University, June
1988.

Dana Scott. Data types as lattices. STAM Journal on Computing, 5(3):522-
587, 1976.

Jan Smith, Bengt Nordstrém, and Kent Petersson. Programming in Martin-
Lof’s Type Theory. An Introduction. Oxford University Press, 1990.

Martin Steffen and Benjamin Pierce. IHigher-order subtyping. In IFIP
Working Conference on Programming Concepts, Methods and Calculi (PRO-
COMET), June 1994. An earlier version appeared as University of Edinburgh
technical report ECS-LFCS-94-280 and Universitit Erlangen-Niirnberg In-
terner Bericht IMMD?7-01/94, February 1994.

Femke. van Raamsdonk. A simple proof of confluence for weakly orthogonal
combinatory reduction systems. Technical Report CS-R9234, CWI, Amster-
dam, August 1992.

Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Informaticae X, pages 115-122, 1987. North Holland.

Curriculum Vitae

July 1984 - December 1986

March 1987 - December 1989

January 1990

June 1990 - May 1994

October 1993 - April 1994

From June 1994

Courses of the Licenciatura en Ciencias Matemdticas

at Universidad de Buenos Aires, Argentina.
Licenciatura en Informdtica

at Escuela Superior Latino-Americana de Informatica,
Buenos Aires, Argentina.

Undergraduate degree: Licenciada en Informdiica
Escuela Superior Latino-Americana de Informatica,
PhD program at the Katholieke Universiteit Nijmegen,
Nijmegen, The Netherlands.

NWO-SION project Typed lambda calculus, 612-316-030.
Visited the Laboratory for Foundations of Computer Science,
University of Edinburgh, Scotland.

Research Fellow

at the Laboratory for Foundations of Computer Science,
University of Edinburgh, Scotland.

EPSRC GRANT, GR/G 55792.

Constructive logic as a basis for program development.

157

Samenvatting

Subtypering is een primitieve relatie waarmee op een uniforme wijze begrippen uit di-
verse gebieden van de informatica kunnen worden beschreven. In het geval dat 5 en
T verzamelingen zijn, betekent § < T (§ is een subtype van T): elementen van S zijn
ook elementen van T. Als S en T specificaties zijn, dan voldoen elementen die aan
de specificatie S voldoen, ook aan T. Als S en T objectbeschrijvingen zijn in object-
georiénteerd programmeren, dan betekent S < T dat het op plaatsen waar een object
met interface T wordt verwacht, ook een object met interface § gebruikt mag worden.
Wanneer S en T module interfaces zijn in een software systeem, dan is een implementatie
van $ ook een implementatie van T. Als S en T stellingen zijn, dan is een bewijs van
S ook een bewijs van T'. Het begrijpen van de essentie, de subtiliteiten, en de algemene
eigenschapen van subtypering, werpt licht op een omvangrijk gebied.

Dit proefschift bevat twee delen. Het eerste deel geeft een gedetailleerde analyse van
de meta-theorie van een getypeerde lambda calculus waarin intersectietypes en hogere-
orde begrensde quantificatie worden gecombineerd. Ons onderzoek betreft syntactische,
semantische en pragmatische aspecten.

e In hoofdstuk 2 definiéren we het systeem Fy, en bewijzen we een aantal ele-
mentaire eigenschappen.

— We definéren de getypeerde lambda calculus FY, een natuurlijke generalisa-
tie van Girard’s systeem F“ met intersectietypes en begrensd polymorfisme.
Een nieuw aspect van onze presentatie is het gebruik van termherschrijf-
technieken om intersectietypes te definiéren, waardoor de computationele
semantiek (reductieregels) duidelijk van de syntax (inferentieregels) van het
systeem wordt gescheiden.

— De reductieregels van F,’ kunnen gesplitst worden in twee hoofdgroepen:
reductie van types (—pa) en reductie van termen (—psr,). Hoewel conflu-
entie in het algemeen niet een modulaire eigenschap is, is het in ons geval
wel mogelijk om een modulair bewijs te geven. In sectie 2.3, combineren
we de onafhankelijke bewijzen van confluentie voor reductie van types en
confluentie voor reductie van termen, tot een bewijs van confluentie van de
reductierelatie van het gehele systeem.

— We bewijzen de sterke normalisatie eigenschap van —p, op goedgevormde
types.

o Hoofdstuk 3 bevat het meest belangrijke resultaat van dit proefschrift. Onze
voornaamste bijdrage is het bewijs van het feit dat subtypering in Fy beslisbaar
is. Dit resultaat heeft een oplossing tot gevolg voor het tot nu toe open prob-
leem van de beslisbaarheid van subtypering in F¢, het intersectie-vrije deel van

159

160

F;, omdat het subtyperinssysteem van F? een conservatieve uitbreiding van de
subtyperingsrelatie van F¢ is. Verder is de beslisbaarheid van subtypering es-
sentieel voor de beslisbaarheid van type checking en type inferentie. Een andere
oorspronkelijke bijdrage is het gebruik van een keuzeoperator om het gedrag van
variabelen tijdens subtype checking te modelleren. Het bewijs van de beslisbaar-
heid wordt opgesplitst in de volgende stappen.

— We definiéren een algoritmische presentatie van de subtyperingsrelatie, waar-
bij we alleen types in normaalvorm beschouwen.

— We bewijzen dat deze algoritmische presentatie sound en complete is met
betrekking tol de definitie van subtypering, dat wil zeggen dat hij een de-
terministische procedure bepaalt voor het checken van subtypering in Fy.

— Tenslotte bewijzen we dat de door de algoritmische presentatie beschreven
procedure termineert. Het bewijs van terminatie wordt herleid tot de sterke
normalisatie-eigenschap van reductie op types, uitgebreid met een keuze-
reductie die het gedrag van variabelen tijdens het checken van subtypering
modelleert.

In hoofdstuk 4 bewijzen we dat F; de minimale type-eigenschap heeft, en we
beschrijven een algoritme voor het berekenen van de minimale types. Bovendien
bewijzen we dat type inferentie en type checking in F, beslisbaar zijn. De mini-
male type-eigenschap wordt gebruikt om te bewijzen dat F de subject reductie-
eigenschap heeft.

In hoofdstuk 5 definiéren we een model gebaseerd op partiéle equivalentierelaties,
en we bewijzen dat de subtyperingsrelatie sound is met betrekking tot dit model.

Hoewel F, gedefinieerd was om een model te creéren voor object georiénteerd
programmeren met multiple inheritance, is het niet de bedoeling van dit proef-
schrift om de grondslagen van object georiénteerd programmeren te behandelen.
In hoofdstuk 6, laten we zien hoe multiple inheritance met behulp van subtyper-
ing gemodelleerd kan worden. Dit is een voortzetting van het onderzoek naar de
type-theoretische grondslagen van object georiénteerd programmeren door Pierce
en Turner [PT94], die multiple inheritance buiten beschouwing laten.

In het tweede deel van dit proefschrift worden twee verschillende stijlen van sub-
typering bestudeerd: subtypering met impliciete coércies en subtypering met expliciete
coércies. We definiéren en bestuderen twee alternatieve presentaties van subtypering
voor de simpel getypeerde lambda calculus. De eerste, Ag, is een systeem met implici-
ete coércies, en de tweede, Ac, is een systeem met expliciete coércies. We laten zien
dat het systeem A vertaald kan worden in A, en dat Ac vertaald kan worden in A—.
Vanuit een pragmatische invalshoek betekent dat, dat impliciete of expliciete coércies
slechts een kwestie van smaak zijn, en dat beide benaderingen vertaald kunnen worden
in de simpel getypeerde lambda calculus zonder subtypering.

Translated by Jan Kuper

